
EDP ANALYZER
© 1979 by Canning Publications, Inc.

OCTOBER, 1979
VOL. 17, NO. 10

PROGRAMMING WORK-STATIONS

It seems that many data processing departments are very much
like the proverbial shoemaker whose children go barefoot. These
departments spend a lot of time developing sophisticated tools
for other departments in their organizations-and forget ahout
their own staffs' needs. We now see this changing dramatically,
with the introduction of programming work-stations. In this and
next month's reports, we explore these exciting new products
and systems for software development.

Joshua Tree Manufacturing, Inc. is a
privately held manufacturer of junior-sized
women's sportswear. They have 500 employees
and regional showrooms in five major U.S. cit
ies. Their headquarters are in Redondo Beach,
California, a suburb of Los Angeles.

Data processing at Joshua Tree is done on
an IBM 3701125, to which twenty local termi
nals are connected for on-line programming
and maintenance as well as for order entry,
credit management, accounting, etc. The data
processing staff consists of a manager, a system
programmer, two programmer I analysts, two
computer operators, and two data entry peo
ple.

In early 1977 the people at Joshua Tree be
gan looking for a software library package to
maintain their source programs. Their IBM
sales representative suggested that they con
sider what was then a new IBM product, ETSS

(Entry Timesharing System), which would al
low on-line programming as well as source
program maintenance. Since the data process
ing manager had previously used and liked an
on-line programming facility, this product

looked interesting. So he and the system pro
grammer visited a company they knew that
had been using ETSS for over a year. These
users were very pleased with ETSS because it
was a time sharing system aimed specifically at
software development. So in 1977 Joshua Tree
installed ETSS and gave a CRT work-station to
each programmer in the department, as well as
to the manager.

The manager told us that ETSS has provided
three ;major benefits for them. First, it has
spread out the use of computer resources more
evenly over the software development life cy
cle. Second, it has made project tracking easier
and more accurate. And third, it has improved
programmer productivity by 60-80%.

Formerly, specific hours were allocated on
the 3701125 for software compiling and test
ing. More often than not, there was either no
demand or too much demand for this time. In
this environment, programmers tried to pack
as much code into each compilation or test run
as possible. This obviously accentuated the
computer usage peaks.

Multiple copy prices listed on last page. Photocopying this report for personal use is permitted, providing payment of $2.00
fee per copy af report is made to Copyright Clearance Center, P.O. Box 8891, Boston, Mass. 02114; please include identifying
fee code 0012-7523179/100001-13$02.00.

Using ETSS, the programmers no longer try
to code as much as they can before each com
pilation or test. With work-stations in their
offices, they code directly into the system in
PL/l, using ETSS macro commands, editing fea
tures and files. Being assured of computer time
whenever they want it, they now code one
module at a time, compile and test that mod
ule, and then move onto the next module in
their programs. Thus, use of computer re
sources begins much earlier in the develop
ment cycle and is spread out more evenly over
the cycle and over each working day.

This new procedure also makes project
tracking easier and more accurate, because the
development cycle now tends to be broken
into shorter segments. Completion of each task
is easier to verify. "You do not have to wait
until the sixth day of a phase to find out if the
three modules in that phase have been written,
compiled and tested. You can find out on the
second day whether the first module has been
finished, on the fourth day whether the second
module has been completed, and so on," the
manager told us.

ETSS increases programmer productivity in
several ways. For one thing, it eliminates a lot
of programmer waiting-waiting for computer
time, waiting for compilations to finish, etc.
Once a program section is coded. the program
mer enters it into the compilation and test
queue and then goes onto other work. Periodi
cally he can inquire from his work-station on
the status of the job. When the job is finished,
he can get test run output at the work-station.

Additionally, the command language in ETSS
has greatly improved programmer productiv
ity. ETSS provides some twenty standard com
mands that can be invoked in a program sim
ply by calling the command's name. On an
even more sophisticated level, these ETSS com
mands can be linked to form a macro proce
dure, given a name, and invoked by calling
that name. These macro procedures eliminate
a lot of duplicate coding, we were told. The
on-line editing features of ETSS make it easy to
call up a procedure or a PL/ 1 module, tailor it
by changing some lines, rename it, and use it in
a new program. All of the programmers at
Joshua Tree have their own libraries of such
modules. Some of these they designate as being

EDP ANALYZER, OCTOBER, 1979

private, for their own use only, while others
are designated as public, for use by others.

After Joshua Tree had been using ETSS for
four months, they visited a company that had
been using it for much longer. This visit
proved most helpful, because they learned how
to use the more sophisticated features of ETSS.

The data processing manager at Joshua Tree
pointed out that taking advantage of the po
tential of ETSS required two company policies:
(1) giving a work-station to every programmer,
and· (2) developing on-line programming stan
dards. One such standard is that every updated
version of a program must be run through an
ETSS module that they wrote. This module cre
ates a new source listing for documentation
purposes as well as a new object listing for the
operational program library. So documentation
reflects the current production version of every
program.

At Joshua Tree they are very enthusiastic
about their use of IBM's ETSS, and they re
cently replaced it with ETSS II which has addi
tional capabilities.

Abacus Systems, Inc.
Abacus Systems is a software and OEM com

pany that specializes in writing business appli
cation software for Hewlett-Packard systems.
It then sells this software to end users and
other OEMs. Abacus Systems is located in San
Francisco, California.

Abacus Systems was one of the first compa
nies to install an H-P 300 system, early this
year. The H-P 300 is a small business system
with some very interesting software develop
ment tools built into it. It has two types of
work-stations connected to it. One is the major
controlling terminal called IDS (Integrated Dis
play System), which can be used as a stand
alone program development work-station. The
second type is the H-P 264X terminal; up to 16
of these terminals can be connected to the IDS ..
These terminals can be used in a data entry
mode, for entering code or on-line testing of a
compiled program. They can not be used for
editing or compiling programs.
, At Abacus their H-P 300 system has the IDS

work-station with its built-in floppy disk unit,
one 264X terminal, a 180 character per second
printer, and a 7906 hard disk unit. This latter

2

disk unit has both removable and fixed disks,
which provides Abacus with a convenient way
to dump files for back-up purposes, we were
told. They use their system to write application
programs in Basic, to run on other H-P 300s.

Use of the system for creating software goes
as follows. First, after designing their program
modules, the programmers code or partially
code their designs on coding sheets. With
these in hand they sit down at either type of
work-station (the IDS or the 264X) and enter
the code. Then from the IDS work-station, they
initiate a compilation of one or more modules.
Upon completion of the compilation, the sys
tem automatically displays how many syntax
errors have been found.

To correct an error the programmer pushes
the 'softkey' on the IDS screen designated NEXT

ERROR and the screen splits into two sections.
The top section describes the first compilation
error found. The bottom section displays about
10 lines of source code, with the cursor posi
tioned where the system thinks that error is.
The programmer corrects the error using the
work-station's editing features and then pushes
the NEXT ERROR softkey again. This time the
system displays the second syntax error. And so
debugging goes.

When all of the errors have been corrected,
a new compilation is requested. The program
mer can also ask the system to extend the test
by running the link editor to resolve references
between modules, and then run the program
using a specific test data file. During this
processing, the system allows interactive sym
bolic debugging by the user.

After using the system for several months,
the people at Abacus Systems have speeded up
their software development considerably, by
re-using previously written modules. For in
stance, one general ledger program creates a
formatted screen display with which an end
user can request a number of types of reports
with various options. These report requests are
then processed and passed on with instructions
on how each report should be printed-that is,
its format, number of copies to be printed, etc.
This program contains some 750 lines of code,
in three modules. It was created in about one
hour, because the programmer pulled existing

EDP ANALYZER, OCTOBER, 1979

modules out of the H-P 300 file, modified
them, and then linked them together.

Abacus Systems is creating quite a library of
modules that they can use over and over again
using the on-line editing features of the H-P
300.

The people at Abacus say that after six
months of use they began to get very accom
plished at using the more sophisticated fea
tures of the H-P 300. They pointed out to us
that it is quite a complicated system because
of its numerous special features, so it takes
some time to begin using it well. But now that
they are knowledgeable in its use, it is very
dramatically increasing their programmer pro
ductivity.

Buck Knives, Inc.
Buck Knives is a leading manufacturer of

high quality folding and sheath knives for hunt
ing and general use. From their headquarters
in El Cajon, California, a suburb of San Diego,
they distribute their products to both domestic
and international markets. Until early last year,
Buck Knives had been using a software house
to write programs to run on their DEC PDP 11/

70, which uses the RSTS time-sharing operating
system. In mid-1978 a data processing depart
ment was formed at Buck Knives. It consists of
a manager, an entry level programmer, and an
operations staff.

About one year ago the manager began in
vestigating better ways to develop software,
because the systems he had inherited were be
coming inadequate; he also wanted to institute
an on-line programming environment. In his
study he came across USER-11, a software devel
opment package developed by North County
Computer Services, a service bureau some
forty miles from him.

The USER-11 package operates under the
RSTS operating system. It includes a data man
agement system and some 25 conversational
programming procedures for use with DEC's
BASIC PLUS language. Also a text editor is pro
vided.

The programming approach is the most in
teresting and unique feature of USER-IL To a
major extent, it involves non-procedural con
versational programming. That is, USER-11 pro
vides a number of generalized facilities-for

3

defining data records, allocating disk storage
space, adding, deleting, and changing records,
selecting, sorting, and displaying records, and
preparing reports. The user specifies what a
desired new program should do by selecting
among the options given by USER-11.

For example, if a report program is to be
written, the programmer invokes the REPORT

procedure. This procedure asks a series of
questions by which the report's contents and
formats are defined. The control parameters
that are created may be used only once, if de
sired (since creating them takes only a few
minutes), or they may be stored for repeated
use.

For writing one's own code, the programmer
uses the CREATE procedure. This procedure
also utilizes the question and answer approach
to create a documented, standardized BASIC

PLUS program to which the programmer adds
any necessary main line code.

The manager at Buck Knives thought USER-

11 looked very flexible, and it would eliminate
a lot of coding. Sc it was purchased in late
1978. After about two weeks of training and
use, both the manager and the entry level pro
grammer were quite proficient at using USER-11

for program development.
An example of developing a typical system

using USER-11 is as follows. The company con
troller requested a program for tracking cer
tain general ledger accounts. The program was
ascertained to require six modules: (1) data en
try posting to a batch file, (2) batch file listing,
(3) batch file maintenance, (4) batch posting to
a master file, (5) master file maintenance, and
(6) master file reporting. So this was more than
just creating a new report.

The initial system design took about one-half
hour, then 'coding' on-line using USER-11 proce
dures began. 'Coding' and testing were accom
plished in three hours. They consisted of the
following eight steps. We found it interesting
that in these steps the programmer concen
trated on what needed to be done, leaving the
details of how to do it up to the USER-11 proce
dures.

First, using the ALLOCATE procedure, space
for the master and batch files was created.

Second, using the· DEFINE procedure, the
data definitions for the various fields in these

EDP ANALYZER, OCTOBER, 1979

two new files were specified. Since both use
identical data, only one data dictionary was ac
tually created.

Third, using the on-line editor, an ASCII text
menu control file of all items, security levels
and job control commands was defined. When
run, this control file requests the end user's
identification number and password, and then
provides the user with a menu of procedures
that he or she is authorized to use.

Fourth, the user identification, password and
security level information were entered into
the security file.

Fifth, the security and menu portions of the
system were tested.

Sixth, modules one, three and five were
tested. These three modules, which process
posting to a batch file, batch file maintenance
and master file maintenance, needed only to be
listed on the menu with. the operation options
to be performed on them specified. USER-11

takes care of the details of data maintenance
a major reason why it requires a lot less coding
than conventional procedural programming.

Seventh, the three remaining modules were
'coded' by creating USER-11 EXECUTE files.
These ASCII text files are created using the
RECORD procedure and are used by the EXE

CUTE procedure when the program is run. For
the batch file listing, module two, the pro
grammer specified that the SORT procedure
was to be used to sort all records by specific
keys, which he designated. And using the RE

PORT procedure, he created the report recall
file, which contains all of the parameters nec
essary to generate the report.

Finally, in the eighth step, the entire system
was tested.

The manager estimates that using a proce
dural programming language, this project
would have taken 20 hours to design and 60
hours to code and test; instead of the three and
one-half hours actually spent using USER-11.

The ninth step, user training, we also found
to be interesting. The programmer gave the
controller the required user identification and
password information and told him, "If you do
not understand its use at any point, just type in
/HELP and USER-11 will explain your options."
All of the USER-11 procedures are fully docu
mented, on-line, so that user training is just

4

that simple. The menu, created in step 3, gives
the valid user the program's options, and the
HELP command explains each option.

So the final programs are easy to use. And
they are efficient to run, we were told, since
the USER-11 procedures are coded in highly ef
ficient code.

Further, these programs are easy to main
tain, because maintenance usually consists only
of changing options, such as on a report. It
does not consist of recoding how the report is
to be produced. Therefore, program mainte
nance has been reduced by almost 80%, the
manager speculates.

"At Buck Knives," the manager told us,
"USER-11 has really spoiled us. We know that
projects that would normally take several
months now take only a couple of weeks. Out
of 95 production programs in our integrated
order entry and accounts receivable system, we
only had to partially code (using CREATE) 16
programs. The remaining programs were re
placed entirely by USER-11 modules. So we had
to code 83% fewer programs, which saved us
$16,000 in labor costs alone."

Programming work-station types
Programming work-stations, as we define

them, are those portions of computer systems
that have been developed specifically for use
by programmers for software development and
maintenance. We call these hardware/software
systems 'work-stations' because we foresee
them becoming the main tools with which pro
grammers will perform their work. As such
they are designed to replace: coding sheets,
pencils, card decks, paper listings (sometimes),
walks to the computer room (to submit and
pick up jobs), telephone calls to the computer
room (to find out if jobs have been run), pro
ject tracking charts, and even documentation
typists. Within the past year, we have seen a
number of new programming work-stations
come on the market (Reference 4). With hard
ware costs dropping dramatically and person
nel costs rising steadily, these products appear
more cost effective to data processing manage
ment.

We categorize programming work-stations
into two main types: (1) host programming
work-stations and (2) stand-alone programming

EDP ANALYZER, OCTOBER, 1979

systems. Host programming work-stations are
software or firmware products that create a
programming work-station environment on a
company's in-house computer. Computer pro
grams developed using these tools are meant
to run on the same computer. We discuss these
products in this report. Stand-alone program
ming systems are total systems designed for
software development use only. As such, the
computer programs developed on them are
(generally) meant Jo run on another system,
called the target system. We discuss these sys
tems next month.

Before starting, we should define a few terms
that we will be using, to avoid confusion. On
line programming refers to entering code and
making changes at a computer terminal or
work-station, rather than on cards. The terms
conversational, interactive and dialog program
ming all refer to programming on-line with the
system prompting the user. It is a question and
answer approach to programming.

Most programming done today is procedural
programming. That is, programmers use CO

BOL, BASIC, PL/ 1, etc. to write down the proce
dures for how to do something. On the other
hand, in non-procedural programming, pro
grammers need only specify parameters and se
lect options presented by the system. The pro
grammer is simply concerned with specifying
what needs to be done, not with how to do it.
The system then creates the procedural code to
perform the task. Now, onto our discussion of
host programming work-stations.

Host programming work-stations
Typically, on-line programming has been

performed on the same system that the pro
grams are intended to run on. One method of
providing programming work-station support
on a host computer is to install a software
package developed for that purpose. Such soft
ware packages have been available for some
time. And we have recently seen some impres
sive new offerings. These packages operate un
der the host's time-sharing operating system.

Some packages aim to enhance procedural
programming, while others aim at enhancing
productivity through non-procedural program
ming. We see non-procedural programming as
a move toward end-user programming.

5

We found software packages such as these
to be a very viable way to move into on-line
programming. This is especially true for small
data processing departments that cannot justify
the cost of a stand-alone programming system.
But an important criterion is that this pro
gramming use not consume a lot of computer
resources and degrade the host's performance.

Two examples of software packages for pro
gramming work-station support are ICCF (and
ETSS) from IBM and USER-11 from North
County Computer Services.

ICCF and ETSS from IBM

Somewhat hidden in IBM's announcement
last January of their new 4300 computer main
frame family, to replace System/370, was their
introduction of ICCF (Interactive Computing
and Control Facility). ICCF is a programming
work-station product. It is an enhanced version
of ETSS and ETSS II and is designed to run on
System/370, 3031 and 4300 computers under
the DOS/VSE operating system.

When used with non-intelligent terminals,
ICCF provides line editing capabilities, also
known as command or context editing. That is,
to make a change in a line of text, the pro
grammer types in the specific command for the
change to be made followed by the old charac
ters to be changed and then the new characters
to be added.

Using an IBM 3270 terminal, full-screen
editing is possible. In this mode, the program
mer moves the cursor to the position on the
CRT screen where a change is to be made.
Then he or she pushes the function key that
designates the type of change to be made and
types in the new characters. This mode of edit
ing is much faster and requires a lot less typ
ing.

Use of the 3270 terminal also allows the
programmer to split the 43-line CRT screen
into as many as eight windows. This is very
handy for comparing two modules or looking
at compiler run error messages in one window
and source code in another.

IccF provides users with a work area for en
tering new work or editing stored programs.
All work is transferred to the work area before
it can be edited. This protects the originals
from accidental destruction.

EDP ANALYZER, OCTOBER, 1979

ICCF also provides users with 'libraries' into
which they can store source programs, data,
procedure modules, and job control statements.
Keeping standard JCL strings in a library re
lieves programmers of re-entering this informa
tion every time they submit a job. (And ICCF
helps programmers create these strings in a
conversational mode.) These libraries can be
designated as private, for a programmer's per
sonal use only, or public, for anyone's viewing
and use.

Jobs to be compiled or tested are placed
into the host's batch queue by ICCF for execu
tion. A special partition can be reserved on the
mainframe for compilations and tests. Testing
does not tie up the terminal, so the program
mer can go onto other work after submitting a
job. And he or she can periodically inquire
about the status of the job from the work-sta
tion. When the run is complete, results are
available for viewing on the work-station.

ICCF supports conventional procedural pro
gramming. It also supports non-procedural
programming using IBM's DMS/VS develop
ment management system, when using the full
screen editing capabilities. And it contains a
command language of some twenty macro
commands. These can be executed by a pro
grammer to perform their functions or they
can be strung together in a sequence to form a
macro procedure. Both macro commands and
macro procedures can be included in conven
tional programs by simply specifiying the ma
cro name. Users can also create their own con
ventional modules, give them a name, and use
them as macro procedures.

IccF appears to be a real bargain. It is listed
as costing $60 a month plus a monthly support
fee. To find the equivalent cost to other work
stations, pertinent other costs-including both
purchase and operating costs-need to be
added to this figure. For more information on
ICCF and ETSS contact your local IBM sales
office. You may wish to request the ICCF gen
eral information manual (Reference 1).

USER-11 from NCCS

USER-11 is a data management system that
was developed by North County Computer
Services in Escondido, California. NCCS offers
USER-11 to its time-sharing customers through-

6

out San Diego County, and it also sells the
package. The system has been sold in the U.S.,
Mexico, Australia, and New Zealand.

USER-11 runs on any DEC PDP-11 computer
under the RSTS/E V06-B operating system (or
more recent version) with at least 64k words of
memory. It works in conjunction with DEC's
BASIC PLUS language and most CRT or printing
terminals.

USER-11 is both a development and an opera
tions system. That is, it provides generalized
facilities for developing application programs
and it performs database management services
when the application programs are run. Many
application programs can be created using just
the generalized non-procedural facilities within
USER-11. In those cases where tailored program
logic is need, BASIC PLUS can be used with the
CREATE procedure.

There are currently 25 procedures available.
Some of them are: (1) ADD-to add records to a
database, (2) DEFINE-to establish and maintain
a data dictionary that is used both by the sys
tem and by users, (3) LABEL-to print address
labels, (4) LINK-to link several files together
using a master file, (5) REPORT-a general pur
pose report generator, (6) UPDATE-a general
purpose, interactive database field update pro
gram, (7) CREATE-a BASIC PLUS program gen
erator for which the programmer simply sup
plies main-line program logic, and (8)
EXECUTE-a program generator for including
USER-11 procedures in application programs.

To use a procedure, the programmer types:
USE xxxx, where xxxx is the name of the proce
dure. The system identifies the procedure re
quested and asks the programmer the first
question. For example, to add new fields to a
file, using DEFINE, the system first asks for the
name of the file. The user replies and then the
system tells the user how many fields have al
ready been defined in that file. When the user
types ADD the system displays the next usable
field number and in a dialog fashion it succes
sively asks for: the new field's name, its length,
any explanation needed to clarify the meaning
of the field, the field's header name to be used
on reports, its edit mask, and various field
specifications. If at any time. during this dialog
the user does not understand what the system
is asking, he types /HELP. An explanation and a

EDP ANALYZER, OCTOBER, 1979

sample response are provided. If, for example,
the user does not understand EDIT MASK, the
system explains the term: EDIT MASK is to be
used when printing the contents of this field.
Possible options are $, zero fill, CB (credit bal
ance), - (negative number), and underscoring.
The /HELP command can be used when pro
gramming with or using USER-11.

USER-11 users told us they rarely write con
ventional BASIC code any more. They find that
the USER-11 procedures fill all of their program
ming needs, except when complex data entry
or link processing is required. And NCCS is
currently writing two new procedures, FORM
and ENTRY, to handle these situations.

USER-11 currently sells for $9500. For more
information, see Reference 2.

A second type of host programming work
station provides programming work-station
support through firmware rather than software.
So the features can not be purchased sepa
rately; they are an integral part of the system.
Programs developed on this type of host sys
tem are meant to run on it also.

This approach, when used on a small busi
ness system, looks very interesting for applica
tion development for distributed systems. The
programs can be developed (and maintained)
centrally, using the system's programming
tools, and then distributed to the various busi
ness units, for running on the same type of
small system. If non-procedural programming
capabilities are also available, end users may
even be able to develop their own programs.

Our example of this type of programming
work-station is the H-P 300, a small business
system from Hewlett-Packard.

H-P 300 from Hewlett-Packard

Hewlett-Packard's 300 computer system is
basically a system in a desk. It is aimed at the
small business and distributed data processing
markets. And it is designed to be dedicated to
a few applications at the department level. But
it also contains some powerful · and unique
tools for business software development.

The basic H-P 300 system includes an IDS
terminal with its floppy disk storage and key
board, a 12 million byte fixed disk and a 16-bit
processor, using three silicon-on-sapphire
chips, with 256k bytes of memory-all built

7

into the desk cabinet. This basic system •Costs
$36,000. It can be expanded by increasing
memory up to 1 million bytes, and by adding
up to 16 data entry terminals, two printers,
and/ or larger disk units with removable packs.
It supports H-P's extended version of BASIC,
RPG II, and System Language 300.

Of interest to us here are the IDS (Integrated
Display System) and the programming lan
guage sub-systems.

The IDS is a very powerful display system
which allows: split screens, with each window
having 110 and editing capabilities; vertical
and horizontal scrolling; inverse video (black
on white) to highlight particular items on the
screen; command-driven and full-screen edit
ing; and softkeys. The softkeys need some ex
planation.

To the right of the CRT display are eight
push-button keys, which Hewlett-Packard calls
softkeys. The current meanings of the keys are
displayed along side each on the screen. So the
functions of these keys can and do change.

Typical softkey functions available during
BASIC programming are: (1) HELP-to gain ac
cess to the system's on-line quick reference
guide, (2) SINGLE SCREEN, (3) SCROLL UP/
DOWN, (4) TEST-to automatically compile,
link (if several modules are being tested) and
execute programs, (5) OOPSl-to restore the last
change made back to its original state, (6) EXIT
BASIC-to exit the BASIC language sub-system
and enter the operating system or another en
vironment, (7a) COMMAND-to move the cursor
out of the editing window so the user can enter
commands to the system, and (Tu) COMPOSE
to move the cursor into the editing window to
perform full-screen editing. A different set of
softkey functions is provided during debug
ging.

The H-P 300 has three programming lan
guage sub-systems-RPG II, BASIC, and System
Language 300. System Language 300 is aimed
at software specialists who want to write as
sembly level code. Each sub-system contains a
number of programming aids aimed specifi
cally at that particular language. For BASIC
there is a syntax checker that notifies the user
of an error immediately after a line of code has
been entered. There is an extensive command
language of some 70 commands. Some are for

EDP ANALYZER, OCTOBER, 1979

direct use, and some require some additional
variable information (such as 6le name) to per
form their tasks. The command interpreter has
sufficient intelligence so that the user can enter
abbreviations and minor mis-spellings which
the system will still understand.

These are the most unique programming
features of the H-P 300 small business system.
For more information on this system, see Ref
erence 3.

Stand-alone programming systems
Stand-alone programming work-station sys

tems are relatively new offerings. They are full
blown hardware/software systems created spe
cifically to support software development. As
such, the programs written using them are
(generally) not meant to run on them but on
different computers, known as target systems.
Thus, these systems require an added commu
nication feature for sending programs to the
target computer for compiling and testing. The
stand-alone systems that we have seen cost
anywhere from $70,000 to almost $200,000.
We shall discuss them next month.

This brings up the question of money and
whether these systems can be cost justified.

Can they be cost justified?
Management's initial reaction to these pro

gramming work-stations is likely to be: "Say,
these look great, but they also look expensive.
Can they be cost justified?" Well, the users we
talked with say Yes, based on the benefits they
are receiving.

To help others better quantify possible bene
fits, to see if these systems can indeed be cost
justified, we will now discuss the claimed bene
fits. Unfortunately, we have seen few money or
percentage figures to back up user statements.
It can be difficult to obtain fair 'before' and 'af
ter' figures. Users may simply recognize that
programming has been made easier, and let it
go at that.

Here, then, are the benefits of programming
work-stations, as described to us by both users
and suppliers.

Increase programmer productivity

Increasing programmer productivity is al
ways the first benefit mentioned, by users and

8

vendors alike. We have heard it estimated that
use of programming work-stations will increase
programmer productivity anywhere from 15%
to 83%. These increases come from the system
taking over some of the programming tasks,
thus making programmers more efficient at the
tasks they perform.

Reduce waiting, searching and walking time.
The people at Four-Phase Systems, who mar
ket a stand-alone system that we will discuss
next month, estimate that programmers spend
40% of their time waiting-waiting for cards to
be punched, waiting for the computer to run
their jobs, waiting for the computer to come
back up after a crash, and so on. Using stand
alone work-stations, Four-Phase estimates that
this waiting time drops to less than 12%.

Programmers seem to know a lot about
what other programmers are doing, what types
of modules others are writing, etc. So if a pro
grammer thinks he or she might want to use a
module that another programmer has spent a
lot of time creating, the work-station environ
ment makes this easier to do. The programmer
only needs to know the name of the file the
module is stored in and if it is publicly accessi
ble. Then he can immediately retrieve that file
and review the code, to determine if it can in
deed be used. So programming work-stations
reduce searching time. They also reduce the
time programmers spend searching through
their own files, because files are stored elec
tronically rather than in loose paper form.

Having a programming work-station in one's
office (or close by) also saves programmers a
lot of walking time, particularly to the com
puter room to submit and pick up jobs. This
time savings is not so great if the department
has already installed a remote batch terminal.
But having a terminal makes keeping track of
the progress of jobs much easier.

All of these routine activities have wasted a
lot of programmer time. Work-stations reduce
this waste.

Make programmers more ejficient. The edit
ing, filing, command language, and conversa
tional programming features of work-stations
make programmers more efficient at program
ming.

EDP ANALYZER, OCTOBER, 1979

Coding is speeded up in several ways. Enter
ing procedural code on a keyboard may or may
not be faster than having cards keypunched. It
depends on the particular programmer. More
importantly, the new systems more easily allow
programmers to re-use coded modules from
other programs.

Likewise, use of pre-coded, pre-tested macro
commands and procedures, either supplied by
the system or user created, actually cut down
on the amount of code that programmers need
to write.

Conversational programming features are
another method of speeding coding, and elimi
nating errors at the same time. One system, to
be discussed next month, encourages structured
programming through conversational program
ming. For COBOL programming, for example,
the system has a syntax guidance feature that
displays a menu of admissible instructions for
the programmer to choose from at each point
in coding.

Even more dramatic increases in efficiency
come from non-procedural programming fea
tures, which provide most of the code as well
as the program logic. The programmer concen
trates on what needs to be done rather than
how to do it.

Filing features can make locating errors on
line faster than reading paper listings, particu
larly on systems that locate the errors for you.
And entering corrections at a work-station is
much quicker than having new cards
keypunched.

So these work-stations increase programmer
productivity by eliminating a lot of wasted
programmer time and by increasing program
mer efficiency during coding and debugging.

Shorten development time

In addition to making programmers more
efficient, programming work-stations shorten
software development time by speeding coding
and decreasing testing.

Speed coding. We found the non-procedural
programming features to be the programming
aid that shortens development time the most,
because most of the code is generated by the
computer. The programmer concentrates on
fitting the available pieces together, supplying

9

the variables, and picking the appropriate op
tions. There are fewer pieces to integrate, so
this shortens the design phase also.

Two important questions to ask about a non
procedural programming facility are: (1) Is it
general enough and extensive enough to cover
most of your programming needs? And (2)
Does it produce efficient code, so that pro
grams take up about as much memory space
and run about as fast as they would if coded in
a conventional manner?

Programming work-stations also speed cod
ing by making it very convenient and easy to
access, modify and re-use existing program
modules and data definitions. Needless to say,
this is much faster than starting from scratch.

Also, some sys~ems have conversational fea
tures which partially lead a programmer
through coding, by presenting the options
available at each point, correcting syntax and
punctuation errors, and such. Thus they take
over some of the routine features of procedural
programming, leaving the programmer free to
concentate on logic.

Decrease testing. Use of programming work
stations can also decrease the number of com
pilation and test runs required, by automati
cally catching spelling, punctuation, and syntax
errors. They also reduce the amount of time
programmers need to spend creating job con
trol strings to perform these tests. All of the
IBM users we talked with use the on-line files
to store standard JCL strings, which they
quickly call up and attach to their jobs.

Only one user that we talked with had any
figures on how the programming work-station
environment had shortened development time.
At Buck Knives they estimate that the non-pro
cedural programming features of USER-11 typi
cally cut their development time by a whop
ping 77%, with an 83% reduction in coding.
This reduction is so large, they explained, be
cause they really do very little procedural cod
ing anymore. They mainly co-ordinate USER-11

procedures and specify options.

So programming work-stations shorten de
velopment time by speeding coding and de
creasing testing.

EDP ANALYZER, OCTOBER, 1979

Encourage good programming practices

We have noticed that programming work
stations encourage some good programming
practices-ones that may have been impracti
cal or too costly in the past, in the minds of
some people.

More fully documented programs. Program
ming work-stations make it easier to document
programs. For one thing, they generate stan
dard program formats automatically. And they
make adding comments easier. So one user we
talked with has made it a standard practice to
comment every line of code, as the code is
keyed into the work-station, not afterwards.
The editing features make future changes and
additional comments easy to add. Another user
created a standard macro procedure that keeps
the documented version of programs up-to
date with the current production version. Fi
nally, by using existing, documented modules
and procedures, the documentation has already
been done. We found that systems that have a
HELP key or command have well-documented
programs.

Re-usable code. We have noted several times
that providing easy access to existing program
modules encourages re-use of those modules.
This is one of the prime benefits that all of the
work-station users pointed out to us. They
were surprised and very impressed with how
much this good programming practice has
made life easier for their programmers. And
we suspect that these vendor- and user-created
modules are also pretty efficient to run. Or at
least they become more efficient as other pro
grammers refine them. Programmers and man
agement seem to want to have as many of
these standard routines and utility building
blocks as possible. Programming work-stations
encourage this good practice.

Throw away code. We have often heard pro
grammers and management alike lament that,
if only they had enough time to throw away
their first version of the code and start over,
their resulting systems would be a whole lot
better. Well, we found one work-station fea
ture that one company has used to do precisely
that. The feature is a command language with
flow-of-control commands included in it. These

10

control commands allow programmers to use
the command language as a very high level
programming language. Such a command lan
guage allows programmers to create programs
consisting solely of macro commands. The pro
grams are not efficient to run, but they are
quickly written. Once created they can be field
tested to see if their designs are correct. Then
they can be redesigned, if necessary, and
recoded in a more efficient language.

We found powerful command languages on
two systems that we will discuss next month
the Programmer's Workbench, developed at
Bell Laboratories, and Pet/Maestro, developed
by Softlab GmbH in Germany and marketed in
the U.S. by Itel Corporation.

Maybe in the future such programming
work-station features will encourage more use
of throw-away code, a programming practice
many seem to want.

Non-procedural programming. It appears to
us that non-procedural programming is the
next step beyond programming in a higher
level language such as COBOL, FORTRAN, BASIC,

or Pascal. In non-procedural programming the
system leads the user through the task at hand,
so it is much easier to write programs. The
users do not need to know the intricacies of a
programming language. They simply need to
know what they want to do and which proce
dures will help them set up the proper pro
gram. The non-procedural feature thus takes
programming one step closer to the end user.
It makes it feasible for someone in a user de
partment to write some complex, efficient pro
grams with little programming training-if the
system includes the application logic that the
user needs.

Programming work-stations thus encourage
some good programming practices that have
been formerly difficult or impractical to
achieve-more fully documented programs, re
usable code, throw away code, and non-proce
dural programming.

Enhance program quality

Programming work-stations can enhance
program quality by improving system and pro
gram designs and by increasing program clar
ity. Let's look at these.

EDP ANALYZER, OCTOBER, 1979

Improve design. One determinant of program
quality is quality of the design. Has the pro
gram been structured so that modules perform
only one function and so that errors do not rip
ple from one module to another? Few of the
work-stations we saw have much in the way of
system design tools. Most such first generation
programming work-stations are concentrating
on coding aids rather than design aids. In the
future we expect to see some of the more pop
ular system and program design methods sup
ported-techniques such as SADT, the Jackson
Method, Warnier's LCP, and others.

However, one work-station system we saw
does support program design by generating
structured programming charts, called structo
grams. These are a type of Nassi-Schneiderman
diagram. The system draws the hierarchical di
agram, which represents the program's control
structure, and the programmer fills in the
blanks, which are the program's action items.
We expect more graphic aids such as this one
to become available in the future.

By easing the coding load on programmers
by making it easier and faster to perform-pro
gramming work-stations can, indirectly, im
prove program design. They give programmers
more time to think about design, knowing that
coding will move along more quickly.

Increase program clarity. Another determi
nant of program quality is code clarity. Pro
gramming work-stations certainly do enhance
clarity. They enforce language-specific coding
formats, user-defined procedures, and standard
programming conventions, such as line num
bering, error detection, file processing, and
documentation techniques.

So programming work-stations do improve
software quality. And by doing so they reduce
program maintenance.

Reduce program maintenance

All of the above mentioned benefits lead to
programming work-stations reducing the
amount of program maintenance needed. At
Buck Knives they estimate that their mainte
nance requirements have been reduced by al
most 80% using USER-11 procedures. These pro
cedures, which constitute five-sixths of the
code in their production systems, need no cor-

11

rective maintenance. And enhancement main
tenance generally involves only re-running a
USER-11 procedure and changing the variables.
This example, of course, is not yet typical, we
believe, but it does show that dramatic reduc
tions in maintenance are possible.

The users we talked with are new users of
programming work-stations, because the pro
ducts are new. They know that benefits such as
reduced maintenance are occurring, but they
do not know by how much. They see mainte
nance being reduced because they see fewer er
rors in programs when existing modules are re
used. They see errors being caught earlier. And
they see more complete designs. Also the er
rors that do occur are much easier to find and
change. So their use of programming work-sta
tions is reducing maintenance in these ways.

Improve project management

Programming work-stations can improve
project management in several ways, by in
creasing visibility of work, by improving team
communications, and by providing file security.

Increase visibility of work. Some program
ming work-stations increase the visibility of
project work by providing tracking aids, by
maintaining statistics on how many lines of
code have been generated or modified in pro
grams, and by keeping logs of jobs submitted
to the mainframe. Some keep audit trails of all
program changes. And some users have written
their own routines, using work-station com
mand languages, to collect pertinent project
information.

We also found that the on-line environment
encourages coding and testing of single mod
ules. This practice breaks up the development
process into smaller increments, which can
more easily be tracked by the project manager.
Thus, critical situations can be recognized ear
lier. So work-stations make work more visible
to others, to the delight or the disgust of pro
grammers, we do not know which.

Improve team communications. Brook's 'Law'
says that adding more people to a late project
makes it later, because more inter-communica
tion among project members is required. Com
munication within a project is very important.
And programming work-stations have the po-

EDP ANALYZER, OCTOBER, 1979

tential of improving communications by put
ting programmers and data processing manage
ment into an automated office environment.
With the addition of a computer message sys
tem, communication among groups can be
greatly enhanced. We discussed this subject in
the April 1977 and September and October
1978 issues. Computer message systems actu
ally increase informal communication among
members of a project, be they down the hall or
miles away. Members use electronic messages
to record informal messages with others. All
members can be sent a duplicate of every per
tinent message easily, so all are equally well in
formed.

Even without the addition of a computer
message system, just keeping files on-line and
publicly accessible to team members improves
communication. We noticed that easy access
to such files, along with an extensive command
language, encourages programmers to experi
ment with 'what if' situations. This computer
ized support augments their discussions with
one another and clarifies communication
within a team. The command language allows
them to quickly formulate all kinds of qustions
for the system, and thereby consider more pos
sible alternatives.

So management should look at programming
work-stations as an aid to communication as
well as an aid to programming.

Provide file security. Most of the work-sta
tions we saw have on-line security features, for
accessing files, changing programs, and even
running programs. These features allow pro
grammers to define the security levels of their
modules as well as of resulting programs. Some
levels are: not accessible to any others, read
only by others, read and changeable by some
others, and program use by specific passwords.
The systems that have these types of security
features also are very easy to use, generally in a
conversational programming fashion.

Having the ability to include security fea
tures in programs easily, and having security
levels for files are important factors in project
management-factors that too often have been
neglected because of time considerations. Late
projects do not have well thought-out security
features. With such features easy to generate,

12

it greatly decreases a common worry of project
leaders.

Improve working conditions

When programming work-stations replace
coding sheets and cards, and perform many
routine tasks for programmers, the program
mers appreciate the improvement. They like
the quicker test response, the syntax checking,
the use of abbreviations, and the editing fea
tures. And they grow accustomed to the more
sophisticated features: conversational program
ming, command languages, links to data ma
nagment systems, and non-procedural program
ming facilities. These features make program
ming a lot less tedious.

Some programmers at one company we vis
ited commented that they would change jobs
to another company only if that company had
a programming work-station system as sophis
ticated as the one they were currently using.
Since few such installations now exist, they are
not likely to move. All the people we talked
with agreed on this point-programming work
stations do improve working conditions, which
leads to greater programmer satisfaction and
(so far) lower turnover. Programmer turnover
is a problem data processing departments have
been wrestling with for a long time.

These then are the benefits we uncovered in
our study of programming work-stations.
Surely these translate into cost reductions over
conventional programming techniques. We
suggest that data processing management study
its programming costs more closely to better
evaluate these new systems. We see these sys
tems as providing a more efficient way to de
velop and maintain software-the wave of the
future.

Next month we will discuss several other
programming work-stations-stand-alone sys
tems used to develop programs for other target
computers. And we will list the major work
station features we found, to help data process
ing management consider these new systems.

REFERENCES
1. VSE/Interactive Computing and Control Facility,

General Information Manual, IBM (order through
your local sales office), CC 33-6066-0, January 1979,
price 90 cents.

2. For information about USER-11, contact North
County Computer Services, Software Marketing Divi
sion, 2335 Meyers Ave., Escondido, California 92025.

3. For information about the H-P 300, contact Hewlett
Packard, 1507 Page Mill Road, Palo Alto, California
94307.

4. We have compiled a list of programming work-sta
tion products and systems that we came across in our
research. For a free copy of this list, write EDP ANA
LYZER.

Prepared by:

Barbara C. McNurlin
Associate Editor

EDP ANALYZER is published monthly and copyright© 1979 by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each report are based on the best information available to us, we cannot
guarantee them. Photocopying this report for personal use is permitted under the conditions stated at the bottom of the
first page. Prices of subscriptions and back issues listed on last page. Missing issues : please report non-receipt of an issue
within one month of normal receiving date: missing issues requested after this time will be supplied at regular rate.

EDP ANALYZER, OCTOBER, 1979 13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1976 (Volume 14)

Number
1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number
1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
11. Using Some New Programming Techniques
12. Progress in Project Management

1978 (Volume 16)

Number
1. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1
3. Progress in Software Engineering: Part 2
4. The Debate on Trans-border Data Flows
5. Planning for DBMS Conversions
6. "Personal" Computers in Business
7. Planning to Use Public Packet Networks
8. The Challenges of Distributed Systems
9. The Automated Office: Part 1

10. The Automated Office: Part 2
11. Get Ready for Major Change11
12. Data Encryption: Is It for You?

1979 (Volume 17)

Number
1. The Analysis of User Needs
2. The Production of Better Software
3. Program Design Techniques
4. How to Prepare for the Coming Changes
5. Computer Support for Managers
6. What Information Do Managers Need?
7. The Security of Managers' Information
8. Tools for Building an EIS
9. How to Use Advanced Technology

10. Programming Work-Station Tools

(List of subjects prior to 1976 sent upon request)

PRICE SCHEDULE Call prices in u.s. dollars)

Subscriptions (see notes 1,2,4,5)

1 year
2 years
3 years

Back issues (see notes 1,2,3)
First copy

Additional copies
Binders, each (see notes 2,5 ,6)

(in California

NOTES

U.S., Canada, Mexico
(surface delivery)

$48
88

120

$6

5
$6.25

6.63, including tax)

Other countries
(via air mail)

$60
112
156

$7

6
$9.75

1. Reduced prices are in effect for multiple copy subscriptions and for larger quantities of a back issue. Write for
details.

2. Subscription agency orders are limited to single copy subscriptions for one·, two-, and three-years only.
3. Because of the continuing demand for back issues, all previous reports are available. All back issues, at above

prices, are sent air mail.

4. Optional air mail delivery is available for Canada and Mexico.
5. We strongly recommend AIR MAIL delivery to "other countries" of the world, and have included the added cost

in these prices.
6. The attractive binders, for holding 12 issues of EDP ANALYZER, require no punching or special equipment.

Send your order and check to:
EDP ANALYZER
Subscription Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-3233

Company ------------

Send editorial correspondence to:
EDP ANALYZER
Editorial Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-5900

Address ___ _

City, State, ZIP Code

