THE HOWS AND WHYS OF ANTIALIASING FILTERS CONTROLLER CHIPS KEEP NETWORK NODES SIMPLE

FOR ENGINEERS AND ENGINEERING MANAGERS - WORLDWIDE

DECEMBER 13, 1990

$2 \rightarrow$

Who says you can't afford the world's best PLD development tools? Data I/O®'s industry-standard design software and programming solutions are more powerful-and more affordable-than ever before. So now the best tools on the market are also the best value.

NIEW ABEL ${ }^{\text {™ }}-4$ marks a major milestone in PLD software. The leader in device support, ABEL-4 automatically identifies which PLDs match your design needs with new SmartPart ${ }^{\text {tTM }}$ intelligent device selection. New optional device fitters automatically assign pins and
configure macrocells for complex device architectures. And an all-new user interface speeds the entire PLD design process.

A major new version of the leading schematic capture software, NEW FutureNet ${ }^{\circledR}-\overline{5}$, redefines "ease-of-use" with pop-up menus, extensive dialog boxes and a fast symbol browsing feature.

To make designing for testability practical, choose NEW PLDgrade. ${ }^{\text {TM }}$ This inexpensive fault grading software helps you optimize your design for testability before production.

And the affordable NEW 2900 Programming System brings the cost of high-performance programming down to earth. Its innovative technology makes programming any PLD - even surface-mount devicesfast and easy.

CALL TODAY for your FREE tutorial on designing with PLDsa $\$ 12.95$ value.

1-800-247-5700

The Personal Silicon Experts

Control Tower

When it comes to motion control products, Hewlett-Packard towers over the rest with a more diversified and innovative line of solutions. Giving you one source to meet all your design needs.
Just look at our award-winning HEDS 9000 series of encoder modules. Using HP's unique optical technology, these modules are the ideal building blocks for creating precision high-speed linear or rotary applications.
Your choices include everything from a 3-channel module for industrial applications to the small footprint of our 9700 collection for business equipment.

Control panel:

 the HRPG series.For front panel applications, turn to our RPG series of potentiometers. Offering you full configuration flexibility, improved rotational feel, and small footprint, HP delivers the perfect line of data entry devices for your test, medical, analytical, and computer equipment.

Controlled performance: the HCTL series.

Our new line of high-speed HCTL ICs give you high performance servo control in low-power CMOS. The result: superior performance and more microprocessing
power left over for your laboratory, medical, and industrial automation designs.
And because these motion control solutions come from HP, you're assured of our on-going commitment to excellence in service, support, and reliability.
So why take a chance, when you can take control. With motion control products from HP. Call for our free brochure:
1-800-752-0900, ext. 1497.
There is a better way.

From Outer Space to Your Place,

We're Your Best Defense.

B y putting our military experience to work in high-volume, low-cost
 applications, we're giving new meaning to the term National Defense. Our Power Supply Supervisory Chips are a good example.

These Raytheon Linear Arrays (RLAS) act as a computer's early warning system. They monitor internal voltage levels to 0.3% accu-racy-and signal a shut down before power surges can fry the system.

It’s "Defense Technology" with a peaceful purpose. And it's helping take computers into places they've never been.

Our RLAs have business benefits, too. If you can't decide between a custom or semicustom device, don't. Our Win-Win program lets you get to market quickly with a semicustom array. then shift to full custom as sales increase.

Win-Win is fast, flexible, and makes good business sense because it eliminates the risk of getting into a full custom array before you're really ready.

Raytheon is committed to analog technology. From our design kits and engineering support to our fab and plastic assembly facility. We have the experience it takes to help you develop creative, cost effective solutions.

Find out how. Call 1-800-722-7074 for our new analog brochure.
Raytheon Company, Semiconductor Division. 350 Ellis St. Mountain View, CA 94039.

CIRCLE 180

Raytheon

ELETROMCDETHI

cover feature 43 COMPRESSION CHiP Handles Real-Time Video And Audio
Low-cost compression solution expands sphere of multimedia technology into consumer domain.

Electronic 51 EVOLVING DSP CHIPS D0 MORE
 dESIGN REPORT
 Higher integration and merged analog and digital blocks make it possible for DSPs to handle difficult assignments.

DEsIGN 67 UNDERSTANDING ANTIALIASING FILTERS
APPLICATIONS
Proper filtering balances sample rate, resolution, and settling time.
product 139 CONTROL NETWORK KEEPS NODES SIMPLE
INNOVATONS Multifunction node control chips and a rugged, robust protocol let a local operating network offer flexible, low-cost control.

144 10-W SWITCHING ReGULatOR IC RuNS 0FF 220-V LiNe

A $3-\mathrm{W}, 115-\mathrm{V}$, off-line switching-regulator IC expands to a family with $20-\mathrm{W}$, $115-\mathrm{V}$ and $10-\mathrm{W}, 220-\mathrm{V}$ members.

14 EDITORIAL

18 TECHNOLOGY BRIEFING

Hard drive standards arrive

23 TECHNOLOGY NEWSLETTER

- Shrinkage makes room for more CMOS gates
- QFET to up logic speed 10 times
- 1000-MIPS device is within reach
- Ferrite optimized for 200 kHz
- OSF/1 gets increased networking capabilities
- Nine more firms back independent framework
- Digital I/O card lowers cost, ups reliability
- Protective IC turns off

DMOSFETS in 15 ns

- IC laser emits green light

31 TECHNOLOGY ADVANCES

- Brigade of buckets cuts supply voltages and power needs of 10 $\mathrm{MHz}, 12$-bit ADCs
- Computer-aided program advances E-beam lithography
- Fiber, diffraction grating, photodiodes, and processor measure color
- Late IEDM papers spotlight 0.1$\mu \mathrm{m}$ transistors, NV RAMs
- First 80386 workalike trims power

77 IDEAS FOR DESIEN

- Current source drives power FET
- Find op-amp noise with spreadsheet
- Adjust voltage through zero

Certificate of Merit
Winner, 1988
Winner, 1988
Jesse H. Neal Editorial
Achievement Awards

81 QUICK LOOK

- What role do design tools play in creating new products?
- U. S. ahead in advanced controllers
- Debunking the myth of vulture capitalism
- No matter what your age, start planning now for your retirement

87 PEASE PORRIDGE

What's all this Spicey stuff, anyhow? (part II)

PIPS SPECIAL EDITORIAL SECTION

95 Designing telephone-interface circuitry with solid-state relays
105 For multiplexing applications, photovoltaic relays fill the bill
115 Switches
125 Relays
130 Power
131 Interconnects
134 Passives
135 New Literature

136 PRODUCTS NEWSLETTER

- Link foreign systems to real-time OS
- PLDs squeezed into one FPGA
- I/O engine uses one slot, frees up VMEbus
- 500-V high/low-side driver comes in SOIC
- Image-processing system goes
for $\$ 20,000$

NEW PRODUCTS

147 Instruments
148 Digital ICs
150 Computer-Aided Engineering
158 Computer Boards
160 INDEX OF ADVERTISERS
165 READER SERVICE CARD

COMING NEXT ISSUE

- Electronic Design's Top 100 Products covered during 1990
- First details on a new multiprotocol communications IC
- A test engineer's insights into designing for testability
- Replacing trimmer pots with new 8-bit DACs
- Plus regular features:

Ideas for Design
Quick Look
Technology Advances
...and more

[^0]

THIS MAN MANAG

 MULTIPLE DESIGN DISCIPLIN DEADLINES THAT COULD KILThe dilemma rears its ugly head time and time again. Do the impossible. By tomorrow. Worse yet, do it with an intimidating hodge-podge of design automation tools and data formats. And while you're at it, make sure all these tools and data play together freely and efficiently. No problem. Right?

To avoid this kind of chaos, you need to consider a fundamental change in your engineering strategy. Which is why we now offer you our Concurrent Design Environment.'"

Simply put, the Concurrent Design Environment allows tools from virtually any source to work together.

Within it, our new Falcon Framework ${ }^{\text {TM }}$ lets you assemble precisely the design automation environment your situation requires - without sacrificing the considerable benefits of integration. And our OpenDoor ${ }^{\text {sw }}$ program ensures that your choice of tools includes the best the entire industry has to offer.

ES 125 ENGINEERS
 ES. DISPARATE TOOLS AND L. SO WHY IS HE SMILING?

The Concurrent Design Environment also includes engineering management tools of unprecedented scope and power. Like our Decision Support System, which automatically monitors any aspect of the design process you care to specify. So you spot and correct little problems long before they grow into big ones.

No matter how tight your deadlines, no matter how large your engineering teams, our Concurrent Design Environment will keep you ahead of the game. Which, after all, is a very nice place to be. For a free videotape, call 1-800-547-7390.

Changing The Way The World Designs. Together:

UNIVERSAL INPUT IS NOT THE ONLY ENTREE, IT'S THE BEGINNING. And the whole menu are:

85-264 VAC universal input

* $30 \mathrm{~W} / 40 \mathrm{~W} / 65 \mathrm{~W}$ output power
* Single to quad outputs
* Very compact footprints:
$3^{\prime \prime} \times 5^{\prime \prime} \times 1.5^{\prime \prime}$ (40W) $3.5^{\prime \prime} \times 6^{\prime \prime} \times 1.77^{\prime \prime}(65 \mathrm{~W})$ $2.76^{\prime \prime} \times 5.1^{\prime \prime} \times 1.5^{\prime \prime}(30 \mathrm{~W})$
* Superb price/performance ratio
*UL/CSA/TUV approvals in process
* Years of expertise in OEMs, distributors, and private labels.
*Also welcome inquiries on other product lineups:
OEM Switchers (20 to 300 W)
International Series Linears (6 to 112W)
AC-DC Power Modules ($15 \& 25 \mathrm{~W}$)
PC Power Supplies (150 to 375W)
DC-DC Converters (0.5 to 45W)

(9) Forraran/sculpcie

Call: 1-800-821-9771 ATTN: MONICA/JENNIFER

CIRCLE 94

CISTOMIC UNCONVE NIONAL PACKAGE: 1/4th THE COSTOFAN ASC.

WAS AESBSIIDDE FIITNG BLIND?

We can't mention their name. But the story is worth telling-a story about a unique actuator driver in a very peculiar package.

An air frame manufacturer needed a HIGH-REL actuator driver for a large aircraft.
A driver smaller and cooler-running than anything ever made. And so versatile it could be used in over 200 applications throughout the aircraft for everything from controlling flaps to regulating the commodes.

Three other companies looked at the specs and said, "No can do. Not for what you want to spend." Their ASIC approach was intended to solve large digital problems and required an enormous initial investment.

Then somebody thought of calling in The General.
Smart move. Where other companies trot in with standard cells and their router and emulator packages, Silicon General arrives with 20 years of successful silicon solutions. We specialize in those high performance power IC jobs that call for experience and real creative know-how. This was one of those jobs.

Because the circuit needed to have both a high side and low side driver, we found a way to combine opposite functioning chips in the same 16 -pin side-brazed package. We also found the way to handle heat dissipation. CMOS couldn't meet the specs, so we came up with a unique bipolar/DMOS alternative that did the trick.

As (CLASSIFIED) can tell you, when you need custom power ICs, it really pays to call in someone who won't just squeeze you into an expensive ASIC architecture.

It's quite a bargain. First class travel; tourist fares.
To find out more, contact Silicon
General, 11861 Western Avenue, Garden Grove, CA 92641.
TWX: 910-596-1840.
FAX: (714) 893-2570.
Phone: (714) 898-8121.

CIRCLE 201

Solutions...
 that's the general idea.

TWELVE YEARS TO FIVE NANOSECONDS.

Here's a quick message from the people who invented the first PAL ${ }^{\circledR}$ device a dozen years ago:
"Five nanoseconds." The fastest TTL logic in the world.

16R8-5 and 20R8-5 families on the shelf now, in 20 and 24 pin configurations.

At 117 MHz , these puppies run rings around 40 to 60 MHz CISC and RISC processors.

For you critical pathfinders, we have a

16R8-4 family that moves at a crisp 4.5 nanoseconds. And for the fastest version of the standard in field programmable logic, ask for our 10ns 22 V lo.

Big Cache Savings. This kind of super fast logic is the smart, cost-effective solution for increased performance and lower cost cache memory.
Big Comfort Zone. AMD ${ }^{\circledR}$ has the best
programming and design software support in the industry. And a veritable army of careercrazed FAE's. No wonder we sell more PAL devices than all our competitors combined.
Do something nice for your whole system. Write Advanced Micro Devices today.

Advanced Micro Devices $\boldsymbol{2 1}$

901 Thompson Place, P.O. Box 3453. Sunnyvale, CA 94088. For more information call (800) 222-9823.

IN THE ERA OF MegaChip"' TECHNOLOGIES

A lot has been said about company is doing a lot about

testability, but only one it. Texas Instruments.

Y the stories. Design-for-test (DFT) is a challenge but one that's now easier to live with. The reason: Texas Instruments is the first to develop products for implementing the JTAG/IEEE 1149.1 testability standard quickly and effectively.

To market faster at lower cost By implementing testability into your system from the outset, you can create one that uses high-performance circuits and is readily manufacturable, one that is lower in total cost and on the market faster. You can expect:

- Test integration - from silicon to system - that reduces debug and test time
- Reduced test software development time - generating test vectors is greatly simplified
- Reduced capital investment in test equipment
- Increased system fault coverage and reliability

SCOPE, our

broad-based solution
To simplify and speed your design task, TI has developed its SCOPE ${ }^{\text {"w }}$ (System Controllability/Observability Partitioning Environment) family. It is a coordinated, broad-choice set of commercial and military products compatible with the IEEE 1149.1 standard.

Included are bus-interface devices, standard cells, gate arrays, and digital signal processors, as well as our ASSET (Advanced Support System for Emulation and Test) diagnostics software.

On the way are diary memories, a series of IEEE 1149.1 stand-alone

[^1]controllers, and microprocessors with boundary-scan and built-in self-test features.

We are in for the long haul

As a member of the Joint Test Action Group (JTAG), we contributed to the formulation of the IEEE 1149.1 standard and wholeheartedly support it. We are committed to growing our SCOPE family of products so that designing to the IEEE 1149.1 standard will be like second nature.

Your future competitiveness depends upon an engineering methodology where design teams bear the burden of testability, manufacturability, and reliability. The demands of concurrent engineering will be met in part by the extended capabilities accessed via the IEEE standard - from embedded system information that allows realtime availability of data throughout the design cycle to emulation and realtime system analyses capabilities built right into the silicon.

Get our floppy free, and learn more

Call 1-800-336-5236, ext. 3909, and we'll send you our unique floppy disk presentation. Just pop it into any MS-DOS ${ }^{\text {TM }}$-compatible PC to find out more about DFT and TI's SCOPE testability family. What's more, the disk features a formula that allows you to calculate the cost-effectiveness of implementing testability in your system.

You will continue to read headlines about DFT. We intend to make many of them.

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:
Power supply provides +5 v and Gnd for

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock @ $\$ 75 /$ singles, $\$ 20 / 1000$ s (Surface mount also avail in qty.)

CyberneticMicroSystems

Box 3000 - San Gregorio CA 94074
Tel: 415-726-3000 • Fax: 415-726-3003

Being a Good Listener

As previously mentioned on this page, there's a growing emphasis on customer satisfaction throughout the electronics industry in an effort to attain total quality. For engineers designing products, new designs must concentrate heavily on customer input. Many more companies these days are sending engineers out to talk with customers to compare what's possible with today's technology with what the customers say they need.

Some interesting points on this topic are raised in a new book, "High Tech at Low Risk," by John J. Trudel, a high-technology business development consultant and former technologist and executive at Tektronix Inc. In his book, Trudel states that simply talking with customers isn't enough, and can even be misleading. You must listen carefully to what they're telling you and disregard their polite comments that only tell you what you want to hear. A good litmus test, he points out, is whether your product's features or specifications are changing in any unanticipated way following the discussions. If they're not, he says, "you either miraculously conceived the product perfectly yourselves, or, more likely, you're not listening."

Such customer-driven changes can be the most difficult to swallow for many creative design engineers. New products can become pet projects, crafted with features that exemplify the creator's ingenuity in demonstrating the possibilities of new technology. But just as doting parents run the risk of producing uncontrollable children by mistaking parental love for responsible child-rearing, doting project engineers can end up with brilliant products that solve nobody's problems.

So, as a reminder, if you find yourself in these customer meetings, remember that miracles are rather infrequent these days. And listen.

By the way, Trudel's highly recommended 196-page paperbound book is available for $\$ 9.95$ from Regional Services Institute, East Oregon State College, La Grande, Ore. 97850 .

Stephen E. Scrupski
Editor-in-Chief

rugged plug-in

 amplifiers

0.5 to $1000 \mathrm{MHz}_{\text {tom }} \$ 13^{955_{\text {mew }}}$

Tough enough to meet full MIL-specs, capable of operating over a wide -55° to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplitier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in .) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to

1000 MHz , NF as low as 2.8 dB , and power output as high as +15 dBm . Prices start at only $\$ 13.95$, including screening, thermal shock $-55^{\circ} \mathrm{C}$ to +100 C , fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.
Internally the MAN amplifiers consist of two stages, ir.cluding coupling capacitors. A designer's delight, with ail components self-contained. Just connect to a dc supply voltage and you are ready to go.

The new MAN-amplifiers series... another Mini-Circuits' price/performance breakthrough.

	RANGE (MHz)	GAINdB		MAX. OUT/PWR \dagger	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { DC PWR } \\ & 12 \mathrm{~V} . \end{aligned}$	PRICE \$ ea.
MODEL	f_{L} to f_{u}	min	flatness $\dagger \dagger$	dBm	(typ)	mA	(10-24)
MAN-1	0.5-500	28	1.0	8	4.5	60	13.95
MAN-2	0.5-1000	19	1.5	7	6.0	85	15.95
MAN-1LN	0.5-500	28	1.0	8	2.8	60	15.95
\triangle MAN-1HLN	10-500	10	0.8	15	3.7	70	15.95
* MAN-1AD	5.500	16	0.5	6	7.2	85	24.95

\dagger Midband $10 \mathrm{f}_{\mathrm{L}}$ to $\mathrm{f}_{\mathrm{U} / 2}, \pm 0.5 \mathrm{~dB} \quad \dagger \mathrm{~dB}$ Gain Compression \diamond Case Height 0.3 ln . Max input power (no damage) +15 dBm ; VSWR in/out 1.8:1 max.
*Active Directivity (difference between reverse and forward gain) 30 dB typ.

Signetics. Delivering world-class

ABT245/MB2245
$\mathrm{T}_{\mathrm{PD}}=4.5 \mathrm{~ns} \quad \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{OZ}}=50 \mu \mathrm{~A}$

BiCMOS when you need it-now.

ABT, THE FASTEST, LOWEST POWER BUS INTERFACE LOGIĆ, IS SHIPPING TODAY.

To meet today's design demands, you need bus interface logic with the highest possible speeds and the lowest possible power dissipation. You also need a full 64 mA of drive and low switching noise.

That's exactly what you get from our ABT family. The family of advanced BiCMOS bus interface logic products that are shipping today.

Our ABT products are the world's fastest TTLcompatible bus interface logic available. Each provides the low power dissipation and low noise of our QUBiC advanced BiCMOS. You also get simultaneous switching of all the 64 mA outputs and standby power of essentially zero. Plus, we offer a commercial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Best of all, we're currently delivering over 15 ABT products. With more products being released every day. We're also pioneering Extended Data Sheets, which give you all the specifications you need.
And, for your applications demanding minimum board space, we're now offering the world's first multiple-byte BiCMOS interface products, our 16 - to 20 -bit-wide MB2000 MULTIBYTE ${ }^{\text {TM }}$ family.
For more information, or for our Advanced BiCMOS Bus Interface Logic Products Brochure, contact us today: 800-227-1817, ext. 714 C .

MULTIBYTE is a trademark of NAPC

PHILIPS

HARD DRIVE STANDARDS ARRIVE

At present, standards for testing hard disk drives are just about nonexistent. Each maker, user, or repair person has some method of testing drives, and it's usually inconsistent with everyone else's approach. For this reason, it's somewhat common for as many as 40% of returned hard drives to be labeled "no problem found" by the manufacturer. In other words, the maker finds nothing wrong with the drives because they pass the manufacturer's tests, but fail the OEM's tests. And there may be nothing wrong with the drives except that they're incompatible with the OEM's testing procedures. This situation causes "drive float," a

RICHARD NASS COMPUTER SYSTEMS condition where usable drives float between the manufacturer and the OEM, with one claiming there's a problem and the other saying there isn't.

This problem launched the Post-HDA (Head-Disk Assembly) Testing Consortium in July of this year. The group, initiated by FlexStar Inc., San Jose, Calif., set a goal to develop a family of hard-disk-drive testing standards that can be used by all interested parties. Ultimately, two people running a test on the same drive should get the exact same results.

The members include drive, system, and test-equipment manufacturers; value-added resellers; and third-party service organizations. The impressive list of companies includes Adaptec, Apple, Areal, Conner, FlexStar, Fujitsu, HP, IBM, Maxtor, NEC, NCR, Quantum, Seagate, Sun, Toshiba, Western Digital, and Zenith. Initially, membership was free, but now there's an annual $\$ 1000$ fee.

The Consortium will also try to establish interface-independent test standards that can be correlated across all drives and applications. To help ensure the consortium's success, they will first focus on the more general and broadly needed test standards. These involve PC/AT and Small Computer Systems Interface (SCSI) drives of all sizes and capacities. Once the standards are established, the organization, its committees, and its working groups will focus on more in-depth, technical, and niche-oriented issues. Initial tests include index and RPM, seek time, window margins, and media-defect map. The group also plans to branch out to cover peripheral devices.

Each test will be considered by a subcommittee that reports back to the organization as a whole. The subcommittees will make standard recommendations that will be voted on by the Consortium. Presently, about 50 tests are being looked at. The group's intentions are to have the first set of standards approved within 60 to 90 days.

To help resolve the inconsistencies in testing, FlexStar recently released a $\$ 2995$ test system that will expedite the testing process. The company's portable 3000S single-port tester offers complete menu-driven parametric testing of all $5.25-\mathrm{in}$. or smaller Winchester drives using ST506, Enhanced Small Device Interface (ESDI), or AT interfaces. The device employs the same test programs that are used by the company's larger test system. This ensures that the test will produce the same results, regardless of whether they're performed at the factory or on location. The 3000 S supplies a concise printout of every test result. Therefore, problems can be pinpointed and a determination can be made as to whether the drive can be repaired locally or must be returned to the manufacturer.

Peripheral Research Corp. (PRC) was recently appointed as an outside facilitator and administrator of the standards consortium. PRC will represent the group and try to increase membership and expand into international territories. The next meeting will take place Jan. 24 at the Milpitas Sheraton in Milpitas, Calif. Anyone interested in attending or joining the Consortium should contact Dennis Waid of PRC at (805) 963-8081.

Climbing takes skill, experience and teamwork. Reaching the top also takes leadership, forward thinking and focus. Since 1971, Standard Microsystems has applied this philosophy to the design and manufacture of standard and semi-custom integrated circuits.

Today, SMC's engineering expertise and extensive SuperCell ${ }^{\text {TM }}$ library allows us to offer innovative and timely solutions to your unique application needs. Our portfolio focuses on networking and mass storage controller devices for the computer industry.

The next time you face a networking or mass storage challenge, call SMC. Discover how our cost-effective and technically superior products can help you climb ahead of your competition.

STANDARD MICROSYSTEMS CORPORAIION
 COMPONENT
 PRODUCTS DIVISION

The Standard for LAN and Mass Storage ICs.
35 Marcus Blvd., Hauppauge, NY 11788 (516) 273-3100 Fax (516) 231-6004

dc to 3 GHz _\$1145 lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40 dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models - immediate delivery
low pass de to 1200 MHz

high pass dc to 2500 MHz

bandpass 20 to $\mathbf{7 0 M H z}$

How Our LCD Chips Can Give You A Bigger Slice OfThe Pie.

How do purchasers tell which laptop they want? They look. They look for better display quality. Brighter graphics. Clear, well-modeled images. And a battery-operated display that won't fade out on them.

Laptops that display these features sell better. So it's easy to see why Cirrus Logic is the leading supplier of LCD VGA display controller chips in the laptop and notebook market.

Our monochrome solutions give you displays that PC Magazine called "the stars of our VGA color-mapping tests"* with up to 64 shades of gray. Our LCD controller chips also include special power-saving features to maximize battery life.

For life-like 3-dimensional imaging, Cirrus Logic color LCD controllers offer the same technology leadership for your high-end color products. With direct
support for the latest active-matrix LCD panels. Our controller chips do more than support your panel's color capabilities they enhance it with full VGA color support and a fuller color palette. To give you color so good it competes with CRT quality.

Cirrus Logic LCD controllers are fully compatible with the popular PC video standards and will work with LCD, plasma, or electroluminescence displays.

Best of all, Cirrus Logic helps you increase speed and simplify your design job. We supply software and hardware design notes and full design support. A higher level of integration gives you the smallest form factor available. So you see the results you want quickly and easily.
Get the picture. Get more information on LCD controllers.
Call 1-800-952-6300. Ask for dept. LL33.

Who wants a flat panel display that looks flat?

Show your true colors with Cirrus Logic controller chips. They actually add colors to your display capabilities for more realistic shading.
© 1990 Cirrus Logic. Inc., 3100 West Warren Avenue, Fremont, CA 94538 (415) 623-8300; Japan: 462-76-0601; Singapore: 65-3532122; Taiwan: 2-718-4533; West Germany: 81-52-2030/6203
Cirrus Logic and the Cirrus Logic logo are trademarks of Cirrus Logic, Inc. All other trademarks are registered to their respective companies. *PC Magazine, March13,1990, p. 204.

TECHNOLOGY NEWSLETTER

Shrinkage Makes Room FOR MORE CMOS GATES By universally shrinking array features and incorporating a reduced gateoxide thickness, Motorola's ASIC Div., Chandler, Ariz., created a family of rays have an effective channel length of $0.7 \mu \mathrm{~m}$ and a power dissipation of $3 \mu \mathrm{~W} / \mathrm{MHz}$ gate. The arrays will incorporate an internal core-cell architecture identical to Motorola's 105,000 -gate HDC Series. Consequently, the H4C Series will enter the market with a foundation of proven library functions. Built in a triple-layer-metal, single-polysilicon process, the H4C Series has a 180 -ps typical gate delay. In addition, the arrays come with embedded bound-ary-scan logic. The H4C Series will be available in April, 1991. For more information, call Ruth Waterman at (602) 821-4158. LM

Quantum FeT To Up Most experts see $0.2-\mu \mathrm{m}$ technology as the practical limit for conventional Logic Speed 10 Times semiconductor devices. However, a new kind of device, the quantum FET (QFET) potentially ups speed limits by a factor of ten while simultaneously dropping both power and size by similar factors. Gene Cavanaugh, an engineer at Valid Logic Systems, San Jose, Calif., recently filed for a patent for the device. The QFET takes advantage of a physical phenomenon known as quantum tunneling, which ups speed by eliminating the area of electronic conduction where carriers slow down by as much as 3000 times. This singlejunction device, which appears capable of building transistors at virtually the molecular level, employs a new manufacturing process called rapid thermal processing (RTP). According to Cavanaugh, the technology, based on ultra-fine layers of material, is a superior alternative to future generations of CMOS devices now being developed. Cavanaugh recently shared his ideas with TI, IBM, and Intel, to establish a licensing agreement that will bring the technology into production. As this occurs over the next 3 to 5 years, Valid expects to have the inside track in developing design-automation tools to take advantage of the technology's speed, power, and size. For additional information, call Scott Seiden at (408) 944-8048. FG

1000-MIPS Device Is Within Reach One seemingly unattainable plateau is 1000 MIPS of computing performance. However, a group of researchers at Rensselaer Polytechnic Institute, Troy, N.Y., has received a three-year contract from the Defense Advanced Research Projects Agency (Darpa) to surpass the 1000-MIPS barrier. The design team is developing a fast reduced instruction set computing (FRISC) device, forged from silicon, with a peak performance of 250 MIPS. The group then plans to build a similar device from a layered material of gallium arsenide and aluminum gallium arsenide. If difficulties, such as heat production, can be overcome, the new device should have a large enough speed increase to reach the 1000 -MIPS level. There are also other problems that must be addressed. For instance, to achieve the high speed, a change in architecture was required. As a result, new software will have to be developed to achieve compatibility with the high-speed device. $R N$

Ferrite Material OPTIMIZED FOR 200 KHz

A report from the German-Japanese joint venture Siemens Matsushita Components ($\mathrm{S}+\mathrm{M}$) in Munich, Germany, discloses that a new ferrite material optimized for frequencies up to 200 kHz has been developed. The material's initial typical permeability is 6500 to 7000. Called T37, it supplements S+M's T35 and T38, two ferrite substances the company is already marketing. The T35 is for frequencies up to about 400 kHz with lower permeability values; the T38 boasts a permeability of more than 10,000 but is designed for frequencies to only 100 kHz . The T37 makes it possible to fabricate much smaller ring-core chokes than previously possible for frequencies up to 200 kHz . For example, these chokes can be used in noise-suppression filters. $J G$

0SF/1 GETS Increased Networking Capabilities

By enhancing the software's networking qualities, the Open Software Foundation, Cambridge, Mass., has taken the next step toward unveiling its OSF/ 1 operating system. Users can now work from any workstation on a network as if that workstation was their own, regardless of the workstation's location. The OS runs on a wide range of hardware platforms, from PCs and workstations to supercomputers and multiprocessing systems. It incorporates the Motif graphical interface that's accessible on more than 120 platforms and 40 different OSs. Over 300 Motif-based applications are now available. OSF/1 is endorsed by Digital Equipment Corp., Hewlett-Packard, Hitachi, IBM, and Siemens Nixdorf Information Systems. The OSF has now grown to more than 200 members, with the recent additions of Apple Computer, Microsoft Corp., and NCR Corp. $R N$

TECHNOLOGY NEWSLETTER

Nine More Firms Back Independent Framework

Nine computer-aided-engineering (CAE) companies have signed up for the Best-of-Breed Program developed by InterAct Corp., New York, N.Y. Intermarketing encapsulations of their tools in InterAct's framework, the Integrator. Encapsulations are descriptions of the tools that make the tools plug-compatible with the framework. The encapsulations will be sold with the Integrator as part of an accompanying Tool Encapsulation Library. The current library consists of encapsulations from GenRad Inc., Valid Logic Inc., and Viewlogic Systems Inc. The new Best-of-Breed participants include Data I/O Corp., CAD Language Systems Inc., and Meta-Software Inc. Interact is expecting additional Best-of-Breed memberships by the end of the year. For more information, call (212) 696-3700. LM

Digital I/0 Card Lowers COST, Ups Rellability

Employing a PC/AT interface card designed around a proprietary ASIC, users can get reduced cost per I/O and improved reliability. The ZT 14CT72 ection ional digital I/O on one card and connects AT-type systems to high-current peripheral devices. The card can drive high-current peripherals, such as industrial I/O modules, with the help of the 16C48 48-point ASIC. Most available digital I/O cards use older 24-point ICs. In addition, it supplies a current sink of 12 mA , further improving reliability. Each of the 14CT72's digital I/O lines can be programmed individually as an input or an output, adding configuration flexibility for industrial applications. The digital I/O card also features open-collector outputs that don't glitch at power-up and power-down. Therefore, external devices aren't inadvertently triggered. The board can be used in or outdoors as it can withstand harsh environments. It uses CMOS components, but is also TTL-backplane compatible. The 14CT72, which takes up only one slot in the backplane, costs $\$ 545$ and comes with the device-driver software. Large-volume discounts are available. For more information, call Phil Nash at (805) 5410488. $R N$

CIRCLE 473
PROTECTIVE IC TURNS A building-block IC that protects power MOSFETs and insulated-gate bipolar transistors (IGBTs), and turns them off in under 15 ns , has been unveiled. The device, from Motorola's Discrete \& Materials Technologies Group in OFF DMOSFETS IN 15 NS Phoenix, Ariz., replaces the handful of discrete devices typically used in pulse-width-modulation (PWM) applications to protect current-source-driven FET gates from overdrive, and discharge the voltage stored on the FETs' gate capacitances. Built on a high-speed bipolar process, the chip is a three-terminal network with input, output, and return (ground) pins that connect to the PWM drive, FET gate, and FET source, respectively. To a drive pulse, the IC looks like a diode between it (the IC) and the FET gate, followed by a $10.4-\mathrm{V}$ protective Zener between the FET gate and source. Looking back at the output, the gate sees a silicon controlled rectifier (SCR) and a Zener between the IC and the source. While the PWM signal is driving the gate, the SCR is off. When the drive is removed, the SCR turns on rapidly, discharging FET gate capacitance and turning off the FET. Motorola is putting the tiny IC, the MDC1000, in TO-92, SOT-23, and SOT-223 packages. Pricing runs between $\$ 0.35$ and $\$ 0.70$ each in 1000 s. For additional information, call Mike Lissy at (602) 244-5504. FG experts at the Philips Research Laboratories in Eindhoven, the Netherlands, length. This, the c The laser's active zone consists of 16 layers that Each 1-nm-thick layer consists of an indium, gallium, and phosphor compound. The layers are separated by other thin layers that include aluminum. A key to the laser's development was precise control of the deposition and composition of extremely thin layers of specific thickness, from the gas phase, onto a suitable substrate, in an organo-metal-gas-phase epitaxial process. The green-light laser delivers a continuous optical output power of 3 mW and has a differential efficiency of $0.4 \mathrm{~mW} / \mathrm{mA}$. The device emits green light only when it's cooled to the temperature of liquid nitrogen, which presently limits the laser's usefulness for special scientific purposes. JG

Figh-Speed Amplifiers

 WA01
 TRANSIMPEDANCE AMPLIFIER

- 4,000 V/us Slew Rate
- 400 mAmp Output
- ± 12 to ± 15 Supply
> 40 MHz Full Power Bandwidth
Up To 10 Watts Dissipation

APPLICATIONS
LASER DIODE DRIVERS
SONAR TRANSDUCER DRIVERS PIN DRIVER

LASER DIODE DRIVERS VIDEO AMPLIFIERS WAVEFORM GENERATIORS

To Place An Order Call 602-742-8601

Assistance Call 1-800-421-1865

DEDICATED TO EXCELLENCE

To receive your copy of our High Performance Amplifier Handbook please call toll free 1-800-448-1025

Here's one reason thatover half of all SCSI devices sold are NCR.

We created the market... and we still lead the way.

Here's another.

The NCR 53C700 SCSI I/O Processor... So good, Electronic Design named it the product of the year.

"You cant tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53C700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about 15% of the cost.

As the first SCSI I/O processor on a chip, the 53C700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter.DMA controllers can burst data at speeds of up to $50 \mathrm{Mbytes} / \mathrm{s}$. This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the Digital IC's" award went to NCR's 53 C700 last year.

And now the NCR 53C710.

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

68040 SYSTEMS EQUIPPED

 YOY'LL NOTICE ASystems utilizing the new Samsung 84C31 take off. They run like Triple Crownwinning thoroughbreds. They blaze, scorch, and leave others in their dust.

In a word, they are fast.
And they make even speedy 68040 systems that don't use the 84 C 31 , look like they're not in motion.

The 84 C31 was designed
with the close cooperation of Motorola. It is the only DRAM controller designed

SAMSUNGS DRAM CONTROLLER FOR THE 68040 AND 68030		
Part Number	RAMo Supported	Package
KS $84 \mathrm{C} 31-33 \mathrm{CL}$	$256 \mathrm{~K}, 1 \mathrm{Mb}$	68 -pin PLCC
KS84C32-33CL	$256 \mathrm{~K}, 1 \mathrm{Mb}, 4 \mathrm{Mb}$	84 -pin PLCC
Samples and production available now.		

specifically for Motorola's powerful 68040 and 68030 microprocessors.

Like the extremely successful earlier-generation

Samsung System Accelerators, ${ }^{\text {Tw }}$, the part is highly integrated and inherently fast. And as the cutting edge in memory control, it can help you simply and economically enhance even 68040 performance.

The 84 C 31 supports both the burst and non-burst modes of the 68040 . It also provides a direct interface

WITH OUR DRAM CONTROLLER: CERTAIN IMPROVEMENT.

to the microprocessor. Which saves you dollars, board real estate, and

G8030 PERFORMANCE SUMMARY			
Acceas Clocks	DRAM Speca	Frequency (Mbz)	
$4-2-2-2$	70 ns	20	
$5-2-2-2$	120 ns	20	
$5-2-2-2$	80 ns	25	
$6-2-2-2$	120 ns	25	
$6-2-2-2$	80 ns	33	
$7-2-2-2$	100 ns	33	
68040 PERFORMANCE SUMMMARY			
Acceas Clocks	DRAM Spece	Frequency (Mbz)	
$3-2-2-2$	80 ns	25	
$5-2-2-2$	100 ns	25	
$6-2-2-2$	120 ns	25	
$5-2-2-2$	80 ns	33	
$6-2-2-2$	100 ns	33	

design time, since it means you don't need additional glue logic

Ease of design is another advantage. As a glance at our System Design Guides will show, it's an unusually simple chip to design in.

All in all, we believe the 84 C 31 is the best memory controller solution available today.

For details on using it to make your designs take off, contact DRAM Controller Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134. Or call 1-800-6695400, or 408-954-7229.
(1) Samsung Semiconductor, Inc., 1990. System Accelenator is a trademark of Samoung Semiconductor, Inc. Motorola is a trademark of Motorvla, Inc.

CIRCLE 205

Does Your Signal Generator Simulate The Real Wordd?

The LeCroy Arbitrary Function Generators

The ideal signal source for testing duplicates any worst case signal that a DUT can encounter including variations in shape, frequency, duty cycle, amplitude, phase, and even noise.
Now there is such a source, the LeCroy Arbitrary Function Generator. You can create signals
of any shape and vary all the parameters singly or simultaneously, separately or interactively. And the generation of test waveforms is not a problem. LeCroy's EASYWAVE ${ }^{\circledR}$ software is a complete toolkit for making test waveforms from scratch. Whether you choose to create waveforms by using

equations, select elements from our library of simple elements, or even by acquiring real world signals with a digital oscilloscope! In minutes you will be building your signal; in an hour you'll be an expert.
Three models offer a choice of single, dual, or both analog and digital outputs. All have 100 MHz bandwidth (200 MHz clock), $\pm 10 \mathrm{~V}$ p-p swing, 5 ns risetime, and other characteristics optimized for high speed, high fidelity applications.
Call the technical information hotline 1-800-5-LECROY for product information including the tutorial, " The Hows and Whys of AFG's", a demonstration version of EASYWAVE, or for application assistance.

CIRCLE 145 FOR INFORMATION
CIRCLE 146 FOR DEMONSTRATION

BRIGADE 0F Buckets Cuts Supply Voltages and Power Needs 0f 10-MHz, 12-Bit ADCs

TJoday's 12 -bit, 10 MHz , two-step or subranging analog-todigital converters (ADCs) require 5 to 10 W of power from $\pm 15-$ and $+5-\mathrm{V}$ supplies. There is one exception that doesn't require a5 -V supply (electronic design, Sept. 13, p. 54). However, by moving to a new architecture, Joseph Sousa, a designer at Sipex Corp., Billerica, Mass., has done the job without the ± 15-V rails. As a result, power was cut to a maximum of 3.5 W using one +5 - and one $-5-\mathrm{V}$ supply. This new two-step architecture employs a "bucket brigade" sample-and-hold amplifier design with feedforward that performs several pipelined conversion steps in parallel (see thefigure).

The circuit uses two
identical sample-and-hold amplifiers (SHAs). SHA ${ }_{1}$, connected to the input, acquires the signal. The second, SHA_{2}, lies in the error path. Once SHA_{1} acquires a signal to 12 -bit accuracy, it's put into hold. A few nanoseconds later, when it settles to 7 -bit accuracy, the first flash $\mathrm{ADC}, \mathrm{ADC}_{1}$, starts its conversion. At the same time, SHA_{2} starts to acquire the held signal from SHA_{1}. When the held signal from the first SHA settles to 12 -bit accuracy, the second SHA acquires the signal from it-also to 12-bit accuracy-and the second SHA is switched to a hold mode.
The digital output of the first flash ADC, the 7 mostsignificant bits (MSBs), are applied to a 12 -bit-accurate, 7 -bit DAC and to the error-correction circuitry.
SHA_{1} is now free to acquire the next sample.
The second SHA, now holding the original input signal, continues to hold it for the conversion's duration so the error signal can settle to 12 -bit accuracy. The error signal is the difference between the input signal and the output of the DAC. After the error signal settles to 12 -bit accuracy, ADC_{2} starts its conversion, just as ADC_{1} starts converting its next input sample. The 7 -bit output of ADC_{2} is combined with the MSBs in the correction circuits to form the final 12 -bit-accurate output.
The architecture doesn't require any critical timing. Time is available for both SHAs to settle to full, $12-$ bit accuracy. Using two SHAs also enables both flash conversions to occur
at noncritical times in the conversion process, reducing the risk of digital switching voltages getting into the analog signals. The extra time available for signal acquisition by the SHAs allows for discrete JFET switches that have low pinch-off voltages. The switches, in turn, make it posssible to use lower full-scale input voltages. In fact, the input voltage, nominally $\pm 1.25 \mathrm{~V}$, is reduced to $\pm 0.5 \mathrm{~V}$ at the input, increasing head room in the SHAs and making it easier for them to grab fast-changing large signals-essentially increasing full-power input bandwidth.

The architecture has been used to build the Si pex SP9560 ADC. At 10 MHz , the device has a -72dB spurious-free dynamic range and a $-66-\mathrm{dB}$ signal-to-(noise + distortion) ratio. Its full-power bandwidth is 30 MHz . Differential and integral linearity are within 0.75 and 1 LSB, respectively. The SP9560 comes in a 46 -pin hermetically sealed metal can. Commercial-temperaturerange units, in lots of 100 , go for $\$ 700$ each. Military devices, expected early 1991, will run $\$ 975$ each in similar lots. For more information, call Bill Lundgren at (508) 671-1944.

FRANK GOODENOUGH

Computer-Aided Program advances E-Beam Lithography

With an intelligent computer program, Germany's Siemens AG has advanced electron-beam lithography far beyond its present limits. Called Caprox for com-puter-aided proximation, the software program corrects the blurs and rough
edges in line structures that electron scattering causes when an e-beam is used to produce submicron features.

Caprox, which Munichbased Siemens developed jointly with the software house Sigma-C GmbH, also of Munich, should
have a big impacton submicron device design. With the new program, the design grid-the distance between lines-can be narrowed five-fold, from the typical 0.5 to $0.1 \mu \mathrm{~m}$. That translates into higher circuit density.
The correction process
that Caprox performs takes little computing power, Siemens says. So instead of a large numbercrunching machine, a workstation can be used to run the program.

In general, e-beam lithography for producing masks and reticles for

TECHNOLOGY ADVANCES

VLSI circuits with submicron structures is the technology of choice because of its high overlay accuracy and resolution. And because of its high flexibility, e-beam lithography is an excellent technique for writing patterns directly on the wafer.

In practice, the high resolution is limited by the proximity effect, which is caused by electron scattering in the resist and substrate. This can make closely spaced e-beam-exposed regions diffuse into each other, much as ink blots do on paper. The result is blurred edges and merged regions of the pat-
tern. That can lead to parameter changes, short circuits, and even to the failure of a circuit.

With mathematical methods derived from game theory, electron scattering can be predicted and its effects minimized by altering device geometriesfor example by spacing lines farther apart-or changing the electronbeam intensity. The prediction methods, however, call for an enormous amount of computing power, and the number-crunching process involved can take days, if not weeks, for a complex VLSI device.
This is where Caprox
comes in. Circuit designers examine the layout on a monitor and designate the regions most prone to proximity effects and needing correction. The ebeam system is then programmed so that the beam, through electron-dose variations, produces welldefined lines with sharp, unblurred edges. Structural fidelity of the design is thereby maintained.

With Caprox, it takes only four hours to correcta VLSI circuit that has state-of-the-art complexity. This big time savings compared to the number-crunching scheme results from the fact that only a circuit's
critical parts are treated. Such parts usually account for no more than 3% to 5% of the whole device.

For each type of structure, the corrections need be calculated only once. They can be stored in a library and can be called up for another circuit with the same structure without being recalculated.

The Caprox program has been readied to the point where Siemens is employing it in developing circuits that call for direct-write ebeam techniques. Siemens says that the Caprox program will be used in production in about three years.

JOHN GOSCH

Fiber Cable, Diffraction Grating, Photodiodes, and Processor Measure Color

By implementing readily available technology, designers at the Micro Switch Div. of Honeywell, Freeport Ill., created a rugged, on-line system that moves color recognition from a spectrophotometer in a laboratory to the factory floor. Until now, so-called on-line color sensors consisted of one photodiode examining the reflected or transmitted light passing through one color filter. However, the Micro Switch Color Recognition Sen-sor-the CRS-301-employs the complete visible spectrum, from wavelengths of 400 to 800 nm .

At the heart of the CRS301 lies a diffraction grating and an array of 128 photo diodes (see the figure). Light from a high-intensity halogen lamp passes down a fiber-optic cable (a bundle of fibers) to a probe tip. The radiation impinges on its target, which is locat-

ed between 0.1 and 2 in . from the probe tip. The light reflects back to the probe tip and passes down additional fibers in the cable to a diffraction grating. It creates the spectrum of the impinging light and directs it to a linear array of 128 photodiodes. The diodes sense the light's intensity from the grating
over the full range of colors in the visible spectrum, converting the pattern of light intensity into a unique set of data representing the color signature of the target.

The color signature feeds a processor that compares the data with the signatures of up to eight colors (in memory), which the
processor is trained to recognize. Where color matches occur, the processor provides digital outputs for direct control of actuators, alarms, and/or inputs to programmablelogic controllers. Alternatively, or in addition, the data can be sent through an RS-232 or RS-485 link to a host computer for storage and detailed or statistical analysis.

The CRS, which can quickly make a decision in under 50 ms , can be used in assembly-line, quality-control applications ranging from the inspection of coated or plated metal strips moving at over $1,000 \mathrm{ft}$./ min . to checking the color of processed food. When inspecting metal strips, the sensor picks up variations in the shade of the coating caused by improper curing, bends in the metal, or the wrong coating. Nicks, scratches, streaks, or glossy patches also show up.

Food quality control not only includes processed food in clear containers,

Break Through 7ns

Speed Leadership

Design tomorrow's fastest systems today. Our IDT10484 ($4 \mathrm{~K} \times 4$) will be the fastest high-density BiCMOS memory to run primary caches in ECL systems. At 7 ns , the IDT10494 ($16 \mathrm{~K} \times 4$) is the fastest BiCEMOS 64 K ECL SRAM available in volume production today.
In addition, we offer the densest BiCEMOS ECL RAM, the IDT10504 $(64 \mathrm{~K} \times 4)$, at 12 ns . And our new 12 ns IDT10496RL ($16 \mathrm{~K} \times 4$) synchronous self-timed SRAM (STRAM)
offers registered inputs, latched outputs, and self-timed write for easier system design.

Each of our ECL SRAMs is available today in $10 \mathrm{~K}, 100 \mathrm{~K}$, and 101 K configurations in 300 mil SOJ and 400 mil Sidebraze DIP packages.

Technology for the '90s

We engineered BiCEMOS technology to offer the best of both worlds: the low power consumption of CMOS with the high speed of bipolar technology.

Count on our BiCEMOS ECL to take you through the 7 ns speed barrier for 64 K densities. We believe our BiCEMOS ECL will achieve speed increases of 20% a year every year for the next five years, making BiCEMOS the technology for the '90s.

Samples Available

Call or FAX us today for samples and a copy of the new BiCEMOS
ECL Product Information booklet with information on designing with BiCEMOS ECL for ultra-high-speed systems.
P.O. Box 58015

3236 Scott Blvd.
Santa Clara, CA 95052-8015
(800) 345-7015 FAX: 408-492-8454

When cost-effective performance counts

Integrated Device Technolozy

TECHNOLOGY ADVANCES

but also such items as baked goods. Other applications include checking labels and sorting colored or color-coded parts.

The CRS has a color-difference resolution of 1 CDU (a CDU is a standard for measuring color rela-
tive to a reference color). It's easily trained by an operator at the host PC. These machines are available for under $\$ 8000$. For additional information, call Pat Keister at (815) 235-6600.

FRANK GOODENOUGH

Late IEDM PapERS Spotuight $0.1 \mu_{M}$ Transistors, NV RAMs

About half of the ten late papers presented at this past week's International Electron Devices Meeting in San Francisco, Calif., described some of the smallest and most unique devices that have ever been fabricated. Researchers at Hitachi Ltd.'s Central Research Laboratory, Kokubunji, Japan, have proposed a new type of MOS
transistor that can be made with channel lengths of as little as $0.1 \mu \mathrm{~m}$. Even smaller dimensions are the goal of research at the Laboratory of Applied Physics of the California Institute of Technology, Pasadena, Calif. An improved tunneling transistor that employs the Stark Effect is being examined for use when dimensions drop to 0.01 to $0.001 \mu \mathrm{~m}$.

In Hitachi's work, the new transistor structure, referred to as the low-im-purity-channel transistor (LICT), offers the low threshold voltages and good turn-off characteristics needed for CMOS circuits. Transistors are formed on top of highlydoped p and n wells by growing an epitaxial, lowimpurity layer to form the gate channel. That low-impurity layer lowers the threshold voltages, making band-bending more gently sloped. The gentle slope weakens the effective field for conduction carriers, which in turn reduces scattering due to surface roughness. The highly-doped wells prevent punchthrough and make it possible for sharp turnoffs. CMOS structures fabricated with $0.1-\mu \mathrm{m}$ gates showed normal transistor operation: saturation currents of 1.75 mA and 1.45 mA were attained for the n - and p-channel devices, respectively.

Experimenting with Stark-Effect tunneling transistors implemented in a gallium antimony/indium arsenide/aluminum antimony/gallium antimony (GaSb/InAs/AlSb/ GaSb) heterostructure, researchers at the California Institute of Technology have increased the transistors' beta to values as high as 40 . Such levels are up to four times higher than those previously obtained for tunneling structures. The improvement was accomplished by rearranging the base structure so that the emitter-collector current is controlled by a base that's positioned in such a way where only a small base current is needed. The results suggest
that the Stark-Effect mechanism shows promise for ultra-small and superfast transistors in the $0.01-$ to $0.001-\mu \mathrm{m}$ realm.
Combining the novelty of flash nonvolatile memory technology with the high-density of 4-Mbit dynamic memories, designers at Sharp Corp., Nara, Japan, created an experimental 4-Mbit nonvolatile RAM. The stacked-capacitor structure of the dynam-ic-RAM cell has been overlaid on the selective selfaligned Flotox nonvolatile memory cell. The combined structure permits a non-destructive store/recall (DRAM to EEPROM or EEPROM to DRAM) operation that doesn't disturb the original data in the DRAM or EEPROM (see thefigure).
The new cell structure employs three layers of polysilicon and contains three transistors and one storage capacitor (formed over the transistors). In the EEPROM portion of the cell, the tunnel region, which is formed with a selectively self-aligned procedure, lies outside of the cell's implant region. Furthermore, a new self-aligned technology for creating the DRAM storage-node contact to the source diffusion of the word-select transistor was also implemented. By combining the new fabrication steps and $0.5-\mu \mathrm{m}$ design rules, the entire nonvolatile DRAM cell can be squeezed into $11 \mu \mathrm{~m}^{2}$. The DRAM storage capacitance is 40 fF and the EEPROM has a coupling ratio of 0.75 .
In other component areas, research at AT\&T Bell Laboratories, Murray Hill, N.J., has yielded the first bipolar laser driver that op-

$+5 V T 0 \pm 15 \mathrm{~V}$ DC-.oc CONVERTERS POWER UP TO OOW LOADS

No Design Required — Just Drop In

Maxim's MAX742 and MAX743 dual-output DC-DC converters provide the simplest solutions for generating $\pm 15 \mathrm{~V}$ or $\pm 12 \mathrm{~V}$ analog supplies from low input voltages, such as +5 V digital supplies. To make designing with the parts as simple and reliable as plugging in modules, we not only specify all critical components, we also provide them.*

- Generates $\pm 15 \mathrm{~V}$ or $\pm \mathbf{1 2 V}$
- 82-92\% Typical Efficiency
- Uses Inductors, Not Transformers
- 0.3\% Typical Noise and Ripple
- Current-Mode Control
- 200kHz Switching Frequency
- Two PWM Controllers Per Package

Using surface mount components, the MAX743 DC-DC converter delivers $3 W$ in less than half the board space of the smallest modules. Power density is a healthy 18 W per cubic inch.

	MAX742	MAX743
Input Voltage	$4.2 \mathrm{~V}-10$	$4.2 \mathrm{~V}-6.5 \mathrm{~V}$
Output Voltage	$\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V} \pm 4 \%$	$\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V} \pm 4 \%$
Output Power	30 W	3 W
Power Switch	External	Internal
Price	$\$ 5.82^{\star \star}$	$\$ 5.82^{\star \star}$

** MAX742 and MAX743, 1000-up, FOB USA

Evaluation Board Simplifies Prototyping

A MAX743 (through-hole) evaluation board containing a MAX743 and all the components required to build a 3 Watt DC-DC converter is available from Maxim for only $\$ 20$. To order your evaluation board, send check or money order to Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086. For applications assistance or information on other Maxim products call (408) 737-7600, ext. 4000 or FAX (408) 737-7194.
*MAXL001-100 μ H Low-Loss Toroid Inductors (\$1.47, 1000-up) and MAXC001-150 μ F Low-ESR Capacitors (\$0.29, 1000-up)
MAX743CPE Production Kit (\$8.18, 1000-up) includes:
1- MAX743CPE
2. $100 \mu \mathrm{H}$ Low-Loss Toroid Inductors
3. 150μ F Low-ESR Capacitors

2-Schottky Rectifiers

Distributed by Arrow, Bell/Graham, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021; (714) 261-2123; (818) 704-1655; Colorado, (303) 799-3435, Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 682-4800; Georgia, (404) 447-6124; Illinois, (312) 577-9222; Indiana, (317) 921-3450; lowa, (319) 393-2232; Kansas, (816) 436-6445; Lcuisiana, (214) 238-7500; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 583-1500; Minnesota, (612) 944-8545; Mississippi, (205) 830-0498; Missouri, (314) 839-0033; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (609) 778-5353; New Mexico, (505) 268-4232; New York, (201) 428-0600, (607) 754-2171; North Carolina, (919) 846-6888; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 238-7500; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (919) 851-0010; South Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 238-7500, (512) 835-5822, (713) 789-2426; Utah, (801) 561-5099; Virginia, (801)644-5700; Washington, (206) 823-9535; Wisconsin, (414) 792-0920; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

Maxim is a registered trademark of Maxim Integrated Products. © 1990 Maxim Integrated Products.

TECHNOLOGY ADVANCES

erates at 10 Gbits/s. Useful for high-speed optical networks, the driver is implemented with indium phosphide/indium gallium arsenide heterojunction bipolar transistors to achieve a $100-\mathrm{mA}$ pk-pk modulation current.

AT\&T's laser can drive 100 mA at up to $10 \mathrm{Gbits} / \mathrm{s}$ when powered from a $4-\mathrm{V}$ supply. It employs a differ-
ential currentswitch, an input buffer, and currentmirror circuits to set the dc $\left(I_{d c}\right)$ and modulation-current $\left(\mathrm{I}_{\mathrm{MD}}\right)$ levels. A total of 25 heterojunction bipolar transistors (HBTs) were used by the driver chip. Both I_{dc} and I_{MD} are precisely double-mirrored from external current references and could be varied in magnitude accordingly.

To obtain a modulation current of 100 mA , four HBTs are used in the current switch. Each HBT has an emitter size of $2.5 \times 11 \mu \mathrm{~m}$, which results in an input capacitance of 0.5 pF per device. The input buffer that drives these transistors consists of emitter-followers biased with cascoded current sources.

DAVE BURSKY

Finst 80386 Workalike Trims Power With Static Logic

By reengineering the logic and using the same microcode as on Intel's 80386DX processor, the first softwarecompatible single-chip replacement for the 32 -bit 80386 microprocessor has been developed. Demonstrated by Advanced Micro Devices Inc., Sunnyvale, Calif., the chip threatens to break Intel's sole-source stranglehold on the personal computer industry. And it may bring price relief to system manufacturers sooner than Intel would have done if no alternate source was available.

Although the Am386DX or 386DXL can execute the same software when inserted into the same socket that holds the Intel 80386DX, AMD designers added something extra. Rather then implement the CPU registers with dynamic CMOS logic as Intel did, the designers used fully static logic. The static design added about 5000 transistors to the processor, upping chip area by about 10% over that of Intel's chip.

However, the AMD chip consumes much less power than Intel's. At the full 33MHz clock rate, Intel
claims its 386DX draws about 550 mA . In comparison, AMD's design consumes less than 400 mA at 33 MHz . And the fully static design of the AM386DXL version enables the clock frequency to be stopped when the chip goes into a standby mode, dropping current drain to less than 1 mA . In contrast, because Intel's 386DX uses dynamic logic, the clock can't be stopped, but it can be slowed to a minimum of 8 MHz . At that slower clock rate, Intel's chip draws over 130 mA , placing a heavier load on the power source compared with AMD's chip.

The Am386DX and 386DXL are actually the same chip. However, the Am386DX isn't tested at the very low clock frequencies or with the clock stopped to verify that data is maintained in the registers. With the commonality of design, AMD can reduce manufacturing overheads. Reduced overheads will translate into price parity between the two versions-there won't be a price premium for the DXL low-power version. Also being developed are 16 -bit bus-interface versions of
the processor that operate as if they were Intel 80386SX or SXL processors. Actual OEM prices for the chips, however, will not be set until 1991.

To fabricate the chip, AMD employs a $0.8-\mu \mathrm{m}$ CMOS process equivalent to the process Intel uses for its processor. The AMD process is the same that the company is applying to build its recently released second-generation, Am29050 RISC processor. The lower power consumption of the static logic allows the AMD chip to be housed in a 132 -lead pingrid array similar to Intel's, or in a 132-lead plastic quad-sided flat package that saves about 40% of the board area over that occupied by the PGA - a significant savings for space-limited portable and notebook computers.

The most critical testing has already started-over 20 desktop system manufacturers are evaluating the chip and have put it through extensive compatibility testing versus the Intel processor. No incompatibilities have been found. So far, tests have been done with various operating systems, such as DOS 3.3, 3.31, 4.01, OS/2 1.1, 1.2, 2.0, and Xenix. Over two-dozen additional
application packages were also tested, including Microsoft Windows 3.0 and Word, Lotus 1-2-3, Aldus Pagemaker, Dbase III+, among others. The chips have been tested at 20,25 , and 33 MHz . AMD is also setting up relationships with chip-set vendors to ensure that the Am386DXL will have support in place for portable system designs. Therefore, system makers will have options available to differentiate their portable products.

Probably the biggest hurdle that AMD faces, however, is the legal issue of its right to use the microcode. Although AMD expects the courts to decide in its favor, based on the wording of the contracts it signed with Intel, there's the possibility that AMD may lose. In that case, the most likely alternative would be to create a "clean room" version of the microcode that doesn't infringe on the copyrights that Intel has on its microcode. Such a revision to the microcode is possible, as proven in the recent case settled between NEC Corp. for its Vseries microprocessors and Intel.

AMD has already overcome the first legal hurdle. In a ruling last month, U.S. District Judge William Ingram sided with AMD that it had the right to call the chip the Am386. Intel tried to stop AMD from using the 386 part-number designation, claiming it was a trademark. However, past precedent in the semiconductor industry dating back to the first discrete devices overwhelmingly backs AMD's case for using the part number with the company name.

DAVE BURSKY

1 $\mu \mathrm{A}$ OP AMP EXTENDS battery Life 15X

3.6 μ W Power Consumption - Lowest Ever

Maxim's new MAX406 op amp is the lowest power op amp on the market today, requiring a maximum supply current of only $1.2 \mu \mathrm{~A}$ - leakage current in most batterypowered applications. And, it consumes less than $3.6 \mu \mathrm{~W}^{\star}$ of power enabling lithium or alkaline batteries to last years longer. A review of the specs below will show you that the new MAX406 is the ideal op amp for solar powered products, hearing aids, barcode readers, and many other micropower applications.

- 1.2μ A max Supply Current
- <0.1pA Input Bias Current
- 0.5mV max Input Offset Voltage
- Input Voltage Range Includes Neg Supply Rail
- 40kHz Gain Bandwidth

MAX406 VS. ALTERNATIVES				
$\begin{gathered} \text { Device } \\ \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{gathered}$	$\stackrel{\mathrm{I}_{\mathbf{Q}}}{\mu \mathrm{max}}$	$\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{mV} \mathrm{max}^{2} \end{gathered}$	$\mathrm{pA}^{\mathrm{I}_{\mathrm{typ}}}$	Rail-to-Rail Output
MAX406	1.2	0.5	< 0.1	YES
ICL7611	20	2	1	YES
TLC271	23	2	0.1	NO
OP90	20	0.15	4000	NO

- Wide Supply Voltage Range: +2.4 V to +10 V or $\pm 1.2 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$

Rail-to-Rail Output Sources 2,000X Supply Current

The MAX406 maintains linearity under heavy load conditions and is capable of sourcing as much as 2 mA from a 9 V battery. The output swings rail-to-rail while the input voltage range extends to the negative supply rail. The new device operates from voltages as low as 2.4 V while maintaining widest input and output voltage ranges.

Lowest Bias Current, Highest Stability

Input bias current of the MAX406 is less than 0.1pA - a 10 X improvement over other low-power op amps. Input offset voltage is 0.5 mV maximum, eliminating the need for offset nulling in most applications. As a buffer, the MAX406 is extremely stable without any external compensation, even when driving capacitive loads as high as $1 \mu \mathrm{~F}$.

Call your Maxim representative today for applications information, data sheets and samples. Or, write Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.
*From 3V supplies

NUスXINV

IN THE ERA OF MegaChipp TECHNOLOGIES

YOURDSP:ALLTHERE

There is a big difference. Only Texas Instruments brings it all together for you in DSPs, from software to silicon... and we have 10,000 users to prove our point.

OR JUST ALMOST?

Designers are applying TI's singlechip TMS320 DSPs (digital signal processors) in more systems around the world than any other. In fact, leading manufacturers in most market segments - including telecommunications, computers and computer peripherals, automotive, industrial controls, consumer products, and military systems - use TMS320 DSPs.
These designers choose our DSPs because they know there is a big difference between all there and almost. With TI, they know they are getting the most complete DSP solution in the business - (1) performance, (2) support, and (3) broad choice. These important factors are worth careful consideration as you evaluate DSPs:

锈。 1. Am I assured of access to the top-performance devices in the field?

Naturally, performance is a high priority for any DSP-based system. The TMS320 family consistently sets the performance standards for the industry. Among the newest additions are the highest performance fixed- and floating-point single-chip DSPs, both with clearly defined road maps for future performance upgrades. Multiprocessing DSPs offer even higher performance.

$\square \mathrm{Yes} 2$.
$\square \mathrm{No} 2$.Is world-class support in place to help speed my design to market?
Few if any DSP vendors equal the level of support that TI offers.
Industry-standard high-level language optimizing compilers (ANSI C and Ada), HLL debuggers, the SPOX ${ }^{\text {™ }}$ multitasking DSP operating system, and scan-based emulators provide you with a development environment similar to that traditionally enjoyed in general-purpose microprocessor design.
Low-cost evaluation modules allow you to accurately evaluate and benchmark a TMS320 processor for your application.
Such leading-edge tools are only the beginning of our comprehensive support. Other TMS320 support includes:

- A hot line staffed with DSP personnel ready to answer your technical questions
- An on-line bulletin board service
- More than 2,000 pages of application notes and DSP code
- More than 100 third parties and consultants
- Hands-on workshops
- University program with more than 100 universities participating
WHAT'S AHEAD FOR TI'S TMS320 FAMILY

${ }^{\text {TM }}$ MegaChip is a trademark of Texas Instruments Incorporated. SPOX is a trademark of Spectron Microsystems, Inc.
\square Yes3. Is the choice of devices broad enough that I can closely match a DSP to my price/ performance needs?
Our TMS320 family spans five generations - more than 20 members offering a price/performance range from $\$ 4.00$ to 40 MFLOPS. Your choice includes:
- EPROM DSPs that shorten your time to market
- DSPs optimized for specific applications
- Military versions
- Single-chip devices offering 40-MFLOPS performance
- Multiprocessing DSPs
- Low-cost DSP solutions for cost-sensitive applications
- Compatibility to protect your software investment
At TI, we have it all, and we are ready to help you put it all together.
Get your free three-volume TI DSP Applications Library; call 1-800-336-5236, ext. 3528
We will send you our three-volume TMS320 DSP Applications Library. If you prefer, we'll send you our TMS320 product overview and support brochure. We feel sure you will soon be one of the thousands around the world achieving design success with the leadership TMS320 family.

A trueleader

The UNIX based DECstation ${ }^{\text {TM }} 5000$ Workstation

leads by example.

Example \#1: Performance

No matter how you measure it, Digital's DECstation 5000 workstation leads all others in performance. Whether it's raw CPU performance, 2 D or 3 D graphics speed, or price/performance, the DECstation 5000 workstation comes out ahead. In fact, for overall performance, nothing else is close. And we've got the numbers to prove it.

PERFORMANCE COMPARISON CHART (1)	SUN SPARCstation 1+	IBM $320 / 520$	DECstation 5000 cx
 Windowing (2)	0.24	0.71	1.59
Integer	$1.04(3)$	1.34	1.61
Floating Point	$1.10(3)$	2.6	1.7
Overall Performance	0.65	1.35	1.63

(1) All data normalized to DECstation 3100 . Comparable configurations tested. Geometric mean used to combine results. Performance will vary depending on applications and environment. (2) Graphics and windowing data measured using Xliperf benchmark. CPU Integer and Floating Point performance published by Sun Microsystems, Inc.

UNIX based applications, including the industry's most popular MCAD and EDA applications.
Example \#3: PowerFrame ${ }^{\mathrm{TM}}$ for Design Integration.

With Digital's PowerFrame design framework, you can easily integrate the DECstation 5000 workstation with your existing UNIX based EDA and MCAD systems. PowerFrame is the most widely used framework for heterogeneous design management. And, of course, as the leader in integrated multi-vendor
networked computing, you can count on Digital for full service and support. We can help you design, implement and maintain an engineering computing strategy that capitalizes on today's technol-

ogy, while keeping your options open for the future.

For your copy of benchmark test results and a list of available applications, call 1-800-343-4040, ext. 970 . These are filled with examples of what you expect from a leader.

Digital
has it now.

Example \#2:

 UNIX based ApplicationsWhen you run with the leader, you know you're in good company. The DECstation 5000 workstation runs more than 1,500

Fast things come in small packages.

High-speed, low-noise CMOS logic and memories in new, space-saving packages

Quality Semiconductor has the high speed, low-noise logic and memories you need to make the most out of high speed design. FCT logic in FCT/A/B/C speeds. 16Kx4 SRAMs with 12ns access. 1 Kx 9 and 512 x 9 FIFOs at 15 ns with fast flags. Logic especially designed to eliminate noise problems. Valueadded enhancements like on-chip resistors, burst-mode counters and cache-tag comparators. Memories with reliable 6-T cell design. In the packages you want-including spacesaving ZIP and our new, ultra-small QSOP. Available now.
Proprietary CMOS Process Quality's QCMOS" process gives you better
performance than Bipolar or BiCMOSyet runs cooler and draws less power. Low Noise A controlled output swing of 0 to 3.5 V reduces problematic ground bounce. Optimized slew rates help reduce line and signal noise.
New, Space-Saving Packaging Innovative packaging options help you save precious board space. 20 and 24 -pin ZIP saves board space by 50% over PDIP. Ask about our new, 150 -mil QSOP with reduced pin spacing to increase logic density by 400%.
High Speed Hotline Call (408) 986-8991 for the latest copy of Quality's HighPerformance CMOS data book-product is available NOW.

QUALITY SEMICONDUCTOR INC. 2946 Scott Boulevard, Santa Clara, CA 95054

QCMOS and QSFCT are trademarks of Quality Semiconductor Inc.

Low-Cost Compression Solution Expands Sphere Of Multimedia Technology Into Consumer Domain.

COMPRESSION CHIP HANDLES Real-Time Video And Audio

A

Milt Leonard

year-long effort to pack the essential functions of a multiboard video-compression system onto one piece of silicon has produced the industry's first single-chip processor. The UVC7710 multimedia processor, from UVC Corp., compresses video and audio signals with compression ratios up to 500:1. It also performs control functions for memory, the system bus, and VGA displays, as well as control and sync functions for special video and windowing operations.

But that's not all: The processor includes all of the circuitry needed for connecting to IBM PC/AT interfaces, as well as National Television Standards Committee (NTSC), phase-alternating line (PAL), and RGB-encoded signals. The processor acts as a multimedia engine on a PC motherboard for applications with limited storage and bandwidth.

Equally impressive, the 7710 enables the design of circuit cards that sell for one-tenth the price of other board-level multimedia solutions with equivalent functionality.

For the business world, this means an economical way to treat color motion video as ordinary digital information that can be stored, indexed, manipulated, and moved across digital communication lines as any other file. Video teleconferencing, color facsimile, and video mail can be linked to T 1 , Integrated Services Digital Network, and localarea network circuits over corresponding communications lines.

In the consumer market, target applications can vary over a wide range. These applications can range from low-cost video telephones to high-end electronic products with built-in video instructions.

Unlike other compression ICs that consume silicon area with direct and inverse co-sine-transform circuits for intraframe or interframe processing and motion prediction, the 7710 performs frame-based compression. Each line within a frame is stored and compressed on a line-by-line basis. Moreover, the chip architecture uses minimal pipelining (Fig. 1).

As a result, the processor requires just 128

MULTIMEDIA PROCESSOR CHIP

\square

1. ARCHITECTURAL SIMPLICITY is a significant factor in the performance of the UVC7710 multimedia processor. Video data flowing from the video and memory interfaces passes through just three function blocks: a transform engine that compresses the image, the entropy encoder that further compresses video data, and the packer that converts encoded data into 16 -bit words for storage in the external VRAM image buffer. Data travelling from the memory interface to the video interface pass through inverse processing functions.
kbytes or more of video RAM (VRAM). Its I/O latency time in less than 100μ s. A patented on-chip compression algorithm, contained in compression-code tables, is simpler than the proposed Joint Photography Experts Group (JPEG) standard. With fewer calculations required, the video processing rate is 12.5 million pixels/s for real-time full-motion video. Although the maximum frame rate is arbitrarily set at 30 frames/s by system software, the company says it can be higher.

Silicon area, which would otherwise be used for complex intraframe or interframe processing, has been devoted to features that reduce system chip count. For example, the processor has a half-duplex 24 -bit bidirectional video I/O bus to transfer digital video data between the chip and external video devices. These devices are usually standard digital-toanalog and analog-to-digital converters that supply analog video signals between the 77.10 and external devices. The video source can be a scanner, a digital camera, a VCR, a laser disk, or a graphic-image file. The bus is composed of 8 bits of red, 8 bits of
green, and 8 bits of blue data. Dataflow direction is controlled by the 7710.

The video interface also produces the timing necessary to generate standard video streams, including vertical sync, composite sync, and blanking functions. This circuitry also controls external video output logic to generate NTSC, PAL, and/ or RGB video formats for a display monitor. With a video input, the processor is typically used in the "genlock" mode, which synchronizes the chip to the incoming video stream from one or more sources.

Conbining Images

The genlock mode is useful for combining two or more video images on one screen. In this case, the processor is programmed to act as a vid-eo-timing slave. The vertical sync and horizontal sync lines become inputs to the chip, providing timing signals extracted from the incoming video signal by the external video logic.

An external video quantizer controlled by a sample clock from the chip samples the analog video input
and transfers the sample to the 7710. At the video output, a pixel clock strobes the compressed output data into the external video interface for conversion back to an analog signal.

Supporting 64-kword-by-4-bit and 256-kword-by-4-bit VRAMs, the memory interface is also designed for system simplicity. A multiplexed address bus connects directly to the VRAM, and compressed video is sent to memory through serial read and write channels. The processor relieves host overhead by performing the refresh function. It also arbitrates host access to its VRAM parallel channel.

In the input mode, the 7710 's au-dio-processing logic accepts digitized serial audio signals and performs data compression for storage. In the output mode, the processing logic accepts stored and compressed audio data and delivers a reconstructed serial digital data stream for external conversion into analog audio. The serial interface to the external analog circuitry supports the Texas Instruments serial transfer protocol. Although the 7710 is designed to link with the TLC32045 (or

Go ahead
 add 5 psec

Picoseconds are no problem for the DG535 Precision Pulse \& Delay Generafor.

The DG535 provides 4 edge (delay) and 2 pulse (delay and width) outputs, all with 5 ps resolution, 1000 sec range, 50 ps rms jitter, and adjustable output levels. The outputs drive 50 Ohms or high impedances to 4 Volts with a slew rate of $1 \mathrm{~V} / \mathrm{ns}$ - just right for driving TTL or ECL or even high speed analog circuits. Throw in the 35 Volt output option and you can trigger almost anything. For even greater accuracy and stability, add the 1 ppm optional timebase .

DG535
\$3500

- 4 delay, 2 pulse channels
- 5 ps delay resolution
- 50 ps rms jitter from trigger
- Adjustable output levels to 4 Volts
- 0 to 1000 sec delay range
- Internal/external trigger to 1 MHz
- Internal/external timebase
- 9 location set-up memory
- GPIB interface standard
- ± 35 Volt output option
- 1 ppm timebase option
- 100 ps rise/fall time option

Flv non-stop in 150 picoseconds.

Bipolar gate arrays with mixed TTL-ECL interface capability-express, luxury service between logic levels.

If you thought it would take a magic lamp to find a simple way of mixing interfaces, Motorola's semi-custom arrays are about to make your wish come true. Our third-generation ETL Series offers 150 picosecond performance, up to 1200 MHz operating frequencies and mixed ECL, PECL (pseudo ECL) and TTL compatible interfaces.

Your passport to design innovation.

The ETL Series offers unique packaging features to simplify your system design. The MCA750ETL package incorporates an integrated heat slug with direct air exposure. Used without a heat sink in a still air environment, this package dissipates up to 1.5 watts at an ambient of $55^{\circ} \mathrm{C}$. Additionally, the pin placement simplifies board layout by permitting the I/Os to run in one side and out the other, leaving the ends of the chip for power pins.

Motorola's ETL Series is perfect for telecommunications and computer applications such as CPU translators, bus interface drivers,

RAM drivers and memory controllers. Three different arrays offer I/O counts designed to match 18,32 and 64 -bit bus interfaces and

MOTOROLA'S SEMI-CUSTOM ETL SERIES

Array	equivalent gates	minimum addressable units	universal I/O cells	package
MCA750ETL	848	96	42	64 QFP*
MCA3200ETL	3570	440	120	169 PGA
MCA6200ETL	6915	900	168	224 PGA

and developing is a snap. Schematic capture is supported on Mentor Graphics/Apollo" workstations using Motorola's Open Architecture CAD System (OACS)."' Timing simulation, test vector analysis, physical layout and final post layout simulations are completed using Motorola's mainframe computer timeshare services.
Get more information.
*Plastic Quad Flat Pack with exposed heat slug (optional molded carrier ring is available).
memory driver widths. Plus, you can program any signal pin for input, output or bidirectional signals for use in full ECL, full TTL, TTL/ECL and TTL/PECL systems.
A well-traveled development path.

Since the ETL Series uses mature MCA III technology, the risk is low

If you'd like more information on Motorola's ETL Series of mixedmode bipolar gate arrays, simply complete and return the coupon below, write to us on your company letterhead at P.O. Box 20912, Phoenix, AZ 85036, or contact your local Motorola Sales office.

MULTIMEDIA PROCESSOR CHIP

equivalent) voice-band analog interface chip from TI, connection to other serial protocols and support chips is possible by using simple external logic, the processor's companding technique, or its bypass mode.
To synchronize stored audio and video data, the audio interface can generate and remove audio timemarkers, which are adjustable in $16.6-$ and $33.3-\mathrm{ms}$ increments. The chip inserts a unique marker code into the compressed audio and video data so that the separately stored audio and video data can be timetracked. The marker is removed by the chip automatically when audio or video is uncompressed. Buffering between the audio-processing logic and host interface includes DMA capability for data transfer between the processor and host CPU.

The host interface is CPU-independent, operating equally well with 8 -, 16 -, or 32 -bit microprocessors. The interface consists of a 16 -bit bidirectional data bus, a 4 -bit address bus, five control lines, and one line for an external clock.

Software Support

Working in concert with UVC's software package, the 7710 has several programmable features that further contribute to implementing a multimedia system with a minimum number of chips (Fig. 2). These include programmable display-window size and offset, variable audiosampling rate, and selectable compression ratio to optimize image quality for any desired communication bandwidth. Other features include chroma-keying and selectable zoom factors of X1, X1.5, and X2. Chroma-keying treats parts of an image as being transparent, based on the image's color values. As used in the 7710 , the technique makes it possible for users to specify background color. The technique also contributes to frame-processing speed by eliminating the need to compress the same solid background in a series of frames.

Another useful feature is a soft-ware-controlled, single-step mode to code and decode non-standard video data formats, such as the 640-by-480-

2. A 7710-BASED MULTIMEDIA subsystem can be implemented with a maximum of 18 chips. In addition to the 7710 , the system includes 125 kbytes of VRAM, standard TTL ICs for the analog front and back ends, audio-processing circuits, a host-bus interface, and transceivers and latches.

pixel video format employed in IBM's video-graphics-array (VGA) display systems. Other modes provide chip and system testability.

The 7710 can be used for data compression or expansion at both ends of a communications link. Alternatively, data expansion at a receive-only terminal, such as a video monitor, can be performed by UVC's software. Aside from supporting imagehandling operations, a principal role of the system software is file management.
The software package has a standardized file format to ensure that compatibility exists among applications, and to allow for conversion between standard video file formats and UVC's format. For example, the software can convert tagged image file format (TIFF) or JPEG files to the UVC format for file transfer. TIFF is a standard file format that stores graphic images in a bitmapped (raster-graphics) format. A communications spooler manages file transfer between local and remote stations.
Other software tools include highlevel function libraries and sample source code to minimize applicationdevelopment efforts, and low-level
function libraries for complex application development. The menu-driven software also has a disk driver that supports data capture and playback using magnetic media. Suites of multimedia applications software provide video and audio capture, editing, video fax, and real-time video conferencing using standard telephone lines. Also available is a videomail system that manages video and audio messages exchanged between workstations, and optional file-password security and descriptors, which are words that identify files in an indexed storage system for fast data retrieval. \square

Price And Availabilty

The single-chip UVC7710 multimedia processor is being sampled and will be available in the first quarter of next year for $\$ 175$ each in lots of 10,000 . This price is expected to drop below $\$ 100$ within a year. A development kit and supporting software will be available in the first quarter of next year.
UVC Corp., 16800 Aston St., Irvine, CA 92714; (714) 261-5336. CIRCLE 511

H0w Valuable?	Circle
HIGHLY	524
Moderately	525
SLIGHTLY	526

1985 : smallest

VI-100 family
$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}$
50, 75, 100 Watts

goo smaller

1-800-735-6200

Component Solutions For Your Power Systems
23 Frontage Road, Andover, MA 01810

Million VICDR VII

Bur-brown's World of

There Are Two Ways to Do DSP!

The Hard Way

- Time consuming
- Incompatibilities due to multiple vendors
- Unclear path from prototype to production
- Steep learning curve for software and hardware
- Uncertain resultsroom for doubt?

The Easy Way

- Easy-to-use, fully integrated system
- Single vendor source
- Smooth transition from prototype to production
- Worries about DSP and analog I/O are removed-attention can be concentrated on solving the problem
- Clear results-you know when your design works!

For an easier way to do DSP, consider our way: an integrated group of DSP products based on the AT\&T® DSP32C floating point processor, Bur-Brown's high performance A/D converters, and our DSP development and analysis software.
And, for those really tough problems, ask us about our application engineering services.
For complete details,
write
Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734. Or, call
toll-free 1-800-548-6132.

Dave Bursky

Higher Integration And Merged Analog And Digital Blocks Let DSPs Do The Hard Jobs.

EvoLVING DSP CHIPS D0 More

0ver the past decade, digital signal-processing chips have evolved from hard-touse building-block circuits to relatively simple-to-program, general-purpose all-in-one chips. Advances in chip integration, architecture, and design tools promise to accelerate that trend. Ultimately, designers will be able to create application-specific DSP chips with just the right mix of features for their intended applications.

Already, DSP chips come in a wide variety of resolutions, ranging from 16 -bit integer processors to full 32 bit IEEE-compatible floating-point units, all with on-chip blocks of RAM and ROM. Furthermore, in addition to the high-speed computational blocks, the DSP-chip architects have begun including microcontroller-like features, such as serial and parallel ports, counter-timers, and most recently, analog-to-digital and digital-to-analog converters (ADCs and DACs). More analog front-end

The wide range of resolutions and features of DSP chips suits them as solutions to many types of signalprocessing, control, image-processing, and pure computational problems. As prices drop to less than $\$ 10$ for some 16 -bit DSP ICs, such chips are finding their way into consumer products.

Higher-resolution, and thus more-expensive devices with wider-dynamic ranges, tackle still tougher applications, such as CD audio, industrial controls, digital servo control loops, and so on. The full, 32-bit floating-point processors offer the widest dynamic range of the lot, finding homes in demanding applications, like radar and sonar signal processing, image processing, and even as graphics accelerators and math coprocessors. This is due to their computational speeds in the 15 to 30 MFLOPS range, and in most cases, IEEE-754 compatible floatingpoint math.

One of the latest applications that serves as a driver for new DSP offerings is the GSM (Groupe Special Mobile), a standard for mobile cellular telephones that's supported by 17 countries. Issued by the European Telecommunications Standards Institute, it defines the most advanced mobile telephone system. The system will employ sophisticated speech processing to reduce the data rate to $13 \mathrm{kbits} / \mathrm{s}$. Data reduction will come from several circuit techniques. They include rectangular pulse excitation with long-term prediction (RPE-LTP), linear predictive voice coding, channel half-rate convolutional coding, and diagonal interleaving. Other system features include frequency hopping in the $900-\mathrm{MHz}$ range, automatic adaptive-channel equalization, and Viterbi decoding for error correction.

Many telephone functions can be performed by DSP chips. But trimming system size and weight and to reduce system power and chip count for better battery life requires integrating analog front- and back-end circuitry

I

1. FULL 16-BIT sigma-delta analog-to-digital and digital-to-analog converters are included on the Motorola 56156 16-bit integer DSP IC. The chip is the third entrant in the race to capture a portion of the European cellular communications market. Similar chips from Analog Devices and AT\&T were released earlier this year.
on the DSP chips. DSP chips have already surfaced in many digital telephones and line cards, such as Dallas Semiconductor's DS2130 voice messaging processor. They compress the standard 64 -kbit/s pulse-codemodulated data streams from codecs into 32 - or 16 -kbit/s, or lower-speed data streams to increase the number of voice channels on one $64-\mathrm{kbit} / \mathrm{s} \mathrm{In}$ tegrated Services Digital Network telephone line.
The market for GSM phones is in its infancy, witnessed by the fact that deliveries will start in 1991. However, Analog Devices and AT\&T have developed DSP chips aimed squarely at the mobile-telephone market, and Motorola has also just released a chip. The world market of an estimated 350 million units is certainly a tempting target, justifying the development of focused DSP chips. The markets in the U.S. and Asia are less developed than elsewhere. But the U.S. will adopt an $8-\mathrm{kHz}$ voice-coding scheme as Japan and the rest of the Pacific Basin still try to settle on a standard.
Designers at SGS-Thomson estimate that each mobile telephone may require two or three DSP chips initially. Each chip will deliver about 40 MIPS of computational throughput
to handle all of the signal-processing needs. Analog-signal handling to go with the digital processing will entail 10-bit a-d conversion at 1 MHz for the rf interface, and 14-bit conversion at 8 kHz for the voice processing.

16-Bit W0Rkhorses

Most designers agree that for most voice-processing applications, 16 -bit integer processors can handle almost all applications. As it turns out, 16 -bit DSP ICs are today's industry workhorses. Such chips can be had from at least a half-dozen sources: the TMS320 family from Texas Instruments and Microchip, the ADSP2100 series from Analog Devices, the DSP16 series from AT\&T, the just-released M56100 family from Motorola, the 32FX16 from National Semiconductor, the mPD77C2x family from NEC Electronics, and the ST189xx family from SGS-Thomson. Volume prices for such chips range from as little as $\$ 5$ for the simplest 16 -bit units to about $\$ 60$ for the most complex integer processor.
Most DSP chips start with three basic and common features: a highspeed arithmetic unit with a hardware multiplier for either integer or floating-point operations, and RAM
and ROM for data and program storage. Each company, though, has taken slightly different approaches to accelerate the computations and the execution of each chip's instructions.

The divergence in DSP chip architectures is caused by several reasons. These include differences in host-interface support, I/O ports, special features to aid in program execution, and links to real-world signals, such as those of ADCs and DACs.

Multiple address generators that address data and program memories in parallel, and a 16 -word instruction cache enable the ADSP-2100 family to quickly run through its algorithms. A 15 -word instruction cache aids AT\&T's DSP-16 series to quickly execute short code loops, and zerooverhead looping can be repeated as many as 127 times to simplify repetitive algorithms. One of the more unusual integer DSPs, the ST189xx series from SGS-Thomson, can perform complex-number (real + imaginary components) calculations-a key operation for modem and datacommunication subsystems.

Taking a totally different approach to DSP, National started with its general purpose 32000 -family CPU core. It then added a flexible

The power-user's guide to the new HP48SX.

Serial interface to

 PC or Mac.Two-way infrared I / O.

Automatic uni management.

Over 2100 built-in functions.

math.

DSP block onto the chip so that control and DSP functions could be developed using a unified instruction set on the 32FX16. TI and Microchip did just the opposite-each company started with a DSP core and then added control and microcontrollerlike functions to the chip.

As costs come down, 32 -bit float-ing-point DSP chips continue to gain momentum. These chips are the rage as computation accelerators in 3D graphics applications, and as math accelerators on coprocessor cards in PCs. Most companies offering integer processors also supply 32 -bit floating-point DSP chips. Prices for such devices range from well below $\$ 20$ to several hundred dollars for the top-performing 32 -bit floatingpoint chips. In between the 16- and 32 -bit chips lie a number of offerings with 18 -, 22 -, and 24 -bit resolution. Motorola, NEC, and Oki are probably the most notable contenders in this middle area.

In addition to the generic DSP chips, many application-specific DSPs have appeared over the last few years. These chips typically pack arrays of math elements to better handle large data arrays. Such functions as finite-impulse-response filters, fast Fourier transforms, convolutions, and other signal-processing operations are some of the hardwired functions that can usually be integrated into silicon. Harris Semiconductor and Plessey Semiconductors recently released some applica-tion-focused chips aimed at communications applications, while LSI Logic and SGS-Thomson unveiled chips targeted for image processing. Other vertically focused chips aimed at speech processing come from the DSP Group; image-processing chips from the Inmos Div. of SGS; video signal-processing chips from ITT Intermetall; and other communicationapplications chips from Sharp; Silicon and Software Systems; Stanford Telecommunications; newcomer Zilog, who will offer the CD2400 DSP chip licensed from Clarkspur Design of San Jose, Calif.; and Zoran.

In the integer world, DSP chips are gaining 14 -bit ADCs and DACs, communication codecs, phase-locked
loops, timers, I/O ports, and other features targeted for communications and control subsystems. Earlier this year, both Analog Devices and AT\&T released details of their 16-bit integer DSPs-the ADSP21msp50 and DSP16C, respec-tively-that include 16 - and 14 -bit sigma-delta converters. And, just last month, Motorola released details of its 56156 , a 16 -bit version of its 24 -bit 56000 DSP family with onchip 16-bit sigma-delta converters.

In AT\&T's chip developed for bat-tery-powered systems, low power was of utmost importance. To decrease power consumption over the previously released DSP16A, AT\&T designers came up with a clever way of clocking selective portions of the chip to minimize power during operation. Unused portions of the chip aren't clocked, so the static logic consumes little power.

The processor also includes a spe-
cial reduced-power sleep mode, which wakes up the chip when an interrupt occurs. That sleep mode suits the battery-powered communication systems well because such systems are often in a stańdby mode, either waiting for an incoming call or for someone to start an outgoing call. Either situation would generate the interrupt signal to wake up the chip and have it respond.
Motorola's M56100 series is based on a 16 -bit DSP core macrocell-the 5616-which will permit designers to create their own customized DSP chips just as easily as macrocellbased ASICs have been pulled together in past years. The core has been optimized for voice and data applications. As many as six operations can be done simultaneously to achieve a cumulative throughput of 240 millions of operations per second (MOPS). The processor needs just two instruction cycles (100 ns) to

2. HANDLING COMPLEX NUMBERS in its unique multiplier-accumulator stage, the ST18932 DSP core macrocell from SGS-Thomson also has a four-word FIF0 register, four accumulators, and a temporary register, all waiting to catch the results coming from the ALU.

Constant Density Recording

Strap yourselves in. Get ready for warp speed. Our new approach to constant density recording has just given disk drive design a considerable boost in storage capacity.

Even better, we've enhanced performance while significantly reducing board space requirements.

Key to our unique "building-block" thinking is an integrated time base generator and a breakthrough programmable active filter. The latter-the 32F8011 - is a
revolution in itself, one that lets you program channel bandwidth from 5-13 MHz.
Continuously.
A real space saver is the 32D4661 Time Base Generator. It has integrated the functions of 4-5 previously needed external components and comes in one neat 24 -pin package.

Add this capability to your read/write channel design and you've got your higher capacity mixed-signal IC solution in place.

Fully designed and compatible. And more appreciative of your bottom line.

To expand the capacity of your next disk drive design, contact your nearest Silicon Systems representative. Or call us for literature package SPD-3.
Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680 Ph 1-800-624-8999, ext. 151 Fax (714) 669-8814 European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117
silicon systems
start handling an interrupt when the processor runs at 40 MHz . Such a fast response enables the processor to readily tackle the real-time communication systems as well as industrial and embedded control systems. The core also has a fast return from an interrupt.
Math operations, such as multiply-and-accumulate (MAC), are common in DSP algorithms. To simplify these tasks, a single-cycle 16-by-16-bit multiplier and dual 40 -bit accumulators enable the chip to perform 40 million MACs/s with minimal overflow because the wide accumulators accommodate word growth. In comparison, most of the other integer chips have 36 -bit accumulators and could thus be more subject to round-off error. The reduced round-off error translates into a cleaner signal and less background noise.

Based on the core approach, designers at Motorola created both the previously mentioned 56156 and the DSP56116, a general-purpose 16-bit DSP chip. The DSP56156 is basically a 56116 that has an on-chip sigmadelta codec and a frequency synthesizer (Fig. 1). The sigma-delta converter, intended for voice processing, has 14 -bit resolution, an $80-\mathrm{dB}$ dynamic range, and a $60-\mathrm{dB}$ peak sig-nal-to-noise ratio. The sampling clock frequency can range from 100 kHz up to 3 MHz , depending on the voice quality and power consumption desired. An internal voltage reference generates the necessary reference value for the converter. A phase-locked loop forms the heart of the on-chip synthesizer, enabling the internal timing circuits to boost the external $40-\mathrm{MHz}$ clock up to 80 MHz .
Although it doesn't have on-chip

Freiburg Getall GMB
(0049) 761-5170

CIRCLE 309

Array Microsystems Inc.

(719) 540-3842

AT\&T Microelectronics Corp.
Allentown, Pa.
800) 372-2447

Dallas Semiconductor Corp.
Dallas, TX
(214) 450-0400

The DSP Group Inc.
San) 985-0722
CIRCLE 305

San Jose, Calif.
(408) 922-9000

CIRCLE 306
Harris Semiconductor Corp.
Melbourne, Fla.
CIRCLE 307
Inmos Corp.
. of SGS-Thomson
Colorado Springs, Colo.
(719) 630-4000

CIRCLE 308

CIRCLE 317
codecs, the ST1893x family from SGS-Thomson offers other architectural features for communication applications, such as modems and speech processing, that set it apart from most other integer DSP chips. All family members can perform two data reads and one data write in one cycle, as well as multiplication and ALU or shift operations, up to three address pointer updates, and such I/O operations as mailbox exchanges or serial I/O transfers. That combination of operations permits the processor to multiply two complex 16 -bit numbers in just two cy-cles-most other DSP chips would require four or more cycles for the same complex-math operation.

Parallel Fetches

The processor core implements a full Harvard-style architecture that simultaneously performs instruction and data-memory fetches. At present, SGS-Thomson has developed separate analog front-end/ back-end chips to handle the analog signals for voice and data-modem signals. However, because the chip's processor core-the ST18932-is part of the company's $1.2-\mu \mathrm{m}$ stan-dard-cell library, customized versions with analog functions or yet additional digital features aren't that far away.

The ST18940 and 941 are more recently released CMOS family members, with 32 -bit integer arithmetic units. They're upwardly source-code compatible with the original 16 -bit NMOS (TS68930) and upgraded CMOS members (ST18930/931) of the ST18 family. The two chips are similar except that the 940 has an onchip 3-kword-by-32-bit program ROM and a 512 -word-by-16-bit coefficient ROM. The ROMless 941 addresses 64 kwords of external memory and contains a 128 -word-by-16-bit coefficient RAM. Each chip also has a pair of 256 -word-by-16-bit data RAMs that act as small caches for coefficient or repetitive data values.

Furthermore, the ability to split the calculations so that direct operations on complex numbers can be performed suits the chips for applications that require convolution,

Design flexibility: The programmable display system.

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with.the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numerics and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.

They also simplify operator training as well as control panel design. One Vivisun Series 2000
programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.
Contact us today.

AEROSPACE OPTICS INC.
3201 Sandy Lane, Fort Worth, Texas 76112 (817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 2000 programmable displays. The intelligent communications system.

For data sheets on our high performance Monolithic Quad DAC's, call 1-800-272-1772. Today.
echo cancellation, and fast Fourier transforms (FFTs).

Another enhancement over the 18930/31 processors was the addition of a second serial port. This, for example, permits direct connection to codecs and other devices that tie into ISDN. A parallel port, dual 16byte FIFO buffers, and a DMA controller were also added so that the chip can provide more local control and data movement. The FIFO memories improve the chip's ability to handle asynchronous exchanges on the system bus, improving multiprocessor communications.

The actual core is similar to the main processor block in the 18940, dissipating about 350 mW when operating at full speed with instruction cycle times of 77 ns . During standby, the core power consumption drops to less than 0.5 mW . In the core is a complex multiplier, a 32 -bit ALU, and a pair of register files (one is 192 words by 16 bits, while the other is 128 words by 16 bits) that hold the real and complex values. Also included is boundary scan logic to simplify testing and a loop counter and sequencer for address counting.

On the ALU's output are a four-word-deep FIFO buffer, as well as four accumulators and a temporary register (Fig. 2). The abundant number of accumulators and the FIFO register lets the core handle multiple operations withoutstoring data in its main memory array, thus accelerating simple operations. Furthermore, the FIFO buffer allows the ALU to deliver results at a different rate faster than the output bus can transfer the data. That permits the ALU to achieve a higher effective throughput.

HighSpeed Ports

In addition to high-speed cores that perform many operations in parallel, one major problem is getting the data from the real world into the DSP chip so that it can be processed. Looking at that problem, designers at Burr-Brown, Tucson, Ariz., are searching for ways to take advantage of such features as high-speed serial ports, which are now on chips from AT\&T and other companies.

Dedicated I/O buses or ports are also important for multiprocessing applications, where data must be moved from DSP to DSP IC, or from board to board. At the board level, many companies have created their own local data-transfer bus. At the chip level, most DSP chip suppliers
haven't really addressed this issue at 16 bits. However at the 32 -bit level, there have been developments. The most recent 32 -bit floating-point DSP entries from AT\&T, Motorola, and Texas Instruments include multiple I/O ports that greatly reduce the data bottleneck problem when

With Hirose's new surface mount connectors, your miniature designs can be on the cutting edge of technology.
Leave it to Hirose engineers to develop and manufacture an entire family of SMT connectors that are precise, rugged and reliable. Every terminal tail uses the strongest and most advanced metal alloys and mechanically sound designs to assure the correct amount of flex under severe stress and thermal cycling
 conditions. Solder joint failure is thus reduced to zero.
Hirose assembly and production methods produce precise axial alignment greatest
PCB pads.
of solder
and limits
repeated stress.
requirece for mechanical strength
the potential for failure from

Hirose high temperature plastic insulators are light-weight, sturdy and uniquely structured to easily adapt to automated component placement. The need for through-hole support fasteners on the PCB is virtually eliminated.
Even the electro-statically controlled carriers have received the same attention to detail. Each connector is cradled and protected from scratches, bends and breaks. And each flows smoothly from the tube using conventional gravity feed.
 Probably the most unique advantage to the Hirose series of surface-mount connectors is availability. While other connector manufacturers are still experimenting with handmade prototypes and limited "soft-tooled" pre-production parts, Hirose is in full production and can deliver parts not only for your R\&D but also to your production line.

Hirose Electric (USA) Inc. 2685-C Park Center Drive Simi Valley, CA 93065 Phone (805) 522-7958

CIRCLE 88
moving large amounts of data.
To confront the data movement hurdle, designers at AT\&T, Motorola, and TI have all taken different approaches on their respective 32 -bit floating-point DSP chips, coming up with interesting architectural solutions. The first chip to offer a solution, the DSP32C from AT\&T, included a pair of high-speed 10-Mbit/s serial ports that can shuttle data into and out of the chip. Such serial ports help keep the pin-count of the chip down to a reasonable level-as few as 64 pins for a non-expandable sin-gle-chip version, or as many as 164 leads in a PQFP if maximum system expansion is desired.

The dual high-speed serial ports not only allow simple data transfers, but also permit multiple DSP chips to be interconnected into an array that can process large amounts of data in parallel. A 16 -bit parallel I/O bus plus the 32 -bit data bus gives system
designers plenty of architectural freedom to set up various data-transfer paths.

A newer device, the DSP3210, adds a high-performance 32 -bit microprocessor bus interface that lets the chip easily tie into the host system bus on workstations and highperformance PCs. The new bus interface has all of the hooks for any company's CPU and can perform byte swapping when working in mixedprocessor systems. Furthermore, the chip can handle either multiplexed and asynchronous buses. With all single-cycle instructions and up to four memory accesses per instruction cycle, the 3210 can deliver a math throughput of 25 MFLOPS. The DSP32C core was upgraded so that the chip could handle multime-dia-type applications that mix video, audio, and text. That requires a large address space-much larger than that of the 32 C which has a 24 -bit ad-
dress bus. Consequently, a full 32 -bit address bus was included on the 3210 to provide a 4-Gbyte range.

Also added was byte addressability and some new instructions that improve context switching, add more looping options, and enhance process flow. To improve internal operations, a 32 -bit barrel shifter was added to accelerate algorithms that require either shifting by an immediate value, or logic or arithmetic shifts. The block can also shift an amount controlled by a register value rather than an immediate value. Those operations come in handy when streamlining scaling algorithms, such as those that might be used in audio and image-processing applications.

The improved chip also includes one hardware timer for event control (32 bits) and a bit-programmable I/O port containing 8 lines, each of which is software-programmable as an in-

DSP-LINK. A Unified Solution For All Of Your DSP Applications.

System Boards with Analog I/O

Processor Boards
Support For All Major DSP Processors:

- Texas Instruments TMS320C25/C30
- Motorola DSP56001/96002
- AT\&T DSP32C
- Analog Devices ADSP-2100/2101

Development and OEM systems for Digital Signal Processing (DSP).

Spectrum Signal Processing Inc., 1500 West Park Drive, Westborough, MA 01581 Tel: 508-366-7355 or 1-800-323-1842
put or output. These lines can be used for sensing, output status, and so on, and are handy for board-level testing applications or for a small amount of control.

In fact, the lines and timer may often eliminate the need for a small microcontroller that often provides the I/O for DSP systems. A low-power Wait For Interrupt instruction enables the chip to reduce its power drain to just a few milliwatts.
One major architectural change to the DSP ICs was including a task scheduler that enables the chip to store data and instructions in lowspeed memory, and pull the data and instructions, as needed, into the chip. This is so the chip can continue to operate at top speed, unaware that inexpensive low-speed memory is actually feeding it.
Part of the scheduler includes control for page-mode DRAMs and quad-word transfers, among other control aspects. One other change versus the DSP32C is that the 3210 doesn't have the 16 -bit I/ 0 port. Because the new chip was designed as a bus master, all transfers will take place over the host bus, bypassing the need for a separate I/O bus.

Aiming at multiprocessor systems, dual 32 -bit-wide bidirectional data buses-each with its own 32 -bit address bus-on Motorola's 96002 DSP chip lets multiple processors easily cascade to multiply the processing power.

Large amounts of RAM and multiple 32 -bit buses were included on the chip so that reasonably complex algorithms and their data points can be executed without the processor referencing off-chip memory. And, when off-chip memory must be accessed, the dual 32-bit address buses allow the chip to control two 4-Gbyte data memory spaces plus a third 4Gbyte space for program storage. The large address spaces are an ideal fit for complex graphics and multimedia applications that demand gobs of memory for storing image and voice data.

Employing as many as six bidirectional byte-wide ports, designers at Texas Instruments are proposing a major I/O change for its forthcom-
ing TMS320C40, which the company expects to sample in the second quarter of 1991. Targeted specifically at parallel-processing applications, such as found in image and seismic data analysis requiring computations with 2D and 3D arrays of processors, the C40 allows simultaneous
multiple data transfers over its ports at individual rates of up to 13 Mbytes/s.
The six bidirectional byte-wide I/O channels can be used separately or cascaded for 16,32 , or some other word width. An intelligent DMA processor on the chip can perform task

< . . Low-Cost and Ready-Made!

We've already designed, built, and tested your operator interface. . . so you don't have to. Our new and complete family of OEM Microterminals is easy to integrate with your microprocessor-based systems, easy to use, and very easy to cost justify.
And, they could be the solution to your make/buy dilemma. These cost-effective devices can save you valuable design, tooling and development costs and time, and let you concentrate on your product designs.

- Large, easy-to-read LCDs
- Programmable function keys
- RS-232 or RS-422 communications
- 80-character display buffer
- Gray or computer beige case colors
- 16-bit I/O and auxiliary RS-232 available
- Low-Price: From \$195.00

For a copy of our new 8-page brochure, or information about demo units, write Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734. Or call toll free 1-800-548-6132.

Our new ML2261 8-bit A/D converter takes speed and accuracy to an entirely new level: 670ns.

Latch onto Micro Linear's new ML2261. Without question, the fastest, most accurate micro-processor-compatible 8-bit A/D converter on the market.With performance features that'll leave most microprocessors in a no-wait state.

By utilizing half-flash techniques, the ML2261 achieves A/D conversion times of 670 ns over temperature and Vcc. It quickly converts an analog 0 V to 5 V sine wave at 500 kHz to its digital representation with 48 dB signal-to-noise ratio. Digital error correction is used to achieve a total unadjusted error of better than $\pm 1 / 4$ LSB. (Total unadjusted error includes the sum of linearity, zero scale and full scale errors).

It's also easier to use, because the ML2261's differential architecture provides superior power supply rejection. The analog input is 0 V to 5 V with a 5 Vower supply. And because

Built-in digital error correction delivers true 8 -bit accuracy, with typical unadjusted error of less than $\pm 1 / 4$ LSB.
inputs can withstand at least 25 mA , you can achieve better latch-up immunity on analog inputs. The digital interface is also designed to keep up with the fastest microprocessors and appears as a memory location or I/O port to the microprocessor. In addition, no external clock is required and power dissipation is a mere 75 mW . All parameters are guaranteed over the supply tolerance and temperature range. Combined, the ML2261 gives you the fastest, most accu-
rate, easiest to use 8-bit converter for a wide range of applications including disk drives, medical instrumentation and signal processing. With a price/performance ratio that's significantly lower than comparable converters. Devices are now available in standard 20-pin DIP or surfacemount PCC packages, with 100 unit prices beginning under $\$ 9.00$.

For more information.

To find out more about how you can quickly convert your new product design to the ML2261, just call (408) 433-5200. Or write to: Micro Linear, Dept. TFA, 2092 Concourse Drive, San Jose, CA 95131. We'll send you all the specs. In a flash.

scheduling for the I/O ports, permitting the chip's main processor to just queue up such tasks as data transfers or DMA operations and then go off and start another operation. Dual 32-bit data buses, each with their own address bus, gives the chip a 4 Gword address space to handle dataintensive applications. When running at 25 MHz , the chip executes most of its integer or floating-point instructions in just 40 ns , delivering one of the top floating-point throughputs- 50 MFLOPS-of any DSP chip.
The multiple ports make it possible for many 320 C 40 s to be interconnected in various schemes-rings, stars, hypercubes, and so on-and have the data move exactly where it's needed. With a total throughput of 275 MOPS and the ability to transfer data at an aggregate rate of 320 Mbytes/s, the C40 offers much-coveted system flexibility.

A Fast Processor

One of the ultimate chips for parallel processing is the Datawave, a CMOS array processor that delivers a peak performance of 4 billion operations $/ \mathrm{s}$. The chip targets image processing and the computations required in image data compression, television, and other video systems. The Datawave chip delivers a sustained throughput of $750 \mathrm{Mbytes} / \mathrm{s}$ through the use of a $125-\mathrm{MHz}$ clock and 16 pipelined superscalar 12 -bit RISC processors on the chip, all working in parallel. Most other array processors have hardwired data paths (electronic design, July 12, p. 133).

With a throughput of 1.4 GOPS and the ability to transfer 3.2 Gbits/ s, a chip coming from Silicon and Software Systems also plans to tackle real-time video processing. On the chip are 10 programmable 10-bit processors and a unique configurable architecture (ELECTRONIC DESIGN, Nov. 22, p. 34).

Specific and well-defined algorithms are often used in signal-processing applications. When that happens, specifically optimized chips, such as finite-impulse-response filters, fast-Fourier-transform proces-
sors, convolvers, and so on, can be designed and implemented to accelerate those algorithms many-fold over what can be done with a gener-al-purpose chip. These optimized chips have been created and released by Array Microsystems (formerly Signal Processing Technology), Har-
ris, Plessey, Zoran, and many other companies.

How Valuable?
Circle
Highly
Moderately 528
Slightly 529

OEM Microterminals

<...for all your operator interface needs.

For over a decade, we've been designing, manufacturing, testing, and shipping our microterminals throughout the world . . . over 100,000 to date for use as operator interfaces and control panels. The applications have been almost limitless from instrumentation, control systems, monitoring equipment, and more. Designed with the OEM buyer in mind, they're flexible and easy to integrate. And they're very cost effective-priced from $\$ 195$.

Now, we've expanded our line so that you can select the
model with just the right features you need. From the most basic unit to a multifunction microterminal or a heavy-duty industrial unit. Whatever your operator interface or control panel requirements, we can help. Fourteen new models from which to choose ... plus multiple customized options to make them fit your particular needs.
For a copy of our new 8 -page brochure, or information about demo units, write Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734. Or call toll free 1-800-548-6132.

BURR-BROWN®咟

. 050 centerline shielded I / O.

Maximum flexibility with right-angle, stacking, and edge-to-edge configurations. Fork-and-tab contacts minimize insertion/extraction force. Strict polarization, simple interface.

All part of our flexible AMPLIMITE . 050 Series Connector line. Board-to-board styles feature the same . 050 centerline, gold-over-nickel plated phosphor-bronze contacts. Thermoplastics are $94 \mathrm{~V}-0$ rated, and everything is compatible in design and material with robotic applications.

And our board-to-board configurations allow parallel stacking with
minimal $.472^{\prime \prime}$ spacing, plus edge-toedge, plus right angle configurations with pin or sockets.

Let us tempt you. Call the AMP Product Information Center at 1-800-522-6752 and ask about AMPLIMITE 050 Series Connectors. AMP Incorporated, Harrisburg, PA 17105-3608.

AMP
 Interconnecting ideas

CIRCLE 114

Introducing the world's first data acquisition software machine.

New DT2831 family of PC/AT boards eliminates manual adjustments.

Once you've plugged a DT2831 Series board into your PC/AT, you can forget it. Our unique "Hands-Off hardware design takes the hassle out of data acquisition, by eliminating all manual adjustments. Good-bye, jumpers! Good-bye, pots!

Now, for the first time, data acquisition set up and calibration can be handled instantly and automatically, via software control. Critical, software-controlled functions include:

- Single-ended or differential input selection.
- Input gain selection.
- Input and output coding range selection.
- Selection of DMA channels.
- Selection of interrupt levels.

Even the onboard A/D converter, at power up, self-calibrates! What's more, analog input circuitry and D/A calibration can be controlled from the keyboard via software.

Good-bye, screwdriver! And we provide the software-FREE!Each DT2831 Series board ships with a device driver, that self-installs upon power up, and a ToolKit that is language and device independent, so one program runs any DT2831 Series board, without modification.

For application software, ask us about GLOBAL LAB or other industrystandard packages.
Call (508) 481-3700
In Canada, (800) 268-0427

DATA TRANSLATION

World Headquarters: Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752-1192 USA, (508) 481-3700, Fax (508) 481-8620, TIx 951646
United Kingdom Headquarters: Data Translation Ltd., The Mulberry Business Park, Wokingham, Berkshire RG11 20J, U.K., (734) 793838, Fax (734) 776670, T1x 94011914
West Germany Headquarters: Data Translation GmbH, Stuttgarter Strasse 66, 7120 Bietigheim. Bissengen, West Germany 7142-54025, Fax 7142 -64042
International Sales Offices: Australia (2) 699.8300; Belgium (2) 466-8199; Brazil 11 240.0598; Canada (416) 625-1907; China (1) 868.721 x4017; Denmark 42 274511; Finland (0) 3511800; France (1) 69077802; Greece (1) $361-4300$; Hong Kong (5) 448963; India (22) 23-1040; Israel $52-545685$; Italy (2) 82470.1 ; Japan (3) $502-5550$, (3) $5379-1971$, (3) 355-1111; Korea (2) 718-9521; Netherlands (70) 399-6360; Norway (2) 5312 50; Poland (22) 580701; Portugal (1) 545313; South Africa (12) 803.7680; Spain (1) 555-8112; Sweden (8) 7617820 ; Switzerland (1) 723.1410 ; Taiwan (2) 3039836

Data Translation is a registered trademark of Data Translation, Inc. Other brands and products are trademarks of their respective holders.

Proper Filtering Balances Sample Rate, Resolution, And Settling Time.

 UnDERSTANDING ANTIALIASING FILTERSKEVIN R. SHARP
Burr-Brown Corp., P. O. Box 11400, Tucson, AZ 85734; (602) 746-1111.

0 achieve optimum results from digitized dataacquisition systems, engineers must keep in mind that they are dealing with the analog world through a sampled-data process. That sampling process imposes restrictions on the input signal spectrum that can be applied to the system's an-alog-to-digital converter (ADC). Consequently, an engineer must pay very careful attention to the front-end analog (antialiasing) filtering that precedes any data conversion.

Whether an engineer designs the filters himself or buys filter modules, he must understand the role a presampling filter plays in a digital signal-acquisition system. When digitally sampling a dc system, a good filter eliminates noise but allows a change in signal to settle out in a reasonable time.

To digitally acquire ac signals, presampling filtering is even more critical. Without antialiasing filters, an engineer can't distinguish useful information from mathematical aberrations.

Signal Aliasing

When a continuous signal is sampled, the frequency spectrum is duplicated, or aliased. The center-to-center separation between aliases is equal to the sampling frequency. If the sampling function is fast compared to the sampling period, the duplication repeats into infinity. A continuous signal containing frequencies between $-f_{h}$ and $+f_{h}$, when sampled at f_{s}, contains the frequencies $n f_{s}-f_{h}$ to $n f_{s}+f_{h}$, where n goes from -infinity to +infinity (Fig. 1).
To reconstruct the continuous time signal, or to reliably analyze the frequency components of the signal, the aliases can't overlap. The gap between edges of

1. WHEN SAMPLED AT A FREQUENCY OF f_{s}, a continuous signal spectrum containing frequencies between $-\mathrm{f}_{\mathrm{h}}$ and $+\mathrm{f}_{\mathrm{h}}$ is duplicated (aliased) at multiples of the sampling frequency.
the aliases depends on the bandwidth of the continuous time signal and the sampling frequency. The highest frequency of the continuous signal is f_{h}, and the lowest frequency of the first alias is $f_{s}-f_{h}$. The gap is the difference between these two frequencies, or $f_{s}-2 f_{h}$.

The limit for signal analysis occurs when the gap between aliases reaches zero, but the aliases don't yet overlap. This happens when $f_{h}=$ $\mathrm{f}_{\mathrm{s}} / 2$, otherwise known as the Ny quist frequency. The aliases will overlap if the sampling frequency is lower or the signal bandwidth is higher, making it impossible to draw meaningful conclusions from the sampled signal.

The signal profile under consideration results from a white-noise source filtered by a perfect low-pass filter. Such a filter passes all frequencies up to the cutoff $\left(f_{c}=f_{h}\right)$, and completely blocks all others. Every practical filter, however, has a noticeable roll-off between the pass band and stop band. These filters will pass each frequency, virtually without distortion, up to some corner frequency f_{c}.

The filter then attenuates increasing frequencies at a faster rate (Fig. 2a). Some filters have a limit in the maximum attenuation, which will be discussed later. The effect of the rolloff must be considered when relying on such a filter to eliminate aliasing errors.

Filiter Type

It can be seen that the gap between aliases shrank because of the imperfect filtering. The amount of the shrinking is a function of the filter's roll-off. If the imperfectly filtered signal is sampled too slowly to compensate for the roll-off, the signals begin to overlap (Fig. 2b). When this happens, aliasing occurs. Either the filter must be improved or the sampling frequency must be increased.

In the ideal case, a low-pass filter completely eliminates frequencies above the cutoff and perfectly passes frequencies below it. The range of frequencies passed is called the pass band, all others are called

Abstract

2. BECAUSE PRACTICAL FILTERS aren't ideal, they don't immediately attenuate all frequencies above the corner frequency f_{c}. However, as long as they supply sufficient attenuation before the Nyquist limit of $\mathrm{f}_{\mathrm{s}} / 2$ is reached, aliasing will not occur (a). If the sampling frequency isn't high enough or the filter rolls off too slowly, the duplicate spectrums overlap and aliasing occurs (b).

the stop band. All real filters, however, have a transition band where the attenuation increases but hasn't yet reached the stop band. Some filters have a ripple, or variation, in the response in the pass band. Some filters also have a limit to the amount of attenuation present in the stop band. For realizable filters, designers need to balance pass-band ripple, transition band roll-off, and stop-band attenuation. At this point, it's helpful to compare the responses of three common types of low-pass filters used in data conversion applications (Fig. 3).

Butterworth filters provide completely flat response in the pass band. Above the break frequency, filter attenuation continuously increases by 6 dB per octave, or 20 dB per decade for each pole of the filter.

Chebyshev filters deliver a slight-

ly faster roll-off overall than Butterworth filters, and the roll-off at the break frequency is sharply higher. The increased roll-off comes at the price of ripple in the pass band.

Elliptic filters offer the steepest transition band at the expense of ripple in both the pass band and stop band. The stop-band ripple imposes a finite limit on the maximum attenuation of the filter.

Noise Filtering

Butterworth and Chebyshev filters are both used for noise filtering. Specifying filter characteristics depends on the application. First, the maximum allowable error from the filter must be determined. The error is usually specified as a function of the size of the least significant bit (LSB) of an ADC, typically $1 / 2$ LSB. At this level, the filter doesn't introduce any noticeable error to an ADC measurement (see the table).

Second, the worst noise source in the system should be examined. In most cases, it's either $60-\mathrm{Hz}$ noise from power lines or broad-band noise from switching power supplies. Then the minimum attenuation the filter needs to supply at the noise fre-

The ADSP-2100.

- The ADSP-2100 computes a 1024-point complex FFT in less than 3 ms with a total memory requirement of less than 4 k bytes. It also computes a $2 \times 22 \mathrm{D}$ convolution in 1.2μ s and executes ADPCM in only $68 \mu \mathrm{~s}$.
- The ADSP-2100 can access two words of external data every cycle.
-The ADSP-2100 supports zerooverhead loops of any length. So our looped code - which is the easiest to write-is also the fastest.
- The ADSP-2100's two dedicated data address generators can autoincrement/decrement by any offset value, and they have automatic circular buffer wraparound.
- The ADSP-2100 Assembler supports the easiest language in the business. So you code a multiplication/accumulation the same way you'd write the original algorithm. For example, the algebraic $\mathrm{R}=\mathrm{R}+\mathrm{X}$ *Y codes as $\mathrm{MR}=\mathrm{MR}+\mathrm{MX} 0 * \mathrm{MY} 0$.

The TMS320C25.

- The TMS320C25 takes more than three times as long to compute the same size FFT, while it devours over 47 k bytes of memory.
- The TMS320C25 is limited to one access of external data every two cycles.
-The only zero-overhead loop the TMS320C25 can execute is one instruction repeated no more than 256 times.
- Circular buffers? The TMS320C25 doesn't support them.
-The TMS320C25 is programmed with 133 mnemonics like SPAC, BGEZ,MACD, XORX, and SBRK. A multiplication/accumulation is coded as MACD $>$ FF03,* - . While this might not scare the XORX out of you, it's not the easiest thing to debug or maintain.

We're not saying the TMS320C25 is slow. But even if it were twice as efficient as it is now, it'd still be a lot slower at DSP than the ADSP-2100. The fact is, the ADSP-2100 is out in front of the TMS320C25 in performance, readability of code, and development tools.

Just how far out front? Get our free technical booklet and read aboutit. Or better yet, get an ADSP-2100 sample kit for only $\$ 49.95$ and see for yourself. To request either, call DSP Marketing at 1-617-461-3771.

[^2]
DESIGN APPLIGATIONS
 DATA-ACQUISITION FILTERS

quencies should be determined. Ideally, this specification would allow enough attenuation to remove all noise from the digitized signal, even if the noise level was as large as the signal. Thus, the attenuation is related to $1 / 2$ LSB of the ADC.

Third, the corner frequency and the number of poles for the noise filter can be selected from the required attenuation and noise frequency. For example, a 12 -bit ADC system requires a filter attenuation of 78 dB at 60 Hz . A four-pole Butterworth filter rolls off at 80 dB per decade, a four-pole Chebyshev slightly faster. If the break frequency is placed one decade below 60 Hz , the goal is achieved. As a result, our first estimate of filter parameters is a fourpole Butterworth filter with break frequency of 6 Hz .

To ensure that this filter works, the step response of the system with the filter in place should be confirmed. Even though the signal is assumed to be dc, a change in level must be responded to within a reasonable time, with the response again better than $1 / 2$ LSB. The step response of an n-pole Butterworth filter with corner frequency of f is given in equation 1 . Substituting err for $1-\left[\mathrm{v}_{\text {out }} / \mathrm{v}_{\text {in }}\right]$ in equation 1 and solving for time yields equation 2 , which determines the settling time for a low-pass Butterworth filter.
(1) $v_{\text {out }} / v_{\text {in }}=1-e^{(-f t / n)}$
(2) $t=-(n / f)[\ln (\mathrm{err})]$

For a 12 -bit system, a $1 / 2$ LSB error equals $1-(40955 / 40960)$, or 1.221 $\times 10^{-4}$. This yields a settling time of about 6 seconds. If the settling time is too long, either use a higher order filter (more poles) or accept less attenuation at 60 Hz .

Antialiasing Filters

Filtering out alias frequencies but passing frequencies of interest requires filters with steeper roll-offs than Butterworth or Chebyshev filters. The filter type most often used is a Cauer elliptic filter. These filters offer the steepest roll-off of any commonly available filter and have a
maximum attenuation limit in the stop band. In comparison, Butterworth and Chebyshev filters have an ever-increasing attenuation until stray capacitance begins to shunt signals around the filter.

Elliptic-filter performance stems from pole placement on an oval about the origin of the s-plane, much like a Chebyshev filter. Elliptic filters also include a pole pair on the imaginary axis at a frequency greater than the corner frequency of the filter. These poles are responsible for the sharp roll-off of these filters.

Poles on the imaginary axis present a challenge to building stable el-liptic-filter circuits. If component variation causes a pole to drift into the right half of the s-plane, the circuit becomes unstable.

Four parameters are important when specifying an elliptic filter.

First, like Chebyshev filters, elliptic filters exhibit a ripple in the pass band. The ripple is usually specified in decibels.

Then the corner frequency is specified in hertz. The corner frequency is defined as the point the filter response curve last passes through the specified pass-band ripple. The corner frequency is only $-3 d B$ in elliptic filters.

Specifying Attentuation

Next, the shape of the transition from pass band to stop band must be given. The specification may be an attenuation at a particular frequency on the slope, or it may be the frequency where the stop band should start.

Lastly, the attenuation floor must be specified. Elliptic filters have a maximum attenuation limit, and that

[^3]
-The ADSP-2101 has two full duplex serial ports, hardware companding,timer,low-power IDLE instruction, full-speed incircuit emulator, and more.

We're not saying all other DSP processors are slow and inefficient. But the ADSP-2101 is already enabling hundreds of DSP engineers around the world to create their next generation products. The fact is, our DSP processor family is out in front in performance, readability of source code, and development tools.

Get the facts on the ADSP-2101 by sending in the reply card. Or better yet, call DSP Marketing at 1-617-461-3771 and request a sample today.

4. BASED ON THE STATE-VARIABLE filter topology, this four-pole Butterworth filter consists of two cascaded second-order filter sections. The design is implemented with two Burr-Brown UAF41 universal active filters. Resistors $\mathrm{R}_{\mathrm{f} 1}$ and $\mathrm{R}_{\mathrm{f} 2}$ set the section's natural frequency, R_{g} sets the gain, and R_{q} sets the section's Q .

limit should ensure $1 / 2$ LSB performance.

When matching an elliptic filter to an application, the frequencies being analyzed, the ADC's precision, and the sampling speed must be taken into account. For example, start by considering the highest frequency of interest, 10 kHz .

This sets the corner frequency of the elliptic filter at 10 kHz . Assuming a 12 -bit ADC, a maximum stopband ripple of -78 dB is needed. The attenuation floor should also be down at least -78 dB .

With the pass-band ripple and stop-band attenuation determined, all that remains to characterize the filter is specifying the filter's roll-off in the transition zone. This roll-off depends on the sampling speed.

Design Or Buy?

If an input signal contains frequency components that are faster than half the sampling frequency, the resulting digitized signal contains aliases. The minimum sampling frequency is therefore twice the frequency in which the filter's stopband attenuation reaches 78 dB , not twice the frequency to be analyzed. If the speed of the ADC was already selected, a filter that satisfies this criteria must be selected or a designer must settle for a lower frequency
to analyze. If the ADC system is still being selected, then sampling speed is controllable. In many cases, a faster ADC system costs less than a steeper filter.

Once the characteristics are determined for the required filter, an engineer must decide whether to design the filter himself or to buy one. Good filters are expensive because building filters to meet specifications is a specialized business. Rarely is it worth the time and effort to build filters when only a couple are needed.

If an engineer is designing a product for resale or needs many of the same type of filter, then designing his own may be worthwhile. However, a big problem in roll-your-own design is that filter response is very sensitive to component values. The component values generated from design equations must be used exactly, even if the values aren't standard.

As an example of a low-pass filter design, consider a 12 -bit data-acquisition system with an input signal-tonoise ratio of 10 dB , and a noise source at 60 Hz . A filter is needed that attenuates the noise source below the ADC's resolution.

Also needed is a full-scale step change of the input to settle to within 1/2 LSB in less than 5 seconds. Because a flat response is desired in the
pass band, a Butterworth filter would be the best choice.
An acceptable maximum signal-tonoise ratio after filtering is 78 dB (1/ 2 LSB for a 12 -bit system). Because there's already a signal-to-noise ratio of 10 dB , the filter has 68 dB of attenuation at the noise frequency to meet specification.

Checking Step Response

As a starting assumption, the corner frequency of the filter is set three octaves below the noise frequency to 7.5 Hz . This sets the minimum filter roll-off at 68 dB in three octaves, or 22.67 dB per octave. With each pole of a Butterworth filter contributing 6 dB per octave, at least a four-pole Butterworth filter is required.

Once the corner frequency and the number of poles are set, the step response time can be checked for the filter using equation (2). The maximum error (err) allowed is [-1 (40955/ 40960)], which yields a step response of 4.8 seconds.

If a faster response time was required, a six-pole filter with corner frequency at 15 Hz yields a step response of 3.6 seconds. Though the step responses sound slow, they're probably acceptable for monitoring environmental variables, such as temperature.

Whenit comesto afforidableDSP, no one has itdown like AnalogDevices.
 - At 10 MIPS, the ADSP-2105
 it's also pin compatible with the ADSP-2101.

 is the fastest DSP in its price category, and it's even faster than many other DSPs costing a lot more. Plus the price is the same whether you buy 100 or 100,000 .-The ADSP-2105 builds on the high performance ADSP-2100 family architecture, soit's code compatible. You can quickly port ADSP-2100 or ADSP-2101 code to the ADSP-2105. Or use our C Compiler for a fast start.

- Not only is the ADSP-2105 code compatible,

So it provides a complete upgrade path to higher performance.
-The ADSP-2105 packs plenty onto one chip,including 1024 words of program RAM, 512 words of data RAM,full serial port, hardware companding, timer and more.

- It's easy to get the ADSP-2105 up and running with our inexpensive EZ-KIT, a complete software and hardware design package.

IntroducingtheADSP-2105 at only $\$ 9.90$ each.

Introducing a DSP that could only come from Analog Devices, the ADSP-2105. An exclusive because it combines the high performance of our ADSP-2100 family with an unprecedented price in DSP - just $\$ 9.90$ each. So now you can consider the power of DSP in a host of new applications.
 performance? Find out for yourself by ordering our EZ-KIT from your local Analog Devices sales office today. Or call DSP Marketing at (617) 461-3771.

Our Magnetic Shielding and his shell have something in common: Both protect against unwanted influences.

Electromagnetic interference (EMI) is a source of aggravation. It affects highly sensitive processes like biomagnetic measurements and electron beam lithography or quite simply monitors and modern visual display units.
This is where VAC magnetic shielding comes in to its own. From shielding foils through monitor shielding to "walk-in" shielded rooms VAC provides the solution. Tailor-made shielding for your application just like the shell for the tortoise.
Our publication "Magnetic Shielding" is ready and waiting. Contact VAC now for your copy!

VACUUMSCHMELZE GMBH

186 Wood Avenue South • Iselin, N.J. 08830 禺 (201) 494-3530 [Fax (201) 3213029 TX 4900006431 Grüner Weg 37, D-6450 Hanau . 踠 (**49) 6181/38-0• Fax (**49) 61 81/38-2645• Tx 4184863 vac d CIRCLE 122

DATA-ACOUISITION FILTERS

The response time assumes a full change step in the input. This step is unrealistically conservative in most applications.

With the filter characterized, a circuit must be designed to synthesize the desired response. One approach is to use two second-order filter sections based on the state-variable filter topology (Fig. 4).

Each second-order filter section consists of two integrators and a summing amplifier connected in a feedback loop. The stage's corner frequency is determined by the RC time constants of the integrators. A multiple-amplifier package helps realize the filter in a compact space.

Realizing A Design

A good choice is Burr-Brown's UAF41, a quad op-amp package with additional internal components to synthesize active filters. One op amp serves as an input summing amplifier, two op amps function as integrators, and the fourth op amp is uncommitted. The natural frequency and Q of the filter section are determined by user-supplied external resistors. The uncommitted fourth op amp may be used as an output buffer to eliminate the loading effects of subsequent circuitry. It's essential that the second filter stage isn't loaded by subsequent circuitry.

Synthesizing a four-pole Butterworth filter requires two UAF41s and some external resistors (Fig. 4, again). Resistor values $\mathrm{R}_{\mathrm{f} 1}, \mathrm{~F}_{\mathrm{f} 2}, \mathrm{R}_{\mathrm{g}}$, and R_{q} set the filter characteristics. The following equations govern the relationship between external resistors and filter characteristics:
$\mathrm{R}_{\mathrm{f} 1}=\mathrm{R}_{\mathrm{f} 2}=5.033 \times 10^{7} / \mathrm{f}_{0}$
$\mathrm{R}_{\mathrm{g}}=50 \mathrm{k} \Omega \times \mathrm{V}_{\text {in }} / \mathrm{V}_{\text {out }}$
$\mathrm{R}_{\mathrm{q}}=5.0 \times 10^{4} /[3.48 \mathrm{Q}+(\mathrm{Q} / 3.16)(50$ $\left.\left.\mathrm{k} \Omega / \mathrm{R}_{\mathrm{g}}\right)-1\right]$
The first equation determines the values of $R_{f 1}$ and $R_{f 2}$:
$\mathrm{R}_{\mathrm{f} 1}=\mathrm{R}_{\mathrm{f} 2}=5.033 \times 10^{7} / 7.5=$
$6.710667 \mathrm{M} \Omega$
With the second equation, $\mathrm{R}_{\mathrm{g}}=50$ $\mathrm{k} \Omega$ is selected for unity gain.
Selecting R_{q} requires knowing Q , a ratio of the energy stored in a cir-

CIRCLE 159

cuit to the energy lost in each period of the response. The UAF41's data sheet gives two values of Q for a four-pole Butterworth filter: 0.54118 and 1.3065. The higher the filter's Q value, the less damped the circuit and the more prone to oscillation.

As a result, the low Q filter section should precede the high Q circuit to avoid possible signal clipping owing to ripple. As derived from the last equation, R_{q} for the first two-pole filter stage should be $47.41287 \mathrm{k} \Omega$; the second stage should have an R_{q} equal to 12.62604 . The two filter stages are isolated by one of the internal buffering amplifiers.

An important factor is the precision with which the resistor values are specified. These resistors determine pole placement in the system transfer function. If the actual resistors used are only approximations, the actual positions of the poles move, changing the filter's response. At best, this means the filter might not properly attenuate noise sources or cause an unacceptably long step response.

Sometimes, however, the actual pole location could move into the right half plane, particularly when synthesizing such complex filters as Chebyshev or elliptic filters.
For designers who wish to buy their antialiasing filters, a couple of suggested sources are:

Frequency Devices Inc.
25 LocustSt.
Haverhill, MA 01832
(508) 374-0761

Precision Filters Inc.
240 Cherry St.
Ithaca, NY 14850
(607) 277-3550

Kevin R. Sharp, a design engineer with Burr-Brown, holds a BSEE from the University of Missouri at Rolla.

How Valuable?
Circle
Highly
547
Moderately 548
Slightly 549

dc to 2000 MHz amplifier series

SPECIFICATIONS

MODEL	FREQ. MHz	$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1000 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2000 \\ & \mathrm{MHz} \end{aligned}$	Min. (note)	- MAX PWR. dBm	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	PRICE Ea.	$\begin{aligned} & \$ \\ & \text { Qty. } \end{aligned}$
MAR-1	DC-1000	18.5	15.5	-	13.0	0	5.0	0.99	(100)
MAR-2	DC-2000	13	12.5	11	8.5	+3	6.5	1.50	(25)
MAR-3	DC-2000	13	12.5	10.5	8.0	+80	6.0	1.70	(25)
MAR-4	DC-1000	8.2	8.0	-	7.0	+11	7.0	1.90	(25)
MAR-6	DC-2000	20	16	11	9	0	2.8	1.29	(25)
MAR-7	DC-2000	13.5	12.5	10.5	8.5	+3	5.0	1.90	(25)
MAR-8	DC-1000	33	23	-	19	+10	3.5	2.20	(25)

NOTE: Minimum gain at highest frequency point and over full temperature range.

- 1dB Gain Compression
$\square+4 \mathrm{dBm} 1$ to 2 GHz

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers

only $\$ 59.95$
finding new ways

Unbelievable, until now...tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.,plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11 dBm output, noise figure as low as 2.8 dB , and up to $\mathrm{DC}-2000 \mathrm{MHz}$ bandwidth.
MAR-8, Input/ Output Impedance is not 50 ohms, see data sheet Stable for source/load impedance VSWR less than $3: 1$

Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each. \dagger
$\left.\begin{array}{lccl}\begin{array}{c}\text { Size }\end{array} & \text { Tolerance } & \begin{array}{c}\text { Temperature } \\ \text { (mils) }\end{array} & \\ 80 \times 50 & 5 \% & \text { Characteristic }\end{array}\right)$.
setting higher standards

$\overline{51}$ Current Source 521 DRIVES Power FET
 CARL SPEAROW

Sundstrand Corp., 4747 Harrison Ave., Rockford, IL 61125; (815) 394-3263.
values of R_{1} and R_{2} at the expense of higher power dissipations in the resistors and Q_{1}. Alternately, a buffer circuit can be added to produce switching times of 100 ns without generating a significant power dissipation.

Many applications require that a p-channel power FET drives grounded loads from a positive supply. Consider a gate-drive circuit that operates with a $28-\mathrm{V}$ supply (Fig. 1). It employs a resistive divider to produce a gate-source voltage of 12 V . However, the problem with this

1. THIS COMMON p-channel FET driver uses a $28-\mathrm{V}$ supply. Because the gate-source voltage is proportional to the supply voltage, this circuit can't tolerate a large supply-voltage variation.
circuit is that the gatesource voltage is proportional to the supply voltage. Therefore, it can't tolerate any large variations of the supply voltage, a characteristic that's present in many applications.

In an improved circuit, Q_{1} and R_{1} form a switched current source of about 12 mA (Fig. 2). The current flows through R_{2}, which supplies 12 V to the FET. The circuit works well over a wide range of supply voltages. Furthermore, it switches smoothly in the presence of large ripple and noise on the supply. The switching time (about $1 \mu \mathrm{~s}$) can be reduced considerably by lowering the

2. THIS IMPROVED CIRCUIT operates from a

16 - to $50-\mathrm{V}$ supply. Q_{1} and R_{1} form a $12-\mathrm{mA}$ switched current source. The current flows through R_{2}, sending 12 V to \mathbf{Q}_{2}. Adding the buffer circuit (within the dashed lines) offers 100^{-} ns switching times. Otherwise, the circuit switches in $1 \mu \mathrm{~s}$.

2"Find 0p-Amp Noise WITH SPREADSHEET

ROBERTM. CLARKE
Analog Devices, One Technology Way, P.O. Box 9106, Norwood, MA 02062; (617) 937-2250.

By employing a spreadsheet's built-in graphics and programming capabilities, users can easily compare the noise performance of different op amps and plot their noise versus a variety of resistance and gain values. Using a noise model for the op amp (Fig. 1), the expression for the effective integrated output noise $\left(\mathrm{V}_{\text {on }}\right)$ equals:
$V_{\text {on }}=\left\{\left[I_{N-} R_{\mathrm{FB}}\right]^{2}+\left[\mathrm{I}_{\mathrm{N}+}+\mathrm{R}_{\mathrm{P}}(1-\mathrm{G})\right]^{2}\right.$
$+\left[\mathrm{V}_{\mathrm{N}}(1-\mathrm{G})\right]^{2}$
$+4 \mathrm{kT}\left[\mathrm{R}_{\mathrm{FB}}+\mathrm{R}_{\mathrm{FF}} \mathrm{G}^{2}\right.$
$\left.\left.+\mathrm{R}_{\mathrm{P}}(1-\mathrm{G})^{2}\right]\right\}^{1 / 2} \mathrm{BW}^{1 / 2}$
and the expression for the effective integrated input noise ($\mathrm{V}_{\text {in }}$) equals:
$\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{on}} /(1-\mathrm{G})$
where

- $\mathrm{V}_{\text {on }}=$ the output
- $V_{\text {on }}=$ the outpu

1. THIS OP AMP noise model accounts for noise current through the inverting ($\mathrm{I}_{\mathrm{N}-}$) and noninverting ($\mathrm{I}_{\mathrm{N}+}$) inputs and the input noise voltage $\left(\mathrm{V}_{\mathrm{N}}\right)$. Each current induces a noise voltage in the resistors through which it flows.
noise voltage

- $\mathrm{I}_{\mathrm{N}-}$ is the input noise current at the inverting input
- R_{FB} is the feedback resistance in ohms
- $\mathrm{I}_{\mathrm{N}+}$ is the input noise current at the noninverting input
- R_{P} is the resistance at the noninverting input
- G is the circuit gain that equals $-\mathrm{R}_{\mathrm{FB}} / \mathrm{R}_{\mathrm{FF}}$
- V_{N} is the equivalent input noise voltage
- k is Boltzman's constant
- T is the absolute temperature in degrees Kelvin
- R_{FF} is the feedback resistance in ohms
- BW is the bandwidth in hertz.

Programming these equations into a spreadsheet lets users compare different op amps as well as experiment with different component values in an interactive rather than a batch mode. This particular example was done using Microsoft's Excel spreadsheet program (Fig. 2a). With component values entered in the

IFD WInNER

IFD Winner for August 9

Robert Mayer, Peerless Instrument Co., 90-15 Corona Ave., Elmhurst, NY 11373; (718) 592-3300. His idea: "Find Temp With RTD Varied Current."

VOTE

Read the Ideas for Design in this issue, select your favorite, and circle the appropriate number on the Reader Service Card. The winner receives a $\$ 150$ Best-of-Issue award and becomes eligible for a $\$ 1,500$ Idea-of-the-Year award.

Send in Your Ideas for Design

Address your Ideas-for-Design submissions to Richard Nass, Ideas-for-Design Editor, Electronic Design, 611 Route 46 West, Hasbrouck Heights, NJ 07604.
cells across row 9 , the formula for the effective integrated output noise in $\mu \mathrm{V}$ (entered in cell J9) is:
$=\left(\left(\mathrm{A} 9^{*} \mathrm{E} 9\right)^{\wedge} 2+\left(\mathrm{A} 9^{*} \mathrm{~F} 9^{*}(1-\mathrm{I} 9)\right) \hat{)} 2\right.$
$+\left(\mathrm{C} 9^{*}(1-\mathrm{I} 9)\right) \hat{2} 2+\mathrm{H} 9^{*}\left(\mathrm{E} 9+\mathrm{D} 9^{*} \mathrm{I}{ }^{2} 2\right.$
$\left.+\mathrm{F}^{*}(1-\mathrm{I} 9)^{\wedge} 2\right) \hat{\prime} 0.5^{*} \mathrm{G} 9 \hat{0} 0.5^{*} 1000000$

This noise model for an op amp accounts for noise through the inverting and noninverting inputs as well as the input noise voltage. The noise versus circuit gain can be plotted by using the values obtained from the spreadsheet (Fig. 2b).

OPAMP NOEF HAEDUTOIS									
Data Sheet Values			Circuit Values			Circuit Bandwidth	Thermal Contribution	Circuit Noise Gain ($\mu \mathrm{Vrms}$)	
I_{n+}	$\mathrm{I}_{\mathrm{n}-}$	V_{n}	$\mathrm{R}_{\text {in }}$	R_{f}	R_{p}	(Hz)	4kT	$\mathrm{G}=\mathrm{R}_{\mathrm{t}} / \mathrm{R}_{\text {in }}$	
1E-11	1E-11	2E-09	1000	1000	0	10000000	1.645E-20	-1.00	38.59
1E-11	1E-11	2E-09	950	1000	0	10000000	$1.645 \mathrm{E}-20$	-1.05	38.81
1E-11	1E-11	2E-09	900	1000	0	10000000	1.645E-20	-1.11	39.06
1E-11	1E-11	2E-09	850	1000	0	10000000	1.645E-20	-1.18	39.34
1E-11	1E-11	2E-09	800	1000	0	10000000	$1.645 \mathrm{E}-20$	-1.25	39.66
1E-11	1E-11	2E-09	750	1000	0	10000000	1.645E-20	-1.33	40.02
1E-11	1E-11	2E-09	700	1000	0	10000000	1.645E-20	-1.43	40.44
1E-11	1E-11	2E-09	650	1000	0	10000000	1.645E-20	-1.54	40.93
1E-11	1E-11	2E-09	600	1000	0	10000000	1.645E-20	-1.67	41.51
1E-11	1E-11	2E-09	550	1000	0	10000000	1.645E-20	-1.82	42.21
1E-11	1E-11	2E-09	500	1000	0	10000000	$1.645 \mathrm{E}-20$	-2.00	43.05
1E-11	1E-11	2E-09	450	1000	0	10000000	$1.645 \mathrm{E}-20$	-2.22	44.11
1E-11	1E-11	2E-09	400	1000	0	10000000	1.645E-20	-2.50	45.45
1E-11	1E-11	2E-09	350	1000	0	10000000	$1.645 \mathrm{E}-20$	-2.86	47.22
1E-11	1E-11	2E-09	300	1000	0	10000000	$1.645 \mathrm{E}-20$	-3.33	49.64
1E-11	1E-11	2E-09	250	1000	0	10000000	1.645E-20	-4.00	53.13
1E-11	1E-11	2E-09	200	1000	0	10000000	$1.645 \mathrm{E}-20$	-5.00	58.54
1E-11	1E-11	2E-09	150	1000	0	10000000	$1.645 \mathrm{E}-20$	-6.67	67.91
1E-11	1E-11	2E-09	100	1000	0	10000000	$1.645 \mathrm{E}-20$	-10.0	87.46
1E-11	1E-11	2E-09	50	1000	0	10000000	$1.645 \mathrm{E}-20$	-20.0	148.64

(a)

(b)

[^4]
च2? AdJUST V0LTAGE 523 THROUGH ZERO

R. MARK STITT

Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734; (602) 746-7445.

Many situations require a precision voltage source that can be adjusted through zero to both positive and negative output voltages. This type of bipolar source would eliminate the need to adjust the power supply down to 0 V . Then users would have to swap the output leads and adjust the supply back up to get a negative output voltage. Furthermore, the effects that occur when
works, first consider the $-1 \mathrm{~V} / \mathrm{V}$ to $+1 \mathrm{~V} / \mathrm{V}$ linear gain-control amp (see the figure). A Burr-Brown INA105 difference amp is used in a unitygain inverting amp configuration. A potentiometer is connected between the input and ground. The pot's slider is connected to the noninverting input of the unity-gain amp; this input is typically connected to ground. With the slider at the bottom of the pot, the circuit is a normal-precision

THIS AMPLIFIER CIRCUIT produces a gain that ranges from $+1 \cdot$ to $-1-\mathrm{V} / \mathrm{V}$. The polarity is determined by the potentiometer's slider position. By adding a precision 10-V voltage reference (within the dashed line), a-10- to $+10-\mathrm{V}$ adjustable precision voltage source is attained.
the input from the low-impedance source becomes an open circuit would be avoided. Lastly, the precision source enables users to actually adjust the output to 0 V , without letting a small voltage offset limit the range.
Perhaps the most obvious implementation of a bipolar voltage source would be to use a positive and negative voltage reference. However, a simpler solution is to employ one voltage reference and a precision unity-gain inverting amplifier. If a precision difference amplifier is used for the unity-gain inverting amp, the circuit requires just two chips and a potentiometer.

To understand how the circuit
unity-gain inverting amp with a gain of $-1.0 \mathrm{~V} / \mathrm{V} \pm 0.01 \%$ maximum. With the slider at the top of the pot, the circuit is a normal-precision voltage follower with a gain of $+1.0 \mathrm{~V} / \mathrm{V}$ $\pm 0.001 \%$ maximum. With the slider in the center, there's equal positive and negative gain for a net gain of 0 V/V. The accuracy between the top and the bottom will usually be limited by the accuracy of the pot. Precision ten-turn pots are available with 0.01% linearity.

A -10 - to $+10-\mathrm{V}$ adjustable precision voltage source is one application for the -1 - to $+1-\mathrm{V} / \mathrm{V}$ linear gain control amplifier. Adding a precision $10.0-\mathrm{V}$ voltage reference is all that's required. \square

Proo New! SURFACE MOUNT transformers

- All units meet MIL-T-27E

Military designation is TF5R21ZZ for Transformers, TF5R20ZZ for Inductors

- Power of $\mathbf{1 2 5}$ Milliwatts at 1 KHz (Series 70000) (.310"W $\left.\times .310^{\prime \prime} \mathrm{H} \times .310^{\prime \prime} \mathrm{D}\right)$ Max. distortion 5\%
- Power of $\mathbf{4 0 0}$ Milliwatts at 1 KHz (Series 71000) (.385"W $\times .385^{\prime \prime} \mathrm{H} \times .385^{\prime \prime}$ D) Max. distortion 5\%
- Frequency Response
$\pm 3 \mathrm{~dB}, 400 \mathrm{~Hz}-250 \mathrm{KHz}$ at 1.0 Milliwatt
- Dielectric Strength

All units tested at 200VRMS

- Insulation Resistance

Greater than 10,000 Megohms at 300VDC

- Operating Temperature

$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
(all units can be supplied to class S requirements, $+130^{\circ} \mathrm{C}$)

- Terminals

Conductor is copper clad steel, tinned 100\%.
Electroplated per MIL-T-10727A and ASTM CCS B452.

- Thermal Shock

25 cycles, method 107D, MIL-STD202E, test condition A-1

PICO manufactures complete lines of Transformers, Inductors and DC-DC Converters Delivery
stock to one week

"expénsive"

The Multibus II product line has changed.

We've dramatically reduced your costs and added dozens of products. And that's great news when your designs call for more than a PC.

Today, our Multibus II system with a 386^{mm} CPU, disk, tape, and 4 MB of RAM is priced at just $\$ 9,995$.

And the costs of our Multibus II single board computers are down as much as 47%.

Now you can build the Multibus II discipline right into your system for the price of VME or EISA. Multibus II's new MPI bus interface chip is perfect for building simple analog, digital, or serial interface boards. It costs just $\$ 40$ in quantities over 100.

The Multibus II product line has expanded, too. In the last year alone, we've added over a
dozen I/O and CPU board products. And you can choose from the more than 500 Multibus II products on the market, including 150 full-size Multibus II boards.

Need help migrating from VME? Our singleslot VME-to-Multibus II adapters will give you a jump on switching your custom VME boards to Multibus II.

To view the entire expanse of Multibus II products - from over 100 vendors - call Intel at (800) 548-4725, Dept. AA60. Ask for a free copy of the 1990 Multibus II Product Directory.

So don't delay. Call now, and start a change for the better.

QUICKL00K
 EDITED BY SHERRIE VAN TYLE

MARKET FACTS

\bulletountering trends in other sectors of the electronics business, the U. S. holds the lead in advanced controller markets-for 8 -, 16 -, and 32 -bit devices. Japanese companies dominate the 4 -bit controller market, but demand is eroding in that sector, according to Electronic Trend Publications.

The Saratoga, Calif., market researcher predicts that worldwide shipments of embedded control devices-microcontrollers, microprocessors, and embedded processors-will top $\$ 8.3$ billion in 1995. Last year, shipments totaled $\$ 3.3$ billion. Revenues will grow fastest for 32 -bit devices, which are expected to grow at an compound annual rate of 45% between 1989 and 1995. In contrast, revenues for 4 -bit control devices will rise just 1.6% during that period. Sales of 8 -bit devices will grow 13.5% from 1989 to 1995 while sales of 16 -bit devices will grow 32.3% in that span.

More advanced controllers will go into cars, image-processing equipment, cellular phones and pagers, and wide- and local-area networks. Just as in microprocessors, controllers will be more highly integrated and have more functions. Indeed, microcontrollers and microprocessors will become more alike. C compilers will become the norm for 8 -bit devices. Controllers will become even more specialized. Also look for real-time event control with 16 - and 32 -bit controllers.

Reduced-instruction-set computer chips and RISC hybrids will supplant complex-in-struction-set computer architecture in 32 -bit controllers. In addition, 16 - and 32 -bit controllers will take on more digital signal-processing tasks.

Source: Electronic Trend Publications

B E S T S	E L L R S
Which technical books are the most popular in Silicon Valley?	PSPICE by Paul Tuinega. Prentice-Hall, 1988. \$20.60 4. Discrete-time Signal Processing. A. Oppenheim and R. Schafer,
ELEGTRONICS:	Prentice-Hall, 1989. \$52.
1. Art of Electronics, 2nd ed. by Paul Horowitz and Winfield Hill. Cambridge University Press, 1989. \$49.50.	5. Logic Design Principles by Edward J. McCluskey. PrenticeHall, 1986. \$50.
2. Noise Reduction Techniques in Electronic Systems, 2nd ed. by Henry W. Ott. Wiley, 1988. \$47.95. 3. SPICE: A Guide to Circuit Simulation and Analysis Using	This list is compiled for Electronic Design by Stacey's Bookstore, 219 University Ave., Palo Alto, CA 94301: (415) 326-0681; fax (415) 326-0693.

WITH OVER 70 VARIETIES OF 68HCO5s THE IDEAL MCU IS YOURS FOR THE PICKING.

Motorola's 68HC05 MCUs. Eightbit microcontrollers by any other name are simply not as affordable. Accessible. Or abundant.

We expanded this remarkably diverse, low-cost family by nearly two dozen new MCU devices in the past few months alone.

And the number is growing daily.

BRANCH OUT WITH THE WORLD'S MOST POPULAR 8-BIT MICROCONTROLLER.

Motorola's economical 68HC05 MCU Family features an incredibly varied selection of memory options, timers, A/D, serial ports, LCD drivers, and other tried and true subsystems. We've developed this unparalleled array of devices into a series of MCUs to fit the 8 -bit needs of virtually every segment of the electronics industry. From cameras and cars to phones and VCRs.

With our huge portfolio of existing devices, chances are we already have the MCU that's right for you. Or, with our Customer Specified Integrated Circuit (CSIC) design methodology, we may be able to develop a new MCU for your application's requirements.

GREAT IDEAS ARE GROWING

 AT MOTOROLA.When you pick the world's largest 8-bit supplier, it's only natural you get a lot to choose from. Including new MCUs just released today! Check with Motorola for our very latest 68 HC 05 developments. If you don't find the MCU you need, you may want to contribute your own CSIC product requirements to Motorola through FREEWARE, our 24-hour electronic bulletin board, by calling (512) 891-FREE.

Before you make your next 8-bit decision, stop and smell the roses at Motorola. Where new varieties are blooming everyday.

0TIPS FOB EMTREPRENEURS ne phrase making the rounds these days is vulture capitalist. But those who use this phrase probably haven't reaped the benefits of venture capital funds. Nor are they among the many entrepreneurs who, having recognized the benefits and reaped the rewards, return to venture capitalists for money, over other sources, to finance more than one start-up.

Venture capitalists do more than provide money. They use their expertise to work with company leaders to build success from the ground up. Entrepreneurs who understand the venture capital process seize the opportunity to use the VC as a valuable resource to:

- Bring in advisers and top talent
- Act as consultants and help obtain financing - Build business skills and troubleshoot

These entrepreneurs see the VC as a partner who hangs in and helps the fledgling business take off, not as a vulture to pick its bones and fly away.

Venture capitalists can assist a budding company in building a good management team by using its network of contacts to find top-notch leaders and help persuade them to come on board. Many VC firms have industry specialties. Directories such as Western Association of Venture Capitalists, Menlo Park, Calif. or the National Venture Capital Association in Arlington, Va., list a firm's specialty, investment list, and skill level.

Some successful companies are backed by a syndicate of VCs representing a good mix of skills. The extent to which a venture capital company is involved in start-ups is generally proportional to the degree of help required to get the new company off on firm footing. The VC becomes a free consultant with heavy involvement in the early stages. As the venture builds momentum, the VC takes a back seat and comes in only as asked or needed.

An MIT study asked entrepreneurs and investors how much involvement the investor had in the company. Investors said they were heavily involved, while the entrepreneurs thought they were hardly involved at all, seeing investors only one or two days a month. By making assistance available to the board of directors and providing overall policy guidance, the venture capitalist can profoundly affect the success of a business. Ultimately, though, the entrepreneur is responsible for making it all work.
by Fred Haney, senior vice president of $3 i$ Ventures, Newport Beach and Menlo Park, Calif., which invests in high-tech start-ups.

K M E T S K O R N E B ...Perspectives on Time-to-Market

BY RON KMETOVICZ

President, Time to Market Associates Inc. Cupertino, Calif;; (408) $446-4458$

Developing high-technology products usually requires de-
 sign tools. Engineers working without the latest tools may complain that they are at an extreme disadvantage. Tools are appearing at a frenzied pace from suppliers around the world. Hardly a design team works without desktop publishing systems, mechanical design tools, electrical circuit simulators, materials' databases, software-development systems, IC and pc-design systems, and other tools. CAD/CAE systems not only are reshaping new product development efforts but they also have the potential to streamline the entire NPDP process. As such, product developers are constantly adding tools to the process to make improvements in productivity possible. Often, focusing on productivity and speeding up the process in isolated areas doesn't help overall development of new products-I learned this lesson the hard way in the mid-80s.

At that time, a new tool, the silicon compiler, appeared on the market. A few members of my work group saw the potential benefits of such a tool. In certain applications, we could take entire logic boards and reduce them to a few chips. Parts count would decline and manufacturing costs would drop dramatically. From a development perspective, the cost to design, fabricate, and test a chip was only about twice the cost of following the same process in conventional printed-circuit technology. The end product could be produced at a fraction of the cost of the pe board. We convinced ourselves and our management team that the silicon compiler would be a welcome addition to our stable of design systems.

All the promises the tool manufacturer made were true; the silicon compiler we purchased worked flawlessly. This fine tool, however, had no effect on our output of new products. Why? First, the compiler did nothing to reduce time to market. As it turned out, my work group was limited by definition issues, not by execution issues; of course, the tool couldn't help us decide what to do. Second, as the definition of our target product stabilized, we learned that an alternative architecture was required. It could not be produced on the silicon compiler. Third, others that initially expressed an interest in using the tool moved in the direction of working with the familiar rather than using something new. I jumped the gun in bringing this tool on line and got burned. Next, I'll show you how to adjust your new product development processes to help you avoid making a similar error.

E Y E A A G H ER

THE VALUE OF EDTV STANDARD TO STIMULATE AND SUPPORT HDTV SERVICE

- RECEIVER-COMPATIBLE EDTV:
- Uses Current 6 MHz NTSC Channel.
- Provides NTSC to NTSC Receivers.
- Provides Widescreen EDTV to Advanced Receivers.
- EASY \& INEXPENSIVE FOR BROADCASTERS TO DELIVER:
- Uses Existing Transmitter \& Tower.
- Either Modify Existing NTSC Equipment for 16×9 or,
- Down Convert HDTV Signal to EDTV.
- CONSUMER RECEIVERS:
- Either Equipped with Built-In HDTV \& EDTV Decoders.
- Or Have Standard Interface for External Decoder.
- Automatic Recognition of HDTV Versus EDTV Signals by TV Set will Eliminate Any Possible Consumer Confusion.

In an IEEE briefing, Sarnoff Research Center president James Carnes outlined the center's enhanced definition TV proposal. Digital EDTV, he says, offers a superior signal-to-noise ratio, easier encryption, and digital technology's rapid advances.

Gorporate belt-tightening, flatter organizations, and smaller defense budgets are all affecting engineering careers. For its Careers Conference in fall 1991, the IEEE is seeking papers on engineering careers and policies and practices affecting careers. Six copies of 500 -word abstracts of papers should be sent to William R. Anderson, IEEE-USA Office, 1828 L Street, NW, Suite 1202, Washington DC 20036. More information is available by calling IEEE-USA at (202) 785-0017.

TIPS O N IN NESTING

For engineers, it's more important than ever to take time to do some serious retirement planning-no matter how old you are now. If you don't, as Business Week pointed out in a recent issue, your" glowing retirement expectations could prove a painful illusion."

The reasons aren't hard to find: less than generous pension plans for engineers that may be terminated altogether, the tendency of younger engineers to job-hop, which leaves them without substantial pension rights; curtailment of the tax deductibility of individual retirement account (IRA) contributions; and recurring financial problems in the Social Security and Medicare systems. These factors help put the main responsibility for providing a comfortable retirement squarely on an engineer's shoulders.

You can begin to do some things right now. First make sure your previous years' retirement account principal and earnings are working as hard as possible. For most, that means a self-directed IRA at a brokerage firm, because the account is totally flexible. You may divide the money in your IRA among many investment products-insured CDs, stocks, bonds, mutual funds, unit trusts, and so forth and change your portfolio mix when and as you wish.

Next, stop worrying about the loss of tax deductibility for your future IRA contributions. These contribution will still accumulate earnings on a tax-deferred basis, which has always been the most important feature of the IRAs from a retirement-planning perspective. Taxdeferred earnings are the cake; deductibility was just the icing.

Note that married individuals filing jointly with less than $\$ 50,000$ adjusted gross income and individuals filing singly with less than $\$ 30,000$ adjusted gross income, or those who do not participate in employer pension plans, can still deduct all or some of their IRA contributions. Check with your accountant or financial consultant.

Finally, work with your financial consultant to design a supplemental retirement portfolio because, in all probability, you will need it. Most engineers will need much more money to maintain their current lifestyle in retirement than they can realize from annual IRA contributions of $\$ 2,000$ a year (or $\$ 4,000$ a year, for working couples). Your financial consultant can help you determine how much you'll need to live comfortably and the amount of capital required to generate that income. Armed with that information, an engineer can pick from a large menu of investment products that offer IRA-like benefits. Indeed, some of these instruments are not simply tax-deferred, like an IRA, but are tax-free. The difference, of course, its that you eventually pay taxes on tax-deferred earnings (when you withdraw the money). Tax-exempt municipal bonds are the best-known tax-free product, but zero-coupon municipal bonds, tax-exempt unit trusts, and single-premium life insurance plans also offer this valuable advantage.
Once an engineer has begun to invest in these kinds of instruments, the key to success is to develop the same disciplined, systematic allocation of capital to them each year as for an IRA. With an IRA, you are forced to be disciplined by the annual contribution deadline and by the tax penalty you incur if you withdraw your money prematurely.

If you have several IRAs at different financial institutions, consider consolidating them at one location. Combining your IRA assets eases helps you monitor the performance of your assets. You also eliminate the added expense of several annual custodial fees and extra paperwork.
by Henry Wiesel, a financial consultant with Shearson Lehman Bros., Shrewsbury, N. J. Wiesel is also a qualified pension coordinator. He invites questions and comments, which should be addressed to the news editor, Electronic Design.

UNIX \& DOSCAE

EDIF Integration

 ASGLLayout Simulaion VFIDL System Simulation GAE Design Framewokk MRTEA/A/DSImulation
VHDL

 Synthosi8

When it comes to CAE tool innovations, the company that sets the pace is...

PEASE PORRIDGE

Whar's All This Spley STUFF, ANYHOW? (PART II)

The other day I was standing out in the rain, talking with a design engineer from the East Coast. He said all of the other engineers at his company ridicule him because they rely on Spice, and he depends on the breadboards he builds. There's just one hitch: his circuits work the first time and their circuits don't.
To add insult to injury, his boss forces him to help his colleagues get their circuits working, since he has so much time left over. I said that sounds pretty good to me, so long as his boss remembers who is able to get out the circuits when it comes to doing reviews for all of the guys.

This guy gave me a tip: Don't design a circuit in Spice with $50-\Omega$ resistors. Use 50.1Ω, it converges better.

BOB PEASE
OBTAINED A BSEE FROM MIT IN 1961 AND IS STAFF SCIENTIST AT NATIONAL SEMICONDUCTOR CORP., SANTA CLARA, CALIF. Hmmmm. That sounds kind of intriguing.
Right now I'm struggling with a Spice model of a circuit. Not of a new circuit, but of an old circuit: the bandgap reference of the old LM331 that I put into production back in '77. It's a good thing I put it into production before we got Spice, because if I had first run this through Spice, I'd have been pretty discouraged.
Spice says this circuit not only has a rotten tempco, but that it oscillates like a politician.

I went back and double-checked the actual silicon circuits. They soar like an angel, have very low tempco,
and are dead-beat when you bang on them. They have no tendency to oscillate; they don't even ring. So why does Spice persist in lying to me? Doesn't ti realize I will break its back for the impertinence of lying to the Czar of Bandgaps? I'm a little busy right now, but in a while I will find out why it lies to me. The Spice and CAD experts around here tell me, "Oh, you must have bad models." I've been told that before, when I was right and the experts were absolutely wrong (I mean, how can a single FET oscillate at 400 kHz ?? With the help of 2 resistors...). More on this topic later.

I've already gotten several letters from readers expressing general interest and enthusiasm concerning this column about linear circuits. Already a couple writers have asked, "How about all of these new models for op amps? Won't they lead linear designers in a new direction?" My replies to them start out by covering a couple examples of old op-amp macromodels that have raised questions for over a dozen years.

A guy calls up and asks me, "What is the maximum dc voltage gain on an LM108?" I reply, "well, it's 40,000 min ., but a lot of them run 300,000 or 500,000 , and some of them are as high as 3 or 4 million." The customer sighs, "Oh, that's terrible...." When I ask why it's terrible, he explains that when the gain gets high, the gainbandwidth (GBW) product will get so high that it will be impossible to make a stable loop if the GBW product gets up to dozens or hundreds of megahertz.

Sigh. I sit down and explain that there's no correlation between the dc gain and its spread when compared to the GBW product and its spread. The guy says, "Oh, I read in a book somewhere that there's good corre-
lation, because the first pole is constant." I tell him to throw out the book, or at least X out those pages, because the first pole is not at a constant frequency.
These days, I read that several opamp companies are giving away free Spice models. What do I think of these models?

Well, on a typical basis, I have read that some are pretty good. In several typical situations, they slew and settle (and ring just a little, as real op amps do) and have as good accuracy as a real typical op amp and its feedback resistors. Maybe in a few years, models of slow op amps will be trustworthy. But I don't think you can get very good results from modeling the fast ones. Why? Pcboard layout strays. Enough said.

And besides, how good are those models if you ask their makers? Are the models guaranteed to give such a good representation of reality that if Spice gives good results, the op amps are guaranteed to work? Well...no, not exactly. In fact, from what I've read, none of the op-amp models are guaranteed for anything. The only thing they can do "guaranteeably" is give a customer something when he begs for Spice models. It's guaranteed to make the customer go away happy and to keep him busy for a while. But it's not guaranteed to make him happy in the long run. This is because the performance of highspeed op amps and precision circuits depends so critically on the layout and on the resistors and capacitors, making the model itself almost irrelevant.

Now some people might say, "How does Pease dare to say that?" It's easy. I haven't got any Spice models of my op amps to give away. Not at this time. And if I did, or when I do, I won't be able to guarantee them either. At best, I may be able to say, "If you are a good engineer and use these models as a tool to pioneer some experiments that are inconvenient to test on the breadboard, you may find these models are helpful. But you had better check things out with a breadboard to confirm the circuit. For example, you can use Spice

A World-Sized Commitment To Leaded And Surface Mount Passives, Summed Up In World-Sized Data Books.

In 856 pages, our data books cover our world-sized scope of passive products:

A full range of SMD $^{\text {® }}$ tantalum chip capacitors that includes
two MIL-approved devices-CWR06 and CWR11 - plus special low ESR, high-frequency products designed for switcher power supply and computer memory applications. Also available: the industry's broadest line of axial leaded hermetic solid and wet tantalums.

A complete selection of SMD ${ }^{\oplus}$ ceramic chips and leaded ceramic capacitors, including

Mono-Axial ${ }^{\text {TM }}$ conformal coated capacitors for high-density automatic insertion, and MonoKap ${ }^{\circledR}$ multilayer radials for maximum stability. Choose C0G, X7R or Z5U dielectrics in a wide range of case sizes, tolerances and voltage ratings.

A broad range of film capacitors for general purpose, precision, low power and motor run applications from 47 pF to $75 \mu \mathrm{~F}$, in several dielectrics and package configurations.

A complete line of AC and DC aluminum electrolytic capacitors for

Philips Components

to 'measure' some voltages or currents that are so small and delicate that you really could not measure them with a scope, a buffered probe, or current probe-not in the real world. But, if you try to rely solely on these models, without breadboarding, they won't tell you the whole story. Your crutches will collapse, sooner or later, and you can't say I didn't warn you."
I showed this column to Bettina Briz in amplifier marketing, and she said, "Bob, you can't say that." I said, "Oh, tell me where I have said anything that is untrue, and I will fix it." She admitted that what I had said probably was...quite true. Then I said, "Well, why try to soft-pedal the truth, and pretend that you can trust computers all of the time? Wouldn't that be a disservice to our customers?" And Bettina replied, "When we have models, we'll have to try to educate our users. We'll point out when you can trust the models, and when you shouldn't. So, after that, are we in disagreement?" Well, maybe we did agree after all.
At present, we have a small library of op-amp models released with Analogy, Beaverton, Ore. They're only level I models, (low precision), and while we have made some progress on good-precision ones (level II), they're not released yet. These are "behavioral models" rather than Spice models, and we think they have several advantages over Spice models. There are some $\mathrm{min} / \mathrm{typ} / \max$ specifications that pretty much correspond to data sheet limits. If you use them wisely, they may be help-ful-subject to the conditions I listed in the previous paragraph.

These models aren't free, though. They're not even cheap. But we think they're worth what you pay for them. Still, none of these models are guaranteed.

Now, seriously, where can you get a model of a transistor that's guaranteed? And to run under all conditions? I don't think you can beg or steal or borrow or buy a model of a transistor that's guaranteed. Or of a
capacitor. The same holds true for a resistor.
But I can guarantee that every op amp you can buy or make has some characteristics that can't be absolutely modelled by any computer model. If you happen to depend on that feature, or the absence of that feature, it's only a matter of time before you get in trouble.

I will also guarantee that just because you made one breadboard, and it works well, you can't put that circuit into production and get 1000 units in a row to work well. Unless, of course, you're a smart engineer and design the circuit "properly" and do your worst-case design studies, and plan for well-behaved frequency response, and so on. And I think that's true no matter where you buy your op amps. What's new? What color is the king's new underwear? Dirty gray, same as everybody else's.

I think there are a number of Electronic Design's readers out there who will want to comment on this topic. You may be dubious or skeptical of Spice models. You may be dubious or skeptical about my views. Your comments are invited. You may have experience with Spice or other macromodels. Good? Bad? You tell me, and I'll pass along your comments to the editors (we may have to allot a little extra space for the Letters-to-the-Editors column for a while). The guys who believe in Spice macromodels, whether they're somebody that buys or sells op amps, well, they're also invited to write in. I promise to faithfully pass all of the letters along (with appropriate com-

Why try to soft-pedal the truth and pretend you can trust computers all the time? ments on the side). But I think you can already tell how skeptical I am.
I was at an evening session at the IEEE Bipolar Circuits and Technology Meeting in Minneapolis recently. Several companies that sell CAD tools had done some serious work to analyze the circuit for a 12 -bit a-d converter (Electronic design, Oct. 25, p. 16).

Even the ones that had only a little time to put in showed that macromodels were feasible and effective as a way to do good analysis while saving computing time. That was the primary objective of the study. But even the ones that put in the most time at analysis didn't recognize (or didn't comment about) that the noise of the reference and the comparator were rather large, and you could not achieve 12-bit resolution without slowing down the response a lot more than you would have to do otherwise (for a circuit where you didn't have to consider the effects of noise).
If a good designer of ADCs had these tools, and he knew where to look for noise, or where to insert lead inductance or extra substrate capacitances, he might use some of these CAD tools to help him design a better ADC. But if he just believed what the computer told him, he would probably be badly fooled.
Once, a customer called me up and asked me how to get my LM108s to stop oscillating in his circuit. He explained it was a simulated LM108 with some simulated feedback resistors, and simulated switches and filters. Hmmmm. I asked if he had made up a breadboard, and if it oscillated. He said he had made it and it didn't oscillate. Hmmmm. I asked him, "If you built up a breadboard and a computer model, and the real breadboard oscillated, but the computer did not, you wouldn't be calling up to complain, would you?" He stopped and thought about it. He cogitated for a while. He said "I'll call you back." And he hung up. He never did call back. I mean, what would you do?

[^5]

Is It C ${ }^{\ddagger}$, Jenny's First Word, Or A Turbine About To Explode?

MacDSP can acquire, analyze and display signals so quickly you can actually see the harmonic variations of a flute as it plays, recognize speech, or spot dangerous signals before it's too late.
With an advanced 50 MHz floating-point digital signal processor and modular data acquisition on a single card, MacDSP's design bypasses CPU traffic jams and lets the Macintosh do what it does best: graphics.

MacDSP hardware can be configured with a variety of processor speeds to meet your specs and budget, memory capacities large enough for speech analysis or image processing, and acquisition options to handle anything from robotic control to electronic music to ultrasonic vibration.

MacDSP Signal Analysis software turns your Macintosh into a signal processing instrument with real-time displays which surpass ordinary oscilloscopes and spectrum analyzers. We offer an array processing library of common DSP and mathematical functions to speed up your existing programs, and AT\&T's optimized C compiler for more advanced applications.

Contact us for a free demo disk. Spectral Innovations, Inc., 4633 Old Ironsides Dr., Ste.450, Santa Clara, CA 95054.

Phone: (408) 727-1314. FAX: (408) 727-1423.

Boxed In by Proprietary ASIC Tools?

Break Out with Oki.

If you're trapped trying to design ASICs with vendorspecific tools, make a break for Oki. Because at Oki, we take a "customer-friendly" approach to ASIC design, supporting the range of industrystandard tools you're familiar with. Like DAZIX, Mentor, Valid, Viewlogic, and others.

And with Verilog as our in-house simulator, you enjoy high-quality design interface, short design and verification cycles - and the assurance that your design will work.

Escape the limitations of vendor-favored tools today. Call 1-800-OKI-6994.

Oki ASIC Design Tool Support		
Vendor	Platform	O.S. \& Application
Cadence	Sun-4	Sun OS 4.0.1, Verilog 1.5C
DAZIX	LOGICIAN Sun 386i Sun-4	DNIX 5.03, Sun OS 4.0.1 Digital Application 6.1 Digital Application 6.3
Mentor Graphics	HP/Apollo DN3/4XXX	DOMAIN/OS 10.1 IDEA Series 7.0
Synopsys *Interface	Sun-4 to Mentor, Valid,	Sun OS 4.03 iewlogic
Valid	Sun-4 Sun-3	Sun OS 4.0.1 GED, ValidSIM, RapidSIM
	DEC Station 3100	ULTRIX, ValidSIM, GED
Viewlogic	Sun-4	Sun OS 4.0.3 Workview 4.0
	PC386	DOS 3.3, Workview 4.0
Design Kits are available for $1.2 \mu \mathrm{~m}$ gate arrays and standard cells and for $1.0 \mu \mathrm{~m}$ and $0.8 \mu \mathrm{~m}$ sea-of-gates.		

OKI
 Semiconductor

Transforming technology into customer solutions

785 North Mary Avenue
Sunnyvale, CA 94086-290
Apollo, Cadence, DAZIX, DEC, Digital, DNIX, DOMAIN, GED, HP, IDEA, LOGICIAN, Mentor Graphics, PC-DOS, RapidSIM, Sun, Sun OS, Synopsys, ULTRIX, Valid, ValidSIM, Verilog, Viewlogic, and Workview are trademarks of others.

Power Source Up-Date

Single Board Construction Shrinks 750W Size and Cost: 58\% Smaller, 30\% Cost Savings

Designed for high-end computer products, TODD's MAX-750 combines a compact size, $13.5^{\prime \prime} \times 5^{\prime \prime} \times 2.6^{\prime \prime}$ compared to the typical $5^{\prime \prime} \times 8^{\prime \prime} \times 11^{\prime \prime}$ shoebox switcher (see photo insert), and very competitive pricing. OEM product designers can reduce product size with a MAX-750 or build in power supply
redundancy, replacing one "shoebox" switcher with two MAX-750's in the same space.

The small package size, high power density of 4 watts/in., high peak current for motor starting, and cooling options, make the MAX-750 the power supply of choice for VMEbus systems, workstations, file servers and mini-computer systems. The switcher provides 120 amps of +5 volts for logic and memory, and features up to three auxiliary outputs providing high efficiency, tightly regulated 12 volts or -5.2 volts at up to 20 amps . Designed for world wide use, the series offers AC power fail, AC autoline select, and meets International Safety standards and Class A RFI requirements of FCC and VDE 0871.

Call 1-800-223-TODD, or Circle \# 171

High Efficiency

DC Converters Fit
AC To DC Footprint
TODD's DC to DC converters provide up to 350 watts from 48 volts DC input. Designed as companion units to TODD's standard line of AC input power supplies, they are fit, form, and function compatible with the MAX-350, MTC250, MTC-350, and certain single output

SC series products.
Available in a 250 watt "DC" single output series and a 350 watt multi output "DCX" series these power supplies have up to 50 amp main output of tightly reg ulated 5 V power, two fully regulated, high-efficiency, post-regulated magamp outputs and one low-power threeterminal regulated output.

Call 1-800-223-TODD, or Circle \#172

New Technology Shrinks 500 Watt Power Supply

TODD's MAX-500 switchers pack 25% more power into TODD's 400 watt package size ($11.5^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime \prime}$). The series incorporates a new SMT circuit, newlyavailable components, improvements to TODD's VERI-DRIVE current-fed inverter topology, monocoque construction, and a high efficiency FLUX-GATE switching mag-amp auxiliary post regulation. Result: higher performance, higher reliability (approaching 100,000 hours MTBF) and lower cost.
Call 1-800-223-TODD, or Circle \#173

New Products Featured In 1991 TODD Catalog

TODD has just released its 1991 switching power supply catalog of over 100 standard switching power supplies ranging from 150 to 1000 watts, including several new products. Available in single and multiple outputs, ac to dc and dc to dc, these switchers meet a broad range of requirements for telecom, computers, industrial controls and medical electronics applications

The catalog also provides details on TODD's approach to quality and innovative manufacturing, and capabilities for producing modified, repackaged and fully custom switching power supplies.

Call 1-800-223-TODD, or Circle \#174

More information on these and the full line of TODD Switching Power Supplies can be obtained in EEM File 4000, by circling the response card numbers, or by contacting

PRODUCTS CORP.

50 Emjay Boulevard
Brentwood, New York 11717 (516) 231-3366 or 1-800-223-TODD FAX (516) 231-3473

Designing Telephone-Interface Circuitry With Solid-State

 in)BY RANDY HAFER

AT\&T Microelectronics, 2525 N. 12th St., Reading, PA 19612; (215) 939-3345.

As modems, facsimile machines, automatic telephone dialers, and answering machines inundate mainstream data-processing environments, switching and telephone-loop-test equipment become more complex. As a result, more engineers are designing electrical components and interface circuitry for use in the Public Switched Telephone Network (PSTN) environment.

Many harsh challenges evolve from this type of environment, including a typical battery voltage of 48 V , and ac ringing signals that peak at greater than 100 V . In addition, ac inductions from power lines can be in the hundreds of volts, and voltageinduced transients from lightning may run 1000 V or more. To further complicate matters, equipment designed for this network must meet specifications drafted by a battery of regulatory agencies.

To create interface circuitry that can satisfy this environment, many designers are turning to optically coupled MOSFET solid-state relays, or SSRs (see the table). Designing with SSRs is much simpler than designing with electromechanical relays. Besides requiring relay drivers and electromotive-force diodes, electromechanical relays present various problems, including contact bounce, arcing, and acoustic noise. In addition, they typically generate electromagnetic or radio-frequency interference. There also may be mounting considerations to address.

Solid-state relays, meanwhile,

1. The receptor and switch circuitry for a standard, optically coupled MOSFET relay consists of a photodiode array, a JFET, and two MOSFET switches for ac-dc control.

pose no such difficulties. The relays reduce the interface circuitry's component count and assembly costs. Their small size saves board space, and SSRs can match or exceed the performance specifications of electromechanical relays. They also last longer than electromechanical relays, increasing the number of operations that can be performed by a factor of a hundred or more.

The "solid-state" designation for an SSR refers to the fact that no mechanical poles and contacts are present, as in an electromechanical relay. In an SSR,
the switching element consists of solid-state components. While SSRs are a bit more expensive than mechanical relays, their dependability suits them well for use in telephone-interface circuitry.

On top of these advantages, SSRs can be surface mounted, and they perform a smooth, "click-free" actuation. The SSRs' MOSFET output is extremely linear and can reliably switch both resistive and inductive loads with voltages ranging from millivolts to hundreds of volts. Furthermore, SSRs can be driven directly from logic

Relay Type	Input	Actuation coupling	Typical isolation (V rms)	Contact type
Electromagnetic	Coil	Electromagnetic	1000 to 5000	Metallic ac/dc
Reed	Coil	Electromagnetic	500	Metallic ac/dc
Solid-state	Transformer			
LED	Transformer	optical	1500 to 4000	Solid-state ac or dc
Mosfet SSR	LED	Optical	1500 to	Solid-state ac/dc
Monolithic	CMOS	Capacitive	500	Solid-state ac/dc

gates-virtually any logic gate can sink enough current to control the input LED of the SSR.

SSRs are also ideal for test and maintenance equipment, and for PBX and central-office switching. In these environments, longitudinal (differential) and metallic (commonmode) surges still prevail. But because the equipment is referenced to ground, the high-isolation requirements of terminal equipment don't apply.

For these ground-referenced applications, monolithic relays powered by battery or system power can be used. In telephone-interface-station applications, optically coupled MOSFET sol-id-state relays are the best solution.
 tandard, optically coupled MOSFET SSRs consist of an LED for input control, a photodiode array for MOSFET gate drive, and a JFET for gate discharge (Fig. 1). The switch element consists of two source-connected MOSFETs. If two MOSFETs are used in series, the result is a linear, bidirectional, ac-
dc switch.
The gallium arsenide LED input is analogous to the coil in an electromechanical relay. When a small forward current is applied to the GaAs LED's input, it emits light that passes through an optical bubble or a translucent mold compound to a photodiode array.

The photodiode array, which is the heart of the relay, acts as a power source for the MOSFET switches. MOSFETs typically require at least 5 V of gate drive for full turn-on (4 V for a full turn-off in a depletion-mode MOSFET).

To guarantee 5 V of photodiode output under high-temperature operation (the self-heating characteristics of MOSFET operation are also a factor), photodiode arrays are typically designed to supply greater than 10 V during room-temperature operation.

Photodiodes are constructed in individual, dielectrically isolated tubs and then stacked to obtain this voltage. Typically, an array consists of 20 to 30 photodiodes.
ELECTRONIC DESIGN - PIPS SPECIAL EDITORIAL FEATURE - DECEMBER 13 , 1990

In a Form A (normally open) relay, enhancement-mode MOSFETs are used, and the drive voltage turns the relay on. In contrast, a Form B (normally closed) relay uses depletionmode MOSFETs, and the drive voltage turns the relay off. The JFET placed between the gate and source of the MOSFETs quickly discharges the gate capacitance, which serves to turn the relay off.
electing an SSR involves a
number of design considerations. With regard to input, a small LED forward current is required to turn the relay on (or turn a normally closed relay off). This current typically ranges from 1 to 10 mA , depending on the relay, the load current, and the ambient temperature. Turnon current is usually supplied by sinking a logic gate's output to the cathode of the LED and tying the LED's anode high through a pull-up resistor.

When the logic gate turns the relay off, the high-level output voltage must be enough to reduce current flow through the LED below its turn-off current or drop-out voltage specification. Most SSRs allow some amount of trickle current through the LED in their off state.

The input-to-output isolation voltage that's required in the design is mandated by the various regulatory organizations. Input-to-output SSR capacitance ranges from 1 to 3 pF . This capacitance isn't a concern in tele-phone-line-interface applications. Switching speeds are generally less than 2 ms , depending on the volt-amps switched. For these applications, this speed is more than adequate.

When turned on, the SSR's resistance contributes to the total telephone-loop impedance, and must be considered in the design. On-resistances from 20 to 50Ω are acceptable and are available in MOSFET SSRs.

The load-voltage rating must

POWERONE D.C. POWERSUPPIES WotOnly The Best...The BestSelection, Too

SWITCHERS

POWER-ONE' International Switcher Series incorporates the latest state-of-the-art switching technology while providing POWER-ONE's traditional high quality at low prices. With certification to the world's toughest safety agency requirements, the series is especially suited for products sold not only domestically, but internationally as well. -85 models. . . 40 watts to 400 watts • Efficient. . . reliable. . .economical • VDE construction • Up to 5 fully regulated outputs - Full international safety and EMI approvals

POWER-ONE'S International High Power Series is the industry's only true fully-modular high power product line. Specify a power system that meets your exact requirements from a wide selection of single, dual and triple output plug-in power modules. Virtually any combination of output voltage and current rating can be delivered from stock. 500 watts to 1500 watts - Fully modular construction - Up to 15 fully regulated outputs • UPS battery backup option - Parallelable outputs with current sharing

POWER-ONE offers one of the largest selections of switcher, linear, and high power standard models in the world. So, whatever your D.C. power supply requirement calls for, make POWER-ONE your first choice and be sure you're getting the best-not only in quality, but selection and value as well. Call today for our new 1990 catalogs.

$$
\begin{aligned}
& \text { TOLL-FREE } \\
& \text { LITERATURE } \\
& \text { HOT-LINE: } \\
& \text { (800) 235-5943 } \\
& \text { In Californa: } \\
& \text { (800) } 421-3439
\end{aligned}
$$

be greater than the highest anticipated line voltage, which for design purposes is usually the worst-case lightning voltage. To properly select an SSR, the over-voltage-protection device must be considered.

The dc bias, ring, and test voltages should be used to develop the highest anticipated line voltage. Then a protection device should be selected that exhibits a breakover voltage above this value. Once the protection device is determined, a solid-state-relay load voltage can be established from the overshootvoltage value of the protection device.

Switch capacitance is a function of the applied voltage, and will generally vary from 5 to 60 pF . For the most part, the capacitance is of concern when the switch is turned off. However, the battery bias minimizes the switch capacitance when the switch is off. The capacitance typically isn't an issue in PSTN applications.

SSRs exhibit a knee current, which is created when the current flow through the relay is enough to forward bias the integral diode in the reverse-biased MOSFET. Remember that two source-connected MOSFETs are connected in series to supply $\mathrm{ac}-\mathrm{dc}$ switch operation. The knee current identifies a lowering of the on-resistance when the diode conducts. This characteristic of MOSFET transistors reduces SSR power dissipation during high-current operation. Typical loop-operating currents usually fall below the knee-current value.

When designing with SSRs, it's also important to use an overvoltage-protection device to protect the SSR from potential lightning damage. Small, inexpensive protection devices that do the job include metal-oxide varistors, solidstate protectors, and small gasdischarge tubes.

For overshoot protection, a

3. SSRs can be used in telephones or answering machines for dial pulsing and speech muting. A Form A relay performs outpulsing; a Form B performs muting.
metal-oxide varistor is the most common solution. Metal-oxide varistors act as a Zener diode, but they dissipate considerably more energy. Under typical operating line voltage, the standby current is tolerable, but the " Ze ner" voltage under high-current surges can cause significant overshoot. The specifications of most metal-oxide varistors include current-voltage graphs with curves that show maximum clamping voltage versus surge current for the operatingtemperature range.

Metal-oxide varistors and gas-discharge tubes typically exhibit over 100 V of overshoot for a specific lightning surge. Though they're more expensive, solid-state protectors produce far less overshoot, usually between 5 and 30 V .

Unlike the metal-oxide varistor, the solid-state protectors and gas-discharge tubes also exhibit a crowbar characteristic that will shunt all transient energy around the device. These devices are used in switching systems where high reliability is a major concern within a design.

The SSR's load voltage must be higher than that of the protection device's overshoot for a worst-case surge current. Most SSRs used in telephone-line interfaces are rated for 350 to 400 V , which is enough for most applications. When metal-oxide varistors are used for Class A ringing, which occurs at a maxi-
mum of $130 \mathrm{~V} \mathrm{rms}$, voltage rating of 350 V is adequate. Although rare, Class B ringing, which occurs at a maximum of 150 V rms , requires a solid-state relay with a load voltage of 400 V .

s SRs are also susceptible to damage from overcurrent

 stresses. One possible solution to this problem is current limiting. Without current limiting, as when metal-oxide varistors are used, a lightning strike will force standard SSRs into an avalanche breakdown. The high transient current from lightning may generate enough heat to destroy the switch.Current limiting restricts the amount of current flow through the relay. Current flow is reduced using either emitter-base resistors and bipolar transistors or a small MOSFET sense transistor. The circuitry provides an alternate path that bleeds current from the photodiode array. That lowers the MOSFET gate voltage, which puts the MOSFET into saturation to increase its resistance during turn-on. The relay circuitry will clamp high-current transients and minimize power dissipation, enabling it to survive more severe transients and pass more stringent regulatory-agency requirements.

The relay's current-limiting circuitry is designed with a negative temperature coefficient,

New Albany, Indiana USA • Sacramento, California USA • Cumbernauld, Scotland UK • Singapore
which minimizes the relay's power dissipation by decreasing the current through the relay when the voltage across it rises as a result of increased resistance.

The current-limit value will decrease as temperature increases, or as electrical self-heating occurs, creating a currentfoldback condition. Current limiting is set at a value that's high enough relative to the relay's maximum operating current so that it won't interfere with circuit operation at room temperature.

A number of concerns must be addressed when designing with solid-state relays on telephone loops. These include designing the interface circuit itself, and the behavior of sol-id-state relays under the fault considerations specified by the various regulatory agencies.

The interface circuit consists of a ring detector, an on-off hook control, isolation, and surge protection. Because they offer isolation and can easily and inexpensively protect against surges, optically coupled MOSFET relays are ideal as an on-off hook switch.

A typical line interface for a modem or fax machine includes a Form A SSR for the on-off hook control (Fig. 2). The on-off hook switch connects the telephone equipment to a PBX or to the PSTN. The switch is driven by a simple logic gate and by 5 V . The SSR supplies high-voltage isolation between the telephone loop and the internal modem circuitry. The metal-oxide varistor limits the tip-to-ring voltage to a value below the load voltage of the SSR.

In a typical line interface for a telephone, SSRs are used for dial pulsing and speech-network muting (Fig. 3). A Form A SSR handles the outpulsing capability. Form B (normally closed) solid-state relay provides the muting function. Because a normally closed relay is used for
4. A double exponential, unipolar impulse wave is used to execute metallic and longitudinal surge tests on telephone equipment.
muting, power is only required when outpulsing occurs.

There are many specifications concerning transient voltages on a telephone loop, and a number of organizations that specify requirements for tele-phone-line interfaces. The specifications revolve around longitudinal and metallic stresses. The organizations include FCC, CSA, CCITT, REA, Bellcore, Underwriters' Laboratories, BABT, and VDE, among others.

Longitudinal voltages exercise the input-to-output isolation of the relay. Metallic voltages, on the other hand, stress the relay's switch when the relay is on, as in the case of an offhook condition.

The Federal Communications Commission and Canadian (CSA) requirements are standards for telephone equipment connected to the PSTN. The CCITT, REA, and Bellcore requirements are standards for telephone-switching equipment. Underwriters' Laboratories, BABT, and VDE are organizations specifying safety requirements for telephone-interface equipment. In the U.S., the specification that's most commonly referred to for telephone equipment is known to designers as FCC 68.302.

FCC 68.302 requires that metallic and longitudinal surges,
vibration and shock, and temperature and humidity tests be performed on telephone equipment. The metallic surges applied to the telephone-line interface are $800-\mathrm{V}, 10 \times 560-\mu \mathrm{s}$ pulses; the longitudinal surges are $1500-\mathrm{V}, 10 \times 160-\mu$ s pulses. A $10 \times 560 \mu$ s pulse refers to a double-exponential unipolar impulse wave that rises to full rated voltage in $10 \mu \mathrm{~s}$ and decays to half of the rated voltage in 560 $\mu \mathrm{s}$ (Fig. 4).

SSRs can handle this testing. They're oblivious to the shock and vibration requirements, and like any IC, are resilient when it comes to temperature and humidity stresses.

The longitudinal requirements are essentially a stress test of the relay's I/O-isolation voltage. Most SSRs are 100% tested for isolation voltage. Isolationvoltage protection ratings are available at several levels, depending on the package. The most common rating figures are 1500 V rms, 2500 V rms, and 3750 V rms.

The metallic tests measure the effectiveness of the metal-oxide varistor, solid-state protector, or gas-discharge tube used to protect the telephone-line-interface circuitry. The overvoltage protector also serves as a shunt during the metallic-testing application.

Relay performance during

Make your move to $\mathrm{P}_{\&} B$ for new general purpos board relays.
 New Models Expand Offering
 For applications from consumer goods to industrial controls, $\mathrm{P} \& \mathrm{~B}$ relays have the features you need for general purpose and power switching on your printed circuit board. New series greatly expand our already broad line of P.C. board relays. Many models are available from stock, and they're all built to the same exacting standards that have made our T90 series the industry-standard 30A, P.C. board relay.

New Miniature Relays Switch 1mA to 10A

Our new T73 and T74 series miniature P.C. board relays join the T70 series as inexpensive SPDT units for general purpose applications. A variety of contact materials allow units in these series of sealed relays to switch loads from 1 mA through 10A.

Expanded Line of $\mathbf{4 , 0 0 0}$ V Isolation Relays

Extensions to our line of RK series relays feature 8 mm coil-to-contact spacing for $4,000 \mathrm{~V}$ isolation. SPDT models switch loads to 20A, and DPDT models switch up to 5 A . Both sealed and unsealed types are offered.

T90 \& T91 - Our 30A Workhorses

Relays in our T90/T91 series have SPDT contacts for loads to 30A. T90 is available as a sealed or openstyle relay. T91 has quick connect terminals for load connections and is offered with either a sealed or unsealed enclosure. High temperature units are available.

Find Out More

Contact us today for free information on the complete line of P\&B P.C. board relays, including more new models for switching 2A and less. Potter \& Brumfield, A Siemens Company, 200 S. Richland Creek Drive, Princeton, Indiana 47671-0001.

Call toll-free 1-800-255-2550 for the P\&B authorized distributor, sales representative or regional sales office serving your area.

the metallic tests differs from manufacturer to manufacturer. During an off-hook metallic surge, SSRs can be subjected to huge surge currents that are well beyond the value of the continuously rated current, or even the peak-pulse current, depending on the value of load and stress impedance. Most relays rely on their avalanche-breakdown characteristics to survive these stresses.

The AT\&T current-limiting feature for Form A devices responds to a metallic-test impulse wave by shutting off the relay because too much current is flowing. About 1 to 2 ms after the wave decays below half power, the relay will turn back on.

The relay continues to supply current limiting until the wave decays. With current limiting, the relay stays within its ratedcurrent specification, and can survive the most stringent specification regardless of load or series impedance.

0L 1459 50A specifies the voltages that can be present on telephone lines from power-line cross inductions. It spells out both longitudinal and metallic power-line inductions, requiring that 600 V rms be applied to telephone lines with various source impedances for different periods of time. Typical-
ly, this specification requires designers to add a fuse to open the circuit during a power-line induction.

The Underwriters' Laboratories specification goes further, however, stating that if voltagelimiting devices are used, a voltage just below their rated value can be applied to the equipment. If current-interrupting devices are used, a current can be applied just below the current value at which the current-interrupting device trips. These conditions can be applied for better than 30 minutes.

Once again, the longitudinal requirement is essentially a test of the relay's isolation voltage. To pass the metallic requirement, a fuse must be used to open the circuit under high-current stress conditions. As long as there's no risk of fire or electrical shock, the relay is allowed to fail.

To satisfy the "slow-cook" lower-current requirement, the SSR and protector must handle a current just below the fuse's interrupt current. The fuse and protector can be used separately, or a UL-approved module containing the two functions can be employed.

The module's advantage is an interaction feature between the fuse and the protector. As the protector heats up from the

When designing with SSRs, it's important to use an over-voltage-protection device to protect the relay from potential lightning damage.
slow-cook applications, it's close enough to the fuse to open it thermally.
To satisfy the lower-voltage requirement, the SSR must withstand the voltage just below the protector's breakover voltage. A standard SSR should handle the resultant current pulse generated by this voltage until the fuse reacts.

When a current-limited SSR is subjected to this condition, it begins to prohibit current flow, which in turn prevents fuse operation. Current-limited relays exhibit a negative temperature coefficient for the LED light output, the photodiode-array current output, and on the cur-rent-limit circuitry itself. Typically, the relay will stabilize at a current below 10 mA , reducing power dissipation to reasonable levels for a fault condition.

Randy Hafer, applications engineer for solid-state-relay products at $A T \& T$, spent six years at $I B M$ in electrical engineering and eight years at AT\&T Bell Laboratories in device design.

HOW VALUABLE?

HIGHLY	CIRCLE 541
MODERATELY	CIRCLE542
SLIGHTLY	CIRCLE543

Introducing the only linears approved to meet IEC 950 and Level B EMI.

CONDOR'S NEW INTERNATIONAL
PLUS LINEAR D.C. POWER SUPPLIES
MEET TOMORROW'S TOUGH
STANDARDS TODAY!

Our International Plus linears offer you performance, price and one more important feature: the agency approvals you need for the 90 's, including IEC 950 and VDE 0871 level B EMI. And Condor has more approved linears in stock than anyone in the industry (including more than 30 models in IEC 601 medical versions).
International Plus linears have what you're looking for:

- 115 models (single and multi-output)
- 7 power levels -3 to 288 W
- Worldwide AC input ranges
- OVP on all 5V outputs
- Hermetically sealed power transistors
- MTBF 200,000 + hours per Mil Hndbk 217E
- 2-hour burn-in with cycling (8 hours on medicals)
- Computerized testing (data sheets furnished)
- 3-year warranty - longest in the industry
- 30-day FREE evaluation (call us for samples)
If you need world class performance, quick turnaround, competitive pricing and full agency approvals, call Condor - the leader in linear D.C. power supplies.

- $300+$ power supplies
- Standard and medical
- Switchers and linears
- Open frame and enclosed
- Custom capability

2311 Statham Parkway
Oxnard, CA $93033 \bullet$ (805) 486-4565
CALL TOLL-FREE:
1-800-235-5929 (outside CA)
FAX: (805) 487-8911

Everytime all the time. Sanyo.

 Designed to withstand continuous maintenance overcharge and high rate discharge in a sealed environment, the superior performance of Sanyo Nickel Cadmium batteries has made them
ideal for use in leading products using rechargeable batteries. Review their superior technical performance for yourself and see why Sanyo Nickel Cadmium batteries are the world's choice.

Leading Edge Battery Technology

Sanyo offers you the highest energy density, longest run time, longest cycle life, and the broadest family of cells, from high temperature to fast charge (1 hour), of any battery manufacturer today.

Superior Service Life and Economy

With output power much higher than that of dry cells, Nickel Cadmium batteries can withstand over 500 repeated 100% charge/ discharge cycles, in addition to offering outstanding economy.

Excellent High-rate Discharge Performance

Sanyo's unique electrode plate manufacturing process and current collectors minimize internal resistance, which in turn enables high-rate discharging and guarantees stable discharge voltage.

Charge/Discharge Characteristics

Sanyo Nickel Cadmium batteries are designed to give you optimal performance during charge and discharge thus assuring outstanding performance in your applications.

Cycle Characteristics

Wide Operating Temperature and Maintenance Free

In addition to displaying only minimal variation in performance over a wide temperature range, the totally-sealed construction makes Sanyo Nickel Cadmium batteries maintenance free over their life time. With the additional benefit of 5 year shelf life, there's no better battery on the market.

Superior Reliability
Sanyo CADNICA batteries are manufactured under strict quality control conditions.

All of our products are fully formed and cycled to insure uniform performance and superior reliability.

Structional Design

Sanyo also offers a long life resealable precision spring vent system and a patented welded electro-tab construction on all nickel cadmium batteries.

Sanyo's the One

No other battery manufacturer offers all these benefits. So if you're not buying Sanyo batteries you're simply not buying the best.

Structural Design of CADNICA Battery

For more information on Sanyo Nickel Cadmium
batteries, contact:
SANYO Energy (U.S.A.) Corporation,
1201 Sanyo Avenue, San Diego, California 92073, (619) 661-6620
In Florida: (904) 376-6711
In Illinois: (708) 595-5600
In New Jersey: (201) 641-2333 (Ext. 417)
In Georgia: (404) 279-7377
In Texas: (214) 480-8345

For Multiplexing Applications, Photovoltaic Relays Fill The Bill 1? |l|llat A look at relay characteristics can help with design

BY SHAWNFOGARTY JR.

International Rectifier Corp., Electronic Products Div., 247 Kansas St., El Segundo, CA 90245; (213) 607-8877.

Ihe photovoltaic relay (PVR) boasts a combination of circuit elements resulting in operational characteristics not found in either electromechanical relays or thyristorbased, solid-state relays. The multivolt photovoltaic generator contained in the relay flaunts a very low output current. It's naturally compatible with the voltage-controlled input requirements of a modern power MOSFET.

Within the PVR, which is a class of solid-state relays (SSRs), there's a power-MOSFET output stage, a photovoltaic generator to drive the MOSFET gate, and an LED to achieve input optical isolation (Fig. 1). The PVR brings the advantages of solid state to applications that were served only by signal-level electromechanical relays.

Versatile in its scope, the PVR switches direct current of either
polarity and alternating current from power frequencies through the radio-frequency range. It accepts voltage levels from under a millivolt to $\pm 300 \mathrm{~V}$; switching rates up to several kilohertz are possible. Control requires only a few milliwatts and input-to-output isolation is in thousands of volts.

The historic design challenge in making a practical PVR was implementing it in a compact and economical manner. A dis-crete-component approach can't achieve either the miniaturization or cost that allow the PVR to be directly competitive with electromechanical relays. Hybrid circuit techniques, which place MOSFETs and other chips on a leadframe, are an intermediate step. But realizing a truly competitive PVR has meant innovative semiconductor processing, packaging, and advanced power-IC techniques.

1. The photovoltaic relay contains an LED input, optical isolation barrier, photovoltaic generator to drive the MOSFET gate, and a power-MOSFET output stage.

The characteristics of a PVR and an equivalent reed relay can easily be compared. In terms of life expectancy, the PVR offers in excess of 10 billion operations, while the reed relay lasts for just 1 billion at best. Thermal offset is $0.2 \mu \mathrm{~V}$ for the PVR and 0.5 to $10 \mu \mathrm{~V}$ for the electromechanical device. The PVR wins on isolation voltage, 2500 V ac to just 1500 V dc. And the PVR boasts a much wider operatingtemperature range of -40 to $+85^{\circ} \mathrm{C}$, compared with -20 to $+70^{\circ} \mathrm{C}$ for the reed relay.

Typical turn-on current for a PVR with a $20-\mathrm{mA}$ load is 2 mA . This value increases when switching a larger load. Note that the higher the load current, the more current is needed to operate the PVR. But for low-level usage, the PVR is considerably more sensitive than the typical reed relay. In addition, the operating power for the PVR is only a few milliwatts in contrast with the 50 to 100 mW for a reed relay.

Response time for a PVR (for example, International Rectifier's PVA3054) is 25μ s maximum when energized with 8 mA and switching a $50-\mathrm{mA}, 100-\mathrm{V}$ dc load. Special speed-up circuits can decrease this operating time dramatically. The PVR will turn off in less than $50 \mu \mathrm{~s}$. For a reed relay, typical response time at nominal operating power is 1 ms maximum, and corresponding release times are in the 100 -to- $200-\mu$ s range.

A PVR's operating-voltage range is from -300 to +300 V . Typical miniature reed relays, on the other hand, can stand-off

250 V from contact to contact. The maximum switching voltage, however, is considerably below the rated peak stand-off voltage. Most reed relays live longest when switching 12 V and less.

The PVR's on-state resistance is considerably higher, however, than that of the reed relay. But in many applications, it's of little consequence. Most process-control, multiplexing, and ATE applications involve high input impedance. The PVR's on-state resistance stays constant over the device's extremely long life. In contrast, the contact resistance of many types of reed relays varies considerably over the relay's life because of contact deterioration. Typically, the contact resistance of a reed relay rises by an order of magnitude over its lifetime.

More reliable circuits are possible because of the PVR's many solid-state advantages. In addition, by capitalizing on the relay's features, innovative designers can create smaller systems.

As shown in the above comparison, a PVR lasts more than
2. Photovoltaic relays find many applications in multiplexing circuits. In this schematic of a low-level differential multiplexer, three switch poles per channel link the signal and shield or guard to the measurement system.

10 times the number of operations of reed relays. Also, in the closed state, PVRs generate thermal voltages that are typically $1 / 5$ the level of specifically designed, expensive "low-thermal" reed relays. This directly improves the accuracy of thermocouple and similar low-level measuring systems. On top of that, PVRs can operate in less tilan $1 / 10$ the time of reed relays. Data acquisition can be rated up to 10 times faster.

In terms of input-drive power, PVRs usually require less than $1 / 10$ the signal power of reed relays for actuation. The result is direct cost savings in system power supplies, buffer amplifiers, and heat generation.

PVRs are completely insensitive to magnetic fields. In contrast, magnetic fields can affect sensitivity and even cause false actuation of reed relays. Beyond that, reeds can't be stacked too close together because they can interact with each other.

There's board space to be saved by using PVRs as well. They occupy less than $1 / 2$ the volume and footprint of compa-
rable reed relays, which can save lots of space when large relay arrays are required.

Another advantage is that PVRs require no coil diode. Because the LED input is non-inductive, a diode is never needed to suppress the inductive "kick" that can destroy a transistor driving a reed coil. Also, PVRs close fast and clean and don't bounce or arc, a problem that would induce system noise.
Finally, a PVR withstands a direct short of its load under many load conditions. Regardless of whether the short circuit occurs while the PVR is on, or if the PVR is turned on into a short circuit, the result is the same. The PVR limits the current to about 20 mA in spite of being directly connected across a $60-\mathrm{V}$ line. Chance misconnections or load failures won't damage the circuit, nor will a fuse need replacing. Shortly after relieving the fault, the circuit will once again function properly.

Though modern instrumentation systems have been designed almost entirely with solid-state components, analog multiplexer inputs have opposed this trend. Until recently, the critical performance characteristics of these switches could be met only by traditional electromechanical relays.

In multiplexing applications, the PVR and the reed relay cost about the same. But the PVR allows multiplexing systems to operate at much higher scanning rates, reduces measurement errors from thermally generated offset voltages, minimizes operating power, is more mechanically rugged, and decreases instrument board sizes. PVRs can be widely applied in multiplexing designs as replacements for reed relays, stepper switches, crossbar switches, and monolithic CMOS ICs (Fig. 2).

Analog multiplexing requires an array of switches operating individually or in groups to connect each of several signal sources to a common amplifier

Who interrupted the uninterruptible power system?

Did somebody push the wrong switch?

Was it faulty design?
Not at all. The uninterruptible power system turned out to be highly interruptible because a battery died. Scary, isn't it? You get a power system failure followed by a power backup system failure and-prestoyou're plunged into darkness. Of course, while you'll recover, your computers won't. Their memories will be gone for good.

Well, it wouldn't have happened had that battery been a Yuasa. With Yuasa, sudden death is a virtual impossibility. Its failure rate is an almost non-existent .001 .

The fact is that Yuasa is used by more UPS manufacturers than any other battery made today. No other sealed lead acid battery is more dependable or lasts longer. Our point is simple. The next time you're designing an uninterruptible power system, make sure it stays uninterruptible.
Specify the battery that
 The World Leader In Back-Up Energy. doesn't die on the job.

or measurement system. If the system's channels are selected in sequential order, the device is called a scanner. A system that can select in random order is called a multiplexer.

Many important performance characteristics can be shown in the example of an eight-channel, single-ended multiplexer that uses the PVA3354 from International Rectifier as the switching element (Fig. 3). Major characteristics of the PVA3354 include an input current of 5 mA , an offstate leakage of 0.024 $\mu \mathrm{A}$ at 240 V , turn-on time of 0.1 ms , and isolation voltage of 2500 V ac. Other specifications include blocking voltage of 300 V and an out-put-current rating at a $10-\mathrm{mA}$ input of 130 mA at $40^{\circ} \mathrm{C}$.

Leakage current, the current that flows across a PVR in the off
state, is an important PVR parameter. The ideal relay is an open circuit under these conditions. In a multiplexing system, the leakage through individual switches can be observed by turning off the logic-drive power and connecting a $200-\mathrm{V}$ supply to the multiplexer common. A voltmeter with a $10-\mathrm{M} \Omega$ input impedance connected between an input and analog ground will show the leakage current as the voltage drop across the $10-\mathrm{M} \Omega$ input impedance. Inversely, connecting all inputs to a $200-\mathrm{V}$

3. In an eight-channel multiplexer test circuit, leakage current is shown to be an important PVR characteristic. A voltmeter placed between an input and analog ground displays the leakage current as the voltage drop across the meter's $10-\mathrm{M} \Omega$ input impedance.
4. In oscilloscope photos of turn-on and turn-off for the channel under test, the "A" traces show settling to zero volts. The "B" traces show turnoff with the next channel's selection.
signal and measuring the output on the multiplexer common yields the leakage through all eight switches. Typical measurement with this method shows about 2 nA , or an average off-resistance of $10^{11} \Omega$ per channel.

With logic power applied, a binary counter and decoder sequentially scan all eight channels. A delay isn't needed between successive addresses because of the break-before-make operation of the PVR. The channel under test is connected to a $1-\mathrm{k} \Omega$, zero-volt source. The seven remaining inputs are tied to the output of a $30-\mathrm{V}$ pk-pk square-wave generator to demonstrate the effects of crosstalk and settling after extreme preconditions on the first channel. By adjusting the control cur-rent-limiting resistor, the effect of the varying control current on the switching speed is apparent. Using a square wave also shows the effects of crosstalk as a disturbance of the settled zero-voltage signal.

In superimposed oscilloscope photos of the channel under test's turn-on and turn-off, the pair of "A" traces display the settling of the channel under test to zero volts (Fig. 4). The "B" traces show the turn-off with the selection of the next channel. At turn-on, a short delay occurs before the last channel used is disconnected from the multiplexer common. The multiplexer slowly drifts toward zero until the channel under test begins to turn on, when rapid settling occurs. At turn-off, a short delay is experienced but the multiplexer common doesn't appear to move until the next channel begins to turn on. Full transition occurs in less than $50 \mu \mathrm{~s}$. The traces are taken with the diode clamp circuit connected to prevent overloading of the oscilloscope input (Fig. 4, again).

Switching speed depends heavily on control currents (Figs. 5a and 5b). Speeds that are an order of magnitude higher

Call in Heinemann circuit breakers to defend against blitzing overcurrents. From a mere 0.01 amp to a bruising 700 amps , they offer a range of ratings and features no other line of circuit breakers can match.

Choose from thermal or magnetic breakers. For consumer, commercial, industrial, marine and MIL-spec products. Or for protecting branch circuits. One-pole to six poles. Including front, rear or snap-in mounting. With the widest selection of

HEINEMANN ELECTRIC COMPANY
internal constructions for special functions such as switching, voltage trip or control of two circuits. Agency listings and approvals include UL, CSA, VDE, IEC and SEV.

For the specs on our defensive line, ask
for a copy of our "Quick Guide to Overcurrent Protection." Write or call Heinemann Electric Company, P.O. Box 6800, Lawrenceville, NJ 08648-0800 • Tel: (609) 882-4800 - FAX: (609) 882-2183.

CIRCLE 125

than a good reed switch are readily obtained with a series 74LS driver. The turn-off delay remains nearly constant until the drive-pulse width is too narrow to allow complete charging of the fast turn-off circuit, which extends the delay before turn-off occurs. Charging may be quickened with greater control current or by using an R-C circuit to speed charging while limiting the steady-state current to a nominal value.
The closed-circuit resistance of a typical photovoltaic relay is greater than that of a metallic contact. But by choosing the relay that's best suited for an application, this difference can be minimized. A bidirectional $300-$ V relay has a typical resistance of 20Ω. A typical $100-\mathrm{V}$ relay offers a $5-\Omega$ resistance. Comparable unidirectional 300 - and 100-V blocking relays reduce on-resistance by a factor of $4: 1$ or 5 and 1Ω, respectively. Although the resistance is significant, it is stable and doesn't degrade with switching. That allows for compensation in the system's design or calibration.

The maximum voltage across an open switch must be limited to less than the maximum blocking voltage or avalanche voltage. For example, if it's necessary to monitor signals on separate phases of the $120-\mathrm{V}$ ac line, a multilevel multiplexing scheme can be used to double the number of open switches between phases. This increases the maximum blocking voltage between groups to 600 V .
To achieve a low on-resistance, a solid-state switch requires a larger-area chip, which
results in greater capacitance than a metallic contact. This must be considered when evaluating crosstalk for high-frequency signals. The non-linear opencircuit capacitance of a PVR varies with drain-to-drain voltage, and can be as low as 2 pF . Larger signals or signals with dc bias reduce capacitance and result in less crosstalk.

Cascading through two switching levels also reduces crosstalk. For example, the worst-case capacitive coupling for a 64 -channel multiplexer is reduced by a ratio of $14: 63$ or 13 dB compared with a singlelevel multiplexer.

Certain applications may benefit from improved crosstalk rejection supplied by a T-switch arrangement (Fig. 6a). By attenuating the capacitively coupled switch that shorts noise (S3), a much smaller error signal can pass through the multiplexer output. The T switch should be considered where the pulse or high frequencies are to be multiplexed. The equivalent circuit can be used to calculate the worst-case crosstalk for the PVA3354 device (Fig. 6b). A model PVA3054 has about $1 / 4$ of the output capacitance.

A flying-capacitor multiplexer utilizes two pairs of switches per channel to isolate both signal and return from the measurement system (Fig. 7). This type of multiplexer is usually applied to low-level, low-frequency in-

BUD...The best in metal enclosures. Now...The new leader in plastics, too!

Now you can meet all of your plastic enclosure needs from the same source you're used to buying metal enclosures. Bud offers the most complete line of plastic enclosures in the industry along with custom fabrication services to meet your specific needs.

Bud East, Inc.
4605 East 355th Street
P.O. Box 431

Willoughby, Ohio 44094 (216) 946-3200 FAX: 216-951-4015
 Bud Industries, Inc.

Bud West, Inc.
7733 West Olive Avenue
P.O. Box 1029

Peoria, Arizona 85345-0350
(602) 979-0300

FAX: 602-878-5371

BUD...Your Single Source Enclosure Company.

■ PHOTOVOLTAIC RELAYS

puts, such as thermocouples with their high common-mode voltages. The technique offers excellent common-mode rejection and isolation of the com-mon-mode source from the measurement system. A low-pass filter ($\mathrm{R} 1, \mathrm{R} 2$, and C 1) is often
used on the input. The flying capacitor (C2) is initially charged to the signal voltage through S1 and S2.

With metallic contacts, the rapid charge transfer between capacitors results in contact pitting as the switches make initial
7. In a flying-capacitor multiplexer, two pairs of switches per channel isolate both signal and return from the measurement system. This type of multiplexer is usually applied to low-level, low-frequency inputs.

HOW VALUABLE?
HIGHLY
CIRCLE 544
MODERATELY CIRCLE 545
SLIGHTLY
CIRCLE 546

After years of putting your electronics in our cabinets, you can now look at our cabinets electronically

ow you can get the Equipto Electronics catalog on a free floppy diskette. It includes all the modular electronic cabinets and computer furniture featured in our 304 -page print version. And it runs on any IBM ${ }^{\odot}$ compatible PC.

That makes it easier than ever to use Equipto Electronics as a design resource. With the help of on-screen prompts you can, in effect, design your enclosure from thousands of options. You can even select enclosures especially engineered to provide maximum shielding effectiveness in meeting EMI/RFI, FCC, Military, TEMPEST and EMP requirements. Then, just print out the data and Fax it to us. We'll respond with your quote, usually within 48 hours.

Of course, all the extra services that Equipto customers count onincluding customer service reps, engineering consultation or Express Line 5-Day Shipping-are readily available to computer catalog users. In fact, about the only thing that has changed about the Equipto Electronics catalog is that now you can thumb through it electronically.

It all adds up to commitment A commitment by Equipto Electronics Corporation to provide the combination of quality products and quality service that helps you create the right enclosure for your project.

For your FREE copy of the Equipto Electronics diskette catalog-phone, FAX or write us today.

Equipto Electronics Corporation 351 Woodlawn Avenue
Aurora, Illinois 60506-9988
Phone (708) 897-4691
Fax (708) 897-5314

Oak puts a leader's performance in lighted products.

As the primary physical link between your product and your customers, lighted pushbutton switches and indicators are components too important to receive anything less than your full attention. That's why it's just as important to look to the leadership of Oak Switch Systems Inc. for lighted products you can depend on.

Oak has been serving the industry with a full range of lighted products for almost 50 years. Whether your application requires military qualified products or the aesthetics of commercial components, we deliver the features, selections and quality that you demand. UL recognized components are also available.

Choose from a wide range of pushbutton switches and

indicators to fit your specific requirements. Expect documented performance too. Our Marcoflex ${ }^{@} 650$ series, for example, provides wiping action, multiple point contact, true snap action, tactile feel, and high contact force-all in a standard 0.625 in . square panel opening. Add to that a demonstrated life of better than 1 million actuations, even in demanding low level switching applications.

Lighted pushbutton switches and indicators, however simple their function, still are critical components. So it makes sense to get them from a leader. Oak's 50 years of performance will make you glad you did.

Call or write us today. You can't afford not to call Oak!

ROTARY DIP SWITCHES IN SEVERAL VERSIONS

Flat, shaft, knob, and wheel-type rotary DIP switches offer 10 - to 16 -digit real-code and complement codes. The switches feature a kink-formed contact tail that makes for easy soldering that requires no cleaning.

Other features include machine-loadable extruded packaging, a 125-$\mathrm{mA}-\mathrm{at}-30-\mathrm{V}$ de contact rating, and a maximum contact resistance of 100 $\mathrm{M} \Omega$. Life expectancy is 20,000 cycles. All versions are from stock.

Interswitch
 770 Airport Blvd.
 Burlingame, CA 94010
 (415) 347-7727

- CIRCLE 654

DIP SWITCH TAKES $260^{\circ} \mathrm{C}$ REFLOW HEAT

The materials chosen for Grayhill's surface-mounted DIP switch housing, cover, and actuators withstand $260^{\circ} \mathrm{C}$. This means the switch won't suffer damage during solder-reflow portions of board assembly. The Series 90 H switch uses the company's spring and ball contact system, which ensures reliability in applications of infrequent use. Two through 10 -position versions are available, and all are sealed with tape. An eight-station switch goes for $\$ 2.20$ in lots of 100 .

Grayhill Inc.

561 Hillgrove Ave.
P.O. Box 10373

LaGrange, IL 60525-0373
(708) 354-1040

- CIRCLE 655

SEAL SHIELDS SWITCH DURING PROCESSING

A top seal on AMP Inc.'s DIP switches safeguards against the hazards of post-solder cleaning processes. The seal is about $1 / 16$-in. thick and consists of a transparent, UV-mask coating material. It withstands a five-minute soak in Freon TMS sol-

vent at $104^{\circ} \mathrm{F}$ without compromising the seal's integrity. The switches are offered in single-pole, single-throw versions and top or side actuation.

AMP Inc.

P.O. Box 3608

Harrisburg, PA 17105-3608
(800) 522-6752
-CIRCLE 656

AMP Inc.	(IL) (PC) (PU) (RK) (SA) (TG)	Arrow Hart Components	Bowmar Instrument Corp.	(515) 573-1325
P.O. Box 3608	CIRCLE 330	P.O. Box 9050	Data Entry Div.	(CO) (DP) (IL) (KB) (MB)
Harrisburg, PA 17105		Charlottesville, VA 22906	4640 126th Ave. N.	(PC) (PU) (RK) (RO) (SA)
(800) 522-6752	Annulus Technical Indus-	(804) 974-5100	Clearwater, FL 34622	(TH) (TG)
(DP) (RO) (SL)	tries	CIRCLE 336	(813) 573-2525	CIRCLE 347
CIRCLE 325	1296 Osprey Dr.		CIRCLE 342	
	Ancaster, Ontario	Ash-Lan Components Inc.		CTS Corp.
Aerospace Optics Inc.	Canada L9G 4G4	14673 Midway, Suite 118	W.H. Brady Co.	905 West Blvd. N.
3201 Sandy La.	(416) 648-8100	Dallas, TX 75244	Xymox Div.	Elkhart, IN 46514
Fort Worth, TX 76112	(DP) (PC) (SL) (SA)	(214) 851-4005	P.O. Box 571	(219) 293-7511
$\text { (817) } 451-1141$	CIRCLE 331	(IL) (KB) (KL) (MB) (PU) (SA)	Milwaukee, WI 53201	(DP) (PC) (SM) (IL) (RO)
(IL) (PU)		CIRCLE 337	(414) 355-8300	(TG) (PU) (SL)
CIRCLE 326	Arcolectric Corp.		(MB)	CIRCLE 348
	9001 Canoga Ave.	Augat	CIRCLE 343	
Airpax Co.	Canoga Park, CA 91304	Alcoswitch		(continued on p. 116)
Cambridge Div.	(818) 700-1933	1551 Osgood St.	C \& K Components	
Box 520, Woods Rd.	(IL) (PU) (RK) (SL) (TG)	North Andover, MA 01845	Unimax Inc.	KEY
Cambridge, MD 21613	CIRCLE 332	(508) 685-4371	Ives Rd.	
(301) 228-4600 (TG)	Aries Electronics Inc.	(DP) (IL) (KL) (PC) (PU) (RK) (RO) (SL) (SA) (SM)	Wallingford, CT 06492 (203) 269-8701	Switches (AC) Acceleration
CIRCLE 327	P.O. Box 130	(TH) (TG)	(IL) (KL) (PU) (SA) (TG)	(AP) Air-pressure
	Frenchtown, NJ 08825	CIRCLE 338	CIRCLE 344	(CO) Coaxial
American Electronic	(201) 996-6841			(DP) DIP
Components	CIRCLE 333	Balluff Inc.	C \& K Components Inc.	(IL) Illuminated
1010 N. Main St.		8125 Holton Dr.	15 Riverdale Ave.	(KB) Keyboard
Elkhart, IN 46515	Ark-Les Corp.	Florence, KY 41042	Newton, MA 02158	(KL) Keylock
(219) 264-1116	3400 Yonkers Rd.	(606) 727-2200	(800) 635-5936	(MB) Membrane
(PC) (PX) (TG)	Raleigh, NC 27604	(PH) (PX) (RO)	(DP) (IL) (KL) (MB) (PC)	(PC) Pc-mounted
CIRCLE 328	$\begin{aligned} & \text { (919) 828-6201 } \\ & \text { (PU) (RO) (SL) } \end{aligned}$	CIRCLE 339	(PX) (PU) (RK) (RO) (SL) (SA) (SM) (TH) (TG)	(PH) Photoelectric (PX) Proximity
American Research and Engineering	CIRCLE 334	Bergquist Co. 5300 Edina Industrial Blvd.	CIRCLE 345	(PU) Pushbutton (RK) Rocker
1500 Executive Dr.	Aromat Corp.	Minneapolis, MN 55435	C.A.M. Graphics Co. Inc.	(RO) Rotary
Elgin, IL 60123	629 Central Ave.	(612) 835-2322	15 Ranick Dr. West	(SL) Slide
(708) 888-7245	New Providence, NJ 07974	(MB)	Amityville, NY 11701	(SA) Snap-action
(DP) (SL) (SM)	(201) 464-3550	CIRCLE 340	(516) 842-3400	(ST) Stepping
CIRCLE 329	(SA)		(IL) (MB)	(SM) Surface-mounted
	CIRCLE 335	Black Box Corp.	CIRCLE 346	(TH) Thumbwheel
American Switch Corp.		Park Dr.		(TG) Toggle
134 Water St.		Lawrence, PA 15055	CRL Components Inc.	
Wakefield, MA 01880		(412) 746-6566	Switch Div.	
(617) 246-1007		(CO) (TG)	Highway 20 West	
		CIRCLE 341	Fort Dodge, IA 50501	

THE LED ALTERNATIVE TO INCANDESCENT LAMPS

DDP's packaged LEDs are designed as direct replacements for incandescent lamps. Our LEDs provide long life (averaging 10 years or more), and resistance to vibration and shock.

Cluster Features:

- Large area illuminator
- Clusters from 4 to 7 LEDs
- Candelabra \& Miniature Bases
- Assorted colors
- 5 to 110 Volts

Data Display Products

445 South Douglas Street EI Segundo, Calif. 90245-4630 (213) 640-0442, Ext. 115 Fax (213) 640-7639

CIRCLE 163

Watt's Up from Semiconductor Circuits, Inc.

Now, a DC/DC Converter Series that Delivers 3.6 Watts in a 24-Pin DIP Compatible Package

The pioneering technology leader in encapsulated power converter modules, Semiconductor Circuits, Inc., proudly offers the DPU series, with up to 3.6 watts of power in a size more typical of one watt converters.

The DPU series incorporates our extensive MOSFET design experience, for a power unit that operates cooler and more reliably than traditional designs.

With a mean time between failure exceeding 1 million hours, and

Key Features	Semiconductor Circuits, Inc.	Competitor A	Competitor B	Competitor C
Power	1.5 to 3.6 watts	1 watt	1 watt	1 watt
Package Size	$1.25 \times 0.8 \times 0.375$ inches	$1.27 \times 0.62 \times 0.4$ inches $1.25 \times 0.8 \times 0.4$ inches	$1.25 \times 0.8 \times 0.4$ inches	
Isolation	500 Vdc	500 Vdc	500 Vdc	300 Vdc
Short Circuit			Output	
Protection	Yes	Yes	Themal	Yes
Reliability (MTBF)	$>1,000,000 \mathrm{hrs}$	300,000 hrs	unpublished	unpublished

continuous short circuit protection, the DPU series is the low-cost power converter that you can rely on.
OEM power supply designers can look to the DPU series for up to 3.6 watt operation, with either single or dual output designs. Input voltage range is 4.75 to 5.25 Vdc . The DPU series incorporates an LC input filter and offers 500 Vdc of I/O isolation.
The DPU series offers designers a
exitor Competior range of output voltages: 5, 9 , 12 , and 15 , as well as ± 12 and ± 15 Vdc.
And all these features and capabilities come in a 24 -pin

[^6]
SENICONIDUROR CARCUTSINA.

SWITGH MANUFAGTURERS

Erni Components Div. of Odin

520 Southlake BIvd
Richmond, VA 23236
(804) 794-6367
(PC) (PU) (TH)
CIRCLE 379
Feme Electronics Inc. Feme SPA
661 W. Germantown
Plymouth Meeting, PA 19462
(215) 828-5711
(PC) (IL) (PU) (RO) (TH) (TG)
CIRCLE 380
Fifth Dimension Inc.
801 New York Ave.
Trenton, NJ 08638
(609) 393-8350
(AC) (PX)
CIRCLE 381
GM Nameplate Inc. Intaq Electrotouch Systems
2040 15th Ave. West
Seattle, WA 98119-2783
(206) 284-5475
(KB) (MB) (PU) (SA)
CIRCLE 382
GTE Corp
Control Devices
Route 35
Standish, ME 04084
(207) 642-4535
(ST)
CIRCLE 383
George Risk Industries
802 S. Elm St.
Kimball, NE 69145
(308) 235-4645
(PC) (IL) (KL) (PU)
CIRCLE 384
Gordon Products Inc.
67 Del Mar Dr.
Brookfield, CT 06804
(203) 775-4501
(PC) (PX)
CIRCLE 385
Gordos Corp.
1000 N. Second St.
Rogers, AR 72756
(800) 643-3500

CIRCLE 386
Grayhill Co.
561 Hillgrove Ave.
La Grange, IL 60525
(708) 354-1040
(DP) (KB) (KL) (PC) (PU)
(RO) (SA) (SM)
CIRCLE 387
Grimes Co.
115 S. Arovista Cir.
Brea, CA 92621
(714) 671-3931
(PU)
CIRCLE 388

Hall Co.

420 E. Water St.
Urbana, OH 43078
(513) 652-1376
(MB)
CIRCLE 389

Hallmark Nameplate Inc. 1717 E. Lincoln Ave. Mt. Dora, FL 32757 (904) 383-8142

CIRCLE 390
Hamlin Inc.
612 E. Lake St
Lake Mills, WI 53551
(414) 648-3000
(AC) (KB) (PC) (PX)
(PU) (SA) (SM)
CIRCLE 391

Hasco Components Inc.
247-40 Jericho Tpke. Bellerose Village, NY 11001 (516) 328-9292
(PX) (MR)
CIRCLE 392
Haydon Switch and Instrument Inc. 1500 Meriden Rd Waterbury, CT 06705 (203) 756-7441
(SA)
CIRCLE 393
Heinemann Electric Co.
Brunswick Pike
Lawrenceville, NJ 08648
(609) 882-4800
(PC) (PU) (TG)
CIRCLE 394
Hermetic Switch Inc.
P.O. Box 1325

Chickasha, OK 73018
(405) 224-4046
(PX) (MR)
CIRCLE 395
Hettinga Inc.
2123 N.W. 111th St
Des Moines, IA 50322
(515) 270-6900

CIRCLE 396
Industrial Electronic Engineers
7740 Lemona Ave.
Van Nuys, CA 91405
(818) 787-0311
(IL) (KB) (MB) (PU)
CIRCLE 397
ITT Schadow Inc.
8081 Wallace Rd.
Eden Prairie, MN 55344
(612) 934-4400
(DP) (IL) (KB) (PC) (PU)
(RK) (RO) (SM)
CIRCLE 398

ITW Switches

6615 W. Irving Park Rd. Chicago, IL 60634
(312) 282-4040
(IL) (KL) (PC) (PU)
(RK) (RO) (SL) (SA) (SM)
CIRCLE 399
IVO Industries Inc. 201 Industrial Way W. Eatontown, NJ 07724
(908) 542-5151
(PX) (TH)
CIRCLE 400
illinois Lock Co., Eastern Co
307 W. Hintz Rd.
Wheeling, IL 60090
(708) 537-1800
(IL) (KL) (RO)
CIRCLE 401
Imtronics Industries Ltd.
11930 31st Ct. N.
St. Petersburg, FL 33716
(813) 572-9010
(DP) (IL) (PC) (PU)
(RK) (RO) (SL) (TG)
CIRCLE 402
InResCo
Instrument Resistor Co.
654 Ocean Rd.
Point Pleasant, NJ 08742
(908) 223-6330
(PC)
CIRCLE 403
Inter-Market Inc.
1946 Lehigh Ave.
Glenview, IL 60025
(708) 729-5330
(SM) (IL) (PU) (TH)
CIRCLE 404
Interswitch, W.J. Purdy Co.
770 Airport Blvd.
Burlingame, CA 94010
(415) 347-8217
(DP) (RO) (TH)
CIRCLE 405
JAE Electronics Inc.
1901A E. Carnegie
Santa Ana, CA 92705
(714) 753-2600
(DP) (IL) (KL) (PU) (RO)
CIRCLE 406
Janco Corp.
3111 Winona Ave.
Burbank, CA 91504
(818) 846-1800
(PC) (PU) (RO) (ST) (TH)
CIRCLE 407
Key Tronic Corp.
P.O. Box 14687, M/S 143

Spokane, WA 99214
(509) 928-8000
(MB)
CIRCLE 408
(continued on p. 120)
Wene KEY
Switches
(AC) Acceleration
(AP) Air-pressure
(CO) Coaxial
(DP) DIP
(IL) Illuminated
(KB) Keyboard
(KL) Keylock
(MB) Membrane
(PC) Pc-mounted
(PH) Photoelectric
(PX) Proximity
(PU) Pushbutton
(RK) Rocker
(RO) Rotary
(SL) Slide
(SA) Snap-action
(ST) Stepping
(SM) Surface-mounted
(TH) Thumbwheel
(TG) Toggle

LIGHTED PUSHBUTTONS BOAST LONG LIFE

A minimum of 1 million mechanical actuations is guaranteed for the YB line of lighted pushbutton switches. The switches may be assembled in a wide variety of combinations for maximum flexibility. For example,

snap-in or bushing-mounted devices can be specified with momentary or alternate action circuits. Lamp selections include 5 -, 12 -, and 28 -V incandescents as well as LEDs. The lowprofile switches take up less than 1 in. of depth behind panels.

NKK Switches

7850 E. Gelding Dr.
Scottsdale, AZ 85260
(602) 991-0942

- CIRCLE 657

SWITCHES AND INDICATORS PRESENT MYRIAD CHOICES

The Multimec series of switches and LED indicators offers options that can be combined in countless ways to produce an attractive panel appear-

ance. The individual switch units are based on micro-switch technology and can be joined with a variety of bezels, buttons, and indicators. The switches can be either panel-mounted or soldered directly to pe boards. A foil overlay creates a clean, modern appearance. Call for pricing and availability.

> MEC A/S
> P.O. Box 26

> Industriparken 23
> DK-2750 Ballerup, Denmark
> (45) 42973366
> -CIRCLE 658

Which surface mount trimmer is right for your job?
To be sure, you need working samples. Complete specifications. Application details. So Bourns Trimpot makes it easy with its new Surface Mount Trimmer Design Kit.
Everything you need to prototype and test is in one place. Pick from over 200 surface mount trimmers in the most popular sizes, styles and resistance values. Check the specs. Verify the soldering process. All with one convenient kit . . . the industry's first.

Order your kit today from your Bourns distributor. It's the right choice.

MODULAR SWITCHES ADD PANEL ADAPTOR

A clean panel appearance is more easily achieved using the Series 61 flush-mount panel adaptor from EAO Switch Corp. The adaptor maintains the integrity of the Series 61 switches' sealing capability. The modular switching system is oil- and water-tight and chemical-resistant to IP 65 specifications. It also saves design time: All switches have the same back-of-panel depth, which allows pc-board mounting on the same plane regardless of the number of poles or switching action. The modular switching system, which features four international approvals, needs no special tools. The Series 61 panel adaptor costs $\$ 1.50$ and delivery is from stock to six weeks.

EAO Switch Corp.
198 Pepe's Farm Rd.
Milford, CT06460
(203) 877-4577
-CIRCLE 659

PROXIMITY SWITCHES SUIT CONTROL TASKS

Industrial-control functions are among the applications for a line of 12 -mm-diameter metal-sensing proximity switches. The switch is 1.3 -in long and is epoxy-cast in a threaded,

chrome-plated brass housing. It operates from 5 to 24 V dc. Sinking output, normally open or normally closed, is 100 mA . An LED indicator is included at the cable end of the switch. In lots of 1000 , the switch costs $\$ 15.90$. Small quantities are delivered from stock.

Gordon Products Inc.
 67 Del Mar Dr.
 Brookfield, CT06804
 (203) 775-4501
 - CIRCLE 660

SLIDE SWITCHES HANDLE UP TO 6 A

Several options are available when ordering power slide switches from CUI/Stack. Single-pole or doublepole, double-throw contacts are offered as are five different terminations. Contact ratings are 6 A with a resistive load at 120 V ac or 28 V dc, and 2 A with a resistive load at 250 V ac. Initial contact resistance is $10 \mathrm{M} \Omega$ maximum. Pricing ranges from $\$.95$ to $\$ 1.20$, depending on configuration and quantity (1000 pieces minimum). Delivery is in 30 days.

CUI/Stack Inc.
9640 S. W. Sunshine Ct. G-700
Beaverton, OR 97005
(503) $643-4899$

- CIRCLE 661

SWITGU ITNUFAGTURERS
LSI Jennings
970 McLaughlin Ave.
San Jose, CA 95122
(408) 292-4025
(AP) (CO) (PC)
CIRCLE 409
LVC Industries Inc.
Co-Ord Switch Div.
23 Hanse Ave.
Freeport, NY 11520
(516) 868-1900
(SL)
CIRCLE 410
Lamb Industries Inc.
P.O. Box 25110
Portland, OR 97225
(800) 824-9374
CIRCLE 411
Line Electric Products
Div. of General Electric
P.O. Box 327
Hartford, CT 06141.
(203) 659-3573
(PC) (IL) (PU) (TG)
CIRCLE 412
Lite-On USA Inc.
720 S. Hillview Dr.
Milpitas, CA 95035
(408) 946-4873
CIRCLE 413
Littelfuse-Tracor
800 E. Northwest Hwy.
Des Plaines, IL 60016
(708) 824-1188
(PU) (TG)
CIRCLE 414
Lucas Ledex Inc.
P.O. Box 427
Vandalia, OH 45377
(PL
(513) 898-3621 (IL) (KB) (KL) (PC) (PU) (RO) (ST) (SM) CIRCLE 415

Mantex Corp.

 1800 Metamora Rd. Oxford, MI 48051 (313) 628-8200 (KB) (MB) (PC) (PU) CIRCLE 416Marquardt Switches Inc. Route 20E Cazenovia, NY 13035 (315) 655-8050 (PC) (IL) (PU) (SL) (TG) CIRCLE 417

Matrix Systems Corp. 5177 N. Douglas Fir Rd Calabasas, CA 91302 (818) 992-6776 (SM) (RO) CIRCLE 418

McGill Mfg. Co. Inc.
1002 N. Campbell St. Valparaiso, IN 46383
(219) 465-2200
(IL) (TG)
CIRCLE 419
Membrane Switch \& Panel
1537G McFadden
Santa Ana, CA 92705
(714) 541-5775

CIRCLE 420
Memtron Technologies
1400 Weiss St
Frankenmuth, MI 48734
(517) 652-2656
(MB)
CIRCLE 421

Micro Switch
Div. of Honeywell Inc.

11 West Spring St.
Freeport, IL 61032
(815) 235-5731
(AP) (IL) (PH) (PX) (PU) (RK) (SA) (SM) (TG)
CIRCLE 422
Microavionics Corp.
3198 Airport Loop Dr. \#K
Costa Mesa, CA 92626
(714) 957-6904
(RO)
CIRCLE 423
Micron Instrument Corp. 50 Alexander Ct . Ronkonkoma, NY 11779 (516) 467-8000 CIRCLE 424

Minelco Inc.
Talley Industries 135 S. Main St. Thomaston, CT 06787 (203) 283-8261 (PC) (RO) (SL)
CIRCLE 425
Mini-Circuits
P.O. Box 350166

Brooklyn, NY 11235-0003
(718) $934-4500$
(PC) (SM)
CIRCLE 426
Molex Inc.
Switch Div.
2222 Wellington Ct.
Lisle, IL 60532
(708) 969-4550
(IL) (KB) (MB) (PC) (PU)
CIRCLE 427

7850 E. Gelding Dr. Scottsdale, AZ 85260 (602) 991-0942 (PC) (SM) (IL) (PU) (RO) (SL) (TG) CIRCLE 428

NMB Technologies 9730 Independence Chatsworth, CA 91311 (818) 341 -3355 CIRCLE 429

Noble USA Inc. 5450 Meadowbrook Ct. Rolling Meadows, IL 60008 (708) 364-6038 (DP) (PC) (PU) (RK) (RO) (SL) (SA) CIRCLE 430

Oak Switch Systems Inc.
100 S. Main St
Crystal Lake, IL 60014 (815) 459-5000
(IL) (KL) (PC) (PU) (RK) (RO) CIRCLE 431

Omega Engineering Inc.
1 Omega Dr.
Stamford, CT 06907
(203) 359-1660
(RO)
CIRCLE 432
Omron Electronics Inc.
1 E. Commerce Dr
Schaumburg, IL 60173
(708) 843-7900
(DP) (IL) (KB) (KL) (PC)
(PH) (PU) (RK) (RO) (SA)
(TH)
CIRCLE 433

. 050 Pitch SIMM Sockets

- Accepts SIMM modules with .010" thickness range
- Audible "snap in" feature
- User friendly insertion/withdrawal

Solderless SMT . 025" PQFP Socket

- Made for bumpered PQFP's 195
- Designed for high speed applications
- Footprint matches device

High Temp .050" PLCC Sockets

- Shock and vibration resistant 198
- Closed bottom design
- Extraction tool common for all sizes

Rugged SIMM Sockets

- 100 cycle minimum durability
- Severe shock and vibration resistant
- Design eliminates latch breakage

Customized PGA Sockets

- High density .050" interstitial
- For high speed microprocessors
- Integral decoupling capacitor reduces crosstalk

Motorola SLAM PAK .050" Socket
Custom desigrı DSP socket

- Shock and vibration resistant
- Anti-wicking bottom cover

Low Profile SMT PLCC
194

- Easy visual inspection
- Footprint same as device
- Tape and reel packaging

Ultra Low Force PGA Sockets 197

Contact Type	Insertion/Withdrawal Total (Based on 68 Pins)
Robinson Nugent Ultra-Low	$7.5 / 5.5 \mathrm{lb}$
2-finger Tulip (Stamped \& Formed)	$10.3 / 6.7 \mathrm{lb}$
6-finger Staggered	$14.8 / 8.7 \mathrm{lb}$

800-338-8152 RObinson

VARIETY OF SWITCHES FOR BOARD MOUNTING

Long life in excess of five million operations and a variety of sizes and shapes distinguish a line of switches for board-mounted applications. Designers can select from sub-miniature (6 by 6 mm) up to standard key-
board sizes (17 by 17 mm) with LED illumination available for several models. These switches mount using industry-standard pin configurations and are offered in a choice of colors. Call for samples, pricing, and availability.

Oslo Controls Inc.
 328 Industrial Ave.
 Cheshire, CT06410
 (203) 272-2794
 - CIRCLE 662

LOW-PROFILE HOOKSWITCH HANGS UP PHONES

A low-profile hookswitch fills the bill in the latest slim telephone styles. The Series 45 switch stands just 0.362 in . tall and is suited for tasks in
instrumentation, security equipment, and similar applications. Both double- and single-pole versions are available, and the double-pole version has sequential switching as standard. Three or more poles can be achieved by interlock ganging. The pc-board-mounted switch offers a choice of circuit forms and operating forces. Its silver contacts will switch up to 2 A at 250 V ac . Non-standard features include custom levers and brackets, gold contacts, and more. Call for pricing and availability.

ITW Switches

An Illinois Tool Works Co.
6615 W. Irving Park Rd.
Chicago, IL 60634
(312) 282-4040

- CIRCLE 663

SWITHI MDINUFGTURERS

Otto Controls
2 E. Main St.
Carpentersville, IL 60110
(708) 428-7171
(PC) (PU) (TG)
CIRCLE 436

Pass \& Seymour Inc.
P.O. Box 4822

Syracuse, NY 13221
(315) 468-6211
(IL) (KL) (TG)
CIRCLE 437
Preh Electronic Industries Inc.
470 E. Main St.
Lake Zurich, IL 60047-2578
(708) 438-4000
(PC) (PU) (RO) (SL)
CIRCLE 438
Pres:Air:Trol Corp.
1009 W. Boston Post Rd.
Mamaroneck, NY 10543
(914) 698-2026
(AP)
CIRCLE 439
SAIA Inc.
Burgess Switch Div.
1335 Barclay Blvd.
Buffalo Grove, IL 60089
(708) 215-9600

CIRCLE 440
Sage Laboratories Inc.
11 Huron Dr.
Natick, MA 01760-1314
(508) 653-0844
(CO) (TG)
CIRCLE 441
Satori Electric (America)
23717 Hawthorne Blvd
Torrance, CA 90505
(213) 214-1791
(DP) (PC) (SM)
(IL) (PU) (SL) (TH) (TG)
CIRCLE 442
Schurter Inc.
P.O. Box 750158

Petaluma, CA 94975-0158

CIRCLE 443
Selco Prods Co.
7580 Stage Rd.
Buena Park, CA 90621
(714) 521-8673

CIRCLE 444
Semiconductor Specialists Inc.
195 Spangler Ave.
Elmhurst, IL 60126
(708) 279-1005
(DP)
CIRCLE 445
Shallco Inc.
P.O. Box 1089

Smithfield, NC 27577
(919) 934-3135
(DP) (RO)
CIRCLE 446
Shin-Etsu Polymer America
34135 7th St.
Union City, CA 94587
(415) 475-9000
(KB) (PU)
CIRCLE 447
Shogyo International Corp.
287 Northern Blvd
Great Neck, NY 11021 (516) 466-0911
(CO) (DP) (PC) (PU)
(RK) (RO) (SL) (TG)
CIRCLE 448
SoLiCo/MEC
75 Locust St.
Hartford, CT 06114
(203) 527-3092
(IL) (KB) (PC) (PU) (SM) (TG)
CIRCLE 449
Square D Co.
Control Products Div.
Hwy. 64 East
Knightdale, NC 27545
(919) 266-8335
(AP) (CO) (IL) (KB)
(KL) (MB) (PC) (PH)
(PX) (PU) (RO) (SA)
(SM) (TG)
CIRCLE 450
Square D Co.
Data Entry Products Div.
302 3rd St. S.E.
Loveland, CO 80537
(303) 663-7337
(KB) (MB)
CIRCLE 451
Staco Switch Inc.
1139 Baker St.
Costa Mesa, CA 92626
(714) 549-3041
(PC) (SM) (IL) (PU)
CIRCLE 452
Standard Grigsby Inc.
88 North Dugan Rd.
Sugar Grove, IL 60554
(708) 556-4200
(PC) (SM) (KL) ((RO) (SL)
(MB)
CIRCLE 453
Standex Electronics
Standex International 4538 Camberwell Rd
Cincinnati, OH 45209
(513) 871-3777

CIRCLE 454
Switcheraft Inc.
5555 N. Elston Ave.
Chicago, IL 60630
(312) 792-2700
(IL) (PU) (SL) (TH) (TG)
CIRCLE 455
T Bar Inc.
A Data Switch Co.
1 Enterprise Dr.
Shelton, CT 06484
(203) 926-1801
(SM) (RO) (TG)
CIRCLE 456
Tansitor Electronics
P.O. Box 230, West Rd.

Bennington, VT 05201
(802) 442-5473
(KL)
CIRCLE 457
Teledyne Microelectronics
12964 Panama St.
Los Angeles, CA 90066
(213) 822-8229
(DP) (PC) (SM)
CIRCLE 458
Texas Instruments Materials \& Controls
34 Forest St
Attleboro, MA 02703
(508) 699-3800
(MB)
CIRCLE 459
Toko America Inc.
1250 Feehanville Dr.
Mount Prospect, IL 60056
(708) 297-0070
(DP) (KL) (PU) (RO) (MB)
CIRCLE 460
Topflight Corp.
Membrane Switch Div.
P.O. Box 2847

York, PA 17405
(800) 233-9386
(IL) (KB) (KL) (MB) (PC)
CIRCLE 461
Transco Products Inc.
1001 Flynn Rd.
Camarillo, CA 93011-6003
(805) 987-8007
(CO)
CIRCLE 462
Tricon Industries Inc. Electromechanical Div. 2325 Wisconsin Ave.
Downers Grove, IL 60515
(708) 964-2330
(PU) (SA)
CIRCLE 463
Veetronix Inc.
Reach Electronics Inc.
Box 480
Lexington, NE 68850
(308) 324-4600
(IL) (PU)
CIRCLE 464

Wabash Magnetics

55 Dupont Dr.
Providence, RI 02907
(401) 943-2686
(PC)
CIRCLE 465
Westinghouse Electric
Corp., Control Div.
P.O. Box 5715

Asheville, NC 28813
(704) 684-2381
(PC) (PU) (SL)
CIRCLE 466
Wilbrecht Electronics
346 Chester St
St. Paul, MN 55107
(612) 222-2791
(PU) (SL)
CIRCLE 467

	K:Y
Switches	
(AC)	Acceleration
(AP)	Air-pressure
(CO)	Coaxial
(DP)	DIP
(IL)	Illuminated
(KB)	Keyboard
(KL)	Keylock
(MB)	Membrane
(PC)	Pc-mounted
(PH)	Photoelectric
(PX)	Proximity
(PU)	Pushbutton
(RK)	Rocker
(RO)	Rotary
(SL)	Slide
(SA)	Snap-action
(ST)	Stepping
(SM)	Surface-mounted
(TH)	Thumbwheel
(TG)	Toggle

DOUBLE-POLE ROCKER SNAPS INTO PANELS

An attractive matte-finished rocker switch with snap-in bezel is designed for use in small appliances, power supplies, business equipment, machines, and other switch panels. Available in double- and single-throw models, the model 0825 switch fits a 1 -by- 1.25 -in. cutout and has a $1 / 4$-in. quick-disconnect terminal. UL and CSA ratings are pending at 15 A and 220 V ac, 20 A and 125 V ac , and $3 / 4$ hp and 125 to 222 V ac. VDE-rated models are also offered.

McGill Mfg. Co. Inc.

1002 N. Campbell St.
Valparaiso, IN 46383
(219) 465-2200

- CIRCLE 664

TACTILE FEEDBACK
 AIDS MEMBRANE SWITCHES

An effective and economical means of incorporating tactile feedback in membrane switches is the use of polyester domes. The domes let designers choose from three different approaches. In one, the domes can be formed directly in the graphic faceplate of the switch. Another approach forms domes in a discrete sublayer of the switch's construction, A third tack is to form domes in the top layer. The polyester domes have been tested to over 5 million actuations. Operating force ranges from 8 to 14 ozs. Switch travel is from 0.020 to 0.040 in . typical. Call for pricing and delivery.

W.H. Brady Co.
 Xymox Division
 P.O. Box 571
 Milwaukee, WI 53201-0571
 (414) 355-8300

CUSTOM REED SWITCHES IN BROAD SELECTION

Forty models ranging from the world's smallest reed switch (0.200 in glass length) to high-power models that handle 200 W are available. High-voltage switches feature dielectric capabilities up to 14 kV dc. Sixteen different single-pole, dou-ble-throw (Form C changeover) mod-
els are offered. Custom lead preparation, including bending, cutting, soldering, and more, is offered to prepare the switches for any application. Call for pricing and availability.

Hermetic Switch Inc.

Highway 92, P.O. Box 1325
Chickasha, OK 73023
(405) 224-4046

- CIRCLE 666

FULL-TRAVEL KEYBOARD MEETS MILITARY NEEDS

A standard Type 1/Class 1, full-travel military QWERTY keyboard uses IEE's modular keyswitch technology. Model 30498-05 is made up of 59 metal-housed keyswitches that are mounted on a 15.1 -by- 7.6 -by- 0.25 -in. metal base. The keyboard meets MIL-STD-810C standards as well as

specifications for emi/rfi and Tempest. The keyswitches use conduc-tive-rubber technology and are rated at over 20 million actuations. Keytravel is 5.8 mm and requires a nominal actuation force of 130 grams. In lots of 100 , the keyboard costs $\$ 1095$.

Small quantities are available in eight to 10 weeks after receipt of order.

Industrial Electronic Engineers
Planar Products Division 7740 Lemona Ave.
Van Nuys, CA 91409
(818) 787-0311, ext. 236

- CIRCLE 667

12-POLE SWITCH ROUTES 12 CHANNELS

A 12-pole, double-throw snap-action switch features gold-plated stressed elliptical contacts. The HDMP-12 switch's contact mechanism has fewer parts than conventional switches. As a result, the switch can be built into a high-density package which occupies less than $1 / 2$ in. ${ }^{2}$ with pin spacing of 0.050 in . The low $5-\mathrm{m} \Omega$ contact resistance ($20-\mathrm{m} \Omega$ maximum) is transparent to circuit operation and well suited for routing 12 digital or analog channels. The contacts are compression-indexed for reliable actuation even when they
are rarely actuated. Switch life is rated at 10,000 actuations. Two versions, one with an actuator knob and one with a screwdriver slot, cost $\$ 6.30$ each in lots of 100 .

Annulus Technical Industries Inc.

1296 Osprey Dr. P.O. Box 7407 Ancaster, Ontario, Canada L9G4G4 (416) 648-8100

- CIRCLE 668

Why engineers have relied on T T E filters for over 35 years

- Over 1,239,580 standard filters
- Custom designs at stock filter prices
- 10 day shipment guaranteed
- 72 hour prototype service is available
- Unconditional factory guarantee

Got a problem? Call our Engineering Hotline.
(206) 821-8779

America's Filter Specialist
T T E, Inc.
(206) 821-5952

Kirkland, WA
FAX: (206) 821-0992

REAY HaNTHOMREis				
AT\&T	Bivar Inc.	Electronic Specialty Div. of Elecspec		
555 Union Blvd.	4 Thomas			
Allentown, PA 18103	Irvine, CA 92718	14511 N.E. 13th Ave.		
(800) 372-2447	(714) 951-8808	Vancouver, WA 98668		
(OI) (DR) (DS) (TE)	CIRCLE 582	(206) 574-5000		
CIRCLE 571		(HS) (ML) (DR) (DS) (TD)		
	Brentek International	CIRCLE 593		
AT\&T Microelectronics	526 Windsor St.			
2525 N. 12th St.	Reading, PA 19601	Erni Components		
Box 13396	(215) 375-7200	Div. of Odin		
Reading, PA 19612	(DR) (HS) (IO) (PW) (TD)	520 Southlake Blvd.		
(215) 939-3345	CIRCLE 583	Richmond, VA 23236(804) 794-6367		
(OI)				
CIRCLE 572	CP Clare Corp. 3101 W. Pratt Ave.	(DR) (TE) CIRCLE 594		
Airpax Co.	Chicago, IL 60645			
Frederick Div.	(312) 262-7700	FR Industries Inc.		
P.O. Box 500	(AS) (DS) (DR) (MW) (PB)	Celduc		
Frederick, MD 21701	CIRCLE 584	557 Long Rd.		
(301) 663-5141		Pittsburgh, PA 15235		
(AU) (CS) (HS) (MI) (PB)	Communications Insts. Inc.	(412) 242-5903 (AS) (AU) (DS) (DR) (IO) (ML)		
(PW) (TE)	Box 520, Hwy. 74 E .			
CIRCLE 573	Fairview, NC 28730	(MW) (PB)CIRCLE 595		
	(704) 628-1711			
Allen-Bradiey Co.	(CX) (CC) (FP) (HS) (ML) (MI)	Feme Electronics Inc.		
Rockwell International	(PB) (PW) (RT) (TE)			
1201 S. Second St.	CIRCLE 585	Feme SPA		
Milwaukee, WI 53204		661 W. Germantown		
(414) 382-2000	Cornell-Dubilier	Plymouth Meeting, PA 19462		
(CS) (HD) (HS) (HF) (DS)	Sangamo Components	(215) 828-5711		
CIRCLE 574	1605 E. Rodney French Blvd.	(HD) (HS) (TE) CIRCLE 596		
	New Bedford, MA 02744			
American Electronic Components	(508) 996-8561 CIRCLE 586	Fifth Dimension Inc.		
1010 N. Main St.	CIRCLE 586	801 New York Ave.		
Elkhart, IN 46515	Coto Wabash	Trenton, NJ 08638		
(219) 264-1116	a Kearney-National Co.			
(CT) (HS) (TD)	55 Dupont Dr.	(HS) (HF) (ML) (MW) (MI)		
CIRCLE 575	Providence, RI 02907	(TE)		
	(401) 943-2686	CIRCLE 597		
American Zettler Inc.	(CX) (CS) (DR) (HS) (HF)			
75 Columbia St.	(ML) (MW) (PB) (TE) (VS)	Fujitsu Components		
Aliso Viejo, CA 92656	CIRCLE 587	of America 3330 Scott Blvd.		
(800) 854-8474				
(HD) (ML) (TE)	Cruzet Corp.	Santa Clara, CA 95054		
CIRCLE 576	2445 Midway Rd.	(408) 562-1000		
	Carrollton, TX 75006-2503	(AU) (DR) (FP) (HD) (PB)		
Amperite Co. Inc.	(214) 250-1647	(PW) (TE)		
600 Palisade Ave.	(DS) (TD)	CIRCLE 598		
Union City, NJ 07087	CIRCLE 588	(continued on p. 126)		
(CS) (HS) (TD) (VS)	Crydom Co.			
CIRCLE 577	6015 Obispo Ave. Long Beach, CA 90805			
Antex Electronics Corp.	(213) 865-3536 (ISP) (IO) (OI) (TD)	Relays		
Gardena, CA 90248	CIRCLE 589	(AS) Ac solid-state		
(213) 532-3092		(CX) Coaxial		
(CT) (HD) (CS) (HS) (HF) (OI)	Deltrol Controls	(CT) Contacto		
(ML) (DS) (TD)	Div. of Deltrol Corp.	(CC) Crystal-case		
CIRCLE 578	2745 S. 19 St.	(CS) Current-sensing		
	Milwaukee, WI 53215	(DS) Dc solid-state		
Aromat Corp.	(414) 671-6800	(DF) Differential		
629 Central Ave.	(HD) (ML) (TD)	(DR) Dry reed		
New Providence, NJ 07974	CIRCLE 590	$\begin{array}{ll}\text { (FP) } & \text { Flat-pack } \\ \text { (HD) } & \text { Heavy-duty }\end{array}$		
(201) 464-3550				
(AS) (AU) (DS) (DR) (FP)	Dionics Inc.	(HS) Hermetically sea		
(HD) (HS) (HF) (IO) (ML) (OI)	65 Rushmore St.	(HF) High-frequency		
(PB) (PW) (TE) (TD) (VS)	Westbury, NY 11590	(IO) Input/output		
CIRCLE 579	$\begin{aligned} & \text { (516) } 997-7474 \\ & \text { (AS) (DS) (HS) (MI) (OI) (PW) } \\ & \text { CIRCLE } 591 \end{aligned}$	(ML) Magnetic latching		
		(MW) Mercury-wetted ree(MI) Military/aerospace		
Augat Alcoswitch1551 Osgood St.				
				(MI) Military/aerospace (OI) Optical isolation
North Andover, MA 01845	Eaton Corp.	(PB) Pc-board		
(508) 685-4371	Aerospace \&	(PW) Power		
(PB)		(RT) Rotary		
CIRCLE 580	4201 N. 27th St.	(TE) Telephone		
	Dept. H129	(TD) Time-delay		
Automatic Timing \& Controls	Milwaukee, WI 53216 (VS) Voltage-sensing (414) 449-7487 (AS) (CT) (CS) (DS) (HD) (HS) (ML) (MI) (PW) (VS) CIRCLE 592			
201 S. Gulph Rd.				
King of Prussia, PA 19406				
(800) 441-8245				
CIRCLE 581				

FIRE-RETARDANT RELAYS STAY BOUNCE-FREE

A series of bounce-free relays encapsulated in a fire-retardant package meets the requirements of UL standard 94VO. The Series FR relays pass a needle-flame test designed to

simulate the effect of open flames on nearby components. The mercuryfilm relays, which remain bouncefree in any mounting position, are available with $250-$-, $375-$-, and $500-\mathrm{mW}$ coils at 5,12 , and 24 V dc . Relay contacts are Form A with a maximum resistance of $150 \mathrm{~m} \Omega$. Small quantities are delivered from stock. Call for pricing.

Fifth Dimension Inc.

801 New York Ave.

Trenton, NJ 08638-3982
(609) 393-8350

- CIRCLE 669

HIGH-REL RELAYS MEET MIL-R-28776

A series of hermetically sealed relays with 0.10 -in.-spaced terminals are fully qualified to MIL-R-28776/7 reliability specifications. The Series J MGST Minigrid relays feature allwelded construction, a balanced ar-

mature, a MOSFET driver, and di-ode-coil suppression. The relays are designed to operate in low- and medi-um-power switching circuits. They can switch from low levels to 1 A and feature 2 Form C contacts. List price is $\$ 43$ with delivery in 10 weeks.

Struthers-Dunn Inc.
Lambs Rd.
Pitman, NJ 08071
(609) 589-7500
-CIRCLE 670

SUBMINIATURE RELAY SUITS PC-BOARD JOBS

Dimensions of just 0.187 in . high, 0.354 in . wide, and 0.55 in . long are featured in the T series subminiature relay. The device, which is available in latching and two-coil-latching versions, meets FCC surge requirements of 1500 V and switches 1 A at $125 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$. The relay's also UL- and CSA-recognized. Mechanical life for the device's bifurcated contacts is

rated at 100 million operations. The series offers both through-hole and surface-mounted models. A fourpole version is expected later this year. Call for pricing and delivery.

Hasco Components Inc. 247-40 Jericho Tpke. Bellerose Village, NY 11001 (516) 328-9292

- CIRCLE 671

PC-BOARD RELAYS SWITCH 6 A AT 280 V

Rated at 6 A from 12 to 280 V ac , the OACM-UJ solid-state relays incorporate surface-mounted components in a molded-case design. The relays measure just 0.37 by 1.7 by 1 in . and are UL-recognized and CSA-certified. They also meet VDE requirements. The switching capacity of the devices' 1 form A output switch derates linearly in free air from 6 A at $20^{\circ} \mathrm{C}$ to 1.8 A at $80^{\circ} \mathrm{C}$. Operating from

$3-\mathrm{V}$ through $15-\mathrm{V}$ dc input voltages, the relay provides zero-voltage turnon of the load. In quantities of 500 , the relay costs $\$ 5.94$. Small quantities are delivered from stock and OEM quantities take six weeks.

Potter \& Brumfield Inc.

200 S. Richland Creek Dr.
Princeton, IN 47671-0001
(812) 386-2194

- CIRCLE 672

RELAY MINUFAOTURERS

GTE Corp
Control Devices
Route 35
Standish, ME 04084
(207) 642-4535
(TD)
CIRCLE 599
General Instrument Corp. Clare Div.
3101 W. Pratt Ave.
Chicago, IL 60645
(312) 262-7700
(CX) (CS) (DF) (HD) (HS)
(HF) (ML) (DR)
CIRCLE 600
Genicom Corp Genicom Relays
One Genicom Dr.
Waynesboro, VA 22980
(703) 949-1471
(CS) (HS) (ML) (DR)
CIRCLE 601
Gordos Corp.
1000 N. Second St.
Rogers, AR 72756
(800) 643-3500
(HD) (DR) (DS)
CIRCLE 602
Grayhill Co.
561 Hillgrove Ave.
La Grange, IL 60525
(708) 354-1040
(AS) (DS)
CIRCLE 603
Guardian Electric Mfg. Co.
1425 Lake Ave.
Woodstock, IL 60098
(815) 337-0050
(CS) (HS) (DS)
CIRCLE 604

Hamilton Standard Controls 131 Godfrey St Logansport, IN 46947 (219) 753-7521 (CT) (CS) (HD) (TD) CIRCLE 605

Hamlin Inc.
612 E. Lake St.
Lake Mills, WI 53551
(414) 648-3000
(CS) (DR) (HS) (ML) (MW)
(PB) (PW) (TE)
CIRCLE 606
Hasco Components Inc.
247-40 Jericho Tpke.
Bellerose Village, NY 11001
(516) 328-9292
(AU) (DR) (FP) (HD) (ML)
(MW) (PB) (PW) (TE) CIRCLE 607

Hermetic Switch Inc.
P.O. Box 1325

Chickasha, OK 73018
(405) 224-4046
(HS)
CIRCLE 608
Hi-G Co.
Struthers-Dunn
Lambs Rd.
Pitman, NJ 08071-0901
(609) 589-7500
(MI)

CIRCLE 609
ITT Schadow Inc.
8081 Wallace Rd.
Eden Prairie, MN 55344
(612) 934-4400
(PB) (TE)
CIRCLE 610
Idec Corp.
1213 Elko Dr
Sunnyvale, CA 94089
(408) 747-0550

CIRCLE 611
Inmark Corp.
147 W. Cedar St.
Norwalk, CT 06854
(203) 866-8474
(DS)
CIRCLE 612
International Rectifier
233 Kansas St.
El Segundo, CA 90245
(213) 772-2000
(HD) (OI) (DS) (TD)
CIRCLE 613
Kidde Inc.
Douglass Randall Div.
P.O. Box 506

Pawcatuck, CT 06379
(800) 447-6799
(CT) (CS) (DF) (HD) (HF)
(ML) (OI) (DR) (DS) (TD)

CIRCLE 614
Kilovac Corp.
P.O. Box 4422

Santa Barbara, CA 93140 (805) 684-4560
(CT) (DR) (HD) (HS) (HF)
(ML) (MI) (PB) (PW) (VS)

CIRCLE 615
LSI Jennings
970 McLaughlin Ave.
San Jose, CA 95122
(408) 292-4025
(CX) (CT) (HD) (HS) (HF)
(ML) (MI) (PB) (PW)

CIRCLE 616
Leach Corp.
Control Products Div.
6900 Orangethorpe Ave.
Buena Park, CA 90620-1386
(714) 739-0770
(DS)
CIRCLE 617
Leach Corp.
Relay Group
5915 Avalon Blvd.
Los Angeles, CA 90003
(213) 232-8221
(CT) (HD) (HS) (ML)
CIRCLE 618
Line Electric Products
Div. of General Electric P.O. Box 327

Hartford, CT 06141
(203) 659-3573
(CT) (CS) (HD) (HS) (HF)
(ML) (TE) (TD)

CIRCLE 619
Macromatic Inc.
4635 W. Lawrence Ave.
Chicago, IL 60630
(708) 291-8484
(ML) (TD)

CIRCLE 620
Magnecraft Electric Co.
1910 Techny Rd.
Northbrook, IL 60062
(708) 564-8800
(CX) (CS) (HD) (HS) (ML)
(OI) (DR) (DS) (TE) (TD)
CIRCLE 621

Master Elec. Controls

P.O. Box 25905

Los Angeles, CA 90025
(213) 452-1336
(CX) (CT) (CS) (DF) (HD)
(HS) (HF) (ML) (OI) (DR)
(DS) (TE) (TD)

CIRCLE 622

Matrix Systems Corp. 5177 N. Douglas Fir Rd. Calabasas, CA 91302
(818) 992-6776
(CX) (DS)

CIRCLE 623
Midtex Relays Inc.
Distributor Center
9-B2 Butterfield Tr.
El Paso, TX 79906
(915) 772-1061
(CS) (HS) (ML) (DR) (DS)
(TE) (TD)
CIRCLE 624
National Controls Corp.
1725 Western Dr.
West Chicago, IL 60185
(708) 231-5900

CIRCLE 625
(continued on p. 127)

	Kis
Relays	
(AS)	Ac solid-state
(AU)	Automotive
(CX)	Coaxial
(CT)	Contactors
(CC)	Crystal-case
(CS)	Current-sensing
(DS)	Dc solid-state
(DF)	Differential
(DR)	Dry reed
(FP)	Flat-pack
(HD)	Heavy-duty
(HS)	Hermetically sealed
(HF)	High-frequency
(IO)	Input/output
(ML)	Magnetic latching
(MW)	Mercury-wetted reed
(M1)	Military/aerospace
(OI)	Optical isolation
(PB)	Pc-board
(PW)	Power
(RT)	Rotary
(TE)	Telephone
(TD)	Time-delay
(VS)	Voltage-sensing

RELAY MANUFRGTURER

Nytronics Inc. Struthers-Dunn
Lambs Rd.
Pitman, NJ 08071
(609) 589-7500
(MI)

CIRCLE 626
Nytronics Inc.
Struthers-Dunn
700 Orange St.
Darlington, SC 29532
(803) 393-5421
(CT) (DR) (HD) (ML) (MW)
(PB) (TD)
CIRCLE 627
Omega Engineering Inc.
1 Omega Dr.
Stamford, CT 06907
(203) 359-1660
(ML) (DS)

CIRCLE 628
Omron Electronics Inc.
1 E. Commerce Dr.
Schaumburg, IL 60173
(708) 843-7900
(AS) (AU) (CT) (DS) (FP) (HD)
(HS) (HF) (IO) (ML) (OI) (PB)
(PW) (TE) (TD)
CIRCLE 629
Opto 22
15461 Springdale St.
Huntington Beach, CA 92647
(714) 891-5861
(OI) (DS)
CIRCLE 630
Potter \& Brumfield
A Siemens Co.
200 S. Richland Creek Dr
Princeton, IN 47671-0001
(812) 386-1000
(AS) (AU) (CT) (CC) (CS)
(DS) (DR) (FP) (HD) (HS) (IO)
(ML) (MW) (MI) (OI) (PB)
(PW) (RT) (TE) (TD) (VS)
CIRCLE 631
RLC Electronics Inc.
83 Radio Cir.
Mt. Kisco, NY 10549
(914) 241 - 1334
(CX) (ML)

CIRCLE 632
Regent Controls Inc.
39 Fanny St.
Shelton, CT 06484
(800) 243-3141
(AS) (CS) (DS) (HF) (IO) (OI)
(TD) (VS)
CIRCLE 633
SSAC Inc.
P.O. Box 1000

Baldwinsville, NY 13027
(315) 638-1300
(CT) (CS) (ML) (OI) (DS) (ML) CIRCLE 634

Schrack North America

1995 Pond Rd
Ronkonkoma, NY 11779-7209
(516) 737-0099
(CT) (HD) (ML) (TE)
CIRCLE 635

Semiconductor Specialists Inc.
195 Spangler Ave.
Elmhurst, IL 60126
(708) 279-1005
(OI) (DS)
CIRCLE 636
Shogyo International Corp. 287 Northern Blvd. Great Neck, NY 11021 (516) 466-0911 (AS) (CC) (DS) (ML) (PB) (TE)
CIRCLE 637
Solid State Electronics Corp.
18646 Parthenia St.
Northridge, CA 91324 (818) 993-8257
(DR) (DS) (TD)
CIRCLE 638
Sprecher \& Schuh
15503 W. Hardy St.
Houston, TX 77060
(713) 931-1278×207
(CT) (PB) (TD)
CIRCLE 639
Square D Co.
Control Products Div.

Hwy. 64 East

Knightdale, NC 27545
(919) 266-8335
(AU) (CT) (CS) (HD) (HS)
(ML) (PW) (TD) (VS)

CIRCLE 640

Stancor

9100 Airport Dr.
Fort Wayne, IN 46859 (219) 753-7521 (CT) (CS) (HD) (ML)
CIRCLE 641

Standex Electronics

 Standex Internationa 4538 Camberwell Rd Cincinnati, OH 45209 (513) 871-3777 (CS) (HS) (HF) (ML) (DR) CIRCLE 642Surcom Assoc. Inc.
2215 Faraday Ave., Suite A Carlsbad, CA 92008 (619) 438-4420

CIRCLE 643
T Bar Inc.
A Data Switch Co.
1 Enterprise Dr. Shelton, CT 06484 (203) 926-1801 (HS) (ML) (TE) CIRCLE 644

Techmar Corp.
2232 S. Cotner Ave.
Los Angeles, CA 90064 (213) 478-0046

CIRCLE 645
Teledyne Microelectronics 12964 Panama St.
Los Angeles, CA 90066
(213) 822-8229
(HS) (HF) (ML) (OI) (DS) (TD)
CIRCLE 646

Teledyne Relays Teledyne Inc. 12525 Daphne Ave Hawthorne, CA 90250 (213) 777-0077 (HS) (HF) (ML) (MI) (PB) CIRCLE 647

Teledyne Solid State 12525 Daphne Ave. Hawthorne, CA 90250 (213) 777-0077 (HS) (HF) (OI) (DS) CIRCLE 648

Telemecanique Inc.
2002 Bethel Rd. Westminster, MD 21157
(301) 876-2214
(CX) (CS) (HD) (HS) (ML) (OI) (DS) (TE) (TD) CIRCLE 649

Texas Instruments Materials \& Controls
34 Forest St
Attleboro, MA 02703
(508) 699-3800
(CS) (DS) (TD)
CIRCLE 650
Triridge Corp.
P.O. Box 12420

Pittsburgh, PA 15231
(412) 899-2288
(HF) (ML) (DR)
CIRCLE 651
Wabash Magnetics
55 Dupont Dr.
Providence, RI 02907
(401) 943-2686
(CS) (HF) (ML) (DR)
CIRCLE 652
Westinghouse Electric Corp. Control Div
P.O. Box 5715

Asheville, NC 28813
(704) 684-2381
(TD)
CIRCLE 653

Relays

(AS) Ac solid-state
(AU) Automotive
(CX) Coaxial
(CT) Contactors
(CC) Crystal-case
(CS) Current-sensing
(DS) Dc solid-state
(DF) Differential
(DR) Dry reed
(FP) Flat-pack
(HD) Heavy-duty
(HS) Hermetically sealed
(HF) High-frequency
(IO) Input/output
(ML) Magnetic latching
(MW) Mercury-wetted reed
(MI) Military/aerospace
(OI) Optical isolation
(PB) Pc-board
(PW) Power
(RT) Rotary
(TE) Telephone
(TD) Time-delay
(VS) Voltage-sensing
0.100-IN-GRID RELAY

IN MIL, COMMERCIAL TYPES
Military and commercial versions of the 0.100 -in-grid relay from Communications Instruments are now available. The relays are built in accordance with MIL-R-39016 specifications. The devices are hermetically sealed, double-pole double-throw types and are offered in standard

and high-sensitivity versions. Contact ratings range from low levels to 1 A . Internal diodes for coil-transient suppression are optional. Coil voltages range from 5 to 36 V dc. Pricing ranges from $\$ 13$ to $\$ 16$ in lots of 1000 depending on the particular series. Delivery is in four to six weeks from receipt of order.

Communications
Instruments Inc.
P.O. Box 520

Fairview, NC 28730
(704) 628-1711

- CIRCLE 673

10-A RELAYS ADDED TO GENERAL-PURPOSE LINE

Nine general-purpose, multicontact 10 -A relays have been added to the Series 10 (ac) and 11 (dc) octal-based plug-in relay line. Eight of the nine new devices have a push-to-test button, as indicated by a B suffix on their part numbers. One new device has an indicator lamp, as indicated by its N -suffixed part number. The Series 10 relays have operating voltages of 12 V and 120 V ac, while the Series 11 models operate from 12 and 24 V dc. Both are available in dpdt and 3pdt contact configurations. Call for pricing and delivery.

> Philips Components
> Discrete Products Div.
> 2001 W. Blue Heron Blvd.
> Riviera Beach, FL 33404
> (407) 881-3308
> - CIRCLE 674

SOLID-STATE RELAYS SWITCH 5 A ON BOARDS

Five-amp loads can be switched without a heat sink directly on pc boards by the OACM-UH solid-state relays. The switching capability of the compact devices' 1 form A contacts derates linearly from $5 \mathrm{~A}, 12$ to 280 V ac

at $25^{\circ} \mathrm{C}$ to $1.3 \mathrm{~A}, 12$ to 280 V ac at $80^{\circ} \mathrm{C}$. A dv/dt snubber network across the output protects against false triggering by restricting the rise of most voltage transients to within acceptable limits. In OEM quantities, the relay costs under $\$ 3$. Delivery is
from stock to six weeks. Potter \& Brumfield Inc. 200 S. Richland Creek Dr. Princeton, IN 47671-0001 (812) 386-2194

- CIRCLE 675

POWER RELAYS COME IN FOUR CONTACT TYPES

Four contact arrangements are available for the JW sealed power relays. The devices come in 1 form A, 1 form C, 2 form A, and 2 form C types. Nominal switching capacity is 10 A , 277 V ac , and 30 V dc for the 1 form A and 1 form C types. Capacity for the 2 form A and 2 form C relays is 5 A , 277 V ac , and 30 V dc . The compactrelays are sealed for automatic cleaning and offer coil voltages of $5,6,9$, 12 , 24, and 48 V dc. Pricing ranges from $\$ 1.16$ to $\$ 1.32$ in lots of 1000 . Delivery is from stock to 12 weeks.

A romat Corp.

629 Central Ave.
New Providence, NJ 07974
(201) 464-3550

- CIRCLE 676

MINI DPDT RELAYS

 ACCEPT CMOS DRIVE

A series of ultra-miniature, hermetically sealed dpdt relays can be driven directly from CMOS logic. The Minigrid MGAT relays are qualified to MIL-R-28776/7 and feature $0.100-\mathrm{in}$.spaced terminals. The relays' allwelded construction means high reliability and exceptional shock and vibration resistance. Switching is from low levels to 1 A using the devices' 2 form C, dpdt contacts. Standard coil resistance is available to 1560Ω. Call for pricing and delivery.

Hi-G Co.
101 Locust St.
Hartford, CT 06114
(203) 522-8600

- CIRCLE 677

MINI PC-BOARD RELAYS

 HANDLE FROM 3 TO 10 AContacts rated at 3,5 , or 10 A are available in the AZ 941 series relays from American Zettler. The UL-approved pc-board devices save space on boards and are a cost-saving alternative for many instrumentation and

advanced industrial applications. The SPDT (1 Form C) relays last up to 10 million operations and can be delivered with epoxy seals for automatic wave soldering. A sealed $5-\mathrm{V}$, 3 -A relay costs $\$.96$ in lots of 1000 . Delivery is in four to six weeks from receipt of order.

American Zettler
 75 Columbia
 Aliso Viejo, CA 92656
 (714) 831-5000

- CIRCLE 678

REED RELAYS, SWITCHES COME IN MANY TYPES

Reed relays, reed switches, solidstate relays, input-output modules, and proximity switches are available in a wide variety. Offerings include the most common relays used in telecommunications, data-processing

equipment, process control, and many other applications. Custom products are also available to satisfy specific application requirements. Call for pricing and availability.
F.R. Industries Inc.

Celduc Division
557 Long Rd.
Pittsburgh, PA 15235
(412) 242-5903
-CIRCLE 679

SENSING RELAY

 KEEPS EQUIPMENT SAFE

A low-voltage control circuit eliminates conduit to the guard-point switches in the SR552 sensing relays. Inexpensive magnetic-reed switches can be used to provide more safety for equipment operators. Multiple poles, stable pull-in sensitivity, and isolated dc electrode voltage make the relays a candidate for resistance-sensing industrial appli-

Who says nobody loves trimmer capacitors?

When it comes to high frequency applications, engineers are dazzled by Sprague-Goodman's sparkling selection of Sapphire Dielectric Pistoncaps ${ }^{\circledR}$.

There are several good reasons. These flawless gems feature very high Q at UHF frequencies, subminiature size, and 6 standard mounting styles, including surface mount . . . all with precision high resolution adjustment. The $350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ and NPO versions meet the requirements of MIL-C-14409D.
For more information, call or write for Engineering Bulletin SG-207A. We'll also send data on other trimmer capacitors for virtually every requirement.

SPRAGUE goodman

The World's Broadest Line Of Trimmer Capacitors 134 FULTON AVENUE, GARDEN CITY PARK, NY 11040-5395
TEL: 516-746-1385 • FAX: 516-746-1396• TELEX: 14-4533

CIRCLE 160

cations. Their ac-output poles can directly control $120-\mathrm{V}$ ac loads such as solenoid valves, or serve as a logic input to programmable controllers.
Call for pricing and delivery.

Regent Controls Inc.

39 Fanny St.
P.O. Box 767

Shelton, CT 06484
(800) 243-3141

- CIRCLE 680

PCB RELAY SPORTS HIGH SENSITIVITY

Some versions of the Type MQ pcboard relay are rated at $60-\mathrm{mW}$ sensitivity. The commercial-grade relay is 5 mm high, 14 mm long, and 9 mm wide. It's a double-pole, doublethrow electromechanical device designed to switch from low levels to 1 A. Latching, non-latching, and sur-face-mounted versions are available. Applications include computers,
communication equipment, security equipment, automobiles, test equipment, and more. Call for pricing and delivery information.

Communications

Instruments Inc.
P.O. Box 520

Fairview, NC 28730
(704) 628-1711
-CIRCLE 681

QUAD REED RELAY SAVES SPACE AND COST

Direct computer control of signals ranging from less to $100 \mu \mathrm{~A}$ to 30 VA is possible with the DRY5Q reed-relay output module. The unit, which is compatible with standard mounting racks and is fit for harsh industrial environments from -40 to $+85^{\circ} \mathrm{C}$. Quad outputs with separate logiclevel inputs can be configured as 1 form $A, 1$ form B, or a combination of both. Each is indicated by an LED indicator for visual output-state annunciation. In single quantities, the module goes for \$49.20.

Brentek International Inc.

526 Windsor St.
Reading, PA 19601
(215) 375-7200

- CIRCLE 682

GET 125 kV, 250 W IN A $5.25-$ IN. PANEL

High voltage, power to 250 W , and lab performance now come in a 5.25 in. package. The WR series of supplies includes three models that deliver output voltages from zero to 85 kV through zero to 125 kV . Three control-panel configurations are available: analog display, digital dis-
play, or blank for ATE applications. All versions feature full remote-control capabilities. Ripple is less than 0.1% of rated voltage at full load. Call for pricing and delivery.

Glassman High Voltage Inc.

P.O. Box 551

Whitehouse Station, NJ 08889
(201) 534-9007

- CIRCLE 683

E-T-A perfects the full feature circuit breaker in a spectacularly small size . . . 1" $x^{33 / 4} x^{1 / 2 / 2}$.

Built to the same exacting specifications as our larger full feature breakers, the Mighty Mini is a giant of versatility . . . adaptable to panel, printed circuit board, or snap-in mounting. It is ideal for protecting medical equipment, power supplies/input modules, data processing equipment, and other critical applications.

Available in ratings from 0.05 A to 10.00 A with optional shunt tap feature, the Mighty Mini is high precision, low cost, and 100\% tested and calibrated.

Write for your Free Sample today!

 CIRCUIT BREAKERS GROUP setting the pace for circuit protection[^7] © 1989 E-T-A Circuit Breakers

SMART DRIVER IC FITS AUTOMOTIVE JOBS

An octal low-side smart driver IC incorporates fault diagnostics and protection features that make it particularly suited for automotive applications. The type L9822 driver IC is designed to drive solenoids, lamps, and relays. Housed in a 15 -lead

Multiwatt power package, the device includes eight drivers, each of which can deliver up to 750 mA continuously. All eight drivers can be actuated at once. In quantities of 1000 , the L9822 driver IC costs $\$ 3.50$. Small quantities are available from stock.

SGS-Thomson Microelectronics
1000 E. Bell Rd.
Phoenix, AZ 85022
(602) 867-6100

- CIRCLE 684

SWITCHING SUPPLIES ACCEPT WIDE INPUTS

A universal input of 85 to 264 V ac can be used with the FAW series of switching power supplies. The series of low-profile supplies now includes

27 models ranging from 15 to 150 W . All models include a built-in FCC Class B, VDE0871 Class B emi filter. A power-OK logic signal is standard. The 15 -, 25 -, and 50 -W models are under 1-in. thick.

Kepco Inc.

131-38 Sanford Ave.
Flushing, NY 11414
(718)461-7000
-CIRCLE 685

FOUR-ROW DIN CONNECTORS MEET HIGH-DENSITY NEEDS

Four rows of 32 contacts each for a total of 128 contacts are contained within a series of Eurocard DIN connectors. The male version of the Type C + 1 Series 106 connectors is available with straight pins for either wave soldering or two-level wire-wrap, or with right-angle pins for wave soldering or right-angle press-fit pins. Female connectors come with straight pins for two- or three-level wire-wrap, and with two pin lengths for wave soldering.

Panduit Corp.

17301 Ridgeland Ave.
Tinley Park, IL 60477-0981
(800) 777-3300

PACKAGING PANELS FOR PS/2 ARCHITECTURE

Offered in wire-wrap and Unilayer II logic styles, a line of Micro Channel packaging panels for the IBM PS/2 architecture are available. The panels come in 16 - and 32 -bit versions designed with appropriate power and ground commitments on a $0.050-\mathrm{in}$. connector. A 32-pin D-submini connector footprint is also included on

all prototype boards. Pricing for quantities of one to four boards starts at $\$ 440.58$ for standard panels and $\$ 771.72$ for extended panels.

Augat Interconnect Products
33 Perry Ave.
Attleboro, MA 02703
(508) 222-2202

CARD-EDGE CONNECTOR CUTS BOARD PROFILES

With the FCN228 card-edge connector, designers can obtain a lower profile for board-to-board interconnections. The connector measures 0.283 in. tall and features two rows of sur-

face-mounted contacts, on $0.050-\mathrm{in}$. centers, on one side of the connector. Most other connectors use a fourrow array. Contacts are soldermounted to the top and bottom edges of the daughter board, allowing it to be plugged into the mother board in the same plane. A 26-pin configuration goes for $\$ 5.21$ in lots of 1000 . A 60 -pin version costs $\$ 9$.

Fujitsu Component of A merica 3330 Scott Blvd.
Santa Clara, CA 95054
(408) 562-1000

- CIRCLE 686

One Switch gives you all these options

ELECTRONIC DESIGN • PIPS SPECIAL EDITORIAL FEATURE • DECEMBER 13, 1990

Type MS Precision Power Film Resistors

Power Rating up to 15 Watts

- Non-Inductive Design with power ratings from 2 Watts to 15 Watts
- Select from 17 Models
- Voltage ratings from 200 V to 6 KV
- Resistance Range 20Ω to 30 Meg
- Tolerance of 1% (available to 0.1%)
- Max. Operating Temperature of $275^{\circ} \mathrm{C}$

Type MV Low Resistance Power Film Resistors

Resistance Range of 0.1Ω to 50Ω

- Non-Inductive Design with power ratings from 1.5 Watts to 10 Watts
- Select from 5 Models
- Tolerance of $1 \%, 2 \%, 5 \%$ or 10%
- Max. Operating Temperature of $275^{\circ} \mathrm{C}$

For Type MV data, circle number 140

Type MP Kool-Tab Power Film Resistors

20 Watts in the TO-220 Package

- Non-Inductive Design
- Resistance Range 1Ω to 10 K
- 20 Watts at $25^{\circ} \mathrm{C}$ Case Temperature
- Tolerance of $1 \%, 2 \%, 5 \%$ or 10%

For Type MP data, circle number 141 For Type MS data, circle number 139

High Performance Power Resistors and High Voltage Resistors with 25 year record for solving problems across

Type MG Precision High Voltage Resistors

Voltage Ratings from 600 V to 48 KV

- $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-15^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$, ref. $25^{\circ} \mathrm{C}$
- Resistance Range up to $10,000 \mathrm{Meg}$
- Select from 23 Models
- Tolerance of 1% (available to 0.1%)
- Stability of 0.5% per 1,000 hours

For Type MG data, circle number 142

Type TG Low TC Precision High Voltage Resistors

TC of $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- Resistance Range 1 Meg to $1,000 \mathrm{Meg}$
- 7 Models with Voltage Ratings from 4 KV to 48 KV
- Voltage Divider Match Sets with Ratio TC to as tight as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Tolerance of 1% (available to 0.1%)
- Stability of 0.25% per 1,000 hours

For Type TG data, circle number 143

Type MX Lab Grade
High Voltage Resistors

New Cost Efficient Design

- $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, ref. $25^{\circ} \mathrm{C}$
- Resistance Range 1 Meg to $2,000 \mathrm{Meg}$
- 7 Models with Voltage Ratings from 7.5 KV to 48 KV
- Tolerance of $1 \%, 2 \%, 5 \%$ or 10% (available to 0.1%)
- Stability of 0.5% per 1,000 hours

For Type MX data, circle number 144

More high performance resistor products from
CADDOCK
ELECTRONICS, INCORPORATED
These products are manufactured with Caddock's exclusive Micronox ${ }^{\circledR}$ or Tetrinox ${ }^{\circledR}$ Resistance Film Technologies. For your copy of the Caddock General Catalog call or write:

> Applications Engineering Caddock Electronics, Inc. 1717 Chicago Avenue Riverside, California 92507
> (714) $788-1700$
The Caddock General Catalog includes specifications on over 200 models of high performance resistor products.

MODULAR ENCLOSURES HAVE CONTEMPORARY LOOK

A contemporary squared appearance, and strong fully welded steel construction set apart the ESQ line of modular enclosures. The enclosures come in both 19- and 24 -in. panel widths and include vertical, desk, and counter height frames. Other frame types include sloped front, low silhouette, wedge, turret, and work writing-tops. To complete the enclosure system, many accessories are available.

Emcor Products

16004 th Ave. N.W.
Rochester, MN 55901
(507) 289-3371

- CIRCLE 689

MEMORY-CARD CONNECTORS BOOST RELIABILITY

A significant increase in the reliability of Star Card IC memory cards during numerous insertion and extraction cycles is promised by the DICM III interconnection system. The system has been designed into
the cards, which are a portable addon memory alternative. The connectors feature card guides which eliminate any need for additional cardguide devices and ensures correct alignment of the card. Pricing for the connector is $\$ 5.25$ in quantities of 100 and delivery is in four to six weeks.

ITT Cannon

Components Div.
1851 E. Deere Ave.
Santa Ana, CA 92705
(714) 757-8337

- CIRCLE 690

Only PLDesigner automatically generates multiple solutions for your design.
Whether you're new to PLD design or not, you'll benefit from PLDesigner's exclusive Architecture Mapping.

First enter, synthesize, and simulate your design using any combination of Minc's high-level language, schematic entry, or unique timing diagram entry. PLDesigner then automatically optimizes your design and selects the optimal device architectures, giving you solutions you may not have considered. Pick from the top ten solutions and PLDesigner will automatically
make pin assignments and, if required, automatically fit your design into multiple devices.

The intelligence of PLDesigner lets you concentrate on your design, without becoming an expert on hundreds of device architectures.

To make PLD design as easy as multiple choice, call for your free PLDesigner demo disk now.

6755 Earl Drive
Colorado Springs, CO 80918 719-590-1155 FAX 719-590-7330

HIGH-VALUE CAPACITORS FILL MILITARY VOID

An industrial equivalent of the newly created CWR12 military-style capacitors is offered in Philips Components's 49XC extended-capacitance tantalum chip series. Philips's series offers a low equivalent series

resistance at 100 kHz . Features include hot solder-dipped $(60 / 40)$ terminals and 47 standard capacitance voltage ratings as $\pm 10 \%$ or $\pm 20 \%$ tolerance product. Capacitance values range from $0.10 \mu \mathrm{~F}$ to $220 \mu \mathrm{~F}$ over the voltage range of 4 to 50 V dc . Call for pricing and availability.

Philips Components Inc. Discrete Products Div. 2001 W. Blue Heron Blvd. Riviera Beach, FL 33404 (407) 881-3308

- CIRCLE 691

LADDER NETWORKS OFFER HIGH ACCURACY

A line of thick-film R/2R ladder networks are offered in 8 bits with an accuracy of $\pm 1 / 2$ LSB over the zeroto $-70^{\circ} \mathrm{C}$ temperature range. The model 628 L networks come in standard ladder impedances of $10 \mathrm{k} \Omega / 20 \mathrm{k} \Omega$, $25 \mathrm{k} \Omega / 50 \mathrm{k} \Omega, 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$, and 100 $k \Omega / 200 \mathrm{k} \Omega$. The 16 -pin gull-wing sur-face-mounted package is 0.220 in . wide and has 60/40 tin-lead-dipped copper leads for excellent heat dissipation and corrosion resistance. Applications include low-cost DAC and

ADC circuits as well as binary attenuators. Call for pricing and availability.

Beckman Industrial Corp.

4141 Palm St.
Fullerton, CA 92635
(714) 447-2345

- CIRCLE 692

- SURFACE-MOUNT INDUCTORS IN STANDARD FOOTPRINT

Complementing an existing line of compact, high-Q surface-mounted inductors is a new series for higher inductance with a standard 1812

footprint. Twenty-four values cover the inductance range from 12 to 1000 $\mu \mathrm{H}$ with Q values up to 45 . Wraparound terminals assure troublefree soldering, and flat-top jacketing permits precise automatic placement. The inductors are available from stock and cost $\$.25$ each in lots of 10,000 .

```
Coilcraft
1102 Silver Lake Rd.
Cary, IL 60013
(708) 639-6400
```


- CIRCLE 693

TRIMMER CAPACITORS NOW IN GULL-WING STYLE

Gull-wing-leaded models have been added to the Surftrim line of surfacemounted, ceramic-dielectric trimmer capacitors. The GKG series includes seven capacitance ranges with values from 1.7 to 3 pF to 13 to 50 pF . Each corresponds with the ranges for the J-leaded models in the series. The trimmers' voltage rating is 100 V dc , and they operate from -25 to $+85^{\circ} \mathrm{C}$. A process seal protects against contamination. Call for pricing and availability.

[^8]
CATALOG DESCRIBES METRAL CONNECTORS

The Metral interconnection system, a modular connector family on a 2 -by-2-mm grid, is described in a fullline catalog. Jointly developed by AT\&T and DuPont, the system

meets next-generation system needs in telecommunications and data-processing applications. The family includes four module sizes of 4 by 6,4 by 12,4 by 24 , and 4 by 48 contacts that can be stacked end-to-end on the cardedge or backplane. Up to 456 signal I/Os can be jammed on a standard double-high Eurocard.

AT\&T Microelectronics
 Dept. 52AL300240
 555 Union Blvd.
 Allentown, PA 18103
 (800) 372-2447
 - CIRCLE 695
 RF CONNECTORS COVERED IN LARGE CATALOG

Information on rf-connector selection, theory, and application are featured in AMP's 208-page catalog \#80-570. The book details virtually all of AMP's coaxial connectors, including BNC, TNC, N, C, SHV, UHF, SMA, SMB, and SMC types. Also included are triax connectors, twinax connectors, and others. The catalog's theory and application section offers information of basic rf theory and cable and connector types. Also included is information on typical cable specs, maximum power-handling capability, and nominal-loss characteristics for cables.

AMPInc.

P.O. Box 3608

Harrisburg, PA 17105-3608
(800) 522-6752

- CIRCLE 696

MIL, AEROSPACE RELAYS DETAILED IN CATALOG

The full line of military and aerospace relays from Struthers-Dunn/ Hi-G Co. are highlighted in a 32 -page catalog. Indexes by product type and military specification help designers find the correct relay for their application. Each product is the subject of a full description of its specifica-
tions. Also featured is a selection of tracks and sockets for relays and timers. Characteristic-curve charts for eight relay series are included to aid in device selection.

Struthers-Dunn/Hi-G Co.
Lambs Rd.
Pitman, NJ 08071-0901
(609) 589-7500

- CIRCLE 697

CIRCLE 107

PRODUCTS NEWSLETTER

Ling Foreign Systems To Rear-Time OS

The OS-9 real-time operating system has been expanded to include the OS-9 Network File System (NFS). OS-9 NFS, developed by Microware Systems Corp., Des Moines, Iowa, supplies a high-level communications link between systems running OS-9 and any other system running Internet, regardless of the underlying hardware, operating system, network, or transport protocol. OS-9 NFS is also ROMable, enabling application programs, data files, and development tools to reside on remote file systems in diskless applications. NFS is a standard means of sharing file systems across a network. OS-9 also includes a new file manager called NFSRBF, which allows foreign file systems (such as Unix) to be accessed from OS-9 processes through the standard OS-9 I/O interface. OS-9 NFS is priced at $\$ 250$ and is available immediately. Full client and server source code costs $\$ 20,000$. $R N$

CIRCLE 468

Sofrware Squezzes
PLDS INTo ONE FPGA
Engineers can now quickly convert multiple programmable-logic devices (PLDs) into one field-programmable gate array (FPGA) with the Actel Logic Enhancer and Synthesizer (ALES 1). Created by Actel Corp., Sunnyvale, Calif., ALES 1 accepts PLD designs expressed in Palasm 2 source code and translates them into Actel net lists. In addition, ALES 1 also accepts Actel net-list files generated by Minc's PGADesigner. The software operates in four passes that use different algorithms designed to efficiently map logic into the Actel channeled-array architecture. Engineers can use ALES 1 to translate designs while also reducing propagation delay or maximizing device utilization. ALES 1 works with Actel's design-automation system, the Action Logic System (ALS). ALS connects to many third-party design-entry and simulation tools. ALES 1 runs on 80386 -based PCs, and Apollo and Sun workstations. The PC version, which is shipping now, costs $\$ 995$. The workstation versions cost $\$ 1495$ and will ship early next year. $L M$

CIRCLE 469

I/0 Engine Uses 0ne Slot, Frees Up VMEbus

The MVME337, the first in a family of I/O engines for the VME architecture, operates multiple I/O modules from one VME slot and standardizes I/O communications through the VME Subsystem Bus (VSB). Hailing from Motorola Inc., Tempe, Ariz., the MVME337 is based on the company's 68020 microprocessor. The engine is suited for I/O-intensive applications because it supports multiple I/O modules without taking up the customary number of slots. In addition, by using the VSB interface exclusively for I/ O data transfer, the VMEbus is freed up for other tasks. The board can be configured either at 16 MHz with 4 Mbytes of DRAM, or at 20 MHz with 1 Mbyte of DRAM. Other features include 32-bit address and data paths, a watchdog timer, and a VMEbus interrupt handler. The $20-\mathrm{MHz}$ model costs $\$ 1995$; its $16-\mathrm{MHz}$ counterpart costs $\$ 2495$. RN CIRCLE 470 motor controls running off the $120 / 240-\mathrm{V}$ ac line, the IR2110 from International Rectifier, El Segundo, Calif., now comes in a 16 -pin SOIC. The $500-\mathrm{V}$ high/low-side driver was first introduced two years ago in a DIP. With its new package, bridge-converter topologies in space/volume-sensitive products are feasible. Examples include high-density power supplies for high-performance laptop PCs, off-line peripherals, and motor controls that must be "tucked away." The SOIC chip has all of the features of the DIP version, including its high-voltage dual, independent, channel drives with floating high-side output and ground-referenced low-side output. The IC switches at greater than 500 kHz , with rise times below 20 ns , into a $500-\mathrm{pF}$ load. As a result, it's useful in power modules for high-frequency switchers. In quantities of 1000 , the IR2110S goes for $\$ 5.36$ each. Call Arnold Alderman, (213) 607-8899. FG

CIRCLE 471
Image-Processing System GOES FOR \$20,000 A true-color, fully programmable imaging system that sells for under $\$ 20,000$ is now available. The VITec-30, from VITec Inc., Plano, Tex., is the second in a family of single-board imaging computers. The first, the VITec50 , is a higher-performance model that was released earlier this year. The VITec-30 incorporates an advanced silicon design that enables true-color and gray-scale processing of digitized images. The 175-MOPS computer can function in a standalone system or as a node in a networked environment. As part of its open-system architecture, it takes advantage of available standards, such as C, Unix, X-Windows, and Motif. It's also fully compatible with the company's PICES software, which makes it possible for users to develop their own applications. The computer can hold up to 16 Mbytes of configurable DRAM and VRAM. For more information, contact Bill Morris at (214) 596-5600. $R N$

CIRCLE 472

New 5MHz Sampling A/D Converter Tops 83dB Spurious-Free Dynamic Range

Sets Dynamic Performance Standards

ADC604 is our new, complete $12-$ bit, 5 MHz sampling A/D converter. It offers designers unmatched dynamic range for spectrum analysis and digital receiver applications requiring high sampling speed. Its excellent linearity results in near 14-bit distortion performance.

Key

Specifications

- 83dB SFDR
- 68.6dB SNR
- -83 dBc THD
- -83 dBc IMD
- 12-bit Resolution
- DC - 5 MHz Sampling Rate
- $\pm 1.25 \mathrm{~V}$ Input Range
- ± 0.4 LSB DLE

More High Speed, High Performance Products

We offer a full line of linear products designed for high speed, high resolution applications. These include current-and voltage-feedback op amps, 12- to 16-bit ADCs and DACs, sample/hold amps, PC-based ADC design and test systems,
and a selection of demonstration boards to aid in product evaluation. Our new High Speed Linear Products brochure describes our line and contains valuable test and applications tips. Ask your Burr-Brown representative for a free copy, or call 1-800-548-6132 for immediate assistance.
Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734 USA

Figure 1

Typically, an A/D's spurious signal levels show a variation with input signal power. Swept-Power testing demonstrates that these spurs remain at levels acceptable over the complete range of input signal amplitudes. The test measures "worst-case" spurious signal levels as the input is decreased in very small increments from an over-driven amplitude to near the ADC noise level.

To find the best value in connectors, choose the company offering the most valuable connections: Fujitsu Component of America.
Form a working partnership with Fujitsu and you'll get more than just the industry's largest selection of highdensity high-performance connectors. You'll also receive

PCs, nobody makes more connectors to fill more needs than Fujitsu. Just look at our newest series:

- 210 Series. Down-sized connectors that use 40% less space.
- 220 Series. Card-edge connectors that fit reduced heights and board sizes. $\bullet 230$ Series. Cable-to-board and board-toboard connectors that meet SCSI II, RS-232, and IPI the valuable extra services that come from being well connected.

Like our advanced design expertise. Years of experience creating connectors for our own products have made us the industry's foremost real estate expert in maximizing today's smaller system boards.

Product Selection Guide			
Series	Contacts	Current (ADC)	Part Nos.
FCN-210	30 to 120	2 (IDC:0.5)	$\begin{aligned} & \text { FCN-215QXXX-G/O } \\ & \text { FCN-217JXXX-G/0 } \end{aligned}$
$\begin{aligned} & \hline \text { FCN- } 220 \\ & \text { Card edge } \end{aligned}$	30 to 120 (S-type: 112 to 187)	2	$\begin{gathered} \text { FCN-225JXXX-G/0 } \\ \text { FCN-228JOXX-G/0-01 } \end{gathered}$
FCN-230	34 to 68	2 (IDC: 1)	$\begin{aligned} & \text { FCN-235DXXX-G/E } \\ & \text { FCN-237RXXX-G/F } \end{aligned}$
$\begin{aligned} & \hline \text { FCN- } 560 \\ & \text { Mem card } \\ & \hline \end{aligned}$	68	$\begin{gathered} \mathrm{L}: 2 \\ \mathrm{E}, \mathrm{G}, \mathrm{~F}: 1 \end{gathered}$	FCN-565P038-G/0 FCN-565P068-G/X
FCN-790 Low profile	10 to 40	1	FCN-794POXX-L/O FCN-795POXX-L/0 FCN-797POXX-L/O

The standard bearers.

Today, Fujitsu can connect you with a full line of connectors that meet SCSI, RS-232, and IPI standards. Making our products an easy fit with your existing systems as well as your next generation of designs.

The power of choice.

When it comes to today's smaller

FUJITSU

Every step of the way. ${ }^{\text {sw }}$

Make the connection.

Talk to Fujitsu yourself. Inside California, call 1-800-441-2345 and ask for ext. 238. Outside CA, call 1-800-556-1234, and ask for ext. 238. And find out how our connectors can improve your connections, every step of the way.

CONTROL NETWORK KEEPS N0DES SIMPLE

> Multifunction Node Control Chips And A Rugged, Robust Protocol Let A Local Operating Network Offer Flexible, LowCost Control.

Dave Bursky

When designers think of networks, the main question that comes to mind is "what's the throughput?" That's because most networks are intended to transfer thousands of bytes of data from one point to another at multi-megabit rates. However, in control systems, the amount of data moving from one place to another during any one transfer is often minimal-a few bytes to control a machine, one word to turn off an indicator, and so on. As a result, control networks needn't be extremely fast. But they must be robust, flexible, easy to use, and low cost to meet the needs of most industrial and consumer applications.

Taking all of those requirements into account, Echelon undertook a twoyear project with Motorola Inc. and Toshiba Ltd. to develop a technology that allows designers to implement what it calls a local operating network (LON). Echelon's technology to implement LONs-LONworks-consists of chips, development tools, and hardware aids. The LON consists of intelligent devices that are represented by nodes, interconnected by one or more types of communication media, and share a common, message-based communication protocol. Nodes can be further defined as objects programmed to respond to their environment, including messages from other nodes. Then they can take appropriate actions in response. Such actions include sending messages to other nodes.
That definition sounds very similar to that of a local-area network because it shares many features, such as multivendor interoperability, open technology standard, modularity and configurability, predictable performance, and good overall system reliability. However, there are some differences. LANs

MULTIPLE LONS can be interconnected through routers or gateways to form large control networks. Nodes can be addressed
individually, in subnet groupings, in groups formed by individual nodes on multiple subnets, or as a domain formed from multiple subnets.

LOCAL OPERATING NETWORKS

are designed for transferring larger blocks of data, and raw throughput is typically defined in megabits/s. In contrast, LONs are designed to support sense and control functions, and performance is usually measured in the number of completed transactions/s and response time.

To bring the LONs to reality, Echelon defined several chips and a robust yet flexible communication protocol. It also created an easy-to-use set of network setup and development tools. At the heart of each node resides one of two Echelon-defined Neuron single-chip devices. Each chip offers communications, control, and I/O processing. The first two Neuron processors are jointly defined by Echelon with Motorola and Toshiba-the companies that will actually manufacture the chips and offer them on the open market. Typically, each Neuron chip is accompanied by a media-interface transceiver. Media interfaces have been defined for twisted-pair wiring, pow-er-line wiring, and for short-range rf (under 10 m). More are planned for infrared light, fiber-optic cables, and other media.

Data rates over twisted-pair wiring can go up to 1.25 Mbits/s. Shortdistance rf delivers $5 \mathrm{kbits} / \mathrm{s}$, and the power-line scheme permits up to 10 kbits/s. Over twisted-pair wiring, the $1.25-\mathrm{Mbit} / \mathrm{s}$ data rate translates to over 500 completed transactions/ s. For applications that require a maximum allowable delay to be specified, a Priority feature in the protocol assures that the highest-priority node is guaranteed access to the medium as soon as any message in progress is completed.

LONs can thus find a home in a wide range of applications, including lighting control on the shop floor or in the office; lighting, temperature, security and watering control in the home; and door closure, security, speed, fuel-level, dashboard, and other sensing applications in a vehicle. The ultimate simplistic network, the LON would let someone purchase a number of intelligent switches and appliances or lighting fixtures, either preprogrammed or configurable, and then just stick them
where they're needed with no additional cabling. The programmed light switch will send its message over the LON to turn on or off a specific light or group of lights, or control a specific machine or appliance.

A formal, patented, protocol definition has been set forth so that any licensed manufacturer can create subsystems or chips that are able to communicate with the LON. The first two manufacturers in this group are Motorola and Toshiba. The LONtalk protocol conforms to the Open Systems Interconnection reference model for communication protocols and includes various access levels to meet specialized needs.

High system reliability can be assured because the protocol supports end-to-end acknowledgements with automatic retries to ensure that a message gets through. In the Request/Response mode, the node that receives a request confirms that it took the requested action when it sends back a reply. The reply can also contain new data.

The Basic Processor

The primary component in the LON is the Neuron chip, which is essentially a triple 8 -bit CMOS microprocessor. In addition to the triple CPUs, the Neuron chips contain electrically erasable memory and analog circuitry. The three processor blocks on the chip include a media-access control processor, a network processor, and an applications processor.

Additional chip circuitry implements 11 individually configurable digital I/O pins, clock-division logic, one or two programmable 16-bit counter-timers, wake-up circuitry, watchdog timers, and other housekeeping circuitry. A service pin on the chip is used when the chip is installed in the network. A 5-line LON interface connects to either a LON media transceiver or through an interface to baseband media, such as twisted-pair wiring.

Two versions of the Neuron processor are defined: the 3120 with 512 bytes of EEPROM, 1024 bytes of RAM, and 10 kbytes of ROM; and the 3150 with the same 512 bytes of EEPROM, no ROM, an additional 1024
bytes of RAM, and a second 16 -bit counter-timer. The 3120 is intended for simple nodes where low power, size and cost are most critical; the 3150 handles more complex tasks and can address up to 64 kbytes of external memory. Each Neuron chip has a unique 48 -bit node identifier code irreversibly programmed into six of the EEPROM bytes.

When running at its top clock speed of 10 MHz , the Neuron processor draws about 25 to 30 mA from a 5 V supply. That power level basically scales linearly downward as the clock speed decreases. Using the software-controlled power-down and hardware wakeup features, many applications can leave the chip in a low-power state for 90 to 99% of the time. During that time, the processor is inactive and draws just a few microwatts; if battery powered, the node's battery could last for a couple of years.

To ensure that the Neuron processor's internal timing characteristics remain unchanged as the external clock frequency is set (from 10 MHz down to 612.5 kHz in factors of 2), internal logic corrects all timing relationships. When the desired frequency is programmed into the chip, all internal clocks are retimed to ensure that the communications protocol stays unchanged, and all counter and bus interface signals are generated at the proper time. The protocol's maximum data rate is typically a factor of eight lower than the clock frequency.

The Neuron processor supplies each node with intelligence to react to local conditions, communicate in a peer-to-peer fashion with any other node, and connect to a diverse set of application-specific sense and control elements using a flexible, multifunction 11-line interface port. The on-chip ROM of the 3120 contains the LON protocol communications software, an event-driven executive, a library of built-in application I/O functions, and arithmetic, logical, conversion, and other applicationroutine libraries. The firmware is designed to keep programs short and is also designed to simplify the programming of the Neuron processor

New Possibilities Across a Wider Range- 100 Hz to 32 GHz

The MS2802A Microwave Spectrum Analyzer opens up new potential for accurate, stable frequency and level measurements. The MS2802A's expanded range covers 100 Hz to 32 GHz . Plus, a fully synthesized local oscillator and automatic level calibration function assure high performance. That means better frequency resolution, reduced sideband noise and improved frequency response.

It's also the clear choice when you need to analyze dig-
ital communications or radar. We've added new display modes-foreground/background and time display-along with burst waveform spectrum analysis.

And, for external, automated and memory control, two GPIB interfaces, a PTA (Personal Test Automation) function, and a PMC (Plug-in Memory Card) come standard. All of this makes it easy to construct software applications and ATE systems.

Features

- Frequency range: 100 Hz to 32 GHz , expandable up to 325 GHz when using the external mixer
- Sideband noise: $-103 \mathrm{dBc} / \mathrm{Hz}(4 \mathrm{GHz}, 10 \mathrm{kHz}$ offset)
- Measurement range: -135 to +30 dBm , with ± 1.1 to $\pm 2.6 \mathrm{~dB}$ accuracy
- Resolution bandwidth: 10 Hz to 3 MHz (3dB)
- Plug-in Memory Cards
- Burst Signal Spectrum Analysis

QUALTY SOLUTIONS FROM THE BOARD UP

For demanding electrical/ electronic design challenges you require products that provide a solid foundation-and the flexibility to grow in new directions.

Ryton ${ }^{\circledR}$ PPS sets the industry standard in electrical/electronic applications. As a foundation, it offers: inherent flame retardance ...outstanding chemical resistance. . .excellent temperature resistance....low moisture absorption. Plus, Ryton ${ }^{\circledR}$ PPS goes beyond the basics:

LOCAL OPERATING NETWORKS

for network applications.
LON-based systems can be as simple as several devices interconnected within a room, or as complex as a multi-site facility with multiple subnetworks interconnected with routers and gateways (see the figure). Nodes can address another node, an entire subnet of nodes, a grouping of nodes across multiple subnets, or a domain consisting of multiple subnets interconnected with routers. Up to 32,000 nodes can exist in a single LON domain, including nodes on different media. Up to 255 subnets can exist within a domain, and as many as 127 nodes in each subnet. Multiple domains can also be tied together, making possible networks of arbitrarily large sizes. In the special request/response mode, when the response is requested, up to 63 members of a group can respond, while if a group can go unacknowledged, all of the domain nodes can respond.

For software and network development, Echelon decided to first enhance the Clanguage with some constructs that simplify the creation of networks and I/O device management. Added to the draft ANSI C standard are the following: a new class of data defined as Network Variables (to simplify data sharing between nodes), a new "When" statement type (to introduce events and define temporal ordering), a new set of I/O data types (to simplify and standardize multifunctional I/O), and support for explicit-message transactions (for complex applica-tion-task interactions).

By using the Network Variables, designers don't have to worry about low-level communication details. In the LONworks operating system, nodes are objects linked together by network variable inputs and outputs. This object-oriented approach simplifies network and node design, making it possible for nodes to be used in many applications.

Along with the enhanced C programming language, Echelon created some additional tools-the LONbuilder's developer's workbench. LONbuilders is a development system based on an IBM PC/AT or compatible that includes an integrated
set of software and hardware tools. The tools are tightly integrated with the LONtalk protocol, and directly support the LONworks operating system. Developers can thus program, test, and debug nodes and networks using object-oriented programming concepts. A hardware emulator, single-board computer, and media-interface modules will be available for prototyping entire systems.

A key element of LONbuilder is the network-management software, which enables designers or network managers to assign node addresses, specify multicast message groups, modify communication speeds, and define routers and bridges. The software also includes a protocol analyzer that lets designers view node communication statistics, or selectively monitor, collect, and display net-work-traffic data. During system development, the software also helps debug the system by permitting designers to interact with nodes and observe the response from one or more nodes. The software can also download applications into the node memories over the network. \square

Price And Availability

Samples of the 3150 Neuron processors will be available next quarter from Motorola and Toshiba, and will sell for less than $\$ 10$. The ROM-based 3120 is expected to be released in the second half of 1991. The me-dia-interface transceivers will first be available as evaluation units to be used with the LONbuilder for the short-distance rflink and the twisted-pair media. A LONbuilder starter kit contains the IBMPC/ATor compatible interface card, a sev-en-slot development system with control processor, two LONbuilder emulators, and complete node hardware and software. It sells for $\$ 14,965$. Volume production of the Neuron chips will start in the second half of 1991.

Echelon Systems Corp., 4015 Miranda Ave., Palo Alto, CA 94304; Richard Kagan, (415) 855-7400. CIRCLE 512

Motorola Inc., MOS-Digital Analog Div., 3501 Ed Bluestein Blvd., Austin, TX 78721; Ron Katchinoski, (512) 928-6888.

CIRCLE 513
Toshiba America Inc., Electronic Components, 9775 Toledo Way, Irvine, CA 92718; Jerry Goestch, (714) 455-2283.

CIRCLE 514
How Valuable?
Circle
Highly
550
MODERATELY 551
SLIGHTLY $0.5^{\prime \prime}$ ht., up to 55 Watts

- Input Voltage 90 to 130 VAC ($47 / 440 \mathrm{~Hz}$)
- Single, Dual, Triple Outputs
- 1200V Rms Isolation
- Low Isolation Capacity Available
- Continuous Short Circuit Protection
- High Efficiency
- Fully Regulated Voltage Outputs
- Operating Temperature $-25^{\circ} \mathrm{C}$. to $+70^{\circ} \mathrm{C}$. with No Heat Sink or Electrical Derating Required
- Expanded Operating Temperature Available $\left(-55^{\circ} \mathrm{C}\right.$. to $+85^{\circ} \mathrm{C}$. ambient)
- Optional Environmental Screening Available

PICO manufactures complete lines of Transformers, Inductors, DC-DC Converters and AC-DC Power Supplies

453 N. MacQuesten Pkwy. Mt. Vernon, N. Y. 10552
Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514

10-W Switching Regulator IC Runs 0ff 220-V LINE

A 3-W, 115-V, Off-Line SWITCHING-REGULATOR IC Expands To A Family With 20-W, 115-V And 10-W, 220-V Members.

Frank Goodenough

ew semiconductor chips come and go, but seldom does the first IC of a new design become a six-member family in less than a year. Such an achievement is particularly unlikely if each new IC device offers additional performance or a different function. However, that's exactly what Power Integrations has done with their highvoltage off-line switching-regulator-IC technology.

The company's first device was the PWR-SMP3, an IC that can be used to build 3-W switching power supplies that run off the rectified-filtered $115-\mathrm{V}$ ac line (ELECTRONIC DESIGN, March 22, p. 35). That first chip has evolved into a six-member family consisting of five switching regulators and a switching-regulator controller (see the table). Voltage and power-handling performance have increased to 10 W off of a $220-\mathrm{V}$ ac line with the PWR-SMP210, 20 W off of a $115-\mathrm{V}$ ac line with the PWR-SMP120, and 20 W off of a $220-\mathrm{V}$ ac line (by adding an external 800-V MOSFET) with the PWR-SMP520.

The basic control circuitry for the chips remains con-

MCHETOLTAGE
SWITGUIMG-REAULATOR/GONTROLLER IGS

Model	Power (W)	Input voltage (V)	Price (1000s)
PWR-SMP3 regulator	3	$\begin{aligned} & 36-200 \\ & \text { (rectified } \\ & 115-\mathrm{V} \text { ac line) } \end{aligned}$	\$1.93
PWR-SMP400 regulator	5	$30-100$ (48-V telecom)	\$2.97
PWR-SMP110 regulator	10	$\begin{aligned} & 36-200 \\ & \text { (rectified } \\ & 115-\mathrm{V} \text { ac line) } \end{aligned}$	\$2.36
PWR-SMP120 regulator	20	$\begin{aligned} & 36-200 \\ & \text { (rectified } \\ & 115-\mathrm{V} \text { ac line) } \end{aligned}$	\$2.63
PWR-SMP210 regulator	10	$\begin{aligned} & 72-400 \\ & \text { (rectified } \\ & 220-\mathrm{V} \text { ac line) } \end{aligned}$	\$3.85
PWR-SMP520 controller	20	$72-400$ (rectified 220-V ac line; needs external 800-V DMOSFET)	\$1.75

With the exception of the PWR-SMP520 controller, these devices are complete voltage-mode pulse-width-modulated switching regulators. They contain a controller and an nchannel MOSFET switch. The controller IC, a handful of passive parts, and a few diodes builds a complete $1-\mathrm{MHz}$ switching power supply. Though optimized for a flyback topology, the ICs can employ other architectures.

These chips aren't "minimum" design PWM ICs. They incorporate the functional and self-protection features expected of today's switching regulators. Functional features include an on-chip bandgap voltage reference and a selfcontained clock needing no external parts. The chips operate directly from the line at power-up time. They switch over to low-voltage bootstrap power, from the inductor's feedback winding, once the circuit is running.

The switching-regulator chips typically operate with clock oscillators whose frequency is 800 kHz . On all devices except for the original SMP3, however, connecting a capacitor to pin 8 sets the frequency to as low as 100 kHz .
Self-protection features include thermal shutdown, programmable overvoltage and undervoltage lockout, and cur-

OFF-LINE SWITCHING-REGULATOR ICS

rent limiting. Current limiting is simplified because the MOSFET switch is a senseFET.

The SMP210, with double the voltage rating of the other ICs, is technologically the most significant. Operating from dc inputs between 72 and 400 V , it's designed for use in products expected to have worldwide distribution. It can run off rectified U.S., European, or Asian power lines-if those lines are within their specified minimum and maximum voltage range. Absolute maximum drain voltage of the SMP210 is 800 V .
The rest of the regulators, except for the SMP400, are designed to operate off the rectified $115-\mathrm{V}$ ac line with dc inputs between 36 and 200 V . The $5-\mathrm{W}$

WITH AN EXTERNAL 800-V DMOSFET, the PWR-SMP520 switching-regulator controller IC can supply 20 W of regulated power from a 220 V ac line.

SMP400 aims at 48 -V telecommunications applications, handling input voltages between 30 and 100 V . Its on-resistance is typically just 4Ω, while those of the SMP3 and SMP210 are 14 and 25Ω, respectively. Typical on-resistance of the 20 -W SMP120 is also 4Ω.

Off-line power supplies for a wide range of portable and main/batterypowered products represent major applications. The applications range from modems, monitors, and computer peripherals, to laptop computers. They include laboratory and medical instruments, and as regula-tor-IC prices drop, even some consumer items.

Cascode Control

The PWR-SMP520 supplies up to 20 W of regulated power from the rectified $220-\mathrm{V}$ ac line. Its internal circuit is identical to that of its SMP regulator kin. As a result, unlike the common PWM controllers that drive the base or gate of their power switch, it operates in a cascode, or
common-gate, mode. The drain of the internal FET switch is connected to the source of the external FET (see the figure). The controller provides a fixed bias for the $800-\mathrm{V}$ DMOSFET (such as a BUZ78), while its low onresistance $(16-\Omega) 120-\mathrm{V}$ internal FET switches the source of the high-voltage FET by pulling it negative with respect to the gate. The technique is used with bipolar transistors, in high-voltage supplies, to combine their high-voltage standoff capability and low forward drop, with MOSFET speed.

At power-up, the external FET is biased to turn on from the primary side of the transformer through pin 1. Once gate voltage is available, the FET supplies current from its source, also through pin 1, to the linear bias regulator within the SMP350. Then it charges the bypass capacitor connected to the external FET's gate. When sufficient voltage is available, the PWM control circuit begins an orderly startup and the in-
ternal FET begins to switch the external FET. In addition to high-voltage, high-speed operation, the technique eliminates the need for a highvoltage gate-drive supply and offers overcurrent protection (all of the current flows through the currentlimited internal switch).

Price And Availability

All five PWR-SMP switching-regulator ICs, and the PWR-SMP520 controller, are contained in 16-pin plastic power DIPs (sometimes called "batwings"). The the center pair of pins on each side (pins 4, 5, 12, and 13) are connected together and to the die mounting pad of the leadframe for maximum heat transfer to the copper foil of the pc board. The devices are rated for operation from 0 to $70^{\circ} \mathrm{C}$. Pricing is shown in the table.
Power Integrations Inc., 111 Clyde Ave., Mountain View, CA 94043; Doyle Slack, (415) 960-3572.

CIRCLE 515

How Valuable? Circle
Highly
553
Moderately 554
SLIGHTLY

Put Lablindows to Your leet

INSTRUMENTATION La bl ${ }^{\text {Lind }}$
Data Acquermo

$$
\begin{aligned}
& \text { developmendard Microsoft } \\
& \text { control. } \\
& \text { cont tools for do ink }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Real Time Plots } \\
& \text { Printer and Plotter Charts } \\
& \text { Output }
\end{aligned}
$$

$$
\begin{aligned}
& \text { control. }
\end{aligned}
$$

rs for prom

RS-232 instruments for over 100 GPIB, VXI, and
D Integrated support for plug-in data acquisition boards.
$\checkmark \square$ Powerful analysis library for real-time data processing.
$\square \square$ Extensive graphics library for creating full-color displays.

$$
\begin{aligned}
& \text { on printers and plotters. } \\
& \text { code for creating full-color displays. } \\
& \text { developmeration and debugging tools for faster program } \\
& \text { Software development tools for production test and ATE } \\
& \text { systems. } \\
& \text { LabWindows...making industry standard }
\end{aligned}
$$ programming languages work for you in data acquisition and instrument control.

National Instruments Italy (02) 48301892 National Instruments France (1) 48653370 National Instruments Switzerland (056) 821827

HANDHELD 16-CHANNEL L0GIC ANALYZER WORKS T0 50 MHz

The Logic Boy is the first fullfeatured handheld logic analyzer. The instrument runs at 50 MHz on all 16 channels, and its size (4 by 7.6 by 1.8 in .), weight (21 oz. .), and keyboard layout let users hold and operate it with one hand.
The analyzer performs state and tim-

ing analysis and is compatible with TTL and CMOS logic levels. Features include a 1 -kword by 16 -bit capture and reference memory, four-level combinatorial event sequencing, synchronous and asynchronous clocking, a clock qualifier, and programmable trigger delay. The system setups and reference memory are nonvolatile. An IBM-compatible printer port is standard. With the unit's BNC trigger output terminal, the Logic Boy can operate as a 16bit, four-level word recognizer when connected to the external trigger input of most oscilloscopes.
The analyzer's twist liquid-crystal display holds 12 channels of acquisition or reference timing waveforms, and a scroll feature lets users view the rest. The display shows differences between the acquisition and reference waveforms in reverse-field for easy analysis. Delta-time measurements are made automatically and updated with a cursor. Instrument setup is made easier by menus that prompt users.
The Logic Boy is available from stock with probes, ac adapter, IBM printer cable adapter, and NiCd batteries for $\$ 1795$.

Trace-Tek Instruments Inc., 1301 N .
Denton Dr., Suite 204, Carrollton,
TX 75006; (214) 446-9906. CHBCIE 700 JOHN NOVELLINO

E-Beam Prober Creates $0.1-\mu \mathrm{M}, 1$-NA BEAM

The E1340 submicron e-beam probe station creates bright, sharp images by generating a $0.1-\mu \mathrm{m}$ probe beam with more than $1-\mathrm{nA}$ beam current at $1-\mathrm{keV}$ of beam energy. The system, used for noncontact probing and measurement of submicron and multilayer devices, features a new automatic CAD navigation package. The software streamlines and automates the preparation of design data needed by the probe station. By incorporating library routines into the typical tape-out process, the package translates device design data without additional layout and schematic comparisons. The E1340 can be directly docked to ATE systems for various cavity-up, as well as cavity-down, packaging. Two base personality modules handle all package types.
Advantest America Inc., 300 Knights-
bridge Pkwy., Lincolnshire, IL 60069;
(708) 634-2552. GIGGIF 701

BOUNDARY SCAN SOFTWARE TESTS ICS

Designed in conformance with the IEEE 1149.1 boundary-scan architecture, the Tapdance software package detects potential flaws in IC designs. Using Tapdance, engineers can access and test individual components on circuit boards from the board's edge connector. The software accepts manually entered IC-design parameters through an interactive system of menus and help screens. It then generates an optimized sequence of test vectors to rigorously test the circuit design. Various standard output options enhance readability and simplify the user interface. The licensing fee for Tapdance is $\$ 5000$ per CPU. The first-year maintenance fee of $\$ 750$ includes point-release upgrades and telephone support.

AT\&T Intellectual Product Div., 10 Independence Blvd., Warren, NJ 07059 . 0911; (800) 462-8146 or (201) 5806229. GIBGIF 704

DEVICE PROGRAMMERS AVOID GROUND BOUNCE

Now incorporated in the Turpro Series IC programmers is a new hardware technology called Turbo-Mapping, which improves programming and testing of fast CMOS devices. A TurboMapping ASIC in the programmers switches the device inputs one at a time with nanosecond speed. This technique cuts noise levels, including those caused by ground bounce and $V_{C C}$ over or undershoot. The Turpro-1 is a PCbased universal programmer with 40 pin DIP capability for all programmable memory and logic devices. The Tur-pro-832 handles EEPROMs and flash EPROMs from 4-kbits to 8-Mbits in 24 to 32 -pin packages. The Turpro-1 costs from $\$ 1450$ to $\$ 2450$, depending on the device support selected. The Turpro832 costs $\$ 1950$, an optional 8 -Mbit RAM board goes for $\$ 500$, and a PLCC adapter costs $\$ 1495$.
System General Corp., 244 S. Hillview
Dr., Milpitas, CA 95035; (408) 263 -
6667. CHBGIF 703

SCSIBUS ANALYZER DOES FAST TRACING, EMULATION

The DSC-202 STE is a standalone, nonintrusive SCSIbus tracer/analyzer. The instrument incorporates an NCR 53 C 700 SCSI processor that makes it possible to emulate a SCSI host or target at up to 6 Mbytes/second in synchronous and 5 Mbytes/second in asynchronous operation. The analyzer's tracing mode has been tested to over 10 Mbytes/second. Either a dumb terminal or an IBM PC-compatible host computer can control the DSC-202 STE. Trace memory capacity is 128 kbits by 7 bytes with event-driven recording. Time-stamp resolution is 40 ns , and test routines are programmable in C. The analyzer permits pre-, post-, center, or external triggering.

Ancot Corp., Mid-Peninsula Business
Park, 1755 E. Bayshore Rd., Suite 18A,
Redwood City, CA 94063; (415) 363-
0667. GIRGIE 702

low cost disc thermistors

Low cost Series D320, D200, D120 Thermistors are well suited for many industrial applications including temperature compensation, current limiting and delay circuit applications.

- Large size NTC Disc Thermistors available in three sizes up to $.320^{\prime \prime}$ diameter
- Very low cost. Ideal for many large volume O.E.M. applications.
- Epoxy coated for better reliability
- Large power handling capability with dissipation constants (still air) up to $7 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$.
- Suitable for use at temperatures up to $125^{\circ} \mathrm{C}$.

Additional information is available in the Thermometrics, Inc. Bulletin TD-1.

Contact Thermometrics, Inc. to request the Bulletin, our Catalog, Sensor Handbook and/or to discuss your specific application requirements today.

SPEEDY BuS LOGIC TRIMS I/0 Propagation Delay

Able to $\operatorname{sink} 64 \mathrm{~mA}$ or source 15 mA , the FASTr family of bipolar bus-interface logic chips offer the shortest propagation delays for TTL-compatible systems. The chips from National Semiconductor will have a maximum propagation delay of just 3.9 ns (an octal buffer), forming an ideal companion for many of the latest microprocessors that must operate with clock speeds in the $33-\mathrm{to}-50-\mathrm{MHz}$ range. The FASTr family will not be an all-inclusive family of logic circuits, but will be concentrated around signal-busing and clock-distribution needs in highspeed systems.

Transceivers in the family will be able to sink up to 64 mA on both their A and B outputs, making it possible for the chips to drive symmetrical differential lines. Furthermore, the circuits were designed to have reduced static power consumption vs. standard FAST logic-about 10 to 30\% lower, depending on the device. And dynamic power consumption is actually less than the power levels claimed by high-speed CMOS or biCMOS processes. All de-
vices are rated at speeds of more than 25 MHz when driving heavy capacitive loads (250 pF).
Propagation delay ratings are guaranteed when multiple outputs are simultaneously switched with 50 - and $250-\mathrm{pF}$ ac loads. Output timing skew is also guaranteed to be less than 750 ps on the clock drivers, and will be guaranteed for output-to-output across a single part, as well as from part-to-part. Initial chips to be released include 8and 9 -bit buffers and transceivers, 8 -bit clock drivers, and 16 -bit buffers and transceivers. All 8-bit logic chips are pin-compatible with existing FAST buffers.

The logic chips will be housed in plastic DIPs, small-outline IC packages, and PLCCs (16-bit devices). Commer-cial- and industrial-temperature-range versions will be available. Prices for the 8-bit noninverting transceiver IC start at $\$ 2.20$ each in 100 -unit lots. Delivery is from stock.

National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, CA 95052; (408) 721-5000. GIBGIF 705 DAVE BURSKY

PR0GRAMMABLE POWER-MANAGEMENT CHIP IS PROCESSOR-INDEPENDENT

The HT191 is a processor- and chip-set-independent programmable power-management chip that enables system designers to support numerous peripheral configurations for portable computers. The chip, from Headland Technology Inc., is a companion device that extends the battery life of portable PC/AT computers by monitoring, adjusting, and/or shutting down the system's peripherals when not in use.

The design for the device stems from the increased demand for system-level power management. The system-level manager monitors the activity and controls the powering of all the system peripherals as well as the chip set, CPU, and memory.
The HT191 acts as an interface or mailbox point between the AT bus and an 80C51 microcontroller. The microcontroller remains on to monitor system activity. Whenever it senses a key stroke, a mouse movement, or even a coprocessor action, it powers up the
system. It's important to monitor devices other than the keyboard like a mouse because many applications don't require much keyboard use, especially those based on Windows. The HT191 also acts as a port expander, enabling the 80 C 51 to talk to more peripheral devices.
The HT191's advanced power-management features let a system conserve power by slowing or halting the microprocessor, dimming or blanking the display, and placing modems and other devices in standby, sleep, or other power-saving modes. Headland supplies all of the code that's needed for the 80C51 to monitor and control the peripherals. The power-management part has a CMOS design and is packaged in a 100 -pin plastic quad flat pack. It costs $\$ 19$ in quantities of 1000 and is available now.

Headland Technology Inc.,46221
Landing Pkwy., Fremont, CA
94538; (415) 656-7800.
GITGIF 706
RICHARD NASS

16-Bit MicrocontroLlers Solve Real-Time Needs

Boasting a powerful 16 -bit CPU core, the μ PD7832X series of microcontrollers from NEC Electronics aims squarely at real-time control applications. An on-chip 8-channel 10-bit ADC with a sample-and-hold amplifier and a high-performance interrupt handling subsystem enable the chip to tackle automotive engine and braking-control, as well as disk- and tape-control applications.
The microcontroller's CPU runs at a maximum clock rate of 16 MHz , executing most instructions in just 250 ns each. A three-byte instruction prefetch queue is included to help ensure that the CPU rarely has to wait for its next instruction.
The command set includes 16 -bit multiplication and division instructions. It also includes Stop and Halt commands for low-power standby modes, as well as 1 - and 8 -bit logic operations and string instructions. On-chip memory includes 640 bytes of RAM and either 16 kbytes of ROM (model 78322) or no ROM (model 78320).
Both model 78322 and 78320 versions have an interface to a dedicated memory chip, the μ PD78301, which includes memory, interface circuitry, and an instruction prefetch pointer. When using the chip, instructions can be fetched from external memory at the same speed as they can be read from the onchip ROM.

Interrupts can be handled in any of three ways: vectored, context switching with hardware save for all general registers, and macroservice functions through an intelligent I/O subsystem. Up to $55 \mathrm{I} / \mathrm{O}$ lines are available for the controller, as are two serial communication channels (with each channel featuring a dedicated baud-rate generator). Also available are multiple counter-timers with capture and compare registers, as well as a watchdog timer.

The μ PD78322A 16-bit microcontroller is immediately available in two different package styles. It is available in either a 68-lead plastic leaded chip carrier or in a 74-lead plastic quad-sided flat package. In lots of 10,000 , the

PLCC version is priced at $\$ 15$ each.
NEC Electronics Inc., 401 Ellis Street, P.O. Box 7241, Mountain View, CA 94039; Marc Birnkrant, (415) 960-6000. GIRGIF 707

DAVE BURSKY

Programmable Anti-Alias Filters for Critical A/D Prefiltering

848P8E Series are Elliptic lowpass filters providing extremely sharp roll-off for A/D prefiltering.

Features:

- 8 pole, 6 zero elliptic lowpass filters
- Digitally programmable corner frequency
- Shape factor of 1.77 at 80 db
- 8 bit (256:1) tuning ratio
- Internally latched control lines to store frequency selection data
- Ideal for single or multi-channel applications
- Plug in, ready to use, fully finished filter modules
- Five frequency ranges to 51.2 kHz

Other Filter Products Available:

- Linear phase - Programmable
- Fixed frequency • Instrumentation
- Custom designs

For more information about how Frequency Devices can meet your most critical filtering requirements, call our applications engineers at
508-374-0761

25 Locust Street Haverhill, MA 01830 (508) 374-0761

Mixed-Mode Simulator Employs Only One Engine

Amixed-mode simulator from Intergraph Corp. uses a sin-gle-engine methodology to eliminate coupling and other problems associated with traditional "glued" engine approaches to analog-digital simu-
lation. The simulator, called ISIM-se, disposes of the overhead needed for data transfer between two autonomous simulation engines. In addition, designers needn't input special junction specifications, define interfaces between analog and digital compo-

nents, or partition circuitry.
Users can simulate at several levels of accuracy and speed. Models can range from the primitive to the behavioral level. The effects of overshoot and undershoot, ringing, spikes, and damping factors are simulated and then viewed through the optional Analog Analysis Interface (AAI). In addition, users may view analog and digital waveforms at the same time.
The AAI also facilitates using the company's new Filter Synthesis Module. The filter package offers a framework to specify, design, and synthesize common analog filters.

ISIM-se is available now. Existing CSpice users can upgrade for free; the cost for new users is $\$ 10,000$.

Intergraph Corp., One Madison Industrial Park, Huntsville, AL 35807-4201; (205) 772-2700.
CIRGIF 708
LISA MALINIAK

FIVE CAE T00LS AID IN IC PROCESS DESIGN

Five tools from Silvaco International help engineers with the IC process portion of a design. The first tool, Master, is a software package for generating device cross sections from layout and process-flow information. Predict, another new tool, is a one-dimensional, multilayer silicon process simulator originally developed by the Microelectronics Center of North Carolina. The third tool is S-Creep, which is a 2D viscous creep-flow simulator. Also, SMINIMOS5 is a tool for numerical simulation of MOS and MESFET devices. Finally, Spayn is a relational database for statistical parameter analysis. All five products are shipping now and run on DEC, HP/Apollo, Sony, and Sun workstations. Master, Predict, SCreep, S-MINIMOS5, and Spayn cost $\$ 15,000, \$ 25,000, \$ 15,000, \$ 25,000$, and $\$ 25,000$, respectively.
Silvaco International, 4701 Patrick Henry Dr., Santa Clara, CA 95054; (408) $988-2862$. GHRGIE 708

IDEE-488

Control any
IEEE-488 (HP-IB, GP-IB) device with our cards, cables, and software for the PC/AT/386, EISA, MicroChannel, and NuBus.

80386 LENDS PROCESSING POWER TO PCB EDITOR

Users of the DC/CAD pc-board design system can increase speed and capacity by upgrading to the 80386 version of the system's Draftsman-EE editor. The integrated 80386 module, from Design Computation, has high capacity for large pc-board designs containing hundreds of ICs. The 386 DraftsmanEE module operates at least twice as fast as other versions of the software by using the protected mode of the 80386 processor. Processors working in the protected mode perform 32-bit operations and can directly address up to 16 Mbytes of memory. The module works with extended memory or an ex-panded-memory manager. It obtains all of the available memory from the manager and converts it to extended memory, which eliminates the time delays associated with using expanded memory. The Draftsman-EE 386 enhancement must run on a PC powered by a $80386,80386 \mathrm{SX}$, or 80486 processor. The enhancement is shipping now for $\$ 995$.
Design Computation Inc., Sherman Square, Route 33, Farmingdale, NJ 07727; (908) 938-6661. GIRGIF 710

PLD T00L ENHANCEMENTS CUT DEVELOPMENT TIME

Enhancements to the Snap line of pro-grammable-logic device (PLD) design tools cut development time, improve testability, and boost the performance of low- and medium-density PLD designs. New to Snap version 1.6 are a fault simulator, logic optimizer, Bool-ean-equation extractor, a friendly user interface, and revised documentation. The logic-optimization program is the Expresso Minimizer from the Universi-
ty of California at Berkeley. Users can input waveforms, Boolean and state equations, and Orcad and Futurenet schematics. Snap merges these inputs, synthesizes a net list, and performs functional and fault simulation. The fault simulator produces a report that lists undetected faults, potentially undetected faults, coverage efficiency, and other valuable data. Snap version 1.6 is available now. The $\$ 795$ cost includes one year of upgrades.

Signetics Co., a div. of North A merican
Philips Corp., 811 E. Arques Ave., P.O.
Box 3409, Sunnyvale, CA 94088-3409;
(408) 991-2000. GIRGIF 711

You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

SYNTHESIS T00LSET IS TAILORED FOR FPGAS

The FPGA Compiler is a logic-synthesis, optimization, and design-analysis tool that's dedicated to supporting field-programmable gate arrays (FPGAs). It contains synthesis and optimization algorithms specific to FPGA technology. Users can input with standard methods, such as Palasm descriptions, VHDL models, and EDIF net lists. FPGA Compiler is targeted at the turnkey and systems markets. To address the turnkey market, single technology configurations are made available to FPGA vendors for resale. To address the systems market, multiple technology configurations are being integrated into system vendors' EDA frameworks. FPGA Compiler with the Palasm input path is shipping now. The EDIF and VHDL input paths will ship early next year. Pricing for the product
will range from $\$ 2000$ to $\$ 20,000$, depending on the input options and output technologies. The initial release of the FPGA Compiler supports optimization for Xilinx and Actel devices.

Exemplar Logic Inc., 2550 Ninth St., Suite 102, Berkeley, CA 94710; (415) 849-0937. GITGIF 712

SYNTHESIZE, OPTIMIZE DIGITAL LOGIC ON A PC

Designers working on a PC can synthesize and optimize digital logic with Instant Logic 2.2. Instant Logic creates optimized net lists and schematics from truth tables, logic equations, or state machines. The optimization programs analyze and improve existing net lists or schematics by minimizing either circuit size or delay. Instant Logic is compatible with Orcad's schematic design tools and such design languages as CUPL and Open Abel. The basic software package includes a generic library with more than 100 combinational and flip-flop primitives. Instant Logic 2.2 runs on 80286 - and 80386 -based PCs with EGA, VGA, or Hercules graphics. It's shipping now, and its $\$ 795$ price tag includes telephone support and free upgrades for one year. A workstation version is now available on the Sun workstation for $\$ 4800$. It has the same features, but can synthesize much larger designs.

Integrated Silicon Systems Inc., P.O. Box 13665, Research Triangle Park, NC 27709; (919) 361-5814. GITGIF 713

Free:
Informative catalog 800-234-4232
Applications help (617) 273-1818

Capital Equipment Corp. Burlington, MA. 01803

486-BASED EmBEDDED VME SYSTEM RUNS PC S0FTWARE

Primarily used as a front-end computer and operator interface, the EPC-5 is a system subassembly that can be embedded into sophisticated computer-controlled equip-
ment and machinery. The board's CPU module consists of a $25-$ or $33-\mathrm{MHz}$ 80486 microprocessor, up to 16 Mbytes of system memory, and a VGA graphics controller.
The mass-storage module includes a

32 ANTI-ALIAS 130 dB/OCTAVE

Only With System Friendly

Just one of hundreds of programmable hardware building block configurations possible with our operating system. Just one of hundreds of exclusive possibilities that make Precision 6000 truly System Friendly now and easy to update in the future. Call (607) 277-3550 for brochure. Or write.

Am29000 DIRECTS COLOR X-WINDOW CONTROLLER

By running AGE's Xoftware A290 XWindows server software, the XQC8200 color X-Window controller exceeds $40,000 \mathrm{X}$-stones. The controller, based on AMD's $20-\mathrm{MHz}$ Am29000 RISC processor, supports resolutions of 1024-by-768, 800-by-600 (Super VGA), and 640-by- 480 (VGA) pixels. It also supports 8 -bit color, giving users 256 colors from a palette of 16 million. Multiple levels of DRAM expansion memory, ranging from 2 to 16 Mbytes, are available. ROM can be expanded from 64 kbytes to 2 Mbytes for system boot, hard loading of X-server software, and font storage. The controller is now available for OEM licensing at a cost of $\$ 75,000$, with hardware royalties starting at $\$ 10$ per unit.

Doctor Design Inc., 5415 Oberlin Dr.,
San Diego, CA 92121; (619) 457 -
4545. GIIGIF 716

TRANSLATE 12-BIT/PIXEL IMAGES T0 8 BITS/PIXEL

By adding the LMX personality module to Imagraph's 1210 display controller board, users can get real-time window leveling of X-ray and medical modality images in sizes up to 2 k by 2.5 k by 12 bits. The LMX is a 12 -to- 8 -bit lookuptable transformation module. It connects to the 1210 using one slot. Three versions of the 1210 make it suitable for the ISA, EISA, and VME buses. The personality module supplies window leveling of 12 -bit pixel images through a hardware transformation operation that processes 12 million pixels/s. The LMX supplies from 4 to 12 Mbytes of memory to store images. The lookup table can be changed to affect only certain regions, which can either be a window, a portion of an image, or an entire image. The LMX also offers 4-bits/ pixel overlay. Different versions of the 1210 board are designed for the ISA, EISA, and VME buses. The personality
module starts at $\$ 1795$. The 1210 display controller begins at $\$ 3995$.

Imagraph Corp., 11 Elizabeth Dr., Chelmsford, MA 01824; (508) 256 IMAG. GIBGIE 717

VMEBUS INTERFACES TO TOKEN-RING LAN

The VMM-34, a serial mezzanine board, adds wide-area-networking capabilities to SBE's VCOM-33, a high-performance communications controller that connects VMEbus systems to localarea networks. The VCOM-33 is a 68030-based controller that supplies a software-selectable interface to a 4- or 16 -Mbit/s token-ring LAN. By adding

the VMM-34, users can get serial communications at speeds up to 2.048 Mbits/s (E1). Available with four channels, the mezzanine board can supply a combination of E1, T1, fractional-T1, and 64 -kbit/s service on all four channels. It also supports asynchronous, bisynchronous, and bit-synchronous protocols.

SBE Inc., 2400 Bisso Ln., Corcord, CA 94520; (800) 347-2666 or (415) 6807722 GITGIF 718

SEE MULTIMEDIA 0NAPC

For just $\$ 695$, users can have multimedia on their PC/AT or MCA bus systems. Super VideoWindows allows fullmotion video and stereo audio to play from a camera, VCR, videodisk or cable TV in any size window, placed anywhere on the computer screen. Functions include scale, crop, zoom, pan, freeze, and graphics and text overlay Individual video frames can be stored to disk or ported to other applications such as desktop publishing or CAD/ CAM. The board is available now. Optional companion modules are also available including a VGA board, a TV tuner, and a compression board.

New Media Graphics Corp., 780 Boston Rd., Billerica, MA 01821; (508) 6630666. GIRGIF 719

Sr. Electrical Design Engineer

Our client, a well-known diversified Co. Iocated in the New England area, requires a Sr. Design Engr. with a BSEE \& $5+$ yrs. with low noise, high dynamic range audio \& video circuits. Exp. w/high speed switching circuit, PAL \& FPGA design, and CAE tools desirable. Excellent Co. benefits and relo. assistance. Call or Send resume in confidence to:
M.J. Schaumann

Allen Barry Associates
371 South Broadway Tarrytown, New York 10591
(914) 631-9200

Fax: (914) 631-5776

ELECTRONIC-ELECTRICAL ENGINEERS. Nationwide Design/Project/ QC/Mfg., Power, Software/Systems, Controls, Circuits, Equipment, Test, Communications, etc. Contact: John Longberry, Longberry Employment, 913 Main Place, P.O. Box 471, Niles, OH 44446. (216) 652-5871.

BUSINESS
SERVICES

HARDWARE AND SOFTWARE

 DEVELOPMIENT SERVICES We specialize in developing microprocessor/FPGA based products/systems and embedded software development. - Analog, video, RF, and digital circuit design facilities. We can help with part of your project or handle the entire project Full Microprocessor Development Systems, I^{2} ICE, CAD/CAM, and PCB layout system.Bus development for Multibus, VME, PC, MCA, LAN and STD
${ }^{\mathbf{A}_{\boldsymbol{T}}} \underset{\text { Tel. (407) } 851-2525}{\text { Applied Computer Techniques, Inc. }} \underset{\text { incorporatod 1978 }}{\text { A }}$

All of us at Penton Classifieds wish you a Happy Holiday Season! We look forward to working with you to make this a Prosperous New Year!

Chairman and CEO: Sal F. Marino
President and COO: Daniel J. Ramella
Senior Vice President: James D. Atherton
Group Vice President: James W. Zaremba
Advertising Sales Staff
Publisher: Paul C. Mazzacano
Hasbrouck Heights, NJ; (201) 393-6060
San Jose, CA; (408) 441-0550
National Sales Manager:
Andrew M. Dellins
San Jose, CA; (408) 441-0550
Hasbrouck Heights:
Judith L. Miller, Robert Zaremba
Sales Support Supervisor: Betsy Tapp
611 Route \# 46 West
Hasbrouck Heights, NJ 07604; (201) 393-6060
TWX: 710-990-5071
Boston: Ric Wasley
400 Fifth Ave.
Waltham, MA 02154; (617) 890-0891
FAX: (617) 890-6131
Colorado: Lou Demeter (408) 441-0550
Chicago/Midwest: Russell Gerches
Sales Assistant: Susan Johnson
2 IIlinois Center Bidg., Suite 1300
Chicago, IL 60601; (312) 861-0880 FAX: (312) 861-0874
Arizona: James Theriaull (408) 441-0550
Los Angeles/Orange County/San Diego: lan Hill
Sales Coordinator: Debi Neal
16255 Ventura Blvd., Suite 300
Encino, CA 91436; (818) 990-9000
FAX: (818) 905-1206
Pacific Northwest: Bill Giller (408) 441-0550-
San Jose:
Lou Demeter (408) 441-0550
Bill Giller (408) 44 1-0550
James Theriault (408) 441-0550
Sales Administrator: Amber Hancock
2025 Gateway PI., Suite 354
San Jose, CA 95110; (408) 441-0550
FAX: (408) 44 1-6052 or (408) 44 1-7336
Texas/Southeast: Bill Yarborough
12201 Merrit Dr., Suite 220
Dallas, TX 75251; (214) 661-5576
FAX: (214) 661-5573
Direct Connection Ad \& DAC Sales Representative:
Jeanie Griffin (201) 393-6080
Canada: Tony Chisholm
Action Communications
135 Spy Court
Markham, Ontario L3R 5H6
Phone: 416-477-3222
FAX: 416-477-4320
Holland: W.J.M. Sanders, S.I.P.A.S.
Oosterpark 6-P.O. Box 25
1483 DeRyp, Holland
Phone: 02997-1303
Telex: 13039 SIPAS NL
Telefax: (02997)-1500
Austria, Belgium, Germany, Switzerland:
Friedrich Anacker
InterMedia Partners GmbH
Katernberger Strasse 247
5600 Wuppertal 1
West Germany
Phone: 02-02-711-091/92
Japan: Hirokazu Morita
Japan Advertising Commincations
New Gunza Buiding 3-13
Gunza 7-chome
Chuo-Ku, Tokyo 104 Japan
FAX: 011-81-3-511-8710
Korea: Young Sang Jo
Business Communications Inc.
K.P.O. Box 1916

Midopa Building 146
Dangju-Dong, Chongo-Ku
Seoul, Korea
Phone: 011-82-2-739-7840
FAX: 011-82-2-732-3662
Taiwan: Tomung Lai
United Pacific International
No. 311 Nanking E. Rd., Sec. 3
Taipei, Taiwan R.O.C
Phone: 011-886-27-150-751
FAX: 011-886-27-169-493
United Kingdom/Scandinavia/Israe::
John Maycock
Huttons Buildings
146 West St.
Sheffield, England S1 4ES
Phone: 742-759186

0
Oak Switch Systems 114
OKI Semiconductor. 92
Omation 162
Orion Instruments 161
Philips Discrete Products 89
Phillips 66 142
Pico Electronics, Inc. 79, 143
Potter \& Brumfield. 101
Powerex 135
Power-One 97
Precision Filters 163, 158
PseudoCorp 161
Pulizzi Engineering 163
Quality Semiconductor 42
Raytheon 2-3
Robinson Nugent. 121
Rogers Corp. 162, 163
Rolyn Optics 162
Samsung Semiconductor 28-29
Samtec. 99
Sanyo Electric 104
Semiconductor Circuits 117
Sensoray Co.18
Signatec 164
Signetics 16-17
Silicon General. 9
Silicon Systems 55
Sipex Corp.58
SoLiCo 131
Spectral Innovations91
Spectrum Signal Processing 60
Sprague-Goodman. 129
Stanford Research Systems 45
Standard Microsystems 19
Teltone 163
Texas Instruments 12-13, 38-39
Thermometrics 148
Todd Products 94
TTE. 124

161
Universal Cross Assembler
Vacuumschmelze GmbH. 74
Vicor 49
Viewlogic Systems 86
Yuasa Battery 107

Z-World Engineering

[^9]
ELEMRMCDETH

DIRECT CONNECTION ADS

 New ProductstSerices Preented By The Manufacturer. To Advertise, Call IEANE GRIFFIN At 201/ 133 -0.080
CROSS-32 V2.0 META ASSEMBLER

- Table based absolute macro cross-assembler using the manufacturer's assembly mnemonics
- Includes manual and MS-DOS assembler disk with tables for ALL of the following processors

1802	64180	6801	8048	TMS320	Z8
37700	6502	6805	8051	TMS340	Z80
50740	65816	6809	8085	TMS	ZM70
Z180					

- Users can create tables for other processors or ask us, we have many more!
- Generates listing, symbol table and binary, Intel, and Motorola hexcode.
- Free worldwide airmail shipping \& handling.
US\$199.00 CDN\$239.00

UNIVERSAL CROSS-ASSEMBLERS P.O. Box 6158
Saint John, N.B.

Saint John, N.B.,
E2L 4R6 Canada
Voice/Fax: (506)847-0681

UNIVERSAL CROSS-ASSEMBLERS CIRCLE 280

Cross-Assemblers trom $\$ 50.00$ Simulators from \$100.00 Cross-Disassemblers from $\$ 100.00$ Developer Packages

Make Programming Easy
Our Macro Cross.assembiers are aessytiouse with powertul
Get it Debugged--FAST
Don't wait until the hardware is finished. Debug your software with our Simulators.

Recover Lost Source!
Our line of disassemblers can help you re-create the original assembly language source.
Thousands Of Satisfied Customers Worldwide
PseudoCorp has been providing quality solutions for
microprocessor problems since 1985.
Processors

For Information Or To Order Call:

PseudoCorp

716 Thimble Shoals Blvd, Suite
Newport News, VA 23606
(804) 873-1947 FAX:(804)873-2154 PSEUDOCORP

CIRCLE 266

How To Geł More Emulation for Less ORION 8620 ANALYZER-EMULATOR

High-Level language/Symbolic debug support Over 170 processors supported with the same base hardware and software environment Easy-to-use, powerful triggering Extensive MACRO capabilities Program Performance Analyzer Built-In EPROM programmer
Go ahead and compare. The 8620 Analyzer-Emulator gets your product to market faster and costs less. Base prices start at $\$ 5080$. Send for more information and free demo disk.

or $415 / 327 / 8800$ INSTRUMENT

180 Independence Dr., Menlo Park, CA 94025 ORION INSTRUMENTS

CIRCLE 278

A D S

RS232 EE/EPROM, MICRO \&
MEMORY CARD PROGRAMMER \$345/495

- Programs EE/EProms, Flash Eproms, ZPRams, Intel Micros, Memory Cards.

Pland-Alone Mode for EE/EProms and Memory Card Duplication / Verify.
 - Accepts dedicated modules: Memory Card Programming Module (Seiko.
Fujitsu) $-\$ 145$, Eraser/Timer Module - $\$ 50$, Gang Module (4 sockets) $\$ 145$. Simultaneously duplicates up to 5 devices in stand-alone mode (with Gang) - Can be operated with any computer containing an RS-232 serial port - User friendly Menu-Driven Interface Program for IBM-PC or Macintosh. INTELLIGENT ROM EMULATOR \$395

- Emulates 2716 through 27512 EProms with a single unit. Access time 120 ns .
- Connects to the standard parallel printer port via a standard printer cable.
- User friendly soffware. Command set includes: Load (data), Write(data),

Display(memory),Type(of EProm), Edit(memory), Fill(memory), Calculator,
Reset (rarget system) Activate(debugging feature), Monitor(selected feature), - Address Compare with Halt output, Address Snapshot, Triger input. - Fast data loading via parallel printer port (64 Ak bytes in less than 10 sec). - Cascadable up to 8 units. Includes target cabie with Trigger/Rese//Halt clips. MC/VISA / AMEX Call today for datasheets! BY B\&C MICROSYSTEMS INC.

B\&C MICROSYSTEMS
CIRCLE 260

FREE! 120 Page Catalog
"Optics for Industry"

ROLYN OPTICS supplies all types of "Off-theShelf" optical components. Lenses, prisms, mirrors, irises, microscope objectives \& eyepieces plus hundreds of others. All from stock. Rolyn also supplies custom products \& coatings in prototype or production quantities. Write or call for our free 120 page catalog describing products \& listing off-the-shelf prices. ROLYN OPTICS CO. 706 Arrowgrand Circle, Covina, CA 91722, (818) $915-5707$ \& (818) $915-5717$. TELEX: 67 0380. FAX: (818) 915-1379.

ROLYN OPTICS
CIRCLE 284

LEARN THROUGH VIDEOTUTORIALS

Learn Through a New Medium of the Nineties, The Videotapes. We have a collection of over 200 videotutorials and other courses in the fields like Computer Engineering, Electrical and Power Engineering, as well as in other fields like Business and Finance, Management, Sales and Marketing, Communications and Personal Development. Some of the topics are

- Unix, C-Language, ADA, DB2, Neural Networks, PC softwares
- Digital Electronics, Microprocessors, Artificial Intelligence, Robotics, Lightwave and Satellite Communications
- How to write a business plan, How to buy a business with no cash, How to build a consulting practice, Budgeting, etc.
- Team Building, Effective supervision, Negotiating, Assertiveness training, Networking, etc. and many other topics.
For a Free Catalog, write or call
EDUCATIONAL RESOURCES OF PRINCETON
11 Glengarry Way, Cranbury, NJ 08512 Phone: 609-275-6119, Fax: 609-275-6600 EDUCATIONAL RESOURCES

CIRCLE 290

Cross Assemblers

Universal Linker, Librarian

PC/MS DOS, micro VAX, VAX VMS UNIX targeting 30 microprocessors

\star High speed

\star Compatible with chip manufacturer's assemblers
\star Powerful macros
\star Absolute or relocate code
\star Conditional assembly
\star \$295 up for MS DOS Packages

Quality Debugging Accessories

- Protect your ICs from damage. Insert and extract LCC, PLCC, PGA, and PQFP packages with the right tool.
- Use receptacle boards to build test fixtures, and mount your test equipment, in half the time.
Get the right production sockets, burn-in sockets, test leads, and test clips for SMT, SOIC, or PLCC circuits.
- Quick turnaround on custom engineering services, if needed. For a free catalog, contact:
Emulation Technology, Inc.
2368-B Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX:408-982-0664 EMULATION TECHNOLOGY

SUPPRESS NOISE,

POWER HIGH DENSITY BOARDS

MAGNA/PAC ${ }^{\text {² }}$ components combine power
distribution and capacitance for dense boards.
Mount MAGNA/PAC ${ }^{\text {m }}$ between rows of ICs to
save space.

- Effective decoupling ZIP arrays
- Capacitance up to $3.0 \mu \mathrm{~F}$ per linear in.
- Reduce noise over a wide frequency range
- Equalize voltage on dense boards

ROGERS CORP.
2400 S. Roosevelt St., Tempe, AZ 85282
Telephone: (602) 967-0624
ROGERS
CIRCLE 276

your AD HERE

Here's all you have to do:

- Send a B/W or 4C glossy photo.
- Include 13 lines of copy.
(37 characters per line)
- Write a headline of 32 characters or less.

We do all the rest.
No production charges.
We also accept camera-ready art. Ad size $2^{3} / 16^{\prime \prime}$ wide $\times 3^{\prime \prime}$ deep.

Quick, Fast Socket Conversion

- Convert-A-Socket ${ }^{\text {Tu }}$ makes it a snap to convert a production socket to a test socket and vice-versa.
- Complete line of male/female sockets for LCC, PLCC, PGA, PQFP, and DIP circuits.
A must if you're inserting circuits repeatedly in low insertion force sockets.
- Quick turnaround on custom engineering services, if needed. For a free catalog, contact:

Emulation Technology, Inc.
2368-B Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664
EMULATION TECHNOLOGY

CIRCLE 255

Tango-Schematic Series II. ${ }^{\text {™ }}$ It simply works better.

We listened to your suggestions and built the best in PC-based schematic capture. More versatile than OrCAD. ${ }^{\text {M }}$ More features than Schema.' Easier to use than DASH. ${ }^{\text {TM }}$ Thanks to our streamlined interface and integrated approach Tango-Schematic makes creating complex schematics simple.
Compare for yourself.

Tango

Tango-Schematic features SEDCO ${ }^{\text {w }}$
libraries, with over 8,000 parts guaranteed
for accuracy; integrated component creation; true
ANSI/IEEE support; forward- and back-annotation;
PostScript and DXF output; free tech support; and much more. It's all there for just \$495-guaranteed.

FREE EVALUATION PACKAGE
800 433-7801 $61955+1000 \quad 61955+-1019 \mathrm{Fax}$ ACCEL ${ }^{\text {" }}$ Technologies 6825 Flanders Drive - San Diego. CA 92121 LSA International prices mav vary. Contact us for the distributor nearest you ACCEL TECHNOLOGIES

CIRCLE 267

Don't Get Zapped!

High inrush current can destroy your sensitive VAX CPUs and peripherals in less time than it takes to filip a switch.
THE SOLUTION?
Power up with Z-LINE TPC 115-10 MTD ${ }^{\text {TM }}$ the smallest power distribution
and control system available.
Z-LINE
POWER UP WITH

Our proprietary Multiple Time Delay ${ }^{\text {TM }}$ circuitry sequences your power-up to protect your systems from the spikes and surges, EMI \& RFI, that destroy your hardware and erase your data. And our remote on / off and emergency shutdown gives the power control back to you.
All Pulizzi Engineering MTD ${ }^{T M}$ controllers are compatible with DEC and UPS systems. PRICES FROM \$453 TO \$317
DON'T WAIT UNTIL IT HAPPENS, CALL TODAY! PULIZZI ENGINEERING INC.
3260 S. Susan Street, Santa Ana, CA 92704-6865 (714) 540-4229 FAX (714) 641-9062

PULIZZI ENGINEERING
CIRCLE 263

A D S

NEW. TOUGHER SPECS FOR FILTER MDDULES.
 Compare.
 130 or $80 \mathrm{~dB} /$ octave Up to 204 kHz . 1024 cutoff settings HP, LP, TD. Phiase match: $\pm 1^{\circ}$ max., $\pm 0.25^{\circ}$ typical. Amplitude match: $\pm 0.1 \mathrm{~dB}$ max., $\pm 0.03 \mathrm{~dB}$ typical Programmable. You get Precision filter system performance in circuit modules, $2.7^{\prime \prime} \times 4.2^{\prime \prime} \times 0.54^{\prime \prime}$. Call or write.

PRECISION FILTERS, INC. 240 Cherry Street, Ithaca, New York 14850. 607-277-3550. Fax 607-277-4466.

PRECISION FILTERS
CIRCLE 286

CUT PGA/PLCC NOISE

MICRO/Q® 3000 capacitors reduce noise associated with PGA and PLCC devices.
Designed to be mounted under the device, take no extra board space. Can be used under MPUs, Gate Arrays, and ASICs. Choose from Z5V, X7R, and P3J dielectrics. Available in both thru-hole and surface mount versions. Several sizes available to fit all devices.
ROGERS CORP.
2400 South Roosevelt St., Tempe, AZ 85282
Telephone: (602) 967-0624
ROGERS
CIRCLE 264
\qquad
 Tip and Ring and provide a relay closure in response to loop current flow. For on-hook, off-hook monitoring, switchhook flash detection, and rotary dial pulse counting. Simple design, rugged construction.

- M-949-01 for U.S. FCC Part 68
- M-949-02 for international IEC/VDE
- M-949-03 for Canadian DOC CSA

M-949-XX Custom modules
For more info call: 1-800-426-3926 (In Washington State: 206-827-9626)

Leltane

10801-120th Avenue NE, Kirkland, WA 98033 TELTONE

CIRCLE 269

DIRECTCONNECTION

Little Giant

C Programmable Controller

This shirt pocket sized computer interfaces directly to the outside world. Use it to control anything. Instantly programmable using your PC with Dynamic

 C. ROM and bat-tery backed RAM to 1024 k bytes. 8 Channel, 10 12 bit, A/D with conditioning. High voltage and current drivers. Battery backed time and date clock. Watchdog and power fail. 4 serial channels 24 parallel I/O lines. Timers. Integral power supply. Terminations for field wiring. Expansion connec tor. Plastic or metal field packaging available. OEM versions from $\$ 199.00$.

Z-World Engineering
1340 Covell Blvd., Davis, CA 95616
(916) 753-3722

Fax: (916) 753-5141
Z-WORLD ENGINEERING
CIRCLE 283

Over 12,000 time-saving/problem-solving solutions to common testing, hookup and assembly applications. Just ask for it.

EZZHOOK

P.O. Box 450, Arcadia, CA 91066
(818) 446-6175 • Fax: (818) 446-0972

'488 CONTROL FOR YOUR MACINTOSH II
Control any instrument in minutes
Supports BASIC, Pascal, C and Hypertalk.
HyperCard utilities included.
Software library. Risk free guarantee.
Capital Equipment Corp. Burlington, MA. 01803

Informative catalog 800-234-4232
Applications help (617) 273-1818
CAPITAL EQUIPMENT
CIRCLE 272
There is a Difference. Lijfime Free Ubdates

A programmer is not just another programmer. That is why BP Microsystems is commited to bringing our customers the highest quality programmers at an affordable price. This commitment is evident in our EP-1140 E/EPROM programmer supporting thousands of $24,28,32$ and 40 pin devices. A 32 -pin model, EP-1132, is available also for $\$ 695$. And, all of our programmers include future chip support at no charge and an unconditional money back guarantee.

BPMICROSYSTEMS 1-800-225-2102
(713) 461-9430

BP MICROSYSTEMS

A D S

STEP MOTOR CONTROL 27K steps/secl 16 Million steps! New CY545. Rates up to 27 K steps/sec, up to 16 million steps per single motion. Separately programmable start rate, accel/decel rate, and max rate. Pulse \& direction ouput. External jog mode and limit switch detection. Serial or parallel interface, LED/LCD \& Thumbwheel interface lines, and more. ASCII commands. Supports 64 K external memory. CMOS 40 -pin DIP. $\$ 75$ each ($\$ 25 / 1000$). Credit Cards OK.

Cybernetic Micro Systems PO Box 3000, San Gregorio CA 94074 (415) 726-3000 • Fax: (415) 726-3003 CYBERNETIC MICRO SYSTEMS CIRCLE 258

Eletroniciencl DIRECT CONNECTION ADS

1991 SCHEDULE

Issue Date: Ad Close

Jan. 10 Dec. 14
Jan. 31 Jan. 4
Feb. 14 Jan. 18
Feb. 28 Feb. 1
March 14 Feb. 15
March 28 March 1

Issue Date: Ad Close
April 11 March 15
April 25 March 29
May 9 April 12
May 23 April 26
June 13 May 17
June 27 May 31

Issue Date: Ad Close
July 11 June 14
July 25 June 28
August 8 July 12
August 22 July 26
Sept. 12 Aug. 16
Sept. 26 Aug. 30

Issue Date: Ad Close
Oct. 10 Sept. 13
Oct. 24 Sept. 27
Nov. 7 Oct. 11
Nov. 21 Oct. 25
Dec. 5 Nov. 8
Dec. 19 Nov. 20

Truly incredible ... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR
Insertion loss, typ (dB)
Isolation, $\operatorname{typ}(\mathrm{dB})^{\text {* }}$
1 dB compression, typ (dBm@ in port) RF input, max dBm (no damage)
VSWR (on), typ
Video breakthrough
to RF, typ (mV p-p)
Rise/Fall time, typ (nsec)

\star typ isolation at 5 MHz is 80 dB and decreases

[^0]: ELECTRONIC DESIGN (USPS 172-080; ISSN 0013-4872) is published semi monthly by Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 441142543. Paid rates for a one year subscription are as follows: $\$ 75$ U.S., $\$ 140$ Canada, $\$ 230$ International. Second-class postage paid at Cleveland, OH, and additional mailing offices. Editorial and advertising addresses: ELECTRònic design, 611 Route \#46 West, Hasbrouck Heights, NJ 07604. Telephone (201) 393-6060. Facsimile (201) 393-0204.

 Printed in U.S.A. Title registered in U.S. Patent Office. Copyright © 1990 by Penton Publishing Inc. All rights reserved. The contents of this publication may not be reproduced in whole or in part without the consent of the copyright owner.

 Permission is granted to users registered with the Copyright Clearance Center Inc. (CCC) to photocopy any article, with the exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of $\$ 1$ per copy of the article plus $\$.50$ per page is paid directly to the CCC, 27 Congress St., Salem, MA 01970 (Code No. 0013-4872/90 $\$ 1.00+.50$). Copying done for other than personal or internal reference use without the express permission of Penton Publishing, Inc. is prohibited. Requests for special permission or bulk orders should be addressed to the editor.
 For subscriber change of address and subscription inquiries, call (216) 696-7000.

 POSTMASTER: Please send change of address to electronic design, Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114-2543

[^1]: ${ }^{\text {TM }}$ MegaChip, SCOPE, and ASSET are trademarks of Texas Instruments Incorporated MS-DOS is a trademark of Microsoft Corporation (C) 1990 Tl

[^2]: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106; Headquarters: (617) 329-4700; California: (714) 641-9391, (619) 268-4621, (408) 559-2037; Colorado: (719) 590-9952; Maryland: (301) 992-1994; Ohio: (614) 764-8795; Pennsylvania: (215) 643-7790; Texas: (214) 231-5094; Washington: (206) 575-6344; Austria: (222) 885504-0; Belgium: (3) 237 1672;Denmark: (2) 845800; France (1) 4666-25-25; Holland: (1620) 81500; Israel: (052) 911415; Italy: (2) 6883831, (2) 6883832, (2) 6883833; Japan: (3) 263-6826;; Sweder: (8) 282740; Switzerland: (22) 315760 ; United Kingdom: (932) 232222; West Germany: (89) 570050 . EDN, "EDNs DSP Benchmarks," September 29, 1988.

[^3]: 3. AN 8-POLE Butterworth, 8 -pole Chebyshev, 7 -pole Cauer elliptic filter are plotted in the frequency domain. The Butterworth filter has a maximally flat pass band and the slowest descent into the stop band. A steeper descent into the stop band is realized by the Chebyshev filter, at the expense of ripple in the pass band. The Cauer elliptic filter has ripple in the pass band and stop band but exhibits the steepest roll-off into the stop band.
[^4]: 2. THE SPREADSHEET CALCULATIONS MAKE IT POSSIBLE for users to compare different op amps in the same circuit configuration or vary component values and look at the effects on noise (a). The spreadsheet's results can be plotted. Here, the noise is plotted versus circuit gain for an AD844 current-feedback op amp for a $10-\mathrm{MHz}$ bandwidth (b).
[^5]: All for now. / Comments invited! (Now there's an understatement.) / RAP / Robert A. Pease / Engineer

 ## ADDRESS:

 Mail Stop C2500A
 National Semiconductor
 P.O. Box 58090

 Santa Clara, CA 95052-8090

[^6]: *Price in U.S. Dollars

[^7]: 7400 N. Croname Rd., Chicago, IL 60648 Phone: (708) 647-8303 Fax: (708) 647-7494

[^8]: Sprague-Goodman Electronics
 134 Fulton Ave.
 Garden City Park, NY 11040
 (516) 746-1385

 ## - CIRCLE 694

[^9]: The advertisers index is prepared as an extra service. Electronic Design does not assume any liability for omissions or errors.

