
Ef)P ANAl_,YZl1~B
' 1978 by Canning Publications, Inc.

FEBRUARY, 1978
VOL. 16, NO. 2

PROGRESS IN SOFTWARE ENGINEERING: PART 1

Over the years, programmers have tended to treat program
ming as an "art," involving creative, innovative talents that are
not properly the subject of a discipline. At the same time, many
people who are familiar with computer hardware engineering
daim that computer programming inherently involves no more
logical complexity than hardware engineering-which is subject
to a discipline. In fact, there is some good evidence to support this
view. Gradually the concept of software engineering has evolved,
to the point where today it claims a substantial and growing body
of knowledge. As the benefits become recognized, software engi
neering will permeate the whole development and modification
process. Here is the first of two reports on where the field stands
today.

Software engineering seeks to impose a meth
odology and a diseipline on (1) the development
and modifieation of software, and (2) the maru1ge

ment of software development and modifieation.
Several points should be noted in this defini

tion. Most authors on the subjeet limit the subject
to a methodology for the development of soft
ware. We are suggesting here that the eontinued
modification of that software also should be a part
of the subject area. Similarly, many authors limit
the subject to the aetivities of designing and con
structing software. \,Ye are suggesting that the
management of those activities is also a part of
the subject area.

Two questions of course stand out:
· Can software in fact be engineered?
· Should software be engineered?

In addressing these questions, let us consider
the viewpoints of two leading figures in the field
Donald Knuth and Edsger Dijkstra. Both have
been the recipients of the prestigious ACM Tur
ing Award.

Donald Knuth (Reference 1) argues for the art
of computer programming. He seeks beauty and

eleganee in programs. He urges trying to achieve
beautiful solutions to problems.

What is "beauty" in a computer program? We
believe that Knuth means gaining an insight into a
eomplex problem, grasping all of its essential ele
ments and their relationships, and then eoming up
with a clean, crisp, "beautiful" solution.

A well-known example might help to illustrate
what is meant. It concerns the case of the mother
with two small boys and one pieee of cake to he
divided between them. How was she able to di
vide that piece of cake, she was asked, so that the
boys would not argue over who would get the big
ger piece. It was easy, she replied. She had one of
the boys divide the cake and the other boy get the
first choice. This is indeed a beautiful solution, in
our opinion.

But Knuth also seeks "goodness" of programs,
in addition to beauty. He includes "works cor
rectly" and "not hard to change" among the char
acteristics of goodness. He also asks that programs
interact gracefully with users, give meaningful er
ror messages, and use flexible, non-error-prone in
put formats.

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; orders for
copies filled promptly; prices listed on last page.

It seems to us that Knuth is saying program
ming is an "art" to the extent that sufficiently
good solutions arc not yet a part of comnion prac
tices. But these "goodness" characteristics might
very well become a part of common practices and
a part of a programming discipline. Of course,
one might argue that even better solutions might
he sought and that programining will thtts always
ren1ain an art. Programming managers faced with
deadlines may he reluctant lo support such
searches ad infi1iit11111.

Etlsger Dijkstra (Heference 2) advocates a dis
cipline for mastering coniplexity in large com
puter programs. I le proposes an approach for
handling complexity via the concrnTent devel
opment of the program and its proof of correct
ness. His approach includes structured
programming by stepwise refinement, as well as
proving the correctness of the program as it is de
veloped. \Ve will have more to say about Dij
kstra's views later in this report. Suffice it to say
here that he advocates a discipline for programm
ing and one that is in harmony with software engi
neering.

It seems to us that there is, and there always
will he, an "art" element to programming. This
element seeks beautiful solntions to problems. But
once these solutions have been developed, they
might well become a part of good programming
practices. The discipline of "good programming
practices" is necessary for handling problem
complexity and assuring program correctness.

It would appear, then, that a discipline of good
prograrnming i.iractices (in other words, software
engineering) is needed and is accomplishable.
Soft ware engineering seeks the basic principles
that are the fundamentals of good programming
practice.

The scope of software engineering

We participated in a planning session on a soft
ware engineering handbook several years ago.
The planning session was sponsored by the U.S.
National Bureau of Standards, the National Sci
ence Foundation, and the Association for Com
puting Machinery. The results are reported in
Reference 3. NBS has since initiated a project to
develop such a handbook, in part based upon the
recommendations of the planning session.

The planning session included such leading fig
ures in programming methodology as Edsger Dij-

EDP ANALYZER, FEBRUARY 1978

kstra, Barbara Liskov, and Robert Floyd, and
practitioners and managers such as Joel A run, An
thony D'Anna, Dennis Fife, Aaron Finerrnan,
John Cosden, Harry Larson, Charles Lccht, and
Daniel Teichroew. The group thns included rep
resentatives of both research and prodnction en
vironments, and both technical and managerial
hmctitms.

'll1is planning session defined the scope of soft
ware engineering to inclnde both the technical
mid the managerial aspects. \Ve feel that the defi
nition of the snbjed area made by this group has
stood up well during the interim. Ilere arc the
highlights of that definition.

Software engineering techniques. The scope of
software engineering technology should apply to
systems, programs, and data. The techniques
should apply to the architecture of these elements,
to their engineering, to their construction, and to
their accepta/Ji/ity testing. Special considerations
should be given to large systems.

Software engineering management techniques.
Every bit as important as the software engineer
ing techniques are the management techniqnes
under which development takes place. For in
stance, in its assignment of a tight time schedule
to a project, management may he in fact making
the basic architectural decisions for the system.
111e planning session identified some candidate
first principles for managing software projects, as
well as the need for a standard project discipline.

\Ve see some possible modifications to the
scope of software engineering, as proposed hy this
planning session. The software engineering tech
niques should include methodologies for problem
definition and requirements analysis. Also, the
methodologies for construction should be en
larged to include techniques for the modification
of systems, programs, and data definitions. Fur
ther, techniques for the ecaluation of systems,
programs, and data might be included.

In the management of system development and
modification, managers should have an under
standing of several important behavior patterns.
These patterns include staff behavior, project be
havior, and program evolution. We will discuss
these behavior patterns next month.

We have attended conferences, conference ses
sions, and workshops on the subject of software

2

engineering. In addition, we have reviewed a sub
stantial amount of the technical literature. It is
apparent to us that there is a tremendous amount
of work going 011 in this subject area. Further, it is
evident that the methodologies are gradually be
coming a part of the "good practices" of the com
puter field. We discussed some of these
methodologies in our November and December
I 977 and January 1978 reports. But we also begau
to see the need for one or two "overview" reports
that would show the breadth of what is emerging.
Heuce this report and the oue uext month.

Let us look first at what is emerging in the area
of technical methodologies.

SOFTWARE ENGINEERING
METHODS

There is really too much work going on in the
area of software engineering techniques for us to
be able to review it in one or two issues. But quite
a bit of that work is in the early stages of research
or development. While much of that work is in
teresting, it is perhaps too early for us to discuss it;
we prefer to wait until it is ready for practical ap
plication. So we have selected for discussion some
of the work that most appeals to us and that seems
to have immediate application. However, the ref
erences cited at the end of these two reports point
to literature that covers much of the whole sub
ject area.

Problem definition area
The subject area of r>roblem definition and re

quirements engineering is really just beginning to
emerge. We gave an overview of this subject in
our July 1977 report, which we will summarize
shortly.

Ross and Schoman (in Reference 8e) point out
that the total system development process con
sists of a series of steps leading to the solution of a
problem. In these steps, only once is the problem
itself stated and the solution justified-and that is
in the requirements definition phase. Require
ments definition deals with why the system is
needed, what features are needed, and how the
system is to be constmcted, they say.

They advocate the method of successive refine
ment and decomposition. This method considers
everything relevant at a given point and nothing
more. The not-yet-relevant decisions are post
poned until they are relevant.

EDP ANAL YlER, FEBRUARY 1978

The authors have been parties to the devel
opment of SADT, which stauds for Structured
Analysis and Design Technique. SADT uses a rela
tively simple graphic technique with boxes and
arrows. The boxes represent the system com
ponents and the arrows are the interfaces. The
top level diagram shows the main components of
the system. Successive diagrams decompose these
components. While each diagram is relatively
simple to draw, the technique of problem analysis
requires a significant effort to learn. It generally
takes from one to two weeks of classroom train
ing, plus on-the-job training, before an analyst
can begin to do useful work with the methodol-
01-,ry, we gather. Further, proficiency comes only
with experience. It is not a case of just reading the
manual and then beginning to use the methodol-
01-,ry. For more information on SADT, see Hefer
ence 5.

1be Isnos project at the University of Mich
igan, which we discussed in our November l 971
report, has developed a problem statement lan
guage (PsL) and a problem statement analyzer
(PsA) program, for tackling the area of problem
definition. PsL is in use by a good number of large
organizations. For more information, see Refer
ence 6.

In our July 1977 report, we discussed a sugges
ted no-frills program that an organization can use
to get the requirements right for new application
systems, based on work that had been done in this
subject area. Here are the main points of that
program.

Recognize the types of errors. Begin to develop
a list of the errors of omission and commission
found in requirement~ statements. These errors
come to light during the subsequent phases of all
projects. Classify the errors by type and then start
making management aware of the list.

Get user involvement. Hold two-day "require
ments sessions" to set the requirements for each
new application system. Make sure that key man
agers participate. The error list that has been de
veloped not only will help to get this
participation hut also will act as a checklist for
discussion. Users should also participate in the ap
propriate inspection sessions.

Select an approach for handling complexity.
Functional decomposition (also called successive
refinement, top-down expansion, or levels of ab
straction approach) currently is the favored ap-

3

proach for handling complexity. Information
flow analysis is another approach; it charts the
flow of information from origin to ultimate use.
There are also some software tools that help to
make changes more easily, as complexity causes
changes in design.

Use an inspection process. A key element for
getting the requirements right is the inspection
process. It involves a two to three hour review
session at each inspection point in a project. In
spections should be performed 011 requirements,
specifications, system designs, program designs,
coding, and testing plans. The informal structured
walk-through, discussed in our November 1977
report, is currently popular. Fagan (Reference 7a)
advocates a more formal approach to inspections.

Define expected performance. Errors of omis
sion and commission will come to light if per
formance validation tests are developed for all
requirements statements. Attempting to develop
such tests will bring the requirements into clearer
focus.

The upshot of the work being done in this area
of problem definition is that it does involve a dis
cipline and further that this discipline is imposed
throughout the development process. This work
recognizes that errors of omission and commis
sion permeate the requirements statements for al
most all computer-based systems. It takes a
continuing effort to flush them out.

Architecture, engineering, design
Mills (in Reference 8b) makes the point that en

tirely too much of the programming effort today
is spent on corrective and adaptive maintenance.
Corrective maintenance seeks to remove the er
rors that should not have been built into the sys
tems, and adaptive maintenance seeks to enhance
the systems to perform additional functions.
While not all of the adaptive maintenance can he
avoided, much of it can, Mills implies, if the job
were done properly from the outset. The key to
getting programs right, says Mills, is dean, com
pelling, rigorous design. He then goes on to pro
pose a general approach based on functional
decomposition.

If design plays this key a role in getting systems
and programs right, then one would expect that a
good amount of software engineering literature
would address this question. Right? Well, unfor
tunately, this is not so. The whole design area, in-

EDP ANAL VZER, FEBRUARY 1978

eluding overall design (architecture) and the
more detailed design aimed at goodness of oper
ation (engineering), has received very spotty
b·eatment.

Architecture
As just mentioned, the "architecture" of a sys

tem deals with its overall design and general
structure. Ideally, the system architects seek
"beautiful" solutions. In practice, computer
based systems usually involve so much complexity
that the architects simply seek solutions that
will work and that have some goodness
characteristics.

Dijkstra (Reference 2) discusses mental tools
that the system architect can use for handling
complexity and still come up with a good overall
design. We discussed Dijkstra's "levels of ab
straction" approach in our June 1974 report. His
newer work build~ on this earlier work and adds
the proof of correctness concepts. With the levels
of abstraction approach (or functional decompo
sition), one starts with the overall system and then
tries to identify all of the major components of
that system. No attempt is made to analyze each
of the components until all of the top-level parts
have been identified. Then the architect steps
down one level and goes through the same sort of
analysis for each of these top-level parts. By han
dling complexity one level at a time, the architect
not only has a better chance of handling it "right"
but also has more of a chance of developing a
"beautiful" solution

Most of the discussion of this type of approach
has dealt with the design of programs rather than
with the design of complete applications or soft
ware systems. While the principles would seem to
be appropriate, we think that much more in
vestigation is needed to see how these principles
can be applied over a wide range of application
and software systems.

Engineering

Engineering involves the "good practices" part
of solutions. When the engineering is based on a
theoretical foundation, such as a mathematical
foundation, it becomes inter-mixed with the ar
chitectural process. In general, software engi
neering does not yet have a widely accepted
theoretical foundation. However, next month we
will discuss the concepts developed by Kenneth

4

Kolence of what he calls "software physics." Ile
sees this work providing a theoretical foundation
for software enginee1ing.

1be American Federation of Iuformation Proc
essing Societies (AFIPS) has sponsored some work
dealing with gooduess characteristics of informa
tion systems. Their Best Practices Manual on
Security (Heference \-J) provides design guidelines
pins an extensive checklist of some 900 <Jllestions
relating to security that the system designer
should consider. A second Best Practices Man
ual, on designing for system integrity, is under
development.

Design

The term "design" is a general term used by
many (including ourselves) to cover both the ar
chitectural an<l the engineering functions. Every
system, program, and data structure has a "de
sign," even if that design has not been explicitly
planne<l. The design may be rambling, with a hor
ribly involutecl control structure, if the builders
just start building before thinking through the
design.

Even in this more catch-all subject area of de
sigu, the literature aud the confereuce sessions
have been sparse. Very little has been said or
written on system and sub-system design
methodology.

Freeman and Wasserman (Reference 22) pro
vide reprints of 18 key papers on software design
pins some 100 pages of original material that ex
plains software design concepts. This paperback
book gives an overview of the system and pro
).,'Tam design process. The design techniques and
tools that are described apply mainly at the pro-
1-,rram design level. These include structured pro
gramming, decomposing systems into modules,
and the use of program design languages. More
books of this nature clearly are needed.

Peters and Tripp (in Reference 2:3) compare a
number of the leading software design methodol
ogies. These include structured design (as pro
posed by Constantine, Yourdon, and Myers), the
Michael Jackson method, \Varnier's Logical Con
struction of Programs, the META stepwise refine
ment method, and the high order software
method.

Ben Schneiderman (Reference lOc) catalogs a
number of approaches to program and data struc
ture design and gives a :38-item bibliography for

EDP ANAL YlER, FEBRUARY 1978

further details. The program design methods in
clude: single module programs, linear structures,
tree structures, level structures, and network
structures for programs. T.he data structures that
he catalogs include: single node, linear, tree, and
network structures.

L. C. Carpenter and L. L. Tripp (Heference 11)
describe a computer program (nECA) that is used
in conjunction with a top-down dominated design
methodology. This program organizes, validates,
and produces documentation depicting the de
sign of a software system. It significantly enhances
the quality of the software design, say the authors.

\Ve are not saying that these are the only pa
pers on design that we have come across. But they
were the papers that most appealed to us. Fur
ther, the selection was very limited.

Construction and modification
The situation in the construction subject area is

far different from what we encountered in the de
sign area. In construction, much work has been
done in the development of tools and techniques.
Some attention has been paid to construction
methods that make subsequent modification eas
ier. But not much has been reported ou modifica
tion techniques themselves.

Construction techniques

In our November 1977 report, we discussed
user experiences with a number of programming
aicl~ marketed by IBM under the name of Im
proved Programming Technologies (1PTs). These
methods include top-clown development, struc
tured programming, chief programmer teams,
HIPO, pseudo code, development support library,
structured walk-throughs, and an interactive de
bugging facility. All of these seek to impose a dis
cipline on the program construction process. As
we said in that report, "People we talked with
were genuinely impressed (if not somewhat sur
prise<l) with the gains they had made in their soft
ware development process through the use of
certain IPTs." So here is an example of some soft
ware engineering methods that are already hav
ing an impact on the software development
process.

F. T. Baker (in Heference 11) discusses how
some of these IPTs were introduced at IBM's Fed
eral Systems Division. While work remains to be
done on the methodologies, he feels that FsD's ex-

5

periem:es have been very positive. Further, he
feels that the plan that FSD used to introduce these
techniques was successful and could serve as a
model for other organizations.

D. J. Heifer and Stephen Trattner (Hefere11ce
12) provide an extensive glossary of software tools
and techniques. Some 70 types of tools and tech
niques are identified and classified in terms of
where they can be used in the life cycle of a soft
ware system. A 61-item bibliography then gives
sources of more detailed information on these
tools and techniques. This paper in itself gives a
good idea of the large amount of work that has
been going into better methods to support the
construction of computer programs.

Leon Stucki (in Heference 1:3), of Hoeing Com-
puter Services, gives a brief position paper on the
acquisition of software development tools, based
on experience at his company. A case example is
presentecl, based on a lengthy investigation Stucki
performed, wherein some of the more sophis
ticated programming support tools were ana
lyzed. Hut, says Stucki, "Much work remains to be
done in this area. \Ve arc still, for the most part,
bench marking tools to find their costs and guess
ing as to their potential benefits."

In our review of construction tools and tech
niques discussed in the past year or two, most of
the attention has been given to some aspect of
structured programming.

Structured programming methodology. There
have been numerous important books on modular
and structured programming. These include the
books hy Dijkstra (Reference 2), J-D. Wamier
(Reference 14), Michael Jackson (Heference 15),
Edward Yourdon (Reference 16), and Glen Myers
(Reference 17). \Ve will make no attempt to re
view these works here, but we have discussed in
previous reports Dijkstra's work (June 1974) and
Warnier's work (December 1974).

Peter Neely (Reference lOa) describes a pro
gramming discipline that draws heavily on the
work of \Varnier but also acknowledges the work
of others such as Dijkstra and Jackson. Neely ad
vocates the top-clown expansion of programs. Ev
ery task has a beginning, a middle, and an end,
where the beginning and the end are executed at
most once. The middle is typically a loop, and
consists of a number of tasks. Each of these sub
tasks is next decomposed into its beginning,

EDP ANAL YlER, FEBRUARY 1978

middle, and end. Neely gives some examples of
how thc discipline can he used in practice. And
then he makes an interesting statement: "The
only bug that I have encountered in my own pro
gramming in the past three years was in one
(module) in which I did not use structnred pro
gramming." How many programmers can come
anywhere near making a statement like that?

Support of structured programming. "Struc
tured programming sound~ fine," some people
say, "hut it involves a lot of changes in method on
the part of programmers. We have some pretty
large application systems under development.
How do we introduce structured programming in
such situations without wrecking our schedules?"

V. H. Basili and A. J. Turner (Reference 8a) pro
vide one answer to this question that they say has
worked well for them. It is "iterative enhance
ment'' of a software system. Trying to use a well
modularized, top-down approach to building a
system requires that the problem and its solution
be well understood, they say. But even if the prob
lem is a familiar one, it is often hard to achieve a
good design on the first try. Design flaws may not
show up until constmction is underway, at which
time corrections can involve a major effort.

Their approach starts construction with a
simple skeletal subset of the problem. This skel
etal solution should include a sampling of the key
aspects of the problem, simple enough to under
stand and to build, and which will deliver a usable
and useful product to the user. Further, this skel
etal solution represents only an initial guess at the
struchire of the final solution. In addition to
choosing the skeletal subset of the problem, the
builder should develop a project control list of all
of the things that still must be done.

Build this skeletal solution, they say, and give
the outputs to the user. Find out if the design must
be changed; if so, change it. Since only part of the
overall problem is being tackled, complexity is
much less and changes are not too much of a prob
lem.

After the skeletal solution is working satisfac
torily, take the next item(s) on the project control
list and add it (them) to the solution. Repeat the
process of checking outputs with the users. As the
system expands, analyze it for structure, modu
larity, usability, reliability, and efficiency, they
say. These analyses may require that new tasks be

6

added to the project control task iist. Further, any
diffkulty in design, coding, or debugging a modi
fication should signal the need for redesign or re
coding of existing components. vVhile this "do
over" work may seem discouraging, most of it
tends to occur during the early stages. As the iter
ations converge to the full solution, fewer and
fewer modifications will need be made.

This approach of Basili and Turner is in con
trast to other iterative approaches. The most
commonly advocated iterative approach we are
aware of might be termed "iterative refinement,"
where the entire system is initially built and then
iteratively refined. It would appear that changes
would be much easier and less expensive to make
with Basili and Turner's method.

(Parenthetically, it was pointed out to us that
this approach of Basili and Turner is an effective
way to get user involvement, particularly when
the problem and its solution are not well under
stood. Users usually can deal better with concrete
system outputs than with abstractions or with a
myriad of system details.)

R. J. Cunningham and C. G. Pugh (Reference
lOc) discuss a software system they have devel
oped (GLIDE) to support structured programming.
It encourages development by successive refine
ment by allowing the builder to delay the defini
tion of a section of code which need not be
defined at the present stage of the program's de
velopment. The package provides a text editor
for making changes to the program, and it auto
matically checks for changes that are then needed
in interfaces to other sections of code. An in
complete program may be compiled and exe
cuted. And if a refinement proves unsuitable, a
return can be made to the earlier version since
both the original and the revised versions are
retained.

Other types of tool~. Much work is going on in
the development of new programming languages
for improving the programming function. But the
use of new programming languages is something
that is usually carefully controlled in many data
processing shops. The existing "installation stand
ard" programming languages, such as COBOL and
PLII, may not be the best languages possible for
stmctured programming, but they can be used.
Future languages, or future generations of these
two languages, may be much more appropriate

EDP ANAL VZER, FEBRUARY 1978

for structured programming, due to the research
that is going on.

Similar statements can be made of operating
systems. There is a lot of research and devel
opment work going on in operating system fea
tures and characteristics. But again, most
programmers have no option on the operating
systems they will use.

Other types of techniques. Many of the types
of construction techniques that are a part of soft
ware engineering ere listed in Hcference 3. These
include sorting techniques, data compression,
searching, validation, segmentation, hashing, and
so on.

Gilb and Weinberg, in Heference 18, discuss
the subject of hmnanizcd input systems that, in
Knuth's word~, interact gracefully with the lm
man users. Special attention is paid by the authors
to the needs of the data entry specialists (the "key
punch girls"), in order to make their johe more
humanized. Attention is also paid to the newer
systems where on-line data entry is performed
throughout the organization, as a part of regular
operations.

Modification techniques

The modification of information systems is of
ten considered to he a "bad" thing. When modifi
cation is needed to fix errors of omission or
commission in the problem definition or the
building process, then it is bad. But when modifi
cation is used to enhance a system, we do not see
it as necessarily bad.

Mills (Reference Sb) argues for better devel
opment procedures in order to reduce the need
for maintenance. "In only 25 years, some 7.5 per
cent of data processing personnel are already
taken up with maintenance, not development,"
he says. One reason for the magnitude of this
maintenance effort is that the systems are main
tained for an indefinite period of time after they
have been developed. So a fraction of each devel
opment staff mmt be converted to maintenance.
If 20 percent of each staff must be converted to
maintenance every two years, says Mills, then at
the end of 12 years almost 75% of the total staff
time will be spent on maintenance-and that is
just about what the actual situation is, he adds.

The other major reason for the high mainte
nance factor is that it has turned out to be more

7

diffkult to develop "good" systems than was com
monly supposed. By "good," Mills refers to both
correctness and capability. So a large amount of
staff time is needed to fix software that could have
been built correctly at the outset.

(But the following reasonable question has
been posed, in connection with Mills' point. Con
sidering the newness of the field and the munber
of "self-taught" programmers and analysts, is it
reasonable to expect that most software should
have been built correctly'?)

As mentioned earlier in this report, Mills ar
gues for cleaner, more rigorous design as the main
means for reducing this large maintenance factor.
Good design would eliminate much of the correc
tive maintenance. And by better identifying what
the systems mmt perform, at least some portion of
the adaptive maintenance may he eliminated.

One cannot argue with Mills on the need for
better design and construction methodologies, for
reducing the need for maintenance. At the same
time, some adaptive maintenance-more com
monly called enhancement-will continue to be
needed. We think that methods for more efficient
maintenance are now needed and will continue to
he needed.

In our search of the literature, however, we did
not come across any papers that addressed this
subject.

In our June 1972 issue, we described the devel
opment methods that Copley Computer Services,
Inc., of San Diego, California, began using some
years back. This company switched completely to
on-line program development, after they in
stalled a DECsystem-IO. With this plus some of
the other procedures described in our report, they
soon turned the whole maintenance picture
around. Where before, with batch development
method~, they were spending some 80 percent of
staff time on maintenance and 20 percent on de
velopment, with the new procedures these per
centages were reversed.

In our report last month, on data dictionaries,
we pointed out that some dictionaries provide
both production and test status. Maintenance can
be performed on data definitions in the test status.
Only when the changes have been satisfactorily
checked out need the new data definitions be
moved into production status.

As we say, we think much more attention
should be paid to tools and techniques for sup-

EDP ANAL YlER, FEBRUARY 1978

porting system, program, and data definition
maintenance.

Quality assurance
There are many aspects of quality assurance for

computer programs, but the prime aspect is, of
course, program correctness. As with physical
products, it is recognized that quality cannot he
"tested into" computer programs. The programs
have to he lmilt right to begin with. Testing or any
other form of checking or inspection only pro
vides a measure of how well the building job has
been done.

We will discuss three methods of checking sys
tems, programs, and data definitions, to measure
their quality. These methods are: inspections,
testing, and audits. Following this, we will give a
short discussion of the proof of correctness con
cept. From the standpoint of building quality into
computer programs, probably the area of major
interest today is the "proof of correctness" meth
odology. This discipline seeks to develop the
proof that a program is correct concurrently with
the development of the program itself. The
method is still largely in the research and devel
opment stage but we feel that data processing
management should be aware of it.

It should be mentioned here that quality assur
ance by checking is very closely related to the
subject of evaluation, which we will discuss next
month.

Inspections

There are a number of ways in current use by
which computer programs are inspected for cor
rectness during the development process. As far
as we can tell, though, most of the attention is
being given to two types of informal inspections
and one type of more formal inspection.

Informal inspection methods. Probably the
most widely used of the informal inspection
methocb is the structured walk-through, marketed
by IBM (Reference 19). We discussed some user
experiences with this method in our November
1977 report; in general, the users we have talked
to have been very happy with the method.

In a structured walk-through, a programmer,
say, describes his program .design and his code to a
small, selected group of other programmers. He
provides copies of the documentation to the

8

1-,rroup members and then "walks through" the
logic of the program. The group raises questions,
points out inconsistencies, and so on, in the course
of the meeting. The programmer is then expected
to consider all of the points raised and to refine
the design and/ or code as required.

Edward Yourdon (in Heference 1:3) has oh
scrved that the structured walk-through is pcr
h a ps the best way to i ntroducc other
programming productvity techniques. In Your
don's words, ''If a project manager establishes an
environment of exposing everyone's code to pub
lic discussion, then he will ensure that a relatively
uniform version of top-down implementation,
structured design, and structured programming
can be implemented later on."

Another type of informal inspection is that ad
vocated by Cerald \Veinherg in his popular book,
The Psychology of Computer Programming (Hef
erence 20). Weinberg urges the use of "egoless
programming" and "self-adaptive" teams; we dis
cussed his concepts in our May] 97 4 report. Pro
grammers are organized in loosely structured
teams; the team leader of the moment is the per
son with the most capability in the function that
the team is currently working on. Further, each
programmer submits blocks of code to the other
team members, for them to reacl. The team mem
bers recognize that everyone makes mistakes
and that, on any given day, a person can make a
horrible number of mistakes. Also, the team mem
bers look for better ways of doing things. The re
sulting programs are thus rightfully team efforts.
A team member does not view a set of programs
that he has worked on as "my" programs but
rather as "our" programs.

In both of these types of informal inspections,
the conduct of the inspections is left pretty much
in the hands of the participants. Formal in
spections, on the other hand, make use of a well
defined methodology.

Formal inspections. M. E. Fagan (in Reference
7) has described a formal inspection method that
he has helped develop and which he claims is
more effective than structured walk-throughs.
We discussed his approach in our July 1977 re
port. A walk-through is just an educational proc
ess, he says; further, the participants tend to get
sidetracked into discussing design alternatives,
and the process is not self-improving. He seeks to
correct these shortcomings.

EDP ANAL VZER, FEBRUARY 1978

Fagan's formal inspection method has five
parts. (1) First is a short overview of the work to
be inspected, presented by the analyst or designer
who did the work. This is tpe educational, famil
iarization step. (2) Next, each of the inspection
team participants is given copies of the documen
tation and is expected to do "homework" on it, to
gain understanding. While some errors may he
caught in this step, this is not the aim of the step.
(3) The third step is the inspection meeting itself.
The goal of the meeting is to find errors. The mod
erator of the meeting must not let the discussion
get sidetracked into, say, considering alternative
designs. Just find the errors, don't try to solve
them, says Fagan. Following the meeting, the
moderator is expected to write up an inspection
report, listing all of the errors. (4) The next step is
to rework the work, to get rid of the errors. (.5) Fi
nally, at least the moderator (and perhaps the
whole team) must perform a follow-up to see that
all fixes have been made and made properly.

Over a period of time, a checklist of error types
can be developed from the inspection reports.
The list should indicate their relative frequency
and their severity. Also, procedures on how to
look for the errors should evolve, with particular
attention paid to the most frequently occurring
and the most severe error types. The checklist and
these procedures can be used in the inspection
meetings themselves, as well as by the individual
analysts and programmers to help them do their
jobs better.

The inspection team should be a small one, says
Fagan, with perhaps four people. The moderator
is the key person. He or she should be competent
in the particular application being reviewed. The
moderator must keep the inspection process mov
ing along and not let it get sidetracked.

These then are the inspection methods that
seem, in our opinion, to be attracting the most at
tention today. They seek to remove errors and im
prove design during the construction process. But
they do this by checking the work of the individ
ual analyst or programmer.

Testing

Quality assurance in "conventional" pro
gramming seems to be based on the concept:
"program as best you can and then test the dick
ens out of it." Testing has thus been a basic part of
the programming function since the beginning

9

days of computers. One would suppose that test
ing would he fairly well understood by now. But
this is just not so, we arc advised. It is still pretty
much a hit-or-miss affair. Even worse, it has not
been studied deeply and not much technical liter
ature hiL~ been written on it.

In our research for this report, we did not come
across any literature which was cited as the
"bible" on testing. Apparently that hook or paper
is still to he written.

But still, there is some literature on the subject.
R. D. Hartwick (in Reference 13) discusses the
subject of test planning. Ile covers test objectives,
test planning and organization, error sources and
detection methods, selection of test methodology,
and test standard~. He presents two tables on er
ror categories, indicating the number of errors
found in 11 projects, the severity of those errors,
and the detection methods that were med for lo
cating those errors. While this probably would be
classified as an overview paper, it does provide
guidance on how to approach the testing activity.

The Transactions on Software Engineering,
published by the Computer Society of the ln
stih1te of Electrical and Electronic Engineers
(Reference 8), frequently publishes papers on
testing. The September 1976 issue, for instance,
includes five papers on current research areas in
software testing. In his editorial, the guest editor,
Leon Stucki, says "Despite all of the software en
gineering rhetoric, it is really quite remarkable
that we know so little about software testing ... it
is (my) hope that this set of papers might generate
a greater motivation for research into many of the
still unanswered questions relating to software
testing."

The upshot is, then, that in this overview of the
~11bject of software engineering, we are unable to
direct you to definitive information on the subject
of software testing. Like problem definition and
design, it is a subject area that has received all too
little attention.

Auditing of software

In March 1977, the U. S. National Bureau of
Standards and the General Accounting Office
jointly sponsored a working conference on the au
dit and evaluation of computer security. Refer
ence 3b reports the results of that conference.
While the conference topic concerned computer
security, in point of fact much of the discussion

EDP ANAL VZER, FEBRUARY 1978

dealt with the broader subject of audit and eval
uation of computer software. The results of the
conference will he used by a federal information
processing system task group on computer system
security to develop guidelines for federal
agencies.

The conference had ten working panels, each
addressing an aspect of the subject. Of the ten, we
will single out two for discussion here.

The audit of program integrity. Program in
tegrity was defined to he the characteristic that a
program does what its specifications say it should
do, and should do nothing else. But the discussion
pointed out that this definition could he chal
lenged; instead of "specifications," perhaps "re
quirements" would be more appropriate-or
perhaps better yet, "mission." In other words,
what defines what the program should do? It
might he easier or more practical to audit the pro
gram against its specifications, hut more mean
ingful to audit it against its requirements or
mission.

Perhaps the major conclusion of this working
panel wa~ that program integrity has to be built
into the program from the outset; it cannot be
added as an after-thought. All that an audit can do
is to see that program integrity considerations are
a part of the regular program development proc
ess. So, as we see it, program integrity consid
erations should be a part of the body of
knowledge of software engineering.

The working panel identified six types of
threats that can challenge the integrity of a com
puter-based system. From high to low severity,
these are: irrational attack, conspiracy by a team,
a browser through the files, a user who stumbles
upon something important, human errors, and
natural failures. A program with a high degree of
integrity should do what it is supposed to do, and
nothing else, when subjected to such threats.

How can program integrity be achieved or en
hanced? The panel identified three general cate
gories of methods. Program correctness can be
measured by static evaluations, such as reviews,
inspections, and proof of correctness, and/ or by
dynamic evaluations such as by running the pro
gram to see how it works or by checking compiler
results. Program robustness can be achieved by
on-going testing after installation, by on-going
monitoring and control, and by the use of planned

10

redundancy. Finally, trustworthiness in the pro
gram can be enhanced by the use of skilled people
in the development process, by the use of good
development practices, and by the use of good
tools to aid in development.

In short, this working panel identified a number
of tools, techniques, and methods that can be used
to promote program integrity. But the panel
pointed out that integrity must be engineered into
the software.

Auditing under different system environ
ments. This working panel concluded that the en
vironment under which a system will operate
must be identified and then steps must be taken to
control that environment. Further, this control of
the environment must be engineered into the sys
tem from the beginning. Auditing should verify
that this control of the environment is being con
sidered during the development process.

The panel identified a number of key factors
that characterize the environment. These include
the degree of resource sharing, the type of service
(batch, interactive), centralized versus dis
tributed, local or remote user access, the sensi
tivity of the information in the system, the threats
that the system is likely to face, and so on.

There are many tools and techniques available
for controlling the environment and providing
protection, said the panel. A number of these
were listed, including site perimeter controls,
backup systems, audit trails, change control
procedures, and so on.

Furthermore, said the panel, audit checklists
can and should be developed to help the auditors
determine how effectively environment con
trols have been engineered into the overall system
implementations.

As we see it, auditing is one more method,
along with inspections and testing, for checking
to see whether good software engineering prac
tices are being followed.

Proving correctness

In his review of Dijkstra's book, A Discipline of
Programming, W. C. McGee (Reference 21) has
this to say: "Anyone who has ever been associated
with the development of a large or complex pro
gram is familiar with the tendency for such pro
grams eventually to become so large and so
complex that no one individual really understands

EDP ANAL VZER, FEBRUARY 1978

them or can reliably predict how they will behave
in some previously unencountered situation ...
Such programs are examples of what E. W. Dij
kstra calls unmastered complexity . .. When (this)
occurs in human artifacts such as computer pro
grams, it is unconscionable."

To attack the problem of mastering complexity
in large programs, Dijkstra seeks to develop the
program and its proof of correctness con
currently, says McGee. In fact, the act of proving
the correctness often suggests the form the pro
gram should take, derived in an almost mechani
cal manner.

What is the "proof of correctness" concept?
David Gries, in Reference 8h, has presented an in
teresting overview of it. We will give our under
standing of Gries' thoughts.

To illustrate the concepts involved, Gries uses
an example of writing a program to justify lines of
type-that is, to even out the right hand margins.
Extra blanks are to be inserted between pairs of
words so that the last character of the last word in
a line appears in the last column of the line.

But, as always, there are complexities. So that
the spacing appears even, the number of blanks
between different pairs of words on one line
should differ by no more than one. Also, to make
the extra blanks less evident to the reader, blanks
will tend to be inserted toward the left of even
numbered lines, say, and toward the right on odd
numbered lines.

The problem is, then, given the column num
bers where the words begin on the unjustified line,
to find the column numbers where the words will
begin on the justified line.

In conventional programming, says Gries, the
programmer starts out by naming the procedure
("justify") and the variables, and then proceeds to
develop an algorithm to do the job. But this is not
sufficiently precise to insure a correct program,
he now has come to see.

With the proof of correctness method, the pro
grammer must define the pre- and post-conditions
for the program. The pre-condition is the asser
tions about the input. Gries identifies two such as
sertions. One, the extra spaces that are to be
inserted must be equal to or greater than zero; no
negative spaces can be inserted. Two, the column
numbers of the beginning of the words on the line
are equal to the initial column numbers for all of
the words on the line.

11

If these assertions seem rather trivial and ob
vious, Cries points out that it took him several ite
rations to develop the assertions for the program.
And Harlan Mills, at the Software Engineering
Conference held in San Francisco in October
1976, says that a proof of correctness consists of
the programmer making a number of assertions,
for each of which he could justifiably say to an
other programmer, "Now that is obvious, isn't
it?"

Next Gries makes assertions about the post
condition, the output. These assertions say, in
general, that the extra blanks will be inserted be
tween the first and last words of the line. Again,
there can be no negative blanks. And the blank
spaces between words to the left of word "t'' (a
word falling between the first and last words) are
defined differently from the blank spaces to the
right of word "t."

These assertions provide understandable, pre
cise specifications for the algorithm, but not iu so
much detail that chaos results, says Gries. With
the understanding of the pre- and post-conditions,
he then makes his first attempt to write the al
gorithm-a function that defines the blanks for the
word pairs to the left of word "t" and for the word
pairs to the right of word "t."

\Vhile our description probably has not done
jmtice to the concepts presented, we hope it does
give cm idea of the mental processes involved.
Gries' proof of correctness really is just getting

EDP A:-.IALYZER puhlished monthly and Copyright' 1978
hy Canning Publications, Inc., 92.5 Anza Avenue, Vista, Calif.
92083. All rights reserved. \Vhile the contents of each report
are based on the best information available to us, we cannot
guarantee them. This report may not be reproduced in whole
or in part, including photocopy reproduction, without the

EDP ANAL YlER, FEBRUARY 1978

under way at this point, and the interested reader
is referred to his paper for the details.

As "obvious" as the aJmve assertions might
seem to be, they surely are obvious only in hind
sight (to the programmer who developed them) or
when someone else has already developed them.
The hardest part of writing this algorithm was not
the programming itself, says Gries, hut rather it
was developing the specifications, the assertions.

Hopefully, this brief discussion has given some
"feel" of the proof of correctness methodology
that is now in the research and development
stage. As we said earlier, proof of correctness is
perhaps the area of major interest among re
searchers working on the problem of quality as
surance for computer programs.

Next month
Next month we will continue our overview of

the state of software engineering. \Ve will discuss
evaluation methods, which are a part of the soft
ware engineering methodology. We will then get
into a discussion of software engineering manage
ment methods. As pointed out earlier in this re
port, some people we have talked to feel that
while the software engineering methods may be
necessary for the development of good software,
they certainly are not sufficient for achieving that
end. The management practices under which the
development is carried on also play a major role.

written permission of the publisher. Rkhard G. Canning, Edi
tor and Publisher. Subscription rates and back issue prices on
last page. Please report non-receipt of an issue within one
month of normal receiving date. 'v1issing issues requested af
ter this time will he supplied at regular rate.

12

---~-·------------------···-·-·- .. -·-.-~ .. ·---------· ---------- ----------

REFERENCES

1. Knuth, Donald, "Computer programming as an art,"
Communications of the ACM, ACM (1133 Avenue of the
Americas, New York, N.Y. 10036), December HJ74; p.
667-67:3; price $.5.00 prepaid.

2. Dijkstra, E. W., A discipline of programming, Prenticc
Hall, Inc. (Englewood Cliffs, N .J. 07632), I 976; price
$I4.9.5.

:3. Reports by U. S. National Bureau of Standards; order
from Superintendent of Documents, U. S. Government
Printi11g Office, Washington, D. C. 20402:
a) Heport on planning session on software engineering

handbook, Tech Note 8:32, Nov. 1974; SD Cat. No.
C 1:3.46:8:32; price 70 cents.

b) NBS Special Hcport .500-IH, Audit and Evaluation of
Computer Security, stock number ()(),300:3-0I848-l;
price $4.

4. Proceedings of Second foternational Conference on Soft
ware Engineering, IEEE Computer Society (.58.5S Naples
Plaza, Suite 301, Long Beach, Calif. 90803), HJ76; price
$20. For papers presented at the conference but not in
the proceedings, see Heferencc 8 below, the December
1976 and January 1977 issues .

.5. For more information on SADT, write So!Tech, Inc., 460
Totten Pond Road, Waltham, Mass. 02L54.

6. For more information on PSL and PSA, write ISDOS Proj
ect, 23I West Engineering Building, University of Mich
igan, Ann Arbor, Mich. 48104.

7. Fagan, M. E., "Design and code i11spections to reduce er
rors in program development," IBM Systerm Journal,
IBM Corporation (Armonk, N.Y. 10504); Vol. IS, No. 3,
1976; p. 182-211.

8. Transactions on Software Engineering, IEEE Computer

Society (address above), price $IO per copy, although So
ciety members may subscribe for $6 per year; the follow
ing issues have been cited in this report: (A) December
197.5; (b) December 1976; (c) May 1977; (d) September
1976; (e) January HJ77.

9. Best Prru:tices Manual on Security, AFIPS Press (210 Sum
mit Avenue, Montvale, N.J. 0764.5. The first edition of this
manual is now out of print and the revised edition is ex
pected to he published by June.

10. Software Practice & Experience, John Wiley Sons, Ltd.
(Baffins Lane, Chichester, Sussex, U.K.); price £17 . .50 per
year; in U.S., $7.5 per year via "air speeded" delivery; the

EDP ANAL VZER, FEBRUARY 1978

following issues have been cited in this report: (a) Janu
ary-March 1976; (b) April-June 1976; (c) October-Decem
ber 1976.

11. Proceedings of International Confierern:e on Reliahle Soft
ware, April 1975; SIGPLAN Notices, Vol. IO, No. 6, June
HJ7.5; order from ACM (address above), price $2.5
prepaid.

12. Heifer, D. J. and S. Trattner, "A glossary of software tools
and techniques," Computer, IEEE Computer Society (ad
dress above), July 1977, p. 52-60; price $10.

I3. Proceedings of 1.977 National Computer Conference,
AF! PS Press (address above), price $60 paper, $1.5
microfiche.

14. Warnier, J-D., Logical Construction of Progrmm (L.C.1'.),

Van Nostrand Hcinhold Co. (4.50 West :33rd Street, New
York, N.Y. J()()(ll), 1974; price $14.9.5.

IS. Jackson, M. A., Principles of Program Design, Academic
Press (111 Fifth Avenue, New York, N.Y. 10001), 197.5.

16. Yourdon, E., Techniques of Program Structure and De
sign, Prentice-Hall, Inc. (address above), 197.S.

17. Myers, C:.]., Software Heliahility; Principles and Prac
tices, Wiley-lnterscience (605 Third Avenue, New York,
N .Y. HXll6), 1976.

18. Gilb, T. and C. M. Weinberg, Humanized Input, Win
throp Publishers, Inc. (17 Dunster Street, Cambridge,
Mass. 02128), Hl77.

19. ··code reading, structured walk-throughs and in
spections," IBM Manual GE l9-S200; order through your
local IBM office.

20. Weinberg, Gerald M., The Psychology of C1m1p11ter Pro
gramming, Van Nostrand Heinhold Co. (address above),
Hl71.

21. McGee, W. C., "Review of A discipline of programming
by Edsgar W. Dijkstra," Popular Cmnputing (Box 272,
Calabasas, Calif. 91302), August 1977, p. I4-20; price
$2 . .50.

22. Freeman, P. and A. I. Wasserman, Tutorial on Software
Design Techniques, IEEE Computer Society (address
above), 1976; 277 pages; price $12.

23. Datamation (1801 S. La Cienega Blvd., Los Angeles, Ca
lif. 0003.5), November 1977. This issue features four pa
pers on analysis and desit,'11.

13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1975 (Volume 13)

Number

l. Progress Toward International Data Networks
2. Soon: Public Packet Switched Networks
3. The Internal Auditor and the Computer
4. Improvements in Man/Machine Interfacing
5. "Are We Doing the Right Things?"
6. "Are We Doing Things Hight!"'
7. "Do We Have the Right Hesourcest'
8. The Benefits of Standard Practices
\cl. Pro1,,rress Toward Easier Programming

10. The New Interactive Search Systems
11. The Debate on Information Privacy: Part 1
12. The Debate on Information Privacy: Part 2

1976 (Volume 14)

Number

l. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not!'
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
R Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number

I. The Arrival of Common Systems
2. Word Pro<.:essing: Part l
3. Word Processing: Part 2
4. Computer Message Systems
.5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Hight
8. Managing Staff Hetention and Turnover
q, Making Use of Hemote Computing Services

J 0. The Impact of Corporate EFT
11. Using Some New Programming Techni<1ues
12. Progress in Project Management

1978 (Volume 16)

Number

l. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1

(List of suh;ects prior to 1975 sent upon request)

PRICE SCHEDULE

The annual subscription price for EDP ANALYZER is $48. The two year price is $88 and the three year price
is $120; postpaid surface delivery to the U.S., Canada, and Mexico. (Optfonal air mail delivery to Canada and
Mexico available at extra cost.)

Subscriptions to other countries are: One year $60, two years, $112, and three years $156. These prices in
clude AIR MAIL postage. All prices in U.S. dollars.

Attractive binders for holding 12 issues of EDP ANALYZER are available at $6.25. Californians please add
38¢ sales tax.

Because of the continuing demand for back issues, all previous reports are available. Price: $6 each (for U.S.,
Canada, and Mexico), and $7 elsewhere; includes air mail postage.

Reduced rates are in effect for multiple subscriptions and for multiple copies of back issues. Please write for
rates.

Subscription agency orders limited to single copy, one-, two-, and three-year subscriptions only.

Send your order and check to: Send editorial correspondence to:
EDP ANALYZER EDP ANALYZER
Subscription Office Editorial Office
925 Anza A venue 925 Anza A venue
Vista, California 92083 Vista, California 92083
Phone: (714) 724-3233 Phone: (714) 724-5900

Company~---~

Address~---

City, State, ZIP Code ______________________________ ~-------

