
EDP ANALYZER
© 1976 by Canning Publications, Inc.

NOVEMBER, 1976
VOL. 14,. NO. 11

RECOVERY IN DATA BASE SYSTEMS

With batch-type application systems using files on magnetic
tape, recovery from failures has not been conceptually difficult.
True, some of the actual recoveries have been difficult, such as
when, by mistake, the only backup copy of a file was destroyed.
But in theory, recovery involved going back to the prior gener
ation of the master file and re-running the work. However, with
the arrival of data base systems-and particularly on-line data
base systems-this rerun concept is far from adequate. The users
of on-line systems are annoyed if the systems are down for any
length of time. So new methodology has been developed to aid in
recovering rapidly after failures occur. Based on user experiences,
here is what you had best look for in the way of recovery facilities
when selecting your next data base management system.

The Weyerhaeuser Company, with headquar
ters in Tacoma, Washington, is a leading timber
grower and timber products manufacturer. An
nual sales are over $2.5 billion, and the company
employs about 49,000 people.

Weyerhaeuser installed an on-line order entry
system for its wood products division in 1964,
based on the use of a GE 235 computer. Data files
were managed by the ms data base management
system. In 1966, in preparation for installing a
GE 635 system, the company entered into a joint
project with GE to develop their own operating
system-WEYCos, using the GEcos II operating
system as a starting point. WEYcos was designed
to handle both transaction processing and batch
processing.

While the system is the on-line type, it is not in
teractive. Turnaround time averages between one
and two hours, from the arrival of an order until
acknowledgement. Rven so, fast system recovery
after a failure or data error is important, so
Weyerhaeuser has built data base recovery and
system restart facilities in WEYcos. The system
processes about 3,000 jobs per day, with peak
loads of some 500 jobs per hour.

There are two types of data base problems for
which recovery is needed-hardware failures and
software failures. In the case of hardware failures,
such as a disk surface being partially or com
pletely unreadable, the need exists to recreate the
unreadable records. For software failures, such as
caused by a partially processed transaction being
aborted, the need is to undo the changes in the
data base that the transaction has already caused.

The components of the recovery system are as
follows. A Before image log tape is used to record
a copy of the record immediately before it is
changed along with a reference code and function
code. A start-of-job indicator is also recorded on
this tape, as the job starts. An After image log tape
is used to record an image of the whole page con
taining the record, after the record has been
changed and has been written successfully to disk.
A data base dump tape is created by dumping disk
contents to tape every night. Finally, end-of-day
procedures are used to capture the status of im
portant system files, used for restarting as well as
for recovery.

Weyerhaeuser people described for us the
three main types of recovery.

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; orders for
copies filled promptly; prices listed on last page.

Recovery from hardware failure. Under this
condition, the computer cannot read one or more
pages of data from the disk storage. The system
makes several attempts to read the data. When
such attempts prove unsuccessful, the recovery
system is invoked. The old After image file is
closed and a new one is started by mounting a
new tape. The recovery system then searches the
old After image tape for the latest image of the
unreadable page(s). Upon locating it, it is read
into core and then the system attempts to write it
to disk. If it cannot be successfully written, then
the system stores it "permanently" in memory un
til the disk can be fixed. Fixed head disks are used,
so the amount of spare disk space is limited.

Once a page has been retrieved from storage,
WEYcos keeps it in core as long as possible, in case
it is wanted by other programs. When an After
image has been retrieved, as just discussed, access
to it by other programs is prevented until the dis
position of the page has been settled.

Should a large amount of data be unreadable, it
is necessary to restore the data base by going back
to the file dump of last night and update it by
means of the After images.

Recovery from user program aborts. When a
partially processed transaction is aborted, the re
covery routines take control and lock the data
base, plus restricting job selection. The Before im
age file is closed, and is then read backward to
ward the start-of-job indicator for that job. Using
the Before images, the data base records are re
stored to their condition prior to running the job
that aborted. The Before image tape is then re
positioned to the point where it was just closed,
and the data base lock and job selection controls
are released.

When a page is accessed for updating, access to
that page by other programs is prevented by lock
ing. This locking is used to prevent both con
current updating and deadlock. Concurrent
updating means that two transactions are up
dating the same record at the same time; one of
those updates is destroyed when the other one is
stored. The deadlock situation arises when pro
gram 1 has record A and needs record B, while at
the same time program 2 has record B and needs
record A, so that neither can progress.

WEYCOS prevents concurrent updating by
automatically delaying the processing of the sec
ond transaction until the first has been completed.

EDP ANALYZER, NOVEMBER 1976

And when WEYCos detects a deadlock situation, it
aborts one job, restores that program's Before im
ages to the data base, unlocks the records, auto
matically reschedules the job, and proceeds with
processing the second job. Weyerhaeuser encoun
ters about ten deadlock situations a day. The pro
tection technique that is used allows several
programs to be updating the data base simulta
neously as long as they do not conflict with one
another.

Recovery from system aborts. When the whole
system goes down, for any of several reasons
(power failure, hardware failure, etc.), as soon as
it is operating again, the recovery routines auto
matically close the Before image log after the last
record that had been successfully written. Then,
by processing the system files, it· determines
which jobs were not completed but had changed
the data base, at the time of failure. (WEYCos ex
tends the job completion point beyond the nor
mal program termination in order to safeguard
both the data base and the output produced by
the job.) A "rollback" list is built, for the jobs re
quiring recovery. The data base is locked for all
user programs until recovery is completed. Then
a rollback recovery, as described above for user
program aborts, is performed for all jobs on the
list. The Before image tape is then repositioned to
the point where it was just closed and the data
base lockout is released.

Time to recover from hardware failures, user
program aborts, and deadlock is about 30 seconds,
we were told. Of course, if a large area of the data
base has to be rebuilt, that would take much
longer.

System restart. Space does not allow us to go
into the subject of restarting the on-line system in
this report. Weyerhaeuser's restart procedures
have been designed to insure that no input mes
sages are lost or duplicated, that no output mes
sages are lost or duplicated, and that any data
base errors are corrected. For correcting errors in
the data base, the recovery procedure for system
aborts is used. This restart procedure takes about
15 minutes and must be done about 100 times per
year.

Weyerhaeuser Company is well satisfied with
their data base recovery capabilities. The com
pany has not yet found another hardware/ oper
ating system combination that offers the

2

capabilites they already have, so they continue to
support and enhance WEYCos.

Blue Cross of Southern California

Blue Cross of Southern California, with head
quarters in Los Angeles, is a large health care pre
payment organization. It has some two million
members in Southern California and employs
about 2700 people.

Blue Cross of Southern California uses an IBM
3701168 Model 3 with over 400 on-line terminals
connected to it. In the spring of 1974, the com
pany installed IMs/vs for managing the on-line
data base, which consists of some 5.2 billion char
acters of data. The on-line system operates 11
hours per day for both update and query, and four
hours per evening for query only. Batch process
ing is done during the same four hours in the
evening.

The IMS/vs data base recovery utilities which
are used by Blue Cross are as follows. Create im
age CO'(JY is a utility to dump all or part of a data
base to tape, for backup and recovery purposes.
Restore image CO'fJY is a program to restore a copy
of the data base to the condition as of time of
backup. Create system log is a routine for log
ging all changes made to the data base, including
Before and After images of changed records, as
well as checkpoint information. Logging occurs
in both the on-line and batch environments.
Change accumulation is a program for processing
the system log file and selecting the latest changes
or final image of each modified record in the data
base. Data base recovery is a program for rebuild
ing a data base using the previously created image
copy, the net accumulated changes for that data
base, and the log tapes created since the last exe
cution of the change accumulation utility.

In addition, IMS/vs has some other recovery
utilities not yet being used by Blue Cross. One
such is a log directory facility, for keeping track
of all log tapes and what information is recorded
on them. Blue Cross is looking forward to using
this utility in the near future. The problem of
keeping track of log tapes can be appreciated
from the fact that, with 1600 bits per inch record
ing density, Blue Cross used to require 9 tapes a
day for the on-line system log purposes. Now,
using 6250 bpi, three tapes a day will suffice for
this system. In addition, between 12 and 22
log tapes are used each day for the batch
applications.

EDP ANALYZER, NOVEMBER 1976

Blue Cross made one addition to the IMS recov
ery utilities. Should an on-line system abort occur
and normal recovery facilities fail, a routine was
needed to scan the system log tape to find out just
which programs, if any, were active at the time of
failure, so as to perform a backward recovery
only for those programs. Otherwise, all data bases
might have to be rebuilt from the latest image
copies, using forward recovery, to insure
integrity.

The most common type of failure, the people at
Blue Cross told us, is when on-line software
aborts. This type of failure accounts for about
85% of all failures, and occurs an average of about
once per day. (Actually, the frequency is quite
variable, ranging from several times a day to per
haps once per week.) This failure is the so-called
"normal ABEND." Upon detecting an ABEND, the
system takes control, performs an orderly termi
nation of the job, and closes the log tape. The
backout recovery utility reads the system log tape
backwards, selects the Before images for this par
ticular job back to start-of-job or to a more recent
checkpoint, and restores the associated data base
records. Recovery from such an ABEND takes
about 12 to 15 minutes.

Sometimes recovery is not so straight forward.
A complete system abort, perhaps due to a tem
porary power failure or such, takes longer. In
such instances, an orderly termination may not
have occurred, so operator intervention is needed
to terminate the log tape and initiate recovery.
IMs provides a log termination utility to complete
and close an unterminated log tape. These "some
what more difficult" failures account for about
13% of the overall failures, and can take up to 45
minutes for recovery.

The remaining 1 % or 2% of the failures are
those cases where a whole data base has to be
rebuilt. In such cases, it is necessary to go back to
the latest image copy and apply all After images
that have occurred in the interim. Such failures
might occur a few times a year. It can take 4 to 6
hours to effect recovery of a single data base.

One critical component of the recovery system
is the system log tape-or, more properly, the
multiple log tapes. If the log tape cannot be read,
recovery becomes much more difficult. We asked
about this possibility. Only once since the recov
ery system was installed had the log tape been
partially unreadable, we were told. However, the
operators were able to print out a good part of the

3

partially unreadable blocks, and could determine
what information was in those blocks. Since the
log tapes have a variety of types of information
recorded on them-start of program indicators,
end of program indicators, Before images, After
images, etc.-there is a good chance that an un
readable block does not contain information bear
ing on the recovery that is in progress. Luckily,
that is just what happened in this particular in
stance, so recovery was not affected by the defect
in the log tape.

The data base recovery facilities offered by
IMs/vs have been successful in keeping their on
line system running, the people at Blue Cross of
Southern California told us. Further, they expect
to use additional recent enhancements to the re
covery system in the not-distant future.

The new environment

D. C. Lundberg of IBM discussed with us some
of the recovery concepts found in IBM's IMS.
Also, R. D. Pratt and P. G. Powell of UNIVAC de
scribed recovery concepts being implemented in
UNIVAc's IMs-90 and DMS-90 systems. We are in
debted to these men for the following information
on the new data base recovery environment.

Two types of work units occur in a data base
system-transaction or message oriented work
units and batch (run unit) work units. In a transac
tion oriented system, each transaction is treated
as a different job or work unit. In a batch oriented
system, a group of transactions is treated as a job,
a run unit, or work unit. These two types of work
units may be present concurrently in the work
load. Transaction oriented work units generally
involve update-in-place for on-line files. Batch
run units may involve update-in-place files or the
familiar regeneration of sequential files, as in
magnetic tape processing.

The two types of work units require somewhat
different-but related-recovery facilities. If the
computer must process both types of work units
concurrently, then both types of recovery facil
ities are needed.

Isolation of the error. With batch processing of
sequential files, application system designers have
had two options for the recovery from errors. One
option has been to go back to the beginning of the
job and start over. The other option has been to
insert checkpoints at one or more intermediate
points within the job. At a checkpoint, the status

EDP ANALYZER, NOVEMBER 1976

of the system is recorded on a log file or check
point file. To recover from an error, it has gener
ally been necessary to go back only to the most
recent checkpoint. One approach or the other
was chosen based on minimum cost consid
erations.

With on-line systems closely coupled to the or
ganization's operations, there are other factors to
consider beyond the financial one. It is not desir
able to stop all processing for an extended period
while a complete rerun of a lengthy job occurs.
Also, with data bases in which numerous appli
cations share the same data, confusion can result
from a rerun. If the last 15 minutes of work of job
A must be rerun, then it may be necessary to rerun
the last 15 minutes of work of all jobs, if they all
could have been accessing the same records.

So in data base/data communications systems,
it is desirable to isolate each work unit so as to in
hibit the impact of an error as much as possible.
This means that checkpoints or synchronization
points should occur quite frequently-certainly at
the beginning and end of each work unit, as well
as at intermediate points for run units. All proc
essing may have to stop while a recovery oper
ation is underway (although proper run unit
isolation would not require other run units to be
interrupted). But the recovery should be accom
plished as quickly as possible-get the errors out
of the data base and either fix the offending pro
gram or get it out of the active job mix.

Two general recovery situations. We have men
tioned these earlier in this report and will not re
peat the discussion in detail. One situation is
where physical damage has occurred to all or part
of the storage media and the data recorded
thereon cannot be read. The other situation is
where a partially completed work unit is aborted,
and the changes made to the data base by that
work unit have to be backed out.

Two general types of recovery. Here, too, we
have discussed the types and will not repeat in de
tail. Forward, or long, recovery is used where
physical damage has occurred to the storage
media. It uses an old version of the data base (a
data base dump) plus a file of After images. The
dump copy is brought up to date by means of the
After images.

The other type of recovery is backward recov
ery, which in turn can be sub-divided into off-line
backward recovery and quick (or dynamic) back-

4

ward recovery. In either of these cases, the stor
age media are not damaged; what is desired is to
back out the changes made by partially com
pleted work unit(s). Backward recovery uses a
current version of the data base plus a file of Be
fore images. By replacing current records with
their ''before" images, the effects of updating are
removed.

For transaction work units, it is feasible to back
out just the one transaction. For quick recovery in
such systems, an on-line utility and a special, fast
access Before image file are used.

For batch run units, where there are multiple
transactions in the batch, the need is to back out
the effects of only the failing transaction, while
retaining the effects of the other transactions.
This recovery is usually done by an off-line utility
using the system log tape.

As we will see, there are a number of com
plications associated with these approaches to re
covery. Not all of the problems have yet been
solved. Even where solutions have been devel
oped, not all have been implemented in some of
today's operating systems and data base manage
ment systems.

This report is concerned with recovery in a
data base environment. There are a number of re
lated topics that fall outside the scope of this dis
cussion. For instance, we will not discuss the
restarting of an on-line system, or how to avoid
the possible loss or duplication of input or output
messages, or the question of backup of hardware
and communications services. We expect to treat
such questions in future issues.

Let us now consider the types of system faults
that lead to the need for recovery facilities.

Types of failures

Gibbons (Reference 1) differentiates faults
from failures. A fault, he says, is a malfunction in
a hardware, software, or human component of a
system that leads to the introduction of errors. In
due course, the error(s) may lead to a failure,
which is the cessation of normal, timely operation
of the system or the delivery of incorrect output
data. Sometimes the fault and the failure occur si
multaneously. In other situations, the fault may
introduce errors for an extended period before
the failure is detected.

Following are the major types of faults identi
fied by Gibbons:

EDP ANALYZER, NOVEMBER 1976

TYPES OF FAULTS
1. Hardware malfunctions, covering all hardware elements in

the system.
2. Application program fanlts, where coding errors tend to

increase with the size and complexity of the program.
3. System software faults, including such aspects as a poorly

designed priority system, the checkerboarding of memory,
and the allowance of deadlock situations.

4. Data errors, due to inadequate validation of input data.
5. Design miscalculations, leading to improper operation

during peak load periods (overloads).
6. Operator mistakes, such as mounting the wrong generation

of files or selecting the wrong version of a program.

All of these can cause failures, either immedi
ate or delayed, from which recovery must be
made. Gibbons sees the following types of con
sequent failures.

TYPES OF FAILURES
1. Machine failures-some hardware components are essen

tial for continued operation, such as the CPU; there is no
option other than to fix them in order to recover or provide
dual CPUS. In other cases, such as tape units, it may he pos
sible to substitute another unit and continue operating,
perhaps in a degraded mode of service.

2. Application program failures-these are usually caused by
an application program attempting to perform an invalid
operation, in which case control is transferred to the oper
ating system.

3. Operating system failures-these can be caused by errors in
the operating system code itself (most new releases have
new errors in them) or because an application program has
given wrong parameters to the operating system for, say,
opening a file.

4. Data validity failures-data in the data base is invalid so
that an application program fails or notifies the operating
system.

5. Data base access failures-a record is unavailable, due to
parity error, invalid key, etc.; or a record is missing or is
invalid; or the request is invalid, such as attempting to
write an unchanged record; or deadlock may occur.

6. Overload failures-when an overload occurs, the system
may stop or performance may begin to deteriorate badly;
memory space may be unavailable due to check
erboarding; control tables, temporary working areas, mes
sage queues, etc. may overflow their limits.

There is another way in which failures can be
classified, as follows.

One or more work units abnormally terminate.
Such failures occur when a user job is cancelled,
when an 1/ o operation fails, in deadlock situa
tions, and so on. An orderly termination of proc
essing is possible.

Data base is contaminated. A program error
may cause a spreading data error in the data

5

base-such as an inventory program that adds is
sues into stock rather than subtracting them. Such
program errors may be deliberate and malicious.
Once the erroneous situation is detected, an or
derly termination of processing is possible.

All processing stops suddenly. Examples of
such failures are power failures, CPU failures, and
operating system failures. Generally, no orderly
termination of processing is possible.

Overload condition occurs. As indicated above,
examples include message queues exceeding their
limits, memory space is unavailable, etc. The fail
ure can lead to loss of data and even to complete
system failure. It may not be possible to have an
orderly termination of processing.

Recovery operations proceed more smoothly if
an orderly termination can be made when the
failure is detected. Gibbons says that the oper
ating system (1) should finish any data base
requests and note those that are still incomplete,
(2) should force each application program to fin
ish and then shut down, (3) should send notifying
messages to remote terminals, (4) should create a
checkpoint, (5) should dump information for a
post mortem analysis, and finally (6) should termi
nate the operation.

So these, then, are the types of situations in
which recovery is needed.

Elements of a recovery system

Lundberg of IBM and Pratt and Powell of UNI
VAC described for us the elements that make up a
recovery system. These are:

File dump facility
System log facility
Log scan facility
Checkpoint facility
Control of concurrent update and deadlock
Forward recovery facility
Rollback facility
Recovery directory

• Broadcast facility
We will discuss each of these elements briefly.

We will also draw on the works of several authors,
particularly Gibbons.

File dump facility

With sequential files on magnetic tape-and in
some cases, sequential files on disk packs-the file
dump facility has been automatic. All that need
be done has been to save two or three prior gener
ations of a file.

EDP ANALYZER, NOVEMBER 1976

With update-in-place files, explicit action is
needed to create copies of the files at specified
points in time. The usual process is to dump the
files, or selected portions of files, from disk storage
to magnetic tape periodically.

There are evident problems with file dumping.
For one thing, it consumes resources, such as
channel capacity. It may interfere with or com
pletely stop all other processing, depending upon
the design of the computer system.

For another thing, it can take appreciable
amounts of time to dump large data bases. Gib
bons (Reference 1) points out that even with a
1.25 million bytes per second (mbps) transfer rate
for magnetic tape (the fastest of today's tape
units, as far as we know) and an 800 kbps transfer
rate for disk storage, the effective dump rate may
be only about 330 kbps. At this rate, it would take
about 50 minutes to dump a one billion character
data base, and about eight hours to dump a 10 bil
lion character one.

With very large data bases, two main ap
proaches to dumping are used. One is to dump
some small fraction of the data base each night-a
small amount so that not too much time is con
sumed in the dumping. Another approach is to
provide parallel paths for dumping; this requires
less time but is much more expensive in hardware.

If small amounts of the data base are dumped
each night, it is evident that good control of these
dump copies will be needed. Since several gener
ations of dumps may be needed, a good number of
tapes may be involved.

System log facility

Lundberg of IBM says that the system log func
tion should contain records of all input and out
put messages, the origin and destination of all
transactions, identification of units of work along
with their start and completion, all data base
changes, checkpoint information, and records of
all processing activities.

Gibbons (Reference 1) qualifies this list some
what. He feels that the system log should contain
records of all valid incoming transactions. Also, in
addition to the Before and After images, the log
should show the file to which each belongs, the
program that updated it, the updating transac
tion, and the time.

Eastin (Reference 3) adds the following to the
list. The log should contain messages of hardware

6

failures, communication startup and shutdown
details, message header inconsistencies, and all
unusual occurrences.

Palmer (Reference 2) sees the possible need for
a second log file. During a recovery operation, he
says, the first log file is in use for recovery. If the
remainder of the system is to be kept in operation,
a second log file will be needed.

Lundberg points out that duplicate log tapes
may be desired, just to make sure that the log
tapes are readable-but these dual tapes are logi
cally one file. A recent version of IMS provides a
dual logging option, along with a utility for crea
ting a new log tape from the combination of the
dual logs, should both of those have errors in
them.

It should be apparent from the above dis
cussion that the system log file will have lots of
data recorded on it, including a wide variety of
records types. One of the problems will be the
number of log tapes that are produced. If the log
tapes are recorded at 1600 bpi density, it will not
be unusual for installations to accumulate log
tapes at the rate of from 10 to 30 tapes per day.

Another aspect of the system log file should be
singled out-the aspect pertaining to quick recov
ery. Dynamic or quick recovery requires a file of
Before images, start of job, and end of job infor
mation stored on a fast access device. Logically,
each job could have its own file, achieved by tying
together all records for that job by means of
chains or indexes. Alternatively, each job could
have its own distinct physical file. Powell of UNI
VAC pointed out to us that all updates between
two successive checkpoints for a job are logically
related. Once a checkpoint for that job has been
performed, the quick Before images can be
erased. Since the exclusive use locks are released
at the time a checkpoint is recorded, any Before
images recorded before the checkpoint can no
longer be used for quick recovery.

Log scan facility

From the above discussion, it can be seen that
the regular system log file contains a wide variety,
and probably a large number, of records. The
records are intermixed. Further, many of the
records will be "obsolete" in the sense that if
three successive updates occur to the same
record, only the third After image may need to be
retained.

EDP ANALYZER, NOVEMBER 1976

So a facility is needed for processing the system
log file, in an off-line manner, in order to select
the appropriate information and to make it con
veniently available for a recovery operation. In
IBM's IMs/vs terminology, this is called the
"change accumulation" utility.

What about the old Before and After images on
the system log, after a recovery has been accom
plished? IMs/vs obviates concern for these images
by logging a backward recovery and by creating
new record image copies in the case of forward
recovery. These records are then used, if needed,
in any future recovery.

Checkpoint facility

When to checkpoint. As indicated earlier,
today's concepts of recovery require that each
work unit be isolated from other work units, so
that the changes made by an aborted work unit
can be removed from the data base. This require
ment applies to both transaction work units and
batch run units.

Lundberg of IBM says that checkpointing
should be done (1) at the work unit start time, (2)
at the work unit termination time, and (3) at any
user-requested intermediate points. These inter
mediate checkpoints are needed in lengthy batch
run units.

In a number of today's installations, both on
line and batch jobs are being run concurrently.
Also, most of today's recovery systems, as we un
derstand them, do in fact stop all processing while
a recovery is underway. So intermediate check
points are needed for lengthy batch jobs, not just
to reduce the recovery time for those jobs but also
to reduce the time that the on-line system is
down awaiting the completion of the recovery
operation.

Lundberg points out another complication,
along with the solution used in IMS/vs. If it is de
sired to run a batch job against a data base used by
an on-line system, two monitors could be in
volved-the on-line monitor and the batch mon
itor. Since these two monitors might work at odds
with each other, undesired actions could occur.
IMs/vs provides "batch message processing" to
solve this problem, wherein the batch program
goes to the on-line monitor for all data base
accesses.

Gibbons (Reference 1) lists some of the conven
tional criteria for determining when to check-

7

point. These include: (1) at specified time
intervals, such as every 10 minutes, (2) after X
transactions have been processed, (3) when the
processing load is light, to minimize the inter
ruption caused by checkpointing, (4) before a
critical event such as file dumping, (5) at the
request of an application program, and (6) at the
request of a system console operator. Note that
these criteria do not directly meet the need of iso
lating each work unit.

Browne and Lasseter (Reference 3) have devel
oped a quantitative model of recovery that relates
the resources used in checkpointing versus the
costs of complete reprocessing. This model helps
determine the frequency of checkpointing from a
cost standpoint.

What to checkpoint. Checkpointing (sometimes
called synchronization) means recording the es
sential details of the status of the system at a point
in time. It indicates what programs are active at
that point in time. It records the status of any
variables that carry across checkpoints, such as
the current status of control totals, hash totals,
and accounting information. If a work unit uses
one or more sequential files, it records the current
position of each one of those files.

Gibbons (Reference 1) lists a number of other
types of information that perhaps should be in
cluded in a checkpoint. These include the current
system and network configuration, pointers to
message queues (by message type, by terminal,
and by priority), the current message sequence
number for each terminal, current data base in
formation such as bad areas that are locked out,
and the status of temporary working files.

The determining factor of what information to
record for a checkpoint is: what is the necessary
and sufficient information for achieving a recov
ery, for the types of recovery that are planned?
The above brief discussion gives some idea of
what must be considered in selecting the check
pointing information. True, the user may not have
much influence on what checkpointing informa
tion is saved by a packaged recovery system-but
an analysis of this type will indicate just how ef
fective the recovery system is likely to be.

Control of concurrent update and deadlock

Lundberg of IBM pointed out to us that if the
operating system does not have controls to pre
vent concurrent update and deadlock, and facil-

EDP ANALYZER, NOVEMBER 1976

ities to cure those conditions when they
are encountered, then the recovery system is
incomplete.

Here is the way that IBM's IMS/vs handles
these situations. When a user program makes a
data base call for a record, the request is put into a
control queue. When the record has been re
trieved, the request is assigned control level 1,
which means "read only" use. Access to the
record by other read-only user programs is not
prevented and the record need not be written
back to the data base when the user program no
longer needs it.

Access that may result in an update is so de
fined at retrieval time. Two potential update users
may not retrieve the same record. The second re
questor is automatically held in abeyance by the
system.

As soon as a user program changes a record, the
request in the control queue is assigned control
level 2. This means that the record has been up
dated and belongs exclusively to the updating
program. Access to it by other user programs is
prevented, and it will have to be written back to
the data base. Exclusive control is maintained
until a synchronization point is reached and dy
namic recovery is no longer a possibility. When
that user program begins another transaction, it is
assumed that the program is finished with all
records held in exclusive control by the previous
transaction. Those records are then written back
to the data base and access to them is unlocked.

Powell of UNIVAC described the approach used
in DMS-90. When a change is made to a page of
data, that page is implicitly locked until (1) the
end of the run unit, or (2) a user-specified inter
mediate release point. A page that is retrieved but
not updated can be explicitly locked by a run unit
to preserve its current state, in order to insure the
consistency of a future update affecting multiple
pages. A page lock prevents other run units from
either retrieving or updating the page. Once an
inter-related series of updates has been performed
(either a transaction work unit or a segment of a
batch work unit), the run unit can execute a com
mand to release all outstanding locks. This com
mand also establishes a data base recovery
checkpoint and, optionally, a batch application
program checkpoint. The locking and recovery
features of the system are closely inter-related.

8

Similarly, deadlock situations can be detected
by processing the request queue. If program 1 has
record A and needs record B, and program 2 has
record Band needs record A, this situation can and
is being detected by such controls. The operating
system then aborts one of the jobs, performs a
quick recovery on it, and reschedules it.

As we indicated earlier, the Weyerhaeuser
Company encounters about ten deadlock situa
tions a day-so it is a non trivial problem.

Forward recovery facility

This recovery procedure is used when physical
damage has occurred to the storage media, such
as disk surface damage from head scraping. The
concept here is somewhat similar to the rerun
concept in magnetic tape processing.

The damaged area is first identified. Then the
latest copy of the file dump for that area is re
trieved. The system log tapes applying to the pe
riod from that file dump to the present are
retrieved. All but the current one of these may
have been processed by the log file scan facility,
so that all of the After images are organized for
easy retrieval. The After images applying to the
damaged area, starting immediately after the file
dump time, are then applied to the file dump. The
data base area is now up to date, and would be
stored in an alternate storage area.

Several potential problems are evident. If the
dump copy of the file is not readable, it may be
necessary to go back to the next previous dump
point-which means there may be a need for mul
tiple generations of file dumps. Or the system log
tape may not be readable. If the system log tape
has not been duplicated and if some of the essen
tial information is unreadable, it will be necessary
to manually determine just what the missing in
formation is.

IMs/vs provides a facility for individual (disk
file) track recovery. When track damage is de
tected, the system creates search criteria for find
ing all records pertaining to the track in error. So
only the track is recovered, not some larger por
tion of the data base.

Rollback facility

This recovery procedure is used when partially
completed work units are aborted. The changes
made to the data base by those work units have to
be backed out.

EDP ANALYZER, NOVEMBER 1976

In theory, this rollback or backout type of re
covery does not appear complex. We have de
scribed it several times in this report. The
appropriate Before images are used to step the
data base back to the condition it was in at the
time of the last checkpoint for that work unit.
And then the system is restarted.

Pratt of UNIVAC has pointed out to us, though,
that rollback has its fair share of controversy. The
basic question is: how far back should the rollback
process be allowed to go? This is still an unre
solved question, to his mind. Some people argue
that rollback should go back only to the start of
the current work unit. The reason here is that
other user programs may subsequently update the
same records-and rollback erases the effects of
those updates. If rollback is allowed only to the
most recent checkpoint, the system's lock mecha
nism can assure that the records have not been
used by other user programs. Other people argue
that the decision should be left up to the user.
Just by the nature of the system operation, the
likelihood of updates by other user programs may
be very small. In such a case, the user may want to
perform rollback "to 8 PM last night" -and
should be allowed to do so, in the view of these
pragmatists.

Lundberg of IBM observed that the data base is
the property of all users and hence rollback deci
sions should not be left to the user. There is one
exception to this observation, he said. In the case
of an on-line transaction, the user should be able
to roll back a single transaction, thus eliminating
the transaction and all of its effects. However, if
an ABEND occurs, the user should have no options;
the system should define the rollback process.

Rollback does have the potential for erasing
updates that should not be erased. The threat here
should be recognized and user policies adopted to
minimize the threat.

Recovery directory

Powell of UNIVAC pointed out to us that the
many types of information used in recovery oper
ations-file dumps, system log tapes, quick recov
ery files, and checkpoint data-make recovery a
complex process. In our discussion, we have men
tioned the need for multiple generations of file
dumps, as well as many (and perhaps duplicated)
reels of system log tapes. We mentioned that dur
ing a forward recovery, a new After image log

9

tape may be mounted while the old one is used in
the recovery process.

So the question arises: how can the computer
system operators perform the recovery function
without error, in such a complex situation?

Powell argues for the use of a recovery direc
tory, to control the operation and avoid errors.
The recovery directory is essentially an inventory
of all recovery data-what it is and where it is lo
cated. It identifies all recovery records by type, by
time period, and by location. It contains a history
of all file dumps by area of data base, with the
points in time at which they were taken, and
where they are located. It has a history of all log
tapes, the time periods they cover, and where
they are located. It holds a listing of all run units
active at any point in time against any data base
in the system. And it provides a cross reference
between file dumps and log tapes, for each area of
the data base.

With a directory of this type, says Powell, the
selection of the data to support the recovery
process can become more automatic, with less of
the operation subject to operator errors.

Broadcast facility

When an on-line system goes down, data proc
essing management certainly does not want re
mote users to begin calling in on the telephone to
find out what is wrong. Such calls would swamp
the data center.

What is desired is an optional means for
notifying users that a trouble has occurred and
how long it is expected that repair will take.

Depending on what part of the system has gone
down, the system might send a message or signal
to remote terminals indicating that a recovery op
eration is underway. Another solution, for use in
lengthy downtimes, is to provide a special tele
phone number to call which is answered with a
recorded message.

When the system is operating again, it may be
desirable to notify each remote user that was ac
tive at the time of failure just what the status of his
work is.

Some complexities of recovery

Palmer (Reference 2) lists some of the ways in
which recovery operations can become more
complex than they normally are. These ways in
clude (1) the failure of a second work unit while

EDP ANALYZER, NOVEMBER 1976

the recovery of a first work unit is underway, (2)
the failure of the recovery utility itself while re
covery is underway, and (3) a failure while a data
base reorganization is underway (resetting point
ers and indexes).

Gibbons (Reference 1) points out that recovery
is complicated when two or more failures occur in
rapid succession. Moreover, this is not just a theo
retical possibility, he says; it is not unusual for a
series of failures to occur in a short period of time.

Lundberg pointed out to us that the appli
cation programmer can make the recovery oper
ation more complicated if he allows processing
activities to begin before a checkpoint and end af
ter a checkpoint. This situation is more likely to
occur for intermediate checkpoints made during
a long run unit.

Pratt mentioned to us that, during the recovery
operation for an on-line system, it is important
that the system let the terminal operator know
just what has happened and how far back in time
recovery has gone. The terminal operator must
know what he has to do next and what he has to do
over. The situation can get particularly messy,
says Pratt, if an input or an output message has
been lost, when a system restart is performed
along with a recovery. Communication between
the terminal operator and the system can become
badly snarled by such an event.

There are a number of complicating situations
that have been discussed earlier in this report. We
will not repeat those discussions but will simply
list the situations to indicate the scope of possible
complexities.

If a system abort occurs, an automatic orderly
termination is not possible. Not only must all
loose ends be cleaned up as a first step in recovery
but also all jobs active at the time of the failure
will require backward recovery. If updates to the
same record can be made by multiple user pro
grams since the last checkpoint of one user pro
gram, backward recovery runs the risk of erasing
legitimate updates. A recovery system that does
not prevent and cure concurrent updates and
deadlocks is not a complete recovery system. And
if any of the recovery information media are un
readable-file dump tapes, system log tapes,
and so on-then recovery can become much more
difficult.

It is clear that recovery of data base systems is a
complex operation.

10

What of the future?

The trend for the future of data base recovery
systems is to make them even more automatic and
dynamic than they are today. The goal is to take
over essentially all operator functions, leaving
only manual functions such as mounting tapes. As
Palmer says (Reference 2), the recovery system
should assess the damage, perform the recovery,
and advise users of the possible effects of the re
covery. None of today's systems are able to do this
much, although some leave little for the human
operators to do.

It may be possible for recovery to affect only
the failing work unit-plus, of course, the records
that are being restored and hence cannot be
accessed by other work units. Other work
units should be able to continue operation
uninterrupted.

Pratt commented to us on work that some
people in the field are doing. Each user of an on
line system triggers a hierarchy of actions, he
says-programs are called, data records are ac
cessed and modified, the data base organization
may be changed (pointers and indexes amended,
etc.). The work unit concept has a different gran-

REFERENCES AND ADDITIONAL READING
1. Gibbins, T., Integrity and recovery in computer systems,

NCC Publications (National Computing Centre, Oxford
Road, Manchester Ml 7ED, U.K.) or order from Hayden
Book Company, P.O. Box 978, Edison, N.J. 08817, $9.95;
published 1976.

2. Palmer, I., Data base systems: A practical reference,
Q.E.D. Information Sciences Inc. (141 Linden Street,
Wellesley, Mass. 02181), 1975, price $29.50 prepaid.

3. Eastin, C. P., "System and software controls for on-line sys
tems," Management Controls (Peat, Marwick, Mitchell &
Co., 345 Park Avenue, New York, N.Y. 10022), June 1972,
p. 141-145.

4. Oppenheimer, G. and K. P. Clancy, "Considerations for
software protection and recovery from hardware failures
in a multiaccess, multiprogramming, single processor sys-

EDP ANALyzER published monthly and Copyright© 1976
by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each. report
are based on the best information available to us, we cannot
guarantee them. This report may not be reproduced in whole
or in part, including photocopy reproduction, without the

EDP ANALYZER, NOVEMBER 1976

ularity at each level. On any single level, a work
unit consists of the sequence of actions required to
implement a single action at a higher level. The
operating system should have knowledge of this
hierarchy and be able to determine just what has
been done so far. If a failure occurs, the recovery
system would then be able to determine just how
far to roll back. Failure at a lower level results in a
shorter rollback operation.

Lundberg observed that IMS/vs knows the
progress of each transaction during its entire life
in the system; a transaction is logged six to eight
times as it passes through the system. So the sys
tem has extensive information upon which to base
action. In addition, he sees future progress in sev
eral other areas of recovery system design. One is
dynamic checkpoint and file dumping, so that
these can proceed automatically and without in
terrupting normal processing. Another is the par
titioning of data bases. And another area is
dynamic forward recovery, making use of the
partitions of the data base.

So, as good as some of today's recovery systems
may be, there is still substantial room for
enhancements.

tern," Proceedings of 1968 FJCC (AFIPS Press, 210 Summit
Avenue, Montvale, N.J. 07645) p. 29-37; price (microfiche)
$20.

5. Browne, J. C. and G. L. Lasseter, "An optimizable model
for application of rollback/restart/recovery procedures for
large data bases," Proceedings of International Conference
on Very Large Data Bases (order from ACM, 1133 Avenue
of the Americas, New York, N.Y. 10036), 1975, price $15
prepaid. This is a summary of the paper. For further infor
mation on the complete paper, write Prof. J. C. Browne,
Department of Computer Sciences, University of Texas,
Austin, Texas 78712.

6. Tonik, A. B., "Bibliography on checkpoint, restart, and re
covery papers," ACM Performance Evaluation Review
(ACM, 1133 Avenue of the Americas, New York, N.Y.
10036), April 1976, p. 100-104; price $2.50.

written permission of the publisher. Richard G. Canning, Edi
tor and Publisher. Subscription rates and back issue prices on
last page. Please report non-receipt of an issue within one
month of normal receiving date. Missing issues requested af
ter this time will be supplied at regular rate.

11

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1973 (Volume 11)
Number

1. The Emerging Computer Networks
2. Distributed Intelligence in Data Communications
3. Developments in Data Transmission
4. Computer Progress in Japan
5. A Structure for EDP Projects
6. The Cautious Path to a Data Base
7. Long Term Data Retention
8. In Your Future: Distributed Systems?
9. Computer Fraud and Embezzlement

10. The Psychology of Mixed Installations
11. The Effects of Charge-Back Policies
12. Protecting Valuable Data-Part 1

1974 (Volume 12)
Number

1. Protecting Valuable Data-Part 2
2. The Current Status of Data Management
3. Problem Areas in Data Management
4. Issues in Programming Management
5. The Search for Software Reliability
6. The Advent of Structured Programming
7. Charging for Computer Services
8. Structure~ for Future Systems
9. The Upgrading of Computer Operators

10. What's Happening with ConASYL-type DBMs?
11. The Data Dictionary/Directory Function
12. Improve the System Building Process

1975 (Volume 13)
Number

1. Progress Toward International Data Networks
2. Soon: Public Packet Switched Networks
3. The Internal Auditor and the Computer
4. Improvements in Man/Machine Interfacing
5. "Are We Doing the Right Things?"
6. "Are We Doing Things Right?"
7. "Do We Have the Right Resources?"
8. The Benefits of Standard Practices
9. Progress Toward Easier Programming

10. The New Interactive Search Systems
11. The Debate on Information Privacy: Part 1
12. The Debate on Information Privacy: Part 2

1976 (Volume 14)
Number

1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems

(List of subiects prior to 1973 sent upon request)

PRICE SCHEDULE

The annual subscription price for EDP ANALYZER is $48. The two year price is $88 and the three
year price is $120; postpaid surface delivery to the U.S., Canada, and Mexico. (Optional air mail delivery
to Canada and Mexico available at extra cost.)

Subscriptions to other countries are: One year $60, two years, $112, and three years $156. These
prices include AIR MAIL postage. All prices in U.S. dollars.

Attractive binders for holding 12 issues of EDP ANALYZER are available at $4.75. Californians
please add 29¢ sales tax.

Because of the continuing demand for back issues, all previous reports are available. Price: $6 each
(for U.S., Canada, and Mexico), and $7 elsewhere; includes air mail postage.

Reduced rates are in effect for multiple subscriptions and for multiple copies of back issues. Please
write for rates.

Subscription agency orders limited to single copy, one-, two-, and three-year subscriptions only.

Send your order and check to: Send editorial correspondence to:
EDP ANALYZER EDP ANALYZER
Subscription Office Editorial Office
925 Anza Avenue 925 Anza Avenue
Vista, California 92083 Vista, California 92083
Phone: (714) 724-3233 Phone: (714) 724-5900

Name·~--------------------------------------

Company~-------------------------------------

Address.~-------------------------------------~

City, State, ZIP Code---------------------------------

