
EDP ANALYZER
© 1977 by Canning Publications, Inc.

JULY 1977
VOL. 15, NO. 7

GETTING THE REQUIREMENTS RIGHT

It is still too often the case that computer-based application sys
tems are developed behind schedule, over cost, do not do as much
as promised, and do not satisfy their users. After twenty years of
concentrated attention, why do these troubles continue to arise?
A good part of the answer to this question is: because the require
ments for these application systems were never stated accurately
and completely in the first place. If the requirement statements
are erroneous or incomplete, how can the resulting application
systems be expected to perform satisfactorily? At long last, this
problem area is beginning to receive the attention it deserves.
Here is what we found in our study of how organizations are
trying to get the requirements right for their application systems.

Mattel Toys, a division of Mattel, Inc., with
headquarters inlfowthorne, California, is a major
toy manufacturer. Annual sales are in the order of
$250 million and the company employs about
10,000 people in peak seasons. The company's
data processing is performed on an IBM 370/ 155
operating under os. There are 15 programmers
and 8 system analysts in the management infor
mation services department.

In 1972, Mattel was performing a growing
number of one-time applications, to the point
where they decided to look for some software to
help them. These applications were statistical
analyses of field survey data. After investigating
several software systems, they purchased the
MARK 1v system from Informatics Inc., Canoga
Park, Calif.

Then in 1974, they investigated a number of
data base management systems on the market and
selected ADABAS, marketed in the United States
by Software AG of Reston, Virginia.

As things have turned out, these two software
systems-MARK IV and AnABAs-have been useful
to Mattel for getting their application system re
quirements right. But there have been a few sur
prises along the way.

The MARK IV system proved to be very useful
for the one-time applications for which it was ob
tained. So the question naturally arose: could
MARK IV be used effectively in other situations, to
ease the development of new application sys
tems? Mattel decided to experiment with it. One
rather extreme case was interesting.

In this particular case, a manager in a user de
partment asked for a new, moderately complex
application system. The request seemed reason
able, the benefits appeared sufficiently attractive,
so the project was approved. A system analyst
who had been trained in the use of MARK 1v was
assigned to the job. The analyst and the user de
partment manager defined what the new system
should do-its inputs, its outputs, and its process
ing. The analyst then set up the new system
quickly, using MARK 1v, and began giving the
manager output reports. Some changes were
needed, and were easily made with the MARK 1v
system. Very soon, the system was giving the man
ager what he wanted. Overall time to implement
the system was about one month.

The system was used by this manager for a
time, and then use began to fall off. Later the

Reproduction prohfbited; copying or plwtocopying this report is a violation of the copyright law; orders for
copies filled promptly; prices listed on last page.

/

manager was transferred to another department
and use of the system stopped altogether.

Looking back at this project, the people at
Mattel feel that there was something fundamen
tally wrong with how the project was conqucted.
They had no complaint with the software tool;
MARK 1v provided a means of easily setting up and
changing an application system. The fault lay,
they feel, with the trial-and-error approach that
was used. Yes, it could easily correct minor errors
in the system design. But it did not get at the basic
problem. "It cured the itch, not the disease," they
said to us.

Mattel feels strongly that it is preferable for an
analyst to spend more time on analysis of require
ments and design of the new system, with rela
tively less time spent by programmers on coding
and testing. Good software tools can· only supple
ment the analysis phase, not replace it.

Now, when a detailed study of a user request is
authorized, the system analyst is expected to look
at the problem in an overall context. The analyst
assumes that the system will be built the way the
customer has requested it, but still looks to see if
there is a better way. The analyst is expected to
make a basic problem identification and defini
tion. What is the business problem? What is user
department management trying to accomplish
with the new system? Where does the problem
really lie? Is this a one-time problem or a recur
ring one?

When the analyst feels that he understands the
problem, he develops a preliminary design of the
new system. Often, a "typewriter simulation" of
the new system is used. That is, the analyst types
up sample output reports, using real data, just as
would be produced by the new system. The ana
lyst goes over these reports with the users, to find
out how the users will actually use the reports.
This step usually uncovers more new require
ments and more changes in design, we were told.

With the preliminary design developed, the
analyst is in a position to estimate development
costs, operating costs, and maintenance costs. If
the system is to be a production system, it is de
signed to minimize people time, machine time,
and maintenance time. The choice is made at this
point as to what software tools will be used
MARK IV, COBOL, ADABAS, or other.

But no matter how well the analysis has been
performed up to this point, it is almost certain

EDP ANALYZER, JULY 1977

that changes will be required before the system is
completed. The people at Mattel ruefully cite
two typical user comments. Just as programming
is about to begin, a user says casually, "Oh, by the
way, can you also give me ... " Then, while con
version to the new system is underway, a user
slaps his head and says, "Oh, my God, I am going
to need ... "

Both MARK Iv and AoABAS provide a good de
gree of the flexibility needed to handle such
changes, we were told. And when production sys
tems have been programmed in COBOL, it has
proved to be reasonably flexible, too, they said.

With MARK IV, it is very easy to change report
formats, add new fields to a report (assuming the
data is in the file), and so on. Also, a number of
user departments have learned to use MARK IV for
setting up their own application systems and de
veloping new reports from existing systems.

With AoABAS, it is much easier to add new
fields to records in the data base than it is to add
new fields to records in conventional application
files, say the people at Mattel. With conventional
files, adding data fields may require changes to all
or many of the programs in the application sys
tem. With AoABAS, adding data to files involves
no modification to the programs that make no use
of that data; they never see the new data. So the
changes in requirements that come to light as sys
tems are being developed are much easier to
make with an AoABAS data base.

Both MARK IV and AoABAS are providing Mat
tel with more flexibility for adjusting to changes
in their application system requirements.

The need for flexibility

Just how important is this need for flexibility in
adjusting to changes in system requirements?

The user's requirements for a new application
system should state what the new system should
do, in order to solve the user's business problem.
The most basic requirement, therefore, is that the
new system address the right problem.

But even when the problem has been correctly
identified and is being addressed, it is still possible
to have errors and omissions in the requirements.
(No, that statement is not quite right; it is likely
that there will be errors and omissions in the re
quirements.) As the new system is being imple
mented, these mistakes come to light and have to
be corrected. Here are some examples of the

2

types of requirements mistakes that we have
witnessed.

Missing or incomplete requirements. A particu
larly discouraging type of mistake occurs when
the users and system builders concentrate so heav
ily on the main functions of the new system that
they completely overlook an essential sub-system.
We remember a case that happened some years
back in which a manufacturing company was de
veloping a new computerized production control
system. The project team was well into pro
gramming when someone asked why no financial
data was being collected by the system. It was
suddenly realized that the whole financial sub
system had been overlooked. Most oversights are
not of that magnitude, of course, but they still can
cause considerable rework.

When the users begin to get output reports and
documents from the new system, the need for ad
ditional data fields often becomes apparent. This
generally means new data fields have to be picked
up on input, carried in the records, and produced
on the outputs. The reason for the oversight may
be that the new system is doing things quite
differently from the old system and the need for
those data fields was not recognized. Associated
with these data fields would be the logic for han
dling the new data, which might involve some
subtle complexities. Adding the data and the logic
can be difficult after the system structure has been
established.

Other types of oversights include timing con
siderations (when things must happen), security
and internal control requirements (which we dis
cussed last month), terminal operating needs for
on-line systems, and testing requirements for the
new system.

Ambiguous requirements. Ambiguous require
ments are ones where the user's interpretation
differs from that of the system builders, due to im
precise statements. One area of difficulty is the
transition period when converting from the old
system to the new one-and what to do with the
transactions that are in the pipeline during this
period. The user may assume that the new system
will take them over, while the system builders
may assume that those transactions will be com
pleted by the old system. Another problem area
occurs when a point in time is treated as if it were
a time period, or vice versa. Thus, "the first of the
month" might have to be defined as 12:01 a.m. on

EDP ANALYZER, JULY 1977

the first day of the month, and not the whole first
day.

Requirements errors such as these are common.
As they come to light, the new system has to be
changed to accommodate them. If the new sys
tem has been implemented with flexible software
tools, the changes are much easier to make. We
have already mentioned AoABAS and MARK 1v.
Comparable software tools include System 2000
and As1-sT, to name two-and, of course, there
are numerous other packages that should be
considered.

With software packages such as these, it is usu
ally easy to define new data fields and record
types, and it is easy to change those definitions.
Data fields can be added or deleted, lengthened or
shortened, and so on. When such data definition
changes are made, only those programs that use
those data definitions may need to be changed;
other programs accessing other parts of the data
files are unaffected. Powerful retrieval and output
formatting languages are available, for rapidly
creating the programs for output reports and
documents. So it is often possible to define a data
file, load the data, and create user reports very
quickly, sometimes in a matter of hours. And if
the user wants changes made in these outputs,
these can be made quickly, too.

Let us go back to the question of mistakes in the
user requirements. Just how serious a problem b
this?

The problem with requirements

The question must be asked, of course: do user
requirements really represent a difficult problem
in the development of application systems? Some
people say No, the requirements are not the prob
lem. The users simply state their requirements;
the trouble is that the implementors are not able
to meet those requirements. The main difficulties
lie not with the users but with the implementors,
say these people.

This report will support the viewpoint that the
user requirements are the source of much of the
difficulty. Typically, requirement statements are
filled with a variety of errors, as described above.
When there are errors in the requirements state
ments, it is unreasonable to expect that the result
ing application system will be error-free.

The Second International Conference on Soft
ware Engineering, sponsored by the Association

3

for Computing Machinery, by the Computer So
ciety of the Institute of Electrical and Electronic
Engineers, and by the U.S. National Bureau of
Standards, was held in San Francisco, California
in October 1976. A series of sessions at this confer
ence considered the problem of system require
ments and different solutions for getting the
requirements right. Reference 1 is the
proceedings.

In his paper presented at this conference, Har
lan Mills gave the rationale (we believe) of why
some people feel that requirements are not a
problem. With manual systems, said Mills, the
people who operated the systems used common
sense to make the systems work. Managers could
state vague requirements; over a period of time,
the people operating the systems would make
necessary adjustments to compensate for the vague
statements of requirements would be suitable for
agers have expected that the same type of vague
statements of requirements would be suitable for
computer-based systems. But that is not the case.
Computers have no common sense; they just fol
low orders. So faulty or missing instructions can
wreak havoc, said Mills. Getting complete and
accurate statements of requirements for com
puter-based systems is a problem.

What is wrong with the conventional approach
for stating requirements for computer-based sys
tems? D. Teichroew and E. A. Hersey, at this
same conference, reported that they had re
viewed the literature covering many approaches
to system studies and had found no agreement on
the phases of a development project. Each organi
zation used its own methods and standards. There
was a consensus pattern, however. After a project
was requested and initially evaluated, a detailed
study would be authorized. A senior system ana
lyst (generally) would study the existing system,
develop the requirements for the new system, and
then lay out the preliminary design of the new
system. The users would then be asked to review
this preliminary design and to indicate all neces
sary changes. Out of this would come the system
requirements report that would provide the basis
for the detailed construction of the system. By
studying a number of these system requirements
reports, Teichroew and Hersey reported that the
average report consisted of about 30% text in nat
ural language, 50% in lists and tables, and 20% in
graphs, flowcharts, and drawings. But natural Ian-

EDP ANALYZER, JULY 1977

guage is not sufficiently precise for stating re
q uirem en ts; further the reports tend to be
voluminous, it is hard to assure consistency, and it
is hard to tell if something is missing. In addition,
continual change makes these problems worse.

Mills added another point to the difficulties en
countered with the conventional approach. The
user department people who really understand
the present system-and who are in the best posi
tion to state requirements for the new system-are
usually too busy to participate. So surrogate ex
perts with more time available (guess why!) are
assigned to the projects by the user departments.
These surrogate experts give amateur opinions,
which lead to missing and incorrect requirements.

D. T. Ross and K. E. Schoman, Jr. (Reference 1)
pointed out other weaknesses with the conven
tional approach. One weakness is the inability of
the people on the project to clearly see what the
problem is, much less to measure it and visualize a
workable solution. This is because the complexity
of the application makes it difficult to understand.
Another weakness is that the project members
tend to think of the system architecture in terms
of devices, languages, record formats, and so on,
rather than thinking of the solution of the basic
problem.

M. N. Jones (Reference 6) points out another
difficulty with the conventional approach. The
user communicates with the analyst who in tum
may communicate with the system designer who
in turn communicates with the program designer
who then communicates with the programmers.
Misunderstandings can and do occur at each level
of interface, she says. Also, users miss good op
portunities for getting more value from the sys
tems because they are too busy to participate to
any great extent and they do not understand what
the computerized system can do for them.

What do all of these weaknesses result in? T. E.
Bell and T. A. Thayer (Reference 1) report on
studies they have made on requirement errors.
Two projects were studied in detail, where it was
possible to keep track of the errors as they were
uncovered. The types of errors, as they occurred
on these two projects, were: (1) incorrect require
ments, (2) missing/incomplete/inadequate re
quirements, (3) unciear/ambiguous requirements,
(4) inconsistent/incompatible requirements, (5)
new I changed requirements, (5) requirements
outside of the scope of the project, and (6) typo-

4

graphical errors in the requirements statements.
On the smaller of the two projects, the require
ments statements consisted of 48 pages of text and
charts; by the end of the design phase, over 50 er
rors had been found, more than one per page. On
the larger project, the requirements statement
consisted of some 2,500 pages with over 8,000
uniquely identifiable requirements. Two major re
quirements reviews were conducted and these
uncovered almost 1,000 uniquely identifiable
problems, some serious enough to lead to the fail
ure of the system to perform its mission.

One can conclude that it is very difficult to
state requirements accurately and completely. If
errors are likely to exist in requirements state
ments, what is the impact of these errors?

The impact of requirements errors

W. W. Black (Reference 1) points out that the
things that put a development project behind
schedule are the things that were not on the task
list. The items on the task list are generally done
close to schedule, he says. Incorrect and unclear
requirements can lead to rework; missing and in
complete requirement statements mean that
items must be added to the task list. So errors in
the requirements statements might well be re
sponsible for a good part of the schedule slippages
that have occurred in development projects.

B. W. Boehm, in remarks given at the Software
Engineering Conference, commented on the cost
impact of errors in requirements. From the study
of four projects, it was found that the relative cost
of correcting an error increases exponentially
with the project phase in which the error is de
tected. A requirements error that is not found un
til the testing phase can cost 10 to 100 times as
much to fix as it would cost if it had been found
during the specification phase. Further, conven
tional thinking says that perhaps 40% of devel
opment costs occur during the design phase,
another 20% occur during coding, and the re
maining 40% occur during testing. Looking at the
actual costs over the life cycle of a system, these
figures just are not right, says Boehm. Instead, de
sign represents only about 12% of the costs, cod
ing 6%, testing 12%-and maintenance 70% of the
costs. Much of this maintenance is due to not get
ting the requirements right in the first place, he
says.

So the rework of systems, due to errors in the

EDP ANALYZER, JULY 1977

requirements, leads to schedule slippage, cost
overruns during development, and continuing
maintenance costs. We are not saying that only
the requirements errors lead to these; certainly
errors are injected during design and construc
tion. But the requirements errors are fundamental
and appear to have a large impact.

In addition, requirements errors undoubtedly
lead to user dissatisfaction with the application
systems. Computer-based systems are not self-ad
justing as are manual systems, as Mills points out.
If the requirements are not stated correctly, then
the systems are not going to perform to the user's
satisfaction.

Conclusions about requirements errors

Requirements errors are a real and a serious
problem. Further, they are quite difficult to pre
vent and to eliminate. The only safe assumption
to make is that any conventional requirements
statement (and resulting system specification) is
filled with errors. Steps must be taken to detect
and remove those errors as soon as possible.

Requirements errors can and do adversely af
fect a project in terms of schedule, costs, and sys
tem performance.

It is clear that much more attention must be
paid to "getting the requirements right."

New methods for determining requirements

From our study of this subject, we see a seven
element program for reducing the number of er
rors in application system requirements. These
are the seven elements:

• Awareness of the types of errors
• User involvement
• Ways to handle complexity
• Formal inspection procedures
• Definition of performance
• Formal language for requirements
• Automated tools for analysis
We will discuss each of these briefly.

Awareness of types of errors

T. E. Bell and T. A. Thayer (Reference 1) have
analyzed the types of errors found in require
ments statement documents, as we mentioned
earlier in this report. The analysis was made on
one relatively small project, conducted in a uni
versity environment, as well as on a large military
project. More recently, they have checked the re-

5

sults found from these first two projects on a third
project and have encountered reasonably similar
results.

The relative percent of errors in requirements
found on these projects was as follows:

% of Total
Errors

Incorrect requirements 34%
Missing/ incomplete I inadequate 24%
Unclear I ambiguous 22%
Inconsistent/ incompatible 9%
New/change 3%
Outside scope of project 4%
Typographical errors 4%
Also as we indicated earlier, Bell and Thayer

found an average of between one-half and one re
quirements errors per page of detailed require
ments statements.

The point to be made here is that data process
ing management should recognize that a substan
tial number of errors will exist in most
requirements statements unless specific action is
taken to identify and remove them. The percent
ages found by Bell and Thayer may not apply in
any particular other situation; we will discuss be
low how each organization might develop its own
figures. But these figures do give some idea of
where the worst part of the problem probably
lies-in incomplete, missing, and unclear
requirements.

It is true that errors can be introduced in the
later stages of a project, such as in design, con
struction, or even during testing. Two comments
are appropriate. The earlier the errors are in·
traduced and the longer it is before they are
caught, the worse the impact of them will gener
ally be. So requirements errors might be consid
ered to be the worst kind. Also, the methods
proposed below for catching requirements errors
can also be useful for catching errors introduced
during the later stages of a project.

Thus if both general management and data
processing management recognize that require
ments statements are error-prone and that these
errors lead to later difficulties, the stage is set for
effective corrective action.

User involvement

It is trite to say that user management should
be involved in the development of requirements
but, as the saying goes, "trite is right."

EDP ANALYZER, JULY 1977

It simply is not adequate for user department
management to spend only an hour or two with
the system analyst(s), telling what is wanted in the
new system, and then expect the system to meet
their needs and desires. It also is not adequate for
user department management to turn this respon
sibility over to a staff person.

A consultant friend of ours, whose firm has au
dited many system development projects, said
that he thought that user management ought to
think in terms of a two-day session for developing
requirements for a typical business application
system. This amount of time matches our expe
riences in the past, in developing system needs.
But even this amount of time is not sufficient for
determining all of the requirements. So "review
sessions" or "walk-throughs" or "inspections" are
needed in the specifications and design phases. In
such sessions, which are usually two hours or so in
length, user management can catch additional re
quirements errors and omissions.

Ways to handle complexity

Complexity is perhaps the root cause of re
quirements errors. This applies to both appli
cation systems and generalized software systems,
such as operating systems. It is too often the case
that such systems have too many details for one
person to fully comprehend.

The point here is that unless the person(s) pre
paring the requirements statements fully under
stand the system under study, errors will be
introduced. Some requirements will be omitted,
some will be stated incorrectly, some will be un
clear, and so on.

So the question is, how can the users and ana
lysts gain understanding of what the system must
do and must not do, in the face of the complexity
that exists?

Here are several approaches that have been
used successfully for gaining this understanding in
the presence of complexity.

Progressive approach. The progressive ap
proach is the "divide and conquer" approach. We
discussed it in our October 1970 report and in sev
eral subsequent reports. The concept is that a big
project is sub-divided into a number of smaller,
stand-alone projects, none of which requires more
than six or nine months to accomplish. Also, it is
better if each project is done by a team of not
more than three to six people.

6

Complexity will be reduced by tackling the big
project as a series of relatively small steps.

It probably will be desirable to have at least a
preliminary design for the overall system, so that
each sub-project will integrate reasonably well
with previous sub-projects. We have seen this
done. It is hard to say if it can be done effectively
in all cases-but we suspect that it can be used
much more widely than is currently true.

Top-down analysis. One concept that can be
used is described in IBM's Study Organization
Plan (Reference 4). Start with an overall view of
the organization-its products or services, its mar
ket, its competitors, the resources available, and
so on. Then divide the organization into goal
oriented activities-cohesive groups of functions
that aim to satisfy a specific part of the organiza
tion's market. The goal-oriented activities, in
turn, are sub-divided into their specific com
ponent operations, data, data flows, and so on.

The concept of this particular form of top
down analysis is that understanding will be in
creased by viewing the specific operations per
formed by people in the organization in terms of
what the organization is trying to accomplish in
its marketplace. (And whether the organization is
commercial, governmental, educational, or other,
it does have a market for its products or services.)

Another currently-popular concept of top
down analysis has been given names such as func
tional decomposition or levels of abstraction. We
discussed levels of abstraction in connection with
structured programming, in our June 1974 issue.
The idea is that the analyst first takes a broad view
of the overall function to be performed. The ana
lyst tries to identify all of the inputs, all of the re
sources, and all of the outputs that are
appropriate for this top level view. In addition,
the analyst attempts to list all of the component
sub-functions that make up this top level
function.

The process is then repeated for each of the
sub-functions at the second level. Each sub-func
tion is analyzed in terms of its inputs, resources,
outputs, and component sub-sub-functions. By
concentrating on one function at a time and de
ferring any lower level details for later consid
ering, understanding is enhanced.

What results is a hierarchy of functions. IBM's
HIPO and SofTech's SADT use this approach of the
successive decomposition of a complex function

EDP ANALYZER, JULY 1977

into a hierarchy of understandable sub-functions.
Information flow and data analysis. This ap

proach to the handling of complexity might be
considered the opposite of the functional decom
position method just described. It aims at giving a
complete picture of the function being studied, in
both breadth and depth.

Information flow analysis of a function would
be shown in flow diagram form; the process is de
scribed in Reference 3. For a large, complex func
tion, the flow diagram might be very large,
covering one or more walls of a room. Boundaries
of existing applications within the overall func
tion might be indicated on the diagram, thus in
dicating how the different applications tie
together to make up the overall function.

Data analysis might be documented by a series
of data definitions, tied to the information flow
analysis. We saw one instance where the data def
initions were written on small cards and attached
to the walls of the study room, grouped by the ap
plications within the overall system.

Information flow and data analysis are not as
popular today as is, say, functional decomposi
tion. A little later in this report we will discuss
some of the advantages and shortcomings of each
of these methods. Suffice it to say here that infor
mation flow and data analysis have been used suc
cessfully for handling complexity.

Iteration/ convergence. This approach to the
handling of complexity assumes that it is not pos
sible to get all of the requirements right for a com
plex system before that system is built. This
assumption holds even if one or more of the
above-described methods of handling complexity
are also used. This approach uses tools which
make it easy to construct the new system, get it
running, and to change it when errors are uncov
ered. By successive refinements of the system, it
gradually converges toward the system that the
users desire.

It is important for the system development or
ganization to select some method for handling
complexity. Actually, several of the above
described methods might be used in combination.
There is no reason why the progressive approach,
top-down analysis, and iteration/ convergence
cannot all be used. In fact, if we interpreted his
remarks correctly, that was just what Harlan
Mills was advocating at the Software Engineering
Conference mentioned earlier.

7

Formal inspection procedure

B. W. Boehm, in his remarks at the Software
Engineering Conference, reported on studies that
showed inspections and walk-throughs were the
most effective means for catching errors early.
Formal requirements languages, standards, simu
lation, and automated tools were less effective
(but still useful) for catching the errors.

Formal inspection procedures would thus seem
to be mandatory if data processing management
truly wants to get rid of requirements errors.

Formal inspection does have a connection with
a project management system. Project manage
ment systems generally specify formal check
points during the phases of a project, as well as
the work products that must be completed before
each checkpoint. Project progress is measured
when the checkpoints have been successfully
passed. During a checkpoint review, manage
ment might be looking for any significant changes
in project costs, schedules, or expected benefits.
As far as the work products are concerned, the
main question of the review is: "Have each of the
required work products been completed?"

Formal inspection goes one step further. It
asks: "What is the quality of those work
products?"

M. E. Fagan (Reference 2) argues that formal
inspections are more effective than walk
throughs. In a walk-through, someone (say, a pro
grammer) describes to a selected, small group of
people the flow of control and the handling of
data in a program being reviewed. The group of
people is expected to question the person and
point out possible flaws, possible omissions, and so
on. But a walk-through is largely an educational
process, the participants get sidetracked into dis
cussing design alternatives, and the process is not
self-improving, says Fagan.

Fagan discusses his inspection procedure in
terms of the inspection of program design and
coding. It can also cover test planning and execu
tion, documentation, rework, and other activities.
We see no reason why it could not also be used at
the end of the requirements and specification
phases, for catching errors as early as possible.

Fagan's inspection program has five parts. (1)
First is a short overview of the work to be in
spected, presented by the analyst or designer who
did the work. This is the educational, familiar-

EDP ANALYZER, JULY 1977

ization step. (2) Next, each of the inspection team
participants is given copies of the documentation
and is expected to do "homework" on it. Each one
tries to obtain an understanding of the work by
studying the documentation. Some errors may be
caught at this point, but not the bulk of them, says
Fagan. (3) The third step is the inspection meet
ing itself. The goal of this meeting is to find errors.
It is up to the moderator to see that the discussion
does not get sidetracked into, say, considering al
ternative designs. There should be no hunting for
solutions to the errors. Just find the errors, says Fa
gan-and classify them by type and estimate their
severity. Following the inspection meeting, the
moderator is expected to write up an inspection
report, listing all of the errors. (4) The next step is
the rework of the work, to get rid of the errors. (5)
Finally, at least the moderator (and perhaps the
whole team) must perform a follow-up to see that
all fixes have been made and made properly. De
pending upon the number and severity of the er
rors, another inspection meeting by the whole
team may be required.

In addition to the error report, there are several
other outputs of this inspection procedure, says
Fagan. One important output is the building up of
a' checklist of error types, their frequency of oc
currence, and their severity. Coupled with this
checklist will be a procedure of how to look for
errors, particularly those that occur most fre
quently and/ or are most severe. Because formal
inspection reports are prepared, the inspection
process itself can be analyzed, to see how it can be
improved. Not only can these outputs be used by
future inspection teams to improve inspections,
they can also be given to individual analysts, de
signers, and programmers to show them what er
rors to guard against in the future.

Fagan cautions data processing management
on this last point. Do not use these inspection re
ports for employee performance appraisal, he
says. If they are used in performance appraisal,
then the employees will look on inspection meet
ings as a threat rather than as an aid. They will
fight the system instead of supporting it.

What about the inspection team? It should be a
small team, of perhaps four people, says Fagan.
The moderator is the key person and the success
of the inspection process is very much dependent
upon thi~ person. He or she should be competent
in the subject area but not necessarily in the par-

8

ticular application being reviewed. The moder
ator must keep the whole inspection process
moving along and not let it get sidetracked.

The other team members might be (for a pro
gram that is being inspected) the designer, the
coder, and the tester of that program. If one per
son does two or three of these functions, then find
qualified substitutes for the other one or two spots
on the team. If the program interfaces with other
programs, then the programmers of those other
programs can be on the team. As we say, Fagan
discussed the procedure in terms of the inspection
of programs. A comparable team can be vis
ualized for inspecting the requirements for a new
system.

It seems to us that a formal inspection proce
dure of this type is mandatory in any management
program designed to detect requirements errors.
As Boehm reported, it appears that inspection is
the most effective single way for detecting and
eliminating errors.

Definition of performance

There are really two distinct points to be dis
cussed here.

Define performance of the present system. If
management expects that the performance of the
new system will be "better" than that of the sys
tem it replaces, some baseline is needed. The way
to get this baseline is to measure the performance
of the present system.

IBM's Study Organization Plan (Reference 4)
provides a convenient method of documenting
the performance of the existing system. The per
formance measures include the volume of trans
actions handled, the elapsed time for handling a
given transaction, the man-hours required for the
different operations, and so on.

Analysts frequently object to studying the pres
ent system in detail because "it is wasted time
since the new system will do things differently." It
is true that some of the "how" of the present sys
tem will be useless, as far as the new system is con
cerned. But the "what" and "how many" and
"how long" of the present system are meaningful.

Develop performance evaluation tests for the
new system. Qualitative requirements statements
generally are unsatisfactory, such as "we desire
more flexibility in adapting to changes in cus
tomer orders." Any such statements are unclear.
They should be replaced by specific statements of

EDP ANALYZER, JULY 1977

what performance is expected of the new system.
M. Alford, at the Software Engineering Con

ference (Reference 1), pointed out that when a
person attempts to write the validation tests for a
performance requirement, he is forced to ask
questions about that requirement and begins to
uncover errors or omissions in the requirements
statement.

To uncover requirements errors, every require
ment should be stated in measurable terms and a
test should be written to validate that require
ment. That may not be easy-but it probably is a
lot better than all of the rework and unhappiness
that comes from building systems wrong due to
requirements errors.

Formal language for stating requirements

Natural language is not well suited for stat
ing requirements. Since natural languages allow
for imprecision, there can be gaps, loose ends,
and misunderstandings in the requirements
statements.

A formal language for stating requirements has
the advantage of precision. It is a constrained lan
guage, without all of the flexibility of natural lan
guage and has carefully defined constructs. When
a series of requirements statements is made in a
formal language, the likelihood is much greater
that they will not be misunderstood, as compared
with the same statements in natural language.

Formal languages for requirements statements
can be in three forms. A narrative language uses a
concise sentence structure and a defined vocabu
lary. Examples are the problem statement lan
guage (PsL) developed at the Isnos Project at the
University of Michigan (Reference 7), and the re
quirements statement language (RsL) developed
at TRW (described briefly in Reference 1 and in
more detail in Reference 9). A graphic language
uses charts that must be developed according to a
strict discipline. Examples are IBM's HIPO system
(Reference 6) and SofTech's SADT (Reference 5).
Finally, a tabular language expresses require
ments in table form. Examples of this method in
clude IBM's sop (Reference 4) and NCR's ADS

(Reference 8).

The use of a formal language by itself can be
helpful, by encouraging more accuracy and com
pleteness in the statement of requirements. In ad
dition, if a narrative formal language is used, it is

9

possible that it can also be used with automated
analysis tools.

Automated tools for analysis

Two sets of automated analysis tools were
briefly reviewed at the Software Engineering
Conference mentioned above-the problem state
ment analyzer (PsA) of the University of Michigan
and the requirements engineering and validation
system (REvs) developed by TRW.

If the requirements have been stated in a for
mal narrative language, these statements can be
input to the automated analysis tools. These com
puter programs can then help to detect such
things as gaps in the information flow, all uses for
each data item (including unused data items and
conflicting uses for the same data item), conflict
ing names, and so on. In addition, they can be
used to prepare management summary reports,
for indicating how much of the overall require
ments statements have been completed.

The debate on methodology

Getting the requirements right is a difficult and
complex problem. As might be suspected, there
is no clear consensus on how best to solve this
problem.

As the above discussion has hinted, there are
some significant differences of opinion on how to
go about stating requirements. We would like to
briefly review some of the chief schools of
thought that we encountered in our study.

Hierarchy of functions vs. information flow

As we discussed earlier, the decomposition of
functions and sub-functions into a hierarchy is
proposed by some as the best way to handle com
plexity. Examples of this approach include IBM's
HIPO, SoITech's SADT and Dijkstra's levels of ab
straction method of structured programming.
This approach concentrates on one level at a
time, until it is fully understood, before moving
on to the next lower level of detail.

At the other extreme is the information flow
analysis, that traces the flow of all inputs through
the system, until all outputs have been produced.
The idea here is that the project team people can
see the whole system, in its breadth and depth,
and thus gain an understanding of it.

The adherents of functional decomposition ar
gue that the information flow analysis can lead to

EDP ANALYZER, JULY 1977

huge charts which are too big for any one person
to grasp mentally. And because of the size of the
charts, it is very difficult to see errors of omission
and commission. It is much better, say these
people, to analyze one level of function at a
time so as to minimize the errors of omission or
commission.

The adherents of information flow analysis (for
example, see Alford in Reference 1) point out
some weaknesses of functional decomposition. It
is hard to trace the flow of control for one input
message through the hierarchy of functions. Also,
it is hard to construct test cases for one specific
sub-function in the hierarchy. Particularly in a
real-time system, it is important to follow the
flow of control for each type of input message, to
make sure that the time constraints will be met
under all expected conditions.

We have seen both methods used successfully
but as yet have no general guidelines of when to
use and when not to use either method. We
are simply pointing out here that, while both are
useful for handling complexity, each has its
shortcomings.

Exhaustive study vs. interativel convergence

These two approaches might be sub-titled "do
it right" versus "do it over."

On one side of the debate are the people who
say: when you undertake a large system project,
you must do an exhaustive requirements study-so
that you do not find half-way through the project
that you are doing something fundamentally
wrong. It is just too expensive in time and money
to have to change directions in the middle of a big
project.

On the other side of the debate are the people
who say: never undertake a big project in the first
place. Divide a large project into manageable,
smaller sub-projects. Moreover, build these sub
project systems in a manner so that they are easy
to change.

However, as we shall see shortly, this statement
of the two sides of the debate does not really ex
press what is being debated. To set the stage for
what is being debated, let us first consider the "do
it over" approach.

In his remarks at the Software Engineering
Conference, Harlan Mills claimed that human
ambition (perhaps coupled with some of the re
quirements statement techniques discussed at the

10

conference) tend to promote large projects. In
fact, he said, ambition tends to promote very
large projects, grandiose requirements, and
grandiose specifications, where it can take several
years just to develop the specifications. This is not
the way to go, he said. Instead, undertake only
smaller projects that can be managed effectively.
Break a big project into a number of smaller ones.
"We can conquer the world, three to six program
mers at a time," he said.

With the smaller projects, the new systems can
be set up quickly, the users can be given some out
puts, any changes requested by the users can be
made quickly, new outputs are delivered, and the
cycle is then repeated. Since changes are rela
tively easy to make, no attempt is made to obtain
an exhaustive set of requirements before the sub
project system is designed.

This, then, is the iterative/ convergence ap
proach. It divides large projects into smaller ones
and uses an iterative method to converge on the
system solution that the user desires.

The "do it right" proponents do not disagree
with the concepts of this iterative/ convergence
approach. The problem is, they say, that it is often
not clear just how it can be used with a big system.
User management may not be able to see how the
overall system can be divided, in order to build
one part of the system at a time and yet be able to
integrate those parts later. It is difficult to foresee
at the beginning of a large project all of the ways
that the multiple parts will impact one another.
These interactions of the parts can be very subtle.
It may be necessary to do a detailed analysis of re
quirements for the whole system in order to be
able to sub-divide the total system intelligently.

So, say the proponents of the exhaustive study,
we do not disagree with the idea of sub-dividing
large projects and implementing the parts
quickly. But on large, complex system projects,
we just do not know how to use that approach in
its entirety. We feel that we must often make an
exhaustive study of requirements before we can
do the sub-dividing.

Another argument against the "do it over" ap
proach is that the user may see only the effects of
a basic problem and not the cause of that prob
lem. So the user conveys, and the analyst accepts,
a superficial analysis of the problem. Trial-and
error problem solving is not the way to approach
a complex, challenging problem. The first itera-

EDP ANALYZER, JULY 1977

tion may be so far wide of the mark that con
vergence to a good solution does not occur.
Moreover, this approach tends to promote lazi
ness and sloppy thinking on the part of the ana
lysts. Also, users are already too inclined to
change their minds about what they want in ap
plication systems; this approach just amplifies
such vacillations. So say the proponents of the ex
haustive study approach.

We think that both sides make valid points. If
the application system under consideration is not
particularly large, then sufficient analysis of the
requirements must be done to make sure that the
right problem is being worked on. User manage
ment needs must be determined, by obtaining
user involvement at the appropriate times. Then
the iterative/ convergence approach can be used.

On the other hand, if the system under consid
eration is basically a huge one-for example, as
was the first computerized airline reservation sys
tem-then it may very well be necessary to make
a thorough study of requirements before sub-di
·viding and implementing. The same comment
can be made about a generalized application sys
tem that is supposed to serve tens or hundreds of
user organizations, of the type that we discussed
in our January 1977 report.

How to get the requirements right

What is a no-frills program that an organiza
tion can use to get the requirements right for new
application systems and for major revisions to ex
isting systems? Following is what we see as a min
imum program.

Recognize the types of errors

The first step, it seems to us, is to recognize that
requirements statements will normally have er
rors, and lots of them. Moreover, the longer it
takes to detect these errors, the more serious are
the time and cost penalties for correcting them.

Somehow, this fact must be communicated to
all levels of management in the organization. This
probably will not be an easy task. Further, in all
likelihood, this message will not be well received.
Top management and user department manage
ment may think that stating requirements is
easy-and that if errors occur, they are the fault of
the data processing people. It may not be easily
accepted by these managers that many errors are
likely and they are just as much the responsibility

11

of the user departments as they are of the data
processing people.

As we will mention below, a formal inspection
procedure should be a part of even a no-frills pro
gram. As errors are detected, a list of error types
will be developed. This list would seem to be the
best possible argument to convince management
about the errors that normally occur in require
ments statements.

Get user involvement

As the list of types of requirements errors
grows, it should become much easier to obtain the
necessary involvement of user management.
They can see how these errors in the past have
caused project delays and added costs.

Even before this list is available, however, an
attempt should be made to get the key managers
(not just staff members) of the user departments to
spend two full days or so in a "requirements ses
sion." This may not be easy to do, and it certainly
requires the support not only of those managers
but also of their superiors. But it can be done and
the results are valuable indeed. We used this ap
proach on numerous occasions some years back
and it always provided very useful results.

Select an approach for handling complexity

Earlier in this report, we discussed a number of
ways for handling complexity. All have worked
well in specific instances. Here are our prefer
ences for a no-frills program.

Progressive approach. Do everything in terms
of small, short term projects which are done by
small groups of people (3 to 6 people maximum)
in a short period of time (6 to 9 months max
imum)-but integrated into an overall program. If
a big application is to be implemented, develop a
master design, divide into a series of small proj
ects, and develop these sub-systems individually.

Functional decomposition or information flow
analysis. We do not have strong opinions that fa
vor one of these approaches over the other. Cur
rently, the functional decomposition approach is
receiving a lot of attention, one reason being the
wide exposure of IBM's HIPO method. But some
means is needed for analyzing and documenting
what the new system must do, what the perform
ance of the present system is, and what the per
formance of the new system should be.

EDP ANALYZER, JULY 1977

Particularly if the functional decomposition
approach is used, a formal (graphical) language
for stating requirements will be involved. It may
also be desirable to translate from this graphical
language to a narrative language, such as PSL, in
order to use automated analysis tools. We see this
as an optional step, depending upon the size and
complexity of the total project (covering all sub
projects), and not necessarily a part of a no-frills
program.

Tools to make changes easier. The types of
changes that will be involved include adding new
data fields to the files so that they can in turn be
added to reports, changing field lengths, changing
relationships among data items, changing report
formats, and changing processing logic. Expe
rience has shown that some of the file manage
ment and data base management systems offer
more flexibility for such changes than do conven
tional programming and data handling methods.
Some people might disagree and say that conven
tional methods are sufficiently satisfactory-but
we feel that some of these new tools are properly
a part of a no-frills programz

Formal inspection program

As B. W. Boehm has pointed out, it appears that
a formal inspection program (or the less formal
walk-through program) is the most effective
single method for detecting errors in require
ments and design. So such a program should cer
tainly be a part of a no-frills methodology.

M. E. Fagan has described a formal inspection
program that has worked effectively at IBM. Oth
ers might take a somewhat different approach.
We would think that Fagan's approach would be
a good way to start an inspection program.

Define expected performance

Another powerful way for catching require
ments errors is for the analyst to develop perform
ance validation tests for all stated requirements.

This step does a number of things. For one
thing, it identifies qualitative requirements. Such
requirements either should be converted into
quantitative requirements or, failing that, elimi
nated. Also, it detects all open ended require
ments which are only partially defined. Open
ended requirements are frequently stated in terms
of examples, and it is left up to the "common
sense" of the implementors to fill in all of the miss-

12

ing cases; this usually leads to troubles. This step
also forces the analyst to determine just what con
stitutes good performance and what is unaccept
able performance, for each of the requirements.
As Alford commented at the Software Engineer
ing Conference, trying to write the performance
validation tests really points out what a person
does not know about the requirements.

Conclusion

Progress is being made in the application of
computer technology-but the problems of
schedule slippages, cost overruns, and dissatisfied
users still arise. Because of these problems, the
data processing function has often lost credibility
in the eyes of top management; management just
could not depend upon the promises that were
made. We believe that the situation is improving,
as data processing departments have decided to
limit themselves to smaller projects and not to
promise as much. But the situation, while improv
ing, still has not reached a satisfactory level, in
our opinion.

Quite possibly the most basic cause of the
schedule slippages, cost overruns, and dissatisfied
users has been the errors that typically exist in re-

EDP ANALYZER published monthly and Copyright@ 1977
by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
9'2083. All rights reserved. While the contents of each report
are based on the best information available to us, we cannot
guarantee them. This report may not be reproduced in whole
or in part, including photocopy reproduction, without the

EDP ANALYZER, JULY 1977

quirements statements. It is also quite possible
that this condition has not been properly recog
nized by the technologists until fairly recently.
Most of the attention on how to get improved sys
tems projects has been devoted to system design,
programming, and data base design methods. It is
finally becoming recognized that more attention
must be given to ways for getting the require
ments right.

The no-frills program that we have outlined for
getting the requirements right, based on what we
found in our study of the subject, does not seem to
be too demanding. One change is in the frame of
mind-simply acknowledging that numerous er
rors probably exist in any requirements state
ment. And most computer-using organizations
have already obtained a degree of user in
volvement and have adopted methods for han
dling complexity. The changes that have costs
attached to them are the software tools for pro
viding flexibility to change systems, the use of a
formal inspection procedure, and the use of per
formance validation tests.

"Getting the requirements right" is an area that
deserves priority attention by data processing
management.

written permission of the publisher. Richard G. Canning, Edi
tor and Publisher. Subscription rates and back issue prices on
last page. Please report non-receipt of an issue within one
month of normal receiving date. Missing issues requested af
ter this time will be supplied at regular rate.

13

REFERENCES
I. Proceedings of 2nd International Conference on Software

Engineering, October 1976, in two volumes. Order from
IEI;:E Computer Society (585.5 Naples Plaza, Suite 301,
Long Beach, Calif. 90803) or from ACM Order Depart
ment (P.O. Box 12105, Church Street Station, New York,
N.Y. 10249). Be sure to get the 147-page second volume in
addition to the 639-page first volume. Price $20.

2. Fagan, M. E., "Design and code inspections to reduce er
rors in program development," IBM Systems Journal (or
der through local IBM Branch Office), Vol. 15, No. 3,
1976, reprint G321-5033; price 50¢.

Packaged methodology referenced in this issue:
3. Hartman, W., H. Matthes, and A. Proeme, Management

Information Systemy Handbook, McGraw-Hill Book Co.
(1221 Avenue of the Americas, New York, N.Y. 10020),
1968, price $29.50. This book describes the ARDI (analy
sis, requirements, design, implementation) approach de
veloped by N. V. Philips-Electrologica, Apeldoorn, The
Netherlands.

4. Glans, T. B., B. Grad, D. Holstein, W. E. Meyers, and R.
N. Schmidt, Management Systems, Holt, Rinehart and
Winston (383 Madison Avenue, New York, N.Y. 10017),
1968. This hook describes the Study Organization Plan
approach to system studies, developed at IBM.

5. For more information on SADT (Structured Analysis and
Design Technique), contact SofTech, Inc. (460 Totten
Pond Road, Waltham, Mass. 02154). SADT is a compre
hensive methodolot,ry for doing functional analysis and
system design, using functional decomposition and a for
mal graphical language.

6. For more information on HIPO (hierarchy plus input-proc
ess-output), see local IBM Branch Office; for a general
coverage, order Form No. CC 20-1851; price $3.20. For a
discussion of HIPO in use, see Martha N. Jones, "H1Po for

EDP ANALYZER, JULY 1977

developing specifications," Datamation (1801 S. La Cien
ega Blvd., Los Angeles, Calif. 90035), March 1976, p. 112,
114, 121, 125.

7. For more information on PSLIPsA (problem statement
language/problem statement analyzer), write IsDos Proj
ect, 231 W. Engineering Building, University of Mich
igan, Ann Arbor, Mich. 48104. PSL is a formal language for
stating requirements and specifications, and PSA is a soft
ware system for analyzing sets of PSL statements.

8. For information on ADS (accurately defined systems),
write NCR Inc. (Dayton, Ohio 45479). The method was
written up in ACM Data Base, Vol. 1, No. 1, Spring 1969,
which is now out of print. ADS is essentially a tabular
method for stating requirements, and was one of the
methodologies drawn on by the IsDos project in devel
oping PSL, above.

9. For more information on RSLIREVS, write TRW Defense
& Space Systems Group, Huntsville Facility, 7702 Gover
nors Drive, Huntsville, Alabama 35805. One pertinent
publication is TRW-SS-76-02, "A Flow-oriented Require
ments Statement Language," by T. E. Bell and D. C. Bix
ler, April 1976.

Additional reading

10. Mills, H. D., "Software development," IEEE Transac
tions on Software Engineering (IEEE Computer Society,
address above), December 1976, p. 265-273; price $10.

11. Nunamaker, J. F. Jr., and B. R. Konsynski Jr., "Computer
aided analysis and design of information systems," Com
munications of the ACM, (ACM, address above), Decem
ber 1976, p. 67 4-687; price $5 prepaid.

12. Leavenworth, B. M., "Non-procedural data processing,"
The Computer Journal, (British Computer Society, 29
Portland Place, London WIN 4HU, U.K.), February
1977, p. 6-9.

14

.I
i

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1974 (Volume 12)
Number

1. Protecting Valuable Data-Part 2
2. The Current Status of Data Management
3. Problem Areas in Data Management
4. Issues in Programming Management
5. The Search for Software Reliability
6. The Advent of Structured Programming
7. Charging for Computer Services
8. Structure5 for Future Systems
9. The Upgrading of Computer Operators

10. What's Happening with CODASYL-type DBMS?
11. The Data Dictionary/Directory Function
12. Improve the System Building Process

1975 (Volume 13)
Number

1. Progress Toward International Data Networks
2. Soon: Public Packet Switched Networks
3. The Internal Auditor and the Computer
4. Improvements in Man/Machine Interfacing
5. "Are We Doing the Right Things?"
6. "Are We Doing Things Right?"
7. "Do We Have the Right Resources?"
8. The Benefits of Standard Practices
9. Progress Toward Easier Programming

10. The New Interactive Search Systems
11. The Debate on Information Privacy: Part 1
12. The Debate on Information Privacy: Part 2

1976 (Volume 14)
Number

1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)
Number

1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Right

(List of subjects prior to 197 4 sent upon request)

PRICE SCHEDULE

The annual subscription price for EDP ANALYZER is $48. The two year price is $88 and the three
year price is $120; postpaid smface delivery to the U.S., Canada, and Mexico. (Optional air mail delivery
to Canada and Mexico available at extra cost.)

Subscriptions to other countries are: One year $60, two years, $112, and three years $156. These
prices include AIR MAIL postage. All prices in U.S. dollars.

Attractive binders for holding 12 issues of EDP ANALYZER are available at $6.25. Californians
please add 38¢ sales tax.

Because of the continuing demand for back issues, all previous reports are available. Price: $6 each
(for U.S., Canada, and Mexico), and $7 elsewhere; includes air mail postage.

Reduced rates are in effect for multiple subscriptions and for multiple copies of back issues. Please
write for rates.

Subscription agency orders limited to single copy, one-, two-, and three-year subscriptions only.

Send your order and check to: Send editorial correspondence to:
EDP ANALYZER EDP ANALYZER
Subscription Office Editorial Office
925 Anza Avenue 925 Anza Avenue
Vista, California 92083 Vista, California 92083
Phone: (714) 724-3233 Phone: (714) 724-.5900

CompanY--------------------------------------
Address. ______________________________________ _

City, State, ZIP Code'-------------------------------

