

New Produc

LeCroy's 2G-sample/sec DSO stores $\mathbf{8 M}$ samples pg 150

February 3, 1994

TECHNOLOGY UPDATES

PCI local bus gathers momentum pg 25

Digital HDTV system links computers with telecommunications pg 35

DEsign Features

Step-up/step-down converters power small portable systems pg 79

Pick the right package for your next ASIC design pg 91

Desicn Ideas

pg 71
Color video travels on twisted-pair cable

Circuit vocalizes telephone number

MOSFET

replaces switch

Special Report:

EMC components administer first aid pg 54

Correlator works
in presence of noise

Building Permit.

Introducing LabWindows/CVI for Windows and Sun

Constructing an instrumentation system? Whether it's data acquisition, process monitoring, or automated test, you'll have to integrate your system hardware and software, on time and under budget. Welcome to LabWindows/CVI - the software tools to take your system from blueprint to reality.

Industry-Standard Foundation

LabWindows/CVI is based on industry standards - so it's flexible enough for any job. Program in C. Run under Windows or UNIX. Acquire data and control your instruments using the standard NI-488.2 $2^{\prime \prime \prime}$, $\mathrm{NI}-\mathrm{VXI}^{\text {" }}$, and NI-DAQ ${ }^{\text {® }}$ driver software. Simplify instrument control with the $300+$ drivers in the growing LabWindows GPIB, VXI, and RS-232 instrument libraries.

Open Software Architecture
LabWindows/CVI is built on an open soft-
ware architecture. You can integrate external DLLs, object modules, or libraries into your LabWindows/CVI programs. Or, use the DDE or TCP/IP libraries to communicate with other applications and computers. And, you can run all of your programs created with LabWindows for DOS.

Interactive Programming Tools

 LabWindows/CVI combines the productivity of interactive code generation with the speed and flexibility of ANSI C programming. Whether you are a casual developer or a professional software engineer, you'll assemble instrumentation systems faster, easier, and more effectively with LabWindows/CVI.

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select MiniCircuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25 dB gain, 0.3 to 2000 MHz amplifier for less than $\$ 4.50$. Design values and circuit board layout available on request.
It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook
All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents

Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

99^{4} unmpasescoamp

PLASTIC SURFACE-MOUNT			$\begin{gathered} ++ \text { VAM-3 } \\ 1.45 \end{gathered}$		$\begin{gathered} + \text { VAM-6 } \\ 1.29 \end{gathered}$	$\begin{aligned} & ++ \text { VAM }-7 \\ & 1.75 \end{aligned}$		
add suffix SM to model no. (ex. MAR-ISM)	MAR-1	$\begin{aligned} & \text { MAR-2 } \\ & 1.40 \end{aligned}$	$\begin{aligned} & \text { MAR-3 } \\ & 1.50 \end{aligned}$	$\begin{aligned} & \text { MAR-4 } \\ & 1.60 \end{aligned}$	MAR-6	$\begin{aligned} & \text { MAR-7 } \\ & 1.80 \end{aligned}$	$\begin{aligned} & \text { MAR-8 } \\ & 1.75 \end{aligned}$	$\begin{aligned} & \text { MAV-11 } \\ & 2.15 \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { MAV-1 } \\ & 1.15 \end{aligned}$	$\underset{1.45}{+M A V-2}$	$\begin{gathered} \text { +MAV-3 } \\ 1.55 \end{gathered}$	$\begin{aligned} & \text { MAV-4 } \\ & 1.65 \end{aligned}$				
CERAMIC SURFACE-MOUNT	$\begin{aligned} & \text { RAM-1 } \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RAM-2 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-3 } \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RAM-4 } \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RAM-6 } \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RAM-7 } \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RAM-8 } \\ & 4.95 \end{aligned}$	
PLASTIC FLAT-PACK	$\begin{aligned} & \text { MAV-1 } \\ & 1.10 \end{aligned}$	$\begin{gathered} + \text { MAV }-2 \\ 1.40 \end{gathered}$	$+\begin{gathered} \text { MAV }-3 \\ 1.50 \end{gathered}$	$+\underset{1.60}{+M A V-4}$				$\begin{aligned} & \text { MAV-11 } \\ & 210 \end{aligned}$
	$\begin{aligned} & \text { MAR-1 } \\ & 0.99 \end{aligned}$	$\begin{aligned} & \text { MAR-2 } \\ & 1.35 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MAR-3 } \\ & 1.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MAR-4 } \\ & 1.55 \end{aligned}$	$\begin{aligned} & \text { MAR-6 } \\ & 1.29 \end{aligned}$	$\begin{aligned} & \text { MAR-7 } \\ & 1.75 \end{aligned}$	$\begin{aligned} & \text { MAR-8 } \\ & 1.70 \end{aligned}$	
Freq.MHz,DC to	1000	2000	2000	1000	2000	2000	1000	1000
Gain, dB at 100 MHz	18.5	12.5	12.5	8.3	20	13.5	32.5	12.7
Output Pwr. +dBm	1.5	4.5	10.0	12.5	2.0	5.5	12.5	17.5
NF, dB	5.5	6.5	6.0	6.5	3.0	5.0	3.3	3.6

Notes: + Frequency range DC-1500MHz ++ Gain $1 / 2 \mathrm{~dB}$ less than shown
designer's amplifier kits chip coupling capacitors at $.12 \mathbb{C}$ each
DAK-2: 5 of each MAR-model (35 pcs), only $\$ 59.95$ (50 min .)
DAK-2SM: 5 of each MAR-SM model (35 pcs) only $\$ 61.95$ DAK-3: 3 of each MAR. MAR-SM. MAV-11, MAV-11SM (48 pcs) $\$ 74.95$
120×60
$10,22,47,68,100,220,470,680 \mathrm{pf}$
$1000,2200,4700,6800,10,000 \mathrm{pf}$.022, .047,.068, $1 \mu \mathrm{f}$
designer's chip capacitor kit
KCAP-1: 50 of 17 values, 1 1op to 00.1 fet 1850 pc). S9995

rf TRANSFORMERS

Over 80 off-the-shelf models... $3 \mathrm{KHz}-1500 \mathrm{MAHz}$ from $\mathbf{\$ 1 9 5}$

On the cover: Don't let your design become an EMC casualty-designing in components such as ferrite cores and beads, connector shields, gaskets, and conductive tape will help your product meet specification. See our Special Report beginning on \qquad .PG 54 (Photo courtesy 3M Electronic Products)

EDN Magazine offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.

THE DESIGN MAGAZINE OF THE EIECTRONICS INDUSTRY

Spicial Report

EMC components administer first aid

Discovering late in the day that your product fails to comply with EMC regulations implies a tough redesign. A host of passive parts, applied simply and superficially, could be your salvation.
-Brian Kerridge, Technical Editor

Design Features

Step-up/step-down converters power small portable systems

Using four alkaline AA cells to power a product has many advantages. Simplicity of the regulated supply, however, isn't necessarily one of them. Even so, you have several choices of regulator topolo-gy-each with strengths and weaknesses.-Bruce D Moore, Maxim Integrated Products

Pick the right package for your next ASIC design

The quest for higher integration levels in ASICs and competitive pres-sures to reduce system manufacturing costs has driven IC manufac-turers to improve package capabilities and develop new methods. This article should help you evaluate the many choices available to find the best match of design performance and system costs.-David P Pivin, ASIC Division, Motorola Semiconductor Products Sector

Design Ideas

Color video travels on twisted-pair cable 71
Circuit vocalizes telephone number 72
MOSFET replaces switch 72
Correlator works in presence of noise 74

[^0]
What do you get with Siliconix' new $60-\mathrm{V}, 8-\mathrm{m} \Omega \mathrm{MOSFET}$?

Unparalleled part count reduction.
Produced with Siliconix' new ultra-high density technology, this device eliminates the need for heatsinks and makes paralleling MOSFETs obsolete - use it to replace three industrystandard TO-220s and shrink your system size and cost.
performance in the harshest of environments. This is a robust $60-\mathrm{V}$ solution, not a feeble 50-V product, assuring you of continuous operation, load dump ...after load dump ...after load dump.
improving reliability
and reducing part count. And has been funded in part by Daimler-Benz as an ideal motor control solution for HVAC, memory seat systems, and electric power steering. It can also be used in uninterruptible power supplies for computers.
Lower on-resistance for higher reliability.

The rugged SUP60N06-08, with its guaranteed 8-m Ω maximum on-resistance and $175^{\circ} \mathrm{C}$ maximum junction temperature, will reduce power dissipation and enhance

Create cooler car electronics.

Contact your local Siliconix/TEMIC sales office. Or call our toll-free hot line now! 1-800-554-5565, ext. 991. Ask for your SUP60N06-08 Design Kit, including SPICE model and free sample.

Siliconix

A Member of the Temic Group

[^1]
Home Office

275 Washington St, Newton, MA 02158
EDN Bulletin Board: (617) 558-4241
MCI: EDNBOS
Phone (617) 558 -plus 4 -digit extension below Fax (617) 558-4470
To send a message to an EDN editor vio Internet, add "@MCIMAIL.COM" to his or her MCl address.

Publisher

effrey Patterson -4454
Editor-in-Chief
Steven H Leibson -4214

Managing Editor

Joan Morrow Lynch -4215
Gary Legg, Senior Technical Editor-4404 Charles Small, Senior Technical Editor-4556 MCI: EDNSMALL
Dan Strassberg, Senior Technical Editor-4205 $\mathrm{MCI}:$ EDNSTRASSBERG
John A Gallant, Technical Editor-4666
Frances T Granville, Senior Associate Editor - 4344
Erin Haskell, Associate Editor -4333
James P Leonard, Associate Editor - 4324
Gillian A Caulfield, Production Editor -4263
Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
MCI: EDNDCONNER
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI: EDNQUINNELL
David Shear, Technical Editor
Corvallis, OR: (503) 754-9310
MCI : EDNSHEAR
Anne Watson Swager, Technical Editor
Wynnewood, PA: (215) 645-0544
MCI: EDNSWAGER
Ray Weiss, Technical Editor
Woodland Hills, CA: (818) 704-9454
MCI: EDNWEISS
Brian Kerridge, Technical Editor
22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
5085) 28435

MCI: EDNKERRIDGE
EDN Asia, Mike Markowitz, Editor
Cahners Ásia Limited
19th Floor, Centre Point
181-185 Gloucester Rd, Wanchai, Hong Kong Phone (852) 838-2666; fax (852) 575-1690

Contributing Technical Editors

Robert Pease, Don Powers, Dave Pryce, Bill Travis

Assistant to Editor-in-Chief

Kathy Leonard -4405

Editorial Services
Helen Benedict, Senior Secretary -4681

Art Staff

Robert L Fernandez, Art Department Director Ken Racicot, Senior Art Director -4708
Chinsoo Chung, Associate Art Director-4446

Marketing \& Business Director

Deborah Virtue -4779
Marketing Communications
Patricia Tyler, Director of Marketing Services and Custom Publishing -4526 Jean Graham, Promotion Assistant-4698

EDN Products

301 Gibraltar Dr, Box 650
Morris Plains, NJ 07950
Phone (201) 292-5100
Fax (201) 292-0783

Group Publisher

Terry McCoy, Jr

Associate Publisher

Steven P Wirth, (201) 292-5100, ext 380
Editorial Director
Richard Cunningham, (702) 648-2470
Editor-in-Chief
Bruce Bennett, (201) 292-5100, ext 390
Managing Editor
Carol Coleman, (201) 292-5100, ext 330
Production Manager
Sheila Rodgers, (201) 292-5100, ext 287
Customer Service Manager
Jen Brinkman, (201) 292-5100, ext 322
Design Director, Art Director
John M Angelini, Beverly Blake
February 3, 1994
Continued from page 5

Tichnology Updates

PCI local bus gathers momentum

Both the PCI local bus and the VL bus let high-speed peripherals bypass a PC's slow expansion bus. But PCI is gaining favor among designers, and a crop of new PCI components is starting to simplify local-bus design.-Gary Legg, Senior Technical Editor

Digital HDTV system links computers with telecommunications

After almost seven years of proposals, testing, and FCC advisory-committee meetings, a US standard for HDTV could be in its final testing phase by the end of this year. Some early technical decisions define the minimum system requirements.-Anne Watson Swager, Technical Editor

EDITORIAL

Raise your expectations
You tend to get what you expect. If you expect the worst, it can generally find you. However, expect the best, and events can go your way. -Steven H Leibson, Editor-in-Chief

New PRODUCTS

Embedded Systems 110
Integrated Circuits 115
Electronic Design Automation 133
Computers \& Peripherals 139
Components \& Power Supplies 141
Boards and Buses 147
Test \& Measurement 150

Defartments

\qquad
News Breaks13
Career Opportunities 156
Business Staff 159
EDN's International Advertisers Index 160

Intel Flash Memory is shipping in high gear. Our factory capacity is up. Our prices are coming down. And we're leading the industry in flash technology.

The shortage is over. With three flash factories now on line Intel can support both your immediate and long-term needs. In fact, our sub-micron process

Intel Flash Memory Factory Output

in each factory allows us to provide multiple sources for our flash products to ensure delivery.

What's more, our new capacity is so huge, we'll Intel Flash Component Pricing Trend* outsupply all other

flash manufacturers. Combined

We're also growing the market by driving down flash prices, making Intel Flash

but now you'll also save a ton.

Memory a viable option for virtually any new design. In fact, since Q4 '93, we've dropped prices by as much as 31 percent. And by the end of the year, the volume price for our $120 \mathrm{~ns}, 8 \mathrm{Mb}$ FlashFile ${ }^{\text {™ }}$ devices will be as low as $\$ 20$.

This is an opportune time to get the design wheels rolling, too. Because you can now purchase one hundred 8 Mb devices for just $\$ 25$ each.

With chips from 256 Kb to 32 Mb , to PCMCIA Flash Cards and ATA Flash Drives, Intel also gives you
by far the broadest, most technologically advanced line of flash products in the industry.

So if you're ready to load up on flash memory, call 1-800-879-4683, ext. 101 for complete information. Because Intel is more than ready to deliver.

intel.

The newest tor

Introducing TekMeter.
The easy-to-use combination DMM and autoranging scope.
If youre like most people in the electrical and electronic service business, when you've got a job to do, you need to get it done fast, with a minimum of hassle. And preferably without juggling a bunch of tools on site.
To answer these concerns, Tektronix created TekMeter. Designed with input from customers, TekMeter is the only test and measurement tool that integrates true RMS multimeter and autoranging oscilloscope capabilities in one

powerful yet lightweight package.
Best of all, you don't have to learn scope skills. TekMeter has a familiar DMM-like interface for every function. You just hook up the probes and toggle between DMM and waveform. At the

Check out the entire TekToolsm line for all your measurement needs.

l of the trades.

\square
122.8 мимииии $B V-A C$ put one to the test. distributor, call 1-800-426-2200, ext. 800 and

Once you've seen everything TekMeter can do - and how easily it does it-we think you'll agree it's the one tool you won't

Come test drive the TekMeter at your local distributor and judge for yourself. want to trade for anything else.

Tektronix

CUSTOM OSCILLATORS. OVERNIGHT.

Don't wait weeks for custom oscillators. Get them programmed overnight. Introducing QuiXTAL" ICD6233 Programmable Metal Can Oscillators from the IC Designs subsidiary of Cypress Semiconductor.
QuiXTAL is a direct replacement for conventional metal can oscillators-identical in form, fit, and function-and can be programmed to generate any frequency from 0.6 to 120 MHz . Your order is programmed the same day you call and shipped to you the very next day. Not only will you save time, you'll save money. QuiXTAL oscillators offer a 30\% savings over other custom-frequency oscillators. Call for our overnight order package! 1-800-858-1810* Dept. C4D.

EDN - NEWSBREAKS

Synopsys and Xilinx announce 5 -year partnership

Synopsys and Xilinx have announced a 5 -year partnership in an effort to reduce overall time to market of the companies' designs. The two companies want to collaborate to reduce the time to create a hardware-description-language (HDL) design. But HDL design is only part of the problem. Designers must also synthesize the design into cells and place and route the design. Furthermore, to be competitive, a design must be speed and area efficient compared with other design methodologies. The partnership will focus on improving every step in the process from design to production, including the creation of an FPGA family for HDL-design tools.-by Doug Conner

Synopsys Inc, Mountain View, CA, (415) 962-5000.

Circle No. 500
Xilinx Inc, San Jose, CA, (408) 5597778.

Circle No. 501

Chinon and Microsoft offer Visual C++ bundle

Microsoft and Chinon are offering a hardware/software package that includes Visual C++ Professional Edition version 1.5 and a choice of an internal or an external Chinon CD-ROM drive. The $\$ 749$ package is available until February 28 to registered users of Visual C++. The package shaves $\$ 300$ off the separate products' retail prices.

The drives offer $220-\mathrm{msec}$ access times and are MPC2 and multisession photo CD compatible; adding a $\$ 99$ driver option lets the CDX-535 read Macintosh CD-ROM disks. Both drives are fully compatible with the Windows NT operating system and come with a SCSI adapter card, cables, and software.

Visual C++ Professional Edition version 1.5 offers enhancements over previous versions, such as wizards for mastering Object Linking and Embedding (OLE) 2.0 and Open Database Connectivity (ODBC). The program can now run under Windows NT, as well as Windows 3.1.

A concurrent $\$ 649$ offer combines the

16-bit Visual C++, Professional Edition, version 1.5 with the recently released Visual C++ 32 -bit Professional Edition. The resulting Visual C++ 16/32-bit Professional Development systems for Windows and Windows NT contains both products, as well as a choice of the Chinon drives.
-by Fran Granville
Chinon America Inc, Torrance, CA, (800) 441-0222.

Circle No. 502
Microsoft Corp, Redmond, WA, (206) 882-8080.

Circle No. 503

PCMCIA card connects notebooks to IEEE-488.2 bus

The ines IEEE-488.2 PCMCIA (Type II) interface adapter allows PCs with PCMCIA slots to communicate with GPIB systems. The device includes software drivers for DOS and Microsoft Windows applications. These drivers support HPIB IEEE-488.2-bus implementations that use standard commands for programmable instrumentation (SCPI) or Hewlett-Packard's standard instrumentation-command language (SICL).

A 25 -way ribbon cable connects the card to an in-line standard HPIB connector. The card uses the company's i72010 GPIB controller chip-the latest in a line of GPIB chips. The i72010 is a $3.3 \mathrm{~V}, 100$-pin quad flatpack device that will be generally available beginning in the second quarter of this year.

The 68-pin plastic leaded chip carrier $i 72010$ costs DM 100, and the 40-pin DIP i7210 costs DM 50. The company plans to offer an $i 9914$ version, which is pin compatible with Texas Instruments' 9914 chip, in the second quarter.

Although backward compatible with the older NEC7210 and TI9914 GPIB chips, the ines chips also expand 488.2 bus implementation beyond some features of National Instruments' later TNT4882 controller chip. For example, the 2×255-byte FIFO buffer in the ines chip allows an interface to transfer character-hungry SCPI data strings independently of a PC processor and at a maximum bus rate of 1.1 Mbytes/sec (8-bit mode) under software control. The ines's chips also allow simultaneous recognition of 3 end-of-string

SHORTS

Arrow acquires Field. Arrow Electronics has acquired the electroniccomponent division of Field Oy , Helsinki, Finland. Field, the largest distributor of electronic components in Finland, is a subsidiary of Instrumentarium Corp. Principal suppliers to Field include Advanced Micro Devices, Hewlett-Packard Co, Motorola, and Xilinx. Arrow Electronics, Melville, NY, (516) 3911300.

Circle No. 511

TSSI expands into EDA. Test System Strategies Inc (TSSI), known for its test-software tools that link data from CAE tools to automatic test equipment, has announced intentions to enter the electronic-design-automation industry. The company's goals are to facilitate top-down design methodologies based on efficient use of hardwaredescription languages.

Circle No. 512

Color terminal costs less than \$400. Pagine has introduced a DEC VT420 terminal that costs $\$ 399$. The C20A drop-in replacement for conventional monochrome VT420 terminals offers 32 independent and simultaneous colors-16 foreground and 16 background-from a palette of 262,144 colors. Pagine Corp, San Jose, CA, (408) 944-9728.

Circle No. 513

Protel redefines distribution. Protel Technology, a developer of Windows-based EDA tools, has appointed the following regional distributors for North America: Abcor, Houston; Beta Lamda, Freehold, NJ; CADForce, Toronto; Software Tools, Waukesha, WI; Syntek, Bellevue, WA; Trilogic Inc, Wilmington, MA; Trilogic Sunforce, West Melbourne, FL; and Tusar, Scottsdale, AZ. Protel Technology, Santa Clara, CA, (800) 544-4186.

Circle No. 514

EDN-NEWSBREAKS

(EOS) bytes, a message-available (MAV) reset, and T8 timer support for interface-clear (IFC) commands.
In addition, ines supplies evaluation boards and device-driver development kits, which include a license-free IEEE-488.2 ANSI C module for you to recompile. The IEEE-488.2 PCMCIA (Type II) interface with drivers costs DM 1875.-by Brian Kerridge
ines-Innovative Elektronik Systeme GmbH, Cologne, Germany, (221) 492299.

Circle No. 504
ines-Innovative Elektronik Systems Inc, Englewood, CO, (303) 779-8354.

Circle No. 505

Siemens develops hand-gesturerecognition system

Researchers at Siemens in Munich have developed a system that responds to hand movements. A wave of a finger can cause objects on a screen to move or rotate, or the gesture can initiate a command sequence.

The system recognizes gestures in two stages. First, it uses information from a video camera to compute the contour of a hand and the direction the hand is facing. Second, the system uses rules to classify the type of movement the hand is making. For example, it can differentiate among a fist, a pointed

LITERATURE

Literature describes modulation analyzers. This free $6-\mathrm{pg}$, color brochure describes the ME2627B digital modulation analyzer and provides full specifications. Anritsu Wiltron Sales Co, Morgan Hill, CA.

Circle No. 515
Catalog describes intelligent dataacquisition peripherals. This free, 32-pg color catalog describes the vendor's high-performance ISA-busbased data-acquisition boards and accessories. The publication details processors that run a real-time operating system and the host software. Microstar Laboratories Inc, Bellevue, WA.

Circle No. 516
index finger, and a thumb moving to the left or right. Once the system registers a motion, it assigns a meaning to that motion. For example, a thumb gesture to the left can move the screen contents to the left. The delay between the motion and the response is less than 0.1 sec ; standard image rate is 25 images/sec.

The technology will have applications in virtual environments. For example, users could "walk through" a simulated office using hand movements and move and manipulate objects simply by "touching" them. Another application involves intuitive track diagrams for a train switch yard in which users could move freely across a simulated site, set the switches, and obtain information by "tapping" the desired objects, such as freight cars.-by Fran Granville

Siemens AG, Munich, Germany, (089) 2340.

Circle No. 506

Synopsys and Logic Modeling to merge

Subject to stockholder and regulatory approvals, Synopsys and Logic Modeling Corp (LMC) expect to merge in March. LMC will remain as a different business unit with headquarters in Beaverton, OR. LMC President and Chief Executive Officer William Lattin will continue to serve as president of the Logic Modeling unit. LMC is the leading source of models for board and sys-tem-level simulation.-by Doug Conner

Logic Modeling Corp, Beaverton, OR, (503) 690-6900.

Circle No. 507
Synopsys Inc, Mountain View, CA, (415) 962-5000.

Circle No. 508

Skip the commercials

Arthur D Little has developed a technology called Commercial-Free, which automatically eliminates commercials from any VCR-recorded TV program. While the VCR is recording, the system monitors the broadcast for video and audio events, such as black frames and low sound energy, which occur at the beginning and end of each commercial. Simultaneously, the system writes a binary tim-
ing and recording-session identification code into a nonviewable portion of the video signal recorded onto the videotape.

At the conclusion of recording, the system uses a proprietary algorithm to identify which of the audio and video events noted mark the beginning and end of each commercial break. The system time-stamps, stores in memory, and post-processes the audio and video events. It then creates a playback "map" for the recorded program and stores it in memory.

Upon playback, the system reads the identification code for the recording session from the tape and retrieves the playback map from memory. The moment the program enters the leading break for a commercial, it displays a flat blue field on the screen, and the VCR enters "forward-search" mode. The blue screen masks the garbled highspeed picture normally associated with the VCR's forward-search mode, thus making the process transparent to the viewer. Furthermore, because today's VCRs can scan through 3 minutes of recorded material in less than 5 sec , the process is unintrusive. At the conclusion of the commercial break, the VCR re-enters play mode, and the video picture returns to the screen.
-by Fran Granville
Arthur D Little Enterprises Inc, Cambridge, MA, (617) 498-5000.

Circle No. 509

Software helps solve serviceability problems

Boothroyd-Dewhurst has released version 1 of the Design for Service (DFS) analysis program. The software allows engineering teams to consider serviceability issues while performing traditional design-for-assembly (DFA) analysis. DFS provides information on disassembly and reassembly times; a serviceability rating index; and labor, operation, part, and replacement costs. Boothroyd-Dewhurst has integrated the software with version 7 of the company's DFA software, which uses assembly information to generate DFS reports.-by Fran Granville

Boothroyd-Dewhurst Inc, Wakefield, RI, (401) 783-5840.

Circle No. 510

Design Conplex PLDs Without Leaving Your System Behind

PLSyn is the most advanced desktop programmable logic synthesis system available. Part of the Design Center family of products, it offers device-independent logic synthesis fully integrated with a mixed-signal design environment.

Design Your System...

PLSyn lets you concentrate on your system, not on the PLDs. It is the only desktop system that allows you to design and simulate a system containing programmable logic, discrete digital, and analog parts all on the same schematic. You can describe your logic using a powerful synthesis language, logic symbols, or a combination of both. Programmable logic is automatically compiled and simulated with the rest of your system - even if it includes analog! You no longer need to piece together separate programmable logic, discrete logic, and analog simulations to be sure your system will work.

...Then Choose the Parts

When logic design is complete, PLSyn helps you find the best parts to use. You define your own goals for price, speed, and power consumption. PLSyn does the rest. It searches a library of over 4,000 devices, including the new large complex PLDs from AMD and others. PLSyn can even automatically partition your design into several different types of parts to meet your design goals. Whether you are new to programmable logic, or an experienced PLD user, the Design Center's PLSyn is your most productive programmable logic design system. Call today for more information!

Digrral Smulation Simulation

Sigial.

Providing the Best in Desktop EDA

Some people SEE HOI VIDEO technology.

To see your visions take shape, choose a partner who's committed to delivering higher performance at a lower cost.

When you think of innovative and affordable ICs, what comes to mind?

If it's not Raytheon Semiconductor, then maybe you should take a closer look at one of today's most valuable and experienced partners.

You see, Raytheon Semiconductor offers you advanced solutions to help you get the absolute most from video, high-speed communications and ATE designs. This includes bringing you - at the right price - a full family of ICs that push the limits of performance. And whether you need standard products or semi-custom ICs, we'll work with you at every step.

Some people SEE HIGH-SPEED COMMUNICATIONS.

All of which means you can aspire to more. Like more breakthroughs in high-quality conversion and manipulation of video signals. More blazing speed for your serial link LAN or WAN. More compact designs and higher frequency testing in ATE. Or more of whatever you've set your sights on.

So call us now for your 1994 Databook. Because when you're working with Raytheon Semiconductor, great things always come to mind.
1-800-722-7074

Raise your expectations

Jesse H. Neal
Editorial Achievement Award 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

American Society of Business Press Editors Award 1991, 1990, 1988, 1983, 1981

It was unprecedented: Apple, IBM, and Motorola teamed up to create the PowerPC $601 \mu \mathrm{P}$. The companies created a facility called Somerset in the Arboretum section of northern Austin to house the processordevelopment team. Planners located and "facilitized" a building in an unusually short time. Local-area networks and computing equipment sprouted overnight. Team members worked around the clock, during weekends, and over holidays. More important, the $\mu \mathrm{P}$ rolled out of the wafer-fab facility 100% functional, on schedule, and running at frequency.

Somerset achieved these goals because a lot of people worked very hard. But people work hard on many projects and don't experience the success achieved by the Somerset team. One reason for this success-perhaps the most important reason-was the team's expectations.

The Somerset team leaders expected these excellent results. The leaders made sure that their team members were highly motivated (they were out to best a major competitor and to prove that the unlikely collaborative trio could work), and they made sure that everyone understood that they expected the $601 \mu \mathrm{P}$ to appear on time and fully functional. They set the team's expectations precisely on the desired outcome.

Meanwhile, a group of British entrepreneurs in Nottingham have established a beachhead in Nashua, NH, where they plan to take the desktop-publishing market by storm with a $\$ 59.95$ Windows-based product called PagePlus 2.0. The company, named Serif ((603) 889-1127), has a presence in

Europe. Its nearest competitor pricewise in the United States is Microsoft Publisher, but Serif claims that its software offers the features of high-end desktop-publishing packages costing 10 times more. I met some Serif employees at Fall Comdex '94. They were demonstrating PagePlus, and they virtually seethed with high expectations during their enthusiastic and impressive demo. Call it wish fulfillment; call it self-fulfilling prophecy; call it whatever you like, but recognize the power of your expectations.

No one claims that high expectations are all you need to succeed. Certainly, the Somerset team must have hit a roadblock or two, and it took more than high hopes to hurdle the obstacles. Serif certainly has some major hurdles looming in the immediate future. But setting your expectations high must certainly be the first step on the road to success. If you don't expect success, if you're not constantly looking for that favorable outcome, then the probability of achieving your goals drops substantially. Without those high expectations, team members (including you) may feel that something less than success is acceptable. So step back for a minute, and ask yourself just what you expect of your current projects. I suggest you set your expectations high.

Perhaps the initial PowerPC project experience was a fluke, and the Somerset clan will never again hit the bull's eye. Maybe Serif won't scramble to the top of its market. However, I certainly wouldn't bet against these companies. Somerset has a lot more PowerPC processors heading our way, and Serif is rolling PagePlus 3.0 out the door.

Steven H Leibson Editor-in-Chief

Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400 8,N,1. From the Main System Menu, enter ss/soapbox and select W to write us a letter.

HOW OTHER GAL SUPPIIERS DEAL WITH NOISE.

Our competitors are ignoring the problem of noise. They don't want to hear about ground bounce, so they're keeping silent about how it degrades overall system performance and quality. And they definitely don't like the sound of National's new Quiet Series '" GALs.
That's because we offer the best CMOS noise specs in the industry. And we guarantee the lowest noise at 10 ns with all outputs switching ($\mathrm{V}_{\text {OLP }} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{\text {OLV }} \geq-1.2 \mathrm{~V}$). To hear more, call us at 1-800-NAT-SEMI, Ext. 269.

The competition has heard enough.

Why now?
 Our NEW 4-MEG VRAM. [Because its FASt PAGE MODE is so rapid.]

The new $4^{-m e g}$ VRAM doesn't just give you the most memory any VRAM ever has. If it's a Samsung part, it also gives you the highest performance any VRAM ever has.

Thanks to an advanced Fast Page Mode that makes pages
move at unheard-of speeds.
The chip's extended data out feature gives it a Fast Page Mode cycle time of 25 ns . Which gives your customers the ability to build products with increased visual performance. And gives you one more reason
to use the 4 -meg now.
Unlike some lesser-performance 4 -megs, this 60 ns chip is a full-SAM VRAM - the design that will be the industry standard. It gives you an 8-column block write.

And like all semiconductor

The Samsung VRAMs		
PART	ORG.	SPEED
KM4216C256*	$256 \mathrm{~K} \times 16$	60 ns
KM428C257	$256 \mathrm{~K} \times 8$	60 ns
KM428C256	$256 \mathrm{~K} \times 8$	60 ns
KM428CI28	I28K $\times 8$	60 ns
KM424C257	$256 \mathrm{~K} \times 4$	60 ns
Sampling now: all others in production quantities now.		

POWERONE D.C.POWERSUPPIES
 NotOnlylhe Best...The BestSelection, Ioo

SWITCHERS

POWER-ONE'S International Switcher Series incorporates the latest state-of-the-art switching technology while providing POWER-ONE's traditional high quality at low prices. With certification to the world's toughest safety agency requirements, the series is especially suited for products sold not only domestically, but internationally as well. - 85 models. . . 40 watts to 400 watts • Efficient. . .reliable. . .economical • VDE construction • Up to 5 fully regulated outputs • Full international safety and EMI approvals

POWER-ONE'S International Linear Series is the world's undisputed leader in versatile, cost-effective linear power supply products. A long-time favorite of designers and engineers worldwide, the series is the most widely purchased power supply line through distribution in the industry. The most popular voltage and current combinations are available in a wide variety of off-the-shelf standard models. - Popular industry standard packages - 77 models. . . 6 watts to 280 watts $\pm \pm 0.05 \%$ regulation • Up to 4 fully regulated outputs • Worldwide safety approvals

HIGH POWER

LINEARS

PCI local bus gathers momentum
 GARY LEGG, Senior Technical Editor

Abstract

Both the PCI local bus and the VL bus let high-speed peripherals bypass a PC's slow expansion bus. But PCl is gaining favor among designers, and a crop of new PCI components is starting to simplify localbus design.

When a flood of data from fast peripherals meets a slow PC-expansion bus, something has to give. And so, with applications in graphics, video, and imaging proliferating rapidly, computer designers are now connecting peripherals directly to a system processor's local bus. But connecting directly to a local bus can result in unpredictable performance, as many designers have learned the hard way. Fortunately, though, help is on the way from the Peripheral Component Interconnect (PCI) bus.

With data throughput as high as 132 Mbytes/sec (even higher in future implementations), the PCI bus smashes the I/O bottleneck of traditional expansion buses. So does the VESA local (VL) bus, for that matter; in fact, the VL bus did it first. But the VL bus is losing ground in the race for market acceptance, mainly because the PCI bus offers a more attractive technology-migration path to the future. In addition, a whole
lineup of new products is now making it easier to implement the PCI bus and PCI-compliant peripherals.

Long-range plan prevails

The contest between the PCI and VL buses is much like the race between the tortoise and the hare. VL, developed by the Video Electronics Standards Association, jumped to an early start with a quick-time-to-market solution. It did so, however, with a specification that was somewhat shortsighted and, in the opinion of many designers, rather "casual." PCI, developed by Intel but now an open standard, started more slowly but took a longer range view. PCI components and systems have only recently started appearing on the market, but most designers praise the PCI spec's thoroughness and orientation toward the future.

PCI's forward-looking plan includes processor independence, compatible 32- and

Fig 1-The PCI local bus provides a high-bandwidth data path for PCI peripherals that can be on a mother board, on add-in cards, or external. With bridge chips, you can connect other standard peripherals, including expansion boards for ISA/EISA or MicroChannel systems.

PCI local bus

64 -bit buses, and a smooth transition from 5 to 3.3 V devices (see box, "PCIbus highlights"). In fact, the PCI bus specification (Ref 1) already contains details for those features. VESA recently added similar features to its VL-bus spec (Ref 2), but not before the PCI bus had already gained a good deal of market momentum. In addition, because the VESA additions increased the VL bus's complexity, they diminished its main selling point-low implementation cost.

Processor independence has contributed a great deal to the PCI bus's success. You can implement the bus on Intel processors, but that doesn't exclude using other processors. For example, Digital Equipment Corp (DEC) is linking PCI to its Alpha processors; Apple, IBM, and Motorola are using it with the Power PC. Any PCI-compliant peripheral works with any of the systems, sparing manufacturers the task of designing models with different interfaces.

The PCI bus is also compatible with standard expansion buses. You can have both bus types connected to the system processor, or, as Fig 1 shows, you can put a slow expansion bus-ISA, EISA, or MicroChannel (MC) - on top of a PCI bus. With PCI-to-PCI bridge chips com-

PCl-bus highlights

- Synchronous, processor-independent 32- or 64-bit local bus
- Operation at 5,3.3V and combination
- Forward and backward compatibility of 32 - and 64 -bit PCI components and add-in boards
- Bus speeds as high as 33 MHz
- Transfer rates as high as 132 Mbytes/sec (264 Mbytes/sec for 64 -bit bus) via burst mode
- Full multimaster capability
- Hidden (overlapped) central arbitration
- Concurrency with processor/memory subsystem
- Write-back and write-through cache support
- Automatic configuration of PCl add-in cards at power-up
ing soon from DEC and IBM, you can even put one PCI bus on top of another.

With a secondary PCI bus, you can put multiple peripheral functions on a single add-in card. These functions, if implemented as bus masters, can communicate with each other over the bus without involving the system processor. Access to the system processor is still possible, however, via the two cascaded PCI buses.

PCI peripherals can exist as chips (for use on a mother board or a singleboard computer), as add-in cards, or as external devices with a card interface. A typical PCI desktop computer has
three PCI-card slots plus two peripheral functions-for example, a graphics accelerator and a LAN-on the mother board. According to rule-of-thumb guidelines for PCI design, you can put 10 electrical loads on the bus. Each mother-board function or bridge chip counts as one load; each card connector counts as two.

PCI add-in cards are mechanically compatible with ISA-, EISA-, or MCbased systems, provided that those systems also have some PCI connectors on the mother board. The PCI-card connector is the MC style, and two types of attachable brackets adapt a standard

PCI bus vs VL bus

The latest specification for the VESA local (VL) bus (Ref 2) mirrors some of the features of the Peripheral Component Interconnect (PCI) bus. It provides for expansion to 64 bits, for example, and it achieves processor independence by providing "bridge" connections to a processor's local bus. The original VL bus was essentially the same as a 486 local bus, and you could implement it only with 486- and 386-type architectures.

The new VL-bus spec also increases clock rates-to 66 MHz on a mother board and to 50 MHz across card connectors. Previously, the clock rate was 33 MHz on both boards and connectors. Some designers with experience in VL and PCl design are concerned that the higher clock rates, especially across connectors, will cause unreliable operation. Others, however, say that new shielded connectors should be able to handle the faster clock.

The newly specified 64 -bit VL bus multiplexes data and addresses, as does the PCl bus. The 32 -bit PCl bus also multiplexes addresses and data, but the 32 -bit VL bus does not. So, although 64-bit PCI and VL buses require roughly the same number of connections, a 32 -bit PCl bus requires con-
siderably fewer than does a 32 -bit VL bus. Both the PCl and VL buses provide $32-/ 64$-bit transparency. A 64 -bit add-in card works on a 32 -bit bus, and a 32 -bit card works on a 64 bit bus.

PCl cards are more adaptable to different types of systems, however. A PCI card works in any ISA-, EISA-, or MicroChannel (MC)-based system that also has PCI slots; $\mathrm{VL}-$ bus cards have both a VL connector and an ISA, EISA, or MC connector, so they're limited to only one type of system.

In terms of performance, the PCI bus enjoys some advantages over VL. Burst reads and writes, for example, can be essentially any length on PCI. With VL, they're limited to 16 bytes or fewer, thus incurring more overhead for setting up addresses on long transfers.

PCl-bus concurrency allows the system processor to operate independently, and thus not get delayed, when a busmaster peripheral gets bus possession. The VL bus, which until now has been essentially the 486 processor's local bus, has not allowed concurrency. Concurrency will be possible with VL-bus bridge chips, however, and will be available if designers choose to implement it.
. The perfect development environment is one that takes you from concept through delivery:

Introducing the world's first high-performance VHDL simulator with ASIC sign-off.

Sow you can stay in your high-level design environment all the way to ASIC sign-off with Synopsys' new VHDL System Simulator (VSS) family. The set of multi-engine simulators gives seamless performance from concept to sign-off simulation. So you can deliver healthy chips a lot faster and with a lot less pain than with any other simulator available today. Call 1-800-568-2619, dept. NI, for this free and informative booklet.

PCI LOCAL BUS

PCI card for mechanical installation in an ISA/EISA or a MC system. The PCI specification also provides for a smaller 7-in. card, compared with the standard $12.325-\mathrm{in}$. card.
One of the card slots in a PCI-compliant system can be a "shared" slot that accommodates a PCI card or a standard expansion card. The mother-board PCI connector for a shared slot is very close to the ISA, EISA, or MC connector. The component side of a PCI card is opposite
that of the other cards to enable either type of card to fit into roughly the same physical space. You choose which type of card to use; both, obviously, cannot occupy the shared slot at once.

A number of products (Table 1), many of which are just now becoming available, can help you design PCI into your system. Some processors-DEC's Alpha 21066, for example-put the PCI bus on chip. In most cases, however, separate PCI chip sets-sometimes

Table 1-Peripheral Component Interconnect-bus ICs
 IC functions available

Manufacturer	PCI on $\mu \mathrm{P}$	$\mu \mathbf{P}$ on PCI	IDE on PCI	SCSI on PCI	ISA on PCI
Adaptec Circle No. 301			x	x	
Advanced Micro Devices Circle No. 302				X	
American Micro Circuits Circle No. 303		X			
Appian Technology Circle No. 304			x		
BusLogic Circle No. 305			X	X	
Contaq Circle No. 306					x
Digital Equipment Corp Circle No. 307	x				
Future Domain Circle No. 308				x	
IBM Microelectronics Circle No. 309	x				
Intel Circle No. 310	X				
NCR Corp Circle No. 311				x	
Opti Circle No. 312	x				
PLX Technology Circle No. 313		X			
QLogic Circle No. 314				x	
Symphony Circle No. 315	X		x		
VLSI Technology Circle No. 316	x				

called bridges-essentially create a PCI bus and connect it to a processor's local bus. (Technically speaking, the PCI bus isn't a local bus. It's more like a mezzanine bus that is closely tied to the local bus.)

Other new PCI products add peripherals to your system. Some of these are bridge chips that connect existing standard interfaces-SCSI or IDE, for example-to the PCI bus. Other products are PCI-compliant peripherals implemented as chips or add-in cards. Graphics accelerators and Ethernet controllers are the most prevalent of these.

If you're designing your own PCIcompliant peripheral device, your product options are somewhat limited for now. General-purpose PCI-interface chips aren't yet commercially available, although at least two are in development. PLDs and FPGAs have trouble driving the PCI bus, although Intel says it will introduce some PCI-compatible devices this year.

You can, of course, connect to the PCI bus with an ASIC of your own design. Most ASIC vendors now have PCI drivers in their cell libraries. If you can wait a couple of months, though, the availability of PCI-interface chips could help you avoid the up-front costs of an ASIC.

With PCI-controller chips now in development, you can create a complete interface between a $\mu \mathrm{P}$ and the PCI bus. One controller chip, from American Micro Circuits Corp, interfaces to practically any $\mu \mathrm{P}$. The chip provides a 32 -bit address/data path, all required address decoding, and all the necessary registers and other features for a PCI connection. PLX Technology is developing a similar chip for the $\mathrm{i} 960 \mu \mathrm{P}$. Both chips should be available in the second quarter of this year.

For general guidance in PCI design, start with the PCI Special Interest Group (PCI SIG). PCI SIG oversees the PCI specification and provides additional design guidelines that aren't formally specified. The group now has more than 200 member companies; many are developing PCI components and add-in boards. Contact PCI SIG (see box, "For free information...") for a list.

The next few months will see a flood of PCI products. Some will be new; others will be products that are just

the new abbott SM200.

- Highest density in a military power supply
- 50 Watts per cubic inch
- Size: 2.4" W x 4.6" Lx .5" H
- Power limit: up to 280 Watts
- Fixed frequency; no derating
- Temperature range of operation: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- Extended input voltage range: $11-40 \mathrm{Vdc}$
- Output: $5,12,15,24,28 \mathrm{Vdc}$; sync pin, trim pin
- OVP, TLL included
- Remote Error Sensing
- Qualifications: Mil-Stds 704D, 810E, 901C
- Board-mountable
- Readily available, off-the-shelf military
- Price: very competitive

the sun.

- Highest density in the solar system
- 500,000,000,000,000 Watts per cubic inch
- Size: diameter $=864,000$ miles
- Power limit: undetermined
- Variable frequency; derating nonverifiable
- Temperature range of operation: $+5500^{\circ} \mathrm{C}$ to $+15,000,000^{\circ} \mathrm{C}$
- Extended input voltage range: $1-10^{33} \mathrm{Vdc}$
- Output: unchanneled; scattered dispersion
- Output protections: shade, sunscreen
- No system of error sensing/detection
- Mil-Std qualifications: none
- Board-mountable: not
- Readily available; not deliverable in unit form
- Price: very expensive

COMPARE OUR VERY-HIGH-DENSITY POWER SUPPLY WITH ITS CLOSEST COMPETITOR.

While the competition is admittedly tough, a closer look at the specs should serve to convince even the most skeptical reader of the many practical benefits of our new SM200 very-high-density power supply, which, despite its shorter track record, in reliability is second to - only one.

PCI LOCAL BUS

now stable enough to warrant volume production. Because PCI is new and its technical specification is fairly demanding, some early components had
difficulty meeting all the spec's requirements.

The PCI bus still faces market competition from the VL bus (see box,
"PCI bus vs VL bus"), but the longrange outlook seems to favor PCI. The VL bus's main advantage is that it is essentially the same as the 486 local bus

For free information...

For free information on the PCl products discussed in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Adaptec
 Contaq Microsystems Inc

Milpitas, CA
(408) 945-8600

Circle No. 301
Advanced Micro Devices Inc
Sunnyvale, CA
(408) 732.2400

Circle No. 302
American Micro Circuits Corp
San Diego, CA
(619) $450-9333$

Circle No. 303
Appian Technology Inc
Sunnyvale, CA
(408) 730-5406

Circle No. 304
BusLogic Inc
Santa Clara, CA
(408) 492-9090

Circle No. 305

San Jose, CA
(408) 428-9025

Circle No. 306
Digital Equipment Corp
Maynard, MA
(508) 493-5111

Circle No. 307
Future Domain Corp
Irvine, CA
(714) 253-0913

Circle No. 308
IBM Microelectronics
Somers, NY
(914) $765-1900$

Circle No. 309
Intel Corp
Santa Clara, CA
(408) 765-8080

Circle No. 310

NCR Corp

Colorado Springs, CO
(800) $334-5454$

Circle No. 311
Opti Inc
Santa Clara, CA
(408) 980-8178

Circle No. 312

PLX Technology

Mountain View, CA
(415) 960-0448

Circle No. 313
QLogic Corp
Costa Mesa, CA
(714) 438-2200

Circle No. 314
Symphony Laboratories
Santa Clara, CA
(408) 986-1701

Circle No. 315

VLSI Technology Inc
 Tempe, AZ
 (602) $752-8574$
 Circle No. 316

Super Circle Number

For more information on PCl products available from all of the vendors listed in this box and in Table 1, you need only circle one number on the postage-paid reader service card. Circle No. 317

EDN-TECHNOLOGY UPDAIE

and thus is inexpensive to implement in a 486-based system. As the use of other processors increases, however, the balance will tip to PCI.

Once start-up difficulties subside, the PCI bus could substantially change the "flavor" of PCs, both on the desktop and in embedded systems. By putting peripheral-I/O speeds on a par with processor speeds-and by doing so with standard, high-volume, off-the-shelf components-PCI could make possible a range of products and applications that previously were technically or economically infeasible. The PCI bus could, in fact, become one of the enabling technologies of the decade.

EDN

References

1. "PCI Local Bus Specification, Revision 2.0," PCI Special Interest Group, Hillsboro, OR, 1993.
2. "VL-Bus 2.0," Video Electronics Standards Association, San Jose, CA, 1993.
3. The PCI Local Bus: A Technology Overview, Intel Corp, Santa Clara, CA, 1993.

Looking ahead

The Peripheral Component Interconnect (PCI) bus's bandwidth is adequate even for bus-hogging applications like full-motion video, but bandwidth requirements will undoubtedly increase. Fiber-interface communication can easily consume $100 \mathrm{Mbytes} / \mathrm{sec}$, and high-definition television (HDTV) and multimedia will also be very demanding.

Extending the PCl bus to 64 bits will satisfy many of those demands, stretching bandwidth from 132 to $264 \mathrm{Mbytes} / \mathrm{sec}$. A 64 -bit specification is in place, and 64 -bit PCl products should start appearing this year.

To further increase data throughput, the PCI clock rate could eventually double, to 66 MHz , or even quadruple. The higher rate could initially prove troublesome across card connectors, but single-board systems-without the connectors' added capacitance-will be less of a challenge.

A second PCl bus-implemented on top of another PCl bus via a bridge chip-offers some interesting possibilities for new system architectures. A secondary bus on an add-in card, for example, will let you include multiple PCIperipheral functions on the card. The PCI SIG is also investigating a card-top connector that links cards via a secondary bus.
4. Rowell, Dave, "PCI Local Bus Has Arrived," PC Magazine, November 9, 1993, pg 187.
5. Mosley, JD, "Bypass the PC Bus to Speed up Your System," EDN, February 18, 1993, pg 65.

You can reach Senior Technical Editor Gary Legg at (617) 558-4404, fax (617) 558-4470.

Article Interest Quotient (Circle One) High 598 Medium 599 Low 600

SPECIFICATIONS	$\begin{array}{\|c\|} \hline \text { ISA } \\ \text { PENTIUM } \\ \hline \end{array}$	$\begin{gathered} \text { EISA } \\ \text { PENTIUM } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PCI } \\ \text { PENTIUM } \\ \hline \end{array}$
60/66MHz PENTIUM	\checkmark	\checkmark	\checkmark
16Kb Integrated Pipelined Cache	\checkmark	\checkmark	\checkmark
512 Kb WriteBack 2nd Cache	\checkmark		
256Kb/512Kb WriteBack 2nd Cache		\checkmark	\checkmark
Up to 128Mb DRAM Onboard	\checkmark		
Up to 192Mb DRAM Onboard		\checkmark	\checkmark
8 Kb EISA Non-Volatile RAM		\checkmark	
FLASH BIOS Support		\checkmark	\checkmark
2 Serial Ports / 1 Parallel Port	\checkmark		
IDE/Floppy Interiace	\checkmark		
PS/2 Mouse Support	\checkmark	\checkmark	\checkmark
/AT-PS/2 Keyboard Support	\checkmark	\checkmark	\checkmark
ISA Bus Architecture	\checkmark		
EISA Bus Architecture Up to 8 EISA Bus Masters		\checkmark	
PCI/ISA Bus Architecture Up to 2 PCl Bus Masters			\checkmark
Manufactured In-House(USA)	\checkmark	\checkmark	\checkmark
Powermeter 1.2 MIPS-60MHz	40.2	N/A	N/A

CIRCLE NO. 1

Welcome to engineering in the' 90 s.

Everything needs to be done yesterday.

Only smaller and using less power. But with twice as many features. For the same money as last year's model.

And if it turns out other-
wise, you'll hear about it.
Look, we can't claim to alleviate all your problems, no one can.

But we'll tell you this. There's no one better to have in the stew with you

than Xilinx.
First of all, no one is pushing the technology faster or farther.

As the leader, that's our job. And while it's not cheap, it is worth it.

Our product line now includes over 350 different versions-low power, high density, high speed, special packaging like TQFPsyou name it.

So you have more choices to work with. And our software is now so powerful, there's no corner of our parts you can't get to, work on, and make better.

Which, by the way, is exactly what we're constantly doing to our software.

Then there are our new EPLDs, with more speed, predictability, features, and just plain usability than EPLDs have ever offered.

Allowing you to integrate more devices, faster, and deliver a smaller, cleaner, more efficient designfor less money.

Finally, our FPGAs have never offered more density or more speed.

And nothing will get you to market faster.

Stanford Telecom chose our XC4005 to build a custom signal processor and got operational hardware in less than 5 weeks. How's that for taking the pressure off? Literally months faster than a conventional gate array. Nothing is more forgiving in the design process, either.

There's no penalty for changes, and you can program our parts at your desk, or even reprogram them in the system. All in less time than it takes to figure out why your supposedly nonrecurring engineering costs keep recurring.

One more reason why the cost of going with us is a lot lower than you think.

Well, that about covers it. To learn more about how we can help you get a better handle on your next project, talk to your Xilinx representative, or call our 24-hour literature hotline at 800-231-3386.

Then you better get back to work before somebody blows a gasket.

E. XILINX
The Programmable Logic Company. ${ }^{\text {su }}$

Endless Power Options

WW Field-Configurable MegaPACTM Switching Power Supplies

Your opportunities are endless to mix and match MegaPAC options. And with so many possible power solutions available, you can define one precisely to fit your needs.
But MegaPAC flexibility doesn't end there. If your needs change, so can your switcher .. which gives you another reason to choose MegaPAC power supplies: they're the only field-configurable power supplies on the market. To alter voltage or power levels on site, just loosen a screw, slide out a ModuPAC converter assembly, and slide in a new one. It's that simple.

Take a look at our new additions to the MegaPAC family, highlighted at right. For details about MegaPAC switching power supplies, call Vicor Express at 800-735-6200 or Vicor's Westcor Divison at 408-395-7050 (FAX 408-395-1518).

Size Options

- MegaPAC- 8 ModuPAC slots

 $11.8^{\prime \prime} \mathrm{L} \times 6.0^{\prime \prime} \mathrm{W} \times 3.4^{\prime \prime} \mathrm{H}$- Mini MegaPAC-5 ModuPAC slots 9.4"L $\times 6.0^{\prime \prime} \mathrm{W} \times 3.4$ "H NEW smaller size!

Input Options

- 120/240 VAC strappable
- 120/240 autostrapping universal input NEW! Automatically senses line voltage and straps power supply accordingly.
- 85-264 VAC universal input with power factor correction NEW! Meets IEC 555.

Output Options

- Up to 1600 watts total
- Up to 100 or up to 200 watts per output
-1-16 outputs, isolated \& fully regulated
1 to 95 VDC

ModuPAC slide-in converter assemblies:

- Standard-one output, up to 200 watts
- NEW DualPAC ${ }^{\text {TM }}$-two outputs, up to 100 watts each
- NEW TachoPAC ${ }^{\text {TM }}$ - for fast transient response to high-speed load changes
- NEW RamPAC ${ }^{\text {TM }}$ - for very low noise
- NEW VXI Option-for low noise and low ripple to meet instrumentation standard VXI

Family Options

- DC OK (Power Good)-TTL signal high when output is $\geq 90 \%$ of nominal
- Trim range $\pm 10 \%$ or $40-110 \%$ of nominal
- Industrial or military grade modules
- Hardwired local sense
- Enable/Disable-TTL signals inhibit or enable each output; includes one-pin global shutdown

Digital HDTV system links computers with telecommunications

ANNE WATSON SWAGER, Technical Editor

> After almost seven years of proposals, testing, and FCC advisory-committee meetings, a US standard for HDTV could be in its final testing phase by the end of this year. Some early technical decisions define the minimum system requirements.

From specialized image-compression ICs to op amps, manufacturers have touted highdefinition television (HDTV) as a potential application for products introduced within the last few years. This promotion occurred despite the fact that manufacturers had no firm notion of the actual form that US HDTV would take. However, that form is finally beginning to take a very definite shape.

Since 1987, when the FCC began organized efforts to draft a broadcast standard, US HDTV has gone from a system with digital compression and analog transmission to a hybrid digital/analog transmission system to the current all-digital system.

The proposed US system places a heavy emphasis on computer-compatible progres-
sive-scanning techniques-as opposed to traditional NTSC TV's interlaced modeand MPEG-2 compression and decompression techniques. According to Glenn Reitmeier, the director of the High Definition Imaging and Computing Laboratory at the David Sarnoff Research Center in Princeton, NJ, this emphasis points to a future in which MPEG may become the de facto standard for the multimedia industry. "We're on our way to a very interoperable format between computers and HDTV," says Reitmeier. "Future consumer products may have a much more multimedia feel than does traditional TV," he adds.
The proposed system, which its proponents describe in terms of layers (Fig 1), is a very flexible system that encompasses mul-

Fig 1-The HDTV system proposed by the Grand Alliance is a very flexible digital system with a layered architecture.

edN-TEchnology Update

US DIGITAL-HDTV STANDARD

tiple picture formats and frame rates and a flexible transport channel that shares video and audio signals.

The current activity on the US digital HDTV standard-for which some key technology decisions were announced last fall and others are due early this year-is an effort of both compromise and expediency. After the 7 -year process of proposals, testing, and FCC recommendations, the surviving companies-and former oppo-nents-banded together last year to form the Grand Alliance. Working together, the members hope to bring HDTV signals and sets into US homes as early as 1996 .

This Grand Alliance includes AT\&T, General Instrument Corp, the Massachusetts Institute of Technology, Philips Consumer Electronics, Thomson Consumer Electronics, the David Sarnoff Research Center, and Zenith Electronics Corp (see box, "For more information...").

According to its members, the alliance could save a year or more in HDTV implementation by reducing the risk of inconclusive test results and the possibility of legal challenges. All members hope that by the end of this year or early next year, the FCC advisory committee will make its final and complete HDTV recommendation. At that time, you can expect a flurry of design activity to begin. Each member is currently designing or actively building pieces of the prototype for testing and evaluation (see box, "Looking ahead").

Although it would be premature to start a full-scale product development

Fig 2-The Grand Alliance has defined the functional building blocks of the proposed US HDTV system's transmitter (a) and receiver (b).
before the FCC approves the final standard, the alliance has defined the basic functional blocks (Fig 2) and specified some minimum system requirements. Final HDTV products will be very digital and processor intensive.

Last October, the alliance decided on four main technologies that will be at the heart of the digital HDTV system:
digital video-compression technology based on MPEG-2 parameters, including the use of B-frames (bidirectional frames for motion compensation); a data-transport system based on packets of virtually any combination of video, audio, and data; interlaced- and noninterlaced- (progressive) scanning

Text continued on pg 46

Looking ahead

Now that the Technical Subgroup of the FCC's Advisory Committee on Advanced Television Service (ACATS) has endorsed the initial technical decisions presented by the Grand Alliance, members of this alliance are constructing a prototype. Before they can build a complete prototype, however, the alliance must choose a transmission system. The alliance tentatively scheduled for January trials of Zenith's vestigialsideband (VSB) digital-modulation and -transmission technology and General Instrument's quadrature-amplitude-modulation (QAM) approaches.

Once the alliance makes this decision and has completed a prototype, the advisory committee will conduct extensive laboratory tests in the United States and Canada to verify that
the system meets expectations. The alliance could then recommend the system to the FCC and begin field-test verification of the system's performance.

The FCC in turn will consider the alliance's recommendation in a rule-making proceeding, which alliance members hope can be concluded by the end of this year. Regardless of the adopted standard, the FCC requires that anyone can license the applicable technology on reasonable terms.

Finally, the alliance and the FCC hope that Canada and Mexico initiate similar procedures to assure that the US standard becomes a North American standard. The alliance seems determined not to delay the process to study any other system for which hardware or software doesn't exist.

We'll provide the $15 \mathrm{~ns} 128 \mathrm{~K} \times \mathbf{8} \mathbf{3 0 0} \mathrm{mil}$ SOJ SRAMs for your first board!

IDT is the only 1 Mb SRAM vendor to offer 15 ns , 300 mil SOJ SRAMs in volume, now. IDT's leading CMOS technology provides the performance and manufacturability to make the IDT71024 the ideal 1Mb SRAM for your design. Available in 300 mil SOJ and 400 mil SOJ/DIP packages, our $128 \mathrm{~K} \times 8$ SRAM is the ideal solution for both high-density board designs and performance upgrades of existing systems. Interested? Call us or FAX in the coupon today to get technical data, application briefs, and details on our free 300 mil SOJ 1 Mb SRAM offer.

$\stackrel{\text { Name }}{ }$
TITLE
COMPANY
ADDRESS

US DIGITAL-HDTV STANDARD

capabilities with a heavy emphasis on progressive; and the 5.1-channel Dolby AC-3 audio technology for digital surround sound. However, at the time, the alliance did not make one important decision: which transmission scheme the HDTV system will use (see box, "Looking ahead").
The alliance also decided on the following scanning formats: $24-, 30$-, and 60 -frame/sec progressive scan with a pixel-by-line format of 1280×720 and 24 - and 30 -frame/sec progressive scan with a format of 1920×1080. The system will also perform a 60 -frame/sec interlaced scan with a format of 1920×1080. These formats provide a foundation for the migration to the ultimate goal of a 60 -frame/sec, 1920×1080 progressive format as soon as technically feasible.

MPEG-2 plays a major role

The chosen digital video-compression technology, based on MPEG-2 parameters, forms a major part of the evolving standard. MPEG-2 is not one standard but a kind of tool kit of syntactic elements that encompasses a range of compression grades that vary in performance and cost. Fig 3 shows

Fig 3-MPEG-2 is not one exact standard but more of a tool kit that addresses a variety of cost and performance requirements. The leve/ and profile syntax refers to various resolutions and decoder features, respectively.
the elements of this toolbox-referred to as profiles-vs the formats, or levels, on the y-axis. The profile refers to one of the four types of compression: simple, main, main+, and next.

For more information.

For free information on the MPEG-2-decoder ICs, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. Also use the following list to directly contact members of the Grand Alliance. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

AT\&T Microelectronics

Berkeley Heights, N
(908) $771-3268$

Circle No. 318
General Instrument Corp
San Diego, CA
(619) 455-1500

Circle No. 319
Massachusetts Institute of Technology
Cambridge, MA
(617) 253-2703

Circle No. 320
Philips Consumer Electronics
Knoxville, TN
(615) 521-3274

Circle No. 321
David Sarnoff
Research Center
Princeton, NJ
(609) 734-3038

Circle No. 322

SGS-Thomson Microelectronics
Phoenix, AZ
(602) $867-6100$

Circle No. 323

Thomson Consumer

Electronics
Washington, DC
(202) $872-0672$

Circle No. 324

Zenith Electronics Corp

Glenview, IL
(708) 391.7000

Circle No. 325

A given decoder can work at its own profile and its own or lower level. A decoder with a simple profile uses only forward-motion prediction. A main profile implies the use of bidirectional prediction, which requires two frames of storage but improves picture quality. Thus, conforming to a main profile implies a receiver with much more memory than one that conforms only to the simple profile. Operating at different levels requires vastly different data rates, as Fig 3 shows.

Although the level and profile syntax defines a certain level of performance, MPEG-2 does not specify any details of the hardware and software architectures that produce this performance. However, the syntax does imply many things. A decoder that performs at the MPEG-2 main profile and high level implies how fast the decoder must operate and how much memory it needs to have. A system that can perform to multiple MPEG formats requires some electronic format-conversion circuitry. System-performance specifications to consider include speed, I/O bandwidth, and memory size. The alliance has yet to nail down the numbers that correspond to these specifications. However, system clock speeds may be as high as 75 MHz .

The MPEG-2 levels and profiles pro-

Quicker. Easier.
 To save you time.

To get solutions quickly, carry the best portable tool for engineering computation. The HP 48G graphic calculator. Focused problem-solving environments in the HP 48G lead you to answers fast.
Press \leftrightarrows and EQUATION. Create equations that look the same way you'd write them. Press \rightarrow and SOLVE. Then just choose the kind of problem you want to solve. Like differential equations, a system of linear equations, or others. It's your choice.

You'll quickly
 learn to operate it!

Pull-down menus guide you through problem-solving smoothly and quickly.

Push a button, select an entry from the pull-down menu, and fill in the blanks. Entering data is that easy.
The tool you would have designed for yourself!
Technically sophisticated. It contains over 300 built-in equations grouped into 15 technical subjects. Electricity, forces and energy, stress analysis, and other technical categories. And, it lets you work with many different object types for solving problems. Real numbers with units, polar forms of complex numbers, symbolic constants, variables in formulas, matrices, and lots more. It's an engineer's dream tool!

Special money-saving offer on Sparcom's CalcWare PC/Mac Link software and connectivity cable.
The HP 48G (and its RAM card expandable cousin, the HP 48GX) can be linked to your desktop PC or Mac. Sparcom is offering a special $\$ 49.95$ price ($\$ 10.00$ off) on its HP 48 CalcWare PC/Mac Link. This connectivity software and cable are being offered at a special price from October 1, 1993 until June 30, 1994.
To get more information on the HP 48 along with this and other special Sparcom offers, call 800-443-1254, Dept. 421.

New High Voltage Amplifiers At New Low Prices

The PA41/42 Is The Industry's First 350V High Voltage Monolithic Power Amplifier in a SIP Priced at \$13.60*

Also New From Apex ... 450V Hybrid in a SIP

Looking for more voltage? The PA87 is the industry's first high voltage hybrid to be offered on a 10 -pin SIP. Capable of operating on a 100 V to 450 V supply, the PA87 features 300 mA peak output current and consumes just 3 mA of quiescent current.

PRODUCT SPECIFICATIONS

$\begin{array}{llllll}\text { Part \# } & \mathrm{V}_{\mathrm{SS}} & \mathrm{I}_{0} \mathrm{~mA} \text { Cont/Peak } & \mathrm{I}_{\mathrm{Q}} \text { Max } & \mathrm{P}_{\mathrm{D}} & \mathrm{S} / 10 \mathrm{~K}\end{array}$ PA41/42 100V-350V $60 / 120 \quad 2 \mathrm{~mA}$ 9W $\$ 13.60$
$\begin{array}{lllll} & 100 \mathrm{~V}-450 \mathrm{~V} & 200 / 300 & 3 \mathrm{~mA} & 7.5 \mathrm{~W}\end{array} 552.00$

APEX MICROTECHNOLOGY CORPORATION 5980 N. Shannon Road, Tucson, AZ 85741 For Product Information or Applications Assistance Call 1-800-862-1015 or FAX (602) 888-3329 Deutschsprachig 0130813599

CIRCLE \#2 IN U.S.

Start with OrCAD. Finish with OrCAD.

Schematics. Printed Circuit Board Layouts. FPGAs . OrCAD has what it takes to get the job done. Fast. OrCAD offers a complete solution for your printed circuit board and FPGA designs. More than 76,000 engineers have used OrCAD's schematic design tools to create their designs. No other EDA software has been used more. And now, the all new, enhanced versions of our entire 386+ product line offer workstation capacity, with the fastest graphics in the industry. And all of our products run in a DOS session under Microsoft Windows ${ }^{\circledR}$.

Reduce your PCB cycle time.

By coupling schematic design and printed circuit board layout with SDT $386+1.10$ and PCB $386+1.10$, you can quickly get your boards from design to manufacturing. PCB 386+1.10 includes an extensive library with over 1000 footprints, an automatic footprint generator, on-line all object editing, and the best embedded 100% completion autorouter on the PC.

Target virtually any FPGA device.

Capture your design in OrCAD schematics, OrCAD hardware description language, or both. The multi-level synthesis capability of OrCAD's PLD 386+2.00 rapidly compiles your largest FPGA designs. Target devices from Actel, Intel Flexlogic, Xilinx 2000, Xilinx 3000 , Xilinx 4000 , Xilinx EPLDs, AMD MACH, AMD MACHXL, Lattice PLSI, Texas Instruments, and many others. Finish the job using VST $386+1.10$ to verify the timing of your routed design.

Isn't it time you got your whole job done with OrCAD? Call us.

9300 SW Nimbus Ave. • Beaverton, OR 97005 • (503) 671-9500 • (503) 671-9501 - Fax 96, rue St. Charles • 75015 Paris, France • 33-1-45 $755000 \cdot 33-1-45778289$ - Fax

CIRCLE NO. 53

SIEMENS

Systems in Silicon for Information Technology.

Global Communications.

Siemens gives you what you need to win in today's global market, with complete system solutions featuring state-of-the-art integration, performance and packaging technologies. And the R\&D, technical support and volume production you need, whenever you need it.

Digital Communication

 Terminals.Our leadership position in this market comes from innovations like the PEB2086. This full-duplex ISDN transceiver features a HDLC controller for D channel signaling, making it ideal for uses including ISDN terminals, NT (Network Termination), and PBX line card and terminal applications.

With our ARCOFI-SP (PSB2165 Audio Ringing Codec Filter-Speech Circuit), we also offer the world's most advanced speakerphone IC for digital terminals. The only codec filter with near-full duplex for real-time conversation, its high level of integration allows switching between receive and transmit paths in only 125 microseconds, eliminating clipping common in most speakerphones and providing nearly full duplex communication.

Data Communications ICs.

Siemens has earned a reputation for advanced data communications with products like the HSCX2 (SAB82525) for telecommunications and the ESCC2 (SAB82532), the first 2 Mbit
asynchronous multiprotocol communications controller.
Today, this innovation is evident in products like the ESCC8 Enhanced Serial Communication Controller (SAB82538) - the industry's first 8-channel multi-protocol Data IC. The ESCC8 provides four times the data throughput of standard 2-channel devices, easy integration and the fastest speeds in the industry.

Wireless Communications.

With our new PMB2230 transmitter and PMB2430 receiver, we've introduced the world's most advanced 2-chip wireless solution designed specifically for wireless cellular applications. By integrating multiple tasks
onto each component, this solution cuts your real-estate requirements drastically, which means lower manufacturing costs, greater ease-of-design and quicker time to market for your wireless designs.
To find out how we can help you succeed in the global market, call us today at
b

1-800-77-Siemens, ext. 210.

We'll show you how a partnership with Siemens can open up a whole new world of possibilities in communications.

[^2]
Broaden your RF horizons.

THISIS AMPTODAY.

RF performance, DC to 50 GHz .

START 0.0 日0日GHz STOP 50.0.000GHz

No matter what range you're working, your work goes better and faster with connectors engineered for the right balance of properties. AMP has the coax connectors you need for top performance, consistent electrical characteristics, and maximum manufacturability.

Select from a line that spans the spectrum-DC to 50 GHz -in a variety of 50 or 75 ohm versions. Our selection delivers the advanced
design and controlled properties you need, with commercial versions that exhibit Mil-equivalent performance. Our fully Mil-qualified versions offer productivity gains, as well, including our proven crimp/seal technology.
We support the broadest selection of RF connectors available with the broadest range of mounting options as well: from cable to bulkhead, panel to board-and now including
custom and semi-custom highspeed coax and transmission cable assemblies.
We'd like to extend all that support to you. For literature or the name of your nearest AMP Distributor, call the AMP Product Information Center at 1-800-522-6752 (fax 717-986-7575). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

EDN-SpICIAL REPORT

BRIAN KERRIDGE, Technical Editor
ot often in design work do you get a chance to make a product meet specification by bolting on a few basic parts. With electromagnetic compatibility (EMC), you have that option simply because many EMC failures concern a product's peripheral features such as cabling and apertures. Components such as ferrite cores and beads, feedthrough capacitors, connector shields, gaskets, and conductive tapes can all prevent unwanted signals from reaching the outside world. Conversely, the same components also offer a design some immunity from external interference. Not only do these basic components provide your design an important source of EMC first aid, but they can also throw a permanent lifeline to a finished product that would otherwise be an EMC casualty.

Applying first-aid fixes at
the back end of a design cycle opposes almost everything EMC experts believe in. They advise, advocate, and even implore you to design in EMC from day one. That way, you suppress emissions at the source and prevent noncompliant noise levels from ever reaching the extremities of your product. Much of that preventive design work involves building in certain features at pc-board layout (Ref 1). While the advice is good-and appeals to the common-sense instincts of most designers-the fact remains that designers' priorities often lay elsewhere.

This situation prevails despite an increasing awareness of the importance of EMC and Europe's EMC Directive (Ref 2). That directive will ultimately enforce conformance by law; it applies equally to new products and products designed

EDN February 3, 1994-55

EMCCOMPONENTS

well before EMC became a hot topic. On older designs, applying first-aid measures is the only cost-effective compliance route and represents a genuine need for that approach.

So, for the time being, applying quick fixes remains a popular and necessary way-although not the purist's preferred method-to treat EMC-design problems. For a quick reference, see Table 1, which shows the range and variety of EMC components that can administer first aid to a finished design.

Broadly speaking, undesirable emissions occur either as radiations directly from your circuit board or indirectly, first by conduction along connecting cables and then by radiation. Directly radiated emissions leak through apertures or poor electrical joints in a product's shielding, and it's here that conductive adhesive tapes, wire mesh, and gaskets are effective remedies. Connector backshields, filtered connectors, cable shields, ferrites, and feedthrough capacitors all reduce emissions conducted onto connecting cables.

For the purpose of meeting EMC specifications, assume conducted emissions concern signal frequencies of 150 kHz to 30 MHz , and radiated emissions cover 30 MHz to 1 GHz . At present, international standards for conducted emissions consider mainly effects on line cords, and, therefore, it's common practice to design in a line filter. By contrast, standard requirements overlook conducted emissions on I/O cables, and because I/O signals vary widely anyway, these lines are largely left unfiltered. Undesirable emissions on I/O cables give rise to the majority of EMC failures, and radiated-emission tests pick up those failures.

Whatever EMC tools you employ to make your tests (Ref 3), it's often most expedient to adopt a trial-and-error approach when solving EMC problems. It helps, though, to have some understanding of what each type of first-aid component can reasonably achieve. In most cases, however, your adding components will not upset the fundamental perfor-

MMG-Neosid's range of ferrite cores includes loops for suppressing common-mode current on ribbon cables. The company also provides Spice models for designing series-mode filters with its ferrite beads.
mance of the product. But in a few cases they can-for example, if you set about filtering a high-speed data bus.

The difference between series- and common-mode signals is a key distinction to appreciate in addressing EMC problems on cables. Series (or differential)-mode signals are legitimate data signals that consist of signal currents with a forward and return path. Common-mode signals are wholly illegitimate and occur mainly because of poor grounding somewhere in your overall system.

Both series- and common-mode currents can radiate noncompliant emissions, but series-mode problems are fewer simply because of a tendency of radiation from forward and return

Looking ahead

Although EMC specialists regard first-aid measures a nonpreferred route to compliance, there is strong evidence that this is the path many companies will follow.

Tim Williams, EMC design consultant with Elmac Services, notes a wide variation in the way European companies plan to treat product EMC. He says most medium- to large-sized companies now know they need to take action, and that action means a wholesale reeducation program for designers, test engineers, and maintenance staff. Some companies still are totally unaware of the requirements, particularly in European countries having no official "awareness" campaign. It remains to be seen how they implement the EMC directive.

At present, Williams says large multinational companies already have, or are developing, internal procedures for designing in product EMC. He also says the majority of other companies plan no action, mainly because they believe the cost of designing in EMC is too high.

In the United States, Joe Butler, director of EMC-testing services at Chomerics, draws a distinction between companies
with military- and commercial-product experience. He says military companies have well-established EMC design procedures, but commercial companies, broadly speaking, do not. Butler asserts that apart from large multinational companies with EMC engineers already on staff, most companies, though aware that some EMC testing will ultimately be required, still treat EMC design as an 11 th-hour activity.

Butler predicts a mad scramble to have products tested as the 1996 European directive deadline approaches. He estimates the requirement for immunity tests, as well as a wider scope (over FCC requirements) of products needing tests, may surprise some US vendors. In particular, he warns that companies with products currently exempt from FCC regulations and having a lot of mostly unshielded cabling will face serious problems trying to comply.

Butler forecasts moves by EMC component vendors to address the needs of commercial users in high-growth markets such as computing and wireless communications. In particular, he sees low cost as the principal driving force in extending acceptance of designing for EMC.
currents to cancel out. Although common-mode currents cause most cable-borne EMC failures, fortunately, it's this type of current that EMC first-aid measures readily suppress.

Your two options are to pass your I/O cable through a single ferrite loop or to insert common-mode chokes in series with each signal and return pair at the I/O interface. Vendors offer ferrite loops in an immense range of sizes, styles, and frequency specifications. To ease installation, loops are round, oblong, and either complete or in halves with a clamp. For both ferrite loops and common-mode chokes, you have to rely on trial-anderror. Most ferrite suppliers encourage this route by offering diagnostic kits containing an assortment of types. Calculations are impossible because you have no idea what value to assign to impedances around a common-mode loop. On that basis, it generally pays to install as large a component as space allows. In the case of ferrite loops, passing a cable through the loop more than once or adding more loops is also beneficial. The merit of ferrites is that they absorb, rather than reflect, radiation locally, and they dissipate the energy as heat.
In the case of series-mode signals, you can estimate circuit source, transmission, and load impedances. Therefore, you can design a passive lowpass filter to bandlimit I/O lines (Ref 1). The range of filter components is wide, but a common characteristic is definable low inductance. Again, the simplest component is a ferrite core, although in this case the ferrite needs to surround each signal path and needs careful selection. Also available are ferrite plates with holes to match popular connectors' pinout configurations. Other possible filter components include 3 -terminal capacitors with and without ferrite beads, chip inductors and capacitors, feedthrough capacitors, and ready-made encapsulated filters.
The easiest and neatest way to apply in-line filtering is either to swap a regular connector for a filtered type or to insert a filtered adapter between your present plug and socket. Filtered connectors exist mainly as replacements for Dtype connectors, although you have a wide array of filtercomponent combinations within the range. With feedthrough capacitor values ranging from 50 to 2000 pF and using or discarding ferrite plate inductors (impedance 35Ω at 100 MHz), you can tailor lowpass bandwidth to your application.

[^3]

Fig 1-(a) shows typical noise radiation from 100 mm of unshielded ribbon cable carrying a $5-\mathrm{MHz}, 8$-bit data bus from a standard connector on a shielded case; (b) and (c) illustrate the benefits of using a $250-\mathrm{pF}$ shielded connector and $270-\mathrm{pF} 3$-terminal in-line capacitors, respectively (data supplied by Murata).

EMCOMPONENTS

Cable shielding is the next step, and again, your options are many. Your main decisions are how thick to make the shield and whether to make a ground connection at one or both ends of the cable. If your knowledge of shielding theory is rusty, there's no shortage of revision notes (Ref 1). Whatever method you choose, a low impedance connection from shield to system ground is essential. The sight of a pigtail connection-alias, common-mode impedance-appalls EMC experts, and it's the primary function of connector back shields to eliminate these offensive joints. Connector backshields, like filtered connectors, generally suit D-type connectors.

If you're using an unshielded ribbon cable, as a first step, try ribbon with a single-sided aluminum-shield backing. Beyond that, you'll need to use a complete braid of zip-on sheath.

If you've applied all the first-aid fixes to your I/O cables, but EMC problems persist, it's time to consider enclosing your main circuit components. Here's where adhesive conductive foils excel. Foils form the most adaptable EMC diagnostic material. Foil material is either copper or aluminum, with a choice of conductive or nonconductive adhesive. Foil surface is either smooth or embossed, the embossed version

Vendor	Ferrite	$\left\|\begin{array}{c} \text { Common- } \\ \text { mode } \\ \text { choke } \end{array}\right\|$	Filtered connector	$\left\|\begin{array}{c}\text { Feed- } \\ \text { through } \\ \text { capacitor }\end{array}\right\|$	3-terminal capacitor	Cable shield	Connector backshield	Foil	Mesh	Gasket	Other
Adhesive Research Circle No. 334							X				
Band-lt Circle No. 335											Cable shield clamp
Beck Electronics Circle No. 336		x									Feedthrough filter
Chomerics Circle No. 337						x		x	x	x	Conductive compound and spray paint
Coolstead Magnetics Circle No. 339	x										
Dontech Circle No. 340											Window shield
Fair Rite Circle No. 342	x										
Ferrishield Circle No. 343	x										
Ferronix Circle No. 345	x										
Ferroperm Circle No. 346	x		x	x							
Instrument Specialties Circle No. 347							x		x	x	Conductive finger strip
Kabelwerk Eupen Circle No. 348											Ferrite-coated cable and tape
Kern Electrical Components Circle No. 350							x				
Kemtron International Circle No. 349								x	x	x	
Kitagawa Circle No. 351	x					x		x	x	x	

EDN-SpEcIal Report

Europe's directive forces the pace

Anticipating EMC regulations' becoming law in Europe on January 1, 1996, governmental departments in France, Germany, and the United Kingdom are conducting EMC-awareness campaigns. Efforts in the United Kingdom are particularly strenuous, where the campaign features a free journal for board-level executives; technical reports for people implementing EMC measures; an EMC workbook for people organizing seminars
and training; a network of nine EMC clubs for disseminating knowledge; EMC Update, a 4-pg bimonthly publication that supports club activities with EMC news and case-study information; and three videos. Also available is an EMC nontechnical telephone help line (dial UK (country code 44) then 61 954 0954), which offers general information, including supply sources for documents and contact names of specialists.

	Ferrite	Common modeCommon	Filtered connector	Feedthrough capacitor	3-terminal capacitor	Cable shield	Connector backshield	Foil	Mesh	Gasket	Other
MMG-Neosid Circle No. 352	X										Spice models
Murata Electronics Circle No. 353	X	X	X		x						
Omega Shielding Products Circle No. 355										X	Conductive finger contacts
Oxley Developments Circle No. 354			X	X							Window shield
Philips Components Circle No. 356	X										
Provertha Circle No. 357			X								
RFI Shielding Circle No. 358										X	
Schaffner EMC Circle No. 359		X		X							
SiemensMatsushita Circle No. 360	X			x	X						
Steward Circle No. 361	X										
TDK Circle No. 362	X										
3M Electronic Products Circle No. 364						X	X	X			
Tusonix Circle No. 363	X										
Warth Circle No. 365						X		X	X	X	Conductive finger strip, window shield
Zipper-Technik Circle No. 366						x		x			

EDN-SpEcIAL REPORT

EMCCOMPONENTS

providing lower contact resistance (approximately $1 \mathrm{~m} \Omega / \mathrm{in} .{ }^{2}$) to a supporting surface and other layers of foil.

You can readily fit foil screens to individual components or to whole sections of a circuit as an experiment. You can also use foils to improve contact along enclosure seams, which is a useful way of testing the need for a proper EMC gasket (Ref 5). Additionally, where an enclosure is already sealed except for essential display windows or cooling vents, foil temporarily placed across these apertures will also test the likely benefit of installing EMC mesh. Another experimental use of foils is as an alternative to conductive spray paints for lining the inside of plastic product enclosures.

If you reach the stage of installing gaskets, mesh, or EMC windows, then your work transmutes from low-cost first aid to high-cost intensive care. But, this is the penalty you pay for ignoring experts' words of caution. Even so, applying exotic modifications this late to a design may still be the most profitable way forward. For, as well as providing permanent low-cost solutions, EMC first-aid components will sustain a product at higher cost until it's convenient or worthwhile to conduct major surgery.

References

1. Williams, Tim, EMC for Product Designers, Butter-worth- Heinemann, 1992.
2. Kerridge, Brian, "Europe Lays down EMC Law," EDN, September 16, 1991, pg 57.
3. Kerridge, Brian, "EMC Bench Tools," EDN, October 1, 1992, pg 78.
4. Anderson, Mark, "EMI Countermeasures," Euro-EMC conference proceedings, October, 1993, Reed Exhibitions, Richmond, UK.
5. Bates, Ron, "EMC Gaskets-Traps to Avoid," EuroEMC conference proceedings, Ibid.

Acknowledgment

Thanks to Tim Williams, EMC design consultant with Elmac Services, for advice and guidance with this article.

Technical Editor Brian Kerridge can be reached in the UK at (508) 528435; fax (508) 528430.

Article Interest Quotient
(Circle One)
High 592 Medium 593 Low 594

Manufacturers of EMC components

For free information on EMC components such as those described in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Adhesives Research
Glen Rock, PA
(717) 235-7979

Circle No. 334
Band-It
Denver, CO
(303) 320-4555

Circle No. 335
Beck Electronics
Great Yarmouth, UK
(493) 856282

Circle No. 336
Chomerics
Woburn, MA
(617) $935-4850$

Circle No. 337
Coilcraft
Cary, IL
(708) 639-2361

Circle No. 338
Coolstead Magnetics
Welwyn, UK
(438) 814054

Circle No. 339

Dontech

Doylestown, PA
(215) 348-5010

Circle No. 340
Electronic Component
Industry Federation
London, UK
(71) $497-2311$

Circle No. 341
Fair Rite
Wallkill, NY
(914) 895-2055

Circle No. 342

Ferrishield

New York, NY
(212) $268-4020$

Circle No. 343

Ferronix

Fairport, NY
(716) 388-1020

Circle No. 345
Ferroperm
Wrexham, UK
(978) 823990

Circle No. 346
Instrument Specialties
Delaware, PA
(717) $424-8510$

Circle No. 347
Kabelwerk Eupen
Eupen, Belgium
(87) 554771

Circle No. 348

Kemtron International

Ferrers, UK
(245) 325555

Circle No. 349

Kern Electrical Components

Reading, UK
(734) 81157

Circle No. 350

Kitagawa

Egelsbach, Germany
(6103) 42097

Circle No. 351
MMG-Neosid
Letchworth, UK
(462) 481000

Circle No. 352

Murata Electronics
Fleet, UK
(252) 811666

Circle No. 353
Oxley Developments
Ulverston, UK
(229) 582621

Circle No. 354

Omega Shielding Products

Cedar Grove, NJ
(201) 890-7455

Circle No. 355
Philips Components
Eindhoven, The Netherlands
(40) 783749

Circle No. 356
Provertha
Pforzheim, Germany
(7231) 7740

Circle No. 357

RFI Shielding

Braintree, UK
(376) 342626

Circle No. 358

Schaffner EMC

Wokingham, UK
(734) 770070

Circle No. 359
Siemens-Matsushita
Bracknell, UK
(344) 396000

Circle No. 360

Steward

Chattanooga, TN
(615) 867-4100

Circle No. 361

```
TDK
Redhill, UK
(737) 772323
Circle No. }36
Tusonix
Tucson, AZ
(602) 744.0400
Circle No. }36
3M Electronic
Products Group
Bracknell, UK
(344)}85850
Circle No. }36
Warth International
East Grinstead, UK
(342) }31504
Circle No. }36
Zipper-Technik
Neu-lsenburg,Germany
(6102)}3306
    Circle No. }36
```


Super Circle Number

For more information on EMC components available from all of the vendors listed in this box, you need only circle one number on the postagepaid reader service card.

Circle No. 367

Do you get 24-bit true color at 1024×768 resolution from your PC graphics designs?

You can with TI's TVP3020. The 64-bit, low-cost video interface palette.

The TVP3020 from Texas Instruments is the industry's first video interface palette to offer a 64 -bit pixel bus plus a separate VGA port, making it an excellent choice for PC graphics/Windows ${ }^{\text {™ }}$ accelerators. And it's flexible. The TVP3020 is available in three speed grades of $135 \mathrm{MHz}, 175 \mathrm{MHz}$ and 200 MHz so its benefits can be achieved on engineering workstations and color X -terminals as well.

TVP3020 Color Depth and Resolution

Screen resolution	Approximate dot-clock (72 Hz frame rate)	Max. number of colors 64-bit pixel bus palette (TVP3020)	Typical 32-bit pixel bus palette
1024×768	85 MHz	16 million (24-bit true color)	64 K
1280×1024	135 MHz	64 K (16-bit true color)	256
1600×1280	200 MHz	64 K (16-bit true color)	N / A

If you need it	We've got it
- More colors at high resolution	- 64 -bit pixel bus
- Simplified VGA	
interface	

The TVP3020 allows flexibility in designing photo-realistic graphics systems up to 16 million colors. It enables you to support 24 -bit true color at 1024×768 as well as 16 -bit true color at both 1280×1024 and 1600×1280 with a single design. \dagger

	TVP3020	
Speed	Part Number	Price *
135 MHz	TVP3020-135MDN	$\$ 36.00$
175 MHz	TVP3020-175MDN	$\$ 84.00$
200 MHz	TVP3020-200MDN	$\$ 100.00$

The TVP3020 is already supported by some of the world's top PC graphics controller manufacturers. If you're ready to move to the next generation of video interface palettes, just return the reply card. Or call us at $\mathbf{1 - 8 0 0 -}$ 477-8924,ext. 3446. We'll help you get to the next level of graphics performance for less than you might expect.

For more information on any of these subjects: call I-800-447-1500 and request appropriate extension number.

Europe - use EDN Information Retrieval Service or contact us direct via fax on +3I 40-724825.

All Philips Semiconductors plants worldwide are ISO 9000 certified

High-speed depletion-
 mode FETs offer big savings in telephone applications

Introduced for use as line current interrupters in telephone sets, new n-channel depletion-mode vertical D-MOS FETs from Philips can be driven directly from low voltage CMOS logic, permitting the elimination of as many as six gate-drive components from telephone designs.

Compared with the p -channel enhancementmode FETs which are frequently used in this application, the new depletion-mode devices can

First one-chip receiver front-end for advanced wireless designs

Low power consumption makes the SA620 ideal for portable wireless communication units.

The SA620 is the first RF IC to integrate a low-noise amplifier (LNA), mixer and voltage-controlled oscillator (VCO) in a single 3 V device. It replaces up to 20 discrete components in 900 MHz cellular and cordless phones, allowing designers to cut design cycles while increasing reliability and dramatically reducing size.

The Philips development is a complete 3 V front-end solution based on advanced QUBiC ${ }^{\text {TM }} \operatorname{BiCMOS}$ process technology, with performance that surpasses today's best silicon and GaAs discrete designs. Applications include portable cellular radios $(900 \mathrm{MHz})$, cordless phones, RF data links, UHF frequency conversion and spread spectrum receivers.

The LNA, which is matched to 50Ω, exhibits a 1.6 dB noise figure and 11.5 dB
power gain at 900 MHz . The active mixer supplies an additional 3 dB of power gain with a 8.5 dB noise figure. The integrated VCO reduces external component cost and simplifies design; an internal tracking bandpass filter and automatic levelling loop removes spurious responses and maintains a constant signal level into the mixer.

Low power consumption $(10.4 \mathrm{~mA}$ at 3 V) makes the SA620 ideal for portable wireless communication units; fast powerdown functions for the LNA, mixer and VCO further cut current consumption to 1.2 mA . The SA620 is housed in the SSOP20, the smallest commerciallyavailable surface mount IC package.
Call I-800-447-1500 Ext 1106 Europe: circle no. 40
result in simpler and more cost-effective line interruption circuitry for new telephone designs, particularly when the FETs are used with telephone ICs from Philips such as the PCA1070 multistandard CMOS transmission circuit.

The devices feature a maximum drain-source voltage of 250 V and an on-resistance of 20Ω. With a drain current capability as high as 250 mA DC and maximum switch-on and switch-off times of 10 and 30 ns respectively, they are also
suitable for general industrial applications such as high-speed switches, line transformer drivers and relay drivers. For maximum design flexibility, the BSD254, BSP124 and BST124 provide approximately the same FET specification in TO92, SOT223 and TO126 packages respectively, with the TO92-packaged device available in three different pin-out arrangements.
Call I-800-447-I500 Ext 5012
Europe: circle no. 41

Stereo decoder/noise blanker enhances car radio performance

Targeted for use in high-performance car radios, the TDA1592 stereo decoder/noise blanker is pin and function compatible with Philips' existing TDA1591. The new IC offers a very low muting offset at its audio outputs, a superior signal-plus-noise/noise ratio of 82 dB and input overdrive capability of 6 dB , plus an automatic FM/AM high cut control feature which improves sound quality under weak signal conditions.

The stereo decoder section incorporates an alignment-free phase-locked loop that operates with a 456 kHz ceramic resonator, and features a pilot tone detector for automatic stereo/mono switching and pilot cancellation. An additional control input, driven with an analogue voltage derived from the receiver's IF stage level detector, allows smooth stereo/mono changeovers as the received signal strength increases and decreases.

Soft muting is performed before demultiplexing of the input signal into the stereo channels and results in a DC voltage shift at the decoder's output of less than 50 mV , making interruption for RDS updating free from audible clicks. To eliminate ignition noise and

The TDA1592 stereo decoder/noise blanker for high performance car radios is available in 20 -pin DIL or SO packages.
other pulse interference, the TDA1592's noise blanker detects these pulses and gates them out of the audio outputs. The ability to sum the MPX audio signal and an IF-stage-derived interference signal at the op-amp input, combined with an automatic sensitivity control in the circuit's interference detector, ensures optimum triggering of the noise blanker under all signal conditions.

Call I-800-447-1500 Ext II07
Europe: circle no. 42

Single-chip speech, transmission and listening-in circuit optimizes featurephone performance

Two new high-integration-level bipolar ICs from Philips Semiconductors provide speech, transmission and listening-in functions designed for optimum performance over a very wide range of telephone line conditions.

The TEA 1096 and TEA1096A feature a unique active set impedance, the value of which is programmed by an external CR network, which compensates complex line impedances to maintain a flat frequency response on the telephone line over a 3.4 kHz speech bandwidth. Speech quality is further enhanced by dynamically limiting the signal amplitude in the ICs' microphone and loudspeaker amplifiers to prevent clipping in their output stages under input overdrive or low line supply conditions. Automatic gain control in the microphone and receiver channels compensates for line losses, which are deduced automatically by sensing the available line current.

On-chip current-splitting voltage regulation ensures that the maximum amount of line current is available to drive the listening-in loudspeaker under all line conditions. The line current sensing used by the AGC circuit is also used to switch

The TEA1096 and TEA1096A offer highly integrated single-chip solutions to all the speech, transmission, listening-in and line monitoring functions required in modern line-powered featurephones.
automatically between two anti-sidetone networks optimized for short and long telephone lines.

The TEA1096 has an adjustable stabilized voltage output to supply peripheral circuits, while the TEA1096A has a fixed voltage stabilizer but features DC voltage control of the loudspeaker volume. Both ICs are available in 28 -pin DIL or SO packages.
Call I-800-447-1500 Ext 1108 Europe: circle no. 43

Contactless angular-displacement sensor is encapsulated and ready-to-use

The new KMA10/70 contactess sensor provides a fully-encapsulated, non-wearing and adjustmentfree solution to angular position measurement in a wide range of automotive and industrial applications such as active suspension units, accelerator pedal position sensing and servo control actuators. Its sealed housing, wide operating temperature range and high degree of EMC immunity make it particularly useful in safety-critical applications.

Based around the Philips KMZ11B1 magnetoresistive sensor element, the KMA10/70 has an integral input shaft which allows the magnet's magnetic field to be rotated over the sensor element. The resultant changes in the sensor element's resistance are detected by a thick-film hybrid signal conditioning circuit which produces a temperaturecompensated 4 to 20 mA output signal that matches the angular displacement of the input shaft. The sensor has a displacement range of $\pm 35^{\circ}$ and is free from the microlinearity error and noise problems associated with potentiometers,

The KMAIO/70 contactless angular-displacement sensor is fully-encapsulated to survive extreme environmental conditions.
particularly when they suffer wear and corrosion.
The KMA10/70 has an operating temperature range of -40 to $+100^{\circ} \mathrm{C}$ and a lifetime in excess of 10^{8} operating cycles. It is a 3-terminal device which operates over an 8.1 to 11.0 V supply voltage range, producing a short-circuit-protected, current-mode output which is independent of supply voltage changes.

Call I-800-447-I500 Ext 5013
Europe: circle no. 44

THE SHOBKING

 REASON THE
TELE GOMWUNIBATIORS

$$
\begin{aligned}
& \text { INDUSTRY } \\
& \text { TURNE TO } \\
& \text { OWRON. }
\end{aligned}
$$

Recently, the telecommunications industry needed a new breed of low-signal relay a relay that could withstand a shocking 2,500 volts, almost double the present standard, yet small enough for dense PCB mounting. They turned to Omron.

Omron responded with the GBN relay. It not only withstands a 2.5 IK V surge between coil and contacts, its footprint is almost 40% smaller than the previous standard. The G6N is the latest product to join Omron's family of low-signal relays for telecommunications, computer peripherals, office automation and more.

Why did the telecom industry turn to Omron? Because we not only have the broadest line of relays, switches and photomicrosensors in the industry, we also have a proven

track record of innovation. Last year alone, we invested over $\$ 170$ million in R\&D, employed over 1,000 R\&D engineers and introduced nearly 100 new products. The telecom industry was also impressed with our highly-automated manufacturing systems, which enable us to provide products of consistent quality in high volumes. The GGN, for example, undergoes 100% automated inspection on 13 critical performance parameters.

With more than 90 affiliates and subsidiaries, 1,500 sales locations and 17,000 employees worldwide, Omron also met the telecom industry's need to provide product and service support around the globe.

Omron's ability to meet the rigorous demands of the telecom industry may come as a shock to some people. But it effectively demonstrates our ability to meet the control demands of any industry, both now and in the future. For complete information trol components, call us at

Whenitcomest

At Toshiba, we sell more memory products than anyone else in the world.

Anyone.

An achievement we're justifiably proud of.
And why no matter where you look, you'll find our DRAM, SRAM, Non-Volatile products and Memory Cards in more places than anyone else.

Naturally, we're in all types of computers, from PCs to workstations, minis to mainframes, Personal Digital Assistants to supercomputers.

But our influence extends much further.
To laser, dot matrix and color thermal printers.

National Semiconductor, Samsung and others, we're helping take technology to places never before dreamed possible - while standardizing it for everyone's use.

All of which translates into more than just the indus-
 try's most expansive line of memory products.

It means consistent supply, due to huge manufacturing capabilities. Performance advantages, from a long history of
alternate sourcing. And the kind of customer service, financial strength and overall stability you'd expect from one of the world's largest corporations.

That's why more companies the world over depend

memory, we're in all the right places.

 on Toshiba for memory. And it's what keeps us in the most important place of all - first.Modems and digital switches. Handheld instruments. Consumer products like mobile phones, faxes and copiers. Even automobiles and electric vehicles.

And thanks to strategic partnerships with companies like IBM, Motorola, Siemens, Rambus,

For more information, or a free product guide, just call 1-800-879-4963.

Then follow the lead of systems manufacturers worldwide.

And commit our name to memory.

In Touch with Tomorrow
TOSHIBA
TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

All This. In This.

For This.
 \$4.30

The LTC1257. Complete 12-Bit Serial SO-8 DAC.

Using a 12-bit DAC is now easier than ever! The new LTC1257 is a complete 12-bit DAC in a very small 8 -pin SO package. No external components are needed. And the price may be the easiest thing of all! Included is an output buffer amplifier, a 2.048 V voltage reference and an easy to use cascadable three-wire serial interface.

can override the internal reference to extend the output range as high as $0-12$ volts.

The DAC's small size and low power consumption make it ideal for battery powered systems. And with the cascadable serial interface, applications using multiple DACs are a breeze. So if you want to reduce your system cost and complexity, the LTC1257 is a natural choice. Parts are available in 8-pin SO packages or 8 -pin DIP. Pricing in 1000 -up quantities starts at $\$ 4.30$. For more details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035/408-432-1900. For literature only, call 1-800-4-LINEAR.

Color video travels on twisted-pair cable

Raphael Horton, National Semiconductor, Santa Clara, CA

Telephone lines and local-area networks commonly use inexpensive twist-ed-pair cables. Video-system designers can also take advantage of this low-cost cable to transmit composite-color-video signals. Using the circuit techniques in Fig 1, you can transmit video anywhere phone lines exist. Although the circuit has more electronic components than the traditional single amplifier used to drive a coax cable, you can easily justify the additional electronics required to drive twisted-pair cables. Four-wire, twisted-pair cable typically sells for 7 cents/ft, yet RG-59 cable can be priced over 20 cents/ft. If just 500 ft of cable is necessary, the cost difference is $\$ 65$, which more than covers the cost of a few LM6181 amplifiers.

The system consists of two circuits. The first converts the composite video signal to a differential signal using amplifiers IC_{1} and IC_{2}. Using a differential signal reduces line loss and distortion that could occur from driving the twisted pair single ended. Converting the signal to differential also removes possible ground-plane errors that occur when there is a difference in the ground potential between two pe boards.

The circuit has a minimum signal gain of two to compensate for the terminations' $6-\mathrm{dB}$ signal drop. You can easily adjust the gain of IC_{2} by decreasing the value of R_{G} to make up for the line losses caused by various twisted pair and coax cable lengths. R_{G} serves as a single system adjust and as an optional contrast adjustment for the video system.

In the second circuit, IC_{3} converts the differential signal back to single ended. This circuit has a gain of two to drive a back-terminated RG-59 coax cable out to a monitor. The video amplifier you choose for this application must have high-output-drive capability. The LM6181 is guaranteed to drive a back-terminated 75Ω cable over the full industrial temperature range.

This circuit treats the twisted-pair cable as a transmission line that is back-terminated with 75Ω resistors. This termination method is superior to using the 600Ω characteristic impedance of the twisted-pair. A 600Ω termination results in smearing and blurring caused by the RC time constant of the cable capacitance and the termination resistance. Because an increasing RC time constant degrades sharp signal transi-

Fig 1-By transmitting differential signals and using video amplifiers with high-outputdrive capability, this circuit can drive video signals down inexpensive twisted-pair cable.
tions, this circuit uses standard 75Ω terminations to maintain a clear, sharp picture. This circuit does not use shielded twisted-pair cable because of its high distributed capacitance, which contributes to the RC time constant.

No visible difference exists between a reference picture and a transmitted one. Using a Tektronix-type 520 NTSC vector-scope, the measured differential gain and phase of the entire system-which comprises three LM6181 amplifiers, a 100 m twisted-pair cable, and a $50-\mathrm{ft}$ RG- 49 coax cable from amplifier IC_{3}-was less than 0.5% and 0.6°, respectively. Keeping the current-feedback amplifiers' feedback resistors equal to the recommended value of 820Ω gives the op amp its proper frequency compensation. The feedback resistor sets amplifier bandwidth and is always required for proper operation, even in unity gain. EDN BBS /DI_SIG \#1361

EDN
To Vote For This Design, Circle No. 435

EDN-Desien Ideas

Circuit vocalizes telephone number

Shwang-Shi Bai, Chun-Shan Institute of Science and Technology, Lung-Tan, Taiwan

The circuit in Fig 1 is a simple method of vocalizing the digit number of a telephone keypad, which, for someone visually impaired, provides helpful voice confirmation. A 75 T 202 dual-tone multifrequency (DTMF) receiver decodes the DTMF signal when you depress the phone's keypad. The TC8801N voice synthesizer outputs the voice data corre-
sponding to the data input code. A TA7368P audio power IC amplifies the result. The logic gates perform necessary code conversion for the voice-synthesizing IC's input.
EDN BBS /DI_SIG \#1357
EDN
To Vote For This Design, Circle No. 436

Fig 1-This simple method of vocalizing the depressed digit on a telephone keypad uses a DTMF receiver, voice synthesizer, audio amp, and a few logic gates.

MOSFET replaces switch

Malcolm Watts, Wellington Polytechnic, Wellington, New Zealand

By using a cheap, readily available MOSFET, you can use a single-pole switch to turn a bipolar power supply on and off without consuming extra power. In Fig 1, the switch simply controls the MOSFET gate, which switches on the negative supply. Resistor R, which can be several megohms, is not necessary if the $\pm 6 \mathrm{~V}$ rails are permanently connected to a*load, for example an op-amp circuit. Because the MOSFET's $R_{\mathrm{DS}(\mathrm{ON})}$ is a fraction of an ohm, power loss is minimal, and the circuit suits moderate-consumption, battery-operated circuitry. EDN BBS /DI_SIG \#1360

EDN

Fig 1-The switch simply controls this circuit's MOSFET gate to turn the negative supply on and off.

FAST FASTER

FASTITEST

High Speed Audio Frequency Testing

FAST

ATS-1 is a competitively priced audio test set featuring front panel and GPIB programmable operation as well as higher performance and speed than the typical audio testers it replaces. Both Audio Precision and HP 8903B GPIB command sets are supported. A sample suite of 43 measurements' takes only 33 seconds. The dual channel ATS-1 is at home in production floor environments thanks to its rugged fancooled enclosure and front or rear mount modular connector panels.

FASTER

System One automated integrated audio test sets measure distortion, frequency, phase, wideband or selective noise, and crosstalk in production test environments benefiting from high speed and performance. System One can make a sample suite of 43 measurements ${ }^{1}$ in 21 seconds. Optional spectrum analysis and digital domain signal generation and analysis capabilities make it the onestop audio test system. Available both in GPIB and PC controlied versions, System One is today's recognized standard in audio testing.

FASTTEST

System One DSP versions test any audio channel in the fastest possible time. With DSP power, FASTIEST completes the 43 measurement ${ }^{2}$ example above in 2 seconds! System One FASTTEST technology generates and analyzes special multi-sinewave test signals. These wideband signals provide complete frequency response, distortion and noise measurements from a single stimulus acquisition.

Audio precision

P.O. Box 2209

Beaverton, OR 97075-3070
(503) $627-0832$ (800) 251-7350

FAX: (505) 641-8506

[^4]
EDN-DEsicN Ideas

Correlator works in presence of noise

John Charlton, Lancaster, CA

The clipped-signal correlator in Fig 1 outperforms any resis-tor-capacitor clipped-signal correlator, and the circuit has no race paths.

In operation, the reset signal first clears IC_{3} and IC_{4} to all zeros. Signals 1 and 2 , both of which are clipped so that they resemble square waves, beat against each other in XOR gate IC_{1}. If Signals 1 and 2 are both the same value at the instant the clock signal CK goes low, counter IC_{3} counts. The clock signal's frequency must be high enough that the clock signal takes five to 20 samples of the IC_{1} 's output before IC_{1} changes state. You have to determine the appropriate clock rate for your application.
IC_{3} and IC_{4} are in a race to see which counter finishes first. If IC_{4} completes its count before $\mathrm{IC}_{3}, \mathrm{IC}_{6 \mathrm{~A}}$ will clock a zero into shift register IC_{7}. If IC_{3} completes its count (that is, the inputs are correlated during enough of the sampling period), then $\mathrm{IC}_{6 \mathrm{~A}}$ clocks a one into the shift register.

Each one clocked into the shift register IC_{7} energizes a voltage increment. Summer IC_{8} totals all of these increments, and comparator IC_{8} compares the total voltage to a reference voltage. (The figure shows a single shift register for clarity. An actual implementation of this concept used
four shift registers in series, yielding a 32-bit comparison.)
To calibrate the circuit for your application, first apply test signals to the inputs. You must use a signal generator that can produce test signals having your required S / N ratio. Then experiment by connecting different combinations of the Q outputs of counter IC_{4} to the 8 -input AND gate, IC_{5}. When you get just the right combination of outputs connected, $\mathrm{IC}_{6 \mathrm{~A}}$ outputs equal numbers of ones and zeros. Although this condition may sound vague and difficult to detect, don't worry; when you hit the right combination, the circuit snaps into calibration. Continue experimenting to determine the proper threshold for the summer/comparator circuit.

This circuit works with any logic family and most common op amps. The resistors at IC_{7} 's outputs are usually all the same value. You could use differing values, but doing so always causes a processing loss. The circuit's detectionupdate rate is the rate of the RESET signal, and the integration time is equal to the number of bits of shift register IC_{7} divided by the RESET signal's rate.

EDN

EDN BBS /DI_SIG \#1369

To Vote For This Design, Circle No. 438

Fig 1-This correlator can determine when two signals are substantially the same, even in the presence of noise.
 pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 2000 MHz , NF as low as 2.8 dB , gain to 28 dB , isolation greater than 40 dB , and power
output as high as +15 dBm . Prices start at only $\$ 13.95$ including screening, thermal shock $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current. Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc supply voltage and you are ready to go.

The new MAN-amplifiers series... - wide bandwidth • low noise • high gain - high output power - high isolation

	FREQ. RANGE (MHz)	GAIN dB		MAX PWR ${ }^{+}$	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { ISOL. } \\ \mathrm{dB} \end{gathered}$	$\begin{gathered} \text { DC } \\ \text { PWR } \end{gathered}$	PRICE \$ ea.
MODEL	f_{L} to f_{U}	min	flat ${ }^{+\dagger}$	dBm	(typ)	(typ)	V/ma	(10-24)
MAN-1	0.5-500	28	1.0	+8	4.5	40	12/60	13.95
MAN-2	0.5-1000	18	1.5	+7	6.0	34	12/85	15.95
MAN-1LN	0.5-500	28	1.0	+8	2.8	39	12/60	15.95
\triangle MAN-1HLN	10-500	10	0.8	+15	3.7	14	12/70	15.95
MAN-1AD	5-500	16	. 05	+6	7.2	41	12/85	24.95
MAN-2AD	2-1000	9	0.4	-2	6.5	28	15/22	22.50
MAN-11AD	2-2000	8	0.5	-3.5	6.5	22	15/22	29.95

$\dagger \dagger$ Midband $10 f_{\mathrm{L}}$ to $f_{\mathrm{U} / 2}, \pm 0.5 \mathrm{~dB}+1 \mathrm{~dB}$ Gain Compression \diamond Case Height 0.3 in . Max input power (no damage) +15 dBm ; VSWR in/out 1.8:1 max.

Free...48-pg "RF/MW Amplifier Handbook" with specs, curves, handy selector chart, glossary of modern amplifier terms, and a practical Question and Answer section.

In Crystals and Oscillators.

Selection means choice and convenience. You can be confident you'll find just what you need for your application. With Ecliptek crystals and oscillators.
Uncompromising quality standards and competitive pricing you can rely on.

Plus fast delivery to help you meet your deadlines.
We put crystals and oscillators in a whole new light. See EEM 1993/94 for technical details. Or call 714-433-1200.

The Crystal and Oscillator Specialists

Design Entry Blank

$\$ 100$ Cash Award for all published entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional $\$ 1500$ Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title Phone

Company
Division (if any)
Street
\qquad
City \qquad State \qquad
Country
Zip
Design Title \qquad
Home Address \qquad
Social Security Number
(US authors only)

Entry blank must accompany all entries.

Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Fully annotate all circuit diagrams. Please submit software listings and all other computer-readable documentation on a $51 / 4-$-in. IBM PC disk in plain ASCII.
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author, or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date

> The winning Design Idea for the June 24, 1993, issue is entitled "VCO spans wide frequency range," submitted by Einar Abell of ADA Instruments (Three Rivers, CA).
> The winning Design Idea for the July 8, 1993, issue entitled "PC printer port programs PROMs," submitted by Yongping Xia of EBT Inc (Torrance, CA).

Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

Power Supply savings.

Or how to get the lowest cost-per-amp fast, simple and easy.

Just plug in IR's UltraFast 500V IGBT. And you instantly improve the efficiency and cost-peramp of your single-ended off-line switch-mode power supplies. Without redesigning.

Our IGBTs also come paired with IR supersoft recovery diodes in CoPacks for half-bridge supplies. All give you the lowest conduction losses ever. And fast switching speeds.

Available from the most cost-effective IGBT line today. Value priced to save you money. In stock to save you delivery time. Send for our IGBT data pack. Or call. 310-322-3331, ext 2529.

You'll easily save more for your converters.

Available now at key IR distributors.

N다

FAST Track to FAST SCSI

90's Challenges. The 90's demand higher levels of performance and faster delivery than ever. Time-to-market, technological demands, and changing user needs make fast, simple SCSI seem as elusive as the horizon. To stay ahead in these challenging times, you need products you can count on, with proven ability to deliver the quality and reliability your customers require.

90's Products. After over a decade of industry leadership, NCR is still working hard to meet your needs and the challenges of the 90 's. The NCR 53 C 90 family of SCSI Controllers is constantly evolving, implementing and offering state-of-the-art products. For example, the NCR 53C90 family supports multiple bus architectures, advanced SCSI-2 commands, fast SCSI data transfers and provides our exclusive TolerANT ${ }^{\circledR}$ SCSI driver and receiver technology, for reliable data transfers in

every SCSI system.
 The NCR 53 COO Family
 Proven Performance for the 90's and Beyond
 CIRCLE NO. 66

NCR SCSI: Real Products, Real Solutions, Real Fast!

SCSI	FAST SCSI*	*NCR Fast SCSI devices transer SCSI data at 10 MB/s synctronous or 7 MB/s asynchronous
53C90A	53CF90A	Single-bus architecture; SCSI sequences controlled by hardware state machine to minimize host intervention
53C90B	53CF90B	Adds pass-through parity for increased system reliability
$53 \mathrm{C94}$	53CF94	Adds split-bus architecture for more flexibility
53C96	53CF96	Adds support for differential transfers

90's Solutions. The SCSI challenges of th 90 's can't be solved with silicon alone. NCF quality and service provide you with the competitive edge that can make your industry leading designs a reality. Whether you require SCSI-1 or fast SCSI-2, in any system architecture, NCR has the product t meet your needs today. You can count on u to keep you on the fast track with the right technology, at the right price, at the right time for all your SCSI requirements.

Step-up/step-down converters power small portable systems

Bruce D Moore, Maxim Integrated Products

Using four alkaline AA cells to power a product has many advantages. Simplicity of the regulated supply, however, isn't necessarily one of them. Even so, you have several choices of regulator topology-each with strengths and weaknesses.

In small portable systems, marketing considerations-not engineering convenience-often drive the choice of a battery. A classic example is the battery that comprises four alkaline AA cells. AA cells are available in gift shops around the world. Though they are slim enough to fit in handheld systems, four of them can drive a 1 W system all day.

Ref 1 reviews practical regulator topologies for battery-powered systems, emphasizing low-power, nonisolated regulators. It compares the circuits with each other and explains how to choose the one that best suits a given application. An important-and relat-ed-problem is deriving the regulated 5 V from a 4 -cell battery stack.

The voltage available from four alkaline cells in series $(6.2 \mathrm{~V}$, gradually declining to 3.6 V), is not a convenient input for a 5 V regulator. The battery voltage ranges above and below 5 V , so the usual designs-buck and boost regulators-won't work. Moreover, not only must the regulator boost and buck, but it also must exhibit high efficiency, low supply current, and small size. Although these requirements present a challenge,
many circuits can meet them. The following are several possibilities:

Many topologies

Of the many solutions to the 4-cell problem, none stands out as the clear winner. Instead, each option offers tradeoffs in size, efficiency, input range, and other parameters. Some general circuit configurations include

- Flyback
- Inverter
- Low-dropout linear regulator
- Boost with linear postregulator
- Boost with linear preregulator
- Step-up/step-down topology.

INPUT VOLTAGE RANGE $=3.8$ TO 11V
INPUT VOLTAGE RANGE (NONBOOTSTRAPPED MODE) $=3.8$ TO 16.5 V
START-UP SUPPLY VOLTAGE $\left(I_{\text {LOAD }}=0\right)=4 \mathrm{~V}$ MAX QUIESCENT SUPPLY CURRENT $\left(V_{I N}=5 \mathrm{~V}\right)=1.8 \mathrm{~mA}$ MAX LOAD-CURRENT CAPABILITY $\left(V_{\mathbb{I N}}=5 \mathrm{~V}\right)=200 \mathrm{~mA}$ BATTERY LIFE (4 ALKALINE AA AT $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$) 13.5 HOURS

Fig 1-By floating its battery and grounding its output, this negative-boost regulator produces a positive output at its ground terminal.

STEP-UP/STEP-DOWN CONVERTERS

Other possibilities include the Cuk and various isolated topologies, but these are either too complex or require too many energy-storage elements to be attractive for small battery-powered systems.

Why not flyback?

Flyback topologies seem an obvious first choice for the step-up/step-down problem. Flyback circuits include a transformer that electrically isolates the output winding from the input (battery) voltage, thereby solving a problem that derails the simpler boost and buck topologies. Indeed, any isolated de-dc supply, including the forward converter, can function as a step-up/step-down converter.

The most serious contender among transformer-isolated regulators is the flyback regulator, whose simple switching circuit requires only one power transistor and a single magnetic core. Flyback circuits have poor efficiency, though, thanks to their high peak currents and consequent power losses.

Fig 2-These equations describe the ratio of peak inductor current to average load current for pulse-width-modulated converters operating in the desirable continuous-conduction mode.

Flyback vs buck or boost

To illustrate the flyback configuration's poor efficiency, compare it with the more favored buck and boost topologies. The flyback circuit's main problem is high peak current, which produces high $I^{2} R$ loss. Peak currents cause dissipation in small parasitic resistances: series resistance in the inductor, on-resistance in the switch, and ESR (equivalent series resistance) in the filter capacitor.

These losses are proportional to the peak current squared, so a minor change in peak current can have a substantial effect on conversion efficiency and battery life. In the 4 -cell application, physics ensures that a flyback circuit's peak currents are almost double those of a buck or boost circuit.

It is intuitive that peak currents in the buck and boost topologies should be lower. Because the series connection of a boost regulator's battery and inductor aids the inductordischarge voltage, the boost circuit needs to overcome a smaller energy "hill" in generating the output voltage (Fig 1). Peak currents in the buck regulator are lower, too, because current flows to the load during both the charge and discharge phases of the switching cycle.

$I_{\text {PEAK }} / I_{\text {AVG }}$ for different topologies

The equations in Fig 2 describe the ratio of peak inductor current to average load current for pulse-width-modulated converters operating in the desirable continuousconduction mode. In each equation, the most significant term is the first one, which represents the average dc component of inductor (primary) current. Efficiency in the flyback equation is degraded mainly by the num-
erator $\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right)$, which represents excessive peak current.
The ac switching loss also degrades the efficiency. This parameter equals $V^{2} f C$, where V is the peak voltage swing (equal to $\mathrm{V}_{\text {IN }}$ for buck regulators or $\mathrm{V}_{\text {OUT }}$ for boost regulators), and C is stray capacitance at the switching node. For a

Fig 3-In some applications, a linear regulator with low dropout voltage can deliver more of a battery's energy to a load than can a switching regulator.
flyback circuit with a 1:1 transformer, $\mathrm{V}=\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\text {out }}$ (as a minimum).
$I^{2} \mathrm{R}$ and switching losses handicap the flyback configuration. The resulting efficiency (70 to 80%) is inferior to that of buck and boost topologies (85 to 95%). The use of large and expensive power-switching components (or other drastic measures) can raise the flyback circuit's efficiency to 85% or so. Nevertheless, the flyback approach is useful if you need a wide input-voltage range or multiple outputs via extra windings, and if low cost is more important than battery life.

Inverting the battery

Another way to generate 5 V from four cells is to first invert the battery voltage with a switch-mode inverter, creating -5 V . By connecting this negative output to the system ground you produce +5 V at the other output terminal. This approach has some disadvantages, though:

Peak currents are no lower than those in a flyback circuit (indeed, the inverting and 1:1 flyback topologies are exact electrical equivalents). The inverting circuit also joins the 5 V output to the battery's negative terminal. This can be a problem if other circuit loads are referenced to ground or if other voltages are generated from the same battery stack. And, finally, the inverting circuit requires a pnp or p-channel FET high-side power switch vs a less expensive and more efficient npn or n-channel FET lowside switch.

Despite the drawbacks, the inverting regulator's simplicity and wide range of input voltage make it attractive for many portable-equipment designs. The wide input range lets the system accept alternate power sources such as ac/dc adapters and 12 V lead-acid batteries. As another advantage, the inverter output moves to zero in shutdown mode, a condition not always guaranteed for other regulating topologies.

Low-dropout linear regulators

A step-down, low-dropout linear regulator would seem a poor choice for the 4-cell application. It converts only so much of the battery's energy; spent batteries still have considerable energy left in them. Even so, the linear regulator offers better battery life than some switching regulators. In the 4 -cell application, the theoreti-

Fig 4-By combining a linear regulator and a switching regulator, this IC prevents the series connection of the inductor and rectifier from pulling $\mathrm{V}_{\text {out }}$ above 5 V when the battery is fresh.

Fig 5-Diode D_{1} preregulates the input voltage to this boost switching regulator.
cal efficiency is lowest when the battery is fresh ($5 / 6 \mathrm{~V} \times 100 \%=83 \%$) and rises toward 100% as the battery voltage approaches 5 V .

What's more, the heat and $I^{2} \mathrm{R}$ losses associated with pulsed current are absent in a linear regulator, and the con-

STEP-UP/STEP-DOWN CONVERTERS

tinuous supply current has a gentler effect on the battery chemistry. Though its battery life is generally lower than that of switching regulators, the linear regulator's cost, size, and low noise make it more attractive in some applications.

Switching regulators usually provide tightly regulated outputs even at low battery voltages; when the output finally collapses, it does so in milliseconds. Linear regulators, on the other hand, drop out slowly and gracefully as the battery voltage decays. This behavior complicates the comparison of switchers and linears. When do you consider the battery to be discharged? Simply defining a dead battery as one that produces an output of 4.5 V instead of 4.75 V increases a linear regulator's battery life by more than 50%. For the 4-cell application, good linear regulators should have low dropout voltage (100 mV) and low quiescent current $(10 \mu \mathrm{~A})$ (Fig 3).

Boost with linear postregulation

The best 4-cell regulators use boost or buck topologies in a way that overcomes input-voltage limitations. Boost circuits, for example, feature low peak current and a simple schematic. They just keep boosting the battery voltage (to 5 V) until the battery's energy completely dies.

Adding a linear regulator to a boost regulator prevents the series connection of the inductor and rectifier from pulling the output above 5 V when the battery is fresh (Fig 4). In this case, the linear regulator is implemented with an active (pnp) internal rectifier instead of the usual Schottky diode.

The switching-regulator IC in Fig 4 is also unusual. Instead of a standard CMOS or "junk" bipolar process, this chip is fabricated with an advanced, complemen-tary-bipolar RF process. The result is a combination of high switching frequency (normally the strength of CMOS) and operation below 1 V (normally a strength of bipolar processes). Synchronous rectification overcomes many of the limitations inherent in the simple boost topology. In addition to the step-up/step-down function, synchronous rectification allows the output to be shorted to ground, and it automatically (and completely) disconnects battery from the load when the IC is placed in shutdown mode.

Boost with linear preregulation

A second boost-plus-linear approach is to preregulate the input to a boost switcher (Fig 5). The switching regulator is disabled when the battery is fresh, so an external silicon rec-

Fig 6-Complexity is the penalty paid for a step-up/step-down regulator that can derive 5V from a battery whose output passes through 5 V during its discharge.

CUT RS-485 POWER CONSUMPTION IN HALF!

Lowest Power RS-485 IC Uses 250 HA A Supply Current-Max

The new MAX487 RS-485 transceiver uses a scant $250 \mu \mathrm{~A}$, making it the lowest power RS-485 IC available. The MAX487's $1 / 4$ unit load input impedance allows up to 128 transceivers on the bus at one time. Plus, slew-rate-limiting dramatically lowers radiated EMI while reducing reflections caused by mismatched cable terminations.

- 250~A Supply Current

- Full Duplex Available
- 2.5Mbps Guaranteed Data Rate
- 128 Transceivers on Bus
- $1 \mu \mathrm{~A}$ Shutdown Mode

Specify the Optimum Low-Power RS-485 Transceiver for Your Design

	Part	\#Tx/Rx	Data Rate Mbps	Max\# on Bus	ISUPPLY $(\mu \mathrm{A})$	Full/Half Duplex	Price ${ }^{\dagger}$	Feature
	MAX481	1/1	2.50	32	500	Half	\$1.25	10hA Shutdown
	MAX483	1/1	0.15	32	350	Half	\$1.25	Reduce EMI 100 Times
	MAX485	1/1	2.50	32	500	Half	\$1.25	LTC485 Second Source
NEN	MAX487	1/1	0.15	128	250	Half	\$1.25	$250 \mu \mathrm{~A}$ ISUPPLY 128 MAX487s on Bus
NEN	MAX488	1/1	0.15	32	350	Full	\$1.25	8-pin SO
NEN	MAX489	1/1	0.15	32	350	Full	\$1.25	Separate Tx/Rx Enable
NEN	MAX490	1/1	2.50	32	500	Full	\$1.25	LTC490 Second Source
NEN	MAX491	1/1	2.50	32	500	Full	\$1.25	LTC491 Second Source

FREE Interface Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample
MasterCard and Visa ${ }^{\oplus}$ are accepted for Evaluation Kits or small quantity orders.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194

[^5]

Love Potion \# B.S.I.

"She had beautiful eyes. She said she could design for B.S.I. Then she left me out in the cold. I'm dead meat. Prem has a whole series of transformers that already have British Standard Institute approval.

I really shoulda called Prem.

You oughta call Prem!"

PREM ${ }^{\circ}$
Where Guality Really Counts!
For Prem's new catalog or additional product information, call or write Prem Magnetics, Inc.
3521 North Chapel Hill Road, McHenry, IL 60050.
Phone: 815-385-2700. FAX: 815-385-8578.

CIRCLE NO. 9

Call or fax your specs to Sandy Cohen.

RFITTROI

ELECTRONICS CORP.
2315 NW 107 AVENUE
MIAMI, FLORIDA 33172 U.S.A.
FAX (305) 594-3973
TELEX 441588 RALSEN
(305) 593-6033

ONLY RALTRON HAS IT ALL
Crystals / Crystal Oscillators Crystal Filters / Ceramic Resonators

CIRCLE NO. 16

EDN-Desicn Feature

STEP-UP/STEP-DOWN CONVERTERS

tifier $\left(\mathrm{D}_{1}\right)$ drops the worst-case high input voltage from 6.3 to 5.4 V . This cheap-and-dirty equivalent to a linear regulator requires a minimum load of $100 \mu \mathrm{~A}$ or so to prevent output overvoltage due to the diode leakage current. The circuit continues to operate even with battery voltages of 3 V and below. Typical efficiency is 80% when the battery is fresh, rising to 90% as the battery voltage declines to 4 V .
To accommodate higher input voltages, you can easily substitute a linear regulator for D_{1}. And if low cost is your goal, omit the p-channel FET switch-over circuit. Performance with the diode alone is still comparable to that of a flyback circuit.

Step-up/step-down topology

The step-up/step-down regulator achieves high performance at the cost of complexity by switching from buck mode to boost mode as the declining battery voltage passes through 5V (Fig 6). And it does all this with a single inductor. Switch-mode operation over the entire range of battery voltage yields higher efficiency than does the boost-plus-linear approach, yet the step-up/step-down regulator does not experience the high peak current and consequent $I^{2} \mathrm{R}$ losses of inverting and flyback approaches.

Efficiency exceeds 90% over most of the battery's range, and the step-up/step-down circuit extracts nearly all of the battery's energy. The penalty for this high performance is complexity. The circuit requires three MOSFETs (or four-as shown-if you parallel two p -channel devices for a lower $\left.\mathrm{r}_{\mathrm{DS}(\mathrm{ON}}\right)$. Also, the switch from buck to boost causes an $\sim \pm 2 \%$ change in the output voltage as the battery voltage reaches 5 V .

Built into IC_{1} is a comparator that decides when to switch from step-down to step-up operation. The comparator monitors the battery or output voltage, whichever is higher, via a diode-OR connection. As the buck regulator begins to lose control (drop out), the output begins to fall. When the input reaches 4.95 V , the circuit switches from buck to boost, causing the output-regulation point to shift from 4.92 to 4.98 V . If for some reason the battery voltage rises above 5.15 V , the circuit switches back to buck mode.

EDN

Reference

1. Moore, Bruce D, "Regulator Topologies Standardize Battery-Powered systems," EDN, January 20, 1994, pg 59.

Author's biography

For Bruce Moore's biography, see Ref 1.

Article Interest Quotient (Circle One)
 High 586 Medium 587 Low 588

Attention aspiring authors

Publishing an article in EDN can be a satisfying and rewarding experience. And, you don't have to be a professional writer to get published in EDN. If you can communicate useful technical information clearly, our editors can guide you in writing articles that we'll be proud to publish. We also pay you an honorarium, based on your article's length. Submit article ideas to Joan Lynch, EDN, 275 Washington St, Newton MA 02158.

1-CELL (1.1V) INPUT STEP-UP GUARANTEES 5V, 30mA OUTPUT

Internal Synchronous Rectifier Assures Complete 20ヶA Shutdown

The MAX777/MAX778/MAX779 step-up dc-dc converters deliver more power from a single battery cell (1.1 V) than any other IC solution available. An internal active rectifier diode increases efficiency and provides true $20 \mu \mathrm{~A}$ shutdown. Only 2 capacitors and a small $22 \mu \mathrm{H}$ inductor are needed, saving space and cost. Guaranteed start-up is 1 V (10 mA load). In shutdown, the internal switched rectifier opens the DC path from the input to the output, stopping current drain associated with conventional step-up converters. Also, the Active RectifierTM allows these regulators to act as buck/boost converters, providing regulation for input voltages above and below the output voltage. Order the complete surface-mount evaluation kit (MAX778EVKIT-SO) to speed your design.

- 5 V @ 30 mA or $3.3 \mathrm{~V} @ 60 \mathrm{~mA}$ from 1.1V Inputs, Guaranteed
- Internal Synchronous Rectifier
- True 20uA Shutdown Supply Current
-3.3V or 5V Regulated Output from 1V to 6.2V Input
-8-Lead DIP or SOIC Package
- MAX777: 5V Output MAX778: 3.3V/3V Output MAX779: Adjustable Output (2.7 V to 6 V)

\author{

- Evaluation Kit Available
}

FREE Power Supply Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples
 CALL TOLL FREE 1-800-998-8800
 For a Design Guide or Free Sample
 MasterCard ${ }^{\oplus}$ and Visa ${ }^{\oplus}$ are accepted for Evaluation Kits or small quantity orders.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.
Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.: NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar: NC, M-Squared, Inc.; OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp, Inc., WA, E.S. Chase; WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

New Wave Memories 16M Synchronous DRAMs

Forget about cost/performance trade-offs. Our new 16M Synchronous DRAMs give you big benefits in both areas. Operating at 100 MHz clock, they eliminate CPU wait states. So workstation designers save by eliminating costly cache SRAMs. And PC designers gain a quantum leap in system speed.

Our new 16M Synchronous DRAMs provide a minimum cycle time of 10 nanoseconds (100 MHz) and a maximum data transfer rate of 200 M bytes per second (x16 device) with a 3.3 V power supply. They're designed with 3-level pipeline architecture and 0.5 -micron CMOS technology. Other features include:
\square Full JEDEC compatibilityProgrammable mode register for burst length,
wrap type and $\overline{\mathrm{CAS}}$ latencyDual memory banks for ping-pong operation
\square Clock suspend and power-down operation

To meet your system needs, our 16M Synchronous DRAMs are available in a variety of speeds and organizations. Clock-speed versions are $66,75,83$, and 100 MHz . Bit organizations are $\mathrm{x} 4, \mathrm{x} 8$ and x 16 . Package types are 44 -pin or 50 -pin 400 mil TSOPII.

Breaking cost/performance barriers-that's what new wave memories are all about. To receive more information about our 16M Synchronous DRAMs, or to order your samples, call NEC today.

From the leader in memory technology

For fast answers, call us at: USA Tel:1-800-366-9782. Fax:1-800-729-9288. Germany Tel:0211-650302. Fax:0211-6503490. The Netherlands Tel:040-445-845. Fax:040-444-580. Sweden Tel:08-753-6020. Fax:08-755-3506. France Tel:1-3067-5800. Fax: 1-39463663. Spain Tel:1-504-2787. Fax:1-504-2860. Italy Tel:02-6709108. Fax:02-66981329. UK Tel:0908-691133. Fax:0908-670290. Ireland Tel.01-6794200. Fax:01-6794081. Hong Kong Tel:886-9318. Fax:886-9022. Taiwan Tel:02-719-2377. Fax:02-719-5951 Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:253-8311. Fax:250-3583. Australia Tel:03-8878012. Fax:03-8878014. Japan Tel:03-3454-1111. Fax:03-3798-6059.
 \section*{\title{
Advancing State-ol-the-Art
 \section*{\title{
Advancing State-ol-the-Art High-Speed Power High-Speed Power MOSFET DMIVER TEGhNOLOgY
}} MOSFET DMIVER TEGhNOLOgY
}}

ANALOG INTEGRATED CIRCUITS

gMOS Power MOSFET Drivers

Dual Channel, , 2.0 Amps Output
 EL7202
 EL7212
 EL7222

Non-Inverting

- 20 ns Prop Delay
- 20 ns Switch. Time

■ $\$ 1.96$ - 100's P-DIP

Inverting

- 20 ns Prop Delay - 20 ns Switch. Time - \$1.96-100's P-DIP

Complementary

- 20 ns Prop Delay - 20 ns Switch. Time - $\$ 1.96$ - 100's P-DIP

Applications: - Clock Drivers - Line Drivers • CCD Drivers • Ultrasound Transducer Drivers • Switching Power Supplies • Bus Driver • Motor Control • Charge Pumps • Pin Drivers • EPROM Programming - Resonant Charging Non-overlapped Switching

Imagine electronics without noise.

As regulations become increasingly strict, finding the ideal solution to noiseemission problems isn't always easy.
TOKIN Simplifies your search by starting from the bottom up, developing original materials and technologies for

$\begin{array}{c}\text { Solid Chip Suppressors NZ Series/ } \\ \text { Solid Chip Common Mode Chokes }\end{array}$
Surface-mount EMC products with complete
monolithic structure

Distributed Constant Filters
Excellent wide-frequency characteristics due to distributed constant effects

Now make it real.

a vast and growing lineup of EMC devices.

A close look will reveal TOKIN EMC devices in many of the products you use every day. From the smallest

Wire-wound Chip Inductors
High inductance; unique construction features compact, highly accurate ferrites

Distributed Constant Filters for High Frequencies
Excellent attenuation for frequencies over 50 MHz
electronic diaries to advanced communications equipment; from camcorders to automotive electronics. Indeed, TOKIN supplies many of the leading electronics

manufacturers-and countless smaller makersaround the world.
If electromagnetic noise is interfering with your progress, discover the source that offers a full line of EMC precision.
We'll be waiting for your call.

Tokin Corporation

Overseas Sales Division
KSP. B. 220, 2-1, Sakato 3-chome, Takatsu-ku, Kawasaki-shi, Kanagawa-ken 213, Japan
Phone: 044-812-7901 Fax: 044-812-7908
Korea Representative Office
\#602, Champs-Elysees Bldg., 889-5, Daechi-Dong, Kangnam-gu
Seoul, Korea
Phone: (2) 569-2582~5 Fax: (2) 544-7087

Tokin America Inc.

155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375
Chicago Branch
9935 Capitol Drive, Wheeling, lllinois 60090, U.S.A
Phone: 708-215-8802 Fax: 708-215-8804

Tokin Electronics (HK) Ltd.

Unit 705-707, Chiwan Tower, Park Lane Square, 1 Kimberly Rd. Tsimshatsui, Kowloon, Hong Kong Phone: 730-0028 Fax: 375-2508 Taiwan Liaison Office
Phone: (02) 7728852 Fax: (02) 7114260 Singapore Branch Phone: 2237076 Fax: 2236093, 2278772

Tokin Europe GmbH

Knorrstr. 142, 80937 München, Germany Phone: 089-311 1066 Fax: 089-311 3584

2916, 2917, \& 2918 Dual Full-Bridge PWM Motor Drivers

FEATURES

- For Bipolar Stepper Motors or For Two DC Motors
$\pm .75 \mathrm{~A}$ or $\pm 1.5 \mathrm{~A}$ Continuous Output Current
- 45 V Output Sustaining Voltage - Internal PWM Current Control
- Internal Clamp Diodes

Internal Thermal Shutdown

Circuitry Elegantly

Engineered To Meet Your

 System RequirementsContaining two full bridges, the Allegro's 2916, 2917, \& 2918 motor drivers are designed to drive both windings of a bipolar stepper motor or bidirectionally control two dc motors. Each bridge is capable of sustaining

45 V and includes internal pulsewidth modulation (PWM) control of the output current to $\pm .75 \mathrm{~A}$ (2916) or $\pm 1.5 \mathrm{~A}(2917,2918)$. Current is determined by the user's selection of a reference voltage and sensing resistor. Included on chip are ground clamp and flyback diodes for protection against inductive transients. Internally generated delays prevent cross-over currents when switching current direction. Thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

Designed For Manufacturability

Allegro's ICs are "designed-formanufacturability" under stringent standards of Total-Quality. Design/ Production teams, under our

PACE (Product And Cycletime Excellence) program, work closely with our customers to meet their time-to-market and quality/reliability objectives.
Headquartered in Worcester, Massachusetts, Allegro operates two Wafer-fabrication plants as well as assembly/test facilities. Design centers are located worldwide, sharing common cell libraries and design tools.

Take A Test-Drive... Call For Samples

Samples are available now. Just give us a call at $1 \cdot 508 \bullet$ ALLEGRO and we'll have our Sample Pack in the mail to you the same day. After all, the measure of our success can only be your total satisfaction.

THE PACE QUICKENS

CIRCLE NO. 71

Allegro.
 MicroSystems, Inc.

Formerly Sprague Semiconductor Group

Pick the right package for your next ASIC design

David P Pivin, ASIC Division, Motorola Semiconductor Products Sector

Abstract

The quest for higher integration levels in ASICs and competitive pressures to reduce system manufacturing costs bas driven IC manufacturers to improve package capabilities and develop new methods. This article should belp you evaluate the many choices available to find the best match of design performance and system costs.

Today's system designers have at their disposal the benefit of several generations' worth of ASIC-package development. The variety of packages makes it a challenging task to make a decision that meets price and performance goals. However, armed with a detailed understanding of the various package types, their performance attributes, and their costs, you can choose a package that meets your goals.

This article focuses on packages for applications ranging from high-end consumer to workstation/servers and computers. It discusses various technologies, most of which ASIC designers can use today. It also discusses cost-typically the deciding factor in selecting among the package choices. However, this article goes beyond the cost of the package itself. It also discusses those incurred in manufacturing and during the life cycle of a product, as well as how to reduce costs in an existing product. For example, you may be able to achieve higher performance for the same or lower parts costs, although doing so may require different manufacturing techniques from those you currently use.

This article compares each package in a matrix of parameters detailing their cost, thermal and electrical performance, physical dimensions, and ease of manufacturing (see Table 1 and Fig 1).

One of the deciding factors in choosing a package is pin count, which has accelerated from an average of 100 pins a few years ago to an average of 160 pins today. Just as the plastic leaded chip carrier (PLCC) extended the range of pins beyond the capabilities of a DIP, the quad flatpack (QFP) has provided a solution PLCCs cannot reach.

Key in driving the demand for higher pin counts
is the rapid increase in $\mu \mathrm{P}$ bus widths from 8 to 16 to 32 bits. Most current designs are 32 bits wide, with some pushing out to 64 bits. Multiplexed buses have also given way to separate address and data paths from the processor in RISC architectures. As some designs move into new generations or are cost reduced, integrating several designs into one or two chips, the pin count of individual ASICs rises.

Power dissipation is bound to rise with the increase in pins, which also strains the capabilities of low-cost packages. The power dissipation of CMOS devices is directly proportional to system clock frequencies, which range from 20 to 66 MHz . Most power dissipation occurs during the transitions of signals from high to low or low to high. Signal transitions charge and discharge the load capacitance on each I/O pin. Internal signals, although lightly loaded, are numerous. In contrast, there are only a few I/O buffers, but because they deal with much larger loads, they can consume more power than do the core cells.

Although pin counts increase with architectural improvements, the ratio between gates and I/O buffers has changed little. In the past few years, average gate count has risen from 25,000 to more than 40,000 gates. Unless there is an improvement in power dissipation per gate or I/O buffer, the combination of higher clock frequencies with bus-width-dri-

The plastic ball-grid array provides the density of a pin-grid array at the cost of a plastic quad flatpack.

ASIC PACKAGES

ven density produces a severe demand on the thermal-dissipation capabilities of a package.

To offset the effects of increased clock frequency, some designers use 3.3 instead of 5 V power in components, thus alleviating some of the pressure to move to higher cost packages. Fig 2 shows the power dissipation resulting from changing a design to run from 3.3 instead of 5 V as a function of clock frequency. You can implement this hypothetical design in a technology that lets you select among power-rail configurations. By selecting the I/O buffers, the core, or both sections of the ASIC to operate from a 3 V supply, you can switch from a $15^{\circ} \mathrm{C} / \mathrm{W}$ package to a much less expensive $45^{\circ} \mathrm{C} / \mathrm{W}$ package.

However, the 3 V option may not suit your application. To complicate matters, some enclosures have little or no airflow. Most PCs have access to some airflow because they incorporate fans that draw air out of the power supply. Strategically placed louvers in the power supply and outer case draw air into the case. This cooling method may lead to islands of dis-

Fig 1-Compare price per pin, pin count, and thermal performance of some common packages.
sipation on large mother boards that lie flat at the bottom of the case, with no directed airflow: a worst-case scenario.

Smaller footprints affect package choices

Another problem in selecting a package is physical constraints. Smaller footprints for systems such as disk drives and laptops, along with the PCMCIA form factor, have caused these constraints. These new lows in size also apply to package height; the PCMCIA form factor requires total component height lower than 2 mm when components are placed on both sides of a circuit board.

The number of power pins a design requires also affects a design's physical format. Most ASIC designs have a large number of power pins: 20 to 33% of total pins are power pins. The designs require so many pins because the I/O buffers require transient currents, which should go through as low a resistance and inductance as possible. Extra pins also ensure that noisy return paths do not share pins with those of sensitive inputs.

The most significant factor in power-pin count is the need to support simultaneously switched-output (SSO) buffers. The spike of current associated with an output buffer in transition aligns with each buffer's input signal because a common clock signal switches the input signal, an unavoidable byproduct of synchronous operation. On-chip power rails may droop, ground pads may bounce, and the resulting false signals may disrupt chip or system operation.

The clock and data-signal frequencies of most current systems do not reach the levels at which the package RLC values can cause significant degradation of those signals.

Transmission-line effects, especially those of the reflections caused by line-impedance changes, also represent a serious detriment to signal integrity. A design should have a narrow range of values for the impedance of signal lines as they change from die pad on one chip to wire bond, package, pin, board traces, and die pad on another chip. Otherwise, the signal tends to ring the RLC elements like a bell, reflecting many times from each change in impedance. These reflections may defeat any attempts to reduce the cycle time of the system. The simplest method is to insert a series-termination resistor between the memory controllers and the DRAMs. This method damps the reflections enough to preserve signal integrity. You may need to use more dramatic methods when your application requires cycle times shorter than the 70 or 80 nsec that DRAMs provide. However, some methods for reducing impedance mismatches and reflections affect the package.

Another aspect of building high-frequency designs is that they require differential signals. These signals offer a lot of immunity to noise, which is common to both leads, and the ability to more easily control the impedance. Pin density aggravates another transmission-line problem-coupling of signals on adjacent pins of a package or pe board. This increase in coupling is probably the most challenging interconnection problem because solutions typically add cost.

As you can see, high performance challenges the goal of keeping within budget. But for the lowest manufacturing cost, the components and process must suit automated high-

The best thing about our 500 MHz scope isn't the price.

It's what you get for it.

Just like an analog scope, HP's 500 MHz oscilloscope has a real-time display that responds instantly to changes in your waveforms or controls.

A bright trace and convenient, pushbutton functions like Autostore let you easily see and store tough-to-find signals.

Pretrigger viewing and delayed sweep mode help you save time by grabbing and displaying signals before or after the trigger event.

How we can offer you a

 500 MHz , delayed sweep scope that's within budget, without compromise.High bandwidth digital scopes have always forced you to sacrifice two things you love about analog scopes: a familiar look and feel and immediate, believable displays.

Our engineers didn't think you should have to make that compromise. So they designed the HP 54610A oscilloscope with the analogstyle interface you're comfortable with, and a new digital architecture that produces waveform displays superior to analog scopes.

The result: you get the quality and performance you'd expect from HP. At a price you wouldn't.
technical literature you may need to make the right decision. Or if you want one-on-one technical support, you can speak
to an engineer who has firsthand experi-

Want to speak to someone about the HP 54610A scope features and specifications, or your specific application needs? Calling HP DIRECT is the fast, easy way to get all your questions answered - with no obligation to order.
You see, HP DIRECT is your direct line to information and solutions for HP basic test instruments. With one simple call, you can get quick product specifications or any
 ence with HP products. And, of course, if you're ready to order, we can help you do that, too.

So give us a call. And discover how much more you really get from HP today.

* In Canada, call 1-800-387-3867, Dept. 476

There is a better way.

EDN-DESGN FEATURE

ASIC PACKAGES

volume assembly. Board manufacturers' slow acceptance of fine-pitch QFP shows that some manufacturers don't readily adapt to new technologies. Those who have tried fine-pitch QFPs find that they cannot use the same processes they used successfully on previous generations of QFPs using standard pitch. New requirements of 4 -mil lead coplanarity, ± 3 mils, $<0.1^{\circ}$ placement accuracy, and the last resort-manual hotbar soldering-are some of the costly new additions to the manufacturing process.

Most designers choose surface mounting as an assembly method because most components used in this method-from passives to many large ICs-are available at competitive costs. The common techniques for assembling and soldering most surface-mounted components have matured quickly. Assembly equipment handles the various shapes and sizes
that don't rely on clinched leads to hold themselves on the board during soldering. However, through-hole components require special handling. For example, you can mix differentsized QFPs and lead pitches. Although this technique is not a good idea, you cannot always avoid it.

The cost of a package becomes most evident when it adversely impacts the board-test yield. Board-test failures often relate to interconnection problems, presenting manufacturers with "repair-or-no-repair" decisions. Manufacturers must repair a board that fails a test or face the loss of all invested components and labor.

When a customer returns a defective board, the manufacturer must again decide whether to repair the board or throw it away. Logistic costs add to the penalty of a

Text continued on pg 104

Table 1-Comparison of package parameters

	CPGA	CPGA-w/ planes \& slug	PPGA	SMPGA	QFP	$\begin{aligned} & \text { CQFP } \\ & \text { (side } \\ & \text { braze) } \end{aligned}$	MQFP	MicroCool	VQFP	TQFP	TAB	PBGA	CBGA	C-4	COB
Range of \# of Pins in common use	72-250+	200-500+	72-300+	200-500+	64-160	64-304	64-304	160-304	64-304	80-120	150-500+	86-313	144-256	150-700+	8-200+
Die Mounting Surface	Gold/ Ceramic	Gold/Cu Slug	Gold/Cu Flag	Gold/ Ceramic	Alloy-42 Lead Frame	Gold/ Ceramic	Cu Lead Frame	Gold/Cu Flag	Cu Lead Frame	Cu Lead Frame	Cu Lead Frame	Gold/Cu Flag	Gold/ Ceramic	Gold/Cu	Gold/Cu
Case/Substrate Material	Ceramic	Ceramic	FR-4	Ceramic	n/a	Ceramic	Anodized AI	$\begin{aligned} & \text { FR-4 } \\ & \text { PCB } \end{aligned}$	n/a	n/a	Polyimide	BT Epoxy	Ceramic	$\begin{aligned} & \text { FR-4 } \\ & \text { PCB } \end{aligned}$	$\begin{aligned} & \text { FR-4 } \\ & \text { PCB } \end{aligned}$
Cover/lid/encapsulant	Metal	Metal	Epoxy	Metal	Epoxy	Metal	Anodized Al	Epoxy	Epoxy	Epoxy	Epoxy (top only)	Epoxy	Metal	Epoxy Edge Seal	Epoxy Glob
Cost per pin relative to 120 QFP	3	7	2.2	4	0.8-1.0	5	3-4	3-5	1.0-1.2	0.7-1.0	1.5	1.2 - 1.3	3.5-4.5	0.1	$0.2-0.4$
Pin Pitch (mm)	2.54	2.54	2.54	1.27	$\begin{gathered} \hline 0.65,0.8 \\ 1.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 0.5,0.65 \\ 0.8,1.0 \end{array}$	$\begin{gathered} \hline 0.5,0.65 \\ 0.8,1.0 \end{gathered}$	0.5, 0.65	0.5	0.5, 0.4	$\begin{gathered} 0.25,0.3 \\ 0.4,0.5 \end{gathered}$	1.5, 1.65	1.5, 1.65	0.075, 0.1	0.75-1.0
Area per pin (sq.mm/pin)	6-10	6-10	6-10	3-8	4-8	4-8	4-8	4-8	4.7-6	3.7-4.5	0.3-1	2.9-3.9	2.9-3.9	0.2-0.4	0.5-0.8
Mounted height (mm)	3.5	4	4-6	5	3.8	3.8	3.8	3.8	3.8	1.5-2	1-2	1.6-1.9	1.6-3.0	$0.6-1.0$	$0.5-1.5$
Inductance (nH)	6-10	1-10	5-10	3-8	8-10	8-12	4-10	4-12	8-12	4-8	3-10	3-11	3-8	<1	<3
Capacitance (pF)	7-10	10	1-2	7-10	1-2	7-10	1-2	1-2	1-2	1-2	1-2	1	5-8	<1	<1
SSO performance	3	1	2	1	2	2-3	2	2	3	3	3	2	1	1	2
High Frequency performance ${ }^{\text {a }}$	4	3	3	1	2	3	2	2	3	3	2	2	2	1	2
Still-air thermal perf. $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	25-35	12-16	25-50	14-23	45-70	25-35	16-23	16-23	38-45	38-45	30-50	23-30	20-25	15-30	15-30
300 LFM thermal perf. (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	15-24	4-9	20-40	12-15	38-48	18-24	13-18	15-18	28-38	28-38	20-35	15-18	12-18	10-18	10-18
Conductive thermal performance	2	1	3	2	4	3	2	2	4	4	1-3	2	1-2	1	1-2
Manufacturability ${ }^{\text {c }}$	1	1	1	4	2	2-3	2-3	2	$2 \cdot 3$	4	3-4	4	4-5	4-5	3
Board Testability ${ }^{\text {d }}$	1	1	1	3	2	3	3	3	3	3	4	3	3	4	3
Repairability ${ }^{\text {e }}$	2	2	2	1	1	1-2	1.2	1-2	1-2	1-2	2-3	1	1	3	3
Maturity ${ }^{\text {f }}$	M	M	M	L	M	S	S	S	S	G	L	N	N	L	S
Use ${ }^{9}$	W,M	W, M	W, I	W	W,C,I,T	M, W	W,T	W, T	C,W	C,W	C,M	C, W, T	M, W, T	W,M	C,W
Production Volume ${ }^{\text {h }}$	M	L	M	VL	VH	L	1	L	M	H	L/M	H	L	L	H

a. $1=$ Superior, highest performance applications, $2=$ Good, $3=$ OK, but limited, $4=$ Not Suitable in average situation
b. $1=\angle 4^{\circ} \mathrm{C} / \mathrm{w}, 2=\angle 8^{\circ} \mathrm{C} / \mathrm{w}, 3=\angle 16^{\circ} \mathrm{C} / \mathrm{w}, 4=\angle 24^{\circ} \mathrm{C} / \mathrm{w}, 5=\angle 32^{\circ} \mathrm{C} / \mathrm{w}$
c. 1=Well understood mature process, 2=Process mature $3=$ Process widely known, 4=Process in adoption, 5=Process in development
d. 1=Probe and/or Socket testable, 2=Probe testing only, $3=$ limited probe test on select pins or testpoints, $4=$ pins/contacts not accessable, testpoint only
e. $1=$ Easily removed and replaced, $2=$ Difficult Removal and Replacement, 3=Impractical repairability
f. $\mathrm{M}=$ Mature, $\mathrm{S}=\mathrm{Standard}$, $\mathrm{G}=$ General Adoption, $\mathrm{L}=$ Limited, $\mathrm{N}=\mathrm{New}$ Technology, Lab Environment
g. $\mathrm{C}=$ Consumer, $\mathrm{W}=$ Workstation/Computer, $\mathrm{I}=$ Industrial, $\mathrm{M}=$ Military, $\mathrm{T}=$ Telecommunications
h. VL=Very Low(Prototyping/Engr. Lab <1K/yr), L=Low(<10K/yr), M=Medium(<100K/yr), H=High(<1M/Yr), VH=Very High(>1)

JOIN FORCES WITH TEXAS

INSTRUMENTS

To Beat Your

COMPETITION!

ACME
ENGINEERING

Play to Win...

Overwhelmed by DSP product design problems? Then team up with TI as you Beat Your Competition through Total Integration!

READ AHEAD AND PLAY TO WIN!

4ou're the Chief Design Engineer at Acme Manufacturing Company and you' ve just come up with a really revolutionary idea for a remarkable new DSP-based widget. Studying your design plan, you realize that this isn't a job for novices. You need the extensive DSP product design experience that only Texas Instruments can deliver through its Total Integration program.

To help you blaze the Product Design trail, the TI Design Team has created a Product Development Cycle puzzle. So, join the fun and play along, by cutting out and filling in the missing pieces on the game board on page 2 , using clues spread throughout the text. Then send in your design to qualify for the grand prize.

In completing the puzzle, you'll learn how working with TI, you can create a winning product every time!

Ready, Set, Go!
To beat your competition to market you need a well marked path that leads you from your idea to the finished product. You realize that you must get some technical advice immediately to get this project rolling. You can call in a consultant to help you develop your idea, or you can call the Texas Instruments hotline at (713) 274-2320 and speak with an expert in DSP. Or fax your question to (713) 274-2324 in the U.S.
or 33130701032 in Europe.
So, beat your competition out of the starting block by making the best choice! Find the game piece that corresponds, and paste the piece at Position 1 on the game board.

Test the idea

Talking to the technical advisor was a great help, but you'll have to pick up the pace if you want to stay in front of the competition. As you zip along the path that transforms your general idea into a distinct concept, you know that you don't want to get bogged down learning how to use new evaluation tools. TI's U.S.\$99 DSP
Starter Kit (DSK) is perfect for the first-time evaluator. The DSK is a card that connects to your PC. It comes with its own DSK assembler, debugger, onboard DSP and several example programs.

On the other hand, your design may require more extensive evaluation. In that case, consider using TMS320

Evaluation Modules

(EVMs) for device evaluation, benchmarking and limited system debugging. An EVM is a half-size PC card that lets you benchmark and evaluate DSP code in real time for less than U.S. $\$ 1000$.

So you've reached another decision point. Pick the proper piece and stick it on the game board at Position 2. Your competition doesn't have a chance if you keep making such smart decisions!

If you need technically superior DSP advice, the TMS320 hotline is staffed with $T I$ application experts.

The TMS320 hotline offers applications assistance to answer your questions about development tools, documentation and upgrade options.

To reach one of TI's DSP application experts, simply call (713) 274-2320. (In Asia, contact your local sales office.)

The TMS320 Technical Hotline can also be reached by sending a fax to (713) 274-2324 or 33130701032 in Europe.

Need a helping hand? Get a third party to build a TMS32O-based add-in board for your system..

You don't have to tackle this project alone. Third parties offer TI DSPbased products for an array of general and specialized hardware solutions.

TMS320 Evaluation Modules (EVMs) are low-cost development systems that you can use for evaluating devices, benchmarking your design and performing limited system debugging.

For less than U.S. $\$ 1000$, the EVM lets you single-step through your software to locate breakpoints and debug your code. You can upload and download from your host computer or access trigger data and provide control signals.

The TMS320 Bulletin Board Service (BBS) gives you on-line access to the most current DSP technical and application information. All you need is your computer and a modem.

Go on-line with TI to update your computer files with the latest DSP application information and source code or to exchange ideas and solutions with other TMS320 application designers. Just call (713) 274-2323 or 44234223248 in Europe.

DSP consultants offer design services for the TMS320 family that will cut your development time and speed your product to market.

Independent DSP consultants can provide expertise in specialized design areas such as speech encoding, vector quantization and system analysis.

DSP consultants can make your design an anxiety-free process if they have the expertise your design team lacks.

If you are a first-time TMS320 evaluator, the DSP Starter Kit (DSK) is a PC board that includes everything you need to test and benchmark your application. This kit makes it simple to develop code on your PC and download it to the DSK for execution.

Don't re-invent the wheel! Cut your development time to the minimum by tapping the design savvy of an independent DSP consultant.

This kit comes with its own DSK assembler, debugger and several example programs. You can even build daughter boards that plug into the DSK, because the board routes all device signals to easily accessible headers.

Total Integration clears your

APick a Chip s you begin to use the tool you selected, you start to consider the assortment of DSP chips you can use to execute your design. TI offers a family of DSPs that feature more than thirty 16 - and 32 -bit devices. Based on an advanced Harvard architecture, TMS320 DSPs maximize system performance by executing multiple operations per machine cycle. And internal parallelism supports an instruction set that contains DSP-specific commands. So a single instruction -such as a multiply/accumulate/data move-can cause several operations to execute simultaneously. The competition will never catch you once you've tapped into that kind of computational power.
TI offers five generations of 16 bit fixed-point and 32 -bit floatingpoint DSPs for a wide variety of price/performance points. With volume prices for 16 -bit chips starting as low as U.S. $\$ 3$, you can get an edge on the competition if price is a major marketing factor. Then again, your product can command a solid performance advantage if you opt for the 275 MOPS/50 MFLOPS speed of a floating point processor. On the other hand, a low-power 3 -volt fixed-point DSP would be a perfect choice for a battery operated design. Or maybe you want to optimize your design with a customizable DSP (cDSP) from TI, allowing you to integrate a DSP core with other components in a single chip.
Considering the options and benefits, you pick your DSP fixed-point or floating-point engine. Select the piece that

corresponds to this decision, and glue it to the game board at Position 3. You smile smugly as you imagine the competition choking on your dust as you blaze a trail to corporate glory!
You leave your office-congratulating yourself along the wayand look up to see your boss down the hall. Running to catch up, you tell her your general idea in order to get some feedback. She thinks you have a great idea, but you need to prove that the concept will work. And she wants to schedule a product demo... immediately.

So Prove it!

Don't panic! Just assemble your technical team. You call a meeting of your best engineers and tell them about your idea. Your excitement is contagious and soon you've accumulated the

wyy hroughthe dexignmaxe

suggestions and observations you needed to make the product demo happen within your boss' timetable. You can practically hear your competitors quaking in their boots.

But, you realize that you may need to schedule some training for your team by the experts at TI. You can call (800) 336-5236, x3904 (or fax 498161804010 in Europe) to find out when the next hands-on DSP training workshop will be held. Or perhaps you should call in a consultant. After all, more than 100 third-party vendors and DSP consultants offer expertise in areas ranging from speech encoding to vector quantization to system analysis.
Then again, Tl's bulletin
board (BBS) can provide some down-loadable software
algorithms to get your team moving in the right direction. You can call (713) 274-2323 (or call +44 234223248 in Europe) to access the BBS and download application information and source code for the project. Maybe you can exchange information with other BBS users about the host of third-party products that are available for TI's DSP family.
And you may have to get some advice to figure out which user's guides and textbooks will let your people validate the concept in the shortest period of time.

DON'T GET LOST IN

A FOREST OF INFORMATION.
If you need them, the experts at TI can help you narrow your options. Weigh the benefits of each service and make your decision by pasting the proper piece onto the game board just after the proof of concept at Position 4. You begin to consider how nice the title Vice President will look on your business cards.
But just as you place the game piece on the board, your telephone rings. It's your boss, but she's not offering you a promotion. She suspects that the company's arch rival is working on a similar design concept. To make sure that your product is the first (and the best) on the market, you're going to have to pick up your pace and verify every development step.

The race is on!

For as little as U.S. $\$ 3$ you can plug the power of a fixed-point 16-bit DSP into the heart of your system. Reach maximum speeds with device cycle-times as fast as 25 ns for 40 MIPS operation. Or choose a 3 -volt version for battery-powered applications.

If an off-the-shelf DSP doesn't provide the level of integration your application demands, our customizable DSPS let you reduce power consumption, board space and system cost while maximizing performance.

If your design team prefers the ease of programming and code portability offered by a high-level language such as C or Ada, select compilers and programming tools to optimize your code and simplify your software development task.

TI offers a library of software algorithms that cover a wide range of DSP functions, including speech recognition, modems, image coders and audio coders.

Tl offers a Custom Manufacturing Service to meet your manufacturing needs when your in-house capability can't meet the volume-production capacity that your hot new product will require.

By eliminating the need for dedicated microprocessors, TMS320 DSPs offer the telecom designer inherent system flexibility, increased channel capacity and lower system costs.

TMS320 floating-point DSPS are designed for multiprocessing at a 320 MBPS interprocessor data-transfer rate. This kind of processing power gives your imaging and graphicsintensive computer applications state-of-the-art throughput.

When cost-sensitivity is a major design constraint, you can turn to the TMS320 fixed-point DSPs to give you the power for speech I/O, digital recording, and sophisticated control functions for as little as U.S.\$3.

Buzzle pieces

When processing power is critical to your application's success, select a 32-bit floating point DSP. Single-chip performance can reach 275 MOPS and 50 MFLOPS, great for applications such as real-time control and multimedia.

With five generations of 16-bit fixedpoint and 32-bit floating-point DSPS available, you're sure to find a device that meets the price/performance needs of almost every application.

If your manufacturing capabilities are sufficient for volume production, remember to get your manufacturing and production people involved in the design process at an early stage to avoid potential problems.

Need to perform numerical or robotic control? How about security access or power-line monitoring? TMS320 DSPS provide the speed for real-time control that meets industrial requirements.

The TMS320 DSPS are available in military versions, and an Ada compiler provides support for designing your military applications.

When you require closed-loop control, turn to the TMS320 family of DSPS. They will provide the processing power you need for power-train management, body and chassis control, antitheft security and vibration reduction.

The other guss neererhad a chance..

BRING IN THE SUITS our team has been working feverishly to come up with a product demonstration for the marketing and production folks. The big day arrives and as you unveil your brainchild, the department heads cheer! Marketing
or DSK to keep your DSP development entirely in-house. Well, you have a lot to choose from, so pick your playing piece and place it on the game board at Position 5.

As you rise to leave the room, your boss pulls you aside. She hasn't been able

assures you that this will be the hottest product the company has ever pro-duced-if you can do it while meeting the cost goals they've established. Production observes that the only way to meet that cost is to keep the design as simple and uncluttered as possible.

You may need some help along the way as you finetune your product. You can turn to one of TI's many design centers for ideas so that you can turn your new baby into a lean, mean DSP machine. Or you can select a third-party developer that has a board you can use in your system to save time. Then again, you can always use an EVM
to find out the status of the competition's design, but she knows that they're trying to rely solely on in-house expertise. You smile as you consider the world-class team of experts and advisors you've assembled through TI's Total Integration concept. Which expert will you consult with next? The hotline, BBS, a third party developer, a consultant, or a TI design center? Make your choice and place the playing piece on the game board at Position 6. Nope, the competition doesn't have a chance!

TI speaks

YOUR LANGUAGE
You need to decide whether to program your DSP using
assembly code or a highlevel language (HLL) such as C. If you need to keep the coding as compact as possible, the PC-based TMS320 macro assembler/linker converts TMS320 assembly language source code into executable machine code. On the other hand, you may prefer to program in C to maximize code portability. The TMS320 C compilers perform local and global optimizations that improve code efficiency.
You weigh your options, keeping in mind that the competition has to make the same choice. Choose the appropriate game piece and stick it on the design path at Position 7.

PICK THE BEST PARTS

Next you need to select the system components. When it comes to ICs, TI can supply your design team with the memory, logic and linear chips it needs to build a working prototype of the product. Then your team can clean up any loose ends by using an Evaluation Module, obtaining an XDS510 in-circuit emulator, or getting a third party development tool. Pick the game piece that meets your needs and paste it at Position 8.

Build it TO GO

It's finally time to fine-tune the prototype into a manufacturable product. Manufacturing and Quality Assurance become more involved at this step to ensure that the items will roll efficiently off the production line. Marketing and Production make sure that the criteria they established at the product demonstration are still valid. Now that the product is a reality, you can
decide whether your usage volume will allow you to use a customizable version or a standard DSP.
With ASIC-like ease, you can turn your design into a custom chip and speed your ${ }^{\prime}$ way to market dominance with increased performance. TI's customizable DSP (cDSP) capability lets you tuck a board full of components into a single chip. Combine a TMS320 DSP core with RAM and ROM modules, peripherals, analog, and ASIC logic to reduce your board space, power dissipation, system noise, and overall cost while increasing reliability and performance levels.
On the other hand, a standard DSP may better suit your needs. Regardless of your choice, you know that TI's products and Total Integration savvy can help you make your design the best it can be to keep you ahead of the competition. Make your decision and stick the game piece at Position 9.

One more choice...

Your final decision is where to manufacture your product. You can build it in-house if you have enough production capability. However, TI also offers custom manufacturing services that can accommodate your needs. Pick your game piece and complete the product-development path at Position 10.

TA-DA!

Now you're ready to introduce your product and show it off to the whole world. So tell us...what kind of product is it?

WIN A TI/EDN DSP Product Design T-SHIRT!
Complete the puzzle and mail your entry to get your very own:DSP Product Design Challenge shirt. It's stylish, it's comfortable, and it will let everyone know that you're a savvy engineer who knows the benefits of TI's Total Integration.

Grand Prize: Texas
Instruments
Travelmate Color
Notebook Computer
One lucky DSP product designer will win the ultimate blend of 486 power, portablility, and color.
Enter today, because YOU may be the winner of a TI TravelMate 4000 E WinDX2/50 Active Matrix Color Notebook computer! (See contest rules for details.)

Find the game piece that reflects the market your product will address: automotive, military, consumer electronics, computers, communications, or industrial. Paste that piece in the product box at Position 11 and prepare to enjoy the fruits of your labor! You succeeded in beating the competition, achieving corporate hero status and creating a wildly successful product because TI's Total Integration capabilities helped you develop your Terrific Idea!

PENNSYLVANIA Blue Bell (215) 825-9500 PUERTO RICO Hato Rey (809) 753-8700 UTAH Salt Lake City Salt Lake City
(801) $466-8972$ WASHINGTON Redmond (206) 881-3080

WISCONSIN
Waukesha
(414) 798-1001

CANADA

Nepean (613) 726-1970 Richmond Hill (416) 884-9181 St. Laurent (514) 335-8392

ARGENTINA Buenos Aires 541/ 748-3699

AUSTRALIA
Melbourne
8 255-2066
Sydney
Sydney
$2887-1122$
BELGIUM
Brussels
(02) 2423080

BRAZIL
Sao Paulo
DENMARK
Ballerup
(44) 687400

FINLAND
Espoo
(0) 802-6517

FRANCE
Velizy-Villacoublay
(1) 30701003
GERMANY
Freising
(49) 8161 80-0
Hannover
(49) 511904960
Ostildern
(49) 711 34 030
HOLLAND
Amsterdam
(31) 20 545 0600
HONG KONG
Kowloon
(81) 977721111
HUNGARY
Budapest
(36) 1 269 8310
IRELAND
Dublin
(353) 1781677
ITALY
Agrate Brianza
(39) 3963221
Roma
(39) 66512651
JAPAN
Tokyo - Kita-Aoyama
Minato-Ku
(81) 03 498-2111
Tokyo - Shibaura,
Minato-Ku
(81) $03 ~ 769-8700$
Tokyo-Akebono-cho,
Tachikawa-shi
(81) 0425-27-6760
Chuou-ku, Osaka
(81) 06 204 1881
Nakamura-ku, Nagoya
(81) 052 583-8691
Kanazawa-shin Ishikawa
(81) 0762-23-5471
Matsumoto-shi, Nagano
(81) 0263-33-1060
Yokohama-shi, Kanagawa
(81) 045-338-1220
Shimogyo-ku, Koyoto
(81) 075-341-7713
Kumagaya-shin, Saitama
(81) 0485-22-2440
Kitsuki-shi, Oita
(81) 09786-3-3211

KOREA
2-551-2800
MALAYSIA
Kuala Lumpu 32306001

Colonia del Valle
639-9740
5 639-9234
NORWAY
Oslo
02155090
PEOPLE'S REPUBLIC
OF CHINA
Beijing
(86) 1500225
PHILIPPINES
Makati, Manila
(63) 28176031

PORTUGAL
Moreira da Maia
(351) 29481003

SINGAPORE (\& INDIA
INDONESIA,
THAILAND)
(65) 3907100

SPAIN
Madrid
(91) 3728051
(93) 3179180

SWEDEN
Kista
(46) 87525800

SWITZERLAND
Dietikon
(41) 17442811

TAIWAN
Taipei
(886-2) 3786800
UNIIED KINGDOM
Bedford
(44) 0234270111

Eden Prairie
(612) 828-9300

Texas Instruments/EDN DSP PRODUCT DESIGN
Challenge

1. NO PURCHASE NECESSARY.
2. The sweepstakes is open to any individual who satisfies the following crite ria: (i) he/she is at least 18 years of age; (ii) is a resident of the United States, its territories and possessions or of Canada (excluding posidents of hem France Germany, und those Asia Pacific countries to which EDN Asia acific countres to which EDNAsia New Zealand The Philippines, and Singapore): and (iii) who completes he "TEXAS INSTRUMENTS/EDN DSP Product Design Challenge" puz le Employees (and their immediate families and household members) of Reed Elsevier Inc Texas Instruments ncorporated its subsidiaries and affil ates, and McCann Erickson are not eligible.
3. To enter, contestants should complete i.e. puzzle must be completed in its entirety, in addition to name and adress portion of form) the official Product Design Challenge" entry Product Design Challenge entry obtained by sending a self-addressed stamped envelope (no stamp required
for residents of Vermont, Washington, and france) to EDN, c/o Cahners Pubishing Company, 275 Washington street, Newton, MA 02158-1630. Entries may be handwritten or typed. Instruments by March 31, 1994.
4. All entries become the property of TEXAS INSTRUMENTS and will not be acknowledged or returned. EDN and TEXAS INSTRUMENTS, their agents and others working for them or on their behalf, will have the right to photograph the grand prize winner, and entry constitutes permission to use of his/her name, picture, likeness and city and state of residence in advertising for no additional compensation.
5. Only one entry per person will be permitted.
6. All contestants who submit a completed (as defined in paragraph 3 above), official 'TEXAS INSTRUMENTS/ EDN DSP Product Design Challenge" entry form will receive a gift valued at no less than U.S.S4.50. Contestants who submit a completed official entry form will also be eligible to participate in a random drawing to qualify for a grand prize of a Texas Instruments Active Matrix Color Notebook computer (Travel Mate 4000 E WinDX2/50, value: U.S. $\$ 5,000.00$).
7. There will be one random drawing for he grand prize and it will take place under the supervision of Texas Instruments. In order to be eligible for the selected by the random drawing must first correctly answer a mathematical skill-testing question to be administered by mail. Participants agree to be bound by these rules and all decisions of the judges, whose decisions on all aspects of this drawing are final. The winner will be notified by mail by May 31, 1994, and may, at EDN's and Texas Instruments sole discretion, be required to execute an affidavit of eligibility and compliance with contest rules and release of liability. Odds of winning will depend on the number of eligible entries received. EDN AND TEXAS INSTRUMENTS MAKE NO WARRANTIES WITH REGARD TO THE PRIZES. Prizes are not transferable. There will be no substitutions for prizes, and prizes are not redeemable for cash value, but Texas Instruments reserves the right to substitute prizes of equal or greater value.
8. EDN and Texas Instruments shall not e responsible for printing errors or for lost, late or misdirected mail. Entries that are printed by machine, mechanically reproduced, mutilated or tampered with, illegible, late or incomplete are not eligible.
9. Grand prize must be claimed by May 31, 1995. Failure to execute within 14 days of receipt or return of notification or prize as undeliverable may result in forfeiture of prize and an alternate potential winner being elected at the sole discretion of Tex Instruments.
10. Contest rules are governed by U.S. law. The sweepstakes is void where prohibited or restricted by law in the United States and in all foreign counries and is subject to all foreign and United States Federal, State, and Local laws and regulations. All taxes applicable customs duties, including import/export regulations, and other obligations on grand prize are solely he responsibility of the winners. The grand prize is subject to reporting for tax purposes.
11. To learn name of grand prize winner, send a self-addressed postage-paid envelope by May 31, 1995 to "TI/EDN DSP Product Design Challenge," Cahners Publishing Company, 275 Washington Street, Newton, MA 02158-1630, U.S.A.

Top

Eluke meters are your top choice for accuracy, reliability, and performance. They offer more combinations of features and functions than any other meters on the

Fiuke 97 ScopeMeter ${ }^{*}$

to any in the industry. When it's up to you to get the job done, look to

distributor nearest you.

FLUKE 79 FLUKE 87 8060A FLUKE 97
The Fluke meters listed above feature diode test, auto and manual range,
continuity, and frequency measurements.

Lo-Ohms measurements	True-rms	True-rms	True-rms ac, or dc \& ac
Capacitance measurements.	Capacitance measurements	$\begin{aligned} & \text { Resistance } \\ & \text { measurements to } \\ & 300 \mathrm{M} \Omega \end{aligned}$	Scope, Meter or simultaneous meter and scope display
Smoothing ${ }^{\text {TM }}$	Duty Cycle measurements	High-impedence DC voltage function	Dual Trace 50 MHz bandwidth
4000 count display	20,000 count high resolution display	$\begin{aligned} & 20,000 \text { count } \\ & \text { display } \end{aligned}$	40 nanosecond glitch capture
$\begin{gathered} \hline \text { Basic accuracy } \\ 0.3 \% \end{gathered}$	Offset/Relative reterence	Offset/Relative reference	Store waveforms and setups
.	1 millisecond Peak Hold	dB measurements	dBm, dBV, dB Relative and Audio Watt calculations
	$\begin{gathered} \hline \text { Basic accuracy } \\ 0.1 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Basic accuracy } \\ 0.04 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Basic accuracy } \\ 0.5 \% \end{gathered}$

John Fluke Mfg. Co., Inc.
P. O. Box 9090, Everett, WA 98206

For more information call:
(416) 890-7600 from Canada
(206) 356 - 5500 from other countries
©Copyright 1992 John Fluke Mig. Co. Inc. All rights reserved. Ad No. 00282

ASIC PACKAGES

repair, and, if the component is a difficult to remove and the board is damaged, the accumulated costs can be substantial compared with the original costs of the package.

Electrical performance is just as important as a package's manufacturability. Although most new-package development focuses on density, electrical characteristics remain the most important consideration. The most efficiently designed host board cannot overcome a package's poor electrical characteristics.

Capacitance, particlarly interlead capacitance, couples signals from one lead to another, and, thus, unwanted signals can appear on adjacent pins. The high-frequency content of
high-edge-rate signals in high-performance systems couples more readily than that of slower or controlled edge rates. Design techniques that reduce lead-to-lead capacitance are helpful. Using ground planes to reduce capacitance is effective but costly. You can isolate sensitive input signals by grounding adjacent pins.

Capacitance on power leads is desirable because it maintains constant voltage. However, increasing capacitance adds cost. It is most practical to add capacitors only to those applications that are insensitive to cost.
Inductance is typically not a problem on signal leads of lowcost packages at frequencies lower than several hundred

Glossary of package types

- Controlled-collapse chip connection (C-4): Similar to the plastic ball-grid array's (PBGA's) solder-ball method but at a microscopic level, the C-4 includes balls or bumps that attach to the IC, mating to a matching grid of pads on the substrate. A complex process, C-4 requires relatively expensive substrates yet has lower RLC properties than those of any other package. C-4's balls can connect anywhere on an IC requiring a connection, resulting in very efficient power connections and optimum signal isolation and skew management. Although not in widespread use, this approach can also act as a substitute for wire bonding within a package.
- Ceramic ball-grid array (CBGA): Similar to a PBGA but with a ceramic substrate, a CBGA has no pins, so it offers lower cost than that of pin-grid array (PGA). One significant drawback of large CBGAs is the need to reduce shear stress on the balls by matching the thermal coefficient of the board to the ceramic package. This is not a problem in the plastic version due to the relatively small difference between most common pc-board materials and the BT resin/glass substrate of the package.
- Chip on board (COB): This method mounts an IC directly on a pc board, a reasonable approach for extremely low-cost assembly, such as that used in con-sumer-game applications. An epoxy glob protects chip and wire bonds, which is adequate for this type of application. This technique does not suit high-reliability commercial systems.
- Ceramic pin-grid array (CPGA): This package is popular because it offers low thermal resistance and a well-understood manufacturing process. The process involves attaching gold-plated pins to an alumina substrate in a regular pattern on the bottom surface of the package. Several conductor layers, usually tungsten, connect pins to gold-plated, wire-bond fingers. Aluminum wire bonds connect to the die, which is bonded into a gold-plated depression in the substrate. Cost depends primarily on the size of the substrate area and the number of interconnect layers. The high dielectric constant of the ceramic substrate results in a relatively large capacitance at each pin; inductance varies widely from pin to pin, depending on the routing of the interconnect. You need
to select power leads for low inductance. The package's thermal resistance is low, and you can further reduce it by using a heat sink.
- CPGA with planes: This method is the same as a CPGA but with additional layers dedicated to multiple power planes. More layers result in higher cost but exceptionally low inductance. The addition of a metal slug for die attachment in a cavity-down configuration further enhances thermal resistance. A top-mounted slug can also directly attach to a heat sink for the lowest possible thermal resistance. This is the most expensive single-chip package in commercial use.
- Ceramic quad flatpack (CQFP): A ceramic cousin to the plastic quad flatpack (PQFP), the CQFP comes in two basic forms: the side-braze-lead version, more closely related to a PGA in construction, and the ceramic-quad version, constructed with a lead frame sandwiched between two ceramic layers. Manufacturers typically use CQFPs for prototyping ASICs; because of its high cost, the package does not enjoy wide use in commercial products. It offers good thermal performance.
- Multichip module (MCM): Designers have adapted conventional form factors, such as QFP and PGA, to hande multiple ICs. MCM-L, a relatively low-cost technique, comprises a pc-board substrate similar to Micro Cool. The technique involves wire bonding the ICs with gold wires and encapsulating them with epoxy like a PQFP. Cost is typically slightly higher than the cost of the sum of the plastic parts; however, the lower space requirements and the superior electrical performance of the MCM-Ls justify their expense. For even better thermal and electrical performance, the MCM-D, with a ceramic substrate, is available at much higher cost.
- Micro Cool quad flatpack (Micro Cool QFP): This package has the same form-factor as that of a PQFP but with the die mounted on a metal slug surrounded by a pc-board substrate with an integral lead frame. The IC connects to a lead frame with gold wire bonds and is encapsulated using a PQFP mold. The package offers better thermal performance than that of a PQFP, very good electrical performance, and lower capacitance and inductance than a PQFP. The package cost is higher than
megahertz, yet it can be devastating on power leads on all packages, even at relatively low frequencies. Switching outputs generate voltage spikes proportional to the rate of change in current. Load capacitance, rather than resistance, presents a heavy load during the initial change of a signal level, and only the drive transistor's low-source impedance limits current. Several outputs switching simultaneously need a current that may cause spikes of several volts at the bond pads of power leads for those drive transistors. The spikes raise the ground or drop the supply level, resulting in signal-level shifts on all pins sharing power and ground leads.

Paralleling several power pins, especially on the ground
side, is a reasonably inexpensive method of reducing powerlead inductance. ASIC designers have developed a healthy respect for manufacturers' power and ground rules, which may call for dedicating 20 to 30% of the leads to power and distributing them evenly around a chip that's carefully chosen for minimum inductance.

Another way to address both capacitance and inductance problems is to use power planes. Grouping several wire bonds to a common broad-package bond post and having a few package pins share the group can be effective in lowering inductance. The most effective solution is to place several parallel and contiguous planes close to each other, providing large
that of a PQFP and lower than that of a PGA. The package's construction allows designers to add power planes to larger sizes.

- Metal quad flatpack (MQFP): Similar to the CQFP, the MQFP has anodized aluminum instead of ceramic forming the sandwich. The package offers lower cost than that of a CQFP, very good thermal characteristics, lower lead capacitance than that of a PQFP, and similar inductance to that of a PQFP.
- Plastic ball-grid array (PBGA): This new surfacemounting technique uses a thin pc-board substrate, conventional wire-bond die attachment, and epoxy encapsulation on the top surface. PBGAs look like a PGA without pins; the key difference is that a PBGA substitutes the pins with tiny solder balls that collapse during conventional reflow processing. Pin density compares with that of a PGA, yet cost is more in line with that of QFP. The board assembly yield is dramatically better than that of a QFP, especially a fine-pitch QFP. Motorola offers this technology for ASICs under the name Over Molded Pad Array Carrier (OMPAC).
- Plastic pin-grid array (PPGA): This package is a PGA in which a multilayer pc board replaces the ceramic substrate of the PGA. The IC is wire-bonded with gold leads and encapsulated in epoxy. Some configurations have a metal lid. This offers a much lower cost than, lower lead capacitance than, and comparable inductance to the CPGA. Adding power planes adds cost. The device also comes in a cavity-down, heat-slug version to achieve high power dissipation but also at much higher cost than that of the basic configuration.
- Quad flatpack (QFP)/plastic QFP (PQFP): Ubiquitous in its molded-plastic form, this package offers a low cost per pin for 120 to 208 leads. The EIA JEDEC-metric form factor dominates ASICs in these packages. The package typically dissipates IW using low airflow. It also offers relatively low lead capacitance; however, because the package uses corner leads, inductance is a problem, especially in larger sizes.
- Surface-mounted PGA (SMPGA): This package is the same as a conventional PGA, except that the leads are very short and are soldered onto pads without a through-hole.

It allows much higher pin density for the same area as a PGA; 400 pins fit into 1 square in. The cost of the package is roughly the same as that of a same-area PGA. Solder joints are a concern, although manufacturing is compatible with that of other surface-mount packages.

- Tape-automated bonding (TAB): These packages offer the highest density lead frame and are similar in footprint to that of the QFP. TAB packages are composed of layers of copper and polyamide film. A TAB package's lead frame attaches to an IC via bumps of solder or gold on the pads. The package attaches to a pc board via hot-bar reflow. A thin epoxy coating protects the IC interconnection. TAB's cost is not very high for the pin density, but manufacturing costs are higher than those of any other package type, a significant barrier to use. The die-to-board interface drives TAB's thermal characteristics; compared with a QFP, TAB's capacitance is low, and inductance is comparable. A variation is to mount the IC Flipped-over, bringing the TAB leads directly down to the pc board with little or no fan-out. This mounting results in the lowest possible inductance and capacitance of any "packaged" IC but places a further burden on the manufacturing process, making the lead pitch extremely tight.
- Thin quad flatpack (TQFP): These fine-pitch parts offering radically lower height than that of other packages suit applications in portable and handheld products and disk drives with low-height restrictions. TQFPs' body sizes are smaller than those of QFPs, and capacitance and inductance are also lower. However, thermal resistance is significantly higher in TQFPs than in QFPs. Construction is basically the same as that of the QFP.
- Very fine-pitch PQFP (VQFP): This package has a $0.5-\mathrm{mm}$ or less lead pitch and a body size the same as that of a PQFP. The package accommodates up to 304 leads on a $40-\mathrm{mm}$ body. It typically supports $256 \mathrm{I} / \mathrm{O}$ signals; power and ground take up the remaining signals. The package proves difficult to assemble when designs are moving up from a PQFP. The package is not significantly different from a PQFP in inductance, capacitance, and thermal resistance at the same body size. Cost is significantly higher than that of a PQFP, especially when including pc-board manufacturing-cost increases.

ASIC PACKAGES

plane-to-plane capacitance and a lowinductance and -resistance path for power. The high cost of this solution may be the only alternative in high-pincount packages where paralleling of leads has a detrimental effect because of large-package geometry and poor selection of low-inductance leads.

The thermal characteristics are another vital area to consider when selecting a package. The least expensive plastic packages can handle as much as 1 W of dissipation without exceeding an acceptable junction temperature. With the rapid increases in density and clock speed, it is increasingly difficult to keep designs below this level.

A chip's junction temperature changes as the chip flows through a series/parallel combination of thermal resistances between it and its cooler environment. However, there are ways to control these temperature fluctuations. For example, moving air can effectively carry heat from the surface of a package. Increasing the surface area, the velocity, or the density of the air also improves cooling. Unfortunately, the lowest cost systems use natural convection for cooling and must live with the high thermal resistance from the junction to ambient for still air.

Heat sinks are common on bipolar ASIC circuits where dissipation exceeds 5 W . Their effectiveness depends on the amount of air that a fan can direct or that convection allows to flow across the heat sink. However, designers of many current CMOS devices have avoided the use of heat sinks, primarily because they offer only 1 W or less of power dissipation. However, the high pin count and density of new designs can easily result in 2 to 3 W of power dissipation.

You can extend the thermal performance of conventional plastic packages by using a metal heat spreader within the plastic encapsulation. The spreader provides some increase in capability but is not sufficient for many designs requiring dissipation higher than 2 W .

From the perspective of the package alone, conduction cooling is more effective than convection for roughly the same price, but it relies on having physical contact with a much more expensive cold plate or other nearby lower temperature surface to encourage heat flow from the package.

Efficient conduction from a package into its surrounding physical structures that have larger surface areas to radiate and convectively transfer heat to the nearby air is quite cost effective but requires a designer to carefully coordinate package selection, board layout, and enclosure design. Inexpensive packages are likely to be the weak link in that chain.

Packages' thermal resistance from junction to ambient (Θ, JA)-an important reliability concern over the lifetime of a product-ranges from less than 10 to greater than $70^{\circ} \mathrm{C} / \mathrm{W}$ of power dissipated in still air. The PLCC offers 40 to $80^{\circ} \mathrm{C} / \mathrm{W}$. The common QFP ranges from 40 to $70^{\circ} \mathrm{C} / \mathrm{W}$. Ceramic pin-grid-array (PGA) packages at 4 to $35^{\circ} \mathrm{C}$ offer the lowest

Fig 2-The power dissipation of a 40,000-gate ASIC with 120 signal pins varies with the clock frequency. By using a 3.3 instead of 5 V power supply in the core or $1 / 0$, you can realize significant power savings, thus letting you use a less expensive package.
thermal resistance from $\theta,{ }_{\mathrm{A}}$. Plastic PGAs are 20 to $50^{\circ} \mathrm{C} / \mathrm{W}$.
Studies show that the more devices and interconnections, the greater the electrical stress and operating voltage, and the higher the junction temperature an IC has, the more likely that IC is to fail. This failure can limit a product's expected life to 3 minutes past the end of the warranty period or two days after Christmas, whichever happens first.
The responsibility of choosing a maximum allowable junction temperature lies with a system's designer. The designer sets a goal for reliability, or the corporate reliability philosophy dictates that goal. The designer then works backward to reach a junction temperature that will provide the necessary reliability. Therefore, asking a supplier: "How much will the package dissipate?" leads to the following series of questions that the designer had to ask when designing the package:

- "What is the ambient temperature and expected airflow?"
- "What is the approximate dissipation of the circuit?"
- "What is the maximum junction temperature?"

A designer must know or estimate the answers to these questions when doing the initial design and the uncertainty of the combination of the values leads to a wide range of possible required $\theta_{\text {, }}$ as much as $3: 1$ ratio. In the initial design phase, the designer can still adjust partitioning or package type.

Analytical tools for calculating power can help a designer make an accurate decision only if the designer knows all parameters. Accurate ($\pm 10 \%$) determination of an ASIC's dissipation is impossible until the circuit netlist is complete and you have a set of test vectors representing the operatingsystem stimulus. Without detailed information, only experience can lead to a good correlation between estimates and actual results because a system's switching characteristics are unique to the application's operating conditions.

Consider mechanical characteristics

Last, designers must consider the mechanical features of a package, which, although not as important as electrical and thermal characteristics, are important to the manufacturability and cost of a system.

SIMPLE SIMPLE PRICE

Replace 1 TL7705, 1 Resistor, and 2 Capacitors for Less Cost

Tell Us What Price Quote You Need!

MAX709 versus TL7705 Comparison

The MAX709 replaces four components, and protects μ Ps by asserting a continuous reset when the power fails or is turned off.

- 3V, 3.3V, and 5V Versions
- Guaranteed RESET Valid to $\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}$
- Five Reset Thresholds: 4.65V, 4.40V, 3.08V, 2.93V, 2.63V

Feature	MAXIM	TI
External Components Required	0	3
Operating Supply Current: +5 V +3 V	$65 \mu \mathrm{~A}$	1.8 mA
Power Supply Glitch Immunity	Yes	No
+5V Reset Threshold Options	2	1
+3V Reset Threshold Options	3	1
Guaranteed Min Reset Delay	Yes	No

Low-Cost $\mu \mathrm{P}$ Supervisors Replace Several Components

Part	Reset Threshold (V)	Manual Reset	Extra Comparator (Power Fail)	Battery Backup Switchover	Watchdog Timer	Active High Reset
MAX703	4.65	\checkmark	\checkmark	\checkmark		
MAX704	4.40	\checkmark	\checkmark	\checkmark		
MAX705	4.65	\checkmark	\checkmark		\checkmark	
MAX706	4.40/3.08/2.93/2.63	\checkmark	\checkmark		\checkmark	
MAX707	4.65	\checkmark	\checkmark			\checkmark
MAX708	4.40/3.08/2.93/2.63	\checkmark	\checkmark			\checkmark
MAX709	4.65/4.40/3.08/2.93/2.63					
MAX813L	4.65	\checkmark	\checkmark		\checkmark	\checkmark

FREE $\mu \mathrm{P}$ Supervisory Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample
MasterCard ${ }^{\oplus}$ and Visa ${ }^{\oplus}$ are accepted for Evaluation Kits or small quantity orders.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194. Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M-Squared, Inc., OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation: SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

ASIC PACKAGES

Today's standard surface-mount packages, such as plastic QFPs (PQFPs), provide significant challenges to the manufacturing process when lead count exceeds 160 . Most companies reach a threshold of pain when the manufacturing process becomes difficult. This threshold seems to occur at the $0.5-\mathrm{mm}$, fine-pitch level. A PQFP's geometry requires either a larger body or a tighter lead pitch to increase pin count. A 160-and a 208 -pin QFP have the same footprint but don't necessarily require the same placement accuracy or solder-paste thickness.

Tin-plated Alloy 42 (steel) is a good choice for over-0.5-mm-pitch DIPs, PLCCs, and QFPs where die-stamping tools are practical, but not a good choice for fine-pitch lead frames that are typically tin-plated, etched-copper alloy. To avoid bending these frames, you must handle them with extreme care; otherwise, you may end up with solder bridging or no connection at all. You must maintain the plane of the leads to within ± 4 mils to reduce soldering problems. Slight twists in the leads and trimming burrs can cause other nightmares in using these materials.

Package area is becoming more of a problem as designers of surface-mount boards face the double problems of fine pitch and larger body size. Perimeter-leaded packages such as QFPs have reached a practical limit for high-volume reflow soldering with $40-\mathrm{mm}$ body size and $0.5-\mathrm{mm}$ lead pitch for a 304-lead QFP. The high-volume manufacturability constraints of package suppliers and pc-board builders dictates these size and pitch limits.

You can achieve higher pin' densities by using an area-based interconnection, such as a PGA, where you can place 500 leads in the same footprint as that of a $28-\mathrm{mm}$, fine-pitch 208-lead QFP. Unfortunately, this is a relatively expensive solution. Recent developments have modified the concept to surface mounting with short butt-joint leads or solder balls. In addition, manufacturers have dramatically reduced costs by using molded-plastic ball-grid arrays instead of ceramic PGAs.

Laptops, palmtops, and the PCMCIA-card form factor require low height and thus surface mounting. There are a variety of surface-mounting choices-from thin QFPs to tape-automated bonding (TAB) to placing chips on a board. Another solution is the multichip module, which you can fit into many plastic-package form factors.

In packaging, each standard evolved and pin count increased until area or lead pitch became too costly or technically infeasible to support in volume manufacturing. The following chart shows the evolution of packaging. The techniques in the left column led to the advances in the right column:

Discrete transistors	ICs in the DIP package PLCCs, the birth of ASICs; users can pick the package that best fits the appli- cation
PLCCs	QFPs, surface mount becomes the mode of assembly techniques
QFPs	VQFPs, fine pitch enables higher densities
QFPs, VQFPs	PBGAs and other area-based connec- tions combine with surface mounting for performance and economy

The exotic technological concepts that do not find acceptance in volume manufacturing may distract designers looking for the best solution. However, designers should support standards because end users are those driving these standards. ASIC suppliers prefer those customer requests that other customers share.

The following list offers some key things for designers to remember when applying and interpreting design constraints:

- The total cost of a package extends well beyond the cost of a component itself. The cost of the package also affects the product life-cycle cost. The best choice is not always the least expensive package.
- Improving electrical and thermal performance and thus increasing cost is necessary to achieve the highest performance.
- Integrating all components into one may result in a combination in which both the package and silicon are too expensive; that is, the cost of the whole may be more than the sum of the costs of the parts.
The following list offers some suggestions to successfully address design problems:
- Logic-design engineers should visit trade shows on sur-face-mount manufacturing techniques to learn more about assembly and partitioning issues and emerging manufacturing technology.
- Manufacturing and packaging engineers should review designs early in the design cycle and suggest manufacturable alternatives to new problems.
- Designers should plan implementation of manufacturing for new package technologies before or simultaneously with adopting a design.
- Designers should contain costs by using industry-standard, multiple-source packages.

EDN

References

1. Pivin, David, "High-Performance Mixed-Voltage Interfaces for Mixed 3.3 and 5V Systems," Presentation, Silicon Valley Personal Computer Design Conference, July 22, 1993.
2. "H4C Series Design Reference Guide," Motorola, 1993.

Author's biography

David Pivin is a technical marketing manager for Motorola's ASIC Div, Chandler, AZ. He holds a BSEE from the University of California, Irvine, and an MS in Engineering Management from Northeastern University, Boston. He has been involved in the ASIC field-as a designer, an applications engineer, and a product plannersince 1982. He is a member of IEEE and
 Mensa.

Article Interest Quotient
(Circle One)
High 589 Medium 590 Low 591

MAX699A μ P SUPERVISORS REDOCE POWER 50X'

Shortest CE Gate Delay: 10ns Max.*

Monitor battery voltage or other power line requiring low operating current and short $\overline{\mathrm{CE}}$ gate delay, with the MAX691A and MAX693A. These newest additions to our extensive supervisor family offer the most functions with the highest accuracy.

- Lowest Operating Supply current:
35μ A (MAX691A/693A) 200 μ A (MAX690A/692A)
- Shortest CE Gate Delay: 6 ns Typ., 10ns Max.*
- Highest Output Current Drive: 250mA, 1.2Ω (MAX691A)
- Lowest $V_{\text {batt }}-V_{\text {Out }}$ On Resistance: 25Ω (MAX691A)
- Most Accurate Power Fail: $\pm 2 \%$ over temp.
(MAX800L/M, MAX802L/M)

The MAX691A provides complete μP supervision including RESET \& $\overline{R E S E T}$, watchdog timing, chip-enable gating, power-fail warning, and battery-backup switchover.

Part	Reset Threshold (V)	Power-Fail Comparator	Battery- Backup Switch	Watchdog Timer	Active- High Reset	$\overline{\text { CE }}$ Protect	Batt-ON Output	Low-Line Output	ISUPPLY (μA, Typ)
MAX691A	4.65	\checkmark	25Ω	\checkmark	\checkmark	$\checkmark / 10 \mathrm{~ns}$	\checkmark	\checkmark	35
MAX693A	4.40	\checkmark	25Ω	\checkmark	\checkmark	$\checkmark / 10 \mathrm{~ns}$	\checkmark	\checkmark	35
MAX690A	4.65	\checkmark	400Ω	\checkmark					200
MAX692A	4.40	\checkmark	400Ω	\checkmark					200
MAX800L	4.65	$\checkmark / \pm 2 \%$ accuracy	25Ω	\checkmark	\checkmark	$\checkmark / 10 \mathrm{~ns}$	\checkmark	\checkmark	35
MAX800M	4.40	$\checkmark / \pm 2 \%$ accuracy	25Ω	\checkmark	\checkmark	$\checkmark / 10 n s$	\checkmark	\checkmark	35
MAX802L	4.65	$\checkmark / \pm 2 \%$ accuracy	400Ω	\checkmark					200
MAX802M	4.40	$\checkmark / \pm 2 \%$ accuracy	400Ω	\checkmark					200

* Tested with 50Ω driver and 50pF load. Some competitors misrepresent this specification by not stating test conditions +Compared with industry Standard MAX691

FREE $\mu \mathrm{P}$ Supervisory Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples
CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample
MasterCard ${ }^{\circledR}$ and Visa® are accepted for Evaluation Kits or small quantity orders.

MAXIN

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.

[^6]
EMbEDDED SYSTEMS

EMBEDDED SYSTEMS, by David Shear, Technical Editor EDN readers are RTOS aware

Last summer, I asked you if you were "RTOS aware." The reason for the question was that I had been hearing numbers that just didn't make sense. I had been hearing that many software engineers are skeptical about any advantages in using an RTOS (real-time operating system). Further, I was hearing that about 80% of RTOSs being used were developed in-house.

This little survey reveals that, as EDN readers, you are not only aware of RTOSs, you often use them.

We received 137 responses to the informal survey based on questions posed in
the August 19, 1993, Embedded Systems column. To respond, the reader had only to circle the appropriate number on the readerservice card.

The overwhelming majority, 87%, see the advantage of using an RTOS. Of those using an RTOS, 43\% use an RTOS developed inhouse, and 57% use a purchased RTOS. This is more in line with what I expected.

Only 13% saw no reason to use an RTOS. This is not surprising. Like with so many tools and methodologies, if your mind works in a way that allows you to naturally use the tools, you use them. If you think different-
ly, the tool just gets in the way. That's probably the case with the 13% of respondents who found other programming techniques to get their jobs done.

But what did surprise me was that when looking at only those who see the advantage in using an RTOS, only 13% have decided against it. I find it difficult to program without using an RTOS, but sometimes I could probably do just as well without one. It was gratifying to learn that 87% of those who understand the advantages of an RTOS actually use one.

I have a strong hunch that the percentage of those
using in-house RTOSs will decline as new products based on purchased RTOSs replace those currently in production. You now have many options for RTOSs that didn't exist a few years ago: Virtually all μ Ps offer a choice of RTOSs.

Here are the results of the survey (total response: 137):

- 18 , or 13%, saw no advantage to using an RTOS.
- 16 , or 12%, saw the advantage of using an RTOS but decided against it.
- 44, or 32%, used an in-house-developed RTOS.
- 59 , or 43% used a purchased RTOS.

DEC embeds its Alpha AXP into products for real-time applications

Beginning next month, Digital Equipment Corp will begin to introduce products for use in embedded systems. The company is basing all the products on the Alpha AXP $\mu \mathrm{P}$ family.

The reason for the move is that DEC is trying to create a full line of products for embedded real-time applicationsfrom just the $\mu \mathrm{P}$ to complete systems. The company is also planning to provide a scalable family of $\mu \mathrm{Ps}$ and operating systems (OSs). The company expects this family to span from the simplest embedded application to the largest and most complex multiproces-sor-based distributed application.

Because each $\mu \mathrm{P}$ shares the same instruction set, the new products enable you to learn one set of tools and one software architecture for all projects, thus minimizing the time needed for learning architectures and tools. More important, this consistency lets you reuse more code.

The products allow you to choose between two DEC Unix-based OSsDEC OSF/1 Unix, which has real-time
extensions, and DECelx, which is for hard real-time applications. Both OSs comply with Posix 1003.4 Draft 11.

DEC based DEC OSF/1, which is in its third release (version 1.2), on the Open Software Foundation's OSF/1. DEC OSF/1 builds on a modular Mach kernel and includes threads, memorymapped file support, and advanced virtual memory.

DECelx, an embedded local executive, provides an integrated Unix environment for software development. A host computer running DEC OSF/1 provides editing and compiling services and then downloads the runtime code to the target for execution under DECelx.

The ElxGBD Windows-based debugger runs on the host and the target and allows source-level debugging of the target. It also provides performanceevaluation tools that show timing and processor use.

The DECelx multitasking kernel uses preemption and priority-based scheduling for the predictable response required by hard real-time applica-
tions. DECelx runs on the Alpha AXP and Motorola 68000μ Ps. The DECelx runtime software includes the executive, multitasking support, network facilities, local file systems, I/O, utility libraries, and boot-ROM support.

DEC is now focusing on the high end of the market for embedded systemsapplications that require a significant amount of computing power and speed. Such applications include distributed process control, robotics, telecommunications, and medical imaging.

DEC is also planning to introduce a family of scalable, distributed OSs that will let you pick the appropriate $\mu \mathrm{P}$ and then get just as much OS as your application needs. The company will also offer VME and evaluation boards in addition to the its currently available VME, PC, and workstation boards. The VME boards will include one based on DEC's $66-\mathrm{MHz} 21068 \mu \mathrm{P}$ and one based on the company's $166-\mathrm{MHz} 21066 \mu \mathrm{P}$.
—David Shear
Digital Equipment Corp, Marlborough, MA. (800) 344-4825. Circle No. 328

The same old wave ofamag

I/Cs just won't cut it anymore - what with the emergence of pocketsized personal electronics, communications superhighways, and automobiles made more of silicon than metal. That's why National Semiconductor is introducing a bold, new generation of analog solutions guaranteed to help you meet the design challenges of the digital future. Solutions built to deliver the tightest specs you'll find anywhere. You see, we want to be the supplier you look to for all your analog needs. So, the next time you're faced with a really the page. And analog problem, give us a call. Or simply tull $^{\text {r1 }}$ the ${ }^{\text {the }} f_{\text {or }}$ yourself why we're not the old wave.

The ADCI 2062 ~ Fast sampling rate of 1 MHz ~ Ultra low power dissipation of 75 mW max. @ $+5 \mathrm{~V} \sim$ For demanding instrumentation and communications applications ~ EEPROM trimming architecture guarantees excellent DC and AC performance (Gain error $= \pm 1 \mathrm{LSB}$; 0ffset error $= \pm 1.25 \mathrm{LSB} ; \mathrm{DNL}= \pm 0.95 \mathrm{LSB} ; \mathrm{INL}= \pm 1.0 \mathrm{LSB} ; \mathrm{SNR}=69.5 \mathrm{~dB}$; THD $=70 \mathrm{~dB}$) ~ 2-channel MUX, on-board sample/hold and high-speed parallel interface
\sim For a free product sample kit and ordering information, call 1-800-NAT-SEMI, Ext. 271.

© 1994 National Semiconductor Corporation. NORTH AMERICA: P.O. Box 7643, Mt. Prospect, IL. 60056-7643 (Tel: 1-800-628-7364, Ext. 271 Fax: 1-800-888-5113). All rights reserved.

The Faster Your Designs Change,

The More You Need Mini-Fit.

Let the Mini-Fit family of power connectors help you solve the challenges associated with requalifying. You can save time and money after every design change, because requalifying is not required-each Mini-Fit family member uses the same proven contact interface design.

One of the highest density power connectors on the market, Molex Mini-Fit products are rated up to 9 amperes per circuit. For maximum design flexibility, Mini-Fit connectors can also carry signal current, having a maximum 10-milliohm contact resistance. Molex's unique spring

Verstaile Mole Nini-Fit Cannections Let You Rederigin, Without Requilifining.

beam design with high pressure, gas tight contact points makes these increased capacities possible.

The Molex Mini-Fit connector familiy meets CSA, UL and TUV standards, is available in circuit sizes 2-24 and includes:

- Mini-Fit, Jr ${ }^{\text {rin }}$ - a cost effective, high performance design for power and signal applications.
- Mini-Fit, BMI"(Blind Mating Interconnect)—a self-aligning
drawer type design that reduces assembly and field service time.
- Mini-Fit, TPA ${ }^{\text {Tw }}$ (Terminal

Position Assurance)—a polyester housing design with a secondary lock to ensure secure connections.

High power, high density Mini-Fit connectors help you push higher currents through smaller packages. By sharing the same contact interface design to eliminate connector requalification, they can help in your push to stay ahead of rapidly changing requirements.

Contact Molex today for your FREE Mini-Fit Family Reference Chart.

EDN-NEw PRoducts INTEGRATED CIRCUITS

Cypress FPGA hits $100-\mathrm{MHz}$ counters

Cypress Semiconductor has entered the FPGA fray, melding the QuickLogic FPGA architecture and antifuse technology with its own $0.65-\mathrm{mm}$ FPGA architecture. The Cypress pASIC38x FPGAs combine a proprietary antifuse technology with a single flip-flop/multiple-output core logic element and X-Y-matrix chip routing. Cypress claims FPGA clock rates up to 100 MHz for loadable counters and 85 MHz for chip-to-chip operations.

Built on a $0.65-\mu \mathrm{m}$ CMOS process, the FPGA architecture relies on an amorphous-silicon antifuse. The antifuse is blown to make a connection and has a resistance of 50 V with less than 1 fF capacitance. The relatively finegrained core-logic cells each have one register and six basic input gates. The FPGA architecture also provides a $23-$ input fan-in (input signals) and multiple outputs, including two 6 -input gates, two multiplexer terms, and a flip-flop true output. The inputs include the clock and de set and reset for the D flipflop.

The architecture provides 1000 to 4000 usable gates, and Cypress plans an architecture with larger chips and more gates to follow. Chip I/Os range from 40 to 122 pins. The architecture provides eight high-drive input cells for high-fan-out I/O inputs and two highdrive clock cells for clocking. I/O cells do not have sequential elements. Each I/O is bidirectional and is driven internally by an enabled inverter fed by a

2-input OR gate (one input negated).
The $\mathrm{X}-\mathrm{Y}$ routing resources cover the chip in a matrix with horizontal and vertical wiring channels. The vertical X channels include 16 segment wires (to local elements) and four express wires (chipwide). The vertical Y channels have four quad (to four elements) and eight segment (local) wires. Each core element has 23 inputs and as many as five outputs. Logic input and output delays are on the order of 4 nsec (signal in to chip, through element, signal off chip). The combinatorial delay through a cell is 1.9 (one load) to 4.8 nsec (eight loads). Flip-flop setup time is 2.2 nsec , with a zero-hold-time requirement. The chips have a JTAG input for scan-chain test of the logic-cell registers.

Cypress supplies a VHDL-based tool set, Warp3, for development. Warp3 supports the pASIC380 family as well as Cypress's PLDs. The kit provides VHDL top-level design and simulation, including device targeting and devicespecific timing simulation. The tool set supports both manual and automatic placement, mapping logic onto the FPGA elements. Routing, however, is fully automatic. The 7C381/2/3/4 are available now. The $7 \mathrm{C} 385 / 6$ will be available for sampling in February, and Cypress plans to begin production in March.-Ray Weiss

Cypress Semiconductor, San Jose, CA. (408) 943-2600.

Circle No. 330
QuickLogic Corp, Santa Clara, CA. (408) 987-2000.

Circle No. 331

Cypress pASIC38x FPGA family						
	$\mathbf{7 C 3 8 1}$	$\mathbf{7 C 3 8 2}$	$\mathbf{7 C 3 8 3}$	$\mathbf{7 C 3 8 4}$	$\mathbf{7 C 3 8 5}$	$\mathbf{7 C 3 8 6}$
Usable gates	1000	1000	2000	2000	4000	4000
Logic cells	96	96	192	192	384	384
/O cells	32	56	56	68	68	114
HD cells	8	8	8	8	8	8
CK cells	2	2	2	2	2	2
Package	44 -pin	68 -pin PLCC	68 -pin PLCC	$84-$ pin PLCC	$84-$ pin PLCC	144 -pin PLCC

Gate arrays mesh sea of gates with sea of I/O

ASIC design is fast approaching the complexity of system design. A single ASIC can now support designs that used to take one or more boards. The gate arrays to handle these complexity levels have expanded I/O and pin counts, as well as providing larger, more efficient "canned logic," or megacells, which supply large logic functions. SGS-Thomson's new ISB35000 gate-array family delivers more than 1 million usable gates and as many as 648 I/Os capable of handling clock rates over 200 MHz .

Based on a new $0.5-\mu \mathrm{m}$, 3-layer metal process, the HCMOS5 crams approximately 5500 equivalent gates into 1 mm square. Designed for 3.3 V operation, the SGS array family has a typical gate speed of 210 psec (2-input NAND, two loads). Power dissipation averages 0.76 $\mathrm{mW} / \mathrm{MHz}$, reduced from $5 \mathrm{~mW} / \mathrm{MHz}$ for the company's earlier $0.7-\mathrm{mm}$ ISB2800 series. The new HCMOS5 process uses stacked tungsten alloy plugs for interconnections between metal layers; these plugs allow vias between different layers to be stacked atop one another and reduce gate-wiring area by up to 20%.

Structured as a sea of gates, the array builds on a new smaller cell, composed of four N and four P transistors. These cells have a 1 to 2 V sourcedrain resistance that eliminates the need for first-level metal power buses. Additionally, the cells can be paired for higher drive and switching speeds. I/O cells surround the core sea of gates. Using a sea of transistors, you can adjust and program these I/O cell pads. Thus, you can configure the I/O cells for different pad-drive capabilities and pad sizes. These cells support 800 to 1000 pins and handle 3.3 and 5 V interfaces. Cell I/Os can sink up to 24 mA and source a drive up to 12 mA . Ball-grid-array, flip-chip packaging is available for high-density arrays. Other packages include grid quad flatpack, plastic quad flatpack, and pingrid array.

SGS-Thomson furnishes a large

EDN-NEW Products

INTEGRATED CIRCUITS
logic-cell and megacell library. Library elements include 196 SSI/MSI logic functions, $150-\mathrm{MHz}-\mathrm{GTL}, 250-$ MHz-PECL transmitter/receiver I/O, fast single- and dual-ported SRAMs, up to 64 -kbyte DRAMs, up to 512 kbyte ROMs, USARTs, and a $10-\mathrm{nsec}$ 64364-bit multiplier. Other megacells include a 16 -bit DSP core, PLLs, 200MHz RAMDACs, serial transputer links, and a 16 -bit T425 transputer. For testing, SGS-Thomson offers a scan-test macro library that complies with JTAG 1149.1.

The ISB35000 arrays integrate standard CAE tool sets; they include a Ver-ilog-XL HDL, Synopsys and Cadence VHDLs, the Synopsys design and test compiler, the Cadence Opus back-end tools, and the full Mentor 8.2 tool set.
-Ray Weiss
SGS-Thomson Microelectronics, Lincoln, MA. (617) 259-0300. Circle №. 332

SGS-Thomson ISB35000 gate-array family Device							
ISB35030	ISB35083	ISB35166	ISB35279	ISB35389	ISB35484	ISB3532	
Gross gates	32,000	82,944	166,454	278,784	389,376	484,416	891,744
Usable gates	25,000	58,060	116,524	195,148	253,094	314,870	499,046
Maximum I/O cells	96	172	244	316	372	416	544

Instant connectivity. Instant productivity. Guaranteed.

Scopeliew ${ }^{\circ}$

- Live, full color waveform displays.
- Complete VXI and benchtop scope control.
- Effortless data and image connectivity.
- Automatic command file generation.
- No programming required.

Visualize the possibilities.

ScopeView connects you with the productivity power of Microsoft ${ }^{\circledR}$ Windows ${ }^{\text {TM }}$. Add remote control to your scope. Expand your signal analysis horizons. Drive down documentation time while increasing precision and quality. Let ScopeView help bring your projects in on time, and under budget.

Decision-Science Applications, Inc.		盏 1-800-551-5990
1755 Telstar Drive, Suite 201	It	1-719-593-5974, Fax 1-719-593-5978
Colorado Springs, Colorado 80920	Windows	Internet: scopeview@dsai.com

Your clock has the jiteets? We can help!

AKM's Stereo DACs don't mind a little jitter. Or even a lot! Up to 100 ns is no problem. AKM's unique architecture provides high tolerance to clock jitter, ideal monotonicity and low distortion - all without trimming.

Choose AKM's low cost, easy-to-use DAC products
digital sound recording systems, CD players, etc. AKM delivers - price, performance, quality.

DAC Product Family

Device	\# of bits	DR	S/N	THD + N	Special Features	Voltage
AK4316	16	90 dB	90 dB	0.01\%	- High tolerance to clock jitter	+5V
AK4318	18	97dB	97dB	0.0025\%	- High tolerance to clock jitter - De-emphasis control circuit - Soft mute function	+5V
AK4313	18	93dB	93dB	0.004\%	- High tolerance to clock jitter - De-emphasis control circuit - Soft mute function - Low voltage	$2.7 \sim 4.0 \mathrm{~V}$

AKM

Asahi Kasei Microsystems Co.,Ltd.

JAPAN — TS Bldg. 24-10, Yoyogi 1-chome, Shibuya-ku, Tokyo 151, Japan Phone: (03) 3320-2067 / Fax: (03) 3320-2072
USA _ 2055 Gateway Place, Suite 415, San Jose, CA 95110 Phone: (408) 436-8580 / Fax: (408) 436-7591
EUROPE-Avenue Louise 326, Bte 056, 1050 Brussels, Belgium. Phone: (32) 2-649-7831/ Fax: (32) 2-640-1809
or more information, contact:
J.S.A.)

WA, OR, MT (Western); CANADA-BC, Alberta CA (Northern), NV (Northern), ID, UT, CO
CA (Southern)
NV (Southern), AZ, NM, MEXICO-Sonora, Chihuahua
IA, WI, IL, IN
NY (Upstate)
NY (Southern), CT, NJ, PA, DE
MD, VA, DC
TN, NC, SC, GA, AL, MS
FL, Puerto Rico

:UROPE)

Austria, Germany, Italy, Spain, Switzerland, Greece Other European Countries

Quest Marketing, Inc.

Pinnacle Sales
Solutech, Inc.
Fred Board Associates
Richmar Electronics Corp.
Interactive Component Sales WD-TMI
Eltron Sales, Ltd.
E-Squared Marketing
Micro Concepts, Inc.

Phone (206) 228-2660 Fax (206) 228-2916 Phone (408) 453-7500 Fax (408) 453-7667 Phone (714) 374-0130 Fax (714) 374-0131 Phone (602) 994-9388 Fax (602) 994-9477 Phone (708) 968-0118 Fax (708) 968-0197 Phone (315) 445-9600 Fax (315) 445-8700 Phone (914) 779-8738 Fax (914) 779-8840 Phone (703) 635-7201 Fax (703) 635-1933 Phone (205) 430-3000 Fax (205) 430-3350 Phone (407) 830-8889 Fax (407) 834-0649

high-density flash cks them in like Intel.

current consumption down to a 1 to 2 mA static mode, while sleep mode further drops it to just 1 to $2 \mu \mathrm{~A}$.

Compatible with existing FlashFile designs, these chips can replace ROM/RAM and disks in storing applications, O/S and data files. Supporting one million erase cycles per block, FlashFile architecture also enables mass storage subsystems like our Type I and II, PCMCIA Flash Cards and ATA Flash Drives.

And when it comes to flash value, Intel is in a league all by itself. In fact, the 16 Mb FlashFile
component is the most cost-effective 3.3 V flash memory available, at just $\$ 85$ in volume quantities.

So if you want density, call for literature at $1-800-879-4683$, ext. 102. Or dial the FaxBack* system at 1-800-628-2283, cat. \#2. Because when it comes to high-density flash, nobody else is even in the ballpark.

intel.

Faster than Fast Page Mode

Extended Data-Out DRAMs and VRAMs

Break through the 40 ns time barrier with Micron's 25 ns Extended Data-Out DRAMs and VRAMs.

Our EDO DRAMs and VRAMs provide true faster-than-Fast-Page-Mode performance by letting your system start a page-mode read access before completing the previous one.

And because they increase peak memory bandwidth by up to 60% and don't require system architecture changes, Micron EDO DRAMs and VRAMs are the simplest and most cost-effective way to enhance system performance.

So call our Micron DataFax ${ }^{\text {sM }}$ line today at 208-368-5800 and have our EDO selector guide automatically faxed to you - break through the 40 ns time barrier.

Micron. Technology that works for you.

Part Number	Density	Organization	Speed Grades/ Cycle Times (ns)	Samp./Prod. Availability
DRAMs				
MT4LC4M4E9	16 Meg	4 Meg x 4	$60 / 25,70 / 30$	$2 Q 94 / 4 Q 94$
MT4LC2M8E7	16 Meg	$2 \mathrm{Meg} \times 8$	$60 / 25,70 / 30$	$3 Q 94 / 4 Q 94$
MT4LC4007J	4 Meg	$1 \mathrm{Meg} \mathrm{x4}$	$60 / 25,70 / 30$	Now/2Q94
MT4C16270	4 Meg	$256 \mathrm{~K} \times 16$	$60 / 25,70 / 30$	Now

VRAMS

MT42C256K16A1	4 Meg	$256 \mathrm{~K} \times 16$	$60 / 24,70 / 27$	Now
MT42C8256	2 Meg	$256 \mathrm{~K} \times 8$	$60 / 24,70 / 27$	Now

MICPDN

2805 E. Columbia Road, Boise, ID 83706 208-368-3900, Micron DataFax 208-368-5800

Customer Comment Lines: U.S. 800-932-4992 Intl. 01-208-368-3410
© 1994, Micron Semiconductor, Inc. Micron DataFax is a service mark of Micron Semiconductor, Inc.

EDN-New Products INTEGRATED CIRCUITS

ICs drive optocouplers or serve as power-supply front ends. The UC39431 and UC39432 ICs contain an accurate voltage reference, a high gainbandwidth error amplifier, and a lineartransconductance output-stage current source. In optocoupler applications, the linear transconductance amplifier replaces a common-emitter transistor amplifier, which has inherent nonlinear characteristics, to provide accurate control of the LED current. The UC39431 also includes three precision, low-temperature-coefficient resistors, which you connect to provide one of six regulated output voltages. An external resistor programs the UC39432's transconductance amplifier, allowing a more stable design in closed-loop opto-coupler-feedback applications. Both ICs cost $\$ 1.25(1000)$. Unitrode Integrated Circuits Corp, Merrimack, NH. (603) 424-2410.

Circle №. 397

Instrumentation 12-bit ADCs have $>1-\mathrm{MHz}$ throughput. Competing with hybrid converters for high-speed instrumentation applications, the ADC12062 and ADC12662 feature throughputs of 1 and 1.5 MHz and maximum power dissipation of 75 and 200 mW , respectively. In power-down mode, both devices consume just 125 $\mu \mathrm{W}$. Both ADCs offer a 2-channel input and an on-chip S/H amplifier. Guaranteed maximum integral nonlinearity for the two devices is ± 1 and ± 1.5 LSB, respectively. Both devices have a maximum differential nonlinearity of ± 0.95 LSB. The respective S/N ratios of the 12062 and 12662 are guaranteed at 70 and 68 dB . Both devices are available in 44 -pin plastic-leaded chip carriers and quad flatpacks. Prices begin at $\$ 29.21$ and $\$ 33.70$ (1000), respectively. National Semiconductor, Santa Clara, CA. (408) 721-2302.

Circle No. 398

Video RAMDAC incorporates clock generators. The ICS5340 merges a triple 8 -bit video DAC with a colorpalette RAM and two timing genera-

FREE INFO, FREE POSTAGE
Use our postage-paid reader-service cards to get more information on any of these products.
tors. The device handles 24 -bit color through 8-bit pseudocolor at clock rates to 135 MHz . Its timing generators provide a selection of eight video clocks and two memory clocks. Samples and demonstration boards are available. Prices begin at $\$ 6.95(50,000)$. Integrated Circuit Systems Inc, Valley Forge, PA. (215) 630-5300. Circle No. 399

Buffer slews at $2000 \mathrm{~V} / \mu \mathrm{sec}$. The BUF634 high-speed, unity-gain buffer amplifier features a $250-\mathrm{mA}$ output in an SO-8 package. You can program the buffer for a bandwidth of 30 MHz with 1.5 mA of quiescent current or boost the bandwidth to 180 MHz with 15 mA of quiescent current. The device operates from ± 2.25 to $\pm 18 \mathrm{~V}$ and has an internal current limit and thermal shutdown to withstand load faults and short circuits. $\$ 2.60$ (1000). BurrBrown Corp, Tucson, AZ. (800) 5486132.

Circle №. 400

DAC takes a maximum of $\mathbf{4 0 0} \mu \mathrm{A}$. The 12-bit MAX530 parallel-input, volt-age-output DAC operates on 5 or $\pm 5 \mathrm{~V}$ supplies. An internal bandgap reference provides a 2.048 V output that you can amplify, attenuate, invert or leave unconnected for multiplying applications. The IC performs 4-quadrant multiplication without external resistors or op amps, and the output-voltage range in those applications includes both supply rails. Otherwise, the internal buffer amplifier's gain-setting resistors define the output ranges of 0 to 2.048, 0 to 4.096 , or $\pm 2.048 \mathrm{~V}$. The DAC is guaranteed monotonic over temperature with a relative accuracy of $\pm y_{2}$ LSB. The device comes in 24 -pin DIPs and SOICs, and prices start at $\$ 5.45$ (1000). Maxim Integrated Products, Sunnyvale, CA. (408) 737-7600.

Circle No. 401

MOSFET driver operates from 8 to 60V. The LT1161 quad driver, a ruggedized N -channel device, provides a full 100% operating-voltage margin in 24 and 28 V systems. Each of the four switch channels contains an internal charge pump and requires no external components to boost the n-channel MOSFET gate 12 V above the supply rail. Channel-independent protection circuits function as four electronic cir-
cuit breakers. You can externally program the device's current limit, delay time, and automatic-restart period. In 20 -pin DIPs and SOICs, the device costs $\$ 3.14$ and $\$ 3.44$ (1000), respectively. Linear Technology Corp, Milpitas, CA. (408) 432-1900.

Circle №. 402

Triple and dual video op amps disable in 80 nsec. For $\$ 3.74$ (1000), the AD813 provides three current-feedback op amps, each with an independent fast-disable function. The AD812 ($\$ 2.48,1000$) is the dual version. The op amps operate from a single 3 V supply to a dual $\pm 15 \mathrm{~V}$ supply with $4-\mathrm{mA}$ of supply current per amplifier. Video characteristics include a $125-\mathrm{MHz}$ unity-gain -3dB bandwidth, 0.03% differential gain error and 0.06° differential phase error. The op amps accommodate external loads in excess of 150Ω and offer $0.1-\mathrm{dB}$ gain flatness to 50 MHz . In 14 -pin (triple) and 8-pin (dual) DIPs or SOICs, the devices operate from -40 to $85^{\circ} \mathrm{C}$. Analog Devices, Wilmington, MA. (617) 937-1428.

Circle No. 403

Read-channel IC integrates func-

tions. The MC34244 provides all of the functions required for the read-write channel of a constant-density hard-disk drive. The IC includes an AGC amplifier, an active filter, a pulse detector, a data synchronizer, a frequency synthesizer, a servo demodulator, an RLL1,7 encoder/decoder with write precompensation, and power management. The IC can operate at a $48-\mathrm{Mbps}$ data rate with a supply voltage as low as 2.7 V . $\$ 18.50(10,000)$. Motorola Inc, Tempe, AZ. (602) 897-3615.

Circle No. 404

256-kbit SRAMs achieve 12 -nsec access time. The L7C199 and L7C199L 256 -kbit SRAMs come in 12-, 15 -, and 25 -nsec speeds. The 32 k -word $\times 8$-bit devices operate from a 5 V supply; inputs and outputs are TTL compatible. Power consumption is $<800 \mathrm{~mW}$ max at a 25 -nsec cycle time. In TTL standby mode, the SRAMs consume 100 mW for the standard version and 50 mW for the
low-power version. Using CMOS levels the disspation drops to 10 mW for the standard version and 1 mW for the lowpower version. The L7C199 and L7C199-L cost $\$ 4.92$ and $\$ 5.41$ (1000), respectively. Logic Devices Inc, Sunnyvale, CA. (408) 737-3300. Circle №. 405

Clock-distribution circuit operates

 from 10 to 125 MHz. The DA400 clock-distribution chip combines programmable timing generation, phase delay, and eight buffers in one package. The device achieves tight skew tolerance with an internal feedback circuit, which synchronizes the input and output clocks. The feature reduces part-topart skew in applications requiring multiple clock drivers. Each of the eight outputs has its own programmable phase-delay circuitry with phase delays as short as 250 psec. $\$ 25.50$ (5000). AT\&T Microelectronics, Allentown, PA. (800) 372-2447.Circle №. 406

4-Mbit SRAM family features $\mathbf{3 . 3}$ or 5V operation. The CXK584000 family of asynchronous 4-Mbit SRAMs features 3.3 or 5 V operation. The fami-

ly is available in 24 versions, including two power levels, three speeds, and four package types. The $524 \mathrm{k} \times 8$-bit memory devices use polysilicon thinfilm technology to reduce current requirements and increase data retention. The three speed choices include 55,70 , and 100 nsec at $5 \mathrm{~V} \pm 10 \%$. Access times double when operating at 3.3. A $55-$ nsec, low-power version costs $\$ 257.10$ (1000). Sony Component Products Co, Cypress, CA. (800) 2887679.

Circle No. 407

PCMCIA host adapter has DMA support. The CL-PD6722 dual-slot host adapter provides direct-memory
support for peripherals on the ISA bus. The DMA relieves CPU intervention when large data transfers are required from a PCMCIA I/O-card device. Because the system DMA is designed for moving data from an I/O device to memory, it can complete this task faster, using less bandwidth than the CPU would by doing the equivalent I/O cycles to the card. The adapter requires only 2 square in. to implement a full-slot control subsystem. $\$ 20$ (1000). Cirrus Logic, Fremont, CA. (510) 226-2261.

Circle No. 408

FIFO family meets telecommequipment requirements. The SN74ACT222X FIFO family synchronizes two serial data streams in telecommunications equipment. The dedicated 1-bit FIFOs provide a costeffective solution to the 4 -, 8 -, or 9 -bit standard FIFOs used to synchronize two serial streams. The devices also support time-division-multiplexing applications in which several asynchronous communication signals are mapped into one higher-rate aggregate signal. In addition, the FIFOs provide elastic store to synchronize the instan-

We go to great lengths to give

Dual-circuit stackable mini-switches... new from Grayhill

Double your switching capacity in a fraction of your available board space! That's what these new switches are all about.

Grayhill went to great lengths to develop them-but then, that's not unusual for us. When a customer asked for a truly miniature,
stackable push button switch that was process sealed, we didn't waste a minute. In a matter of weeks, we developed the smallest, most flexible switch on the market. It's been so successful, we now offer it as The Grayhill Series 32.

Features include:

- SPST-N.O. and SPST-N.C.
- Push Button Operation
- Process Compatible Completely Sealed
- Side-by-Side Stackability
- $.272^{\prime \prime}$ high x .4 " deep, .2 " between button centers

Developing innovative new products is one of the ways Grayhill serves you best. To find out more about our new stackable
Series 32
mini-switch, call us at
708-354-1040 or
fax us at 708-354-2820.
Companion LED and LED Holder available.

EDN-Nsw Products
 INTEGRATED CIRCUITS

taneous difference between multiple clocks. Prices range from $\$ 3.50$ to $\$ 6.50$. Texas Instruments Inc, Denver, CO. (800) 477-8924, ext 4500. Circle No. 409

Switching regulator adds over-

 temperature protection. The MIC631 and MIC641 series are pincompatible, plug-in replacements for MAX631/41 regulators. The MIC631/ $32 / 33$ use only two external components in power conversion up to 150 mW . The MIC641/42/43, with an external FET, deliver up to 10 W of output power. Both series are available in $5,12,15$, and 3.3 V output-voltage versions. A thermalprotection circuit prevents catastrophic IC failure by providing shutdown protection at specified overtemperature levels. With a 5 V output, quiescent current is $120 \mu \mathrm{~A}$. In 8 -pin DIPs and SOICs, the 5 V versions cost $\$ 2.45$ (1000). Micrel Semiconductor Inc, San Jose, CA. (408) 944-0800. Circle No. 410
T1 device provides SONET speeds.

 The TDC5101 high-level data-link controller (HDLC) sends and receives data over public communications networksat 51.84 Mbps , the rate specified as SONET STS-1. The device interfaces to LANs, such as Ethernet and token ring. It also interfaces to Frame Relay, X. 25 , and other slower public WANs, including T-1, T-3, E-1, E-2, E-3, and JT-2 WANs. The device has a no-limit packet length, which provides more flexibility than do strictly fixed-length devices. The device also supports fixedlength packets of 300,2400 , or 9600 bytes. $\$ 55$ (1000). Texas Instruments Inc, Denver, CO. (800) 477-8924, ext 4500.

Circle No. 411

Fast SCSI adapter interfaces to $\mathbf{P C I}$
bus. The AIC-7870, a single-chip adpater for mother boards, offers an on-chip 10-MIPS RISC processor that manages all SCSI sequences. Workstations and servers using a $133-\mathrm{Mbps}$ PCI local bus can transfer data at fast and wide SCSI speeds of 20 Mbps . Optional differential cabling lets you transfer data reliably at high speeds. The chip includes a host interface, the SCSI protocol section, a 10 -MIPS $\mu \mathrm{P}$, and a 256 -byte FIFO buffer. The chip comes in a $160-\mathrm{pin}$ package. \$39 (OEM). Adaptec Inc, Milpitas, CA. (800) 934-2766. Circle No. 412

Fibre-channel set runs full speed. The EZ-Link chip set runs the Fibre Channel protocol, FC-0 layer at a $1.0625-\mathrm{Gbps}$ data rate. The transmitter and receiver operate at 3.3 V , offer TTL I/O levels, and come in 44 -pin plastic quad flatpacks. Price for the pair is $<\$ 90$ (1000). Vitesse Semiconductor, Camarillo, CA. (805) 388-3700.

Circle №. 413

Audio IC handles 16-bit stereo.

Offering all the functions of the Sound Blaster Pro except FM synthesis, the 82 C 928 costs just $\$ 15$ (1000). The device offers interfaces for the Windows Sound System, the AT bus, the OPL-3 and -4, and MIDI. It also has a CD-ROM-drive interface and handles 16 -bit data at a $48-\mathrm{kHz}$ data rate. Opti Inc, Santa Clara, CA. (408) 980-8860.

Circle No. 414

PCI graphics chip set uses DRAM. The ALG2301 graphics-accelerator chip set offers autoconfiguring PCI and feature-connector interfaces, a 24 -bit RAMDAC, and dual clock generators in a 3 -chip set for $<\$ 20$. The set uses

you better ideas in switches.

$256 \mathrm{k} \times 4$ - or $\times 16$-bit DRAM and provides resolution to 1280×1024 pixels. BIOS and driver software are available. Avance Logic Inc, Fremont, CA. (510) 226-9555.

Circle No. 415

PWM controllers operate at 1 MHz. The UC3823A/B and UC3825A/B family of current-mode controllers typically require a start-up current of 100 $\mu \mathrm{A}$, which makes them ideal for off-line switching power supplies and dc/dc con-

verters. The parts have a $9-\mathrm{MHz}$ unitygain bandwidth, drive a 2 A pk output load, offer leading-edge blanking, and operate in push-pull or single-ended mode. A high-speed overcurrent comparator with a 1.2 V threshold sets an internal latch to ensure full discharge of the soft-start capacitor before allowing a restart. From $\$ 3.96$ and $\$ 4.73$ (1000), respectively. Unitrode Integrated Circuits Corp, Merrimack, NH. (603) 424-2410.

Circle No. 416

Single IC embodies key Ethernet functions. The NCR92C120 contains the Manchester codec, 802.3 AUI, and 10Base-T transceiver logic in a 100-pin plastic quad flatpack. It performs automatic media-type determination and polarity correction. To reduce cost in multiport switching applications, it lacks bus-interface and buffer-management logic. $\$ 14.95(10,000)$. NCR Corp, Dayton, OH. (800) 334-5454.

Circle №. 417

Voice chip attains consumer pricing. The ISD1100 is a solid-state analog record and playback device that stores 10 sec of sampled audio. Because it stores the audio as analog charge levels in EEPROM, the device does not need A/D conversion. It contains input and output preamplifiers, AGC, and filters on-chip. Cost is $\$ 5.48$ in DIP packages; $\$ 4.18$ as bare die (1000). Information Storage Devices, San Jose, CA. (800) 332-8638.

Circle No. 418

PowerPC chip set offers PCI bus. Combining a CPU bridge to the PCI bus with an ISA bridge to the PCI bus, the IBM27-82650 chip set allows creation of a Power PC-based PC with local-bus compatibility. The set supports a 64 -bit memory bus, operates at 33 MHz on the ISA bus and 66 MHz on the Power PC bus, and includes bus error detection and correction. Cost is $\$ 53(50,000)$, and full production is scheduled for April. IBM Microelectronics, Hopewell Junction, NY. (800) 426-0181.

Circle No. 419

Nonvolatile memory includes real-time clock. The STK1390, an $8 \mathrm{k} \times 8$-bit CMOS RAM, provides integral EEPROM that maintains a nonvolatile copy of RAM data. The device also includes a real-time clock that operates for months by drawing power from an external capacitor. The device comes in DIP and SOIC packages with

Quick Just Got Quicker

4000 Usable Gate FPGA at over 150 MHz .

A new breed of superfast antifuse FPGA's is blowing away the competition in standard PREP ${ }^{\text {Tw }}$ benchmarks.

The WildCat series of FPGA's from QuickLogic introduces its first member - the WildCat 4000 . With more than 4000 usable gates this cost-effective WildCat flies at an astounding 150 megahertz in the PREP DataPath benchmark.

Presentations use or include the most recent PREP PLD Benchmark data
which was measured according to Benchmark Suite \#1, Version 1.2, dated 3/28/93. Any analysis is not endorsed by PREP.

Free Evaluation Tools

Be one of the first 100 to fax your business card to QuickLogic, and receive our complete suite of powerful software evaluation tools at no cost. This $\$ 3000$ value will run simulation and synthesis tests to prove your design and to show off the awesome speed of the WildCat 4000 .

Look to the company that lives up to its name for fast solutions to today's high speed, high density design requirements. For QUICK response fax us at (408)987-2012 or call 1-800-842-FPGA (3742) to learn more about WildCat SuperFast FPGAs.

2933 Bunker Hill Lane, Santa Clara, California 95054

EDN-New Products INTEGRATED CIRCUITS

$30-$, $35-$, and $45-$ nsec speeds. Prices begin at $\$ 13.99$ (1000). Simtek Corp, Colorado Springs, CO. (719) 531-9444.

Circle No. 420

Clock adapter matches interna-

tional rates. Compatible with both the US T1 and European E1 transmission rates, the LXP610 performs clock frequency conversion without using crystal oscillators. The device extracts the incoming data's clock and uses PLL-
based frequency synthesis to match the system's backplane rate. It accepts input clocks between 1.544 and 8.192 MHz , providing 17 selectable input/output frequency combinations. Cost is $\$ 11$ (1000). Level One Communications Inc, Folsom, CA. (916) 985-3670.

Circle No. 421

PC chip set beats Energy Star power restrictions. The Redwood System controller chips, PT86C618 and

PT86C668, reduce a 486 -based PC's power requirements from 150 to 20 W peak, 10 W average, and 2 W standby. The chip set manages system power consumption by monitoring CPU activity and turning off unused system circuits during each clock cycle. It also controls CPU clock speed, slowing the CPU during idle periods. Price is $\$ 30$ $(10,000)$. PicoPower Technology, San Jose, CA. (408) 954-9898. Circle No. 422

MPEG audio decoder fits in small package. The SAA2500 MPEG decoder complies with MPEG Layers 1 and 2 and automatically conforms to the audio data rate. It also demultiplexes ancillary data in the audio bit stream. The device has selectable output-data precision from 16 to 22 bits and provides automatic de-emphasis of the decoded audio. Sample cost is $\$ 25$. Philips Semiconductors, Sunnyvale, CA. (800) 447-1500, ext 3000.

Circle No. 423

Dual and quad switched-capacitor filters. The SC64 and SC60 are 24-pin quad and dual second-order universal filter building blocks, respectively. The clock frequency and three to five external resistors control the center frequency, gain, and Q of each filter section. The supply voltage ranges from ± 2.4 to $\pm 9 \mathrm{~V}$. The maximum clock frequency is 7 MHz . The SC64 $(\$ 5.71,100)$ is pin compatible with the LTC1064, and the SC60 ($\$ 2.36$) is compatible with the LTC1060 and MF10. Electronic Technology Corp, Ames, IA. (515) 2967000.

Circle No. 424

Fiber-optic devices handle ATM. Applicable to ATM and SONET networks, the ES-9304T transmitter and ES-9216R receiver work with data rates to 622 Mbps . The devices operate in the optical range over single-mode fiber and cost $\$ 1300 /$ pair. A related

NEW

250 mA Buffer Amp Slews 2000V/ps

Small But Powerful

BUF634 is a high speed, unity-gain buffer amplifier that delivers 250 mA output and $2000 \mathrm{~V} / \mu \mathrm{s}$ slew rate-all in a tiny SO-8 package. Its low price, high performance, and ease of use make BUF634 ideal for a wide range of applications. It's an excellent driver for valves, solenoids, video, and even headphones.

Versatile Yet Simple

BUF634 can be used inside the feedback loop of op amps to increase output current, eliminate thermal feedback, and improve capacitive load drive. Its bandwidth can be pin-programmed for 30 MHz with 1.5 mA quiescent current or boosted to 180 MHz with 15 mA quiescent current. BUF634 is the simple solution for all your buffer needs.

Easy And Rugged

BUF634's monolithic design is very rugged-its internal current limit and thermal shutdown protect it from extreme abuse. BUF634 withstands load faults and short-circuits with ease. It's virtually indestructible-you can design-in this device with confidence.

BUF634 Key Specifications

- Output current.. 250 mA
- Slew rate..2000V/us
- Pin-selected bandwidth30MHz to 180 MHz
- Quiescent current .. 1.5 mA (30MHz BW)
- Supply range... $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Protection \qquad internal current limit, thermal shut-down
- Packages: 8 pin-DIP and SOIC, TO-220, Dice
- From $\mathbf{\$ 2 . 6 0}$ in 100s

First One's Free

Try our "worry-free" buffer! Call 1-800-548-6132 for your FREE SAMPLE, data sheets, \& High Voltage, High Current Amplifiers brochure. Or, contact your local sales representative.
actual size

EDN-NEw Products INTEGRATED CIRCUITS

device, the SDM4123-XC (\$210), combines transmit and receive functions for $155-\mathrm{Mbps}$ applications. Sumitomo Electric, Tarrytown, NY. (914) 3473770.

Circle No. 425

Lamp driver controls contrast. The ML4864 backlight IC produces enough voltage to drive miniature cold-cathode fluorescent lamps and the contrast voltage to power LCDs. Using standard off-the-shelf external compo-
nents, you can set the device's input and output voltage to almost any level within the respective 40 to 20 V and 100 to 2000 V ranges. You can also set the de contrast voltage to a positive or negative polarity. The IC features a power-down mode that independently shuts off the high-voltage lamp-drive circuits while maintaining the LCD contrast voltage. In a 20 -pin shrink SOP, the device costs $\$ 2.95$ (1000). Micro Linear Corp, San Jose, CA. (408) 433-5200.

Circle No. 426

The SR640, SR645 and SR650 offer unique combinations of filter specifications, preamplifier performance, and programmability at a price far less than other instruments. Featuring two fully independent 8 -pole, 6-zero elliptic filters with less than 0.1 dB p-p passband ripple and 115 dB /octave rolloff, these filters are ideal for general purpose signal processing as well as anti-aliasing for digital signal processing systems.

The GPIB and RS232 interfaces allow complete control of all instrument settings via computer. The microprocessor components are optically isolated from the filter sections to provide optimum noise performance.

Whether your needs are for laboratory benchtop filters or signal conditioning filters in data acquisition systems, the SR640, SR645 and SR650 are the natural choices.

SR640, SR645, SR650

1 Hz to 100 kHz cutoff frequency 3 digit frequency resolution
0.1 dB passband ripple 115 dB /octave rolloff 80 dB stopband attenuation $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input noise $\pm 0.5^{\circ}$ phase match at f_{c} 60 dB prefilter gain 20 dB postfilter gain GPIB, RS232 interfaces standard
 or hexidecimal dip rotaries. Screwdriver, shaft or dial actuation. Washable.

POINTS OF LIGHT

Tiny, but bright. Low-profile snap-in or panel mounting. Numerous actuators, circuits, ratings, terminals and colors.

NKK washables lead the way with the industry's widest range of circuits, actuators, terminals \& accessories. Micro thru std. sizes.

The latest surface mount technology. Washable, vapor phase solderable toggles, pushbuttons and dip rotaries. Gull-winged terminals.

We have exactly what every design engineer needs - over one million switch options and more than 40 years of switch know-how. Before you start your design-in, call for our 456 -page Design Guide, then call on our experience. Make sure your design-ins go flawlessly. Make NKK your design partner right from the start.
Call NKK Switches, (602) 991-0942 7850 E. Gelding Dr,
Scottsdale, AZ 85260 FAX (602) 998-1435.

INTRODUCING MICRO-CAP IV.' MORE SPICE. MORE SPEED. MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12 -year tradition of setting CAE price/ performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles - on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICR0-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface - windows, pull-down menus, mouse support, on-line HELP and documentation - that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example,

AC Analysis outperforms comparable PC-based analog simulators - even those $\$ 5000+$ packages - with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed - on larger circuits.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702

EDN-New Products
 ELECTRONIC DESIGN AUTOMATION

Mixed-signal simulator accepts multilevel models

Using ATTSIM, designers can simulate complete mixed-signal systems by combining abstract behavioral models with detailed device models for the circuit's analog and digital portions.
down or bottom-up design methodologies. You can start at a high level of abstraction and gradually move down into more detailed logic descriptions; or you can opt to complete the detail design of a crucial subsystem and then simulate the remainder of the system around it. The simulator also offers the flexibility to use the modeling level that is most appropriate for speed vs accuracy as you simulate a system.
In addition to the company's model libraries,

The ATTSIM Multi Level Mixed Signal Simulator lets you simulate mixed ana-log-digital systems using any combination of Spice, VHDL (VHSIC Hardware Description Language), C, behavioral, and gate-level models. The simulator is equally capable of performing simulations of large analog or digital designs.
Because the simulator accepts all different levels of models, it suits both top-
the software supports Logic Modeling's Smart Models as well as the ATTSIM ModelWriter, which generates analog, digital, and mixed-signal models in C. The ATTSIM mixed-level simulator will be available in March. A single CPU license for Sun SPARC or HP 700 series systems costs $\$ 65,000$.-Doug Conner

AT\&T Design Automation, Murray Hill, NJ. (908) 582-4083. Circle No. 373

PLD design tool adds VHDL synthesis

Max+Plus II version 4 adds VHDL (VHSIC Hardware Description Language) synthesis to its PLD design capabilities. The new software takes advantage of 32 -bit operating systems and runs on Windows 3.1, Windows NT, and Unix workstations. For engineers unfamiliar with VHDL, the software provides VHDL templates and integrated on-line help. When synthesizing logic from a VHDL description, the software uses different optimization techniques, depending on which family of the company's PLDs you have. The synthesis tool takes advantage of architectural features specific to the PLD you are using.

The new release also provides timing and area information to Synopsys synthesis tools; thus, users of the tools can opt to trade off speed
vs area to meet design requirements.
Max + Plus II version 4 is a free upgrade to users with maintenance agreements. VHDL synthesis (PLSMVHDL) is not included in the upgrade; it costs $\$ 3995$ for PCs and $\$ 6995$ for Sun HP and DEC systems.-Doug Conner

Altera Corp, San Jose, CA. (408) 8947000.

Circle No. 374

Max+Plus II software supports a hierarchical, top-down design methodology, integrating schematics and VHDL in a contextsensitive environment.

FREE INFO, FREE POSTAGE

Use our postage-paid reader-service cards to get more information on any of these products.

VHDL simulators offer presynthesis model development. The VHDL System Simulator Family (VSS) includes the VSS Professional and VSS Expert simulators. VSS Professional for presynthesis-model VHDL development and system verification combines interpreted and compiled simulation engines. VSS Expert includes all the features of VSS Professional, plus a gate-level signoff simulation engine and system-level modeling capability. VSS Professional costs $\$ 13,000$, and VSS Expert costs $\$ 24,000$. Synopsys Inc, Mountain View, CA. (415) 962-5000.

Circle №. 375

Digital circuit simulator finds minimum and maximum timing problems. The PLogic simulator performs worst-case timing analysis using the range of delays specified by the IC manufacturer. This simulator finds problems that slip through simple single-delay analysis tools. The simulator also finds and flags setup and hold or worst-case timing violations. The software provides nonencrypted libraries of more than 1800 digital devices and lets you model devices directly from data-book specifications. Design Center with PLogic includes schematic capture and starts at $\$ 3250$ on PCs and $\$ 14,000$ on Sun workstations. MicroSim Corp, Irvine, CA. (714) 7703022.

Circle No. 376

Electromagnetic-analysis program simulates 3-D designs. The EMC electromagnetic-analysis program simulates finite elements and predicts EMI, crosstalk, and coupled-eddy currents at any number of frequencies or for any time-domain problem. EMC runs on HP, IBM, SGI, and Sun workstations. The software costs $\$ 19,950$; you can lease it for $\$ 950 /$ month. Aries Technology, a division of MacNealSchwendler Corp, Lowell, MA. (508) 453-5310.

Circle №. 377

VHDL-1076 simulator achieves high gate-level simulation performance. The Vulcan simulator supports the IEEE VHDL-1076 and VHDL-VITAL ASIC modeling standards. VITAL defines a set of VHDL

Birth of a Winner

,
 $V_{R} 4000$

VR4000 performance at $\mathbf{1 / 5}$ the price.

First we raised performance with the Vr4000, the world's first 64-bit RISC microprocessor. Now we're slashing costs with the Vr4200. A full-featured 64 -bit RISC microprocessor at $1 / 5$ th the original cost, the Vr 4200 offers everything you need to be a winner in lowend workstations, X-terminals, Windows NT portable computers and embedded applications.

The Vr 4200 is paced by an 80 MHz
internal clock. It delivers 55 SPECint92 and 30 SPECfp92. It incorporates a $16 \mathrm{~K}-$ byte instruction cache and an 8K-byte data cache. Implemented with a 0.6μ triple-layer CMOS process and a smaller die, it runs on 3.3 V and consumes only 1.5 W . The Vr4200 is available in a low-cost 208-pin plastic QFP or 179 -pin ceramic PGA. It maintains hardware and software compatibility with the Vr 4000 .

The Vr4200 lets you build desktop capabilities into laptop and notebook computers. In combination with our RAB ${ }^{2}$ IT chip set (an I/O controller and memory controller for synchronous or Rambus DRAM), the Vr4200 provides a cost-effective hardware platform for Windows NT.

For a winning combination of price, performance and power consumption, check out the Vr4200, today.

EDN-New Products
 EEECTRONIC DESIGN AUTOMATION

primitives that are typically in ASIC cell libraries. It also defines a modeling style and a method for associating timing information with the cell primitives. The result is fast gate-level simulation that the company claims is comparable to Verilog-XL. Vulcan will be available initially on Sun and HP workstations starting at $\$ 20,000$. GenRad Inc, Concord, MA. (508) 369-4400. Circle No. 378

Thermal models for Motorola components. Motorola is creating 3-D thermal models of its components for use with Flowmerics Flowtherm com-putational-fluid-dynamics software. The models let you simulate and develop cooling methods before building the hardware. A Flowtherm software license costs $\$ 11,000 /$ year. Flomerics Ltd, Surrey, England. +44 (0)81-547 3373.

Circle No. 379

CAD system offers mechanical CAD compatibility. The CADnexion software program offers support for electronic and mechanical CAD methods. It helps designers of high-fre-
quency circuits precisely define physical structure. CADnexion runs on PCs and starts at \$4995. Bay Technology, Aptos, CA. (408) 688-8919.

Circle No. 380

System speeds prototyping for DSP designs. The Paradigm RP modular system lets you use FPGAs, RAM, ROM, DSP, and microprocessor cores to emulate systems. The initial offering suits DSP systems but allows you to emulate other systems. Paradigm RP starts at $\$ 60,000$. Zycad Corp, Fremont, CA. (510) 623-4400.

Circle No. 381

ECAD tool lets you graphically create Verilog models. Working in a graphical design environment, you can create Verilog behavioral models by describing events and the corresponding reactions of a model. DesignVision graphically represents a behavioral model as a collection of threads. Each thread represents a series of events and actions. As each event occurs during simulation, the software performs a corresponding action. All threads are
active at once. The graphical-threads representation eases your ability to see separate operations that occur simultaneously. DesignVision is initially available on Sun Sparc systems for $\$ 15,000$. Vista Technologies Inc, Schaumburg, IL. (708) 706-9300

Circle No. 382

Document-management system

 runs under Windows. The AutoEDMS document-management system for Windows lets you find, store, manage, retrieve, view, and print virtually every type of drawing, document, and image. The software provides document tracking to meet ISO 9000 requirements. AutoEDMS for Windows starts at $\$ 895$. ACS Telecom, Lomita, CA. (310) 325-3055.Circle No. 383

EPLD-design software costs $\$ 89.95$. XEPLD version 4.1 is a design tool for Xilinx XC7000 family of erasable programmable logic devices (EPLDs). The software interfaces to logic compilers, such as ABEL, CUPL, and Palasm. Xilinx, Inc, San Jose, CA. (408) 559-7778.

Circle No. 384

POWR-LOK CONNECTION SYSTEMS POWER AMPEATER CONTACTS

5.0 Millimeter Contact Grid Pattern 25 Amperes Continuous Load, All Contacts

Abstract

POWER SOURCE TO PRINTED BOARD BUS with Minimum Heat generated at contact connection surfaces due to unique design of LARGE SURFACE AREA contact mating system. CONTACTS: Removable, machined of solid copper alloy. Male contacts can be varied to permit sequential mating to eliminate initial power overload. PLATING: Gold. TERMINATIONS: Crimp, Press-fit and solder style, 12 AWG ($4,0 \mathrm{~mm}^{2}$) wire maximum. Printed board mount, straight or 90° angled, motherdaughter board or board to board sandwich connection systems. INSULATORS: Glass filled polyester. Twelve contact variants, 3 through 24 contacts; one, two and three contact rows. POLARIZATION: Connector body keyed for alignment and correct coupling. SHROUDS: Male contacts protected with plastic shroud. BLIND MATING: Hardware option provides for 0.100 inch lead in. LOCKING SYSTEM: Powr-Lok system, easy to lock and unlock. CABLE ADAPTORS: Strain reliefs. MOUNTING: Panel and printed boards. ENVIRONMENTAL SEALING: Sealed connectors meet MIL-STD-810 immersion. WORKING TEMPERATURE: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. CRIMPING TOOLS: Automatic and manual. NORMS: U.L., CSA and Bauart Mart recognized.

POSITRONIC INDUSTRIES, INC.
423 No. Campbell Ave. • P. O. Box 8247 • Springfield, Mo. 65801
Tel. 417-866-2322 • Fax 417-866-4115
800-641-4054

EDN-New Products
 EEECTRONIC DESIGN AUTOMATION

Model simulates PowerPC. This model of the PowerPC $603 \mu \mathrm{P}$ for Cadence's Verilog-XL and Leapfrog VHDL simulators, costs $\$ 4900$ and runs on IBM and Sun workstations. Motorola, Austin, TX. (512) 891-2839.

Circle No. 385

VHDL simulator accepts Verilog

 models. Cadence's Leapfrog VHDL simulator directly imports Verilog models. The option interfaces to Logic Modeling's SmartModels and hardware models. From \$12,000; Leapfrog 1.1 starts at $\$ 20,000$. Cadence Design Systems, San Jose, CA. (408) 943-1234.Circle No. 386

Windows-based tool offers drawing viewing and markup. ForReview for Windows lets you view and mark up drawings. A limited version, ForView, does not let you save the drawing markups. ForReview costs $\$ 495$; ForView costs $\$ 295$. Advanced Technology Center, Laguna Hills, CA. (714) 583-9119

Circle No. 387

SHORTS

Intusoft is offering a Spice bulletinboard service (BBS) on Compuserve. The BBS provides models, technicalapplication notes, software utilities, and demonstration software. It is under the CADD/CAM/CAE vendor forum. Intusoft, (310) 833-0710.

Circle No. 388
Model Technology's V-System/ Workstation VHDL simulator supports Logic Modeling's SmartModel Library, which simplifies simulation of system-level designs. Model Technology, (503) 641-1340.

Circle No. 389
Harris EDA offers design kits for Texas Instruments' high-density-interconnect (HDI) MCM technology. Harris EDA, (716) 924-9303.

Circle No. 390
Mentor Graphics has introduced a high-speed board-design kit for Intel's Pentium processor chip set.

The kit includes logic symbols, mapping files, geometry, signal-integrityI/O models, thermal models, reference layout for the core logic, and electrical rules. The design kit is free and works with the Mentor Graphics Board Station 500 timing-driven layout system. Mentor Graphics, (503) 690-2093.

Circle No. 391
OrCad is planning to act as an OEM for Model Technology's VHDL simulator for Windows. OrCad, (503) 671 9500.

Circle No. 392
Data I/O is offering users of the ABEL version 4 software a 60% discount to upgrade to the company's Synario universal-FPGA-design system. The discount applies to the base Synario product, which costs $\$ 2995$, and the PLD library kit, which costs $\$ 995$. ABEL version 3.2 or earlier users will receive a 40% discount. Data I/O, (206) 881-6444.

Circle No. 393

Modular Keyboard Solutions

RK 90 short-travel keyboard with NEMA 13 sealing

RF $15 / 19$ flat-panel switch and indicator modules

RS $74 / 76$ keyboard switch modules

Industrial Electronic Engineers, Inc. has joined forces with Rafi $\mathrm{GmbH} \& \mathrm{Co}$. to provide a unique modular approach to high performance data entry keyboards.
Our Keyboard Team offers a wide range of modular switches and keyboards with excellent design flexibility, high quality construction and reliability. We can provide cost-effective custom panels and keyboard assemblies based on standard switch modules and indicators. Whether you need sealed full-travel data entry type keyboards or rugged flat panel assemblies with selective illumination and interchangeable legends, we have the solutions.
IEE also provides completely integrated data entry and display assemblies utilizing our full line of standard flat panel displays. IEE is a company uniquely qualified to satisfy all of your man-machine interface needs. For catalogs or further details please call, fax or write to us.

THE BETTER
WAY TO GET
FROM HERE...

TO HERE.

dY 4 Introduces Three VME Cards

SENSOR

- video
- radar
- sonar

674 FRAME-GRABBER

- Frame capture/display
- Scan-rate conversion
- 35M samples/sec, 8 bits, 3 inputs
- Supports 16 -bit digital video input
- Optional on-board TMS320C40
- RGB output to $1024 \times 1024 \times 8$
- Built-In-Self-Test

DY 4 introduces an off-theshelf integrated solution that can take data from sensors right through to a video display terminal. Our Frame Grabber, Quad 'C40 DSP and Graphics Controller work together seamlessly to capture data from one or more sensors, process the findings and display them in real-time.

THREE CARDS = ONE INTEGRATED SUBSYSTEM.
By utilizing a high-speed 50 M bytes $/ \mathrm{sec}$ image bus, DY 4 delivers VMEbus integrated "vision processing" for multi-C40 and frame grabber applications. The benefit to you? With DY 4 resolving the hardware integration issues, you can concentrate on building a better application. Here are some of the features of this high-performance triple-card set.

Demonstration of complete image solution: 674 captures sensor video;
770 displays video within window on high-res display; imagebus link to
Demonstration of complete image solution: 674 captures sensor video;
770 displays video within window on high-res display; imagebus link to 442 DSP used for real-time image analysis.

FRAME-GRABBER

The 674 frame-grabber, operates at 35 M samples per second, and has its own C40 on board for extra processing power. Whether its grabbing video, radar or sonar data, the 674 offers
 high-performance signal data capture and manipulation in real-time.

QUAD 320C40 DIGITAL SIGNAL PROCESSOR

A 50 M bytes $/ \mathrm{sec}$ image bus can link multiple frame grabbers to multiple 442 Quad 'C 40 -based digital
signal processors. Using four Texas Instruments 320C40 DSP devices running at 40 MHz , the DY 4 Quad 'C40 has been designed with the military environment in mind. It's fast, cost-effective, reliable, and 100%

442 QUAD 'C40 DSP

- Four 40 MHz TMS320C40 digital signal processors
- 4M bytes to 16 M bytes total SRAM
- High speed 50M bytes $/ \mathrm{sec}$ multi-master image bus
- Inter-processor mailbox interrupts
- Externally accessible 'C40 Com ports
- Built-In-Self-Test
software compatible from commercial to Mil.

770 GRAPHICS CONTROLLER

The 770 Graphics Controller, offers singleboard high-resolution graphics generation. Based
 on the 34020 Graphics System Processor, the card offers 1280×1024 resolution graphics on color analog overlay, and optional mezzanine cards for dual display or flat-panel display outputs.

COMPREHENSIVE SOFTWARE DEVELOPMENT ENVIRONMENT

As you'd expect from DY 4, each card comes with a comprehensive set of card-level diagnostics and other commonly requested OS drivers and application software packages. The Quad 'C40 DSP also features Ada support from Tartan, C, C++, a set of optimized signal/vector processing libraries, and the Toolsmiths CASEworks ${ }^{\mathrm{TM}}$ development environment (more on CASEworks on the back of this insert!). The 770 graphics controller comes with a choice of graphics software: an Ada/C real-time driver RTGS, X-Windows, or CGI.

DY 4 invites you to discover more about the better way to get your data from the sensor to the screen. All the technical details are just a phone call away. Call DY 4 Systems at:
USA (East) 603-595-2400; USA (West) 408-377-9822; Europe 0222-747927; AsialPacific and Canada 613-596-9911.

FROM COMMERCIAL TO MILITARY...

As with all DY 4 VMEbus products, these three cards feature 100\% software and electrical compatibility, from commercial right up to Mil spec. This ensures that the application software you design on our SVME commercial boards will work exactly as expected, no matter how far up the specification ladder your application needs to climb.

100\% SOFTWARE COMPATIBILITY

[^7]
SOFTWARE DEVELOPMENT SUPPORT, WITH CASEworks ${ }^{\text {TM }}$

DY 4's Quad 'C40 DSP, the processor at the heart of our integrated threecard set, features Toolsmiths CASEworks ${ }^{\mathrm{TM}}$, a software development environment that helps you develop and produce better products faster, more easily, and at a lower cost. The CASEworks Remedy ${ }^{\text {TM }}$ debugger, shown here, offers target debugging with dynamic displays, multiple windows, buttons, menus and mixed multiprocessor support. Fault isolation, diagnosis and system control have never been easier.

CASEworks is an example of DY 4's continuing commitment to software development support... and one more persuasive reason to make DY 4 your VME supplier of choice.

The DY 4 triple-card set has been designed to work with DY 4's broad product line:

COMM

Chassis

For more information about how we can help you, call the number of our office nearest you, or fill out the accompanying business reply card.

DY 4 Europe

Tel: 0222-747927
Fax: 0222-762060

DY 4 Canada

Tel: 613-596-9911
Fax: 613-596-0574
DY 4 Asia/Pacific
Tel: 613-596-9911
Fax: 613-596-0574

DY 4 Systems Inc

Customer First,
Quality Always

DY 4 Systems Ltd.

USA West: Tel: 408-377-9822
Fax: 408-377-4725
Fax: 603-595-4343

If You＇re Looking For Product Acceptance In North America，UL Holds The Heu．

THE BIG NEWS TロDAY IS THAT UL IS ACCEPTED ALL ACRDSS CANADA．AND WITH THE
SIGNING ロF A CロロPERATIVE ASSISTANCE AGREEMENT WITH THE ASロCIACIDN NACIGNAL DE
NQRMALIZACIGN Y CERTIFICACIGN DEL SECTIR ELECTRICI（ANCE），THE FIRST INDEPENDENT
STANDARDS AND PRロDUCT CERTIFICATIロN ロRGANIZATIGN ACCREDITED GY THE MEXICAN
GロVERNMENT－UL IS THE FIRST ロRGANIZATIロN ロF ITS KIND Tロ ロFFER MANUFACTURERS
ACCESS Tロ CERTIFICATIONS FOR ALL DF NORTH AMERICA．
AND SINCE UL PRQVIDES CERTIFICATIDN THAT ALLDWS IMMEDIATE ACCEPTANCE ACRDSS THE
ENTIRE UNITED STATES，SAVING TIME AND MロNEY TI GAIN ACCEPTANCE ACRGSS NQRTH
AMERICA HAS NEVER BEEN EASIER．
IN FACT，ND QTHER SAFETY CERTIFICATIDN SERVICE CAN DELIVER WHAT UL PRQVIDES．AND
BECAUSE WE ロPERATE AS A NロT－FQR－PRGFIT GRGANIZATIGN，YロU CAN BE ASSURED THAT ロUR
PRIMARY ロBJECTIVE REMAINS SAFETY．
Sロ IF YロU＇RE LロロKING FロR ロNE SロURCE THAT NロT ロNLY HANDLES PRロDUCT SAFETY
CERTIFICATIロN ACRQSS THE UNITED STATES，BUT ALSI FACILITATES EXPANDING YロUR
PRIDUCTS＇ACCEPTANCE BEYロND THE BロRDERS，WE CAN HAND YロU THE KEY．

> U．S．HEADQUARTERS：BARBARA DLDS PHONE：7ロ日－272－8日ロロ，EXT．43319 FAX：7ロ8－272－9562

CANADA：JaHN WOODS PHONE：819－671－ロ527 FAX：819－671－0527

Visualize What Your PC Can Do.

Video communications will be the hottest selling feature of tomorrow's PC's. The ingredients for which are available right now in packages as small as $1 / 4^{\prime \prime}$. Just add an optical system to Sony's CCD and supporting Chip Set for a first rate, on-board camera featuring high-quality Hyper HAD ${ }^{\oplus}$ technology. Formats are NTSC/PAL color and EIA/CCIR B\&W. Supporting IC's for the CCD operating system include video signal processors in either color or B\&W. Plus you get Sony's acknowledged expertise in video processing, just by calling 1-800-288-SONY.

It's a nice arrangement: We make the chips, you make the history.

IDE cache controller boosts disk-I/0 rates

The BusLogic KT-410A, 910A, and 510A IDE cache controllers for the VL, PCI, and ISA buses, respectively, greatly increase the throughput of data between disk drives and a system processor. The PCI- and VL-bus versions transfer data at 5 Mbytes/sec on the disk side and $20 \mathrm{Mbytes} / \mathrm{sec}$ on the system side. The ISA version has a transfer rate of $5 \mathrm{Mbytes} / \mathrm{sec}$ on both sides.

Each controller connects a system to four IDE drives, each storing as much
as 4 Gbytes, and two floppy-disk drives. You can configure the controllers to provide disk mirroring or linking. The controllers require the addition of DRAM cache memory in 256 -kbyte, 1 Mbyte, or 4-Mbyte SIMMs. You can mix and match different-capacity SIMMs for a total of 512 kbytes to 16 Mbytes of cache. The VL, PCI, and ISA versions cost $\$ 175, \$ 255$, and $\$ 105$, respectively.
-Gary Legg
BusLogic Inc, Santa Clara, CA. (408) 492-9090.

Circle No. 369

IDE cache controllers from BusLogic Inc increase disk-I/0 rates to as much as 20 Mbytes/sec.

SCSI adapter for PCI bus processes $2000 \mathrm{I} / 0$ requests/sec

QLogic's QLA1000-PI SCSI hostadapter board for the PCI bus processes $2000 \mathrm{I} / \mathrm{O}$ requests/sec while queuing 1600 requests/sec. It provides burst data transfers at 132 Mbytes/ sec and sustained transfers of 20 Mbytes/sec.

The board achieves its performance via the company's ISP1020 SCSI coprocessor that has dual on-chip processors. One processor controls SCSI-bus protocol; the other, a 16 -bit RISC processor, handles data flow and
related commands. The board is ASPIand CorelSCSI-compatible and is available with drivers for DOS, Windows, Windows NT, NetWare, SCO Unix, and OS/2. $\$ 289$ (1); <\$200 (OEM).
-Gary Legg
QLogic Corp, Costa Mesa, CA. (714) 438-2200.

Circle No. 370

Quality Choices from Mueller

Now, Mueller gives you a choice of over 1000 test leads and accessories - over 100 brand new designs-and your choice of functionality. Choose test leads designed to meet your individual needs, offered in a wide range of

Mucller

1583 East 31st. St., Cleveland, Ohio 44114 Phone (216) 771-5225 • Fax (216) 771-3068

FREE! New,72-page catalog includes over 100 new products, plus 1320 established items, all grouped by test application. For custom-designed test
leads contact our Product Information Group. CIRCLE NO. 31

Our Power Module is Dual... theirs is only single output!

- Low Cost DC-DC Converters

Single Outputs \$104 / Dual Outputs \$149

- Dual Isolated Outputs
 28 Standard Models / Special Voltages Available

- Wide Input Voltage

Four Series / 18-380 VDC Input

- Parallel Operation

 Fixed Frequency 100 kHz True Redundancy Operation
- 100 Watts

The availability of DUAL ISOLATED OUTPUTS creates cost and space savings in many applications.

Fully safeguarded for over voltage, over temperature and continuous short circuit protection, these FIXED Hi-Frequency units minimize technical problems.

With output voltages from 3.3VDC to 100 VDC , four distinct input ranges and the choice of single or dual outputs plus the capability of Parallel Operation, as standard features, your circuit designs can be optimized.

Assembled in the U.S.A. with PICO quality components, these hi density units allow the most stringent mechanical, electrical and environmental requirements.

FAX or call today for immediate engineering assistance, product information or FREE catalog.

PICO Electronics,Inc.

453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552

EDN-New Products

COMPONENTS

Protected quad high-side MOSFET driver operates from 8 to 60 V . The LT1161 quad MOSFET driver has four ruggedized n-Channel MOSFETs that have a 100% voltage margin in 24 and 28 V systems. Each switch sports an internal charge pump, obviating external components to boost the MOSFET's gate 12V above the supply rail. Each channel has overcurrent protection and an internal reset timer. The device's current limit, delay time, and automatic restart period are externally programmable. $\$ 3.15$ to \$2.44. Linear Technology Corp, Milpitas, CA. (408) 432-1900. Circle No. 439

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

and voltages range from 500 to 1.5 kV dc. $\$ 0.15$. Cornell Dublier, New Bedford, MA. (508) 996-8564. Circle №. 441

Ultrafast power diodes switch in $30 \mathbf{n s e c}$. The HiPerFRED line of fastrecovery epitaxial diodes (FREDs) offers a 30 -nsec switching speed and
guaranteed avalanche-power rating of 13 kW . These $1-\mathrm{kV}$ devices exhibit $20-$ $\mu \mathrm{A}$ leakage. The devices' soft-recovery factor is 1 . These diodes combine elements of Schottky and PIN-diode construction. \$4.14 (1000). IXYS Co, Santa Clara, CA. (408) 962-0670. Circle No. 442

Superflexible coaxial cables bend

 around 1 -in. radius. Three ${ }^{3} 8$-in., 50Ω coaxial cables can carry high power around tight bends without losing their specified characteristic impedance. The jacketed ETS2-50T cable and unjacketed

Thermocouple clamps directly around hot pipe. The stainless-steel Pipe Clamp Sensor fits pipe diameters from 1 to 6 in. The sensor accepts common thermocouples that measure temperatures up to $1500^{\circ} \mathrm{F}$. A connector allows you to leave the sensor in place between measurements. $\$ 25$. Electronic Development Labs Inc, Danville, VA. (800) 342-5335.

Circle №. 440

Silvered-mica snubbers quash 100,000V/ μ sec transients. The Snubber Mike line of silvered-mica capacitors handle $3.7-\mathrm{kA}$ peak currents and 8.7 A steady state. These units exhibit unmeasurable changes in capacitance over frequency and temperature and withstand millions of "shots" without degrading. Capacitances range from 100 pF to $0.01 \mu \mathrm{~F}$,

- Single Chip RS232 and AppleTalk
- Multiple Drivers and Receivers
- Driver Tri-state Control
- Software Selectable Modes
- 28-pin SOIC packaging
тм AppleTalk is a trademark of Apple Computer

Programmable PC/AppleTalk ${ }^{\text {TM }}$ Multi-mode Transceiver

SIPEX Corporation • 22 Linnell Circle • Billerica MA 01821 • Tel: 508-667-8700 • Fax: 508-670-9001

The SP303 is the Industry's first Programmable RS232/AppleTalk Serial Transceiver. Featuring Driver Tri-state Control, and software mode selection, the SP303 is ideal for expanding interface capabilities for Printers, Modems, PCs....

Call for your Free Samples Today! (508)-667-8700

EDN-NEw PRODUCTS
 COMPONENTS

ETS2-50 cable can carry over 1.15 kW at 1 GHz . The attenuation of the two is 4.24 $\mathrm{dB} / 100 \mathrm{ft}$. Type FSJ2-50 has an attenuation of $4.09 \mathrm{~dB} / 100 \mathrm{ft}$ and can carry 0.452 kW at 1 GHz . The cables require a special N connector ($\$ 35$). FSJ2-50 $\$ 2.64 / \mathrm{ft}$, ETS2-50T \$11.14/ft. Andrew Corp, Orland Park, IL. (708) 349-3300.Circle No. 443

Field wiring unplugs from connector block. Rail-mounted, multipole connector blocks combine a multipin,

polarized connector with a terminal block. The blocks mount on TS32 and TS35 DIN rails and are certified to ISO 9001. Available versions accept screw terminals or crimps and can carry as much as 16 A at 600 V . Blocks feature 6 , $10,16,24,40$, or 64 pins. $\$ 17$ to $\$ 75$. Wieland Inc, Burgaw, NC. (919) 2595050 .

Circle No. 444

Dual, common-mode choke helps token-ring boards meet FCC EMI requirements. The PE-67539 (sur-face-mount) and PE-65740 (throughhole) dual, common-mode chokes provide $-40-\mathrm{dB}$ performance from 5 to 200 MHz . The chokes help token-ring LAN pc boards meet EMI specs. $\$ 2$ (1000). Pulse Engineering, San Diego, CA. (619) 674-8100.

Circle №. 445

Insulation-displacement connector features $\mathbf{2} \times \mathbf{2 - m m}$ pitch. The TCMD series of double-row connectors have $0.020-\mathrm{in}$. square, phosphor-bronze pins. The units' capacities range from two to 25 positions per row. Notch and position polarization are available. A resulting cable assembly is 0.20 in . tall and mates with the company's surfacemount and through-hole connectors. $\$ 0.06 /$ pin (1000); delivery, five days ARO. Samtec Inc, New Albany, IN. (312) 944-6733.

Circle No. 446

Trimming capacitor has axial leads. The $10-\mathrm{pF}$, half-turn RD10 trimming capacitor measures 0.14 in . in diameter and is 0.06 in . tall. Its de working voltage is 25 V , and its withstand voltage is 50 V dc . The unit's Q at 1 MHz is 400 , and its temperature coefficient is $-50 \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. $\$ 0.24(100,000)$, delivery stock to five weeks. Sample kits available. Voltronics International Corp, Denville, NJ. (201) 586-8585.

Circle №. 447

Sockets shrink spacing to $\mathbf{0 . 7 0} \mathbf{i n}$.

A series of $0.070-\mathrm{in}$. pin-to-pin, shrinkDIP sockets suit lower cost, lessdemanding applications. The sockets housings are UL94V-O glass-filled thermoplastic. Contact pins are tinplated phosphor bronze. The sockets are available with 16,22 , or 24 pins on $0.300-\mathrm{in}$. centers; 24,28 , or 30 pins on 0.400 -in. centers; 40 or 42 pins on 0.600 in. centers; and 64 pins on $0.700-\mathrm{in}$. centers. The 64 -pin socket costs $\$ 0.40$ (5000), delivery stock to six weeks ARO. Aries Electronics Inc, Frenchtown, NJ. (908) 996-6841. Circle No. 448

Astronomical resolution

With almost four million transistors controlling each RGB dot, our new 33 cm (13-inch) color LCD gives you resolution so high it's astronomical $1,280 \times 1,024$ pixels arrayed at a 0.201 mm pitch.

Higher resolution is just one result of NEC's leadership in thin-film-transistor (TFT), active-matrix-driven color LCDs. We're committed to this technology because it gives users a clear advantage in color, contrast, luminance, response and
viewing angle. As a major producer, we supply the OEM market with a wide choice of TFT color LCDs, including 640×480-pixel types.

Flat, lightweight, and low in power consumption, color LCDs are destined to dominate the display market. If you want to give your PC, workstation or multi-media terminal a visible advantage, take a good look at our TFT color LCD technology today.

The right components to build your reputation.

DC-DC CONVERTERS

Surface Mount O PC Board Mount - Low Profile - Single and Dual Output - Isolated Industrial to Military up to 1000 Volts

AC-DC

POWER SUPPLIES
Linear • Switchers • Open Frame - Low Profile © Up to 200 Watts
 for Free PICO Catalog. Call toll free 800-431-1064 in NY call 914-699-5514 FAX 914-699-5565

453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552 CIRCLE NO. 3

EDN-New Products

COMPONENTS

Surface-mount package dissipates IW optimally. The SOT-223 surface-mount package occupies 30% less pc-board space and is 30% lower in height than other 1W packages. The package resembles a standard SOT package but has an enlarged drain connection. The company supplies power FETs in the SOT-223 package. The package lowers device prices by 10% compared with other packages. International Rectifier, El Segundo, CA. (315) 322-3331.

Circle №. 449

Resistor network surface mounts.

The Narrow Body Resistor Network model 4900P measures 0.150 in . wide. The surface-mount devices come in 8-, $14-$, and 16 -pin models. Both bused and isolated resistors are available. $\$ 0.20$. Bournes Inc, Riverside, CA. (909) 7815140.

Circle №. 450

Snubber circuit's porcelain-onsteel substrate dissipates substantial heat. Using an enameled-steel substrate, a snubber circuit dissipates 5 W at $25^{\circ} \mathrm{C}$ (linearly derated to 0 W at $105^{\circ} \mathrm{C}$). Snubbers with chip capacitors can withstand 50 V pk; units are available with disk capacitors having a $1000 \mathrm{~V}-\mathrm{pk}$ withstand voltage. (Plain power resistors made with the same porcelain-enamel-on-steel substrate are also available in $10,15,20,50$, and 100W ratings.) Snubber: $\$ 0.47$ (1000), delivery 10 to 12 weeks ARO. Ohmite, Skokie, IL. (708) 675-2600. Cirrle No. 451

Low-cost $40-\mathrm{MHz}$ converter draws

80 mW . The model HI1171 $40-\mathrm{MHz}$ D/A converter's differential nonlinearity is 0.25 LSB, and integral nonlinearity is 1.3 LSB max. The device decodes and latches inputs before converting them. Glitch energy measures 30 pVsec . Differential gain and phase noise are 1.2 and 0.2% typ, respectively. $\$ 3.86$ in a 24 -pin SOIC (1000). Harris Semiconductor, Melbourne, FL. (800) 427-7747, ext 7138.

Circle №. 452

EXAGGERATED HOW MUCH CALCULATING POWER IS IN NEW MATHCAD PLUS 5.0. BUT ONLY SLIGHTLY.

New Mathcad PLUS 5.0 is the most advanced version of Mathcad ever released. And that's no exaggeration.
You get more math functionality for computing derivatives and integrals, differential equations, advanced vector and matrix operations, statistical functions, curve fitting, and fast Fourier and wavelet transforms. It has a wider range of symbolic capabilities, and lets you do polar, contour and parametric plotting.
Simply enter equations in real math notation anywhere in the on-screen worksheet. Add text and graphics, display results in 2-D and 3-D, change variables and instantly update answers. Then print your results in presentation-quality documents.
Best of all, Mathcad PLUS 5.0 is more powerful than spreadsheets or calculators and easier than programming languages. And that's no exaggeration, either.
Mathcad PLUS 5.0 is $\$ 299.95^{*}$. Call
now for more information, or mail or fax the coupon below.
Call: 1-800-967-5075•Fax: (716) 873-0906
FREE MATHCAD PLUS 5.0 INFORMATION KIT
For more information on Mathcad PLUS 5.0, mail or fax this coupon.

MathSoft, Inc. P.O. Box 1018, Cambridge, MA 02142-1519 USA Phone: 1-800-967-5075 • Fax: 716-873-0906 MathSoff Europe, P.O. Box 58 , Livingston, UK EH54 7AE Phone: +44.506 .460373 - Fax ++44.506 .460374
© 1994 MathSof, Inc. TM and ® signify manufacturers trademark or registered trademark respectively. * Dealer price may vary.

CIRCLE NO. 36

Higher Perforvance. No WAiting.

Harris DG400 Switches and Muxes Are In Stock.

Upgrade the performance of your next design by using Harris DG400 switches and muxes. We're the only licensed alternate-source. And we've got the whole family in PDIP and SOIC packages. They're qualitybuilt and spec-for-spec compatible with Siliconix. And you can get Harris parts right now. Off the shelf. Pronto. No waiting. Get your schedule back up to speed by selecting Harris DG400 switches and muxes.

Try our AnswerFax service!
Call 407-724-3818 and request document \#7050.
Or call 1-800-4-HARRIS, ext. 7142.

Nichicon. Now the tantalum choice around the world.

Now you can get tantalum capacitors from Nichicon in the U.S. - and around the world. What makes that an earth-shaking event? Nichicon service. Nichicon flexibility. Nobody does what Nichicon does to get your problems solved. If you've got a question, we'll get an answer now. If you've got a requirement that's out of the ordinary-we'd like a chance to meet it. Our broad range will help you find a perfect fit. Call your Nichicon rep for a catalog today. 708/843-7500 • FAX: 708/843-2798

EDN-New Products BOARDS \& BUSES

Module and bus bring 320-Mbyte/sec I/0 to VME

SkyChannel bus architecture allows numerous processors to share access to system resources at data rates as fast as $320 \mathrm{Mbytes} / \mathrm{sec}$. To maximize bus utilization, the synchronous 64 -bit bus uses centrally arbitrated packetized data transfers with buffering at each end. This architecture has been proposed to VITA as an open standard.

Designed for multiprocessing applications, SkyChannel bus allows as many as 4096 processors to be interconnected. Each processor accesses memory and other system resources as part of a 16 Tbyte address space. Thus, the processors can share all memory, which simplifies data exchange. The bus can be used within a board, between boards, or between card cages. Multiple SkyChannels run in parallel with a crossbar switch between, which allows them to offer multiple independent paths between processor and resource when there are many resources to share.

Data traveling along the bus moves between units called Functional Modules in packets as large as 256 words, which are headed by a destination address. Each Functional Module uses FIFO buffering in both its input and output ports so that data transfers can occur at the maximum bus speed. A central arbiter controls access to the bus, granting Functional Modules use of the bus as requested.
Modules have three types of transfer: write, read, and compare and switch. The read and compare transfers use a split operation to reduce bus utilization. Both call for the reading module to provide a destination address to the module being read. The responding module then sends the requested data after it's queued in the FIFO.

A variety of SkyChannel products are available from the bus designers, including a multiprocessor VME card, a backplane bridge for VME systems, a complete VME system with SkyChannel embedded, and a stand-alone processing unit with SCSI interface. Each uses the Shamrock II compute daughter card as its basis.

The Shamrock II offers four i860 processors and 128 Mbytes of DRAM connected by a 4 -channel bus with crossbar switch. A link to external SkyChannel buses is one of the card's

Key to the SkyChannel system, the Shamrock Il card uses the channel to connect four i860 processors to each other and off board.
resources. The Skybolt II 6U VME card accepts one Shamrock daughter card and links the SkyChannel bus to the VME backplane's P2 connector. The 9U card accepts four daughter cards.
At the system level, the SkyStation II holds two daughter cards and provides them with 512 Mbytes of bulk memory, high-speed parallel I/O, and a SCSI-2 port. The SCSI-2 port links the SkyStation to a host processor, allowing the unit to function as a computa-
tion accelerator. Another system product, the SkySystem, is a 500W VME64 chassis with SkyBolt boards, tape, disk, and CD-ROM drives, color monitor, keyboard, and software tools. For designers building their own systems, the SkyBridge interconnect plugs onto the P2 connectors to provide a 4 -channel bus between boards.
SkyChannel is supported by software tools that simplify multiprocessor computing. The compilers accept C, Fortran, and Ada code and automatically partition tasks among as many as four processors.
The Skybolt II 6U card and SkyStation II system are available now; each costs $\$ 20,000$. The SkyBridge, Skybolt II 9U cards, and SkySystem products will be available by the second quarter of 1994. The systems will cost $\$ 30$ to $\$ 50 \mathrm{k}$, depending on configuration. The SkyBridge interconnect will cost approximately $\$ 600 /$ board. - Richard A Quinnell
Sky Computers Inc, Chelmsford, MA. (508) 250-1920.

Circle No. 372

Full-Featured Fractional HP Motors and Controls at OEM Prices by Japan Servo Company, Ltd.

- Step angles from 0.45° to $15^{\circ} \mathrm{in}$ half, full \& micro-steps - 50% more torque/size
- Encoders \& gearheads with or without drivers - Three-phase motors available

Call for Specs or Quote:
Distributed by:
203/840-1590
Japanese Products Corp. Norwak, cr 06851
FAX: 203/840-1601

Design INNOVATIONS

TECKNIT FINGER STOCK ADAPTS TO WIDE RANGE OF LOW CLOSURE FORCE APPLICATIONS.

Tecknit has redesigned the geometry of industry standard Beryllium Copper strips to insure superior shielding performance in closure applications where wiping action and extremely low compression forces are required.

Beryllium Copper gaskets are tough and durable. They exhibit excellent fatigue strength and retain a constant
spring force -
virtually eliminating compression set. And they perform flawlessly at extreme temperatures.

Top designers use Tecknit Finger Stock in a wide range of electronic applications from computers to radios, from military guidance systems to consumer products.

Call Tecknit Product Support people today for complete information on how Beryllium Copper can help.solve your most difficult shielding problems.

CIRCLE NO. 91

TECKSOF ${ }^{\circ}$ COMMERCIAL SHIELDING GASKET... EASILY CONFORMS TO SURFACE IRREGULARITIES.

TECKSOF is a cost-effective shielding gasket designed to provide maximum EMI shielding effectiveness for applications where minimum closure force and unusually wide tolerance gaps exist. TECKSOF is constructed of silver-plated nylon thread over pliable urethane foam. This unique combination of materials ensures that the gasket will maintain close physical contact with even minute surface irregularities. Supplied in a wide range of sizes, in cut lengths or in continuous rolls, it can be installed around bends without wrinkling, creasing or cracking. Economical, TECKSOF supplies over 60 dB shielding from 30 MHz to 1 GHz .

Call your Tecknit representative for complete information and design assistance.

ORIENTED WIRES IN SILICONE. EXCELLENT SHIELDING IN ROUGH ENVIRONMENTS.

Tecknit Elastomet ${ }^{\oplus}$ and Elastofoam ${ }^{\circledR}$ solve EMI, static discharge and grounding problems where severe environmental conditions exist.
Both patented
products
consist of fine perpendicularly oriented wires chemically bonded to silicone elastomer.

Elastomet employs solid Silicone or Flurosilicone and is most effective where medium or high closure forces are required. Elastofoam, made of a more pliable soft silicone sponge, is designed for applications where severe joint unevenness occurs and a low closure force is required.

Elastomet and Elastofoam meet the most demanding industrial, commercial and military requirements. Both products are available in sheets, strips to 9 " wide or as die-cut finished gaskets. Tecknit will tailor designs to meet your needs. Call for information.

קecknut

INNOVATION BY DESIGN
Call, fax or write for our complete shielding products catalog.

EDN-New Products BOARDS \& BUSES

Module provides controlled power-up sequence. The Power Sequencing Module (PSM) staggers the turn-on and -off of supply voltages to the Futurebus + backplane. PSM offers four voltage rails: $2.1,3.3,5$, and 48 V . The module connects in parallel with the ac's power input lines and the power supply. $\$ 150$. Bicc-Vero Electronics Inc, Hamden, CT. (800) 242-2863.

Circle №. 353

STD computer supplies extensive I/O. The ZT 8802 is a V40-based STD32 computer module that runs DOS software. In addition to the standard DOS serial port, the board offers two more RS-232C serial ports and 48 bidirectional digital I/O lines. The board also includes 1 Mbyte of RAM and 512 kbytes of ROM. An SBX expansion bus makes the module customizable. $\$ 450$. Ziatech, San Luis Obispo, CA. (805) 541-0488.

Circle №. 354

Automation controller handles

 industrial environments. Based on the 8086 processor, Hench Control automation controllers incorporate optical isolation, filtered power, and analog I/O filtering to withstand the rigors of the industrial environment. The modules are C-programmable and available as $11 \times 7-\mathrm{in}$. boards or in NEMA-4 enclosures and offer 64 digital and 48 analog I/O channels. From $\$ 3500$ (unprogrammed). Hench Control Corp, San Jose, CA. (408) 296-4600.Circle №. 355

Quad processor meets military needs. The DMV-442 incorporates four 320C40 DSP devices-each with 4 Mbytes of RAM-onto a 6 U VME board. The board makes four of the processors' 20 -Mbyte/sec communications ports available on the backplane, offers a mailbox interrupt mechanism, and has an optional 500 Mbyte/sec I/O bus. The board is available in commercial, extendedtemperature, and military-ruggedness configurations. From \$12,895. Dy 4 Systems Inc, Campbell, CA. (408) 377-9822.

Circle No. 356

VME board provides 32 analog output channels. The MPV914 is a 6 U slave VME board with as many as 32 channels of 12 -bit DAC analog signals. The range for each signal is individually controllable and can be set for ± 10, $\pm 5,0$ to 10 , or 0 to 5 V output. The digi-

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

tal codes can be binary, offset binary, or 2's-complement. From \$4495. Pentland Systems Ltd, Danville, CA. (510) 736-5113.

Circle No. 357

VME modules offer switching options. The VM series switch modules offer multiplexer, matrix, and discrete relay configurations in a 6 U VME or B-size VXI board. The modules come with standard, mercury-wetted, or lowthermal relays and can be configured to handle as much as 8 A . The coaxial relay matrix handles signals to 200 MHz . $\$ 500$ to $\$ 1800$. Cytec Corp, Penfield, NY. (716) 381-4740.

Circle №. 358

386 processor module fits small spaces. The ESP 386SLV/486SLC module uses double-sided component placement to achieve minimum size while retaining full PC compatibility. It uses the VLSI Scamp chip set and the VL82C323 power-management chip to give software control of power usage. The board includes standard AT keyboard control, BIOS on boot-block flash EEPROM, and a coprocessor socket. $\$ 302$ (100). Dovatron International, Longmont, CO. (303) 772-5933.

Circle No. 359

GPIB controllers mate with a variety of PCs. Expanding beyond ISAbased machines, this GPIB controller family offers a variety of interfaces. The GPIB-232CT-A (\$495) is an RS232C-toGPIB controller board that allows any serial port to become an IEEE-488.2 controller. The GPIB-ENET/Mac board (\$1095) connects Macintosh computers to the IEEE-488 bus via Ethernet. The TC-GPIB/OSF board kit (\$895) connects to DEC Alpha workstations. National Semiconductor, Austin, TX. (512) 794-0100.

Circle No. 360

Board suits small industrial control. The Puce board measures $250 \times$ $140 \times 44 \mathrm{~mm}$ and includes a 16 -key keypad and a 2 -line 16 -character alphanumeric display. The eight digital-input, eight output, and eight analog lines are all power-surge protected. The board also offers an extension connector and a built-in beeper for audio alarms. LEAS, Grenoble, France. (33) 76521330.

Circle No. 361

VME64 board utilizes RISC processor. The HK80/V960D is based on a 30MHz 80960CF processor with a 4 -kbyte instruction and 1 -kbyte data cache. The board also provides as much as 16 Mbytes of DRAM, 4 Mbytes of flash EEPROM, and sockets for 512 kbytes of rom. Four serial ports, an Ethernet interface, a VME64 interface, and a 200 -Mbyte/sec expansion bus handle board I/O needs. From $\$ 4495$. Heurikon Corp, Madison, WI. (608) 831-0900.

Circle No. 362

VME board accepts four PCMCIA cards. The RM230 6U VME card accepts as many as four PCMCIA cards carrying I/O or as much as 256 Mbytes of memory. The board accepts the cards as two independent blocks-each block containing two cards. Memory and I/O cards are each address-selectable on 64-kbyte boundaries. $\$ 580$. RAMix Inc, Chatsworth, CA. (818) 349-6772.

Circle No. 363

SHORTS \& REVISIONS

Beta Transformer Technology Corp now offers an application note on transformers for the MIL-STD1553 data bus. (516) 567-5600, ext 7794.

Circle No. 364
The Model 467-1 Sbus-to-VMEbus adapter from Bit 3 Computer Corp now includes a slave DMA mode that handles sustained data transfer rates to 12 Mbytes $/ \mathrm{sec}$.

Circle No. 365
Texas Instruments has developed a low-cost version of its MVME162 embedded computer: the MVME162LX. The $\$ 1095$ LX provides front-panel I/O access and errorcorrecting memory. Circle No. 366

Portable 500-MHz DS0 stores $\mathbf{8 M}$ words in real time at 2 G samples/sec

For reasons detailed in Ref 1, a real-time-sampling capability is a big deal in DSOs, and in real-time-sampling DSOs, deep memory is an even bigger deal. That explains the continuing increases in the memory depth of wideband DSOs whose real-time sampling rate is four or five times their $-3-\mathrm{dB}$ bandwidth. LeCroy Corp leads the industry in wideband DSOs that provide deep memory, but until now, the company has not had a real-time portable scope with $500-\mathrm{MHz}$ bandwidth.

Now LeCroy has a family of six such scopes, the 9350 series. The top-of-the-line 9354L ($\$ 24,490$) offers an 8Msample memory. Other portable scopes that acquire $500-\mathrm{MHz}$ signals at 4 samples/cycle offer less than 1% of that memory depth.

The 9350 series' versatility should win it the nickname of "the Swiss army knife" of DSOs. (Coincidentally, LeCroy manufactures its portable DSOs in Switzerland.) The 9354L achieves its 8 M -sample memory depth and 2 G -sample/sec acquisition speed when you use one channel. In this mode, it interleaves all four channels' 500 M sample/sec ADCs and 2M-sample memories. Although interleaving ADCs to achieve faster sampling is fairly common, only a few wideband scopes-none of them portable-interleave capture memory. Both time and numbers of stored samples are important in this case; failure to interleave memory reduces the captured signal's maximum duration.

The 9354L's long memory lets you capture 4 msec of data at 2 G samples/sec. You can acquire signals at 2 G samples/sec at sweep speeds as low as $400 \mu \mathrm{sec} / \mathrm{div}$. Under these conditions, even signals that contain $1-\mathrm{GHz}$ components of significant amplitude do not cause aliasing. Moreover, you can zoom in on very short slices of the long records and view them at high sweep

The resemblance of LeCroy's 9354 L to the company's other portable DSOS is striking, but the unit offers memory unmathed by any other wideband, portable DSO. The amber-phosphor CRT is bigger than some competitors', and the optional thermal printer can, in effect, give you a CRT many yards wide.
speeds without reacquiring the data. Unlike some competitive units, the LeCroy scopes can simultaneously display the full signal and several expanded segments.
Some scopes with shorter memories offer a glitch-capture feature that, even at low sweep speeds, guarantees capturing narrow pulses. Glitch capture saves memory by processing the waveform data before it is stored. A scope with glitch capture tells you only roughly when a glitch occurs; all it says about the glitch width is that it didn't exceed some maximum. Even at fairly low sweep speeds, a scope with deep enough memory digitizes at its maximum rate and stores every acquired point. Unlike glitch capture, deep memory preserves all information about narrow glitches and portrays them more accurately.

One reason for the Swiss-armyknife label is that all of the 9350 units do both random equivalent-time sampling (useful with repetitive signals) and real-time sampling (useful with repetitive and 1 -shot signals). The presence of this dual-mode capability pits the 9354 ($\$ 13,990$, 25k samples/ channel, 100 k -sample memory in 1 channel mode) and the 9354M ($\$ 16,490$, 100 k samples/channel, 500 k samples in

1-channel mode) against Tektronix's top-selling TDS 2540A ($\$ 16,290$ with optional 50 k -sample/channel memory) and Hewlett-Packard's recently introduced 54540A ($\$ 15,000,32 \mathrm{k}$ samples/channel). In real-time mode, these HP and Tek units take 1G samples/sec on one channel, whereas the $9354,9354 \mathrm{M}$, and 9354L take 2G samples/sec on one channel.

Both HP and Tek offer portable DSOs that capture 2G samples/sec on up to four channels at once. HP's units store 32 k samples/channel; Tek's store 2 k samples/channel. Pricing of these realtime DSOs is roughly onethird greater than that of the other HP and Tek scopes mentioned here.

Besides the 4-channel models, the 9350 series includes three 2-channel units. Their prices begin at $\$ 9490$. For $\$ 590$ more, you can equip the LeCroy scopes with a floppy-disk drive; for $\$ 500$, you can add a PCMCIA slot. A drive is standard on some competitive products, but the memory-card slot is not available. For $\$ 890$ extra, LeCroy equips its portable scopes with a thermal plotter, which does screen dumps and writes long records in uncompressed form. In effect, these records give you a "CRT" many yards wide. Tek offers a printer that you can attach to the top of its TDS scopes; the HP scopes use separate printers. FET probes for the LeCroy scopes cost $\$ 990$ each.
-Dan Strassberg
LeCroy Corp, Chestnut Ridge, NY. (800) 553-2769.

Circle No. 468
Hewlett-Packard Co, Santa Clara, CA. (800) 452-4844.

Circle №. 469
Tektronix Inc, Beaverton, OR. (800) 426-2200.

Circle №. 470

Reference

Strassberg, Dan, "Fast single-shot DSOs take varied design approaches," EDN, July 8, 1993, pg 47.

EDN PRODUCT MART

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

Ethernet
Development and Testing at full speed on: - Multiport Devices \quad Bridges \quad Repeaters - Ethernet Switches - Routers Transceivers

The ET-1000
An easy to use 2 port Ethernet test instrument for Design Engineers and Production Managers. Generate and capture Ethernet traffic, create and detect all possible packet errors, monitor accurately in real time all statistics. The ET-1000 is the most advanced physical and MAC layer tester / Simulator / Analyzer available! Attachment options include Jitter Simulator, Multiport device tester and a $\mathrm{C} / \mathrm{C}++$ Library. Call today for more information on this powerful tool.
21818 Lassen Street, Unit G
Chatsworth, CA 91311
(800) 531-6363 Fax (818) 709-7881 SYSTEMS CIRCLE NO. 231

ITAdvin

PILOT-U84 Universal Programmer The Leader in New FPGA Support - Altera MAX 7064, 7128 - Xilinx 1736D,1765D etc

- Intel FX-740, FX-780; 87 C 196 KD,KR,JR,MC etc - Moto 68HC711D3, E9; 68HC705 C8,C9,P9 etc - WSI PSD-4XX,-5XX,PAC,SAM • Atmel 29 C040 etc - AMD MACH435, 29F040, 16R8-4 - Lattice pLSI etc - All packages to 256 -pin: PLCC,PGA,QFP,TQFP,SOIC For immediate support, please call 800-627-2456 FAX: (408) 736-2503

COMMUNICATION BOARDS

Quatech's synchronous/asynchronous serial boards for PC-AT and compatibles support RS-232, RS-422, and RS-485 communication.

Call for a free catalog 800-553-1170

T EUATECH

662 Wolf Ledges Parkway Akron, Ohio 44311

Consistency is key

to the power of EDN Product Mart

Tatum CAE Software! from \$49 to \$4190 - ECA-2 Analog Circuit Simulation - Interactive - Fast, Complete © Realtime Graphics - Interface to Mfr's Spice models - Expanded user function and conditions list - Model the unusual -
SpiceAge for Windows - Analog Circuit Simulation - Thorough • Powerful - Easy to use - Loaded with helps - Super Plots -
\square GESECA
Schematic Graphic Entry - Emphasis on circuit design rather than PCB layout - Ideal front end for ECA-2 and SpiceAge \bullet Libraries - Pleasure to use - Ports to Tango, Racal, etc. PCB (7) SAUNA

3D Thermal Analysis - PCB's, heatsinks, enclosures, complex thermal designs - Menu driven - All modes: conduction, convection, radiation - Full thermal/matl's library - The 'must-have' software for the package designer [+ More! CAE Software - Active filter synthesis, Logic ekt design, Tutorial, Curve fitting, and more - Call for demos/catalog -
WhMTatum Labs, Inc - TL
1287 N. Silo Ridge Dr, Ann Arbor MI 48108
Tel: 313 663-8810 Fax: 313 663-3640
CIRCLE NO. 238
We speak your language! VHDL

Outsourcing Specialists
Optimize time to market
Cost effective designs

- Increase productivity

On-site or Off-site
ASIC \& FPGA Design \& Training using VHDL \& Synthesis
Tel: (408) 954-7370
Fax: (408) 954-7372
2880 Zanker Road, Suite 203
San Jose, CA 95134. USA

CIRCLE NO. 237

High Density Circular Process and Medical Equipment Connectors D Series 7, 9 and 12 contact cable to cable and chassis connectors provide MIL quality contacts in impact resistant Polycarbonate housing. Keyed simple push button lock minimizes use problems. Solder cup or crimp contacts are useable in either housing.

FOR ADDITIONAL INFORMATION, CONTACT: HYPERTRONICS CORPORATION
16 Brent Drive, Hudson, Massachusetts 01749 (800) 225-9228 or (508) 568-0451 FAX: (508) 568-0680 CIRCLE NO. 240

Combine your Product Mart ads in EDN Magazine and Products Editions

for
higher impact and a
lower rate!

MICBOPROCESSOR EIIULATORS

Zax provides a comprehensive series of real-time emulation support for Motorola, Intel, NEC, Zilog, and Hitachi microprocessors. Some of the highlighted features include source-level debug, real-time trace, and performance analysis.
Call now for more information:
(800) 421-0982
(714) 474-1170 (Inside CA)
(714) 474-0159 (Fax)

ZAXTEK
42 Corporate Park Irvine, CA 92714
CIRCLE NO. 244

Communicate Weekly to the electronics OEM through EDN Magazine and Products Editions' Product Mart sections.

CIRCLE NO. 247

ASIC SOFTWARE

for PC, Sun, HP and Mac.

- S-Edit: Schematic entry
- T-Spice: Circuit simulator Free L-Edit demo disk. - GateSim: Logic simulator $\begin{aligned} & \text { Call (818) 792-3000 } \\ & \text { Fax (818) 792-0300 }\end{aligned}$ Layout Tools
- L-Edit: Full-custom layout editor
- DRC: Design rule checker
- Extract: General device extractor
- LVS: Netlist comparison utility
- SPR: Standard cell place-\&-route

CMOS layout libraries for MOSIS \& Orbit

TANNER

180 North Vinedo Ave
CIRCLE NO. 249

CIRCLE NO. 246

VME to Encore HSD Data Link/ Emulation

Using our VMEHSD card and file transfer software, files can be moved between a VME system and an Encore computer HSDII board. The
VMEHSD also emulates the HSDII; whereby, the VMEHSD can drive a HSDII compatible peripheral device. Test Program and UNIX drivers available for Motorola, Sun \& SGI. This product provides an excellent data acquisition, monitoring or testing tool.
APPLIED DATA SCIENCES, INC. P.O. Box 814209

Dallas, TX 75381-4209 (214) 243-0113 FAX (214) 243-0217

CIRCLE NO. 248

8131	831411	681614	B128
- Real-Time \& Nonintrusive			
64K Data Mem			
128K Hardware Breakpoints		ICEMASTER-PE	
㽆16K Frame Trace Buffer			
ESymbolic \& Source New, Powerful Level Debug IN-Circuit			
․ Complete 'C' Variable Support		EMULATORS	
		FX/8052	51.00
${ }^{\text {Wisinis}}$ Serial Lin	$y 80$	/32	851.00
Dos PC,	pptops! 83	1/752	851.00
		MetaLink emulato res of the microco ay money back g rentals. Prices a FREE demo dish	more than amilies listed 10 day trials J.S. list.

$(800) 65-8.242$
25E. Ellioi Road, Chandiler, Az85225
Phone: ((002) 9226 -0797, Fax: 602) $9226-1198$

Y'IMeralink ${ }^{\circ}$
MetaLinkeurope GmbH Westring $2,0-$-. 55614 Kirchseeon- Eghtharting
Teleton (08091) 2046, Teletax (08091) 2366

UNIVERSAL/GANG PROGRAMMDRS

FLEX. 700

40 pins from $\$ 845$
48 pins from $\$ 945$
TUP. 4001300 \$745/\$575

- Supports EPROM, FLASH, PLD, FPGA, GAL, MPU, ... in DIP, PLCC, SOP, QFP, PGA
- Expandable from 40 pins to 256 pins and to 4. or 8 sockets for gang programming. - Universal 44, 68, \& 84 pin PLCC modules. - Free software updates via BBS.
- Programming algorithms approved by IC Manufacturers.

8051 IN-CIRCUIT ENULATORS

NICE-51 SYSTEMS FROM \$795

- Supports 87(C)51 and many derivatives
- Fully supports emulation of internal and external memory with no intrusion on user memory, I/O, stack, INT
- Supports Archimedes. Franklin, Intel, IAR, KEIL 2500AD.... C compilers and most assemblers
- Single step, go slow, run in real time, set breakpoints and much much more
- Complex trigger and filter functions let you record in real time all or any portion of program execution you desire (up to 16 K 48 bit words).

ROM/RAM EMULATORS

TRE/EML SYSTEMS FROM \$295

- Emulate up to two 27(C)64-27(C)010 devices at one time in independent or 16 bit even/odd mode
- Emulate one 27C020 27C1024, 27C2048.

EPROM/GANG PROGRAMMER

TEP/QUICK-32 SYSTEMS FROM \$285

Tribal

Tribal Microsystems Inc.
44388 S . GRIMMER BLVD., FREMONT,CA 94538 Tel: (510) 623-8859
Fax: (510) 623-9925
CIRCL.E NO. 251

200Ms Digital Oscilloscope

Starting at $\$ 1799$ with Probes \& Software
$200 \mathrm{MSa} / \mathrm{s}$ Sampling Rate up to 128 K Samples/Channel PC-BASED INSTRUMENT 2 Analog Channels (2ch. Oscilloscope) 8 Digital Channels (8ch. Logic Analyzer) 125 MHz Single Shot Bandwidth

Call (201) 808-8990
/4 Link Instruments
369 Passaic Ave, \#100, Fairfield, NJ 07004 tax 808-8786 CIRCLE NO. 255

RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?
The RelCalc 2 Software Package automates the reliability prediction procedure of MIL-HDBK217, or Bellcore, allowing quick and easy reliability analysis of electronic products on your PC. Say goodbye to tedious, time consuming, and error prone manual methods!

- NEW UPDATE! VERSION 3.1 now available
- User friendly: pop-up menus, hypertext help.
- Very easy to learn and use; quick data entry.
- Part library for rapid recall of part data.
- Global editing functions for what-if? trials.
- Reports which clearly organize results.
- Save time \& money as you design for quality
- Try our Demo Package today for \$25.

T-Cubed Systems, 31220 La Baya Drive, Suite 110, Westlake Village, CA 91362 CALL: (818) 991-0057 FAX: (818) 991-1281

Complete System \$1495.00 New Windows 3.1 Compatible Software
-48 Chnnls @ 50 MHzx 4K words deep

- 16 Trigger Words/16Level Trigger Sequence
- Storage and recall of traces/setups to disk
- Disassemblers available for: $68000,8088,8086$

6801, 6811, Z80, 8085, 6502, 6809, 6303, 8031, 64180
NCI ■ 6438 UNIVERSITY DRIVE, HUNTSVILLE, AL. 35806 (205) 837-6667 FAX (205) 837-5221 CIRCLE NO. 253

In-Circuit Emulators

Development tools for the most demanding
8051
80196
80186
HPC+
Z8
8085
DSP's

- Unparalleled features
- HLL debugger with locals support
- External unit, no plug-in cards !!!
- High speed download (64 k in 12 sec)
- Banking support for $>64 \mathrm{~KB}$ operation see the difference - free 2 week trial SIGNUM SYSTEMS
Mountain View, CA / Thousand Oaks, CA. (415)903-2220 (805) 371-4608

CIRCLE NO. 256

Expandable

 Logic Analyzer plus$\checkmark 50 \mathrm{MHz}$ and 25 MHz state and timing $\sqrt{32 \mathrm{~K}}$ sample depth, up to 192 channels \checkmark Professional features in PC-based product \checkmark Easy-to-use, windows-like interface \checkmark PC-based desktop and ISA bus versions \checkmark Digital/analog pattern generator option

Consistency

to the power of EDN Product Mart

CIRCLE NO. 254

DECISION

IS YOURS!
as to who gives you the best value?

5 DAY TURN				SERVICES:
PRINIED CRCIIT BOARDS TWO-PIECE PRICES				- 1 TO 5 DAY TURN
				- Ul Approved
LAYER		182	3\&4	Multi-layer
SOUARE	60	\$300	\$725	- Prototype and
INCH	90	\$350	\$800	- Instant Quotes
UP TO	120	\$400	\$875	- Gerber/AutoCAD/ HPGL/P-CAD

EXTRAS. Photpoloting - Testing © Gold. Electricl Testing

CIRCLE NO. 257

PC-based Programmer

 for over 1500 Devices\checkmark Program PLDs, PROMs, EPROMs and MCUs
\checkmark Semiconductor manufacturer approved algorithms \checkmark Wide choice of adapters: PLCC, SOIC, TSOP, etc. \checkmark Immediate device list updates via BBS \#408-982-9044 \checkmark Trade-in discount offer (until 3/31/94) \checkmark Immediate delivery from stock

Communicate Weekly to the electronics OEM through EDN Magazine and Products Editions' Product Mart sections. \qquad CIRCLE NO. 261	SM LAND/SOCKET PLUGGABLE SURFACE MOUNT The OFP and PLCCSM LAND/SOCKET provides a very reliable solution for socketing QFPs or PLCCs in production or ZIF (test/burn-in) patterns. The device is surface mounted to the SM LAND/SOCKET which converts the QFP or PLCC to a base pin array of the production or ZIP OFP socket and can then be soldered to target board or socketed using Ironwood's sockets receptacles. This results in a reliable connection at a reasonable cost. From $\$ 20$. IRONWOOD ELECTRONICS P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431.7025 FAX (612) 432.8616 CIRCLE NO. 262	FASTEST ALL PACKAGE-TYPE GANG \& SET PROGRAMMER \star Prices from \$895. (uso) \star Duplicate E/EPROMs 8, 16 or 32 at a time. \star Set Program to 8,16 or 32 devices each with different data. \star All Packages: DIP, PLCC, LCC, PSOP, PQFP. \star Gang Motorola Micros (68 xxx or 68 HCxxx) \star Free Lifetime Library Updates via 24 hr . BBS \star Rapld Programming Speeds (Gang or Set) $\star 321$ Meg Devices: 17 seconds, $2 \mathrm{Meg}: 30 \mathrm{sec}$. ₹ Call now: 800-523-1565 Corporation Boca Raton, Florida-USA Tel: 407-994-3520 Fax: $407-994-3615$ CIRCLE NO. 263
CIRCLE NO. 264		HiWIRE II Schematic and PCB Software With support for expanded and extended memory, HiWIRE II can handle your most demanding schematic and PCB designs. The unique HiWIREII editor allows you to display and edit schematics and PCBs simultaneously, using the same commands for each. HiWIRE II is $\$ 995$ and is guaranteed. Wintek Corporation 1801 South Street Lafayette. IN 47904 Latayette, IN 47984 $1-800-742-6809$ CIRCLE NO. 266
Combine your Product Mart ads in EDN Magazine and Products Editions for higher impact and a lower rate!	ADVANCED SMT SOIC Sockets SNAP ON COVER SMT SOIC Socket - . $050^{\prime \prime}(1.27 \mathrm{~mm})$ lead spacing. - Molded locating ribs for fast device placement. - Snap on cover retains device, maintains constant contact pressure. \Rightarrow ADVANCED INTERCONNECTIONS ${ }^{\circ}$ 5 Energy Way, P.O. Box 1019, W. Warwick, RI 02893 USA CIRCLE NO. 268	PCMCIA (No Soap-on-a-Rope) CH1827 PHONE INTERFACE - Eliminates external DAA's - Fits Type II - Works with all modem chip sets - V.32bis, V.TURBO - Isolation included - FCC Part 68 approvable - Free Application Notes Your Source for Modem Components Cermetek Tel: 408-752-5000 Fax: 408-752-5004 Cermetek Microelectronics, Inc. 1308 Borregas Ave. • Sunnyvale, CA 94089 CIRCLE NO. 269

EDN-CAREER OPPORTUNITIES

MANAGER PRODUCT DEVELOPMENT Menomonee Falls, WI manufacturer of hybrid and resistor networks seeks individual to manageengineering staff in R\&D of new products or extensive functional modification of exsisting standard lines in consumer telecommunications, power, and lighting products. Duties include:Originate basic scientific and engineering concepts of projects, evaluate findings of analytical studes to develop new products or to develop appications of findings to new uses p pepare and submit patent documents to supplement new findings: responsible for productmaterial and manuiacturing costs and quality of product. to reduce costs withoutimpairmentof ouality and relability standards; organize and formulate production operations for newly developed products; conduct complex R\&D projects on specitcic components contributing to end product under development: evaluate feasibilty of design, manutacturing, profitabilty, competitive product lines, marketing potential, and make recommendations; evaluate test results of pilot models and recommend changes to oftset mechanical, electrical and other maftunctions; direct preparation of product layout, detailed drawings and schematics, direct and coordinate manutacture of prototype products, analyze testdata and reports to determine ifdesign meets functional and performance specifications: conter with outside academic research personnel to clarity and resolve probiems and develop design; coordinate and manage technical collaboration with parthers in India and Russia, including travel as required. Requires M.S. (ABT) in Electrical and Computer Engineering and 6 yrs. experience in job offered or as Electrical TestDesign or Sotware Engineer in field of Telecommunications (may be concurrent), which must include following special requirements: 1 yr: experience in power supply and lighting engineering: 1 pending or approved patent in field of telecommunicafions, power supply orlighting: 3yrs. expenenenceinMASM808x, 80286. C, C+ C+, Fortran. Cobol Basic computer programming languages; 3 yrs. expenence with inTEL 8088, 68010, 68000 , National COP822, COP88x, 280 microprocessor based hardware. Salary $\$ 39,600 \mathrm{yr}$, 40hr/wk: M-F. Send 2 copies of resume to: Gil Martinez at Waukesha Job Service Office, 141 N.W. Barstow, Waukesha, WI 53188 for Case No. 940057.

1994 DIVERSITY/AFFIRMATIVE ACTION PROGRAM

ISSUE DATE BONUS DISTRIBUTION

March 3

May 26

June 23

August 4

September 29

October 27

NAACP Job Fair March 15 - Kansas City, MO

National Society of Black Engineers

National Meeting March 16-20 - Pittsburgh, PA

NAACP Job Fair

June 7 - Atlanta, GA
NAACP Job Fair
July - Los Angeles, CA
National Black Data Processing Association
National Conference August 17-21 - Cleveland, OH

NAACP Job Fair October - Denver, CO

American Indian Science \& Engineering Society 16th Annual National Conference November 10-13 - San Jose, CA

SOLID STATE
 DESIGNER/ENGINEER

Northern New Jersey manufacturer of mechanical controls now developing complementary line of electronic products - primarily timing and light sensitive products - seeks experienced engineer on a project, freelance or consulting basis. Qualified individual must have a proven track record. Submit resume to:
EDN Magazine, 275 Washington Street, Box EDN - 2394, Newton, MA 02158-1630
MF DESIGN ENGINEERS
MSEE/BSEE, Experience levels to $10+$ years.
RF/Microwave circuit design, HF to 3.0 GHz,
Areas of interest are: receivers, transmitters,
power amplifiers, frequency synthesizers, mod-
ulation/demodulation, spread spectrum, DSP
implementation of radio functions. Multiple
openings with several of my Midwest client com-
panies.
DON GALLAGHER, MSEE
Gallagher \& Brei Associates

SOFTWARE ENGINEER

Electrical Engineer with minimum five years experience in software design, strong background in C, assembler, 80188, TMS320, DSP operating systems and algorithms. Digital circuits. RF or video exp. a plus. Excellent opening at leading manufacturer of security scanners (since 1937). Northeastern New Jersey. Mail or fax resume and salary history to Brad Conway, Control Screening Corp., 234 Industrial Pk., Northvale, NJ 07647. Fax \# 201-784-1583.

Knolls Atomic Power Laboratory

Senior Engineer Advanced Power Electronics

Martin Marietta, Knolls Atomic Power Laboratory (KAPL) located in Schenectady, New York seeks experienced candidates to apply for a position as Senior Engineer, Advanced Power Electronics.

The individual in this position would be responsible for the circuit and packaging design, performance analysis and supervision of breadboard construction and testing. Specific applications to be developed and breadboarded will include: variable frequency/speed low noise AC and DC motor drives; medium current and voltage solid state circuit breakers; DC power distribution system control and conversion components; power factor correction equipment; harmonic correction/control equipment; DC power supplies.
Qualified candidates should possess either a PhD with a minimum of 5 years experience or MS with a minimum of 10 years experience specializing in power electronics. In addition, candidates should have working knowledge of SPICE and/or equivalent circuit modeling tool with desired experience using EMPT and CAD schematic capture tools.

KAPL offers a high level technical environment, competitive salary and company paid Martin Marietta benefits. Please submit your resume to: M. Englert-Walters, Program Manager, Staffing; Bldg A1, Room 161, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301-1072. U.S. Citizenship is required. Equal Opportunity Employer M/F/D/V.

MARTIN MARIETTA

For
information
on placing your advertisement in

CAREER OPPORTUNITIES for EDN Magazine
call:
Kim Fogarty
Recruitment Account Executive 1-800-603-4860

Electric Vehicle Motor Control

CURTIS/PMC, a division of Curtis Instruments, a small global company in business for over 30 years, is a world leader in transistorized and microcontroller based speed controllers for electric vehicles. Increased product demand has created a need for the following professionals:

Engineer/Research

We are seeking an engineer to research, build and test motor controller concepts. Candidates should have a strong generalist background having research design experience in magnetics (DC Permanent Magnet and Series Motors) and switchmode power supplies, a BSEE plus 5 years of hands-on commercial product design experience and basic principal understanding of thermal and mechanical properties related to electronic products. Please specify in a cover letter the development efforts you have undertaken related to motor design and power electronics.

Engineer/R\&D Lab

Lead the centralized lab interfacing with manufacturing and R\&D engineering. BSEE (or equivalent), 5-10 years' proven electronic construction test, debug and prototyping experience, analog circuitry background, mechanical knowledge. People and project leadership strengths essential.

Engineer/MECHANical

Conceptualize, design, analyze, fabricate, test and assemble various mechanical and electromechanical assemblies, test fixtures and product packaging. BSME (or equivalent). Experience with stampings, extrusions, injection moldings, castings and electronics packaging required.
Located approximately one hour East of San Francisco (away from commuter congestion), we offer employer paid medical, dental, disability and life insurance, tuition assistance, profit sharing and $401(\mathrm{~K})$ plan. Relocation assistance also provided. Send or fax resume INDICATING POSITION DESIRED, to: Human Resources Dept., CURTIS/PMC, 6591 Sierra Lane, Dublin, CA 94568. (FAX) 510-833-8777. Equal opportunity employer $m / f / d / v$.

Just to remind you that your project's a go.

When you can't afford to stop for downtime, GE Rental/Lease can keep you going. With over 120,000 pieces of the most advanced industrial and electronic test and measurement equipment and workstations in stock, we've got one of the largest equipment pools in the business. All available for rent, lease or purchase.

So you get the equipment you need, when you need it-backed by experienced Sales Specialists and our exclusive Customer Service Guarantee: If for any reason you're unhappy with your rental, simply dial 1-800-GE-RENTS and ask for a Customer Service Representative. If we cannot make it right, your rental will be free.

To give us the green light on
your next test equipment or workstation order, call 1-800-GE-RENTS Monday through Friday 8 am to 8 pm , Saturday 8 am to 5 pm EST. We're ready to go.

GE Rental/Lease
Test Equipment \& Workstations

EDN-Business Staff

EDN Headquarters
275 Washington St
Newton, MA 02158
Fax: (617) 558-4470

Publisher

Jeffrey Patterson
(617) 558-4454

Maria McGrath, Assistant
(617) 558-4346

Advertising Sales Director
Paul Rothkopf
(617) 558-4651

Marketing/
Business Director
Deborah Virtue
(617) 558-4779

Custom Publishing Director
Patricia Tyler
(617) 558-4526

Promotion Assistant
Jean Graham
(617) 558-4698

Production Staff

Andrew A Jantz, Group Product Manager (617) 558-4372

Karen Banks, Manager (617) 558-444

Kelly Brashears, Assistant (617) 558-4601

Contracts

Muriel Murphy, (617) 558-445
Circulation: Denver, CO
(303) 388-4511

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For a quote, phone Ellen Sandram, Cahners Reprint Service at (708) 390-2240.

NEW ENGLAND

Chris Platt
Tel: (617) 964-3730
Fax: (617) 332-7128

NEW YORK/NEW JERSEY

AND MID/SOUTH ATLANTIC

John Maher
Tel: (215) 293-1212
Fax: (215) 293-0359
IL, IN, KY, MI, OH, TN, TX, OK
JoAnn Cannon Tel: (708) 635-8800
Fax: (708) 635-0929
IL, MN, NE, IA, KS, ND, SD, WI MO', AL, AR, MS, CANA DA
Jack Johnson
Tel: (708) 635-8800
Fax: (708) 635-0929

ARIZONA

Donnie Jones Adams
Tel: (408) 243-8838
Fax: (408) 243-2144
COLORADO/
WASHINGTON/

OREGON

Frank Granzeier
Tel: (408) 243-8838
Fax: (408) 243-2 144

ORANGE/RIVERSIDE/
 SAN DIEGO COUNTIES
 LOS ANGELES/

 SOUTHERN CA, NVSusan N Green Tel: (714) 851-9422
Fax: (714) 752-6867

NORTHERN CA/

SILICON VALLEY
James W Graham
Frank Granzeier Donnie Jones Adams Tel: (408) 243-8838 Fax: (408) 243-2 144

EUROPEAN
 OPERATIONS

Tully Giacomazzi, Managing Director Tel: 498976902391 Fax: 498976902144
UK
John Waddell
Tel: 44-81-312-4696
Fax: 44-81-312-1078
SWEDEN, NORWAY,

FINLAND

Johan Fylking,
Lars Grunberger
Tel: 4687021800
Fax: 4686412032

DENMARK

Aase Kisborg
Tel: 4533149888
Fax: 4533149288

GERMANY-NIELSEN 4/

BAVARIA

Margarethe Munchmeier
Tel: (49-89) 222015
Fax: (49-89) 299160

SPAIN

Luis S Giner
Tel: 343-894-43-26
Fax: 343-894-88-37

AUSTRIA

Sven Kollensperger
Tel: 43-732-79-34-55
Fax: 43-732-79-34-58

ISRAEL

Asa Talbar
Tel: 972-35-223-621
Fax: 972-3-524-2177

SWITZERLAND

Roswitha N Briand
Tel: 41-1-261-4690
Fax: 41-1-251-45-42

NETHERLANDS/

NORTHWEST GERMANY
(NIELSEN 1, 2, 5, 6, 7)
Albert Ticheler
Tel: 31-40-41-37-27
Fax: 31-40-42-04-30

CENTRAL/SOUTHWEST

GERMANY

(NIELSEN 3A, 3B)
Franz Fleischmann
Tel: 4969-42-2951
Fax: 49-69-421288

FRANCE/BELGIUM

Alain Faure
Tel: 33-1-4629-4629
Fax: 33-1-4093-0337
HONG KONG
Adonis Mak
Tel: 852-838-2666
Fax: 852575 1690/852 575
1967

JAPAN

Kaoru Hara
Tel: (81-3) 3389-1822
Fax: (81-3) 3389-1761

KOREA

Jeong-gwon Seo
Tel: 82-2-752-4392
Fax: 82-2-752-4394

SINGAPORE/MALAYSIA

Hoo Siew Sai
Tel: 65-738-0122
Fax: 65-738-2 108

AUSTRALIA
Alexandra Harris-Pearson
Tel: 61-2-299-5677
Fax: 61-2-299-6178

TAIWAN

Parson Lee, John Shih
Tel: 886-2-7114833
Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian
Tel: (212) 463-6415
Fax: (212) 463-6404
INFO CARDS/
LITERATURE LINK
Melissa Bachman
Tel: (617) 558-4282
Fax: (617) 558-4328

RECRUITMENT

Kim Fogarty
Tel: (617) 558-4216
Fax: (617) 558-4328

TELEMARKETING SALES

Judy Telander
Tel: (310) 826-5818
Fax: (310) 207-1067
Direct Mail Service
(708) 390-2361

Cahners

Magazine Division
Robert Krakoff,
President, C'EO
Cahners Publishing
Michael Wisner,
Senior VP/General Mgr,
Boston Div
Tom Dellamaria,
Senior VP/Production \&
Manufacturing

books that work the way you work

New edition!

Operational Amplifiers, 2e

Jiri Dostál, Research Institute for Mathematical Machines, Czechoslovakia
April 1993 500pp. cloth $0750693177 \$ 59.95$ (£46.00)
Radio Frequency Transistors:
Principles and Practical Applications
Norman E. Dye and Helge O. Granberg, Motorola
January 1993 288pp. cloth $0750690593 \$ 39.95$ ($£ 40.00$)

EMC for Product Designers

Tim Williams
1992272 pp cloth 0750694645 \$42.95 (£24.95)
BUTTERWORTH-HEINEMANN
80 Montvale Ave. Stoneham MA 02180
1-800-366-2665
M-F 8:30-4:30 ET
FAX 617-438-1479

The EDN Series for Design Engineers

U.K. and Europe:

Reed Book Services Ltd., Special Sales Department P. O. Box 5 , Rushden, Northants NN10 9YZ U.K. TEL. 093358521 FAX 093350284

EDN-INTERNATIONAL ADVERTISERS INDEX

Company	Page	Circle	Company	Page	Circle	Company	Page	Circle
AMP	52-53	55	Intusoft	154	252	Siemens AG	50-51	54
Abbott Electronics	29	50	Ironwood Electronics	155	262	Siemens Matsushita Comp	68-69*	61
Accutrace	154	257	Japanese Products Corp	147	37	Sierra Circuits	151	233
Advanced Interconnection	154	259	Kikusui	78 F	102	Signum Systems	154	25
Advin Systems	151	234	Linear Technology	70	62	Siliconix Inc		
Allegro MicroSystems Inc	C2, 90	93, 71	Link	154	255	Sipex	141	33
Apex Microtechnology Corp	48	2,107	Logical Devices	153	246	Sony Semiconductor	138, 78 E	85,101
Applied Data Sciences Inc	153	248	Mathsoft Inc	144	36	Spectrum Software	130	82
Ariel Corp	116	17	Maxim Integrated Products	83, 85	67,68	Stanford Research Systems	130	28
Asahi Kasei	117	78		107, 109	75,76	Synopsys		27
Audio Precision	73	63	Metalink	153	250	T-Cubed Systems	154	258
Burr-Brown	129	81	MicroSim Corp	15	45	Tanner Research	153	249
Bytek Corp	155	26	Micron Semiconductor	122	79	Tatum Labs	152	238
Cermetek	155	269	Mini Circuits	3, 4	40, 41	Technit	148	91
Condor DC Power Supplies	155	264		75	64	Tektronix Inc	37-44,10-1	144
CuiStack Inc	151	232	Molex	114	77	Texas Instruments	103, 78A	56
Cypress Semiconductor	12		Mueller	139	31		61-63, 72	
DY4 Systems	137A-D		NCl	154	253		95-102	
	117A-D		NCR Microelectronics	78	66		78G	
Data I/O Corp	155, C4	265,95	NEC Corp	134, 143	83,87	Tokin Corp	89	70
Decision	116	19		86-87	69	Toshiba America	68-69	59,60
Science Applications				78 C	99	Electronics Comp		
Digi-Key Corp	1	38	NKK Switches	131		Tribal Microsystems	153	251
Diversified Technology	30-31	1	National Instruments	2	39	Trompetor	160	
Ecliptek Corp	76	4	National Semiconductor	19-21, 111		Underwriters Labs	137	84
Elantec Inc	88	106		113-114	96	Unitrode	145	89
Emulation Technology	155	267, 268	Netcom Systems	151	231	Viewpoint	152	241
Etal Ltd	159	117	Nichicon	146	90	Visual Software Solutions Inc	152	239
Fluke Corp	103	73	NordicTrack	128	27	W R Grace	142	34
Fujitsu	78 H	104	Oki Electric Industry Co	78 B	98	Westcor Corp	34	52
GE Rental \& Lease	150	92	Omron	66-67	58	Wintek Corp	155	266
General Instruments	78 D	100	OrCAD	49	53	Xilinx	32-33	51
Grayhill	124-125	20	Philips Semiconductors	64-65	57	Zaxtek	153	242
Hansen Corp	126	26	Pico Electronics	140	86	ZWorld Engineering	151	230
Harris Semiconductor	145	88		48, 144	3			
Hewlett-Packard	47		Positronic Industries Inc	135	29			
Corvallis Division			Power One	24	48			
Hewlett-Packard PMO	93	72	Prem Magnetics	141, 84	32, 9	Recruitment Advertising		156
Hypertronics Corp	152	240	Protel	C3	94			
IEE	136	30	Quatech	152	236	Advertiser in European edition		
Incredible Technology	151	235	Quicklogic	127	80			
Integrated Device Technology	45		Raltron Electronics	84	16			
Intel Corp		43	Raytheon Safe Soft	$16-17$ 152	46 242	This index is provided as an additio	nal service. The	publisher
International Rectifier	$77^{118-121}$	65	Samsung Semiconductor Inc	22-23	242 47	does not assume any liability for er	s or omissions.	

JRAWIIN Series Seria/Digital Patch Jacks

PREMIUM Normal-through video patch jacks that meet present and future broadcast standards!

Trompeter's J 24 WHF series 75Ω patch jacks provide an extended band width up to 360 Mbits (720 MHZ) with a typical return loss of $\geq 40 \mathrm{~dB}$ through 720 MHZ . They meet and exceed present and proposed analog and digital standards.

24WHF and J24WTHF-75 (self-terminating)

The J24WHF Series also offers:

- Greater reliability.
- 2.5 lbs . minimal withdrawal force to eliminate accidental removal.
- Long life, low contact resistance, consistent contact force.
- Superior dielectric and electrical contact properties.
- 100% compatibility with existing patch plugs,
looping plugs and support equipment.

Trompeter's premium quality patching products and connectors are your best investment for ultra-high quality, reliable broadcast component performance.

```
Quality doesn't cost...
    It pays.
TROMPETER
31186 La Baya Drive • Westlake Village CA 91362
(818) 707-2020 • Fax (818) 706-1040
```

Contact your local representative or call us toll free - (800) $982-2629$ for sales, service or technical support.

THE FIRSS WNODNSS. EDASSSTEM

Introducing the world's first electronic design automation system for Windows and the last EDA system you'll ever need to know. Protel Technology proudly presents the Protel Design System, the new standard for electronic design power and productivity on a PC.

New! Advanced Schematic 2.0 This new release will take your designs anywhere you want to go and beyond, with integrated Engineering Change Order system, unlimited schematic design size, heads-up guided wiring and standard 15,000-part libraries, plus support for EEsof simulation products and EDIF netlists.
Advanced Schematic 2.0 provides direct loading of OrCAD SDT direct loading of OrCAD
$3 \& 4$ files and libraries, just load your design files and keep working!

New! Advanced PCB 2.0 The latest release of our 32-bit, Windows-based design system has ECO support, on-line design rule checking, bi-directional cross probing with Advanced Schematic, unlimited object database and submicron resolution that eats high-density designs for lunch.

[^8]Find out how you can tap into the power of Windows EDA. Call today.

[^9]
You could even learn to like them.

Consider the FPGA. You want the density but you dread the complexity, and the cost and learning curve of the tools. Now consider Synario. It's a universal toolset, yet it incorporates device-specific software from semiconductor vendors. And, this new design system is fully integrated, giving you schematic and behavioral entry, simulation, logic synthesis, and place-and-route in one, friendly Windowsi"-based environment. Even the price won't scare you. Learn how to face FPGAs - and CPLDs - fearlessly, call 1-800-332-8246, ext. 301.

SYNARIO

Universal FPGA Design System
Synario is a Data l/O Product

[^0]: Continued on page 7
 EDN ${ }^{\circledR}$ (ISSN 0012-7515, GST Reg. \#123397457) is published 38 times per year, bi-weekly with one additional issue per month, by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158 1630 . Robert L. Krakoff Chairman and'Chief Executive Officer; Timothy C. O'Brien, Executive Vice President/Finance and Administration; Michael Wisner, Senior Vice President/General Manager, Boston Division; Michael Wisner, Vice PresiAdministration; Michael Wisner, Senior Vice President/General Manager, Boston Division; Michael Wisner, Vice President/Publishing Director. Circulation records are maintained at Cahners Publishing Company, 24 Cook Street, Denver, mailing offices. POSTMASTER: Send address changes to EDN ${ }^{\text {o }}$, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{*}$ copyright 1994 by Reed Publishing USA. Rates for non-qualified subscriptions, including all issues: US, \$140.00 one year, $\$ 238.00$ two year; Canada, $\$ 209.00$ one year $\$ 355.00$ two year (includes 7% GST, GST\# 123397457); Mexico, $\$ 195.00$ one year, $\$ 332.00$ two year; Foreign surface $\$ 245.00$ one year, $\$ 417.00$ two year; Foreign air expeMexico, $\$$ dited surcharge add $\$ 152.00$ one year, $\$ 304.00$ two year. Except for special issues where price changes are indicat ed, single copies are available for $\$ 10.00$ US and $\$ 15.00$ foreign. Please address all subscription mail to EDN ${ }^{\circledR}, 44$ Cook Street, Denver, CO 80206-5800. EDN ${ }^{\circledR}$ is a registered trademark of Reed Properties Inc., used under license.
 (Printed in USA)

[^1]: TEMIC/Siliconix U.S. Headquarters: 2201 Laurelwood Road, Santa Clara, CA 95056 Fax: (408)970-3950, Attn. 43-991. © Copyright 1993 Siliconix inc. TEMIC International Sales: UNITED KINGDOM: (0344)485757. GERMANY: (07131) 670. FRANCE: (1) 30.60.70.00. ITALY: (02) 489-52258.
 SCANDINAVIA: 08-733-0090. SINGAPORE: 65-7886668 ext. 249. HONG KONG: 852-724-3377. JAPAN: 3-3578-0823.

[^2]: (C) 1993 Siemens Components, Inc. Integrated Circuit Division

[^3]: Zipper-Technik's zip-on screened jackets suit multicore or ribbon cables. The screens consist of vinyl impregnated nylon cloth laminated to aluminum foil or wire mesh. Both types include a tinned copper braid joined to the zip joint as a ground connection.

[^4]: ${ }^{1}$ Sample suite of GPIB programmed audio measuremenis included 1) noise measurement ($20 \mathrm{~Hz}-22 \mathrm{kHz}$ bandpass), 2) 31 point single tone frequency response sweep over $20 \mathrm{~Hz}-22 \mathrm{kHz}$ range, and 3) 11 point distortion sweep over 20 Hz -22kHz range 2FASTIEST uses multitone stimulu sand analysis to make the same measurements isted above

[^5]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.: AZ, Techni Source Inc.: CA, Mesa Pro Associates, Inc., Infinity Sales, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase: IL, Heartland Technical Marketing Inc.: IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.: MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.: NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M-Squared, Inc.: OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pitsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M-Squared, Inc.: TN, M-Squared, Inc.: TX, BP Sales; UT, Luscombe Engineering Co. VA, Micro-Comp, Inc.: WA, E.S. Chase; WI, Heartland Technical Marketing, Inc.
 Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

[^6]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc: CA, Mesa Pro Associates, Inc., Centaur Corporation; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase: IL, Heartland Technical Marketing Inc.. IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Delltron; MT, E.S. Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M-Squared, Inc.: OH, Lyons Corporation: OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAl Corporation; SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

[^7]: * Application display provided by Gallium Software Inc.

[^8]: ■ New! Advanced SB Route, a gridless, shape based autorouter with the power to route your highest density designs in record time.

 - New! Advanced PLD Compiler, a comprehensive tool for FPGA/PLD programming.*
 ■ New! Advanced Digital Simulator, your digital simulation solution.*
 - New! Advanced Analog Simulator, the analog simulator for Windows.*

[^9]: © 1993 Protel Technology, Inc. Prices and specifications subject to change without notice. * FPGA/PLD, Digital Simulation and Analog Simulation modules will be available 1st quarter of '94. Protel and the Protel logo are registered trademarks of Protel Technology. Microsoft Windows is a trademark of Microsoft Corporation. All other products are trademarks of their respective manufacturers.

