
EDP ANALYZER DECEMBER, 1981
VOL. 19, NO. 12

PORTABLE SOFTWARE FOR SMALL MACHINES
Due to the substantial investment required to create

software, coupled with the rapidly changing capabilities of
mini- and micro-computers, there is a growing belief that
software portability for these machines should be given a
lot more attention. Recent announcements by Xerox,
Wang, and IBM supporting the CP /M operating system
substantiates the importance of the portability of operat
ing systems. But what about the languages? We investi
gated several of the major languages being used on small
computers to find out just how portable the software is
now, and is likely to be in the near future.

Texas Instruments Inc. (TI) is a ma
jor manufacturer and supplier of electronic
components and equipment, semi-conduc
tor chips, mini-computers, hand calcula
tors, and digital watches. Last year, sales
exceeded $4 billion and the company em
ploys almost 90,000 people worldwide.
Headquarters are in Dallas, Texas.

In 1977, TI conducted a most interest
ing experiment. It gave TI 59 hand-held
programmable calculators (valued at $300)
to more than 10,000 of its professional
employees. The project included formal
training, a software exchange program,
programming contests, and a newsletter.
Although the experiment was expensive, it
re-couped its costs within two months,
said a TI spokesman, through more pro
ductive employees.

Following this successful experiment,
management became intrigued with in
creasing the productivity of even more of
its employees, through the use of small
general purpose computers. The group
that ran the calculator experiment was
given funding to study, recommend, and
implement this new project. This group is
the Personal Computing Internal Fanout
(PCIF).

The project is independent of the corpo
rate information systems divisions; how
ever, one goal of the project was that the
personal computers be able to interface
with the existing computer centers. PCIF
was given funding for the study, but they
were not funded to purchase computers or
provide training for the employees. So the
success of the project depended on 'selling'
their solutions to TI department heads.

ISSN 0012-7523. Photocopying this report for personal use is permitted, providing payment of $2.50 fee per
copy of report is made to Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970; please include
identifying fee code 0012-7523/811120001-14$2.50.

The decision was made to see if the use of
many of Tl's small computers was viable. Appli
cations deemed most appropriate for this ap
proach were identified as: interactive, using local
data, requiring fast turnaround, for local distri
bution only, and short lived (even one-time ap
plications). The major requirement for this ap
proach was appropriate software-in particular,
software that could be used by TI employees
who have little or no computer experience, who
have widely varying problems to solve, and who
would be using various types of machines. The
ideal solution would be a 'system package' that
would appear consistent across all of these TI
machines, would be machine independent,
would provide powerful end user facilities, and
would not be obsoleted by new generations of
hardware-in short, a portable software system.

In late 1979 the project team decided to de
sign their portable software system around the
UCSD p-System, from SofTech Microsystems in
San Diego, California. The p-System is based on
the UCSD PASCAL programming language-al
though it has compilers for FORTRAN and BASIC,
as well as UCSD PASCAL. The UCSD p-System
was created to allow programs written for one
computer to be transferrable to another com
puter. With this system, everything gets transfer
red-application programs, operating system,
utilities, and compilers.

The requirements for portability are that each
computer have: (1) an appropriate peripherals
handling subsystem, and (2) a 'p-code' inter
preter, which translates p-code (an intermediate
code produced by the compilers) into the com
puter's individual instruction code. Therefore,
the PCIF group wrote p-code interpreters for the
various TI processors (about two work-months
of effort per processor) plus they wrote periph
eral handlers for the various configurations they
planned to support. When new peripherals ap
pear on the marketplace, such as the mini-Win
chester disk drives, it takes less than a week to
make the required changes. The group now has
p-code interpreters and peripheral handlers for
Tl's 99/4, 771, DS-1, DS-2, DS-4, TM 990, OOF, and
DX-10 systems. Programs that run on one will run
on all of these systems.

2

Since the p-System is a popular commercial
product, PCIF has been able to take advantage of
a growing number of packages that work with it.
In fact, some of the software they offer has been
purchased from third-party suppliers-COBOL
and FORTRAN compilers, sort utilities, PERT /CPM
packages, and so on. To this, PCIF has added in
ternally written programs for matrix and linear
mathematics (along the lines of the popular Visi
Calc electronic spreadsheet package), business
graphics, database management, and communi
cations (to permit communication with other
computers in the company.)

As mentioned, when a user wishes to move to
a new computer which has a p-code interpreter,
all of the software is moved in p-code form-the
applications, operating system, and compilers.
No re-compilation or other modification by the
user is needed. The p-code interpreter takes care
of the differences between the two computers. If
the physical media (such as floppy disks) are
compatible, the media from the old system can
be used directly, so no assistance from a pro
grammer or systems expert is needed. If the pe
ripherals are not compatible, a new peripherals
handling routine needs to be acquired.

The PCIF product was announced in Septem
ber 1980. By December 1980 they had installed
55 systems, costing from $9,000 to $15,000 each.
They had also received numerous requests for
custom software work to complement their basic
system. By the end of this month they expect to
have installed 200 systems within TL

The people at TI have learned a number of
lessons from this project. First, software stan
dardization is much more feasible than hardware
standardization-which they consider to be
nearly impossible due to technological changes
and users' diverse needs. Second, language stan
dards are not really necessary with their ap
proach. As long as the intermediate code (p
code) from the compiler worked once, it will
continue to work properly, while language con
ventions are permitted to change.

Third, the portable software system needs to
be accepted by the marketplace, so that outside
packages can be acquired; developing all appli
cations for small machines in-house is "not the
way to go." For example, at TI the PCIF group

EDP ANALYZER, DECEMBER, 1981

only spends 30% of its time on new software de
velopment and acquisition of packages. Another
60% is spent in customer support and marketing,
and the remaining 10% is for the creation and
maintenance of the p-code interpreters and pe
ripheral handlers. The project would not have
been economically feasible without the high
amount of software portability that they have
achieved, they told us.

Software portability issues

Micro- and mini-computers are being heavily
touted for personal use, small business use, and
even for specialized and stand-alone applications
in lieu of conventional mainframe data process
ing. We see these small systems becoming in
creasingly important to data processing manage
ment.

The term micro-computer currently implies a
computer with disk storage capacity of 100,000
to five million characters or more, and an inter
nal memory of generally 32K to 64K bytes.
Mini-computers are larger, ranging from (say)
five million to 200 million characters of disk
storage, with 64K to SOOK of internal memory.
The proliferation of these smaller machines in
business is causing growing concern about soft
ware portability. In this report we will concen
trate on the micro-computer field, since it is
more likely to be unfamiliar to data processing
management.

Software portability can be described as verti
cal or horizontal. Vertical portability, familiar to
all data processing managers, refers to compati
bility of software within a manufacturer's line of
equipment. IBM's System 360 and 370 families
serve as typical examples, as do their smaller sys
tems-System/ 3, System 32, 34, and 38. In these
latter cases, programs written in RPG can func
tion on any of the four small systems with few, if
any, modifications.

Horizontal portability implies use of programs
on different brands of hardware. Developers and
distributors of software for micro-computers
have had to address this area. And it behooves
purchasers of small systems to become familiar
with the few standards that are now available in
this field.

EDP ANALYZER, DECEMBER, 1981

Operating systems, programming languages,
application programs, compilers, interpreters,
peripheral interfaces, and storage media all need
to be examined individually and collectively to
determine portability from one computer to an
other. An application program may access data
files in a manner that only selected operating sys
tems can support. Or a BASIC language compiler
may be compatible only with certain operating
systems.

Micro-computers display the best example of
horizontal portability through their operating
systems. Many installed units use the CP/M oper
ating system originated by Digital Research. And
many compilers, interpreters, and application
programs offered through computer stores and
mail order houses are CP/M-compatible. Mini
computer users cannot say the same. A large
number of mini-computer software systems, if
they are portable at all, are only vertically porta
ble. This approach by mini-computer manufac
turers with large families of machines is easily
understood: if a user wishes to upgrade to a
more powerful machine, the supplier prefers it
to be one of their machines. If the user wants to
switch to a competitor, the non-portability of
the operating system and utilities may be a de
terrent.

Unfortunately, in the micro-computer field, a
trend toward divergence of operating systems
appears to be starting. With the advent of multi
ple-user micro-computer systems, networks for
micros, and the new 16-bit micros, new, more
powerful (and incompatible) operating systems
are being pushed. It remains to be seen whether
the software producers and distributors will be
able to maintain the same level of operating sys
tem standardization as exists today.

Languages are variably portable. The prolifer
ation of BASIC dialects causes many conversion
problems. Although conceptually the dialects
should be inter-changeable after only a few mod
ifications, in fact, conversion is rather trouble
some. COBOL is one of the most standardized
languages and its programs migrate more easily.
Assembly languages usually are machine depen
dent, but most micro- and mini-computer appli
cation programs are not coded in this level of
language. However, even assembly language

3

programs are made easier tcr migrate if input/
output is done through CP /M calls, we are told.
FORTRAN programs theoretically should be very
portable but may not be in actuality. Some dia
lects of PASCAL have been developed with both
horizontal and vertical portability as a prime
concern. We will look at several of these lan
guages-and their portability-shortly.

Language portability can also be viewed by
type of code. One type is source code portabil
ity. This means that the program's source code
can be moved from one computer to another,
and the compilers will translate the program
into equivalent object code programs.

Intermediate code portability refers to code
that has been 'semi-compiled,' and perhaps com
pressed, producing an intermediate code. To be
usable, this code requires a run-time package.
This type of portability is becoming increasingly
important in the micro-computer world, because
the code cannot easily be translated back into
source code, so it discourages plagiarism and re
sale.

The extreme in software portability is object
code portability. Here the compiled code will
run directly on several machines. We have yet to
see much object code portability-most so-called
object code portability is actually intermediate
code portability.

Most portable application programs depend
upon the source code and its compiler. In addi
tion they may be further restricted by input/ out
put devices, file accessing procedures, operating
systems, and utilities; here is where portability
seems to encounter the most difficulty. If the
program is a straight-forward calculation, as in a
tax or interest subroutine written in COBOL, or if
it was developed for micro-computers with lim
ited input/ output capabilities and file handling,
it may be easily moved. But if extensive file or
database management is involved, it may be
difficult to modify the program for another com
puter. (The use of database management systems
on micro-computers, although rudimentary, is
growing.) System peripherals, in particular, are a
common roadblock to portability of application
programs, as we discuss later. Two other poten
tial obstacles to portability are differences in

4

media (floppy disk size, format, etc.) and input/
output drivers.

The benefits of portability. Software· portability
is important to suppliers as well as to users. Pro
grams are becoming increasingly expensive to
develop. And developers of programs for small
machines can only expect to obtain a profit if
their programs can be run on numerous ma
chines. Users benefit by paying less for such pro
ducts. And off-the-shelf software is immediately
available for the user-something not possible
with in-house developed applications.

Software, particularly application programs
and languages, outlives hardware. System expan
sions can be economically justified for new ap
plications, but re-purchasing or re-programming
existing applications negates such moves. So ver
tical as well as horizontal portability is desir
able, to take advantage of future innovations in
hardware.

Another advantage of portable software is
flexibility for users. This. type of software allows
them to choose among several brands of com
puters based on price/ performance, without be
ing so dependent on the supplier's application
software. To date, software distributors have en
couraged portability in the micro-computer
field; it remains to be seen whether the larger
hardware manufacturers will hamper portability
in the future.

Large data processing departments can reap
benefits from small systems portability. If multi
ple micro- or mini-computers are installed for
different applications, yet use the same operat
ing system and language, training of personnel is
simplified. Also, fewer variations of application
programs are needed, with a consequent reduc
tion in maintenance problems.

Software portability has always been an issue,
but with the increasing use of small machines, it
is becoming of paramount importance. The
small machine software field is different from the
mainframe field. To illustrate that point, we look
at several languages used on small machines, to
see just how portable they are.

Micro-computer Basics
The portability of software for micro-comput

ers using BASIC is a complex issue. While the

EDP ANALYZER, DECEMBER, 1981

products involved are well defined and under
stood-the application programs, language com
pilers, and interpreters-the factors that deter
mine their portability encompass diverse areas.
These range from the distribution and marketing
channels to the actual syntax chosen for use in
the BASIC language. We will look at these two
areas that influence the portability of micro
computer BASICs. This discussion is based on nu
merous articles in two publications for micro
computer users-Infoworld and Lifelines (Refer
ences 1 and 2).

BASIC began as a programming language for
non-computer personnel. In 1964 two Dart
mouth professors developed Beginners All-pur
pose Symbolic Instruction Code for use by their
students on the university's General Electric 225
time-sharing system, and thus a new, interactive
computing language was born.

The convenience of entering a program one
line at a time, with on-line editing in a conversa
tional environment, made BASIC fun and easy to
use. It's acceptance was immediate. Many manu
facturers, especially Hewlett-Packard and Digi
tal Equipment Corporation, added extensions to
the language, and offered their own versions.
What followed was a sprint to see who could
produce the most powerful BASIC, with little re
gard for compatibility with other versions. This
resulted in BASIC becoming one of the most
highly used langauges in the computer industry,
and at the same time, the most non-standard. A
class of languages evolved, instead of one ex
panded version. But its popularity never suf
fered. Time-sharing services became prolific in
the early 1970s, and the language that they most
often supported was BASIC.

In 1975 an event occurred which catapulted
BASIC from the environment of low-cost time
sharing to home computers: the first micro-com
puter was introduced. As a result, personal com
puters pushed BASIC's position from immensely
popular to the most widely used language in the
world (certainly in terms of the number of peo
ple programming in it).

Distribution channels. Quick acceptance and
the growth of micro-computers caused the need
to insert standards which previously had been
disregarded. BASIC versions had proliferated at

EDP ANALYZER, DECEMBER, 1981

an alarming rate, but primarily under the aus
pices of time-sharing companies or large com
puter manufacturers. The new micro-computer
users did not usually work in data processing de
partments, with established departmental stan
dards, nor were they buying time from a large
company with an army of support personnel.
They needed programs to run on their tiny-but
powerful systems. Thus a new type of distribu
tion network evolved to provide this missing
link; it contains software package producers,
software distributors, and computer stores. All
three have influenced the portability of the soft
ware on the market.

Portability of the numerous BASIC dialects
stems less from similarities of different versions
than from this distribution scheme that emerged
to service the micro-computer users. Software
producers developed packages, and by doing so,
they standardized the versions of BASIC. Two of
the largest software producers in the micro in
dustry, Microsoft and Compiler Systems, offered
MBASIC and CBASIC, respectively. These en
hanced portability, as we discuss shortly.

The software programs developed by these
and other producers are marketed by both mail
order software distributors and computer stores.
These outlets, too, promote portability of both
hardware and software, for they must offer pro
ducts in useable and compatible forms to end
users. For instance, they offer software via many
floppy disk formats.

The use of the S-100 bus, and the develop
ment of the CP /M operating system, in popular
brands of micro-computers, also proved to be
early influences on the success of these distribu
tion channels.

The S-100 bus is a multi-wire cable that is
used to transmit information between compo
nents in the micro-computers that use it. It was
developed for the first personal computer, the
MITS Altair 8800, which used the Intel 8080 mi
cro-processor (the first highly successful 'proces
sor on a chip'). The Altair 8800 became so pop
ular that other manufacturers produced plug
compatible components to work with the sys
tem. Thus the S-100 bus allowed standardized
hardware boards-for memory, input/ output,
controllers, and processors-produced by differ-

5

ent companies to be used in one computer. The
Institute of Electrical and Electronic Engineers
(IEEE) has proposed industry standards for the
S-100 bus, and numerous manufacturers conform
to the anticipated requirements, but it still does
not totally command the marketplace. Some of
the more popular micros that do not use the
S-100 bus are Apple, TRS-80, PET, Altos, Lanier,
Wang, Xerox, IBM, and most LSI-11 computers.

Paralleling the portability of hardware
through the S-100 bus was a software counter
part, the CPI M operating system. It was devel
oped by Gary Kildall, who set up Digital Re
search of Pacific Grove, California, in 1976, to
market it, again for use with computers based on
the Intel 8080 micro-processor. Its intent was to
offer a machine-independent operating system. It
is now the most widely used operating system in
the micro-computer industry. It can only be used
with the 8080, 8085, and Z-80 families of micro
processors, but Microsoft of Bellevue, Washing
ton, has cleverly extended its use to Apple com
puters (which use 6502 micro-processor chips)
by producing a Z-80 printed circuit board that
can be inserted into an Apple computer, thereby
allowing it to run CP /M-based software. Similar
products are appearing for other micros. But this
does not mean that the term 'CP/M-compatible'
refers to total portability. The application pack
ages using the newer versions of CP /M for 8-bit
and 16-bit micros are not necessarily compatible
with the more limited older versions, and vice
versa.

The original CP /M was intended for single-user
8-bit micro-computers. But the new 16-bit mi
cros, micro networks, and multiple-user systems
appear to be diluting the effect of this early stan
dard, without necessarily replacing it with new
standards. Versions of Digital Research's multi
ple-user operating system MP /M and Bell Labo
ratories' UNIX are touted as future standards. But
it is too early to tell. These are times of dra
matic change in the micro-computer field.

Software distributors and developers are most
concerned with preserving a few standards. They
will only develop and offer their products in
conjunction with widely used operating systems
or versions of BASIC. Generally if a user pur
chases a package using, say, CBASIC and CP /M

6

and wishes later to move it to another computer
with these two components, the distributor can
offer the same package for the second system.
However, the packages are not usually user-por
table, because distributors and developers worry
about piracy. So often the user must purchase
the different version of the package in order to
migrate.

Distributors have found that supplying porta
bility is increasingly difficult. The lack of stan
dards in system peripherals is especially a prob
lem. When floppy disks all used single-sided, sin
gle-density, and 8-inch diskettes, the distributors
could use the IBM 37 40 format as a standard
format for program distribution. Now double
density, dual-sided recording, and the new 5-1I4
inch diskette size, are being used by more and
more micro-computers. This diversity has forced
distributors and computer stores to provide ei
ther conversion services or a large number of re
cording formats for their packages. In fact, this
may be the most important service that the soft
ware distributors perform for users. One new
company, TeleSoft, in San Diego, will distribute
software by data communications because of this
problem.

Other system peripherals have also caused
portability problems for distributors, but some
software package producers now provide help.
They imbed a menu of options for terminal and
printer selections in their programs. The user se
lects the appropriate input/ output devices,
which does make these products more portable.

Language portability refers to the ease with
which source programs may be made to run in
another dialect of BASIC, as in a change from
CBASIC to BASIC-80. The need to convert from
one version of BASIC to another will most likely
be caused by hardware expansions, or upgrades
to different operating systems. The hardware or
system selection will often narrow your choice
of BASIC format. A discussion of two major ver
sions-CBASIC from Compiler Systems of Sierra
Madre, California, (recently acquired by Digital
Research) and BASIC-80 from Microsoft of
Bellevue, Washington-will illustrate some of
the problems that may be encountered.

Microsoft BASIC (MBASIC) was first available
through the use of interpreters. An interpreter

EDP ANALYZER, DECEMBER, 1981

processes a source language on a line-by-line ba
sis. Few offerings of business applications writ
ten in MBASIC were made by software distribu
tors in the early days of micro-computers. For
one thing, the risk of piracy was high-source
code had to be supplied to the users for use with
the interpreters, and it could simply be copied
and re-used on other, compatible machines.
(This understates the importance of MBASIC,
since it has been offered on many popular mi
cros and is often preferred by programmers for
developing their own programs. However, in re
sponse to this problem, Microsoft later began
offering a compiled version, BASIC-80.)

Compiler Systems then introduced CBASIC,
calling it a psuedo-compiler. CBASIC originally
produced an intermediate file (INT) which re
quired a small run-time package in order to exe
cute. Users needed to purchase CBASIC, with its
run-time program, in order to execute the INT
file. Programmers happily sold their applications
partially compiled into the INT format with little
fear of unauthorized (and unpaid for) re-use. In
addition, CBASIC is now offered in a native code
(full) compiler version.

CBASIC became, and still is, a very widely used
BASIC dialect, and it is now available for the 16-
bit 8086 processor and for use with the UNIX op
erating system. Interestingly, Microsoft's licens
ing policy enhanced CBASIC's popularity, be
cause developers must pay royalties to Microsoft
for application programs that use their BASIC-80
compiler. For this reason, many authors have
chosen to stay with CBASIC.

CBASIC is the least transportable of any CP JM

BASIC, due to its syntax and conventions. Unlike
other BASICS, line numbers are not required, ex
cept as targets for GOTOs and GOSUBs, and even
then they need not be in any particular order.
They can even be expressed in exponential nota
tion or floating point. Also, certain keywords are
unique to CBASIC, with their functions expressed
in different terms in other BASICS.

Microsoft now offers both a BASIC-80 inter
preter and compiler. The interpreter is best used
when creating and testing a program. Once it
seems to be working properly, it is wise to com
pile it in order to produce code which runs fast
er. The interpreter and the compiler must be

EDP ANALYZER, DECEMBER, 1981

purchased separately. The portability of BASIC-80
is good, although it only operates under CP JM.

Users planning to upgrade to a larger machine
for expanded application work should be aware
of size limitations with BASIC-80. It has not been
suitable for use with large source programs. In
the past, the COMMON statement has not been
supported, although this may be changing; this
limits program size to the amount of available
memory, or causes the need for intermediate re
sults to be written to disk. Speed is degraded and
programming is cumbersome under these cir
cumstances. Yet it is a popular BASIC and is
found in many application packages for micro
computers.

Up to now, using one of these more popular
version of BASIC along with CPJM has provided a
good deal of portability. But the future is
cloudy.

Micro-computer Cobol
As might be expected, due to its extensive use

in the mainframe and mini-computer environ
ments, COBOL is now emerging as a major busi
ness language for micro-computers. A number of
COBOL compilers for micros, based on the U.S.
government's ANS-74 standard, are now available.

In the mainframe environment, this COBOL
standard has led to source code portability. Yet
the standard does not insure portability on small
machines, as Howkins and Harandi (Reference 3)
point out. They explain that the 1974 standard
consists of a nucleus and eleven functional mod
ules. Each module has two or three levels. Full
COBOL contains all of the features. Minimum
COBOL contains Level One of the nucleus, plus
table handling and sequential input/ output mod
ules. Subset COBOL contains any combination of
the levels of the nucleus and other modules. For
both mini- and micro-computers, the authors re
port that there has been no minimum standard
defined. The COBOL compilers for micro-com
puters advertise their products as handling 'a
subset' of the standard (the most undisciplined
type, we gather). Howkins and Harandi state
that, in total, COBOL can have 104,976 official
variants-a significant barrier to easy portability.

Hogan (Reference 4) states that, since COBOL
is not well suited to interactive applications, the

7

compilers for micro-computers often have termi
nal drivers embedded in them-and these are not
standard from one compiler to another. In other
cases, a separate driver . is provided. In some
cases the compilers create intermediate code
(not true object code) which is executed at run
time by a run-time program.

While this discussion illustrates a few barriers
to portable COBOL application programs on
small machines, the people at David R. Black
and Associates, who offer a COBOL program gen
erator, believe that portability of COBOL pro
grams can be increased in the future. They see
the possibility of including an operating system,
a compiler, and a program generator on one or a
few chips. This entire ensemble could then be
moved {along with the application programs)
among different hardware configurations. We as
sume this approach would provide intermediate
code portability; in this case, a machine-depen
dent run-time package would be needed to exe
cute the programs.

So why is the use of COBOL on small machines
growing? The rationale described to us at Tandy
Corporation pretty well tells the story.

Tandy Corporation

Tandy Corporation is a leading manufacturer
and retailer of consumer electronics products
with headquarters in Fort Worth, Texas. In fiscal
year 1980, Tandy had sales of $1.4 billion, of
which 12. 7% came from computer sales through
their subsidiary Radio Shack. Radio Shack mar
kets the TRS-80 family of micro-computers.

The TRS-80 family consists of six computers.
The Model I is based on the Z-80 micro-proces
sor chip. It has from 4K to 48K bytes of mem
ory, and it can be interfaced with a printer, com
munication facilities, a cassette recorder, and up
to four 5-1/ 4 inch single or double density
floppy disks (for a total of over 600K bytes of
storage). Prices start at $500, and Radio Shack
says they have sold over 200,000 Model Is since
1977. Production of the Model I in the U.S. was
discontinued in December, 1980.

In 1980 Radio Shack announced the Model
III. It is an upgraded version of the Model I with
two built-in 5-1/4 inch floppy disk drives and a

8

smaller-than-standard CRT screen. It is aimed at
personal and small business users.

Radio Shack also recently announced: (1) a
color computer which provides color graphics
capabilities; (2) a pocket computer, slightly
larger than a hand-held calculator, which has
l.9K bytes of memory and is battery operated;
and (3) a videotex terminal for use with any tele
phone and television set for two-way informa
tion retrieval from viewdata-like services.

The most powerful member of the TRS-80 fam
ily is the Model II. Based on a Z-80A chip, it has
32K to 64K bytes of memory, one built-in 8-inch
double density floppy disk drive, and a standard
size CRT screen. It can interface to three more
eight-inch floppy disk drives (for a total of 2.4
megabytes of storage), a printer, and communi
cation facilities. Prices start at $3450.

Up until one year ago, Radio Shack offered
only Assembler, FORTRAN, and BASIC program
ming languages. But last year they began offer
ing COBOL for their Model II and Model III ma
chines.

The company chose to offer COBOL for several
reasons. First, COBOL is an accepted business
language and Radio Shack is increasingly aiming
at the business marketplace. Second, ANS-7 4 CO
BOL is very portable, due to the U.S. govern
ment's validation program for the compilers.
Third, COBOL is more 'under control,' due to
these ANS-74 COBOL standards. Radio Shack sees
BASIC standards as inconsistent and therefore
lacking portability.

Fourth, micros have now become large
enough to support respectable COBOL compilers.
And fifth, as micros become even larger and
more powerful, Radio Shack expects COBOL to
become the standard business language, just as it
is on larger machines. One additional major rea
son is that there are so many COBOL program
mers in the world.

The Radio Shack COBOL compiler contains a
subset of the standard ANS-74 compiler functions
for mini-computers. It supplies syntax checking,
interactive debugging, screen input/ output, and
keyboard control compatible with the larger
compilers. Just about the only thing missing is
the SORT capability, we were told, and this is

EDP ANALYZER, DECEMBER, 1981

'l

·,.

' I

\,

partially offset by the multi-key index-sequential
capability.

Currently, Radio Shack writes about 60% of
their own software, and obtains the other 40%
from outside sources. For in-house development,
they use both TRS-80s and a Tandem computer.

In order to enhance portability among their
current and future offerings, Radio Shack has
standardized not only on ANS COBOL for busi
ness applications, but also on other system as
pects. For example, they are instituting a screen
interface package, which all Radio Shack pro
grams must use. This will cause all screen func
tions to appear the same, not only to program
mers but also to users.

Radio Shack will soon have a COBOL program
generator both for sale and for development use.
The program generator is also intended to en
hance software portability, because programs
created using it will have the same structure. Ra
dio Shack expects it to speed up development
and ease maintenance. And they note that use of
the generator by third party software houses will
help enforce the Radio Shack standards. For ex
ample, the generator will employ the screen in
terface procedures mentioned above.

Radio Shack sees COBOL, along with a stan
dard operating system, database management
system, and program generator, as enhancing the
portability of their application programs, at least
within their own line of micro-computers.

Pascal
One relatively new language that has gener

ated a lot of interest, especially in the micro
computer world, is PASCAL. It has rigorous
structured programming conventions, and one
dialect in particular-UCSD PASCAL-has been
used to promote software portability. Since this
language is not well known to users of main
frame computers, we will discuss its approach to
portability in some detail.

UCSD Pascal

The 'conventional' approach to portable soft
ware is to write the programs in a common,
standard language-such as COBOL or FORTRAN
for which compilers are available on numerous
host computers. In addition, with COBOL, the

EDP ANALYZER, DECEMBER, 1981

data definitions are explicit, making it more
likely that data files can be moved to a different
computer without undue effort.

There are some difficulties with this conven
tional approach. The compiler on the second
computer may develop code that does different
things from the code on the first computer. This
is one of the main reasons that the U.S. Navy
has been conducting tests and audits of the CO
BOL compilers that are offered to the U.S. gov
ernment. The second computer generally will
have a different operating system from the first
one, making the user interface different. And if
the data is stored under a database management
system on the two computers, there is a good
chance that the two DBMSs are sufficiently dif
ferent that program changes will have to be
made.

UCSD PASCAL has taken a quite different ap
proach to this question of software portability.
This approach is to move the whole
environment-operating system, utilities, com
piler, assembler, text editor, file handlers, and
application programs-from one host computer
to another.

The UCSD software system has itself been
written in PASCAL. These programs are then
compiled to produce code in an intermediate
language, called 'p-code.' (An assembly language
and an assembler, plus FORTRAN and BASIC com
pilers, have also been developed; these, too, cre
ate p-code.) To run this p-code on a host com
puter, an interpreter is needed to translate the
p-code into the host's native code. Thus, for
each type of host computer, a p-code interpreter
is needed. Once the interpreter is available for a
host, the whole environment-from operating
system to application programs-can be moved
to that host.

Proof of portability is furnished by the UCSD
PASCAL system itself, because it is written in PAS
CAL. Since it runs on the various hosts, one
would expect that application programs written
in UCSD PASCAL would also run on each of the
hosts. And this is, in fact, what occurs.

The system has an excellent screen-oriented
text editor; we have been using it for our publi
cations for over two years and think very highly
of it. An important point to note is that the user

9

interface for this text editor is identical for all
UCSD PASCAL host computers. As Dr. Kenneth
Bowles, the architect of the UCSD PASCAL sys
tem, has said, "Try accomplishing this same
thing with a text editor written in any other
higher level language (such as COBOL, FORTRAN,
or BASic) that must run under different operating
systems."

The UCSD PASCAL system is now available for
some 20 host computers, most of them micro
computers. The micro-processors used by these
hosts include the 8080/8085, Z-80, LSI-11, TI9900,
and 6502 (used by Apple II).

There is a price that is paid for this approach
to portability, of course. The use of an inter
preter for the p-code slows down the net speed
of the processor by a factor of perhaps 20 or so.
Most users of UCSD PASCAL have used it in a sin
gle user mode on a micro-computer. In this
mode of operation, frequently no delay is notice
able by the user. But because some users have
noticed delays, and because concurrent (multi
user) processes have been requested, other ap
proaches have been developed to speed up the
system, as will be discussed.

History of UCSD Pascal

The UCSD PASCAL system was developed at
the Institute for Information Systems, on the
campus of the University of California at San
Diego, under the leadership of Dr. Bowles. It
was first run on a PDP-11 system in the fall of
1977, and by December of that year the text edi
tor was running on an 8080 processor. The 8080
system was fully running by the following
March.

Bowles wanted this system developed in order
to meet several goals: (1) He wanted to use mi
cro-computers in the campus' programming
training lab, in order to reduce the cost of pro
viding students with access to a computer. (2) At
the same time, he wanted the students to use a
'big machine' language, as well as a language
that was compatible with the concepts of struc
tured programming (as PASCAL is). And (3) he
wanted the system to be portable, so that as
new, more powerful micro-computers became
available, they could easily replace the existing
micros in the lab.

10

As the existence of UCSD PASCAL became
known, widespread interest developed. Micro
computer users in many countries wanted to use
it. Micro-computer manufacturers wanted to of
fer it. So the university began licensing users
both individuals and companies-to use it. And
fairly quickly, the Institute found itself in the
business of licensing, supporting, maintaining,
and enhancing the system.

University administration became concerned
that this activity would bring the university into
conflict with the taxing authorities. So they de
cided that the whole 'commercial' aspect of
UCSD PASCAL would have to be contracted to a
private company. In mid-1979, SofTech Inc., of
Waltham, Massachussets, was licensed by the
university to take over all further commercial li
censing, support, maintenance, etc. of the sys
tem. SofTech set up a new subsidiary, SofTech
Microsystems, located in San Diego, to conduct
this business.

Improvement of UCSD Pascal

In the summer of 1978, Bowles convened a
workshop on the campus to which all implemen
tors of PASCAL compilers, and others involved
with standardization efforts for PASCAL, were in
vited. Thirty implementors did, in fact, attend.
The purpose of the workshop was to identify
needed improvements and extensions to the lan
guage and to propose solutions that could lead
to a draft standard for PASCAL. At the time, both
ANSI and the IEEE had committees working on
PASCAL standardization.

There was fairly general agreement among the
participants on the desirable standarization ef
forts. This consensus of ideas has been used-first
by UCSD and then by SofTech-in the continued
enhancement of the UCSD PASCAL system.

With the signing of the SofTech contract, the
Institute was directed by University administra
tion to complete current development work then
in progress, turn over the results to SofTech, and
then wind down most of the Institute's work on
the system. So there was a transferral of the de
velopment effort from the university to SofTech,
during the last half of 1979 and much of 1980.

SofTech set for itself a number of goals, for
the enhancement of the system.

EDP ANALYZER, DECEMBER, 1981

Consolidated system. UCSD PASCAL, like any
such system, has gone through a number of re
finements and releases. The 'regular' system was
given release numbers 1.0, 1.1, and so on, with
version 2.0 released at about the time when
SofTech took over. Also, Apple Computer had
been licensed by the university to offer the sys
tem to Apple purchasers, and that company
made some changes to the system. The Apple
system was considered to be release 2.1, and was
somewhat incompatible with release 2.0. Finally,
Western Digitial Corporation decided to build a
'PASCAL Micro-engine' computer, in which the
p-code interpreter was built into the hardware,
to increase the speed. To lengthen the techno
logical life of this approach, they sought and re
ceived permission to incorporate features not yet
in releases 2.0 or 2.1. So the Western Digital
system was considered to be release 3.0.

SofTech set the goal of coming out with re
lease 4.0 just as soon as they could-and 4.0 was
to pull together all of the features found in 2.0,
2.1, and 3.0. The 4.0 release of the system was
made available in February 1981.

Additional languages. Even though PASCAL
has a number of advantages as a programming
language, the system could have much wider
usefulness if other programming languages were
also supported. So, in mid-1980, a compiler for
FORTRAN-77 was released. Like the PASCAL com
piler and the assembly language assembler, the
FORTRAN compiler creates p-code. Then, in
early 1981, a BASIC compiler was released. Addi
tional languages are being considered.

New system name. Because of the additional
languages, the name 'UCSD PASCAL' was no
longer appropriate for the system. So SofTech
has chosen the name 'UCSD p-System' as the
name of the system.

Concurrent processes. As it was originally de
veloped, the UCSD p-System could handle only
one process at a time. For a single user at a mi
cro-computer, this was not too much of an in
convenience, although users at times wished that
they could 'spool' output at the same time that
they were using the text editor on another file.

The handling of concurrent processes in porta
ble software is difficult because each host
processor handles interrupts differently. But the

EDP ANALYZER, DECEMBER, 1981

concurrent process feature was incorporated in
release 4.0-although to use it, programmers
must follow some rather strict rules.

Increased speed. As previously indicated, the
interpreter approach proved to be too slow for
some users, and would become more of a prob
lem with concurrent processes. So SofTech con
sidered several ways of speeding up the system
(based on work that had originally begun at
UCSD).

One approach was to put the interpreter in
the hardware, in the form of read-only micro
code. This was the approach used by Western
Digital. It increases the speed of the system by a
factor of about five, said a SofTech executive.

Another approach is to translate the p-code
into the host's native code, which is then exe
cuted directly. A 'simple' translation would in
crease the speed by a factor of ten over the orig
inal interpretive speed, said the executive. And if
the native code were optimized, the speed ad
vantage would be about twenty, or double the
simple translation. So this is the direction that
SofTech has been working.

The UCSD p-System represents an encourag
ing example of language portability. Unfortu
nately we do not see other efforts in this area. In
fact, we see more effort going toward non-stan
darization, with hardware manufacturers gaining
influence in the micro industry.

We recently heard of a large government mili
tary agency that is looking to PASCAL, specifi
cally the UCSD p-System, for office automation.
They expect to spend under $5000 (a one-time
cost) for a micro-based work-station for each of
their office workers. To keep the cost this low,
they first are writing applications to run under
the UNIX operating system, because they see
UNIX as being the prime operating system for
micro-computers in the near future. The appli
cations are being written in PASCAL, with all
UNIX system calls highlighted.

Second, they are designing a PASCAL-based op
erating system. When it is completed, they will
be able to change the UNIX system calls to PAS
CAL system calls and then move those applica
tions to their PASCAL-based system. They expect
this operating system to be portable across many
types of future work-stations. So they are con-

11

centrating on getting their office automation
software to outlive not only the hardware, but
also the current operating systems.

There are several additional languages that we
have not discussed; for instance, one is FORTH
and another is 'C.' 'C' is closely tied to the use
of the UNIX operating system; UNIX is written in
C and users of UNIX often prefer to use C over
other available languages. UNIX is too large an
operating system to fit on the 8-bit micros; how
ever, we understand it will be offered in a wide
number of variations on both 16-bit and 32-bit
micros. So although C is not now widely used, it
may become important in the future. Also,
FORTH has developed a fairly wide following,
but we were unable to locate any business appli
cation users.

Challenges to portability

The UCSD p-System has brought into focus a
number of challenges to portable software for
small computers.

Unique features. Computer manufacturers
typically do not support true portability; they
tend to give more lip-service than adherence to
it. What they generally would like to do is to
add their own unique features to anything 'stan
dard;' these unique features are designed to give
them sales advantages.

What is more, if attempts are made to pre
vent them from adding these unique features,
they may make charges of 'restraint of trade.'

To the extent that users make use of such
unique features, the software loses portability.

Can one organization control? Can one organi
zation satisfactorily control a widely used soft
ware system? To exert control, the organization
must provide continued technical leadership.

With many innovative users, how can one orga
nization keep up with all the ideas that are gen
erated, much less stay ahead of users?

How to handle the volume of work? With the
many types of host computers on the market,
who is going to write the 'interpreters' (or equiv
alent) for each such host? If the suppliers write
this type of customizing software, can the con
trolling organization demand the right to audit
that software for compliance with all standards?

How interested are users in portability?.
When a supplier offers some unique features in
conjunction with a 'standard' system, users are
faced with a choice. They can get immediate ad
vantages by using those unique features-but in
so doing, they jeopardize portability. How will
the population of users decide, when faced with
this dilemma?

With companies just now trying to decide
which small computer(s) they should standardize
upon, we think portable software considerations
should be high on the criteria list.

REFERENCES
1. Infoworld is a bi-weekly newspaper published by Popu

lar Computing, Inc. (375 Cochituate, Box 880, Fra
mingham, Massachusetts 01701); subscription price:
$25 per year.

2. Lifelines is a monthly newsletter from Lifelines Publish
ing Corp. (1651 Third Avenue, New York, New York
10028); subscription price: $18 per year.

3. Howkins, T. J. and M. T. Harandi, "Towards more por
table COBOL," The Computer Journal, British Computer
Society, November 1979, pp. 290-294. Back issues can
be obtained from William Dawson and Sons Ltd., Can
non House, Folkestone, Kent, Great Britain.

4. Hogan, Thom, "COBOL is coming," Infoworld, (address
above), January 19, 1981, p. 11; price: $1.25 per issue.

5. For more information on the UCSD p-System, contact
Soffech Microsystems, 9494 Black Mountain Road,
San Diego, California 92126.

Next month, we will address the question of 'practical office automation'
which means "making the best use of what you already have.'' Some organi
zations have been doing a good fob of moving toward the automated office in
a planned, step-by-step manner. We will describe how they have been ac
complishing this.

12

Then in February, we will discuss the use of computer graphics in busi
ness. Computer graphics are finally here, in an economical, practical man
ner. Useful graphics are even available on personal computers, and some
large organizations are making use of these small machines to get a quick
start in computer graphics.

EDP ANALYZER, DECEMBER, 1981

COMMENTARY

SOME CRITERIA FOR CHOOSING A MICRO-COMPUTER

by Larry Press, Small Systems Group, Santa Monica, California

The portability of software has been the most important single factor in
the rapid acceptance of personal computers for business and professional ap
plications. For this reason, if you are thinking of acquiring a personal com
puter, you should take a close look at CP/M-based systems and the software
which is available for them.

CPIM was developed by Gary Kildall to support a compiler he had written
for the Intel Corporation for their 8080 processor chip. When Intel decided
that they were not interested in a floppy disk operating system, Digital Re
search Corporation was formed to market the package. Currently there are
380 suppliers using CP/M, and it has been included on the Datapro Honor
Roll. Many of the companies offering CP/M-based computers-for instance
Vector Graphics, Altos, and North Star-were founded to market personal
computers. Older companies, such as Xerox, Wang, Datapoint, and most re
cently, IBM, are now offering CP JM-based machines. A conservative estimate
of the installed base is 300,000 machines.

The success of CP JM has attracted many independent, third party software
vendors. My company publishes an index of this software and the current edi
tion lists 7 40 programs offered by 248 vendors. The programs are organized
into 76 categories-for example, word processors (27 programs), integrated
accounting packages (29 programs), language processors (55 programs), and
medical office packages (14 programs). There is a lot of software available
under CP/M and the quality is, in general, quite high. Furthermore, many of
the vendors do a good job of supporting their products.

That is the good news, but there are a few problems with CP/M software
portability. Horizontal portability of both CP JM and programs running under
it has been made relatively easy because all of the hardware manufacturers
use either the 8080 or the upward-compatible Z-80 processor chip. On the
other hand, they do not all use the same video displays or the same disk for
mats. This means that either you or your dealer may be in for a bit of con
version work. In the case of video displays, it is necessary to let the software
know the characteristics of your system. If you use a popular terminal, it will
probably suffice to select it from a menu provided in the CP/M package. In
more difficult cases, it may be necessary to supply the program with escape
codes from your terminal manual. And some memory-mapped displays may
not work with a given package at all.

Disk formats present another, generally surmountable, problem. The only
standard is the eight-inch IBM single density format, and virtually all CP/M
software is available in that format. Even if you do not need the capacity of
eight-inch disk drives, this standardization is a good reason to consider them.
There are many different 5-1I4 inch disk drives on the market and no stan-

EDP ANALYZER, DECEMBER, 1981 13

<lard, so you may have problems. getting a package onto your system using
that size disk. Fortunately, there are a number of large distributors, such as
Lifeboat Associates, who offer many vendors' software in a wide variety of
disk formats. If a given package is not available on your disk format, you
may have to transfer it to your system through a serial communications port
or buy it from a dealer who will be responsible for the conversion. In either
case, be sure to get a machine with at least one standard RS-232 communica
tions port.

CP IM itself has also gone through two major versions, and version three
will be out soon. A number of newer programs will run under CP /M 2, but
not CP/M 1. Furthermore, there are now MP/Mand CP/NET for the 8080 and
Z-80. Again there are incompatibilities in some cases. And I would be careful
in dealing with companies that advertise 'CP/M compatible' operating sys
tems-be sure your software runs properly first.

The 16-bit processor chips are also introducing problems with software
portability. The 16-bit Intel 8086 and 8088 chips are now turning up in a
number of machines (most importantly the new IBM personal computer),
and the same will be true of the Z8000 and M68000. CPIM is already availa
ble for the 8086 and 8088, and MP/M will be soon. Digital Research has a
program which converts 8080 assembly language (but not Z-80) to 8086 au
tomatically. And currently, only two of the widely used higher level lan
guages, CBASIC and PL/1 subset G, both products of Digital Research (which
recently acquired Compiler Systems), are running under CP/M-86. However,
fourteen other companies, including Microsoft, are writing upward compati
ble language processors to run under CP/M-86.

In looking to the future, two operating systems will clearly become impor
tant. First is IBM's personal computer DOS. While I have not yet seen more
than a demonstration of the system, IBM promises that conversion of CPI

M-based programs to DOS will be very simple. Furthermore, IBM DOS will
doubtless become available on other machines. With the resources of Micro
soft and IBM behind it, it will be an important factor in the near future.

The other operating system which will certainly play an important role in
the more distant future is UNIX. UNIX, a multi-tasking system, is pervasive in
the academic community. It is also written in a higher level language (C) and
is therefore relatively portable. I know of fourteen companies that have, or
are working on, UNIX or UNIX-like operating systems for the new 16-bit mi
cro-processors. At the present time, there is virtually no installed base, rela
tively few vendors, and no channels of distribution. However, in a few years
there will doubtless be a good deal of software which runs on many manufac
turers' systems under UNIX.

EDP ANALYZER is published monthly and copyright© 1981 by Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. All rights reserved. Photocopying this report for personal use is permitted under the conditions stated at the
bottom of the first page. Also, see Declaration of Principles on page 15.

14 EDP ANALYZER, DECEMBER, 1981

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1978 (Volume 16) 1980 (Volume 18)

Number Coverage Number Coverage

I. Installing a Data Dictionary G I. Managing the Computer Workload I
2. Progess in Software Engineering: Part I H 2. How Companies are Preparing for Change K
3. Progress in Software Engineering: Part 2 H 3. Introducing Advanced Technology K
4. The Debate on Trans-border Data Flows L 4. Risk Assessment for Distributed Systems .. L.E.A
5. Planning for DBMS Conversions G 5. An Update on Corporate EFT M
6. "Personal" Computers in Business B 6. In Your Future: Local Computer Networks .. F,B
7. Planning to Use Public Packet Networks F 7. Quantitative Methods for Capacity Planning I
8. The Challenges of Distributed Systems E,B 8. Finding Qualified EDP Personnel J
9. The Automated Office: Part I A 9. Various Paths to Electronic Mail D,M

10. The Automated Office: Part 2 A,D 10. Tools for Building Distributed Systems E,B,F
11. Get Ready for Major Changes K 11. Educating Executives on New Technology K
12. Data Encryption: ls It for You? L 12. Get Ready for Managerial Work-Stations ... C,A,B

1979 (Volume 17) 1981 (Volume 19)
Number Coverage Number Col'erage

I. The Analysis of User Needs H I. The Coming Impact of New Technology ... K,A,B
2. The Production of Better Software H 2. Energy Management Systems M
3. Program Design Techniques H
4. How to Prepare for the Coming Changes K

3. DBMS for Mini-Computers G,B
4. The Challenge of "Increased Productivity" .. J,K,A

5. Computer Support for Managers C,A,D 5. "Programming" by End Users C,H,B,G
6. What Information Do Managers Need? C,H 6. Supporting End User Programming C,H,B,K
7. The Security of Managers' Information L,C,A 7. A New View of Data Dictionaries G,B.
8. Tools for Building an EIS C 8. Easing the Software Maintenance Burden . H.B.G.
9. How to Use Advanced Technology K,B,D 9. Developing Systems by Prototyping H,B,G

10. Programming Work-Stations H,B 10. Application System Design Aids H
11. Stand-alone Programming Work-Stations H,B 11. A New Approach to Local Networks F,K
12. Progress Toward System Integri~y L,H 12. Portable Software for Small Machines B,H

Coverage code:

A Office automation E Distributed systems
I Computer operations
J Personnel

B Using minis & micros
C Managerial uses of computers
D Computer message systems

F Data communications
G Data management and database
H Analysis, design, programming

(List of subjects prior to 1978 sent upon request)

K Introducing new technology
L Security, privacy, integrity

M New application areas

Prices: For a one-year subscription, the U.S. price is $60. For
Canada and Mexico, the price is $60 in U.S. dollars, for surface
delivery, and $67 for air mail delivery. For all other countries,
the price is $72, including AIR MAIL delivery.

Reduced prices are in effect for multiple copy subscriptions,
multiple year subscriptions, and for larger quantities of a back
issue. Write for details.

Back issue prices: $7 per copy for the U.S., Canada, and Mexico;
$8 per copy for all other countries. Back issues are sent via AIR
MAIL. Because of the continuing demand, most back issues are
available.

Please include payment with order. For payments from outside
the U.S., in order to obtain the above prices, use only an
international money order or pay in U.S. dollars drawn on a hank
in the U.S. For checks drawn on banks outside of the U.S .. please
use the current rate of exchange and add $5 for bank charges.

Editorial: Richard G. Canning, Editor and Publisher; Barbara
McNurlin, Associate Editor. While the contents of this report are
based on the best information available to us, we cannot guarantee
them.

Missing Issues: Please report the non-receipt of an issue within one
month of normal receiving date; missing issues requested after this
time will be supplied at the regular back-issue price.

Copying: Photocopying this report for personal use is permitted
under the conditions stated at the bottom of the first page. Other
than that, no part of this report may be reprinted, or reproduced or
utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying
and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

Address: Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. Phone: (714) 724-3233, 724-5900.

Microfilm: EDP Analyzer is available in microform, from
University Microfilms International, Dept. P.R., (I) 300 North
Zeeb Road, Ann Arbor, Mich. 48106, or (2) 30-32 Mortimer
Street, London WIN 7RA, U.K.

Declaration of Principles: This publication is designed to provide
accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher
is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought. -
- From a Declaration of Principles jointly adopted by a
Committee of the American Bar Association and a Committee of
Publishers.

15

