

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE

Special Report

Complex PLDs and FPGAs:
How to make an informed choice pg 74

A CAHNERS PUBLICATION
September 17, 1992

Special Report
Choosing complex PLDs and FPGAs
pg 74

EDN DIRECTORY

EDN's
DSP-Chip Directory pg 90

Extensive details about 22 DSP chips begin on pg 100

TECHNOLOGY UPDATE

CAE tools for wireless systems pg 39

News Breaks pg 19

Product Updates pg 57

Processor Updates pg 65

Design Ideas pg 143

Designing automotive subsystems? Here's how to achieve global presence.
 More and more, improving-or even maintaining-

 your position in the automotive market calls for some deft maneuvering on an around-the-world basis. And that's precisely where Murata Erie can be a valuable ally.

You see, with us as your passive component source, you can count on complete and easily accessed support no matter where your manufacturing and marketing roads lead. Whether you're making trip/navigation computers in Nürnberg, sensors in Seoul or emission controls in Canada.

And, more than worldwide manufacturing resources, we mean technical support as well. So whether you're designing-or rede-
 signing - an engine control system, CD player or cellular telephone, we'll be there. And we'll put nearly a half-century of technological expertise and leadership to work for you, plus all the advantages of Murata Erie's 1.0 QRS (100% quality, reliability, service) program.

A final, important point. Because our component line is a massive one, from chip caps to piezoelectric gyroscope systems, it offers real opportunities to gain measurable economic ground while achieving vendor reduction goals.
Call or write for details: Murata Erie North America, Marketing Communications, 2200 Lake Park Drive, Smyrna, GA 30080; 1-800-831-9172. Because, when it comes to global presence, it's best to travel with people who have it.

MILITARY TRIMMERS from the Techno Division include broad MIL qualification to RT24, 26, 27 ; RTR24: RJ24, 26 and RJR24, 26. Techno RJ24 and RJR24 trimmers offer you 25 turns for precision adjusting, while the RJ26 and RJR26 offer 22 turns. They have zero backlash and offer a monolithic clutch. In addition, Techno offers $1 / 4^{\prime \prime}$ and $3 / 8^{\prime \prime}$ multiturn trimmers with a TCR of $\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ for precision applications. All Established Reliability trimmers meet the requirements of MIL-STD-202. Method 208 Contact: Techno Division, Dale Electronics, Inc. 7803 Lemona Avenue, Van Nuys, California 91405-1139 Phone (818) 781-1642.

Dale Can.

Add trimmers to the list of ways Dale ${ }^{\oplus}$ can help keep your project under budget and on-time. We offer immediate interchangeability with models you're using now. Cermet, wirewound. Military, industrial, commercial. Square, round, rectangular. Surface mount and through-hole. Discover how Dale trimmers can end your search for multiple suppliers. More than ever we're your 1-stop source for resistive components - always ready to match your delivery schedule from factory or distributor stock. Call today.

COMMERCIAL TRIMMERS include Surface mount: Thick film chips (.2W) plus $197^{\prime \prime}(.2 W)$ and $1 / 4^{\prime \prime}(25 \mathrm{~W})$ square cermet styles. Through-hole cermet styles include: . $276^{\prime \prime}(.5 \mathrm{~W}$) round, $1 / 4$ (.25W), $9 / 32^{\prime \prime}(.5 \mathrm{~W})$, and $3 / 8^{\prime \prime}(.5 \mathrm{~W})$ square cermet Rectangular: $3 / 4^{\prime \prime}(.75 \mathrm{~W})$ wirewound
For more information contact: Dale Electronics, Inc. 1155 West 23rd Street, Tempe, Arizona 85282-1883 Phone (602) 967-7874.

THE ONLY ATTACHED PROCESSOR WITHFOUR ON THE BOARD AND 2.5 GIGAFLOP PERFORMANCE.

Mercury's MC860VS. The only attached processor that offers up to 32 Intel i860s in no more than 8 VME slots. So you get 80 Mflops to 2.5 Gflops of horsepower to handle demanding applications in defense signal processing and medical imaging. And all Mercury products can be configured in workstations and chassis systems to deliver scalable performance at a scalable price.

So if you're building or buying a high performance computing solution, take full advantage of Mercury's unparalleled investment in standards, innovative hardware, and software development environment. And get the most complete, flexible, high performance computing solutions available. If it's time you moved into the fast lane, it's time to call or write Mercury today for more information.

Circle No. 2

performance mixers to handle your applications from extra wideband, high isolation, low two-tone third-order IM, to very low +3dBm LO power.

Mini-Circuits' new LRMS-series Ultra-Rel ${ }^{\text {TM }}$ mixers are offered with a difference.... unprecedented reliability. Units are manufactured with Ultra-Rel diodes, all-welded construction, metal stubs
to all connections, and to 4.5 sigma performance repeatability. Each Ultra-Rel ${ }^{\text {TM }}$ LRMS mixer can withstand strenuous shock and vibration, will perform over a -55° to $+100^{\circ} \mathrm{C}$ range, and is guaranteed for five years.

Aim for 4.5 sigma repeatability in your product designs
by specifying Mini-Circuits' Ultra-Rel ${ }^{\text {TM }}$ LRMS mixers, available for immediate delivery in tape-and-reel format (500 units, 16 mm width) at prices from $\$ 6.25$.
with extra long life due to unique HP monolithic diode construction, $300^{\circ} \mathrm{C}$ high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements.

SPECIFICATIONS: all spec limits are 4.5σ from mean
$\begin{array}{ccccccc}\text { Model } & \text { Freq. Range } \\ & \text { LO. RF } & (\mathrm{MHz}) & \text { LO } & \text { LF } & \text { Conv. Loss } & \text { L-R Isol. } \\ & \text { Mean }(\bar{X}) & \text { Mean }(\overline{\mathrm{X}}) & \text { Price } \\ \\end{array} (dBm) mid-band mid-band (1-9)

LRMS-2L	$800-1000$	DC-200	+3	6.6	24	6.95
LRMS-1	$0.5-500$	DC-500	+7	6.4	45	6.25
LRMS-1W	$2.0-750$	DC-750	+7	5.8	45	6.75
LRMS-2	$5-1000$	DC-1000	+7	6.8	38	6.95
LRMS-2D	$5-1000$	DC-1000	+7	6.8	40	7.25
LRMS-2U	$10-1000$	$10-1000$	+7	6.5	46	11.45
LRMS-5	$5-1500$	DC-1000	+7	6.0	41	13.95
LRMS-11A	$1400-1900$	$40-500$	+7	7.0	25	16.95
LRMS-1LH	$2.0-500$	DC-500	+10	5.8	47	7.95
LRMS-2LH	$5-1000$	DC-1000	+10	6.6	40	8.95
LRMS-5LH	$10-1500$	DC-900	+10	5.4	38	14.95
LRMS-1MH	$2.0-500$	DC-500	+13	5.7	44	8.95
LRMS-2MH	$5-1000$	DC-1000	+13	6.6	44	9.95
LRMS-5MH	$10-1500$	DC-900	+13	5.8	46	15.95
LRMS-1H	$20-500$	DC-500	+17	6.3	44	10.95
LRMS-2H	$5-1000$	DC-900	+17	7.2	36	11.95
LRMS-2UH	$10-1000$	$10-750$	+17	7.1	38	14.45
LRMS-5H	$10-1500$	DC-900	+17	7.2	45	17.95

CIRCLE NO. 9

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $\$ 14.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units ... high isolation, excellent return loss (even in the "off" state for absorptive models) and 3 -sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to $+100^{\circ} \mathrm{C}$ span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24 mm). All models are available for immediate delivery with a one-year guarantee

finding new ways
setting higher standards

SPECIFICATIONS (typ)

Frequency
(MHz) Ins. Loss (dB) Isolation (dB) 1 dB Comp. (dBm) RF Input (max dBm) VSWR "on" Video Bkthru
Video Bkthru
$(\mathrm{mV}, \mathrm{p} / \mathrm{p})$
Sw. Spd. (nsec) Sw. Spd.
Price, \$ Price, \$
(1-9 qty)

Reflective SPDT
Absorptive SPDT YSWA-2-50DR ZYSWA-2-50DR WA-2-50DR dc- 500- 2000$500 \quad 20005000$ $\begin{array}{lll}1.1 & 1.4 & 1.9\end{array}$

YSW-2-50DR (pin) \$14.95 ZYSW-2-50DR (SMA) 59.95

$42 \quad 31 \quad 20$ | 18 | 20 | 22.5 |
| :--- | :--- | :--- |
| | 20 | - | $\begin{array}{ccc}1.25 & 1.35 & 1.5 \\ 30 & 30 & 30\end{array}$ 3 $\begin{array}{ccc}\stackrel{3}{3} & 3 & 3 \\ \text { YSWA-2-50DR (pin) } & 23.95\end{array}$

\qquad
20
22
1.4
1.4
30

YSWA-2-50DR (SMA) 69.95

September 17, 1992

On the cover: Making informed choices about the many types of complex PLDs and FPGAs means sifting carefully through your design criteria. Among the things to consider is your choice of hardware architecture and what design methodologies you will use. (Photo courtesy of AT\&T; photography by Clayton J Price; concept by Bessen Tully \& Lee)

PAGE 74

Foldout Contents

Turn to the last information-retrieval service card in the back of this magazine and you'll find a foldout table of contents. Now, instead of flipping back and forth from this table of contents to the articles you want to read, you can have the convenient foldout open at all times while you're reading EDN. Use the foldout contents to mark off articles you'd like your colleagues to read or to remind yourself to copy stories for your files.

SPECIAL REPORT

Choosing complex PLDs and FPGAs

Design methodology, performance, and software tools should all influence you as you seek the right high-density PLD. But first you have to know the foundations of complex PLD and FPGA architectures. -Anne Watson Swager, Technical Editor

EDN's DSP-chip directory

:DN DIR:CTORY

DSP chips have touched almost all areas of electronics Now the DSP industry is making it easier for you to use these powerful devices. Complete systems in chip-set form are now available, as are good tools to develop DSP applications.-David Shear, Technical Editor

TECHNOLOGY UPDATE

CAE tools for wireless systems: System simulators meet wireless challenges

Designers of wireless RF and microwave systems can turn to specialized software tools to help them simulate complex systems efficiently.-Doug Conner, Technical Editor

Continued on page 7

[^0]

EXTRA! CYPRESS STUNS WORLD WITH FIRST FLASH PLD.

Stop the presses! Once again, Cypress has the lead story in PLD technology for high-performance systems. Cypress is first on the world scene with 10 ns , Flash 22V10 devices. Electrically alterable 22V10s are your fastest route to risk-free inventory and ease of design. Cypress scoops the competition again!

Also newsworthy: This $22 \mathrm{V10}$ is CMOS, needing just 90 mA max (commercial) and 100 mA (military applications), so it stays cool for reliable operation. Choose from DIP, PLCC and LCC packaging options.

Cypress's Flash 22V10 is the latest member in a complete family of landmark PLD products with the widest variety of speeds, densities and architectures to suit your application. Read all about it- call the Cypress hotline for your free Flash sample certificate and data sheet today.
FREE FLASH SAMPLE HOTLINE: 1-800-858-1810* Ask for dept (47.
*In Europe, fax your request to the above dept. at (32) 2-652-1504 or call (32) 2-652-0270. In Asia, fax to the above dept. at 1 (415) 961-4201

MAGAZINE EDITION

Home Office

275 Washington St, Newton, MA 02158
EDN Bulletin Board: (617) 558-4241
MCI: EDNBOS
(617) 558-extension

VP/Publishing Director

Peter D Coley -4673
VP/Publisher
Roy Forsberg -4367
VP/Editor/Editorial Director
Jonathan Titus -4573
Executive Editor
Steven H Leibson -4214
Managing Editor
Joan Morrow Lynch -4215
Assistant Managing Editor
Anne Gallagher -4653
Gary Legg, Senior Technical Editor -4404 Tom Ormond, Senior Technical Editor -4414 Charles Small, Senior Technical Editor -4556
MCI: EDNSMALL; Compuserve: 70324, 3270
Dan Strassberg, Senior Technical Editor -4205 John A Gallant, Technical Editor -4666 John C Napier, Technical Editor -4690 Julie Schofield, Senior Associate Editor -4619 Carl Quesnel, Associate Editor -4484
Susan Rose, Associate Editor -4738
Helen McElwee, Senior Copy Editor - 4311 James P Leonard, Copy Editor -4324 Gillian A Caulfield, Production Editor -4263 Erin Heffernan, Production Editor -4333
Chuck Harper, BPEF Intern

Editorial Field Offices

Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
$\mathrm{MCI}:$ EDNDCONNER
D Mosley, Technical Editor
Arlington, TX: (817) 465-4961
MCI. EDNMOSLEY

Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI : EDNQUINNELL
David Shear, Technical Editor
Corvallis, OR: (503) 754-9350
MCI: EDNSHEAR
Anne Watson Swager, Technical Editor
Wynnewood, PA: (215) 645-0544
$\mathrm{MCI}:$ EDNSWAGER
Ray Weiss, Technical Editor
Woodland Hills, CA: (818) 704-9454
MCI : EDNWEISS
Brian Kerridge, Technical Editor 22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
(508) 28435

MCI: EDNKERRIDGE

Contributing Technical Editors

Robert Pease, Don Powers, Dave Pryce, Bill Travis, Maury Wrigh

Editorial Coordinator

Kathy Leonard -4405
Editorial Services
Helen Benedict -4681

Art Staff

Robert L Fernandez, Art Department Director Ken Racicot, Senior Art Director -4708
Chinsoo Chung, Associate Art Director -4446 Cathy Madigan, Associate Art Director - 4599
Marketing \& Business Director
Deborah Virtue -4779

Marketing Communications

Kathy Calderini, Manager-4526
Pam Winch, Promotion Specialist -4660
September 17, 1992
Continued from page 5

PRODUCT UPDATES

Systems for EMI detection 57
Modular dc/dc converters 61
Uninterruptible power supplies 62

PROCESSOR UPDATES

16-MHz RISC $\mu \mathrm{P}$ 65
8-bit $\mu \mathrm{C}$ for closed-caption TV 65
DESIGN IDEAS
CMOS switches develop negative voltage 143
Hartley transform beats FFT for DSP $\boldsymbol{\mu}$ Ps 143 VHDL "wait" statement inserts registers 144
New Products
Integrated Circuits. 151
Computers \& Peripherals. 160
Components \& Power Supplies 169
Test \& Measurement Instruments. 173
CAE \& Software Development Tools. 176
DEPARTMENTS
Inside EDN. 9
News Breaks. 19
Editorial. 29
Career Opportunities 186
EDN's International Advertisers Index. 192

A summary and analysis of articles in this issue

If you're designing wireless communications systems, you not only have to be an expert, you need help too. Communications is a hot area, and we're seeing an increasing demand for engineers with experience designing wireless products. Today, those products go beyond cellular phones, from mundane ga-rage-door openers to wireless office networks. Doug Conner takes a look at CAE tools that let designers simulate wireless systems from the beginning to the end of the sys-

Anne Swager takes a close look at the differences between designing with FPGAs and complex PLDs.
tem. Unfortunately, vendors differ on how they define beginning and end. Some tools help you design modulators and demodulators, and others easily handle the RF front ends of communications systems.

Specifically, Doug's report looks at how you can use simulation tools to observe the effects of small changes in wireless systems. These are often tough problems to discover and solve. Doug says that engineers facing the challenge of designing sensitive wireless communications systems often don't know what tools are available.

Engineers can use assistance, too, when trying to decide which type of complex programmable logic device (PLD) or field-programmable gate array (FPGA) to
use. Anne Swager's Special Report gives you a brief tutorial about what's available and how to approach complex-PLD and FPGA design problems. Anne says that most designers are used to working with simple PLDs. However, the complex PLDs and FPGAs present new problems and require new ways of thinking. FPGAs are blocks of logic functions, but PLDs remain structured sets of sum-of-product blocks. It's not as easy as it might seem to go from one to the other.

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Anne's report tells you how to compare and select products. She also tells you about the design methods you can choose.
David Shear completes this issue's line-up with our annual Digital Signal Processor Chip Directory. David has dug deeply through mounds of DSP-chip information to bring you the latest compilation of chip specs, facts, and figures.

Jon Titus Editorial Director

Doug Conner's Technology Update covers CAE tools for wireless systems.

Kit also includes:

CyberneticMicroSystems

Box 3000 - San Gregorio CA 94074
Tel: 415-726-3000 • Fax: 415-726-3003

Soon, Eight Ho Computing Will

(actual size)

AMD Introduces The World's First 386 Microprocessor With 3-Volt Technology.

Two standard dry-cell batteries. There's really nothing special about them. Aside from the fact that they can run a powerful, portable 386 computer for a full eight hours. Provided, of course, that portable is built around a low-
voltage Am386"microprocessor. ${ }^{\text {Am386 }}$

Thanks to the low-voltage Am386 microprocessors, laptop, palmtop and notebook computer designs will become smaller, lighter,
 available in PQFP packaging.
and more powerful than ever before With battery life of up to eight hours or more. That's a full day's worth of 386 performance-the per-

Look Like This.

formance you need to run sophisticated applications like Windows ${ }^{\text {m" }} 3.0$.

And rest assured, the low-voltage Am386 microprocessors are proven compatible and comply fully with JEDEC standards for low-power, 3 -volt computing. We can even supply you with the 3 -volt EPROMs your systems will need. Other 3-volt system logic is also readily available.

For more information on the low-voltage

Am386 microprocessors call AMD today at 1-800-222-9323. You'll never look at dry-cell batteries the same way again.

Advanced Micro Devices
"Wére Not Your Competition."

Put These G

Whatever you're working on, please stop. You deserve to take some time off. And with any member of the AMD $29 \mathrm{~K}^{\text {™ }}$ Family of embedded RISC processors, you can take several months off your design cycle.

That's because 29 K processors' simple, highly integrated designs will knock timeconsuming steps off your schedule. Take the inexpensive, new Am29200" microcontroller. With many features like I/O controls and serial ports included on-chip, it's the easiest to
use embedded processor available. Adding memory requires no interface circuitry. It's as simple as playing "Connect the dots."

Memory interface throughout the rest of the family is fast and easy too. Each processor in the 29 K Family integrates easily with lowcost PLDs or simple glue logic to minimize your circuitry needs.

You'll also save valuable time when you're expanding your product line. The entire 29K family is binary compatible. So you just deter-

mine the performance you need and select the appropriate chip-from the Am29200 to the high-end Am29050" processor. There's no need to recompile your applications' software as you scale up or down the performance ladder.

And thanks to the 29K's RISC architecture, you can use inexpensive memory devices to lower your system costs and still deliver the high performance your customers demand.

For more information on the 29K embedded

RISC family call today at 1-800-292-9263 Ext. 3 . Then kick back and watch the AMD guys go to work.

Compare Us To The F And You'll Have Second

Optimal Programming Element.
PLICE ${ }^{\text {® }}$ antifuse elements combine small size and high reliability, giving you FPGAs with higher speed, lower cost, greater ease-of-design, and more capacity than any other.

Superior Performance.
The antifuse-based ACT 2 , the most predictable FPGA available, incurs short delays in interconnecting logic functions, which means higher speeds to keep pace with your latest microprocessor.

Lower Cost.
PLICE antifuse technology results in smaller die sizes, saving you as much as 75% off the cost of the alternative solution.

Once You Witness The Performance Of Our ACT" 2 FPGAs, You'll Know The Real Leader Is Actel.

If you plan to move to the superior capacity, flexibility and cost of FPGAs, you should know the facts. Compare us against the industry "leader." You'll find our ACT 2 FPGAs turn in some very impressive numbers indeed.
\#1 in architecture. The ACT 2 family's innovative PLICE antifuse technology provides the ideal programming and intercon-
nect elements for highdensity FPGAs. Our FPGAs offer superior reliability and design flexibility, and give you the most predictable FPGA performance available. And with more than 1 million FPGAs shipped, Actel has more experience manufacturing antifusebased FPGAs than anyone. That's experience you can count on.
\#1 in speed. The fastest ACT 2 family member -the A1225-offers 2,500 gates of pure speed. With a 4 ns logic delay and systemlevel speeds up to 66 MHz , ACT 2 helps you make the most of your design.
\#1 in ease-of-use. With ACT 2 , designs are easily captured with standard PLD tools like ABEL" and PLDesigner-XL, as well as with your favorite sche-
matic capture program from Mentor Graphics, OrCAD, Valid Logic Systems and Viewlogic. And Actel's Action Logic ${ }^{*}$ System rapidly converts captured designs into programmed Actel devices. For years, our 100% automatic placement and routing has simplified the design process. And it's still faster and easier than any other solution.
\#1 in affordability. Our FPGAs also provide the best price/performance available. Actel offers

PGA Market Leader, Thoughts About Whos \#1.

Designing Made Simple.
Actel devices' plentiful routing resources give you 85% gate utilization using 100% automatic placement and routing, letting you place and route a 4,000-gate design in our A1240 chip in only 30 minutes.

Greater Capacity.
With 8,000 gate-array equivalent gates, the A1280 has led the industry in capacity for over 2 years. And it's still the only high-density, high-performance FPGA available in volume production.

Catch Our Next Act.
We're building on this FPGA technology to set new performance levels with our upcoming ACT 3 FPGAs. Whichever ACT you catch, you'll get a long-term partner and the best performance in town.
much quicker time-to-market and complete control of the design process, as well as competitive FPGA

answers to their application questions.
We're building on our experience to bring you the most advanced products The FPGA Design Guide for any applicaprices. Which saves you both money and time.

And \#1 in service and support. Customers can call our technical hotline and talk to a real personnot voicemail. Or customers can use our automatic Action FACTS system to fax themselves quick tion, and we're committed to establishing a quality, long-term partnership with you for your future success.

Call 1-800-228-3532 for more information on our powerful family of FPGAs. And discover how far the real industry leader can take you.

Broad Family With High Capacity

[^1]There are some dramatic advantages to our NEW, COMPLETE 6ons DRAM FAMILY. [Eliminating vrams and srams is one of them.]

At Samsung, we're not content to have brought the world its first 16-meg Dram.

We're extending the gains we've made in this important segment of technology, by introducing a com-
plete family of DRAMS at the highest speeds in use-60 nanoseconds.

These are speeds that will let designers of many 386 systems eliminate sRam cache altogether. And for many high-end graphics
oems, it will be possible to eliminate vrams.

Of course, one result of those things will be that you'll be able to lower the axe, so to speak, on unwanted costs.

Prepare yourself for HP's brightest LED yet.

HP's new
AlInGaP lamps put all your applications in a whole new light.
Presenting HewlettPackard's most brilliant lighting innovation to date! These AlInGaP lamps are a full 5 to 10 times more luminous than any other GaP LED avail-able-bright enough to be

AlInGaP intensity ranges from 1,000 med to $10,000 \mathrm{med}$, typical. Products shown are not at actual size.

CG08204
easily visible during any kind of daylight. Yet they don't require a single mA of extra power. In fact, AlInGaP lamps deliver their high-efficiency, high-quality output over a range of drive currents. Making them ideal for all applications-from battery powered to automotive lighting and exterior message boards.
With a device lifetime of more than 100,000 hours, these new LEDs offer reliability that's equally dazzling. And you'll appreciate the flexibility of having these lamps in your choice of amber or reddish-orange.
Other LEDs pale by comparison.
AlInGaP lamps are the world's best and the brightest LEDs available
anywhere-just what you'd expect from HP, long established as a pacesetter in innovative LED technology, reliability, and premier worldwide service.
For a free sample of our AlInGaP lamps, just call 1 (800) 752-0900, ext. 3340 in the U.S. And get the details on the HP LEDs that far outshine the rest.

There is a better way.

[^2]
EDN-NEWS BREAKS

Analog ASIC gives choice of design basis

Designers of digital ASICs have long had a choice between gate-array, standard-cell, and full-custom designs, each offering a different tradeoff between circuit density and ease-of-design. Raytheon's Semiconductor Division is now giving analog designers a similar choice by adding a standard-cell library to its RPA160 BiCMOS analog tile-array family. Because the tile array and standard cells share the same process, designers can take advantage of the quick turnaround for the array, then migrate their design to standard cells as production levels warrant.

The npn and pnp transistors of the base process have a toggle frequency $\left(f_{t}\right)$ of 4 and 1.5 GHz and a breakdown voltage of 13 V . The resulting cells are also fast and include a $500-\mathrm{MHz}$ buffer, a $70-\mathrm{MHz} 8$-bit DAC , and a $30-\mathrm{MHz} \mathrm{ADC}$. The standard-cell library also includes digital cells, offering both CMOS and ECL logic. The company has CAD software for both PC and workstation platforms for the array and standard-cell library or will handle your design as a turnkey operation. NRE charges for standard-cell designs begin at $\$ 40,000$, with prototype delivery in eight weeks. Raytheon Co, Mountain View, CA, (415) 968-9211, FAX (415) 969-8556.

Scalable processor board suits STD 32 Bus

Designs requiring high processing power for industrial applications can take advantage of Ziatech's ZT8911 Scalable Processor Board. The processor board accommodates performance options ranging from a 25 MHz 486 SX to a $66-\mathrm{MHz}$ 486DX2. In addition, the replaceable CPU module will also accommodate Intel's next-generation CPU when it becomes available. The board uses the 32-bit capability of the STD 32 Bus with data-transfer rates up to 32 Mbytes/sec.

The scalable processor board can function as the permanent master in multiprocessor systems, providing the bus-arbitration function for as many as six temporary masters in an STD 32 Star system. The board provides two interrupt controllers, two DMA controllers, two serial ports, a printer port, a real-time clock, an optional 64-kbyte second-level cache, and as much as 16 Mbytes of RAM. The processor board also has features for industrial applications such as watchdog timers, ac power-fail detect circuitry, timer/counters, and 24 lines of gen-eral-purpose digital I/O. The board occupies two
card slots on the backplane. Single-unit price is \$3500. Ziatech, San Luis Obispo, CA, (805) 541 0488, FAX (805) 5415088.

$120-\mathrm{MHz}$ frequency generator costs $\$ 495$

Four independent phase-locked-loop frequency sources on the GT310 let you generate frequencies from 360 kHz to 120 MHz . In addition, one of the four channels includes synthesis down to 0.0024 $H z$, generating counted bursts, and precision pulse widths. All channels drive a 50Ω load with TTL-compatible levels. Frequency step size is less than 0.8% of output frequency. The PC/AT plugin board comes with software for a virtual front panel, drivers, and library functions for Microsoft C or QuickBasic. Guide Technology, San Jose, CA, (408) 246-9905.

Add a solder mask to multilayer pcboard prototypes

When you need a prototype pe board fast, you can use a variety of pcboard prototyping systems to put one in your hands in less than one day. Unfortunately, you often have to give up im-
portant features you take for granted in a production pe board, such as multilayer designs with solder masks. Direct Imaging has now added dryfilm solder-mask capability to their multilayer prototyping system, letting you create pc boards with solder masks that are as big as $11 \times 14 \mathrm{in}$. and have 12 layers. The solder mask reduces bridging and electrical shorts when the pc board is soldered and provides an environmental barrier. The System Two Soldermask Station is $\$ 2995$. Complete multilayer prototyping systems including the sol-der-mask station are less than $\$ 50,000$. Direct Imaging, West Lebanon, NH, (603) 298-8383, FAX (603) 298-5257.

Software tests embedded systems

Texas Instruments' Scan Engine is a testability software package currently under development. The package will provide scan-based testing in embedded systems, eliminating external field-service test equipment. The software eliminates the test equipment because it can test anything that initiates and executes with boundary scan, such as built-in self-test, interconnect, functional, device, or logic cluster testing.

The software lets you embed GO/NO GO tests and

Text continued on pg 20

Text continued from pg 19

logging capabilities for batch test programs. The package is portable ANSI C source code that reads serial scan vectors from memory and applies those vectors to the unit under test with the end-user application. Designers receive the source code for the software so they can compile it on their target $\mu \mathrm{P}$ or $\mu \mathrm{C}$. The source code is used for test application and response retrieval, response logging options, and portability to the embedded environment. User-definable parameters, such as the memory location of the test data, let you customize the test application to the target system. The licensed list price for the software package is $\$ 12,000$. The company will charge a nominal royalty fee per unit shipped. Texas Instruments, Semiconductor Group, Dallas, TX, (214) 995-661 1, ext 3990.

Data converter adds serial link for remote sensing

Many remote-sensing applications use an A / D converter at the sensor end and report data back to the host over a serial link. Now a single IC can handle all of those tasks. The ML2223 combines an A/D converter, S/H circuit, voltage reference, RS232C UART, and baudrate generator into one 16 -pin plastic DIP. The device's base A/D converter uses a self-calibrat-
ing algorithmic succes-sive-approximation technique to provide 12 data bits with one sign bit for an input-voltage range of -5 to +5 V . The device can provide data on command with a conversion time of $45.6 \mu \mathrm{sec}$, or send a continuous stream of data over the serial link. The UART will handle RS-232C data rates as great as 19.2 kbps and RS-422 data at rates of 200 kbps . Samples are available for $\$ 14.50$ (1000), with full production scheduled for September. Contact Micro Linear, San Jose, CA, (408) 433-5200.

> Port graphics applications to Sun platforms

If you want to port Silicon Graphics (SGI) applications to a Sun SPARCstation, you can use a $\$ 900$ software package called Nth Portable GL to accomplish the task within a few days, instead of the months the job might otherwise require. The program provides such high porting speeds because it supports almost all of the 478 SIG Iris GL V4.0 calls and provides a font manager and mixed-windowing functions. The program uses Sun's native XGL graphics protocol, so the ported application will work with every Sun graphics board. Nth Graphics, Austin, TX, (512) 8321944, FAX (512) 8325954.

Engineers work for education

The steady decline in mathematics and science achievement of elementary and secondary students has made it increasingly difficult for American corporations to compete in the world marketplace. To change this trend, engineering professionals are taking to the schools. Engineers for Education is a nonprofit association of 45 engineering professional societies with the objective of recruiting 100,000 engineers as volunteers to improve math and science education in elementary and secondary schools throughout the US. Volunteers will serve as an additional resource for schools' math and science teachersenhancing the caliber of education for our students. The group is establishing local coalitions that will work closely with individual schools and school boards to ensure that the programs respond effectively to the schools' needs.
The group offers many of programs through which engineers can volunteer. Activities depend on the interests and abilities of the volunteer and the needs and desires of the principal and teachers in each local school. Specific assignments are mutually agreed to by all parties. Typical activities include conducting classroom demonstrations and presentations, participating in career days, sponsoring or leading science and technology clubs, arranging field trips, providing mentorship, tutoring individual students, and more.
Volunteers can choose from a variety of programs that cater to specific age groups. For fourth through sixth graders, the group sponsors three programs: "A World in Motion" is a partnership of professional engineers assisting elementary school teachers in motivating students and bringing excitement and relevance to physical science and mathematics. "MAS" is a collaborative program designed to increase interest and achievement in math and science. It was originally used in communities along the TexasMexico border but is being expanded nationally. "SKILL" is an after-school and summer program designed to stimulate interest and encourage children. SKILL volunteers work closely with members of the National Action Council for Minorities in Engineering Inc.
Patterned after after-school sports, "Mathcounts" is designed for seventh- and eighth-grade students. "Mathcounts" combines a "coaching" component at the school level with a series of competitions at local, state, and national levels. For high-school students (grades 9 to 12), volunteers can work for "TEAMS." TEAMS gives students a chance to apply what they learn in math and science classes to real work situations in a national competition. Finally, "Science by Mail" teams up volunteer scientists with children as pen pals.
For more information about these programs or Engineers for Education, call the EFE hotline at (800) 489-0348. For more information on "Science by Mail," call (617) 5890437. Engineers for Education, 39 Old Ridgebury Rd, Danbury, CT 06817.

The New Dual ' 040 VME SBC: Faster, More Efficient and Lower Cost Than Any Multi-board Solution

Get on-board multiprocessing and an astounding 40 MIPS throughput, when you power your system with Synergy's new SV420 single-slot SBC. The SV420's dual-CPU design means you'll need fewer boards in your VME chassis, with no VMEbus bandwidth bottlenecks between the ' 040 s, and systemwide cost saving of more than 40%.

And even if you don't need multiprocessing right now, the SV420 still puts you out front. Use the second '040 as a super-smart DMA controller. When

Over a dozen smart, powerful I/O modules fit Synergy's '020, '030, '040 and Dual '040 SBC's. combined with the SV420's 66 MByte/sec VME64 ${ }^{\circledR}$ circuitry, nothing communicates faster over the VMEbus.

Add even more onboard power by selecting from Synergy's big list of
high-performance, intelligent plug-on I/O modules such as our latest Super-VSB module offering $40+\mathrm{MB} / \mathrm{sec}$ over the VSB bus. Or choose another module, from a T1/E1 controller to a super-fast graphics engine, that plugs onto any Synergy SBC.

Better yet, just tell us what you need. We're the company you can
 talk to about your VME system design problems. You'll find that we listen and deliver (every Synergy I/O module on our list started as a customer request). We mean business when we say customer support is our most important mission.

So if you want to be out front in system performance, just be up front with Synergy. Call us today.

CIRCLE NO. 26

SYNERGY

microsystems

RFTRANS Over 80 off-the-shelf models...

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specified frequency range?Mini-Circuits offers a solution.

Choose impedance ratios from $1: 1$ to $36: 1$, in connector, TO-, flatpack, surface-mount, or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard, other types on request.

Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA primary current, use the T-H series. Fully detailed data appear in our $740-\mathrm{pg}$ RF/IF Designer's Handbook.

Need units in a hurry? ... all models are covered by our exclusive one-week shipment guarantee. Only from Mini-Circuits.

FORMERS
 $3 \mathrm{KHz-1500MHz}$ from $\mathbf{\$ 1 9 5}$

Weve just tested the performance of our new i960 CF processor.

Make no mistake. This is no middle-of-the-road processor. It's our new superscalar i960 CF chip. And it delivers blistering speed to your high-end printing, imaging, communications and networking applications. Simply put, it outruns every 32 -bit embedded processor on
the market-and we have over 25 benchmarks to prove it.

You see, only our i960 RISC architecture brings superscalar processing with multiple operations per clock to embedded applications. Our new i960 CF processor is highly integrated with optimized data and instruction caches for throughput up to

twice that of our i960 CA chip. Which makes it the most advanced technology available for embedded applications.

If you're already using our i960 CA processor, you can quickly shift up to higher performance with full code and pin compatibility. And, of course, we offer a comprehensive array of Solutions 960 development tools to
further speed up your design process.
So step on it. Call 800-548-4725 and ask for literature packet A9A51 for complete benchmarks. And learn what your applications can do with a faster engine.

intel

An Object Less For Absolutely Pr

The MACH" Family From AMD: The Fastest, Most Predictable High Density PLDs Available Today.

Oops! You're a couple of nanoseconds shy this time, and it's going to hurt. Perhaps next time you'll choose a more predictable vehicle. And the most predictable high speed, high-density PLDs available are the MACH family from AMD.

Only the MACH Family offers you worst case delays of 15 ns * or

Model Number	Equiv. Gates	Macro Cells	Max. Delay	System Speed	VO Pins	Hard-Wired Option
MACH 110	900	32	12ns	66.7 MHz	44	MASC 110
MACH 210	1800	64	12ns	66.7 MHz	44	MASC 210
MACH 120	1200	48	15 ns	50 MHz	68	MASC 120
MACH 220	2400	$\%$	15ns	50 MHz	68	MASC 220
MACH 130	1800	64	15 ns	50 MHz	84	MASC 130
MACH 230	3600	128	15ns	50 MHz	84	MASC 230

less. Because MACH parts are essentially PAL ${ }^{\oplus}$ devices, just like the kind you already know. Not some hybrid PLD/FPGA, where you don't know how it performs - until it's too late. So you don't have to guess your delays or clock speeds, you just read them right off our datasheet.

But they're not just ordinary

on InThe Need edictable Speed.

PAL devices. They're bigger and better, with densities ranging from 900 to 3600 gates, all in our submicron CMOS technology.

Nor will you face unpredictable delays when you order. Because the entire MACH family is now shipping in volume.

Working with them is equally predictable. You don't have to learn any new techniques, just use the software and test equipment you already know. Like ABEL, CUPL, OrCad, and others. Not to mention the software and support from over 20 FusionPLD vendors - all prepared to bring your products to market on time. And each MACH part can migrate easily to a pin-
compatible, hard-wired MASCN. counterpart for high volume. So you can get the volume you need, without redesign, NRE, or unforeseen delays.

So call AMD today at 1-800-222-9323. And let the MACH family make your design cycle a whole heck of a lot safer.

7
 Advanced Micro Devices

(c) 1992 Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088. PAL is a regis tered trademark, and MACH and MASC are trademarks of Advanced Micro Devices, Inc. All brand or product names mentioned are trademarks or registered trademaks of their respective holders.

CIRCLE NO. 29

OrCAD Turns Another Page

OrCAD's Schematic Design Tools is the most popular electronic design automation product in the world. Designed by engineers for engineers, its "intelligent" interface and power features are a favorite for electronic designers in huge manufacturing companies and small job shops alike.

Schematic Design tools offers incredible value in a single package: 30+ industry netlist formats (or write your own); support for hundreds of displays, printers and plotters; the innovative ESP framework, which allows the user to seamlessly transfer information between OrCAD products and many third party products.

In the 60+ libraries are IEEE, TTL, ECL, CMOS symbols and much more. In fact, Schematic Design Tools has over $\mathbf{2 0 , 0 0 0}$ unique library parts. Parts may be rotated, mirrored, converted to DeMorgan equivalent with the press of a single key.

Features and enhancements:

- Virtually unlimited design size
- Virtually unlimited netlisting capacity
- Faster netlisting due to improved memory management and 386/486 optimization
- Compatible with all OrCAD products including OrCAD PCB II,
Programmable Logic Design Tools 386+, and Digital Simulation Tools

- Virtually unlimited graphic part size
- All existing SDT designs and libraries may be easily translated into Schematic Design Tools 386+ format.
- Schematic Design Tools 386+ is compatible with nearly every known printed circuit board, programmable logic and FPGA layout system.

Schematic Design Tools 386+

Designed specifically for 386/486 based PCs. A true protected-mode product using 32 bit addressing and data structures for maximum performance on today's faster PCs.

The Better Solution

We listen

Jesse H. Neal
Editorial Achievement Awards 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

We're pleased to listen to what readers tell us. Even when we may not like what you have to say, we listen to your comments, criticisms, and ideas. We appreciate your writing, phoning, and keeping in touch. Even if you simply print a quick note on a bingo card, we read it.

As part of our continuing program to improve EDN, we've been listening closely to what you have been telling us about your needs for information. You've said many times that products and technology are important, followed by information about career planning, education, and professional issues. So, starting in October, you'll see more of an emphasis on those topics in our companion tabloid edition. Also, to dispel any confusion, both our magazine and our tabloid will simply carry the EDN logo, but you'll see the subheading, "Products \& Careers" on the tabloid. What you'll see and read isn't a radical shift for us or for you-we've been covering products, technology, and careers since we started tabloid editions several years ago.

You'll also see a new emphasis on direct communications between you and our editors. We'll routinely ask your opinions on pressing technical and professional issues. We'll also ask you to tell us which products you like and which ones you don't. And we'll want to know which companies you would like to work for and which ones you wouldn't. You'll see your responses in articles that feature poll results and comments from many readers. Numer-
ous articles will ask for reader feedback. In addition to your opinions, EDN Products \& Careers will bring you the faces and the stories of your colleagues in engineering and management.

Besides our regular and new career information we'll also run productpreference polls that let you tell us what you think about products. We'll publish the results with no holds barred. If you and your colleagues pan a product, we'll let you know. All too often, publications become cheering sections for advertisers. Not in EDN. To help you find the products you need, we've aligned the product classifications we use in EDN Magazine and in our sister Products \& Careers tabloid.

Reading any publication should be interesting and enjoyable. We're adding several new columnists, and you'll get their biased and unbiased opinions on everything from the latest products and technologies, to the best engineering bookstores, to the neatest high-tech hangouts, museums, and other places you want to know about. Columns will cover technical topics from analog circuit design to power-supply design, too. Also, if you've got a puzzle that will stump your colleagues, send it in.

We're pleased that you've been telling us what you think of EDN. I'm sure you'll be pleased with the Products \& Careers tabloid edition of EDN you'll receive in October. After you read a few issues of EDN Products \& Careers, let us know what you think. We'll be listening.

Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8,N,1; on 9600-bps modems, try (617) 558-4580, 4582, or 4398.

NaIONAL KNOWS NEWORKING

In fact, National is the only silicon supplier to offer solutions across all three major networking standards: Ethernet, Token Ring, and FDDI. We know the market demands improved connectivity, performance, quality, WIFROPFRABMIIY and network management. And at National Semiconductor, we're providing market-driven mixed analog + digital silicon solutions to make all this a reality. Our first ETHERNET silicon helped foster the

worldwide acceptance of LANs. In fact, well over 13 million Ethernet adapter cards have been designed using National's silicon - more than all other suppliers combined. National's ST-NIC ${ }^{\text {Tu }}$ was the first single-chip 10BASE페 controller to put 10 Mbps Ethernet on standard unshielded twisted pair wire. And our newest 16 - and 32 -bit solutions are making the first "Network Ready" PCs, MACs and peripherals a reality. National is also developing solutions to simplify the role of

NETWORK MANAGEMENT.

 Our Product of the Year Award-winning RIC $^{\mathrm{mN}}+$ SONIC $^{\text {TM }}$ chipset is the first to fully support the IEEE 802.3 mandatory and optional repeater management requirements. We'realso creating silicon solutions to ensure full interoperability of $\mathbb{1} 250) 1504$ and multiple protocol environments and to deliver new desktop services and applications. We've joined efforts with IBM, the leader in Token-Ring technology, to make it easier for your customers to seamlessly connect Ethernet and TOKEN-RNG protocols. And we recently introduced TROPIC ${ }^{\mathrm{TM}}$, the industry's first fully-integrated single-chip Token-Ring controller. That's just the first step in a joint IBM-National relationship that will deliver new levels of flexibility to the world of networking.

National is also providing new levels of performance with
 upcoming 2-chip FDDI solution. 100BASE-T is the first silicon solution proposed for Γ DD 1 across twisted pair copper wire. These solutions will drive affordable FDDI performance to the desktop. We're supplying proven "National Standard Silicon" today. And together we're syiluc ThFsMMDidids that will take you where networks are going in the future. For more information, give National a call at 1-800-NATSEM (Fz 191). We'll show you why no one knows networking like National Semiconductor.

Memories of Tomorrow. Available Today.

For fast answers, call us at:

USA Tel:1-800--632--3531. Fax:1-800-729-9288. Germany Tel:0211-650302. Fax:0211-6503490. The Netherlands Tel:040-445-845. Fax:040-444-580. Sweden Tel:08-753-6020. Fax:08-755-3506. France Tel:1-3067-5800. Fax: 1-3946-3663. Spain Tel:1-504-2787. Fax: 1-504-2860. Italy Tel:02-6709108. Fax:02-66981329. UK Tel:0908-691133. Fax:0908-670290. Ireland Te:01-6794200. Fax:01-6794081. Hong Kong Tel:755-9008.Fax:796-2404. Taiwan Tel:02-719-2377. Fax:02-719-5951. Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:253-8311. Fax:250-3583

NEC offers the industry's broadest line of high-speed memories.

Memory access is as critical as processing speed in the design of a successful system. For memories fast enough to run with your leading-edge processor, come to NEC. We'll help you select the optimum match for your processor and system parameters from the industry's broadest line of high-speed memories.

NEC memories combine fast-access with high-density.

\square Fast SRAM	1M	15ns	$\mathrm{x} 8, \mathrm{x} 9, \mathrm{x} 16, \mathrm{x} 18$
		20ns	$\mathrm{x} 1, \mathrm{x} 4$
	4M	20ns	$\mathrm{x} 1, \mathrm{x} 4, \mathrm{x} 8$
\square DRAM	4M	60ns	$\mathrm{x} 1, \mathrm{x} 4$
		70ns	$\mathrm{x} 8, \mathrm{x} 9, \times 16, \mathrm{x} 18$
	16M	60ns	$\mathrm{x} 1, \mathrm{x} 4$
\square VRAM	2M	70ns	x8
\square SRAM	256K	55ns	x8
	1M	70ns	x8

NEC is the front-runner in memory design because we give you more speed and more choice, including low-voltage and thinpackage options. For memories fast enough to keep pace with the future, call NEC today.

From the leader in memory technology

Face IT. With Today's Faster Systems, Yuu’ve Got a

FI: [1: And And

 820. The digital oscilloscope that's accurate to within 2 DSand provides time resolution in femtoseconds. In fact, at 0.40ps

with a $6 \mathrm{H} Z$ bandwidth, now even the narrowest timing

margin is nothing to be afraid of. Combine that with the intuitive

TDS user interface, and applications like device characterization
require nothing more than the push of a button. Better still, there is another aspect of the $T D S 820$ that, upon compari-
son with any so-called competitive scope, will ease your toughest
margin of all: The price tag. TALK TO TEK/1-800-426-2200 EXT. TDS8

With Four Times The Performance Of The Competition, Nobody Else In The Field Is Even In The Running.

Our innovative controllers keep you on the fast track of communications.

With our advanced 8-channel Enhanced Serial Communication Controller-the ESCC8 (SAB82538)-Siemens demonstrates once again why we lead the pack in communication IC technology.

The World's First 8-Channel Multi-Protocol Data IC.

The ESCC8 is the latest in a long line of advanced communications controllers which have made us the industry leaders. Like the HSCX (SAB82525) for telecommunications and the ESCC2 (SAB82532), the first 2-Mbit asynchronous multi-protocol communications controller.

The ESCC8 offers a superior price/performance solution for your communications applications. Compared to the standard 2-channel devices, the ESCC8 provides four times the data throughput,
and the fastest speeds in the industry-up to $10 \mathrm{Mbit} / \mathrm{sec}$ synchronous and $2 \mathrm{Mbit} / \mathrm{sec}$ asynchronous. Which lets you replace four 2-channel devices with one ESCC8, for substantial savings in time, boardspace, and development costs.
The ESCC8 also supports a wide range of protocol options-including X. 25 LAPB, ISDN, LAPD, HDLC, SDLC, and both ASYNC and BISYNC-plus easy adaptability to either Intel ${ }^{8}$ or Motorola ${ }^{*}$ microprocessors through the use of a 16 -bit data bus interface. For fast, reliable and accurate multi-protocolling.

A New Breed Of Performance ICs.

With 16- or 32-bit CRC handling and 28 programmable universal I/Os, the ESCC8 gives you superior performance in a communications controller. And only the ESCC8 offers a collision detect resolution scheme which provides multiple masters on one bus to prioritize data instructions,
plus 64-byte FIFOs per channel for increased storage capabilities.

2-and 8-Channel Controllers

And Siemens continues to hold a leadership position throughout the rest of the industry, with innovations like the DSP-based ARCOFI-SP, the world's most advanced speakerphone IC for digital terminals. As well as advancements in CMOS echo cancellation technology which have made us the frontrunner in single-chip ISDN U-interface transceivers.
For an ESCC8/ESCC2 evaluation kit, or more information on our full line of innovative communications ICs, call 800-456-9229. And put yourself on the fast track of communications.

Ask for literature package M12A014.

Siemens

World Wise, Market Smart.

System simulators meet wireless challenges

DOUG CONNER, Technical Editor

Designers of wireless RF and microwave sysfems can furn to specialized software tools to help them simulate complex systems efficiently.

Simulating wireless systems requires tools that have the flexibility to simulate systems at a rough block-diagram level, yet can also integrate the results of cir-cuit-level simulations. Furthermore, to be useful, a system simulation must run quickly.

Wireless systems are often complex. The complexity stems not just from the demands of high-frequency analog design of transmitters and receivers. Their complexity is due in part to the fact that wireless systems operate within the RF-to-microwave frequency range where there is great pressure from industry and the government to make efficient use of scarce spectrum. The need to preserve spectrum encourages the use of ever more complex communication techniques to squeeze as many channels as possible into a given bandwidth.

Wireless-system designers also face challenges common to other electronic products. Many wireless systems require portability. The lighter, smaller, and less power consuming, the better. Long battery life is important, but even if great strides are made in the energy density of batteries, most portable systeems must remain low-power to minimize the exposure of humans to RF and microwave energy. Efficiency is key. Even if you have a wireless LAN that can plug into the wall for power, you
want an efficient system to minimize the RF energy in your office.
The unknown environment between transmitter and receiver adds additional difficulties to wireless systems. You don't need someone actively trying to jam your transmissions, a consideration in military applications, to have trans-

A $900-\mathrm{MHz}$ CTI digital cordless telephone simulated with the Hewlett-Packard RF Design System shows the receiver's frequency response from 100 to 2200 MHz and an eye diagram of the demodulated performance.

CAE TOOLS FOR WIRELESS SYSTEMS

together a simple prototype for RF and microwave work as you might with low-speed analog or digital designs. Simulation or an expensive prototype are your two choices.

If you choose to enlist the aid of simulation during the design process, then you need to focus on the three fundamentals of simulation-models, stimulus, and measurements.

The right model for the job

When you first start a design and are working at the proposal or pre-liminary-design stage, you may not have specific hardware and detailed models available. You'll often be designing and simulating with generic building blocks for amplifiers, mixers, filters, and whatever function blocks your system requires. These generic building blocks are often modeled with idealized functions.

The preliminary-design stage is where you assess different ways of meeting the system requirements. Complexity and higher performance usually must be traded off against cost considerations.

As the system design begins to stabilize, you want more detailed information out of the simulation, which means you need to start using more refined models. At this point in the design you may still be using functional blocks, but you are modeling the nonideal aspects of those blocks more accurately. Eventually, you may start simulating the system with specific components at the circuit level. If the simulator you are using provides a way to mix high-level functional blocks with circuit-level simulation, you'll be able to make the transition smoothly.
Simulation results are very dependent on how well the models represent the real circuit. With any simulator you'll hope to obtain a library that includes most, or ideally all, of the models you'll need for your designs. Library models are typically made up from combinations of data-sheet information, measurements of actual products, and theoretically derived data. For models of system blocks or circuit
elements that aren't available in a library, you'll have to create the models or obtain them from a company that provides that service.

You can often create components models from data-sheet information, as long as the simulator can use models based on S-parameter data or other readily available data. Another way to create models is to characterize the circuit element with a network analyzer or other test instruments to obtain the necessary data.

Special function blocks that let you easily simulate some of the more complex modulation and demodulation techniques can save you considerable time. For example, function blocks that perform the $\pi / 4$ DQPSK (differential quadrature phase shift keying) modulation and demodulation will make it easier to create a simulation of a system using that communication technique than having to create your own function blocks. The trend toward ever more complex communication standards will make the

Fig I-The block diagram shows the IS-54 digital cellular communication system simulated using EEsof's Omnisys simulator.

EDN-TECHNOLOGY UPDATE

availability of these specialized modulation and demodulation function blocks even more of an asset.
As your simulation models become more detailed, especially if you start simulating part or all of a design at the circuit-level, simulation times will increase. Different types of simulators not only provide different results, they also vary in the time required to simulate a given circuit.
Linear simulators typically run the fastest. Linear simulation is useful for some parts of systems, but it isn't adequate for generalpurpose system simulation. The major drawbacks to linear simulation are the inability to simulate systems through frequency translation devices such as mixers, and the obvious lack of nonlinear results.
Time-domain simulation methods, such as Spice, can provide nonlinear analysis and can also simulate system transients. Some versions of Spice have extensions to better suit them to RF and microwave applications, especially for circuit-level simulations. Simulating a $1-\mathrm{GHz}$

Fig 3-The figure shows the layout of the substrate for the 2-stage power amplifier. Ground symbols are shown for those elements that have vias to the ground plane.
signal requires extremely small (subnanosecond) time increments in the simulation, yet the modulating signal may be in the tens of kilohertz. To simulate the signal for
several milliseconds will take many thousands of time increments, making simulation relatively slow.
Spice analyzes all circuit elements in the time domain, whether they

Fig 2-The schematic shows the 2-stage power amplifier module used in the RF upconverter. The inductor indicated is varied in the simulation to determine the effect of changing the bond lead length.

EDN-TECHNOLOGY UPDATE

CAE TOOLS FOR WIRELESS SYSTEMS

are linear or nonlinear. Assuming you use accurate models, Spice can accurately simulate highly nonlinear systems. When you simulate linear systems, Spice will also give accurate results, but the simulation will take more time than a simulator that assumes the system is linear.

Harmonic-balance simulation

Harmonic-balance simulation takes the middle ground, using fre-quency-domain simulation of linear elements and time-domain simulation of nonlinear elements. The method assumes that for a given sinusoidal excitation of a nonlinear circuit, a steady-state solution exists that can be approximated as a finite trigonometric series.
Many RF and microwave circuits have mostly linear elements, primarily passive components, and only a few nonlinear components such as diodes and transistors. If the steady-state response to a sinusoidal input is what you need, then these mildly nonlinear systems can be simulated accurately and much faster than Spice using harmonic balance.

Another approach to simulating complex circuits is a recently announced (December 1992 release) simulator from Hewlett-Packard called HP Impulse. The simulator

Fig 4-Simulation results of the 2 -stage power amplifier show the reduction in gain and power added efficiency with the increased inductance.
incorporates frequency-domain components into a time-domain simulator using a technique that the company calls dynamic convolution. Dynamic convolution converts the frequency response of each frequencydomain component into a finite-impulse response. The incoming signal is convolved with the finite-impulse response to obtain the time-domain response. If there are no frequencydomain components, the simulation is very similar to Spice.

System simulators such as Omnisys from EEsof and Success from Compact operate in the frequency domain. Such simulators cannot simulate system transients, although they can simulate nonlinear elements. Also important is the fact that they are multitone simulators, allowing simultaneous analysis of 64,000 tones in the case of Omnisys.
Before you can put a simulator to work simulating a system, you need to create the system stimulus.

Fig 5-(a) shows the upconverted and amplified spectrum for the circuit with 0.3 nH of inductance and (b) shows the same plot for the circuit with 0.7 nH of inductance.

SIGNAL PROCESSING. GRIZZLY?

Designing a signal processing system can be a bear of a problem-immense, mean, and unforgiving. Engineers grappling with conventional analog or digital technologies face risk and unpredictability at every turn, with no guarantee of success. Designers invest months of development time in a brutal design process that's as lengthy as it is frustrating. Productivity and time to market are devoured in the struggle!

SPROC Technology Tames The Task

At the core of STAR Semiconductor's unique signal processing solution is the SPROC ${ }^{\text {Tw }}$ chip, the first-ever programmable signal processor using the "Sketch and Realize" ${ }^{" W}$ design approach. With a single SPROC chip and a SPROClab development system, signal processing becomes a tame task.

Why wrestle with circuit breadboards crawling with sensitive analog components? Or agonize over line after line of assembly code? One SPROC chip integrates the functionality of hundreds of analog and passive components to cut system costs. And SPROClab employs system-level graphical programming so you can capture designs as signal flow block diagrams. You gain all the benefits of a digital solution -

Stop laboring with trial-and-error debug methods, cumbersome logic analyzers, or software simulators to debug a design! Engineers using SPROC technology download designs directly onto actual silicon and interactively debug systems as they execute in real time! Using the SPROC chip's unique built-in probe feature, you can easily modify design specifications to tune system performance during execution.

With SPROC technology, engineers focus on designing to create better products in less time.

If you can't bear to see your productivity mauled by the problems of signal processing design, call STAR Semiconductor at $908 / 647-9400$. We'll send you a brochure and demo disk telling how to tame your next signal processing project.

STAR Semiconductor Corporation 25 Independence Boulevard, Warren, NJ 07059 Telephone: (908) 647-9400 FAX: (908) 647-4755

SPROC Users Slash Development Time

APPLICATION	PREVIOUS TECHNOLOGY	PREVIOUS DEV. CYCLE	SPROC DEV. CYCLE	\$ SAVINGS (1st YEAR)
Secure FSK modem	analog	6 months	$\mathbf{3}$ weeks	$\mathbf{\$ 5 0 , 0 0 0 \dagger}$
Adaptive noise canceler	DSP	6 months	$\mathbf{1}$ week	$\mathbf{\$ 5 7 , 5 0 0 ^ { * }}$
Power supply controller	analog	6 months	$\mathbf{1}$ day	$\mathbf{\$ 6 0 , 0 0 0 ^ { * }}$
Closed-loop vibration controller	analog	3 months	$\mathbf{2}$ weeks	$\mathbf{\$ 2 4 0 , 0 0 0 \dagger}$

tTotal system savings including project overhead, engineering resource, and system hardware costs.
*Estimated savings in engineering resource based on cost of $\$ 10,000$ per man month.

CIRCLE NO. 36

CAE TOOLS FOR WIRELESS SYSTEMS

Depending on the type of system you are simulating and where you choose to make the system boundaries, you may be using analog or digital inputs. For digital data transmission, you'll often use pseudorandom bit sequences.
The objective of any simulation is to see how the system performs. You can evaluate system performance easiest if you can get output data in a format that is most useful
for you. Standard plots such as power vs frequency, voltage vs time, or frequency vs time are commonly available. Eye and constellation diagrams are information that you may have available from test equipment and may also be valuable during simulation too.

For digital transmissions, the biterror rate may be the most informative overall measure of a system's performance. If the bit-error rate

Fig 6-(a) shows the eye diagram of the demodulated signal for the circuit with 0.3 nH of inductance. (b) shows the same plot for the circuit with 0.7 nH of inductance.
is poor, you'll need other information to diagnose where the problem lies in the system. Budget analysis methods that look at the contribution of each component or system block and compare them to the total are helpful.

DSP methods are having a large impact on wireless communication systems too. Methods that attempt to extract data from a noisy background may be treated as a post processing function on some simulators without DSP function blocks. For these simulators, it's up to you to develop the DSP software algorithm. A more direct approach is to use a simulator that is capable of simulating wireless systems and has DSP function blocks in the simulator.

For example, the Signal Processing Worksystem from Comdisco provides more than 500 system blocks, including many for DSP functions that let you simulate wireless systems. Although the software is capable of simulating complete wireless systems with extensive DSP ability, it concentrates on the baseband signal, the lower frequency signal before modulation, and the lower frequency signal after the demodulation. If you want to simulate the analog details of an RF system between the modulator and demodulator, you'll typically need additional simulation tools, perhaps a circuit-level simulator.

Optimizing for manufacturing

After you've created a satisfactory system design, you can get more utility out of a system simulator that helps you look at manufacturing optimization and yield. By simulating typical component variations, often using Monte Carlo simulation runs, you can see how component variations will affect your design.

Manufacturing optimization methods, such as design centering, help you make sure to choose the

DSPs don＇t come any better than Motorola＇s high－performance Military 96002．It＇s our premier 96 －bit floating point digital signal processor，ideally suited for processor intensive applications such as radar and communications．

Available NOW is this single－chip，dual－ port，low－power HCMOS general purpose IEEE DSP，screened in accordance with MIL－STD－883．The SMD version is slated for introduction in fourth quarter 1992.

Ada Supported

Motorola understands the unique demands placed upon Military systems and works closely with software vendors to ensure that its products are fully supported．

Available NOW in the＂Pin Grid Array＂ （PGA）and＂Ceramic Leaded Chip Carrier＂ （CLCC）is the Military 56001 HCMOS， low power，general purpose DSP in full MIL－883 and SMD versions．For price and delivery information and Brochure \＃BR912／D，contact your local sales office．

For more information on the 96002，order our DSP Brochure \＃BR1402／D by calling toll－free 1－800－441－2447．Or complete and return the coupon below to Motorola，P．O． Box 20912，Phoenix，AZ 85036.
（A）MOTOROLA

[^3]
CAE TOOLS FOR WIRELESS SYSTEMS

correct nominal component value to achieve the best system performance with component variation. When trying to minimize the cost of a system while achieving some minimum performance level for all systems, manufacturing optimization methods help you know which components to spend money on for tighter tolerances and when you can save money on loose tolerance components.

Simulating designs

An example best demonstrates the value of a system simulation tool for a wireless system. The example shown here is a cellular radio using the IS-54 digital cellular communication standard for North America. The system uses the $\pi / 4$ DQPSK modulation technique to transmit data at 48.6 kbps. Radio systems designed to this standard are just now starting to appear.
The simulation uses EEsof's Omnisys system simulator for everything except the power amplifier in the upconverter section is modeled using the company's $\$ 29,000 \mathrm{~J}$ Omega RF circuit-level simulator. Fig 1 shows the block diagram of the system. The system simulator is used in this example as a way to examine how a circuit-level design

Table 1-System-level simulators for wireless systems

Manufacturer	Product	Compatible computer systems	Price	Notes
Comdisco Systems	SPW (Software Processing Worksystem)	HP, DEC, Sun workstations	\$25,000	Optional software generates DSP code or VHDL netlist for synthesis of DSP functions. Optional network and protocol simulator.
Compact Software	Success	PCs under Windows or OS-2	$\begin{gathered} \$ 8000 \\ \text { to } \\ \$ 10,500 \end{gathered}$	The company also offers circuit-level simulators.
EEsof Inc	Omnisys	Unix-based workstations from HP, DEC, Sun, IBM. PCs under OS-2.	\$25,000 (US typical system price)	Unix-based X-Window interface. The company also offers circuit-level simulators.
Hewlett-Packard	Microwave Design System	Workstations from HP, DEC, Sun, IBM. 386/486 PCs.	\$31,000	A circuit-level simulator that uses system-level function blocks for system simulation.
	RF Design System	Workstations from HP, DEC, Sun, IBM. 386/486 PCs.	\$28,093	A circuit-level simulator that uses system level function blocks for system simulation. Available in December 1992.
Tesoft Inc	TESLA	PCs	\$695	

Note: VHDL = VHSIC Hardware Description Language.
change in a power amplifier module affects the whole system.

The 2 -stage power-amplifier schematic is shown in Fig 2 and layout of the power-amplifier module is shown in Fig 3. The layout shows
schematic ground symbols for those elements that have vias to the ground plane. Two simulation runs look at the effect of changing the bond-lead inductance on the source leg of the output-stage GaAs FET.

Fig 7-(a) shows the change in bit error rate as a function of the energy per bit per noise output density for the circuit with 0.3 nH of inductance. (b) shows the same plot for the circuit with $0.7-\mathrm{nH}$ of inductance. Note how the system operating point has moved between the two plots, indicating a much higher bit error rate for the $0.7-\mathrm{nH}$ inductance case.

A Truly New Compiler Comes Along Only Once In A Generation.

 Introducing Uitra C. It lets you explore the boundaries of performance for hard real time.

When performance counts, you need a C compiler that will produce the fastest, tightest code possibleespecially in demanding hard real-time applications. Yet most C compilers commonly used today were originally written ten or more years ago. Since then, computer scientists have learned a lot about how to make better compilers.

That's why Microware undertook the epic task of creating an all-new C compiler based on the latest academic research-a compiler able to eke out every drop of performance from modern 16 -, 32- and 64 -bit CISC and RISC microprocessors. Microware's Ultra C uses a modular architecture that creates a virtual playing field for vigorous action by dozens of optimizers to analyze, arrange, accelerate and compress code into fast, compact executables. Heuristic analysis of register and variable usage far surpasses the capabilities of what most human programmers could do themselves.

State-of-the-art, plus...

Of course Ultra C has all features expected in a state-of-the-art compiler, such as full ANSI C compliance, C source code symbolic debugging, and a comprehensive set of standard libraries including support for the extensive real-time capabilities of the OS-9 and OS-9000 Real-Time Operating Systems. Options allow selection of either ANSI or K\&R compatibility. You can even turn the optimization knobs yourself to best match your application's requirements.

Built-in quality and reliability

You can count on Ultra C right now, because it's probably the most thoroughly tested new compiler in history. Before the first copy went into beta test, it successfully passed the massive Plum Hall ANSI C Validation Suite eight major sections, in all over 500,000 lines of C compiler torture track. Compilers are not a sideline at Microware-we've been developing them in-house since 1978.

CISC now, RISC soon

Ultra \mathcal{C} is available now for all 680X0 family and 386/486 family CPUs running Microware's OS-9 and OS-9000 Real-Time Operating Systems. RISC versions are coming soon.

In California, call (408) 980-0201

CAE TOOLS FOR WIRELESS SYSTEMS

Simulating the system with a bond-wire inductance from 0.3 to 0.7 nH is equivalent to a bond-wire length of 12 to 28 mils. A circuitlevel simulation of just the 2 -stage power amplifier provides the data in Fig 4.

You can see by comparing the two curves that the output power of the amplifier for a $-5-\mathrm{dBm}$ input changes from approximately 31 to 28 dBm with the increased inductance. The power-added efficiency (a ratio of the power out to the dc and RF power in) drops from about 50% at $-5-\mathrm{dBm}$ input power to about 37% with the added inductance. The power efficiency reduction is particularly significant for portable handheld units where battery life is important.

The data from the above circuitlevel simulation is imported into the system-level simulation using a power-dependent S parameter file. Now you can use the full systemlevel simulation to evaluate how the power-amplifier change affects the performance of the full system.

The power vs frequency plots in Figs 5a and 5b show a small change. The eye diagrams in Figs 6a and 6b show only a small closing of the eye. The qualitative measurements shown in Figs 5 and 6 might lead you to believe that the system per-
formance has not been significantly altered by the increased inductance.
The bit-error rate tells a different story. Figs 7 a and 7b show the change in bit-error rate as a function of the energy per bit per noise output density. The curves marked with the small squares show the theoretical system performance, and the curves marked with the plus signs show the performance of the simulated system.

Although the inductance variation causes only a small divergence at high levels of $\mathrm{Eb} / \mathrm{No}$, the system's bit-error rate is significantly affected by the change in operating point. The change in the system's operating point is caused by the lower gain of the amplifier reducing the energy-per-bit value. The bit-error rate of the system changes from approximately one error in 100,000 bits to one error in 3000 bits. इकण

Acknowledgment

I'd like to thank Tim Hopple of EEsof for providing the simulation of the IS-54 digital cellular system.

Article Interest Quotient (Circle One)
High 479 Medium 480 Low 481

For more information . . .

For more information on the CAE products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Comdisco Systems Inc 919 E Hillsdale Blvd Foster City, CA 94404 (415) 574-5800

FAX (415) 358-3601
Circle No. 664

Compact Software

483 Mclean Blvd
Paterson, NJ 07504
(201) 881-1200

FAX (201) 881-8361
Circle No. 665

EEsof Inc
5601 Lindero Canyon Rd Westlake Village, CA 91362 (818) $991-7530$ FAX (818) 991-7109 Circle No. 666

Hewlett-Packard Co

19310 Pruneridge Ave
Cupertino, CA 95014
(800) 752-0900

Circle No. 667

the new abbott SM200.

- Highest density in a military power supply
- 50 Watts per cubic inch
- Size: 2.4" W x 4.6" Lx .5" H
- Power limit: up to 280 Watts
- Fixed frequency; no derating
-Temperature range of operation: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- Extended input voltage range: $11-40 \mathrm{Vdc}$
- Output: $5,12,15,24,28 \mathrm{Vdc}$; sync pin, trim pin
- OVP, TTL included
- Remote Error Sensing
- Qualifications: Mil-Stds 704D, 810E, 901C
- Board-mountable
- Readily available, off-the-shelf military
- Price: very competitive

the sum.

- Highest density in the solar system
- 500,000,000,000,000 Watts per cubic inch
- Size: diameter $=864,000$ miles
- Power limit: undetermined
- Variable frequency; derating nonverifiable
- Temperature range of operation:
$+5500^{\circ} \mathrm{C}$ to $+15,000,000^{\circ} \mathrm{C}$
- Extended input voltage range: $1-10^{43} \mathrm{Vdc}$
- Output: unchanneled; scattered dispersion
- Output protections: shade, sunscreen
- No system of error sensing/detection
- Mil-Std qualifications: none
- Board-mountable: not
- Readily available; not deliverable in unit form
- Price: very expensive

COMPARE OUR VERY-HIGH-DENSITY POWER SUPPLY WITH ITS CLOSEST COMPETITOR.

While the competition is admittedly tough, a closer look at the specs should serve to convince even the most skeptical reader of the many practical benefits of our new SM200 very-high-density power supply, which, despite its shorter track record, in reliability is second to - only one.

When you go with Xilinx, what do you get?

Software so automated it can shrink a development cycle to less than a starting employee's vacation.

The fastest, densest, most costefficient devices.

Support from the league-leader in programmable logic.

And a head start on everybody else who didn't go with us.

TOMORROW WILL BE HERE

 ANY MINUTE.These days, you just don't have a moment to lose.

You blink twice and there are four competitors with a product just like yours. Only cheaper.

Even being first to market isn't
enough anymore. You also have to be the first to follow up with new, featurerich models.

And in that kind of market environment, Xilinx FPGAs and EPLDs become

You can't buy time, but you can certainly do the next best thing. You can buy Xilinx and save time. Almost four months, compared to using a conventional gate array.
more valuable than ever.

For starters, our software is virtually automatic.

So we look for all the world like the prototypical prototyping tool.

But why stop there? Our FPGAs can get you into production instantly.

When you need to come back and build new models, it's as easy as reprogramming-something our FPGAs let you do right in the system.

And when youre ready for high volumes, our pin-for-pin compatible HardWire ${ }^{\text {w }}$ Gate Array is ready to go.

THE MOST EXPERIENCED PROGRAMMABLE LOGIC.

In all modesty, we know more about FPGAs than anybody.

After all, we invented them.
Thirteen million devices, and 12,000 development systems later,

roverivit Mistivic rovice ming AH:D SIBit

we now offer more than 250 options for the widest range of applications.

Our staff of FAEs has more experience designing with complex PLDs than any other single group in the industry. And when you go with us, they're with you.

And no one has more experience working with the third party people you rely on for CAE. You can work with whatever and whomever you're

The most valuable thing in a horse race? A good lead. As the leader in programmable logic, we can help you get one. And keep it.
working with now. You don't have to reinvent a thing.

Which means your investment in equipment and training, as well as the future of your future product line, are protected.

THE LOGIC OF OUR APPROACH

 IS INESCAPABLE.Were not burdened by expensive fabs, so we can invest where it really counts: in device improvements.

We have the largest software team in programmable logic - half of our total R\&D staff.

Our goal is to automate even the toughest designs, till the process becomes just as quick and painless as it possibly can be. We'll also continue to push the industry in device
speed and density, something we've done from the very beginning. After all, we're in the best position to do that-our R\&D budget is bigger than most of our competitor's revenues.

So find out how we can help.
Call our 24-hour literature hotline at 800-231-3386 for the latest product information and the name of the Xilinx representative nearest you. We'll take it from there. But do it soon.

Because these days, getting ahead is the only way to go.

8. XIIINX

The Programmable Logic Company." ${ }^{\text {su }}$
©1992 Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Europe, 44 (932) 349401; Japan, 81 (3) 297-9191;AAia, 852 (3) 721 -0900. Xilinx and the XC designation are
trademarks, and The Programmable Logic Company is a service mark of Xilinx, Inc. All ther trademarks or registered trademarks are the propertyof their respective holders

Making your 24 bits better.

PC display

That's ATET "Customerizing."

"Customerizing" means being ready today with a total 24 -bit graphics solution - a complete package to enhance your multimedia PC applications.

It's an industry first from AT\&T Microelectronics. A true-color graphics chip set with complete driver support, including 24-bit window drivers. Today!

Developed to give you one-stop, hassle-free, true-color shopping. And priced to take a surprisingly small bite out of a PC design budget.

16 million colors

Offering quick and easy implementation, our chip set includes a True-Color VGA Controller and highly-integrated RAMDACs.

This high-performance system, capable of generating over 16 million colors, makes possible a virtually unlimited range of shading possibilities.

The system also delivers photographic-quality graphics
display, provided by an AT\&T True-Color VGA Graphics Controller that supports resolutions as high as 1024 by 768 .

Integrated Solution

 AT\&T's chip set is designed for a 5 -chip motherboard that consumes only 30 square centimeters, and incorporates two memory devices.Flexibility? AT\&T's chip set offers three RAMDAC options $-24,16 / 18$ and $8 / 6$ bit-so you can differentiate your application with various price/performance points.

Development time? Our complete manufacturing kit helps you sharply reduce design-in time and cost.

For more on how you can give your product a 24 -bit edge at the lowest possible system cost, just give AT\&T Microelectronics a call at 1800 372-2447, ext. 903. FAX: 215 778-4106.
(In Canada:
1800 553-2448, ext. 903)

Pack more logic into every FPGA.

NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O ${ }^{\circledR}$'s new ABEL-FPGA ${ }^{\text {TM }}$ Design Software has the power to pack in maximum logic. It combines the indus-try-standard ABEL Hardware Description Language (ABEL-HDL ${ }^{\text {w }}$) with our new intelligent FPGA Device Fitter ${ }^{\text {™ }}$
technology. So, you can create more complex designs with less effort-ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, Cypress, ICT, National, Plus Logic, Texas Instruments, and Xilinx. And with
complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.
built-in knowledge of its target Pack more logic into your next architecture, each fitter

FPGA design, with the single
masters the
solution to all your FPGA behavioral entry needs: ABEL-FPGA. Call us today to find out more about DATA I/O NEW
ABEL-FPGA.
1-800-3-DataIO
(1-800-332-8246)
DATA I/O

Testers let you pinpoint the causes of EMI failures

An irony of electronics is that, despite binary signals' high noise immunity, common types of electromagnetic interference (EMI) are more likely to cause malfunctions in modern digital products than in older analog gear. A group of threats-electrostatic discharge (ESD), electrical fast transients (EFTs), surges, and power-line dis-turbances-can create problems for which neither the true causes nor the remedies are obvious. Keytek's ECAT systems (for expert com-puter-aided test) not only simulate these threats but include optically coupled data-acquisition modules to accurately monitor signals within equipment while you apply the threats. Combining simulation and monitoring facilitates finding the causes of failures and fixing them.
tify that the products meet the US equivalents of these standards.
One reason for the great emphasis on EMI immunity is the growing pervasiveness of digital technology; microprocessors have found their way even into such commonplace items as vacuum cleaners. Most digital systems contain circuits that respond to fast edges, which are among the most prevalent of EMI threats; analog equipment rarely had enough bandwidth to respondsome of these edges are as short as a few tens or hundreds of psec. Although some EMI-induced failures are relatively benign (you can correct them by turning the equipment off and then on again), some necessitate costly repairs, and others are life threatening.
Many of the threats are truly
massive-kilovolt-level transients, for example. Because the ECAT systems' μ P-based Fibersense dataacquisition modules let you monitor both digital and analog signals (including low-level signals) within your product in the presence of disturbances produced by the systems' simulation modules, you can learn exactly what circuits or subsystems malfunction and quickly devise remedies. Heretofore, the only alternatives were tedious series of experiments, which, with luck, would lead you to deduce the problem.

The systems' simulation modules fall into four categories: the E200 series for ESD, the E400 series for EFT, the E500 series for surges, and the EP series for power-line disturbances (the vendor uses the trademark PQF, for power-quality

If you think that manufacturers of products such as process-control, communications, and military equipment are the only ones concerned with EMI susceptibility, you're wrong. Concern is growing even among manufacturers of consumer products. The International Electrotechnical Commission (IEC) has promulgated a series of test standards (IEC 801-2, -4, and -5), and the European Community (EC) is getting ready to require that several types of products sold in Europe comply with them. In the US, at least one large retail chain requires manufacturers of products sold under its name to cer-

Electromagnetic interference from sparks, as from a finger to a keyboard (top left), from the opening and arcing of an ac-line contactor (center left), or from lightning-even when it jumps between two clouds and doesn't strike the earth (bottom left)-can play havoc with your equipment. The ECAT system (right) simulates all of these threats and enables you to find out exactly why your product fails.

We developed some of the first clock oscillators.

 But some of the most significant thingswe ve developed
have been relationships.

\cdotsWhen you design in VCXO or ECL clock oscillators from MF Electronics, you get more than reliable parts. You get the company that pioneered the technology, ready to help with your special needs and unique problems. So write or call: MF Electronics Corp. 10 Commerce Drive, New Rochelle, New York 10801. (914) 576-6570. Fax:(914) 576-6204.

All the benefits of a laser printer on a much larger scale.

A-size ($8.5^{\prime \prime} \times 11^{\prime \prime}$)

.At last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large format drawings. It's called ProTracer ${ }^{\text {ru }}$ - a 360 dpi desktop printer/plotter that produces A, B, as well as C-size output.
FEATURES INCLUDE:

- High performance inkjet engine from Canon®
- Fast, Intel i960"u processor-drawings that take over one half hour on pen plotters take as little as five minutes on ProTracer!
- Optional HP-GL and PostScript language emulations, memory expansion boards, and sheet feeders
- Unsurpassed customer service- 60 day money back guarantee of satisfaction, one year warranty, and free lifetime technical support

- Customized ADI and PADI drivers for AutoCAD users
- Epson and ProPrinter emulations

$\$ 1499$

PACIFIC DATA

PRODUCTS

[^4]| Universal 8051/52 Family | |
| :---: | :---: |
| Intel 8031 | 32 MHz |
| Intel 8032 | 24 MHz |
| Intel 80C31 | 32 MHz |
| Intel 80C32 | 24 MHz |
| Intel 80C51FA | 16 MHz |
| Intel 80C152 | 16 MHz |
| Intel 8048/49/50 | 11 MHz |
| AMD/Siemens 80515 | 16 MHz |
| AMD/Siemens 80535 | 16 MHz |
| AMD/Siemens 80C535 | 16 MHz |
| Siemens 80537 | 16 MHz |
| Siemens 80C537 | 12 MHz |
| Siemens 80C517 | 16 MHz |
| Signetics/Philips 80C451 | 16 MHz |
| Signetics/Philips 83C451 | 16 MHz |
| Signetics/Philips 87C451 | 16 MHz |
| Signetics/Philips 80C552 | 16 MHz |
| Signetics/Philips 8XC552 | 16 MHz |
| Signetics/Philips 83 C 751 | 16 MHz |
| Signetics/Philips 87C751 | 16 MHz |
| AMD 80C321 | 16 MHz |
| AMD 80 C 325 | 16 MHz |
| AMD 80C525 | 16 MHz |
| AMD 87C525 | 16 MHz |
| Intel 8096/196 (KB, KC, KR, KQ, JF | $(, J Q)$ |
| 8096/80196 | 16 MHz |
| 8098/80198 | 12 MHz |
| Zilog Z8. Super-8 | |
| Z8 | 20 MHz |
| 86C94 | 30 MHz |
| Super-8 | 20 MHz |
| Texas Instruments DSP's | |
| 320C10/15 | 33 MHz |
| 320 C 16 | 35 MHz |
| 320C17 | 20 MHz |

Let's talk real 8051 8096/196 in-circuit emulation. . . . and DSP's too!

Signum Systems' in-circuit emulators offer more standard features than you'd expect, and some you wouldn't.

Features You'd Expect

- Windowed/mouse interface Flash download 115 k-baud Debug in C and PL/M Non-intrusive to target or PC Full speed emulation

Signum Extras

- C-51 and C-96 HLL debugger with locals support
- Full bank switching support
- Up to 256 K emulation program RAM
- Graphic trigger window
- $32 \mathrm{~K} \times 80$ real-time trace
- Access on-the-fly to:
- All emulation RAM contents
- 3 complex trace triggers
- 8 level sequencer
- Trace and execution displays
- 256 K address breakpoints
- 2 16-bit event counters
- Performance analysis

Unlimited user support

England	. (0254) 682-092
France	. (33) (74) 438045
Italy	(39) (2) 688-00548
Switzerland	. (41) (91) 568-721
Poland \& Eastern Europe	. (48) (71) 484-221

England . (0254) 682-092
France . (33) (74) 438045
Switzerland (41) (91) $568-721$
Poland \& Eastern Europe (48) (71) 484-221

[^5]* System capable of 32 MHz ; actual emulation speeds limited by currrent device speeds.

Performance . . . Ultimately Depends on You

See what Graphic Triggering can do for you. For the first time you can have intuitive, precise control of the full debugging power of your emulator. You'll avoid errors and get more done.

Debugging in a High Level Language means that eventually you will have to track something right down to a member of a local complex structure. Signum lets you zoom in on any structure- with just the click of a mouse.

Opportunity . . .

The Signum Advantage
The right tools do make a difference, and there's no equality among emulators. You have to actually use them to appreciate what they can do for you. Better features that are easier to use mean you're finished sooner. That's performance, and that is exactly what we are about at Signum Systems.

Prove it to yourself, check out a Signum emulator today! Write or call to evaluate the Signum advantage.

10 DAY FREE TRIAL

SIGNUM SYSTEMS

. . . for the most discerning

171 East Thousand Oaks Blvd.
Thousand Oaks, CA 91360
Tel: 805-371-4608
Fax: 805-371-4610

Modular dc/dc converters develop 3.3 to 48 V outputs

SMQ Series high-density de/dc converters reflect the industry's most popular mounting, dimensional, pinout, and cooling specifications. More than 100 models are available with inputs ranging from 12 to 300 V and outputs covering a 3.3 to 48 V range. Special versions with 1.2 V outputs are available for applications such as backplane termination. Output power capability ranges from 75 to 230 W -equivalent to a power density of $40 \mathrm{~W} / \mathrm{in} .^{3}$
The SMQ converters operate at a fixed frequency between 250 and 300 kHz -a range where low equivalent-series resistance, hightemperature electrolytic capacitors provide low ripple and six times more capacitance than typically found in many competitive units. As a result, SMQ converters have a guaranteed transient response-a characteristic always expected of high-performance, higher-power computer or telecommunications supplies.

Responding to market trends toward fault-tolerant (redundant mode) applications, SMQ converters have single-wire paralleling. To help in fault isolation, they also have a dcgood signal as a standard feature. This feature is almost always found in more expensive, higher-power, off-line power supplies.
The units in the SMQ line rely on a time-proven PWM forward converter with current-mode control. Using a 2 -transistor forward converter lessens MOSFET capacitance losses and helps make the power section bullet-proof in terms of susceptibility to overvoltage damage. Limiting the operating frequency to 300 kHz sharply reduces capacitance-related losses, which inherently occur at 750 kHz or higher.

One area of performance often

Housed in an industry-standard package, SMQ dc/dc converters feature a 230 W output capability. They are available with outputs of 3.3 to 48 V and incorporate singlewire paralleling and protection against overvoltage, overcurrent, and overtemperature conditions.
cited by users relates to the differential and common-mode noise that often appears at the output as spike noise. This noise is caused by the power semiconductor switching transitions. In the SMQ converters, a proprietary noise filtering technique significantly reduces this noise.

All SMQ converters incorporate overvoltage, overtemperature, and overcurrent protection along with remote shutdown, option synchronization, and a standard on-status signal to indicate proper drive-chip operation. A preset turn-on delay lets the converters drive incandescent or highly capacitive loads without going into an overcurrent mode-a definite problem with fast turn-on converter designs.

SMQ converters are housed in a $2.4 \times 4.6 \times 0.5-\mathrm{in}$. encapsulated package, which is compatible with either surface-mount or through-hole assembly operations. The units use planar magnetics and can deliver a 230 W output at an $85^{\circ} \mathrm{C}$ baseplate temperature. $\$ 125$ to $\$ 250$. Delivery, six to eight weeks ARO.

-Tom Ormond

Electronic Measurements Inc, 405 Essex Rd, Neptune, NJ 07753. Phone (908) 922-9300. FAX (908) 922-9334.

Circle No. 733

Sprague-Goodman

Surfcoil ${ }^{\circ}$ SMT Inductors

- Inductance from 10 nH to 1 mH
- 8 model series in 3 sizes:
$2.5 \times 2.0 \times 1.6 \mathrm{~mm}\left(0.098^{\prime \prime} \times 0.079^{\prime \prime} \times 0.063^{\prime \prime}\right)$
$3.2 \times 2.5 \times 2.2 \mathrm{~mm}\left(0.126^{\prime \prime} \times 0.098^{\prime \prime} \times 0.087^{\prime \prime}\right)$
$4.5 \times 3.2 \times 3.2 \mathrm{~mm}\left(0.177^{\prime \prime} \times 0.126^{\prime \prime} \times 0.126^{\prime \prime}\right)$
- Shielded, unshielded, ferrite core and nonmagnetic models
- Operating temp: -20° to $+85^{\circ} \mathrm{C}$
- Carrier and reel standard
- Fully encapsulated

Phone, fax or write today for Engineering Bulletin SG-800B.

SPRAGUE goodman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

CIRCLE NO. 45

- 2 sizes:
$3.2 \times 4.5 \times 1.6 \mathrm{~mm}$
$4.0 \times 4.5 \times 2.7 \mathrm{~mm}$ (sealed)
- 4 mounting configurations
- Carrier and reel, or bulk pack
- 1.7 to 50 pF in 7 cap ranges
- Operates to $85^{\circ} \mathrm{C}$

Phone, fax or write today for Engineering Bulletin SG-305B.

SPRAGUE G00Dman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 - Fax: 516-746-1396

2.68 HORSEPOWER or 2000W RMS

The PA30 from Apex is the first hybrid IC amplifier capable of 2000 W rms continuous output power-up to 8000 W pulse. Power MOSFETS, on-chip temp sensors and thermal shutdown output make the PA30 extremely reliable. The PA30 is suited to a wide range of applications-sonar transducers, motor drives, power source simulation magnetic deflection and focusing - even welding!

In U.S. Circle No. 7 In Europe Circle No. 8

Intelligent supplies have power-out warning

Targeted at local-area-network (LAN) applications, Langarde uninterruptible power supplies (UPSs) are available in $400-, 600-, 900-$, and $1250-\mathrm{VA}$ models. The smart units feature power-outage warning, advance battery-condition monitoring, and orderly network shutdown. The units also incorporate batteries that the user can replace in 60 sec .

Langarde systems meet the UL1778 rating as a UPS and UL1449 as a transient-voltage surge-suppression device. Suppression circuitry tracks the ac sine wave and provides an effective clamping barrier of less than 50 V . The units operate as a line-interactive UPS with a response time that provides 15 minutes of sine-wave output power when connected to a 386 workstation. A boost feature eliminates battery discharge during brownouts.

During a power outage, the Langarde UPS uses the company's Nettrax software interface to automatically notify the LAN administrator of the outage. If no one shuts

Targeted at LAN applications, the Langarde UPS line features power-outage warning, advance battery-condition monitoring, and orderly network shutdown. Removable front panels let you locate the units out of the way while keeping the monitoring display and control functions within easy reach.
the network down, the UPS automatically saves files and shuts down any connected equipment. Langarde network power-management software is compatible with windows and supports all major LAN operating systems.

Power-monitoring features include a surge counter and powerdisturbance snapshot, which captures power disturbances. Also included is the Mousetrax remote sys-tem-a peripheral for control and monitoring of ac power and UPS functions. This system continuously monitors all critical functions-UPS load and temperature, battery condition, charge and uptime, outlet ground and polarity, and surge monitoring. These features can often eliminate the need for expensive power monitoring equipment.
Communication between the Langarde UPS and the workstation happens over the network media or by daisy-chaining the units through the serial port, which effectively creates a local UPS network. This serial network lets the network administrator monitor LAN components, such as file servers and workstations, and equipment that is off the LAN, such as a PBX.

While Langarde is primarily designed for LAN applications, it can also back up single computers. The removable remote front panel lets you place the UPS out of the way while still keeping the monitoring display and control switches within easy reach. $\$ 499.95$ for the $400-\mathrm{VA}$ version.-Tom Ormond
EFI Electronics Corp, 2415 S 2300 W, Salt Lake City, UT 84119. Phone (800) 877-1174. FAX (801) 977-0200.

Circle No. 734

1553 DATA BUS
SYNCHRO CONVERSION AD \& D/A CONVERSION MOTOR DRIVES

SOLID-STATE POWER CONTROLLERS

$\mathbf{N}_{\text {ow your moor control }}$ designs have just become simpler with DDC's complete family of Smart Power motor drive solutions. We offer an array of full mil, 3-phase and 2-phase motor drives designed to deliver from 5 to 30A of current to the motor with bus voltages from 15 to 270 Vdc .

Our 3-phase drives begin with the 250W PWR-82330, which is designed to operate from a 28 V MIL-STD-704 power bus and can deliver 5 amps to the load. This highefficiency MOSFET drive has a self-contained charge pump, complete gate drive including crossconduction lock out, and operates
from either 5 to 15 V input logic signals. Housed in a 50 -pin PCB mount package, requiring 3.6 square inches of board space, the PWR-82330 measures only 1.4 "W x $2.6^{\prime \prime} \mathrm{L} \times$ 0.25 "H.

Now you need to upgrade your design for high current, so choose our 4.2kW PWR-82331 drive. Designed to operate up to 140 V (after derating), the PWR-82331 delivers 30 amps to the load and requires only 6.3 square inches of space. The PWR-82331 has an internal dc-dc converter for continuous gate drive, a high-efficiency MOSFET drive stage with seperate flyback diodes and the same frontend logic as the PWR-82330.

Then you need to further upgrade your system to 270 V . No problem, use the 10.5 kW PWR-82333, 270V drive with an IGBT output stage. This drive is a pin-for-pin, form fit function, high voltage replacement of our PWR-82331. Both drives are available in a $2.1^{1 " W} \times 3.0^{\prime \prime} \mathrm{L} \times 0.39$ " H package and operate from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ case temperature.

Additionally we offer complementary 2-phase drives with both high and low voltage capability.

Give Bob Fryer a call at 516-5675600, ext. 7390 (toll free outside N.Y. 1-800-DDC-1772 ext. 7390) to receive more information and become a member of the family.

HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, NY 11716, (516) 567-5600, TLX: 310-685-2203, FAX: (516) 567-7358, (516) 563-5208, Toll Free Outside N.Y. 1-800-DDC-1772 WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372
WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
UNITED KINGDOM: 44 (635) 40158, FAX: 44 (635) 32264; IRELAND: 353 (21) 341065, FAX: 353 (21) 341568 FRANCE: 33 (1) $4333-5888$, FAX: 33 (1) 4334-9762; GERMANY: 49 (8191) 3105, FAX: 49 (8191) 47433 SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181; JAPAN: 81 (33) 814-7688, FAX: 81 (33) 814-7689
speed video op amp - the AD811 from Analog Devices.

What makes the AD811 such a star is that it delivers maximum performance in all the critical specs for video, while costing just \$2.85 (in 1000s).

In fact, the AD811 offers excellent specs in bandwidth (140 MHz , $\mathrm{G}=+1$), slew rate ($>2500 \mathrm{~V} / \mu \mathrm{s}$), differential gain (0.01%) and differential phase $\left(0.01^{\circ}\right)$, and output drive ($>100 \mathrm{~mA}$) - and this high per-
time ($\mathbf{5 0} \mathbf{n s}$ to 0.1% and 65 ns to 0.01%), low noise ($\mathbf{1 . 9} \mathbf{n V} / \sqrt{\mathrm{Hz}}$) and low distortion (-74 dB @ 10 MHz), the AD811 will make your video design look great. Also available in an 8 -pin soic.
formance is achieved whether driving one or two back-terminated 75Ω cables. All of which makes the AD811 not only HDTV compatible, but ideal for professional and consumer video cameras, routers, special effects generators, multi-media and general purpose high speed data acquisition.

The AD811 is one more example of how Analog Devices is the one company you can look to for affordable performance. For our free High Speed Op Amp Selection Guide, SPICE model diskette and an AD811 sample, call 1-800-262-5643. Or write to us at the address below.

EDN-PROCESSOR UPDATE

16-MHz RISC μ P strips down for action

RISC $\mu \mathrm{Ps}$ are making it big in the embedded-systems world, especially in printers, X-terminals, and communications gear. In these arenas the push is on for cheaper, minimal RISCs (reduced-instruc-tion-set computers). AMD's newest member of the 29 K family, the 29205 , aims to please. A strippeddown 29200 , the 29205 delivers four native MIPS sustained, on a 16 -bit data bus.
The 29200 was designed specifically for printer-type applications. It interfaces to video RAM, produces printer-control signals, and provides a range of peripheral interfaces. The 29205 trims away the overhead for low-cost, down-in-thedirt applications. The external memory bus is trimmed from 24 -bit address and 32 -bit data lines, to 22 bit address and 16 -bit data lines. Video-RAM support is dropped, as

AMD 29205 RISC embedded processor

- $16-\mathrm{MHz}, 32$-bit CPU
- 192 registers
- 117 instructions with mainly 2-cycle execution (two 16-bit accesses for instruction words)
- No full MPY/DIV instructions done in software
- 4 M native MIPS sustained 50% of 29200
- 4-stage, pipelined RISC
- Load/store multiple register instructions for speed
- External memory bus, Harvard architecture with separate 22-bit address and $8-/ 16$-bit data lines
- ROM (8-bit), DRAM (16-bit) controller with DRAM page-mode support
- 2-channel DMA controller
- 8-bit I/O port
- 2 external interrupts, also I/O pins programmable as external interrupts
- UART, bidirectional parallel-port video interface for imaging applications
- Interrupt controller, timer
- 2-port peripheral interface adapter
- In 100-pin PQFP, \$38.25 (1000)
well as burst-mode ROM accesses. ROM chip selects have been trimmed back, and the chip can use only 8 - and 16 -bit peripherals. These reductions decrease pin count from 168 to 100 pins.

The 29205 has one programmable 8 -bit I/O port; you can program the 8 bits to act as external interrupts for control applications. The chip also handles DMA transfers between on-chip (1 channel) or off-chip peripherals (1 channel) and dynamic RAM (DRAM) memory. DMA offloads prevent the CPU from obtaining and moving data to memory.

The 29 K family members were originally desktop RISC processors, but missed their market window. The chips were initially structured for Unix, so they have a supervisor and user mode, which is useful for real-time applications and interrupt handling. In addition, the CPUs contain 192 registers, many of which are available for application tasks. The large number of registers helps keep the top of the user stack on chip and provides fast, local storage for processing data.

The original chip also had a branch-target cache, which cached the target addresses of branches to speed up the next iteration of loops. To cut costs, this cache was left out of the 29200 and 29205μ Ps. Later 29K family chips added a 4 -kbyte on-chip cache.

One of the most respected features of the 29 K family is its simple memory interface, which lets the CPU run with standard, fast DRAM, rather than requiring an on-chip or supplemental cache memory. The 29200 , and now the 29205 , have simplified the 29 K memory interface further with an on-chip memory controller that eliminates memory glue logic. The 29205 uses as much as four banks of DRAM, and the ROM controller uses as much as four banks of ROM or static
memory with programmable-access characteristics. You can stretch memory-access times by asserting the chip's wait* pin.

The 29205 is code compatible with the 29 K family and has a range of development software and tools for the 29 K RISC CPU. For evaluating the 29205 , AMD supplies the SA29205 demonstration board. The 29205 includes a $16.7-\mathrm{MHz} 29205$, 512 kbytes of 16 -bit-wide DRAM, 1 Mbyte of one-time-programmable logic, 16 -bit-wide EPROM, an RS232 C serial interface, and an expansion connector. The board links to a PC host and can be controlled via a ROM monitor, MiniMon29K, in EPROM.-Ray Weiss

AMD, 5204 E Ben White Blvd, Austin, TX 78741. Phone (512) 3858542.

Circle No. 688

8-bit $\mu \mathrm{C}$ drives closed-caption TV

The clock is counting down: By mid-1993, all new TVs (13 in. or larger) must handle closed captions. Motorola's 8 -bit 68 HC 05 CC 1 will supply a complete TV microcontroller ($\mu \mathrm{C}$) for TV control, onscreen display (OSD), and closedcaption applications. It makes today's expensive decoder boxes obsolete.
The 68 HC 05 CC 1 is pin and function compatible with the 68 HC 05 T 2 , which many engineers now use for TV and display control. Using the 68 HC 05 CC 1 , engineers can upgrade to closed-caption processing with a minimum of hardware design. The chip replaces the older chip with only a few wiring modifications. It handles closed-caption processing with up to 34 characters/ line and can fill the full screen or present a smaller number of lines that are scrolled or popped up.
Providing closed-caption TV
services requires a controller to monitor the video output to the display. The controller detects line 21 of the TV display, which carries the TV-programmer's closed-caption instructions. These instructions are pulled off the transmitted line and used to direct the closed-caption controller in building and transmitting the captions. The 68 HC 05 CC 1 Data Slicer peripheral monitors the signal and pulls off the closedcaption directives, which are then stored in RAM for processing. The slicer (and OSD) trigger off of the horizontal and vertical sync signals: All timing is related to the signals.

A Data Slicer interrupt signals the CPU when it receives a new set of caption directives. Software then sets up the Output Screen Device to put characters at a given scan line. The chip compares the current screen line to the event line. When a match occurs, the

Motorola 68HC05CC1 closed-caption $\mu \mathrm{C}$

- $8-\mathrm{MHz}$ clock, $4-\mathrm{MHz}$ bus cycle
- Accumulator-based architecture with accumulator, index register, and stack pointer
- 16-bit program counter
- 16-kbyte ROM
- 544-byte RAM
- 32-kbyte memory address space for RAM, ROM, vectors, I/O
- 1664×9-bit character ROM
- 8 -bit pulse accumulator
- Watchdog-timer option
- 8-channel, 6-bit PWM (DAC)
- 1-channel restive ladder A / D converter
- Serial I/O port with $I^{2} \mathrm{C}$ master capability
- Video display outputs (RGB and a signal for blanking video) closedcaption video generator
- Clocks video data in to 28 MHz generated by an internal PLL
- 15 I/O pins
- 45-pin shrink DIP, 40-pin DIP
- Less than $\$ 7(50,000)$
characters are scanned and output to the RGB signals. A blanking signal, FBKG, blanks the incoming video, eliminating interference with the character pixel stream.
The closed-caption display characters are defined by the OSD character ROM. Users can program it for special character sets. The ROM defines 128 display characters.
Each character is 9 bits wide and up to 13 pixels high.
The chip is built on a simple accu-mulator-based architecture with a single index register, the 68 HC 05 , which serves as a base for more than 130 variations, many of them application-specific CPUs. The 68 HC 05 is also popular as a low-end 8 -bit $\mu \mathrm{C}$ for replacing control logic and tackling simple control problems.-Ray Weiss

Motorola Inc, 6501 William Cannon Dr W, Austin, TX 78735. Phone (512) 891-2000. Circle No. 689

HOW DO YOU
 BECOME
 THE POWER BEHIND
 A WORLD SUPERPOWER?

BY INFILTRATING ITS COMMUNICATION SYSTEMS.

The superpower in cellular radio is the United States. The world leader in RF transistors is Philips.

Together they're creating a revolution in cellular communications.
$A T \& T$, as one of the key players in the industry, relies on Philips' RF power transmitting transistors
for its rapidly growing network of base stations. At the other end of the scale, Philips' RF wideband transistors are working undercover in the top-rated cellular phone handsets.

Philips' ability to meet precise specifications, guarantee quality and deliver on time, was key to

Philips Components Discrete Products Division, 2001 W Blue Heron Blvd, Riviera Beach, FL 33404 USA. TeI: 1-800 4473762.

Philips Semiconductors

this success. But that's not the end of the story.
Our latest RF wideband transistors feature 5 and
4 micron technology, ready for the next generation of equipment.

And our user-friendly Data Disks are further proof of Philips' commitment to communication. They give
information on every one of our 4,200 discrete semiconductors - including many that are ideal for phone systems.

So if you want to make the most of the growing telecoms revolution, your course of action is clear.

Get in touch with Philips.

PHILIPS

Telecom relays from the winning team in telecommunications. Because you know the score.

Scoring points is never a coincidence. Neither in sports nor in telecommunications.

We took a three-way approach to make our MT relay family the industry's top contender. After all, we've played the game long enough to know what counts.

First, in the development phase, we made sure that our products thoroughly address current and future requirements. Granted, we have an edge on the competition: we happen to be the largest user of telecom relays.

Second, our specifications in terms of materials and fabrication are probably unmatched. They're so strict that we had to design and build our own production facilities. Your advantage: greater precision.

And third, our MT4 relay is remarkably compact. It takes up less space without sacrificing reliability
or function. That means greater packaging densities and lower cost!

The bottom line: MT2 relays and MT4 relays score top points. Mail the coupon below to join the winners.

We're interested in scoring big points. Please send us detailed literature on the MT relay family.

Name \qquad
Job title \qquad
Company \qquad
Address
Telephone \qquad Telefax

Alcatel STR AG, CH-8055 Zurich, Friesenbergstr. 75
Telephone +41-1-465 21 52, Telefax +41-1-465 2160

How do you get 1600×1280 resolution in an X-terminal design right away?

Use TI's TLC34074 Video Interface.

It's the first $200-\mathrm{MHz}$ video interface optimized for X terminals, enabling 1600×1280 resolution at a $72-\mathrm{Hz}$ refresh rate. And it's in distributor stocks now.

The TLC34074 from Texas Instruments integrates a complete grey-scale graphics system back-end onto a single chip, eliminating up to 30 components.

Best yet, it is pin compatible with Tl's full-featured TLC34076 palette that supports monochrome to 16 - and 24 -bit-per-pixel true color. Which allows you to make system cost/performance trade-offs while maintaining a common architecture.

More advantages

- Both devices are compatible with

Multiple Speed/Price Options							
TLC34074 Designed specifically for B\&W/grey-scale applications				TLC34076			
				True color for workstations	X termina	s, high-e	PCs an
	Refresh Rate	${ }_{\text {Price }}^{\text {(1,000s) }}$			Refresh Rate	Price	
1600×1280	@ 72 Hz	\$34	200 MHz	1280×1024	@ 72 Hz	\$45	135 MHz
- 16800×1280	@ ${ }^{60 \mathrm{~Hz}}$	${ }_{12}^{22}$	${ }_{135}{ }^{\text {MHE }}$	1280×1024 1024×768	@ $\mathrm{C}^{60 \mathrm{~Hz}}$	30 18	110 MHz 85 MHz

virtually any video controller architecture: CISC and RISC microcontrollers, including TI's TMS340 graphics coproces-
sors, as well as hard-wired controllers.

- Handles Big- or Little-Endian formats with no hardware modifications.
- Direct interface to VRAM and controller.

For more information

About Tl's '34074/76 mail the return card. For faster response call (214) 995-6611, ext. 3429, your local sales office or an authorized TI distributor.

Design methodology, performance, and software tools should all influence you as you seek the right highdensity PLD. But first you have to know the foundations of complex PLD and FPGA architectures.

Anne Watson Swager, Technical Editor

Complex PLDs and FPGAs are proliferating, and so are the software tools necessary to work with them. In fact, the task of choosing from such a vast array of high-density programmable logic devices (PLDs) is enough to overwhelm unsuspecting newcomers. However, an overview of the hardware architectures, design methodologies, and other important criteria can help you on your way to choosing the right device for your design.
Not only is there currently a wide assortment of architectures to choose from-both complex PLDs and field-programmable gate arrays (FPGAs)-but the list of such architectures keeps growing. Within the last year, at least three start-ups-Concurrent Logic, Crosspoint Solutions, and Quicklogic-started shipping their FPGAs. AT\&T Microelectronics, which currently second-sources a number of FPGA market leader Xilinx's devices, announced a proprietary architecture that will be in full production by the beginning of 1993. Cypress Semiconductor recently announced an agreement with Quicklogic that will potentially lead to wider availability and expanded capability of the latter company's architecture. Motorola (Phoenix, AZ) has announced its intention to enter the FPGA market and, at the time of this article's writing, is close to making its specific plans public. And even Harris Semiconductor (Melbourne, FL) is getting into the FPGA act through an agreement with Xilinx to produce a radia-tion-hardened version of one of their FPGAs.
Just as there are multiple architectures, so there are myriad software tools, from both IC vendors and thirdparty vendors, that embody various design-entry approaches, from schematic capture, to Boolean entry, to waveform entry, to hardware-description languages.

CAE vendors have been extremely busy introducing all manner of software tools such as retargeters, which take a design intended for one architecture and transform it for another, and device fitters, which take compiled designs and map them to a specific part.

Taking it all in

Absorbing all of the product and tool information necessary to make an informed choice (Fig 1) could possibly require more time than an entire design project. Becoming familiar with these devices' architectures is a critical first step. When you start learning about these devices, it is simplest to divide highdensity programmable logic into two main camps: com-

Fig 1-FPGAs and complex PLDs don't exist in a vacuum. Learning about the devices themselves is an important first step, but so is becoming familiar with their dependence on design software, programming hardware, and in some cases, ASIC conversion processes. (Diagram courtesy Actel Corp)

PIDs and IPGAs

Choosing complex PLDs and FPGAs

plex PLDs and FPGAs. Both complex PLDs and FPGAs help you achieve the same goal, that is, to absorb large amounts of standard logic into one device. Using one or the other-or both-for your design requires understanding the strengths of each.

Complex PLDs are essentially large collections of PAL-like structures on one chip. In other words, a complex PLD is a large collection of sum-of-products arrays ($\mathbf{F i g} 2 \mathrm{a}$). The connections between logic and I/O cells are typically fixed, and the devices feature a centralized programmable interconnect. This setup is sometimes referred to as a segmented-array architecture. These devices' relatively constrained routing provides them with one of their main advantages: predictable timing. With some exceptions in terms of architectural features, all complex PLDs share the same basic logic structure.
This last statement absolutely doesn't apply to FPGAs. Grouping diverse devices under the term fieldprogrammable gate array makes FPGAs sound as if they all exhibit gate-array-like characteristics. In fact, they are distinguishable from complex PLDs simply because they comprise arrays of logic blocks connected by rows and columns of distributed interconnect lines (Fig 2b), which is sometimes referred to as a chan-neled-array architecture. Any more specific resemblance to each other ends there. Only one FPGA manufacturer's architecture closely resembles a gate array.
Each FPGA vendor's logic blocks and each product
family from one vendor contains a different collection of logic and different levels of logic functionality. FPGAs have no predetermined coupling between logic and I/O blocks, although some devices do have a few dedicated inputs such as clock-drive inputs. These devices' unrestricted routing structure provides them with one main advantage: flexibility.

Reprogrammable vs one-time-programmable parts

Complex PLDs and FPGAs use different fabrication and interconnect technology. Most complex PLDs are CMOS-EPROM based or EEPROM based, and the PROM memory bit switches a transistor that controls the configuration pattern of the logic. Thus, no hardwired physical link exists, and most off-the-shelf complex PLDs are reprogrammable. EPROM versions require UV erasure prior to reprogramming, but EEPROM devices do not, although both have to be removed from the circuit for programming. Lattice Semiconductor's in-circuit programmable device requires neither UV erasure nor removal from the circuit. On-chip charge pumps produce the required programming voltage from the 5 V supply. This feature is particularly useful for hard-to-remove surface-mount packages.

Although complex PLDs start out reprogrammable in some form, once a design is established, many companies offer conversions to one-time-programmable versions. Altera offers a third step called MPLD, or

Fig 2-Complex PLDs (a) are large collections of sum-of-products arrays, whereas FPGAs (b) feature an array of identical logic cells connected by rows and columns of interconnect. Not all FPGAs are symmetrical like the array in (b), and internal logic cells and routing structures vary from device to device.

EDN-SPECIAL REPORT

"mask-programmable logic device." These one-timeand mask-programmable versions offer significant price savings.
FPGAs are available in both reprogrammable and one-time-programmable technologies, static RAM and antifuse, respectively. SRAM-based FPGAs, pioneered by Xilinx, and now manufactured by Algotronix, AT\&T Microelectronics, and Concurrent Logic, use a memory bit to program connections open or closed on power up. Thus, SRAM-based FPGAs are reprogrammable and volatile. Like some complex PLD vendors, Xilinx also offers a conversion to a one-time programmable device, which the company calls "hardwire." In antifuse FPGAs, pioneered by Actel, and now manufactured by Crosspoint Solutions, Quicklogic, and Texas Instruments (second source to Actel), the high programming voltage establishes a hard-wired physical link. Thus, antifuse FPGAs are one-time programmable.
Basic architectural and technology differences are just two aspects that distinguish complex PLDs from FPGAs. One of the biggest differences between com-
plex PLDs and FPGAs is the design methodology necessary to implement logic functions in each device. Depending on your design perspective, you may have to make some adjustments. If you have experience designing with 7400 series devices, the jump to FPGAs won't be difficult. In fact, Doug Conner, in his hands-on projects (Refs 1 and 2), found it to be quite easy. And if you're currently a PAL designer, designing with complex PLDs won't take much of a change in your way of designing and implementing standard logic functions.
However, the jump from PLD design to FPGA design will require some adjustments. FPGAs are very flexible devices, and designing with them involves making tradeoffs. Whereas a complex PLD data sheet can closely predict the final speed of the design, the timing of an FPGA is not at all deterministic. How much of the FPGA a logic design utilizes influences the final speed of that logic. For example, a recent EDN Design Idea (Ref 3) shows how you can trade off modules for speed when using FPGAs. This Design Idea shows that using the fewest modules requires the

Benchmarking group grapples with performance comparisons

All vendors of complex PLDs and FPGAs have until now used their own unique ways of quoting system performance for particular designs implemented in their devices. Each of these performance predictions is a type of one-company bench-mark-each company uses a different logic implementation to arrive at their performance numbers.
This situation is changing. The Prep Corp (San Jose, CA, (408) 356-2169) -PREP stands for programmable electronics perform-ance-consists of a consortium of IC and software vendors trying to establish a viable benchmarking method. This method should help users make apples-to-apples comparisons of the speed and logical capacities of larger programmable logic devices, namely complex PLDs and FPGAs.
Prep has two essential goals: to help introduce the architecture of different PLDs to users so that they may better understand the factors
involved in selecting among them, and to allow experienced users to more quickly evaluate different architectures with respect to a specific design.

The suite of benchmarks includes a set of circuits implemented according to a prescribed methodology for measuring and reporting the capacity and timing measurements. Vendors will measure device capacity by using a "repeat and fill" scheme, whereby they will repeat the particular benchmark circuit as many times as possible, then fill the leftover logic space with filler circuits. Vendors will measure the maximum operating speed of a benchmark circuit by reporting the worst case delay of the circuit's slowest path.

The repeat-and-fill methodology is one of many that the group could have chosen for the benchmarking process. Although the vendors will be at least using the same implementation and measuring procedures
to compare the devices, keep in mind that few real designs contain repeated units of the same logic circuits. Thus, it's not wise to use these benchmarks to predict the over all speed of a design that contains a variety of circuits. Clearly, the ultimate benchmark is your circuit implemented in each architecture.

The first suite of benchmarks will include the following circuits: data path, timer/counter, state machine, large state machine, arithmetic circuit, 16 -bit accumulator, 16 -bit counter, and memory mapper. The small filler circuit is a combination of commonly found logic elements such as 4 -bit counters, $4: 1$ multiplexers, 4:2 encoders, and 4-bit accumulators.

By the time of this article's printing, vendors should be very close to-if not done with-final verification of the benchmarks. Then, final Prep-approved data for each vendor's circuits should be published by the end of the year.

Choosing complex PLDs and FPGAs

largest number of logic levels, thus incurring the worstcase delay. The idea presents alternative designs that use fewer logic levels and decrease propagation delays at the expense of the module count.

Also, the speed of an FPGA depends on the interconnections between logic blocks and, thus, on the layout of the device. Each design, even each iteration of the same design, can use very different routing paths, the length and resulting impedance of which will heavily impact the speed of a final design. A smaller design can have a more efficient layout leading to more efficient routing and faster performance. A denser design places more constraints on layout and routing, leading to possibly slower performance.

The worst-case scenario that can occur with either complex PLDs or FPGAs is when so much logic space in the IC is occupied that there aren't enough routing resources to allow the necessary interconnections. This problem arises most often when I/O pins are fixed early in the design process.

You can use an FPGA's density-vs-speed flexibility to your advantage, but don't expect to predict how fast or slow an FPGA design will run at the outset. Also, routing efficiency-and therefore the IC's final performance-depends not only on how much of the FPGA a design utilizes, but also on the quality of the place-and-route software. Determining that final performance requires post-layout simulation. Having to use and rely so heavily on these software tools is quite different from working with complex PLDs.

Because there isn't one standard FPGA architecture, studying and understanding each architecture is important for designing optimum circuits with that architecture. In some cases, you'll need to learn more efficient ways of implementing certain logic functions such as state machines. Because few internal connections exist
within an FPGA, implementing a design takes two steps: partitioning the logic within the logic-cell structure of the FPGA and connecting the various blocks together using the device's routing resources.

Predictable vs unpredictable performance

Vendors of complex PLDs and FPGAs claim their devices can run at high speeds. However, their numbers are very difficult to judge and compare. One thing that you can bank on however, is that complex PLDs are usually a better choice for designs that have very tight speed requirements, simply because of their deterministic timing. This is not to say that the complex PLD will be the fastest implementation of a design, but simply that the final speed will be fairly predictable at the beginning of the design cycle. Creative FPGA design can result in very fast logic, but it can also require time-consuming attention to placement and routing details of internal logic blocks.

When it comes to implementing circuit applications, complex PLDs and FPGAs each have their strong points. However, each new architecture that debuts modifies those points somewhat. The parts themselves are changing to address some of the deficiencies of previous architectures (as the gray area in Fig 3 indicates). For example, Xilinx has improved the FPGA decoding situation in its XC4000 family by providing dedicated wide-decoding logic, which is directly coupled to input pins. Also, Quicklogic claims that its architecture is particularly suited to high-speed state machines. Complex-PLD vendors are adding more registers and I/O to their larger devices.

Still, for some applications, the choice between a complex PLD and an FPGA is fairly clear cut (as on the axes in Fig 3). Generally, complex PLDs excel at implementing large amounts of combinatorial logic, and

Fig 3-Complex PLDs excel at combinatorial functions. FPGAs excel at register-intensive functions. However, there is some gray area between the two. The parts themselves are improving, and techniques exist to implement logic functions in both device types. (Courtesy Advanced Micro Devices)

EDN-SPECIAL REPORT

FPGAs excel at designs that require large numbers of registers. For example, implementing a large state machine or an extremely wide input decoder in an FPGA wouldn't make much sense because complex PLDs have a wide sum-of-products structure and are perfectly suited to that purpose. Likewise, implementing a design that requires many flip-flops, a register file or common-access memory for example, in a complex PLD wouldn't make much sense because FPGAs contain many more flip-flops than complex PLDs do.

These tradeoffs may be clear cut for a single logic circuit. However, if a design involves a variety of logic structures-if the state machine is only one quarter of the design, for example-the choice between complex PLDs and FPGAs isn't black and white. During the initial design-partitioning phase, you may discover that part of the design works well in a complex PLD and part in an FPGA.

If you must fit a variety of logic types into one device, you can implement the same logic function in both devices as long as you use the right structure for each. Techniques do exist to efficiently implement traditional register-intensive and combinatorial-intensive functions in both complex PLDs and FPGAs.

Techniques fit designs into FPGAs

State machines (Fig 4a) and binary counters are two examples that require different implementations to get optimum performance from the complex PLDs and FPGAs. Because of their wide decoding ability, complex PLDs are well suited for maximally encoded state machines, that is, state machines in which a minimal set of variables defines each state (Fig 4b). A 4-bit counter is one example of such a state machine-4 bits define a total of 16 states.

However, implementing a maximally encoded state machine in an FPGA is not a good use of the FPGA's narrow decoding, register-rich architecture. A better approach is to use the state-per-bit or one-hot method (Fig 4c), first proposed by FPGA consulting firm Highgate Design (Saratoga, CA). In this method, the state of a single, or "hot," register determines the current state. A state machine with 16 states thus requires 16 flip-flops. The input and a small amount of decode logic determine the next state. This approach usually requires fewer logic levels between clock edges than binary encoding and ultimately produces faster FPGA operation. One penalty of this approach is apparent if two registers become active at one time. The design may need extra logic to decode and then prevent such illegal states.

Likewise, implementing a classic binary counter in a complex PLD makes sense. Conventional binary counters use wide fan-in logic to generate high-end
carry signals. An FPGA's limited fan-in makes this particular implementation cumbersome. A much simpler structure, the linear-feedback-shift-register (LFSR) counter (Fig 5), sacrifices the binary count sequence but achieves high speed with very simple logic using an FPGA. The counting sequence is the

Fig 4-This very simple state machine (a) reveals the problem of implementing a maximally encoded state machine (b) in an FPGA. The decoding logic required is a waste of the FPGA's architecture. As the state machine grows in complexity, many such decoding blocks would be necessary. However, using the one-hot method (c) in which one and only one register's output (the "hot" one) determines the current state, does away with the decoding blocks entirely.

Choosing complex PLDs and FPGAs

major difference between a binary counter and an LFSR counter. The counting sequence of an LFSR counter is not binary and is essentially pseudorandom. Whereas a binary counter can count to 2^{N} states, an LFSR counter can count to $2^{\mathrm{N}}-1$ states.

Getting down to the specifications

Although the architectural features and interconnect technologies of these devices do vary somewhat, selecting a particular complex PLD is fairly straightforward. Manufacturers of complex PLDs include Advanced Micro Devices, Altera, Atmel, Cypress Semiconductor (second source to Altera), Lattice Semiconductor, and Philips-Signetics. Using a data sheet, you can determine most of the final design's performance. However, some data sheets still contain misleading numbers. For example, a propagation-delay number may only apply when the part is operating in a particular high-speed mode that diminishes the device's flexibility.

As predictable in terms of timing as complex PLDs are, their density is difficult to quantify, particularly using numbers of gates. Vendors of both complex PLDs and FPGAs quote the number of gates in numerous ways including total gates, gate-array gates, equivalent gates, usable gates, and NAND-gate equivalents. The total number of gates doesn't tell you the number of gates you can actually use. Once you've implemented your design on any particular chip, the utilization of those gates drops by some percentage. If you're evaluating a device advertised as having 8000 gates, the number that you can really use can be as low as 4000 . Because of these misleading gate numbers, many manufacturers started quoting numbers in terms of usable gates. Unfortunately, even the term usable gates doesn't mean the same thing for each manufacturer.

So, gate count is a fairly useless specification except when comparing specific devices from the same manufacturer (a new benchmarking group avoids even mentioning gate count (see box, "Benchmarking group grapples with performance comparisons.")). Thus, instead of concentrating on gates, take a look at a device's architecture and what you need to accomplish. Two rough measures of density, but only a starting point, are the number of registers and I/O pins. Try to take your design and map it into a part and estimate how well the design will fit.

One approach is to estimate what your design would take in standard logic. Then, look those devices up in the vendor's library and note the logic-block count for implementing that function. Adding up all the logic blocks necessary will give you a rough estimate that will allow you to decide between a 2000 -gate device and a 4000 -gate device.

The first thing to recognize when choosing an FPGA is that each vendor's devices exhibit fundamental architectural differences. These differences manifest themselves in both the individual logic blocks and the routing structure of the devices. Designers of the first FPGAs focused most of their attention on the structure of the logic blocks themselves, only to discover that the lack or abundance of routing channels can make or break the final design. Thus, the latest FPGA designs, from market leaders and recent start-ups, pay close attention to both.
The structure of FPGA logic cells ranges from extremely fine granularity to coarse granularity (Fig 6). Granularity is the amount of logic contained in one logic block. A fine-grained architecture, such as Fig $6 \mathbf{a}$, is one that has very simple, basic blocks, even down to the transistor level. A coarsely grained architecture, such as (Fig 6b), has logic blocks of high complexity containing a number of digital logic functions.
Other than having to sort through architectural details, the most frustrating part of choosing one FPGA

Fig 5-Implementing conventional binary counters in FPGAs isn't optimum because these counters use wide fan-in logic to generate high-end carry signals. A linear-feedback-shift-register counter, such as this 3 -bit, modulo-five counter, is a more efficient implementation for an FPGA. Note from the state table that the counter skips some states and the counting sequence is a nonbinary, pseudorandom pattern. (Courtesy Xilinx application notes)

EDN-SPECIAL REPORT

over another is that so very little data about the final density and speed is predictable from the outset. Whereas propagation delays of complex PLDs give you a good idea of your final design's performance, delays of the individual blocks within an FPGA are meaningless. The overall speed of an FPGA is determined both by the details of the internal blocks and the interconnect delays of the final utilized chip.
Every FPGA manufacturer's data sheets state things a little differently and with different underlying assumptions. Although the toggle rates of individual flip-flops inside each logic block tell you the speed possible from that block, there is no way to extrapolate system performance from that number due to the influence of the final routing paths.
Fortunately, more companies are now quoting attainable system-clock rates, but these numbers can also
be highly misleading. Because of the speed/density tradeoff inherent to FPGAs, the speed the company was able to achieve for its example depends on the placement, routing, and implementation of the logic. You may see an advertisement for an $80-\mathrm{MHz} 16$-bit counter, but it's very possible that to achieve that performance, the FPGA requires expert hand routing and contains no logic other than that lonely 16 -bit counter. That same counter combined with other logic may run at only 25 MHz .
Propagation delay is another potentially misleading specification. Because of the structure of a complex PLD, propagation delay is a quite meaningful measure of ultimate system speed. However, because of the structure of an FPGA, you can't use one logic cell's propagation delay to predict the timing of the overall design.

Fortunately, help may be on the way in the form of

Fig 6-An FPGA's granularity can range from fine to coarse, respectively referring to the simplicity or complexity of the internal logic cell's structure. Crosspoint Solutions' devices and Xilinx's 4000 series represent the two ends of the granularity spectrum. Of all the available FPGAs, Crosspoint's devices, which connect transistor-pair and RAM-logic tiles to form macrocells, most closely resemble gate arrays.

Choosing complex PLDs and FPGAs

benchmarks that have a common methodology and implementation. Both complex-PLD and FPGA vendors are cooperating to produce useful benchmarks that showcase the performance of each architecture under similar implementation conditions (see box, "Benchmarking group grapples with performance comparisons").

Consider all criteria

Architectural differences, interconnect technologies, and design methodologies inherent in complex PLDs and FPGAs are important factors governing the choice of these devices. Many other criteria will ultimately determine the wisdom of the final choice. These criteria include (but aren't limited to) the following:

- Cost of devices and design tools
- Quality of design tools
- Number of I/O pins
- Number of registers
- Contents of vendor's macro library
- Unique device features
- Packaging
- Power consumption
- Market goals.

Some of these criteria are easy to measure, such as the number of I/O pins and registers. Others on this list deserve more comment. First, the total cost of designing with FPGAs and complex PLDs involves both the cost of the ICs themselves and the cost of design tools. More important than the actual cost per individual IC is the actual cost per function. A more expensive IC may implement a design more efficiently and provide higher performance. Currently, (prices in this business can change rapidly) complex PLDs range in price from $\$ 15$ (Altera's EPM7032) to $\$ 400$ (Altera's EPM7256). FPGAs range in price from $\$ 12$ (TI's second source to Actel's ACT 1 family) to $\$ 922$ (Xilinx's XC4010) for the very high density devices. (Prices are for 100 -piece quantities.)

The cost of vendors' proprietary tools is a roadblock to many users, primarily those with investments in other vendors' tools or third-party tools. Vendors' software packages can cost as much as $\$ 10,000$. In some cases, you don't need a whole suite of tools from any given vendor, but perhaps just one that couples to third-party software. However, you should also be aware that this coupling isn't always optimum. For example, a design captured using third-party software may not run successfully on the vendor's compiler. You may get only a cryptic error message that says something's not right. So, though buying proprietary tools may seem excessive, you may run into some time lags
when using coupled software. On the flip side, thirdparty software can sometimes be better than proprietary tools at performing certain tasks.

Ultimately, judging the efficiency of the software tools isn't easy. One question that may help you judge is to ask vendors if hand routing will be necessary to produce an optimal design.
The completeness of a vendor's macro library-a library of expert-crafted logic functions-can also be a selling point for a particular complex PLD or FPGA. Every vendor supports some type of library. However, not all libraries contain exact equivalents to 7400 series standard logic but, instead, contain vendor-specific functions. Such a library makes retargeting and converting to a gate-array difficult.

Special features of FPGAs may influence your choice of devices. Some of the newest FPGAs include such features as JTAG boundary scan, on-chip RAM, and

Many factors will determine whether a complex PLD or FPGA better suits a particular design. This decision tree includes some basic criteria to consider when choosing between the two types. This tree makes the decision look straighfforward, but most complex designs will involve compromises between the two devices' strong points.

SituationUnder Control.

The Military 68332 is the first member of the Motorola Military 68300 Family of modular embedded controllers featuring fully static, high-speed complementary metal-oxide semiconductor (CMOS) technology. This monolithic 32 -bit integrated microcontroller combines high-performance data manipulation capabilities with powerful peripheral subsystems.

In short, it's fast, flexible, efficient and powerful.

Ada Supported

Motorola understands the unique demands placed upon Military systems and works closely with software vendors to ensure that its products are fully supported.

The Military 68332 is screened in accordance with MIL-STD-883. Electrical samples are available NOW! The 883 version will be available in September '92. Introducing Additional Configurations With the introduction of additional configurations powered by the CPU32, the Motorola Military Modular MCU family allows you to leverage your development
resources further. The 68340 integrates the CPU32 with a 2-Channel DMA, 2-Channel Serial I/O, and two Multiple-Mode 16-Bit Timers. The 68F333 integrates the same CPU and Timer as the 68332 with a massive array of 64 bytes of Flash EEPROM and an 8-Channel 10-Bit Analog to Digital Converter! Samples are planned for availability in third quarter' 92.

For more information on the 68332, order Brochure \#BR1406/D by calling tollfree 1-800-441-2447. Or complete and return the coupon below to Motorola, P.O. Box 20912, Phoenix, AZ 85036 .

To: Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, AZ 85036Please send meMotorola's Military 68332 Brochure \#BR1406/D				
SITUATION	Please send me Motorola's Military 68332 Brochure \#BR1406/D 559EDN091792			
सF:CEty	Title			
Company				
Address				
AdaSupported	City	State	Zip	
	Call Me(

Choosing complex PLDs and FPGAs

fast carry logic. If package style is important, be aware that, for example, not all complex PLDs and FPGAs come in surface-mount packages.

Delving into small details too quickly can obscure some other information that you'll have to digest to choose the right complex PLD or FPGA. Backing away from the design details and considering overall market goals will also help narrow down the decision.

Most users may start out thinking that their product will sell millions and they'll end up converting to a gate array (Ref 4). However, according to the vendors and users interviewed for this article, it seems that many FPGAs or complex PLDs find permanent homes in the end product. Still, your estimated production volume will have great bearing on the device you choose, whether it's because of the specific device cost of the FPGA or because you're looking for an architecture amenable to gate-array conversion.

Another product development issue to consider is prototyping time. If it's necessary to turn out prototypes quickly, the design-compiling time and deviceprogramming time may be huge factors in your product's success. And even though the programming time may not seem critical during development, it may turn out to be crucial to the manufacturing department. Depending on the design platform, PLDs can take minutes to compile, whereas very dense FPGAs can take hours.

Considering all facets of complex PLDs and FPGAs-from the design methodology to market goals-is indeed daunting to the new user, but these
devices are too useful to ignore. Although you won't find any easy answers when it comes to choosing highdensity programmable logic, the rewards of density, flexibility, and user configurability are worth the effort.
[D]

References

1. Conner, Doug, "Hands-on FPGA Project-taking the first steps," $E D N$, April 9, 1992, pg 98.
2. Conner, Doug, "Hands-on FPGA Project-Migrating to FPGAs: any designer can do it," EDN, April 23, 1992, pg 120.
3. Miller, Warren, "FPGAs trade off modules for speed," EDN, June 18, 1992, pg 136.
4. Small, Charles H, "FPGA conversion," EDN, June 4, 1992, pg 107.
5. Conner, Doug, "High-density PLDs," EDN, January 2, 1992, pg 76.

You can reach Technical Editor Anne Watson Swager at (215) 645-0544.

Article Interest Quotient (Circle One)
High 470 Medium 471 Low 472

Manufacturers of complex PLDs and FPGAs

Abstract

For more information on complex PLDs and FPGAs such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Actel Corp

955 E Arques Ave
Sunnyvale, CA 94086
(800) 228-3532

FAX (408) 739-1540
Circle No. 650
Advanced Micro Devices
Box 3453
Sunnyvale, CA 94088
(408) 987-3119

FAX (408) 987-3102
Om Agrawal
Circle No. 651
Algotronix Ltd
King's Buildings-TTC
Mayfield Rd
Edinburgh EH9 3J
Scotland
(31) 668-1550

FAX (31) 662-4678
Circle No. 652

Altera Corp

2610 Orchard Pkwy San Jose, CA 95134 (800) 800-7256 FAX (408) 435-1394
Circle No. 653
Atmel Corp 2125 O'Nel Dr San Jose, CA 95131 (408) 441-0311 FAX (408) 436-4200
Circle No. 654
AT\&T Microelectronics 555 Union Blvd Allentown, PA 18103 (215) 439-5237 FAX (215) 778-4085 Tom Hickey Circle No. 655

Concurrent Logic Inc
1290 Oakmead pkwy Sunnyvale, CA 94086 (408) 522-8703

FAX (408) 732-2765
Circle No. 656

Crosspoint

Solutions Inc
5000 Old Ironsides Dr Santa Clara, CA 95054 (408) 988-1584

FAX (408) 980-9594
Circle No. 657
Cypress Semiconductor
3901 N First St
San Jose, CA 95134
(408) 943-2600

Circle No. 658

Lattice Semiconductor

Corp

5555 NE Moore Ct
Hillsboro, OR 97124
(800) 327-8425

FAX (503) 681-3037
Circle No. 659
Philips-Signetics
Box 3409
Sunnyvale, CA 94088
(408) 991-2339

Kathryn Douglas
Circle No. 660
Quicklogic Corp
2933 Bunker Hill Lane Santa Clara, CA 95054
(408) 987-2000

FAX (408) 987-2012
Circle No. 661

Texas Instruments

Semiconductor
Group (SC-91084)
Box 809066
Dallas, TX 75380
US and Canada,
(800) 336-5236, ext 700 ;
outside US, (214) 995-6611
ext 700
Circle No. 662

Xilinx Inc

2100 Logic Dr
San Jose, CA 95124
(408) 559-7778

FAX (408) 559-7114
Circle No. 663

Terminate Your SCSI Problems

Unitrode's new BUS BOSS ${ }^{\text {m }}$ - the UC5601 active terminator - is the one chip solution you've been waiting for. Let the UC5601 handle your toughest SCSI challenges. It's not just a regulator.

Unitrode's UC5601 assures a clean transmission

For more information on the UC5601 and your nearest Unitrode Representative, call, FAX or write us today: Unitrode Integrated Circuits, 7 Continental Blvd., Merrimack, NH 03054, FAX (603) 424-3460.

Connectivity Solution

The UC5601. No other active terminator in the industry offers this level of capability, with these on-board features:

- 18 Thin film termination resistors
- Factory trimmed voltage regulator
- Low level clamping
- Logic command to disconnect all terminating resistors
- Low supply current in disconnect mode
- 28-Pin SOIC / PLCC
- Meets SCSI standards

One Chip Solution

XTR103 and XTR104 are monolithic, two-wire transmitters providing, low cost signal conditioning solutions in $4-20 \mathrm{~mA}$ current loops. XTR103-for RTDs-includes a precision instrumentation amplifier, excitation current sources, and current output circuitry. Compensation circuitry corrects the inherent nonlinearity of RTD temperature sensors. XTR104-for bridge sensorsadds 5 V voltage for strain gages and other sensors. It's versatile linearization circuitry can actually correct sensor nonlinearity. They're your best choice for precision 4-20mA transmitter applications.

9 V
 Operation

XTR103 and XTR104 perform with loop voltages down to 9V-ideal for personal computerbased systems. Compared to discrete designs they reduce complexity, improve performance and lower costs. And, they're specified over the extended $-40 /+85^{\circ} \mathrm{C}$ industrial temperature range. Available in 16-pin plastic DIP, 16-lead SOIC, and dice.

Key

Specifications:

- 9 V to 40 V supply range
- $\leq 1 \%$ total error $\left(-40 /+85^{\circ} \mathrm{C}\right)$
- 110 dB PSRR (min)
- Excitation outputs: 0.8 mA (two)XTR103 5VXTR104
- From $\$ 6.45$
(U.S. OEM prices, in 1000s.)

Burr-Brown Corp.

P.O. Box 11400

Tucson, Az 85734

FREE
Evaluation Kit
For your evaluation kit including samples, applications bulletins, data sheets, and instrumentation amplifier guide, just call 1-800-548-6132.
Or contact your local sales representative for more information.

A True 4-Channel Analog Scope:

The Fluke PM 3094 is the only $\mathbf{2 0 0} \mathbf{~ M H z}$ analog oscilloscope offering full 4-channel performance for under $\$ 3,500$. Only Fluke's PM 3094 gives you true 4-channel input, allowing four individual amplitude settings, with a full range from 2 mV to 5 V on each channel. Plus dual trace differential measurements. And verniers are always calibrated. All for about half the price of other 4-channel scopes.

And about the same as " $2+2$ " scopes that don't offer nearly the performance or flexibility. Dedicated switches for all major functions make the PM 3094 easier and more intuitive to use. Unlike other scopes with fewer buttons that force you to search through multiple layers of menus. All operations and settings are microcontrolled. And the Autoset function instantly displays any input signal, without manual
set-ups. Get the one scope that's at the four-front of price, reliability and accuracy: The PM 3094 from Fluke.

For a Scope Selection Guide, literature, or a demonstration, call 1-800-44-FLUKE.

John Fluke Mfg. Co., Inc., P.O. Box 9090, M/S 250C, Everett, WA 98206 9090. U.S. (206) 356-5400. Canada (416) 890-7600. Other countries: (206) 356-5500. © 1992. All rights reserved. Ad No. 00209.

BELIEVING IS SEEING
FLபKE

Desktop CAE and the Design Center!

Your Path to Effective Engineering High Productivity Good Business

Desktop CAE means every engineer has his or her own design station, providing a comprehensive workspace for conceiving and designing the product to fulfill an engineering task. All of the engineer's design needs are at his or her fingertips.

The Design Center provides just this! As a universal circuit design environment, analog and digital circuits can be created using a schematic editor, then directly simulated and graphically analyzed for correct behavior. Whether you're operating on a Sun workstation running OpenWindows, or on an IBM-PC running Microsoft Windows, all of this is achieved from a single system designed for user friendliness. This is Desktop CAE.

The Design Center is a self-sufficient system, easily maintained and used by the engineer to whom it belongs. Easy installation, intuitive user interface, and comprehensive documentation are characteristic of the Design Center. Everything you need to get the job done is on your desktop. This is Desktop CAE.

MicroSim Corporation is proud to provide you with the Design Center for Desktop CAE. We believe the Design Center stands on its own. But if you ever need assistance, our development and application engineers are always available through our free technical support program.

The Design Center is synonymous with Desktop CAE. Consider the Design Center for your engineering business, and make it the most effective and productive business that it can be. For more information on the Design Center, please call us toll free at (800) 245-3022 or FAX at (714) 455-0554.

The Design Center under Sun OpenWindows

The Design Center under Microsoft Windows

MicroSim Corporation

The Standard for Circuit Design
20 Fairbanks • Irvine, CA 92718

The Makers of PSpice

TI's $7.5-\mathrm{ns}$ '22V10. For those times you're torn between profit and performance.

T
rying to get the best performance on a tight budget can create a few hang-ups. Texas Instruments has a simple solution. Introducing the TIBPAL22V10-7. TI's newest highperformance programmable logic device that's designed to fit the bottom line as easily as it meets your design specs.
High performance, low price While competitive pricing is one of our ' 22 V 10 's most outstanding features (less than $\$ 17$ when you purchase 5,000 or more), you'll be even more impressed by its performance.
At an incredibly fast 7.5 ns , our '22V10 supports system speeds up to 50 MHz with a variable term distribution that gives you more design freedom with complex functions. It's an excellent choice for high-end systems
using the latest microprocessors. And since all this is achieved using our proven bipolar process, the ' 22 V 10 provides a universal architecture that's easy to work with using familiar design tools.

Accurate, dependable and available today Speed and ease of use mean nothing if difficult programming keeps your product from getting to market on time. That's why our ' 22 V 10 is designed for quick, dependable programming with your present tools. In fact, we're running at a 99.4% first-time programming success rate.
Best of all, our 7.5 -ns ' 22 V 10 is available in volume today with just-intime and ship-to-stock delivery programs tailored to meet your needs. You'll also have the backing of our
global support network to help keep

Hang in there -
a free sample is on the way Simply return the attached reply card or call 214-995-6611, ext. 3717, for one free TIBPAL22V10-7.

EDN's DSP-CHIP DIRECTORY

David Shear, Technical Editor

Abstract

DSP chips have touched almost all areas of electronics. Now the DSP industry is making it easier for you to use these powerful devices. Complete systems in chip-set form are now available, as are good tools to develop DSP applications.

The DSP industry is expanding into an ever increasing number of applications. DSP chips have invaded disk drives, cellular telephones, modems, radios, medical instruments, appliances, automobiles, and a number of other products. DSP is well beyond a strange new technology looking for applications. It is a maturing industry with chip sales alone exceeding a billion dollars in 1991. The expected growth is more than 30% per year for the next few years. The chances that one of your projects will benefit from using these devices is better than ever.

The biggest obstacle to many engineers is the perceived difficulty of using DSP. It would be very difficult if you just grabbed a DSP chip and a data book and tried to use it. That is what you would have had to do a few years ago. But the DSP industry has not been just sitting around. Many vendors are working hard to make DSP easier to use. You have many
choices as to how you will use DSP. It is not necessary to spend months or even years becoming a DSP expert.
The easiest method of using DSP is to buy a chip set that was created to fit a market niche. Modem chip sets are a perfect example. You can create a high-speed modem without really concerning yourself with the DSP portion of the system. For example, AT\&T has a chip set for 9600 -baud and above modems. In this application, a DSP16A works as a data pump in conjunction with an analog front end and a digital interface chip.
Motorola is working with many vendors to be able to license niche-application code directly. The company wants to be a one stop shop for DSP. You will be able to buy the DSP chip and the software from the same vendor. But if you wish, you can negotiate directly with the algorithm developer.
The DSP chip manufacturers aren't the only ones providing chip sets with software and hardware support. DSP Group Inc (San Jose, CA) is an example of a company that is providing niche market chip sets. They use custom versions of TI's fixed-point DSP chips to implement a variety of functions. For example, they provide a chip set for digital answering machines. You don't have to be aware that there is a DSP chip in the chip set. You just tell it what you want done and the chip set does it.
Analog Devices is attempting to create an open standard for DSP called Signal Computing. This unites a general-purpose DSP with third-party software so that you can gather the DSP functions you need. Independent Algorithm Vendors (IAVs) create the code that runs on the DSP, which you can license. With the

open nature of Signal Computing, each IAV can make its algorithms work on a variety of DSP chips. In many cases you will be able to select the hardware you need and get the DSP portion off the shelf.
It is too early to tell if Signal Computing will become the standard Analog Devices hopes it will. It will certainly make your job considerably easier if it does. With such a standard, as new DSP chips emerge, you will be able to transfer much of your design to the latest DSP. Since many products are expected to double in performance every 18 months, it would be nice to know that you didn't have to reinvent the wheel each time you had to design a new product.

Even without a standard, there are a number of vendors who sell algorithms. They will sell you a complete program for your needs or a partial program that contains all of the DSP code. Before you take on code development, check with the DSP chip manufacturer and see if they have or know of existing code. Each of the major DSP vendors has a very complete list of third-party vendors that can help you out.

TI has had a long tradition of offering tremendous support. They have an incredible amount of free DSP code on their bulletin board and in application manuals (call vendors for BBS numbers). Since the TI chips are the most popular DSP chips, more code has been writ-

The future looks bright for the DSP market

According to Will Strauss, President of Forward Concepts Co (Tempe, AZ), the total DSP-chip market was worth more than a billion dollars in 1991. This is divided into generalpurpose, function- and algorithmspecific, building-block, and $\mu \mathrm{P} / \mu \mathrm{C}$ DSP chips. The general-purpose DSP chips make up 36%, or $\$ 395$ million, of the total market (Fig A).

Strauss expects the total DSP market to grow 29% next year, with the general-purpose DSP-chip market growing 39% in 1992. This growth is expected to continue for many years. There are so many applications and so much growth that there is room in the market place for many different products.

TI is still way out in front with 57%
of the market (Fig B). Many largevolume applications are beginning to hit production. The largest market is modems, followed by disk drives and then by speech and audio applications. Digital cellular phones are coming on strong and will be one of the top applications soon.

Fig A - This chart shows the total DSP market for 1991. (source Forward Concepts)

Fig B-This chart shows the general-purpose DSP market for 1991. (source Forward Concepts)

ten for them then any others. Many of the DSP text books you can use to get up to speed in using DSP have examples written for the TI chips.

Block-level programming

If you have to create your own algorithms, you may consider using a block-diagram type of programming system. Comdisco, Mentor, and Star Semiconductor have systems that let you create your program with block diagrams and then let the system implement it. Comdisco and Mentor have the ability to simulate the design and then implement it in a variety of ways.

Each of these systems has a library of blocks you can choose from. You use a graphical method to draw a signal-flow diagram to implement your algorithm. You can also create your own blocks to expand on the existing blocks.

Once the design is completed, you can simulate it and modify it to tune it to your application. After proving your concept, the system can automatically generate code for general-purpose DSP chips. You can implement your DSP system on an FPGA or other ASIC, or you can synthesize a custom IC.

Star Semiconductor uses a different approach. You enter the design in a similar manner but skip the simulation step because you can run the code directly on the SPROC-1000. The company's block-diagram programming tools work only with their chips. This has the disadvantage of requiring you to implement your design with their devices. It has the advantage of letting you design your program and quickly implement it in real time on the actual device. The development cycle time is greatly reduced because you don't have to go through lengthy simulations; you can use the real thing.

Menu-based programming

Array Microsystems has a similar approach to programming their chip set. The ArraysoFFT package lets you select what you want the chip set to do from pull-down menus (Fig 1). This chip set is more limited than most general-purpose DSPs but is very fast, performing a 1024 -point FFT in $131 \mu \mathrm{sec}$.

Even if you can't use the easiest approaches, you still may be able to use a DSP library to get the job done. There are many companies that sell libraries that have standard algorithms in either source code or object code. Sonitech International Inc (Wellesley, MA) is an example of a company that sells DSP libraries as well as board-level DSP products and also

Fig 1-You can select what you want the a66 chip set from Array Microsystems to do by using pull-down menus. The ArraysofFT package will then create the code.
licenses code for many of the popular algorithms.
There is more to most DSP projects than just the creation of code to run algorithms. You will often have to write a large portion of the code to take care of system functions such as controlling indicators, communicating, interfacing with an operator, or controlling a few lines here and there. High-level languages and operating systems have been available for DSP chips for many years. The most popular high-level language is C. Almost all of the floating-point chips have a C compiler. Most also include source-level debuggers. The TI floating-point DSP chips (C3X and C40) also have an Ada compiler.

Even though the DSP portion of code generation can be tough, you will probably have to write plenty of normal μ P-type code. The first DSP chips were difficult to program, but the more recent devices are fine $\mu \mathrm{Ps}$. Their architectures and many of their instructions are similar to a $\mu \mathrm{P}$, and quality tools are available.

Real-time operating systems

Another major aid to using DSP chips is a realtime operating system. The most popular operating system for DSPs is Spox by Spectron Microsystems Inc (Santa Barbara, CA). It is a real-time operating system that provides a real-time multitasking kernel and modules for memory management, stream I/O, DSP math functions, and a C library. The company has just added a debug feature and multiprocessing support. Spox runs on Analog Devices'

400 MOPS FOR 6 U VMEbus SYSTEMS

This 6U VMEbus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP features a private 32 -bit, 20 MHz highspeed data I/O bus and extensive double buffering for continuous processing of real-time data. An additional 32 -bit complex output provides phase/magnitude data. The a66540 is available in 25 MHz and 40 MHz versions. A single 40 MHz version can execute a 1 K point FFT in $132.7 \mu \mathrm{~s}$ and a 64 K point FFT in 13.1 ms . These times are nearly halved for real input. Multiple FDaPs can be cascaded to achieve almost linear improvement in FFT performance. Plug 400 MOPs into your system by calling array Microsystems' Hotline: 719-540-7999.

CORNERTURN PROVIDES QUANTUM LEAP IN 2D IMAGE PROCESSING PERFORMANCE

The a66545 Cornerturn ${ }^{\text {TM }}$ board, used in conjunction with the a66540 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256×256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 $\times 512$ images, the board set transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging, radar, sonar, machine vision, and other real-time 2D image processing applications, the board set features performance of 400 MOPS at a clock rate of up to 40 MHz . The Cornerturn accepts 32 -bit complex I / O data through 10 MHz doublebuffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers. For technical assistance, call array Microsystems' Hotline: 719-540-7999.

OUTSIDE THE USA, CALL YOUR NEAREST

 INTERNATIONAL DISTRIBUTORAUSTRIA, GERMANY and SWITZERLAND - Alfatron GmbH, Tel: +49-89-45110-04, FAX: +49-89-45110-254 BELGIUM and the NETHERLANDS - Maxtronix, Tel: +31 -73-210400, FAX: +31-73-281190 - FRANCE - Microel, Tel: +33-1-69070824, FAX: +33-1-69071723•ISRAEL - Tritech, Ltd., Tel: +972-3-544-7293-4-5, FAX: +972-3-497816 ITALY - MicroElit S.P.A., Tel: +39-2-4817900, FAX: $+39-2$ 4813594 - JAPAN - Nippon Imex Corporation, Tel: +81-03-3321-8000, FAX: +81-03-3325-0021. SPAIN - Selco, Tel: +34-1-3264213, FAX: +34-1-3592284. SWEDEN - Setron Sweden AB, Tel: +46-8-753-0055, FAX: $+46-8-755-5594$. UNITED KINGDOM - METL Ltd., Tel: +44-844-278781, FAX: +44-844-278746

THE DaSP/PaC CHIPSET:
The heart of the world's fastest DSP product family
The Digital array Signal Processor (DaSP) executes 16 high-level instructions, including FFT butterflies, windowing, complex multiplies, and general-purpose functions. The Programmable array Controller (PaC) manages the entire system, including address generation for the DaSP and memory, and $/ / O$ up to 80 MHz . Using a single chipset, for example, a 1024 point FFT requires only 12 instructions and can execute in only $131 \mu \mathrm{sec}$; a complex FIR filter, using 28 instructions, processes at a 2.3 MHz rate. For even higher performance, you can cascade the chipset. Both utilize a 144 -pin PGA format and are available in 30 and 40 MHz versions. To receive complete technical information, call array Microsystems' Hotline: 719-540-7999.

PC-FDaP PERFORMS 250 MOPS!
The a66550 Frequency Domain array Processor (FDaP) brings high performance FFT processing to any PC-AT compatible computer. The two board set will fit into two full size PC-AT slots, operate on the 16 bit PC-AT (ISA) bus, and allow real or complex input from either the high speed connectors on the back panel or from the PCAT bus. The FDaP accommodates an optional complex I-and-Q to magnitude-and-phase converter for post-FFT processing. Available in two memory configurations, the a 66550 handles complex FFTs up to 32 K points and real FFT s up to 64 K points. The a66550 can compute a 1024 point complex FFT in just $210 \mu \mathrm{~s}$. For complete technical information, call array Microsystems' Hotline: 719-540-7999.

DSP engine for the 16 -bit PC-AT Industry Standard Architecture (ISA) bus

Performance Benchmarks

FFT size	$\mathbf{a 6 6 5 5 0} / \mathbf{3 2 K}$ @ 25 MHz
64 Real	$7.2 \mu \mathrm{~s}$
64 Complex	$10.9 \mu \mathrm{~s}$
1024 Real	$125.9 \mu \mathrm{~s}$
1024 Complex	$209.9 \mu \mathrm{~s}$
32K Real	5.90 ms
32K Complex	10.49 ms
64 K Real	1.73 ms
64K Complex	N / A

VME DSP
 1 K FFT/79.6 s

DSP engine for industry-standard VMEbus
Performance Benchmarks

FFT size	a66540A @40MHz	a66540A Cascade Sys.
64 Real	$5.1 \mu \mathrm{~s}$	$2.9 \mu \mathrm{~s}$
64 Complex	$5.0 \mu \mathrm{~s}$	$3.7 \mu \mathrm{~s}$
1024 Real	$79.6 \mu \mathrm{~s}$	$29.6 \mu \mathrm{~s}$
1024 Complex	$132.7 \mu \mathrm{~s}$	$59.1 \mu \mathrm{~s}$
32 K Real	3.69 ms	0.91 ms
32 K Complex	6.56 ms	1.82 ms
64 K Real	7.37 ms	1.82 ms
64K Complex	13.11 ms	3.64 ms

Call the DSP Hotline: 1-719-540-7999
1420 Quail Lake Loop, Colorado Springs, CO 80906 Telephone 719-540-7900, FAX 719-540-7950 Email support@array.com

21000 family, Motorola's 96002 , and TI's C3X and C40.
A new version for the fixed-point family, MicroSpox, has been running on Motorola's 56000 and is now available for Analog Device's ADSP2100 family and TI's TMS320C2X and TMS320C5X family. MicroSpox contains only the multitasking kernel, I/O, and memory management.

Motorola's 56000 also runs VRTX from Ready Systems, a real-time operating system that runs on virtually all major μ Ps. National Semiconductor is planning to have a real-time operating system for the 32SF640 available by the end of the year.

AT\&T and Spectron Microsystems both have software interfaces between the DSP chip and the end-user application. VCOS from AT\&T is an operating system that implements the DSP3210 on the mother board of a PC or workstation. OSPA from Spectron Microsystems works with Spox and serves a similar purpose with other DSP chips.

Both products isolate the application programmer from the algorithm developer. You can just call DSP functions and let the operating system take care of everything else.

In almost all projects you will have to write some portions of the code in assembly language. In some projects you may have to write all of the code in assembly language. Often the DSP portion must be optimized

The DSP Framework provides an environment to enter your design as a block diagram, analyze its performance, and then implement the design on an FPGA, ASIC, custom chip, or general-purpose DSP chip.
by programming in assembly language. Writing assembly code for DSP chips is often like writing code for your favorite μ P. Many DSP chips are capable μ Ps. It is difficult to generate assembly code that takes advantage of all of the parallel features of the DSP chips. Unfortunately, this is usually the code that

Key to abbreviations used in block diagrams

$\mathbf{A B}$-combined program-and-data address bus
ACC-accumulator
ADC/DAC-analog to digital and digital to analog converter
ADDR GEN-address generator
ALU-arithmetic logic unit
BIT MANIP-bit manipulation
BS-barrel shifter
CDB - control data bus
CM - cache memory
CPUB-CPU bus
DAB-data address bus
DB-combined program-and-data data bus
DDB-data data bus
DM-memory for data only
DMAAB - DMA address bus

DMADB-DMA data bus
DMAC - direct memory access controller
FX—fixed-point
FP-floating-point
GDB - global data bus
HOST INTER-host interface
IDB-instruction data bus
INT-external interrupt
MAC-multiplier accumulator
MULT—multiplier
PAB-program address bus
PDB-program data bus
P/DM-program and data memory
PIO-parallel I/O
PM - memory for program only
PPCP—parallel processor communi-
cation port

PRAB-peripheral address bus
PRDB - peripheral data bus
REG-register
REGB-register bus
SIO-serial I/O
TIM-timer
$\mathbf{X A B}$ - external address bus
XDB - external data bus
XDAB - external data address bus
XDDB - external data data bus
XIOAB - external I/O address bus
XIODB - external I/O data bus

* XPAB - external program address
bus
XPDB - external program data bus

Drive your DSP design all the way home.

Why complicate your travel plans? Zip along the entire DSP design route with SPW - the Signal Processing WorkSystem ${ }^{\circledR}$ from Comdisco.

SPW is the only DSP and communications design software tool that's complete and integrated. The only one that can take you all the way from idea to implementation. No matter where you're headed. No matter which road you take. And it's fast. It has all the horsepower you need to cut design time by as much as 90 percent.

First, SPW helps you choose your destination. You can quickly draw from its extensive libraries of reusable function blocks. And you can take advatage of SPW's open architecture to incorporate your own models.

After this, SPW automatically transforms your design into an

has to be optimized for speed.
But vendors do not leave you on your own to create assembly-language programs. There is a considerable amount of free DSP code. You can find it on computer bulletin boards operated by the DSP vendors. Or, you can get it out of some of the excellent application manuals that are available. By looking at this code, you can quickly get up to speed on using assembly language. You may even be able to modify some existing code to get what you want.

Almost all of the DSP manufacturers have developed evaluation packages that include an evaluation board and enough software tools to give you a feel for what the chip can offer, what their support is like, and how well their tools work (Ref 1). Spending a couple of bucks and a few days can give you the confidence to make informed choices about which part to use.

Another trend that will make your job easier is custom DSP chips. You can take a DSP core and surround it by the memory and peripherals you need. So far, this approach is only viable for very-high-volume applications. All DSP chip makers are migrating their chips into a core that lets you surround the basic chip with the peripherals you need. At present TI sells between 10 and 20% of their products as custom devices based on their fixed-point core. Within a few years, custom devices are expected to grow to 50% of production. As the volume grows, it will become cheaper to get the DSP chip you need, and lower-volume applications will be able to take advantage of it.

You should also keep an eye on $\mu \mathrm{Ps}$ and microcontrollers ($\mu \mathrm{Cs}$) because many are gaining some DSP capability. You will continue to see multipliers and other DSP elements sprout on these chips. But just sticking a multiplier on a chip doesn't mean that it can perform DSP functions. Many of the devices that have limited DSP capability are designed for a particular application. Your algorithm may or may not be enhanced by the added circuitry.

An example of DSP growth on a $\mu \mathrm{C}$ is Motorola's 68 HC 16 . It is a 16 -bit device that can perform a multiply and accumulate in 720 nsec . In terms of traditional

DSP, this is not very fast. But for the applications it was designed for, it works very well. This chip was designed for disk-drive applications but is useful elsewhere.
Motorola admits that the device is not fast but points out that many applications can't afford, and don't need, full general-purpose DSP capability. When reviewing requirements with potential customers, Motorola blocks out a combined $\mu \mathrm{C}$ and DSP including memory for both devices. Everyone gets excited until the cost is discussed. All of that silicon costs a lot of money.

By adding incremental DSP capability, an incremental cost is incurred. By knowing your algorithm and knowing how to get by with only the capabilities you really need, you can reduce the cost of the $\mu \mathrm{C}$ chip.

National is approaching the problem in a similar manner to Motorola. Almost all of their $\mu \mathrm{P}$ products have some DSP capability on the chip. Each version is intended for a niche market, from digital answering machines, to modems, to faxes, to printers, to combined office equipment that does all of these functions. Each chip has a different amount of DSP based on the needs of the algorithm in the application.

Zilog has looked at the problem and decided to create its own DSP chip (Z89C00) and integrate it onto a Z8 $\mu \mathrm{C}$. The $\mu \mathrm{C}$ and the DSP chip each have their own

Ariel V-C40 Hydra Breaks the BOPS Barrier

1.1 billion operations per second sets the record for 6U VMEbus coprocessor cards

Distributed in: France, REA Informatique, tel: 14965 25 50, fax: 14965 25 69; Israel, Militram Futuristic Technology Ltd., tel: 52-545685, fax: 52-574383; Italy, International Trading Device SRL, tel: 02-749 0749, fax: 02-761 0407; Japan, Marubun Corp., tel: 033-639 9816, fax: 033-661 7433; South Korea, Seoil Enterprise, 3030, 21-Dong, Sunin Electronics Bldg., 16-1, 2-Ku, Hankang-Ro, Yeoungsan-Ku, Seoul, tel: 2-704 1392, fax: 2-703 8090; United Kingdom, Data Beta, Unit 7, Chiltern Enterprise Centre, Theale, Berks RG7 4AA, tel: 44-0734 303631, fax: 44-734 323617.

Only Ariel's Hydra combines four TI TMS320C40 DSPs to deliver twice the processing speed and four times the I/O bandwidth of any 6 U VMEbus coprocessor card. It's the only choice for the most compute-intensive multiprocessor applications.

The V-C40 packs up to 64 Mbytes of DRAM as well as up to 5 Mbytes of SRAM in eight banks-two per processor. Each DSP has direct access to memory via dual 32-bit memory buses, as well as six parallel I/O ports and a high-speed six-channel programmable DMA controller. All six channels can transfer data simultaneously without interrupting program execution.

Hydra also includes a 24-bit parallel ADbus that lets you access a wide range of high-speed data acquisition cards. Development support includes an ANSI C compiler and the first PC-based XDS510 in-circuit emulator to support parallel processing. And of course, with Ariel's legendary technical support, you'll never work alone.

To learn more about the V-C40 Hydra, or any of Ariel's DSP products for ISA/EISA, VMEbus, SBus, Hewlett-Packard, NeXT, or Macintosh computers, send us a fax, leave us a message on the BBS or E-mail, or just give us a call.
Ariel
The DSP Authority
433 River Road Highland Park, NJ 08904 (908) 249-2900 FAX:(908) 249-2123

DSP BBS:(908) 249-2124
Email:ariel @ ariel.com

ANNOUNCING YET ANOTHER FIRST INTHE ENDLESS OUEST FOR DISK DRIVE INNOVATION.

Fast lane, flat out. Only open road ahead. And no looking back. Just another day in the life of a disk drive designer.

Well, strap yourself in a little tighter- the race is picking up.
VTC proudly submits its latest addition to your high-tech disk drive toolbox for the ' 90 s: the world's first 3 -volt read/write preamp. Now ready for you to put through the paces.

It's another in a long line of industry firsts from VTC, your trusted partner in read/write electronics for almost three decades. The company that's been there through it all-and intends to stay right there in it with you.

The VM3200 is a high-performance, very low power read/ write preamp for two-terminal thin-film/ MIG recording heads. It operates on a single 3.3 V power supply, making it ideal for battery-powered 2.5 and 1.8 -in drives in laptops, notebooks, and palmtop PCs.

The innovative circuit design of the VM3200 maintains 5 V performance at 3.3 volts. Not only does it meet your needs in today's mixed 5V/3V environment, it makes your transition to the complete 3 V system much easier.

Key features include fast current rise time, low input noise level, and a sleep mode that reduces power dissipation to 1.8 mW . It's available for two or four channels, in a variety of packages.

The VM3200: another first for VTC. Because we put you first.
So what's the first thing you do? Call us, of course, and - may we suggest speed dialing? VTC Inc., 2800 East Old Shakopee Road, Bloomington, MN 55425 USA. 612/853-5100. Fax 612/853-3355.

memory and communicate to each other via a set of common registers. The combined chip is intended for modem and fax applications. In these applications, the requirements of the DSP portion of the code are compute intensive enough to warrant more capable DSP hardware on the same chip. But even this chip is limited in order to keep the cost down. It doesn't have a barrel shifter or zero overhead looping, it only has a 24 -bit accumulator, and it lacks a few more features of other DSP chips. But you don't always need all of the functions of a general-purpose DSP chip. By leaving some things off the chip, it costs a lot less.

It is also possible to let the DSP chip absorb the $\mu \mathrm{C}$ functions. In many applications a $\mu \mathrm{C}$ will run much less than 1 MIPS. When a DSP chip is runs at 20 MIPS, it usually has plenty of power to spend some time on the functions normally taken care of by a $\mu \mathrm{C}$.

Some DSP applications need as much power as possible. In these cases, like video compression, the DSP chip will usually be doing just DSP functions. But many other applications leave the DSP chip idle some of the time. With the increasingly capable tools, you should be able to bring the control functions into the DSP chip.

All of these methods have varying degrees of difficulty and flexibility. It is sometimes dangerous to adopt a new technology and expensive to acquire the expertise. There are many companies that are doing their best to reduce the danger and cost. But the most dangerous approach is to ignore DSP all together. You can be assured that your competition isn't ignoring it. It has been proven that DSP can bring immense performance and functionality gains to a product. [उता

Reference

1. Leibson, Steve, "Learn to use DSP chips with a minimum of pain," $E D N$, June 4, 1992, pg 45.

Author's biography

David Shear is one of EDN's technical editors. He can be reached at (503) 7549310.

Article Interest Quotient (Circle One) High 473 Medium 474 Low 475

AMETEK DC Motors add speed control and reliability to pumps

These 12-24 VDC brushless motors give you controllability for smart pumping applications. Either $2.0^{\prime \prime}$ or $3.2^{\prime \prime}$ diameters, with stall torque to 84 oz .- in., puts high power in a compact package. And, no brushes to wear means more reliable operation. AMETEK, Technical Motor Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3452. Fax: 216-678-8227. In Europe, Friedrichstrasse 24, D6200

Fax: 0611-370033.
TECHNICAL MOTOR DIVISION
CIRCLE NO. 61
ÃUDIO PRO II

Introducing...second generation CD quality, stereo hi-fidelity digital audio record/playback for PC-AT 386/486 or compatible. Now with DVI/CDI/CD-ROM XA audio compression up to 44.1 kHz .

Featuring...real time direct-to-disk data transfer... 18 bit resolution... $64 x$ oversampling... 22 kHz audio response... 0.005% THD... 6.25 to 50 kHz programmable sample rate...92dB dynamic range...90db s / n ...plus 4:1 ADPCM compression.

For broadcast quality recording, editing and transmission in high-end entertainment systems, A/V presentations and interactive CDI/DVI applications. Phone 1 (800) 338-4231 for details on the 2nd generation AUDIO PRO Model SX-15.

CIRCLE NO. 62

ADSP-2100 FAMILY

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: All units are in production now.
COST: ADSP-2100 \$45 (1000); -2101, \$36 (1000); -2102, \$34
$(\min 5000) ;-2105, \$ 9.90(1) ;-2106,11.39(\min 25,000) ;-2111$, $\$ 48$ (1000); -2112, \$46 ($\min 5000$); -21msp50, \$57 (1000); $-21 \mathrm{msp} 51, \$ 40(\mathrm{~min} 25000)$.
SECOND SOURCE: None.

Analog Devices Inc
Box 9106
Norwood, MA 02062
(617) 461-3881

Circle No. 669

DESCRIPTION: The ADSP2100 family offers a variety of options, ranging from the 2100, without any on-chip memory and a Harvard architecture brought off-chip, to the 21 msp 51 , with program and data ROM and data RAM and peripher-
als, including an ADC, DAC, and host-interface port, on chip. The data memory has a 16 -bit width, but the program memory has a 24 -bit-word width to control the parallel operations. Low voltage versions are now sampling.

FEATURES: 60-, 77-, 80-, 100-, 125-, and 167-nsec cycle-time versions.
Separate on-chip program and data buses.
On-chip memory: The 2100/A has no on-chip memory. The 2101 has a $2 \mathrm{k} \times 24$-bit program RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2102 has a $2 \mathrm{k} \times 24$-bit program ROM or RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2105 has a $1 \mathrm{k} \times 24$-bit program RAM and a 512×16-bit data RAM. The 2106 has a $1 \mathrm{k} \times 24$-bit program ROM or RAM and a 512×16-bit data RAM. The 2111 and 21 msp 50 have a $2 \mathrm{k} \times 24$-bit program RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2112 has a $2 \mathrm{k} \times 24$-bit program ROM or RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 21 msp 51 has a $2 \mathrm{k} \times 24$-bit program RAM, $2 \mathrm{k} \times 24$-bit program ROM, and a $1 \mathrm{k} \times 16$-bit data RAM.
Separate program and data buses brought off the chip only on the 2100/A.
All other parts combine program and data buses off the chip.
Off-chip memory capacity: The 2100/A has $32 \mathrm{k} \times 24$-bit program and $16 \mathrm{k} \times 16$-bit data memory capacities. All the others have $16 \mathrm{k} \times 24$-bit program and $16 \mathrm{k} \times 16$-bit data memory capacities.
Boot memory controller loads program from external byte-wide EPROM (except 2100/A).
On-chip peripherals: The 2100/A has no on-chip peripherals. The 2101 and 2102 have two serial I/O ports and a timer; the 2105 has one serial I/O port and a timer. The 2111/2 have two serial I/O ports, a timer, and a host interface port. The 21msp50 has two serial I/O ports, a parallel I/O port, a timer, and a 16 -bit ADC/DAC (linear codec).

Multiplier/accumulator accepts 16-bit fixed-point input and creates 32 -bit fixed-point results within a 40 -bit accumulator. 16 -bit ALU. 32-bit bidirectional barrel shifter. 40-bit accumulator.
Multiplier/accumulator, ALU, and shifter are separate blocks connected by the 16 -bit R-bus and the data bus.
Zero-overhead looping.
Only the $2100 / \mathrm{A}$ has a 16×24-bit on-chip cache.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Two address generators.
No on-chip DMA. Serial port and codecs have auto buffer, which transparently transfers data to and from memory.
16 -level hardware stack. Status stack limits interrupts to four levels of nesting on the 2100/A, seven levels on the others.
Four external interrupts on the 2100/A; three external interrupts on others.
The 2100/A has only hardware wait states. Others have only software-programmable wait states.
No on-chip emulation port.
Only the 21 msp 50 has power-down mode to CMOS standby levels. The 2101, 2105, 2106, 2111, and 2112 have an idle mode, which lowers power until an interrupt is detected.
Packaging: 2100/A, 100-pin PQFP and 100-pin PGA. 2101/2, 68 -pin PGA and 68 -pin PLCC. 2105/6, 68-pin PLCC. 2111, $100-$ pin PQFP and 100-pin PGA. $21 \mathrm{msp} 50 / 1,100-$ and $132-$ pin PQFPs, 144 -pin PGA.

HARDWARE

Full featured in-circuit emulator.
Low-cost in-circuit emulator board.
Demo board.
Evaluation packages.
Third-party support: Contact Analog Devices for a list of thirdparty vendors.

C compiler. Simulator.
Macroassembler/linker.
Application libraries.
Upcoming Numerical C.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The DSP16A, DSP16C, DSP1610, and DSP1616 are in production.
COST: DSP16A, \$22.60; DSP1610, \$91; DSP1616, \$35.70 (1000).

SECOND SOURCE: None.

DESCRIPTION: The members of the DSP16 family have long been the fastest fixed-point DSP chips. The DSP16A has a $25-$ nsec cycle time. The DSP16A and DSP16C also have the largest on-chip program memory at $12 \mathrm{k} \times 16$ bits. Many applications that would require external ROMs with other DSP chips can fit within the DSP16 family's on-chip memory. The DSP16C

AT\&T Microelectronics
Dept 52AL040420
555 Union Blvd
Allentown, PA 18103
(800) 372-2447, ext. 796;
in Canada, (800) 553-2448, ext. 796
Circle No. 670
has an ADC and a DAC on chip. The DSP16C also has a 4 -pin JTAG interface, which assists in testing tightly packed boards. A 3.3 V version of the DSP16A is available. The DSP1610/1616 are enhanced versions intended for digital cellular telephone use.

FEATURES: $25-, 33-$, and $55-$ nsec cycle-time versions. The DSP16C has 25-, 28-, 33-, and 38 -nsec cycle-time versions.
Separate on-chip program and data buses.
On-chip memory: The DSP16A and -16C have a $12 \mathrm{k} \times 16$-bit program ROM and a $2 k \times 16$-bit data RAM. The DSP1610 has a 512×16-bit boot ROM and an $8 \mathrm{k} \times 16$-bit dual-port RAM. The DSP1616 has a $12 \mathrm{k} \times 16$-bit ROM and a $2 \mathrm{k} \times 16$-bit dual-port RAM.
The program ROM on the DSP16A and -16C can be replaced or augmented with as much as 64 k words of external memory.
The DSP1610/1616 can access two external 64k address spaces
Parallel and serial I/O port.
The DSP16C has an on-chip codec.
The DSP1610/1616 each have an on-chip timer.
The multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 36 -bit accumulator.
32-bit ALU.

Only the DSP1610/1616 have a 36-bit barrel shifter and bitmanipulation instructions.
Two 36 -bit accumulators.
Zero-overhead cache looping as many as 127 times.
15 -word instruction cache.
Immediate, register-indirect, and circular addressing modes.
No on-chip DMA.
Single-level hardware stack is software expandable into main memory.
One external interrupt.
DSP1610 has hardware and software wait states. DSP1616 has software wait states.
DSP1610/1616 have on-chip emulation port.
The DSP16A, -16C, 1610, and 1616 have power-down mode.
The DSP1616 will run from 3.3 to 5 V .
Packaging: DSP16A, 84-pin PLCC or 84-pin PQFP. DSP16C, 100-pin PQFP. DSP1610, 132-pin PQFP. DSP1616, 100-pin PQFP or SQFP.

HARDWARE	
Sevelopment system with in-circuit emulation.	SUPPORT-
Assembler/linker.	
Evaluation board that plugs into a PC.	Simulator.
	Application library.
	Third-party support includes filter-design packages. Contact
AT\&T for a list of third-party vendors.	

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: DSP56156-40 MHz, \$72 (1), \$50 (1000); 60 MHz , \$108
(1), \$75 (1000).

SECOND SOURCE: None.

Motorola Inc

Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030

FAX (512) 891-3874
Circle No. 671

DESCRIPTION: The 56156 is a 16 -bit subset version of the 56001. It is intended for cellular telephone and other commu-
nication applications. It has a built-in codec and phased-locked loop. Development tools are similar to the 56001 and the 96002.

FEATURES: 33 - and 50 -nsec cycle-time versions.
Three address buses and three data buses.
On-chip memory includes a $2 k \times 16$-bit program RAM and a $2 k \times 16$-bit data RAM.
ROM-based version (DSP56156ROM) contains a $12 k \times 16$-bit program ROM.
Separate external program and data memory spaces. Each can address $64 \mathrm{k} \times 16$-bit locations.
Can load program from external EPROM.
Asynchronous and synchronous serial I/O ports.
Parallel port can interface with a host $\mu \mathrm{P}$.
Has on-chip phase-locked loop (PLL).
On-chip sigma-delta voice band codec.
Multiplier accepts 16 -bit data and returns 40 -bit results to 40 -bit accumulator.

ALU performs arithmetic operations on 40 -bit data and logical operations on 16-bit data.
No barrel shifter.
Two 40-bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversed addressing modes.
No DMA support.
Two external vectored interrupts.
Has on-chip emulation.
Low-power mode.
Packaged in a 112-pin ceramic quad flatpack.

Application development system includes in-circuit emulator. Contact Motorola for a list of third-party vendors.

Macro cross assembler.
Linker.
Application development board.

24-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: DSP56001: 27 MHz , $\$ 33$ (1), $\$ 27$ (1000); 33 MHz , $\$ 40$ (1), $\$ 33$ (1000). DSP56002: $40 \mathrm{MHz}, \$ 55$ (1), $\$ 43$ (1000).

SECOND SOURCE: None.

DESCRIPTION: The 56001 provides one 24 -bit data word and two 56 -bit accumulators. This extended precision lets the chip process 16 -bit data more easily than the 16 -bit machines can. A 24 -bit-word width eases scaling, and the 56 -bit accu-

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030

FAX (512) 891-3874
Circle No. 672
mulators prevent overflow. The 24 -bit data width suits digital audio applications. The 56002 is a high-speed, low-power, lowvoltage version of the 56001 that is 100% software compatible, and includes a PLL and on-chip emulation.

FEATURES: DSP56001 60- and 74-nsec cycle-time versions. DSP56002 50-nsec cycle-time.
Three address buses and four data buses.
Separate address buses for program ROM and the two data RAMs.
Separate data buses for program ROM, the two data RAMs, and global data.
On-chip memory includes a 512×24-bit program RAM, a 32×24-bit boot ROM, dual 256×24-bit data RAMs, and dual 256×24-bit data ROMs.
ROM-based version (56000) available.
Three separate memory spaces (X, Y, and P). Each can address $64 \mathrm{k} \times 24$-bit locations.
Can load program from external EPROM.
Asynchronous 8 -bit serial I/O port.
Synchronous 8- to 24-bit serial interface.
Parallel port can interface with a host $\mu \mathrm{P}$.
56002 has on-chip PLL.
Multiplier accepts 24 -bit data and returns 48 -bit results to 56 -bit accumulator.

ALU performs arithmetic operations on 56 -bit data and logical operations on 24-bit data.
No barrel shifter.
Two 56 -bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversed addressing modes.
Two address generators.
No DMA support.
System stack is 15 levels deep but can be read by program to extend stack into main memory.
Two external vectored interrupts on 56001, three on 56002.
Hardware and software-programmable wait states.
Only the 56002 has on-chip emulation.
Low-power mode.
Low-voltage version of 56002 by fourth quarter 1992.
56001 is packaged in a 132 -pin ceramic quad flatpack or 88 -pin PGA. 56002 is packaged in a 132 -pin PGA or PQFP.

	HARDWARE
	SUPPORT
Application development system includes in-circuit emulator.	C compiler.
Contact Motorola for a list of third-party vendors.	GNU C compiler and source-level debugger.
	Macro cross assembler.
	Linker/librarian.
Simulator.	

32-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Available now
COST: NS32SF640-25/50, \$195 $(10,000)$.
SECOND SOURCE: None.

National Semiconductor Inc 2900 Semiconductor Dr

M/S 16-320

Santa Clara, CA 95052
(408) 721-2636

DESCRIPTION: Called Swordfish by National, the 32SF640 has a 64 -bit data bus but operates on 32-bit data. The 32SF641 is identical except that it includes a floating-point unit. A highly
pipelined architecture lets the device perform more than one operation per cycle. It is more of a RISC $\mu \mathrm{P}$ than a DSP, but the $20-\mathrm{nsec}$ multiplier lets it perform many DSP functions.

FEATURES: $20-$, 25 -, and 31 -nsec cycle-time versions. One 32-bit address bus, two 64-bit data buses, and one 32-bit I/O data bus on chip.
Separate data buses for program and data.
No on-chip memory.
4G words of external address space.
Two 32-bit ALUs.
IEEE-754 32-bit and 64-bit floating-point unit on the 32SF641.
Multiplier accepts 16 - or 32 -bit fixed-point data and returns 32 bit results.
512×64-bit instruction cache.
128×64-bit data cache.
No barrel shifter.
Thirty-two 32-bit register-based accumulators.
DMA is supported via two DMA controllers
The stack is maintained in main memory.
15 external vectored interrupts.
Hardware wait states.
Serial debug port for in-circuit debugging.
Packaged in a 223-pin PGA.

HARDWARE	SUPPORT
Hardware evaluation system includes development board. In-circuit emulator by the end of 1992.	GNX tool set includes C compiler, Assembler, Source-level de- bugger, Profiler.
	PXROS real-time operating system due by the end of 1992.

16-BIT FIXED-POINT DSP μ P

AVAILABILITY: The 77 C 25 is available now.
COST: The 77C25 costs $\$ 9$ (5000); the 77P25 costs $\$ 45$ (1000).
SECOND SOURCE: Oki Semiconductor (Sunnyvale, CA) also makes the 7720 .

DESCRIPTION: The 77 C 25 is an upgrade of the 7720 , which was one of the first successful DSP chips. The basic architecture is out of date, and its memory can't be expanded off chip. The

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(800) 632-3531; (415) 965-6158

FAX (800) 729-9288; (415) 965-6130
Circle No. 673
manufacturer says there is still interest in new 77C25 designs because of the chip's low cost. The 77P25 is an EPROM version of the 77 C 25 .

FEATURES: 100 - and $122-\mathrm{nsec}$ cycle time.
Single address bus only for program memory.
Pointers address data memory.
Single data bus for both program and data.
On-chip memory: The 77 C 25 has a $2 k \times 24$-bit program ROM, a 256×16-bit data RAM, and a $1 \mathrm{k} \times 16$-bit data ROM. The 77P25 has the same memory as the 77C25 but replaces ROM with EPROM.
No external memory expansion.
One 8 -bit serial I/O port.
Parallel I/O port.
Multiplier accepts 16 -bit fixed-point data and produces 31 -bit fixed-point results within two 16-bit accumulators.

16-bit ALU.
No barrel shifter.
Two 16-bit accumulators.
No zero-overhead looping.
No address generators.
No on-chip DMA controller.
4-level stack stores the program counter during subroutines and interrupts and is not expandable.
Single external interrupt.
No wait states.
No on-chip emulation port.
No low-power mode.
Packaged in 28-pin DIP, 28-pin PLCC, 44-pin PLCC, and 32-pin SOP.

Evaluation kit for application development also functions as an in-circuit emulator.

Assembler/linker.
Third-party simulator available.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Engineering samples, fourth quarter 1992. In production first half of 1993.
COST: 77016, $33 \mathrm{MHz}, \$ 55$ (1000).
SECOND SOURCE: None.

DESCRIPTION: This DSP is optimized for digital cellular phones and high-speed data/FAX modem applications. It has a Harvard architecture that is maintained off chip and a large

NEC Electronics

401 Ellis St
Mountain View, CA 94039
(415) 965-6620

FAX (800) 729-9288
Circle No. 674
amount of on-chip memory. The serial debug port allows for low-cost in-circuit emulation.

FEATURES: 30 - and 50 -nsec cycle-time versions.
Separate program and data buses maintained off chip.
Three internal data buses.
On-chip memory includes a $1.5 \mathrm{k} \times 32$-bit program RAM, a $4 \mathrm{k} \times 16$-bit data RAM, and a $4 \mathrm{k} \times 16$-bit data ROM.
Off-chip memory can be expanded to $64 \mathrm{k} \times 32$-bit program memory and $128 \mathrm{k} \times 16$-bit data memory.
Two serial I/O ports.
Parallel I / O port can be used as host $\mu \mathrm{P}$ interface.
Four general-purpose parallel I/O ports.
Multiplier accepts 16 -bit fixed-point data and creates 40 -bit fixed-point results within a 40 -bit accumulator.

40-bit ALU.
40-bit barrel shifter.
Eight 40-bit accumulators.
Two address ALUs with circular buffering and bit-reversal addressing support.
On-chip DMA.
Zero-overhead looping.
12 interrupts (4 external/8 internal)
Wait-state control on both external buses.
On-chip emulation port.
Low-power mode.
Packaged in a $160-$ pin PQFP.

	HARDWARE
Hardware emulator works with on-chip emulation port and runs SUPPORT Assembler/linker. Simulator. C compiler planned.	

GOOD IDEA. SAME IDEA.

Ampro offers you fast, flexible answers to embedded PC development. Little Board ${ }^{\text {Tw }}$ single board systems on the left below, CoreModule ${ }^{\text {TTM }}$ CPUs on the right. Plus MiniModules ${ }^{\text {TM }}$ that snap onto either. That means you can snap together a system customized to your specific application. Now.

Above, shown actual size: a complete AT-compatible system. 80286 processor, 4Mbytes of DRAM, floppy and IDE I/0, 2 serial and one parallel port, SVGA display driver . . . and more. It was snapped together in less than two minutes using Ampro's CoreModule/286 and two MiniModules. It fits in a space just $3.6^{\prime \prime} \times 3.8^{\prime \prime} \times 1.88^{\text {." And }}$ it draws under 5W. Embedded PCs don't get easier

Little Board

PC, 286, 386SX, 386 and 486
than that. CoreModules are now available in XT, 286 or 386SX. Your choice.

Single Board Solutions. Little Boards offer single board solutions to embedded systems. Little Boards accept all MiniModules. That means you can build custom systems as simply as stacking Legos. ${ }^{\text {Tx }}$ PC/AT-compatible Little Board capabilities include: a choice of PC, 286, 386SX, 386, and 486 CPU. Up to 16Mbytes of on-board DRAM. Dual serial and one parallel controller. Floppy, IDE and SCSI controllers. Bootable solid state disk . . . and more. Plus, compatibility with all PC/AT operating systems and software. All, in the form factor of a $5.25^{\prime \prime}$ disk drive.
The PC/104 standard. Ampro started it. But today you can buy PC/104 StackThru modules from 1
 state-of-the-art manufacturers on three continents. The result? Snap-together systems specific to your embedded application.
Flexible answers. When it comes to embedded PC/AT computer systems, you can't buy faster, smaller, or more flexible answers. CoreModule or Little Board-based systems. Mini-

Modules. Development systems. And complete technical support. Flexible answers. Fast.

Hitting the window. When time-to-market and development costs are critical considerations in your embedded applications, Ampro products can help you significantly decrease both.
Write or call today. If you're developing products with embedded controllers, Ampro offers fast, cost-effective alternatives to in-house development. Call, write or fax. We'll send you Ampro's 80 -page, full line catalog. Proven, cost-effective answers to high development costs and product introduction delays. Embeddable systems. In a snap.

Fast Answers. Toll Free

1-800-966-5200

Proven Solutions for Embedded Control Ampro Computers, Inc. 990 Almanor Ave., Sunnyvale, CA 94086 Phone: (408) 522-2100 Fax: (408) 720-1305

"THIS ONE'S MY FAVORITE. WE LAID IT OUT IN THREE DIFFERENT PROCESSES AND STILL BROUGHT IT IN ON TIME AND UNDER BUDGET THANKS TO NEW EPOCH."

INTRODUCING EPOCH.

We named our new set of IC design tools Epoch because it truly is a new way of looking at IC design.

Whether it's Mentor, Cadence, ViewLogic, VHDL, Verilog or EDIF, with Epoch, you can continue to work in your familiar CAE environment. At the same time, you'll have quick access to Epoch's powerful set of tools. Tools that can help you improve the quality of your physical designs and deliver those complex IC designs on time and within budget.

FEATURES AND BENEFITS

Open architecture for seamless interfacing with a wide range of CAE plafforms.
Process-independent design methodology and a robust, parameterized library for true process migration and design reusability. Instead of simply rescaling the entire design, Epoch automatically manipulates design rules independently to take full advantage of target processes.

Performance-driven layout to help create chips with the optimum balance of speed, density and power consumption.

Automated place and route with optional interactive optimization that enables the designer to finetune the design at critical junctures.

Epoch is a new version of a tool that engineers throughout the world have used for years to design ICs for all kinds of applications, from engine controllers to consumer electronics and from medical imaging to DSP.

Epoch was developed, tested and proven by a team of engineers with widespread experience in IC design, IC software and a wide variety of foundry processes. This same team is available to provide you with full technical support whenever you need it.

If you're ready to discover a new epoch in IC design productivity and commitment to support, call us. Cascade Design Automation: 1-800-258-8574.

24-BIT FIXED-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: 100 - and 122-nsec versions available now.
COST: \$30 (5000).
SECOND SOURCE: None.

DESCRIPTION: The 77220 is a scaled-down version of the 32-bit floating-point 77230. The chip size and pin count are reduced by using 24-bit data and removing the floating-point exponent hardware. The 24 -bit-word width suits the digital audio market. The instruction set is a subset of the 77230 and is

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(800) 632-3531; (415) 965-6158

FAX (800) 729-9288; (415) 965-6130
Circle No. 675
source-code compatible with the floating-point device. The vendor says the 77220's architecture is optimized for adaptive filter applications. The 77P220R EPROM version and the 77P220L one-time-programmable version are for prototyping and lowvolume applications.

FEATURES: 100 - and 122 -nsec cycle-time versions.
Separate on-chip program and data buses.
On-chip memory includes a $2 \mathbf{k} \times 32$-bit program ROM, dual
256×24-bit data RAMs, and a $1 \mathrm{k} \times 24$-bit data ROM.
Off-chip memory can be expanded to $8 \mathrm{k} \times 32$-bit program mem-
ory and $8 \mathrm{k} \times 24$-bit data memory.
One serial I/O port.
Parallel I/O port can be used as host $\mu \mathrm{P}$ interface.
Multiplier accepts 24 -bit fixed-point data and creates 47 -bit fixed-point results within a 47-bit accumulator.
47-bit ALU.
47-bit bidirectional barrel shifter.

Eight 47-bit accumulators.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Three address generators.
No on-chip DMA.
Hardware stack is eight levels deep and is not expandable.
Two external interrupts.
No supported wait states.
No on-chip emulation port.
No low-power mode.
Packaged in a 68 -pin PGA or 68 -pin PLCC.

HARDWARE	SUPPORT
Evaluation kit and IBM PC-based evaluation board.	Assembler/linker.
	Simulator.
C compiler.	

16-BIT FIXED-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: Now.

COST: ST18930, \$15 (10,000); ST18931, \$75 (100); ST18942, $\$ 35(10,000)$; ST18R942, $\$ 80(100)$. The ST18932 is only available for ASIC designs.
SECOND SOURCE: None.

DESCRIPTION: The ST18 family consists of four devices. The ST18930 and -31 are CMOS versions of the NMOS original with a few enhancements and twice the speed. The ST18932 is a core for use in custom DSP μ Ps. The CMOS ST18942 offers

SGS-Thomson Microelectronics
1000 E Bell Rd
Phoenix, AZ 85022
(602) 867-6340

Circle No. 676
further enhancements in its arithmetic capabilities, addressing modes, and I/O functions. All family members can operate on complex and double-precision data. The ST18932/42 have a 32 -bit ALU and 16-bit data buses.

FEATURES: The ST18930/31 have 80-nsec cycle times. The ST18932 has a $50-$ nsec cycle time. The ST18942 has a 100nsec cycle time.
Two address buses and four data buses on chip.
On-chip memory: The ST18930 has a $3 \mathrm{k} \times 32$-bit program ROM, a 192×16-bit data RAM, a 128×16-bit data RAM, and a 512×16-bit data ROM. The ST18931 has the same memory as the ST18930 but without ROM. The ST18942 has a $4 \mathrm{k} \times 32$-bit program ROM, two 256×16-bit data RAMs, and a 512×16-bit data ROM. The ST18R942 is a ROMless version of the ST18942 and has two 256×16-and one 128×16 bit data RAMs.
$64 \mathrm{k} \times 32$-bit external program memory (except ST18930).
ST18930/31 $4 k \times 16$-bit external data memory space. ST18932 $8 \mathrm{k} \times 16$-bit external data memory. ST18942 and ST18R942 $64 \mathrm{k} \times 16$-bit external memory.
Only the ST18942 has both a serial I/O port and a parallel I/O port.
ST18932/42 multiplier accepts 16-bit fixed-point data and returns 32 -bit fixed-point results to a 32 -bit accumulator. The ST18930/31 returns 16-bit results.

In complex mode, the multiplier multiplies two complex numbers in two cycles.
16-bit ALU in ST18930/31. 32-bit ALU in ST18932/42.
16-bit bidirectional barrel shifter in ST18930/31. 32-bit bidirectional barrel shifter in the ST18932/42.
ST18930/31 has two 16-bit accumulators. ST18932/42 has four 32 -bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, and circular addressing modes.
The ST18942 has on-chip DMA.
ST18930/31 has 1-, ST18932 has 2-, and ST18942 has 8-level hardware stack for interrupts and subroutines. All can be expanded into main memory with software.
Three external interrupts on the ST18930/31 and eight on the ST18932/42.
Hardware and software-programmable wait states.
Only the ST18932 has an on-chip emulation port.
Low-power mode.
Packaging: ST18930, 48-pin DIP, and 52-pin PLCC. ST18931, 124-pin PGA. ST18942, 160-pin PQFP. ST18R942, 160-pin PQFP and 144-pin PGA.

Hardware development system provides in-circuit emulation of as many as three DSP chips in real time.
Stand-alone emulator board connects to an IBM PC.
EPROM module. A ROMless version with EPROMs on a small board that plugs into a ROM-version socket.

Macroassembler/linker. Simulator.

DCIDC Converters

20Watt

DC/DC Converters
 Single/Dual/Triple 34 New Models

- Inputs:4.6-13.2V,9-18V, 9-36V, 18-72V
- Typical Efficiencies to $84 \%+$
- World's ONL Y Wide Range $5 \mathrm{~V}_{\mathrm{IN}}$
- Extended Operating Temperature
- $V_{\text {our }}$ Adjustment Capability (TRIM)
- Insulated Case (will not short PC etch)
- TTL-compatible ON/OFF control
- Metal Case Shielding
- Single $\mathrm{V}_{\text {out }}: 2.1,3.3,5,12,15 \mathrm{~V}$
- Dual $\mathrm{V}_{\text {out }} \pm 5, \pm 9, \pm 12, \pm 15 \mathrm{~V}$
- Triple $\mathrm{V}_{\text {out: }}: 5, \pm 12 \mathrm{~V}$ and $5, \pm 15 \mathrm{~V}$

General Specifications

- State-of-the-Art Thermal Management
- Continuous Short Circuit Protection
- Internal Input/Outputfiltering
- Overvoltage Protection
- 100\%Burn-in@FullLoad
- Industry Standard Pinout \& Packaging
- Very High Reliability
- Fully Encapsulated
- Delivery From Stock!

10Watt

DC/DC Converters Single/Dual/Triple 25 New Models

- Inputs:4.7-7V, 9-18V, 18-72V
- World's Smallest Commercial 10 W
- Lowest Profile:0.37" tall
- Typical Efficiencies of $84 \%+$
- Insulated Case (will not short PC etch)
- Metal Case Shielding 3Watt DC/DC Converters Single/Dual Output 15 NewModels
- Inputs:4.5-9V, $9-18 \mathrm{~V}, 18-72 \mathrm{~V}$
- Switching Frequency 200 KHz (typ)
- Black Plastic Case
- Pi-type Filter (L-type all -D48)
- Typical Efficiencies to $82 \%+$
- Idealfor Telecomm/PCB applications
- World's ONLY Wide Range $5 \mathrm{~V}_{\text {IN }}$
- Low Profile: 0.435 "tall
- Extended Operating Temperature
- ExcellentLine/Load Regulation
- Single $V_{\text {out }}: 3.3,5,12,15 \mathrm{~V}$
- 1000 Vdc Isolation (min)
- Dual $\mathrm{V}_{\text {our }} \pm 5, \pm 12, \pm 15 \mathrm{~V}$
- Triple $\mathrm{V}_{\text {out }}: 5, \pm 12 \mathrm{~V}$ and $5, \pm 15 \mathrm{~V}$

BOTTOM VIEW

For complete data call or write today for a free new Power Supply catalog. DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048. Tel: (508)339-3000, FAX: (508)339-6356. For immediate assistance: all USA, EST business hours 1-800-233-2765.

24-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: $50-\mathrm{MHz}$ SPROC-1400 (four processors on chip), $\$ 70$ (1000). By mid 1993, the SPROC-1000 (one processor) will cost $\$ 15$ and the SPROC-1400 will cost $\$ 50$.
SECOND SOURCE: None.

DESCRIPTION: The SPROC family has one, two, or four gen-eral-purpose processors on the chip. Programs are generated with signal flow diagrams, which are converted into code for the processors. Automatic partitioning of the code isolates you from

Star Semiconductor Corp
25 Independence Blvd
Warren, NJ 07059
(908) 647-9400

FAX (908) 647-4755
Circle No. 677
the complexities of multiprocessing. You can very quickly create a system and see the results in real time. A probe port lets you see what the signal looks like anywhere in the block diagram.

FEATURES: $20-, 40-$, and $50-\mathrm{MHz}$ versions.
One to four general-purpose processors share common program and data memory.
Multiported data memory lets each processor access memory each cycle.
Separate instruction and data bus on chip.
Can access external memory via parallel port.
Serial data flow into and out of chip is controlled by Data Flow Managers with no impact on performance.
24 -bit multiply with 56 -bit accumulation.

Two serial input ports and two serial output ports.
Serial ports configurable for 8 -, $12-, 16$-, or 24 -bit data. Initialized by $\mu \mathrm{P}$ or external 8 -bit EPROM.
Access port for development and debugging.
Probe port allows view of data at any point in the program.
Output to DAC board allows real-time view on oscilloscope,
Parallel port transfers data to an external controller, peripheral, or memory.
Parallel port has hardware and software wait states.
Packaged in a 132 -pin PGA.

HARDWARE

SUPPORT

SOFTWARE

An interface box and an evaluation board are included with the SPROClab.

SPROClab graphical development system. Includes signal flow editor, function block library, filter design tool, compiler, loading, and debugging tools.

TMS320C1X

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The C10, C15, C16, C17, E14, E15, E17 P15, P17, P14, LC15 (3.3V), LC16 (3.3V), and LC17 (3.3V) are available now. The C14 will be available in the third quarter of 1992.

COST: C10 (20 MHz), \$4.90; C14, \$10; E14, \$45; P14, \$22; C15 (20 MHz), \$7; E15 (20 MHz), \$36; P15, \$17; C16, \$8.40; E17, \$39; P17, \$19 (C10, quantity 1; all others, quantity 1000).
SECOND SOURCE: Microchip Technology (Chandler, AZ) second-sources the C10, C14, and E14. No second source for other parts.

DESCRIPTION: This first generation of the vendor's DSP family was introduced in 1982. Although this family is difficult to use and slower than similar devices, the chip's cost-which has fallen to $\$ 3$ in high volume-and the large body of associated software and expertise will keep this family going for

Texas Instruments Inc
Semiconductor Group
Box 809066
Dallas, TX 75380
(214) 995-6611, ext 3990

Circle No. 678
some time. Newer family members have additional memory and peripheral options. EPROM (TMS320E1X) and one-timeprogrammable (TMS320P1X) versions are also available. 3.3 V versions of the C1X family are now available. TI continues to support this family by adding new versions and tools.

FEATURES: 114-, 160-, 200-, and $280-\mathrm{nsec}$ cycle-time versions. Separate on-chip program and data buses.
On-chip memory: The C10 has a $1.5 \mathrm{k} \times 16$-bit program ROM and a 144×16-bit data RAM. The C14, C15, and C17 have a $4 \mathrm{k} \times 16$-bit program ROM and a 256×16-bit data RAM. The E14, E15, and E17 have a $4 \mathbf{k} \times 16$-bit program EPROM and a 256×16-bit data RAM. The C16 has an $8 \mathrm{k} \times 16$-bit program ROM and a 256×16-bit data RAM. P1X versions are one-time programmable.
Program and data buses are combined off chip.
$4 \mathrm{k} \times 16$-bit total external memory except the C16, which has $64 \mathrm{k} \times 16$-bit external memory, and the C17, which has no external memory.
On-chip peripherals: The C10, C15, and C16 have parallel I/O. The C14 has serial and parallel I/O. The C17 has two serial I/O ports, parallel I/O, and a compander.

Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 32 -bit accumulator.
32-bit ALU.
16-bit left barrel shifter.
Single 32-bit accumulator.
No zero-overhead looping.
No DMA.
4-level hardware stack except the C16, which has an 8-level hardware stack.
Single external interrupt.
No wait states.
No on-chip emulation.
LC1X devices operate at 3.3 V .
Packaging: C10, 40-pin DIP or 44 -pin PLCC. C14, 68 -pin PLCC. C15, 40-pin DIP or 44 -pin PLCC. C16, 64 -pin QFP. C17, 40 -pin DIP or 44-pin PLCC.

	HARDWARE
In-circuit emulator.	SUPPORT
Evaluation module.	Assembler/linker.
Software development system.	Simulator.
Many third-party support tools. Contact manufacturer for a list	Application library.
of third-party vendors.	

Today's applications like FrameMaker ${ }^{\circ}$ demand the balanced performance of a complete workstation and only the Personal DECstation ${ }^{\text {m" }}$ gives it to you at such an affordable price.

Many of the features other low-priced workstations offer, such as an open bus, 8 -plane graphics and color, are add-ons. With the Personal DECstation, they're standard. And it's built for the future with new CPU and graphics cards, multimedia

DIGITAL'S SPEED AND FLEXIBILITY ARE PERFECT FOR FRAMEMAKER.

FrameMaker and Digital combine to provide a complete document publishing system for creating business and technical documents. FrameMaker incorporates full-featured WYSIWYG word processing, graphics, page layout, tables, conditional text, equations editing, and structured document tools into a single, easy-to-use application.

FrameMaker supports the Motif ${ }^{\circ}$ windowing environment and takes advantage of the innovative tools available with Digital, such as Display PostScript. In addition, FrameMaker supports Digital's multimedia capabilities and allows you to seamlessly incorporate audio and video into your FrameMaker document. FrameMaker on the Digital platform is the complete solution for your document publishing needs.

For a trial version of FrameMaker, please call 1-800-U4-FRAME, EXT. 145.
technology, network interconnects and upgrades.

The Personal DECstation from Digital. The power of a workstation. The productivity of a workstation. The price of a PC.

End the connector compromise...

1. SIMPLE PUSH BUTTON RELEASE

2. OPTIONS FOR $3,7,9$ AND 12 POSITIONS
3. NO SHOCK PLASTIC HOUSING

$$
\begin{aligned}
& \text {...in patient } \\
& \text { monitoring } \\
& \text { equipment }
\end{aligned}
$$

Only Hypertronics ends the compromise in quickdisconnect plugs and receptacles...by combining patient-proof design, economical plastic housings and the reliability of military approved contacts in a line of electrical connectors.

Our injection-molded polycarbonate and polysulfone housings completely shroud currentcarrying elements to avoid both reliability and repair problems, as well as user hazards. Yet a simple push-button release allows quick disconnects by untrained personnel.

The economically priced D Series connectors are available in 3, 7, 9 and 12 position modules. Each incorporates the Hypertac ${ }^{\circledR}$ low insertion force contact for unique operational and cost efficiency.

Now you can have it all...in long-life, user-
friendly circular connectors for medical, personal computer and other equipment. End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC ${ }^{\circledR}$:

Inserting pin into hyperboloid sleeve.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The C25, C26, E25, C50, and C51 are available now. The C28 is sampling now and will be in production in the first quarter of 1993. The C53 is sampling now and will be in production in the fourth quarter of 1992.
COST: C25 (33 MHz), \$13; C25 (40 MHz), \$13.50; E25, \$67; C26, \$15; C50, \$106; C51, \$33; C53, \$50 (C25 quantity 1, all others, quantity 1000).
SECOND SOURCE: None.
DESCRIPTION: These chips make up the second and third generation of the vendor's fixed-point DSP family. They offer higher performance than the first-generation chips and are easier to use. For many applications, the C25's price has fallen to a point where the chip is replacing the C1X. The C5X parts are enhancements to the C25. They use the same basic core archi-

Texas Instruments Inc Semiconductor Group Box 809066
Dallas, TX 75380
(214) 995-6611, ext 3990

Circle No. 679
tecture as the C25 but have double the performance level, additional on-chip peripherals, and expanded memory. New family members include the C28 (which expands memory and adds a power down mode to the C25) and the C53 (which expands memory to the C5X).

FEATURES: The C2X chips come in 78 -, 98 -, and 125 -nsec cycle-time versions. The C5X chips come in 35 - and $50-\mathrm{nsec}$ cycle-time versions.
On-chip memory: The C25 has a $4 \mathrm{k} \times 16$-bit program ROM and a 544×16-bit data RAM. The C26 has a $1.5 \mathrm{k} \times 16$-bit program RAM with boot ROM to load programs from external memory and a 544×16-bit data RAM. The C28 has an $8 \mathrm{k} \times 16$-bit program ROM and 544×16-bit data RAM. The C50 has a $9 \mathrm{k} \times 16$-bit program/data RAM and a 1056×16-bit dualaccess RAM. The C51 has an $8 \mathrm{k} \times 16$-bit program ROM, a $1 \mathrm{k} \times 16$-bit program/data RAM, and a 1056×16-bit dualaccess RAM. The C53 has an $16 \mathrm{k} \times 16$-bit program ROM, a $3 \mathrm{k} \times 16$-bit program/data RAM, and a $1 \mathrm{k} \times 16$-bit dual access RAM.
Program and data memory are combined off chip.
The C2X and C5X can address $64 \mathrm{k} \times 16$-bit program and $64 \mathrm{k} \times 16$-bit data memory.
The C25 and C26 have one serial port each. The C5X has two serial ports.
Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 32 -bit accumulator.
32-bit ALU.

The C5X has a separate 16-bit parallel logic unit for manipulating bits without affecting the contents of the accumulator.
16 -bit left barrel shifter.
Single 32-bit accumulator.
Next-instruction-repeat looping. Only the C5X has zerooverhead block looping.
Immediate, direct, indirect, and bit-reversal addressing modes. C5X also has circular addressing.
No DMA.
8-level expandable hardware stack.
C5X has a 1 -level-deep shadow RAM, which stores some registers.
C2X has three external interrupts; C5X has five.
Hardware wait states. C5X also has software-programmable wait states.
The C5X has an on-chip emulation port.
The C2X is source-code compatible with the C5X.
The C5X has a JTAG interface.
The C25 and C26 have an idle mode. The C28 and the C5X have a power-down mode.
Packaging: C25 and C26, 68-pin PGA or PLCC. C28, 80-pin QFP. C50, C51, and C53, 132-pin QFP.

SUPPORT
SOFTWARE

C compiler.
Source-level debugger.
Assembler/linker.
Simulator.
Application library.
Many third-party support tools.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now
COST: Z89C00, \$15 (100), \$5 (25,000).
SECOND SOURCE: None.

Zilog Inc
210 E Hacienda Ave
Campbell, CA 95008
(408) $370-8000$

FAX (408) 370-8056
Circle No. 680
as a stand-alone device. In 1993 they will introduce an enhanced version that will be code compatible with the Z89C00. The device is made with a process that can be made to operate at 3 V .

DESCRIPTION: Zilog created the Z89C00 to let them provide system-level μ Cs with on-chip DSP capability. They consider the Z89C00 to be a competitive DSP chip and are supporting it

FEATURES: 100-nsec cycle time.
On-chip memory: $4 \mathrm{k} \times 16$-bit program ROM and dual 256×16-bit data RAM.
$64 \mathrm{k} \times 16$-bit off-chip program ROM.
Can access external memory via eight 16 -bit memory locations.
Intended to interface to FIFO, DMA controller, or $\mu \mathrm{C}$.
16 -bit parallel I/O, two output flags, and two input flags.
Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point result, but only the top 24-bits are usable.
24-bit ALU.
No barrel shifter.

Single 24-bit accumulator.
No zero-overhead looping.
8 address registers. Circular buffering supported.
No on-chip cache.
No DMA.
6 -level hardware stack.
3 external interrupts.
Hardware wait states.
Power down via external pin.
No on-chip emulation.
Packaging: 68-pin PLCC.

HARDWARE
SUPPORT
SOFTWARE
Assembler/linker.
Simulator.
C compiler.
Source-level debugger.
Application library.
TMS320 to Z89C00 assembly code translator.

EMS II High Power Switchers. You've never seen power this clean.

The new EMS II Series Switch Mode DC Power Supplies give you clean power, every time...with no glitches, spikes or headaches. In fact, they handle the highest load of power per cubic inch in the industry. Here are some more features to make your decision easier:

- 50mV P-P PARD, 35mV typical
- 0-3 VDC @ 600A to 600 VDC @ 16A
- Models available from 600 Watts to 15,000 Watts, $1 \varnothing$ and $3 \varnothing$
- No derating required
- Overload and short circuit protection
- IEEE-488 programmability and RS-232.

The EMS II DC Switchers. They can wash away your high power problems... once and for all. For more information or literature, contact:

POWER To Configure

MegaPAC ${ }^{\text {TM }}$ W
Power: Up to 1200 Watts
Input: 110/220 VAC, strappable; 300 VDC
Outputs: 1 to 8 isolated and fully regulated, 2 to 95 VDC
Size: $\quad 11.8^{\prime \prime} \mathrm{L} \times 6.0^{\prime \prime} \mathrm{W} \times 3.4 \mathrm{H}$

Plug into instant power supply configurability with the new MegaPAC switcher from our Westcor division. MegaPAC outputs can be configured in virtually an infinite number of voltage and power combinations using up to 8 slide-in

ModuPAC ${ }^{\text {TM }}$ assemblies. Want to change a voltage or power level at your factory or at a customer site? No problem. . .shut down input power, slide out the ModuPAC you want to replace and slide in the new one. It's that simple.

MegaPAC's instant configurability takes Westcor's popular StakPAC to the next level of customization and flexibility. And its improved manufacturability means a substantial price reduction too! At the heart of each plug-in ModuPAC is a standard Vicor VI-26X series DC-DC converter module. . .over 1 million are operating reliably in systems world-wide. With potential applications around the globe, MegaPAC is designed to meet stringent UL, CSA, and IEC safety standards (approvals in process).

So take the risk out of specifying your system power supply. Contact us today and request ordering information. . .then sit back and relax. . . your custom-tailored MegaPAC will be delivered within four weeks.

Call VICOR EXPRESS (800) 735-6200 for information and be sure to ask for a MegaPAC data sheet. Or call WESTCOR (division of Vicor) at (408) 395-7050. Fax us at (508) 475-6715 or (408) 395-1518.

VICOR Corporation
23 Frontage Road, Andover, MA 01810

Component Solutions For Your Power System

32/40-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: The ADSP-21020 and ADSP-21010 are now in production.
COST: ADSP-21020, 33-MHz, \$220 (1000); ADSP-21020, 20-
$\mathrm{MHz}, \$ 176$ (1000); ADSP-21010, $12.5-\mathrm{MHz}, \$ 49.90$ (100).
SECOND SOURCE: None.

Analog Devices Inc
Box 9106
Norwood, MA 02062
(617) 461-3881

Circle No. 681
bly language along with high-level-languange support. The ADSP-21010 is a new lower-cost addition to the family. It lacks only the 40 -bit floating-point support.

DESCRIPTION: This family has an off-chip Harvard architecture and is similar to the fixed-point 2100 family. On-chip emulation is supported via a JTAG port. The device conforms to the IEEE-754 floating-point standard. It has an algebraic-like assem-

FEATURES: 21020 has 30-, 40-, and 50-nsec cycle-time versions. 21010 has $80-$ nsec cycle time.
One 32 -bit and one 24 -bit address bus.
One 40-bit and one 48 -bit data bus.
Seven 40-bit additional buses in the CPU.
Separate program, and data buses (off-chip Harvard Architecture).
$4 \mathrm{G} \times 40$-bit external data memory and $16 \mathrm{M} \times 48$-bit external program memory.
One 32-bit timer.
IEEE-754 32-bit and 40-bit floating point format. 21010 supports only 32-bit format.
Multiplier accepts 32 and 40 -bit floating-point data and returns 32 or 40 -bit results. 32 -bit fixed-point operands produce 64 bit fixed-point products. The multiplier also incorporates dual 80 -bit fixed-point accumulators.
ALU accepts 32 and 40-bit floating-point data and returns 32 or 40 -bit results. 32-bit fixed-point operands produce 32-bit results.

Parallel multiplier and ALU operate in single cycle.
32 -bit bidirectional barrel shifter (64 -bit result).
3240 -bit register-based accumulators.
Zero overhead looping.
32×48-bit instruction cache.
Cache optimizes performance by selecting only 3-bus-operation instructions for storage in cache. Cache can be frozen to keep often-used instructions in cache.
Register, direct, indirect, immediate, relative, circular-buffer, and bit-reversed addressing modes. Two independent address generators.
The hardware stack is 20 deep and can be expanded into main memory.
Four external vectored interrupts.
Four bidirectional I/O flags.
Hardware- and software-programmable wait states.
JTAG support of in-circuit emulation.
IDLE state for low-power mode.
Packaging: 223 -pin ceramic PGA and 304 -pin PQFP.

HARDWARE
Full-speed in-circuit emulator.
Demo board for IBM PC.
Evaluation package.
Third-party support: Contact Analog Devices for a list of thirdparty vendors.

SUPPORT

SOFTWARE

Optimizing ANSI C and Numerical C compilers.
Source-level debugger for ANSI C/Numerical C.
Simulator, Assembler, Linker, PROM Splitter.
Application libraries.
Third-party support includes real-time multitasking operating system (SPOX), filter design packages with code generation, block-level algorithm development package.

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY:The DSP32C and DSP3210 are available now.
COST: DSP32C, $\$ 70$ (1000); DSP3210, $\$ 50(100,000)$.
SECOND SOURCE: None.

DESCRIPTION: The DSP32C has one of the simplest architectures of the 32-bit floating-point DSP chips. It uses a single 4 M -word linear memory space instead of the separate program and data memory common in other DSP chips. You can access the single address bus and single data bus as many as four

AT\&T Microelectronics
Dept 52AL300240
555 Union Blvd
Allentown, PA 18103
(800) 372-2447, ext 796; in Canada, (800) 553-2448, ext 796
Circle No. 682
times per cycle. You can access each internal memory as many as two times per cycle. The DSP3210, along with the VCOS operating system, is intended for use on the mother board of personal computers and workstations where it shares memory with the host.

FEATURES: 80 - and 100-nsec cycle-time versions.
Single address and data buses. Each can be accessed as many as four times per cycle to imitate separate buses.
DSP32C has three on-chip 512×32-bit RAMs. Optional ROMbased DSP32C replaces one RAM with a $4 \mathrm{k} \times 32$-bit ROM. DSP3210 has two $1 \mathrm{k} \times 32$-bit RAMs and a 256×32-bit boot ROM.
The DSP32C can address as much as $4 \mathrm{M} \times 32$-bits of external memory. The DSP3210 can address 4G bytes of external memory.
All memory is a general resource; both program and data can exist anywhere.
Data addressable as 8 -, 16 -, or 32 -bit words
DSP3210 can load program from external EPROM.
The DSP32C has on-chip serial and parallel I/O. The DSP3210 has serial I/O, timer, DMA controller, and a 32-bit bus interface that is compatible with Motorola and Intel μ Ps.
The serial I/O is a double-buffered port that allows concurrent input and output of 8 -, $16-24$-, or 32 -bit data widths.
The DSP32C has an 8- or 16 -bit parallel I/O port that an external $\mu \mathrm{P}$ can control.
Proprietary 32 -bit floating-point format.
Single-cycle conversion to/from nonstandard DSP32 floatingpoint format from/to IEEE-754 floating-point format.

Multiplier accepts 32 -bit floating-point data and creates 45 -bit floating-point results.
Separate floating-point adder accepts 40 -bit floating-point data and creates 40 -bit floating-point results.
Fixed-point ALU accepts 16 - or 24 -bit data.
Does not have a barrel shifter.
Four 40-bit accumulators.
Zero-overhead looping. As many as 2048 repeats of a block with a maximum size of 32 words.
Immediate, memory-direct, register-direct, register-indirect, and bit-reversal addressing modes.
You can use the DMA with both the serial I/O and the parallel I/O. No hardware stack.
1-level-deep shadow RAM of some registers.
Two external interrupts.
Hardware wait states. DSP3210 has software-programmable wait states.
No on-chip emulation port.
Only the DSP3210 has a low-power mode.
DSP32C packaged in a 164 -pin PQFP, 133 -pin PGA, or 68 -pin PLCC ($\mu \mathrm{C}$ version, no external memory).

HARDWARE	
In-circuit emulator.	SUPPORT
IBM PC-based development board.	Optimizing C compiler.
VME bus-based development board.	Assembler/linker.
Many third-party support tools, including the HP64773 in-circuit	Simulator.
emular from Hewlett-Packard. Contact AT\&T for a list of	
third-party vendors.	

46\% BOARD SAVINGS

IDT's new 16-, 18-, and 20-bit Double-Density FCT-T Logic family offers the performance of two octal logic devices in one flow-through 48- or 56 -pin high-density, JEDEC-standard, shrink small outline package (SSOP) or Cerpack, for twice the functionality in half the board space.

A Widebusm Upgrade

IDT's Double-Density logic family is more than twice as fast as ACT, uses 35% less power than ABT, and it's form-, fit-, and function-compatible with both
of TI's Widebus families. The Double-Density family also offers typical pin-to-pin skew of 250 ps and quiescent supply current at 0.05 mA (typ.).

3 Application Choices

5V High Output Drive
Ideal for low-impedance bus and backplane applications.
5V Balanced Drive (Low Noise)
Contains on-chip, source-terminating resistors to minimize signal noise. These devices are ideal for driving point-to-point transmission lines and highly capacitive loads, such as a bank of DRAMs or SRAMs.

DOUBLE-DENSITY CONFIGURATION	IOH	IOL	tPD (Max.)	ICCQ (Typ.)	PIN-TO-PIN SKEW (Typ.)	GND BOUNCE (Typ.)
High Drive	-32 mA	+64 mA	4.1 ns	0.05 mA	250 ps	$<1.0 \mathrm{~V}$
Balanced Drive	-24 mA	+24 mA	4.1 ns	0.05 mA	250 ps	$<0.6 \mathrm{~V}$
3.3V	-8 mA	+24 mA	4.8 ns	0.05 mA	250 ps	$<0.3 \mathrm{~V}$

3.3V Low-Power Logic

Designed for regulated or unregulated 3.3 V power supplies, these devices use less power than 5 V parts, without sacrificing high speed. 5 V -to- 3.3 V unidirectional and bidirectional translators are also available.

Free Samples

Call today for free samples and a copy of the new High-Performance Logic Data Book and start your Double-Density logic design today!

Integrated
Device Technology, Inc.

What do designers of notebook computers and other battery-powered systems get with Siliconix' new power conversion chip set?

That means higher power conversion efficiency, smaller system size, both 3.3-V and 5-V compatibility and longer battery life. DC/DC conversion at 94\% measured efficiency.
This high-efficiency produced by our new power conversion chip set, the Si9150DY Sychrononous Buck Converter and the Si9942DY LITTLE FOOT ${ }^{\text {Tw }}$ MOSFET allows your DC/DC converter to run cooler and adds about 10% to battery life during normal operation. And in sleep mode it only consumes $100 \mu \mathrm{~A}$, to extend battery life by 1000%.

The smallest and simplest highefficiency solution available.
The controller, in a tiny SO-14 package, is highly integrated and requires few external parts. Team it with our LITTLE

FOOT SO-8 to achieve
the most compact
converter design possible.
Our Si9150 design man-
ual includes complete
instructions for building
your DC/DC converter.
The bottom line result ...
your product gets to market faster!

Operating voltage options.
Many "next-generation" designs are employing lower, and sometimes multiple operating voltages. That's why our Si9150DY/Si9942DY buck converter takes unregulated battery voltage and converts it into 5.0 V or 3.3 V .
Get more bang for your buck converter!
For OEM quantities, prices of this 94% efficient power conversion chip set can be yours for less than $\$ 3.00$.
More power efficiency, more compact design, and more voltage options are as close as your local Siliconix sales office. Or call toll-free hot line now! (0635) 30905, ext. 970 . Ask for the "More Bang for your Buck" Design Manual.
Siliconix
Weir House, Overbridge Square, Hambridge Lane, Newbury, Berks RG14 5UX

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Available now
COST: 96002 ($33 \mathrm{MHz)} \mathrm{costs} \mathrm{\$ 368;} 96002$ ($40 \mathrm{MHz)} \mathrm{costs} \$ 441$.
SECOND SOURCE: None.

DESCRIPTION: The 96002 is an architectural superset of the fixed-point 56001. The 96002 continues Motorola's emphasis on precision. The 96 -bit accumulators will support future double-precision parts. The 32 -bit floating-point device con-

Motorola Inc

Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030

FAX (512) 891-0400
Circle No. 693
forms to the IEEE-754 floating-point standard. The dual 32-bit external buses support glueless multi-96002 systems. The external buses can access external memory and peripherals or communicate with a host $\mu \mathrm{P}$.

FEATURES: 50 -, 60 -, and 74 -nsec cycle-time versions.
Three 32-bit address buses and five 32-bit data buses on chip. Separate address buses for program and the two on-chip RAMs.
Separate data buses for program, the two on-chip RAMs, global data, and DMA.
On-chip memory includes a $1 \mathrm{k} \times 32$-bit program RAM, a 64×32 bit boot ROM, dual 512×32-bit data RAMs, and dual 512×32-bit data ROMs.
On-chip boot ROM loads program from external byte-wide EPROM.
Revised version will let the internal $1 \mathrm{k} \times 32$-bit program RAM function like an instruction cache.
Two complete 32-bit external expansion ports for memory and I/O.
Three separate memory spaces (X, Y, and P). Each can address 4G words.
Each memory space is divided into eight 0.5 G -word areas. Each can be programmed to either the A or B expansion ports.
Two host interfaces allow interface to $\mu \mathrm{P}$ or other 96002s. No other on-chip peripherals.

HARDWARE

SUPPORT

SOFTWARE

Hardware evaluation system includes in-circuit emulator.
Some third-party hardware products are available. Contact Motorola for a list of third-party vendors.

IEEE-754 32-bit floating-point format.
Multiplier accepts 32-bit floating-point data and returns 44-bit results. Multiplier accepts 32 -bit integer data and returns 64-bit results.
32-bit bidirectional barrel shifter
Ten 96 -bit or thirty 32 -bit register-based accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversal addressing modes.
Two address ALUs.
Supports DMA. Uses its own internal bus and doesn't cyclesteal. Can use all of the addressing modes, including bitreversal, with the DMA controller.
The stack is 15 levels deep, expandable into main memory.
Three external vectored interrupts.
Hardware and software-programmable wait states.
Serial debug port for in-circuit debugging.
Low-power mode.
Packaged in a 223-pin PGA.

Optimizing C compiler.
Assembler/linker.
Simulator.
Application library.
GNU C compiler and source-level debugger.
Third-party support includes optimizing C compiler, block-level diagramming language, filter-design software, and real-time operating system (SPOX).

32-BIT FLOATING-POINT CMOS PARALLEL DSP $\mu \mathrm{P}$

AVAILABILITY: Preproduction available now. Production quantities in fourth quarter of 1992.
COST: Pre-production \$390 (100). Production \$250 (5000).
SECOND SOURCE: None.

DESCRIPTION: This device was designed for applications that require the performance of parallel processing. It is upward compatible with the C30 but adds six 32-bit FIFO dual-buffered communication ports, two complete 32 -bit external buses, an analysis module that supports multiprocessor debugging via a

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 336-5236, ext 700

Circle No. 685
JTAG interface, and a 4G-word address space. The chip also features single-cycle conversion to/from the IEEE floating-point standard and a cycle time of 40 nsec . Each communication port can transfer data to/from another C40 at $20 \mathrm{Mbytes} / \mathrm{sec}$ without any external logic.

FEATURES: 40 - and $50-\mathrm{nsec}$ cycle time.
Four 32-bit address buses and three 32 -bit data buses.
Two 32 -bit and two 40 -bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allows two accesses per cycle.
Any of the separate memories can be used for program or data.
Two on-chip $1 \mathrm{k} \times 32$-bit RAMs and a $4 \mathrm{k} \times 32$-bit ROM.
Dual 32 -bit external buses. Each has a 31-bit address, so the 4G-word memory is equally divided between the two buses.
Six independent 32 -bit communication ports for glueless communications between C40s. Separate 8×32-bit FIFOs for input and output buffering.
No on-chip serial ports. Two 32 -bit timers.
Proprietary 2's complement 32-bit floating-point format.
Single-cycle conversion to/from the IEEE-754 32-bit format.
Multiplier accepts 32 -bit floating-point data and returns 40 -bit floating-point data. 24 -bit integers result in 32 -bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data.

Parallel multiplier and ALU operations in a single cycle. 32-bit bidirectional barrel shifter.
Twelve 40-bit register-based accumulators.
Single-instruction and zero-overhead block looping.
128×32-bit instruction cache.
You can disable cache when it's not needed and freeze it to keep an often-used portion of code available in the cache.
Register, direct, indirect, immediate, relative, circular, and bitreversed addressing modes. Two address ALUs.
6 -channel DMA controller for concurrent I/O and CPU operation. Transmitting DMA can control the operation of the receiving DMA, so setup for DMA transfer will not affect CPU.
Hardware pointer to software stack.
Four external vectored interrupts.
Hardware- and software-programmable wait states.
JTAG-based debug port controls the analysis module, which functions as an in-circuit emulator. Multiple C40s can be debugged via JTAG interface.
Packaged in a 325 -pin ceramic PGA.

HARDWARE

Development system includes in-circuit emulation via JTAG interface.
4-processor host-independent evaluation board.
Third-party support. Contact TI for a list of vendors.

Optimizing ANSI C compiler with parallel-processing runtime support.
Source-level debugger. Assembler/linker. Simulator.
Application library.
Third-party support includes SPOX, Helios, 3L, parallel C and Ada operating systems and languages.

Sony Makes The Chir. Sun Makes The History.

Sun Microsystems' new SPARCstation 10 is fast making history running at speeds to
400 MIPS and beyond. Inside is SuperCache," a Sony-designed, 20 ns , one-meg, self-timed static RAM that's optimized for SPARC processors. The CXK77910J-20.

This synchronous "STRAM" gives Sun's power users three times more fast cache than any other workstation. You, too, can make history with Sony SRAMs and other breakthrough ICs. Call 800-288-SONY. Or FAX your current requirements
to 714-229-4333 in U.S.A., 416-499-8290 in Canada.

Custom shielding in record time.

For custom shielding, nobody helps you beat the clock-and the costslike Instrument Specialties.

Using the most modern CAD capabilities plus a half-century of EMC experience, our experts can quickly determine the best shielding for your design... often before you've built it.
With maximum flexibility and minimum tooling, our prototyping capabilities are both fast and economical. We've even dedicated an entire fabricating operation just for short runs. Our in-house design, plating, photoetching and heat treating also keep your costs down. Or we could modify our standard
shielding products to fit your application... helping you save even more time and money.

When you do decide to start full production, you'll have the complete in-house capabilities of a leading worldwide shielding supplier behind you... including wire EDM toolmaking, sophisticated fabrication techniques,
and comprehensive EMC testing-all assuring just-in-time deliveries.

So call Instrument Specialties for your next custom shielding project. Because whether you need 5 parts or 5 million, we'll be on time... and on budget.

Where Shielding is a Science
CIRCLE NO. 74

Instrument Specialties

Headquarters: Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213
Western Division: 505 Porter Way, Placentia, CA 92670 TEL: 714-579-7100 FAX: 714-579-7105
European Divigion: 3 Avenue du Progres, B4432 Alleur, Belgium TEL: + 32-41-63-3021 FAX: + 32-41-46-4862

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: The 34325 (25 MHz) costs $\$ 137$; the $34325(20 \mathrm{MHz}$) costs $\$ 124(10,000)$.
SECOND SOURCE: None.

Zoran Corp
1705 Wyatt Dr
Santa Clara, CA 95054
(408) 986-1314

FAX (408) 986-1240
Circle No. 688
architecture is optimized to perform these functions quickly. The architecture also eases programming because the programmer doesn't have to write code for complex DSP functions. The 32-bit floating-point data conforms to the IEEE-754 stan-
dard.

DESCRIPTION: The ZR34325 is a vector-signal processor, which is a DSP chip that operates on complex data and large blocks of data with single high-level instructions. The instruction set includes a single instruction to calculate an FFT, FIR filter, IIR filter, and other complex functions. The highly specialized

FEATURES: 80- and 100-nsec cycle-time versions.
Single address and data bus.
Vector instructions generally take longer to execute than to fetch, so little speed penalty is incurred with this simple bus architecture.
High-level instructions, such as those to calculate FFTs and FIR and IIR filters, simplify programming.
256×32-bit coefficient dual-port ROM and 128×32-bit dual-port RAM on chip.
No on-chip program memory.
Internal memory can be directly accessed by external device.
$16 \mathrm{M} \times 32$-bit memory space.
No on-chip peripherals.
IEEE-754 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and creates 44-bit results.
Three ALUs: two floating point and one integer. 32-bit floatingpoint data can be added to 32 bits with one ALU and to 44 bits with the other.

24-bit bidirectional barrel shifter.
Two 32-bit accumulators.
No zero-overhead looping.
Direct, indirect, register, immediate, circular, and bit-reversed addressing modes.
Address generators for internal RAM and ROM.
On-chip DMA.
Slave mode opens chip to external access.
Hardware stack maintained in main memory.
Single external interrupt.
Hardware wait states.
No on-chip emulation port.
No low-power mode.
Packaged in an 84-pin PGA or 84-pin MQFP.

HARDWARE
Hardware-development-system board. VME bus-based product for development. Third-party hardware available.

Assembler/linker/simulator (MS-DOS and VAX/VMS). Application library (MS-DOS and VAX/VMS).
PSS ADA Compiler for VAX/VMS.

When systems demand extra can shape a TMS320 to your

special DSPs, we needs.

Choosing the right DSP for your application is vital to your marketplace success. Only TI has the customizable capability and broad TMS320 family to help you get what you need.
What you want is what you get
With our unique customizable digital signal processing (cDSP) capability, you can achieve the integration and product
differentiation you want. You can choose system peripheral functions (A/D, D/A, serial ports, timers, phase comparators and oscillators), add interface logic and then integrate them all directly on proven TMS320 DSP chips. You can even change the mix of on-chip memory and peripherals. Yet device development cycles are shorter and costs are lower than with full-custom gate-level approaches.
Over the past five years, this innovative TI technology has created winning solutions for hundreds of high-volume market leaders.

Broad TMS320 family

Our more than 30 standard DSP solutions can meet the majority of your price/performance needs.
You can choose from our 16-bit fixedpoint DSPs that start at $\$ 3$ or from our 32-bit floating-point devices beginning
at $\$ 25$.
There are family members delivering 50-MFLOPS performance, EPROM and OTP DSPs and those optimized for specific applications, plus military versions.
When you want super-processing power, our parallel-processing TMS320C40 DSP allows direct pro-cessor-to-processor communications to achieve the MOPS, MBPS, MIPS and MFLOPS your design requires.

World-class support

To speed you to market faster, you can talk with TMS320 specialists, attend hands-on workshops, read over 2,000 pages of applications notes and contact more than 100 third parties and consultants.
The development environment you will use is the same as that for generalpurpose microprocessors whether you are working with a standard TMS320 or a cDSP. It includes high-levellanguage optimizing compilers, multitasking operating systems and realtime emulation.

To make your DSP match, call 1-800-336-5236, ext. 3538
You will receive information on our cDSP capability, the complete TMS320 family of devices and our world-class support. What's more, we'll send you "Designing with DSPs is Easy" - an interactive disk that gives you a personal look at TMS320 support and the TMS320 Programmer's Interface.

μ PD77240

32-BIT FLOATING-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: The 132 -pin PGA is available now. The PQFP will be available in 1992.
COST: $\$ 75$ (1000).
SECOND SOURCE: None.

DESCRIPTION: The 77240 is a 32 -bit CMOS floating-point DSP chip. The internal instruction and data ROM are preprogrammed with math matrix routines. It has two external buses:

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(800) 632-3531; (415) 965-6158
(800) 729-9288; (415) 965-6130

Circle No. 683
one for data addressing up to $16 \mathrm{M} \times 32$ bits, and the other for instruction addressing up to $64 \mathrm{k} \times 32$ bits. The vendor says the architecture suits adaptive filter applications.

FEATURES: 90-nsec cycle time.
Separate on-chip program and data buses.
On-chip memory: $2 \mathrm{k} \times 32$-bit program ROM (preprogrammed), dual 512×32-bit data RAMs, and a $1 \mathrm{k} \times 32$-bit data ROM (preprogrammed).
External memory expansion: $64 \mathrm{k} \times 32$-bit program memory and $16 \mathrm{M} \times 32$-bit data memory.
Separate external program and data buses.
The 77240 has no on-chip peripherals.
Proprietary 32 -bit floating-point format.
Multiplier accepts 32 -bit floating-point data and creates 55 -bit floating-point results.

Multiplier accepts 24-bit fixed-point data and creates 47 -bit fixed-point results.
47-bit ALU.
47-bit bidirectional barrel shifter.
Eight 55 -bit register-based accumulators.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Three address ALUs.
No on-chip DMA.
The stack is eight levels deep and is not expandable.
Two external interrupts.
No wait states.
No on-chip emulation port.
No low-power mode.
Packaging: 132-pin PGA.

HARDWARE

SUPPORT
SOFTWARE
Assembler/linker and simulator.
C compiler.

Targets Your Costs Without Compromising Your Standards.

Defense dollars have been significantly reduced but the performance demands of your system have not. IEE has NDI (non-development-item), MODIFIED NDI and OFF-THE-SHELF keyboard and display solutions to your man-machine interface requirements.

Flat Panel Displays

IEE designs and manufactures ruggedized and full-military VF, LCD and ACTFEL displays. VF displays are available with hermetically sealed and/or QPL components as well as shock mounting. Our standard LCD displays operate over a wide temperature range and can be illuminated. Our standard 3×5 and 4×8 ACTFEL displays are available in rugged and full-military configurations which can be EMI/RFI shielded.

Interactive Displays

IEE interactive displays combine VF, DC plasma, and ACTFEL displays with optical and mechanical touch switches to provide an integrated man/machine interface device. Information from a host system can be readily displayed, understood and controlled from a single assembly. Our V.I.P. ${ }^{T M}$, PEP ${ }^{T M}$ and EL interactive displays provide very sophisticated operator interface in a minimum amount of space.

Keypads and Keyboards

IEE Thinswitch, Panelswitch, Telswitch and Sealedswitch keypads are available in various standard configurations. These keypads incorporate such features as proprietary gold-plated switch domes, environmental sealing, integral illumination and EMI/RFI shielding.
Our FTMK (Full-Travel Modular Keyboard) is available with "full-travel data entry" or "snap-function" modular keyswitches. The FTMK has proven itself in the most demanding operational environments and has unequalled survivability.

Control Display Units
Our Standard Full-Military Handheld and Portable CDUs function as complete standalone man/machine interface devices. The Handheld CDU incorporates a dot matrix LCD with NVIS illumination, the Portable CDU an ACTFEL display. Both CDUs have sealed, backlit keypads. These environmentally rugged assemblies have been fully qualified and field proven.

Portable $\frac{\text { IEE }}{\frac{3}{4}}$

Zilog Microcontrollers

More Chnoices, On Target.

 offers an impressive range of microcontrollers: Every one of them aimed at optimum costl performance in your system, in your market.

The Z8 family is one of the broadest MCU lines in the industry. Choose from 1 K to 16 K R0M, and from 18 to 100 pins configured in the latest packages. It's a family of cost-effective, high-performance 8 - to l6-bit microcontrollers . . . precisely targeted for particular applications in specific markets, such as mass storage, auto, computer peripherals, speech processing, and general purpose embedded control.

Zilog's Superintegration ${ }^{\text {TM }}$ technology means more performance with fewer components. The Z8's familiar, elegant architecture guarantees ease of programming and use. Whether you need a highly sophisticated microcontroller, like the Z86C95 ${ }^{\text {TM }}$ with DSP or something much simpler, you'll find what you're looking for in the Z8 family - on target.

ASSPs are the best choice for a fast growing number of today's designs. At Zilog, we've been producing ASSPs and refining the technology in more innovative ways longer and better than anyone. We offer one of the industry's largest library of familiar cores and cells in the industry and a simple codecompatible migration path. Our own fabrication facilities provide the high standards of quality and reliability for which Zilog has always been known.

To find out more about the Z8 Microcontroller family, or any of Zilog's rapidly growing Superintegration product families, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: The C30 (27, 33, and 40 MHz) and the C31 (27, 33, and 40 MHz) are available now.
COST: C30, \$158; C30-27, \$137; C30-40, \$200; C31, \$56; C3127, \$55; C31-40, \$67 (1000).
SECOND SOURCE: None.

DESCRIPTION: This device was the first floating-point member of the vendor's TMS320 family. It is not code compatible with the fixed-point chips. The C30 is available in a slower, lower-cost version called the C30-27. The C31 is object-code

Texas Instruments Inc Semiconductor Group
Box 809066
Dallas, TX 75380
(214) 995-6611, ext 3990

Circle No. 684
compatible with the C30 and C30-27 but has only one serial port, one parallel port, and one timer. This feature reduction reduces the chip size and pin count, which lets TI offer a floatingpoint DSP for $\$ 35$ in high volume.

FEATURES: 50-, 60-, and 74-nsec cycle-time versions.
Four 24 -bit address buses and three 32 -bit data buses.
Two 32-bit and two 40-bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allows two accesses per cycle.
Any of the separate memories can be used for program or data.
Two on-chip $1 \mathrm{k} \times 32$-bit RAMs and an on-chip $4 \mathrm{k} \times 32$-bit ROM.
24 -bit external memory-address bus provides $16 \mathrm{M} \times 32$-bit total address space.
13 -bit external- $1 / \mathrm{O}$ address bus provides $8 \mathrm{k} \times 32$-bit I / O ports, which are mapped into the 16 -Mbyte address space.
Two 8-, 16-, 24-, and 32 -bit serial I/O ports. Two 32 -bit timers.
Proprietary 2's complement 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and returns 40 -bit floating-point result. 24-bit integers result in 32-bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data.

Parallel multiplier and ALU operations in a single cycle. 32-bit bidirectional barrel shifter.
Eight 40 -bit register-based accumulators.
Single-instruction and zero-overhead block looping.
64×32-bit instruction cache.
Cache can be disabled when not needed and frozen to keep an often used portion of code available in the cache.
Register, direct, indirect, immediate, relative, circular, and bitreversed addressing modes. Two address ALUs.
DMA controller allows concurrent I/O and CPU operation.
Hardware pointer to software stack.
Four external vectored interrupts.
Hardware- and software-programmable wait states.
Serial debug port can provide in-circuit emulation.
Packaging: C30, 180-pin PGA. C30-27, 180-pin PGA. C31, 132pin QFP.

HARDWARE - SUPPORT

SOFTWARE

Full-speed in-circuit emulator for IBM PC and Sun workstations. Evaluation module plugs into an IBM PC.
Significant third-party support. Contact manufacturer for a list of third-party vendors. Hewlett-Packard has a version of the HP64700 in-circuit emulator for the C30.

Optimizing ANSI C compiler. Source-level debugger and code profiler. (PC or Sun).
Assembler/linker. Simulator. (PC or Sun).
Application library.
Third-party support includes real-time multitasking operating system (SPOX), Ada compiler, filter-design packages, and block-level diagramming language.

16-bit FIXED-POINT DSP CHIP SET

AVAILABILITY: Now.
COST: a66111, 40-MHz, \$700; a66211, 40-MHz, \$680; a66311, $40-\mathrm{MHz}$, \$520 (1).
SECOND SOURCE: None.

Array Microsystems Inc
1420 Quail Lake Loop
Colorado Springs, CO 80906
(719) 540-7999

FAX (719) 540-7950
Circle No. 686

DESCRIPTION: The a661XX combines arrays of adders, multipliers, and ALUs for high-performance DSP applications. The a662XX provides system control and five address generators for FFT applications. The a663XX is a reconfigurable
memory array that can be used with the family to reduce chip count. A 1024-point complex FFT can be calculated in $131 \mu \mathrm{sec}$. DSP operations are controlled by high-level DSP instructions.

FEATURES: $30-$ and $40-\mathrm{MHz}$ versions.
Internal block floating-point maintained by a661XX.
16 high-level instructions execute FFT and general-purpose operations.
a662XX has 32 -word instruction store for DSP programs.
Unlimited program size via external memory.
Directly supports up to 64 k -point complex or 128 k -point real data frames.
Simultaneously generates up to five 16 -bit addresses to control memory array.

Program can be initialized by host $\mu \mathrm{P}$ or automatically booted from ROM.
a663XX contains 64 k -bit of configurable static RAM.
One a66111, one a66211, and three a66311 chips create a complete 1024-point double-buffered FFT engine.
Multichip-module version being developed.
MIL-883 versions available.
Packaging: 144 -pin PGA.

Software development environment includes code generator, assembler, and graphical interface.

Our free information kit will change the way you pinpoint problems in your digital design.

If you only rely on an oscilloscope to locate flaws in your digital design, you're playing a game of trial-and-error.

Want some free advice?
Then order HP's information kit on the tool that can increase your test capabilities: the logic analyzer. You'll learn how a logic analyzer lets you view multiple channels at once, and see them the same way your hardware does - information your scope alone just can't analyze.

Your kit includes the invaluable book Feeling Comfortable with Logic Analyzers. Plus handy
information that reveals when to use your scope and when to use a logic analyzer.

Order your free digital debugging info kit today. And see how easy it is to hit the bull's-eye.

Call 1-800-452-4844 and ask for Ext. 3315 to get your free debugging info kit.

In Canada call
1-800-387-3867, Dept. 456.

There is a better way.

24-bit FIXED-POINT DSP CHIP SET

AVAILABILITY: Now.
COST: LH9124, \$1200; LH9320, \$260 (100).
SECOND SOURCE: None.

Sharp Electronics Corp
5700 NW Pacific Rim Blvd, Suite 20
Camas, WA 98607
(206) 834-2500

FAX (206) 834-8903
Circle No. 687
to support DSP algorithms. High-level DSP commands simplify software generation. A 1024-point complex FFT can be performed in $81 \mu \mathrm{sec}$.

FEATURES: $33-$ and $40-\mathrm{MHz}$ versions.
LH9124 maintains internal block floating-point.
26 high-level instructions execute FFT and general-purpose operations.
Multiple units can be paralleled or cascaded for higher performance.

Data width can be 8 - to 24 -bit real or complex.
No on-chip memory.
Packaging: LH9124, 262-pin PGA; LH9320, 68-pin PLCC.

System-validation card for each chip.
Evaluation module.

PC-based real-time simulator.
Object-oriented high-level-language development system.

Don't let 3V stop your Design.

Linear's High Performance VoltSavers.'m

Nobody offers you a bigger selection of high performance 3 V analog parts than Linear Technology. We've been helping customers solve high speed, precision low power design problems with 3 V analog solutions for years.

Our family of Voltsaver products covers a wide spectrum of 3 V linear functions. Guaranteed performance at 3 V levels allows you to work with confidence at this new power supply voltage. Power supply circuits are available to operate down to 2 V and below or regulate 5 V down to 3 V . Micropower low dropout and micropower switching regulators reliably give 3.3 V or 5 V in portable systems, and 3 V high-side switches provide power management. Op amps and instrumentation amplifiers have guaranteed performance at 3 V and

3 Volt Family of Products

below. Also, RS232 interface circuits are designed to operate with the new 3.3 V logic levels.

Voltage references with guaranteed temperature performance are available at 1.2 V and 2.5 V -ideal for 3 V systems. Micropower comparators that operate on 3 V , down to as low as 1.1 V , can provide system resets as well as battery detection. A full line of 8-bit, 10-bit and 12-bit analog to digital converters are available with guaranteed specifications for 3 V operation. Also, microprocessor supervisory circuits for 3.3 V applications are available.

Call today for our Design Note 56 "3.3V Operation of Op Amps" and our 3V Selection Guide. For details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035/408-432-1900. For literature only call 800-637-5545.

CMOS switches develop negative voltage

Ľubomir Gálfy, Ústav Automatizácie a Komunikácie, Severná, Československo

The simple negative-voltage converter in Fig 1 works over an input range of 3 to 9 V with an internal resistance ranging from 2000 to 400Ω (depending on input voltage and output loading). The converter's negative output is nearly equal in magnitude to the input voltage. Resistor R_{1}, capacitor C_{1}, and switches $\mathrm{IC}_{1 A}$ and $\mathrm{IC}_{1 \mathrm{~B}}$, functioning as inverters, form an RC oscillator. Switches $\mathrm{IC}_{1 \mathrm{~B}}$ and $\mathrm{IC}_{1 \mathrm{C}}$ alternately charge C_{2} from V_{IN} and discharge C_{2} into C_{3}.

If you use a 74 HC 4053 instead of a CD4053, the circuit will have a lower internal resistance, but function only over a $\mathrm{V}_{\text {IN }}$ range of 2 to 5 V . If the negative output is greater in magnitude than the input, the circuit can feed energy back from output to input.
EDN BBS /DI_SIG \#1184
To Vote For This Design, Circle No. 748

Fig 1-Cleverly using analog switches as inverters in an RC oscillator, this circuit will produce a negative output nearly equal in magnitude to its supply voltage.

Hartley transform beats FFT for DSP μ Ps

Vladimir Bochev, Université De Nancy, Nancy, France

BBS Bergland's well-known algorithm for the FFT (Ref 1) has drawbacks in light of modern DSP μ Ps. His algorithm decreases the memory requirements and the number of operations of a bitreverse FFT by a half. But Bergland's FFT has a much more complicated addressing scheme compared with the simple bit-reverse for the complex FFT.

The Hartley transform is a real transform for a real signal. Furthermore, the inverse-transform algorithm is exactly the same as the forward transform. The
overspeculated fast Hartley transform (Refs 4 and 5) better suits DSP μ Ps such as the TMS320C25. The fast Hartley transform is not faster than real valued FFTs and requires the same storage. It requires even a few more operations (Refs 6 and 7) to obtain a meaningful frequency spectrum. But the fast Hartley transform is faster than complex FFTs and requires less storage.

Its real-valued nature and the low memory requirements along with easy address generation makes the
fast Hartley transform the algorithm of choice for frequency analysis of real-time signals on DSP microprocessors.

The listings are much too long to be printed here. But you can find source code and examples that you can run of both the Bergland FFT and Hartley transforms, along with some handy utilities, posted on the EDN BBS. After obtaining the files, you can call the program fft_real, written in 80×86 assembly language, directly from a C program running on your PC. fft_real is very easy to understand-especially the section on the butterfly computations. To simplify generating addresses for the data and coefficient array, all addresses are precomputed and stored in an include file, as are the sine and cosine values needed.

No one should be foolish enough to try to input by hand the contents of these include files. Three pro-grams-bergland.c, sintab.c and hex2asca.c generate the include files. The first program generates a table of all the addresses needed by this kind of FFT. The second generates two files which contain the sine and cosine values needed by the FFT. All three generated files are in a binary format, so the third program, hex2asca.c will convert them to text files containing the proper declarations for the assembler.
fht.tms provides the source code for a fast Hartley transform for the TMS320C25. fht.tms requires its own coefficient table containing $\tan (x)$ and $\sin (x)$ from $x=0$, up to-but not including- $\pi / 2$. A procedure similar to
sintab for the Bergland FFT will generate the table in for the fast Hartley transform. To make an include file you'll need to slightly modify hex2asca.c to emit, for example, DATA statements instead of "dw", and also the proper "hex" header and not suffix " h ".
EDN BBS /DI_SIG \#1183
EDT
To Vote For This Design, Circle No. 749

References

1. Bergland, Glen D, "A Fast Fourier Transform Algorithm for Real Valued Series," Communications of the ACM, Vol 11, No. 10, Oct 1968.
2. Martens, J B, "Discrete Fourier Transform Algorithms for real valued sequences," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol ASSP-32, pgs 390-396, April 1984.
3. Sorensen, Henrik V et al, "Real-Valued Fast Fourier Transform Algorithms," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol ASSP-35, No. 6, June 1987.
4. O'Neill, Mark A, "Faster than Fast Fourier," BYTE, April 1988.
5. Le Ngoc, Tho et al, "Implementation and performance of the Fast Hartley Transform," IEEE Micro, October 1989.
6. Buneman, Oscar, "Conversion of FFTs to Fast Hartley Transforms," SIAM Journal Scientific Statistical Computation, Vol 7, No. 2, April 1986.
7. Sorensen, Henrik V et al, "On Computing the Discrete Hartley Transform," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol ASSP-33, No. 4, October 1985.

VHDL "wait" statement inserts registers

Steve Carlson, Synopsys Inc, Mountain View, CA

The circuit in Fig 1 illustrates how a logic synthesizer interprets the VHDL (VHSIC hardware-descriptionlanguage) wait statement (Listing 1). In the Listing, the wait keyword tells the logic synthesizer to store

Fig 1-A logic synthesizer will generate a register like this one in response to a VHDL wait statement in the listing.
certain logic values. The synthesizer then inserts regis-
 To Vote For This Design, Circle No. 750

```
    Listing 1-VHDL wait example
entity VHDL is
    port(
        ENABLE : in BIT;
        CLOCK : in BIT;
        TOGGLE : buffer BIT
    );
end VHDL;
architecture VHDL_1 of VHDL is
begin
    process begin
        wait until not CLOCK'stable and CLOCK = '1';
        if (ENABLE = '1') then
            TOGGLE <= not TOGGLE;
            end if;
    end process;
end VHDL_1;
```


up to 35 dB 10 to 1000 MHz \$5995

TOAT-R512
ZFAT-R512 Accuracy (dB) $(+1-\mathrm{dB}$

TOAT-124 ZFAT-124 Accuracy (dB) $(+/-d B)$

$\mathbf{0 . 5}$	$\mathbf{0 . 1 2}$	$\mathbf{1 . 0}$	$\mathbf{0 . 2}$	$\mathbf{3 . 0}$	$\mathbf{0 . 3}$	$\mathbf{4 . 0}$	$\mathbf{0 . 3}$	$\mathbf{5 . 0}$	$\mathbf{0 . 3}$
$\mathbf{1 . 0}$	$\mathbf{0 . 2}$	$\mathbf{2 . 0}$	$\mathbf{0 . 2}$	$\mathbf{6 . 0}$	$\mathbf{0 . 3}$	$\mathbf{8 . 0}$	$\mathbf{0 . 3}$	$\mathbf{1 0 . 0}$	$\mathbf{0 . 3}$
1.5	0.32	3.0	0.4	9.0	0.6	12.0	0.6	15.0	0.6
$\mathbf{2 . 0}$	$\mathbf{0 . 2}$	$\mathbf{4 . 0}$	$\mathbf{0 . 3}$	$\mathbf{1 0 . 0}$	$\mathbf{0 . 3}$	$\mathbf{1 6 . 0}$	$\mathbf{0 . 5}$	$\mathbf{2 0 . 0}$	$\mathbf{0 . 4}$
2.5	0.32	5.0	0.5	13.0	0.6	20.0	0.8	25.0	0.7
3.0	0.4	6.0	0.5	16.0	0.6	24.0	0.8	30.0	0.7
3.5	0.52	7.0	0.7	19.0	0.9	28.0	1.1	35.0	1.0

Price \$ (1-9 qty) TOAT \$59.95/ZFAT \$89.95
bold faced values are individual elements in the units

Finally...precision attenuation accurate over 10 to 1000 MHz and $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50 -ohm components perform with $6 \mu \mathrm{sec}$ switching speed and can handle power levels typically to +15 dBm . Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only $\$ 59.95$ (1-9 qty); ZFAT SMA versions are $\$ 89.95$ (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.

CIRCLE NO. 84

PROBE QUAD FLATPACKS

With the QFP Emulator Foot

- Solder in place or put into socket.
- Then plug a SocketTest Probe assembly onto the foot. The SocketTest probe assembly available in ZIF or production sockets with probing header for each pin with annotated overlay.
- Excellent lead coplanarity for reliable solder connection.
- Custom overlays and configurations available on request.
- Available in many sizes.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 85

Starlights: A new fuseholder generation
Yet another innovative result of Wickmann technology. Fuseholders for $5 \times 20 \mathrm{~mm}$ and $6,3 \times 32 \mathrm{~mm}$ fuses feature extra solid contact pins, compatibility with existing shock-safe fuseholders, and sealed terminals. Now everyone can afford superior circuit protection.

Wickmann-Werke GmbH
Postbox 2520 •D-5810 Witten6 • Tel. 02302/6620 Fax02302/66 2219

When space is af a premium, stacking makes a lot of sense.

Micro/Q ${ }^{\circledR}$ 3500SM noise decoupling capacitors save valuable board space by surface mounting below PLCC packages.

In today's high-density designs, you need to maximize every square inch of PC board space. The low profile of the Micro/Q 3500SM makes it easy to mount under the PLCC, saving space and improving noise suppression at the same time.

Surface mounting under the PLCC increases board density by eliminating the need for traditional decoupling
capacitors around the perimeter of the IC package. This "stacking" technique also helps to lower inductance and impedance compared to conventional multi-layer capacitors.

Very thin ($0.020^{\prime \prime}$ MAX) metallic-parallel plate construction results in less than nnH of inductance. Low decoupling loop inductance value improves control of EMI/RFI. Besides
providing superior noise reduction, the Micro/Q 3500SM also absorbs CTE mismatch and prevents electrical failure caused by cracks typical of MLC chips.

The device is ideal for wide frequency bandwidth applications such as $16 / 32$ bit MPUs, DSPs, FPPs, gate arrays, standard cells and custom ASICs. Now available in two sizes: 0.520 " to fit below 44 and 52 pin PLCCs, and 0.820 " for placement under 68,84 and higher pin-count PLCCs. Choose either X7R or Z5V dielectric, in tape and reel or bulk formats.

Circuit Components Inc.
Formerly a Division of Rogers Corporation 2400 South Roosevelt Street, Tempe, AZ 85282 602 967-0624, FAX 602 967-9385

TO MOTOROLA THIS BOX REPRESENTS A VERY VISIBLE MEANS OF SUPPORT.

The Sensible Choice

When Motorola went looking for a software partner committed to the entire 68000 family, they decided on Intermetrics.
68000 68EC000
68020 68EC020
68030 68EC030
68040 68EC040
6830268340
68330 68HC11
68331 68HC16
6833296002

With superior product performance, a full range of software tools, and a reputation for high-quality technical service, Intermetrics was the perfect choice to support Motorola's line of premier embedded processors.

Hot Compilers For Hot Chips

Intermetrics InterTools C Compilers produce highly optimized code for all 68000 family processors, including the new EC series chips. This means that you can evaluate, prototype and build top-performing, Motorolabased systems in record time.

Expert Debuggers For Every Problem

Intermetrics also makes XDB
Source Level Debuggers which are available
in many configu-rationsfrom
low-cost

ROM
Monitor-based systems to sophisticated emulator-based environments. XDB can help you debug fully optimized code, and is compatible with
many popular embedded real-time operating systems.

Real Support, Real Time

At Intermetrics, the engineers who designed our products are only a phone call away. After all, they're the ones who really understand your needs and can help you.

Call Now For Product Information

For the latest information on our full line of products that support the 68000 family, call Intermetrics or your Motorola representative today, and you'll discover why Motorola made the perfect choice when they needed a dependable software partner.

Make Every Bit Count

Looking for monumental embedded solutions? Let our SPARClite family lead the way.

Chip by chip, we've built a highly advanced family of processors which enables designers of embedded systems to scale greater heights than ever before

The SPARClite ${ }^{\text {Tw }}$ family of RISC processors from Fujitsu Microelectronics gives you a wide range of bright solutions. From an inexpensive entry point into the world of SPARC ${ }^{\circledR}$ embedded computing, all the way up to clock speeds of 40 MHz . Providing 40 MIPs peak and 37 MIPs sustained performance. And soon, even higher speeds will be available.

Our SPARClite family of solutions can easily be designed into your embedded applications. Giving your designs much greater performance at very competitive prices. And to get you to market more

Delivering the Creative Advantage.
quickly, they're complemented by a full range of multi-platform support tools. Like real-time operating systems, compilers, in-circuit emulators and evaluation boards. From the leading names in development systems.

What's more, as your computing needs grow, so does our SPARClite family. In fact, by the end of this year, two new SPARClite products will be added, bringing the family to four. Each and every one software compatible with the industry standard SPARC high-performance RISC architecture.

So call us at 1-800-642-7616. And discover our family of SPARClite processors. Built to lead the way-now and for the future.

When the chips are down, the finger pointing starts.

Process Engineers

Every company experiences finger pointing when a design doesn't work.
Your circuit designers claim the models are not accurate. The model developers claim the process shifted since the time they began work on the models. The process engineers claim the model developers aren't tracking the process.

Meta eliminates finger pointing and helps you get it
 right first time ${ }^{\text {TM }}$. Meta-Labs modeling services, combined with the HSPICE circuit simulator, provide the crucial link between your fab and circuit designers. The MetaSoftware methodology helps your design, process and modeling groups work together as one team.

Get back in the chips with Meta-Software. For a right first time information package, call toll free (800) 442-3200, ext. A2.

META-SOFTWARE

right first time ${ }^{T M}$

Integrated Circuits

SPARC peripheral chip set. The SPARCset 7-chip chip set lets you build Mbus modules ranging from a single processor, $33-\mathrm{MHz}$ CYM6001 SPARCset module to a dual-processor 66.7MHz CYM6226 hyperSPARC module. The CY7C617 is a graphics controller that interfaces directly to the Mbus. The CY7C616 and CY7C618 provide an Mbus to SBus interface. The CY7C613 is a memory controller, and the CY7C604/5 is a cache controller/mem-ory-management unit. The CY7C614 and CY7C615 are I/O controllers. Chip set, $\$ 250$ (100). Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2600.

Circle No. 365

QPSK modulator. The HPMX-2002 is a monolithic quadrature-phase-shiftkeyed (QPSK) modulator and dualconversion unit. It modulates signals in the $40-$ to $300-\mathrm{MHz}$ frequency range and transmits RF data at frequencies as high as 2 GHz . The I and Q bandwidths are greater than 10 MHz , and the output power is -11 dBm . The 20 -pin plastic chip consumes 60 mW when operat-
ing from 5 V and $50 \mu \mathrm{~W}$ in standby mode. $\$ 8.75$. Hewlett-Packard Co, Box 58059, Santa Clara, CA 95052. Phone (800) 752-0900.

Circle No. 366

Sampling amplifier. The AD901 Samplifier consists of a track and hold amplifier driving a positive gain op amp with a gain of 4 in a 20 -pin SOIC or ceramic LCC package. Acquisition time to 0.4% of amplitude is 5 nsec , and 0.01% of amplitude is 11 nsec . The rms noise when the amplifier is tracking the input is $3.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The harmonic distortion during hold mode is -75 dB below full scale for a 50 M -sample/sec sampling
rate and a $23-\mathrm{MHz}$ input sine wave. $\$ 33$ (100). Analog Devices Inc, Computer Labs Div, 7910 Triad Center Dr, Greensboro, NC 27409. Phone (919) 6689511. FAX (617) 821-4273. Circle No. 367

Windows accelerator. The HT216-32 Windows Express is a local-bus VGA controller. It accelerates Windows applications for 486 and $386 \mu \mathrm{Ps}$. The controller is register compatible with the IBM VGA standard and operates at CPU clock speeds from 16 to 40 MHz . Hardware in the controller assists the CPU in controlling Windows operations. $\$ 25$ (1000). Headland Technology, 46221 Landing Pkwy, Fremont, CA 94538. Phone (510) 623-7857.

Circle No. 368

FIFO memories. The QS7201 and QS7202 asynchronous FIFO memories have 12 -nsec access times and $512 \mathrm{k} \times 9$ bit and $1 \mathrm{k} \times 9$-bit densities, respectively. The asynchronous QS7203 and QS7204 FIFO memories have 10-nsec access times and $2 \mathrm{k} \times 9$-bit and $4 \mathrm{k} \times 9$ bit densities, respectively. The syn-

With a 41\% market share,* Mitsubishi is the world's leading supplier of memory cards.

The largest share of today's memory card users depend on Mitsubishi for two good reasons: meticulous service and the best selection.

We manufacture cards in all five memory types - DRAM, SRAM, EEPROM, flash EEPROM, OTPROM and MROM - in the highest densities (up to 16 Mbytes) and in the current versions of PCMCIA, JEIDA and

JEDEC standards. Plus, we offer custom cards and custom panel artwork. We can mix memory types, consolidate logic into ASIC, even add MCUs on board.

Whatever it takes, we'll work with our customers to achieve their memory card needs. With engineering and marketing support, wellstocked inventories and automated shipping services all onshore, Mitsubishi is the world's leading memory card source.

Call (408) 730-5900, ext. 2214.

ELECTRONIC DEVICE GROUP

[^6]Integrated Circuits
chronous QS7223 and QS7224 FIFO memories operate with $66-\mathrm{MHz}$ clocks and have $2 \mathrm{k} \times 9$-bit and $4 \mathrm{k} \times 9$-bit densities, respectively. $\$ 30.15$ to $\$ 98.50$. Quality Semiconductor, 851 Martin Ave, Santa Clara, CA 95050. Phone (408) 450-8000. FAX (408) 496-0591.

Circle No. 369

Board-history recorder. The Scope Diary TMS29F816 JTAG-compatible chip maintains the operational history of a PC board. It stores serial and model numbers, calibration constants, engineering revisions, elapsed operation time, repair history, and power-down status log. In addition, the chip has onetime write protection, 16 kbits of memory, and nonvolatile storage. $\$ 15(1000)$. Texas Instruments Inc, Semiconductor Group, Box 809066, Dallas, TX 75380. Phone (214) 995-6611, ext 3990.

Circle No. 370

GaAs products. This family of prescalers and gain-block amplifiers are the company's first commercial GaAs products. The divide-by- $4,-8$, and -32 pre-
scalers operate from a -5.2 to -6 V supply and from de to 14 GHz . The gainblock amplifiers provide 10 or 20 dB of gain from dc to 10 GHz . The amplifiers operate from a 4 to 7 V supply and consume 200 mW . Divide-by-8 prescaler in die form, $\$ 14.95 ; 10-\mathrm{GHz}$ gain block in die form, $\$ 9.95$. Rockwell/MTC, 2427 W Hillcrest Dr, Newbury Park, CA 91320. Phone (805) 375-1237. FAX (805) 375-1268.

Circle No. 371

10- to $1500-\mathrm{MHz}$ amplifier. The UTO-1576 RF amplifier provides 10.5 dB of gain from 10 to 1500 MHz . It comes in a T0-8 package and exhibits 50 dB of reverse isolation. Other features include $0.5-\mathrm{dB}$ gain flatness, $5-\mathrm{dB}$
noise figure, and a 1-dB gain compression point of 9 dBm . The amplifier operates from -55 to $+85^{\circ} \mathrm{C}$. $\$ 120$. Hew-lett-Packard Co, Box 58059, Santa Clara, CA 95052. Phone (800) 752-0900.

Circle No. 372

4M-bit video RAM. This video RAM includes reading and writing of bits to split registers, $4 \times 4 \times 4$ block writes for fast area-fills, and CAS-before-RAS refresh. The chip integrates a $256 \mathrm{k} \times 16$ bit dynamic RAM with a 256 -bit serialaccess memory. One version has a $70-$ nsec row-enable access time and a 20 nsec serial-data access time. Another version has an 80 -nsec row-enable access time and a $25-\mathrm{nsec}$ serial-data access time. From $\$ 70$. Texas Instruments Inc, Semiconductor Group, Box 809066. Dallas, TX 75380. Phone in US and Canada, (800) 336-5236, ext 3990; (214) 995-6611, ext 3990. Circle No. 373

3V 22V10 PLDs. The AT22LV10 and AT22LV10L are 3 V versions of the in-dustry-standard 22V10 PLD. Both chips operate from 3 to 5.5 V . Propaga-

PURE PERFORMANCE

tion delay for both devices is 20 nsec . The AT22V10 draws 40 mA of standby current, and the AT22V10L draws 4 mA from a 3.6 V supply. Packaged in plastic DIPs, AT22LV10, $\$ 8.40$; AT22LV10L, $\$ 6.60$ (100). Atmel Corp, 2125 O'Nel Dr, San Jose, CA 95131. Phone (408) 441-0311. Circle No. 374

386DX ISA bus controller. The VL82C380 is an ISA bus controller chip with on-chip cache. Its cache controller employs a look-aside, write-back architecture. The chip controls 1- or 2-bank cache RAMs and maintains coherency during DMA and master-mode cycles to eliminate flushing and invalidating operations. The memory controller can access as much as 64 Mbytes of main memory. Approximately $\$ 20$ (OEM qty). VLSI Technology Inc, SC386, 200 Parkside Dr, San Fernando, CA 91340. Phone (602) 752-6212. FAX (602) 7526000.

Circle No. 375

Quad video buffers. The Si584 monolithic quad video buffers have a 200 MHz bandwidth and an output drive-
current capacity of $\pm 20 \mathrm{~mA}$. The unitygain buffers don't require any external components, and the differential gain and phase errors are 0.8% and 0.1°, respectively. The chip comes in a 14 -pin DIP or SO-14 package. $\$ 10.15$ (1000). Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (800) 5544454, ext 1900; (408) 988-8000.

Circle No. 376

Combustion-engine peripheral. The 67F687 controls the spark and fuel control systems in 4-, 6 -, or 8-cylinder engines. Because the chip generates fewer interupts than other engine peripheral ICs, you can use simple, inexpensive
μ Ps. On-chip features include sensor conditioning and output predrivers. A digital phase-locked-loop circuit tracks engine position using two sensor inputs. $\$ 3.50$ to $\$ 15$. Silicon Systems, 14351 Myford Rd, Tustin, CA 92680. Phone (714) 573-6200. FAX (714) 573-6914.

Circle No. 377

Audio chip sets. The Aria family consists of three chip sets for synthesizing music on a computer. The ST8000 emulates Creative Lab's Sound Blaster board and has a joystick port, a MIDI port, a Rowland MPU-401 port, and digital recording and playback. The ST8001 and ST8002 offer the same features and have a 512 -kbyte and 1-Mbyte sound library, respectively. $\$ 30$ to $\$ 60$ (10,000). Sierra Semiconductor, 2075 N Capitol Ave, San Jose, CA 95132. Phone (408) 263-9300. FAX (408) 2633337. TLX 384467.

Circle No. 378

Power op amps. The single OMA541 and dual OMA2541 power operational amplifiers operate from $\pm 40 \mathrm{~V}$ power supplies and deliver 5A of continuous

SPECTRAL PURITY OF THE HARRIS NCO FAMILY

output current. The OMA501 delivers $\pm 10 \mathrm{~A}$ and is stable in a unity-gain configuration. OM501AK, \$76.90; OMA2541SK, $\$ 106.70$ (100). Omnirel Corp, 205 Crawford St, Leominster, MA 01453. Phone (508) 534-5776. FAX (508) 537-4246.

Circle No. 379

Single-supply communications transceivers. The AD7306 combines two RS-232C and an RS-422 driver with

SHRINK Size and STRETCH Product Life with New CKS Aluminum Electrolytics

New CKS radial-lead aluminum

 electrolytic capacitors are right for the times. Their subminiatrue size conserves space and their extended life design improves product reliability. These high-performance $+85^{\circ} \mathrm{C}$ capacitors are excellent for coupling, blocking and filtering needs. Its smaller size makes it practical for new design and replacement applications.- 33 mfd to $15,000 \mathrm{mfd} 6.3 \mathrm{wvdc}$ to 50 wvde
- Capacitance tolerance $\pm 20 \%(\mathrm{~m})$; $\pm 10 \%$ (k) optional.
- Solvent tolerant seal standard; epoxy end seal optional.
CKS capacitors are in stock for immediate delivery. For complete details contact your local IC distributor or IC.

Ask for our FREE Copacitor Engineering Guide.

[^7]an RS-232C and configurable RS-232C or RS-422 receiver in a 24 -pin SOIC package. The chip operates from a single 5 V supply and internally generates $\pm 10 \mathrm{~V}$ for the transceivers. A chargepump voltage converter operates with an external nonpolarized $0.1-\mu \mathrm{F}$ capacitor. Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428. FAX (617) 821-4273.

Circle No. 380

Real-time clock. The DS1587 serialized real-time clock is a timekeeper that can switch on a DOS-compatible computer to perform a scheduled task. It has a permanent 64 -bit serial number to identify the computer. Besides the standard real-time clock registers and 50 bytes of user nonvolatile static RAM, the chip provides an additional 60 bytes of nonvolatile staticRAM. $\$ 15.50$ Dallas Semiconductor, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0448. FAX (214) 450-0470.

Circle No. 381

ISDN buck regulator. The PWRSMP402 de/dc converter for nonisolated ISDN (Integrated Services Digital Network) power-supply applications. The device accepts 20 to 72 V de inputs and generates a 5 V supply line using a buck regulator. The IC meets ISDN specifications for T1 telecommunications requiring output power greater than 1W. A MOSFET power switch operates from 50 to $500 \mathrm{kHz} . \$ 2.30$ (1000). Power Integrations Inc, 411 Clyde Ave, Mountain View, CA 94043. Phone (415) 960-3572.

Circle No. 382

Wireless communications chips. The PMB2200 transmit modulator and PMB2400 receive demodulator comply with the Cellular Telecommunication Industry Association-endorsed IS-54 standard and the Groupe Speciale Mobile standard for digital wireless communications systems. The PMB2200 converts baseband signals to RF carrier frequencies between 700 MHz and 1 GHz. The PMB2400 converts the RF carrier to baseband signals, using dualstage heterodyne receivers. $\$ 7.85$ each (1000). Siemans Components Inc, Integrated Circuit Div, 2192 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 980-4500.

Circle No. 383

Announcing the Economic Recovery Plan from Hewlett-Packard. Trade up to the new test equipment you need. And recover 20\%.

Although technology is growing by leaps and bounds, chances are your budget isn't.
So, how can you get the new test equipment it takes to keep up, without breaking the bank?
With the Economic Recovery Plan from Hewlett-Packard - that's how. It's the best way to get the newgeneration HP test equipment you need. At a substantial savings.

Just trade in your present highperformance oscilloscope, portable logic analyzer, or spectrum analyzer*, any time before January 31,1993 . And we'll give you a 20% credit toward an upgrade to one of HP's new state-of-the-art instruments.

If you'd like more information about our new test products - or if you're ready to trade up - call 1-800-452-4844 Ext. 7046 or your local field engineer.
But don't wait. If you miss this opportunity to save 20% on HP test equipment, you might never recover.

There is a better way.

Trade in your old equipment and save 20% on the latest models from HP.

HP 54700 family of high-performance, modular oscilloscopes lets you capture your most elusive problems.

- 1 GHz single shot bandwidth ($4 \mathrm{GSa} / \mathrm{s}$)
- Accurate waveform reproduction with non-intrusive probing
- Modular system adapts to your changing needs

HP 1660 family of portable logic analyzers gives you the confidence to solve your toughest digital problems.

- 100 MHz state and 500 MHz timing
- 34, 68, 102, and 136-channel models
- Intuitive mouse, keypad, and keyboard interface

HP 8560 and 8590 E-Series of portable spectrum analyzers offer the highest performance for the price.

- Improved phase noise and narrower resolution bandwidth
- Many applicationspecific, one-button measurement functions
- User-friendly interface

Think Low Power.

Think Mitsubishi Gate Arrays.

Whether you're designing your next gate array, or your first, you've got to think about system power requirements. Your very next thought should be: Mitsubishi Gate Arrays.

Our $0.8 \mu \mathrm{~m}$ arrays give you four speed/power options to control total chip power consumption. Four transistor sizes within each macro allow optimization for either high speed or low power. The result is power dissipation as low as $2.4 \mu \mathrm{~W} / \mathrm{MHz} /$ gate, at 5 V . And, with Mitsubishi's 3 V library, you can achieve even lower power dissipation. You can switch more nodes in the array, control the power and still use lower-cost, plastic packaging.

Add to all of this 400,000 gates, $512 \mathrm{I} / \mathrm{Os}$, and Mitsubishi's exclusive μ Pitch $\mathrm{TAB}^{\text {TM }}$ packaging with pin counts as high as 576 .

We also offer design kits for industry's most popular workstations, from logic

 REALITY

synthesis, to simulation, to automatic test pattern generation (ATPG). So you can design on your own workstation or ours.

With both local design support and the global resources of a stable, well-capitalized company, Mitsubishi is one of the world's top 10 semiconductor suppliers. We've been in the ASIC business for over 15 years and we're continuing to invest in technologies for the next decade.

When you think gate arrays, think low power. Then think Mitsubishi. You'll be glad you did.
Phone (408) 730-5900, ext. 2106.

EPSON The Grvamaster

 Awards its customers with the latest in CRYSTAL technology
CRYSTALS

OSCILLATORS

SG-51/531

- COST EFFECTIVE AUTO INSERTABLE FULL STZE (SC-51) AND HALF SIZE (SG-531) DIP'S
- CA-301 CRYSTAL INSIDE
- 1.025 MHz - 67.0 MHz

Computers \& Peripherals

IDE module. The Portfolio is a 13 -port multifunction IDE (integrated-driveelectronics) interface module for serial, parallel, floppy, and game-port functions. Using this unit you can connect a laser printer, a dot-matrix printer, as many as four 1.2- or 1.44-Mbyte floppydisk drives, two IDE drives, a tape-back-up unit, a serial mouse, a modem, and a joystick. \$79. Quadtrek Corp, 6034 W Courtyard Dr, Suite 305-74, Austin, TX 78730. Phone (512) 3382125. FAX (512) 338-2127. Circle No. 384

Multiprocessor application accel-

 erators. The Skybolt-mp Shamrock offers processing speeds as high as 1.28 Gflops in a 9 U VME slot, and the Skybolt Shamrock offers processing speeds as high as 320 Mflops in a 6 U VME slot. The accelerators feature a modular design with an Intel i960 processor controlling several Intel i860 processors. The 6U Skybolt Shamrock, from \$27,450; 9U Skybolt-mp Shamrock, from $\$ 32,350$. Sky Computers Inc, 27 Industrial Ave, Chelmsford, MA 01824. Phone (508) 250-1920. FAX (508) 2500036.Circle No. 385

Multifrequency monitor. The Spectrum Autosync monitor has a 20 -in. dark tube and is compatible with PGA, VGA, extended VGA, 1024×768-pixel and 1280×1024-pixel formats. The monitor automatically adjusts picture size from horizontal frequencies of 29 to 66 kHz and vertical frequencies of 40 to $120 \mathrm{~Hz} . \$ 3195$. Aydin Controls, 414 Commerce Dr, Fort Washington, PA 19034. Phone (215) 542-7800.

Circle No. 386

Super-VGA board. The VGAwonder XL24 displays 16.7 million colors in 640×480-pixel resolution or more than

32,000 colors in 800×600-pixel resolution. The board is available in 512 kbytes or 1 Mbyte and comes with drivers for Microstation, CADKey, $\mathrm{OS} / 22.0$, and Windows 3.X. \$179. ATI Technologies Inc, 3761 Victoria Park Ave, Scarborough, ON M1W 3S2, Canada. Phone (416) 756-0718. FAX (416) 756-0720. TLX 06966640.

Circle No. 387

Super-VGA graphics card. The SVGA Multiview/Micro Channel graphics card provides a $115-\mathrm{Hz}$ refresh rate on the Micro Channel bus. The card and its software utilize Windows in 1024×768-pixel and 800×600-pixel resolutions and more than 16.7 million colors. \$549. Radius Inc, 1710 Fortune Dr, San Jose, CA 95131. Phone (408) 434-1010. FAX (408) 434-0770.

Circle No. 388

Solid-state power controllers. The SSP-21120 series solid-state power controllers operate as high as 80 A at 28 V dc. The controllers include a thermal memory that shortens trip times when repeated attempts are made to turn on

KEPCO ANALOG/DIGITAL PROGRAMMABLE POWER...
 HIGH SPEED/UNIPOLAR/BIPOLAR

The power golfer relies on his putter as much as the driver. The putter is his money club. A delicate touch is needed to wield this tool. The same sort of delicacy and precision you'll find in our analogcontrolled operational power supplies. 120 dB of gain at your disposal, wide bandwidth. Single quadrant and fourquadrant voltage and current stabilization.

5-YEAR WARRANTY
Available from Stock. Call: 718-461-7000.
Ask for Tom Fischer.
He can arrange a demo in your place.

Instrumentation and Bench

146-1785
Switching a-c to $d-c$
and $d-c$ to $d-c$

the device into an overload condition. Using several devices in parallel yields higher current ratings. From $\$ 1295$. Delivery, 60 to 90 days. ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600, ext 7381. FAX (516) 567-7358.

Circle No. 389

Minicartridge tape products. The three drives in the Tape250 series are QIC-80 tape drives that are able to read Irwin-formatted tapes and are based on the floppy-disk interface. The drives come with Central Point Backup software for DOS and Windows and datacompression software that allows the drives to store as much as 250 Mbytes. Insider, \$299; Insider Half-Height, $\$ 349$. Both drives fit into a standard $3^{1} / 2$-in. bay. PC Powered drive, an external device, \$499. IOmega, 1821 W 4000 S, Roy, UT 84067. Phone (800) 4565522. FAX (801) 778-3450. Circle No. 390

32-1/O line interface board. The Digital 488/32/OEM 4×4-in. 32 -I/O line interface board enables data transfers between the IEEE-488 bus and devices

equipped with 8 -, 16 -, or 32 -bit-wide digital ports. The 32 TTL-level lines are programmable in 8-bit groups as either inputs or outputs. $\$ 495$. IOtech, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 4394093.

Circle No. 391

Memory cards. For pen-based and palmtop systems, the SmartRAM mem-ory-card family combines flash and static-RAM (SRAM) memory and includes a built-in controller and battery backup circuitry. The PCMCIA-standard cards have average read-access
and write-cycle times of 150 nsec each. The cards, which weigh 35 g , allow datawrite cycles at 5 V and incorporate 256 kbytes of SRAM and 768 kbytes of flash memory for a total of 1 Mbyte. $\$ 160$ (100). Smart Modular Technologies, 45531 Northport Loop W, Bldg 3B, Fremont, CA 94538. Phone (510) 623-1231. FAX (510) 623-1434.

Circle No. 392

Ruggedized VMEbus module. The CPUC32 is a cost-reduced version of a militarized single-board computer for the VMEbus. The board is based on the 68030 processor and has as much as 4 Mbytes of battery-backed static RAM. Operating systems include OS-9 and VxWorks. \$5000. Alphi Technology Corp, 6202 S Maple Ave \#128, Tempe, AZ 85283. Phone (602) 838-2428. FAX (602) 838-4477.

Circle No. 393

Memory-card drives. These openframe memory-card drives are compatible with JEIDA 4.0 and PCMCIA memory cards. The drives accept 512kbyte to yet-to-be-released 64-Mbyte memory cards. Both drives are the

Power tools

d-c single quadrant power 50-1000 Watts voltage/current stabilization

\square Conventional/fast-programmable, selectable \square Analog \& digitally programmable \square Precision stabilization: 0.001% source, 0.002% load \square Optional digital displays Kepco Group ATE Power Supplies

Power tools

d-c four quadrant power 100-400 Watts voltage/current stabilization
\square Analog programmable, bandwidth to $20 \mathrm{KHz} \square$ Digitally programmable, built in GPIB or serial controller \square Precision stabilization: 0.001% source, 0.002% load Kepco Group BOP Power Supplies

Power tools

d-c single quadrant power 100-1000 Watts voltage stabilization
\square Analog programmable
\square Precision stabilization: 0.0005% source, 0.005% load Kepco Group JQE Power Supplies

Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631
Eastern Region: 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631
Western Region: 800 West Airport Freeway, Suite 320 LB 6018, Iving, TX 75062 USA • Tel: (214) 579-7746 • Fax: (214) 579-4608
KEPCO.
THE POWER SUPPLIER ${ }^{*}$ SINCE 1946

The Key Building Block in High-Frequency EDA Applications

From cellular and satellite communications to radar and electronic defense, EEsof's electronic design automation (EDA) software suite is the key building block in today's rapidly growing RF and microwave applications. In fact, EEsof is the world leader in EDA software tools for high-frequency analog circuit and system design.
Top electronic engineering firms use EEsof's powerful design-formanufacturing software to increase design efficiency, reliability and yields while reducing time-tomarket.

Our easy-to-use tools provide engineers with a complete hierarchical suite to support

Computers \& Peripherals

same size as a standard $3.5-\mathrm{in}$. floppydisk drive. The MCRW-B has an RS232 C port; the SCSI version is the MCdisk-1. \$495. Gespac Inc, 50 W Hoover Ave, Mesa, AZ 85210. Phone (602) 962-5559. FAX (602) 962-5750.

Circle No. 394

HC11 CPU module. The 68 HC 11 includes a 68 HC 811 E 2 FN 8 -bit microcontroller, 2 -Mbyte flash EPROM, 32kbyte nonvolatile RAM, 2-kbyte EEPROM, 8-channel 8-bit A/D converter, a real-time clock calendar, RS232 C and RS- 485 ports, 16 -bit timer, open-architecture 64/96 DIN expansion bus, and C and assembler routines. The module comes with 24 -hour BBS support. $\$ 287$. Ackerman Computer Sciences, 4276 Lago Way, Sarasota, FL 34241. Phone (813) 377-5775. Circle No. 395

I/O-module interface cards. The PSR00 and MSR01 Power I/O Module interface cards are compatible with Opto22, Gordos, Burr-Brown, and Potter and Brumfield. The PSR00 is for ISA- or EISA-style computers, and the MSR01 is for Wintek 6800- and 6809based computer systems. As many as 24 I/O channels may be used as inputs or outputs in any combination. PSR00, \$159; MSR01, \$125. Wintek Corp, 1801 South St, Lafayette, IN 47904. Phone (800) 742-6809; (317) 448-1903. FAX (317) 448-4823.

Circle No. 396

Networked microcontroller. Based on the Motorola MC68HC11F1 chip, the GCB11 is an 8-bit, networked microcontroller hardware-and-software package for distributed-control applications. The 3×4-in. board includes 32 kbytes of static RAM and 32 kbytes of ROM. The package comes with a set of development tools and network and application libraries. $\$ 179$. Coactive Aesthetics, Box 425967, San Francisco, CA 94142. Phone (415) 626-5152.

Circle No. 397

High-speed development platform.

The DPS-1 Rev C is an SBus development platform for prototyping hardware and software. The development platform allows the designer to adapt new hardware or convert existing systems to the SBus. The kit uses LSILogic's L64853A DMA Plus controller. \$1095. Dawn VME Products, 47073 Warm Springs Blvd, Fremont, CA 94539. Phone (800) 258-3296; (510) 6574444. FAX (510) 657-3274. Circle №. 398

OTP and flash memory cards. The company's one-time-programmable (OTP) and flash memory cards follow PCMCIA standards and come with 256 kbytes to 1 Mbyte. Flash cards are available in 2-Mbyte density. OTP cards, $\$ 72$ to $\$ 180$; flash cards, $\$ 117$ to $\$ 521$. Texas Instruments Inc, Semiconductor Group SC-92044, Box 809066, Dallas, TX 75380. Phone in US and Canada, (800) 336-5236, ext 3990; elsewhere, (213) 995-6611, ext 3990. Circle No. 399

THE ENGINEER'S ULTIMATE PROGRAMMER

The 3900 suppports more devices.

Starting at just $\$ 2995$,* the 3900 family of programmers gives you more for the money. The 3900 offers the broadest device support including leading-edge FPGAs, PLDs, memory devices, and microcontrollers up to 100 pins. This support comes in device libraries, so you pay for only what you need. And, the 3900 uses semiconductor manufacturer-certified algorithms, exclusively, to ensure the most *U.S. list price only.
reliable programming.
To hear more reasons why the 3900 is the engineer's ultimate programmer, call today. We'll send you a FREE copy of our popular Wall Chart of Programmable Devices.

The Maxtor 7213 . It drives a hard bargain.

Go ahead, search all you want. But we don't think you'll find a lower cost or higher quality 200 MB class disk drive than our new 7213.

The reason is simple. We made it with very few parts. Far fewer than any other drive in its class. So it's not only easier to manufacture, it assures exceptional reliability.

And that's critical. Because it's
that level of reliability that keeps your customers sold.

Now you might be thinking, "How could Maxtor possibly produce a quality 200 MB drive at such a low cost?" Well, after producing more than 3 million 7000 series drives, you get real good at it.

The 7213 is just one more example of the New Drive at Maxtor. A very serious commitment to customer satisfaction.

Unmatched service and support. And visionary product design.

For more information, please call 1-800-4-MAXTOR. Quite frankly, you won't find a better bargain than this.

There's a new drive at Maxtor.
Moxtor Corporation, 211 River Oaks Parkway, San Jose, CA 95134

Magneto-optical drive. A 3.5 -in. rewritable optical disk drive, the RF-3000 provides as much as 128 Mbytes of storage and is compatible with ISO/ANSIstandard $31 / 2-\mathrm{in}$. magneto-optical disks. The drive has an average seek time of $38 \mu \mathrm{sec}$ and transfer rates of 640 kbytes/ sec . The drive is controlled through a SCSI bus, and two drives can be daisychained together. $\$ 2195$; internal model, \$1995. Plasmon Data Systems Inc, 1654 Centre Pointe Dr, Milpitas, CA 95035. Phone (800) 445-9400; (408) 9569400. FAX (408) 956-9444. Circle No. 400

Keyboard network station. The 386SX-25-IDE Keyboard Network Station includes an IDE hard-disk drive in either $40,80,100$, or 200 Mbytes. The pe within a keyboard has a standard 101/102 keyboard, 1 Mbyte of RAM (expandable to 16 Mbytes), a Su-per-VGA adapter, a $3^{1 / 2}$-in. floppy-disk drive, one parallel and two serial ports, and a 16 -bit expansion slot. $\$ 1095$. Advanced Interlink Corp, 15181 Springdale St, Huntington Beach, CA 92649. Phone (714) 894-1675. FAX (714) 893-1546.

Circle No. 401

Multiple-VGA adapter kit. The Theo + Grafx Multi VGA Adapter Kit allows you to connect as many as four VGA monitors to one 386 or 486 host PC running DOS. The kit comprises the TG/4 multiuser video graphics adapter, software drivers, controller boxes, and cables. Kit for four users, $\$ 1895$. Theos Software Corp, 1777 Botelho Dr, Suite 360, Walnut Creek, CA 94596. Phone (510) 935-1118. FAX (510) 935-1177.

Circle No. 402

Multipurpose video boards. The Tango and Mambo boards for MS-DOS computers integrate multiple sources required for networked digital multimedia. Each board includes video display drivers, Ethernet drivers and interfaces, digital audio and video interfaces, and audio recording and playback capa-
bilities. Tango, for standard monitors, $\$ 1895$; Mambo, for portable computers with LCD screens, $\$ 1495$. Mediashare Corp, 2035 Corte Del Nogal, Carlsbad, CA 92009. Phone (619) 931-7171. FAX (619) 431-5752.

Circle No. 403

SBus board with SCSI interface. The TMS320C30 SBus board is based on the TI $33-\mathrm{MHz}$ floating-point digital signal processor. The board has as much as

512 k words of static RAM, dual-port RAM, analog-to-digital options, highspeed digital I/O from a disk at 2 Mbytes/sec, and a SCSI interface. \$4795; with TI's Sun-4-based assembler/linker/ C compiler, SMON30 debug monitor, C interface library, and SunOS device drivers, \$9795. Spectrum Signal Processing Inc, 8525 Baxter Pl, 100 Production Ct, Burnaby, BC V5A 4V7, Canada. Phone (604) 421-5422. FAX (604) 421-1764.

Circle No. 404

Starting at just $\$ 2995$,* the 3900 family of programmers gives you more for the money. The 3900 offers the broadest package support including TSOPs, QFPs over 100 pins, PCMCIA cards, PLCCs, LCCs, JLCCs, SOICs, and PGAs. Its flexible universal socketing technology easily accommodates all of these packages, today and in the future. And, the 3900's 88 universal pin drivers provide full functional test
for the highest reliability.
To hear more reasons why the 3900 is the engineer's ultimate programmer, call today. We'll send you a FREE copy of our popular Wall Chart of Programmable Devices.

1-800-3-DataIO

(1-800-332-8246)

The Software is the Instrument ... You Choose the Computer

\section*{LabWindows for DOS} | NWM LabVIEW for Windows |
| :--- |
| NWMN LabVIEW for Sun |
| LabVIEW for Macintosh |

ACQUISITION

GPIB • Data Acquisition • VXI • RS-232 • Instrument Drivers

ANALYSIS

DSP • Statistics • Linear Algebra • Filters • Windows
PRESENTATION

Graphical User Interface
C and BASIC Programming

Hard Copy • File I/O

Graphical Programming

Call for FREE demo disks

(800) 433-3488 (U.S. and Canada)

NATIONAL

 INSHRTMFNTSThe Software is the Instrument ${ }^{\text {© }}$
6504 Bridge Point Parkway Austin, TX 78730-5039
Tel: (512) 794-0100
Fax: (512) 794-8411

TELEDYNE SOLID STATE HAS IT!

If your system requires I/O or power switching and you're considering a discrete or hybrid circuit approach we should talk! And here's why -

- We now offer an extensive "menu" of military/aerospace solid state relays for DC, bidirectional, and AC loads from low level to 25 Amps.
- Our latest designs feature "smart" options such as: output status for built-in test, short circuit protection and CMOS logic compatibility.
- All of our relays are designed and tested to MIL-R-28750 and applicable portions of MIL-STD-883, and most are qualified to existing MIL slash sheets or DESC drawings.
- We've already selected, derated, sourced, and qualified the required chip components, i.e., opto-couplers, drivers, FETs, SCRs, etc.

And if what you need is not in our catalos, call 1-800-284-7007, or FAX 1-213-779-9161. Chances are we're already working on it.

	I		A	N D		M G S				
	W		TOY PROCRAM		RALL PROCRAM					
				$\begin{aligned} & \text { STOWIS } \\ & \text { \% } \% \\ & \text { Binto } \end{aligned}$	$\begin{aligned} & \text { ExxC } \\ & \text { Thec. } \\ & \text { Sict } \end{aligned}$	curion	$\begin{aligned} & \text { COD } \\ & \text { IN } \\ & \text { BYites } \end{aligned}$	Size	$\begin{aligned} & \text { Comp } \\ & \text { TIME } \\ & \text { MIN. } \end{aligned}$	$\begin{aligned} & \text { Pildation } \\ & \% \\ & \hline \text { Benlino } \\ & \hline \end{aligned}$
SIERRA SYSTEMS	12	20	31604	-	5.73	-	284708	8	5.07	7
GNU	9	3	24390	30\%	6.11	7\%	298616	5\%	17.12	238\%
MICROTEC RESEARCH	7	5	23854	32\%	6.49	13\%	295466	4\%	19.50	285\%
OASYS/GREEN Hillis	6	6	28571	11\%	7.80	36\%	334632	18\%	36.18	614\%
INTERMETRICS	4	8	23234	36\%	7.50	31\%	314924	11\%	17.11	238\%
INTROL	4	8	19098	65\%	7.03	23\%	301524	6\%	16.48	225\%
SOFTWARE DEV. SYS.		12	16415	93\%	9.47	65\%	313360	10\%	16.93	234\%

68000 Compiler Benchmark Results.

Sierra Systems undefeated on the 68040.
Two benchmarks were selected, Dhrystone 2.1 (the Toy program) and the Sierra Systems production C compiler (the Real program). The compiler was selected because both its size and complexity are representative of realworld applications.

The Sierra $\mathrm{C}^{\text {tu }}$ compiler delivers unchallenged compilation times with industry leading runtime performance on all applications. Add our equally fast QuickFix ${ }^{\text {tw }}$ source-level debugger, and you have a package with all the quality, design teams.

68332 and 68010 standings also available. For more detailed results, additional information, and a competitive edge for your products, call 800-776-4888.
Won/Lost Record: For each benchmark, the compilers' run-time performances were
compared to each other with wins and losses totalled in round-robin fashionces were Dhrystones and Execution Time columns on scoreboard.) Compilers: GNU 2.0, Intermetrics 8.0 ,
Oasys/Green Hills 1.8.5Rc, Sierra Systrol 3.06, Microtec Research 4.2d,
Hosts: 33 MHz 386 Zeos PC and Sun SPARCstation IPC Development Systems 5.1. the PC, except for GNU and Oasys/Green Hills, which were rumpilers were run on the Sierra Systems compiler on both host systems allowed run on the Sun. Running scaled to PC time for the scoreboard. Target: Motorola VME167, 25 MHz 68040 with caches enabled.

6728 Evergreen Avenue, Oakland, California 94611 Tel (510) 339-8200 Fax (510) 339-3844

Components \& Power Supplies

Surface-mount socket. This 100position development socket is a sur-face-mountable component with essentially the same pc-board footprint as the quad flatpack (QFP) device. In this way, you can prototype a pe board using the socket and then transfer to production using bare QFPs, without board layout changes. $\$ 35$. Altera Corp, 2610 Orchard Pkwy, San Jose, CA 95134. Phone (408) 984-2800. Circle No. 413

Interface converter. Model 285 RS232 C to RS-422/RS-485 interface converter can be configured in five userselectable modes. This flexibility allows support of any master-slave configuration found in industrial applications. Other features include a DTE/DCE switch, TD and RD LEDs, and a programmable terminating resistor. $\$ 148$. Telebyte Technology Inc, 270 E Pulaski Rd, Greenlawn, NY 11740. Phone (800) 835-3298; (516) 423-3232. FAX (516) 385-8184.

Circle No. 414

Optical modules. The Astrotec 1238 transmitter operates at rates of 1200 Mbps. The 1318 receiver provides conversion for data rates of 20 to 1500 Mbps. The receiver's dynamic range measures 26 dBm . Both units are housed in 20 -pin DIPs compatible with SONET standard packages. Model 1238, $\$ 1295$; 1318, $\$ 1000$. Delivery, 12 weeks ARO. AT\&T Microelectronics, 555 Union Blvd, Dept 520404200, Allentown, PA 18103. Phone (800) 372-2447, ext 843; in Canada, (800) 553-2448, ext 843; (908) 771-2826. Circle No. 415

Sensing resistors. PMA-Cu and PMBCu 4 -terminal resistors are rated for 1 and 2.5 W , respectively. Designed for Kelvin measurements, the units are available with values as low as 0.001Ω. Construction features Manganin alloy foil banded to copper substrates for good thermal performance and accuracy to 0.5%. From $\$ 1.50(10,000)$. Delivery, stock to eight weeks ARO. Isotek Corp, 566 Wilbur Ave, Swansea, MA 02777. Phone (508) 673-2900. FAX (508) 676-0885

Circle No. 416

Power supplies. PU110 Series supplies are available in single- $(5 \mathrm{~V} / 22 \mathrm{~A}$, $12 \mathrm{~V} / 9 \mathrm{~A}, 15 \mathrm{~V} / 7.5 \mathrm{~A}$, and $24 \mathrm{~V} / 4.5 \mathrm{~A}$) and multiple-output (combinations of $5 \mathrm{~V} /$ $10 \mathrm{~A}, 12 \mathrm{~V} / 5 \mathrm{~A}, 24 \mathrm{~V} / 1 \mathrm{~A},-5 \mathrm{~V} / 1 \mathrm{~A}$, and $-12 \mathrm{~V} / 1 \mathrm{~A})$ models. Features include EMI filter, power-fail signal, overvolt-
age protection, and short-circuit protection. Efficiency equals 65%. $\$ 115$; less than $\$ 60$ (OEM qty). International Power Sources Inc, 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 8817434. FAX (508) 879-8669. TWX 510-100-3630.

Circle No. 417

Low-profile transformers. DLP Series transformers have a 0.13 -in.-high profile and are designed for MIL-STD1553 A or B serial-data-bus systems. The line includes 14 models that feature frequently used turns ratios. They are available with either straight tin-plated flatpack leads or tin-plated gull-wing leads for surface-mount packages. All units have center-tapped primaries and multitapped secondaries. \$125. Delivery, 12 weeks ARO. Beta Transformer Technology Corp, 40 Orville Dr, Bohemia, NY 11716. Phone (516) 244-7393. FAX (516) 244-8893. Circle No. 418

LEDs. These multichip lamps have a warm white output. The units are available in T-1-3/4 and T- $-1 / 4$ models with voltage ratings ranging from 5 to 120 V ac and dc. Available bases range from midget flanged to miniature screw and include wedge, bi-pin, bayonet, and all telephone-style slide bases. Life ratings equal 100,000 hours. From $\$ 4.99$. Delivery, stock to 75 days ARO. Lamp Technology, 1645 Sycamore Ave, Bohemia, NY 11716. Phone (516) 567-1800. FAX (516) 567-1806.

Circle No. 419

Connector. The DLM6 360 ZIF connector has 360 contacts and features an aluminum housing that provides EMI/ RFI shielding. Lifetime equals 10,000 mating/unmating cycles. The gold over
beryllium copper contacts, rated for $5 \mathrm{~A} /$ 1200 V ac , are available in either a crimp snap-in version or $0.025-\mathrm{in}$. square posts for pc-board and wire-wrapping applications. Less than $\$ 150$ (OEM qty) for a plug-receptacle pair. Delivery, 12 weeks ARO. ITT Cannon, 1851 Deere Ave, Santa Ana, CA 92705. Phone (714) 757-8257.

Circle No. 420

Trimmer capacitors. Series 47000 trimmers are designed for RF and microwave applications. The units are supplied with either a removable cap or a poke-seal. The poke-seal replaces the traditional O-ring design. Voltage rating equals 500 V and Qs measure 2500 \min at 250 MHz . Operating range spans -65 to $+125^{\circ} \mathrm{C} . \$ 6(1000)$. Delivery, six to eight weeks ARO. Johanson Manufacturing Corp, Rockaway Valley Rd, Boonton, NJ 07005. Phone (201) 3342676. TXW 710-987-8367. Circle No. 421

Power supplies. The modular construction of the SPR5 Series 2000W power supply allows for as many as 15 outputs with an ac input and 9 outputs with a 48 V de input. The units are certified to UL1950 and IEC950 and feature fan cooling. Available options include battery backup, output paralleling with current sharing, and VME/VXI-compatible signals. $\$ 1150$ (100) for a $3-$ output model. Power One, 740 Calle Plano, Camarillo, CA 93010. Phone outside CA, (800) 235-5943; in CA, (800) 421-3439; (805) 987-8741. TWX 910-336-1297.

Circle No. 422

Relays. Designed for switching capacitive loads, this line of relays includes 15 models capable of isolating as much as $65,000 \mathrm{~V}$ dc and switching currents as high as 1500 A at speeds of 500 nsec . The relays are sealed so there's no contact oxidation. In addition, the sealed units are compatible with applications involving explosive atmospheres. From $\$ 105$ (100). Kilovac Corp, Box 4422, Santa Barbara, CA 93140. Phone (800) 253-4560; (805) 684-4560. FAX (805) 684-9679.

Circle No. 423

Connector. The NE-1 is a metal-onelastomer connector, which features more than 200 conductors per inch. With a $0.6-\mathrm{mm}$ electrode, the unit can carry $100 \mathrm{~mA} / \mathrm{mm}^{2}$. With $0.25-\mathrm{mm}$-wide gold-plated electrodes, contact resistance measures less than $50 \mathrm{~m} \Omega$. The connectors are available in lengths

EDN-NEW PRODUCTS

Components \& Power Supplies

ranging to 250 mm . $\$ 1$ per linear in. (1000). Shin-Etsu Polymer America Inc, 34135 Seventh St, Union City, CA 94587. Phone (510) 475-9000. FAX (510) 475-0613.

Circle No. 424

Edge connectors. Designed specifically for AT- and XT-compatible computers, Lyte Series connectors feature a double row of solder tails on 0.2 -in. centers. Contact positions are 18/
$36+31 / 62,31 / 62$, and $18 / 36$. The units meet the performance criteria of MIL-C-21097 and operate over a -55 to $+105^{\circ} \mathrm{C}$ range. $\$ 0.24$ to $\$ 1$. Cinch Connectors, 1500 Morse Ave, Elk Grove Village, IL 60007. Phone (708) 981-6000, ext 6043.

Circle No. 425

Inductors. Series 2512 molded surfacemount power inductors cover a range of 1 to $100 \mu \mathrm{H}$. Standard tolerance

You can start your debugging with this FREE demo simulator. You can load up to 512 bytes of code, assembler, C, or PL/M and do full debugging/simulation in assembly and source level. A great way to get started for FREE. Fantastic for schools! Just call and we'll send it!

Full Simulator

The full-blown simulator is an extension of the DEMO. You can load up to 64 K of code and use 64K of XDATA space. You can program an "external environment" to interact with your code to simulate your target system. The emulator is the hardware extension of the simulator!
In-Gircuit Emulation
The 30 MHz real-time emulator has been the industry standard for years. With its complex breakpoint logic and advanced trace, nobody can beat it for performance. Plug-in or RS-232 configuration. All 8051 derivatives are supported!
nohau
CORPORATION
Call Nohau's 24-hour information center to receive info on your FAX 408-378-2912

51 E. Campbell Avenue, Campbell, CA 95008 (408) 866-1820

[^8]equals 10%. Maximum current ratings range from 260 to 1640 mA . The soldercoated copper terminations are compatible with all soldering operations. $\$ 0.599$ (1000). Delivery, four to six weeks ARO. American Precision Industries, 270 Quaker Rd, East Aurora, NY 14052. Phone (716) 652-3600. FAX (716) 652-4814.

Circle No. 426

LED lamps. SLR Series LEDs have a 10,000 -hour operating life. Model SLR56 is a T-1-3/4 lamp with an illumination of 6.3 to 10 mcd . Models SLR-37 and SLR-34 are T-1 devices with luminous intensities of 10 to 16 mcd . All units are available in red, red-orange, yellow, yellow-green, and green. From $\$ 0.07$ (1000). Delivery, eight weeks ARO. ROHM Corp, 3034 Owen Dr, Antioch, TN 37013. Phone (615) 641-2020, ext 131. FAX (615) 641-2022. Circle No. 427

Headers. TMT Series surface-mount units are available with either single or double rows of contacts on $0.05-\mathrm{in}$. centers. Lead coplanarity measures 0.006 in., and the plastic housings can withstand infrared and vapor-phase soldering processes where temperatures do not exceed $230^{\circ} \mathrm{C}$ for 60 sec and $260^{\circ} \mathrm{C}$ for 10 sec . From $\$ 0.038$ per pin. Samtec Inc, Box 1147, New Albany, IN 47151. Phone (800) 726-8329; (812) 944-6733. FAX (812) 948-5047. TLX 333918.

Circle No. 428

Pin monitors. The PLeCMO-84-ZL/A takes the place of 84-pin plastic leaded chip carriers (PLCCs) in a target socket. The hinged ZIF lid accepts PLCCs as well as J-bend and ceramic LCCs. The lid is rated for 10,000 insertions min. It accepts $50-\mathrm{mil}$ pitch devices. The unit terminates in a male PLCC plug. \$221. EDI Corp, Box 366, Patterson, CA 95363. Phone (209) 8923270.

Circle No. 429

Inductors. RL-3745 and RL-3750 devices are low-power inductors available in values ranging from 150 to $1000 \mu \mathrm{H}$. Current ratings range from 0.5 to 1.7 A . The devices are available in packages for vertical mounting with a pc-board footprint of $0.5 \times 0.7 \mathrm{in}$. or in low-profile packages with a mounted height of 0.45 in. $\$ 0.99$ (1000). Delivery, stock to eight weeks ARO. Renco Electronics Inc, 60 Jefryn Blvd E, Deer Park, NY 11729. Phone (516) 586-5566.

Circle No. 430

Supporting Motorola's $68 \mathrm{HCl1}, 68 \mathrm{HCl} 16$ and many others ... Call for the complete list!

\#1. We stand by you.

"Plan for success! The right tools do the job rightWith Pentica emulators, solving puzzles can be FUN again!"
--Tom Baccei
President

CIRCLE NO. 123

3707 N. Canyon Road - Provo, UT 84604 (801) 224-6550 • Fax (801) 224-0355

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/ performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles - on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface - windows, pull-down menus, mouse support, on-line HELP and documentation - that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example,
from SPICE 2G. 6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $\$ 2495$, MICRO-CAP outperforms comparable PC-based analog simulators - even those $\$ 5000+$ packages - with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed - on larger circuits.

Low-cost, modular 200-MHz logic analyzers. You can configure the PM $3585 / 30$ and PM $3585 / 31$ with 32,64 , or 96 channels. Any channel can simultaneously capture data for state and timing analysis. The analyzers have support packages for more than $110 \mu \mathrm{Ps}$, and the manufacturer is continually developing more. The $/ 31$ version works with IEEE-488.2 and SCPI (standard commands for programmable instruments). $\$ 5450 ; \$ 5890$ with IEEE-488.2 and SCPI support; upgrade to 64 channels, $\$ 4975$; upgrade to 96 channels, $\$ 6995$. John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (800) 443-5853; (206) 347-6100. FAX (206) 356-5116. TLX 185102.

Circle No. 405 Philips Test and Measurement, Building TQIII-4, 5600 MD Eindhoven, The Netherlands. Phone local office.

Circle No. 406

8-channel, 250k-sample/sec, simultaneous S/H ADC board for ISA bus. The DT2833 has eight differential inputs. It can simultaneously sample all of its input signals and then convert them with 12 -bit resolution at 250 k sam-

ples/sec. The board includes patented circuits that correct for offset on any channel. It also includes a pair of 12 -bit D/A converters, eight lines of digital I/O, and two counter timers. The vendor supplies an MS-Windows dataacquisition library for its Global Lab software at no cost with the board. The library costs $\$ 95$ if purchased separately. You save $\$ 1000$ if, when you buy the board, you also buy Global Lab, its
signal-processing library, and printing module. $\$ 2595$. Data Translation Inc, 100 Locke Dr, Marlborough, MA 01752. Phone (508) 481-3700. FAX (508) 4818620. TLX 951646.

Circle No. 407

WAN protocol analyzer. The 4959A is intended for installation and maintenance testing of wide-area networks (WANs). It has an expansion slot that you can use to adapt it to testing of high-speed networks, such as 2 -Mbps SMDS (switched-multimegabit data service) and frame-relay networks. The unit also runs MS-DOS application software on an 80386SX $\mu \mathrm{P}$ with as much as 8 Mbytes of RAM. $\$ 10,995$; remote troubleshooting software, $\$ 990$. Hewl-ett-Packard Co, Box 58059, MS 51LSJ, Santa Clara, CA 95051. Phone (800) 452-4844.

Circle No. 408

Transformer tester. The AT3500 mounts on a bench top; it measures transformer turns ratios, mutual inductance, leakage inductance, magnetizing current, winding resistance, opencircuit voltage, and interwinding ca-

> Three Thinas TOTHINK ABOUT
> When You Select I/O Cards For Your PC-Based Data Acquisition System...

Cost: Don't just rimst purchase price. Considers the time and effort it takes to get your system up and running.
Performance: ronders
hardware performance, but don't forget software, too!
AVAILABILITY:
LHINK off-the-shelf and then call ACCES. We've got a whole catalog full of PC-based I/O Boards.
Don't just sit there! Call us today!
 (619) 693-9005

Toll Free(800)326-1649 CIRCLE NO. 109

Test \& Measurement Instruments

pacitance. It also measures line-frequency breakdown voltage between windings and from the windings to the core. You can vary the ramp and dwell times in breakdown tests. The unit can make most measurements at frequencies from 10 Hz to 1 MHz . It measures magnetizing current to 2.5 kHz . The tester operates in stand-alone mode or coupled to a PC. $\$ 49,000$. Voltech Inc, 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 881-7329.

8/16-channel, 12-bit, 100k-sample/sec ADC boards for ISA bus. The DAS-1400 series includes two units, each with four programmable gains (1, 2,4 , and 8 or $1,10,100$, and 500). A 3 -channel programmable timer and several counters in the boards' ASIC provide flexible triggering. A burst mode mimics simultaneous S / H operation for slowly changing signals. The boards include eight digital-I/O channels. The vendor supplies drivers for several ver-
sions of Basic and a terminate-and-stayresident application that lets you pop a control panel onto the screen. A $\$ 99$ software option includes drivers callable from programs in additional languages and file I/O drivers for all languages. \$699. Keithley Metrabyte, 440 Myles Standish Blvd, Taunton, MA 02780. Phone (508) 880-3000. FAX (508) 880-0179.

Circle No. 410

Deep-memory DSOs. The Pro 32 (2 channels, 12 bits, 20 M samples/sec), Pro 42 (4 channels, 12 bits, 20 M samples/ sec), Pro 34 (2 channels, 14 bits, 5 M samples $/ \mathrm{sec}$), and Pro 44 (4 channels, 14 bits, 5M samples $/ \mathrm{sec}$) are modular units that can have memory, which can store 4 M samples. The Pro 92 includes both the 12 -bit digitizer of the Pro 32 and 42 units and an 8 -bit, 200 M -sample/ sec ADC. $\$ 11,490$ to $\$ 29,990$. Nicolet Measurement Instruments, 5225 Verona Rd, Madison, WI 53711. Phone (800) 356-8088; (608) 271-3333. FAX (608) 273-5061.

Circle No. 411

Universal IC programmer. By using "job disks," production personnel can quickly set up the Allpro-88XR to program specific devices for specific applications. The job disk (a floppy disk) contains data and programming algorithms as well as command sequences that you would normally enter from the keypad or a host PC. The 88 -pin programmer has a DAC-per-pin architecture and handles devices packaged in DIPs and plastic leaded chip carriers. It operates in stand-alone and PC-hosted modes and includes a floppy-disk drive, an LCD, and a keypad. A 40-Mbyte hard drive is optional. You can use either a parallel or a serial ($57.6-\mathrm{kbps}$) interface to link the programmer to a PC. The software runs under MS Windows. \$9995. Logical Devices Inc, 1201 NW 65 th Pl, Fort Lauderdale, FL 33309. Phone (305) 974-0967. FAX (305) 9748531.

Circle No. 412

Minimum Daily Requirement

Compact TOKIN Surface Mount Devices get you through the day with flying colors.

When you need something extra to get you through your next project, try a dose of TOKIN Surface Mount Devices (SMDs). Designed to provide maximum working room in tight spaces, TOKIN SMDS offer the ideal remedy for downsizing computers and other electronic or communications equipment and systems. What's more,

computers, and so on. SMD Transformers make for easy high-density mounting on a wide range of communications equipment. And Highcapacitance Multilayer Ceramic Capacitors enable automatic mounting on PC boards. If you're not getting the SMDs you need to get you through the day, be sure to call TOKIN.

Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan Phone: 03-3402-6166 Fax: 03-3497-9756
Korea Representative Office
\#602, Champs-Elysees Bldg., 889-5,
Daechi-Dong, Kangnam-gu, Seoul, Kore
Phone: (2) 569-2582~5 Fax: (2) 544-7087

Tokin America Inc.

155 Nicholson Lane, San Jose, California 95134, U.S.A
Phone: 408-432-8020 Fax: 408-434-0375 Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090, U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804
Boston Branch
945 Concord Street, Framingham, Massachusetts 01701, U.S.A. Phone: 508-875-0389 Fax: 508-875-1479

Tokin Electronics (HK) Ltd.

Room 806 Austin Tower, 22-26A Austin Avenue
Tsimshatsui, Kowloon, Hong Kong
Phone: 367-9157 Fax: 739-5950
Taiwan Liaison Office
3F-4, No. 57 Fu Shing N. Road, Taipei, Taiwan
Phone: (O2) 7728852 Fax: (O2) 7114260
Singapore Branch
140 Cecil Street, No.13-01 PIL Bldg., Singapore
Phone: 2237076 Fax: 2236093,2278772
Tokin Europe GmbH
Knorrstr. 142, 8000 München 45, Germany
Phone: 089-311 1066 Fax: 089-311 3584

CAE \& Software Development Tools

Development tools. A set of integrated development tools for the Motorola CPU32 family of microcontrollers includes the Validate/XEL debugger interface and language tools, instructionset simulator, Codetap, emulator, and support services. The tools run on PCs, Sun SPARCstations, and DECstations. Each tool priced separately, $\$ 2000$ to $\$ 15,000$. Applied Microsystems Inc, Box 97002 , Redmond, WA 98073 . Phone (206) 882-2000.

Circle No. 351

High Voltage 20c/Voit

The PS300 programmable power supply series provides up to 5 kV at 25 Watts for laboratory and ATE applications. These supplies offer a wide range of features including programmable current and voltage limits, selectable overload response, and short circuit protection.

Dual LED displays monitor both output current and voltage, while a third display allows error-free front panel entry. A full GPIB interface is available for ATE systems.
The combination of features, price, and performance make the PS300 series the perfect choice for laboratory or systems use.

25 Watts output power 0.001% regulation 0.1\% accuracy Low output ripple Dual polarity Voltage and current readouts

GPIB Interface

Stanford Research Systems
1290 D Reamwood Avenue, Sunnyvale, CA 94089
TEL (408) 744-9040 FAX 4087449049 TLX 706891 SRS UD

VHDL source-code libraries. The VHDL Source Model Libraries consist of a Small Scale Integration (SSI) Library with more than 600 standard logic parts and a Memory Library with more than 1200 commonly used memory devices including static RAMs, dynamic RAMs, and EPROMs. Both libraries comply with VHDL (VHSIC Hardware Description Language) IEEE-1076 and run in Mentor System 1076, Cadence VHDL-XL, Viewlogic Viewsim, Synopsys VHDL System Simulator, and Vantage Spreadsheet. Site licenses for Memory Library, from \$18,000; for SSI Library, from $\$ 12,000$. Logic Modeling Corp, 1520 McCandless Dr, Milpitas, CA 95035. Phone (408) 957-5200. FAX (408) 945-9181.

Circle No. 352

Nonlinear curve-fitting software. Peakfit 3 is an update to the company's chromatography/spectroscopy-analysis software package for PCs. The analysis techniques use nonlinear curve fitting to reduce noise and separate and characterize unresolved peaks in overlapping peak data. You can observe and control the nonlinear fitting process graphically on screen. \$595. Jandel Scientific, 2591 Kerner Blvd, San Rafael, CA 94901. Phone (800) 874-1888; (415) 453-6700. FAX (415) 453-7769.

Circle No. 353

Schematic-capture tools for Unix. Capfast EDA tools provide hierarchical schematic capture, interface, and symbol translation under the X-Window system as well as DOS. You use the tools to translate and extract data between proprietary formats, such as Mentor, and ASCII and EDIF 200 formats. The software lets you customize data-passing between schematics, layout tools, and simulators. The network version runs under Unix on Sun/ SPARC, HP, and DEC workstations. $\$ 4995$ per host computer; annual support fee, $\$ 600$. Phase Three Logic, 1600 NW 167th Pl, Beaverton, OR 97006. Phone (503) 645-0313. FAX (503) 6450207.

Circle No. 354

Internal and boundary-scan test translation. With software called TSSI version 5.0 you do scan test using existing testers and without dedicated scantest hardware. The Waveform Database portion of the software stores, edits, manages, and augments test data produced by CAE tools such as those from Cadence, Synopsys, and Texas In-
struments. The software combines scan and primary input and output values with timing information, tester protocols data on shift chain order and produces programs that are tester ready. From $\$ 10,000$. TSSI, 8205 SW Creekside Pl, Beaverton, OR 97005. Phone (503) 643-9281. FAX (503) 646-4954.

Circle No. 355

Synthesis tools. The suite of synthesis tools called Dazix Synergy Synthesis assists with the design of ASICs. The software provides Archsyn for behavioral synthesis of VHDL, Verilog, and C HDLs (hardware-description languages), $\$ 15,000$; Macrosyn for datapath synthesis, $\$ 10,000$; Logsyn for tim-ing-driven logic synthesis and optimization, $\$ 30,000$; Testsyn for test synthesis and automatic test-pattern generation, $\$ 25,000$; and Libsyn for building synthesis models, $\$ 10,000$. Dazix, 1 Madison Industrial Park, Huntsville, AL 35894. Phone (205) 730-2000. FAX (205) 7308344.

Circle No. 356

DSP source-code interface. Using any one of more than 35 plug-in DSP boards, Hypersignal-Macro lets you create and add DSP algorithm and product code. The DSP Source Code Interface available for a variety of popular DSP chips, contains a library of math and DSP routines. The interface allows transfer of data, such as data recording, instrumentation, measurement, and simulation acceleration, between the DSP chip and the software. Hypersig-nal-Macro software, $\$ 989$; DSP Source Code Interface, $\$ 795$. Signalogic, 9704 Skillman, \#111, Dallas, TX 75243. Phone (214) 343-0069. FAX (214) 3430163.

Circle No. 357

Numeric compiler. Adding to the High Tech Basic product line, the HTBasic DOS 386/486 Numeric Compiler focuses on the subroutines, which often require the greatest amount of time to execute. The compiler lets you produce numeric-intensive subprograms without requiring additional programming skills. The company claims that much of the PC-based Rocky Mountain Basic code will run at speeds comparable to the fastest HP Basic workstations. $\$ 1325$. Upgrade for current HTBasic users, $\$ 450$. Transera Corp, 3707 North Canyon Rd, Provo, UT 84604. Phone (801) 224-6550. FAX (801) 224-0355. TLX 296438.

Circle No. 358

Behavioral model synthesis. Analog Model Synthesis for the company's Saber simulator eliminates the use of equations or modeling code to create behavioral models. Instead, it uses graphical data from previous simulations or laboratory instrument readings and automatically transforms them into behavioral models. $\$ 2000$. Analogy Inc, 9205 SW Gemini Dr, Beaverton, OR 97075. Phone (503) 626-9700. FAX (503) 643-3361.

Circle No. 359

Multidescription design-capture

tools. Design Expressions, a suite of multidescription design-capture tools, lets you define functionality at any level of abstraction by a variety of familiar graphical and textual methods. It includes gate-level designs with schematic capture, register transfer level with state machines, graphical state diagrams, truth tables, and Boolean equations; behavior, structural and data-flow designs with VHDL syntax-

DESIGNED TO
 MEET YOUR
 SmALLEST
 EXPECTATIONS

Toyocom's surface mount clock oscillator for computer applications is the ideal SMD - small and compact, yet designed to deliver exceptionally high frequency stability.

Whether your automated assembly application involves IR reflow or vapor phase mounting, you can rely on our SMD to meet your toughest performance specs.

Let us develop a surface mount oscillator to meet your unique requirements. Contact TOYOCOM, 617 E. Golf Road, Arlington Heights, IL 60005.

Phone Toll-Free today 1-800-TOYOCOM.

directed editor; and analog behaviorallevel designs. $\$ 15,000$. Dazix, 1 Madison Industrial Park, Huntsville, AL 35894. Phone (205) 730-2000. FAX (205) 730-8344.

Circle No. 360

ROM development kit. C-thru-ROM version 2.00 is a development kit to build stand-alone programs that run from ROM on Intel's 80×86 or NEC's

V-Series CPUs. It works with Microsoft C7 or $\mathrm{C}++$, Borland $\mathrm{C}++$, and the manufacturer's ROMview debugger. The ROMView debugging tool lets you start remote debugging on a standalone target system without tying up target-system serial ports or RAM. ROMview works with Borland's Turbo Debugger or the company's RDEB debugger. C-thru-ROM, $\$ 495$; ROMview, \$395. Datalight, 307 N Olympic Ave, Suite 201, Arlington, WA 98223 . Phone (800) 221-6630; (206) 435-8086. FAX (206) 435-0253.

Circle No. 361

Engineering-change-order software. Sherpa/View lets you view and comment on documents electronically, eliminating serial, paper-based approval processes. The product is integrated in Sherpa/PIMS, the company's information-management system, which eliminates the need for CAD seats for simply viewing documents; you can view data and make annotations from a 386 -based PC on the network. Single copy, $\$ 745$ to $\$ 1445$. Sherpa Corp, 611 River Oaks Pkwy, San Jose, CA 95134. Phone (408) 433-0455. FAX (408) 9439507.

Circle No. 362

Real-time operating system. OS9000 version 1.3 allows real-time dataacquisition and control tasks to be combined with DOS supervisory or postprocessing programs. The package includes VPC (Virtual PC), a DOS emulation program that runs DOS and Windows programs under OS-9000. The module emulates the DOS BIOS from OS-9000 RAM and transfers data between the two operating systems. \$995. Microware Systems Corp, 1900 NW 114th St, Des Moines, IA 50325. Phone (800) 475-9000; (515) 224-1929. FAX (515) 2241352. TWX 910-520-2535. Circle №. 363

Test system for ICs. The Analytical Probestation is an integrated system for CAD-driven probing and testing of complex integrated circuits. The system combines accurate probing and automated layout integration for verification, characterization, and failure analysis. The integrated system eliminates the need to assemble lab components from various sources. XL/ATS configuration, $\$ 400,000$. Integrated Measurement Systems Inc, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 626-7117. FAX (503) 644-6969.

Circle No. 364

EDN

 PRODUCT MART
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

Best Value in the World

DAY TURN
PRINTED CIRCUIT PROTOTYPES 2 PIECE PRICES

LAYERS		1	2	$3 \& 4$	$5 \& 6$								
		15	$\$ 212$	$\$ 265$	$\$ 581$		SQUARE	15	$\$ 212$	$\$ 265$	$\$ 581$	$\$ 715$	$\$ 850$
:---	:---	---:	---:	---:	---:	---:							
	30	240	300	658	815	983							

Square	30	240	300	658	815	983
P	60	283	354	775	954	1034
TO	90	325	407	891	1097	1304

- 5 PIECES $\times 1.34$
EXTRAS
Photo Plotting
Testing
Gold Contacts $\$ 50$
Ken Bah
Sierra Circuits, Inc
Phone (408)735-7137 FAX (408)735-1408 Modem (408) 735-9842

CIRCLE NO. 325

Program It In C

Our new Little PLC ${ }^{\text {TM }}$ measures only 4.33×2.85 inches and can mount on standard DIN rail. This miniature controller costs only \$195, including 8 optically isolated inputs and 8 relay driver outputs. Low cost expansion cards allow you to add more inputs and outputs: digital and analog it has dual RS-485 serial I/O, battery backed memory and time/date clock, programmable tmers and a watchdog Our easy to use and affordable mers and awatch our ens in 105 Youcan egradio dopmentsystemalsocost 195. You can wite simple programs an hour, or you can develop major applications with 20,000 lines of C language.

Z-World Engineering

1724 Picasso Ave., Davis, CA 95616 916) 757-3737 Fax: (916) 753-514 24 hr . Automatic Fax: (916) 753-0618 (Call from your fax, request catalog \#18)

Looking for a Quality Programmer?

SPRINT Universal Programmers
Call now and find out why Sprint is the fastest growing 84 pin programmer in North America.

Tel 800/722-4122 FAX 206/883-8601 for a free demo disk

North America Inc. CIRCLE NO. 326

EPROM EMULATION SYSTEM

The Most Flexible EPROM Emulator You Can Get Today!

■ Emulates up to 8 4-Megabit EPROMS through one standard serial port.

- Downloads 2-Megabit programs in less than 23 seconds.
- Allows you to examine and modify individual bytes or blocks.
- Accepts Intel Hex Motorola S-Record and Binary files.
- Software available for IBM PC and compatibles.
- Base 27256 EPROM System \$395.00. Other configurations available.

ORDER TODAY--IT'S EASY
CALL OR FAX FOR MORE INFORMATION
Incredible Technologies, Inc (708) 437-2433
(708) 437-2473 Fa

Visa and MasterCard accepted.

INDUSTRIAL PC SINGLE BOARD COMPUTER

 \& BACKPLANE B’D

- Full surface mount technology
- Single board is compatible with IBM and PC bus system. And all kind of industrial PC I/O board. -286C-12, 386SXC-16/20, 386DXC-33 CPU board -6, 8, 12, 14, 18, 20 slot backpane board. - Split backpane board is available
- 19" rackmount PC enclosure is available.
- Centralized LAN station system (security)

COMY TECHNOLOGY
62 Bonaventura Dr
San Jose. CA 95134
Tel. \#: California: 408-456-0333
Nationwide: 800-875-0333
Fax \#: 408-456-0366
CIRCLE NO. 327
UNIVERSAL PROGRAMMER, EMULATOR \& TESTER TUP-400 $\$ 745.00$
TUP-300
$\$ 575.00$ NEW

- New improved hardware and software.
- The most complete PC-based Universal Programmer. Programs PLD (PAL, GAL, FPL, EPLD, PEEL, MAX
MACH. . .), E(E) PROM (up to 16 Mbit),
Flash EPROM, BPROM, Special PROM, MPU
(87XX, 68XX, Z8, PSD301, PIC16XX, TMS320EXX
UPD75PXXX, HD637XXXX.
- Covers DIP, PLCC, OFP, SOP, and PGA with 8 to 84 pins. Gang Programming adapters available also.
- EPROM EMULATION capability.
- Tests digital ICs and DRAMs (SIMM/SIP adapter available).

Free software updates and new devices added upon reques.

- IC Manufacturers' approval.
- 1 year warranty, 30 day money back guarante

Supports Motorola
and PIC MICROS,
and MACH.

CIRCLE NO. 330

Control Cross-C

Full ANSI Cross-C Compilers \& Assemblers

- HD64180, HD647180X, Z80, Z180/1/2, Z280, 8085.
- DOS based cross-compilers for ANSI and K\&R C code.
- C \& assembler demos available on 24 hour BBS
- Completely automatic MMU support (no programming effort) for UP TO 1 MEG Z180 programs.
- Includes HD64180/Z180 support library with source.
- Comes with high-speed assembler, linker, and librarian.
- Includes macros to interface C and assembly.
- All ANSI .H files and libraries provided. Source available.
- Generates inline port $1 / \mathrm{O}$. Char types are not promoted to int
- Allows in-line assembly with access to \mathbf{C} variables.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Supports C ISR's. Can compile to user defined segments.
- 32 functions of real-time exec. (RTX) accessible from C.
- RTX - 256 tasks, queues, \& boxes w/ full interrupt support ANSI C Compiler, Assembler, Linker - $\$ 699$ Assembler and Linker Only - \$279
32 Fn. Real-Time Executive incl. Source - $\$ 399$

CIRCLE NO. 331

4MEG VIDEO Model 10
Flexible Image Processor and Application Accelerator For The PC/AT

- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPs Programmable Accelerator
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCIR input/output
- Variable timing for nonstandard formats
- Genlock to external timing sources
- Analog or digital inputs
- Software programmable timing/resolution

coEPIK

3005 MacArthur Blvd., Northbrook IL 60062 708-498-4002

FAX: 708-498-4321
CIRCLE NO. 334
Imagine if YOUR product could talk!

- Converts plain ASCII text into high quality speech
- Unlimited vocabulary-no custom recording necessary
- Requires only a single 5 V supply and speaker
- Built in $\mu \mathrm{P}$, serial and
- Less than $\$ 100$ in OEM quantities available

TURB0 320
Realtime DSP Development System

Processor development environment using TI's TMS320C30 40 MHz floating point DSP and the TI Compiler Assembler, Linker and Debug software. FEATURES

SCANIEAM ${ }^{\circledR}$ COMPONENT PRODUCTS

FIXED MOUNT MOVING BEAM

 BAR CODE SCANNERWelch Allyn's
SCANTEAM ${ }^{*} 5600$
is a high performance, laser diode based bar
code scanner. Its rugged

housing and mechanical design
together with all solid state electronics, combine to produce a highly reliable product which features:

- Compact Design ($2.3^{\prime \prime} \times 2.3^{\prime \prime} \times 2.7^{\prime \prime}$)

Ideal for applications where mounting space is limited

- Non-Contact Scanning

Scans on curved and irregular surfaces
in hard to reach locations

- Scan Range (From 2.0" to 6.0")

Adaptable to meet system requirements

Welch Allyn NXB

Communicate Weekly

to the electronics OEM through EDN's Magazine and News Editions Product Mart

CIRCLE NO. 336

©Advin

ADVIN versus DATA I/O

- Data I/O and Model 2900: reputable company. dependable equipment, supports 40 -pins. Software updates: fair amount.
- Advin and PILOT-U40: reputable company. dependable equipment, supports 40 -pins. Software updates: free via electronic BBS

ADVIN SYSTEMS INC.
800-627-2456, 408-243-7000, Fax 408-736-2503

CIRCLE NO. 340

To hear more from the little bird about painless simulation phone Fred on 3136638810 (USA) or Charles on +44 (0) 819060155 (Europe)

TATUM LABS, INC Fax 3136633640
THOSE ENGINEERS LTD Fax +44 (0)81906 0969
The Simulation People
CIRCLE NO. 343

REMOVE HARDWARE LOCKS

PROTECT YOUR INVESTMENTI MAINTAIN PRODUCTIVITY! Software utility that allows for the removal of hardware locks.

Available for most major CAD/CAM and PCB software programs
Easy - Simple - Guaranteed
Programs start at \$99.00 U.S.
Visa and Mastercard Welcome
Call or Fax for more Information

SafeSon Systems Inc.
202-1100 Concordia Ave
Winnipeg, Mb. R2K 4B8
Canada

Phone (204) 669-4639
PAX (204) 668-3566

CIRCLE NO. 346

Simulate Complete Analog/Digital ASICs and boards fast!

CIRCLE NO. 341
LINK-56001
$1)$
New emulator for Motorola's DSP56001
True In Circuit Emulator (ICE)

- and assembly language debugging
- Hardware breakpoint on program or data
- User-customized screen interface
- Slow motion and automatic screen update
- Graphical display of data
- Supports DSP56001 and DSP56002
- Emulates from 0 to 40 MHz
- PC based with mouse interface

1621 Scottsdale Dr. Plano, TX 75023 (214) 985-7593 Fax: (214) 985-8579 CIRCLE NO. 344

- Infinite Length Plots on Plain Fanfold Paper * 300 DPI Resolution Laser Electrophotography - 2.9 Inches Per Second Plot Speed
- Centronics Compatible Interface Capable of Continuously Plotting 274K Bytes Per Second - Use as a Raster Transfer Plotter or as a High Speed (16 PPM) PCL4 Compatible Printer - Form Overlay and Vector Graphics Commands - Ideal for Telemetry and Medical Strip Charts - Low Operating Cost Per Page
" Perfect Replacement for Electrostatic Plotters Ægis Engineering, Inc. 8133 Leesburg Pike, Suite 780 (703) 847-2013 Vienna, VA 22182 Fax: (703) 760-0840 CIRCLE NO. 347

oOCTAGON SYSTEMS Gof Call or Fax for Tel: 303-430-1500, Fax: 303-426-8126 of full-line catalog CIRCLE NO. 342
THE EASY CHOICE

Micro-Link's VME203 SBC makes your design choice easy. Available in several configurations VME203 prices start at less than $\$ 1,025$ in 100 piece quantities. Options include 68EC030 or 68030. FPU. 1 or 4 MB of DRAM with transparent refresh, burst mode Cache, up to 1 MB of EPROM two RS-232 serial ports, and clock speeds of 16 . 32 and 40 MHz . VME203 software support includes Microware OS-9 ${ }^{\circledR}$, CrossCode ${ }^{\circledR}$ C FreeForm'"and Microbug II.

> Micro-Link

Call For Your Free Configuation Guide 1-800-428-6155 US \& Canada
1-317-846-1721 International

CIRCLE NO. 345

LOW COST
 INTERFACE
 CARDS FOR PC/XTAT

RS-485/422 Card [PC485A] \$95/125

- Serial Async. Communication up to 4,000 it: 2 or 4 wires: NS16450 UART
. 56 K
Fullhalt duplex operation: Supports hardware handshaking (BTS.CTS) - Dual diversteceivers; Handles 64 devices: Compatible with most comm. SN Dual-Port RS-485/422 [PC485B] \$145 - Two independent channels UARTs; 2 or 4 wire operation; max. Baud 56 KB Dipswitch contgurable as COM1-4 (IRQ2-7); On board terminator resistor Optonal version protected with TRANSZORBs (ransient voltage supressors) EEE-488 Card [PC488A
- Includes DOS Device Diver and sample Communication program in BASIC - Selectable IRO (1-6) DMA channel 1 or 2 . ip to fourcar boards per computer - Compatble with most IEEE-488 Sottware packages for IBM-PC - PC488C card version with Built-In Bus Analyzer hardware and software 12 Bit A/D/A Digit. I/O [PCL711s] \$295 - 8 Single ended Anlg $\mathbb{N}, 1$ Anlg OUT; AD574, conversion time 25,s
- Pascal \& C Language Drivers. Calibration, Demo, Example Programs included 12 Bit $A D$ and D. A Resolution

CIRCLE NO. 348

INTRODUCING PROTERM

FIRST IN A FAMILY OF
LARGER DISPLAY
OPERATOR INTERFACES

- 8 lines by 24 characters or 16 lines by 32 characters (selectable)
-VT-100 compatible (ANSI 3.64)
- User programmable keypad
- 30 , or 45 key keypad
- Readily customized to
 suit your application
- RS-232 or RS-422 interface
- Two year warranty

TWO TECHNOLOGIES, INC. 419 SARGON WAY HORSHAM, PA 19044 (215) 441-5305 Fax (215) 441-0423

CIRCLE NO. 349

TURBO XT WITH SOLID STATE DISK

- PC Bus, $4.2^{\prime \prime} \times 6.7^{\prime \prime}$, MS/DOS $2.0-5.0$
- 2 Serial Ports, 1 Parallel Port
- Up to 2 FLASH SSDs, Bootable
- 1 Meg total FLASH storage, 2 Meg DRAM
- 10 MHz Operation, WatchDog Timer
- Software Included / SSD, EMS Handling
- 6 Layer, CMOS, Wide Temp. Range
- Made in the U.S.A. / 1 Year Warranty
- $\$ 295.00$ qty. 1, Quantity VMAX ${ }^{\circ}$ Pricing Available TEMPUSTECH, INC. TEL: (800) 634-0701 295 Airport Road FAX: (813) 643-4981 Naples, FL 33942

SOLID STATE DISK

* BOOTABLE
* VERSATILE
* SIMPLE
* COMPATIBLE
* DURABLE
* FAST
* RELIABLE
* ANOTHER SEALEVEL/ ANNABOOKS INNOVATION

SEALEVEL SYSTEMS
MSEALEVEL
PO BOX 830
LIBERTY, SC 29657
803-843-4343
CIRCLE NO. 755

320 C 25 DSP ASAP \$1,995

Drive your embedded 320 C 25 design to market as fast as possible with our 320 C 25 in-circuit emulator. The MACROCHIP 'C25 emulator features real time emulation to 50 MHz with no wait states, 64 K words of program overlay memory, simple software breakpoint,
single step
trace, disas-
sembler,
and RS-232
communications for fast downloading of programs from your PC COM port.

FREE
 DATA ACQUISITION \& COMMUNICATION HANDBOOK

1991-1992 handbook features 86 pages of the latest information on our complete line of communication, data acquisition and waveform synthesizers.

1-800-553-1170

Call, write or fax for literature:

> 1301 N. Denton Drive Carrollton, TX 75006 Tel 1-800-783-9546 Fax 214-245-1005

CIRCLE NO. 350
¢ QUATECH
662 Wolf Ledges Parkway
Akron, Ohio 44311 (216) 434-3154

CIRCLE NO. 751

DR. "CHIP" MUNK SAYS

 $6805 / 68 \mathrm{HCO} 5 / 68 \mathrm{HCl1}$ DEVELOPMENT TOOLS ouality ${ }^{\text {And }}$ service AFFORDABILITY

"Chip" experts a gree with Dr.Munk. TECI'S PC based microcontroller develment tools are the most cost effective for veterans or beginners.
6805 PRIMER FOR BEGINNERS... $\$ 195.00$ 6805/68HCO5/68HC11 CROSS ASSEMBLERS.. 999.00 6805/68HCO5 SIMULATOR / DEBUGGERS... 999.00 68705 P3,P5,U3,U5,R3,R5 PROGRAMMERS FROM $\$ 349.00$ 68HC705/68HC805 PROGRAMMERS FROM $\$ 395.00$ COMPLETE PC BASED DEV. SYSTEMS FROM $\$ 449.00$ $68 \mathrm{HCO5} / 68 \mathrm{HC} 11$ REAL TIME EMULATORS FROM $\$ 895.00$
TECI TEL: (802) $525-3458$
The Engineers Collaborative,Inc.
RR\# 3 Box 8C Barton,VT. 05822 USA
CALL TOLL FREE 1-800-336-8321
CIRCLE NO. 753

For Complex \& High Density PLDs

The most powerful PLD/FPGA CAE design software from $\$ 495.00$

1-800-331-7766 Levices, inc. AL

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information

New Schematic and PCB Software
With support for extended and expanded memory, HiWIRE II can handle your most demanding schematic and PCB designs quickly and easily. The unique HiWIRE editor allows you to display and edit schematics and PCBs simultaneoously, using the same commands for each. HiWIRE II is $\$ 995$, and is guaranteed.

Wintek Corporation
 1801 South St., Lafayette, IN 47904

 (800) 742-6809 or (317) 448-1903CIRCLE NO. 758

Facts about

750,000
 ICs and Semiconductors at Your Fingertips

Cahners CAPS is the industry standard component search and selection tool for electronic design engineers.

- PC-driven, CD-ROM-based
- Includes unabridged manufacturers' technical documentation
- Represents more than 600 manufacturers worldwide

Call toll-free: 1-800-245-6696

275 Washington Street Newton, MA 02158-1630 Telephone: 508-692-4148 Facsimile: 508-392-0603

CIRCLE NO. 761

Avionics databus boards and software for IBM-PC and VMEbus.
Call toll-free: 1-800-829-1553
 Technology

ANALOG I/O DIGITAL I/O

Inputs to 235 K samples per second
Outputs to 250 K samples per second

Or call for
FREE demo diskette.
Laboratories
2265 116th Avenue N Bellovue, WA 98004
FAX (206) $453-3199$

CIRCLE NO. 759
8051 681CCII COP8 68H1C05

- A 4K frame trace buffer with odvanced searching capobilities.
- iceMASTER connects easily to your PC, requires no disossembly or expansion slots. Works on any PC (DOS or OS/2), MicroChonnel or EISA. Even loptops!
- Broad support of derivative devices.
- Rental and 10-day trials available.
- Now virtual memory and mouse support.
- Call today for free demo disk and ask about a free

8051 Macro Assembler (800) 638-2423

T/MMeraLink ${ }^{\circ}$

CIRCLE NO. 762

INTELLIGENT DATA ACQUISITION

Now you can run high speed data acquisition under WindowsTM. A Data Acquisition ProcessorTM with on-board intelligence handles the critical part of an application: the tasks that run in real time. The DAP can be controlled from any Windows language or application that can make DLL calls. The one shown here is written in Visual BasicTM and uses only seven DLL functions.
Phone 206/453-2346, or fax
206/453-3199
Microstar
Laboratories
CIRCLE NO. 760

CMOS 186

Single Board Computer
Runs C or QuickBASIC " Programs
Powerful 16 -bit computer directly executes EPROM's containing any C or BASIC. EXE file. NO LOCATORS! Software includes multi-tasking multi-drop comm, PID control, OPTOMUX. ${ }^{\text {™ }}$

- $10,12,16 \mathrm{MHz} 80 \mathrm{C} 186$
- CMOS design
- 512K RAM
- 384K EPROM
- STD BUS Expansion
- COMI RS232/485
- COM2, LPTI
- RTC Avail
- 80C187 Avail
- OEM discounts

3447 Ocean View Blvd., Glendale, CA 91208 (818) 244-4600 FAX (818) 244-4246

CIRCLE NO. 763

Break through your FPGA/PLD design puzzle!
MINC introduces PLDesigner-XL, the next generation in technology for PLD, CPLD and FPGA design synthesis. A breakthrough with an enhanced top-down environment including VHDL, state-of-the-art optimization and advanced crosstechnology partitioning/fitting. Now all other software is generations behind. Call MINC toll-free at $800-755-$ FPGA.

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
184 - EDN September 17, 1992

UNIVERSAL PROGRAMMER

PAL EPROM FLASH
GAL EEPROM MICRO

$\$ 475.00$
5ns PALs 4 MEG EPROM (8 \& 16 bit) 22V10 \& 26CV12 GALs Parts added at your request

Free software updates on BBS Powerful menu driven software

400 MHz LOGIC ANALYZER

up to 128 channels
Variable threshold up to 400 MHz 8 External clocks 16 level triggering

Call for information on 100 MSa /s Pattern Generator (option) \$799-LA12100 ($\mathbf{1 0 0} \mathbf{~ M H z , 2 4 ~ C h) ~ P r i c e ~ i s ~ C o m p l e t e ~}$ $\$ 1299$ - LA32200 ($200 \mathrm{MHz}, 32 \mathrm{Ch}$) Pods and Sottware \$1899-LA32400 ($400 \mathrm{MHz}, 32 \mathrm{Ch}$) included

Call (201) 808-8990
Link Computer Graphics, Inc.
369 Passaic Ave, Suite 100, Farfield, NJ. 07004 fax: 808-8786
CIRCLE NO. 779

ISA \& EISA THEORY \& OPERATION

Here are the timing specifications for the ISA, EISA, and E-ISA busses explained in text, diagrams, and tables. Ed Solari, author of our famous "AT Bus Design", covers every type of cycle: memory access, DMA transfer, refresh, and bus master arbitration. He explains in detail how sources and destinations of different data widths (8,16 , and 32 bits) can operate with each other in any combination.
"ISA \& EISA Theory \& Operation" defines each bus signal line, and how it functions for different types and lengths of cycles. You will learn how to use wait states and data byte swapping to accomodate resources of various types. And you will see the effect that bus ferminations, pull-up values, and signal distribution methods have on the bus timing.

Order now! This hard-bound book, containing over 500 pages and hundreds of diagrams and tables, is only $\$ 89.95$. It is without a doubt the most important ISA and EISA bus design reference.

ANNABOOKS
15010 Avenue of Science, Suite 101
San Diego, California 92128
1-800-462-1042 619-673-0870 619-673-1432 FAX

Digital Voice Module

DM1000LP-1 (\$25, EPROM chip extra)

* Plays natural-sounding pre-digitized voice
* Playback triggered by contact closures
* Up to 256 seconds of message (8 M -bit EPROM) digitized by using our VP880 digitization board * Totally self-contained, single-voltagerequirement * 1 uA standby current, great for battery operation * Built-in 3W power amplifier
* Many other models available, call for brochure

ELETECH ELECTRONICS, INC.
1262 East Katella Avenue, Anaheim, CA 92805 Tel: 714-385-1707 Fax: 714-385-1708

CIRCLE NO. 777
 CIRCLE NO. 780

5 Volt Flash?

- 64 k x 8
- 5 Volt Only
- Byte Write
- No Erase Cycle Required
- Totally Self Timed
- PLCC, LCC, DIP, TSOP Packages Available

Samples of the X28C512 are available at your local Xicor Sales Office.
 (408) 432-8888 - FAX (408) 432-0640

CIRCLE NO. 783

OMNIPRO-10 NIVERSAL ROCRAMMER from \$299.00

Now supporting entire MACH family!

EPROMs to $4 \mathrm{meg} / E E P R O M \&$ Flash
GAls \& EPLDs
High Densily PLDs/FPGAs/Mach 21X
Micros, Intel, Signelics, Zilog
Gang and Set Programming option

VAIL SILICON TOOLS 3055705580

CIRCLE NO. 778

PLD-1128 LOGIC DEVICE PROGRAMMER $\$ 995.00$

Program over 1100 different PLDs including the latest architectures from AMD, Cypress, NS Qualified by AMD, Lattice, National Semiconductor, Signetics and others
Supports all MACH and MAPL devices, all versions of 22V10, including the /4 from
AMD, -5 \& -7 PLDs from NS, and Altera 900 \& 1800 series EPLDs
Only uses the manufacturer approved programming algorithms to ensure accuracy LIFETIME FREE SOFTWARE UPDATES VIA BBS and US MAIL
Risk free 30-day money-back guarantee MADE IN THE USA

1-800-225-2102

Houston, Texas 77043-3239 • (713) 461-9430 • (713) 461-741
CIRCLE NO. 781
Telecom Solutions from Telfone

Loop Current Detectors

M-949 Line Sense Relays prevent failures caused by transients and current surges

RUGG:DITED

packace

 phone line.reliability means your products will last longer.

- Better survivability than optoisolators
- Improved RFI shielding
- For on-hook/off-hook monitoring, switchhook flash detection, and rotary dial pulse counting
- Available in UL-approved versions

1-800-426-3926
Or: 206-487-1515 Fax: 206-487-2288

をELTロNE

INNOVATING SOLUTIONS
In Telecom Internuce Components
Teltone Corporation, 22121-20th Avenue SE, Bothell, WA 98021
CIRCLE NO. 784

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

Loral Information Display Systems, a division of Loral Corporation (NYSE), designer of digital electronic information systems and graphic displays for military applications, has the following immediate opportunities:

DIGITAL DESIGN ENGINEER - BSEE with 8-10 years experience in high speed microprocessor based computer graphics design. Experience in military displays and display processor design preferred. Knowledge of CAE simulation technologies helpful.

MECHANICAL ENGINEER - BSME with 5-10 years experience in military electronic packaging design, analysis and quality testing. Strong background in chassis design, PWBs, CCAs, harness and thermal analysis. Prefer finite element experience with ANSYS.

PROJECT ENGINEER - BSEE with 5 years experience in project engineering or project management in a military electronics development engineering environment. Must have extensive scheduling, budgeting, and customer interface experience. Systems engineering background helpful.

RELIABILITY ENGINEER - BSEE with 5-10 years experience in reliability analysis and predictions, creating reliability test plans and performing stress analysis. Knowledge of Mil Std 217, 781, 785, and 1629 necessary. Background in failure analysis and maintainability a plus.

INTEGRATION ENGINEER - BSEE with $8-10$ years experience in hardware/software design experience plus proven experience in Engineering Lab Integration and Testing.

MARKETING ENGINEER - BSEE with minimum 7-10 years experience in technical marketing of military electronic or avionics systems to prime contractors, Air Force and Navy. Prefer specific background in airborne and ground display systems. Responsibilities include generating new business opportunities with prime DOD contractors and Air Force and Navy customers.

Loral Information Display Systems is a progressive company offering unusual growth opportunities in our own office park in NE Atlanta. We provide top industry pay and benefits. If interested, please send or fax resume with salary history to: Robert C. Hall, Loral Information Display Systems, Dept. EDN917, 6765 Peachtree Industrial Blvd., Atlanta, GA 30360. FAX (404) 448-9163. EOE, M/F/H/N. U.S. Citizenship required.

1992 Recruitment Editorial Calendar

	Issue Date	Ad Deadline	Editorial Emphasis

Magazine Edition	Nov. 26	Nov. 5	19th Annual Microprocessor Directory • ASICs • Sensors - EDN's "Innovation Crusade"-Winners Coverage
News Edition	Dec. 3	Nov. 19	ICs \& Portable Computers - Power Sources - Laptops/Portables - Lowpower Design • Regional Profile: Massachusetts, New Hampshire
Magazine Edition	Dec. 10	Nov. 19	INTERNATIONAL PRO- DUCT SHOWCASE-Vol. 1 Semiconductors \bullet Software - Hardware \& Interconnect
Magazine Edition	Dec. 24	Dec. 3	INTERNATIONAL PRO- DUCT SHOWCASE-Vol. II - Computers \& Peripherals Measurement • CAE

Call today for information on Recruitment
East Coast: Janet O. Penn (201) 228-8610
National: Roberta Renard (201) 228-8602

THE FUTURE IS WIRELESS.

THE technology

White evertone has beentalk. ing aboul vireless compliter networks, we have been designing mumufacturing and selling them. Symbol Tech nologies, Inc. has altreadi! in. stalled over 3,000 Spectrum One wireless cellular her. works. Symbol's Spectrum One Network gives our wire. less hand held computers dil rect accens to the user is host computer for applications in retall. manufacturims. mili: tary. healtheare and ware. housing industries.

Al Symbol Technologies. Ince. s Costa Mesa Southern Califormial and San Jose (Northern Californial) facil: ties, yu4 will loin an innova. tive team of Engineers in. volved in RF circult desijn. digital communtications re. seatch. RF and ILAN protocol and software develop. ment. Your liteas will become reality in our next generation of wireless networks.

RF COMMUNICATION TECHNOLOCIST

DIAGNOSTIC SOFTWARE TEST ENGINEERS

SENIOR ASIC DESIGN ENGINEERS

SENIOR NETWORK ARCHITECT

 PRODUCT ENGINEERSQUALITY ASSURANCE SOFTWARE TEST ENGINEERS

SENIOR DIGITAL DESIGN ENGINEERS

SOFTWARE DEVELOPMENT ENGINEERS

MARKETING PRODUCT MANAGER (DATA COMMUNICATIONS

Back your career with the strength and resources of an industry leader. Please mail your resume with salary history (indicating position and location of interest) to: Symbol Technologies, Inc., Attn: Dick Stanion, Human Resources, Dept. EDN/917, 340 Fischer Avenue, Costa Mesa, CA 92626. Equal Opportunity Employer M/F/D/V. Principals Only.

Engineering Opportunities

Harris Corporation's RF Communications Division is a worldwide supplier of complete radio communications systems solutions to U.S. Government and international customers in over 100 countries. Growth of domestic and international business has created opportunities including:

FIRMWARE

Develop realtime embedded processor (8,16 bits) firmware utilizing structured software development methodologies and object-oriented design. "C" and ADA required; INTEL a plus.

SYSTEMS ENGINEERING

Analyze, design and develop HF/VHF/UHF and microwave communications systems; mobile and fixed configurations. Networking experience a plus.

SOFTWARE

Develop realtime control and communications system software utilizing structured development methodologies (CASE). Unix and ADA experience required. X Windows, Ingress and DOD-STD-2167A experience a plus. Computer Platforms: PC's, workstations and minicomputers.
Positions require a BSEE or equivalent and $3+$ years' relevant experience; an MS is desirable. Some positions require ability to obtain U.S. Security Clearance. Multilingual skills are desirable.
For prompt consideration, please send resume in confidence to: HARRIS CORPORATION, RF Communications Group. HR Dept. EDN, 1680 University Avenue, Rochester, NY 14610.

An Equal Opportunity Employer M/F/D/V.

WE'RE KNOWN BY THE CONTRACTS WE KEEP.
Lear Astronics Corp., a leading supplier of Avionics, Radar and Advanced Electronic Systems, has opportunities for:

SYSTEMS ENGINEERS

Requires a BSEE and design experience including digital computer architecture definition, redundancy management, HW/SW integration and system integration.

SOFTWARE ENGINEERS

Qualifications include a BSEE/BSCS degree and 5 years experience in embedded SW development and integration. Ideal candidates will have experience with 80960 or 1750 A and Ada.

SYSTEMS ENGINEERING MANAGER

Requires $B S / M S E E$ and 15 years experience in automatic
flight control system proposal generation, design and integration. You must have at least 5 years management experience developing and implementing new designs, plus a solid understanding of aircraft systems/SW. Will be responsible for schedules and budgets.

WE WILL BE COMING TO YOUR AREA SOON. FOR A LOCAL INTERVIEW APPOINTMENT, CALL CHUCK DOYLE AT: 1-800-LEAR-JOB

Lear Astronics Corp., Dept. M25, 3400 Airport Ave., Santa Monica, CA 90406. (310) 915-6745. FAX (310) 915-8387. EOE. Employment offers are contingent on satisfactory preemployment drug tests. You will be contacted only if we are considering you for the positions advertised.

LEARASTRONICS

Your Future Starts Here

If you're looking for work, just look here.

Senior Principal Engineer manage team of microcode engineers on ESCON part development for a complex disk drive subsystem for IBM mainframe application. Responsible for all aspects of project including management, research, definition, implementation and testing of subsystem. Requirements include Master of Science degree in Computer Science or related field, with at least four years managerial experience in design and modeling of software for reactive (real-time embedded) systems in a mixed hardware/software environment; strong background in definition of software development procedures and standards for software life-cycle, including budget, methods and tools, partition; and configuration control; thorough knowledge of CASE tools; software paradigms (requirement analysis and design); software architecture, quality evaluation, metrics, reverse engineering methods, communication protocols and integration of high-level languages with assembly language. Salary $\$ 80,000 /$ year. 40 hours/wk. Respond with two copies of resume to Job Order \#21075, P.O. Box 8968, Boston, MA 02114

ENGR, Design: Logic design, circuit design, simulation, layout, testing \& verification of new high performance digital integrated circuits. Min. MS or equiv. EE. Applicants must have project/ research background in IC design (including mfg. \& testing, logic \& circuit design, logic \& circuit simulation, layout \& verification); advanced coursework in digital \& analog circuit design; knowledge of $h / w \& s / w$ tools required for IC design (workstations, operating systems, schematic capture, circuit simulation, logic simulation, layout and verification). $\$ 3615 /$ month. Applicants clip ad and send w/resume to: Miss. State Employment Service, 100 Felix Long Drive, Starksville, MS 39759-9983, Job Order Number MS2619052.

Join the Leader in Wireless Digital Access Telephone Systems!!

The IMM Corporation designs, patents, manufactures and markets the telephone industry's most sophisticated and effective technology and products for the worldwide Wireless Digital Access market. IMM's breakthrough technology, Time Division Multiple Access (TDMA), has been selected by the Cellular Telecommunications Industry Association (CTIA) as the IS-54 United States digital cellular standard. With hundreds of systems currently up and running in six different countries; dramatic sales and revenue increases in the last two years; imminent cutover to operation of the first all wireless telephone service city in the United States; and its first royalty bearing technology license in place, IMM is about to embark on a major development effort which will truly extend the state of the art and result in a product line destined to maintain IMM's leadership position through the year 2000.

Qualified applicants will have a BSEE, BSME or BSCS and a minimum of 5 years experience in the telecommunications environment. An advanced degree and knowledge of Bellcore and /or CCITT standards will decidedly enhance an applicant's competitiveness. Specific opportunities are available for:

- SENIOR TELECOMMUNICATIONS SYSTEMS ENGINEERS
- SENIOR TELECOMMUNICATIONS HARDWARE ENGINEERS
- SENIOR MECHANICAL ENGINEERS
- SENIOR RADIO FREQUENCY ENGINEERS
- SWITCHING SYSTEMS MANAGER

If you have the experience we seek and want to share this exciting opportunity with some of the most creative telecommunications engineers in the business, send your resume and salary history to: IMM Corporation, Human Resources, Department ED-8, 2200 Renaissance Boulevard, Suite 105, King of Prussia, PA 19406-2755. Equal Opportunity Employer.

In EDN's Magazine and News Editions, opportunity knocks all the time.

A Partnership in Power and Prestige Worldwide

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Servicess. LId. has formed the EDN Dasabank. What is the Databank? it is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desiries. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up. It remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and If's affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will pariodically be reviawad with you by a PSL professional placement persen.
We hope you're happy in your current pesition. At the same time, chances are there is an Ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mall the complated form below, along with a capy of your resume, to: Placement 8ervices, Ltd., Inc.

PRESENT OR MOST RECENT EMPLOYER
Parent Company Your division or subsidiary: Location (City, State) Business Phone if O.K. to use: \qquad

EDUCAT\|ON	Major Field	GPA	Year Degree Earned	College or University

POSITIONDESIRED
EXPERIENCE
Duties and Accomplishments: Industry of Current Employer:

Reason for Change:
PREVIOUS POSITION:
Job Titte:
Employer: \qquad From: \qquad
\qquad City: \qquad
Division:
Type of Industry \qquad
\qquad State:

Duties and Accomplishments:
COMPENSATION/PERSONAL INFORMATION

Years Experience	Base Salary	Commission	Bonus	Total Compensation		Asking Compensation		Min. Compensation
Date Available	IWill Travel			\square lown my home. How long?				ent my home/apt. \square
\square Employed	\square Self-Employed	\square Unemployed		\square Married	\square Single		Height	Weight
Level of Security Clearance		\square U.S. Citize	\square Non	.S. Citizen	$\begin{aligned} & \hline \text { My identity may be released to: } \square \text { Any employer } \\ & \square \text { All but present employer } \\ & \hline \end{aligned}$			
\square WILL RELOCATE	\square WILL NOT RELOCATE		\square OTHER					

Fully QPL'd!

 Trompeter's 70 Series... TwinaxTriax Concentric Connectors$$
\begin{array}{ll}
\text { MIL-C-49142/3 } & \text { MIL-C-49142/8 } \\
\text { MIL-C-49142/4 } & \text { MIL-C-49142/9 } \\
\text { MIL-C-49142/5 } & \text { MIL-C-49142/10 } \\
\text { MIL-C-49142/6 } & \text { MIL-C-49142/11 }
\end{array}
$$

Send for 70 Series Mil Spec Sheet

For pricing and availability contact your Local Trompeter Rep or call our New 800\# for Sales/Service/Technical Support.
(800) 982-COAX Inside California Call... (800) 655-2028

$$
\begin{aligned}
& \text { Quality doesn't cost... ETROMPETER } \\
& \text { It pays. }
\end{aligned}
$$

(818) 707-2020 Fax (818) 706-1040

CIRCLE NO. 116

DC-DC Converter

 Transformers and Power InductorsAll PICO surface mount units utilize materials and methods to withstand extreme temperature $\left(220^{\circ} \mathrm{C}\right.$) of vapor phase, IR, and other reflow procedures withou degradation of electrical or mechanical characteristics.

These units have gull wing construction and are packaged in shipping tubes, which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Transformers have input voltages of $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V . Output voltages to 300 V .
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to $\mathbf{2 0} \mathbf{m H}$ with DC currents to 23 amps
- Inductors have split windings

See EEM or send direct for FREE PICO Catalog PICO FREE PICO Cataiog Electronics, Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514

Abbott Electronics
49
ACCEL Technologies Inc 140
Acces
173
Actel
14-15
Advanced Micro Devices . . . 10-11, 12-13, 26-27
Advin Systems Inc 181
Aegis Engineering Inc 181
Alcatel 181
70

Ametek 99
Ampro Computers Inc 107
Analog Devices Inc 64
Annabooks 64
185

Antex Electronics . 99
Apex Microtechnology Corp 6

Ariel
array Microsystems Inc 93
AT\&T $52-54$
Ballard Technology 183
B\&C Microsystems 181, 184
BP Microsystems.
. 185
Burr-Brown Corp
86
Capital Equipment Corp 191
Capilano Computer Systems Inc 184
Cascade Design Automation 108
Ceibo Ltd
.
Circuit Components Inc 147
Comdisco
95
Comytech 179
Cybernetic Micro Systems 9
Cypress Semiconductor
.6
Dalance Spry 180
Dale Electronics Inc 1
Dale Electronics Inc/Vishay Nytron 146
Data I/O Corp 38*, 56, 163, 165, 184
Datel 112, 196 E
Digital Equipment Corp 115
Domain Technology 181
DSP Development 89
EEsof 162
EG\&G Wakefield Engineering Inc 66
Electronic Measurements Inc 119
. . . . 185
Emulation Technology Inc 184
Enea Data AB^{*}. C4
EPIX Inc
Fujitsu Microelectronics Inc 149
Grammar Engine Inc 184
Harris Semiconductor 152-153
Hewlett-Packard Co . . 18, 137-139, 155-157, C3
Hypertronics Corp 116
IDT
123
IEE . 133
IIC Data Device Corp 65
Illinois Capacitor 134
ncredible Tech 179
Instrument Specialties Co Inc 128
Intel . 24-25
Intelligent Systems Inc 183*
Intermetrics Inc 148
Ironwood 146
John Fluke Manufacturing Co Inc 87
Kepco Inc 160-161*
Leap Electronic Co Ltd 180
leasametric Inc... 180

Linear Technology Corp 142
Link Computer Graphics Inc 185
Logical Devices Inc 182
Macrochip 182
Maxtor .
164
Mercury Computer Systems 2
Metalink Corp 171, 183
Meta Software Inc 150
MF Electronics 58
MicroENERGY Inc 146, 184
Micro Link 181
Microstar Laboratories 183

Microtime Computer Inc 184*
MicroSim Corp
Minc Inc
$3,4,22-23,145$
Mini-Circuits Laboratories
Mitsubishi Electronics America Inc
151, 158

Recruitment Advertising 186-190

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

HP's new 4 GSa/s scope helps you capture high-speed glitches.

The new HP 54720A has the speed you need to solve intermittent problems.

When digital designs reach clock speeds above 33 MHz , you run into a new class of problems. That's when critical timing and noise margin analysis are crucial. And that's where the HP 54720A helps the most.
The HP 54720A has the highest sample rate available on multiple channels with exceptional real-time bandwidth -as well as low noise and jitter. So you get repeatable, highfidelity waveform capture. And a clearer picture of the input signal.

To make sure the captured signal is reliable and distortion free, the HP 54720A has high vertical and horizontal accuracy. It teams up perfectly with the new non-intrusive HP 54701A active probe. And it's ideal for use with HP logic analyzers when you need maximum insight into digital system problems.
Plus, to make sure you have the information you need, HP offers educational programs, application notes, and seminars on solving highspeed digital design problems.
So, if intermittent problems are plaguing you, call 1-800-452-4844.*

Ask for Ext. 3079, and we'll send you a brochure and an application note that explain how the HP 54720A helps you get a clearer understanding of your high-speed digital designs.
There is a better way.

WORLD CLASS

 TRANSFORMERS FOR WORLD CLASS CUSTOMERS Signal International Series Transformers are VDE and CSA certified, UL recognized and comply with applicable IEC specifications. In an era of global marketing, and the inception of the European Economic Community in 1992, using Signal Transformers can open up new trade routes for you.We'll even give you a competitive edge by customizing a JIT program
for you that will reduce your inventories and provide you with only as many Signal Transformers as you need, only as you need them. While our Pronto ${ }^{\text {tw }} 24$ hour service will ship standard catalog transformers in just one business day.

Naturally, with timing this critical you've no time for reject replacements. No problem. Our Total Quality Control Program utilizes the industry's most modern, automated test equipment to verify that every single unit meets with your specifications. And, because we use cellular assembly lines dedicated to one project at a time, nobody beats our quality in
producing quantities under tight deadlines.
If you want to profit from a global economy while saving money by buying direct, call for more information or a free catalog: Signal Transformer, 500 Bayview Avenue, Inwood, NY 11696.

FAX (516) 239-7208
BUY DIRECT (516) 239-5777.
signal

The/ merican
Original."

You can send a Signal anywhere.

[^0]: EDN*(ISSN $0012-7515$, GST Reg. \#123397457) is published 48 times a year (twice monthly with 2 additional issues month, except for March and October, which have 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630 Terrence M McDermott, President/Chief Operating Officer; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice Presi dent/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN $\mathrm{D}_{\text {is a a registered trademark }}$ of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address changes to EDNN, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\text {® }}$ copyright 1992 by Reed Publishing USA; Robert L Krakoff, President and Chief Executive Officer Rates for for nonqualified subscriptions: EDN Magazine and EDN News combined (48 issues) U.S. \$154.95/year; EDN Magazine only (26 issues) U.S. $\$ 119.95$ year; EDN News only (22 issues) U.S. $\$ 74.95$ year. Subscription rates higher outide U. Please inquire at Denver ofice for rates. Telephone 35) are indicated, single copies are available for $\$ 20$ U.S. and $\$ 25$ foreign. Please address all subscription mail to Ellen Porter

[^1]: Risk-Free Logic Integration

[^2]: *In Canada, call 1(800) 387-3867, ext. 3340.

[^3]: To：Motorola Semiconductor Products，Inc．，P．O．Box 20912，Phoenix，AZ 85036

 Please send me Motorola＇s DSP Brochure \＃BR1402／D．
 Name
 Title
 Company
 Address
 City
 Call Me（
 City \quad State \quad Zip

[^4]: - If outputting C-size PostScript documents, an 8 MB memory board must be used. Pacific Data Products, Inc., 9125 Rehco Road, San Diego, CA 92121, ProTracer is a trademark of Pacific Data Products, Inc. HP-GL is a registered trademark of Hewiett-Packard Co. 1960 is a trademark of Intel Corporation. PostScript is a registered trademark of Adobe Systems, Inc. Canon is a registered trademark of Canon, Inc. All other trade names referenced are the trademarks or registered trademarks of the respective manufacturer.
 Fax (41) 2234106 82; Belgium Tel 078 111292; Netherlands Tel 060222065 . O 1992 Pacific Data Products. Inc.

[^5]: © 1991 Signum Systems

[^6]: *Based on independent market research. Information available upon request.

[^7]: IRCLE NO. 94

[^8]: Australia (02) 654 1873. Austria (0222) 3876 38. Benelux +31 1858-16133, Canada (514) 689-5889, Czechoslovakia 0202-2683, Denmark (42) 6581 11, Finland $90-452$ 1255, France (01)-69 4128 01, Germany 08131-25083, 'Great Britain 0962-73 31 40, Greece 01-862-9901, Hungary (1) 117 6576, Israel (03) 4848 32, Italy (011) 7710010 , Korea (02) 784784 1, New Zealand (09) 392-464, Portugal 01-80 9518, Norway 02-649050, Singapore (065) 284-6077, Spain (93) 217 2340, Sweden 040-9224 25, Switzerland (01) 7404105 , Taiwan (02) 7640215, Thailand (02) 281-9596, Yugoslavia 061621066.

