March 17, 1994
THE DESIGN MAGAZINE OF THE ELECTRONICS INDUSTRY

TECCNOLOGY UpDatis
Intelligent power ICs: Auto applications drive up single chip's IQ pg 27

PC-based EDA-

 tool directory: 83 vendors pg 41
DEsicN IDEAS

 pg 67Digital potentiometer controls LCD bias

Programmable diode biases bridge
Synchronized regulator produces coherent noise
Circuit measures software-execution time

Switching-regulator output goes below $\mathrm{V}_{\text {Ref }}$
Pulse-width adjuster reverses servo motor

The ADCI 2062 ~ Fast sampling rate of 1 MHz ~ Ultra low power dissipation of 75 mW max. @ +5 V ~ For demanding instrumentation and communications applications ~ EEPROM trimming architecture guarantees excellent DC and AC performance (Gain error $= \pm 1 \mathrm{LSB} ;$ Offset error $= \pm 1.25 \mathrm{LSB} ; \mathrm{DNL}= \pm 0.95 \mathrm{LSB} ; \mathrm{INL}= \pm 1.0 \mathrm{LSB} ; \mathrm{SNR}=69.5 \mathrm{~dB}$; THD $=70 \mathrm{~dB}$) ~ 2-channel MUX, on-board sample/hold and high-speed parallel interface
\sim For a free product sample kit and ordering information, call 1-800-NAT-SEMI, Ext. 271.

© 1994 National Semiconductor Corporation. NORTH AMERICA: P.O. Box 7643, Mt. Prospect, IL. 60056-7643 (Tel: 1-800-628-7364, Ext. 271 Fax: 1-800-888-5113). All rights reserved.

(C) OTHE SAME WE WAVE

The same old wave of analog

I/Cs just won't cut it anymore - what with the emergence of pocketsized personal electronics, communications superhighways, and automobiles made more of silicon than metal. That's why National Semiconductor is introducing a bold, new generation of analog solutions guaranteed to help you meet the design challenges of the digital future. Solutions built to deliver the tightest specs you'll find anywhere. You see, we want to be the supplier you look to for all your analog needs. So, the next time you're face with a really tough analog problem, give us a call. Or simply tull taln ${ }^{\text {the }}$ the page. And $f_{0 r}$ yourself why we're not $t h^{e^{\operatorname{sam}_{e}}}$

old wave.

Get the world's first high-performance
 VHDL simulator with ASIC sign-off.

Wut Synopsys' VHDL System Simulator ${ }^{\mathrm{TM}}(\mathrm{VSS})$ family in your development environment and double, triple, even quadruple your productivity. Multiple engines provide fast simulation throughout the design cycle-from conception to ASIC sign-off. And an integrated family of simulators-VSS Expert ${ }^{\mathrm{TM}}$ and VSS Professional ${ }^{\mathrm{TM}}$-lets you tailor your simulation solution to your design team's needs and delivers the best simulation value available. Find out more. Call 1-800-568-2619, dept. N2, for this free booklet.

RF TRANSFORMERS

Over 80 off-the-shelf models...

3KHz-1500AHHz from \$195

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specified frequency range?.... Mini-Circuits offers a solution.

Choose impedance ratios from $1: 1$ to $36: 1$, in connector, TO-, flatpack, surface-mount, or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*). Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard, other types on request.

Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA primary current, use the T-H series. Fully detailed data appear in our 740-pg RF/IF Designer's Handbook.

Need units in a hurry?... all models are covered by our exclusive one-week shipment guarantee.
Only from Mini-Circuits.

[^0]P. O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661

Nothing stacks up like our new interface chip.

Now computer designers can downsize and simplify PCMCLA power management in all application types.

A smaller PCMCIA interface.
Our highly integrated monolithic Si9710CY interface switch eliminates many external components - reducing system

PCMCIA POWER INTERFACE
 size and improving reliability.

A more efficient PCMCIA solution.

This PCMCIA rev. 2.1 compatible IC has on-resistance as low as $150 \mathrm{~m} \Omega$, the industry's lowest, for improved tolerance on the output voltages. And its low $1-\mu \mathrm{A}$ leakage current significantly extends battery life.

A simpler Plug and Play design.
The Si9710CY, by eliminating up to seven power discretes and drivers, simplifies the design task and reduces design cycle time.

Get more efficient host adapter designs.

Contact your local Siliconix/ TEMIC sales office. Or call our toll-free hot line and ask for more technical information. 1-800-554-5565, ext. 915.

2201 Laurelwood Road, Santa Clara, CA 95054 Fax: 408-970-3995, Attn. 915

On the cover: Today's synthesis tools give you tremendous help, but they can't turn a bad designer into a competent one. The fundamental limit of logic synthesis is the designer. See our Special Report, beginning on pg 50. (Photo courtesy Synopsys; creative director, Lois DuBois; design, Kathleen Elsey Design; photodigital imaging, John Lund; chip photographs courtesy LSI Logic, Motorola, VLSI Technology, and Xilinx)

Spicial Report

Probing the limits of logic synthesis

Logic synthesis has freed designers from the complexities of gate-level design by converting RTL descriptions to optimized gatelevel logic. But ASIC, FPGA, and CPLD designers are still constrained by a dependence on silicon. Designers will need to pay more-not less-attention to layout as silicon densities continue to increase.-Ray Weiss, Technical Editor

Design Ideas

Digital potentiometer controls LCD bias 67
Programmable diode biases bridge 67
Synchronized regulator producescoherent noise
Circuit measures software-execution time 70
Switching-regulator output goes below $V_{\text {REF }}$ 74
Pulse-width adjuster reverses servo motor 76
Tichnology Updates
Intelligent power ICs:
Auto applications drive up single chip's IQ 27Power-actuator control becomes more elaborate with higher inte-gration of CMOS logic and MOSFET switching. Concentrating thisintelligence and high-current handling in single-chip SMT pack-ages invokes neat power-dissipation techniques.-Brian Kerridge,Technical Editor

[^1]

Belden Bends the Rules...

Replace Your Semi-Rigid Cable with High Performance Conformable Coax, Sweep Tested to 20 GHz

Belden ${ }^{\otimes}$ Conformable Coax doesn't stick to the straight and narrow. This precision cable moves anywhere you want and quickly conforms to suit your design. It's flexible and hand-formable, so it can be easily shaped to make tight bends, coils and curves without forming tools and equipment.
Belden was the originator of the first patented hand-formable product. Now, Belden introduces an improved design which has been re-engineered to meet the most stringent requirements in the microwave industry. This improved design electrically and physically outperforms ANY hand-formable product available. A patented composite shield consisting of copper foil tape and tin-filled braid provides unmatched electrical stability and shielding performance.
Among the other advantages Belden Conformable Coax offers are:

- Low VSWR up to 20 GHz (50 ohm cables)
- Exceptional phase stability
- Longest flex life of any hand-formable product on the market
- Reduces labor, purchasing, manufacturing and packaging expenses associated with semi-rigid coax
- Drastically reduces equipment spec drawing requirements and shortens design time
- Retains shape after bending and does not buckle when reformed.

Choose the Conformable Coax you need:

- RG-405 type 50 ohm with .087" 0.D.
- 75 ohm with . 086 " O.D. for high frequency video applications
- RG-402 type 50 ohm with .138" 0.D.

Conformable Coax is available in bulk cable spools: 50, 100, 250, 500 and 1,000 feet. For more information about the full line, call and request New Product Bulletin NP106:

1-800-BELDEN-4

Belden

Home Office

275 Washington St, Newton, MA 02158
EDN Bulletin Board: (617) 558-4241
MCI: EDNBOS
Phone (617) 558-plus 4-digit extension below Fax (617) 558-4470
To send a message to an EDN editor via Internet, add "@MCIMAIL.COM" to his or her MCl address.

Publisher

Jeffrey Patterson -4454
Editor-in-Chief
Steven H Leibson -4214

Managing Editor

Joan Morrow Lynch -4215
Gary Legg, Senior Technical Editor-4404
Charles Small, Senior Technical Editor-4556 MCI: EDNSMALL
Dan Strassberg, Senior Technical Editor -4205 MCI: EDNSTRASSBERG
John A Gallant, Technical Editor -4666
Frances T Granville,
Senior Associate Editor -4344
James P Leonard, Senior Associate Editor -4324
Erin Haskell, Associate Editor -4333
Gillian A Caulfield,
Manager of Art and Editorial Production -4263
Patricia Shaughnessy, Production Editor -4206
Ken Racicot, Senior Art Director -4708
Chinsoo Chung, Associate Art Director -4446
Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
MCI: EDNDCONNER
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI: EDNQUINNELL
David Shear, Technical Editor
Corvallis, OR: (503) 754-9310
MCl : EDNSHEAR
Anne Watson Swager, Technical Editor
Wynnewood, PA: (21'5) 645-0544
MCl: EDNSWAGER
Ray Weiss, Technical Editor
Woodland Hills, CA: (818) 704-9454
MCI: EDNWEIS'S
Brian Kerridge, Technical Editor
22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
(508) 528435; fax (508) 528430

MCl: EDNKERRIDGE
EDN Asia, Mike Markowitz, Editor
Cahners Ásia Limited
19th Floor, Centre Point
181-185 Gloucester Rd, Wanchai, Hong Kong
Phone (852) 838-2666; fax (852) 575-1690

Contributing Technical Editors
 Robert Pease, Don Powers, Dave Pryce, Bill Travis

Assistant to Editor-in-Chief
Kathy Leonard -4405

Editorial Services

Helen Benedict, Senior Secretary-4681

Marketing \& Business Director

Deborah Virtue -4779

Marketing Communications

Jean Graham, Promotion Specialist -4698

Production

Andrew Jantz, Group Manager - 4372
Karen Banks, Production Manager -4441
Kelly Brashears, Production Assistant -4601

EDN Products

301 Gibraltar Dr, Box 650
Morris Plains, NJ 07950
Phone (201)' 292-5100
Fax (201) 292-0783

Group Publisher

Terry McCoy, Jr
Associate Publisher
Steven P Wirth, (201) 292-5100, ext 380
Editorial Director
Richard Cunningham, (702) 648-2470
Editor-in-Chief
Bruce Bennett, (201) 292-5100, ext 390
Managing Editor
Carol Coleman, (201) 292-5100, ext 330
Production Manager
Sheila Rodgers, (201) 292-5100, ext 287
Customer Service Manager
Jen Brinkman, (201) 292-5100, ext 322
Design Director, Art Director
John M Angelini, Beverly Blake

March 17, 1994
Continued from page 5

Tichnology Updates

PC-based EDA-tool directory

PC-based EDA tools are challenging workstation-based tools for utility and low cost. In our directory, we've identified 83 vendors that offer a broad range of products.-Doug Conner, Technical Editor

Editorial

Harmonious convergence

$E D N$ sets to the task of naming the exploding market that's growing out of the convergence of computer, communications, and consumer technologies...How does "C-Quad" strike you?
-Steven H Leibson, Editor-in-Chief

New Products

Embedded Systems 80
Microprocessors 85
Components 88
Integrated Circuits 93
Test \& Measurement 99
Computers \& Peripherals 104
Power Sources 110
Defartmenis
News Breaks 13
EDN's International Advertisers Index 112
Career Opportunities 115

CALLING ALL AUTHORS

EDN-in collaboration with international book publisher Butterworth-Heinemann-is seeking authors to extend our exciting series of practical books about electronic hardware and software. Titles already in the EDN Series for design engineers include Analog Circuit Design, by Jim Williams; Operational Amplifiers, by Jiri Dostal; and Rechargeable Batteries Applications Handbook, by Gates Energy Products.

We have room in the series for many more professional titles. Whether you have an idea for a book or a completed manuscript, contact us. Developing an idea for a fullfledged book might be a lot easier than you think. Let EDN help you get published.

Contact: Frank Satlow, EDN Series Butterworth-Heinemann 80 Montvale Ave
Stoneham, MA 02180
Phone (617) 438-8464, ext. 241
Fax (617) 438-8103

What's the story on Toshiba? System solutions.
It's true. Nobody can add more value to your system more ways than Toshiba. From 32-bit RISC processors and design-defining ASICs to optimally-
essential market differentiation. Then our visible laser diodes and photo interrupters can make light of it all.

In an era of ever closer partnerships, our broad, broad line of semiconductors and ICs and our finely-honed featured microcontrollers, right down to multi-layer PCBs, we're definitely thinking "big picture" when we look at your system plans.

Let us prove
the point using an up-to-date laser printer as just one example. You'll put our wide selection of DRAM densities and organizations to good use as main memory and soup-up performance using our SRAMs as buffer memory. We've got the MROM you need for code storage. And memory cards for fonts, buffers and custom options.
 get to market sooner. And when success arrives, Toshiba's legendary manufacturing prowess assures you uninterrupted supply.

Of course, your system's quality is only as good as the sum of its parts. So we take great measures to assure the highest quality components on the market today.

version of Toshiba's system-smart story.

 in the U.S. by year end.We can provide the printed circuit board, too, along with a RISC-based CPU and microcontrollers for the print engine motor, glued together with our CMOS logic. Our finely-architected 250 ps ASICs with up to 500,000 usable gates, provide a higher level of functional integration for

And we top it all off with an unrivaled customer story.

End of story? No, that's just the beginning. Call us today for all the ways we can make your next design a little more elegant, a little more effective and a lot more competitive. 1-800-879-4963.

Rides Any Bus.

2

PCnet-ISA

Presenting The PCnet" Family: Software-Compatible Ethernet Controllers That Address All Of Your Bus Needs.

Here's a prime example of how to get along with everyone - with the PCnet Ethernet controller family from Advanced Micro Devices. PCnet controllers are compatible with the most popular PC bus architectures, the most popular Network Operating Systems (NOS) and the entire controller family uses the same driver for each NOS.

It's the Ethernet controller family NOS vendors are already quite familiar with. In fact, it's vendor certified as 100% compatible with operating systems like NetWare, Windows NT, ${ }^{\text {™ }}$ LAN Manager, and LANtastic.

What's more, the PCnet family uses a high performance Bus Mastering architecture, for higher throughput and lower CPU utilization.

Talks To Any Driver.

Plus, your designs require no extra memory saving you board space, money, and power. For additional power savings, PCnet devices support two power-down modes for notebook and green PC designs.

Virtually any design will love the PCnet controllers, since they're available now in VL PCI, and jumperless Microsoft Plug and Play ISA versions. And our new PCnet-SCSI combines both high performance Ethernet and SCSI capabilities.

For more information on the PCnet family, call AMD ${ }^{\circ}$ today. Soon your next PC will be talking to everyone.
(2Gs/s Sample Rate, 500 MHz Bandwidth)

(8 Mbytes Acquisition Memory)

(Unsurpassed Triggering, Measurements \& Waveform MATH)

TSSI and See Technologies merge to form Summit Design

TSSI, a developer of software for test-program-development and timingspecification tools, is merging with See Technologies, a developer of electronic-system-design-automation (ESDA) tools. The result of the merger is Summit Design, a company that offers both test-development and ESDA tools.

The first ESDA offering from Summit is Visual HDL, a tool for graphically creating and verifying VHDL design. Visual HDL lets you specify a design using text or graphical specifications, such as block diagrams, state diagrams, flow charts, and truth tables. The tool also provides an interactive simulator with a source-level debugger. To simplify debugging, the debugger couples design input and simulation results in a cause-and-effect relationship.

According to the company, beta-site users spend less than one-third the time developing designs compared with text-editor-based VHDL-design methods. Visual HDL is available now for $\$ 12,500$ running under Microsoft Windows. The company plans to ship a $\$ 25,000$ Unix version in the first half of this year.

Summit is also introducing Xpert HDL, a VHDL-design-specification and -management tool that focuses on the top-down design of ICs and electronic systems. The tool streamlines the flow between specification, simulation, and synthesis; it includes an IEEE-1076compliant VHDL parser and text editor that check for syntax errors on-line as you enter code. Xpert HDL also offers predefined templates that speed design of all standard VHDL constructs and let you customize them to enforce uniform coding styles across a design team. The tool makes on-line checks of VHDL to verify its coding for compatibility with Synopsys and Viewlogic synthesis tools. The object-oriented browser lets you traverse the design hierarchy to locate related pieces of code. For example, by specifying a signal, you can see everywhere that signal is driven in the VHDL description. Xpert HDL costs $\$ 7500$ and will be available in April for Sun work-stations.-by Doug Conner

Summit Design, Beaverton, OR, (503) 643-9281.

Circle No. 415

Workstations go portable

Two new SPARC-based workstations let you take your design work home or on the road. The first, from Sun Microsystems Computer Corp, provides new levels of workstation performance for a portable unit; the other, from Tadpole Technology Inc, is easier to take with you and costs less. Sun's 13-lb unit has a "lunch-box" configuration; Tadpole's, at 6 lbs , is a more conventional laptop style. Both are available in color and monochrome versions.
Sun's Voyager uses a $60-\mathrm{MHz}$ MicroSPARC II processor and delivers performance of 43 SPECint92 and 37 SPECfp92. Tadpole's SPARCbook 3, with a $50-\mathrm{MHz}$ MicroSPARC processor (the Texas Instruments TMS390S10) provides 26 SPECint92 and 21 SPECfp92. A price difference goes along with the performance difference: Sun's units cost $\$ 10,000$ to $\$ 15,000$; Tadpole's go for $\$ 7500$ to $\$ 10,000$.

Display capabilities reflect the price differences, too. Sun's portables have 1024×768-pixel (color) or 1152×900-pixel (monochrome) displays; Tadpole's units have 640×480-pixel displays, but special software lets you emulate workstation displays up to 1280×960 pixels. You can also connect any of the workstations to an external monitor and get a regular workstation displayfor example, 1280×1024 or 1152×900 pixels with the Tadpole units, depending on model type.

Sun and Tadpole workstations are similarly configured. The Sun units can have 16 to 80 Mbytes of RAM; Tadpole's have from 16 to 64 Mbytes. Sun has a 340-Mbyte hard disk; Tadpole offers both 340- and 520-Mbyte removable drives. All the workstations have two PCMCIA slots, allowing use of two Type I or II cards or one Type III device. Tadpole provides a built-in $14.4-\mathrm{kbps}$ data/fax modem; Sun's modem is an optional PCMCIA card. Sun's units offer ISDN capability, as does one of Tadpole's. Tadpole provides Solaris 1.1 or 2.3 software; Sun provides Solaris 2.3.

Tadpole claims the SPARCbook 3 operates for one hour on internal, rechargeable nickel-metal-hydride batteries and five hours from external nickel-cadmium batteries. Sun's Voyager is more transportable than portable, in that battery operation is the exception rather than the rule. Sun claims system power consumption for the Voyager will be 40 to 50 W max and 20 to 25 W typ.-by Gary Legg

Sun Microsystems Computer Corp, Mountain View, CA, (800) 821-4643.
Circle No. 416
Tadpole Technology Inc, Austin, TX, (512) 219-2200.
Circle No. 417

Tadpole's 6 -lb SPARCbook 3 portable workstation delivers 26 SPECint92 and 21 SPECfp92 and costs $\$ 7500$ to $\$ 10,000$.

Service will research electronics end users

The Business Research Group (BRG), a division of Cahners Publishing Company, has launched the Electronics Research Service (ERS), a marketresearch service for the semiconductor and electronics industries. ERS' first study was on multimedia: It estimated that, for 1994, North American companies will spend $\$ 4.8$ billion on business and commercial multimedia applications. Other research topics include network integration and wireless communications.
BRG sells research reports that analyze specific markets by surveying OEMs and end users in the electronics and semiconductor industries. Research reports detail end-user buying behavior, captive-supplier applications, market trends, overseas-supplier trends, application development, and technology/ industry standards.-by Jim Leonard

Business Research Group, Cahners Publishing Co, Newton, MA, (617) 6303900 , fax (617) 558-4585. Circle No. 418

Server supports remote Unix access over Internet Protocol

Age Logic Inc has announced XoftWare/32 for Windows, Serial Edition, which is based on the company's Serial ConneXion technology. Serial ConneXion transmits compressed data over Internet Protocol lines, transmits Unix applications over remote and serial phone lines, and permits the access and display of multiple applications from multiple hosts. The software accommodates users who want to use serial-line connections within corporate environments and those who need to access Unix hosts from a PC via modem at a remote site.

XoftWare/32 for Windows is currently in beta testing. The company plans to release the package in April, and versions for Windows NT and for OS/2 will be available in the second quarter. The software comes with Age's Professional Edition utilities, which include a network file manager that manages display and transfer of local and remote files and allows users to print Unix files on local PC printers. XoftWare/32 for Windows
costs $\$ 245$; each supported host system requires Serial Host ConneXion, which costs $\$ 125$.-by Fran Granville

Age Logic Inc, San Diego, CA, (619) 455-8600.

Circle No. 419

Chip puts ATM on twisted-pair wire

Handling data rates as high as 155 Mbps, the ML6672 transceiver device connects asynchronous-transfer-mode (ATM) systems to Category 5 twistedpair wire. The device replaces the fiberoptics drivers and receivers in what would typically be a synchronous-opti-cal-network (SONET) link. The transceiver senses the strength of incoming signals and uses that information to tune an equalization circuit to remove distortions in the signal. It sends signals as far as 100 m . Cost is $\$ 20(1000)$ for the 32 -pin plastic leaded chip carri-er-packaged transceiver.
-by Richard A Quinnell Micro Linear Corp, San Jose, CA, (408) 433-5200.

Circle No. 420

Fiber-optic module runs at 1.5 Gbps

The FTR-8510 integrated optical transceiver uses ordinary compact-disk laser diodes and multimode fiber but acheives data rates from 100 Mbps to 1.5 Gbps with a 10^{-16} bit error rate. The module uses 0.8 W at 5 V and includes the optical receiver, a transmitter, and link-control logic. The control logic includes self-test and optical diagnostic circuits, so it can provide status information on power transmitted and received, bias voltages, and transmitter temperature. The module costs $\$ 660$.
-by Richard A Quinnell
Finisar Corp, Menlo Park, CA, (415) 364-2722.

Circle No. 421

Wireless networks get a boost

In late January, the Electronics Industry Association of Alberta, Canada, selected Wi-LAN's Model 902-20 wireless local-area network (LAN) as best new technology of 1993. Model 902-20 is a $20-\mathrm{Mbps}$ wireless LAN that plugs into conventional network interface cards; the unit handles three times more users
than Ethernet can-at a rate exceeding the capability of standard Ethernet cable. For security, the wireless LAN's modulation technique makes radio signals difficult to intercept and decipher. The $902-20$'s multicode direct-sequence, spread-spectrum-modulation technology results from a partnership between the University of Calgary and AGT Ltd (Calgary, AB, Canada) under a grant from the National Research Council of Canada.-by Jim Leonard

Wi-LAN Inc, Calgary, AB, Canada, (403) 273-9133.

Circle No. 422

SHORTS

Methode and Finisar announce joint-development agreement. Methode Electronics has announced a joint-development and license agreement with Finisar Inc to develop a line of high-speed, short-wave, low-cost optical data links. Methode Electronics Inc, Chicago, IL, (800) 323-6858.

Circle No. 557
Finisar Inc, Menlo Park, CA, (415) 364-2722.

Circle No. 423
AMD and Digital announce foundry agreement. Advanced Micro Devices (AMD) and Digital Equipment Corp (DEC) have announced an agreement under which DEC will produce wafers for AMD's Am486 μ P family at DEC's South Queensferry, Scotland, manufacturing facility. Under the agreement, DEC will use its 0.68 $\mu \mathrm{m}$ process technology. Advanced Micro Devices, Sunnyvale, CA, (408) 732-2400.

Circle №. 558 Digital Equipment Corp, Hudson, MA, (508) 568-4352. Circle No. 424
VHDL International User's Forum to meet in May. "Enabling the System Design Process" is the theme for the VHDL International User's Forum Spring 1994 Conference. The conference will take place on May 1 to 4 at the Claremont Resort and Spa in Oakland, CA. The conference comprises technical and user sessions on system aspects of conceptualization, design, test, synthesis, and modeling. VHDL International, Menlo Park, CA, (415) 329-0578.

Circle No. 425

Finally...

Digital Analysis You Can Use!

If you are a designer who works on real-world digital circuits, you need an EDA system that allows you to efficiently verify and debug your design. The Design Center desktop EDA system with the PLogic digital circuit simulator provides the features you need.

- Digital worst-case (min/max) timing analysis helps you find timing problems in your design using the range of delays specified by the manufacturer. This technique can find problems that simple single-delay methods can't-even with multiple runs.
- When there are problems with your design, such as setup/hold or worst-case timing violations, the Design Center eliminates the guesswork. Detailed warning messages lead you directly to the timing errors; interactive capabilities help you automatically associate selected messages with corresponding waveforms.
- The Design Center's unencrypted libraries offer over 1,800 off-the-shelf digital devices including TTL, CMOS, 10 K and 100 K ECL, and PLD devices. All of this at no extra cost! You can also easily model new devices directly from specifications provided in data books. PLogic supports pin-to-pin delay specifications, timing constraints, and logic expressions, as well as a wide variety of low-level primitives.
- If you design with standard or complex PLDs, the Design Center with PLSyn provides you with fully integrated device-independent logic synthesis. Design and simulate using any mixture of programmable logic and discrete digital parts. Then, let PLSyn automatically partition and fit your programmable logic into one or more parts of your choosing.
You can count on the Design Center with PLogic for state-of-the-art technology, reliability, and performance. Call today for more information!

MicroSim Corporation

The Desktop EDA Company

Systems on silicon enter

the 3Vera.

New 0.5-micron, Cell-Based ASICs run 50\% faster, consume $\mathbf{7 0 \%}$ less power.

Systems on silicon have reached a higher level of performance and a lower level of power consumption with the introduction of NEC's 0.5 -micron, Cell-Based ASICs. Optimized for true 3 V operation, our CB-C8 family offers exciting new possibilities for designers of telecom, personal computer and consumer systems.

CB-C8 ASICs give you a loaded speed of 220 picoseconds,* power dissipation of only $0.8 \mu \mathrm{~W} / \mathrm{MHz} /$ cell and high integration of up to 600,000 gates. Compared to our previous generation of 0.8 -micron ASICs, the new family offers a 50% boost in speed and a 70% drop in power consumption. $\quad{ }^{F} F /=2, L=2 m m$, pouer gate

Since speed to market counts almost as much as internal system speed, we offer a comprehensive cell library to facilitate your development of 3 V systems on silicon. Macros include:
$\square \mathrm{V} 30 \mathrm{MX}$ CPU (33 MHz , 8086-compatible)
\square PLL, GTL, PCI* and RAMBUS**
$\square \mathrm{A} / \mathrm{D}$ and D / A converters ${ }^{*} \quad \cdot$ 'under development
Our OpenCAD ${ }^{\circledR}$ Design System also helps to shorten the development cycle. A unified front-to-back-end design package, OpenCAD allows you to mix and match our tools with those of the industry's most popular vendors.

Fast enough to match speeds with the industry's foremost microprocessors, yet featuring exceptionally low power dissipation, our CB-C8 ASICs offer a no-compromise solution to your design needs. For more information on how the CB-C8 family can improve performance for your cellular phone, personal digital assistant, multimedia platform, graphics system, PC or workstation, call NEC today.

All registered trademarks are property of their respective bolders.

High-Bandwidth Computing and Internetworking. Most FIFOs just aren't cut out for these applications. TT's are.

Texas Instruments FIFOs fit your applications like they were made for them. Because they are.

High-bandwidth computing FIFOs. Parallel processing systems using RISC and X86 CPU architectures demand reduced latency and increased data integrity levels. TT's highbandwidth computing FIFOs allow faster transfer speeds and higher reliability by providing quick access times, parity generation and checking and bidirectional mailbox registers.

Internetworking
FIFOs. Internetworking end equipment such as switches, hubs, bridges and routers provides connectivity and interoperability between the various LANs and WANs. Our internetworking FIFOs aid in protocol conversion by incorporating byte swapping and bus matching features to control the flow of information.

Why compromise?

 These are just a part of TT's application-specific FIFOs. So rather than compromising withtraditional off-the-shelf FIFOs or custom solutions, you can buy an application-specific solution. One that helps you cut design time, reduce board and memory space and increase system performance. At TI, FIFO means fast in, fast out.

TI's advanced FIFO portfolio offers solutions in standard and fine-pitch packaging. Architectures range from 64 to 4 K word depths and 1 - to 36 -bit widths. High-speed clocked architectures feature multistage synchronization circuitry for improved metastability characteristics.

More than FIFOs. With our FIFOs you get the Total Integration ${ }^{\text {TM }}$ benefits you've come to expect from TI: leading-edge silicon, technical information, design tools and worldwide service and support.

So if you're ready to begin using FIFOs that are really cut out for the job, return the reply card or call 1-800-4778924, ext. 3033, today. And discover the FIFOs that really fit your applications.

EXTENDING YOUR REACH
WITH TOTAL INTEGRATION"

FAST Track to FAST SCSI

90's Challenges. The 90's demand higher levels of performance and faster delivery than ever. Time-to-market, technological demands, and changing user needs make fast, simple SCSI seem as elusive as the horizon. To stay ahead in these challenging times, you need products you can count on, with proven ability to deliver the quality and reliability your customers require.

90's Products. After over a decade of industry leadership, NCR is still working hard to meet your needs and the challenges of the 90 's. The NCR 53 C 90 family of SCSI Controllers is constantly evolving, implementing and offering state-of-the-art products. For example, the NCR 53C90 family supports multiple bus architectures, advanced SCSI-2 commands, fast SCSI data transfers and provides our exclusive TolerANT ${ }^{\circledR}$ SCSI driver and receiver technology, for reliable data transfers in

every SCSI system.
 The NCR 53C90 Family
 Proven Performance for the 90's and Beyond

EDN-EDITORIAL

Harmonious convergence

Jesse H. Neal
Editorial Achievement Award 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

The world is rapidly going digital, and a lot of people are spending tremendous amounts of time and energy trying to name the market that's emerging from the convergence of computer, communications, and consumer technologies. I'd like to suggest an appropriate name, so that we can stop wasting time and energy on the name and concentrate on something useful-such as creating more products and services for the market.

Existing products and services that are the early fruits of this great digital convergence include such diverse items as CD players, $\mu \mathrm{P}$-based televisions, music synthesizers, cellular telephones, digital bathroom scales, and on-line information services, such as CompuServe and Prodigy.

Thus, I submit for your approval the name "C-Quad" to represent the four dimensions of this market: convergence, computer, communications, and consumer. Here are the top 10 reasons for adopting this name:

10It's a short, 2-syllable word that doesn't mean anything in particular, making it a perfect marketing tool for the '90s.

9
It has a military heritage (precursors being C\&C for "command and control," and C-cubed for "computers, command, and control"), thus satisfying
the current requirement to convert military technology for civilian use.

8
7It vaguely reminds you of "quadraphonic," a prehistoric C-Quad product. Unlike PCMCIA, it's short enough to remember and much easier to pronounce.
6 It's cryptic enough to make you sound smart when you use it.
54 You can abbreviate it as " C^{4} " to O, 4 save space (it's ecological) and to look really cool.
2 The 4-D aspect indicates that this O technology can take us anywhere in time and space.
2 I lived in Boulder, CO, which was an energy nexus during 1987's Harmonic Convergence, so, having been infused with the energies of that event, I am somewhat of a convergence expert.
1 It's a much better name than any1 thing else currently on the table.
And, to help you become accustomed to the phrase, here are a few usage examples: director of C-Quad development, C-Quad engineer, C-Quad market analyst, C-Quad Magazine, VP of CQuad marketing. I'm sure you get the idea. Use the phrase a bit, and it starts to roll off your tongue. Honest.

OK, with the market's name behind us, let's go forth and work up some really great products to make it take off.

Steven H Leibson Editor-in-Chief

[^2]
Who can you ask to help build PCMCIA cards?

With credit card sized PCMCIA devices suddenly everywhere,

Ask AlliedSignal.

Also, through our joint development program with raw material
you may be seeing a special opportunity.
You may also be facing the challenge of working
\qquad with ultra-thin core materials.

AlliedSignal offers you not only a complete range of products, but also expertise in the processing and handling of thin laminate materials.
suppliers, fabricators and end users, we can discuss special laminates and prepregs for optimum performance and yield in PCMCIA cards.

Just ask for our paper on PCMCIA board fab. In the U.S., call: 1-800-824-8319. In Europe: (49) 2267-67-116. In Asia: (852) 418-1318.

SlliedSignal

Ininoduanc the worids SMAMEST 15 WAIT SOLAIED DC-DC CONVERIER.

Advancing the State-

 of-the-Art for BoardMounted Converters.Throwing out all the old design concepts, Power Trends has advanced the state-of-the-art again. This time it's for board-mounted DC-DC converters. By using switching frequencies greater than 650 kHz , planar magnetics and surfacemount construction-we have now produced the industry's smallest and most reliable 15 Watt isolated DC-DC converters.

Not only are the new products much smaller than competitive designs, but-with fewer componentsthey also significantly advance product reliability.

FEATURING

- Smallest footprint: 1.45 " $\times 1.64$ " $\times 0.38$ "
- Wide input voltage range: 36 V to 72 V
- 80% efficiency
- Temperature range: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 500 VDC isolation
- Planar magnetics
rated power up to $70^{\circ} \mathrm{C}$ without additional heatsinks. They provide 80% efficiency, 500 VDC isolation, and are ideally suited for telecom, industrial, computer, medical, and other distributed-power applications requiring input-to-output isolation.

Send for a spec-and-applications brochure, or
call and ask about samples. medical and other distributed-power applications

Three products are initially available-the PT3101A, a 48V-to-5V unit; the PT3102A, a 48 V -to-12 2 V unit; and the PT3103A, a 48V-to15V unit. All three products operate over an input voltage range of 36 to 72 VDC and provide their

The Circuit Breaker

The new UCC3912 is an electronic circuit breaker that knows better.

When your designs demand high reliability, you can count on the UCC3912 to manage your hot swap and circuit breaker functions. All control and housekeeping functions are integrated, and are externally programmable.

Faster than a fuse or thermal breaker, the UCC3912 has both auto recovery and current limiting capability. Call, FAX or write us today for further information.

The UCC3912 Advantages

- Digital programmable current limit from 0 to 3A
- Integrated 0.2 ohm power MOSFET
- Power down/sleep mode capability
- 3 V to 8 V operation
- Power SOIC, low thermal resistance packaging
- Programmable on time/start delay
- Excellent for applications that switch or plug into a common bus, hotswap, or SCSI termpower

INTELLIGENT POWER ICS

Auto applications drive up single chip's IQ

BRIAN KERRIDGE, Technical Editor

> Power-actuator control becomes more elaborate with higher integration of CMOS logic and MOSFET switching. Concentrating this intelligence and high-current handling in single-chip SMT packages invokes neat powerdissipation techniques.

The idea of microcontrollers and high-current switches sharing silicon in single-chip devices seems both incongruous and unlikely, but, nonetheless, is one direction intelligent power technology is moving. The requirement for this unusual combination follows mainly from automotive applications, which demand increasingly greater logic complexity and power handling coupled with lower cost and component count. Small package size is also a prerequisite, because these applications require the IC to mount inside the power actuator it controls.

Typical auto applications include control of mirrors, seats, windows, and instrument panels, and all require ICs with approximately $60 \mathrm{~V}, 4 \mathrm{~A}$ rating. Other applications, such as computer peripherals, telecommunications, and consumer products can be equally demanding. For example, disk drive and printer motors also require internal control ICs, and toasters, shavers, and battery chargers need offline switching ability to 600 V .

For many applications, logic circuits consisting of standard gates, shift registers, and latches generally provide adequate intelligence. But as logic density increases to include microcontrollers with EPROM, EEPROM, or masked ROM, these same applications benefit from a new level of sophistication. The ability to program and reprogram intelligent power functions allows the IC to adjust or adapt its control characteristics to match different requirements in the controlled device.

For example, resetting zero offsets or scale limits to counter aging or wear in mechanical parts optimizes performance and extends useful product life. Equally innovative, reprogramming current limits or temperature trips adapts devices to different environments or locations. Alternatively, initial programming in manufacture can adapt the same device to suit a family of models, maybe by programming output stage configuration from eight single-ended drivers, to four half H-bridges, to two full Hbridges. Yet other examples include setting up ICs for left- or right-hand functions in autos, or more simply, as a store for product identity, service, or diagnostic data.

Vendors variously describe their intelli-gent-power-device families as Smart power, SmartMOS, and Powerlogic. But whatever the family title, BCD is a common label for

SGS-Thomson's H081 technology demonstrator IC combines an ST6 8 -bit microcontroller with a 60 V , full H -bridge power output stage $\left(R_{\text {os }(0 n)}=0.3 \Omega\right)$.

INTELIIGENT POWER ICs

the process (bipolar, CMOS, and DMOS technologies combined on the same chip). DMOS (double-diffused MOS) describes a particular form of powerMOSFET switch that exhibits low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ (Ref 1).

Each semiconductor technology in the BCD trio donates its own virtue: Bipolar parts add precision to circuits such as voltage references and current and temperature limits; CMOS parts establish the IC's overall IQ; and DMOS parts furnish output switching and power handling.

To meet user demand for higher logic density and power handling, vendors have moved their BCD processes from 4 - to $2.5-\mu \mathrm{m}$ lithography. Most recently, SGS-Thomson announced a process, labeled BCD3, that uses $1.2-\mu \mathrm{m}$ line width.

Each line-width shrink yields valuable design gains. For example, at each shrink, not only does logic density multiply by approximately 2.5 , but DMOS $\mathrm{R}_{\mathrm{DS}(\text { on })}$ approximately halves. This intriguing $\mathrm{R}_{\mathrm{DS}(o n)}$ bonus occurs because a lithography shrink concentrates individual cells that comprise a DMOS conduction channel. More cells in a given area of silicon produce a higher current density and lower resistance.

Currently, vendors' mainstream business runs on a $2.5-\mu \mathrm{m}$ process, which typically yields a CMOS logic density around 1600 transistors $/ \mathrm{mm}^{2}$ and 60 V DMOS power transistors with an $\mathrm{R}_{\mathrm{DS}(\text { on })}$ of $0.5 \Omega \cdot \mathrm{~mm}^{2}$. In contrast, SGS-Thomson's BCD3 process will yield 4000 transistors $/ \mathrm{mm}^{2}$ and $\mathrm{R}_{\mathrm{DS}(\mathrm{n})}$ of $0.25 \Omega \cdot \mathrm{~mm}^{2}$.

Power limits feasibility

Although logic density and power handling are key factors, cost and size are of overriding importance in today's intelligent power ICs. At unit volume levels in this type of business, cost is directly proportional to IC die size. In practice, it's the power handling ability you demand from an intelligent power IC, rather than CMOS logic complexity, that mostly governs feasibility and price. In a typical intelligent power IC, bipolar and CMOS sections each occupy 25% of the die, with the DMOS power section taking up the remaining 50%.

Looking ahead

SGS-Thomson Microelectronics is the principal proponent of high-IQ power chips that embody a microcontroller. At present, the company offers samples of an H08 1 technology-demonstrator IC that includes an ST6 8-bit microcontroller with a $60 \mathrm{~V}, 0.3 \Omega \mathrm{R}_{\mathrm{DS}(o n),} 3 \mathrm{~A} \mathrm{H}$-bridge power section. The company expects to ship commercial versions-equivalent in complexity to H081 and with on-chip EEPROM or masked ROM-later this year. The volume price target is approximately \$6. SGS-Thomson's further plans reveal that, by 1996 , the BCD process will use 0.8 - and $0.5-\mu \mathrm{m}$ lithography. At that stage, you can expect the addition of flash memory and DSP cores to deliver intelligent power ICs a further IQ hike.

The Philips Powerlogic octal low-side driver for automotive applications is a typical example of BCD (bipolar, CMOS, and DMOS) technologies combined in a single chip. Bipolar parts provide precision for supply, references, and current-limiting circuits. CMOS offers logic gates, shift register, and latches. DMOS provides the power-handling elements.

Quick Just Got Quicker

4000 Usable Gate FPGA at over 150 MHz .

A new breed of superfast antifuse FPGA's is blowing away the competition in standard PREP ${ }^{T m}$ benchmarks.

The WildCat series of FPGA's from QuickLogic introduces its first member - the WildCat 4000 . With more than 4000 usable gates this cost-effective WildCat flies at an astounding 150 megahertz in the PREP DataPath benchmark.

Presentations use or include the most recent PREP PLD Benchmark data which was measured according to Benchmark Suite \#1, Version 1.2, dated 3/28/93. Any analysis is not endorsed by PREP.

Results, not Hype

Call or fax us for information on our $\$ 99$ starter kit. This kit includes all the tools you need to enter, simulate, and analyze your design. You'll find that the WildCat 4000 delivers results in the most demanding high-performance applications. And you'll find out what Quick really means.

Look to the company that lives up to its name for fast solutions to today's high speed, high density design requirements. For QUICK response fax us at (408)987-2012 or call 1-800-842-FPGA (3742) to learn more about WildCat SuperFast FPGAs.

2933 Bunker Hill Lane, Santa Clara, California 95054

[^3]
INTELLIGENT POWER ICs

Although lower $\mathrm{R}_{\mathrm{DS}(o n)}$ implies greater current handling for a given package size, users' parallel demand for smaller packages threatens to partly negate this advantage. In addition to lower cost, users now require intelligent power ICs in small-outline (SO) packages, which fit within the actuators they control. To satisfy these demands, vendors have been driven to design new packages and to explore more elaborate mounting techniques (see box, "Knowing what's watt").

By concentrating complexity and power-handling ability in this way, product designers, particularly in automotive applications, attain a twofold
objective. First, a self-contained subassembly simplifies final product assembly, and second, fewer internal and external connections give a significant boost to overall reliability.

Custom designs predominate

The range of vendors' intelligent-power-ICs divides into various application categories as standard or custom designs.

Philips Semiconductor's BCD Powerlogic range covers mainly custom designs in four voltage ratings: 70, 400, 650 , and 700 V . Philips' higher voltage designs address applications in the company's established lighting, TV,
and consumer business. The most recent Powerlogic-70's 70V, 4A process targets 100% automotive applications.

SGS-Thomson's Multipower BCD range is a mixture of standard and custom ICs using the company's 20 to 500 V BCD process. Standard ICs include switching regulators up to 10A rating, power-factor-correction controllers, audio power amplifiers, and a range of motor controllers. SGS-Thomson's custom business majors on computer peripheral applications such as diskdrive and printer motor controls, but it also covers automotive and telecommunications.

Designing a custom BCD IC is very

Knowing what's watt

Many intelligent power IC designs use sur-face-mount variants of otherwise conventional multipin TO-220-style packages. Even though these packages comfortably handle power dissipation up to 20W, they do not suit automatic assembly, nor are they small enough for many new applications. And, even though standard small-outline packages meet the two latter requirements, they cannot dissipate more then 2 W at best.

In order to satisfy combined requirements of dissipation, handling, and size, IC vendors have devised new packages and mounting techniques. The main innovation is the inclusion of a copper slug molded into the package and situated beneath the die. Fig \mathbf{A} shows a range of mounting schemes that use heat transfer (via the slug) into increasingly larger heat sinks to achieve dissipations of 1 to 18 W . Table 1 lists the thermal resistances junction-to-ambient, and power dissipation assuming a $50^{\circ} \mathrm{C}$ temperature rise above ambient temperature.

Fig $\mathbf{A a}$ and \mathbf{b} assume the use of standard fiber-glass resin pc-board material. Fig Ac and \mathbf{d} assume insulated metal substrate (IMS). IMS is a 3-layer material consisting of an aluminum or copper plate separated from the etched-copper-foil layer by a thermally conductive dielectric layer.

WORLD CLASS D.C. POWER SUPPLIES

Our International Plus linears offer performance, value and the important agency approvals you need, including IEC950 and VDE0871 Level B EMI. In fact, Condor has more approved linears in stock than anyone in the industry (including more than 30 models in IEC medical versions).
International Plus linears have what you're looking for:

- 115 models (single- and multi-output)
- 7 power levels (3 to 288W)
- Worldwide AC input ranges
- OVP on all 5 V outputs
- Hermetically sealed power transistors
- MTBF 200,000 + hours per Mil Hndbk 217E
- 2 -hour burn-in with cycling (8 hours on medical versions)
- Computerized testing (data sheets furnished)
- 3 -year warranty - longest in the industry
- 30-day FREE evaluation (call us for samples)

If you're looking for world class performance, quick turnaround, competitive pricing and full agency approvals, call Condor - the leader in linear D.C. power supplies.

Call for our free catalog, or see us in EEM!

CONDOR

Condor D.C. Power Supplies, Inc. 2311 Statham Parkway Oxnard, CA 93033
(805) 486-4565 • FAX (805) 487-8911
(800) 235-5929 (outside California)

CIRCLE NO. 79

No Data Acquisition Application Is Beyond Our Grasp.

Whether you're making scientific measurements to 24-bit resolution, performing FFTs in real time, or looking for a robust yet low cost solution, Data Translation has the right data acquisition solution for you. With more than 300 products, you can easily find exactly what you need.

Using our Windows-compatible software, you'll get your project up and running faster than ever. For immediate application gratification, choose one of our icon or menu-driven packages and you'll be acquiring data within minutes. Develop your applications using one of our DT-Open Layers ${ }^{\mathrm{nm}}$ compliant software tools, and rest assured that your code will run any supported board with little or no reprogramming.

SOFTWARE	HARDWARE
- DT VEE for Windows	- Up to 224 analog inputs
visual programming packag	p to 1 MHz throughpo
- Visual Basic Custom Controls for high speed ploting, data acquistion	- Highest occuracy in the industry
- Extensive C drivers and DLLs for DOS \& Windows	- Simultoneous sampling - Onbourd DSP

Whatever your needs, call Data Translation first. We have it all: the right hardware, easy-to-use software, and exceptional pre- and post-sales customer support.

And that's quite a handful.
FOR MORE INFORMATION, CALL 1-800-525-8528, EXT.
DATA TRANSLATION*

INTELLIGENT POWER ICs

much a vendor-led activity, although both Philips and SGSThomson encourage you to work with them at one of their design centers.
Harris Semiconductor's semicustom cellbased Power ASIC technology allows you more design independence. This $60 \mathrm{~V}, \mathrm{BCD}$ process uses the HPA2000 standard

Table 1-Dissipation of SGS-			
Thomson Power SO-20 package			
(Using different mounting methods in Fig A)			
Thermal resistance junction-to-air $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$			Power dissipation (W)
Fig A			

Note: Dissipation assumes $50^{\circ} \mathrm{C}$ junction rise above ambient. (Data courtesy SGS-Thomson Microelectronics)
cell library. The process includes scalable lateral DMOS devices rated at 20 A , which the company's mixed-signal Fastrack design system supports. Har-

For free information. ..

For free information on the IC products discussed in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

AT\&T

Allentown, PA
(800) 372-2447

Circle No. 302

Harris Semiconductor

Melbourne, FL
(919) 549-3603

Circle No. 303
Motorola Semiconductor
Austin, TX
(512) 928-6985

Circle No. 304
Philips Semiconductors
Riviera Beach, FL
(800) 447-3762

Circle No. 305
SGS-Thomson
Microelectronics
Phoenix, AZ
(602) $867-6100$

Circle No. 306
Siliconix
Santa Clara, CA
(408) 970-5305

Circle No. 307

Super Circle Number

For more information on the IC prod ucts available from all of the vendors listed in this box, you need only circle one number on the postage-paid reader service card.

Circle No. 308
ris also offers a range of standard Power ASIC ICs, including $1-\mathrm{MHz}$ pulse-width-modulation switching regulators and 80 V full H -bridge driver for external MOSFETs.

Siliconix also favors using BCD ICs to drive external MOSFETs, particularly for current levels greater than 1.5 A . The company believes that partitioning current at this level provides users an optimal cost-to-performance ratio. The principal advantage of external MOSFETs is a wider choice of $\mathrm{R}_{\mathrm{DS}(\text { (on) }}$, as the company's range of Little Foot SO-8 power MOSFETs with $\mathrm{R}_{\mathrm{DS}(\text { (n) }}$ values down to $60 \mathrm{~m} \Omega$ demonstrates. Siliconix also contests the view that external MOSFETs preclude the possibilities of mounting control circuits internally. The company's recently released SQFP48 5A 3-phase motor driver with external MOSFETs occupies a $2 \times 1.6-\mathrm{in}$. pc board and is small enough to fit inside the motor. EDN

Reference

1. "Understanding Power MOSFETs," McNulty, Harris Semiconductor, Application Note 7244, May 1992.

Brian Kerridge can be reached in the UK at (508) 528435, fax (508) 528430.

Article Interest Quotient
(Circle One)
High 597 Medium 598 Low 599

Serial/Parallel Conversion or Networks

CY233 connects up to 255 computers, peripherals, or remote sites. 5 v CMOS 40-pin IC works with RS232/422 drivers. 300 baud to 57.6 K baud. Supports a token in Peer or Host ring LAN modes. Numerous other operational modes:

Serial to Parallel

Host Ring

Serial Ring Network with up to 255 Nodes or stations (2048 I/O Lines)

Party Line

Alternate Topology for 2568 -bit TTL Ports or 2K I/O Lines

Only $\$ 45$ each ($\$ 16 / 1 \mathrm{~K}$). Prototyping or LAN kits also avail. Call for free info or to order $\$ 10$ manual. Credit card OK.
Cybernetic Micro Systems, Inc

PO Box 3000 - San Gregorio CA 94074
Tel: 415-726-3000 • Fax: 415-726-3003

At Toshiba, we see a new kind of tomorrow.
One where restrictive corporate borders are
transformed into paths of shared innovation.
And world-class companies work together for century - many not even imagined
the benefit of all.

A vision that's evident in our recent partnership with IBM and Siemens.

By forming an international alliance with these two industry leaders, we're pushing technology to places never before deemed practical, or even possible.

Together, we're developing an advanced generation of dynamic RAM - a 256 megabit DRAM chip.

By pioneering 0.25 micron technology, electronic
and voice recognition to become commonplace.
Drastically reduce the size of computers, Personal
Digital Assistants and communications devices.
And establish an important, standardized techno-
logical springboard for future generations of highly dense chips.

Remarkable, yes.
But no less than you'd expect from a company with one of the industry's strongest R\&D and patent records.
pathways $1 / 1600$ the width of a human hair are being used to pack 256 million bits of information - enough to hold 25,000 pages of text - onto a fingernail-sized chip.

The result will push the capacity of semiconductors by over 16 times. But that's only the beginning.

For more information on how Toshiba technology will play a part in your future, please call 1-800-879-4963.

Because at Toshiba, we're working on a world without borders. Cooperation through coalition. And innovation beyond expectation.

Intel Flash Memory is shipping in high gear. Our factory capacity is up. Our prices are coming down. And we're leading the industry in flash technology.

The shortage is over. With three flash factories now on line, Intel can support both your immediate and long-term needs. In fact, our sub-micron process

in each factory allows us to provide multiple sources for our flash products to ensure delivery.

What's more, our new capacity is so huge, we'll Intel Flash Component Pricing Trend ${ }^{*}$ outsupply all other

flash manufacturers. Combined!

We're also growing the market by driving down flash prices, making Intel Flash

but now you'll also save a ton.

Memory a viable option for virtually any new design. In fact, since Q4'93, we've dropped prices by as much as 31 percent. And by the end of the year, the volume price for our $120 \mathrm{~ns}, 8 \mathrm{Mb}$ FlashFile ${ }^{\text {TN }}$ devices will be as low as $\$ 20$.

This is an opportune time to get the design wheels rolling, too. Because you can now purchase one hundred 8 Mb devices for just $\$ 25$ each.

With chips from 256 Kb to 32 Mb , to PCMCIA Flash Cards and ATA Flash Drives, Intel also gives you
by far the broadest, most technologically advanced line of flash products in the industry.

So if you're ready to load up on flash memory, call 1-800-879-4683, ext. 101 for complete information. Because Intel is more than ready to deliver.

intel

A Symphony in EDA

Achieve Superior Performance

 With Interactive EDA Design Tools.When you lead the best players in EDA, you lead with MASSTECK. We understand the importance of playing together with an entire suite of EDA products. MaxEDA for PCB is integrated with the top players in the Open EDA Alliance for Windows ${ }_{\text {wn }}$. With MaxEDA you conduct a design from inception to manufacturing.

Call today for superior EDA design performance 1-800-MASSTECK

Interactive EDA

EDA-tool directory

DOUG CONNER, Technical Editor

> A broad range of PC-based EDA tools is challenging work-station-based tools for utility and low cost.

PC-based electron-ic-design-automation (EDA) tools have been nipping at the heels of workstationbased tools for years. Although in many cases, you must still look to the workstation-based EDA tools for leading-edge capabilities, a serious examination of PCbased EDA tools shows that they are not too far behind. Some of the same companies offering workstation-based tools also offer PC-based tools, often with virtually the same capabilities.

If you need the highest speed and the most leading-edge technology, buying a relatively inexpensive PC-based EDA tool may be false economy. Conversely, if you are spending money on Unix-based software and workstations to perform functions that you could perform just as well on a PC at a fraction of the price, you may be wasting money. The only way to make sure you are making the right choice is to occasionally evaluate the EDA tools for both workstations and PCs.

The accompanying table lists as many PC-based EDAtool manufacturers as we could track down. If you're a user of PC-based tools, the table may bring to light a few companies that you might have overlooked. If you haven't been using PC-based EDA tools, you might want to contact some of the companies offering PC-based EDA tools and try some demonstration programs.

As the table shows, most companies provide free demo software that should give you a good idea of the tools' capabilities but usually doesn't let you enter design data. For a nominal price (deductible from a product purchase), most companies also provide manuals and functional software that has a few limitations, such as the lack of saving and printing capabilities. The functional software gives you a chance to try the software and get a feel for the speed on the computer
you'll be using, all with a relatively small investment of time and money.

Many tool vendors suggest that their tools require the use of at least a 386 -based computer with 4 Mbytes of RAM. About half recommend that for fast response, you need at least a 486-based computer with 8 Mbytes of RAM. Virtually all analog simulation tools require a math coprocessor, either to operate at all or to simulate circuits of any size. The floating-point computations are too slow otherwise.

When a company offers more than one tool or configuration, the table lists two of that vendor's products. It should also help you determine the companies involved in each category of tools. Keep in mind, though, that most of the categories are relatively general.

For example, the field-programmable gate-array (FPGA)/PLD-design column indicates that the company offers products for some or all of the PLD-design process. The product may map logic into PLDs or perform place-and-route operations for FPGAs. Contact the companies for more detailed information using a reader-service card or by phone.
The table shows prices in individual categories in which the company offers products. The prices are typically starting prices. An " X " indicates that the product category is included in the system-price column or in the price of another product category. The system price does not include optional product categories.

You can reach Technical Editor Doug Conner at (805) 461 9669.

Article Interest Quotient (Circle One)
High 584 Medium 585 Low 586

Looking chead

Managers are understandably reluctant to bring PCs into a company in which workstations are the standard. Adding an operating system (OS) and electronic-designautomation tools, many of which must communicate with each other, complicate an already-complicated situation. The intertool-communications problem requires careful consideration, but managers shouldn't assume that the situation
will be any more difficult than the problem of passing data between workstationbased tools.

Windows NT or another OS should soon bridge the gap between workstations and PCs. When the bridge becomes real, managers will be able to judge hardware and software on their actual merits and not on whether their companies are PC- or workstation-based.

PC-based EDA tools

Category	Package	Schematic capture	PC-board layout	Autorouter	IC layout	FPGA /PLD design	Analog simulation	Transmission line/ signal Integrity	Mixed A/D simulation
Accel Technologies (619) 554-1000	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \$ 595 \\ & \$ 595 \end{aligned}$	$\begin{aligned} & \$ 995 \\ & \$ 5950 \end{aligned}$	$\begin{aligned} & \$ 995 \\ & \$ 5500 \end{aligned}$					
Actel (408) 739-1010	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Optional				$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$			
Advanced Micro Devices (408) 732-2400	$\begin{aligned} & 1 \\ & 2 \end{aligned}$					$\begin{aligned} & \$ 125 \\ & \$ 395 \end{aligned}$			
Advanced Microcomputer Systems (305) 784-0900	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X			X		
Aldec (805) 499-6867	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$				$\begin{aligned} & x \\ & x \end{aligned}$			
Altera (408) 894-7000	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & x \\ & X \end{aligned}$				$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$			
Altium P-CAD (800) 458-7695	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 995 \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \$ 7495 \\ & \$ 3995 \end{aligned}$	$\begin{gathered} \$ 3995 \\ X \end{gathered}$					
AT\&T Microelectronics (800) 372-2447	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Optional				$\$ 995$ $\$ 4500$			
Bay Technology (408) 688-8919	1 2	X	X	\$5000	X				
Cad Solutions Software (408) 366-1001	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{aligned} & \$ 1995 \\ & \$ 3995 \end{aligned}$						
Cadence Design Systems (408) 944-7299	1					\$4995			
CadSoft Computer (800) 858-8355	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \$ 399 \\ & \$ 599 \end{aligned}$	$\begin{aligned} & \$ 399 \\ & \$ 499 \end{aligned}$	$\begin{aligned} & \$ 399 \\ & \$ 799 \end{aligned}$					
Campilano Computing $\text { (604) } 522-6200$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \$ 995 \\ & \$ 995 \end{aligned}$	\$1500	\$700		\$1995			
Chronology (206) 869-4227	1								
CINA (415) 940-1723	1					\$495			
Compact Software (201) 881-1200	1	\$2995					\$7995		
Contec Microelectronics (408) 434-6767	1 2						X		X
Cooper and Chyan (408) 366-6966	1			\$9900					
Cypress Semiconductor (408) 943-2600	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	X				$\begin{aligned} & x \\ & x \end{aligned}$			
Data I/O (206) 881-6444	1 2	$\$ 995$ x				x x			
Design Computation (908) 681-7700	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \$ 395 \\ & \$ 495 \end{aligned}$	$\begin{aligned} & x \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \$ 295 \\ & \$ 1495 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$			$\begin{aligned} & x \\ & x \end{aligned}$	Optional Optional
Dolphin Integration (408) 727-7619	1						\$3500		\$5950
Douglas Electronics (510) 483-8770	1	\$995	\$1500	\$700		\$1995		\$1500	
Elanix (818) 597-1414	1						X		X
Electronic Design Tools (214) 871-9495	1	X	X	X	X				
Engineerium (619) 292-1900	1								
Exemplar Logic (510) 849-0937	1					\$5000			

EDN-TEchnology Update

Logic simulation (gate level)	Timing analysis	HDL synthesis	HDL simulation	Price	Minimum system ($\mu \mathrm{P}$; Mbytes)	Demo software	Circle No.	Notes
				$\begin{gathered} \$ 1695 \\ \$ 10,950 \end{gathered}$	$\begin{gathered} 286 \\ 386: 8 \end{gathered}$	Free Free	$\begin{aligned} & 427 \\ & 428 \end{aligned}$	
Optional Optional	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$			$\begin{aligned} & \$ 995 \\ & \$ 2495 \end{aligned}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	None None	$\begin{aligned} & 429 \\ & 430 \end{aligned}$	Design tools for Actel FPGAs Design tools for Actel FPGAs
				$\begin{aligned} & \$ 125 \\ & \$ 395 \end{aligned}$	$\begin{gathered} 386 \\ 386 ; 8 \end{gathered}$	Free Free	$\begin{aligned} & 431 \\ & 432 \end{aligned}$	Design tools for AMD PLDs Design tools for AMD Mach 3 and 4 PLDs
x				\$695	286	Free	433	Tools run under DOS and Windows
				\$249	286	Free	434	Tools run under DOS and Windows
$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \$ 995 \\ & \$ 495 \end{aligned}$	$\begin{aligned} & 386 ; 8 \\ & 386 ; 8 \end{aligned}$	Free Free	$\begin{aligned} & 435 \\ & 436 \end{aligned}$	
X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & \mathrm{x} \end{aligned}$		$\begin{aligned} & \$ 2490 \\ & \$ 495 \end{aligned}$	$\begin{aligned} & 486 ; 16 \\ & 486 ; 16 \end{aligned}$	Free Free	$\begin{aligned} & 437 \\ & 438 \end{aligned}$	Design tools for Altera PLDs Design tools for Altera PLDs
				$\begin{gathered} \$ 12,500 \\ \$ 3995 \end{gathered}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	$\begin{aligned} & \$ 195 \\ & \$ 195 \end{aligned}$	$\begin{aligned} & 439 \\ & 440 \end{aligned}$	PC-board design tools PC-board design tools
Optional				$\begin{aligned} & \$ 5985 \\ & \$ 4500 \end{aligned}$	$\begin{gathered} 386 ; 8 \\ 486 ; 12 \end{gathered}$	30 days 30 days	$\begin{aligned} & 441 \\ & 442 \end{aligned}$	For AT\&T FPGAs, price includes optional tools For AT\&T FPGAs
				\$4995	386; 4	Free	443	Microwave, RF, and analog design
				\$5000	386; 4	Free	444	
				$\begin{aligned} & \$ 1995 \\ & \$ 3995 \end{aligned}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	Free Free	$\begin{aligned} & 445 \\ & 446 \end{aligned}$	DOS-based CAM tools for pc boards Windows-based CAM tools for pc boards
				\$4995	486; 16	Free	447	Tools for multiarchitecture FPGA design
				$\begin{aligned} & \$ 1197 \\ & \$ 1897 \end{aligned}$	386; 1	$\begin{aligned} & \$ 12 \\ & \$ 12 \end{aligned}$	$\begin{aligned} & 448 \\ & 449 \end{aligned}$	16 -bit systems 32-bit systems
$\begin{aligned} & \$ 495 \\ & \$ 495 \end{aligned}$				$\begin{aligned} & \$ 2995 \\ & \$ 2995 \end{aligned}$	386, Macintosh 386, Macintosh	Free Free	$\begin{aligned} & 450 \\ & 451 \end{aligned}$	FPGA design is only for Mac PC board and router is only for Mac
	\$995			\$995	386; 4	Free	452	Tools for timing analysis and timing diagrams
				\$495	286	Free	453	Graphics tools to improve digital design and test
				\$9995	386; 8	Free	454	High-frequency, microwave, RF, and electromagnetic simulation
				\$3500	486; 4	None	455	Tools for analog and mixed-
					486; 4		456	signal simulation 2- and 3-D electromagnetic-field solver
				\$9900	386; 8	Free	457	
$\begin{aligned} & x \\ & \mathrm{x} \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$	x	$\begin{aligned} & \$ 4995 \\ & \$ 995 \end{aligned}$	$\begin{gathered} 486 ; 16 \\ 386 ; 4 \end{gathered}$	None None	$\begin{aligned} & 458 \\ & 459 \end{aligned}$	Design tools for Cypress PLDs Design tools for Cypress PLDs
X		$\begin{gathered} \$ 1995 \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \$ 2995 \\ x \end{gathered}$	\$5990	$\begin{aligned} & 386 ; 8 \\ & 386 ; 8 \end{aligned}$	Free Free	$\begin{aligned} & 460 \\ & 461 \end{aligned}$	FPGA and PLD design using ABEL and VHDL FPGA and PLD design using ABEL and VHDL
Optional Optional	Optional Optional			$\begin{aligned} & \$ 695 \\ & \$ 1595 \end{aligned}$	$\begin{aligned} & 8088 \\ & 8088 \end{aligned}$	Free Free	$\begin{aligned} & 462 \\ & 463 \end{aligned}$	Autorouter for surface-mount designs
\$1750			\$4750		386, 3; Macintosh	Free	464	Mixed-mode simulation
x	X				Macintosh; 2	\$25	465	
x				\$985	386; 2	Free	466	Analog and digital dynamic simulator
				\$695	386; 4	Free	467	
	\$495			\$495	286	Free	468	Tools for timing analysis and timing diagrams
		\$8000			386;16	Free	469	Verilog or VHDL for FPGA/PLD design

PC-based EDA tools (Continued)

Category Pa	Package	Schematic capture	PC-board layout	Autorouter	IC layout	FPGA /PLD design	Analog simulation	Transmission line/ signal Integrity	Mixed A/D simulation
Fintronic (415) 325-4474	1								
Frontline Design Automation (408) 456-0222	1								
Holophase (305) 584-0010	1	X	X	X					
HP-EEsof (818) 879-6200)	1 2						$\begin{gathered} \$ 3000 \\ \$ 14,000 \end{gathered}$		
HyperLynx (206) 869-2320	1							\$1295	
ICT (408) 434-0678	1					Free			
Integrity Engineering (612) 636-6913	$\begin{aligned} & 1 \\ & 2 \end{aligned}$						$\begin{gathered} \$ 5000 \\ X \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	
Intel (916) 356-3979	1					Free			
Interactive CAD Systems (408) 970-0852	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 320 \\ \times \end{gathered}$	$\begin{gathered} \$ 675 \\ X \end{gathered}$	X	$\begin{aligned} & x \\ & X \end{aligned}$				
Intergraph Electronics (205) 730-8532	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \$ 750 \\ & \$ 3500 \end{aligned}$				$\$ 1000$ $\$ 2500$			
Intusoft (310) 833-0710	1	X					X	X	X
Isdata (510) 531-8553	1	\$750				X			
IST (510) 736-2302	1					\$2800			
Ivex Design International $\text { (503) } 531-3555$	1		\$995						
Lattice Semiconductor (503) 681-0118	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	\$800				$\begin{aligned} & \$ 795 \\ & \$ 1995 \end{aligned}$			
Lewis Systems (214) 438-2177	1								
Logical Devices (305) 428-6868	1					X			
Logical Systems Corp (315) 478-0722	1		\$250						
Massteck (508) 486-0197	1 2	X	X	x \$4425					
Mental Automation (206) 641-2141	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 149 \\ \times \end{gathered}$	$\begin{gathered} \$ 149 \\ X \end{gathered}$	$\begin{gathered} \$ 149 \\ \times \end{gathered}$			\$99		
Meta-Software (408) 369-5400	1						X	X	
Microsim Irvine, CA	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 950 \\ \mathrm{X} \end{gathered}$				X	\$1495	X	$\begin{gathered} \$ 5450 \\ X \end{gathered}$
Minc (719) 590-1155	1					\$2995			
Model Technology (503) 641-1340	1					X			
Motorola (602) 962-2190	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	X				$\begin{aligned} & x \\ & x \end{aligned}$			
NeoCAD (303) 442-9121	1					\$3995			
Number One Systems (415) 968-9306	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	X	X				\$195		
Ohio Automation (614) 592-1810	1	$\begin{gathered} \$ 395 \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \$ 295 \\ \$ 95 \end{gathered}$	\$200			\$195		
Optotek (613) 591-0336	1 2						$\begin{aligned} & \$ 2000 \\ & \# 3000 \end{aligned}$		

PC-based EDA tools (Continued)

Category	Package	Schematic capture	PC-board layout	Autorouter	IC layout	FPGA /PLD design	Analog simulation	Transmission line/ signal Integrity	Mixed A/D simulation
OrCAD (503) 671-9500	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 895 \\ X \end{gathered}$	$\underset{X}{\$ 2495}$	$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{gathered} \$ 1895 \\ \times \end{gathered}$	\$1495	\$1295	\$5450
Pads Software (508) 485-4300	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 750 \\ \times \end{gathered}$	$\begin{gathered} \$ 1495 \\ \times \end{gathered}$	$\begin{gathered} \$ 5000 \\ X \end{gathered}$				\$3000,	
Phase Three Logic (503) 531-2410	1	\$495							
Protel Technology (408) 243-8143	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 995 \\ X \end{gathered}$	$\begin{gathered} \$ 2795 \\ X \end{gathered}$	$\begin{aligned} & \$ 2995 \\ & \$ 9900 \end{aligned}$					
Quad Design (805) 988-8250	1							\$10,000	
QuickLogic (408) 987-2000	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	X				$\begin{aligned} & x \\ & x \end{aligned}$			
R-Active Concepts (408) 252-2808	1 2								
Racal-Redac (508) 692-4900	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \$ 495 \\ & \$ 495 \end{aligned}$	$\begin{gathered} \$ 995 \\ \$ 6500 \end{gathered}$	Optional Optional		Optional	Optional Optional		Optional Optional
Ridley Engineering (616) 962-1181	1						\$399		
See Technologies (408) 737-2880	1								
SimuCAD (510) 487-9700	1 2					X X	x x		x x
Sophia Systems and Technology (415) 493-6700	1 2	$\$ 3750$ x	$\$ 4125$ X	\$5625		\$1500	X		$\begin{aligned} & x \\ & x \end{aligned}$
Spectrum Software (408) 738-4387	1	X					X		
Tanner Research (818) 792-3000	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 995 \\ \$ 2950 \end{gathered}$			$\begin{aligned} & \$ 3495 \\ & \$ 9950 \end{aligned}$	X	$\begin{aligned} & \$ 1245 \\ & \$ 3650 \end{aligned}$		$\begin{aligned} & x \\ & x \end{aligned}$
Tatum Labs (313) 663-8810	1 2	\$263					$\begin{aligned} & \$ 775 \\ & \$ 895 \end{aligned}$		X
Tesoft (404) 751-9785	1 2							,	\$695 \$1385
Texas Instruments (214) 997-5666	1	Optional				\$695			
The Great SoftWestern (817) 383-4434	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \$ 179 \end{gathered}$	X	X					
Ultimate Technologies ('2D31) 2159-44444	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & X \end{aligned}$					
Vamp (213) 466-5533	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \$ 495 \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \$ 995 \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \$ 1095 \\ \times \end{gathered}$		Optional	\$745		
VHDL Technology Group (610) 882-3130	1								
Viewlogic Systems (508)-480-0881	1 2	$\begin{aligned} & \$ 1995 \\ & \$ 9000 \end{aligned}$				$\begin{gathered} \$ 9995 \\ \$ 21,000 \end{gathered}$	$\begin{aligned} & \$ 3995 \\ & \$ 4900 \end{aligned}$	\$10,900	\$18,400
Visual Software Solutions (305) 346-8890	$\begin{aligned} & 1 \\ & 2 \end{aligned}$					\$995			
Wellspring Solutions (508) 865-7271	$\begin{aligned} & 1 \\ & 2 \end{aligned}$								
Wintek (317) 448-1903	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	X	$\begin{aligned} & \$ 495 \\ & \$ 995 \end{aligned}$	$\begin{aligned} & \$ 400 \\ & \$ 1295 \end{aligned}$					
Wise Software Solutions (503) 626-7800	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{aligned} & \$ 1995 \\ & \$ 1295 \end{aligned}$						
Xilinx (408) 559-7778	1	X				x \times			

Logic simulation (gate level)	Timing analysis	HDL synthesis	HDL simulation	Price	Minimum system ($\mu \mathrm{P}$; Mbytes)	Demo software	Circle No.	Notes
$\begin{gathered} \$ 1995 \\ X \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & X \end{aligned}$	$\begin{gathered} \$ 15,520 \\ \$ 4995 \end{gathered}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	Free Free	$\begin{aligned} & 511 \\ & 512 \end{aligned}$	
				\$1995	$\begin{aligned} & 386 ; 8 \\ & 386 ; 8 \end{aligned}$	Free Free	$\begin{aligned} & 513 \\ & 514 \end{aligned}$	High performance
				\$495	286	Free	515	Schematic capture and netlist translation
				$\begin{gathered} \$ 6785 \\ \$ 13,690 \end{gathered}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	Free Free	$\begin{aligned} & 516 \\ & 517 \end{aligned}$	Windows-based design tools Windows-based high-performance design tools
	\$17,000				386; 8	None	518	
X	$\begin{aligned} & X \\ & X \end{aligned}$			$\begin{aligned} & \$ 2995 \\ & \$ 1695 \end{aligned}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	$\begin{aligned} & \$ 99 \\ & \$ 99 \end{aligned}$	$\begin{aligned} & 519 \\ & 520 \end{aligned}$	Design tools for QuickLogic FPGAs Design tools for QuickLogic FPGAs
		$\$ 495$ \$1195		$\$ 495$ \$1195	386; 4 386; 4	Yes Yes	$\begin{aligned} & 521 \\ & 522 \end{aligned}$	Dynamic modeling using state diagrams Dynamic modeling using state diagrams
Optional Optional	Optional Optional			$\begin{gathered} \$ 995 \\ \$ 6850 \end{gathered}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	Free Free	$\begin{aligned} & 523 \\ & 524 \end{aligned}$	
				\$399	386; 2	Free	525	Power-supply design and simulation
			\$9500	\$9500	486; 8	60 days	526	Graphical development of VHDL designs
x x			x x	$\$ 3000$ $\$ 3600$	386; 4 386; 4	Free Free	$\begin{aligned} & 527 \\ & 528 \end{aligned}$	Verilog ASIC /PLD simulation with fault simulation Windows NT version
X			X	$\begin{gathered} \$ 19,500 \\ \$ 9300 \end{gathered}$	386; 2 386; 2	Free Free	$\begin{aligned} & 529 \\ & 530 \end{aligned}$	
				\$2495	386; 4, Macintosh	Free	531	General-purpose analog simulator
\$1295	X			$\begin{gathered} \$ 6995 \\ \$ 16,750 \end{gathered}$	386; 4, Macintosh 386; 4, Macintosh	Free Free	$\begin{aligned} & 532 \\ & 533 \end{aligned}$	Design tools for ASICs Design tools for ASICs
\$195				\$1160	286, Macintosh 286, Macintosh	Free Free	$\begin{aligned} & 534 \\ & 535 \end{aligned}$	Filter design, thermal analysis, curve fitting Filter design, thermal analysis, curve fitting
				$\$ 695$ \$1385	$\begin{aligned} & 286 \\ & 286 \end{aligned}$	Free Free	$\begin{aligned} & 536 \\ & 537 \end{aligned}$	Communications and signalprocessing simulation Communications and signalprocessing simulation
Optional		Optional			386; 8	Yes	538	Design tools for TI programmable logic
				\$2750	Math coprocessor; 4 Math coprocessor; 4	Free Free	$\begin{aligned} & 539 \\ & 540 \end{aligned}$	For AutoCAD For Windows
				$\begin{gathered} \$ 695 \\ \$ 1990 \end{gathered}$	$\begin{aligned} & 386 ; 2 \\ & 386 ; 2 \end{aligned}$	Free Free	$\begin{aligned} & 541 \\ & 542 \end{aligned}$	
\$895				\$1495	Macintosh Macintosh	Free Free	$\begin{aligned} & 543 \\ & 544 \end{aligned}$	PC-board-level design PC-board-level design
			\$2995	\$2995	486	Free	545	VHDL-modeling tools
$\begin{gathered} \$ 5995 \\ \$ 10,000 \end{gathered}$	1\$62,50	$\$ 4995$ \$8000	$\begin{gathered} \$ 7995 \\ \$ 13,900 \end{gathered}$		$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	Free Free	$\begin{aligned} & 546 \\ & 547 \end{aligned}$	
		\$995		$\begin{aligned} & \$ 995 \\ & \$ 995 \end{aligned}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	free free	$\begin{aligned} & 548 \\ & 549 \end{aligned}$	Generates ABEL from state diagrams Generates ABEL from state diagrams
			$\begin{aligned} & \$ 495 \\ & \$ 995 \end{aligned}$	$\begin{gathered} \$ 495 \\ 995 \end{gathered}$	XT, Macintosh 386; 2, Macintosh	30 days 30 days	$\begin{aligned} & 550 \\ & 551 \end{aligned}$	Verilog, limited capacity Verilog, full capability
				$\begin{gathered} \$ 895 \\ \$ 1995 \end{gathered}$	$\begin{gathered} 8088 \\ 286 \end{gathered}$	Free Free	$\begin{aligned} & 552 \\ & 553 \end{aligned}$	
				$\begin{aligned} & \$ 1995 \\ & \$ 1295 \end{aligned}$	$\begin{aligned} & 386 ; 2 \\ & 386 ; 2 \end{aligned}$	Free Free	$\begin{aligned} & 554 \\ & 555 \end{aligned}$	PC-board CAM tools PC-board CAM tools
X	$\begin{aligned} & X \\ & X \end{aligned}$	X		$\begin{gathered} \$ 11,995 \\ \$ 4500 \end{gathered}$	$\begin{aligned} & 386 ; 4 \\ & 386 ; 4 \end{aligned}$	Free Free	$\begin{array}{r} 556 \\ 559 \end{array}$	Xilinx FPGAs Xilinx FPGAs

Thanksto a piezoelectric vibrating gyroscope, theirmarriage will never have tobecn shaky ground.

It was a match made in heaven. (Actually, it was made in a Murata research lab.) Our engineers developed an innovative compact vibrating gyroscope - the GYROSTAR ${ }^{\text {TM }}$ - that's 100 times more precise than any other gyroscope. When coupled with the latest video technology, it compensates for an unsteady hand on
the camera. We also expect to find important roles for GYROSTAR in other technologies, such as navigation systems, automotive electronics and factory automation, by working closely with our customers. And those relationships, like the one in the photograph above, have unlimited potential. You see, we offer commitment

in our relationships. Commitment to helping our customers create innovative solutions. So while we offer one of the broadest lines of components in the industry, including microwave-related products, EMI filters, ceramic capacitors and ceramic resonators, we want you to think of us as more than a source of high-quality,
highly reliable components. More than a supplier of parts.
We want you to think of us as a small part in your success.
For more information, call 1-800-831-9172, ext. 006.

EDN-Special Report

Probing the limits of

WUNO

Logic synthesis has freed designers from the complexities of gatelevel design by converting RTL descriptions to optimized gatelevel logic. But ASIC, FPGA, and CPLD designers are still constrained by a dependence on silicon. Designers will need to pay more-not less-attention to layout as silicon densities continue to increase.

RAY WEISS, TECHNICALEDITOR

A few years ago, logic synthesis seemed a first step into a world of higher level design. Back then, designers imagined being able to move higher and higher up the synthesis chain, until they could specify a design behaviorally and just push a button-and the software would do the rest. Nice dream, but not a reality for the '90s.

Why? Because design, even with high-level HDLs (hardwaredescription languages) and simulation, must eventually meet silicon "reality." And that reality, especially at submicron or deepsubmicron levels (below $0.5 \mu \mathrm{~m} \mathrm{~L}$ effective) is not a nice, wellbehaved world. Instead, it's where elegant designs meet the layout monster, where signal interconnects dominate circuit delays, and where signal delays can no longer be described by simple fan-out models or RC trees. And that's not
all: Design rules will migrate down to $0.18 \mu \mathrm{~m}$ by 2002 , with chip voltages moving down to less than 1 V as well.

But that's not the only reason for a reevaluation of logic synthesis's reach. Silicon's higher densities bring new system-level problems. And these problems need-nay, demand-the designer's touch. Larger ASICs can be likened to systems, and, similar to systems, must be partitioned for design ease and clocking. And last, hardware design is still hardware design; writing code in VHDL or Verilog, even code that simulates well, does not guarantee working silicon.

Spam in a can

The first generation of American astronauts were tagged "Spam in a can" by test pilots because they were simply passengers and had little control over the actual

flights. Today's astronauts, however, are an integral part of flight planning and control. And, similarly, today's designers must take an active role in the design process.

Software-based design tools will not replace designers. True, you can do more with today's CAE tools, but you cannot actually walk away from design. Now, and in the foreseeable future, there is no sub-
stitute for the design engineer. Moreover, the fundamental limit on logic synthesis is the designer: Synthesis tools won't turn a bad design into a good one-or convert a bad designer into a competent one.

In fact, synthesis tools, coupled with HDL design, raise the design stakes. Schematics and gate-level design had built-in safety limits: Schematic drawings imposed disci-
pline on signal connectivity and logic-block grouping, whereas an engineer using an HDL, say Verilog or VHDL, to define a design must internalize that discipline. Even worse, careless code can create logic anomalies that will trash a design. Engineers writing an HDL must be "hardware aware." For example, in software, the expression $B=B+1$ carries implicit concepts on timing and computer exe-
cution (one cycle later, B is equal to the current value of $B+1$). Similarly, in hardware, the equation $\mathrm{X}=\mathrm{YZ}$ is not a simple AND form. Potential signal combinations can generate spikes that can ruin your design-especially if you use it to gate a clock.

Other anomalies lie in wait for the unwary designer. Careless definitions in Verilog CASE statements, for example, can cause synthesis tools to generate unwanted latches to preserve signal integrity. These latches change the hardware behavior of the combinatorial switch. In VHDL, you must initialize all variable and registered elements. If you don't, VHDL will-and your design may work in simulation, but fail in silicon.

Mainstream synthesis-control logic

Today's engineers use logic synthesis primarily for control logic, optimizing and mapping combinatorial logic (equations) into a netlist-and ready for layout. They also use synthesis to instantiate major RTL components such as registers. Some tools, such as Synopsys' Design Compiler, Cadence's Synergy, Exemplar's Core, and Compass Design's ASIC Navigator, also enable designers to use module generators and megacell/cell libraries to select the correct element. Megacells can be hefty, including μ Ps, FPUs, ALUs, and DSPs. In effect, the synthesis tools provide a single interface to specify a design. Some synthesis tools, such as Synopsys' Design Compiler, Cadence's Synergy, and the forthcoming Viewlogic ViewSynthesis (was SilcSyn) provide some higher level synthesis capabilities. These capabilities include resource allocation and sharing for key RTL blocks, such as adders or registers.

Mainstream logic-synthesis tools from Synopsys, Mentor, Exemplar, Cadence, and Viewlogic also provide state-machine generators and mappings to optimized state machines. Many engineers find these tools work for general state machines, but, typically, they turn to hand design for highly optimized state machines. Industry consensus seems to say it's still a bit early for efficient state-machine synthesis. However, engineers can define complex controls by defining multilevel state machines (state machines within state machines, etc); these can be defined with current synthesis tools.

Most synthesis users describe

ASIC gate densities continue to evolve as higher densities accompany higher speeds and increasing interconnect penalties. Connections are no longer free; at submicron design rules, especially at $0.5 \mu \mathrm{~m}$ or below, interconnections dominate signal delays.
designs with an HDL, such as Verilog or VHDL. However, when using an HDL, it's easy to lose touch with the design; you can define major RTL blocks with simple statements. Thus, a few lines of code can trigger major effects on a design's timing or performance. Good logic designers, like master programmers, have to keep foremost in their minds the major flows of their designs, continually monitoring any changes that add, delete, or modify RTL blocks. Yesteryear's schematics also served as block diagrams, illustrating the major RTL blocks and data flows. With HDL code, however, RTL blocks and their flows may not be obvious. For example, $\mathrm{X}=\mathrm{A}+\mathrm{B}+\mathrm{C}$ instantiates two adders fed by three registers, defining a major flow. Yet the statements could be buried in complex control code-there's no HDL highlighting for RTL definitions or flows.

Finally, writing Verilog or VHDL code does not automatically stop you from violating propagation delays or logic constraints such as setup or hold. Moreover, many constraints are functions of the ASIC process (voltage and temperature) as well as of the signal characteristics (slow or fast edges). Consequently, you cannot realistically estimate these timing delays until floor planning or place and route. You'll have fewer problems downstream with synthesis if you keep these logic realities in mind when coding. Static timing analyzers can catch timing errors, but it's far
easier to design it right the first time.
Logic synthesis is only a small part of the overall design effort. Most system designs are dominated by their datapaths. Unless you are building a con-trol-logic chip, 60 to 70% of a chip's logic is made up of RTL blocks. These blocks generally define a chip-level data flow. Creating an optimum chip design generally means building an optimized data-flow path, one made up of these RTL elements and then, to control it, creating the control logic. Most designs move data between two or more bus systems (for example, CPU memory bus to an I/O bus). Even a $\mu \mathrm{P}$ can be seen as consuming two data flows, instruction and data, and outputting another data flow.

These data flows connect RTL blocks. The blocks generally are existing megacells or library elements or are generated via specialized module generators. Even though you can describe them in HDL code, selecting or generating the elements has not typically been a logic-synthesis function per se. However, the range of logic-synthesis tools is expanding to provide a common design interface to other synthesis or compilation tools. Synopsys' Design Compiler, Cadence's Synergy, and Intergraph's ArchSyn, for example, call the appropriate module generators to create RTL blocks, such as memory or registers to meet design constraints; they also select RTL blocks that meet synthesis constraints.

800kHz Sampling

ADS7810 is our fastest 12 -bit sampling A/D yet! The newest member of our innovative ADS Family, it's a full-function device, complete with clock, sample/hold, internal reference, and parallel microprocessor interface. Its CMOS structures and innovative design keep power dissipation below 250 mW and allow operation from $\pm 5 \mathrm{~V}$ supplies.

World's Fastest

ADS7810's 800kHz sampling rate is guaranteed over the extended industrial temperature range of $-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$ making it the world's fastest 12-bit, monolithic SAR ever- 60% faster than its closest rival! And, it's the easiest A / D to use in this performance range. DC and AC accuracy are excellent, and "no missing codes" over temp at 12-bits is guaranteed. Other key specs include: 12 bit resolution, 69 dB (min) SINAD, $\pm 0.5 \mathrm{LSB}$ (max) INL, $\pm 1 \mathrm{LSB}$ (max) DNL, standard $\pm 10 \mathrm{~V}$ input range, and 250 mW (max) power dissipation. Available in 28 -pin plastic DIPs, SOICs, and in die form. Priced from \$29.45 in 100s, ADS7810 is the fastest member of the ADS Family that is Bit for bit, the best A/Ds ever!

BURR - BROWN ${ }^{\text {® }}$

real vhil，real swintils， REAL WINDOWS－STARTING at THE UNREAL PRICE OF
 PROsim ${ }^{\text {TM }}$ delivers 28 －state，
 PROcapture ${ }^{\mathrm{TM}}$ ，our advanced，

high－performance，full－timing simulation．PROsim integrated with PROvhdl and PROcapture gives you a powerful，multi－level simulation package，with back－ annotation to PROcapture for the fastest design and debug capa－ bility available on a PC． PROsim，\＄4，995．

The newest member of the PRO Series ${ }^{\text {Ta }}$ family， PROvbdITM brings the power of high－level design to your PC Now you can develop more innovative FPGA and CPLD designs faster than ever before． Integrate it with other PRO Series tools for full system－level design．PROvhdl，\＄1，995

Windows－based design－entry solution gives you the widest variety of libraries available on the PC platform．EDN Reader＇s Choice Survey rated Viewlogic tools as the best schematic entry solution． PROcapture，\＄1，995．

PROsynthesis ${ }^{\text {TM }}$ produces gate－ level representations from VHDL descriptions in a frac－ tion of the time schematics would take．Create FPGAs and CPLDs in VHDL and have the freedom to target whatever silicon you choose from the broadest set of libraries available today．Incorporating FPGA architecture－specific algorithms，PROsynthesis opti mizes silicon utilization in increasingly complex FPGAs． PROsynthesis，\＄4，995

VHDL，top－down design，programmable logic－ your path to market has never been faster．

Power，integration，performance，prod－ uct range，the broadest vendor support in design kits and libraries－you can＇t get a better suite of integrated design tools for the PC at any price，much less one as competitive as this．

Put major－league performance on your PCs．Call 1－800－873－8439 today and ask about the PRO Series．

VIEWlogic

PROSeries

CALL 1－800－873－8439 NOW FOR A FREE DEMO DISK

LOGICSYNTHESIS

Currently, engineers using Synopsys logic-synthesis tools break designs down into synthesizable partitions. The average partition runs 4000 to 6000 equivalent ASIC gates, with some partitions running out to 10,000 (or more) gates. Other synthesis tools claim larger partitions; these include Viewlogic's SilcSyn (recently acquired from RacalRedac) and Compass Design's ASIC Navigator, which does automatic partitioning and is integrated with layout.

Full- and partial-scan test generators are now part of most major logicsynthesis tool sets; they provide ASIC testability. Scan generators are also available from test vendors, such as Sunrise Test Systems (TestGen) and CrossCheck (Aida II). Using scan technology, the active flip-flops in a design partition into sets that form sequential scan chains. These scan chains enable active FF values to be set and shifted in for test or to be shifted out for comparison. Partial-scan techniques link most FFs but leave out critical ones for secondary access. Scan techniques use a more complex, slower flip-flop element that multiplexes in scan shift data and outputs scan data. Scan test has a number of problems, including a 5 to 15\% additional logic overhead, scan-connection inefficiencies (better layout after placement), and ensuring that clock triggers are phased to avoid excess power consumption (all flip-flops firing on a fast edge can ruin a chip).

Silicon reality

Designers should never forget that silicon underlies system- and logic-design

Table 1-Synthesis tools

Company	Product name	Synthesis level	Chip type
Altera	Max-Plus-4 (AHDL, VHDL)	RTL, state-machine	CPLD
Cadence Design Systems	Synergy (VHDL, Verilog)	RTL, test state-machine	ASIC, FPGA
Comdisco	SPW/HDS (VHDL)	DSP, system	ASIC, μ Ps
Cypress	Warp II (VHDL)	RTL, state-machine	PLDs, FPGAs CPLDs (Cypress)
Data I/O	Synario, ABEL-5 (ABEL, VHDL)	RTL, state-machine	FPGAs, CPLDs, PLDs
Exemplar	Core (VHDL, Verilog)	RTL, state-machine	FPGAs, PLDs CPLDs
Intergraph	ArchSyn (VHDL, Verilog)	RTL, state-machine	ASICs, FPGAs
JRS Research	IDAS (VHDL)	System from ADA	ASICs
Mentor Graphics	AutoLogic (VHDL)	Datapath, RTL test, state-machine	ASIC, FPGA
Minc	PLDsyn (equations)	RTL, state-machine	PLDs, CPLDs
MicroSim	PLSyn (equations)	RTL, analog state-machine	PLDs, CPLDs mixed signal
Synopsys	Design Compiler (VHDL, Verilog)	RTL, test state-machine	ASIC, FPGA
Viewlogic	ViewSynthesis (VHDL, Verilog)	RTL, test, state-machine, micro-architecture	ASIC, FPGA

processes. Unless designs translate and map into working silicon, the logic is useless. Moreover, the underlying silicon is not a fixed target. Silicon capabilities are continually migrating: Gate densities and clock rates are rising, silicon features and interconnect lengths are shrinking, and pinouts are increasing. And, finally, overall chip power dissipation must be held steady or even decreased for portable applications.

Today, high-speed designs are push-
ing into submicron implementationssome into so-called deep submicron ranges of 0.5 to $0.35 \mu \mathrm{~m}$. At submicron and deep-submicron densities, design realities change; interconnect causes the bulk of a signal delay (up to 80%). Interconnect between logic elements becomes the critical portion for design. Unfortunately, signal-delay estimation is no longer a simple matter, especially on deep-submicron processes where the old standby of lumped RC trees is no

Looking ahead

Today's EDA vendors are tailoring tools and environments to user design methods and needs. The vendors are trying to meld their tools into existing design environments and methods. This approach differs from the previous tool generation, which was generally a one-size-fits-all or do-it-our-way or for-get-aboutit school. However, many tools continue to plug away in splendid isolation, ignoring existing design knowledge and the design process. Good logic and system designers never lose sight of the final silicon-that design is not independent of layout. Yet the reciprocal is not true; many tools, especially back-end physical tools, do not try to use existing design knowledge to optimize the silicon.

Today, system design houses are turning to floor planners or prefloor planners to reflect final silicon timing. To minimize hand-off iterations to the foundry, accurate timing esti-
mates and constraints are prerequisites. Similarly, physical layout tools need system design knowledge for effective floor planning, placement, and routing. Critical layout-design data includes which logic elements form RTL entities; the flows between the major RTL blocks; and the overall design data flow from input, to RTL blocks, to outputs. Many back-end tools currently interrogate the design netlists to figure out overall design structure and flow. Common formats and mechanisms are necessary to define and pass this key information to back-end tools.

It's time for front-end design and back-end layout to cooperate. The design side cannot afford to ignore layout consequences. And it's silly for physical layout tools to recreate the design rather than rely on top-level design perspectives and flows.
longer adequate to predict signal delays.
Silicon design is too important to be left to the foundry. Both system and logic designers have to be involved in mapping creations to actual silicon. Back-end tools and physical design constraints will become part of front-end design. And fading fast is the old style of doing system and logic design independently of back-end concerns and then just tossing the design over the wall to a foundry for physical layout and production.

Logic synthesis enables engineers to map their RTL-level designs into ASIC technologies. The problem, however, has been that synthesis takes place on the design side of the house-not the silicon or physical side. It's increasingly difficult for design-side synthesis to build logic to meet design constraints without effective knowledge of the final layout. At $0.5 \mu \mathrm{~m}$ and below, synthesis needs closer ties to silicon layout to predict circuit delays.

There are two approaches to linking synthesis and physical IC design. In the first, the synthesizer provides timing constraints to the physical tools to direct layout, which is called synthesis-directed layout. Additionally, layout estimates are fed back to the synthesis tools to verify timing. Synopsys has taken this tack, defining interfaces to deliver timing constraints (PDEF) as well as interfaces to handle feedback (SDEF). A new version of the Design Compiler, due out soon, has a built-in synthesis "floor manager" that dispatches synthesis constraints to a floor planner and receives back-timing feedback to reoptimize the logic. Physi-

For submicron ASIC, logic synthesis can no longer be isolated from physical layout realities. The Synopsys Floorplan Manager links synthesis with IC floor planning. It transmits synthesis constraints to IC tools and, in turn, receives layout data to ensure design timing.
cal-tool vendors are working to integrate their products with Synopsys' tools (HLD's Design Planner) and ArcSys' ArcCell.

In the second approach, the synthesizer uses layout algorithms and tools to predict final signal routing. The tools also modify the design netlist to reflect layout needs and signal projections. Cadence takes this approach using its well-established IC tools. The Cadence Synergy synthesis tool set adds Place-ment-Based Synthesis (PBS). After logic synthesis and placement, the optimized netlist and the placed topology run through PBS, before place and route. In PBS, the timing is reanalyzed using topology. The synthesizer readjusts the design to meet timing con-

With Cadence Placement-Based Synthesis (PBS), you can use estimated placement topology to tweak and optimize the design netlist before running place-and-route IC tools. To improve routing and timing performance after initial placement, PBS reoptimizes the netlist and placement.
straints. Where needed, it rearranges loads, resizes buffers and gates, relocates buffers, reoptimizes clock trees, and reduces potential long wire runs. Cadence claims a 10 to 30% overall system improvement using PBS.

Functional- and logic-level simulation have to be supplemented with transistor-level modeling, especially for deep-submicron design. This modeling will have to track signal-edge effects, parasitic effects, and power dissipation. At the higher clock rates, frequency becomes a key factor in CMOS-circuit power dissipation-the faster the clock, the more power burned.

FPGA/CPLD synthesis

FPGAs and CPLDs came late to synthesis. Built around proprietary logic blocks (FPGAs) or variations of 22 V 10 PALs (CPLDs), these chips lend themselves to old-fashioned, 5400/7400 TTLstyle, schematic-capture-based design. Early adapters and most FPGA engineers still design that way. However, as logic densities increase, engineers are turning to high-level HDLs and logic synthesis for FPGA and CPLD design.

Logic synthesis for FPGAs and CPLDs has yet to reach ASIC efficiencies. Part of the problem is that mainstream algorithms and techniques were developed for ASIC gate arrays and standard cells with their underlying gate elements. ASIC fine-granularity architectures made it easy to map logic to the base gates using 2-level or multilevel optimizations.

In contrast, FPGAs have a proprietary core-logic block, typically a mix-

How to Get a Benchful of Signals Without a Bench Full of Generators.

Gone are the days of scouring the lab for function-specific generators.
At a price that's less than many single-purpose generators, Wavetek's new Model 395 does the job of seven different signal sources and does every job extremely well.
In an instant you can choose from a host of signals, from clean sine
waves up to 40 MHz to complex pulse trains and arbitrary waveforms. When you use Model 395 as a pulse generator, for example, you can individually control the amplitudes, widths, and rise and fall times for up to ten pulses in a train. On-screen help makes
signal
selection easier than ever.
You can create
many signals that might otherwise
require hooking
together two, three or more generators. With gating, looping, linking, signal summing, and complete arbitrary waveform capability, our universal signal source can produce just about any waveform you can conceive. You can even store any setup for later use - for recall at the touch of a button!
So come to the source for all your signal needs. Call Wavetek today at $\mathbf{1 - 8 0 0 - 2 2 3 - 9 8 8 5}$, and get all the details on the new Model 395 universal signal source.

Get a sample of reality.

Looking for analog confidence in a digital oscilloscope? Tektronix' TDS 350 sets the standard with Digital Real Time. Its

High-end digital features. Each model
features over 20 automatic measurements.
Continuous update for hands-free opera- incredible one gigasample/ second sampling delivers reallife capture like never before-
 One Point
CAPTURED. Single event CAPTURE USING Equivalent Time SAMPLING
$20 \mathrm{MS} / \mathrm{s}$ 100 MHz DSO.

Real Life CAPTURE. SINGLE EVENT CAPTURE USING TIME. $500 \mathrm{MS} / \mathrm{S}$ 100 MHz DSO. both for single shot or repetitive events.

Select peak detect for slow events, or push the scope to its full 200 MHz

bandwidth - with
no aliasing. And, like the entire TDS 300 family, the TDS 350 sets a new standard in price/perfor-
tion. Four acquisition modes and video trigger-perfect for tailoring the display. And a communication option for hardcopy
mance: under \$4000.

Analog look and feel.

The TDS 300 family is simple and intuitive; just like your trusty analog scope. Even the digital interface is simplified with on-screen

There's a TDS 300 Series scope for every application. And every budget.
to most printers, or to send/receive waveforms and setups. Get real. For more real-time benefits of the TDS 300 family, call your authorized Tektronix distributor
icons. You may never have to crack open the instruction manual!
today. Or call Tektronix at (800) 426-2200,
ext. 212.

LOCICSYNTHESIS

ture of multiple gates/multiplexers and registered elements, supplemented with proprietary specialized-routing resources. CPLDs rely on sets of 22 V 10 -wanna-bes linked with chip-routing resources. These logic cores are a mix of combinatorial logic (memory look-up tables, multiplexers, or AND/OR arrays) and one or more register elements. In synthesizing combinatorial logic with these cores, the registers tend to be underused, and, conversely, in synthesizing register-oriented blocks, the core logic tends to be underutilized. To synthesize FPGAs, the algorithms must be tailored for each architecture's core and routing setup.

The leading FPGA-synthesis tool is Exemplar's Core, which has specialized algorithms for different architectures. Many engineers use it to do portions of their designs, especially combinatorial logic. Some do complete designs; many still rely on hand design for design and layout of critical design sections. The major CAE vendors, such as Mentor Graphics, Cadence, Synopsys, and Viewlogic, now field FPGA logic-synthesis tools. These tools provide compatibility with existing ASIC development environments. delays.

Floor planning is the key to integrating design with layout. HLD's Design Planner links to Synopsys tools and provides data for resynthesis and in-place optimization. It also links to back-end place-androute tools, feeding them the netlist with delay constraints. For reoptimization, Fastnet Delay Calculator provides prelayout and postlayout
designs and logic, which by definition don't push the ASIC performance/density envelope. One foundry, Orbit Semiconductor (Sunnyvale, CA), targets FPGA replacement. You bring Orbit your running FPGA design with a simulation file, and the company turns it into a low-performance and low-cost gate array (high FPGA performance). You can order these conversion parts in low production numbers-and generally without NRE charges.

FPGA/CPLD hardware

FPGAs and CPLDs lag about an order of magnitude (or more) in density and speed behind ASICs because of their field programmability, larger logic blocks, and routing restrictions. Xilinx's SRAM-based family of FPGAs still holds the major share of design-ins and production in the market. Xilinx has its own

They also enable designers to extend existing ASIC design environments to FPGAs for design or prototyping.

A number of ASIC vendors have programs that automate the FPGA-toASIC conversion and minimize standard costs, such as NRE. This technique works for FPGA-level
schematic-based tool set as well as XBLOX, an RTL flow and graphic-module generator. Xilinx has cut a deal with Synopsys for mutual aid in developing HDL-synthesis tools and macro libraries for Xilinx parts. One challenger to Xilinx parts is AT\&T's ORCA FPGAs, an extension of the Xilinx tech-

A user's view of logic synthesis

The biggest synthesis limitation is the user. First-time users have unrealistic expectations for synthesis. What they forget is the considerable ramp-up time needed to learn these new tools and techniques. Synthesis is a very powerful design amplifier. This means it amplifies what you do right and what you do wrong.

If you try to synthesize poorly thought-out Verilog or VHDL designs with logic or timing errors, you'll get utter garbage. Poorly partitioned RTL-level designs can become a real nightmare. And, if you think that asynchronous elements, multiple clocks with unrelated frequencies, and other funky timing schemes aren't going to be a problem, think again. All of these will be a headache for synthesis and the downstream EDA tools to create final silicon. The people who created the tools may be sharp, but, so far, no one has been able to write EDA tools that can transmute lousy Verilog or VHDL code into well-behaved final designs.

In seasoned hands, synthesis and simulation enable you to
really deliver. But remember, you're dealing with software, which requires navigating around surprise bugs and compatibility issues with other EDA tools and libraries. Success depends on knowing what is and is not realistic or possible with your mix of synthesis, simulation, and other EDA tools. Learning to detect and avoid software traps and piffalls takes time-and lots of patience. Neophytes are not going to get miraculous project results the first time around, but, in later projects, they'll be amazed by what they can do. Synthesis works... it just takes time to learn.
John Cooley is a consultant for high-level ASIC/FPGA design and synthesis. As founder and moderator of the 2-year-old EMail Synopsys Users Group (ESNUG), he runs a fiercely independent, grassroots clearing-house for Synopsys users. ESNUG's 2300 users receive a weekly digest of bugs, workarounds, and user experiences on a variety of EDA tools and ASIC technologies. You can contact ESNUG via e-mail 'jcooley@world.std.com' (preferred) or phone (508) 429-4357.

LOGICSYNTHESS

nology that targets data-path applications (AT\&T is a second source for earlier Xilinx parts). AT\&T is working on its own advanced module generator that has extensions for RTL blocks and data flow.

Other FPGA competitors include Actel, QuickLogic, and Cypress. Even though these FPGAs are not RAMbased, they are highly routable parts that ease logic-synthesis place and route. Similar to the Xilinx parts, these

FPGAs have their own proprietary core-logic blocks (Cypress FPGAs are based on QuickLogic parts). These proprietary FPGA cores, with their special routing resources and priorities, complicate logic synthesis. The Actel

Manufacturers of synthesis-related tools

For free information on synthesis-related tools such as those described in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

ArcSys

Sunnyvale, CA
(408) 738-8881
(IC-layout tools)
Circle No. 356

CAD Artisans

Escondido, CA
(619) 739-1845
(Verilog simulator)
Circle No. 357

Cadence Design Systems

San Jose, CA
(408) 428-5842 (Verilog, VHDL, CAE, IC tool sets)
Circle No. 358
Cadis Software Ltd
South San Francisco, CA
(415) 615-7789
(DSP/signal-processing design, synthesis)
Circle No. 359
Chronologic Simulation
Los Altos, CA
(415) $965-3312$
(Verilog simulator)
Circle No. 360
Comdisco Systems
Foster City, CA
(415) 574.5800
(DSP design \& synthesis tools)
Circle No. 361
Compass Design Automation
San Jose, CA
(408) 434.7687
(synthesis, IC tools)
(VHDL learning kit)
Circle No. 362
Computer Design
Solutions Corp
Puyallup, WA
(206) 848-1465
(VHDL simulator)
Circle No. 363
CrossCheck Technology
San Jose, CA
(408) 432-9200
(scan generator/test, Iddq test,
ATPG timing verifier)
Circle No. 364

Data I/O

Redmond, WA
(206) 881-6444
(FPGA/PLD tools) (ABEL/VHDL, simulation)
Circle No. 365
Evaluations per Second
Waltham, MA
(617) 487-9959
(core-logic simulator)
Circle No. 366

Exemplar Logic Inc
Berkeley, CA
(510) 849-0937
(FPGA/CPLD synthesis tool)
Circle No. 367

Fintronic USA

Menlo Park, CA
(415) 325-4474
(Verilog-simulator tools, UDL/I com-
piler/simulator)
Circle No. 368

GenRad

Concord, MA
(508) 369-4400
(VHDL simulator)
Circle No. 369
High Level Design Systems
Santa Clara, CA
(408) $748-3470$
(gate-array floor planner)
Circle No. 370

Ikos Systems

Sunnyvale, CA
(408) 245-1900
(logic accelerator, VHDL simulator)

Circle No. 371

i-Logix

Burlington, MA
(617) 272-8090
(front-end, graphical-design VHDL,
Verilog)
Circle No. 372
Intergraph Electronics
Mountain View, CA
(205) 730-8625
(synthesis, simulation IC)
(VHDL/Verilog tools)
Circle No. 373
InterHDL Design
Sunnyvale, CA
(408) 749-8775
(Verilog parser/checker (lint))
Circle No. 374

JRS Research Laboratories

Orange, CA
(714) 974-2201
(system-synthesis tools)
Circle No. 375

Mentor Graphics

Wilsonville, OR
(503) 685-7000
(full CAE, IC tool sets,
simulator, synthesis)
Circle No. 376

MicroSim Corp

Irvine, CA
(714) 770-3022
(PLD/CPLD logic synthesis,
simulation tool)
Circle No. 377

Model Technology
Beaverton, OR
(503) 641-1340
(VHDL environment with simulator)
Circle No. 378

Neocad

Boulder, CO
(800) 682-3143
(independent place-and-route
FPGA tools)
Circle No. 379

Nextwave Design

Automation
Palo Alto, CA
(415) 855-9791
(Verilog timing simulators)
Circle No. 380
OpenVerilog International
Sunnyvale, CA
(408) 776-1684
(Verilog user/vendor group)
Circle No. 381
Philips Electronic
Design \& Tools
Eindhoven, The Netherlands
(31) 35891505

HDL synthesis
Circle No. 382
Quad Design Technology
Camarillo, CA
(805) 980-8250
(static timing, signal-analysis tools
Circle No. 383
Redwood Design Automation
San Jose, CA
(408) 291-3650
(high-level design tools,
cycle-level simulator)
Circle No. 384

Silicon Automation

Systems Inc
San Jose, CA
(408) 437-9161
(Verilog simulator)
Circle No. 385
Silvar-Lisco
Sunnyvale, CA
(408) 991-6000
(Verilog simulator)
Circle No. 386

Simucad

Union City, CA
(510) 487-9700
(Verilog, logic simulator,
ault simulation
Circle No. 387

Sunrise Test Systems Inc

Sunnyvale, CA
(408) 739-4000
(scan generator/test simulator)
Circle No. 388

Synopsys Inc

Mountain View, CA
(415) 962-5000
(VHDL simulators,
synthesis/test-synthesis tools)
Circle No. 389

System Science Inc

Palo Alto, CA
(415) 812-1800
(Verilog debug environment, Verilog/
logic simulator, fault simulation) Circle No. 390

Vantage Analysis Systems

Fremont, CA
(510) 659-0901 (VHDL
compiler/simulator)
Circle No. 391
VHDL International
Menlo Park, CA
(415) $329-0578$
(VHDL industry organization)
Circle No. 392
Viewlogic Systems Inc
Marlborough, MA
(508) 480-088
(full CAE tool set, VHDL simulator) Circle No. 393

Vista Technologies

Schaumburg, IL
(708) 706-9300
(VHDL/Verilog front-end tools)
Circle No. 394

Wellspring Solutions

Sutton, MA
(508) 865-7271
(Verilog simulator for PCs)
Circle No. 395

Super Circle Number

 For more information on synthesisrelated tools available from all of the vendors listed in this box, you need only circle one number on the postage-paid reader service card.Circle No. 396

The best thing about our 500 MHz scope isn't the price.

It's what you get for it.

Just like an analog scope, HP's 500 MHz oscilloscope has a real-time display that responds instantly to changes in your waveforms or controls.

A bright trace and convenient, push button functions like Autostore let you easily see and store tough-to-find signals.

Pretrigger viewing and delayed sweep mode help you save time by grabbing and displaying signals before or after the trigger event.

How we can offer you a

 500 MHz , delayed sweep scope that's within budget, without compromise.High bandwidth digital scopes have always forced you to sacrifice two things you love about analog scopes: a familiar look and feel and immediate, believable displays.

Our engineers didn't think you should have to make that compromise. So they designed the HP 54610A oscilloscope with the analogstyle interface you're comfortable with, and a new digital architecture that produces waveform displays superior to analog scopes.

The result: you get the quality and performance you'd expect from HP. At a price you wouldn't.
technical literature you may need to make the right decision. Or if you want one-on-one technical support, you can speak
to an engineer who has firsthand experi-

Want to speak to someone about the HP 54610A scope features and specifications, or your specific application needs? Calling HP DIRECT is the fast, easy way to get all your questions answered - with no obligation to order
You see, HP DIRECT is your direct line to information and solutions for HP basic test instruments. With one simple call, you can get quick product specifications or any

> Call HP DIRECT at 1-800-452-4844\%, Ext. 7667 to talk to an HP engineer about your scope needs. ence with HP products. And, of course, if you're ready to order, we can help you do that, too.

So give us a call. And discover how much more you really get from HP today.

* In Canada, call 1-800-387-3867, Dept. 476

There is a better way.

WETVE
 EXAGGERATED HOW MUCH CALCULATING POWER IS IN NEW MATHCAD PLUS 5.0. BUT ONLY SLIGHTLY.

 vanced version of Mathcad ever released. And that's no exaggeration.
You get more math functionality for computing derivatives and integrals, differential equations, advanced vector and matrix operations, statistical functions, curve fitting, and fast Fourier and wavelet transforms. It has a wider range of symbolic capabilities, and lets you do polar, contour and parametric plotting.
Simply enter equations in real math notation anywhere in the on-screen worksheet. Add text and graphics, display results in 2-D and 3-D, change variables and instantly update answers. Then print your results in presentation-quality documents.
Best of all, Mathcad PLUS 5.0 is more powerful than spreadsheets or calculators and easier than programming languages. And that's no exaggeration, either.
Mathcad PLUS 5.0 is $\$ 299.9^{*}$. Call now for more information, or mail or fax the coupon below.
Call: 1-800-967-5075 •Fax: (716) 873-0906
FREE MATHCAD PLUS 5.0 INFORMATION KIT,
For more information on Mathcad PLUS 5.0,
mail or fax this coupon.
a 24 a 3

Company
$\overline{\text { Address }}$
City
State Zip
Country
MathSoff, Inc. P.O. Box 1018, Cambridge, MA 02142-1519 USA Phone: 1-800-967-5075 • Fax: 716-873-0906 MathSoff Europe, P.O. Box 58, Livingston, UK EH54 7AE Phone: +44.506 .460373 - Fax: +44.506 .460374
© 1994 MathSoff, Inc. TM and © signify manufactures trademark or registered trademark respectively. * Dealer price may vary.

LOGIC SYNTHESIS

Derived from silicon compilation, the Compass Navigator tool set integrates logic synthesis with top-down design and IC layout. It includes system design and estimation tools. Originally developed for VLSI Technology's ASICs, the tool set now supports other silicon vendors' products.
and QuickLogic tools are schematic oriented. Cypress Semiconductor, which now supplies PLDs as well as its own CPLDs and FPGAs (QuickLogic) fields Warp II, a VHDL development environment that takes in VHDL descriptions, synthesizes them, and maps the result into Cypress chips. Currently, the software targets a single chip, but later versions (in development) will support partitioned designs.

Altera, a CPLD pioneer, provides its own windowed development environment, MAX+PLUS II. It has extended MAX+PLUS II to handle VHDL descriptions. It synthesizes VHDL code, mapping an HDL design into CPLDs. Also available is its AHDL (Altera HDL), an ABEL-like description language for hardware design.

Even hard-line ABEL users can extend their designs by combining ABEL descriptions with VHDL structure and forms. Data I/O's ABEL-5 and Synario tools accept both ABEL and VHDL. Synario mixes multiple representations including schematics, VHDL, ABEL, and table entries. ABEL is now modular; you can mix it with VHDL and can transfer ABEL PLD descriptions to VHDL designs without having to recode or redesign. ABEL works with fitters for most FPGAs and CPLDs.

EDN

References

1. Airiau, et al, Circuit Synthesis with VHDL, Kluwer Academic Publishing, Norwell, MA, 1994.
2. Carlson, Steve, Introduction to HDL-based Design using VHDL, Synopsys Inc, Mountain View, CA, 1990.
3. Gajski, et al, High-Level Synthesis: Introduction to Chip and System Design, Kluwer Academic Publishing, Norwell, MA, 1992.
4. Pellerin, David, and Michael Holley, "Digital Design Using ABEL," Prentice Hall, Englewood Cliffs, NJ, 1994.
5. Strassberg, Dan, "Boundary-scan testing," EDN, October 14, 1993, pg 78.
6. Sternheim, Eliezer, Rajvir Sing, and Yatin Trevedi, Digital Design with Verilog HDL, Automatia Publishing Co, Cupertino, CA, 1990.
7. The Synthesis Approach to Digital System Design, Petra Michel, Ulrich Lauther, and Peter Duzy, eds, Kluwer Academic Publishing, Norwell, MA, 1992.
8. Thomas, Donald E and Philip Moorby, The Verilog Hardware Description Language, Kluwer Academic Publishing, Norwell, MA, 1991.

You can reach Technical Editor Ray Weiss by phone at (818) 704-9454; fax (818) 704-7083.

Article Interest Quotient (Circle One)
High 593 Medium 594 Low 595

When it comes to performance, packaging and price, our references are impeccable.

Introducing the $\mathrm{AD780}$. The world's best performing 2.5 V reference.

When it comes to voltage references, the AD780 is truly superlative. It's the highest precision 2.5 V voltage reference on the market. In fact, with its temperature coefficient of $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and initial accuracy of 1 mV , no other voltage reference comes close to its performance over the industrial temperature range. It has by far the lowest noise in its category and at just $\$ 5.50$ (in thousands) for the B-grade and $\$ 3.30$ (in thousands) for the A-grade, it's also the lowest priced. But the AD 780 isn't merely superlative, it's
 completely unique. It's the only reference capable of providing either a 2.5 V or 3.0 V output while maintaining the industry standard pinout.
Incidentally, the AD 780 also offers the versatility of being available in industrial grade, surface-mount packaging. All of which means if you're seeking a truly superlative voltage reference, the AD 780 is one reference you should check. So call us at 1-800-ANALOG-D (262-5643) for a free sample and datasheet or write to us at the address below.

INTRODUCING MICRO-CAP IV.' MORE SPICE. MORE SPEED. MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12 -year tradition of setting CAE price/ performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles - on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICR0-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface - windows, pull-down menus, mouse support, on-line HELP and documentation - that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example,
from SPICE 2G. 6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At \$2495, MICRO-CAP outperforms comparable PC-based analog simulators - even those $\$ 5000+$ packages - with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed - on larger circuits.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702

Check Out the standarin in Power Components

Worldwide Agency Approyals

(1) Largest Selection of InputOutput Combinations

 in the Industry
C. Over 2.5 million Modules in the Field

$$
\begin{aligned}
& \text { く1-800-7/31-j2200 } \\
& \text { 1-800-7515-5220 } \\
& \text { CERTEFRTM } \\
& \text { ERTIFIC } \\
& \text { DAR } \\
& \text { The Tüv-Zentizierung } \\
& \text { hereby cogsgemeinschaft } \\
& \text { Vicor Corpor that chaft न. zerivis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { a quality systern ap } \\
& \text { ensily moduluaresign, manutactem for } \\
& \text { er systeminar to power systracture and mark comph } \\
& \text { Power comtemporany eleotstronc } \\
& \text { vas pertiormed, Report } \\
& \text { IN ISO }{ }^{3213}
\end{aligned}
$$

Component Solutions For Your Pow ser system

Run Longer and Prosper.

3.3V and 5V High Efficiency Dual Step Down Switching Regulator.

The LTC1142 dual-output ultra highefficiency synchronous regulator controller, available in a compact 28 -lead SSOP, maximizes battery life in a small
 amount of board space. The LTC1143 dual-output high-efficiency regulator controller is available in a spacesaving narrow 16 -lead SOIC package.

Both devices feature advanced Burst Mode ${ }^{\text {TM }}$ power management circuity providing high efficiencies at load currents from a few milliamps to amps. Standby current is a low $160 \mu \mathrm{~A}$ per regulator.

Both the LTC1142 and LTC1143 incorporate two independent regulator blocks providing 3.3 V and 5 V outputs with individual shutdown to less than $20 \mu \mathrm{~A}$. The LTC1142 operates over a 5 V to 20 V input range,

allowing 10-12 cell battery packs.
The LTC1142 also supports full synchronous MOSFET switching for both regulator sections for efficiencies which can exceed 95\%. The LTC1143 uses the fewest external components in the least amount of board space with efficiencies around 90%.

These versatile controllers also provide short circuit protection, very low dropout operation and excellent transient response. Pricing starts at $\$ 5.45$ in 1000 piece quantities for the LTC1143CS.

For more details, contact Linear Technology Corporation, 1630 McCarthy Boulevard, Milpitas, California 95035/ 408-432-1900. For literature only, call 1-800-4-LINEAR.

FROM YOUR MIND TO YOUR MARKET AND EVERYTHING IN BETWEEN.

Digital potentiometer controls LCD bias

Michael Cortopassi, Dauphin Technology, Lombard, IL

Designers of pen-based computers can easily relegate some controls that were previously mechanical, such as switches and potentiometers, to on-screen icons. For example, the circuit in Fig 1 shows one way that digital logic can control

the -24 V -dc LCD bias using two general-purpose I/O command lines. The DS-1669 from Dallas Semiconductor is a 64 -step potentiometer available in $10-$, $50-$, and $100-\mathrm{k} \Omega$ ranges. The up-count (UC) and down-count (DC) pins digitally control the wiper of the potentiometer. A low-going pulse to either of these pins increases or decreases, respectively, the wiper's position on the pot relative to RL. This change in position adjusts the base current in Q_{1}, whose collector connects to the adjust pin on an LM337 negative voltage regulator. By changing the amount of current injected into the LM337's adjust pin, the circuitry simulates having another resistor in parallel with R_{1}, and the voltage output at $\mathrm{V}_{\text {OUT }}$ changes accordingly. Tapping a pen on icons that represent contrast-or other computer functions, including brightness, LCD/CRT and suspend resume-controls the I/O pins.
[5DN
EDN BBS /DI_SIG \#1384

To Vote For This Design, Circle No. 406

Fig 1-To digitally control the $\mathbf{- 2 4 V}$-dc LCD bias, this circuit uses a 64 -step potentiometer to adjust the base current in Q_{1}.

Programmable diode biases bridge

Putrick J Worcester, KAKM TV, Anchorage, AK

A programmable reference diode, such as the Motorola TL431A, can supply constant-current bias for a silicon pres-sure-sensor bridge (Fig 1). This circuit is simpler than using an op amp and separate reference diode or than using a current diode, which requires temperature compensation.

The TL431A produces a $\mathrm{V}_{\text {REF }}$ of 2.5 V over a current range of 1 to 100 mA . The value of $\mathrm{V}_{\text {REF }} / \mathrm{R}_{2}$ sets the necessary bias current for the bridge sensor, as specified by the sensor manufacturer. The reference diode current, set by R_{1} and the supply voltage V_{s}, usually equals the bridge current. As an example, for a supply of 12 V , a reference diode and bridge current of 1 mA , and a bridge impedance of $5 \mathrm{k} \Omega, \mathrm{R}_{1}$ should equal 2250Ω, and R_{2} should equal 2500Ω. The bridge output has a common-mode voltage equal to $\mathrm{V}_{\text {REF }}$ plus one-half times the voltage across the bridge. EDN BBS /DI_SIG \#1385
[

Fig 1-Using a programmable reference diode is a simple way to supply constant-current bias for a silicon pressure-sensor bridge.

EDN-Design Ideas

Synchronized regulator produces coherent noise

Jim Williams, Sean Gold, and Steve Pietkiewicz, Linear Technology, Milpitas, CA

By using a gated-oscillator architecture instead of a clockedPWM one, gated-oscillator-type switching regulators permit high efficiency over extended ranges of output current. This architecture eliminates the housekeeping currents associated with the continuous operation of fixed-frequency designs. Gated-oscillator regulators simply self-clock at whatever frequency is necessary to maintain the output voltage. Typically, loop-oscillation frequency ranges from a few hertz to the kilohertz region, depending on the load.

In most cases, this asynchronous, variable-frequency operation doesn't create any problems. However, some systems are sensitive to the asynchronous characteristics. The system in Fig 1 slightly modifies a gate-oscillator-type switching regulator by synchronizing its loop-oscillation frequency to the system's clock. The oscillation frequency and its attendant switching noise, albeit variable, become coherent with system operation.

To analyze the system in Fig 1, temporarily ignore the flipflop, and assume the circuit directly connects the $\mathrm{A}_{\text {out }}$ and FB pin of the LT1107 regulator. When the output voltage decays, the set pin drops below $V_{\text {REF }}$, causing $A_{\text {OUT }}$ to fall. The internal comparator then switches to high, biasing the oscillator and output transistor into conduction. L_{1} receives drive pulses, and the circuit deposits this inductor's flyback events into the $100-\mu \mathrm{F}$ capacitor via the diode, ultimately restoring output voltage. This action overdrives the set pin, causing the IC to switch off until it requires another cycle. This
oscillator cycle's frequency is load-dependent and variable.
Now, interposing a flip-flop into the path between the $\mathrm{A}_{\text {out }}$ and FB pins, as the figure shows, synchronizes the regulator to the circuit-generated clock. When the output decays far enough, the $\mathrm{A}_{\text {out }}$ pin goes low. At the next clock pulse, the flip-flop's Q_{2} output sets low, biasing the comparator-oscillator. This turns on the power switch, which pulses L_{1}. L_{1} responds in flyback fashion and deposits its energy into the output capacitor to maintain output voltage. This operation is similar to the previously described case, except that the flip-flop now synchronizes the sequence of events with the system clock. Although the resulting loop's oscillation frequency is variable, the frequency and all attendant switching noise is synchronous and coherent with the system clock.

The circuit requires a start-up sequence because the output provides power for the clock. The circuit connects the flip-flop's remaining section as a buffer to furnish start-up. The flip-flop's connected CLR_{1} and CLK_{1} lines monitors output voltage via the $221-, 82.5-$, and $100-\mathrm{k} \Omega$ resistor string. When power is applied, Q_{1} sets CLR_{2} low, which permits the LT1107 to switch, thereby raising the output voltage. When the output goes high enough, Q_{1} sets CLR_{2} high, and normal loop operation commences. Although this circuit uses a stepup regulator, the technique also works with other types. EDN BBS /DI_SIG \#1383

SDN
To Vote For This Design, Circle No. 408

Fig 1—A synchronizing flip-flop forces the LII 107 gate-oscillator-type switching regulator's noise to be coherent with the $100-\mathrm{kHz}$ clock.

Incomparable price, performance, size and power!

DATEL's new ADS-944 is without competition ... unless you consider devices with inferior performance, greater power consumption, larger packages and much higher prices competitive. Evaluate an ADS-944 and you'll agree ... there's no comparison.

DATEL offers a complete line of DIP-packaged, 14-bit, sampling A/D's with throughputs from 0.5 to 10 MHz . Call today for details.

- No missing codes over temperature
- 76dB SNR, -74dB THD @ Nyquist
- Edge triggered; no pipeline delay
- Small 32-pin TDIP; TTL compatible
- 2.9 Watts power dissipation
- MIL-STD-883 screening optional
- \$479 (OEM, USA)

SPECIFICATIONS	$+25^{\circ} \mathrm{C}$			0 to $+70^{\circ} \mathrm{C}$			-55 to $+125^{\circ} \mathrm{C}$			UNITS
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Sampling Rate	5			5			5			MHz
Integral Nonlinearity		$\pm 3 / 4$			$\pm 3 / 4$			± 1		LSB's
Differential Nonlinearity	-0.95	± 0.5	+0.95	-0.95	± 0.5	+1.0	-0.95	± 0.5	+1.25	LSB's
No Missing Codes	14			14			14			Bits
Total Harmonic Distortion*		-74	-72		-74	-72		-73	-70	dB
Signal-to-Noise Ratio*	73	76		73	76		72	75		dB

[^4]
EDN-DESGCN IDEAS

Circuit measures software-execution time

Yongping Xia, EBT Inc, Torrance, CA

Especially helpful for developing real-time application programs, the circuit in Fig 1 plugs into a PC printer port and measures the execution time of a piece of software. The CD4536 is a $16 / 24$-bit binary counter with a built-in oscillator. This counter has an 8 -bit prescaler, which the chip bypasses if the 8_BY pin is high. When this is the case, the CD4536 is a 16 -bit counter, and its A through D inputs select which bit is connected to output DO. If the 8_BY pin is low, the CD4536 is a 24 -bit counter and the inputs select which 9 to 24 bits connect to output DO. Setting the R pin high clears the counter, and setting CINH high inhibits the counter. With the components values shown in the figure, the oscillation frequency is around 100 kHz . The printer port can directly power the CD4536 because it needs only several milliamps.

A PC printer port has an 8-bit output port. As Fig 1 shows, D_{0} to D_{3} select the counter's output bit, D_{4} disables the counter, D_{5} sets the bypass function, D_{6} resets the counter, and D_{7} powers the chip. The printer port uses input pin 11 to read the selected bit off the counter.

Listing 1's C program controls the test. First, the program finds the PC's printer port address. This address is its

Fig 1-This simple circuit helps to measure software execution.

Listing 1-Execution-time measurements

```
#include <conio.h>
#include <stdio.h>
#include <bios.h>
#define RESET_ON 0\times40
#define RESET-OFF 0xbf
#define BYPASS_ON 0x20
#define CLOCK ON ONAI
#define CLOCK OFF 0x10
int out=0\times80, i, out port, in_port;
long in, data;
float temp, dis;
typedef unsigned int WORD;
test_procedure()
/* your procedure
l
long get_data(void)
                            /* read ctr bit by bit */
    in=0;
    for (i=15; i>-1; i--)
        in*=2;
        outportb(out_port,(out+i));
        delay(1);
        if ((inportb(in_port) & 0x80)==0)
'in++
    return in;
void clear_counter()
                            /* clear ctr
    out=out | RESET_ON;
    outportb (out port, out);
    out=out & RESET_OFF;
    outportb(out port,out);
void set_bypass(int bp)
```

 if (bp==0) (BYPASS_ON;
 cout=out | BYPASS_ON;
 outportb(out port, out);
    ```
1
void main(void)
    clrscr() :
    clrscr () ;
out port \(=\star\) ( WORD far * elear screen
    out port \(=\star\) (WORD far *)MK_FP \((0 \times 0040,8)\); \(/ *\) find printer- \({ }^{* / *}\) /
    in_port=out_port+1;
    outportb(out_port, out);
delay(1000);
clear counter ().
    clear_counter () ;
    set bypass (0);
out \(=\) out \(\&\) CLOCK
    out \(=\) out \& CLOCK ON;
    outportb(out port, out)
    delay (200);
out=out CLOCK_OFF;
    outportb (out port,out)
    temp \(=(f l o a t)\) get data() \(/ 200\)
    clear counter ()
    set_bypass (1);
out out \& CLOCK ON ;
    out =out \& CLOCK_ON;
    outportb (out_port, out) ;
    test procedure ();
    out=out | CLOCK OFF;
    outportb (out port, out) ;
    data =get_data()
    if (data<256) ; /* get ctr number */
    if (data<256) \(\quad\) (*) if number is small, */
        clear_counter () ;
        set bypass (0)
        set bypass (0):
        out =out \& CLOCK ON;
        test procedure ();
        out =out (CLOCK OFF; ;
        outportb (out port, out)
        data=get_datà () ;
    else
        data* \(=256\);
    dis=(float) (data/temp) ; \(/ *\) find execution time in msec *
    printf("excution time is ?.2f msec \(\backslash \mathrm{n}^{\prime \prime}\), dis); /* display result */


\title{
\(\angle T\) InER DESIGN
}

\section*{ESD Testing for RS232 Interface Circuits - Design Note 80}

\author{
Gary Maulding
}

In 1992 Linear Technology introduced the first RS232 interface circuits capable of surviving in excess of \(\pm 10 \mathrm{kV}\) ESD transients. Since that time, LTC has introduced more than 30 products with this level of protection. The inherent ruggedness of these products eliminates the need to use external protection devices in most applications. Not one unit has been returned from the field to Linear Technology for an ESD related failure analysis since the enhanced ESD protected devices were introduced.

The \(\pm 10 \mathrm{kV}\) ESD voltage rating is based on the Human Body ESD Model. When evaluated with other standard ESD test methods, the superior ESD ruggedness of LTC's transceivers gives equally impressive results when compared to older conventional designs.

The various ESD test methodologies all share a common configuration as shown in Figure 1. A source capacitor is first charged to a high voltage, then the high voltage power supply is disconnected from the capacitor, and the capacitor is connected to the device under test through a limiting resistor. The value of the test capacitor and the limiting resistor differ among the various test standards.


Figure 1. ESD Test Standards

The Human Body Model is the most commonly used ESD test in the United States and is the test method prescribed by Mil-Std-883. This method simulates the ESD discharge waveform seen form human contact to a piece of electronic equipment. The source capacitor is 100 pF , limited by \(1.5 \mathrm{k} \Omega\) for the human body model. Linear Technology's RS232 transceivers can withstand in excess of \(\pm 10 \mathrm{~V}\) when tested with the Human Body Model.

The machine model, commonly used for ESD testing in Japan, is a more severe ESD test. This model simulates metallic contact between the device under test and a charged body. The source capacitor is 200 pF with no limiting resistor. The higher source capacitance and the absence of a limiting resistor causes the device under test to be subjected to more voltage, energy, and current than human body model testing. Therefore failures occur at lower test voltages with machine model than with human body model testing. LTC's RS232 transceivers can withstand \(\pm 3.5 \mathrm{kV}\) when tested with the machine model.

The IEC-801 test method fits between the human body and machine methods in severity. The source capacitor is 150 pF with a \(330 \Omega\) limiting resistor. LTC's RS232 transceivers pass test voltages of \(\pm 7.5 \mathrm{kV}\) with the IEC801 method.

The performance of LTC's 10kV protected RS232 transceivers to each of these test conditions is summarized in Table 1. Also included are protection levels achieved to machine model testing by including a simple RC network on the RS232 line pins. The RC network used is a " T " network formed with two \(200 \Omega\) resistors and a 220 pF capacitor to ground. The added resistance and capacitance are small enough to have negligible effect on RS232 signals, but provide a great increase in ESD protection at a lower cost than using TransZorbs \({ }^{\text {® }}\) with a diode network, which is commonly used for ESD protection. Test voltages higher than those shown in

\footnotetext{
TransZorb \({ }^{(8)}\) is a registered trademark of General Instruments, GSI
}

Table 1 sometimes cause device damage. The damage seen most commonly is an increase in driver output leakage with functionality failures occurring at even higher voltages.

Table 1. LTC RS232 Transceiver ESD Test Results
\begin{tabular}{l|c|c}
\hline ESD Test Model & \begin{tabular}{c} 
Driver Pin \\
Protection
\end{tabular} & \begin{tabular}{c} 
Receiver Pin \\
Protection
\end{tabular} \\
\hline Human Body & \(\pm 10 \mathrm{kV}\) & \(\pm 10 \mathrm{kV}\) \\
\hline Machine & \(\pm 3.5 \mathrm{kV}\) & \(\pm 6 \mathrm{kV}\) \\
\hline IEC-801 & \(\pm 7.5 \mathrm{kV}\) & \(\pm 8 \mathrm{kV}\) \\
\hline \begin{tabular}{l} 
Machine Model with \\
RC Network on RS232 Pins
\end{tabular} & \(\pm 10 \mathrm{kV}\) & \(\pm 10 \mathrm{kV}\) \\
\hline
\end{tabular}

\section*{ESD Transients During Powered Operation}

The test methods discussed so far involve testing for permanent damage to the integrated circuit from ESD transients. Intoday's portable electronics, interconnection of cables to the communications ports may occur while the equipment is operating. This makes it imperative that the circuit can tolerate the ESD transient with minimal disruption of system operation. LTC's RS232 interface circuits can withstand 10kV ESD transients while operating, shut down, or powered down. Disruption of data transfer is unavoidable during the ESD transient event, but data transmission may resume upon the completion of the event.

Figure 2 is a scope photograph of the data transmission interruption and recovery seen when a -10kV ESD transient strikes a communications line. The test circuit of Figure 3 was used to record this event. The ESD strike is applied to the driver output of an LT1180A and the receiver input of an LT1331. The ESD transient is of too short a duration to be recorded on the photograph, but the effects of the transient can be seen by the corruption of data after the strike. The circuits require about \(20 \mu \mathrm{~s}\) to recover from the event, after which data transmission continues normally.


Figure 2. Effects of ESD Transient on Data Transmission Through an LT1331


Figure 3. Operating Condition ESD Test Circuit

For literature on our Interface Products, call 1-800-4-LINEAR. For applications help, call (408) 432-1900, Ext. 453


\section*{up to 35 dB 10 to 1000 MHz \$5995}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TOAT-R512 ZFAT-R512 \\
Accuracy
\[
\text { (dB) }(+/-\mathrm{dB})
\]
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TOAT-124 ZFAT-124 Accuracy (dB) \((+/-d B)\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TOAT-3610 \\
ZFAT-3610 \\
Accuracy \\
(dB) \((+/-\mathrm{dB})\)
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TOAT-4816 \\
ZFAT-4816 \\
Accuracy \\
(dB) \((+/-d B)\)
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TOAT-51020 \\
ZFAT-51020 \\
Accuracy \\
(dB) \((+/-d B)\)
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline 0.5 & 0.12 & 1.0 & 0.2 & 3.0 & 0.3 & 4.0 & 0.3 & 5.0 & 0.3 \\
\hline 1.0 & 0.2 & 2.0 & 0.2 & 6.0 & 0.3 & 8.0 & 0.3 & 10.0 & 0.3 \\
\hline 1.5 & 0.32 & 3.0 & 0.4 & 9.0 & 0.6 & 12.0 & 0.6 & 15.0 & 0.6 \\
\hline 2.0 & 0.2 & 4.0 & 0.3 & 10.0 & 0.3 & 16.0 & 0.5 & 20.0 & 0.4 \\
\hline 2.5 & 0.32 & 5.0 & 0.5 & 13.0 & 0.6 & 20.0 & 0.8 & 25.0 & 0.7 \\
\hline 3.0 & 0.4 & 6.0 & 0.5 & 16.0 & 0.6 & 24.0 & 0.8 & 30.0 & 0.7 \\
\hline 3.5 & 0.52 & 7.0 & 0.7 & 19.0 & 0.9 & 28.0 & 1.1 & 35.0 & 1.0 \\
\hline
\end{tabular}

Price \$ (1-9 qty) TOAT \$59.95/ZFAT \$89.95 bold faced values are individual elements in the units

Finally...precision attenuation accurate over 10 to 1000 MHz and \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50 -ohm components perform with \(6 \mu \mathrm{sec}\) switching speed and can handle power levels typically to +15 dBm . Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only \(\$ 59.95\) (1-9 qty); ZFAT SMA versions are \$89.95 (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.

Distribution Centers/NORTH AMERICA 800-654-7949 • 417-335-5935 Fax 417-335-5945 EUROPE 44-252-835094 Fax 44-252-837010
For detailed specs and computer-automated performance data (CAPD), refer to Thomas Register Vol. 23, MicroWaves Product Directory, EEM, or Mini-Circuits' 718-pg Handbook.

\section*{EDN-Desicn Ideas}
output-port address, and address +1 is the input-port address. After clearing the counter and enabling the clock, the program lets the counter free-run for 1 msec and then reads the counter bit-by-bit. The resultant number indicates how many clock cycles occur during 1 msec and determines the oscillation frequency. Next, the program sets the CD4536 to be a 24 -bit counter, clears the counter, starts the clock, runs the test procedure, and stops the clock. If the reading is too small, the program sets the CD4536 to a 16 -bit counter
and reruns the test. Based on the known clock frequency and counter number, calculating the execution time of the tested procedure is easy. Since the maximum counter number and clock are 24 bits and \(10 \mu \mathrm{sec}\), respectively, the maximum execution time this circuit can measure is 160 seconds. [DN
EDN BBS /DI_SIG \#1388

To Vote For This Design, Circle No. 409

\title{
Switching-regulator output goes below \(\mathbf{V}_{\text {REF }}\)
}

\author{
Michael Keagy, Maxim Integrated Products, Sunnyvale, CA
}

The feedback arrangement of typical switching regulators doesn't allow the regulated outputs to go lower than the reference voltage. If you try to lower the output by modifying the feedback network, the compensation components the manufacturer recommends may no longer stabilize the regulator's error amplifier. An external reference voltage (Fig 1) helps overcome this problem.
\(\mathrm{IC}_{1}\) regulates by keeping the voltage at its FB pin equal to the internal \(\mathrm{V}_{\text {REF }}\), which normally sets a lower limit of 2.21 V for \(\mathrm{V}_{\text {our }}\). The FB voltage usually results from a resistive divider that connects between \(\mathrm{V}_{\text {out }}\) and ground. However, this circuit connects the divider between \(\mathrm{V}_{\text {out }}\) and the high-er-voltage shunt-regulator output of \(D_{2}\). As you adjust \(R_{5}\), the resulting output voltage ranges from 2.21 to approximately 1.2 V , according to the following equation, where \(\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}=2.21 \mathrm{~V}\), and \(\mathrm{V}_{\mathrm{Z}}=\) zener voltage \(=7.5 \mathrm{~V}\) :
\[
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{FB}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{2}-\mathrm{V}_{\mathrm{Z}}\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right) .
\]

Because \(\mathrm{IC}_{1}\) 's error amplifier is inherently stable, the simple compensation components \(\mathrm{R}_{1}\) and \(\mathrm{C}_{1}\) ensure that the circuit is stable. You can set \(\mathrm{V}_{\text {out }}\) lower than 1.2 V if you also modify the compensation network. And, the feedback modification shown in this circuit can let other regulators produce outputs lower than \(\mathrm{V}_{\text {REF }}\) if you can stabilize their error amplifiers.
\(\mathrm{IC}_{1}\) 's highest allowable input voltage is 40 V . If \(\mathrm{V}_{\text {IN }}\) differs significantly from 40 V , adjust \(\mathrm{R}_{2}\) as necessary to return the zener current to approximately \(1.5 \mathrm{~mA} . \mathrm{R}_{3}\) is an optional load resistor that prevents the otherwise unloaded output from approaching the zener voltage.

The circuit can supply 5 A and offers \(0.75 \% / \mathrm{V}\) line regulation for inputs between 30 and 40 V . Load regulation for output currents between 0.1 and 5 A is \(0.4 \% / \mathrm{A}\). Losses occur in \(\mathrm{D}_{1}\), which drops about 0.2 V , and in the inductor, whose series resistance is approximately \(0.06 \Omega\). Together, these components consume about 2 W at \(5 \mathrm{~A} . \mathrm{C}_{2}\) and the internal, power Darlington transistor also consume power.

When supplying 1A, Fig 1's efficiency for \(\mathrm{V}_{\text {our }}=1.2 \mathrm{~V}\) is approximately \(50 \%\)-and \(60 \%\) for \(\mathrm{V}_{\text {our }}=2 \mathrm{~V}\). Efficiency degrades at light loads because of relatively high supply current. The levels at dc- 8.5 mA in the IC and 1.5 mA in the


\section*{NOTE:}
\(\mathrm{L}_{1}=\) COILTRONICS CTX 50-2-52

Fig 1-Connecting the \(\mathrm{R}_{4}\) and \(\mathrm{R}_{5}\) feedback network to 7.5 V instead of to ground enables this switching regulator to produce a regulated output that's lower than its internal reference voltage.
zener diode-increase somewhat with the switching frequency. \(\mathrm{IC}_{1}\) 's internal Darlington switch drops about 1.8 V . Other regulators that have lower voltage drops across the switch will have higher efficiencies at lower load currents.
EDN BBS /DI_SIG \#1380
[50N]


\title{
Pulse-width adjuster reverses servo motor
}

\author{
Joe Utasi, Jomar Products Corp, Cincinnati, OH
}

Typical remote-control systems and robotics applications use standard R/C servos, which often require a reversal of the direction of rotation. Since varying the input signal's pulse width between 1 and 2 msec controls the servo's output position, a circuit that adjusts the pulse width to cause direction reversal can often come in handy. Many such circuits exist that use relatively sophisticated servo-control ICs, but the implementation in Fig 1 uses a standard CMOS IC to produce a reliable design at low cost.
\(Q_{1}\) functions as an input buffer, which allows correct control even if the input is not logic-level compatible with the CMOS chip. At the beginning of the active-high normal servo pulse, the output of \(\mathrm{Q}_{1}\) goes low, triggering timer \(\mathrm{IC}_{1 \mathrm{~A}}\), which the circuit sets for 3 msec . This action forces the clear line of timer \(\mathrm{IC}_{1 \mathrm{~B}}\) high, getting this second timer ready to accept a trigger pulse. At the end of the normal servo pulse, \(Q_{1}\) goes low, timer \(\mathrm{IC}_{1 \mathrm{~B}}\)-which is configured as a latch-triggers, and its output remains high until \(\mathrm{IC}_{1 \mathrm{~A}}\) times out. Since \(\mathrm{IC}_{1 \mathrm{~B}}\) 's output doesn't go high until the original input pulse goes low, the output of \(\mathrm{IC}_{1 \mathrm{~B}}\) is the difference between the input and \(\mathrm{IC}_{1 \mathrm{~A}}\) 's 3-msec timer. Thus, as the input signal increases in width, the output decreases, and the circuit essentially reverses the direction of the servo-control pulse. \(D_{1}\) and \(C_{1}\) filter battery noise caused by the servo system and ensure that the servo-pulse reverser does not introduce any jitter into the system. EDN BBS /DI_SIG \#1389

EDN
To Vote For This Design, Circle No. 411

\section*{In Crystals and Oscillators.}

Quality means performance and reliability. You can be confident you'll achieve your design goals every time. With Ecliptek crystals and oscillators.
A wide selection of competitivelypriced products for maximum design
flexibility. Plus fast delivery
to help you meet your deadlines.
We put crystals and oscillators in a whole new light. See EEM 1993/94 for technical details. Or call 714-433-1200.


The Crystal and Oscillator Specialists

\title{
WORLD'S SMALLEST MOST ACCURATE QUAD 12-BIT VOUT DAC
}

\section*{Cut Space, Eliminate Costly Trims!}

The MAX536/MAX537 is ideal for servo-control, offset/gain-adjust, and other applications where high precision and small form-factor are critical. 12-bit montonicity, \(\pm 1 / 2\) LSB relative accuracy, and \(\pm 1\) LSB Total Unadjusted Error* (MAX536) are guaranteed with no zero- or full-scale adjustments. The four DACs can be updated either independently or simultaneously via a single command register, and the serial interface is fully compatible with \(\mathrm{SPI}^{T M}\). QSP \({ }^{\top \mathrm{M}}\), and MicroWire \({ }^{\text {TM }}\).

\section*{CUT SPACE 10 TIMES!}


THE NEW MAX536


THE COMPETITION


\section*{- 3-Wire Serial Interface Frees \(\mu \mathrm{P}\) I/O Pins}
- \(\pm 1\) LSB TUE* Eliminates Trims
- 16-Pin SOIC/DIP Save Space
- \(\pm 5 \mathrm{~V}\) Supply Operation (MAX537)
- Low-Noise Precision Output Buffers On-Chip
- Parallel Versions Also Available (MAX526/MAX527)

IMPROVE ACCURACY 5 TIMES, ELIMINATE TRIMS!


The MAX536/537 Guarantees \(\pm 1\) LSB Total Unadjusted Error* 5 times more accuracy than the closest competition.


\section*{FREE D/A Converter Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples}

CALL TOLL FREE 1-800-998-8800 ext. 6444 For a Design Guide or Free Sample
MasterCard \({ }^{\circledR}\) and Visa \({ }^{\oplus}\) are accepted for Evaluation Kits or small quantity orders.


Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194

\title{
WORLD'S LOWEST POWER 5 V 12-BIT DACs
}

\section*{VOUT DAC Draws Only \(\mathbf{3 0 0 \mu A}\) (max) From Single +5V Supply!}

Designed for portable and battery-powered applications, the new serial MAX538/MAX539 comes in a tiny 8 -pin SOIC package, and cuts supply current by 3 times over the closest competition. In addition, it's the first +5 V -powered VOUT DAC to provide true 12 -bit \(\pm 1 / 2\) LSB linearity.

\section*{SERIAL INTERFACE \& 8-PIN SO SAVE SPACE}

- Serial Interface Saves \(\mu \mathrm{P}\) Pins
- SPI \(^{\text {TM }}\), QSPI \({ }^{T M}\), \(\mu\) Wire \({ }^{\text {TM }}\) Compatible
- Rail-to-Rail Output Amplifier
- Internal Reference Version (MAX531)
- Guaranteed Monotonic Over Temp
- Priced from only \$4.85*
- Parallel Version Available (MAX530)



4th EDITION

\section*{FREE D/A Converter Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples}

\section*{CALL TOLL FREE 1-800-998-8800 ext. 6444}

For a Design Guide or Free Sample
MasterCard \({ }^{\circledR}\) and Visa \({ }^{\circledR}\) are accepted for Evaluation Kits or small quantity orders.
AノXIA


Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.
Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc: NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M-Squared, Inc.; OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M-Squared, Inc.: TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.
im SPI and QSPI are trademarks of Motorola, Microwire is a trademark of National Semiconductor.
Maxim is a registered trademark of Maxim Integrated Products. © 1994 Maxim Integrated


Cellular Communicar.

\section*{CONNECTIVITY}

\section*{Office Automation}

\section*{INDUSTRIAL CONTFRV}

\title{
We're ARMed to the teeth to jump start your embedded control designs.
}


Connect your design to VLSI's battery of ARM \(^{\text {m }}\) silicon and software, and energize your system with the most power-efficient 32-bit RISC processor available today.

From a rich family of off-the-shelf controllers to user-configurable ASIC-based solutions utilizing the ARM core as an embeddable FSB \({ }^{\text {tw }}\) library element, VLSI gives you the flexibility to implement your ARM design exactly the way you want. Exactly the way you need. Nobody else can do that.

With the world's smallest 32-bit RISC chip, we bring you the highest MIPS/mA and lowest \(\$ /\) MIPS ratios of any 32-bit RISC on the market. High performance and low power. 3 V or 5 V .

Our ARM products are charged by a set of tools that are easy to use. With a powerful real time multitasking operating system, and a graphical development environment that's fully symbolic.

Products and tools you can design with. Service and support you can depend on. And costs you can live with.

So don't wait to find out how VLSI's ARM solutions can boost your particular application. Call us today at (602) \(752-6630\) or Fax us at (602) 752-6001.

We'll give you a real jump on your competition!

VLSI ARM: The Embeddable RISC Machine \({ }^{\text {™ }}\)

VLSI TEChnology, INC.

ESB and VLSI ARM: The Emheddable RISC Machine are trademarks of VLSI Technology, Inc ARM and the ARM- Powered logo are trademarks of Advanced RISC Machines, Ltd.
01994 VLSI Technology, Inc.

\section*{LanICE moves PC-based in-circuit emulators onto Ethernet}

The world is going distributed. One evidence of this phenomenon is the increasing number of development teams who are connecting their targets to the LANs to which their workstations or PCs are connected. This allows the team members to develop software in the comfort of their own offices and provides all team members with access to the target. The target itself can be anywhere that is accessible to the LAN.
One company that is facilitating this move is Nohau. It bases its in-circuit emulators (ICEs) on boards that plug into IBM PCs. Until now, users had to control the ICE with a PC that was very close to the target or use an RS-232C box to connect to the ICE via a standard but slow COM port.

The Nohau LanICE box allows you to connect the ICEs to your network. It is based on a \(66-\mathrm{MHz} 486\). In essence, it is a


The LanICE (box on the left) contains as many as five ICEs. It allows you to control the ICEs from a networked workstation running \(X\) Windows.

PC without a keyboard or a display but with an Ethernet interface and all the software to control the ICE from a workstation running X Windows. LanICE comes in a tower configuration that houses as many as five emulators.

LanICE's \(10-\mathrm{Mbps}\) interface maintains high throughput to the ICE. This allows program downloads, single-stepping, and other operations to run very quickly from a workstation or a networked PC.

LanICE creates Transfer Control Protocol/Internet Protocol (TCP/IP) messages that contain all of the font and other information X Windows needs to display in an MS-DOS-compatible or a Microsoft Windows-compatible window. When you use the Windows-compatible window, the ICE works is as if you were using a PC directly connected to the ICE. The LanICE costs \(\$ 3500\).-David Shear

Nohau Corp, Campbell, CA. (408) 378-1820. Circle No. 336


\section*{The Winning Hand}

\section*{DT's QSOP... Your Ace In The Holed}

IDT adds the Quarter-Size Outline Package (QSOP) to complete its winning hand of surface-mount packages for its high-speed FCT Logic family. With products available in TSSOP, QSOP, SSOP, and standard SOIC packages, IDT now offers the industry's widest line of high-density packaging for both Octal and Double-Density logic.

\section*{Dramatic Space Savings!}

At half the length and width of industry standard SOIC packages, the new QSOP package is the most compact Octal package available. In addition to the area savings, the new package is only 0.0645 inches high, making it ideal for low profile applications.

\section*{The Fastest 5 V and 3.3V Logic} IDT's Logic family is the highest performing, lowest power bus interface solution. Available in a wide variety of 5 V and 3.3 V functions, and speed grades from 6.5 ns to 3.2 ns ( \(\mathrm{t}_{\mathrm{pd}}\) max), IDT's FCT Logic family supports all levels of performance at competitive prices.

\section*{Quiet, Low-noise Outputs}

IDT's FCT Logic is offered in a variety of low-noise output drive configurations to minimize ground bounce and to match

\section*{Compact IDT FCT Logic Packaging}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Package & Ordering Code & Pin-Pitch (mm) & \[
\begin{gathered}
\text { Area } \\
\left(\mathrm{mm}^{2}\right)
\end{gathered}
\] & Length (mm) & Width (mm) & Height (mm) \\
\hline \[
\begin{aligned}
& \text { QSOP } \\
& \text { 20-pin }
\end{aligned}
\] & Q & 0.635 & 52.1 & 8.7 & 3.9 & 1.6 \\
\hline \begin{tabular}{l}
SSOP \\
20-pin
\end{tabular} & PY & 0.650 & 56.0 & 7.2 & 5.3 & 1.9 \\
\hline \[
\begin{aligned}
& \text { SOIC } \\
& \text { 20-pin }
\end{aligned}
\] & SO & 1.270 & 133.1 & 12.8 & 7.5 & 2.5 \\
\hline TSSOP 48-pin & PA & 0.500 & 102.1 & 12.6 & 6.2 & 1.1 \\
\hline \[
\begin{aligned}
& \text { Ssop } \\
& \text { 48-pin }
\end{aligned}
\] & PV & 0.635 & 164.4 & 15.9 & 7.5 & 2.6 \\
\hline
\end{tabular}
specific design requirements. Output configurations include: standard TTL-compatible high drive and very low-noise balanced drive with source terminating resistors.

\section*{Call Today!}

Call or FAX IDT today and receive a QSOP cross reference guide, sample package card, Logic Design Guide and Logic Data Book. Add IDT's Logic to your handyou'll be the winner!


Integrated Device
Technology, Inc.

\section*{You'll find our Sales Specialists are really bright.}

The GE Rental/Lease Sales Specialists are knowledgeable professionals who are ready to assist you in any way - from helping you select the right test equipment to advising you on how to use it. They can suggest both industrial and electronic test equipment applications, alternative equipment and
accessories. And if you ever have a problem with the equipment once it's on your site, they'll work with you to make it right.

In fact, we'll work with you to make your entire rental experience with GE Rental/Lease right. From help in selecting equipment to fast delivery to our unmatched customer
service. Just call 1-800-GE-RENTS We'll help you see the light.


GE Rental/Lease

\section*{EDN-Nsw Products}

EMBEDDED SYSTEMS

\section*{Optimized libraries for TI C30 and C40 DSPs}

Two new libraries are available for the Texas Instruments TMS320C30 and TMS320C40 DSPs. STD/Mathlib is a runtime library that contains 33 mathematical functions commonly used in machine control, DSP, and graphics. The library also includes hand-coded trigonometric, transcendental, hyperbolic, and other functions. STD/Mathlib costs \(\$ 495\) on DOS and \(\$ 695\) on Sun/OS.

The DSP/Veclib library of DSP functions for the TMS320C40 includes more than 300 hand-coded functions, such as FFTs, convolutions, and correlations. It is available for DOS and Sun/OS systems and costs \(\$ 3000\).-David Shear

Sinectonalysis Inc, West Newton, MA. (617) 894-8296.

Circle №. 337

\section*{PC-based, \(4 \times 6\)-in. SBC incorporates video}

The \(16-\mathrm{MHz}\) V- \(40 \mu \mathrm{P}\)-based single-board computer (SBC) contains 640 kbytes of user DRAM, disk controllers, and a VGA video/LCD controller. To round out the PC-based architecture, the \(4 \times 6\)-in. SBC also includes a 128 - to 256 -kbyte BIOS flash EPROM, three RS-232C ports, a parallel port, a real-time clock with a battery, and an optional ARCnet interface. The PC/+v consumes 2 W and costs \(\$ 300\).-David Shear

Megatel, Weston, ON, Canada. (416) 245-2953.

Circle №. 338

\section*{Simulation library offers block diagram}

Engineers designing digital communications can now prototype their designs with block diagrams using Hyperception's Hypersignal for Windows advanced transmission library. It works with the Hypersignal for Windows block-diagram simulation software.
The new blocks in the library include baseband transmission models, modulation, demodulation, carrier and clock recovery, arbitrary filter design, and sys-tem-performance measures. Hypersignal for Windows costs \$1495.-David Shear

Hyperception, Dallas, TX. (214) 3438525.

Circle №. 339

\title{
Personal DSO with four full channels combines performance and portability.
}


CIRCLE NO. 27

\section*{SIEMENS}

\section*{For the finest components, call toll free...}

\author{
Siemens Components, Inc., Special Products Division
}
\begin{tabular}{ll} 
Capacitors/RFI & \(800-888-7729\) \\
Ferrites: & \(800-888-7728\) \\
\begin{tabular}{l} 
Thermistors: \\
Varistors/ \\
Surge Protectors:
\end{tabular} & \(800-888-7728\) \\
\begin{tabular}{l} 
Saw Products: \\
Microwave \\
Ceramics: \\
Switches/ \\
Connectors:
\end{tabular} & \(800-888-7728\) \\
\hline
\end{tabular}

Introducing the AD 1 B 60 . The only intelligent digitizing signal conditioner component.

When we say there's nothing like the AD1B60, it isn't advertising hype, it's fact. Not only does it provide excitation, linearization, compensation, scaling and self-calibration for thermocouples and RTD's, it does so in just one small surface-mount package. And since it eliminates the need to write and debug linearization software, the AD1B60 is incredibly easy to use. So if you're looking to cut design costs, get to market faster and reduce inventory requirements, there's only one thing to
do. Call Analog Devices at 1-800-ANALOG-D (262-5643).
We'll send you a datasheet on the AD1B60 and a brochure
detailing our full line of
industrial components.


\section*{EDN-New Products \\ MICROPROCESSORS}

\section*{Toshiba 8-bit \(\mu \mathrm{C}\) offers \(\mathbf{6 0}\) kbytes of ROM elbow room}

For most microcontroller ( \(\mu \mathrm{C}\) ) system designers, there's never enough memory; they're continually shoehorning code into small memory spaces. Toshiba's TLCS-870 8-bit \(\mu \mathrm{Cs}\) give these designers some breathing space-up to 60 kbytes of ROM and 2 kbytes RAM. Built with a register-banked architecture, the 870 has a \(2-\mathrm{MHz}\) internal bus and a full instruction set.

You can buy a lot of code forgiveness with 60 kbytes. With that much ROM, you can pay more attention to code correctness than just to code size. Not only that, but a 2 -kbyte RAM, even with 16 banks of eight registers each, leaves a lot of room for stack operations. The 870 supports a software stack and has the room for it. The large code space, mod-erate-size RAM, and software stack make C a viable programming option. Toshiba offers its own C compiler.

\section*{Toshiba TLCS-870 8-bit \(\mu\) C}
- \(2-\mathrm{MHz}\) internal clock ( 1 MHz at 2.7 V )
- 32-kHz slow clock
- 120 basic operation codes, including \(8 \times 8\)-bit multiply and \(16 \times 8\)-bit divide
- 16 RAM-based register banks (eight 8 bit registers) for fast context switches
- 60 kbytes of ROM
- 2 kbytes of RAM
- 8-bit PC-relative jump, 16-bit absolute jump
- 8-channel, 8 -bit ADC ( \(23 \mu \mathrm{sec}\) conversion)
- Three 8-bit timer/counters
- Two 16 -bit timer/counters
- Watchdog timer
- Three serial I/O interfaces
- Four external interrupts, 90 I/O pins
- 100-pin QFP, 2.7 to 5 V
- TMP87CS64F \$7.56 \((10,000)\)

The 870 has a full set of peripherals, including an 8 -bit ADC, three 8 -bit timer/counters, two 16-bit timer/coun-
ters, a watchdog timer, and three serial interfaces. Additionally, the 100 -lead chip provides \(90 \mathrm{I} / 0\) pins for data input and output.
To conserve power, the 870 has a dual clocking system: an \(8-\mathrm{MHz}\) fast clock and a \(32-\mathrm{kHz}\) slow clock. It has five power-saving modes: Stop (no oscillator), Slow ( \(32.8-\mathrm{kHz}\) clock), Idle1 (CPU stopped, peripherals on fast clock), Idle2 (CPU stopped, peripherals use fast or slow clocks), Sleep (CPU stopped, peripherals use slow clock). Interrupts trigger an exit from these modes. Toshiba supplies development tools for the 870; these include the C compiler, an assembler/linker/loader/ library, and an in-circuit emulator.
-Ray Weiss
Toshiba America Electronic Components Group, Irvine, CA. (714) 455-2000.

Circle №. 404


Toshiba's TLCS-870 \(\mu\) C integrates an 8-bit CPU with a full peripheral set and up to 60 kbytes of ROM and 2 kbytes of RAM.

\section*{EDN-New Producis}

\section*{MICROPROCESSOR}

\section*{8/32-bit \(\mu \mathrm{C}\) combines RISC and traditional design}

RISC technology is not confined to 32 -bit, high-memo-ry-bandwidth processors. For example, although Hitachi's H8/300H 32 -bit microcontroller ( \(\mu \mathrm{C}\) ) is not quite RISC, it combines RISC design techniques (simple instructions, pipelining) with traditional \(\mu \mathrm{C}\) design. Using 2 - or 4 -byte instructions, the CPU delivers a peak instruction rate of 7.6 MIPS with a 16 MHz external rate; Hitachi claims a 1.9-MIPS Dhrystone rate.

The H8/300 integrates up to 64 kbytes of on-chip program ROM with offchip DRAM. It has up to 2 kbytes of RAM for fast local data access but also enables programs to make use of a large, slower, lowcost DRAM. Designing in the chip is easy; the \(\mu \mathrm{C}\) has an on-chip DRAM controller, complete with programmable wait states, row-access/column-access strobes, and refresh cy-
cles. The device lets you execute code from the DRAM, but doing so reduces execution rates. For example, memory fetches would take longer with this method, and with a 16-byte-wide DRAM bus, a 32 -bit instruction would


Hitachi's H8/3042 combines a \(\mathbf{1 6}\)-bit RISC CPU, a full set of peripherals, 64 kbytes of ROM, 2 kbytes RAM and off-chip DRAM. It has an on-chip DRAM controller.

take two memory cycles to access. The \(\mathrm{H} 8 / 300 \mathrm{H}\) is a full-fledged \(\mu \mathrm{C}\), not a RISC CPU with a few peripherals. It includes a timer complex with a free-running clock; a 10 -bit ADC; a timing-pattern generator for stepper-

\section*{Hitachi H8/3040 32-bit \(\mu \mathrm{C}\)}
- \(16-\mathrm{MHz}\) external clock ( 2 - or 3-clock bus
cycle) as 168 -bit registers plus eight 16 -bit registers)
- 62 operation codes
- 32-bit ALU, 16-Mbyte address space
- Pipelined execution
- 130-nsec, 32-bit addition
- \(1.5-\mu \mathrm{sec}, 32 / 16\)-bit divide
- 64-kbyte ROM/one-time programmable
- 2-kbyte RAM
- DRAM controller, 16-bit
troller
- Programmable timing-pattern controller
- Watchdog timer
- 2 serial l/O channels
- Nine external interrupts, 46 I/O pins
- 100-pin PQFP, TQFP
- 3 and 5 V
- H8/3042: \(\$ 24.25\)
motor, motor-control, and event-generation applications; an 8-bit DAC; and three serial I/O ports. A DMA controller offloads the CPU; the controller directs an I/O stream to or from memory without causing the CPU to spend the overhead to take, process, and return from an interrupt. The \(\mu \mathrm{C}\) comes in a 100 -pin chip and has up to 48 I/O pins for monitoring and control.

Development tools from Hitachi and third-party vendors include a C compiler, a GNU development environment, an assembler/linker/loader/library, a simulator/debugger, and an in-circuit emulator.-Ray Weiss

Hitachi America Ltd, Brisbane, CA. (800) 285-1601, ext 21. Circle No. 405

\section*{The Harris High Speed}

\section*{Stgal Proceesing Seminar}

\section*{How EAst Can You Process A New Idea?}

Hold on to your hat. Harris has pulled together the latest in high speed signal processing and packed it into an information-rich seminar that will make your head spin. In just a half day we'll brief you on the latest in video processing, A/D conversion, communications ICs, digital IF processing, and more. You'll get an overview of the 100 hot new Harris products. And you'll walk away with the data you need to make smarter design choices. And it's free. How's that for getting up to speed?


Loor For a Seminar In Your Area.
\begin{tabular}{|c|c|}
\hline - Albuquerque, NM April 26 & - Ottawa, Canada April 6 \\
\hline - Boston, MA April 15 & - Phoenix, AZ April 27 \\
\hline - Chicago, IL April 12 & - Portland, OR May 4 \\
\hline - Cleveland, OH April 14 & - Rochester, NY April 14 \\
\hline - Dallas, TX April 6 & - Salt Lake City, UT May 18 \\
\hline - Denver, C0 May 17 & - San Diego, CA April 28 \\
\hline - Fairfield, NJ April 26 & - San Gabriel Valley, CA \\
\hline - Ft.Lauderdale, FL May 4 & May 12
- San Jose, CA \\
\hline - Hauppauge, NY April 27 & \begin{tabular}{l}
May 20 \\
- Seattle, WA
\end{tabular} \\
\hline - Houston, TX April 5 & May 5
- South Orange \\
\hline - Kansas City, KS April 7 & County, CA May 13 \\
\hline - Los Angeles, CA May 11 & - Tampa, FL May 3 \\
\hline - Minneapolis, MN April 13 & - Toronto, Canada April 5 \\
\hline - Montreal, Canada April 7 & - Trumbull, CT April 13 \\
\hline - Orlando, FL May 5 & - Woodland Hills, CA May 10 \\
\hline
\end{tabular}

Insulated-gate, bipolar power transistors switch at \(100 \mathbf{~ k H z}\). Six members of a line of UltraFast 500 V IGBTs have higher usable current densities than similarly rated power transistors, resulting in less costly devices. The devices suit single-ended topologies. The transistors are also available packaged with fast-recovery diodes. DC ratings range from 14 to \(59 \mathrm{~A} . \$ 1.50\) to \(\$ 10(1000)\). International Rectifier Corp, El Segundo, CA. (310) 322-3332.

Circle No. 398

\section*{FREE INFO, FREE POSTAGE \\ Use our postage-paid reader-service cards to get more information on any of these products.}

Rack-mounted case holds PCs in industrial applications. A series of ruggedized rack-mounted cases for PC mother boards and adapters measures 4 U (7 in.) high and 17.7 in . deep. The cases have predefined mounting posi-

\section*{All hings Considered:
 Cusonesesencicersponse, SBbteryeferommere}

\section*{You Con'B By A BetereBatery Thon Carefree}


At Eagle-Picher, we feature the Carefree Maintenance-Free Rechargeable Battery series for long-life, ease of use and the efficiency of lead-acid power supplies.

Next time you need a reliable, cost-effective, rechargeable power source, count on Eagle-Picher.

\section*{WINNER!}

Bell Canada Award of Excellence for Outstanding Suppliers. Supplier to the winner of Sunrayce 1993.

EAGLE [ P PICHER COMMERCIALPRODUCTS DEPARTMENT
Post Office Box 130 • Seneca, Missouri 64865 Phone: 417-776-2256 • FAX: 477-776-2257
tions for all sizes and formats of 386 and 486 motherboards. A hinged front cover is lockable. The front panel meets the IP21 sealing spec. A removable massstorage subassembly accepts hard drives. The manufacturer can also supply 8-, 12-, or 14 -slot passive backplanes and power supplies. \(\$ 600\) (wired, power supply, 8 -slot backplane). BICC-Vero Electronics Inc, Hamden, CT. (203) 287-0062.

Circle No. 399

Torroidal power transformer does not buzz. A vacuum-varnish process produces custom power transformers that make no noise. The rigid transformers also resist reliability problems arising from vibrating windings. Units can meet regulatory-agency standards. \(\$ 20\) to \(\$ 150\), depending on size. Delivery is 10 weeks. GFS Magnetics, Dover, NH. (603) 742-4375.

Circle No. 400


Gang jack features eight positions and four cavities. The TM5RL-3232 gang jack has plastic holddowns and measures 0.46 in . high (shielded version, 0.47 in .). The jack accepts the company's 8-position plug. Typical applications are LAN pc boards. \(\$ 6.27\) (100). Single-position unit \$1.56 (100). Hirose Electric USA Inc, Simi Valley, CA. (805) 522-7958.

Circle No. 401

Ultraminiature selector switches measure 0.157 and 0.236 in. square. The 7600 Series of single-pole, multiple-throw selector switches come in surface-mount and through-hole versions. The rotary switches have five or 10 positions-four throws plus one off or nine throws plus one off. \(\$ 1.14\) and \(\$ 1.53\), respectively. Bournes Inc, Riverside, CA. (909) 781-5140.

Circle No. 402

Extender card brings PCMCIA bus out into the open. A \(5 \mathrm{~V}, 68\)-pin PCMCIA extender card accepts Type I, II, and III PCMCIA cards. The extender card has test posts for all pins. \(\$ 169.95\) (10). Swart Interconnect, South San Francisco, CA. (415) 5884450.

Circle No. 403


Sharp graphics and clear indicators eliminate errors and improve accuracy.

\section*{Cut Through the Paperwork}

TestPoint can "hot link" to your spreadsheets, databases and word processing files so the paperwork is done the instant the test is finished.
There is no faster, better or easier way to build applications. Guaranteed!
- Data Acquisition Multitasking A/D, D/A, Digital I/O
- Instrument Control IEEE-488, RS232, RS485
- Analysis Mathematics, DDE
- Presentation

Graphics Charts
Displays File I/O

Development System \$995 Free Unlimited Runtime License
Literature 1-800-234-4232
Applications 617-273-1818

\section*{Communications ICs}

\section*{Small world,
isn'tit?}


Goodbye electronic cottage. Say hello to a communications world in which users will roam free like nomads, yet remain as interconnected as if they were still hard-wired to their desks.

Silicon Systems is the one mixedsignal integrated circuits (MSICs \({ }^{8}\) ) company now involved in all facets of this smaller, yet highly evolved, state of portable communications: WAN digital transmission, LANs, modems and wireless communications.

Partnering with farsighted design engineers like you, we're developing lowpower, high-performance and small-
footprint communications ICs for motherboard, daughterboard, and PCMCIA card integration. For wide area network digital transmission. For wire line and wireless modems with data/fax capability. For portable LANs. And for high-frequency wireless applications as well as a wide range of other portable systems.

In this small world your next big idea becomes all the more achievable when you take advantage of our custom MSICs product expertise. Our design centers in North America and Asia. And our comprehensive CMOS, Bipolar and

BiCMOS fab process capabilities. Join us. Call us for our Communications Tool Kit Brochure, and if you'd like, we'll tell you how to contact your nearest Silicon Systems representative. 1-800-624-8999, ext. 151.

Silicon Systems, Inc.
Communications/Industrial Products Division
14351 Myford Road, Tustin, CA 92680
Ph (714) 573-6000 Fax (714) 573-6906


\title{
EDN-NEW Products INTEGRATED CIRCUITS
}

\section*{Flash-programmable complex PLD holds pin-to-pin delays to 10 nsec}

Cypress Semiconductor, the PLD and memory vendor, is determined to become a major player in high-end programmable logic. Cypress' latest entry is its own proprietary complex PLD (CPLD). It combines flashmemory reprogrammability with a high-routability, fixed-speed interconnect that links as many as 256 macrocells. The Flash370 introduction follows a January release of the company's pASIC380 field-programmable gatearray (FPGA) family, based on the Quicklogic FPGA.

Built on a multilayer-multiplexed programmable interconnect, the CPLD delivers \(10-\) nsec pin-to-pin combinatorial logic delays. These delays are maximums for any logic combination or path on the chip. Maximums for the macrocell D flip-flops reach 6-nsec setup time and \(6.5-\) nsec delay (input pin to D input, D output to output pin) with a maximum external clock rate of 70 MHz (not counting board delays). Internal clock rates are 110 MHz max for register-to-register transfers. Cypress claims \(60-\mathrm{MHz}\) external and \(80-\mathrm{MHz}\) internal clock rates (average maximum frequency) running the Prep benchmarks.

The Flash370 integrates PAL-like macrocells into logic blocks, with 16 macrocells per logic block. I/O feeds into the programmable interconnect as well as into adjacent logic blocks. Each logic block has 36 inputs, including
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cypress Flash370 CPLD family} \\
\hline & \(7 \mathrm{C371}\) & 7C372/3 & 7C34/5 & 7C386/7 \\
\hline Macrocells & 32 & 64 & 128 & 256 \\
\hline Dedicated inputs & 6 & 6 & 6 & 6 \\
\hline 1/O pins & 32 & 32/64 & 64/128 & 128/256 \\
\hline Max tpd & 10 & 10 & 12 & 12 (nsec) \\
\hline Logic blocks & 2 & 4 & 8 & 16 \\
\hline Package & 44-pin
PLCC & \[
\begin{aligned}
& \text { 44/84-pin } \\
& \text { PLCC } \\
& \hline
\end{aligned}
\] & 68-pin
PLCC & \[
\begin{aligned}
& \text { 84-pin } \\
& \text { PLCC }
\end{aligned}
\] \\
\hline Price (100) & \$10.40 & N/A & N/A & N/A \\
\hline
\end{tabular}
logic that feeds output-I/O pins without delay penalties.

These CPLDs provide a large number of product terms, ideal for implementing control logic. However, as with most other CPLDs, you must make some compromises to fit large numbers of macrocells-22V10 lookalikes. For one thing, the maximum number of signals available to the logic block is 36 . These signals, in turn, feed the 16 macrocells that make
feedback terms from the macrocells. Each macrocell uses up to 16 product terms as inputs.

The macrocells share these sets of product terms with adjacent macrocells. The Flash370 overlaps these product terms for adjacent macrocells: The first macrocell gets the first 16 product terms (one through 16), the second macrocell gets 16 product terms shifted four terms down (five through 20), the third macrocell gets 16 product terms shifted another four terms down (nine through 24), etc. This product-term overlap enables the macrocells to share product terms without stripping terms from or taking over adjacent macrocells.

The device provides only fixed delays; there are no other delays due to term sharing or expanders. Because the programmable-interconnect delays are fixed, there are no penalties for large fan-outs. Outputs also go through the programmable interconnect and, therefore, cause no additional delays. You can shift or reprogram the
up the logic block. The total number of product terms available to each logic block is 96 . The macrocells share these signals, and three adjacent macrocells can use most of the signals. The CPLD builds on Cy- press's flash-memory technology and currently requires 12 V for programming.

Cypress offers the Warp II development tools for the Flash370 line and is working on fitters, back-end tools that fit the netlist onto the FPGA architecture, for third-party tools. A fitter is available for Data I/O's Abel system. Warp II supports Cypress PLDs, FPGAs, and the new CPLDs. Warp II enables you to design in the VHDL high-level hardware-description language, which is synthesized and mapped into a chip. The tool includes a functional simulator and a timing analyzer. Warp II sells for \(\$ 995\) and comes in versions for PCs and Sun worksta-tions.-Ray Weiss

Cypress Semiconductor, San Jose, CA. (408) 943-2600.

Circle No. 340

\section*{FPGA targets dynamically reloadable logic}

In the main, logic design has been a relatively conservative activity; coredesign techniques have not changed in 20 years. That is about to change, as logic designers come to grips with dynamically reconfigurable logic: programmable logic that is reconfigured on the fly while the logic is running.

Pushing that changeover is Atmel
with its first dynamically reconfigurable field-programmable gate-array (FPGA), the AT6000 family. Based on the Crosspoint FPGA technology Atmel acquired last year, the SRAMbased AT6000 builds on a matrix of several small core-logic cells. Underlying SRAMs that must be loaded on initialization define these logic cells and their configurations. These configuration SRAMs can be loaded dynamically during circuit operation.

Moreover, you can specify loading any cell or set of sequential cells via a serial, pin-oriented load.

Thus, you can dynamically reconfigure portions of your logic during runtime, similar to the way a computer can load a new application or thread into memory for execution. This technique enables computers to time-share memory for multiple applications and lets you do the same with logic: load in specific logic functions for time-dependent execution.

\section*{edN-New Products}

\section*{INTEGRATED CIRCUITS}

The AT6000's array of moderately fine-grained cells is organized into an XY matrix. Each cell has a D flip-flop with multiplexeroriented logic. You can configure the cells as basic SSI/MSI functions with or without the flip-flop. These cells are ordered in \(8 \times 8\) local submatrices. The cells can serve as switches that connect cell to cell, cell to local bus, cell to express bus, or local bus to local bus. You can use a cell to turn a signal \(90^{\circ}\) and to connect it to a local or express bus or to an adjacent cell. The relatively large number of cells easily provides registers for data-path implementations.

You can interconnect these cells via a busing network, which has local buses (connects as many as eight cells) and express buses for long distances. You can move signals from bus to bus via
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Atmel AT6000 FPGA family} \\
\hline & AT6002 & AT6003 & AT6005 & AT6010 \\
\hline No. of cells & 1024 & 1600 & 3136 & 6400 \\
\hline Maximum registers & 1024 & 1600 & 3136 & 6400 \\
\hline Maximum I/Os & 96 & 120 & 108 & 173 \\
\hline Cell (rows \(\times\) columns) & \(32 \times 32\) & \(40 \times 40\) & \(56 \times 56\) & \(80 \times 80\) \\
\hline Typical operating current (mA) & 30 & 45 & 80 & 173 \\
\hline Package & \[
\begin{aligned}
& \text { 44-pin } \\
& \text { PLCC }
\end{aligned}
\] & 44/84-pin PLCC & \[
\begin{aligned}
& \text { 68-pin } \\
& \text { PLCC } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 84-pin } \\
& \text { PLCC }
\end{aligned}
\] \\
\hline Price (5000) & \$16 & N/A & \$72 & N/A \\
\hline
\end{tabular}
for a NAND and 2.4 nsec for an EXOR gate delay. I/Obuffer delays are 1.2 and 3.5 nsec, respectively. Each I/O can sink or source 12 mA , and you can combine I/Os for more power. All delaysexpress or local bus, local connections, gate, and flip-flop-are highly predictable. Thus, routing is highly deterministic for timing.

Atmel supplies an FPGA Physical Design System for \(\$ 995\). It includes a macro library, an automatic place-and-route tool, a static-tim-
repeaters, which can be tri-stated and have a delay of 1.6 or 2.1 nsec for express or local connections, respectively. The chip includes logic for vertical (column) clock distribution and asynchronous reset for the cell D flip-flops.

The cell registers have a 2-nsec setup time and a 2 -nsec output delay. Celllogic delays are on the order of 2.2 nsec
ing analyzer, a design-rule checker, a load bit-stream generator, and other utilities. These tools integrate with Viewlogic Viewdraw (schematic) and Viewsim (functional simulator). Prototyping board kits are also available.
—Ray Weiss
Atmel, San Jose, CA. (408) 441-0311.
Circle No. 341

\section*{One Stop Shopping!}

All your circuit board needs under one roof.


PCB MANUFACTURING
- 2 day turn on multi-layers
- Prototype and production
- Gerber Data Test
- FR4, Polyimide
- Turnkey assembly
- PCMCIA up to 6 layers

PCB DESIGN LAYOUTS
- Layouts for Economical manufacturing
- Backplanes
- Impedance Control
- Analog and ECL
- Surface Mount
- 3 CAD Workstations

\section*{TECHNICAL SUPPORT}
- Free Design Layout Tips
- Free MFG Cost Cutting Tips
- We accept Gerber Data Via Modem

\section*{Call For A Quote!}

Phone: (714) 970-2430
FAX: (714) 970-2406
MODEM: (714) 970-5015

EXTERNAL POWER SUPPLIES

- Pin Configurations for North American and other International requirements.
- Approved to: UL, CSA, VDE, TUV, IEC 950, IEC 742, T-Mark, SAA, Scandinavian and other International standards
- Wall plug-in and table-top models
- Linear \& Switching types
- AC-AC, AC-DC, DC-DC, single, dual \& triple output types
- Custom or standard designs

Send for FREE catalog \& engineering samples.

186 Veterans Drive - Northvale, NJ 07647 U.S.A. Phone: (201) 784-1000 • FAX: (201) 784-0111

\title{
FAST-CHARGE NiCd \& NiMH BATTERIES IN UNDER 1 HOUR
}

\section*{Safe and Reliable Solution Needs Only Low-Cost Components}

The MAX712 and MAX713 are complete battery charging systems in a single IC. Each contains an A/D converter, analog power control ciruitry, and all the intelligence necessary to safely and reliably fast-charge and trickle-charge Nickel-Cadmium or Nickel-Metal-Hydride batteries. Automatic switch-over from fast-charge to trickle-charge protects batteries. So do user-set charge rates, temperature detection points, and time-out periods.
- Charge 1 to 16 Cells in Series
- Needs Only Low-Cost Components
- Voltage-Slope, Temperature, and Time-Out Detection
- Fast-Charge at 4C to \(\mathrm{C} / 3\) Rates (15 minutes to 3 hours)
- Trickle-Charge at C/16 Rate (16 hours)
- 16-Pin Narrow SOICs and DIPs
- Complete Evaluation Kit \({ }^{*}\)
- Only \$3.10**


The MAX712 and MAX713 determine fast-charge termination using a sophisticated combination of voltage-slope, temperature, and time-out detection. The MAX712 uses zero-slope detection; The MAX713 uses negative-slope detection.


Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.
Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M-Squared, Inc.; OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp; Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

\section*{EDN-NEW Products \\ INTEGRATED CIRCUITS}

4-Mbit SRAM reduces board space. The TC551402J 4-Mbit SRAM for cache memories offers a \(4 \mathrm{M} \times 1\) - or a \(1 \mathrm{M} \times 4\)-bit organization. The device comes with \(20-, 25-\), and \(30-\mathrm{nsec}\) access times. Standby current is 30 mA for TTL levels and 10 mA for CMOS levels. The device operates from a 5 V supply and draws 160 mA for the 20 - and 25 nsec versions and 150 mA for the \(30-\) nsec version. \(25-\mathrm{nsec}\) version; \(\$ 120\). Toshiba America Electronic Components Inc, Irvine, CA. (800) 879-4963.

Circle No. 342


Single-supply op amps cost cents/channel. The \(4-\mathrm{MHz}\) dual OP292 and quad OP492 cost \(\$ 1.32\) (1000) and \(\$ 2.16\), respectively, making per-channel costs \(\$ 0.66\) and \(\$ 0.54\), respectively. Operating from a single 5 V supply, the OP292's guaranteed maximum de specifications include 800\(\mu \mathrm{V}\) offset and \(10-\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) drift with \(700-\) nA input offset current over the IC's -40 to \(+125^{\circ} \mathrm{C}\) operating temperature range. Both amplifiers feature voltage and current noise of \(15 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) and 0.7 \(\mathrm{pA} / \sqrt{ } \mathrm{Hz}\), respectively. Slew rate is typically \(4 \mathrm{~V} / \mu \mathrm{sec}\), and channel separation at 1 kHz is 100 dB . The dual and quad amplifiers come in 8 - and 14 -pin DIPs and SOICs, respectively. Analog Devices, Wilmington, MA. (617) 9371428.

Circle No. 343

\section*{Cache RAMs operate with \(\mathbf{5 5 - M H z}\)}
\(486 \mu \mathbf{P s}\). The CXK784862Q-33/55 RAMs operate as a cache memory for \(33-\) and \(55-\mathrm{MHz} 486 \mu \mathrm{Ps}\), respectively. The device is a 2 -way set-associative, zero-wait-state cache that operates with a write-through protocol. The 256 kbytes of RAM are organized as \(32 \times 36 \times 2\) bits. You can cascade devices without glue logic to achieve cache densities of as much as 1 Mbyte. The device consumes 2 W of power at 55 MHz . Sample prices are \(\$ 125\) (100) for either device. Sony Component Products Co, Cypress, CA (800) 288-7669

Circle No. 344

\title{
FREE INFO, FREE POSTAGE \\ Use our postage-paid reader-service cards to get more information on any of these products.
}

Self-timed SRAMs operate with Pentium \(\mu \mathbf{P}\). The CXK77910A, a 1 Mbit synchronous self-timed SRAM, comes in 10- and 12 -nsec cycle times and suits use with Pentium and SPARC \(\mu \mathrm{Ps}\). The device integrates input registers, high-speed memory, and output registers onto a monolithic chip, which eliminates the need for off-chip pulse generation. The device has a \(128 \mathrm{k} \times 9\) bit organization and consumes 945 mW . Sample price is \(\$ 100\) for either speed. Sony Component Products Co, Cypress, CA. (800) 288-7669. Circle No. 345

Analog transceiver is faster than digital versions. The ML6580 is a bus transceiver that has a propagation delay of 1.5 nsec. The low propagation delay of the octal device lets data and addresses move between a \(\mu \mathrm{P}\) and memory at high speeds. A \(\mu \mathrm{P}\) operating at 66 MHz reads data on each clock tick, which is 15 nsec. Conventional digital receivers would take two clock ticks, or 30 nsec . The chip can drive \(50-\mathrm{pF}\) loads operating at 50 MHz and has a \(300-\mathrm{mV}\) typ ground bounce. 1.5 -nsec version, \(\$ 700\) (1000). Micro Linear Corp, San Jose, CA. (408) 433-5200.

Circle No. 346

Low-cost wideband buffers consume just \(3.5 \mathbf{m A}\). The CLC109 and CLC111 closed-loop unity-gain buffer amplifiers feature respective bandwidths of 270 and 800 MHz , slew rates of 350 and \(3500 \mathrm{~V} / \mu \mathrm{sec}\), and typical supply currents of 3.5 and 10.5 mA when operating on \(\pm 5 \mathrm{~V}\) supplies. The buffers can also operate on single 3 V supplies. The CLC109's gain flatness is \(\pm 0.1 \mathrm{~dB}\) to 30 MHz . The CLC111 features low distortion of -62 dBc for second and third harmonics (at 20 MHz and \(100 \Omega\) loads) and a \(1.4 \Omega\) dc output impedance. In 8 -pin plastic DIPs and SOICs, 1000piece prices for the 109 and 111 are \(\$ 1.49\) and \(\$ 2.75\), respectively. Comlinear Corp, Fort Collins, CO. (303) 2257437.

Circle No. 347

Synchronous SRAMs suit cache memories. The MT58LC32K36, a 66or \(50-\mathrm{MHz}\) synchronous SRAM, has a \(32 \mathrm{k} \times 36\)-bit organization. The devices provide zero-wait states for cache
memories, operate at 3.3 V , and have 5 V tolerant inputs and outputs. Options include support for 4-cycle burst-mode access and pipelined and nonpipelined operations. Cycle times are as fast as 15 nsec, and access times are as fast as 7 nsec (pipelined) and 12 nsec (nonpipelined). The devices come in a \(100-\) pin thin quad flatpack. 12 -nsec version; \(\$ 40\) (100). Micron Semiconductor Inc, Boise, ID. (208) 368-3900. Circle №. 348

\section*{Four-quadrant multiplier inputs} four channels. Each channel of the MLT0 4 accepts a \(\pm 2.5 \mathrm{~V}\) input and delivers a normalized voltage output that implements a factory-calibrated transfer function of \(\mathrm{X} \times \mathrm{Y} / 2.5 \mathrm{~V}\). With \(\pm 5 \mathrm{~V}\) supplies, typical power dissipation is 150 mW . In an 18-pin DIP or SOIC ( \(\$ 11.95\) in 100), the MLT04 includes a stable 1.23 V bandgap reference and individual output amplifiers. It requires no external components. Nonlinearity error is typically \(0.2 \%\) with \(0.005 \% /{ }^{\circ} \mathrm{C}\) total error over temperature. Analog Devices Inc, Wilmington, MA. (617) 937-1428.

Circle No. 349


Dual op amp combines precision with speed. The LM6182 dual cur-rent-feedback amplifier features a \(100-\) MHz bandwidth and a \(2000 \mathrm{~V} / \mu \mathrm{sec}\) slew rate. Precision specifications include a maximum offset voltage of 3 mV and maximum inverting and noninverting bias currents of 5 and \(2 \mu \mathrm{~A}\), respectively. The op amp supplies 100 mA of output current. A high-power output stage enables each amplifier to directly drive a 2 V signal into 50 or \(75 \Omega\) back-terminated coaxial cable over the -25 to \(+85^{\circ} \mathrm{C}\) temperature range. Differential gain and phase are \(0.05 \%\) and \(0.04^{\circ}\), respectively. A and standard grades cost \(\$ 4.30\) and \(\$ 3.60\) (1000), respectively. National Semiconductor Corp, Santa Clara, CA. (408) 721-6973.

Circle No. 350

\title{
SIMPLE \(\mu\) UP RESET SIIMPLE PRICE
}

\section*{Replace 1 TL7705, 1 Resistor, and 2 Capacitors for Less Cost}

\section*{Tell Us What Price Quote You Need!}


The MAX709 replaces four components, and protects \(\mu P\) s by asserting a continuous reset when the power fails or is turned off.
- 3V, 3.3V, and 5V Versions
- Guaranteed RESET Valid to \(\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}\)
- Five Reset Thresholds: 4.65V, 4.40V, 3.08V, 2.93V, 2.63V

MAX709 versus TL7705 Comparison
\begin{tabular}{|l|c|c|}
\hline Feature & MAXIM & TI \\
\hline \begin{tabular}{l} 
External \\
Components \\
Required
\end{tabular} & 0 & 3 \\
\hline \begin{tabular}{l} 
Operating Supply \\
Current: +5V \\
+3 V
\end{tabular} & \(35 \mu \mathrm{~A}\) & 1.8 mA \\
\hline \begin{tabular}{l} 
Power Supply \\
Glitch Immunity
\end{tabular} & Yes & No \\
\hline \begin{tabular}{l} 
+5V Reset \\
Threshold \\
Options
\end{tabular} & 2 & 1 \\
\hline \begin{tabular}{l} 
+3V Reset \\
Threshold \\
Options
\end{tabular} & 3 & 1 \\
\begin{tabular}{l} 
Guaranteed Min \\
Reset Delay
\end{tabular} & Yes & No \\
\hline
\end{tabular}

Low-Cost \(\mu \mathrm{P}\) Supervisors Replace Several Components
\(\left.\begin{array}{|lcccccc|}\hline & \begin{array}{c}\text { Reset } \\ \text { Threshold } \\ \text { (V) }\end{array} & 4.65 & \begin{array}{c}\text { Manual } \\ \text { Reset }\end{array} & \begin{array}{c}\text { Extra } \\ \text { Comparator } \\ \text { (Power Fail) }\end{array} & \begin{array}{c}\text { Battery } \\ \text { Backup } \\ \text { Switchover }\end{array} & \begin{array}{c}\text { Watchdog } \\ \text { Timer }\end{array}\end{array} \begin{array}{c}\text { Active High } \\ \text { Reset }\end{array}\right]\)


\title{
FREE \(\mu\) P Supervisory Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples
}

CALL TOLL FREE 1-800-998-8800 For a Design Guide or Free Sample
MasterCard \({ }^{\circledR}\) and Visa \({ }^{\oplus}\) are accepted for Evaluation Kits or small quantity orders.


Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.

\footnotetext{
Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M-Squared, Inc.; OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.
}


\section*{If You＇re Looking For Product Acceptance In North America，UL Holds The Heu．}
THE BIG NEWS TロDAY IS THAT UL IS ACCEPTED ALL ACRロSS CANADA．AND WITH THE
SIGNING IF A CロロPERATIVE ASSISTANCE AGREEMENT WITH THE ASロCIACIDN NACIGNAL DE
NGRMALIZACIDN Y CERTIFICACIDN DEL SECTIR ELECTRICI（ANCE），THE FIRST INDEPENDENT
STANDARDS AND PRODUCT CERTIFICATIロN GRGANIZATIIN ACCREDITED EY THE MEXICAN
GロVERNMENT－UL IS THE FIRST ロRGANIZATIロN ロF ITS KIND Tロ ロFFER MANUFACTURERS
ACCESS TV CERTIFICATIUNS FIR ALL IF NロRTH AMERICA．
AND SINCE UL PRロVIDES CERTIFICATIIN THAT ALLDWS IMMEDIATE ACCEPTANCE ACRDSS THE
ENTIRE UNITED STATES，SAVING TIME AND MONEY TI GAIN ACCEPTANGE ACRGSS NGRTH
AMERICA HAS NEVER BEEN EASIER．
IN FACT，Nロ םTHER SAFETY CERTIFICATIIN SERVICE CAN DELIVER WHAT UL PRDVIDES，AND
BECAUSE WE ロPERATE AS A NロT－FロR－PRロFIT ロRGANIZATIロN，YロU CAN BE ASSURED THAT ロUR
PRIMARY ロBJECTIVE REMAINS SAFETY．
Sロ IF YロU＇RE LロロKING FロR ロNE SロURCE THAT NロT ロNLY HANDLES PRIDUCT SAFETY
CERTIFIGATIGN AGRDSS THE UNITED STATES，BUT ALSO FAGILITATES EXPANDING YロUR
PRロDUCTS＇ACCEPTANCE BEYロND THE BロRDERS，WE CAN HAND YロU THE KEY．
U．S．HEADQUARTERS：日ARBARA DLDS
PHONE：7ロ日－272－日日ロロ，EXT． 43319
FAX：7ロB－272－9562
CANADA：JOHN WOODS
PHONE：613－742－6965
FAX：613－742－6965

\section*{edN-New Products}

\section*{TEST \& MEASUREMENT}

\section*{ISA bus waveform-capture board takes 500 M samples/sec in real-time}

The \(350-\mathrm{MHz}\)-bandwidth DA500 wave-form-capture board from Signatec represents a significant accomplishment. Its top acquisition speed is 500 M samples/sec, putting it in the same class as some of today's faster real-time-sampling benchtop scopes. Moreover, when you install a piggyback RAM card, the 8 M -sample memory is as deep as that on the deepest-memory benchtop scope. And when higher-capacity SRAMs become available, the 8M-sample capacity will increase by a factor of four. Nevertheless, The DA500 doesn't have the wide attenuation range of a general-purpose DSO. And, despite several trigger modes, the product lacks the trigger flexibility of a modern benchtop scope. That's why the vendor calls the \(\$ 6950\) board a waveform digitizer and not a scope.
Even before the advent of devices that will allow a piggybacked 32 -Mbyte
acquisition memory, you can couple the DA500 via an auxiliary bus to some of the vendor's other ISA bus boards. At 200M samples/sec and below, the DA500 can pump as many as 256 M samples into a MEM500 board. The DA500 can drive up to four MEM500s, allowing 1 Gbyte of memory-the equivalent of over 5 sec of data at 200 M samples/sec.

The board has two channels, but when you use both, the top acquisition speed declines to 25 M samples \(/ \mathrm{sec}\). If you want to acquire more channels at higher speeds, you can have as many as three additional DA500s act as slave boards attached to the first one and run all of them at 500 M samples \(/ \mathrm{sec}\).

The DA500's spec sheet is more detailed than those of most DSOs. (Suppliers of waveform digitizers generally provide more performance detail than DSO vendors.) With a signal frequency of 250 MHz and a sample rate of


500 M samples/sec, the board's effective linearity is 7 bits. Its typical aperture jitter is 2 psec. The input attenuator spans 30 dB in \(2-\mathrm{dB}\) steps.

As you might imagine, the board dissipates a lot of power for a device that resides within a PC. Its maximum dissipation is 24 W . Signatec provides two power-saving modes. In Off mode, the board powers down almost fully. Standby mode disables the data-acquisition circuits, reducing the dissipation by almost \(90 \%\). If the temperature of the ADC rises above \(65^{\circ} \mathrm{C}\), the board goes into the standby mode.-Dan Strassberg

Signatec Inc, Corona, CA. (909) 7343001.

Circle No. 335

\title{
Are You Planning to Export? FULL COMPLIANCE TESTING TO IEC555
}

Voltech makes it possible with the PM3000A universal power analyzer. This highly accurate, powerful, easy to use, digital instrument lets you test single and three-phase equipment to the European standard IEC555 part 2, for steady state and fluctuating harmonics, and part 3 for fluctuating voltages (FLICKER).

Typical equipment affected by IEC555 includes: television receivers, audio amplifiers, computers and printers, lighting equipment, electrical appliances, information technology equipment, photocopy machines, power tools, waterheaters and most other AC powered devices and systems.

What's more, the PC software included with the instrument offers additional flexibility:
- Fluctuating harmonics are displayed
- Flickermeter calculations include as real-time bar graphics.
- Graphic displays show harmonic variations in time. Pst and PIt values. calculated as required by IEC555 part 3.
For less than the cost of a flickermeter, you get a power analyzer capable of over 400 different power related measurements with push-button convenience. The PM3000A can easily measure "nasty" distorted signals such as PWM motor drives, electronic lighting ballasts and power supplies.

Remember, every Voltech customer receives free firmware and software upgrades for the life of their analyzer. For more information, including free catalogs and application notes, call Voltech today.
Voltech, Inc.



The availability of DUAL ISOLATED OUTPUTS creates cost and space savings in many applications.
Fully safeguarded for over voltage, over temperature and continuous short circuit protection, these FIXED Hi-Frequency units minimize technical problems.
With output voltages from 3.3 VDC to 100 VDC, four distinct input ranges and the choice of single or dual outputs plus the capability of Parallel Operation, as standard features, your circuit designs can be optimized.
Assembled in the U.S.A. with PICO quality components, these hi density units allow the most stringent mechanical, electrical and environmental requirements.

See EEM or send direct for Free PICO Catalog. Call toll free 800-431-1064 in \(N Y\) call 914-699-5514

FAX 914-699-5565


Electronics, Inc.
453 N. MacQuesten Pkwy., Mt. Vernon, N. Y. 10552 CIRCLE NO. 31

\section*{FREE INFO, FREE POSTAGE}

Use our postage-paid reader-service cards to get more information on any of these products.

Networkable ADC/DAC/DSP unit resolves 18 bits. The \(8.73 \times 1.72 \times 12\) in. BNK5618 contains two 18 -bit deltasigma ADCs; each can acquire 48 k samples/sec, two 18 -bit DACs, a DSP56001 processor, 294 kbytes of zero-wait-state RAM, an RS-232C port, and an RS-422 port that supports the CSMA/CD networking protocol. You can connect as many as 250 of the units to a network. \(\$ 2895\) (1); \(\$ 1895\) (51). Spectrum analysis software costs \(\$ 395\). BNK Electronics Inc, Englewood Cliffs, NJ. (201) 894-5905.

Circle No. 309

\section*{Software accelerates LabView} DSP operations up to \(100 \times\). QuView works with both Windows and Macintosh versions of National Instruments' LabView and with the vendor's ISA bus and Nubus plug-in boards, which are based on the AT\&T 32C and TI TMS320C30 DSPs. The boards interface with external data-acquisition and control units. The acceleration software is free of charge to purchasers of the vendor's DSP or data-acquisition hardware units. From \(\$ 9500\). Sheldon Instruments, Orem, UT. (801) 3767861.

Circle No. 310

ISA bus DMM board resolves \(\mathbf{5}^{1 / 2}\) digits. The SM-2020 makes 4-wire resistance measurements as well as dc and \(10-\mathrm{Hz}\) to \(100-\mathrm{kHz}\) true-rms ac voltage and current measurements. Resolution is \(\pm 300,000\) counts (equivalent to over 19 bits). For dc, the error is 100 ppm for one year. The accompanying software includes libraries for Windows and DOS that allow writing control programs in Quick C and Visual \(\mathrm{C}++\). The board is also compatible with ATEasy, LabView for Windows, and LabWindows for DOS. \$995. Signametrics Corp, Seattle, WA. (206) 5244074.

Circle No. 311
\(\$ 1299\) ISA bus data-acquisition board samples 64 channels at 312.5k samples/sec. When sampling one channel, the DAS- 1800 HC acquires 333 k samples \(/ \mathrm{sec}\). The board accepts 32 signals when configured for differential inputs and performs singleand dual-channel DMA. It includes a 1kbyte FIFO buffer and channel gain-
list hardware that allows high-speed DMA operation even when different channels must have different gains. There are two versions: In one, you can set the ADC's FSR to 5 V or \(\pm 5 \mathrm{~V}\) and program the gain to \(1,5,50\), or 250 ; with the other, you can choose ADC FSRs of 10 V or \(\pm 10 \mathrm{~V}\) and program gains of 1,2 , 4, and 8 . Keithley Metrabyte, Taunton, MA. (508) 880-3000.

Circle No. 312
\$330 unit converts almost any scope into an 8 -channel \(\mathbf{2 0 - M H z}\) logic analyzer. You can cascade up to three MX9100s and thus handle 24 digital channels. Memory depth is 16 bits. Your scope must have a bandwidth of at least 5 MHz and a sensitivity of 200 or fewer \(\mathrm{mV} / \mathrm{div}\). The display resembles a timing diagram. The \(4.5 \times 2.5 \times 1.5-\mathrm{in}\). unit can receive power ( 4.75 to 7 V dc at 190 mA ) from the circuit under test or from an external power supply. ITT Pomona Electronics, Pomona, CA. (909) 469-2900.

Circle No. 313


Handheld, clamp-on instruments measure power quality. The \(\$ 795\) CPM2000 (for ac) and the \(\$ 995\) CPM2100 (for ac and dc) measure ac frequency, power factor, and voltamperes (to 2 MVA ), power (to 2 MW ), voltage (to 750 V ac and 1 kV dc), current (to 2000A), and resistance (to 400 \(\mathrm{k} \Omega\) ). A \(100-\mathrm{Hz}\) lowpass filter lets you detect the presence of harmonics. The meters also check diodes and indicate continuity audibly. Wavetek Corp, San Diego, CA. (619) 279-2200.

Circle №. 314
\(\$ 500\) triple-output benchtop dc power supply produces 35 W . The E3630A furnishes 0 to 6 V at up to 2.5A
 \(100 \%\) completion autorouter, and much, much more.

Free Eval Package

Test drive TangoPRO yourself with our fullfunction evaluation package, complete with software and tutorial guide.
Call 800 488-0680
*Competitive upgrade to TangoPRO Schematic Lite, \$189, includes OrCAD/SDT file and library translator. Competitive upgrade to TangoPRO PCB Lite, \$995. Offer expires March 31, 1994. Call for details.

Call today for free evaluation software and complete specifications,

\section*{New Lite Versions Now Available}

Limited Time Competitive Upgrade

\section*{(b) \(0{ }^{*}\) \\ Order Today}

We've tailored versions of TangoPRO Schematic and TangoPRO PCB for less demanding designs and tighter budgets. Get the same great interface and \(90 \%\) of the features for one-fift the price! Special Limited-time, competitive upgrade prices now available. or to set up a personal
sales presentation. Choose TangoPRO for complex designs, or TangoPRO Lite. Both put Real Power and Real Windows to work for you.

\section*{Tango}

\section*{ACCEL Technologies, Inc.}

800 488-0680 - Sales
\(619554-1000\) - Service
619554-1019 - Fax

\title{
Dynamic Signal Analysis with SRS FFT Spectrum Analyzers
}

\section*{The new SR770 FFT Analyzer}
has the outstanding performance and value you've come to expect from SRS Spectrum Analyzers 90 dB dynamic range, 100 kHz real-time bandwidth - plus a versatile synthesized source that generates clean sinewaves, two-tone signals, white and pink noise, and chirps.

The low distortion \((-80 \mathrm{dBc})\) source is internally synchronized to generate frequency response measurements accurate to 0.05 dB . Both the SR760 and the SR770 quickly perform
 harmonic, band, sideband and \(1 / 3\) octave analysis. Additional capabilities including data tables, GO/NO GO testing and selective windowing bring performance and versatility to every measurement.
- \(476 \mu \mathrm{~Hz}\) to 100 kHz frequency range
- 90 dB dynamic range
- Low distortion source (SR770 only) - sine, two-tone, chirp, white and pink noise
- 3.5 inch DOS formatted disk drive
- Direct hardcopy to printers and plotters
- GPIB, RS-232 and printer interfaces


Frequency response - Using the SR770's low distortion synthesized source, Bode plots of amplitude, phase and group delay are quickly generated.


\section*{Two-fone response}

Intermodulation products at -90 \(d B c\) are easily measured with the outstanding dynamic range of the SR760 and SR770.


Dafa analysis - Easy to use analysis functions include 1/3 octave, band, sideband and THD. Math functions and a responsive marker provide power and flexibility.

\section*{EDN-New Products TEST \& MEASUREMENT}
and has a pair of tracking 0 to 20 V outputs at up to 0.5 A . Normal-mode noise is under 0.35 mV ; common-mode current is under \(1 \mu \mathrm{~A}\). Line and load regulation are each \(0.01 \%\). Separate digital meters simultaneously monitor the voltage and current at any output. Hewlett-Packard Co, Santa Clara, CA. (800) 452-4844, ext 7941.

Circle No. 315
Fiber-optic isolation systems let you safely view waveforms from high-CMV sources. The A6905S and A6906S each consist of a specially designed probe rated to withstand com-mon-mode voltages as high as 850 V , a battery-powered transmitter, a fiberoptic cable, and a receiver unit that connects to your measuring instrument via a 50 or \(75 \Omega\) coaxial cable. The \(\$ 2695\) A 6905 S , which features \(15-\mathrm{MHz}\) bandwidth and a \(10-\mathrm{V} / \mathrm{nsec}\) slew rate, uses optical cables up to 100 m long. The \(\$ 6750\) A6906S offers \(100-\mathrm{MHz}\) bandwidth, \(120-\mathrm{dB}\) CMRR at dc, and an output that can slew at \(100 \mathrm{~V} / \mathrm{nsec}\). This unit, which permits control of all parameters via IEEE-488, includes an optical cable 200 m long. Tektronix Inc, Beaverton, OR. (800) 426-2200, ext 215. Circle No. 316


16-channel thermocouple dataacquisition unit plugs into PC's parallel port. You can connect up to 16 grounded thermocouples to the DI221TC's built-in terminals. The unit, which incorporates a temperature sensor for cold-junction compensation and auto-zero circuits to correct for amplifier drift, can average as many as 32,000 consecutive readings for noise cancellation. Thermocouple outputs are linearized in real time using DSP-based 10th-order polynomial compensation. You can select a full-scale range of \(\pm 120\) or \(\pm 1200^{\circ} \mathrm{C}\). \(\$ 1395\). Dataq Instruments Inc, Akron, OH. (216) 668-1444.

Circle No. 317

\title{
Introducing The Next Generation of
} RLC Meters


W'd like to reintroduce ourselves. Combine the reputation of General Radio for quality products and engineering excellence; with renewed commitment to R\&D and innovation, the result-QuadTech, formerly GenRad Instruments. The first members of QuadTech's new family of RLC Meters-the Models 7400 and 7500-set new performance standards for passive component and materials testing.

\section*{The Numbers Speak Louder Than Words.}

Designed for easy and efficient operation, the QuadTech 7500 outperforms all other multi-frequency, automatic RLC meters. Test compo-
\begin{tabular}{|c|c|c|c|}
\hline & QuadTech Model 7500 & \[
\begin{gathered}
\text { HP } \\
\text { Model 4284A }
\end{gathered}
\] & QuadTech Model 7400 \\
\hline Frequency Range & 10 Hz to 2 MHz 289,900 freqs. & 20 Hz to 1 Mhz 8610 freqs. & 10 Hz to 500 KHz 229,900 freqs. \\
\hline Accuracy & \(\pm .01\) \% & \(\pm .05 \%\) & \(\pm .05 \%\) \\
\hline Resolution & 7 digits & 6 digits & 7 digits \\
\hline Swept Display & Yes & No & Yes \\
\hline Parameters/ Combinations & 14/91 & 14/20 & 14/91 \\
\hline Program Storage & 50 internal 125/DOS disk & 10 internal 10/memory card & \[
\begin{gathered}
50 \text { internal } \\
125 / D 0 S \text { disk }
\end{gathered}
\] \\
\hline Data Storage & \begin{tabular}{l}
40,000 meas./ \\
3.5" DOS disk
\end{tabular} & None & \begin{tabular}{l}
40,000 meas./ \\
3.5" DOS disk
\end{tabular} \\
\hline Base Price & \$9,500.00 & \$11,500.00 & \$7,500.00 \\
\hline
\end{tabular} nent parameters in the 10 Hz to 2 MHz range with \(\pm .01 \%\) accuracy over a broad range of test conditions. Add an intuitive user interface, internal storage for 50 test setups, a swept parameter display (e.g.,Q or ESR vs. frequency), a unique automatic accuracy function that elimi- nates the need for complex calculations-and much more. You'll agree that QuadTech sets the standard by which all other RLC meters are measured.

And all QuadTech products are backed by our 45-day money-back guarantee and life-time warranty. Call one of our Technical Sales
Engineers today, at
1-800-722-1330 to discuss your testing requirements.

\title{
Low-cost multimedia workstations perform engineering tasks, too
}

Two new Hewlett-Packard workstations designed primarily for commercial applications, such as financial trading and document and image management, also suit electronic-design work. Both are softwarecompatible with current HP 9000 Series 700 workstations, and both have computing power that is impressive for their price tags. With emulation software, they can run PC applications.

The new HP 9000 Series 700 models, the \(60-\mathrm{MHz}\) \(712 / 60\) and the \(80-\mathrm{MHz}\) 712/80i, use HP's new lowcost PA-7100LC processor. The \(712 / 60\), which sells for as little as \(\$ 3995\), delivers 58 SPECint92; the 712/80i, beginning at \(\$ 8820\), performs at 84 SPECint92. Both deliver 79 SPECfp92. According to comparison data provided by HP, that's better performance per dollar than any competitor provides.

Reasonably priced graphics and multimedia capabilities in the new workstations result from several innovations. For


The HP 9000 Series 700 Model 712/60 workstation sells for as little as \(\$ 3995\).
example, the PA-7100LC processor has fast MPEG decompression capability built in, allowing the display of video at a full-motion 30 frames \(/ \mathrm{sec}\). To reduce the amount of expensive video RAM (VRAM) needed, HP uses a patented process called "color recovery." This approach uses only 8 bits per pixel, reducing VRAM by two-thirds, but, according to HP, most users can't distinguish the results from 24bit "true" color.

The entry-level (\$3995) 712/60 includes a \(15-\mathrm{in}\). color monitor (for \(1024 \times 768\)-pixel display), 16 Mbytes of memory, and a 260 -Mbyte hard disk. The lowest-priced ( \(\$ 8820\) ) 712/80i has the same memory and disk configuration, but has a 17 -in. color monitor for a \(1280 \times 1024\)-pixel display. A 12 -in., \(1024 \times 768\)-pixel color flatpanel display will be available before midyear for \(\$ 10,595\).
-Gary Legg
Hewlett-Packard Co, Palo Alto, CA. Phone (800) 637-7740; in Canada, (800) 387-3867.

Circle №. 319

Fax modem is PCMCIA compliant. The PCMCIA144FAX modem has a 14.4 -kbps line speed, V. 42 error correction, and V.42bis and MNP 2-5 data compression that handles data throughput up to 57.6 kbps. A fully integrated DAA on the modem complies with PCMCIA Type II systems. The modem supports V.32bis, V.32, V.22bis, V.22, V.21, 212, 103 data standards and V.29, V27ter, and V. 21 fax standards. Fax functions include background send and receive, multiple transmissions, graphics file conversion to fax format, and viewing before sending. \(\$ 399\). Ven-Tel Inc, San Jose, CA. (800) 538-5121.

Circle No. 320

PCMCIA-card drive replaces flop-py-disk drive. The CDD300 memorycard disk drive physically replaces a conventional \(3.5 / 5.25-\mathrm{in}\). floppy-disk drive. The unit interfaces directly to a standard host system and is compatible with 1.44 -Mbyte/720-kbyte and 1.2 Mbyte/ 360 -kbyte disk formats. The sin-gle- or dual-slot unit accepts Type I and II PCMCIA 2.0 (JEIDA 4.1)-compatible

\section*{FREE INFO, FREE POSTAGE \\ Use our postage-paid reader-service cards to get more information on any of these products.}

SRAM cards. Single- and dual-slot units cost \(£ 290\) and \(£ 360\), respectively. Aval Corp, Dublin, Ireland. (1) 2892136.

Circle No. 321

\section*{Single-board computer doubles} performance. The CoreModule/ XTPlus doubles the processing speed of its predecessor without doubling the price. The single-board computer has a 16 -bit, \(16-\mathrm{MHz}\) NEC V41 \(\mu \mathrm{P}\) and up to 2 Mbytes of onboard RAM on a PC/104 form-factor board. The computer features two byte-wide memory-device sockets, which can be used with a variety of memory devices as onboard solidstate disks (SSDs). An SSD substitutes as EPROM, flash EPROM, or nonvolatile RAM for conventional disk drives. \(\$ 356\) (100). Ampro Computers Inc, Sunnyvale, CA. (408) 522-2100. Gircle №. 322

Host adapter delivers instant PCMCIA-to-SCSI connections. The SlimSCSI, a rugged, credit-card-sized I/O device, lets users attach peripherals to their portable systems. The 16 -bit SCSI adapter fits PCMCIA Type II or III slots. Users can daisy chain as many as seven devices simultaneously. The adapter achieves data-transfer rates of 2 Mbytes/sec. \$349. Adaptec, Milpitas, CA. (408) 945-8600.

Circle No. 323

\section*{Card upgrade offers lower power} consumption. The IBM PC/AT-compatible Cardio-86 uses the power-management schemes of Chips and Technologies F868A \(\mu \mathrm{P}\) to make power consumption less than that of its predecessor, Cardio-386. The credit-cardsized mother board retains full support of the PC/AT bus's \(8-\mathrm{MHz}\) clock performance; its interface is Epson's All-inone System Interface (EASI), and an interface that is not an EASI is available for PCMCIA support. \(\$ 250\) (1000). S-MOS Systems, San Jose, CA. (408) 922-0238.

Circle №. 324

\title{
EPSON
}

\section*{EDN-Naw Products COMPUTERS \& PERIPHERALS}


Touch display plugs into VGA output. The VAMP II flat-panel display lets you drive a 262,000 -color TFT LCD and touchscreen directly from your PC's VGA analog output. A 10.4-in., \(640 \times 480\)-pixel display generates 6 bits per color. An optional resistive touchscreen comes with an RS-232C cable. Capacitive and infrared touchscreens are also available. The display consumes \(<25 \mathrm{~W} . \$ 3995\) (OEM). Computer Dynamics, Greer, SC. (803) 877-8700.

Circle No. 325

\section*{Mathematica applications library available for EEs. The Electrical} Engineering Pack is the first in a series of Mathematica applications libraries. The EE pack is a collection of notebooks and packages written in Mathematica. The collection helps EEs use Mathematica for circuit-analysis, transmis-sion-line, antenna-design, and other problems. The customizable pack also provides a set of Mathematica functions for common tasks. The software runs on Macintosh, Microsoft Windows, and X-Window systems equipped with Mathematica 2.2. \$195. Wolfram Research Inc, Champaign, IL. (800) 4416284.

Circle No. 326

\section*{Electronic book provides on-line} access to Mathcad features. Mathcad 5.0 Treasure, Volume I: Mathcad Foundations, a "book" that runs on PCs, Macs, and Unix workstations, gives Mathcad 5.0 users interactive, on-line access to all the mathematical features and algorithms of Mathcad. It also provides detailed explanations and examples of how those features operate. Every number, formula, and plot in the book is live and interactive, letting users adapt them for individual problems. The book includes tips, techniques, and examples for making full use of Mathcad 5.0's functions. \(\$ 99\). MathSoft Inc, Cambridge, MA. (617) 577-1017.

Card automatically controls multiple drives. The PCMCIA Type II Multi Drive I/O card simultaneously controls drives for CD-ROMs, floppy disks, fixed hard disks, removable-cartridge hard disks, QIC-80 tape, QIC3010 tape, and QIC-3020 tape. The first drive connects directly to the card, and the rest daisy chain to the unit. The card senses drive capacity and type without user intervention. \$199. PacRim, Hayward, CA. (510) 782-1017.

Circle No. 328

PCI chip and board support SCSI peripherals. The 32 -bit 36 C 70 PCI local bus-to-SCSI II IC forms the basis of the TMC-3260 PCI-to-SCSI board. Together, the chip and card offer fastsynchronous 10-Mbyte/sec support for high-performance SCSI peripherals. The products support Windows NT, OS/2, Unix, NetWare, Interactive Sunsoft/Unix, and UnixWare. Chip, \$20 (OEM); card, \$259. Future Domain, Irvine, CA. (714) 253-0400. Circle No. 329

\section*{1.3-Gbyte magneto-optical drive fits half-height slot. The JY-800} magneto-optical disk drive features a compact half-height package for horizontal or vertical mounting. The 1.3Gbyte drive has a \(40-\mathrm{msec}\) seek time and effective transfer rate up to 2 Mbytes/sec. The drive fits in standard \(5.25-\mathrm{in}\). floppy-drive bays and is compatible with PCs, Macintoshes, and Unix workstations. Average power dissipation is \(17 \mathrm{~W} . \$ 2400\). Sharp Electronics Corp, Mahwah, NJ. (800) 6420261.

Circle No. 330

Frame grabber acquires images in real time. The DT55-LC, a PC-compatible monochrome frame-grabber board, acquires images in real time while using a host computer's monitor and 8 -bit graphics adapter to display images at non-real-time rates. The sci-entific-quality, square-pixel frame grabber comes with software to capture, save, and print images. An additional Windows developer's library is available at no charge when ordered with the board. \(\$ 695\). Data Translation, Marlborough, MA. (508) 481-8620.

Circle No. 331

486 ISA single-board computer supports flat-panel video. Users can program the CAT1029, a 486- and ISA-bus-based single-board computer to simultaneously operate a flat-panel
display and an analog VGA display. The video controller is compatible with a variety of flat-panel monochrome LCDs and produces up to 64 shades of gray. The controller also manages color TFT panels with palettes of 185,193 colors. Color resolutions can be as high as \(1024 \times 768 \times 16\) colors on interlaced monitors and up to \(800 \times 600 \times 256\) colors on noninterlaced monitors. Prices, for 33to \(66-\mathrm{MHz}\) versions, range from \(\$ 1295\) to \(\$ 1795\). Diversified Technology, Jackson, MS. (800) 443-2667.

Circle No. 332

Scanning board includes testing. The VMIATX-3125, a PC/AT ISA bus/EISA-compatible optically isolated scanning board, provides 12 -bit A/D conversion for 32 analog input channels (16 differential). The board also includes testing capabilities for off-line and real-time fault detection. A soft-ware-controlled front-panel LED turns on at system reset, and the software turns it off when the test is complete. \$1199. VME Microsystems International Corp, Huntsville, AL. (205) 8800444.

Circle No. 333


Touch monitor measures 17 in. The TruPoint-DS17 touch monitor, a \(17-\mathrm{in}\)., flat, square touch monitor, provides a screen with 1.5 times as much space as a standard \(14-\mathrm{in}\). screen, giving developers more area for displaying graphics and touch buttons. The flat, square CRT reduces image distortion and makes viewing images at the edge of the display easier, according to the vendor. The display provides flicker-free \(1280 \times 1024\)-pixel, \(74-\mathrm{Hz}\) noninterlaced resolution and a \(30-\) to \(78-\mathrm{kHz}\) horizontal scan rate. \(\$ 1975\). MicroTouch Systems Inc, Methuen, MA. (508) 6599000 .

Circle No. 334

\title{
When Your Design's On The Line... Tiunto TDK for EMI/RFI Suppression.
}


TDK Ferrite Cores for EMI/RFI Suppression come in all shapes and sizes with initial permeability ( \(\mu \mathrm{iac}\) ) ranging from 45-1,500. Take, for example, TDK Ferrite EMI Suppressors for Cables. Once attached to power or interface cables, these small ferrite cores absorb high frequency EMI without affecting signal transmission. Even large power surges can be absorbed without saturation. Our singular understanding of ferrite and its properties has enabled TDK to develop products such as ferrite bead cores, ferrite chip EMI suppressors, and multi-hole ferrite plates, to name only a few.
CEL, TDK's Component Engineering Laboratory, can help you with your product selection, or can custom design and test manufacture EMI/RFI suppression components to meet your specific requirements. Call or write your local TDK office today for more information.

TDK CORPORATION OF AMERICA 1600 Feehanville Drive, Mount Prospect, IL 60056, USA Phone: 708-803-6100 INDIANAPOLIS Phone: 317-872-0370 NEW YORK Phone 908-494-0100 SAN FRANCISCO Phone: 408-437-9585 LOS ANGELES Phone: 310-539-6631 DETROIT Phone: 313-462-1210 BOSTON Phone: \(508-624-4262\) HUNTSVILLE Phone 205-464-0222 GREENSBORO Phone: 919-292-0012 DALLAS Phone: 214-506-9800
GERMANY • FRANCE • ITALY • U.K. •KOREA •TAIWAN • HONG KONG • SINGAPORE •THAILAND • CHINA • BRAZIL
TDK CORPORATION Tokyo, Japan

\section*{EDN-NEW PRODUCIS}

\section*{POWER SOURCES}


25W dc/dc converters handle wide input ranges. The model 2500 series of 25 W de/dc converters handle 2:1 input ranges of 9 to 18 V dc, 18 to 36 V dc, or 36 to 72 V dc. The series comprises single-, double-, and triple-output models. Outputs are \(5,6,12,15, \pm 5\), \(\pm 12, \pm 15 \mathrm{~V}\). The units exhibit 500 V input-output isolation and \(85 \%\) efficiency. Accuracy measures \(\pm 1 \%\), and line/load regulation specs are \(\pm 0.5 \%\). All units undergo a \(72-\mathrm{hr}\) burn-in. The units measure \(3 \times 2.56 \times 0.75 \mathrm{in}\). \(\$ 90.30\) to \(\$ 104.30\). Delivery is stock to four weeks. Conversion Devices Inc, Brockton, MA. (508) 559-0880.

Circle №. 351

\section*{FREE INFO, FREE POSTAGE \\ Use our postage-paid reader-service cards to get more information on any of these products.}

\section*{Dual IGBT power modules contain} complete half bridge. The model VIE 12S isolated-gate bipolar-transistor (IGBT) power mules feature a fully isolated gate drive, dual \(1200 \mathrm{~V} / 150 \mathrm{~A}\) IGBTs connected as a half-bridge. The modules also contain transformers that achieve a 2500 V input-to-output isolation. The modules's on-board supply powers the modules's gating and protection circuitry. 150A version, \(\$ 228.15\); 100 A version, \(\$ 152.75\); 75 A version, \$113.75. IXYS Corp, Santa Clara, CA. (408) 962-0700.

Circle No. 352

Switched-mode converter ICs meet emerging voltage standards. You can adjust the output of models MAX746 and MAX747 stepdown regulator ICs over the range of 14.5 to 2 V . Typical efficiency for 5 to 3.3 V loads is \(88 \%\). The units consume
\(800 \mu \mathrm{~A}\) of quiescent current and \(0.6 \mu \mathrm{~A}\) in shutdown mode. The MAX746 drives an external N -channel MOSFET, the MAX747 a P-channel. The units also have a low-battery detector, adjustable current limiting, and soft start. \$2.25 (1000). Maxim Integrated Products, Sunnyvale, CA. (408) 737-7600.

Circle №. 353

Supply is hot-swappable. The model LT1700 400W ac/dc universal converter supplies 54 V dc (power output jumps to 550 W for inputs above 155 V ac). The supply measures \(4 \times\) \(5 \times 7 \mathrm{in}\). The unit features power-factor correction and no inrush current. The unit also sports transient suppression, filtering, and shock and vibration immunity. You can parallel as many as three units in one \(5.25-\mathrm{in}\). rack without forced-air cooling or heat sinking. A negative temperature coefficient allows for safe 48 V back-up-battery charging. \(\$ 1036\) (one), delivery is six weeks ARO. Melcher Inc, Chelmsford, MA. (508) 256-1812.

Circle No. 354

\title{
Imagine what you could do with Samarium MGOe 32 Magnels
}
 Another industry first from EPSON


Smaller, thinner, stronger than any other magnets... because they need no bulky anti-corrosion coating...EPSON's new DIANET \({ }^{\circledR} 32\) Sintered Samarium Cobalt Magnets offer a step forward in mini-magnet design. And the same size/strength advantages benefit larger designs too. You can specify DIANET Series anisotropic magnets with axial or transverse orientation in virtually any size, shape, or thickness you design. EPSON DIANET Series magnets have a very narrow range of deviation in magnetic characteristics and high dimensional accuracy. The high coercive force bHc is nearly equal to Br to minimize the influence from external magnetic fields.


DIANET \({ }^{\text {® }}\) Series Anisotropic Sintered Samarium Cobalt Magnets
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{BHmax MGOe} & Br (KG) & bHc (KOe) & Hc \\
\hline DM-32 & 28 to 32 & 11.0 to 11.6 & 5.5 to 9.5 & >6.00 \\
\hline DM-30 & 26 to 30 & 10.6 to 11.3 & 6.0 to 10.0 & \(>7.00\) \\
\hline DM-28 & 27 to 29 & 10.5 to 11.0 & 5.0 to 7.0 & > 5.00 \\
\hline DM-26 & 25 to 27 & 10.1 to 10.6 & 5.0 to 7.0 & >5.00 \\
\hline DM-24 & 23 to 25 & 9.7 to 10.2 & 6.0 to 8.0 & >6.00 \\
\hline DM-22 & 21 to 23 & 9.2 to 9.7 & 8.0 to 9.2 & >8.00 \\
\hline DM-20 & 19 to 21 & 8.7 to 9.2 & 8.5 to 9.2 & >8.50 \\
\hline DM-18 & 17 to 19 & 8.2 to 8.7 & 8.0 to 8.7 & >8.75 \\
\hline DM-16 & 15 to 17 & 7.7 to 8.2 & 7.5 to 8.2 & >9.00 \\
\hline
\end{tabular}

For information, call our Representative

|MI Eastern Office (219) 465-1998 or Western Office (303) 650-1903

\section*{EDN} PRODUCT MART

\section*{This advertising is for new and current products.}

\section*{Please circle Reader Service number for additional information from manufacturers.}


CIRCLE NO. 230


CIRCLE NO. 233
See
EEM 92/93
Pages
D1286-1291
Rental and 10-day trials available.
Full Source-level Debugger w/complete C-variable
support.
Supports virtually all members of the 8051, 68HC11,
68HC16 and 68300 families.
CALL OR WRITE FOR FREE DEMO DISK!

CIRCLE NO. 231


CIRCLE NO. 234

/Single Device Model: Portable for Field use Production Programmers: GANG or SET up to 8,16 or 32 devices at one time.
\(\checkmark\) High Speed: 1 meg in less than 17 seconds JUniversal: Memories, Logic \& Micros
\(\checkmark\) All Packages: DIP, PLCC, SOIC, etc.
Jang Micros: Motorola \& Intel (DIP or PLCC.) /Free Lifetime Updates via BBS.
Affordable: EZ-E32-\$149.* 832FT - \$895.
ซ Call: 800-523-1565 Tel: (407) 994-3520 • Fax: (407) 994-3615

BYTEK Corporation 543 N.W. 77 th Stroel CIRCLE NO. 232


Save time.
Savemoney.

\section*{C-programmable miniature} controllers are ideal for control ap-
plications, data acquisition, and test and measure-
ment. Compact and low in price (the Little PLC \({ }^{\text {TM }}\) above is \(2^{\prime \prime} \times 3^{\prime \prime}\) and \(\$ 195\) ), these controllers are programmed with our easy-touse Dynamic \(\mathrm{C}^{\mathrm{TM}}\) development system. Our controllers feature digital I/O, ADCS and DACS, relays and solenoid drivers, RS232 and RS485 serial ports, battery-backed memory and time/date clock, LCDs, keypads, enclosures and more!

24-Hour AutoFax 916.753.0618. Call from your FAX .


CIRCLE NO

BEST PRICE FOR PROTOTYPE CIRCUIT BOARDS
FR－4 • FLEX • POLYIMIDE 24 HOUR TO 120 HOUR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LAYERS} & \multicolumn{5}{|c|}{TOTAL SQ．IN．AREA} \\
\hline & 16 & 32 & 64 & 96 & 120 \\
\hline SINGLE & \＄230 & \＄ 260 & \＄ 300 & \＄ 350 & \＄ 380 \\
\hline DOUBLE & \＄290 & \＄ 320 & \＄ 380 & \＄ 440 & \＄ 480 \\
\hline four & \＄630 & \＄ 720 & \＄ 850 & \＄ 980 & \＄1，040 \\
\hline SIX & \＄780 & \＄ 880 & \＄1，040 & \＄1，200 & \＄1，300 \\
\hline EIGHT & \＄930 & \＄1，050 & \＄1，130 & \＄1，420 & \＄1，540 \\
\hline
\end{tabular}

CAPABITLILES
－ SMOBGC
T． －S．M．OB．C．
－TiNLEAD
－TIN NICKEL

Materials ：EXtras GOLD BODY FR－4 8 FR－5
－ARTWORK
FLEX blind／buRIED vI FLEX
POLYMIDE ARTWORK
ELLCTRIIAL TEST
SURBC WIL TET electrical test OLYMIDE
OMOBC WITH LPI SSO
OUROD
GOLO CONNECTOR \(\$ 50\)
TEFLON BELOW \＆MILTRACES \＆
15 MLL HOLES \(25 \%\) MORE 4 MIL TRACES 8 GAPS
8 MIL THRU HOLES Lease call or fax MODEM（408）988－34
 ごマニングー

TEL．（408）988－3980 • FAX（408）988－4534

CIRCLE NO． 236


HOT FLASH

\section*{Announcing the} immediate availability of＂Designing with Flash Memory＂，by Dipert and Levy！This reference is destined to be the flash memory bible for years to come． It covers components and cards，both hardware and software， including PCMCIA and ExCA！ Written by the experts！ 422 pages，soft cover \(\$ 64.95\) ． Unconditional 30 －day money back guarantee．Call now！

\section*{Annabooks}

1－800－462－1042
619－673－0870
619－673－1432 FAX
MasterCard，Visa Company POs accepted

CIRCLE NO． 239


Simple，personal device programming
－Cuplab＂makes device selection and program－ ming fast and easy with its Windows＂－like user interface
－Extensive on－line help
－Programs more than 2000 PLDs，PROMs， EPROMs，EEPROMs，and MCUs
－\(\$ 895\)（32－pin version）or \(\$ 1495\)（48－pin version）
To order call 1－800－3－Datal0 Ext． 901 （1．800．332－8246）
Also distributed by：
Promark Technology West 1－800－227－3345 JDR Microdevices 1－800－538－5000

DATA I／O
CIRCLE NO． 242


MODEL：VP1410
＊QuikVoice \({ }^{\text {TM }}\) technology
＊Plays up to 10 messages
stored in external EPROM
＊ 10 direct－trigger pins
＊CVSD encoding
＊ \(3-6 \mathrm{~V}\) single supply
＊ \(3-6 \mathrm{~V}\) single supply
＊DIP or surface－mount
＊DIP or surface－mount
＊Low cost
Let your product speak for itself！
Relex Reliability Software，long known for its power and flexibility，is now available for Windows，the Mac，and DOS！With features such as a powerful CAD interface， system modeling，impressive graphics，and unmatched user－friendliness，Relex is the ultimate，intuitive solution！
－MIL－HDBK－217 • Bellcore • Parts Count－ －Mechanical • CNET－FMECA－more •
Call 410－788－9000 Today For a Free Demo！
Innovative Software Designs，Inc．
Two English Elm Court
410－788－9000
Baltimore，MD 21228 USA
FAX 410－788－9001
CIRCLE NO． 237

Power Electronics Course BY DR．ĆUK

A new five－day course on converter TOPOLOGIES， MAGNETICS，and CONTROL includes Laborator and Computer Aided Design Workshops．Learn both the basics as well as the latest innovations in the switching power supply design．This highly acclaimed course by Dr．Cuk of Caltech will be held from June 6 to 10， 1994 in the Lecture Hall of new TESLAco R\＆D building in Irvine， California．The first next course will be in September 1994．In－ HOUSE courses are also available．For more information and free color brochure call： TESLAco
Tel：（714）727－1960 Fax：（714）727－3789


CIRCLE NO． 240

\section*{THINK DISKLESS THINK M C S I}

MCSI pioneered the PC compatible solid state disk emulator with our easy to use PROMDISK \({ }^{\text {© }}\) products．Now Create a DISKLESS PC with PROMDISK IV！
－Emulate up to 3 floppy and hard drives
－4M－byte Capacity
－Lithium batter
for SRAM
－Flash EPROM
programmer
ROM
DOS
－FLASHCOM Remote RS－232 Programming Utility

Also Available
－ 3 to 14 Slot Backplanes and Embedded Chassis
－Full Range of ISA \＆EISA CPUs up to 66 MHz


CIRCLE NO． 243

Our QuikVoice family of digital voice boards and IC chips give your product the competitive edge by letting them talk in real voice．Imagine how much more＂user friendly＂ your product will become！Conventional voice technol－ ogy requires high tooling cost and long turn－around time， while QuikVoice technology allows you to create a voice EPROM in just minutes with low－cost in－house equip－ ment！Change messages easily or customize messages for each of your customers！
ELETECH ELECTRONICS，INC．
16019 Kaplan Ave，Industry，CA 91744 （818）333－6394
CIRCLE NO． 238

\section*{Gang，Set \＆Match}
－PP42－the total solution for Gang／Set programming of EPROMs and EEPROMs
－ 8,16 or 32 －bit programming of device sets in a single operation（ 24 to 32 pins）
－Optional modules for ganging Micros，Masked ROM pinout EPROMs， 40 －pin DIP／16－bit or 32－PLCC EPROMs
－ 4 Mbits RAM standard－expandable to 64 M
－Serial and parallel ports
－＇Stand－alone＇or PC operation
Stag Microsystems，Inc．
Tel：（408）988－1118 Fax：（408）988－1232
stag


CIRCLE NO． 241

\section*{HiWIRE II \\ Schematic and PCB Software}


With support for expanded and extended memory， HiWIRE II can handle your most demanding schematic and PCB designs．The unique HiWIRE II editor allows you to display and edit schematics and PCBs simultaneously，using the same commands for each． HiWIRE II is \＄995 and is guaranteed．

\section*{TV WINTEK \\ Wintek Corporation 1801 South Street
Lafayette，IN 47904 Lafayette，IN 47904
Phone：（317）448－1903}

1－800－742－6809
CIRCLE NO． 244

\section*{48 Channel 50MHz Logic Analyzer}


Complete System \$1495.00 New Windows 3.1 Compatible Software
-48 Chnnls @ 50 MHzx 4 K words deep
- 16 Trigger Words/16Level Trigger Sequence
- Storage and recall of traces/setups to disk
- Disassemblers available for: \(68000,8088,8086\), 6801, 6811, Z80, 8085, 6502, 6809, 6303, 8031, 64180
\(\mathrm{NCI} \square 6438\) UNIVERSITY DRIVE,
HUNTSVILLE, AL 35806 (205) 837-6667 FAX (205) 837-5221

CIRCLE NO. 245


Schematic Capture for Windows and Macintosh \({ }^{\text {® }}\)

\section*{DESIGNWORKS \({ }^{\text {TM }}\)}

The universal schematic capture front-end is now available for Windows. DesignWorks \({ }^{\text {TM }}\) for Windows has all the same workstation functionality as its Macintosh counterpart, including full hierarchy with unlimited levels, automatic gate packaging and comprehensive symbol libraries. DesignWorks is built to work with PCB, FPGA, ASIC, and SPICE packages from any vendor. Custom netlist/report generation, back annotation, EDIF schematic support and a custom programming interface free your designs from being locked into one layout package or one simulator.
CALL (800) 444-9064 FOR YOUR FREE DEMO! CAPILANO COMPUTING
(604) 522-6200 Fax (604) 522-3972

CIRCLE NO. 248

\section*{©Advin}


PILOT-U84 Universal Programmer The Leader in New FPGA Support - Altera MAX 7064, 7128 - Xilinx 1736D,1765D etc - Intel FX-740, FX-780; 87 C 196 KD,KR,JR,MC etc - Moto 68HC711D3, E9; 68HC705 C8,C9,P9 etc - WSI PSD-4XX,-5XX,PAC,SAM • Atmel 29 C040 etc
- AMD MACH435, 29F040, 16R8-4 - Lattice pLSI etc
- All packages to 256 -pin: PLCC,PGA,QFP,TQFP,SOIC For immediate support, please call
800-627-2456 FAX: (408) 736-2503 CIRCLE NO. 246

SPRINC CONHACT PROBES


Virginia Panel's expanded line of Spring Probes is designed to provide positive electrical contact under demanding conditions. Tip configurations are available in star, diamond, serrated, arrow, needle, cup, ball or pyramid. Probes are available for . 050 , . 100 or .125 minimum centers, and receptacles are crimp, solder or wire-wrap.
(1)II
- Virginia Panel Corporation 1400 New Hope Road P0 Box 1407 • Waynesboro, VA 22980 TEL: 703-949-8376 • FAX: 703-942-2856

CIRCLE NO. 249

5-Year Standard Warranty Lifetime Software Updates

Unmatched in
Programmer Value!

\section*{Superior Device Support:}

Intel IFX 780, 87C196XX, 28F0016SA, Altera MAX 7XXX, AMD MACH 435, WSI PSD5XX, Xilinx 1736, 1765 (over 3000 devices)

30-Day Money Back Guarantee
Made In USA

- Make your own DTMF Modem
- Telephone Line Interface, includes isolation
- FCC Part 68 approvable
- Interfaces with DTMF tranceiver chips
- Single 5 Volt

Your Source for Modem Components

\section*{Cenmetek \\ Tel: 408-752-5000} Fax: 408-752-5004

Cermetek Microelectronics, Inc. 1308 Borregas Ave. • Sunnyvale, CA 94089

CIRCLE NO. 250

> 486 Single Board Computers \& , minim Rack Mounts


14 Slot 486DX2-50 4MB 120MB HD .. \$2,295 486SX-25 Single Board Computer .... \$ 575 486DX-33 Single Board Computer .... \$ 775
ORDER DESK 1-800-777-4875 © US LOGIC

Made In U.S.A.
7004 Convoy Court, San Diego, CA 92111 (619) 467-1100 • FAX (619) 467-1011 The Intel Inside Logo is a registered trademark of Intel Corporation. 3 year warranty applies to Falcon-II Single Board Computer.


LOGICAL


Has a Full Range of High Quality Universal \& Gang (EEPROMs, FLASH, PLD, \& MICRO CONTROLLER)
Programmers

\section*{LOCICAL}

1800 331-7766 Ext: 103

\section*{PC COMPATIBLE}
"Never before has such power been so affordable"
- 286 Class Performance
- 1 MB RAM
(all configurations) - Standard E1A-232, E1A-422, E1A-485
- Sealed Membrane or Elastomeric Keypad - Supertwist LCD, Dis plays \(16 \times 24\) Characters Plus Graphic Capability of \(192 \times 128\) Pixel Display

- Three Models Available PCL-100, PCL-200, and PCL-300
- PCL-300 Available with 20-64 MB Hard Drive
- Full Line of Hand Held Terminals Available
- Full Warranty


Two Technologies 419 Sargon Way Horsham, PA 19044 Tel: (215) 441-5305 Fax: (215) 441-0423
CIRCLE NO. 253


\section*{CIRCLE NO. 255}


These high performance \& low cost desktop programmers support more than 2,500 devices with free software updates via BBS. The support includes \(\mathrm{E}(\mathrm{E})\) PROM, FLASH, BIPOLAR, PLD, GAL, EPLD, PEEL MICRO, etc. Adapters are available upto 84 pin PLCC PGA, \& SOIC package.
ROM MASTER programs upto 4MB EPROM. \(\$ 129\).

\footnotetext{
XELTEK
757 N. Pastoria Avenue Sunnyvale, CA 94086
(408) 524-1929
(408) 245-7084 FAX (408) 245-7082 BBS
}

DIRECT PLUG-IN ADAPTORS SOME EUROPEAN UNITS ARE NOW STOCKED!


Hundreds of standard models available with AC or DC output, UL/CSA approval, regulation \& other options. Many standard European, Asian, British, and Australian configuations also available with approvals. We now stock some European adaptors too!
For a catalog or a quotation, contact CUI Stack, Inc., 9640 SW Sunshine Ct., \#700, Beaverton, OR 97005. 503/6434899, FAX 503/643-6129.

CIRCLE NO. 254


Only a Specialized Keypad Manufacturer Could Provide Versatile and Economic Products. With more than 11 years of experience in this field, we proudly offer you various types of conductive silicone rubber pads, rubber pads with multicolor keys and multicolor printing, translucent parts for backlighting. Please contact us early for design assistance and information.

GENERAL SILICONES CO., USA
650 W. Duarte 401 Arcadia CA 91007, USA Tel: (818) 445-6036 Telex: 3716189 GSCUI
Fax (818) \(445-6084\) Fax (818) 445-6084
\[
\text { CIRCLE NO. } 256
\]

\section*{PCB RUSH SERVICE Proto Manufacturing}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{鲝 24 hour Multi/Rigid} \\
\hline \multicolumn{2}{|l|}{m Design \& CAM} \\
\hline \multicolumn{2}{|l|}{Laser Plotting} \\
\hline \multicolumn{2}{|l|}{m LPI/DFSM} \\
\hline \multicolumn{2}{|l|}{M Mil GF \& GI} \\
\hline \multicolumn{2}{|l|}{N Nice People} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{Dial (800) PCB-RUSH
Sun Circuits Incorporated
5124 Calle del Sol}} \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{(408) 727 antir \({ }^{\text {S }}\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Call for full device support list Free software updates on BBS
Call (201) 808-8990

\section*{EDN-CareER OPPORTUNITIES} RF DESIGN ENGINEERS MSEE/BSEE, Experience levels to \(10+\) years RF/Microwave circuit design, HF to 3.0 GHz Areas of interest are: receivers, transmitters power amplifiers, frequency synthesizers, mod ulation/demodulation, spread spectrum, DSP implementation of radio functions. Multiple openings with several of my Midwest client companies.

DON GALLAGHER, MSEE
Gallagher \& Brei Associates 1145 Linn Ridge Rd., Mount Vernon, IA 52314 (319) 895-8042 • Fax (319) 895-6455
For information on placing your advertisement in CAREER OPPORTUNITIES for EDN Magazine call: Kim Fogarty Recruitment Account Executive 1-800-6034860

\section*{SIMULATION ENGINEERS}

Lockheed Aeronautical Systems Company is currently seeking the following Simulation Engineers for our facility in Marietta, GA.
- Develops computer system architecture for real-time simulation applications. Includes selection/development and integration of VME boardlevel hardware, development of operating system and real-time executive software, development of input/output device drivers, development of communication and data collection software, etc. Integrates and debugs simulation applications on target hardware.

\section*{Lockheed} leads.
- Develops static and dynamic software stimulations of avionics equipment for hardware-in-the--loop simulations supporting avionics systems integration. Includes design, integration and operation of avionics hot benches. Uses bus analyzers and other test equipment.
The above positions require a BS degree in Engineering/Computer Science; \(5+\) years' experience in real-time man-in-the-loop and/or hardware-in-the-loop simulation development; and experience developing Ada software in the UNIX environment (preferably using Vads, VadsWorks, and CASE tools such as CADRE/teamwork, RTM and InterLeaf). Positions also require experience/ familiarity in one or more of the following areas: MIL-STD-1553 data bus, Arinc 429 data bus, and aircraft/avionics systems.

We offer excellent salaries and a comprehensive benefit program including company paid relocation. Please forward resume to: Search SE, Dept. EDN-3/17, 5775 Peachtree-Dunwoody Rd., Ste. C-175, Atlanta, GA 30342. Lockheed is an equal opportunitylaffirmative action employer.
Lockheed Aeronautical Systems Company


\section*{Difference is Power.}


At Dell, we've made a business of being different. Of doing the unexpected. That's why we were the industry's first direct marketer. First to offer on-site service. First to introduce written guarantees for service, compatibility, and response time. And the very last to follow the crowd.

We recognize difference for what it is: empowerment. Currently, we're looking for engineers who can make a difference in our products...and our future. If this sounds like you, come make a difference at Dell.

\section*{Hardware Engineers}

PC hardware logic designers, with 3-5 years experience with Intel \({ }^{\circ}\) microprocessors. Responsible for design/debugging complex PCs for high-volume production. Prefer BSEE.

\section*{Mechanical Engineers}

Must have 5-7 years experience related to the design and testing of PC enclosures for high-volume production, and working knowledge of 3D solid modeling, software, Pro/Engineering, plastics, sheet-metal parts, and thermal/shock testing principles.

\section*{PC Monitor Engineers}

Board-level designer/analysis experience for PC monitors. Prefer BSEE with more than 5 years in the PC industry, working knowledge of analog components, digital video, audio, and DSP technologies.

\section*{System Programmers}

Soffware design engineer, must have at least 2 years experience with PC products, storage peripherals, SCSI and device driver coding/support, and experience programming with C and Assembly languages.

For more information, mail or fax your resume to:


Where Difference Works.

\section*{ENGINEERING OPPORTUNITIES}

Lockheed Aeronautical Systems Company is currently seeking the following Electronic Systems professionals for our facility in Marietta, GA.

\section*{SYSTEMS ENGINEER}

Establishes program electromagnetic environmental effects \(\left(E^{3}\right)\) requirements and provides design direction to achieve electromagnetic compatibility (EMC). Requires \(10-15\) years' progressive experience in \(E^{3}\) analysis, design and testing. Should have experience with EMC, HERO, HERF, RADHAZ, TEMPEST, nuclear hardening, ESD, TREE, SN, and lightning protection, and be familiar with MIL-STDs 461, 6051 and 188. Must be NARTE EMC certified.

\section*{ELECTROMAGNETICS ENGINEER}

Performs antenna design, RF analysis, and RF/electromagnetic testing. Requires 5-7 years' experience in the area of RF technology, with demonstrated experience in aircraft design and test. Knowledge of EMC/EMI, radomes also desirable.

\section*{CONFIGURATION \& DATA MANAGEMENT ENGINEER}

Performs standard CM/DM functions including proposal processing, subcontract interpretation, diverse data management tasks, and CCB operation. Requires \(8+\) years' avionics/electrical experience.

\section*{COMPUTER RESOURCES ENGINEER}

Provides support to Avionics Systems organizations. Coordinates preparation of Software Development Status Report inputs from Avionics organizations. Requires \(5+\) years' experience in software development including 2 years' experience in a VAXVMS environment. Should have experience with real-time processing and safety/security concerns, as well

\section*{Lockheed leads.} as Ada knowledge.

\section*{AVIONICS ENGINEER}

Plans and performs radar systems design. Requires \(7+\) years' airborne radar design, development and integration experience. Should have experience in color weather radar, windshear detection and ground mapping, as well as integration of 1553 systems. Experience with Westinghouse systems and FAA certification experience helpful.

\section*{EXPERIMENTAL TEST DESIGN ENGINEER}

Provides technical, administrative and operations-oriented shop-related expertise and coordination for the fabrication, assembly and finish application of special technology models, test hardware and prototype construction and/or modification. Requires \(5+\) years' experience in an administrative, technical discipline, or supervisory capacity in a fabrication environment, with "hands-on" experience in fabrication operations, with tooling knowledge. Should have BS degree in Business or Operations Management. OSHA and hazardous waste training required.

\section*{ENGINEERING ADMINISTRATION ANALYST}

Prepares, coordinates and analyzes engineering job schedules, direct and overhead budgets, job instructions and status reports. Also plans, implements and monitors programs utilizing C/SCS criteria. Requires BS degree in Industrial Management, Business Administration or related with 2-5 years' experience in engineering operations.
OTHER ENGINEERING OPENINGS
AIRCRAFT AVIONICS/ELECTRONIC EQUIPMENT INSTALLATION AIRCRAFT ELECTRICAL POWER SYSTEMS WIND TUNNEL (LOW SPEED - COMPRESSIBLE FLOW)
All of the above positions require a BS degree in Electrical Engineering/Computer Science or equivalent, unless otherwise noted. Must have or be able to obtain high level security clearance.

We offer excellent salaries and a comprehensive benefits program including company paid relocation. Please forward resume including salary requirements to: Search EO, Dept. EDN-3/17, 5775 Peachtree-Dunwoody Rd., Suite C-175, Atlanta, GA 30342. Lockheed is an equal opportunity/affirmative action employer.

\section*{Lockheed}

Aeronautical Systems Company


ULTRA-MINIATURE Surface Mount Audio Transformers

- Manufactured and tested to MIL-T-27
- Frequency range 20 Hz to 250 KHz
- Available from 100 milliwatts to 3 watts
- Impedance from 20 ohms to 100 K ohms
- Operating temperature \(-55^{\circ} \mathrm{C}\) to \(+130^{\circ} \mathrm{C}\)
- Low profile .2" ht.

PICO surface mount units utilize materials and methods to withstand extreme temperature \(\left(220^{\circ} \mathrm{C}\right)\) of vapor phase, I.R., and other reflow procedures without degradation of electrical or mechanical characteristics.


See EEM or send direct for Free PICO Catalog. Call toll free 800-431-1064 in NY call 914-699-5514 FAX 914-699-5565

\section*{PICO} Electronics, Inc.
453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552 CIRCLE NO. 31

\title{
EDN-INIERNational AdVERTISERS INDEX
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Company & \multicolumn{2}{|l|}{Page Circle} & Company & \multicolumn{2}{|l|}{Page Circle} \\
\hline Accel Technologies Inc & 101 & 77 & Murata Electronics & & \\
\hline Advanced Micro Cevices & 10-11 & 73 & North America & 48-49 & 89 \\
\hline Advin Systems & 113 & 246 & Murrietta Circuit Design & 94 & \\
\hline Allied Signal & & & NCl & 113 & 245 \\
\hline Laminate Systems & 24 & 64 & NCR Corp & 22 & 91 \\
\hline \multirow[t]{2}{*}{Analog Devices Inc} & 63 & 74 & NEC Corp & 16-17 & 36 \\
\hline & 84 & 75 & National Semiconductor & C2 A-C & \\
\hline Annabooks & 112 & 239 & Nohau Corp & 111 & 231 \\
\hline \multicolumn{3}{|l|}{Asahi Kasei} & Oyster Terminals & 80 & 19 \\
\hline Microsystems Co Ltd & 119 & 37 & Pico Electronics & 100 & 31 \\
\hline B\&C Microsystems & 113 & 247 & & 118 & 31 \\
\hline BYTEK Corporation & 111 & 232 & Power Trends Inc & 25 & 92 \\
\hline Belden Wire \& Cable Co & 6 & 78 & Quad Tech & 103 & 32 \\
\hline Burr-Brown Corp & 53 & 65 & Quicklogic & 29 & 93 \\
\hline Capilano & 113 & 248 & Sealevel & 114 & 255 \\
\hline \multirow[t]{2}{*}{Capital Equipment Corp} & \multicolumn{2}{|l|}{89-90} & \multicolumn{3}{|l|}{Siemens Components Inc 54 A-D} \\
\hline & 91 & 70 & & 83 & \\
\hline Cermetek & 113 & 250 & Sierra Circuits & 111 & 230 \\
\hline Cirrex Corp & 112 & 236 & Silicon Systems Inc & 92 & 71 \\
\hline Condor Inc & 31 & 79 & Siliconix Inc & 4 & \\
\hline CuiStack Inc & 114 & 254 & Spectrum Software & 64 & 94 \\
\hline Cybernetic MicroSystems Inc & 33 & 9 & Stag Microsystems & 112 & 241 \\
\hline Cypress Semiconductor & \multicolumn{2}{|l|}{C4} & \multicolumn{3}{|l|}{Stanford Research} \\
\hline Data I/O Corp & 112 & 242 & Systems Inc & 102 & 95 \\
\hline Data Translation Inc & 32 & 80 & Sun Circuits & 114 & 258 \\
\hline Datel Inc & 69 & 81 & Synopsys & 2 & \\
\hline Digi-Key Corp & 1 & 1 & TDK Corp 107 & 107-108 & \\
\hline Eagle-Picher Industries Inc & 88 & 28 & & 109 & 96 \\
\hline Ecliptek Corp & 76 & 17 & TESLAco & 112 & 240 \\
\hline Eletech & 112 & 238 & Tektronix Inc & 58 & 35 \\
\hline \multirow[t]{2}{*}{Epson America Inc} & 105 & 72 & Texas Instruments & 18-21 & \\
\hline & 110 & 33 & The Hirol Co & 80 & 26 \\
\hline GE Rental/Lease & 82 & 82 & \multicolumn{3}{|l|}{Toshiba America} \\
\hline General Silicones Co & 114 & 256 & \multirow[t]{2}{*}{Electronics Components} & 8-9 & 98-99 \\
\hline GlobTek Inc & 94 & 29 & & \multicolumn{2}{|l|}{34 100-101} \\
\hline Harris Semiconductor & 87 & 34 & Tribal Microsystems & 111 & 234 \\
\hline Hewlett-Packard & 61 & 83 & Two Technologies Inc & 114 & 253 \\
\hline Incredible Technology & 111 & 233 & US Logic & 113 & 251 \\
\hline \multicolumn{2}{|l|}{Innovative Software Design 112} & 237 & Underwriters Laboratory & 98 & 97 \\
\hline \multicolumn{2}{|l|}{Integrated Device Technology 81} & 84 & Unitrode Integrated Circuits & s 26 & 38 \\
\hline Intel Corp & 36-39 & & VLSI Technology Inc & 78-79 & 102 \\
\hline International Rectifier & C3 & 76 & Vicor Corp & 65 & 103 \\
\hline LeCroy Corp & 12 & 85 & Viewlogic Systems Inc & 54 & 104 \\
\hline \multirow[t]{2}{*}{Linear Technology Corp} & 66 & 69 & Virginia Panel Corp & 113 & 249 \\
\hline & \multicolumn{2}{|l|}{71-72} & Voltech Inc & 99 & 30 \\
\hline Logical Devices & 113 & 252 & Wavetek Corp & 57 & 105 \\
\hline Loral Data Systems & 120 & 39 & Wintek Corp & 112 & 244 \\
\hline MCSI & 112 & 243 & Xeltek & 114 & 257 \\
\hline Massteck & 40 & 86 & Yokogawa Corp of America & 83 & 27 \\
\hline MathSoft Inc & 62 & 16 & Zworld Engineering & 111 & 235 \\
\hline \multirow[t]{4}{*}{Maxim Integrated Products} & 75 & 46 & & & \\
\hline & 77 & 47 & \multirow[t]{3}{*}{Recruitment Advertising} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{117-119}} \\
\hline & 95 & 48 & & & \\
\hline & 97 & 49 & & & \\
\hline \multirow[t]{3}{*}{MicroSim Corp Mini-Circuits} & \multicolumn{2}{|l|}{15150-152} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.}} \\
\hline & 3 & 87 & & & \\
\hline & 73 & 88 & & & \\
\hline
\end{tabular}

118 - EDN March 17, 1994

\title{
Integrated monolithic Base Band IC for cordless phones.
}

> The value-packed AK2353B C-MOS Base Band IC offers high level mixed signal integration with wide voltage operation; Voice Band Filters, 2400 bps MSK MODEM, Comparator, 3.58MHz Oscillator, Frequency Invertor Scrambler, Frame Detection, and more, in a 44 pin QFP or 64 pin VQFP.

CORDLESS ANALOG TELEPHONE PRODUCT FAMILY
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & \begin{tabular}{c} 
VOICE BAND \\
FILTERS
\end{tabular} & COMPANDER & MODEM & SCRAMBLER & \begin{tabular}{c} 
FRAME \\
DETECT
\end{tabular} & \begin{tabular}{c} 
VOLTAGE \\
RANGE (V)
\end{tabular} & COMMENTS \\
\hline AK2351E & & & & & & \(2.8 \sim 3.3\) & FOR GERMANY, 2400 bps MSK MODEM \\
\hline AK2351F & & & & & & \(1.9 \sim 5.5\) & 2400 bps MSK MODEM \\
\hline AK2352 & & & & & & \(1.9 \sim 5.5\) & 2400 bps MSK MODEM \\
\hline AK2353 & & & & & \(1.9-5.5\) & 2400 bps MSK MODEM \\
\hline AK2354 & & & & & \(1.9 \sim 5.5\) & 1200 bps MSK MODEM \\
\hline AK2359 & & & & & \(1.9 \sim 5.5\) & FSK MODEM \\
\hline AK2356 & & & & & \(2.6 \sim 3.3\) & SCRAMBLER ONLY \\
\hline
\end{tabular}

\section*{AKM}

\section*{Asahi Kasei Microsystems Co.,Ltd.}

JAPAN — TS BIdg. 24-10, Yoyogi 1-chome, Shibuya-ku, Tokyo 151, Japan Phone: (03) 3320-2067 / Fax: (03) 3320-2072
USA _- 2055 Gateway Place, Suite 415, San Jose, CA 95110 Phone: (408) 436-8580 / Fax: (408) 436-7591
EUROPE-Avenue Louise 326, Bte 056, 1050 Brussels, Belgium. Phone: (32) 2-649-7831/ Fax: (32) 2-640-1809
For more information, contact:

\section*{U.S.A.)}
- WA, OR, MT (Western); CANADA-BC, Alberta
- CA (Northern), NV (Northern), ID, UT, CO - CA (Southern)
- NV (Southern), AZ, NM, MEXICO-Sonora, Chihuahua - IA, WI, IL, IN
- NY (Upstate)
- NY (Southern), CT, NJ, PA, DE - MD, VA, DC
, TN, NC, SC, GA, AL, MS
- FL, Puerto Rico

\section*{EUROPE)}
- Austria, Germany, Italy, Spain, Switzerland, Greece Other European Countries

Quest Marketing, Inc
Pinnacle Sales
Solutech, Inc.
Fred Board Associates
Richmar Electronics Corp.
Interactive Component Sales
WD-TMI
Eltron Sales, Ltd.
E-Squared Marketing
Micro Concepts, Inc.
Phone (206) 228-2660 Fax (206) 228-2916
Phone (408) 453-7500 Fax (408) 453-7667
Phone (714) 374-0130 Fax (714) 374-0131
Phone (602) 994-9388 Fax (602) 994-9477
Phone (708) 968-0118 Fax (708) 968-0197
Phone (315) 445-9600 Fax (315) 445-8700
Phone (914) 779-8738 Fax (914) 779-8840
Phone (703) 635-7201 Fax (703) 635-1933
Phone (205) 430-3000 Fax (205) 430-3350
Phone (407) 830-8889 Fax (407) 834-0649

\section*{Loral Makes a Replacement for the Versatec V80'm That Uses No Liquid Chemicals.}

\section*{NEW FROM LORAL}

The Loral 9080 is a plug-compatible, exact replacement for the Versatec V80. It gives you everything you want and need in a high speed printer/plotter. With the 9080, you get clean, crisp copies every time using an environmentally-friendly dry process. No chemical inks or toners.

\section*{EASY TO INSTALL AND USE}

Installation couldn't be easier. Simply unplug the V80 and plug in the 9080. The 9080 is designed to work with all existing Versatec V80 software and hardware interfaces.

Powered by the Astro-Med Print Engine, the 9080 prints high-resolution documents at 200 dpi on fanfold or roll paper. Print Speed is 15 pages per minute. Plot speed is one inch per second. Price is under \(\$ 12,000\).

To order the Model 9080, call (813) 378-6984. For more information write: Loral Data Systems, P.O. Box 3041 M/S41, Sarasota, FL 34230 or call our hotline (813) 377-5590.


Data Systems

\title{
Power-full tiny inverter.
}

\title{
Or how to shrink a 1hp, 3-phase motor control inverter to fit your pocket...book.
}

Take six IR surface-mount IGBT CoPacks with built-in diodes. Add one 600 V IR2130J three-phase driver. And you end up with a 1 hp inverter about the size of a credit card.

The lower part count, size and weight reductions bring added value to your end product.

This motor control inverter is \(3^{\prime \prime} \times 3^{\prime \prime}\) sq. and features six SMD-220 surface-mount CoPack UltraFast IGBTs driven by a single 600 -volt, 3-phase driver (IR2130J) with current-sensing. Your customers benefit from the pass-along savings. And you gain the competitive edge.

Thanks to the most compatible line of power devices ever. Value-priced to save you money. In stock to save you delivery time. Send for our data "Shrink Pak." Quicker yet, call. 1-800-245-5549.

You'll see how small your inverters can get.

\section*{Available now at key IR distributors.}

\section*{INTRODUCING THE WORLD'S FASTEST FPGA.}

Introducing the pASIC380 FPGA family. It brings Cypress's well-

\section*{WELL, IT WAS HERE A SECOND AGO.} to FPGAs. Utilizing advanced 0.65 micron anti-fuse technology, the new pASIC380 family is a full \(50 \%\) faster than any competitive part. Its unconstrained interconnect ensures phenomenal performance
and allows \(100 \%\) gate utilization even with fully automatic place and route. This also means minimal timing variability. And, as part of the comprehensive UltraLogic \({ }^{\text {T1 }}\) family, pASIC380 is supported by Warp \({ }^{\text {mi }}\) VHDL open design tools. What could possibly be easier? See for yourself, fast! Call the pASIC380 FPGA data sheet hotline at 1-800-858-1810, Dept. C4F.
*In Europe, fax requests to the above Dept. at (32) 2-652-1504 or call (32) 2-652-0270. In Asia, fax requests to the above Dept. at1-415-940-4343. UltraLogic and Warp are trademarks of Cypress. © 1994 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134, Phone 1-408-943-2600.
```


[^0]: *units are not QPL listed.

[^1]: EDN ${ }^{\text {(ISSN 0012-7515, GST Reg. \#123397457) is published } 38 \text { times per year, bi-weekly with one additional issue per }}$ month, by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158 1630. 'Robert L. Krakoff, Chairman and' Chief Executive Officer; Timothy C.' O'Brien, Executive Vice 'President//Finance and Administration; Michael Wisner, Senior Vice President/General Manager, Boston Division; Michael Wisner, Vice President/Publishing Director. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone (303) 388-4511. Second-class postage paid at Denver, $\mathrm{CO} 80206-5800$ and additional mailing offices. POSTMASTER: Send address changes to EDN N, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\circledR}$ copyright 1994 by Reed Publishing USA. Rates for non-qualified subscriptions, including all issues: US, $\$ 140.00$ one year $\$ 238.00$ two year; Canada, $\$ 209.00$ one year $\$ 355.00$ two year (includes 7% GST, GST\# 123397457); Mexico, $\$ 195.00$ one year, $\$ 332.00$ two year; Foreign surface $\$ 245.00$ one year, $\$ 417.00$ two year; Foreign air expedited surcharge add $\$ 152.00$ one year, $\$ 304.00$ two year. Except for special issues where price changes are indicated, single copies are available for $\$ 10.00$ US and $\$ 15.00$ foreign. Please address all subscription mail to EDN ${ }^{*}, 44$ Cook Street, Denver, CO 80206-5800. EDN® is a registered trademark of Reed Properties Inc., used under license.
 (Printed in USA)

[^2]: Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400 8,N,1. From the Main System Menu, enter ss/soapbox and select W to write us a letter.

[^3]: © 1994 QuickLogic Corporation. PREP is a trademark of the Programmable Electronics Performance Company.

[^4]: ${ }^{*} \mathrm{f}_{\text {in }}=2.45 \mathrm{MHz}$

