
EDP ANALYZER
© 1982 by Canning Publications, Inc.

OCTOBER, 1982
VOL. 20, NO. 10

RELATIONAL DATABASE SYSTEMS ARE HERE!
The reaction of some people to the title of this report

will be, "I thought that relational systems had been around
for several years." The reaction of others will be, "So
what." But, while there have been relational systems on
the market for some time, there have been many questions
and doubts about their limitations and performance. Now,
however, some relational systems are available that de
serve your serious consideration. Relational systems are
joining hierarchical and network systems as part of the da
tabase technology. (See page 16 for an executive summary
of this report.)

Texas Eastern Corporation is a di
versified energy company with headquar
ters in Houston, Texas. Operating revenues
in 1981 were $4.5 billion.

Texas Eastern's data processing environ
ment includes a Honeywell triple proces
sor mainframe, three DEC VAX 111780 su
per minis, and a number of distributed
mini-computers in user areas. Business ap
plications are programmed predominately
in COBOL. The company also makes exten
sive use of other programming languages
for creating economic forecasting and
planning models.

In 1980, a study was conducted to eval
uate and select a database management
system (DBMS) on which to build a manage
ment information system to serve the com-

pany' s exploration and production activi
ties. This study focused on four major ca
pabilities that were desired of the DBMS.
These were: (1) data structure indepen
dence from program logic, (2) end user fa
cilities, (3) ease of restructuring the data,
and (4) adequate security features.
CODASYL, hierarchical, and relational sys
tems were evaluated according to these
criteria.

The ORACLE relational DBMS, from Rela
tional Software, Inc. of Menlo Park, Cali
fornia, was selected and plans were made
to install it, along with Texas Eastern's
first DEC VAX 111780, in mid-1981. Since
that time, Texas Eastern has acquired two
additional VAX 111780's and is running ORA
CLE on each of them.

ISSN 0012-7523. Photocopying this report for personal use is permitted, providing payment of $2.50 fee per
copy of report is made to Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970; please include
identifying fee code 0012-7523/82/100001-16$2.50.

For its management information system to
support exploration and production, Texas East
ern purchased a customized system developed by
an outside firm, and has converted the system
from a HARRIS/TOTAL environment to a VAX/OR
ACLE environment. While this was their first sys
tem to run under ORACLE, the installation has
been a lengthy process due to the complexity of
the system. The staged installation of this system
is still underway.

While the installation of this system was in
progress, the computer services department de
signed an ORACLE application for monitoring
project activity in the development of new sys
tems. This management reporting system, called
MARS, has been in use since April of this year. It
presently provides department management with
information on current and anticipated system
development projects, and will eventually be ex
panded to include the full spectrum of functions
to support computer systems project manage
ment. Texas Eastern feels that the development
of MARS was accomplished significantly faster by
using ORACLE than would have been possible
with conventional programming languages and
database technology.

Several other medium size business applica
tions are in progress for the VAX/ORACLE com
puters. So far, response time for accessing the
databases has not been a problem. In addition,
while the ORACLE release in use at Texas East
ern does not yet have all the features that the
company desires, they feel confident that Rela
tional Software will be able to deliver those fea
tures in future releases.

All in all, Texas Eastern is well pleased with
their move to this new database technology.
They feel that relational database approaches,
along with end user tools such as the SQL lan
guage and Query by Example, will find an im
portant place in database technology for the
1980s.

TRW Defense Systems Group

The Defense Systems Group (DSG) of TRW
Inc., located in Redondo Beach, California, spe
cializes in electronics systems for defense and
space. TRW itself, with headquarters in Cleve-

2

land, Ohio, had 1981 sales of over $5 billion and
employed some 92,000 people.

DSG uses a wide variety of mainframe, mini,
and micro-coinputers, both for in-house use and
in systems that are being developed for custom
ers. These include computers made by IBM,
CDC, Burroughs, DEC, Hewlett-Packard, Prime,
and Perkin-Elmer. We discussed the Group's use
of a local network for connecting some of these
computers together in our June 1980 issue.

In support of the information processing sys
tems that they develop for customers-typically,
defense and space systems-the people at DSG
have developed a man-machine interface dialog
design tool which they call FLAIR. FLAIR allows
a designer to quickly create a prototype of a
new system's user interface, in the early stages of
a project. The prototype is developed to deter
mine the client's needs and desires before any
production coding commences.

FLAIR has been in operation since early 1981,
and is being continually enhanced. (It is not for
sale to other organizations, however.)

Wong and Reid (Reference 1) describe the
major components of FLAIR and how it is used.
A prototype developed with FLAIR allows client
personnel to interact with a portion of the 'de
liverable system,' via scenario simulation. The
system designer uses FLAIR to create the proto
type; client personnel then test out the use of
the prototype and (generally) suggest changes.
This activity leads to a more accurate definition
of the system requirements.

For this type of use, a 'must' for FLAIR was
that it be easy for system designers to use, say
Wong and Reid. It itself should be a good exam
ple of an effective man-machine interface.

A point of interest: FLAIR provides for a vari
ety of types of input to be used by the prototype
systems-including digitizing graph tablets, light
pens, joy sticks, keyboards, voice recognition,
and others. Considerable use is made of voice
recognition, we were told. It is not unusual for
users to give commands to the system-say, for
the display of particular graphics or maps-by
voice. These commands select appropriate paths
in a tree-of-action items. A graph tablet or light
pen controls the cursor and a keyboard is used
for entering character strings.

EDP ANALYZER, OCTOBER, 1982

•,

Wong and Reid give an example of how a
user might give voice and light pen commands
to a prototype system to draw a circle, using
FLAIR functions: (voice) DRAW; (voice) CIRCLE;
(point with light pen to the desired location for
the center point); (voice) CENTER; (point with
light pen to the desired location for the radius);
(voice) RADIUS. And that's it!

Another approach for system input also sup
ported by FLAIR is to use a graph tablet or light
pen to select a high level instruction from a
menu and then to pick instructions from sub
menus.

With this kind of flexible and powerful proto
typing system available, the people at DSG saw
the need for providing FLAIR with database man
agement facilities. They considered the leading
types of DBMS, such as hierarchical, network,
secondary index, and relational. They decided
that relational database management was the
'wave of the future' and that products now on
the market offered a practical solution for data
base applications. So they chose two products
for use with FLAIR-INGRES, from Relational
Technology, Inc. of Berkeley, California, and the
IDM 500 database machine from Britton Lee Inc.
of Los Gatos, California. Relational database
management, they felt, offered them more flexi
bility in adding, deleting, or changing data fields
and records and more flexibility in making use of
relations among data items. And in defense and
space systems, such unforeseen change seems to
be the norm, not the exception.

INGRES is a software product that runs on DEC
VAX machines. It includes on-line features (such
as the QUEL query language and end user utili
ties) and the EQUEL language for embedding
INGRES commands in programs written in other
languages. It will be described in somewhat
more detail later in this report.

The Britton Lee IDM (Intelligent Database
Machine) is a backend machine which off-loads
the entire relational database job from the host
computer. It can interface to any of a variety of
mainframes, minis, or micros, but interfacing
software is needed for each type of machine.
The IDM, too, will be described in more detail
shortly.

EDP ANALYZER, OCTOBER, 1982

INGRES is not seen by the system designers
who use FLAIR. It is buried deep within the sys
tem, we were told. But it does provide these de
signers with an easy and friendly way to define
the data, store that data, and then retrieve it in
almost any manner that the system designer (or
client) desires. FLAIR translates the user's com
mands into INGRES query and retrieval com
mands. For the prototype systems developed
with FLAIR, files tend to be small in size, and do
not tax the capacity of INGRES. The actual pro
duction systems can have much larger databases,
and the choice of the DBMS to be used depends
on numerous factors, including the particular
computer that is to be used.

For client systems where very large databases
will occur and where relational database man
agement may be desired, DSG obtained the IDM
500. FLAIR might have to handle databases hun
dreds of millions of characters in size, and the
IDM 500 probably would be used for this, we were
told. But, in addition, the people at DSG want
to get experience with backend database ma
chines, looking forward to the day when they
will have to provide database management for
files measured in the billions (even hundreds of
billions) of characters in size.

In general, the people at DSG see relational
database technology as playing an increasingly
important role. It is the most flexible database
management system, they feel, and is the one
best able to handle unforeseen changes in re
quirements. It is good at handling complex, dy
namic data that has many inter-relationships.
Also, they see software systems, such as INGRES,
and the backend hardware/ software systems,
such as the IDM 500, as being more complemen
tary than competitive. Each has advantages in
certain situations, depending on the host com
puter and the database size.

Also, they see database management becom
ing hybrid in nature, in two different ways. One,
database management must be able to handle
data of a variety of basic types-formatted data,
unformatted text, digitized maps and pictures,
matrices, and so on. Each type of data will re
quire its own type of database management. Sec
ond, within the category of formatted data, there
are times when a hierarchical or network struc-

3

ture is desired, as opposed to the 'flat files' of re
lational systems. So DBMS of the future probably
will have to accommodate all three of these
structures.

As they say at TRW's Defense Systems Group,
relational database management appears to be
the way of the future. So that is why they have
incorporated it in FLAIR, their man-machine in
terface test bed.

Developments in DBMS
Relational database management systems have

been evolving since the relational data model
was first proposed by Dr. Edgar F. Codd of IBM
in 1970. Perhaps more than any other approach
to database management, they have triggered a
debate on which data model is conceptually
'best.' A data model is the method by which data
is structured, to represent the real world, and
the way that data is accessed.

There are three major types of data models in
use today. The hierarchical model structures
data in parent and child relationships-compo
nents of an organization, for example. In this ap
proach, a data item can have only one parent. It
is represented by IBM's IMS and Intel's System
2000. Another major type is the network struc
ture, where each data item can have more than
one parent. Manufacturing assembly parts lists
illustrate this structure, where the same part can
be used in more than one assembly-and, in fact,
might be used in different quantities in each
such assembly. This approach is represented by
the CODASYL-type database management sys
tems, such as Cullinane' s IDMS.

In both the hierarchical and network models,
the data relationships are explicitly stated, gen
erally by pointers stored with the data. These
pointers provide the means by which the user's
program accesses the desired data records.

The third approach is the relational model,
where the relationships among data items are
not expressly stated by pointers. Instead, it is up
to the DBMS to find the related items, based on
the values of specified data fields. Thus, all the
employees of a certain department are found by
the department number in the employee records.

There are some other popular DBMS that do
not fit neatly into these three categories. Cin-

4

corn's TOTAL, for instance, comes close to being
in the network category. Software ag' s ADABAS is
a secondary index system that has some similari
ties to both hierarchical and relational systems.
Some other systems are 'almost' relational. And
still others claim to support two types of data
models-say, network and relational.

But what is the relational model? And how
does it differ from these other models, as far as
users are concerned?

To set the stage for answering these questions,
it will help if we first discuss how DBMS in gen
eral are evolving, by way of the three-level data
base concept.

Three-level databases

One of the easiest-to-understand discussions of
today's database technology that we have seen is
by James Bradley (Reference 2). He describes the
work of the Standards, Planning and Require
ments Committee of the American National
Standards Institute (ANSl/SPARc) in the mid-
1970s. The main concept that came out of the
work of this committee was the three-level data
base, he says-and it was the research on rela
tional database technology that led to this con
cept. Interestingly, one of the prime movers on
this committee was Charles Bachman, whose
ideas were so influential in developing the net
work approach.

It should be noted, as Bradley says, that most
of today's major DBMS have either adopted this
three-level concept or are close to it. So the
ideas of ANSI/SP ARC have had a significant in
fluence already.

Level 1 is the storage level, says Bradley; this
is the way the data is physically stored on (say)
disk. A data record consists of its data fields plus
some implementation data-generally, pointers
and flag fields. The problem of overflow of
record storage areas occurs for almost any
method of direct access, so a flag is needed to
identify a record as being an overflow one and a
pointer is needed for pointing to the next over
flow record. The DBMS simply follows this chain
of pointers until it finds the desired record. The
end user, of course, need not be concerned with
these pointers and flags; they are for use by the
DBMS only.

EDP ANALYZER, OCTOBER, 1982

Level 2 is the conceptual level. The data fields
are the same as at Level 1, but without the im
plementation data (flag and pointer fields). The
data records at this level, then, are logical rec
ords.

Level 3 is the external level, says Bradley-and
this data is what an application program sees.
Level 3 records contain only selected fields from
the Level 2 records.

To illustrate the principles involved, a simple
Level 1 data record might have fields A, B, and
C, plus a flag field and a pointer field. At Level
2, the flag and pointer would be stripped off,
leaving only the A, B and C fields. Then, at Level
3, one application program might be given only
fields A and B, while another might be given only
A and C.

There are numerous advantages to this three
level concept. The organization of Level 1 data
can be changed-say, from calculated addresses
('hashing') to index sequential access-with no
effect on Levels 2 and 3. Or a new field can be
added to a Level 1 record. While Level 2 also
must handle this new field, Level 3 records that
do not use this new field will have no change at
all.

(Traditionally, says Bradley, to add a new field
requires changing the existing application pro
grams that use that file. What happens instead is
that a new file is set up that incorporates the
new field. So data files proliferate.)

Now to return to the questions: What is the
relational model, and how does it differ from the
hierarchical and network models?

What are relational systems?

The first point to make is that the relational
model fits this three level concept. The hierar
chical and network models may or may not fit,
depending on how they are implemented. Also
the relational model stores and accesses data
much differently from the other two models.

Codd, in his 1981 ACM Turing Award paper
(Reference 3), discusses his ideas of what consti
tutes a true and fully relational system. In brief,
and using data processing terminology, he says
such a system must have (a) a structural part
consisting of 'flat' tables, where the columns rep
resent fields and the rows represent records, but

EDP ANALYZER, OCTOBER, 1982

there is no notion of one column succeeding an
other or of one row succeeding another, (b) a
collection of operators (such as select, join, etc.)
for retrieving, deriving or modifying data in
those structures, and (c) a collection of general
integrity rules. So a relational system is more
than a collection of flat tables.

While there are numerous features that dif
ferentiate a 'true' relational model from a net
work or hierarchical model, we will single out
three: (1) data structures, (2) operators (or com
mands), and (3) user views.

Data structures. In a relational model, data is
represented in the form of flat tables-where
'flat' means that there are no repeating groups.
As mentioned, the rows of a table represent the
different records in the file, and the columns rep
resent the different data fields in those records.
Each record has a fixed length and a fixed for
mat. In addition, there should be no duplicate
records. These conditions hold true for the Level
1 stored data, Level 2 logical data, and Level 3
user data.

(Putting the data into this form is called 'nor
malizing' it. Codd proposed three forms of nor
malizing; this has since been expanded to five
forms. A discussion of normalization, while im
portant, is beyond the scope of this paper.)

To compare the relational model with (say)
the CODASYL network model, Bradley says (in
Reference 2) that CODASYL records can be
formed in two distinct ways: (a) as variable
length records, with repeating groups, using the
COBOL OCCURS clause, or (b) as owner-member
sets of fixed length, fixed format records. Using
(b), one obtains records that are similar to those
in relational systems-and this is the best way to
design any database, he says.

So relational systems require files of flat rec
ords, and records which are not inter-related by
pointers. Network and hierarchical systems can
have flat records, if set up that way, but such
records are not required. Moreover, the latter
two models generally designate data relation
ships by pointers.

Operators. A relational model is more than
this simple data structure. Another feature of re
lational systems is the existence of powerful op
erators (commands) by which the user tells what

5

the system is to do, not how it should be done.
With relational systems, the user does not have
to 'navigate' through a database, by following
pointers, seeking the desired information.

All that the user deals with are tables. The re
sults of operations on tables are themselves ta
bles. There is only one set of operators in a rela
tional system, as opposed to other types of DBMS
where one set of operators is used to manipulate
the data and another set is used to manipulate
the relationships. In a relational system, chang
ing the data in a table changes the relationships.

Furthermore, said Codd in a discussion with
us, the operators should at least provide the fa
cilities of selecting specified columns of tables,
of selecting specified rows of tables, and ;oining
the rows of one table to the rows of another,
where specified criteria are met.

Ferris believes that this 'join' function is per
haps the key aspect of relational systems. For in
stance, see his comments in References 5a and
5c.

It is the join that allows a Level 3 user table
to be created by selecting and joining specified
columns and rows from two or more Level 2 ta
bles. Many of today's DBMS can create Level 3
records by selecting specified fields from Level 2
records. Relational systems go beyond this; they
can create Level 3 user tables by both selecting
and ;oining data from multiple tables.

While there are some join-like features in
other types of DBMS, we have not heard of a true
join function in a non-relational system.

User views. In Reference 4, Codd makes the
point that a relational system should provide
user view tables, which are made up of selected
rows and columns that meet specified criteria,
from one or more other tables. For example, a
manager might be given a user view that allows
him/her to see certain data fields in the records
of employees under him/her-but not all the
data on those employees, and none of the data
on other employees. This type of facility is use
ful in many ways, including data security.

Thus Level 3 tables represent 'user views.' As
indicated, no other type of DBMS yet equals rela
tional systems in providing this function.

At the moment, relational systems are 'in,' in
the sense that numerous suppliers are claiming

6

that their systems are relational, for sales pur
poses. This discussion has touched only on some
highlight aspects of relational systems. Answer
ing the question of whether a system is truly re
lational or not is a bit tricky and is beyond the
scope of this report. Readers interested in read
ing more on this question are referred to Refer
ences 3, 4, and (for instance) 5a, 5b and 5c.

Interacting with a system

While there are differences among relational
systems in the way the user interacts with them,
there are also striking similarities. This is due,
no doubt, to the extensive definition of a rela
tional system that Codd gave in his 1970 paper.
He provided the model from which the subse
quent systems have been developed.

IBM's SQL illustrates the features of a rela
tional language. An SQL retrieval command has
the following three main components: (1) the
verb SELECT, followed by the name(s) of the
field(s) to be selected; (2) the qualification, indi
cating which tables are involved; and (3) the cri
teria to be used in the selection (the WHERE
clause).

If it is desired to obtain the name of the em
ployee whose number is 12345, from the em
ployee file, the entry would be: SELECT ENAME
FROM EMP WHERE EMPNO = 12345. (Actually,
with SQL, the select, from, and where clauses
would be on separate lines, and the entry would
be ended with a semicolon.)

A join query is a bit (but not much) more
complex. Assume a listing is desired of all em
ployees over age 60 and the department and
floor on which they work. Assume also that the
desired data is to be obtained from two files, the
employee file and the department file. The entry
would be: SELECT ENAME,DEPTNO,FLOOR FROM
EMP,DEPT WHERE EMPAGE 60 AND EMP.DEPTNO
= DEPT.DEPTNO.

The next step up the ladder is a nested query.
An example might be to list all the employees
who have the same job title as Jones. The entry
would be: SELECT ENAME FROM EMP WHERE TI
TLE = SELECT TITLE FROM EMP WHERE ENAME
= 'JONES'. In this example, the initial WHERE
clause involves a retrieval; Jones' job title must
first be obtained, after which it is used for re-

EDP ANALYZER, OCTOBER, 1982

trieving all other employees with the same job
title.

A user view can be defined in much the same
way. The format is: DEFINE VIEW (view name)
SELECT (fields to be incorporated in the view)
FROM (tables from which these fields are to be
obtained) WHERE (criteria for making the selec
tion).

There is much more that could be described,
but these examples should give some idea of
what user interaction with a relational DBMS is
like. For a somewhat longer discussion of the
command structure of three leading systems
(SQL/DS, ORACLE, INGRES), see Dieckmann (Ref
erence 6).

A structured query language such as SQL is not
too complex, from an end user's point of view,
but it is still something that executives, manag
ers, and professional staff members will have to
learn. Nested queries are likely to cause the
most problems for these users.

But, you might ask, cannot something closer
to natural language be used, to make a relational
system even easier for these types of end users?
We discussed the subject of natural language
query systems last month. Some natural query
languages are available-but they have their
problems, too. It is not too likely that you will
soon see a natural language query system for re
lational databases.

Relational data management systems

Besides database management, today's rela
tional systems are offering many more features
that, together, we have been calling 'data man
agement.' These features include the ability to
create input screen formats and procedures, re
port writing, a query language, word processing,
interface to high level programming languages,
and such.

In many of our 1981 reports, we discussed
how these data management systems are being
used-by programmers and by end users-to get
new applications up and running rapidly. We
ourselves have been using one such system for
several years and can attest that the concept is
not just theory; it really works.

And we must say, we were well impressed
with the way these relational systems performed

EDP ANALYZER, OCTOBER, 1982

the data management functions. From what we
have observed, it is an easy matter to state most
of the queries in the relational language. It is
easy, too, to define user views, whereby a user is
given access only to specified fields of specified
records. In short, the user interface of these sys
tems is indeed friendly.

So we foresee these relational systems advanc
ing the state of the art in end user programming,
developing new applications by prototyping, and
the other such uses that we discussed last year.

How will they be used?
What is the likely role of relational systems?

Will they replace existing DBMS or not? Will
they be used primarily for handling end user
queries, or will they also be used in high transac
tion volume applications with large files? To
what extent will they be used to provide higher
productivity in the development of new applica
tions (which was the main theme of Codd's Tur
ing Award paper, Reference 3)?

For some partial answers to these questions,
consider the marketing strategies (as we inter
pret them) of four leading suppliers of relational
systems.

IBM SQLI DS. IBM's first relational product
was announced in January 1981, and deliveries
began during the first quarter of this year. How
ever, IBM had gained extensive experience with
a prototype system, System R, that was tested by
several IBM customers over a period of time.

We will touch briefly on what IBM has an
nounced about the marketing of SQLIDS (which
means 'Structured Query Language/Data Sys
tem' and where the SQL is usually pronounced
"Sequel").

First, SQLIDS has been released so far only for
IBM's intermediate range of computers operat
ing under DOS/VSE.

Secondly, IBM says they see SQL/DS as com
plementing, not competing with, IMS and DL/ 1.
For instance, an extract function is available to
run under DL/l, to extract desired data from
production databases. The extracted data is for
matted for previously defined SQLIDS tables and
can then be manipulated by SQL/DS. So this use
seems to be mainly for management information
purposes.

7

It is possible to update both DL/ 1 and SQL/DS
·databases in parallel, with the provision that if
one of these updates fails to complete, the other
is cancelled.

So IBM, in their marketing strategy, does not
see SQL/DS competing with or displacing exist
ing DBMS such as IMS or DL/l. Nor do they seem
to see it being used in high volume production
work. Instead, they appear to expect it to be
used for management information purposes and
for handling smaller, lower activity databases.

For more information on SQL/DS, see Refer
ence 4, or your local IBM office.

ORA CLE, offered by Relational Software,
Inc., has been designed to be 'plug compatible'
with IBM's SQL/DS. IBM published the SQL data
language and RSI has adopted that language. So
ORACLE, too, will run on IBM's intermediate
range of computers under DOS/VSE.

But, in addition, ORACLE will run on DEC PDP-
11/23 (and above) computers, under the RSX-HM,
IAS or UNIX operating systems. It also runs on all
models of the DEC VAX computer under the VMS
or UNIX operating systems.

The portability of ORACLE does not stop
there, however. Version 3, which is being re
leased about the time we are going to press, has
been completely written in the "C" programming
language. Hence, it can run on any 16-bit (or
higher) computer with a c compiler and at least
256k bytes of main memory. RSI markets a c
compiler for the IBM 370, 4300 and 30XX comput
ers, to run under most of IBM's operating sys
tems. As we go to press, RSI has shipped their
first IBM production versions of ORACLE, to run
on 4300 and 30XX computers under VM/CMS.

Also, ORACLE will run on micro-computers
that use the Motorola MC68000 processor. Over
40 suppliers of this type of micro have talked
with RSI about putting ORACLE on their com
puters, and at least one instance of this is ex
pected to be on the market before the end of
this year.

RSI foresees some instances of ORACLE being
used in high transaction volume environments,
with large data files. The system uses re-entrant
code, so that multiple concurrent batch and on
line updates and queries are possible. Thus ORA-

8

CLE might well compete with, and possibly re
place, existing DBMS, if the customer so desires.

ORACLE provides a 'cluster' feature whereby
two tables can be combined in a nested manner,
such as a department record that is followed by
the records of the employees in that department,
followed by the next department record and then
its employee records, and so on. Where this type
of structure can help speed processing, ORACLE
can provide that structure. While making the
processing of transactions faster, such a step
probably would make the processing of some ad
hoc queries slower. The query user need not be
aware of this cluster structure, however.

RSI also has developed ORATOR, which in
cludes (a) an interactive application develop
ment facility, (b) a report writer, (c) an interac
tive query facility, (d) a text editor with word
processing capabilities, and (e) a high level pro
gramming language.

So RSI sees ORACLE and ORATOR being used
for new database applications, as well as some
times replacing existing DBMS applications, on
mainframe, mini, and even on micro-computers.
These systems will be used both for management
information purposes and for production updat
ing of files. They will be used for developing
new applications rapidly. Also, if a customer
wants to start out with ORACLE and later change
over to IBM's SQL/DS, no changes should be
needed in the customer's application programs.

For more information on ORACLE and ORA
TOR, see Reference 7.

INGRES, offered by Relational Technology,
Inc., is a commercial product that emerged from
Project INGRES at the University of California,
Berkeley. The project, which was begun in 197 4,
developed INGRES to run on the DEC PDP-11 un
der the UNIX operating system. Since it was de
veloped with public funds, the University's IN
GRES has been available at low cost, and some
125 sites are using it. But the University could
not justify enhancing and supporting it in the
manner that users desired.

RTI was formed in 1980, and staffed with peo
ple from the university project and from indus
try, to extend and support INGRES as a product.
For the first environment, the company chose to
have their version of INGRES run on DEC VAX

EDP ANALYZER, OCTOBER, 1982

''

..

.,

..

computers operating under the VMS operating
system.

Most customers are using INGRES for new ap
plications, so that conversions from existing
DBMS are not involved. RTI's emphasis has been
on providing an application development system
that uses INGRES, aimed at greatly reducing the
number of lines of code that programmers must
write to get applications up and running.

To this end, INGRES includes a utility for cre
ating screens, a report writer, a forms-based
query system (Query by Forms, available for 140
models of terminals), a text editor with some
word processing capabilities, and an embedded
query language with interfaces for several pro
gramming languages-C, FORTRAN, PASCAL, CO
BOL, BASIC, and, if desired, APL and PL/l. EQUEL,
the embedded query language which is used in
programs written in one of these languages, em
ploys the same commands as INGRES' interactive
QUEL query language. A pre-processor searches
for these EQUEL commands and converts them
into appropriate CALL statements for the pro
gramming language being used. So programmers
need only learn one way to use INGRES.

With these utilities available, the people at
RTI feel that some users may choose to convert
existing DBMS applications; the new versions of
the applications might well be developed so rap
idly with these utilities that the old code will
just be discarded. One reason they might choose
to do this is to get the advantages that INGRES
can offer them. For instance, one advantage is in
the area of data security; end users can be
granted access for update or for just retrieval, at
the individual field level, for a specific terminal
number, for specific times of day, and for spe
cific commands that the user wishes to execute.

Also scheduled for release this year are two
other extensions-a graphics capability whereby
users can get graphics output with no program
ming needed, and a forms-based application de
velopment system.

For more information on INGRES, see Refer
ence 8.

Intelligent Database Machine (IDM), from
Britton Lee, Inc., is a back-end processor and
storage system that has a complete database
management system which uses the relational

EDP ANALYZER, OCTOBER, 1982

data model. The company was formed in 1978
to develop an intelligent database controller that
would perform high speed searching of a data
base. Soon this goal was changed to that of a in
telligent database machine that included a rela
tional DBMS.

The IDM consists of: (a) an optimized high
speed disk controller that overlaps the seeks and
writes, and (b) a uniquely designed relational da
tabase processor. Also under development is (c)
a parallel accelerator function that will allow
high speed searching at disk data transfer rates.
So the IDM is a specialized processor, designed
to perform its functions at high speed-up to ten
times faster than a general purpose back-end
computer, running a regular DBMS software
package, could perform the same functions.

Why use a back-end processor of this type?
Britton Lee sees several reasons. Among them is
the potential of higher speed. Another is the
ability to take a significant workload off the host
and free a good amount of storage space in the
host's main memory. Not only is the DBMS code
removed from the host but also a large amount
of memory is made available that otherwise
would be needed for holding the tables that have
been retrieved and are being worked on. An
other advantage is that this approach can pro
vide a centralized database, as the IDM is de
signed to simultaneously support a variety of
host computers. Still another is that it can pro
vide a high level interface for the hosts-some of
which can even be micro-computers or intelli
gent terminals.

(In fact, we witnessed an example of this,
where a Z80-type micro, with 64k bytes of mem
ory and running CP/M, entered queries and re
ceived responses from the IDM.)

The relational database system used in the
IDM has similarities to both SQL/DS and to IN
GRES. Some of the key people came from the IN
GRES project at the University of California, and
they also took advantage of IBM's published ma
terial on System R, the predecessor of SQLIDS.

Britton Lee offers four models of the IDM-the
200, 300, 500, and 600. For instance, the 200, with
112 megabyte of memory, can process in the or
der of IO transactions per second; with 1 mega
byte, the rate goes to roughly 16 per second.

9

And the 500 can have up to 5.5 megabytes of
memory, and is aimed at the super-mini market.
On-line disk storage capacities can be up to 2.5
billion bytes on the 200 and 11 billion bytes on
the 500.

The 200 and 500 IDMs perform only some of
the functions involved; each host must perform
others. For instance, a host must translate a
query into the IDM's internal form; it could be a
query expressed in Britton Lee's IDL language,
or IBM's SQL, or RTI's QUEL, or other. The host
must provide the report writing functions, data
entry functions, pre-compiling, database admin
istration utilities, and drivers. The IDM, on the
other hand, performs the database management,
optimizes the access path selection, provides
concurrency control, transaction management,
security, audit logs, crash recovery, and the
dumping and loading of data.

The 300 and 600 currently interface with the
DEC VAX 111750 and 111780 machines. They differ
from the 200 and 500 in that they perform the
above-listed host functions.

Britton Lee sees their prime market as other
computer system suppliers (Original Equipment
Manufacturers, OEM's) who want to offer rela
tional database management. Some customizing
is needed to tailor the IDM to the particular
computer(s) it is to work with, and Britton Lee
expects that the OEM's can provide much of this
customizing. Software is needed for communi
cating with the end user, for translating the
user's commands to IDM internal form, for send
ing the translated commands to the IDM, for re
ceiving the results back from the IDM, and for
formatting those results and displaying them to
the user. At present, Britton Lee has interfaces
for DEC PDP-11 and VAX computers running un
der the VMS and UNIX operating systems, and is
working on interfaces for other makes and mod
els.

For more information on the IDM, see Refer
ence 9.

How will they be used? . These are only four of
the numerous relational systems that are on the
market. Others include Hewlett-Packard's RE
LATE, GTE'S RELSTORE, and Logica's RAPPORT.
Then there are some on the market that are al
most relational; for instance, Reference 5d lists

10

over 100 DBMS, of all types and sizes. In their
advertising, many of these companies state that
their products are relational. As mentioned ear
lier, it is not always an easy matter to determine
if a DBMS is really a relational one or not.

But how will the relational systems be used?
Based on the marketing strategies of the four
firms just discussed, it seems most likely that re
lational systems will soon be used for: (a) new
applications that can benefit from this technol
ogy, and (b) using data extracted from pro
duction databases, for answering management
queries and producing management reports, par
ticularly of an ad hoc nature. It is not likely that
they will be used soon to replace many existing
DBMS applications.

What about performance? Won't relational
systems always be inherently slower than hierar
chical or network systems, and hence limited to
smaller transaction volumes and smaller data
bases? That is the next question to address.

The performance question
One point has been stressed over and over

again by suppliers of relational systems-both in
articles in the trade press and in conversations.
That is, there are no theoretical reasons for rela
tional systems to have poorer performance than
the hierarchical or network systems.

Today's relational systems use conventional
methods for accessing data-calculating ad
dresses for direct access, the use of index sequen
tial organization, the use of multiple secondary
indexes, and so on. They do not require associa
tive memories.

But differences in performance do exist. Some
of today's hierarchical and network systems can
handle more transactions per second than today's
relational systems. Why is that?

Dr. Michael Stonebraker, of Relational Tech
nology, Inc. and the University of California,
Berkeley, offers the following explanation. "The
early versions of any complex software system
are almost always slow; this has been true of re
lational systems," he says. "The developers have
to learn how to tune them, to improve perform
ance. Some tuning techniques used with current
DBMS technology can probably be adapted for
tuning relational systems. Other tuning tech-

EDP ANALYZER, OCTOBER, 1982

niques will have to be developed, such as mov
ing some of the overhead from execution time to
compile time."

Dr. Robert Epstein of Britton Lee, Inc. agrees.
"Whenever you get general and complete, you
get a lot of overhead. The relational model has a
lot of overhead. It hasn't been around long, so
not much tuning has yet been done on it. But
there is nothing inherently less efficient about
it."

Lawrence Ellison, president of Relational
Software Inc., says, "It is the join operation that
has been the major slow-down function in rela
tional systems. As developers learn to overcome
this problem (and we think our 'clustering' fea
ture is a solution), there is no reason why rela
tional systems cannot be as fast as network or hi
erarchical ones."

But Stonebraker cautions, "Considering that
current DBMS have a number of years head start
over relational systems, and are continually be
ing tuned, it is not clear that relational systems
will ever catch them on performance. But
clearly relational systems will both catch and ex
ceed today's performance of the current DBMS."

In support of his views, Stonebraker offered
the following statistics on the performance of
INGRES. Relational Technology's version 1.2 of
INGRES ran five times faster than the University
of California's version of the system-due, to a
good extent, to the University project's concern
more with function than with performance.
Then RTl's version 1.3 ran 35% faster than ver
sion 1.2. The latest version, 2.0 (which has just
been released), runs 50% faster than version 1.3.

"Furthermore, if content addressable disk
storage is developed, a relational system can ex
ploit such a development, while a DBMS technol
ogy that is based on pointers probably cannot,"
continued Stonebraker. In that case, relational
systems might become faster than hierarchical or
network systems.

JiVhat about performance? The upshot seems
to be that today's relational technology can han
dle quite large databases (hundreds of millions of
bytes) and transaction rates of about 10 to 15
transactions per second, for simple transactions
(with the higher rates possibly requiring a data
base machine such as the Britton Lee IDM, under

EDP ANALYZER, OCTOBER, 1982

today's technology). With large databases, intel
ligent database administration is essential; if a
relational DBMS defaults to a sequential search of
the database, a large amount of computer re
sources can be wasted.

But most of the suppliers that we talked with
say that initial uses of relational DBMS are likely
to be for new, smaller applications. In such an
environment, they feel that their products are
competitive with the hierarchical and network
systems.

Relational ~ystems on micros
Why put a relational DBMS on a micro-com

puter? Both RSI and RTI told us that they had
been visited by more than 40 suppliers who have
MC68000-based systems under development. Both
expected to see at least one such computer with
a relational DBMS on the market by the end of
this year.

(Note that there are some DBMS on the market
for 8-bit micros that are claimed to be rela
tional. However, they are not in the same league
as the systems we are discussing here, in func
tions performed or the size of the database han
dled.)

Won't the price of a complete relational sys
tem be too high for use on a micro? The answer
appears to be No. For mainframes and minis,
the prices of the relational systems discussed in
this report range from about $30,000 to over
$100,000. While the price of a complete rela
tional DBMS for a single-user micro has not been
announced, it is likely to be under $1,000, and
perhaps in the $500 range, we were told. Of
course, a mini or a mainframe can serve multi
ple users, while each single-user micro would be
expected to have its own purchased package.

But even if it is affordable, why do it? The
reason seems to be that users will want to ex
tract data from production files, load it on to
their micro-computer work stations, and then
'play' with the data, seeking answers to prob
lems. Also, a relational system would make it
convenient to 'join' such internal data with data
obtained from outside sources, to do market
forecasting, sales forecasting, share-of-market
analyses, production forecasting, financial analy
ses, budgeting, and so on. Ellison of RSI believes

11

that relational systems will be favored for such
applications because they are so simple to use.

Why not perform these analyses on minis or
mainframes; why use micros? The answer here
seems to be, we gather, that many executives,
managers, and professional staff members prob
ably will feel more comfortable using their own
work stations instead of using terminals tied to
larger computers. Many of their applications
will involve small files and will be used infre
quently; it will be convenient to store such pro
grams and data on floppy disk, to be saved off
line until they are needed. Many small files
would tend to clutter up the directories of the
mainframes and minis. Also, data security can be
higher when the data is under the complete con
trol of the end user-since mini and mainframe
operating systems can be penetrated.

So do not be surprised if you see complete re
lational systems offered on micro-computers,
particularly those that employ the MC68000. And
don't be surprised if executives, managers, and
professional staff members prefer to use this
type of work station for their problem solving,
instead of using terminals tied to larger comput
ers.

Conclusion

This report has dealt with relational systems
almost to the exclusion of other types of data
base management systems. One reason for this is
that we have discussed the use of these other da
tabase technologies in numerous past issues. An
other reason is that we think these relational sys
tems have finally reached the point where they
can take their place alongside these other types
of DBMS.

But we do not wish to give the impression
that we now think the relational technology will
displace the hierarchical, network, and second
ary index technologies. As far as can be deter
mined now, that will not happen.

Practical relational DBMS are here. They have
many interesting features to offer. We believe
that they deserve your serious consideration,
particularly for new applications that involve
medium-size databases.

REFERENCES
1. Wong, P.C.S. and E. R. Reid, "FLAIR-User Interface

Dialog Design Tool," ACM SIGGRAPH '82 Proceedings,
Association for Computing Machinery (ACM Order
Dept., P.O. Box 64145, Baltimore, Maryland 21264);
Order No. 428820; price $32.

2. Bradley, James, "The Elusive Relation," Computerworld
(375 Cochituate Road, Framingham, Mass. 01701),
March 8, 1982; In Depth section, pages 1-16; price
$1.25. (This material was based largely on the author's
book File and Data Base Techniques, Holt, Rinehart &
Winston, 1982, and partly from his book Introduction to
Data Base Management in Business, to appear early next
year.)

3. Codd, E. F., "Relational Database: A Practical Foun
dation for Productivity," Communications of the ACM
(ACM Order Dept., address above); Febmary 1982; p.
109-117; price $6.

4. Codd, E.F., "SQL/DS, What It Means," Computerworld
(address above), February 23, 1981; In Depth section,
pages 27-30; price $1.25.

5. Software News (5 Kane Industrial Drive, Hudson, Mass.
017 49); single issue price, $3.00:
a) Ferris, David, "Will a real relational DBMS

please stand up?" September 7, 1981, page 49.
b) Plyter, Norman, Letter to the Editor, claiming

Henco's INFO is a relational system; October 5,
1981.

c) Ferris, David, Letter to Editor, replying to
Plyter's letter and saying that INFO's 'Relate'
function is not equivalent to a relational 'join;'
December 7, 1981.

d) "A sampling of database management systems,"
February 2, 1982, page 30.

6. Dieckmann, E. M., "Three Relational DBMS," Datama
tion (666 Fifth Avenue, New York, N.Y. 10103); Sep
tember 1981; p. 137-142; price $4.

7. For more information on ORACLE and ORATOR,
contact Relational Software Inc., 3000 Sand Hill Road,
Menlo Park, Calif. 94025; tel. (415) 854-7350.

8. For more information on INGRES, contact Relational
Technology Inc., 2855 Telegrafh Avenue, Suite 515,
Berkeley, Calif. 94705; tel. (415 845-1700.

9. For more information on the IDM, contact Britton
Lee, Inc., 90 Albright Way, Los Gatos, Calif. 95030;
tel. (408) 378-7000.

EDP ANALYZER is published monthly and copyright© 1982 by Canning Publications, Inc. 925 Anza Avenue, Vista,
California 92083. All rights reserved. Photocopying this report for personal use is.permitted under the conditions stated at the
bottom of the first page. Also, see Declaration of Principles on page 15.

12 EDP ANALYZER, OCTOBER, 1982

COMMENTARY

WHAT PROBLEMS WILL 'END USER SYSTEMS' RAISE?

Friends of ours recently related to us several concerns they have, or have
heard expressed by some information systems executives, about problems
that end user systems may create.

It appears to us that the particular problems mentioned are not likely to
be very troublesome, although at first hearing they sound serious.

Here are our views on those problems.

Problem: "End users will soon create a 'mess' of hard-to-maintain applica
tions. They will then just want to get rid of this mess by turning it all over to
the information systems department."

Claimed cause. "This problem centers on three points. (1) End user usage
is expected to grow 30% a year, compounded, which includes the applica
tions that users will develop themselves. (2) They will make use of a variety
of personal office computers (Apples, Radio Shack, IBM, Xerox, and so on)
that have little or no compatibility with each other. (3) They will use incom
patible programming languages and non-standard data definitions, and will
produce little or no documentation of their systems. In short, they will re
peat most of the mistakes that early users of computers did-and then dump
everything on us."

Our view. While overall usage of computing power by end users may
grow at 30% per year, individual users are unlikely to do anything like that,
at least for any length of time. Most end users will use their computers to
help them do their jobs. They will have a limited amount of time for using
their computers, probably in the order of only a few hours a day at most.

We expect that each person's usage will follow an S-shaped growth curve.
It will start slowly, then increase rapidly for a period of time as the person
sees new ways to use the computer, and then taper off as the limit of the per
son's available time is approached.

Also, most end users will not want to do much of their own programming,
using a conventional programming language. It takes time to learn how to
program, and this knowledge is forgotten all too quickly if used infrequently.
And programming takes time away from the user's main job.

If a user has a personal office computer, particularly one that uses the CP /
M operating system, then a large variety of useful, inexpensive packages are
available. Most end users will greatly prefer to purchase packages over trying
to develop comparable programs. Packages require no development work
and no maintenance by the user.

If end users within a company have purchased a variety of personal office
computers, and do not use a standard operating system such as CP/M, they
may well ask the information systems department for help in exchanging pro
grams and data files among each other. Company policies can help prevent

EDP ANALYZER, OCTOBER, 1982 13

14

such incompatibilities by strongly urging the use of a common operating sys
tem.

If, instead of a personal office computer, an end user is using a mainframe
or mini, in an 'Information Center' type of environment, then available pack
ages are much more limited. It is more likely that the user may have to pro
gram something him/herself. But, of course, the language(s) that will be used
will be standard to that organization. Again, the user will have only limited
time for such work.

Regardless of the computer used, there is always the problem of storage
'clutter,' from no-longer-used programs and data. If the clutter is stored on
off-line floppy disks, the economic impact probably is not as great as if
stored in on-line disk storage.

In short, we do not see users of personal office computers developing nu
merous 'poor' applications that they get tired of maintaining and want to
turn over to the information systems department.

Problem: "End users will inadvertently 'mess up' the company's data files."

Claimed cause: "End users will input data from their computers directly
to company files, without proper validation. They will store all kinds of data
in their local files, about which data administration knows nothing, and this
data will surface in undesired ways. Also, they will retrieve data from com
pany files, store it for a while, change it, and then put it back into the com
pany files, causing loss of integrity."

Our view. There is no more reason for end users to enter or change data in
company files when using their own computers than when they have termi
nals tied to the company's mainframe. Company policies and disciplinary ac
tion can curb any such tendencies.

The types of information that we see stored on a personal office computer
include the person's appointment calendar, notes on past events (diary), tick
ler file, correspondence, drafts of bodies of text in preparation, data extracted
(with authorization) from company files, data applying to the person's area of
responsibility, and perhaps purchased application programs and purchased
outside data. Data administration would have little concern with most such
information.

Data would be extracted from company files for analysis purposes, or for
preparing graphical output, or such. It should be dated with the date of ex
traction, and should not be put back later into the company files.

Again, the problem of clutter arises. And again, clutter from the storage of
strictly local data on floppy disks would seem to be less troublesome than if
on central hard disk storage.

We are not dismissing the possible problems that end user computers can
raise. We just feel that the particular problems mentioned above will not be
as severe as some people seem to believe. But it is an intriguing subject area,
and we expect to return to it.

EDP ANALYZER, OCTOBER, 1982

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1979 (Volume 17)

Number Coverage

I. The Analysis of User Needs H
2. The Production of Better Software •........... H
3. Program Design Techniques H
4. How to Prepare for the Coming Changes K
5. Computer Support for Managers C,A,D
6. What Information Do Managers Need? C,H
7. The Security of Managers' Information L,C,A
8. Tools for Building an EIS C
9. How to Use Advanced Technology K,B,D

10. Programming Work-Stations H,B
11. Stand-alone Programming Work-Stations H,B
12. Progress Toward System Integrity L,H

1980 (Volume 18)

Number Coverage

I. Managing the Computer Workload I
2. How Companies are Preparing for Change K
3. Introducing Advanced Technology K
4. Risk Assessment for Distributed Systems .. L,E,A
5. An Update on Corporate EFT M
6. In Your Future:Local Computer Networks ... F.B
7. Quantitative Methods for Capacity Planning I
8. Finding Qualified EDP Personnel : J
9. Various Paths to Electronic Mail D.M

10. Tools for Building Distributed Systems E.B.F
11. Educating Executives on New Technology K
12. Get Ready for Managerial Work-Stations .. C.A.B

Coverage code:

1981 (Volume 19)

Number Coverage

I. The Coming Impact of New Technology ... K,A,B
2. Energy Management Systems M
3. DBMS for Mini-Computers G,B
4. The Challenge of "Increased Productivity" . J,K,A
5. "Programming" by End Users C,H,B,G
6. Supporting End User Programming C,H,B,K
7. A New View of Data Dictionaries G,B
8. Easing the Software Maintenance Burden .. H,B,G
9. Developing Systems by Prototyping H,B,G

10. Application System Design Aids H
11. A New Approach to Local Networks F,K
12. Portable Software for Small Machines B,H

1982 (Volume 20)

Number Coverage

I. Practical Office Automation A,B,C,K
2. Computer Graphics for Business K,C,B
3. Interesting Decision Support Systems ... C,B,H,A
4. Can Tele-communications Replace Travel? A,F,J,L
5. The Human Side of Office Automation A,J,K
6. Some Users Want Their Own Computers B,C,K
7. Using Minis and Micros B,E
8. Training for End Users C,B,K,J
9. Query Systems for End Users C,B

IO. Relational Database Systems Are Here! .• G,C,H

A Office automation E Distributed systems
I Computer operations
J Personnel

B Using minis & micros F Data communications K Introducing new technology
L Security, privacy, integrity

M New application areas
C Managerial uses of computers
D Computer message systems

G Data management and database
H Analysis. design, programming

(list of subjects prior to 1978 sent upon request)

Prices: For a one-year subscription, the U.S. price is $66. For
Canada and Mexico, the price is $66 in U.S. dollars, for surface
delivery, and $73 for air mail delivery. For all other countries, the
price is $78, including AIR MAIL delivery.

Back issue prices: $7 per copy for the U.S., Canada, and Mexico;
$8 per copy for all other coutries, sent via AIR MAIL.

Reduced prices are in effect for multiple copy subscriptions,
multiple year subcriptions, and for larger quantities of a back
issue. Write for details. Agency orders are limited to single copy
subscriptions for one-, two-, and three-years only.

Editorial: Richard G. Canning, Editor and Publisher; Barbara
McNurlin, Associate Editor. While the contents of this report are
based on the best information available to us, we cannot guarantee
them.

Missing Issues: Please report the non-receipt of an issue within one
month of normal receiving date; missing issues requested after this
time will be supplied at the regular back-issue price.

Copying: Photocopying this report for personal use is permitted
under the conditions stated at the bottom of the first page. Other
than that, no part of this report may be reprinted, or reproduced or
utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying
and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

Please include payment with order. For U.S. subscribers. you can
use your Visa or MasterCard charge card; include your card name.
number. and card expiration date on your order.

For payments from outside the U.S .. in order to obtain the above
prices. take your choice of three options: (I) use an international
money order. (2) pay in U.S. dollars with a check drawn on a bank
in the U.S .. or (3) use any of the following charge cards: Visa.
MasterCard. Eurocard. Access Card. Standard Bank/ Kaart.
Union Card International. or Diamond Card International.
Please be sure to include your card name, number, and card
expiration date on your order.

Address: Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. Phone: (714) 724-3233, 724-5900.

Microfilm: EDP Analyzer is available in microform, from
University Microfilms International, Dept. P.R., (I) 300 North
Zeeb Road, Ann Arbor, Mich. 48 I06, or (2) 30-32 Mortimer
Street, London WIN 7RA, U.K.

Declaration of Principles: This publication is designed to provide
accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher
is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought. -
- From a Declaration of Principles jointly adopted by a
Committee of the American Bar Association and a Committee of
Publishers.

15

fi.

EXECUTIVE SUMMARY

Atter being 'in the wings' for several years, relational database manage
ment systems are now finally 'on stage' and taking their positions alongside
hierarchical, network, and other types of DBMS.

Even as recently as about one year ago, users who had investigated rela
tional systems had concerns about their slow performance and limited file
size capability. Also, there have been systems on the market for several years
that their developers have called 'relational'-for use on mainframes, minis,
and even on 8-bit micro-computers. Most of these have not met the criteria
for 'true' relational systems, though.

But 'true' relational systems are now in use that can handle multiple trans
actions per second and can manage file sizes of tens (and probably hundreds)
of millions of characters. Currently, such systems are available for use on
some mainframes (mostly IBM) and minis (mostly DEC). Shortly, they will be
offered on micros that use the Motorola MC68000 processor.

At present, IBM is marketing their new SQL/DS relational system as a sup
plement to, not a replacement for, their DL/l DBMS. Other relational system
suppliers also see their systems now being used primarily for new, medium
size applications. However, they do not rule out the possibility of their sys
tems being used to replace some existing DBMS applications-and they cite
numerous reasons that users may choose to do so.

And what are those reasons? Mainly, they center on a relational system's
friendly user interface-friendlier (say the suppliers) than the user interfaces
of most other types of DBMS. From our observation of several of these sys
tems in use, and in talking with some users, we agree that their user inter
faces are indeed powerful and easy to operate.

In addition, these relational systems have some interesting features, such as
'user views' (see text) that define what data items each user is authorized to
access. When coupled with other end user facilities, such as screen and re
port program generators and query languages, powerful data management
systems result. Many types of new applications can be set up quickly with
these tools. When released soon on micro-computers, the benefits of rela
tional systems will be available to organizations of all sizes, small to large.

We do not foresee relational systems obsoleting the other types of DBMS.
But we do feel that they have moved from the development stage, and small
application stage, into systems that can be of interest to many user organiza
tions.

16 EDP ANALYZER, OCTOBER, 1982

