

March 16, 1992

Special Issue

Computer
Technology

SPECIAL REPORT

Multimedia pg 100

DESIGN FEATURE

Piecewise analysis and accurate emulation yield precise power estimates
pg 113

TECHNOLOGY UPDATES

2-Mbit video RAMs

pg 37
$3^{1 / 2}$-in. optical drives meet standards for removable data storage
pg 47
Solid-state relays pg 61

Product Updates pg 77

Processor Updates pg 83

Design Ideas
pg 131

HP scopes make digital designs easier to understand.

Now there's a way to get the information you need.

Experience is the best teacher. And since 1980, HP has developed digitizing scope technology to help you understand how well digital designs are working. Or why they aren't.
When high-speed signal integrity issues are problems, the 50 GHz HP 54124 helps you learn why. If you need to make precision singleshot measurements, you can't go wrong with the $1 \mathrm{GSa} / \mathrm{s}, 4$ channel HP 54512. And for general-purpose
use, the HP 54600 offers the look and feel of analog with the power of digital.
And scopes are only part of the picture. HP's unique high-speed digital symposium sheds light on leading-edge digital design issues. In-depth information on techniques and methods is available through seminars, application notes, and HP's worldwide network of field engineers and product specialists.
So, if you want a better under-
standing of digital designs, call 1-800-452-4844. Ask for Ext. 2890,* and we'll send an information packet that explains how HP can help you find the answers.
There is a better way.

[^0]
THE ALTERNATIVE TO BRUTE FORCE

Ziatech's new STD 32 STAR SYSTEM ${ }^{\text {™ }}$ provides a simple-to-use, DOS-based, multiprocessing approach to automating real-time control applications. And it doesn't require a complex multitasking operating system, an expensive LAN, or the crushing of 7 PCs into a twisted bale of heavy metal.

A WINDOW INTO REAL-TIME CONTROL

Each processor in the STAR SYSTEM contains its own RAM, ROM, and DOS, while uniquely sharing disks, video, and equal access to I/O. This lets system designers segment a real-time control application into as many as seven separate computing modules. In a Microsoft Windows environment, the STAR SYSTEM becomes a Real-time Windows computer that puts real-time where it belongs, on processors separate from the user interface.

MULTIPLE COMPUTERS MEAN FAST DEVELOPMENT

The ability to run separate development tools such as Borland C++ or Microsoft QuickBASIC on each STAR SYSTEM processor helps OEM products get to market fast.

MAKE THE ONLY MULTIPLE CHOICE

Call or FAX today for a free data sheet or to arrange an on-site demonstration.

TEL 805-541-0488
FAX 805-541-5088

ULTIMATE CONTROL

No one can give you control of your GPIB test system like National Instruments can.

PERFORMANCE

The NAT4882 ${ }^{\text {TM }}$ chip makes our GPIB controller boards completely IEEE-488.2 compatible. When the NAT4882 is teamed with the Turbo 488^{\star} performance chip, you get the maximum IEEE-488 transfer rate of $1 \mathrm{Mbytes} / \mathrm{sec}$ for both read and write operations.

Use our industry-standard $\mathrm{Nl}-488^{\circledR}$ software to control your GPIB instruments and give your test programs maximum throughput, regardless of your choice of personal computers or workstations.

COMPATIBILITY

The NAT4882 controller chip is also compatible with the controller chips of the past, so you get the best of both worlds complete compatibility with your existing applications and the ability to meet your future requirements.

And when your controller needs change, Nl -488 programs are compatible across many different platforms and operating systems - without modification.

UPGRADE PROGRAM

Existing PC, PS/2, and Macintosh customers can upgrade to the benefits of IEEE-488.2 and increased performance through a special upgrade program.

TRAINING

Learn even more ways to improve your test system by taking our hands-on, IEEE-488 training course.

For more information on how you can have the ultimate GPIB control, call:
(512) 794-0100 or
(800) IEEE 488
(Toll-free U.S. and Canada)

Some very sophisticated test programs are being written by mice.

Actually, they're not being written, they're being drawn. With WaveTest ${ }^{\text {® }}$ software for PCs and workstations.

WaveTest provides a complete graphical programming environment, using Windows ${ }^{\text {TM }}$ on a PC, or X Window ${ }^{\text {TM }}$ on DEC ${ }^{\text {TM }}$ workstations. Just draw a flow chart and you've written a program.

There are no more lines of code to deal with. Even loops and subroutines can be handled with simple program icons. And documentation is
automatic, making your programs simple to maintain.

Call up an instrument front panel (from a library of over 200 different manufacturers' instruments), adjust the controls, and you've written a GPIB/ VXI command sequence. An Instrument Search and Replace function makes it easy to change instruments for new or existing tests.

And when your test is running, you can see real-time data analysis, including statistics, FFTs and plots.

[^1]Dynamic Data Exchange with other Window's applications adds to WaveTest's flexibility in solving your test problems.

WaveTest has been proven in the field, so you know your test program will be reliable and of the highest quality.

Call 1-800-874-4835 for information about WaveTest and other Wavetek software, including WaveForm DSP for arbitrary function generators.

A REVOLUTIONARY ADVANCE IN SPARC MULTIPROCESSING.

The industry's first integrated SPARC* multiprocessing solution - the CY7C605 Multiprocessing Cache Controller/MMU.

High-performance systems designers have migrated to RISC in a race for performance. Just as rapidly, there is a movement to multiprocessing, which represents the most cost-effective way to load more power into a single system.
Multiprocessing RISC design is not simple. There are substantial technological challenges, particularly in the area of multi-level memory systems.
Now we offer a breakthrough to help you implement multiprocessing systems rapidly.

Cache coherency without stealing processor cycles - a leap in performance.
Maintaining cache coherency is one of the biggest problems to solve in shared memory multiprocessing systems.
This approach solves it.

Pin compatible with our CY7C604 Uniprocessing Cache Controller/MMU, this new device lets you cascade to build cache size to 256 K .

SPARC multiprocessing is now enabled. Now you can design-in multiple high-performance SPARC chipsets. Our revolutionary Multiprocessing Cache Controller and Memory Management Unit (CMU-MP/CY7C605) provides memory management facilities and a unique cache architecture for higher performance. Our complete SPARC chipset solution shortens your time to market.

It is the only VLSI solution that performs concurrent bus snooping and processor execution.

Our unique dual cache tag directories provide for simultaneous bus snooping and processor access to cache. No other cache management unit provides dual tags on-chip.
As a result, your system maintains cache coherency without stealing execution cycles from the microprocessor.
You get multiprocessing with the most efficient cache coherency protocol available, allowing data to pass from CPU to CPU in a single clock cycle. That translates directly to higher performance systems.

MBus compliant.

MBus compliance means you have a SPARC-standard, plug-and-play route to even more powerful, higher rewing systems.

An integrated part of the industry's highest performance SPARC chipset.

Our chipset approach simplifies the complexities of multiple CPUs working together in a shared memory system.
This VLSI solution means you don't have to design and pay for boards full of logic to accomplish fast multiprocessing.

It is all available now.
For more information on the industry's most complete multiprocessing solution, please call for our literature package today.

SPARC MULTIPROCESSING

Multiprocessing Information Hotline:
I-800-952-6300.*
Ask for Dept. C4V.

${ }^{*}$ (32) 2-652-0270 in Europe. © 1991 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: 1 (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: $910-997-0753$. SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.

On the cover: Mulitmedia can reshape the way you do business. Although standardization and compatibility remain primary concerns, designers are contemplating the benefits of using multimedia's audio and visual capabilities to design, confer with colleagues, and present engineering data. (Photo courtesy Truevision Inc; image created by Keith Hampton). PAGE 100

EDN Magazine offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.
ExpressiIII Request

EIECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORIDWIDE

SPECAL REPORT

Multimedia offers audio and video capabilities that can revolutionize the way you work.
-J D Mosley, Technical Editor

Piecewise analysis, accurate
DESIGN FEATURES emulation yield precise power estimates

Newer logic-IC families let you obtain high speed and low power simultaneously. But use care when estimating system power consumption.-William Hall and Ray Mentzer, National Semiconductor Corp

2-Mbit video RAMs:

TECHNOLOGY UPDATES Standardized feature sets add versatility and speed

■Two-Mbit video RAMs offer more features and a wider interface to boost speed beyond 37 that of earlier devices.-Richard A Quinnell, Technical Editor

```
31/2-in. optical drives:
Drives meet standards for removable data storage
```

0The all-star companies that are planning to offer industry-standard drives give a good 47 indication of the potential for success. -Maury Wright, Technical Editor Solid-state relays meet requirements
and handle demanding applications
-Tom Ormond, Senior Technical Editor

[^2]
Changing the Signal Processing World Forever.

ZAP! Sometimes the best ideas come suddenly. With one great flash of insight, the problem is illuminated and quickly solved. Provided, of course, you are working with SPROC ${ }^{\text {wI }}$ signal processing technology from STAR Semiconductor.
Before SPROC, many bright ideas produced little more than a flash of light and wasted energy. And you have probably seen more than one enlightened solution bogged down in the time-consuming prototyping of an analog board or the agonizing handcoding of a DSP chip.
Now SPROC can help you transform your bright ideas into brilliant signal processing solutions in a flash. By integrating an advanced, programmable signal processing chip and a powerful, easy-to-use
development system, SPROC technology allows you to create and modify an application in a matter of minutes . . . without writing code.
How? The SPROClab ${ }^{\text {¹ }}$ development system uses the unique "Sketch and Realize"" design approach to allow rapid transformation of signal processing designs from signal flow block diagrams. SPROClab automatically converts your diagrams into code optimized for the SPROC chip, which contains multiple on-chip processors for real-time signal processing performance.

To learn more about the new SPROC technology, specially-designed to handle the needs of real-time signal processing, call for your free 350-page DataBook and demonstration disk. (908) 647-9400.

25 Independence Boulevard, Warren, N.J 07059
CIRCLE NO. 5

Home Office

275 Washington St, Newton, MA 02158
EDN Bulletin Board: (617) 558-4241
MCI : EDNBOS
(617) 558-extension

VP/Publishing Director

Peter D Coley -4673
VP/Publisher
Roy Forsberg -4367

VP/Editor/Editorial Director

Jonathan Titus -4573

Executive Editor

Steven H Leibson -4214

Managing Editor

Joan Morrow Lynch -4215

Assistant Managing Editor

Christine McElvenny -4741
Gary Legg, Senior Technical Editor -4404 Tom Ormond, Senior Technical Editor -4414 Charles Small, Senior Technical Editor -4556 John A Gallant, Technical Editor -4666 Michael C Markowitz, Technical Editor -4743
Dave Pryce, Technical Editor -4326
Dan Strassberg, Technical Editor-4205
Jay Fraser, Associate Editor -4561
Carl Quesnel, Associate Editor -4484
Susan Rose, Associate Editor -4738
Julie Anne Schofield, Associate Editor -4619
Helen McElwee, Senior Copy Editor -4311
James P Leonard, Copy Editor -4324
Gillian A Caulfield, Production Editor -4263
Brian J Tobey, Production Editor -4309

Editorial Field Offices

Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
MCI : EDNDCONNER
J D Mosley, Technical Editor
Arlington, TX: (817) 465-4961
MCI: EDNMOSLEY
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI: EDNQUINNELL
Anne Watson Swager, Technical Editor
Wynnewood, PA: (215) 645-0544
$\mathrm{MCI}:$ EDNSWAGER
Ray Weiss, Technical Editor
Woodland Hills, CA: (818) 704-9454
MCI: EDNWEISS
Maury Wright, Technical Editor
San Diego, CA: (619) 748-6785
MCI: EDNWRIGHT
Brian Kerridge, Technical Editor
22 Mill Rd, Loddon
Norwich, NR 14 6DR, UK
(508) 28435

MCI: EDNKERRIDGE

Contributing Editors

Robert Pease, Don Powers
David Shear, Bill Travis

Editorial Coordinator

Kathy Leonard -4405

Editorial Services

Helen Benedict -468

Art Staff

Ken Racicot, Senior Art Director -4708 Chinsoo Chung, Associate Art Director - 4446 Cathy Madigan, Associate Art Director -4599

Marketing \& Business Director

Deborah Virtue -4779

Marketing Communications

Kathy Calderini, Manager - 4526
Pam Winch, Promotion Specialist -4660

MARCH 16, 1992
Continued from page 5

PRODUCT UPDATES

4-Mbit cached dynamic RAM 77
High-power op amp 78
PROCESSOR UPDATES
Microcontroller for secure operations 83
Simulation kit for 8 -bit $\mu \mathrm{Cs}$ 84
16-bit DSP processor 86
50-MHz DSP chip 88
16-kbyte 8051 90
ICE for μ P-based systems 90
NEw PRODUCTS
Integrated Circuits. 147
Computers \& Peripherals. 153
Test \& Measurement Instruments. 162
Components \& Power Supplies. 173
CAE \& Software Development Tools. 191
DEPARTMENTS
Inside EDN 9
News Breaks. 17
Signals \& Noise. 27
Editorial. 33
Design Ideas 131
Literature 201
Career Opportunities 214
Business Staff 218
EDN's International Advertisers Index. 219
EDN's Acronyms \& Abbreviations. 221

[^3]
A summary and analysis of articles in this issue

Welcome to EDN Magazine Edition's computer issue. Most of the feature articles you'll read are devoted to that topic. To start off, we direct your attention to Technical Editor J D Mosley's Special Report on multimediaa subject that has received a great deal of attention lately. Multimedia applications demand a lot of hardware and software support and processor cycles. However, instead of just focusing on the hardware and software you need to add multimedia features to a computer, Mosley also tells you why you might want to add multimedia capabilities to your next design.

Graphics are a key component of multimedia machines, and Technical Editor Richard A Quinnell looks at a key hardware component for graphics subsystems-video DRAMs-in his Technical Update. The latest devices in the videoDRAM family have 2-Mbit capacities and, unlike earlier video DRAMs, you can count on a set of standard features from all of the 2 Mbit devices. That's good news for companies seeking multiple-sourced products. However, as Quinnell's article explains, the video-DRAM vendors couldn't resist putting unique features into their newest products. Use those features and you'll find yourself in a singlesource situation again.
Optical disk drives are also important components for multimedia

applications. In his Technical Update on multifunctional $3^{1 / 2}$-in. optical drives, Technical Editor Maury Wright examines a product group that's likely to become the next defacto standard in personal-computer mass storage. These drives accept rewritable mag-neto-optical media, optical ROMs that resemble CD-ROM disks but hold "only" 120 Mbytes, and "partial ROMs," which are writeable disks with some prerecorded data.

This issue marks the fourth "enhanced" issue of EDN Magazine, and we would like to know what you think of the changes we've made. Please take a moment to circle a reader service number below or write to us, either on the reader service card or in a separate note. We made the changes based on discussions with readers like you and we continue to ask for your thoughts. Thanks.

Steven H Leibson
Executive Editor

I like the new, enhanced EDN.
Circle No. 724
Give me back my old EDN!
Circle No. 725
Sorry, I didn't really notice the difference.

Circle No. 726

PICO

Size

All PICO surface mount units utilize materials and methods to withstand extreme temperature $\left(220^{\circ} \mathrm{C}\right)$ of vapor phase, IR, and other reflow procedures without degradation of electrical or mechanical characteristics.

AUDIO

TRANSFORMERS Impedance Levels 10 ohms to 10,000 ohms, Power Level 400 milliwatt, Frequency Response $\pm 2 \mathrm{db} 300 \mathrm{~Hz}$ to 50 kHz . All units manufactured and tested to MIL-T-27.
POWER and EMI INDUCTORS
Ultra-miniature Inductors are ideal for Noise, Spike and Power Filtering Applications in Power Supplies, DC-DC Converters and Switching Regulators. All units manufactured and tested to MIL-T-27.

PULSE

TRANSFORMERS
10 Nanoseconds to 100 Microseconds. ET Rating to 150 Volt-Microsecond. All units manufactured and tested to MIL-T-21038.

Delivery-

stock to one week See EEM
or send direct for
FREE PICO Catalog
PICO
Electronics,Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 in NEW YORK CALL 914-699-5514

FAX 914-699-5565

It Takes Some

CharacteristicsTo

Very Special
 Be ${ }^{* 1}$ In EPROMs.

AMD EPROMs today are what other mere mortal EPROMs can only aspire to be: high density, of course. But also high speed. Able to store massive amounts of information, with lightning fast access times. All in our superior CMOS technology.

EPROMs have always been our strength-thanks to our unparalleled performance, selection, reliability, and quality.

That's why we sell more EPROMs than any other vendor.* Period. And we're ready to do the same for years to come. While other vendors have abandoned EPROMs, we're still committedto making the fastest, highest density EPROMs. In fact, we've got the most advanced EPROM wafer fab, assembly and test facilities in the world. Which produce the most reliable, highest quality EPROMs available. In everything from surface mount plastic to mil spec compliant packages.

So make yourself a hero.The instant you know your EPROM requirements, get them fast. Get them dense. Get them in volume. And get them right away.

Call AMD at 1-800-222-9323 for more information. Or call your local sales office to place an order.

7

Advanced Micro Devices

Nobody Tops Your Collection

In the annals of modern Defense and Aerospace, nobody matches the scope of your technologies or the performance of your systems. Top shelf all the way. Motorola is proud of the leadership role our integrated circuits have played in support of U.S. technology preeminence for over a quarter century.

Today, we're recognized as a global leader in leading-edge MIL semiconductors, with products such as the 68000 family of microprocessors, including the 68040, the newest and most powerful addition; our DSP56001 and DSP96002 Digital Signal Processors; and our state-of-the-art 88000 Risc family.

Announcing a Unique Addition to the Motorola Collection

Motorola's Military 296002, the first member of a new family of ultra-high performance multi-chip modules (MCM) for military, aerospace and other highreliability applications, represents a new class of high-performance processors! This 96-Bit IEEE Floating Point DSP device combines, in a single, rugged multi-chip module, two complete digital signal processors each supported by $128 \mathrm{~K} \times 32$-Bit words of highspeed static RAM in a 4-port configura-tion-all this in one package that once took multiple packages and significantly more board space. This unique combination of processing features provide the speed, parallelism, integration and compact size for a wide variety of radar, sonar, sensor, and vector processing applications.

Motorola: Serving Customers For Over 30 Years

Motorola's new Military 296002 is just one example of the kind of competitive, high-reliability semiconductors Motorola
supplies to our military and aerospace customers. Fact is, we have over 30 years of successful partnerships with customers in these industries.

On-the-Shelf or Off, Nobody Tops Our Collection

Motorola's Military Products Operation produces a wide range of semiconductor components for standard military and aerospace applications, in both bipolar and MOS integrated circuits that perform both digital and analog functions.

Our technology is used in a wide range of products, including Data Processing, Communications, Strategic and Tactical Weaponry, Guidance Systems, High Reliability Computers, and applications in Electronic Warfare (EW) and Command, Control, Communications and Intelligence (C3I).

Motorola's Goal: Nothing Less than Total Customer Satisfaction

MPO's mission is to provide a broad portfolio of ICs to global customers requiring military/aerospace and enhanced processed products. We offer a broad and balanced portfolio of products screened to MIL-M-38510 and MIL-STD-883C specifications, backed up by outstanding service and delivery for our customers.

The Military Products Operation is dedicated to the manufacture and supply of standard military products, with carefully controlled engineering, manufacturing and administrative resources. Products are manufactured, screened and tested worldwide, on lines certified to the requirements of the pertinent military specifications.
If selection, quality, price and service are as important to you as they are to our current military and aerospace customers, what are you waiting for? Contact us today. For a copy of Motorola's 1992 Military IC \& Discrete Selector Guide (SG138/D, Rev. 2), call toll-free 1-800-441-2447, send the coupon below, or write Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, AZ 85036.

- Chip \& Wafer Products • Analog/Telecom
\& Special Function Products \cdot Logic
- Memory - Microprocessors \& Microcontrollers
- ASIC • RISC \& DSP
- Discretes
- Multi-Chip Modules

MOTOROLA
"I'm no Houdini, but I still like and out of things. For instance, of entry into this country. High and Los Angeles has 520 exits clears you might actually be able Labyrinth of Versailles offered the number of ways in and out isn't answering. Still, nothing co MAX7000. It has the highest p ily. 36 to 260 user I/O options; 44 You can even program each mac or half power operation. Talk a brings me to SanQuentin.Lots Unless, of course, you have acc
knowing the number of ways in U.S. Customs declares 240 ports way 101 between Silicon Valley and entrances. If the smog ever to see them all. The legendary one way in, two ways out. And of theUSSR? Sorry, the Kremlin mes close to the I/O of Altera's in-to-logic ratio of any PLD famto 288 pins. Boom. In and out. rocell individually for high speed bout freedom. Which of ways in. Noway out. ess to gardening tools."

Alliter

EPM7256

They're big. They're fast. They're everything you've asked for. For more information, input this number into your telephone: 800-800-7256.

For Capacitors that Perform Every Time, Just Say ILC:

If you're serious about product quality, the name to know in capacitors is IC. Since 1935, IC has engineered capacitors to the industry's highest quality standards.

IC backs this commitment with the latest equipment and manufacturing techniques, including burn-in testing of every capacitor. It's your assurance that every IC capacitor will perform the first time, every time, to keep your products or system at peak performance.

IC distributors stock a wide range of IC capacitors at a location near you. They're backed by IC's extensive inventory, for the fastest possible delivery.

Up goes performancel Down come inspection costs. Make it all happen with IC. Call us today!

Clocked memory interface gives $\mathbf{5 0 0 - \mathrm { MHz } \text { access }}$

Rambus Inc is licensing a technology it developed for highspeed data transfers between CPUs and dynamic RAMs (DRAMs). The RAMbus interface uses a 9 -bit synchronous data transfer to achieve $500-\mathrm{Mbyte} / \mathrm{sec}$ data rates. The company's technology includes the interface design, serial transfer protocol, and design assistance for semiconductor vendors adding the interface to their DRAMs, CPUs, and ASIC libraries.

The interface comprises 28 lines, including nine data, eight ground, and five power lines. To achieve the high data rates, the interface requires that the components be arranged in a line, with the CPU or bridge at one end. The $250-\mathrm{MHz}$ clock that synchronizes data transfers to the CPU originates at the end opposite the CPU so that the clock and data propagate side by side down the bus. The clock loops back at the CPU end to handle data transfer to the memory devices.

DRAMs based on the RAMbus use their sense amplifiers as an internal cache to speed data access. The devices are self-refreshing and have mapping registers that let you specify their location in address space and mask out faulty memory banks. Each memory device monitors the data lines for a transfer request from the CPU, responding when addressed. The transfer can include from 1 to 256 9 -bit words on the same DRAM page.

The company is licensing its technology to IC and ASIC vendors, who pay all the licensing and royalty fees. OEMs wishing to use the RAMbus technology simply purchase standard parts or use ASIC cell libraries as with standard logic. Several manufacturers, including Fuiitsu, Toshiba, and NEC, already are developing RAMbus-based DRAMs ($512 \mathrm{k} \times 9$ bits) and an ASIC bridge between the RAMbus interface and conventional CPUs. Parts should be available this year. Rambus Inc, Mountain View, CA, (415) 9033800, FAX (415) 965-1528.-Richard A Quinnell

Program automates test for Windows

Microsoft's Test for Windows lets programmers develop test suites that can run automatically. The tool set is the first automated test tool from a PC software vendor. Test sequences can exercise an application's Windows interface, varying control states and simulating keyboard and mouse inputs. A testing tool compares the testgenerated windows with the window interfaces you expect. The tool works on any Windows program and does not require special hooks or debug code. The tool set supports standard bitmapped monitors including EGA, VGA, and Super VGA.

Automated tests are created using a variation of the Visual Basic language, called Test Basic. The tools contain two programming mechanisms: FastTest, which provides defaults and a set of high-level test
functions, and Test Driver, which has a Win-dows-hosted Basic interpreter.
The $\$ 395$ test package includes a Basic environment with a recorder and FastTest. The package also performs screen capture and comparison, Windows controls comparison, a keyboard- and mouse-entry simulator, and timing control, which identifies and manipulates any control state. Microsoft Corp, Redmond, WA, (206) 8828080, FAX (206) 883-8101.-Ray Weiss

Module adds video to VXI and VME

The EXM-14 video-expansion board works in conjunction with a VGA or su-per-VGA graphics board to add live video to your system display. The EXM14 is one of a series of expansion boards that plug into Radisys Corp's 386- and 486-based VXI and VME embedded controllers.

The board accepts in-

The RAMbus interface uses 28 lines to connect memory to CPU with a $500-\mathrm{Mbyte} / \mathrm{sec}$ bandwidth.
coming signals in RGB, NTSC, PAL, SECAM, or VHS formats, then stores incoming images in a 1 Mbyte video frame buffer. Then, the board lets you merge that buffer's data with a VGA controller's output data stream, either at a specific position or to replace pixels having a specified color. Software
supplied with the board includes device drivers and application program-interface libraries for Microsoft Windows and OS/2 Presentation Manager. The board, including software and cables, costs \$1400. Radisys Corp, Beaverton, OR, (503) 690-1229, FAX (503) 690-1228.
-Richard A Quinnell

Clock-doubling $\mu \mathrm{P}$ retrofits older systems

You can substantially boost the performance of existing $25-\mathrm{MHz}, 80486 \mathrm{DX}$-based systems with very little effort by replacing the system's existing processor with a clockdoubling part. The 80486DX2 μ P's external bus runs at 25 MHz , but the processor core inside the chip runs at 50 MHz . Intel's performance testing indicates that the $25-\mathrm{MHz}$ clock-doubling processor provides nearly the same performance as the $50-\mathrm{MHz}$ nonclock-doubling processor for code segments that fit entirely inside the processor's internal cache. For larger programs, the 25MHz clock-doubling μ P's performance falls between the $33-$ and $50-\mathrm{MHz}$ nonclock-doubling 80486DXs. Consequently, your design can achieve substantial performance improvements without resorting to special pc-board layouts and high-speed external cache memories that very-highspeed CPUs usually require.

The chip's clock-doubling circuits convert an external $25-\mathrm{MHz}$ clock into an on-chip $50-\mathrm{MHz}$ clock; the $\mu \mathrm{P}$'s external bus continues to operate at 25 MHz . Therefore, the part should be electrically compatible with existing $25-\mathrm{MHz}$ system designs. But the clock-doubling part may cause problems for some existing cooling schemes because it draws 40% more power than the existing $25-\mathrm{MHz}$ μP. In addition, the faster speed may once again ruin timing-dependent code, even though programmers should have learned by now that software timing loops don't make sense in the world of cache-assisted processing, where clock rates double yearly.

The 80486DX2 has the same pinout as the original 80486DX, is already in production, and costs \$550 (1000). The $\mu \mathrm{P}$ also incorporates serial boundary-scan circuitry using pins designated "no connect" on the original 80486DX. Later this year, the company plans to build a slightly different version of this $\mu \mathrm{P}$ for upgrading 80486SX systems. This chip will plug into existing 80487SX sockets. Intel Corp, Santa Clara, CA, (408) 765-8080.
-Steven H Leibson

Multimedia tool kit integrates DSP and applications

The lack of a development base for software tools and utilities has been a major barrier to multimedia applications. DSP chip vendors are moving to change this situation. AT\&T is introducing an integrated development tool set, the VCOS Multimedia Development Environment (VDME), for its 32-bit DSP3210 processor. The tool set is built around VCOS (Visible Caching Operating System), a DSP operating system that links to a host and provides multitasking DSP-application processing.

The tools support application development for multimedia applications that include real-time speech coding, facsimile, data modem, high-resolution MPEG (Motion Picture Experts Group) and JPEG (Joint Photographic Experts Group) still-image compression and decompression, and high-quality audio. The tool set includes specialized multimedia application modules and DSP processor development tools.

The VCOS application server provides a multimedia application programming interface that loads and controls application execution on the DSP coprocessor. The
$\$ 3000$ tool set for Windows is available now. DSP3210-based plug-in boards are available from Ariel Inc for the PC and from Spectral Innovations Inc for the Macintosh. AT\&T Microelectronics, Allentown, PA, (800) 372-2447. Ariel Inc, Highland Park, NJ, (908) 249-2900. Spectral Innovations Inc, San Jose, CA, (408) 727-1314.
-Ray Weiss

Specification and IC bow to 3V interfaces

The move from 5 to 3 V supplies for battery-powered equipment creates problems for the serial interface because of the lack of 3 V -interface ICs and the fact that the serial interface becomes a higher percentage of total power dissipation. The EIA/TIA-562 specification defines a lowervoltage interface$\pm 3.7 \mathrm{~V}$ is the minimum allowable output voltage at the driver outputwhich is compatible with existing RS-232C, and EIA/TIA-232-D, and -E serial interfaces. The EIA/TIA-562 has requirements regarding waveform shape and ripple that the original 232E standard does not. These additions, plus an increased minimum slewrate specification, guarantee operation at speeds as high as 64 kbps . The original RS-232C interface's maximum data rate is 20 kbps .

Think Universal Analog and Digital Circuit Simulator!

Analog and digital waveforms with multiple Y axes

Think PSpice!!

If you're not using PSpice, then you're working with half a simulator! Why? Most circuit simulators support either analog-only or digital-only circuits. Those simulators claiming mixed-mode support are typically comprised of separate analog and digital programs that are glued together. With PSpice, the analog and digital simulation algorithms are fully integrated within the same program. Think of the benefits!

Easy and Flexible Setup

Circuit definition is as simple as creating one schematic or netlist of analog and digital device declarations and connections. Choose from over 4,000 analog and 1,700 digital off-the-shelf parts available in our standard libraries, or create your own. Interfaces between analog and digital parts are handled automatically by PSpice.

Outstanding Performance

PSpice avoids the multi-tasking overhead exhibited by other simulators since the analog and digital simulation algorithms are tightly coupled within the same program. Moreover, one waveform analyzer displays the analog and digital waveform results together along a common time axis. Over 10,000 logic gates and hundreds of analog components can be simulated and analyzed with no performance compromises.

Efficient and Accurate Digital Algorithms

PSpice uses an event-driven logic processing technique supporting 5 logic levels, 64 output strengths, and timing modeling, including worst-case timing simulation. Logic states and propagation delays are computed quickly and accurately. By using efficient digital primitives rather than cumbersome macromodels composed of analog parts, PSpice simulates at speeds that are orders of magnitude faster than simulators using macromodel definitions of digital devices.

Paving the Way to Universal Circuit Design

PSpice is now an integrated part of our Design Center circuit design environment. Whether your circuit is analog-only, digital-only, or mixed analog and digital, the Design Center will provide you with a unified environment for schematic capture (selected platforms), simulation with PSpice, and graphical analysis of the waveform results. To find out more about PSpice and the Design Center, call us toll free at (800) 245-3022 or FAX at (714) 455-0554.

MicroSim Corporation

The Max561 is a lowvoltage interface IC that meets EIA/TIA-562 specifications and operates to 3 V at a data rate of 20 kbps . Onboard charge pumps working with $1-\mu \mathrm{F}$ external capacitors convert the nominal 3.3 V input to the $\pm 6.6 \mathrm{~V}$ needed to generate the EIA/TIA-562 output levels. The chip contains four drivers and five receivers, and it consumes 8 mA of quiescent
current, compared with 15 mA for a similar 5 V RS-232C device. A lowpower shutdown mode reduces supply current to $1 \mu \mathrm{~A}$ when the serial port is inactive. The $\$ 4.19$ (1000) IC comes in a 28 pin small-outline package and operates over a temperature range of 0 to $70^{\circ} \mathrm{C}$. Maxim Integrated Products, Sunnyvale, CA, (408) 737-7600, FAX (408) 737-7194.
-Anne Watson Swager

Control modules open up industrial networks

Developers no longer have to build their own control modules for Echelon Corp's Neuron control chip. The company is delivering twisted-pair control modules built around Neuron chips. You can build these modules directly into control electronics and use them to link to a sophisticated control network. The modules support both analog and digital interfaces and can control output devices such as triacs, relays, and industrial displays.

Each chip is really three processors in one, all sharing memory and bus resources. The three processors each take on a major function (control, networking, and I/O). By using three processors, each chip has a minimum of switching overhead because each task resides in a processor. The chips are made under license by Toshiba and Motorola. Echelon sells a development environment, which includes Neuron-C.

Initially, there will be three control modules for the Echelon Lonworks control networks. These are linked to the network via twisted-pair wires. The modules are an RS-485 module (to 78 kbps), a transformer-isolated module (to 78 kbps in noisy environments), and a high-speed trans-former-isolated module (to 1.25 Mbps). The transformerisolated modules use a form of Manchester coding for signals. Each module has a Neuron processor, a socketed PROM, and a communications transceiver. Prices start at $\$ 35$ (OEM qty) for the RS-485 module.

The company is also releasing the Lonmanager API (application program interface) for MS-DOS machines. This API lets PC applications interact with the network and act as network servers, control points, and graphics-display consoles. The interface costs $\$ 9850$, plus royalties. EcheIon Inc, Palo Alto, CA, (415) 855-7416, FAX (415) 856-6153.-Ray Weiss

Protocol upgrades IEEE-488 to 5 Mbytes/sec

A streaming-data protocol, an upgrade to the venerable IEEE-488 standard for instrument communication and control, will be unveiled within two weeks by Capital Equipment Corp, a supplier of IEEE-488 interface cards for PCs. The new protocol, which transfers data blocks of unlimited size bidirectionally at speeds as great as $5 \times$ the maximum heretofore possible, causes no problems with older instruments; they continue to function as they always have. Capital Equipment Corp, Burlington, MA, (617) 273-1818.
—Dan Strassberg

Single-board computer draws 4.3W

The SBC-SX1p $16-\mathrm{MHz}$ 80386SX-based computer board measures $5.75 \times$ 7.75 in . and draws 4.3W from a single 5 V supply. Standard features include keyboard and speaker interfaces, two serial port, one parallel port, a battery-backed clock/calendar, and hardand floppy-disk interfaces. You can add as much as 4 Mbytes of dynamic RAM, and you can install 1 Mbyte of ROM, static RAM, or flash

EPROM for use as a RAM disk. The board also includes a VGA controller that can drive CRT, EL, vacuumfluorscent, and color and monochrome LCDs. Software support includes an onboard BIOS ROM for running MS-DOS and embedded software that lets you run code developed on an MS-DOS system without buying an MS-DOS license for the single-board computer. Computer Dynamics, Greer, SC, (803) 8778700, FAX (803) 879-2030.-Maury Wright

> VME interface IC handles 64bit transfers

Cypress Semiconductor's 64 -bit VIC64 is pin and software compatible with the company's VIC068 VMEbus interface controller. Both parts can serve as master or slave and support read, write, write-posting, and block transfers. During block transfers, however, the 64-bit part can handle either 32- or 64-bit transfers. The part achieves 64-bit transfers by using the VME address lines, which are idle during a block transfer. Samples cost $\$ 140$ (100) and are available in 144-lead pingrid arrays and 160 -lead plastic quad flatpacks. Cypress Semiconductor, San Jose, CA, (408) 943-2600.-Richard A Quinnell

Dale Can.

model, a high-volume, roll-coated choke, a custom switch model design. Off-the-shelf or one of a kind, Dale can be the partner you need to provide time-saving, cost-efficient magnetic components.

Call today or write for a copy of our expanded Magnetic Components Catalog. Dale Electronics, Inc. East Highway 50, P.O. Box 180 Yankton, South Dakota 57078-0180. Phone: 605-665-9301.

de to $3 \mathrm{CHz}_{\mathrm{s}} \mathrm{Sl}^{145}$ lowpass, highpass, bandpass

\bullet less than 1dB insertion loss • greater than 40dB stopband rejection • surface-mount •BNC, Type N, SMA available
$\bullet 5-$ section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • rugged hermetically-sealed pin models • constant phase - meets MIL-STD-202 tests • over 100 off-the-shelf models •immediate delivery
low pass, Plug-in, dc to 1200 MHz

Model No.	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss }<1 \mathrm{~dB} \end{gathered}$	$\begin{array}{r} \text { Stopt } \\ \text { loss } \\ > \\ \hline 20 \mathrm{~dB} \end{array}$	$\begin{aligned} & \mathrm{MHz} \\ & \quad \text { loss } \\ & >40 \mathrm{~dB} \end{aligned}$
PLP-5	DC-5	8-10	10-200
PLP-10.7	DC-11	19-24	24-200
PLP-21.4	DC-22	32-41	41-200
PLP-30	DC-32	47-61	61-200
PLP-50	DC-48	70-90	90-200
PLP-70	DC-60	90-117	117-300
PLP-90	DC-81	121-137	167-400
PLP-100	DC-98	146-189	189-400
PLP-150	DC-140	210-300	300-600
PLP-200	DC-190	290-390	390-800

Model No.	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss }<1 \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Stopb } \\ & \text { loss } \\ &> 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \quad \mathrm{loss} \\ & >40 \mathrm{~dB} \end{aligned}$
PLP-250	DC-225	320-400	400-1200
PLP-300	DC-270	410-550	550-1200
PLP-450	DC-400	580-750	750-1800
PLP-550	DC-520	750-920	920-2000
PLP-600	DC-680	840-1120	1120-2000
PLP-750	DC-700	1000-1300	1300-2000
PLP-800	DC-720	1080-1400	1400-2000
PLP-850	DC-760	1100-1400	1400-2000
PLP-1000	DC-900	1340-1750	1750-2000
PLP-1200	DC-1000	1620-2100	2100-2500

Price, (1-9 qty), all models: plug-in $\$ 14.95$, BNC $\$ 32.95$, SMA $\$ 34.95$, Type $N \$ 35.95$
Surface-mount, dc to 570 MHz

SCLF-21.4	DC-22	$32-41$	$41-200$	SCLF-190	DC-190	$290-390$	$390-800$
SCLF-30	DC-30	$47-61$	$61-200$	SCLL-380	DC-380	$580-750$	$750-1800$
SCLF-45	DC-45	$70-90$	$90-200$	SCLF-420	DC-420	$750-920$	$920-2000$
SCLF-135	DC-135	$210-300$	$300-600$				

Price, (1-9 qty), all models: $\$ 11.45$
Flat Time Delay, dc to 1870 MHz

	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \end{gathered}$	StopbandMHz		Freq.	C thru	Group Delay Variations, ns Freq. Range, DC thru		
Model No.	$\text { loss }<1.2 \mathrm{~dB}$	$\begin{aligned} & \text { loss } \\ & > \\ & \hline \end{aligned} 10 \mathrm{~dB}$	$\begin{aligned} & \text { loss } \\ & > \\ & \hline \end{aligned}$	$\frac{0.2 f c o}{\bar{x}}$	$\frac{0.6 f c o}{\bar{x}}$	$\frac{\mathrm{fco}}{\mathrm{X}}$	$\frac{2+\mathrm{Co}}{\mathrm{x}}$	$2.67 \mathrm{f} \mathrm{fo}$
PBLP-39	DC-23	78-117	117	$1.3: 1$	2.3 .1	0.7	4.0	5.0
PBLP-117	DC-65	234-312	312	1.3:1	2.4:1	0.35	1.4	1.9
PBLP-156	DC-94	312-416	416	0.3:1	1.1:1	0.3	1.1	1.5
PBLP-200	DC-120	400-534	534	1.6:1	1.9:1	0.4	1.3	1.6
PBLP-300	DC-180	600-801	801	1.25:1	2.2:1	0.2	0.6	0.8
PBLP-467	DC-280	934-1246	1246	1.25:1	2.21	0.15	0.4	0.55
ABLP-933	DC-560	1866-2490	2490	1.3:1	2.2:1	0.09	0.2	0.28
4BLP-1870	DC-850	3740-6000	5000	1.45:1	2.9:1	0.05	0.1	0.15

Price, ($1-9$ qty), all models: plug-in $\$ 19.95$, BNC $\$ 36.95$, SMA $\$ 38.95$, Type $\mathrm{N} \$ 39.95$
NOTE: A: -933 and -1870 only with connectors, at additional \$2 above other connector models.
high pass, Plug-in, 27.5 to 2200 MHz

Model No.	Stopband MHz		$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \\ \hline \end{gathered}$	VSWR Pass- band Typ.	Model No.	Stopband MHz		$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \end{gathered}$	VSWR Passband Typ.
	$\begin{aligned} & \text { loss } \\ & <40 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { loss } \\ & <20 \mathrm{~dB} \end{aligned}$				$\begin{aligned} & \text { loss } \\ & <40 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { loss } \\ & <20 \mathrm{~dB} \\ & \hline \end{aligned}$		
PHP-25	DC-13	13-19	27.5-200	1.81	PHP-400	DC-210	210-290	395-1600	1.7:1
PHP-50	DC-20	20-26	41-200	15.1	PHP-500	DC-280	280-365	500-1600	18.1
PHP-100	DC-40	40-55	90-400	1.8:1	PHP-600	DC-350	350-440	600-1600	2.01
PHP-150	DC-70	70-95	133-600	1.8:1	PHP-700	DC-400	400-520	700-1800	1.61
PHP-175	DC-70	70-105	160-800	1.5:1	PHP-800	DC-445	445-570	780-2000	2.11
PHP-200	DC-90	90-116	185-800	161	PHP-900	DC-520	520-660	910-2100	181
PHP-250	DC-100	100-150	225-1200	1.3:1	PHP-1000	DC-550	550-720	1000-2200	1.9:1
PHP-300	DC-145	145-170	290-1200	1.7:1					

Price, (1-9 qty), all models: plug-in $\$ 14.95$, BNC $\$ 36.95$, SMA $\$ 38.95$, Type $\mathrm{N} \$ 39.95$
bandpass,
Elliptic Response 10.7 to 70 MHz

Model No.	Center Freq. (MHz)	Passband I.L. 1.5 dB Max. (MHz)	$\begin{gathered} 3 \mathrm{~dB} \\ \text { Bandwidth } \\ \text { Typ. } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	Stopband		
				$>20 \mathrm{~dB}$ at MHz		$1 \mathrm{~Hz}$
PBP-10.7	10.7	9.6-11.5	8.9-	7.5 \& 15	0.6 \&	50-1000
PBP-21.4	21.4	19.2-23.6	17.9-25.3	15.5 \& 29	3.0 \&	80-1000
BP-30	30.0	27.0-33.0	25-35	22 \& 40	3.2 \&	99-10
PBP-60	60.0	55.0-67.0	49.5-70.5	44 \& 79	4.68	90-100
PBP-70	70.0	63.0-77.0	68.0-82.0	51 \& 94	6.0	93-100

Price, ($1-9$ qty) all models: plug-in $\$ 18.95$.
BNC $\$ 40.95$, SMA $\$ 42.95$, Type N $\$ 43.95$

Constant Impedance,
21.4 to 70 MHz

Model No.	Center Freq. MHz	$\begin{gathered} \text { Passband } \\ \text { MHz } \\ \text { loss } \\ <1 \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \text { Stopband } \\ \text { loss } \\ >20 \mathrm{~dB} \\ \text { at } \mathrm{MHz} \end{gathered}$	VSWR $1.3: 1$ Total Band MHz
PIF-21.4	21.4	18-25	1.3 \& 150	DC-220
PIF-30	30	25-35	1.9 \& 210	DC-330
PIF-40	42	35-49	2.6 \& 300	DC-400
PIF-50	50	41-58	3.1 \& 350	DC-440
PIF-60	60	50-70	3.8 \& 400	DC-500
PIF-70	70	58-82	4.4 \& 490	DC-550
Pric	ty)	de		

Now you can afford to

Presenting a very small development in Ethernet.* Chipsets that are matched to your system and your budget. In fact, they cost you as little as 5 square inches. Which, by the way, is less total real estate than any competitive solution. But sizable reductions don't stop with board space, because we're also reducing the price up to 30 percent.

Needless to say, true plug-and-play simplicity requires an intelligent network interface. So our new high-integration 82503 Dual Serial Transceiver goes beyond IEEE 802.3 to include automatic port selection, polarity switching and a jumperless interface to AUI or TPE.

For unmatched desktop performance, we offer

put Ethernet in any box.

a complete family of 82596 LAN coprocessors, each optimized to a specific Intel $486^{\text {TM }} \mathrm{CPU}$ for maximum throughput. And our 82593 is the perfect LAN controller for Intel $386{ }^{\text {TM }}$ SL notebooks.

Best of all, these true two-chip solutions give you the flexibility to simplify your design and deliver your product to market in the smallest of timeframes.

So look into today's hottest Ethernet chipsets. Call (800) 548-4725 and ask for Lit. Packet \#YA23. And learn why we have the perfect match for your next box.

The Computer Inside. ${ }^{\text {m }}$

Performance's FCT-T CMOS Logical Solution

Low-Noise, Ultra High-Speed, Low Ground Bounce

Performance's
 FCT-T

${ }^{*} V_{\text {otp }}=$ Peak Ground Bounce $V_{\text {oiv }}=$ Undershoot
$\mathbf{V}_{\text {H0 }}=$ Dynamic Input High $\quad \mathbf{V}_{\text {to }}=$ Dynamic Input Low

Highest Speed, Low-Noise Solution

Performance Semiconductor now offers an ultra high-speed CMOS logic family designed for extremely low noise and available in three speed grades. The C speed at 4.1 nanoseconds is the fastest TTL compatible logic available - up to 55% faster than equivalent bipolar FAST logic products. The A and B speed grades are up to 40% faster than FAST products and the regular speed matches FAST production speeds. This 5 volt logic family, designed with a limited output swing from 0 to 3.4 volts,
includes edgerate control circuitry, outputfeedbackcircuitry, and multiple transistors staged to turn on and off at different times.
Performance's FCT-T addresses additional elements that include controlled edge rates, tighter skews, matched rise and fall times, significantly improved ESD characteristics and power-off/power-down. All are offered in commercial grades (available in plastic, DIPs and SOIC) and military grades (available in ceramic DIP's and LCC's).

Buffers/Line Drivers		Latches	
\square Inverting Octal	FCT240T	\square Octal Non-inverting Transparent	FCT373T
\square Non-inverting Octal	FCT241T	\square Octal Transparent w/ Inverted Outputs	FCT533T
\square Non-inverting Octal	FCT244T	\square Octal Transparent w/ Flow Thru Pinout	FCT573T
$\square 10$-bit Non-inverting	FCT827T	$\square 10$-bit Non-inverting Buflered	FCT841T
$\square 10$-bit Inverting	FCT828T	$\square 9$-bit Non-inverting Buffered	FCT843T
Transceivers		$\square 8$-bit Non-inverting Buffered	FCT845T
\square Inverting Registered	29FCT52AT	Registers/Flip-Flops	
\square Non-inverting Registered	29FCT53AT	\square Multilevel Pipeline w/ Dual 2-Level Shift	29FCT520T
\square Non-inverting	FCT245T	\square Multilevel Pipeline	29FCT521T
\square Non-inverting Registered	FCT543T	\square Diagnostic Scan	29FCT818T
\square Inverting Registered	FCT544T	\square Octal D Flip-Flop w/ Master Reset	FCT273T
\square Inverting Bus Transceiver w/ 3 States	FCT620T	$\square 8$-Input Universal Shift	FCT299T
\square Non-Inverting Bus Transceiver w/ 3 States	FCT623T	\square Octal D Flip-Flop w/ Output Enable	FCT374T
\square Non-inverting Buffered	FCT643T	\square Octal D Flip-Flop w/ Clock Enable	FCT377T
\square Non-inverting Registered	FCT646T	\square Quad Dual-port w/ True Outputs	FCT399T
\square Inverting Registered	FCT648T	\square Octal D Flip-Flop w/ Inverted Outputs	FCT534T
\square InvertIng Registered	FCT651T	\square Octal D Flip-Flop w/ Flow-Thru Pinout	FCT574T
\square Non-inverting Registered	FCT652T	$\square 10$-bit Non-inverting Buffered	FCT821AT
\square Non-inverting w/ Odd/Even Parity	FCT657T	$\square 9$-bit Non-inverting Buffered	FCT823AT
$\square 10$-bit Non-inverting Transceiver	FCT861AT	$\square 8$-bit Non-inverting Buffered	FCT825AT
$\square 9$-bit Non-inverting Transceiver	FCT863AT		
$\square 9$-bit Inverting Transceiver	FCT864AT		

*Performance Semiconductor also offers most of the above functions with 3.3V power supplies

Decoders	
$\square 1$-of-8 Decoder	FCT138T
\square Dual 1-of-4 Decoder	FCT139T
Counters	
\square Synchronous Binary w/Asynchronous Reset	FCT161T
\square Synchronous Binary w/ Synchronous Reset	FCT163T
\square Up/DownBinary Counter	FCT191T
\square Up/Down Binary Counter	FCT193T
Multiplexers	
Non-inverting Quad 2-input	FCT157T
\square Inverting Ouad 2-input	FCT158T
\square Non-inverting Quad 2-input w/ 3-State	FCT257T
\square Inverting Ouad 2-input w/ 3-State	FCT258T
Comparators	
$\square 8$-bit Identity Comparator	FCT521T

For more information call
(408) 734-9000

Coping with automatic telephone systems

In response to the letter from Ken Wood in Newport, Wales (EDN, November 7, 1991), I agree that the default mode for automatic telephone systems should revert to the operator. However, if you try calling Analog Devices at midnight, you'll get worse than that.

I think even in Wales, you can buy from Tandy, for barely $\$ 30$, a telephone that can start out in pulse mode. But when you want to play games with tones, they switch over. I have one of these myself.
Robert A Pease
San Francisco, CA

Offer free software for basic PLDs in small companies

I agree with Charles Small's editorial, "Make FPGA design easier" (EDN, October 10, 1991, pg 49). I work for a small company, and we simply aren't willing to spend the money to get involved with PLDs. Years ago, as mentioned, the software was free. However, it costs quite a bit to get involved with programmable devices today. The software is usually limited to a specific manufacturer's devices, or you can spend more to get more versatility. At any rate, we don't even consider PLDs as an option in our designs. If the device manufacturers wish to increase the sale and usage of their parts, they need to change this situation.

At the very least, I'd like to see some free software, even if it had reduced capabilities, for more basic PLDs. Even if we didn't use it for our daily designs, I could certainly use it as a learning tool so I would have a better understanding of PLD capabilities. I might even be able to better explain and justify the cost of a more complete software to my managers so we could at least consider using PLDs for future designs.
Personally, I feel the companies
involved should decide whether they are hardware or software vendors. If their intent is to sell their devices, they need to provide free or low-cost software to their prospective customers. Perhaps they should engage in a software developer's effort, in which they would provide assistance to programmers who might wish to develop shareware software for them.
Timothy A Rusco
Electronics Engineer
Radiographic Equipment Services Riverside, CA

Correction

In the Product Showcase Issue (EDN, December 5, 1991, pg 133), the write-up about the ADXL-50 acceleration sensor contains an error in the first paragraph. It describes Analog Devices' model ADXL-50 as a bulk-micromachined (membrane) device that uses thinfilm resistors.
The fact that the ADXL-50 is not a bulk-micromachined type is what makes it unique. The device is a single monolithic chip that incorporates an interdigitated "floating" sensor with diffused resistors and all the necessary signal-processing circuitry. It eliminates the tempera-ture-sensitive and costly bulk-micromachined sensor and the need for thin-film resistors.

HAVE YOUR SAY

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. You can also send a note via MCI mail at EDNBOS or use EDN's bulletin-board system at (617) 558-4241: From the Main System Menu, enter SS/SOAPBOX, then W to write us a letter. You'll need a 2400 -bps (or less) modem and a communications program set for 8,N,1.

Now that engineers have investigated LON technology, many are coming back to the original LINC (the CY233 Local Intelligent Network Controller), or are discovering the CY233 chip for the first time.
With CY233s, one IBM-PC COM port can address up to 2048 TTL I/O lines. Try this with LON!

- The CY233 instruction set and features are fully documented. Try getting this info for LON.
- The CY233 does not require a \$17,995.00 development system! You can start for $\$ 17.95$ plus any RS232 port computer.
- No CY233 royalties or licenses required. Be sure to check out LON terms and conditions.
- Learn 7 LON levels or 1 easy LINC level.
- Easy CY233 interface to 8051 and similar microcontrollers.
- The CY233 is in stock now.

Discouraged by $\$ 17,995.00$ to start using LON? If you need a network, but LON is overkill, try these introductory offers! Get started with the \square CYB233 prototyping kit with an onboard CY233 and wirewrap area, ready to assemble, for only \$179.95, \square or try our introductory chip offer
of 2 CY233s for only $\$ 17.95$ each.

Call 415-726-3000 today or Fax 415-726-3003 for info.
 Say LON sent you, and get these great introductory prices! Credit Cards OK!

The CMOS CY233 operates at speeds up to 57,600 baud and is available from stock in a 40 -pin DIP. (44-pin PLCC or Quad Flat Pak available in 1000 s .)

Cybernetic Micro Systems

PO Box 3000
San Gregorio CA 94074
Tel: 415-726-3000
Fax: 415-726-3003
LON is a trademark of Echeion Corp.
CY233-Linc is a trademark of Cybernetic Micro Sys. Limit one of each introductory offer per customer.

CIRCLE NO. 22

POWER SPLITERS COMBNINES

the world's largest selection 2 KHz to 8 GHz from $\$ 495$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or MIni-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide.
finding new ways
setting higher standards

 P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500

 Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156
Whether its 57 varieties, 31 flavors, 80 you know a leader by the

There is only one company that offers you a choice of more monolithic sampling analog-to-digital converters - 35 in all - than anyone else. Analog Devices.

But what makes us the leader isn't just the breadth of our product line. It is also its depth. For no other line of sampling ADCs encompasses a wider range of specs. A range that virtually guarantees we have the exact part for your specific application. Making it far easier for you to complete your design.

Incorporating a sample/hold front end onto an a/d converter is just one more example of our

billion served, or 35 sampling ADCs, breadth of its product line.

expertise at integrating high-performance analog and digital circuitry on the same IC. And it is this same expertise that has made us the acknowledged leader in advanced mixed-signal technology.

So before you even think about beginning your next design, give us a call at 1-800-262-5643. Or write to us at the address below. We'll gladly send you a free copy of our complete monolithic sampling ADC guide.

It isn't very edible, but it does make for very tasteful reading.

To control vibration, get your hands on this brochure.

Improve product performance with Scotchdamp" brand Vibration Control Systems

Companies can still profit while fostering innovation

Jesse H. Neal

Editorial Achievement Awards 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

Peter Gottlieb is a self-employed engineer who recently wrote to Ask EDN about the difficulty he has getting small quantities of state-of-the-art parts. His customers require prototypes that they can evaluate before committing to production. He says, however, that the high-end components he needs for building prototypes are not available from hobbyist suppliers, and nationwide distributors, such as Digi-Key and Newark Electronics, often don't carry such parts.

Gottlieb has resorted to ordering inital production quantities of hard-to-get parts. When he orders such large quantities, he risks losing a lot of money if requested changes eliminate the need for those parts. In closing his letter, Gottlieb asked "What can be done to keep the small engineer alive in this country?" and I asked readers whether Gottlieb's experiences were typical.

During the time I've been editing Ask EDN, no other letter has struck such a nerve. Dozens of engineers have written in to second Gottlieb's complaint. These readers added that they also have trouble getting small quantities of parts for designing test equipment and making repairs.

Engineers cant design-in parts they cant get their hands on. It's that simple. And they're not looking for freebies or handouts: These engineers are willing
to pay full-or even higher-prices to get the small quantities they need.

Component-company sales people are usually too busy giving out sample parts to big companies to have time for the little guy. Also, it's not in their interest to go after small companies that would only buy a couple dozen parts when so many big companies are willing and able to buy thousands.
But at least one company doesn't subscribe to this reasoning. Dallas Semiconductor (Dallas, TX) has made getting small quantities of its parts as easy as making a phone call. Engineers dialing (800) 336-6933 can use a personal or corprorate credit-card number to order any size quantity of any part-from the low-est-cost chip to the most sophisticated IC-the company has in stock. What's more, the parts arrive in two or three days, rather than the two to three weeks engineers must often wait to get parts from distributors. Certainly, there's a demand for this service: Dallas Semiconductor generates $\$ 7000$ to $\$ 8000$ a week via credit-card orders.
More companies should follow Dallas Semiconductor's example by making available small quantities of both lowend and sophisticated parts. Not only would such companies generate additional income, they would also be laying the groundwork for future, potentially large orders.

Julie Anne Schofield Associate Editor

American Society of Business Press Editors Award 1991, 1990, 1988, 1983, 1981

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board
System at (617) 558-4241 300/1200/2400, 8, N, 1 .

In a world so dependent on communicating, your customers don't take kindly to interruptions.
So in the interest of keeping folks in touch with one another, Tektronix makes communications signal analyzers that let you measure jitter and noise automatically. And bit error rate testers that can lock onto and test specific or pseudo-random patterns-even those millions of bits long. But these devices are justpart of a sophisticated collection that includes optical-to-electrical converters,

THE JITIERS.

receivers, optical attenuators, and optical and metallic time-domain reflectometers.
High-performance equipment for everyone from design engineers to field service technicians.

Tektronix

True portables are totally off the wall.

No outlets. No rechargers. No reliance on AC whatsoever. That's true portability. It's what the world is coming to. And it runs on easy-toreplace primary batteries. The next generation promises even smaller, lighter weight, more convenient portables. That depends on you, and you can depend on us.

Duracell is the primary source for primary power. We offer you a world of technical expertise and marketing experience in developing powerful solutions for computers, cellular phones and more. Let us help you
select a primary battery system from our broad line that includes alkaline and high power lithium manganese dioxide batteries.

Call us for application-specific data, design-in assistance, or just more information. Our OEM hotline number is $(800) 544-5454$, Ext. 3281. Or fax us at (203) 791-3273.
True portability is the cutting edge. And it's in your power.

DURACELL
 PORTABILITY IS PRIMARY

Computer Technology

2-MBIT VIDEO RAMs

Standardized feature sets add versatility and speed

RICHARD A QUINNELL, Technical Editor

Emerging 2-Mbit video RAMs offer more features and a wider interface to boost speed beyond that of earlier devices. Different manufacturers'
products also conform more to a single standard, coming a bit closer to eliminating second-sourcing problems.

During the four years since the introduction of 1-Mbit video RAMs (VRAMs), manufacturers have been listening to users. The 2 -Mbit devices now appearing attend to users' needs for second sourcing by offering a standardized array of features, including the most popular 1-Mbit functions and some usersuggested functions unique to the 2-Mbit generation.

The feature sets of most 2-Mbit devices conform to a JEDEC standard jointly developed by the major manufacturers. The devices' organization is also standard at 256×8 bits-twice the width of older, 1-Mbit devices (256×4 bits). The effort to standardize came in reaction to the varied options available in 1-Mbit VRAMs (Ref 1). Because each manufacturer offered a different mix of functions, parts seldom had many features in
like a conventional page-mode DRAM, requiring the same address, control, and refresh signals. The SAM array provides a second port into the DRAM array, allowing you to transfer a row of DRAM data to the SAM in a single cycle, then shift out the SAM data independent of the DRAM array's operation.

The emerging 2-Mbit video-RAM generation reduces some of the diversity found in the 1-Mbit generation by offering a hierarchy of feature sets. The Micron MT42C8255 shown here offers the core features. common. To make second sourcing possible, designers had to use only the few common features, sacrificing much of the parts' capabilities. By offering broader standard feature sets in 2-Mbit parts, manufacturers now aim to minimize that sacrifice.

The feature sets constitute a hierarchy, offering foundation, core, and extended functions. The foundation of all VRAMs is a dual-memory structure: a dynamic-random-access-memory (DRAM) array coupled to a serial-access-memory array (SAM). The DRAM array behaves

In some cases, the SAM array can also accept serial data for transfer to the DRAM array. Using both ports, you can transfer data into and out of the VRAM simultaneously.

Several core functions taken from the 1-Mbit VRAM generation build on this foundation. One such core function is the split data transfer. A basic data transfer has you provide row and column addresses to the DRAM along with a transfer command bit. The row address selects the DRAM row to transfer into

Pushing the Edge of Capacity... 1.65 GB in a 5.25-inch Form Factor.

Edge-to-Edge Performance
The DK516C-16 uses Hitachi's advanced proprietary technology to deliver 1.65 GB of capacity and a fast 13.5 ms average access time.

Its SCSI interface provides a maximum data transfer rate of $5.0 \mathrm{Mbytes} / \mathrm{sec}$ (synchronous), with a 256 Kbyte data buffer and read look-ahead cache.

Or, if you have an ESDI application, look into Hitachi's 1.54 GB DK516-15 with a 14 ms average seek time and a $2.75 \mathrm{MB} /$ sec data transfer rate

Edge-to-Edge Quality

Choose the DK516 and you get a drive backed by the quality and reliability of Hitachi-a $\$ 54$ billion company. Unlike other drive manufacturers, we design, build, and test all key components in-house.

For more information about the DK516, or any Hitachi disk drive, call 1-800-HITACHI.

Hitachi America, Ltd.

Computer Division, MS500
Hitachi Plaza
2000 Sierra Point Parkway
Brisbane, CA 94005-1819

(0) HITACHI

Our Standards Set Standards

Authorized Distributors:
CONSAN 612-949-0053
(AA, IL, IN, KS, KY, MI, MN, MO, ND,
NE, OH, PIILSburgh, PA, SD WD
HITACHI (CANADIAN),
LTD. 416-826-4100 (Canada)

R SQUARED 800-777-3478
(AZ. CA, CO, NM, OR, UT, WA, WY)
$\underset{\text { (CT, MA, ME, NH, RI, WT) }}{\text { SIG }}$

SPECIALIZED SYSTEMS ${ }_{(A R, L A, ~ O K, T Y)}$ TECHNOLOGY 800-688-8993

EDN-TECHNOLOGY UPDATE

2-MBIT VIDEO RAMS

the SAM; the column address selects a tap point (the location in the SAM that is first in the serial output stream). A drawback to the basic transfer becomes apparent if you attempt to produce a continuous serial data stream. When the SAM reaches its last location, you only have one clock period in which to execute the next transfer.
The split data transfer extends this time window by allowing you to load one half of the SAM while the other half is shifting data. To use the split transfer, you first execute a basic transfer. Once the first half of the SAM has shifted out, you can execute a split transfer to refill that half anytime before the second half finishes shifting.
When the second half of the SAM has finished shifting, the memory pointer automatically wraps around to the beginning of the first so that shifting continues uninterrupted. You can then execute a split data transfer to the second half, and so on. The device automatically controls which half-transfer occurs, so you can maintain a continuous data stream by performing a succession of split transfers.

Another core function that adds
to the foundation VRAM is the ability to perform a masked write, a fast alternative to the read-modifywrite cycle. The masked write, also called write-per-bit, lets you prevent alteration of selected bits within a word during a write operation.

Two types of masked write are available, persistent, and nonpersistent. In nonpersistent masked write, you must provide the mask pattern during the row address portion of each write cycle. In persistent write, you first load a mask register. The device will then apply that mask during all succeeding write operations until the mask is cleared.

Multiple-location writes

A third core function is the ability to write the same data to multiple DRAM locations simultaneously. The duplicated data comes from an internal register called the color register, which you must load beforehand.

The ability to write to multiple locations takes on two forms, a block write and a flash write. The flash write replicates the color register data into an entire row of the DRAM array. The block write writes to as many as four adjacent

For more information . . .

For more information on the VRAMs discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Micron Technology Inc
2805 E Columbia Rd
Boise, ID 83706
(208) 368-3950

FAX (208) 368-4558
Circle No. 712
Mosaic Semiconductor Inc 7420 Carroll Rd
San Diego, CA 92121
(619) 271-4565

FAX (619) 271-6058
Circle No. 713
VOTE
VOTE . .

High Interest 479 Medium Interest 480 Low Interest 481

Including such extended functions as stopcolumn control and extended-data-output page-mode access, the NEC μ PD422835/6 2-Mbit video RAM is organized as a standard $256 \mathrm{k} \times 8$-bit device.
memory locations (columns) in a single row. You can selectively mask out columns in the block write, but not in the flash write. Both forms include the option of performing write-per-bit.
The top level in the feature set hierarchy includes two extended functions unique to the 2 -Mbit VRAM generation. Both aim at improving the VRAM's performance during DRAM write operations.
The first of these extended functions is the extended-data-output page mode, also called hyper page mode. This variation on page mode has the DRAM latch its output data internally so that the output remains valid while the DRAM col-umn-control circuits prepare for the next access cycle. In conventional page mode, the DRAM must wait for the system to finish reading data

EDN-TECHNOLOGY UPDATE

2-MBIT VIDEO RAMS

before the column-control circuits can prepare for the next access. By allowing the two operations to occur in parallel, the latch speeds data access.
The second extended function is a column-stop control on split data transfers. Although this function seems to affect only the SAM, its effect is to improve write access to the DRAM array by simplifying use of a tiled memory-to-display map.
The most intuitive method for mapping memory locations in the DRAM array to pixels on the display is shown in Fig 1a. Each row or page of the array maps to a line of pixels. While this is an intuitive map, it suffers from reduced performance when the system attempts to draw a diagonal line. As the figure shows, the line cuts across multiple pages in the DRAM, using only one or two locations in each page. Having only a few locations to be written in each page, you cannot use page mode's fast access time effectively.

Tiled map speeds line draw

The tiled approach shown in Fig 1b maps a 512 -byte DRAM page into two 16×16-pixel display tiles. Any line drawn on the screen will use several pixels from the same tile and thus from the same DRAM page. Access within a page is twice

Fig 1-The mapping you use between VRAM address and display locations affects your line-drawing rate. A direct map (a) allows simple serial data transfers but doesn't allow line drawing to use page mode effectively. A tiled map (b) allows more frequent use of page mode for drawing but complicates the serial data transfer to screen.
as fast as access between pages. Therefore, by making more effective use of page mode, the tiled map reduces line drawing time.

The drawback to the tiled map is that it complicates the reading of data into the SAM for presentation to the display. You must initiate a basic data transfer at each tile boundary-in this case every 16 bits-under the tight timing conditions needed to maintain a continu-
ous serial data stream. You cannot ease those timing constraints by using a split data transfer because you cannot jump between the split registers when you reach a tile boundary; you can only wrap around register boundaries.
The column-stop control, however, does allow you to jump between split registers. You initiate column stop by selecting one of five column-stop patterns. You can then

Table 1-2-Mbit video RAMs

Manufacturer	Part no.	Cycle time (nsec)		Features								$\begin{aligned} & \text { Price } \\ & (100) \end{aligned}$	Unique features
		Page mode	Serial	Serial input	Split transfer	Block write	Flash write	Masked write		Extended-data-output page mode	Stopcolumn control		
								Persistent	Nonpersistent				
Micron Technology	MT42C8254	45	25		X	X			X			\$25	
	MT42C8255	45	25		X	X			X			\$25	Dual write enable for VGA
Mosaic Semiconductor	MVM8256	55	35	X								\$378	MIL-STD-883C qualified
NEC Electronics	${ }_{\mu}{ }^{\text {PD }} 482234$	45	22	X	X	X	x	X	X		X	\$30	
	${ }_{\mu}$ PD 482235	35	22	X	X	X	X	X	X	X	X	\$30	
Toshiba America Electronic Components	TC528257	45	25	X	X	X	X	X	X		X	\$27	30-nsec cycle time piplined-page mode
	TC528267	40	25	X	X	X	X	X	X	X	X	\$27	30-nsec cycle time pipelined-page mode

Just What Your Customers Need, Another Outlet For Their Creativity.

.
What's in? Video Out. Outputting video to a VCR and displaying video on a composite monitor are the newest capabilities every computer will need to compete in the Multimedia Age.

Now you're just a single chip away from adding Video Out to your very next computer design. Introducing Bt858, a monolithic digital device that packs in a board full of analog circuitry and puts out studio quality composite video.

Bt858 is a tweakless all-digital chip that bridges the video gap between RGB computers and composite or S-VHS outputs in the NTSC/PAL formats. It accepts multiformat digital inputs from 24,16 or 15 -bit RGB, 24 and 16 -bit YCrCb and 8 -bit VGA.
And because it has a programmable clock rate it adjusts for the $1: 1$ square pixels in computers and 4:3 rectangular pixels on TV without distortion.

Bt858 gives your system an image quality advantage, too. Studio quality output is a step
above tape decks and TV monitors so images always look "first generation."
You've read the book. Now see the picture. Call 1-800-VIDEO IC and we'll send you "The Ins and Outs of Video Out," a revealing presentation of Bt858's capabilities.
That's all folks.
Brooktree Corporation, 9950 Barnes Canyon Road, San Diego, CA 92121, (619) 452-7580, FAX (619) 452-7294
Brooktree

A Winning Hand of Power Amplifiers
 High speed makes the the choice for deflection applithe choice for deflection appli-
cations. Combining a $100 \mathrm{~V} / \mu \mathrm{s}$ cations. Combining a $100 \mathrm{~V} / \mu \mathrm{s}$
slew rate with a 100 V supply, slew rate with a 100 V supply,
$\pm 30 \mathrm{~A}$ output current, thermal protection, and a 360 kHz power bandwidth, makes the PA05 a cost effective solution. $100+$ pricing is $\$ 189.00$.
PA04

PA03

Super power describes the PA03. With 500 W of internal power dissipation, a 150 V supply and $\pm 30 \mathrm{~A}$ of output current, the PAos drive complete high power motor drive
solution. $100+$ pricing is $\$ 320.00$. EOHd

Special Pricing on Evaluation Units!

Until March 27, 1992, sample any one of these models at their 100 -piece price*. Plus save 50% on an EK04 evaluation kit with purchase of a PA05 or PA04-just $\$ 49.50$ (kit includes heatsink, PC board, mating socket and hardware kit). See ordering information below.*

* Offer good for a one-time order of up to three sample units and evaluation kits.

APEX MICROTECHNOLOGY CORPORATION
5980 N. Shannon Road, Tueson, AZ 85741 For Product Information or to Place an Order Call 1-800-448-1025 or FAX (602) 888-3324

For Applications or Product Selection Assistance Call 1-800-421-1865

EDN-TECHNOLOGY UPDATE

2-MBIT VIDEO RAMS

Fig 2-By permitting the serial data pointer to jump to the other half-register upon reaching a stop point, the stop-column control function simplifies timing of tiled-map serial readout.
specify a tap point with each split transfer. The serial data pointer will jump from the stop boundary in one split register to the tap point you specify for the other split register. Column stops can be as close together as 16 columns. Fig 2 shows the transfer and jump sequence for the tiled map of Fig 1b.

Similar, but not identical

The hierarchy of foundation, core, and extended feature sets is reflected in Table 1. The Mosaic MVM8256 is a foundation part, the Micron devices offer core functions, and the NEC and Toshiba parts have extended functions. Even though several devices have unique additions to the standard feature sets, the commonality is much greater than it is in the 1-Mbit generation. Unless you absolutely need them, sacrificing the extra features to permit second sourcing now presents no great hardship.
Simply comparing feature sets is somewhat misleading, however. You may have to design carefully to accommodate possible physical differences. The Toshiba parts, for
example, need an extra I/O pin to activate their pipeline mode. That pin is a ground pin on the Micron parts and a no-connection on the NEC parts. You can't design to accommodate all differences, though. The Mosaic part, for example, has a pinout different from the other VRAMs.
The VRAM evolution won't stop at the 2 -Mbit generation. Both NEC and Texas Instruments are working on 4 -Mbit devices, organized as $256 \mathrm{k} \times 16$ bits, that may be available by year's end. Whether the compatibility trend will continue, however, is uncertain. Manufacturers haven't agreed on any specifications for the 4-Mbit generation.

God

Reference

1. Conner, Margery S, "1M-bit video RAMs offer speed for high-resolution graphics displays," EDN, March 31, 1988, pg 79.

Article Interest Quotient
(Circle One)
High 479 Medium 480 Low 481

PHILIPS / SIGNETICS

has the most 80C51 Microcontroller Derivatives in the world...

No Compromise In-Circuit Emulation from nohau

The EMUL51-PC is a high performance in-circuit emulator specifically designed to give an optimized environment to develop your 8051 family hardware and software.

Nohau's philosophy is to design emulators "From the ground up.' We believe that you buy an emulator to save time during the development process. Therefore the EMUL51-PC hardware is an advanced trace function with sophisticated trigger capabilities.

The POD, which plugs into the target system, is connected to the emulator board with a $5 \mathrm{ft}(1.5 \mathrm{~m})$ ribbon cable to provide a flexible operating range.

EMUL51-PC can also be used in a serial box which communicates with the PC/PS2 at up to 115 K Band.

The EMUL51-PC is fast. A 16 K object and symbol file loads in just 4 seconds.
transparent. It doesn't intrude on the microcontroller interrupt, serial channel, code space or I/O. It truly emulates the microcontrollers from all manufacturers of 8051 derivatives. This means that your

EMUL51-PC will work just like the microcontroller when placed in your target.

We call this a "no-compromise" design - a quality which has helped EMUL51-PC become the worlds most popular 8051 family emulator.

All Nohau products come with a one year hardware warranty. The software support and all updates are free during the first year.

The broadest range of microcontroller derivatives from Signetics

Signetics offers you the industry's most complete and innovative line of 8-bit, 80 C 51 microcontrollers. With features ranging from extended memory for demanding applications to EPROM versions for programmability and packaging options to meet your specific needs.

The result is a single, reliable vendor with the tailored solutions
you need to improve your designs. As well as get them to market faster with reduced part counts and lower design costs.

Best of all, our microcontrollers are here today, offering immediate and affordable design solutions.

The advantages of an $\mathbf{I}^{\mathbf{2}} \mathrm{C}$ serial bus

To reduce interconnect complexity, we have incorporated our two-wire $\mathrm{I}^{2} \mathrm{C}$ serial bus feature into many of our microcontrollers and other devices. These include peripherals such as A/D converters, speech synthesizers, LCD drivers, SRAMs, EEPROMS and more.

Today we offer more than 100 devices with $\mathrm{I}^{2} \mathrm{C}$, and that number $\mathrm{I}^{2} \mathrm{C}$, and that number
continues to grow. So does the industry-wide acceptance of the $\mathrm{I}^{2} \mathrm{C}$ bus, which we have licensed to more than a dozen leading semiconductor companies.

As well as being easy to use, the $\mathrm{I}^{2} \mathrm{C}$ serial bus gives you low power dissipation, high noise immunity and a wide supply voltage and operating temperature range. Thanks to our unique bus protocol, our $\mathrm{I}^{2} \mathrm{C}$ supports multiple slaves and allows multiple masters with easy arbitration.

A new development in $\mathrm{I}^{2} \mathrm{C}$ is the ACCESSbus ${ }^{\mathrm{TM}}$ interconnect - the desktop bus standard we recently announced with DEC. It's the standard for connecting user-interactive accessory devices such as keyboards and mice. And it's the first "open" interconnect of its type that allows you to connect up to 14 I/O devices to one port for a wide variety of computer systems - including workstations, PCs and terminals.

Choose OTP and EPROM flexibility

When time to market and flexibility are essential, choose from the industry's widest selection of OTP and EPROM derivative microcontrollers.

Unlike ROM-based microcontrollers, our OTP and EPROM versions can be quickly programmed at your convenience. Virtually all of our microcontrollers are available in OTP and EPROM versions. With features ranging from extended memory and extended I/O to A/D converters and surface mount versions.

These programmable devices are the perfect solution for niche applications and low-volume production runs. Thanks to the added flexibility of OTP and EPROM devices, now you can get your designs to market faster, without compromise.

Microcontrollers from Signetics The MOST 80C51 Microcontroller Derivatives in the World

DEVICE	OTP \& EPROM	ROM (bytes)	RAM (bytes)	$\begin{array}{\|c} \text { 8-BIT } \\ \text { PORTS } \end{array}$	SERIAL I/O		TIMERS	SPECIAL FEATURES	PACKAGES
					UART	12 C			
$8 \times C 751$	-	2 K	64	$2+3 / 8$		-	1	24 Pin Skinny DIP Package	A28, F24, N24
$8 \times C 752$	-	2 K	64	$2+5 / 8$		-	1	8 -bit A/D (5 ch.), PWM	A28, F28, N28
$80 \mathrm{C} 31 / 8 \times C 51$	-	4K	128	4	-		2	Industry Standard	A44, B44, F40, K44, N40
80CL31/80CL51		4K	128	4	-		2	Low Voitage/Power (1.8-6 votis)	N40, D40
$8 \times \mathrm{CL} 410$		4 K	128	4		-	2	Low Voitage/Power (1.8-6 volts)	N40, D40
$8 \times C 851$		4 K	128	4	-		2	256 EEPROM	A44, B44, N40
$8 \times C 550$	-	4K	128	4	-		$2+W D$	8 -bit ADD (8 ch.), WD	A44, B44, F40, K44, N40
$8 \times C 451$	-	4K	128	7	-		2	7 I/O Ports	A68, F64, K68, N64
8XC852		6 K	256	218			2	Smart Card, 2 K EEPROM, CCU	Die only
$8 \times C 652$	-	8 K	256	4	-	-	2	8 K ROM, $1^{2} \mathrm{C}$ Serial Bus	A44, B44, F40, K44, N40
$80 C 32 / 8 \times C 52$	-	8 K	256	4	-		3	Industry Standard	A44, B44, F40, K44, N40
8 XC 562	-	8 K	256	6	-		$3+W D$	8 -bit A/D (8 ch.), PWM, WD, T2	A68, B80
8XC552	-	8 K	256	6	-	-	$3+W D$	10-bit A/D (8 ch.), PWM, WD, T2	A68, B80, K68
$83 C 053$	-	8K	192	$3+4 / 8$			2	TV Display (OSD), PWM, D/A	N42
$8 \times C 054$	-	16K	192	$3+4 / 8$			2	TV Display (OSD), PWM, D/A	N42
$8 \times C 654$	-	16 K	256	4	-	-	2	16 K ROM, ${ }^{12} \mathrm{C}$ Serial Bus	A44, B44, F40, K44, N40
$8 \times C 592$	-	16K	512	6	-		$3+W D$	CAN Bus, 10-bit A/D (8 ch.), WD	A68, K68, B80
$8 \times C 524$	-	16 K	512	4	-	-	$3+W D$	16 K ROM, 512 RAM, WD	A44, B44, F40, K44, N40
8XC528	-	32 K	512	4	-	-	$3+W D$	32K ROM, 512 RAM, WD	A44, B44, F40, K44, N40

nohau EMUL5I-PC System Specification

Host - IBM PC/XT/AT, PS/2 or compatible. 640 K RAM. Monochrome, CGA, EGA, or VGA in 25,43 or 50 line mode. External box - The emulator boards can be installed in an external box with serial 115 K Baud communication to the host computer. Languages supported - Third party assemblers, PL/M-51 and C-51 compilers.
Source level debugging - Window for source level debugging. Single Step or Line Step with breakpoints marked directly in the code. Full support of local and global variables in C-51. We currently support: Franklin/Keil, Archimedes/IAR, Intermetrics/ Whitesmiths/Cosmic and BSO/Tasking.
In-line Assembler and disassembler - Full instruction set and symbols supported!
Symbolic Support - Full symbolic debugging and type checking. Same symbols can be used in different modules. All Special Function Registers supported.
File formats Supported - Intel HEX/OBJ/OMF/SYM. Avocet, Archimedes, IAR, Keil, Franklin and many more.
Real time Emulation - Full speed emulation up to 33 MHz . No wait states and no intrusion on memory, stack, I/O or interrupt pins. Emulation Memory - 64 K XDATA memory and 64 K CODE memory. Up to 320 K Bank switching is supported as an option. Memory Mapping - Mappable in 4 K pages.
Macros - Test session automation and macro command definition. IF/ELSE, REPEAT/WHILE structures.
Debug Session Logging - Record emulation session and all setups to a file.

Breakpoints -64 K program breakpoints. 64 K data read and 64 K write breakpoints. Break on external signal. Break on direct access to internal bit or byte memory. Break on a range of addresses and high-level language statements. Break on program execution out of boundaries. With the Trace board option it's possible to break on any 48 bit combination of address, data, RD, WR, OP code fetch, interrupt level, ports or external signals.
Single Stepping - Single or multiple instruction stepping. Step over calls and interrupts. Line stepping in high level languages. Execution timer - Resolution down to 182 ns .
Real Time Trace Memory (optional) -256 K deep by 64 bits wide. Trace address, data, ports, control signals, external signals, and time stamp.
Filter/Trigger - Eight sets of triggers with 2 qualifiers each. Trigger on combinations of the qualifiers including sequential combinations and loop counter. Qualifiers can be AND/OR/NOT combinations of addresses, data, ports, op-code fetch, RD, WR, EXT0, EXT1 and interrupt levels. Trigger point can be selected anywhere within the 256 K buffer to give pre/post trigger alignment. Trigger can be modified and restarted without stopping emulation. Trace Display - Display trace in disassembled symbolic or binary/hex form, or as high level source code. Up to 256 K source lines can be captured. Display and setups can be saved to a file. Trace can be started, stopped and displayed independent of program execution.
Program Performance Analyzer - Histogram and statistical information of program execution in real time.

Signetics

CALL OR WRITE FOR YOUR FREE 80C51
DERIVATIVE DATABOOK OR
MICROCONTROLLER SAMPLE. (800) 227-1817 ext. 746
a subsidiary of North American Phillips Corporation
Signetics Company
811 E. Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409

CALL OR WRITE FOR YOUR FREE DEMO DISKETTE!!

Ask about our 20 minute video presentation.

nOHaU

Nohau Corporation 51 E. Campbell Ave. Campbell, CA 95008, USA
Fax. (408) 378-7869
Tel. (408) 866-1820
Nohau UK Ltd
Station Mill
Alresford, Hants. SO24 9JG
England
Fax. 0962-73 5502
Tel. 0962-73 3140

Nohau Denmark A/S
Vibeholms Alle 11-15 DK2605 Brøndby
Denmark
Fax 43446020
Tel. 43446010

Nohau Elektronik AB
Fosievägen 6, 214, 31 Malmi
Sweden
Fax. 040-96 8161
Tel. 040-92 2425

Nohau and Signetics have a policy of continuous improvements of their products. Therefore the information in this document is subject to change without notice.

Computer Technology

MULTIFUNCTIONAL $31 / 2-$ IN. OPTICAL DRIVES

Drives meet standards for removable data storage

MAURY WRIGHT, Technical Editor

A look at the list of all-star companies planning to offer industrystandard $31 / 2$-in. optical drives gives a good indication of the potential success of the product class.

The emerging class of $3^{1 / 2-i n}$. multifunctional optical disk drives stands a good chance to become a widely accepted standard for desktop computers. Previous classes of optical drives have failed to achieve this status because of a lack of industry standards. The new drives meet ANSI and ISO standards for MO (magneto-optical) drives that store 128 Mbytes on a rewritable cartridge that resembles a $3^{1 / 2}-\mathrm{in}$. floppy disk.

What makes the $3^{1} / 2$-in. drives multifunctional is that they can also use two other media. The drives can read 120 Mbyte O-ROM (optical ROM) prerecorded disks, which software publishers can produce much like they do the larger CD-ROMs (compact-dise read-only memory). The drives can also use a medium called partial ROM. On partialROM disks, some sectors have prerecorded data and others can be written to using the MO capability of the drive.

Mike Helsel, manager of tape and op-
tical products at Teac, maintains that $3^{1} / 3-$ in. optical drives have a shot at eventually replacing the floppy-disk drives used in every system. Helsel qualifies his statement by saying that the transition might take 10 years and that standards must be strictly maintained for the scenario to occur.

Low price ultimately will key the acceptance of these multifunctional drives into mainstream office use. An end user will pay approximately $\$ 2000$ for a drive right now, but drive manufacturers have just begun volume production. According to Robert Abraham, vice president of Santa Barbara, CA, research firm Freeman Associates, the average OEM price for $3^{1} / 2$-in. optical drives shipped in 1992 will be $\$ 810$. Therefore, you can expect end-user prices less than $\$ 1500$.

The optical-drive industry has failed to deliver optical drives that achieve the performance and price of magnetic disk drives more times than anyone cares to

Sony leads the pack in shipments of $31 / 2$-in. optical drives. The company used the experience gained in pioneering MO technology in larger drives to produce its SMO-300 optical-drive family.

Power Revelation

Our Westcor division's family of configurable AC or DC input fan cooled StakPAC switchers reveals a new world of power density and output flexibility to the system designer...whatever your power needs. Each StakPAC is built with field proven robotically manufactured Vicor VI-200 Series power components providing you the flexibility of a customized supply combined with the off-the-shelf availability of standard catalog products..."first article" StakPACS are typically delivered in 2 weeks.

Compact, up to $6 \mathrm{~W} / \mathrm{in}^{3}$, low profile StakPACs set the standard for "box" or open frame switchers. Besides meeting conducted EMI standards, custom configured StakPACs are pre-approved to UL, CSA, TÜV and VDE safety standards (DC Mini- in process).

MODEL	POWER	OUTPUTS	INPUT	DIMENSIONS (inches)
StakPAC	$1,200 \mathrm{~W}$	up to 8	$110 / 220$ VAC	$3.2 \times 5.5 \times 11.5$
MINI	600 W	up to 5	$110 / 220$ VAC	$1.9 \times 5.5 \times 12.2$
DC MINI	800 W	up to 5	5 Ranges 18-76 VDC	$2.5 \times 4.3 \times 12.2$

Whether your application is OFF-LINE or DC INPUT, chances are we have a solution for you...we are designed into computer, telecom, and test measurement systems worldwide. Please call us to discuss your needs, then relax...bulky standards and risky long lead-time custom supplies belong to the past. Discover the new world of configurable supplies: StakPAC, MiniStakPAC and DC Mini.

Call VICOR EXPRESS for information and be sure to ask for a StakPAC or DC Mini Handbook: (800) 735-6200 or (508) 470-2900 at ext. 265. Or call Westcor (west coast) at (408) 395-7050.

Component Solutions For Your Power System

MUITIFUNCTIONAL $3^{1} / 2-1 N$. OPTICAL DRIVES

remember. No optical drivesincluding the $3^{1} / 2$-in. units-have reached the performance level of magnetic drives. The average access times and data-transfer rates the small drives offer match those of a 20 - to 40 -Mbyte hard drive shipped in the typical PC a few years ago.

But optical drives in general can perform the primary-storage role in place of hard-disk drives in applications in which fast data-access times and data-transfer rates aren't paramount. And the random-access capability of optical drives makes them preferable to tape drives in some secondary-storage applications including archival storage and disk backup. However, optical storage can't come close to the drive or media price tape storage offers.

Applications open niches

Optical drives have found niches in which high-capacity randomaccess removable storage proves invaluable. In fact, desktop publishing and emerging multimedia applications have essentially created the need for a third class of storage that complements traditional disk and

The OD-3000 optical drive from Teac has a 128-kbyte buffer and fits the standard $31 / 2$-in. form factor.
tape drives. Optical drives can be used to store images, encyclopedias, music, and video on highcapacity removable cartridges. Optical disks can also be used for software distribution in this graphics age where a word-processing program can require a dozen floppy disks.

These applications have created a potentially large market for all optical drives, but several factors have stymied growth in the market. Certainly high price and low performance don't help. But lack of standards and disarray in the opti-cal-drive industry have been the biggest obstacles to success. For

For more information . . .

For more information on the optical-disk-drive products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

IBM OEM Storage Products

5600 Cottle Rd
MS \#P32, Bldg 97
San Jose, CA 95193
(408) 284-6039

Circle No. 717

Most Inc

11205 Knott Ave
Cypress, CA 90630
(714) 898-9400

FAX (714) 373-9960
Circle No. 718

Panasonic Industrial Co 1600 Mc Candless Dr Milpitas, CA 95035 (408) 262-2200 FAX (408) 262-4214
Circle No. 719
Ricoh Corp
File Products Div
5150 El Camino Real, Suite C-20 Los Altos, CA 94022 (415) 962-0443 FAX (415) 962-0441 Circle No. 720

Sony Corp of America

 Computer Peripheral Products Co655 River Oaks Pkwy
San Jose, CA 95134
(408) 432-0190

FAX (408) 432-0253
Circle No. 721
Teac America Inc
Data Storage Products Div
7733 Telegraph Rd Montebello, CA 90640
(213) 726-0303

FAX (213) 727-7652
Circle No. 722

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 482 Medium Interest 483 Low Interest 484
example, optical drives use media ranging in diameter from $31 / 2$ to 14 in. And drives from different vendors that use the same size media often used different recording formats. Finally, customers have had to choose between WORM (write once, read many), rewritable, and CD-ROM drives.

Standardization, multifunctional capability, and size set the new class of $3^{1} / 2$-in. drives apart from the grab bag of larger optical drives. ANSI and ISO committees had defined standard recording formats for MO and O-ROM $31 / 2$-in. media before any companies produced drives. Thus, all potential $31 / 2$-in. optical-drive manufacturers could produce standard drives from the start. And media-interchange standards are key for removable storage technologies. You only have to look at the stalled market for 20 Mbyte floppy-disk drives to see how incompatibility can hurt a new class of storage products.

Manufacturers of the $3^{1 / 2}$-in. drives say their products suit desktop personal computers and workstations rather than LAN servers, where larger optical drives often see duty. The small form factor matches the physical space provided in newer desktop computer cabinets. And the 128 -Mbyte capacity of the rewritable MO cartridge matches the needs of a single-user graphical-user-interface-based computer.

You can argue that $5^{1 / 4-i n}$. optical

MULTIFUNCTIONAL $3^{1} / 2$-IN. OPTICAL DRIVES

drives provide more capacity than the $31 / 2$-in. drives and that more is usually better. Available $5^{1 / 4}$-in. drives store more than 500 Mbytes on an MO cartridge yet cost only double what the $3^{1 / 2}$-in. drives do. However, the $5^{1 / 4}-\mathrm{in}$. drives are not multifunctional, and industry observers expect the smaller drives to drop in price quickly.
You can't directly compare the $3^{1} / 1-$ in. drives with other optical drives because no other drives combine the same capabilities. For example, no $5^{1 / 4}-\mathrm{in}$. MO drives also

Most of the $3^{1 / 2}$-in. drives discussed in this article feature average access times between 40 and 50 msec and can sustain data transfers at more than $600 \mathrm{kbytes} / \mathrm{sec}$.

CD-ROMs, however, feature a single spiral track much like a groove in an audio record album. State-of-the-art CD-ROM drives have $300-\mathrm{msec}$ average access times and data-transfer rates in the $150-$ kbyte/sec range. Furthermore, CDROM disks' spiral track and need for a variable-speed spindle motor that produces constant linear veloc-

The "Free Format" 265-Mbyte mode that the Most RMD-5200 can operate in doesn't prevent the drive from using standard 128-Mbyte cartridges as well.
read CD-ROMs. The $3^{1 / 2}$-in. drives can read O-ROMs, which are similar to CD-ROMs. Software publishers can mass-produce O-ROM cartridges using the same stamping process they use to make CD-ROMs and their close relative, the audio compact disc. Thus, O-ROMs and CD-ROMs share the characteristic of being cheaper than paper for distributing large amounts of data.

O-ROM drives have several advantages compared with CD-ROM drives, however. O-ROM disks use a sector-and-track format geometry just as magnetic disk drives do.
ity will delay or eliminate the possibility of MO/CD-ROM multifunctional drives.
The larger CD-ROMs do offer 540 Mbytes of capacity compared with the 120 Mbytes offered by O-ROM cartridges. So publishing large data sets such as encyclopedias can make more sense on CD-ROMs now, although you can expect highercapacity O-ROM cartridges as early as next year. Currently, publishers offer thousands of titles on CDROM; O-ROM publishing has just begun.
You can buy Corel Draw from

Corel Systems (Ottawa, Canada) on O-ROM today. And Autodesk (Sausalito, CA) has created a sample image library on O-ROM using animations created via its CAD and drawing software packages. Other publishers are waiting for more widespread use of drives that can use O -ROM media before offering titles.
Art Rancis, vice president of data-storage products at Sony, says that O-ROM will be a more affordable medium than CD-ROM for many publishers. Rancis heads up Sony's operations that produce $3^{1} / 2-$ in. O-ROM and MO media. He says CD-ROM production facilities have been geared toward producing hundreds of thousands of copies of a title. But Rancis also says Sony has used the experience gained in producing CD-ROMs to create smaller O-ROM production facilities. He predicts that smaller satellite 0 ROM production facilities will enable publishers to use the medium cost effectively for much smaller production runs.

Partial ROM adds flexibility

The $3^{1} / \sim$-in. drives can also use a third type of medium called partial ROM. On partial ROM cartridges, some sectors are prerecorded data and others can be written to using the MO capability of the multifunctional drives. Clip-art libraries are an example of a partial-ROM application. You might buy a library of such art and add your own variations. Most industry experts predict that O-ROM and partial ROM will ultimately ensure success for $3^{1 / 2}$-in. optical drives.
So, the keys to success are in place for this new class of optical drives. And you won't find many PC or workstation users who couldn't find uses for these small drives. Therefore, drive and media price will determine how quickly the drives proliferate.

The list of manufacturers lining

Schraff

When is Compromise Unacceptable?

VMEbus structured applications have increased in their level of complexity. Related technologies, such as VXI, Multibus ${ }^{\circledR}$ II and Futurebus+, present equally challenging packaging demands.

System testing verifies the effectiveness of the airflow management system.
Let SCHROFF provide you with a fully engineered, documented and tested packaging system.
With bus structured packaging systems from SCHROFF - you never compromise.
For detailed product literature or applications engineering assistance call 1-800-4 51-87 55.
... worldwide - Partners to the Electronics Industry

The packaging system must provide controlled airflow, clean power supply, high-performance backplanes, efficient I/O cabling schemes and the ability to address EMC needs.
Your packaging system supplier must be able to produce a fully engineered and documented product.
Most importantly, his testing programs must be without compromise to support his claims, to insure your success.

MUITIFUNCTIONAL $3^{1} / 2$-IN. OPTICAL DRIVES

up to produce $3^{1 / 2}$-in. optical drives reads like a who's who of the com-puter-peripheral business. IBM, Most Inc, Panasonic, Ricoh, Sony, and Teac have all started shipping these small optical drives. Epson (Torrance, CA), Fujitsu (San Jose, CA), and NEC (Melville, NY) will be making the drives as well. And Mitsubishi (Torrance, CA), Olympus (Torrance, CA), and Toshiba (Irvine, CA) have manufactured optical drives and could introduce products any day now. Sony, according to most sources, has shipped more drives than any other manufacturer.
These companies don't target niche markets with their new datastorage products. Count on volume production from multiple sources for $3^{1 / 2}$-in. optical drives. Freeman Associates reports that shipments of these drives totaled 14,600 units in 1991, but estimates that shipments will grow to 137,000 units in 1992. And volume production should soon lead to low prices.

Users want prices below $\$ 1000$

Freeman's Abraham says enduser prices must drop below $\$ 1000$ before the market takes off. Currently, subsystem manufacturers such as Storage Dimensions (Milpitas, CA) and PLI (Fremont, CA) offer $3^{1 / 2}$-in. optical subsystems at retail prices ranging from $\$ 2000$ to $\$ 2500$. These subsystems include the optical drive, SCSI host adapter, and software. IBM introduced a drive last June both for OEM sale and for use with its PS/2 family of computers. The PS/2 add-on drive costs $\$ 1795$, but that price does not include a host adapter because PS/2 computers already have one.

OEM prices have already begun to drop. IBM states the OEM price for its $3^{1} / 2$-in. optical drive is $\$ 803$, but the drive offers considerably lower performance than others. The other five vendors shipping drives peg the OEM price between $\$ 900$ and $\$ 1000$ for volume purchases. A

buy rate of around 3000 units per year will get you the lowest price available.

A bargain per megabyte

The MO cartridges the optical drives use cost approximately $\$ 70$ each. Sony and 3M (Minneapolis, MN) will be the major name-brand providers of the cartridges. At $\$ 70$, the cartridge is a bargain if you compare its cost per megabyte with that of other media. But consumers will surely demand lower prices. According to several drive vendors, other media vendors private-label cartridges for as little as $\$ 25$ per cartridge now, so media prices are well on the way to being reasonable.

Deciding to use a $3^{1 / 2-i n}$. optical drive in your next system or subsystem design may be simpler than actually choosing a specific drive. Because the drives were designed to promote media interchange, manufacturers have a hard time differentiating their products via performance specs. You'll end up choosing a drive based on your vendor preference.

IBM's $\$ 803$ drive spins the disk inside the cartridge at 1800 rpm , and therefore trails the other drives slightly in access time and performance. Most's drives spin at 2400 rpm; drives from the other vendors
spin at 3000 rpm . Average access time for IBM's drive is approximately 70 msec . The other drives have average access times ranging from 40 to 50 msec .

Drives from IBM and Most read data at 500 kbytes/sec; drives from the other four vendors can sustain 640 kbytes/sec. All the drives write data at about one-third the readdata rate because MO technology requires erase, write, and verify passes on write operations. Vendors gearing up to enter the market might boost performance even more.
All of the drives use SCSI as a host interface. Both Teac's OD-3000 and Panasonic's LF-3000 include a 128-kbyte buffer compared with the 64 -kbyte buffers on the other drives. The larger buffer should boost performance, although you can't discern the improvement on a spec sheet.
The drives all use $3^{1} / 2$-in. media but don't all fit in the standard $3^{1 / 2 /-}$ in. form factor. For example, the RMD-5100 and RMD-5200 drives from Most require a half-height $5^{1 / 4-}$ in. mounting slot. The rest of the drives meet the $3^{1 / 2}$-in. form factor in the $41.3-\mathrm{mm}$ height and 101.6 mm width dimensions, but only Teac's OD-3000 and Ricoh's Transporter stay within the $146-\mathrm{mm}$

Read/Write IC Solutions

With apologies to our competitors, we plan to keep on leading the way in read/write IC technology.

And why not? For nearly two decades Silicon Systems has been increasing performance and reducing power demands in an expanding range of pin-compatible functions. All designed for a world of ever-shrinking form factors.

Current achievements include low-power, +5 v only read/write devices that consume under 5 mW in idle mode. Our new two-terminal read/write amplifier for thin film and MIG heads. A read/write device for both 3-terminal
ferrite and thin film applications. And devices with up to 16-channel capability.

Hold on tight, though. We're just warming up.

On the drawing board are ICs for MR heads, optical disk drives and a variety of other applications. There's just no end to our involvement.

If you need flexible and far-reaching read/write IC solutions for your next generation of products, call us for literature package SPD-15. We'll send you our new Read/Write IC Short Form Catalog, give you the name of your nearest Silicon Systems
representative and update you on our latest developments. 1-800-624-8999, ext. 151

Silicon Systems, Inc.

14351 Myford Road, Tustin, CA 92680 Ph (714) 731-7110 Fax (714) 731-6925 European Hdq. U.K. Ph (44) 81-443-7061 Fax (44) 81-443-7022

Circle \#37 for Product Info
Circle \#38 for Career Info

Switching Power's hot recipe for Power Factor Correction, Battery Back Up, Safety and IEC 555-2.

750 WATTS
48 VDC, $115 / 230$ VAC, UP TO 5 OUTPUTS HIGH EFFICIENCY

1500 WATTS
UNIVERSAL INPUT, 90 TO 264 VAC, POWER FACTOR CORRECTED
> - SHORT CIRCUIT PROOF •CURRENT MONITOR
> - FLEXIBILITY •OVERTEMPERATURE PROTECTION
> - RUGGED CONSTRUCTION • LOW ESR CAPACITORS
> - INTERNAL FILTERING •RELIABILITY •SOFT START
> - 50° CENTIGRADE OPERATION •CURRENT SHARING
> - REMOTE SENSE • FULLY REGULATED •REMOTE ON/OFF
> -BROWNOUT PROTECTION • OVERVOLTAGE PROTECTION - PROVEN

*UL*CSA*TUV*BABT*
SPI
Pow
Chosen
worldwide
for proven
rellability!

Call or write for our free Catalog Swifchine Powerlnc.

3601 VETERANS HIGHWAY, RONKONKOMA, N.Y. 11779
TEL. 516-981-7231, 1-800-456-8118
FAX 516-981-7266
SUNNYVALE, CALIFORNIA SALES OFFICE
TEL. 408-732-1230, FAX 408-732-5712

EDN-TECHNOLOGY UPDATE

OPTICAL DRIVES

depth spec including the SCSI controller. However, many computer cases can provide the extra depth some drives require.

Higher capacity emerges

Most Inc has broken from the pack by including what the company calls a "Free Format" mode in its RMD-5200 optical drive. This mode enables the drive to store 256 Mbytes on a cartridge-standard cartridges store 128 Mbytes. -Most has preproduction units available and expects the drive to cost about $\$ 1300$ in OEM volumes. The drive requires special cartridges to attain the large storage capacity, but also maintains full read/write compatibility with standard cartridges.

Some industry participants are uneasy about Most's higher-capacity product, which doesn't conform to a standard. These people are especially concerned because highercapacity $3^{1 / 2}$-in. optical drives are still in the developmental stages and are a product class dependent on standardization. Jeff Segers, vice president of marketing at Most, says the company does not intend to upstage the standards effort, but rather produced the product in response to customer demand.
The ANSI and ISO committees are committed to defining standards for doubling and tripling the 128Mbyte storage capacity of $3^{1} / 2-\mathrm{in}$. optical media. But onlookers report that agreement on a 256 -Mbyte standard is probably a year away. The efforts of the standards committees might hold the last key for the long-term success of $3^{1 / 2}$-in. optical drives. Standards are absolutely necessary to make these drives widely accepted. Unfortunately, standards also slow the introduction of new technology into the marketplace.

Article Interest Quotient (Circle One)
High 482 Medium 483 Low 484

Samsung began shipping Dram chips in the new 16 m density-in production volumes-during i991. Our customers for the product include many of the world's premiere computer and workstation makers.
advance in areas as different as medicine and transportation, finance and filmmaking.

The new generation will also, in short order, facilitate ever-more-capable notebook and palmtop computers. Computers that will make us more productive-and will also define the workplace in a

They tell us we are the first supplier to complete this next generation of memory. We, in turn, see it as a significant milestone in the global effort toward elegance and power in computing.

Of equal significance, Samsung's completion of the generation marks something of a transformation in the worldwide map of supply. And we believe consumers

The world's first I6-meg DRAM.				
Organization	Mode	Speed	Samples	Production
16 mX I	fast page	60/70/80	Now	Now
16 M X I	Nibble	60/70/80	Now	6-92
16 MX I	Static col.	60/70/80	Now	6-92
$4 \mathrm{MX4}$	FAST PAGE	60/70/80	Now	Now
4 M X 4	static col.	60/70/80	5-92	8-92
$4 \mathrm{M} \times 4$ (WPB)	FASt Page	60/70/80	5-92	8-92
4 M X 4 (WPB)	static col.	60/70/80	5-92	8-92
${ }_{2} \mathrm{~K}$ and 4 K refresh available.				

whole new way.

In the near future, more will be heard from Samsung.

We are among the major makers of DRAMS in all organizations and densities, and we are an increasingly major supplier of srams. We make a wide line of fast, ultra-fast, and highdensity srams, up to 4 M in density and 8 ns in speed. Our specialty memories
of electronic components will benefit from this.

Yet perhaps most important, is the fact that the $16-\mathrm{meg}$ will indeed help the electronics
include roms, vrams, pseudo and cache srams, eeproms, and fifos. And we also build superior ASICS, microcontrollers, MOSFETS, and RAM DACS. community-in the u.s. and elsewhere-to do nothing less than change the world.

The new-generation DRAMS are a significant boon to the hugely beneficial

And, of course, in DRAMs, there is always the 64 -meg.

About which, we hope to be writing soon.

If we may provide further information of any kind, technology of today's workstations. Machines that allow us to better comprehend the world, and to please contact us via the coupon at left, or by telephone at 1-800-446-2760.

The "One-Stop" Source For All Your Display Needs

IEE manufactures a complete line of Vacuum Fluorescent, Liquid Crystal, and DC Plasma displays as well as Interactive Touchscreens and Mini-Terminals. A few models in our extensive display family are shown below.

- Our FLIP ${ }^{\text {Tw }}$ (VFD) displays are available in 5×7 and 5×12 dot matrix types with extensive software features. Also available in wide-operating temperature (-40 to $+85^{\circ} \mathrm{C}$) versions. Applications: industrial, medical, telecommunications, etc.
- Highly ruggedized "ER" version modules (with MIL components) are also available.

- The 'NO-FRILLS"'m and "NINETY SERIES" "TM are IEE's low-cost VFDs with a high-priced appearance and are ideal for OEM applications such as copiers, POS terminals, pay telephones, etc.
- "Industrial Strength" FLIPs feature 9,11 , and 15 mm characters, making them easy to read from longer distancestypical on factory floors and in PLC applications.

Liquid Crystal

- The DAYSTAR NOVA'm series is available in reflective, and ELand LED-backlighted types. DAYSTAR NOVA is designed for applications where direct sunlight readability and ultra low power consumption is required. Operates on a single +5 VDC supply.
- DAYSTAR NOVAs offer the widest available operating temperature range (-30 to $+85^{\circ} \mathrm{C}$), a wide viewing angle and high contrast. Built-in temperature compensation is a unique IEE standard feature.

DC Plasma

- The ARGUS ${ }^{\text {Tw }}$ line offers flickerfree DC plasma flat panel technology with character fields up to 480 , in line widths up to 40 characters. ARGUS eliminates the need for bulky CRTs.

- The PEP ${ }^{\text {TM }}$ (Peripheral Entry Panel) family offers large format touchscreen modules-ideal for menu-driven applications.

Mini-Terminals

- The V.I.P. ${ }^{\text {TM }}$ combines a compact VF display with a sealed front panel metal dome keypad. Switch legends and front panel graphics are easily customized.

A complete line of interface cards, power supplies, filters, and cables/connectors are also an important part of our family-making IEE your "One-Stop" shopping source for all your display needs.

MEET THE ENTIRE IEE Industrial Products Division family-call or write today for our 4-color Product Selector Guide.

POWEROTE D.G.PWW ERSUPTIES
 NotOnly The Best...The BestSelection,Too

SWITCHERS

POWER-ONE'S International Switcher Series incorporates the latest state-of-the-art switching technology while providing POWER-ONE's traditional high quality at low prices. With certification to the world's toughest safety agency requirements, the series is especially suited for products sold not only domestically, but internationally as well. 85 models. . . 40 watts to 400 watts • Efficient . . .reliable. . economical - VDE construction - Up to 5 fully regulated outputs • Full international safety and EMI approvals

LINEARS

POWER-ONE'S International Linear Series is the world's undisputed leader in versatile, cost-effective linear power supply products. A long-time favorite of designers and engineers worldwide, the series is the most widely purchased power supply line through distribution in the industry. The most popular voltage and current combinations are available in a wide variety of off-the-shelf standard models. - Popular industry standard packages • 77 models... 6 watts to 280 watts $\bullet \pm 0.05 \%$ regulation • Up to 4 fully regulated outputs • Worldwide safety approvals

HIGH POWER

POWER-ONE'S International High Power Series is a true fully-modular high power product line. Specify a power system that meets your exact requirements from a wide selection of single, dual and triple output plug-in power modules. Virtually any combination of output voltage and current rating can be delivered from stock. - 500 watts to 2,000 watts • Fully modular construction - Up to 15 fully regulated outputs - UPS battery backup option • Parallelable outputs with current sharing - Power Factor Correction optional

POWER-ONE offers one of the largest selections of switcher, linear, and high power standard models in the world. Most models available off the shelf from authorized distributors. So , whatever your D.C. power supply requirement, make POWER-ONE your first choice and be sure you're getting the bestquality, selection, value and quick delivery. Call today for our new Reference Guide and the location of our closest authorized distributor.

POWER-ONE, INC.
740 Calle Plano - Camarillo, CA 93012-8583
Phone: (805) 987-8741 • FAX: (805) 388-0476

CIRCLE NO. 41

EDN-TECHNOLOGY UPDATE

Solid-state relays meet requirements and handle demanding applications

TOM ORMOND, Senior Technical Editor

Because solidstate relays have no sontacts and are housed in sealed packages, they are free from EMI and RFI problems and immune to dust, vibration, and shosk.

The solid-state relay (SSR) has not totally supplanted the older electromechanical relay and probably never will. But many design engineers are finding that optically coupled MOSFET SSRs provide the leading-edge technology needed to handle the demands of the telecommunications world and meet UL, CSA, VDE, and FCC requirements.
SSRs can switch both resistive and inductive loads at voltage levels ranging from millivolts to hundreds of volts. The devices suit modem switching, centraloffice equipment, communications equipment, data-access arrangements, and industrial control applications.
In the telecommunications area, the trend is toward SSRs with very low onresistance, low drive current, and surfacemount packaging. In industrial control, SSRs are achieving higher surge-current ratings, zero-crossing detection, and higher blocking voltages. As the number of SSR sources increases and size and prices decrease, the devices should find their way into more industries.

SSRs have an impressive list of advantages compared with electromechanical relays. SSRs have lives as long as tens of millions of operations and outlive electromechanical relays by about a hundred thousand operations. The switching speeds of SSRs are measured in microseconds and sometimes nano-seconds. These speeds are 6 to 1000 times faster than electromechanical relays'
switching speeds. SSRs require minimal maintenance and are immune to shock, vibration, and environmental problems. Most are logic compatible and are not plagued by EMI or RFI problems. The solid-state relay has no contact bounce, arcing, or chattering problems-in fact, there is no audible noise problem at all. Finally, the SSR is the best choice in applications involving explosion hazards because it doesn't suffer from arcing.

However, the SSR also has some drawbacks. For one, an SSR can cost a good deal more than an electromechanical relay. Military-grade SSRs can cost $\$ 100$ each. Secondly, the SSR has a nominal voltage drop when the output switch is closed or on-the output switch is not a perfect short circuit. As a result, the SSR can generate heat, which you must take into consideration when laying out your pe boards.

Unlike electromechanical relays, SSRs have leakage current. In the off state, the output of an SSR isn't a true

Rated to switch 6A at 12 to 280 V ac loads, Potter \& Brumfield's OACM-UJ SSRs are UL recognized and CSA certified and meet VDE requirements. The relays are housed in a molded, pc-boardmountable package that measures $0.37 \times 1.7 \times 1 \mathrm{in}$.

TELEDYNE SOLID STATE HAS IT!

If your system requires I/O or power switching and you're considering a discrete or hybrid circuit approach we should talk! And here's why -

- We now offer an extensive "menu" of standard military grade solid state relays for DC, bidirectional, and AC loads from low level to 25 Amps.
- Our latest designs feature "smart" options such as: output status for built-in test, short circuit protection and CMOS logic compatibility.
- All of our relays are designed and tested to MIL-R-28750 and applicable portions of MIL-STD-883, and most are qualified to existing MIL slash sheets or DESC drawings.
- We've already selected, derated, sourced, and qualified the required chip components, i.e., opto-couplers, drivers, FETs, SCRs, etc.

And if what you need is not in our catalog, call 1-800-284-7007, or FAX 1-213-779-9161. Chances are we're already working on it.

がTELEDYNE SOLID STATE
A Division of Teledyne Relays

EDN-TECHNOLOGY UPDATE

SOLID-STATE RELAYS

open circuit-there's always some leakage current flowing in the output switch. In high-power SSRs, this leakage current can be significant, reaching tens of milliamps.

Finally, the SSR does not offer the same variety of switching functions typically available in electromechanical relays. For the most part, SSR configurations are restricted to single or dual Form A (spst NO) or Form B (spst NC) configurations.

When you add up the pros and cons, the bottom line usually favors the SSR. Table 1 illustrates the capabilities of some of today's SSRs. As you can see from the data, you should have little trouble finding a relay to handle your load's requirements. The numbers also highlight the fact that SSR input circuitry is indeed logic compatible. Today's SSRs are reasonably priced and have wide operating ranges.

Small size is also a key feature of today's relays. The smaller DIP housing has become more popular than the standard hockey-puck package. Also, more relays are available in surface-mount packages.

Gordos Inc has followed the miniaturization trend with its GSAC-01 solid-state relays. These units are housed in a SIP (single in-line package) that measures $0.7 \times 1 \times 0.18 \mathrm{in}$. The devices offer a 12 to 240 V ac output rated at 2 A rms at a $25^{\circ} \mathrm{C}$ ambient temperature. The relays

To accommodate high-load industrial applications, the 575D45-12 relay from Opto 22 has both a 45 A current-handling capability and a 2000 V transient-voltage rating. The unit also features 4000 V optical input-to-output isolation and a TTL-compatible controlvoltage range.
feature zero-voltage turn-on, 3750 V ac optical isolation, and $10-\mathrm{mA}$ dc input sensitivity.

Photo-MOS relays from Aromat are the result of combining photoelectric technology with MOSFET technology. The relays have some of the features of solid-state relays such as long life, high reliability and sensitivity, and quiet operation, but also provide some of the benefits associated with electromechanical relays.

In standard SSRs, the input signal is transferred via an LED to a photocell and then output through a triac or other solid-state device. Standard SSRs are primarily used to control comparatively large power loads-typically in excess of

1A-and they have problems handling signals less than 100 mA because of high leakage-current ratings and distortion problems caused by offset-voltage ratings.
The Photo-MOS relays operate as follows: Current flowing to the input terminals activates an LED. Emissions from the LED pass through a transparent material to a photocell, which converts the light into a voltage. This voltage passes through the MOSFET gate-controlling circuit to the relay output. Standard SSRs require a power supply to drive the output MOSFET. In the case of the PhotoMOS relays, the built-in photoelectronic device makes the supply unnecessary.

Table 1-Representative solid-state relays

Manufacturer	Model	Load current (A)	Load voltage (V)	Control input (V)	Leakage current (mA)	Operating Range $\left({ }^{\circ} \mathrm{C}\right)$	Price

EDN-TECHNOLOGY UPDATE

SOLID-STATE RELAYS

Aromat's solid-state relays suit applications involving high packing densities. The relays measure $4.4 \times 6.3 \times 2 \mathrm{~mm}$ and are available in 1 Form A and 1 Form B contact arrangements. They feature a $1-\mu \mathrm{V}$ offset-voltage specification, which lets the units provide distortionfree control of $0.1 \mathrm{~A} / 400 \mathrm{~V}$ signals. The maximum on-resistance is 50Ω at 400 V , and the switching speed is 0.25 msec .

Let's get smaller

The LBA Series devices from C P Clare are one Form A and one Form B relay combined in a miniature 8 -pin DIP. This pair of independent relays have enhancementand depletion-mode MOSFETs as the output elements.

The LBA devices can provide a normally closed and normally open switch combination even if you apply no bias or external power. This capability makes the devices ready replacements for bulkier electromechanical relays. The LBA relays suit a wide range of applications in telecommunications, data acquisition, and instrumentation. The

Aromat's Photo-MOS relays feature a $1-\mu \mathrm{V}$ offset-voltage specification, which lets the units provide distortion-free control of $0.1 \mathrm{~A} / 400 \mathrm{~V}$ signals. The relays feature a maximum on-resistance of 50Ω at 400 V , a $1-\mu \mathrm{A}$ leakage current, and a $0.25-\mathrm{msec}$ switching speed. The housing is $4.4 \times 6.3 \times 2$ mm , and the relays are available in 1 Form A and 1 Form B contact arrangements.
units are compatible with CMOS logic levels, so they eliminate the need for driver-buffer circuit components. The units are available in through-hole and surface-mount housings. They feature a 3750 V rms input-output isolation rating and come with UL, BS415, and BS6301 approvals.
The AT\&T LH1500 family of highvoltage relays mirrors the trend toward smaller, faster, and more reli-
able SSRs. The line includes 21 products that cover the most common contact configurations: Form A, Form B, Form A/Form B, Form C (spdt), dual Form A, and dual Form B.

The Series 1500 relays employ a GaAlAs LED for actuation control and an integrated monolithic die for the switch output. The die is fabricated in high-voltage, dielectrically isolated BCDMOS (bipolar complementary double-diffused MOS). The die includes a photodiode array, various switch-control circuitry, and DMOS (double-diffused MOS) switches.
Some of the AT\&T relays employ current-limiting circuitry, which enables the units to pass FCC and other regulatory voltage-surge requirements. And with a 3750 V rating, the relays also meet or exceed domestic and international standards for input-output isolation. The Form A/B relays have integral make-before-break circuitry, which eliminates the need for additional timing logic and provides a true Form C switching function.

You can configure all units in the line for ac-dc or dc-only operation.

Dissipating heat is key to SSR design

Excessive heat remains the greatest enemy of semiconductors. Power semiconductors are especially at risk. Because transients add to the high power already being dissipated, power devices require additional design considerations. In the case of solid-state switches, the package's ability to distribute and dissipate heat is often the limiting performance factor. To gain insight into this design problem, look at the way C P Clare Corp designs its SSRs.

SSRs from Clare include three major circuits: an input drive circuit, conversion circuitry, and the output circuitry. The drive circuit must provide a reliable means of converting input drive power to infrared light. This light activates the conversion circuitry, which is an integrated array of photovoltaic devices. The conversion circuit generates the voltage needed to control the two output MOSFETs.

The output-drive MOSFETs handle high power, so they generate heat. In addition, the MOSFETs must provide the relay with its overall characteristics-speed, along with current and voltage specifications.

The Clare design employs four chips to achieve these objectives. One chip contains the input-drive circuitry. The second chip converts light to voltage, and the remaining two chips are the output MOSFETs. The first two chips are optically connected with a material that transfers light without transferring heat. Neither of these chips is exposed to the self-heating effect of the output circuitry. Each of the four chips is mounted on an extension of the package lead frame. Each extension serves as an individual heat sink to remove the generated heat.

32V Bipolar gain blocks with signal bandwidths to 4 MHz , thin film resistors, and 74LS speed compatible digital gates -all on a single piece of silicon!

That's the new RLDA80.
Think of the possibilities.
Programmable timers. PWM controllers.

Motor speed

 controllers.Supervisory circuits.
Phase locked
loops. Latched analog multiplexers.

RAYTHEON RLDA8O LINEAR/DIGITAL ARRAY
88 32V PROGRAMMABLE ANALOG MACROCELLS (Op amps, ground sensing amp, low distortion op amps, ITL output comparator, bandgap reference)
36 5V PROGRAMMABLE DIGITAL MACROCELLS
16 5V DEDICATED DIGITAL MACROCELLS
(Up to 200 equivalent gates)

All on a single die.
How many parts would that eliminate in your design? How much space, weight and power would it save? How much easier would assembly be? And how much more rugged would it make your final product?

There's a quick way to find out.
Show us your design-and we'll show you how easily it can be integrated onto a single RLDA80.

It's fast-typically six to eight weeks from design review to prototype.

And flexible-changes to an RLDA80 prototype can be done within four weeks.

We're committed to analog design. And to developing partnerships with our customers to produce the most efficient and cost-effective solutions possible.

So if you've been waiting for a mixed signal array for the "real world," it's here. For specifications on the RLDA80, give is a call at 1-800-722-7074. Raytheon Company. Semiconductor Division. 350 Ellis St. Mountain View, CA 94039.

EDN-TECHNOLOGY UPDATE

SOLID-STATE RELAYS

Packaging options include 6-pin DIPs and surface-mount gull-wing housings.

Shrinking innards

Surface-mount-technology assembly let Grayhill Inc rate its Mini Puck SSR at 25 A even though the unit is about half as high as a standard hockey-puck package. The size reduction has no effect on the device's operating life or efficiency ratings. In fact, the design lends itself to better thermal management in the power-switching and in-put-control sections of the relay. The unit has a mounting footprint identical to that of a standard hockey-puck package, so you can interchange the two units with no problems.
The Mini Puck relay's 250A surge-current rating and 0.4 min power-factor circuit design lets it easily switch motor and inductive loads. Output-circuit characteristics include transient protection, a 400 or 600 V blocking-voltage rating, and a $\mathrm{dV} / \mathrm{dt}$ of $3000 \mathrm{~V} / \mu \mathrm{sec}$. Low

Offering a 50% volume savings when compared with standard hockey-puck packages, Grayhill's Mini Puck relays are rated for 25A switching. The relays feature transient protection and a 250 A surge-current rating, and can readily switch motor and inductive loads.
voltage-offset characteristics minimize line-interference problems. The Mini Puck relays are optically isolated and logic compatible and require no additional driver circuitry.

Using surface-mount components lets Potter \& Brumfield house its OACM-UJ solid-state relays in a pc-board-mountable module that measures $0.37 \times 1.7 \times 1 \mathrm{in}$.-somewhat small for a 6 A device. The relays
are UL recognized and CSA certified and meet VDE requirements.
The OACM-UJ relays incorporate a dV/dt snubber network across ${ }^{-}$the output. This network protects the relay against false triggering by restricting the rise of most voltage transients within acceptable limits. The relays are available in zero-voltage and ran-dom-turn versions. Both versions

For more information . . .

For more information on the solid-state relays discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

AT\&T Microelectronics

Dept 52AL040420
555 Union St
Allentown, PA 18103
(800) 372-2447

FAX (215) 778-4 106
Circle No. 703

Aromat Corp

629 Central Ave
New Providence, NJ 07974
(908) 464-3550

Circle No. 704
C P Clare Corp
Solid-State Products
8 Corporate PI
107 Audubon Rd
Wakefield, MA 01880
(617) 246-4000

FAX (617) 246-1356
Circle No. 705

Crydom Co
6015 Obispo Ave
long Beach, CA 90805
(213) 865-3536

FAX (213) 865-3318
Circle No. 706
Gordos Inc
Box 824
Rogers, AR 72757
(501) 636-5000

FAX (501) 636-2305
Circle No. 707

VOTE . . .
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 473 Medium Interest 474 Low Interest 475

Experience the advantages of CP Clare Solid State Relays

Telecom/Datacom

- Small 6 \& 8 pin mini-DIP packages
- 2 milliwatt logic-compatible drive power
- Loads up to 400 volts AC/DC and 400 mA
- Life in excess of 15 billion operations
a 3750 Vrms Input/Output isolation
a UL recognized/BSI certified
a Surface mount and Tape/Reel available

Industrial Control

- Ratings from 0.5 to 3 amps, 400 to 600 volts
- Low drive current, 5 mA
- Zero-crossing detection
- Superior noise immunity with compliance to NEMA IC's 2-230 "Showering Arc Test"
- UL, VDE approval
- UL508 "1A Pilot Duty"

CO C2

Solid State Products Division
8 Corporate Place
107 Audubon Road
Wakefield, MA 01880

EDN-TECHNOLOGY UPDATE

Crying for micro interconnects but nobody listening?

SOLID-STATE RELAYS

feature 4000 V rms input-to-output optical isolation.
Teledyne screens its LD SSRs to MIL-R-28750 and packages them in low-profile hermetically sealed cases. The relays feature floating power-FET outputs. This technology lets you connect the load to either output terminal and provides a low on-resistance. The input and output are optically isolated to pro-

A SIP measuring $0.7 \times 1 \times 0.18 \mathrm{in}$. houses the GSAC-01 relay from Gordos Inc. The relay can switch 2 A at 12 to 240 V ac loads and features zero-voltage turn-on and 3750 V ac optical isolation.
tect input logic circuits from output transients.

LD Series relays are available with options such as short-circuit and current-overload protection, which provides complete protection for both the relay and the system within. In addition to providing protection when a short or overload occurs when the relay is on, the circuitry also provides protection should the relay be switched into a short.

An output status line is another option. The line indicates the status of the output switch and is optically isolated from the load. Status indication is independent of the relay control circuitry. The status line provides a logic low when the relay output is off and load voltage is present, and a logic high when the relay output is on.

Designers of industrial lighting, heating, motor control, or other high-load-bearing systems will find that the 575D45-12 relay from Opto 22 delivers all the transient voltage protection they need. The three models can handle power voltages ranging to 277,480 , and 575 V , and all three combine high-current capacity (45A) and high-voltage (2000 V) transient protection in a single package.

The extended protection the 575D45-12 relay provides lets designers maintain an adequate margin of operational safety while eliminating the need for additional external protective components. The transient-proof relay can actually help designers lower overall end-product costs.

The relay is TTL compatible. It features 4000 V optical input-tooutput isolation, zero-voltage turnon, built-in snubber circuitry, and a rugged encapsulated housing that has a die-cast mounting base. इक्य

Article Interest Quotient (Circle One)
High 473 Medium 474 Low 475

ASK EDN

Have you been stumped by a design problem? Got too many bugs in your software? Can't interpret a spec sheet? Ask EDN.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.
Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCl: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

All the benefits of a laser printer

At last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large C-size drawings. It's called ProTracer - a monochrome ink jet printer/plotter designed for the personal use of PC CAD professionals. MEDIA FLEXIBLITY

ProTracer is a desktop printer/plotter that lets you produce A, B, as well as large C -size output. It prints sharp, precise lines on a variety of media including plain and bond paper, plotter paper, and vellum.

SPEED

ProTracer is fast and quiet because it uses the latest inkjet technology and an Intel i960 processor. Just compare it to any other large format plotter
and you'll see. A complex C-size drawing often takes over half an hour on a pen plotter, while ProTracer completes the same drawing in only five minutes!
HIGH QUALITY OUTPUT
ProTracer achieves its high quality output by utilizing a 64 nozzle printhead to deliver crisp lines and bold, high contrast blacks. Its 360 dpi resolution assures sharp lines needed for everything from the most complex engineering drawings to sophisticated text and graphics used in letters and reports.

VERSATLIE AND EXPANDABLE

Unlike other large format devices, ProTracer isn't limited to plotting. Instead, it can produce high quality finished output for a variety of

[^4]
Ona much larger scale.

C size

FIRST RATE

 CUSTOMER SERVICEAt Pacific Data Products, we're well known for our devotion to customer service. We offer a 60-day money back guarantee of satisfaction, one year and
 optional extended warranties, and free lifetime technical support. Should you require a replacement unit while under warranty, one will be rushed to you the next day to minimize your downtime.

If you'd like to expand your personal printing and plotting capabilities, call Pacific Data Products at (619) 597-4614, Fax (619) 552-0889.

PACIFIC DATA
 P R O D U C T S

EDN CARAVAN ELECTRONIC SHOW TOURS
The Electronic Trade Show on Wheels

DATE	TIME	LOCATION
3/16 Monday	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$	BOEING HUNTSVILLE 499 Boeing Blvd., Huntsville, AL
3/16 Monday	$\begin{aligned} & \text { 12:30-2:30 } \\ & \text { PM } \end{aligned}$	INTERGRAPH CORPORATION Intergraph Way, Huntsville, AL
3/17 Tuesday	$\begin{aligned} & \text { 8:30-10:00 } \\ & \text { AM } \end{aligned}$	ACUSTAR INC. 100 Electronics Blvd., Huntsville, AL
3/17 Tuesday	$\begin{aligned} & 11: 00-12: 30 \\ & \text { AM-PM } \end{aligned}$	AVEX ELECTRONICS 4807 Bradford Drive, Huntsville, AL
3/17 Tuesday	$\begin{aligned} & 1: 30-3: 30 \\ & \text { PM } \end{aligned}$	TELEDYNE BROWN ENGINEERING 5021 Bradford Blvd., Huntsville, AL
$\begin{aligned} & 3 / 18 \\ & \text { Wednesd } \end{aligned}$	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { yAM } \end{aligned}$	SCI TECHNOLOGY (Plant 3 \& 13) 13000 So. Memorial Parkway, Huntsville, AL
$\begin{aligned} & 3 / 18 \\ & \text { Wednesd } \end{aligned}$	$\begin{aligned} & \text { 12:30-2:30 } \\ & \text { y PM } \end{aligned}$	SCI TECHNOLOGY (Plant 1) 8600 S. Memorial Parkway, Huntsville, AL
$\begin{aligned} & \text { 3/19 } \\ & \text { Thursday } \end{aligned}$	$\begin{aligned} & \text { 1:00-3:00 } \\ & \text { PM } \end{aligned}$	BNR/NORTHERN TELECOM 705 Westech Drive, Norcross, GA
$\begin{aligned} & 3 / 20 \\ & \text { Friday } \end{aligned}$	$\begin{aligned} & 9: 00-10: 00 \\ & \text { AM } \end{aligned}$	OKI TELECOM GROUP 437 Old Peachtree Road, Suwanee, GA
$\begin{aligned} & 3 / 20 \\ & \text { Friday } \end{aligned}$	$\begin{aligned} & \text { 12:30-2:00 } \\ & \text { PM } \end{aligned}$	RELIANCE ELECTRIC Collins Industrial Blvd., Athens, GA
$3 / 23$ Monday	$\begin{aligned} & \text { 9:00-10:30 } \\ & \text { AM } \end{aligned}$	NCR CORPORATION 7240 Moorefield Highway, Liberty, SC
$3 / 23$ Monday	$\begin{aligned} & 1: 00-3: 30 \\ & \text { PM } \end{aligned}$	NCR CORPORATION 3325 W. Platt Springs Rd., W. Columbia, SC
$3 / 25$ Wednesd	$\begin{aligned} & 8: 30-11: 00 \\ & \text { yAM } \end{aligned}$	AT\&T PARADYNE CORPORATION 8545 126th Avenue N., Largo, FL
$\begin{aligned} & 3 / 25 \\ & \text { Wednesd } \end{aligned}$	$\begin{aligned} & \text { 1:00-3:00 } \\ & \text { y PM } \end{aligned}$	GROUP TECHNOLOGIES CORP. 10901 Malcolm McKinley Dr., Tampa, FL
$\begin{aligned} & 3 / 26 \\ & \text { Thursday } \end{aligned}$	$\begin{aligned} & \text { 9:30-12:00 } \\ & \text { AM } \end{aligned}$	HONEYWELL, INC., Avionics 13350 US Highway 19 So., Clearwater, FL
$\begin{aligned} & 3 / 26 \\ & \text { Thursday } \end{aligned}$	$\begin{aligned} & \text { 1:00-3:00 } \\ & \text { PM } \end{aligned}$	SMITHS INDUSTRIES, Aero. \& Defense 14180 Roosevelt Blvd., Clearwater, FL
$\begin{aligned} & 3 / 27 \\ & \text { Friday } \end{aligned}$	$\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$	E-SYSTEMS, INC., ECI Div. 1501 72nd Street N., St. Petersburg, FL
$\begin{aligned} & 3 / 27 \\ & \text { Friday } \end{aligned}$	$\begin{aligned} & \text { 1:00-2:30 } \\ & \text { PM } \end{aligned}$	LORAL DATA SYSTEMS 6000 Fruitville Road, Sarasota, FL
3/30 Monday	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$	RACAL-DATACOM, INC. 1601 N. Harrison Parkway, Sunrise, FL
3/30	12:30-3:00	MOTOROLA INC.
Monday	PM	8000 W. Sunrise Blvd., Plantation, FL
$3 / 31$ Tuesday	$\begin{aligned} & 8: 30-10: 30 \\ & \text { AM } \end{aligned}$	BENDIX/KING, Air Transport Avionics 2100 N.W. 62nd Street, Fort Lauderdale, FL
$3 / 31$ Tuesday	$\begin{aligned} & 12: 30-3: 00 \\ & \text { PM } \end{aligned}$	IBM CORPORATION 1000 N.W. 51st Street, Boca Raton, FL
4/1 Wednesda	$\begin{aligned} & \text { 8:30-10:00 } \\ & \text { y AM } \end{aligned}$	ROCKWELL INTL', Collins Aviation 600 John Rodes Blvd., Melbourne, FL
4/1	11:00-1:00	HARRIS CORPORATION, ESD

DATE	time	LOCATION
Wednesday	AM-PM	Palm Bay Road, Palm Bay, FL
4/1 Wednesda	$\begin{aligned} & 2: 30-4: 00 \\ & \text { yPM } \end{aligned}$	GRUMMAN MELBOURNE SYSTEMS 2000 NASA Blvd., Melbourne, FL
4/2 Thursday	$\begin{aligned} & \text { 9:00-12:00 } \\ & \text { AM } \end{aligned}$	MARTIN MARIETTA CORP., ESD 12506 Lake Underhill Road, Orlando, FL
4/2 Thursday	$\begin{aligned} & \text { 1:30-3:30 } \\ & \text { PM } \end{aligned}$	MARTIN MARIETTA CORP., MSD 5600 Sand Lake Road, Orlando, FL
4/3 Friday	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$	SIEMENS STROMBERG-CARLSON 400 Rinehart Road, Lake Mary, FL
4/3 Friday	$\begin{aligned} & \text { 1:00-3:00 } \\ & \text { PM } \end{aligned}$	GENERAL ELECTRIC, Simulation \& Contr 1800 Volusia Avenue, Daytona Beach, FL
4/6 Monday	$\begin{aligned} & \text { 9:00-11:30 } \\ & \text { AM } \end{aligned}$	IBM CORPORATION Research Triangle Park, RTP, NC
4/6 Monday	$\begin{aligned} & \text { 12:30-2:00 } \\ & \text { PM } \end{aligned}$	NORTHERN TELECOM, INC./BNR 4001 E. Chapel Nelson Hwy., RTP, NC
4/6 Monday	$\begin{aligned} & \text { 2:45-4:15 } \\ & \text { PM } \end{aligned}$	NORTHERN TELECOM, INC. 400 Perimeter Park Dr., Morrisville, NC
$\begin{aligned} & \text { 4/7 } \\ & \text { Tuesday } \end{aligned}$	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$	ALCATEL NETWORK SYSTEMS 2912 Wake Forest Road, Raleigh, NC
$\begin{aligned} & \text { 4/7 } \\ & \text { Tuesday } \end{aligned}$	$\begin{aligned} & \text { 1:30-4:00 } \\ & \text { PM } \end{aligned}$	AT\&T TECHNOLOGIES, Guilford Center Mount Hope Church Rd., McLeansville, NC
4/8 Wednesday	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { 9AM } \end{aligned}$	GENERAL ELECTRIC COMPANY 1501 Roanoke Blvd., Salem, VA
4/8 Wednesday	$\begin{aligned} & 1: 30-3: 30 \\ & \text { yPM } \end{aligned}$	ERICSSON/GE Mobile Communications Mountain View Road, Lynchburg, VA
4/9 Thursday	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$	SPERRY MARINE, INC. Route 29 North, Charlottesville, VA
4/9 Thursday	$\begin{aligned} & \text { 12:30-2:30 } \\ & \text { PM } \end{aligned}$	GE FANUC AUTOMATION NA, INC. US 29 \& Rt 606, Charlottesville, VA
4/10 Friday	$\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$	E-SYSTEMS, INC., Melpar Div. 7700 Arlington Blvd., Falls Church, VA
4/10 Friday	$\begin{aligned} & 12: 30-2: 30 \\ & \text { PM } \end{aligned}$	E-SYSTEMS, INC., Melpar Div. 11225 Waples Mill Road, Fairfax, VA
4/13 Monday	$\begin{aligned} & \text { 9:00-10:30 } \\ & \text { AM } \end{aligned}$	PULSECOM INC. 2900 Towerview Road, Herndon, VA
4/13 Monday	$\begin{aligned} & 1: 30-3: 30 \\ & \text { PM } \end{aligned}$	LITTON SYSTEMS, Amecom Div. 5115 Calvert Road, College Park, MD
4/14 Tuesday	$\begin{aligned} & \text { 9:00-10:30 } \\ & \text { AM } \end{aligned}$	FAIRCHILD COMM. \& ELECTRONICS 20301 Century Blvd., Germantown, MD
4/14 Tuesday	$\begin{aligned} & 11: 30-2: 00 \\ & \text { AM-PM } \end{aligned}$	HUGHES NETWORK SYSTEMS, INC. 11717 Exploration Lane, Germantown, MD
4/15 Wednesday	$\begin{aligned} & \text { 9:00-12:00 } \\ & \text { ayAM } \end{aligned}$	WESTINGHOUSE CORPORATION (BWI) Route 170, Linthicum, MD
4/16 Thursday	$\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$	ALLIED SIGNAL AEROSPACE 1300 E. Joppa Road, Baltimore, MD
$4 / 16$ Thursday	$\begin{aligned} & \text { 12:30-2:30 } \\ & \text { PM } \end{aligned}$	AAI CORPORATION 110 Industry Lane, Cockysville, MD

NICE and simple math exposes the myth of ST-NIC.
 It doesn't take a mathematical wizard to see the superiority
 controller, it offers substantially greater system performance

of the NICE ${ }^{\circ}$ Ethernet solution from the Advanced Products Division of Fujitsu Microelectronics. We think the numbers speak for themselves.

Our NICE solution, for example, requires far fewer ICs than ST-NIC's's so-called single-chip solution7 vs . 18 . And that means fewer passive components as well. Making Ethernet LAN board design easier. Faster. And more cost effective than ever before.

Then, add on another factor - that NICE products are competitively priced - and systems designers clearly have a proven formula.

What's more, the fewer the parts, the smaller the size-and the lower the power consumption. All of paramount importance for motherboard applications.

Plus, because NICE is a highly automated

Delivering the Creative Advantage.
for user applications - by freeing CPU and memory bandwidth. Fact is, benchmarks and customers report up to 33% higher performance over competitors' controllers. Quite an edifying statistic, don't you think? And, unlike other available solutions, NICE has been designed to fully comply with Ethernet standards-ensuring international interoperability. And that's no myth.
For more enlightening facts, here's one more NICE number: 1-800-866-8608. Or call your local sales office for our NICE Designer Kits. And discover the world's most advanced, highlyintegrated, cost-effective Ethernet solutionthe NICE family of high-performance products from Fujitsu. Because all it takes to expose a little myth is a little math.

[^5]
4-Mbit DRAM integrates SRAM cache for 10 -nsec cache-hit access

The greatest drawback to cachememory subsystems is their miss penalty-that is, the time required to fill the cache with new data from main memory. The M5M44409TP cached dynamic RAM (CDRAM) reduces that penalty to a single 70 nsec access by integrating a $4 \mathrm{k} \times 4$ bit static-RAM (SRAM) cache with a $1 \mathrm{M} \times 4$-bit dynamic RAM (DRAM).

The SRAM has an access and cycle time of 10 nsec. The DRAM array has a $70-$ nsec access with a 140 nsec cycle time. The two memory blocks connect internally through a 64 -bit bus, allowing the cache to receive a block of 16 lines with a single DRAM access. The device, therefore, can return data in 10 nsec during a cache hit and 70 nsec during a cache miss.

The internal data path has two 64-bit data-transfer buffers that let an external controller device use a fast copy-back operation to maintain coherency between the two memory blocks. When a cache miss occurs, the CDRAM transfers the cached block being replaced into one data buffer while the new data from the DRAM moves into the second buffer, then into the cache.

If the data in the first buffer is "dirty," meaning it was altered while in the cache, the external controller can then have the CDRAM copy the new data back into the DRAM array. Because the CDRAM has separate address buses for the two memory blocks, this copy-back operation can occur concurrently with subsequent cache accesses, hiding most of the DRAM's cycle times. In the worst case of back-toback cache misses, the cycle time would be 280 nsec .
The CDRAM is a synchronous
device with several modes of operation. It uses registered input lines, but, by programming various command registers, you can select transparent, latched, or registered output operation at the device's full $100-\mathrm{MHz}$ clock speed. You can also select a transparent-output, low-power mode that lets you use an intermittent clock to control the device.

Write operations to the device can also take on several forms. The data input and output lines are separate, allowing you to begin a write cycle while the read data is still available. Alternatively, you can use the separate data lines to perform a masked write to the device.

The CDRAM comes in a 44 -pin

TSOP (thin small-outline package) with an $0.8-\mathrm{mm}$ lead pitch. Samples will be available in the second quarter; production is scheduled for the third quarter. Three speed grades are available with cache access times of 10,15 , or 20 nsec . Initial pricing is $\$ 16.20$, $\$ 15.50$, and $\$ 15$, respectively (100).

- Richard A Quinnell

Mistubishi Electronics America Inc, 1050 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 7305900. FAX (408) 720-0429.

Circle No. 731

[^6]

Series AV

- 56 Standard Models

- 100VDC to 1000 VDC Output
- Ultra-miniature Size and Weight (4 grams) 0.1 Cubic Inch Volume
- 4 Standard Input Voltages 5, 12, 24 and 28 Volts DC
- No Heat Sink or Electrical Derating Required
- Standard Operating Temp. $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Ambient
- Input/Output Isolation

Options Available for

 Military Applications- Optional Operating Temp. $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ambient
- Screening available per MIL-STD-883
- Stabilization Bake
- Temperature Cycle
- Hi-Temp, Full Power Burn-In, 160 Hours $-125^{\circ} \mathrm{C}$ typical case temp.

Delivery-stock to one week
 or send direct for FREE PICO Catalog Electronics, Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514

FAX 914-699-5565

Op amp delivers 100V and 30A at 100V/ $\mu \mathrm{sec}$

High-power electromechanical and audio applications can literally get a boost from the PA05 power op amp. The 250 W device operates with power-supply voltages to 100 V and can source or sink as much as 30A. Further, the amp has a $100 \mathrm{~V} /$ $\mu \mathrm{sec}$ slew rate and exhibits less than 0.02% THD operating at 200 W over a $30-\mathrm{Hz}$ to $30-\mathrm{kHz}$ frequency range. The device has a $360-\mathrm{kHz}$ power bandwidth and at dc the amp exhibits an open-loop gain of at least 94 dB . The device costs $\$ 189$ (100).

Several features let this amplifier safely operate at high power levels. Because the amp is designed for very high power applications, it offers a 4 -wire current-sensing technique to limit the output current. Two current-sensing pins on the amp connect to a current-sensing resistor that you place in series with the load circuit. Because the amp's output and ground pins are not used as the sense inputs, this approach eliminates sensing errors that can be created by the parasitic
series resistances of sockets and solder joints at high-output power levels.
The amp also provides a voltageboost feature that lets you run the lower-powered input stages from a higher power supply voltage. An additional 5 V of supply voltage for the input stage lets the amp's output swing closer to the output stage's supply rails, to the saturation point of the output transistors. You can also run the amp from one set of supply voltages by busing the input- and output-stage power pins together.
Thermal-limiting circuitry in the amp shuts down the output stage when junction temperatures exceed $175^{\circ} \mathrm{C}$. In addition, you can use an external signal to disable the op amp's output stage by shunting the device's shutdown pin to ground.

- Steven H Leibson

Apex Microtechnology Corp, 5980 N Shannon Rd, Tucson, AZ 85741. Phone (602) 742-8600. FAX (602) 888-3329. TLX 170631. Gircle No. 730

Special high-power features such as 4 -pin current sensing and thermal shutdown let this op amp source or sink 30A output currents with 100V swings.

Quick_which company is the disc drive performance leader?

Surprised?

Used to thinking of Seagate as an easy-availability, great-reliability, best-range-of-products-around manufacturer-and that's all?
Well, we've got news for you ... lots of news. From tiny 2.5 " dynamos to multi-gigabyte $8^{\prime \prime}$ powerhouses, Seagate is consistently setting new industry standards for command overhead, seek time,

This 2 head parallel Sabre-7 (ST83050K) gives you 3 gigabytes of storage in an $8^{\prime \prime}$ form factor, with a transfer rate of 9.34 megabytes per second and a 12 millisecond average seek time.
rotational latency and data transfer rate. In other words, for performance.

Elite 1 offers gigabyte-plus
capacity ($\mathbf{1 3 5 2}$ megabytes) at $\mathbf{5 , 4 0 0}$ RPM, for an average latency of only 5.56 milliseconds.

And we're setting those standards, not just in the lab, but in ready-toship products. Products that are driving systems like yours. How? With physical advances adapted from the frontiers of magnetics, dynamics and fluid mechanics.

With recording advances that put more data into less space in less time (heard of our Zone Bit Recording process? That's only the beginning). With digital and analog electronics that have shrunk size and power requirements tenfold-today's smallest thin film recording heads are smaller than the period at the end of this sen-tence-while increasing intelligence.

And with a company-wide commitment to expanding the limits of disc drive technology.

The ST3283 family of $\mathbf{1 "}^{\prime \prime}$ high, $3.5^{\prime \prime}$ drives holds more than 245 formatted megabytes, with a 4,500 RPM spindle which reduces latency to $\mathbf{6 . 6 7}$ milliseconds.

We keep on pushing for new levels of performance because, quite frankly, you need them. Your boss, your customers and your competitive environment are demanding faster, less expensive processing than ever before. And when you take a few milliseconds' performance advantage and multiply it by thousands of transactions a day... well, the results translate into some figures that might surprise you.

In fact, depending on the amount and nature of processing you do, high-performance drives like these can save you enough to pay back your disc drive investment within

weeks-or days. For help in selecting the drive you need, or for more information about any Seagate drive, call Seagate at 408-438-6550 or contact your authorized Seagate distributor.

The 3.5", half-height ST11200 family, with up to 1.2 gigabytes of storage, boasts a 256 kilobyte multi-segmented cache buffer and an average seek time of 10.5 milliseconds.

And then, when you find yourself choosing a Seagate for your next high-performance system . . . well, don't be surprised.

Picture your flat panel display using Cirrus Logic controller chips. They actually add colors to your display capabilities for more realistic shading.

The same panel looks flat without our enhanced VGA capabilities. And it will lose face faster without our optimized power management system.

How To Avoid Losing Face On Your Color LCD Display.

Face it. The first thing everybody notices about your newest laptop is the display quality. Is it bright? Are the images clear and well modeled? Are the colors vivid?

With Cirrus Logic LCD VGA controllers, your answer is yes. Which is why we're the leading supplier of display controller chips in the laptop and notebook market.

For life-like 3-dimensional imaging, Cirrus Logic color LCD controllers offer technology leadership for your color products. With direct support for the latest active-matrix color LCD panels. Our controller chips do more than support your panel's color capabilities - they enhance it with full VGA color support and a fuller color palette. To give you color so good it competes with CRT quality.

Our monochrome solutions give you displays that PC Magazine called "the stars of our VGA color-mapping tests"* with up to 64 shades of gray. And with a lower dot clock rate, your power consumption
is lower than other solutions for longer battery operation.

Cirrus Logic LCD controllers are fully compatible with the popular PC video standards and will work with LCD, plasma, or electroluminescent displays.

Simplify your design job. A higher level of integration gives you all this in the smallest form factor available. We also supply software and hardware design notes and full design support. You get the results you want quickly and easily.

Design a more competitive product. One that looks better - and makes you look better. That lasts longer on a battery. Use the display solutions from a proven technology leader in laptop and motherboard VGA: LCD controller chips from Cirrus Logic.
Get the picture. Get more information on LCD controllers. Call 1-800-952-6300, ask for dept. LL24

Cirrus Logic monochrome
LCD controllers will also make everything from realistic scanned images to
business charts look tastier.

Enhanced 8051 delivers secure operation and protects software

Dallas Semiconductor's DS5002FP $\mu \mathrm{C}$ (microcontroller) offers security for a range of applications such as electronic-fund transfer, ATMs (automatic teller machines), secure pay services (cable TV), point-of-sale applications, and electronic locks.
The DS5002FP incorporates the 8 -bit 8051 microcontroller ($\mu \mathrm{C}$) with modifications for secure operation. The architecture supports the public data-encryption-standard (DES) algorithm, holding a 64 -bit encryption key in secure memory. Using the 64 -bit key, the $\mu \mathrm{C}$ encrypts both memory contents and addressing. Thus, an application can use external RAM or ROM and remain protected from exposing system operation to bus monitoring.
The system's other security features include random key generation, a vector RAM area that hides reset and interrupt vectors from tampering, a security lock, and a built-in self-destruct that wipes out memory and internal keys if tampering occurs. In addition, the chip die is protected with a metallic-die

DS5002FP	
Clock 12 MHz	
Instruction cycle 12 clocks	
Memory 128-byte scratchpad,	
48 -byte vector RAM, bootstrap ROM,	
64 -kbyte instruction address space	
	kbyte data address space
Timers two 8 bit, one watchdog	
I/Os 4 ports: 32 pins	
Interrupts 1 external	
Special features power monitor, address/data bus encryptor with 40 -bit encryption key	
Package 80-pin quad flatpack	
	\$18.80 (1000)

layer that prevents microprobing.
To ensure an orderly shutdown, power-monitoring features provide an early warning of power failure. The chip also includes a watchdog timer to detect runaway code or operation timeouts.
A key feature of the DS5002FP is a form of limited memory and address encryption-not full DES encryption, however, which reduces memory-operation speed. Bus activity is scrambled using nonsequential addresses with scrambled
data. The running processor makes dummy fetches to confuse bus monitoring; it pretends to fetch program code from a random address, but the code isn't used. As a result, a code pirate can't trace application execution by using a bus analyzer or dumping an EPROM.
The DS5002FP is a second-generation encryption chip; this version has extended the internal address encryption key from 40 to 64 bits. Also, this chip's memory addressing has been opened to 128 kbytes of data and instruction memory.
The chip also comes in a single in-line memory module (SIMM) called the DS2252(T) Secure Microstik. The module integrates the DS5002FP with as much as 128 kbytes of SRAM, a lithium battery cell, and an optional real-time clock. The SIMM provides nonvolatile system memory with easy reprogrammability. Battery life is more than 10 years.-Ray Weiss
Dallas Semiconductor Corp, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0400. FAX (214) $450-0470$.

Circle No. 732

Security demands more than an EPROM; this chip combines an 8051 with program and data encryption. It uses a random 64-bit key to encrypt data. Program addresses are encrypted and randomized, preventing bus analysis.

Kit simulates 8-bit processor and links to target-board I/0

Simulation has never done well in the 8 -bit microcontroller ($\mu \mathrm{C}$) world. One reason for this failure is the chasm between the simulated processor and board and system hardware. Motorola's 68 HC 05 K Designer's Kit includes an in-circuit simulator that accommodates lowend 8 -bit $\mu \mathrm{Cs}$. With the kit, users can simulate code running in a host PC. At the same time, the code can read and write I/O pins on the target board's $\mu \mathrm{C}$ socket.
The kit includes a circuit board or pod, a cable, and PC-based application development software. The software tools are integrated in a windowed development environment with a common debugger interface. They include a circuit simulator, a source-code debugger, an editor, an assembler, and a communications program to drive a ROM monitor-based $\mu \mathrm{C}$. The pod plugs directly into the host PC's parallel port and has a programmer to burn in 68 HC 05 K code.

Also in the kit are the tools needed to build and debug a

68 HC 05 K application. You can write the code with the editor, assemble it, simulate the code to catch the early bugs, and then run the code in a target under host control.
The in-circuit simulator represents a unique approach to simu-lation-based debugging. It overcomes limitations of software-only simulation by allowing simulated code to interface to the targetboard hardware. Users benefit from a controlled simulation environment because they can update their code without having to burn in new chips or download code. At the same time, users don't have to build software models of the surrounding hardware: They can interface directly to it.
There is, however, a price to pay for simulation: code execution and debugging takes place at simulation, not processor rates. The simulated clock rate of a $20-\mathrm{MHz} 386$ host CPU is roughly 59 kHz ; it is 118 kHz for a $33-\mathrm{MHz} 486$.
Application code executes in the in-circuit simulator on the PC host, which simulates 68 HC 05 K CPU execution. The simulated application code links directly to the target board via the PC's pod at the paral-
lel port. This pod has its own $\mu \mathrm{C}$, a 68 HC 05 J 1 , which interfaces to a 25 -pin cable and header that, in turn, plugs into the target board's 68 HC 05 K socket. The software also runs without a target board.

The simulated code generates application program outputs and passes them through the parallel port to the pod processor. The $20-$ bit packets carry data between the pod and simulator via a serial duplex channel. The pod's $\mu \mathrm{C}$ decodes the packets, setting the appropriate output pins. For inputs, the pod processor monitors target- $\mu \mathrm{C}$ socket-input pins. Changes are picked up, placed in a packet, and shipped to the simulator for processing. Approximately 400 bytes of code are needed in the pod $\mu \mathrm{C}$ to monitor and drive the target-board I/O pins.
P\&E Microcomputer Systems Inc (Woburn, MA) designed the Developer's Kit for Motorola. It will be available in April from Motorola distributors for approximately $\$ 50$.
-Ray Weiss
Motorola Microprocessor Products Group, 6501 William Cannon Dr, W Austin, TX 78735. Phone (512) 440-2000.

Circle No. 733

This developer's kit contains the tools for $68 \mathrm{HCO5K}$ code development and debugging. A hardware pod on the PC 's parallel port handles chip programming and emulates the target's $\mathrm{I} / 0$ pins for in-circuit simulation.

WHO NEEDS THE SIGNAL PROCESSING WORKSYSTEM?

Anyone involved in DSP and communications design can benefit from the Signal Processing WorkSystem. Because SPW"' is the only complete, integrated CAE software tool for signal processing design, simulation, analysis and implementation.

Satellite communications. Modems. Mobile radios. Cellular phones. Radar. Sonar. Speech encoding. Voice processing. Image processing. Digital audio. Multimedia. Automotive electronics. Robotics. Neural nets and pattern recognition. Data compression. HDTV. Biomedical instrumentation. All these and much more can be designed using SPW on industry-standard platforms from Sun, DEC and HP/Apollo.

That's why over 200 of the world's leading telecommunications, aerospace and electronics companies around the world now use SPW.

With SPW you first create a high-level, hierarchical design using its extensive libraries of DSP and communications function blocks, as well as your own custom blocks. SPW then automatically converts your design into an error-free simulation program that can accept real-world signals and parameters for accurate design analysis.

SPW also provides several optional paths to implementation, including bit-accurate fixed-point simulation, VHDL generation, logic synthesis and other ASIC/PCB support. A code generation system produces generic-C for fast prototyping on any DSP platform, links SPW to DSP chips from AT\&T, Motorola and TI, and supports boards from leading vendors.

To preview the Signal Processing WorkSystem, call (415) 574-5800 for a free video demonstration tape. In fifteen minutes, you'll see how SPW can save hundreds of hours and thousands of dollars in DSP design.

C. $\mathrm{MD} / \mathrm{SCO}^{\circ}$
 SYSTEMS,INC

EDN-PROCESSOR UPDATE

Pipelined DSP combines 16-bit data with 32-bit instructions

Sixteen-bit DSP processors are a source of cheap, embedded MIPS. DSP CPUs support high throughput, math-intensive processing via built-in mechanisms for table walking, and multiply/accumulate operations. NEC's 16 -bit DSP, the μ PD77016 SPX, runs at an internal 33 MHz , delivering $30-$ nsec pipelined execution for highthroughput processing. SPX, according to NEC engineers, does a complex 1024×1024 FFT in 2.1 msec .

This DSP processor has a relatively high clock rate and a comparatively clean design. However, it has the disadvantage of new processors: no software base, including a C compiler.

Like most DSP processors, the

μ PD77016 SPX

Clock 20, 33 MHz internal ($2 \times$ external) Instruction cycle . . 50, 35 nsec (pipelined) Address space . . $64 \mathrm{k} \times 32$-bit program $128 \mathrm{k} \times 16$-bit data On-chip memory ROM and RAM versions $8 \mathrm{k} \times 32$-bit ROM (instruction) or $1.5 \mathrm{k} \times 32$-bit RAM (plus a $0.25 \mathrm{k} \times 32$-bit boot ROM) two $2 \mathrm{k} \times 16$-bit data RAM (X, Y) two $2 \mathrm{k} \times 16$-bit data ROM (X, Y) Arithmetic . . 40-bit ALU, barrel shifter, multiply/divide (MAC) units
Serial . . 2 serial ports to 16 Mbytes $/ \mathrm{sec}$ Miscellaneous . . 8 I/O pins, host CPU interface, JTAG support, including ICE functions Package . . . 120-pin RAM or $160-$ pin ROM quad flatpack
Price $\$ 45$ (100); sample qty in July
(RAM version)
Comments. Two versions: a RAM version with off-chip memory access, and a ROM version with no off-chip access (end of 1992). Will also be available as an ASIC core.

SPX has a true Harvard architecture, separating data and instruction memory. It combines 16 -bit data paths for mid- to low-end DSP processing with 32 -bit instructions for fast processing (fixed instruction length, three operand operations). Memory interfaces include one for instructions and one for data. The SPX supports two 64 k -word data spaces (X, Y memories) and a 64 k word (double word) instruction space.

This DSP features a set of eight general-purpose registers, improving earlier accumulator-based designs. The processor supports 40-bit operands internally. The adder, multiplier, registers, shifter, and internal data paths are all 40 bits wide. These 40 bits comprise lower and higher 16 -bit words and an extended byte. The DSP chip supports 16 -, 32 -, and 40 -bit extended data types. For the 40 -bit word, the sign

This 16 -bit DSP, the SPX, supports complex processing and has a 32 -bit instruction with as many as three operands. The chip's architecture contains dual addressing engines, loops, and a 40 -bit multiply/accumulate unit.

The winning edge for any game in town.

THISISAMPTODAY.

Whether you're looking for .050 " center MCA styles, dual-function ISA/EISA types, or . $100^{\prime \prime}$ or . 125 " center versions, you can be sure you get the edge connector you need, when you need it.
AMP Standard Edge Connectors come in all the right styles and sizes, with all the engineering advantages you'd expect from the people who established edge connectors as an industry standard. And the immediate availability and in-depth application support you need, from the largest supplier in the world.
Whatever you're looking for in edge connectors, compare selection, value, and delivery with the industry standard-the AMP Standard Edge lines and come up a winner. For information on AMP Standard Edge II (. $100^{\prime \prime}$ and $.125^{\prime \prime}$), Standard Edge . 050 , or Standard Edge EISA connectors, call our Product Information Center at 1-800-522-6752 (fax 717-986-7575). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.
bit is fixed between bits 30 and 31 .
Instructions are pipelined, with three major stages: Instruction Fetch, Decode, and Execute. Running from internal memories, instruction execution appears to be one internal clock cycle- 30 nsec at 33 MHz -and instruction latency is three cycles or 90 nsec.

The DSP chip's execution unit has three functional units: a 40-bit multiply/accumulator, a 40-bit adder, and a 40-bit barrel shifter. In addition, the chip has two local memory units, X and Y. These units each include a 4 k -word data memory with an address-calculation unit. Both X and Y memories can be accessed concurrently, with the results written into the chip's register bank for use in the next cycle.

You can define as many as three operations for each instruction. For example, you can set two registers and use the resultant values to set a third register in a multiply/accumulate (MAC) operation. This enables you to pick up two values from different tables and use them to build a running total in the next MAC cycle.

Unlike general purpose CPUs, the SPX has special registers set aside for addressing the X and Y memories. The chip has four sets of 16 -bit data and index registers for the X and Y addressing units. Addressing mechanisms include bit reversal on address and a module counter for circular buffering addressing. The two X and Y memory address calculations can be done concurrently for fast DSP operations.

Like many DSP chips, the SPX incorporates a built-in loop controller, handling as many as four concurrent loops. Each loop spans to 255 instructions, repeating as many as 32,767 times. The SPX loop controller has a stack that is four elements deep; each stack element has three loop registers: a loop start address, end address, and counter. In
addition, the processor supports an internal program counter stack-16 items deep-for fast task switching.

To ease coding, the assembly language has a C-like structure and syntax. A repeat instruction enables you to repeat a single complex instruction. A loop instruction takes advantage of the built-in loop control.

The SPX functions as a standalone processor or a coprocessor. NEC has extended its host CPU interface from earlier SPX 16-bit DSPs. The SPX has a duplex host interface with a defined handshake
protocol. The chip has eight I/O lines that serve as a byte interface to the host or general use. The SPX also features built-in DMA support.

The SPX chips come in two speed grades, running with 20 - and $33-$ MHz internal clocks. The first SPX version is RAM based. A ROMbased version will appear by the end of the year; NEC is also developing a 3 V ROM version.

Ray Weiss
NEC Electronics Inc, 401 Ellis St, Mountain View, CA 94039. Phone (415) 960-6000. FAX (800) 729-9288.

Circle No. 734

50-MHz DSP chip draws $10 \mu \mathrm{~A}$ in power-down mode

Sixteen-bit, fixed-point DSP processors offer a high per-formance-to-price ratio for mathintensive, embedded applications. The TI TMS320C28's $\$ 16(10,000)$ price tag, however, complements a $100-$ nsec instruction-cycle time and 8 kbytes of on-chip program memory.

The TMS320C28 low-power DSP processor has an internal powerdown mode with a backup for the 534 bytes of internal RAM. In power-down mode, supply current drops to 10μ a typical, compared with 50 mA for the TMS320C25.

Power-down mode adds three pins to the processor's I/O: a nonmaskable interrupt pin ($\overline{\mathrm{PDI}})$ to initiate the power-down sequence; a power-down interrupt acknowledge ($\overline{\text { PDACK }}$); and a power-down reset ($\overline{\mathrm{WAKEUP}}$). A memory-mapped register, PDC, is added for power control at address 0006_{HEX}. In addition, two interrupt vector entries are added for the $\overline{\text { PDI }}$ and $\overline{\text { WAKEUP }}$ interrupts.

The TMS320C25/28 second-generation DSP processor has a specialized architecture with distinct data-
and program-processing areas. The data portion has a built-in 32-bit multiply/accumulate (MAC) unit fed from an internal data bus. The processor has two data RAM blocks (288×16 bits and 256×16 bits) and a set of eight auxiliary data registers to supplement the 32 -bit accumulator. The data segment handles a multiply/accumulate in a single cycle.
TI is upgrading other members of its TMS320 family DSP processors. Among the new chips is the TMS320LC16, a 3.3 V version of the TMS320C16 DSP controller. Chip

Tap AMP.

For connectors and help...from custom products to system design. This is AMP today!

Product Information by FAX-24 Hours a Day

Need product specs? Drawings? Instruction sheets? Get all these and more, any time. Call our Product Information Center (1-800-522-6752) and choose the AMP FAX option at the voice prompt. All you need is a part or document number - the system will guide you from there, and fax the information you need in minutes!

Backplanes and System Packaging

AMP Packaging Systems offers state-of-the-art capabilities, with expertise in advanced, high-speed systems design. We build custom and semi-custom backplanes, card cages, and enclosure systems - with complete design, characterization, and fabrication as needed, to your specifications. Call 512-244-5100 for details!

Inch or Metric?

Many of our most popular product families are available in both inch and hard metric sizes. If you're at all concerned with global marketing these days (and who isn't?), be sure to ask your AMP Sales Engineer for details. Or give us a call at 1-800-522-6752

EADS Connector Library

Meet our exciting models! We have connector drawings and engineering data (AMPTIFF files), plus 2D footprint/ panel templates and 3D CAD models (AMPIGES files) on IS0 9660-compatible CD-ROMs. Our Electronic Application Design System is a real time-saver. Call 1-800-522-6752. If you use SPICE, call for licensing details:
Dick Granitz, 717-986-7119.

Application Tooling...and Our Support Hotline

The key to productivity? Connector and tooling designed together, to integrate into production. The key to continued productivity? Total support: installation and setup, training, and service. Your key to both? For AMP customers, the AMP Field Engineering Service Hotline, 1-800-722-1111. Help at your fingertips!

Design Analysis

High-speed logic requires a new approach to interconnect design, and AMP Interconnect Systems delivers it. We provide a total systems solution, including analysis of your design, complete interconnect simulation and board assembly, card cage design and fabrication, power distribution/thermal analysis, and system fabrication. Fast time-to-market for fast silicon! Ben Bennett, 717-986-7824.

Precision Cable Assemblies

Controlled-impedance cable and cable assemblies are required for today's highspeed hardware. We know how to engineer solutions to high-performance applications, and put that knowledge to work for you. Check our hybrid cables for applications like Smart House, and our flat copper power bus assemblies, too! Jack 0'Brien, 717-780-7349.

EXCELL-PAK Program

We're shipping in new package sizes and new styles - smaller lots, more unit packaging, anti-static materials, and ergonomic design. We've also eliminated the use of CFCs and loose fill, and we're putting standard recycling codes - and bar code logos on all packaging. Ask for our brochure!

A.C.E.S.

Looking for value-added interconnect systems? AMP Cooperative Electronics Subcontractors (A.C.E.S.) are fully qualified to meet your needs. Trained partners offer high-tech assemblies, backplane systems, and more. They're part of a premiere network of local, regional, and national AMP distributors. For the distributor near you, call 1-800-522-6752.
supply voltage can range from 3.0 to 3.6 V , with 3.3 V typical. The ex-ternal-clock rate ranges from 4.0 to 16.1 MHz. The TMS320C16 has 256 words of on-chip RAM, 8k words of program ROM (64 k words offchip address space), and a 114-nsec instruction-cycle time. The chip costs $\$ 7.60(10,000)$.
The TMS320C53 is an upgrade to the TMS320C5x series of 16bit, fixed-point DSPs with 35and $50-\mathrm{nsec}$ instruction-cycle times. The TMS320C53 expands on-chip program ROM to 16 k words (32 kbytes), from 8 k words for the TMS320C51. The TMS320C53 has 4 k words of on-chip RAM, organized as 1056 words of dual-access RAM and 3072 words of singleaccess RAM. The single-access RAM can be configured as program or data. The chip costs $\$ 54$ $(10,000)$.-Ray Weiss
Texas Instruments Inc, Applica-tion-Specific Products Div, Box 1443, Houston, TX 77001. Phone (713) 274-2340. Circle No. 735

8051 derivative kicks clock rate to 22 MHz

Microcontroller ($\mu \mathrm{C}$) applications such as 1.8 -in. harddisk controllers, tape controllers, and PCMCIA (PC Memory Card Interface Association)-based modems can benefit from the 83 C 154 , a 16 kbyte version of the 8051 , crammed into a 1.1-mm-high thin quad flatpack (TQFP).
The TQFP's height, including lead space, is $1.1 \mathrm{~mm} \pm 0.2 \mathrm{~mm}$. In contrast, a standard plastic leaded chip carrier's (PLCC) height is 4.35 mm , and a quad flatpack's height is $1.5 \mathrm{~mm} \pm 0.25 \mathrm{~mm}$. The TQFP provides an extremely low profile, suiting height-critical applications. Lead pitch is 0.8 mm with
$0.35-\mathrm{mm}$ leads. For example, TQFP chips enable board circuits to meet the stringent PCMCIA standards for plug-in memory and peripheral cards for PCs.

The 83C154 is an enhanced version of the $8051 \mu \mathrm{C}$ family. ROM based, it has 16 kbytes of program ROM and 256 bytes of data RAM. And, similar to the 80951, it supports a dual 64 -kbyte address space for program and data memory.

The $\mu \mathrm{C}$ is a static design and has power-management functions with a power-down maximum current of $50 \mu \mathrm{~A}$. At 12 MHz , the 83 C 154 is approximately a 1-MIPS processor, with a minimum instruction cycle of $1 \mu \mathrm{sec}$.-Ray Weiss

Oki Semiconductor, 785 N Mary Ave, Sunnyvale, CA 94086. Phone (408) 720-1900. FAX (408) 720-
1918.

Circle No. 736

ICE includes source-level debugger

ICEs (in-circuit emulators) remain a key tool for engineers designing $\mu \mathrm{P}$-based systems. Huntsville Microsystems just added a $68040-\mu \mathrm{P}$ model to its HMI-200 series of emulators. The ICE provides
real-time emulation for 68040 , 68 EC 040 , and $68 \mathrm{LC} 040 \mu \mathrm{Ps}$ operating at speeds as fast as 25 MHz with zero wait states. Furthermore, the ICE includes the company's Sourcegate high-level-language (HLL) debugger.

The emulator offers four break and trigger points that you can individually configure to respond to address, data, or status bit patterns, or to events monitored by 16 external trigger inputs. You can also set the ICE to trigger based on the occurrence of sequences of trigger events. Two $4 \mathrm{k} \times 104$-bit trace buffers store captured data including the 16 external trigger lines.

Two RS-232C 115.2-kbaud interfaces provide communications between the host computer and the ICE. And a parallel port can provide even faster transfers of large binary files. The units come equipped with 256 kbytes of program storage memory, and you can expand the memory array to a capacity of 1,2 , or 4 Mbytes.

The ICE hardware is closely coupled to the Sourcegate HLL debug software. You can buy versions of the product for IBM-compatible PCs, and for Apollo and Sun workstations. The Sourcegate software supports C, Pascal, and Ada compilers from most of the major compiler suppliers.
Sourcegate includes a windowed user interface that lets the operator set ICE parameters such as breakpoints or control single stepping. Code windows display your choice of assembly or HLL. And a mixed mode shows HLL statements and the corresponding assembly code. You can set other windows to monitor specific memory locations or variables including structures, arrays, and stack-relative variables.

The company also offers a per-formance-analysis feature as an option to the ICE. The analysis capa-

FimallyPGAs deigned for both hinds of engineers.

 FimallyPGAs deigned for forl hinds of engineers.

Push-The-Button People.

Push-The-Envelope People.

f you're being pushed to the wall on FPGA designs, here's good news.
Concurrent Logic introduces FPGAs that achieve the fastest in-system performance of any SRAM-based FPGA today-with speeds of up to 70 MHz .

For push-the-button people, we offer easy-to-use tools that take you from design entry to configured circuit in record time. For basic circuits, you use just the basic tools-including familiar VIEWlogic modules. Plus our automatic place-and-route tools, which optimize silicon usage.

Push-the-envelope people will appreciate the CLi6000 Series' symmetrical, register-rich
 architecture, which makes pipelining and other complex designs easier to create. You select powerful interactive tools for design editing, verification, timing analysis, and post-layout schematic regeneration. Quickly exploring multiple design options, for maximum speed and density. With no risk. And no NRE.

So why not have it both ways? To order your CLi6000 Series Evaluation Kit, call (408) 522-8703 or fax (408) 732-2765 today.
Or write Concurrent Logic, Inc., 1290 Oakmead Parkway, Sunnyvale, CA 94086.

[^7]
Concurrent Logic, Inc.

CIRCLE NO. 53

Imagine a lightweight, precision-expanded metal foil.

Imagine a mesh-like, single-unit structure that eliminates the unraveling and contact resistance of woven mesh.

Imagine it with superior shielding, electrical and heat transfer properties.

Now imagine how you'd use this material.
Its called MicroGrid ${ }^{\text {m }}$
Precison-Expanded Foils.
DGMKAR

16 Commercial St. P.O. Box 427

Branford, CT 06405
203-481-4277
FAX: 203-488-6902

Imagine it wrapping, laminating, contracting, expanding.

MicroGrid- wherevermesh and perforated materials with high precision, mechanical and electrical properties, like EMI/RFI/ESD shielding are required. Share your imagination with our engineers. We'll help develop a MicroGrid for you. Call for a free sample.

Testing a zero-wait-state $25-\mathrm{MHz} 68040-$ based system requires an ICE, such as the HMI-200-68040, with a strong high-levellanguage debugger and fast hardware.
bility operates transparently to the system under test, and collects data in real time to create a performance profile of software execution. You can set eight code modules to be tested. The analysis software determines the time elapsed in each subroutine within a module, and the total time required for a module to execute. The analysis software can also display histograms of elapsed time for each module relative to the total time the system was under test.

The performance-analysis package also tracks which code the modules execute during a test. And the software can trigger a breakpoint when program execution leaves the bounds defined for the test. Finally, the analysis option adds a 100 -nsecresolution time stamp to data in the trace buffer, and adds four address breakpoints.

Available now, the ICE costs $\$ 25,000$ for PCs and $\$ 26,000$ for workstations. You can expect the company to add support for more variations of the 68040 as Motorola introduces them. The performanceanalysis option costs $\$ 2500$.

-Maury Wright

Huntsville Microsystems Inc, 3322 S Memorial Pkwy, Huntsville, AL 35801. Phone (205) 881-6005. FAX (205) 882-6701.

Circle No. 737

TWO ROOMS. TWO BUSINESS DEALS. TWICE THE PRODUCTIVITY.

EMBASSY SUITES TWICE THE HOTEL

Free, cooked-to-order breakfast.
For people who travel a lot on business, there is no better partner than Embassy Suites hotels.

TWICE THE ROOM. A large private bedroom. A separate spacious living room with a well-lit work area perfect for small meetings. Each suite also has two telephones, two TVs, a wet bar with refrigerator, coffee makerand microwave. Computermodem hookup available in most suites.
TWICETHE VALUE A free, cooked-to-orderbreakfastis served each morning. Two hours of complimentary
beverages each evening. Both sure to help keep your expense report in line.
Next time you need a hotel room, Think Twice:-Then call your travel agent or Twice The Hotel." 1 -800-EMBASSY

EMBASSY SUITES ${ }^{\text {sen }}$
In Canada, call 1-800-458-5848. In Mexico, call 95-800-362-2779. Hawaii, call 1-800-GO-2-MAUI.

Toshiba SRAMs You Need To Drive Past

Give YouThe Speed The Competition.

Now you can choose 1Mb SRAMs in BiCMOS at 12ns or CMOS at 15ns.

Available in both $x 4$ and $x 8$ configurations, our BiCMOS 1 Mb parts clock in at 12 ns . Based on our 0.7 micron process, they're perfect for today's higher performance systems. And we're shipping, not just talking.

If you need a wider part, Toshiba is again ready to deliver. Our 64Kb x16 1Mb CMOS SRAM still holds the speed record at 15 ns . That's 25% faster than the nearest competitor. If you're wrestling with a design using a wide RISC or CISC processor, this part is for you.

For BiCMOS performance in lower densities, Toshiba still has your 1-800-321-1718. number. Our 64 Kb and 256 Kb

BiCMOS SRAM families speed up to 10 ns , with a wide range of configurations in the $10-12$ ns range.

Drive our way for slower SRAM and pseudo SRAM needs. We have pseudos in densities up to 4 Mb , and a wide selection of CMOS parts in the 70100ns range. Both CMOS and BiCMOS product offerings are derived from our CMOST architecture, the cornerstone of Toshiba's worldwide process leadership.
So call Toshiba and move into the very fast lane.

For technical literature, call

CMOST is the cornerstone of Toshiba's Unified Device Architecture.

In Touch with Tomorrow

1986. MAC100. We introduce a combinee dlise formatter and buffer contholer in a tingle disk contoler chip.

1988-MAC200. Our advanced mergeal architecture controller is the finst to indude an automatid
Data Flow feature for faster clata handling.

1990- FAS236. We deliver the foist Fast SCSI chips with a 16 -fit DMA Post.

1987. ESP 100 . The industhy's first high pofformance SCS/chip is bom at Emulex.

1989. BC200. A dynamic 4-Pot DMA controler for DRAMA is created.

1991. TEC 200. Our Aecondgeneration TEC beoomes the industry's finst Fast simale chip disk controller.

1988-ESP200. Second gemeratión SCSI anives with SCS/-2 Suppont and panity pass-Through:

1989- TEC100. EMD combines disk, bubfer, and SCSI contoors in a single chip.

1991. TEC256. The first Fast and Wide SCSI disp controler also troutlo the fastest clisk clata rate and highest syt tem banduridth.

1988.ESP 2X6. We gire SCS 1 a 16- bit split-bus architacture for greater efficienny and throughput.

1990.TEC 100A. Mix-to-law capacity SCSI drives get a reducel puice version of the TEC 100 .

1991. FAS 256. 16. Bit Fast and Wide SCSI bringt SCSI-2 support to host adapters and peripherals induding drive anay applisations

मूपाँ uf firlis.

 wirit YEI.

1992-Emulex Chips. A whole new generation of finst is che, Atarting in March. the start. as the 53 C 9 X family.

But that's just for openers. tion, full SCSI-2 support, Fast and Wide ler devices. new industry standards in SCSI and other bus interfaces.

Look for our announcements starting in March. not done yet.

Emulex Micro Devices. Inside California: (714) $662-5600$

In all honesty, we've been building a history of innovative microcontroller products for disk and system applications right from

In fact, the first high-performance SCSI chips we designed have become an industry standard in workstation and PC platforms. And our ESP chips have been so popular they're also marketed under license to NCR

We've continued to lead the evolution of SCSI power-in speed, single-chip integraarchitecture, and more. Plus, we've created matching disk controller and buffer control-

And now we're preparing to launch a new generation of products-a whole new family of microcontrollers. . to again pioneer

Or if you can't wait until March, call us. We'll send you a preview of the big pictureso you can begin to spec for the future...now.

Firsts are part of our tradition. And we're

Excellence in Microcontroller Design.

3545 Harbor Blvd., Costa Mesa, CA 92626
Outside California: 1-800-442-7563

[^8]

By using state-of-the-art communications peripherals, multimedia lets you circle the globe without leaving your office. (Photo courtesy Multimedia Div of Autodesk Inc)

J D Mosley, Technical Editor

Although on the surface multimedia looks like a gimmick to boost sales of computer peripherals in a mature market, it is much more than that. The software components that drive this technology include programs that control hypertext interaction, audio cues and annotations, voice and music synthesis, object animation, and the creation of digital motion video. Available hardware includes CD-ROMs, audio boards, videotape players, videodisk players, and an assortment of computercontrolled musical instruments.
The most serious multimedia devotees will invest in the biggest, fastest CPUs and hard-disk drives they can afford, even though the Multimedia PC (MPC)

Marketing Council's specification for a minimum configuration only calls for a $10-\mathrm{MHz} 80286$-based computer with 2 Mbytes of RAM and a 30-Mbyte harddisk drive. However, if you are considering incorporating multimedia into an engineering environment, you will need a PC with enough power to run both your existing engineering applications and the additional software necessary to drive the animation and audio functions offered by multimedia peripherals.

One of the most vociferous companies on the multimedia bandwagon is Microsoft, the corporation that has sold more than six million copies of the Windows 3.0 graphical user-interface. Last August, Microsoft released Windows

MULTIMEDIA

with Multimedia Extensions 1.0, spurring several MPC upgrade kits from some of the companies listed in Table 1.

Multimedia Windows includes a media control interface that controls such time-based media as videotape, animation, and audio. Included among the 144 new application programming interfaces (APIs) are such accessories as a sound recorder, a music box, and a media player. As of October 1991, Microsoft announced that the company had delivered 1700 Windows Multimedia Development Kits, which should soon translate into a wealth of applications. (You can obtain a copy of the MPC Titles Catalog from Glenn Ochenreiter or Jim Hassert of the MPC Marketing Council.)

Yet, you can't obtain a copy of Multimedia Windows for your existing PC without also buying hardware from a member of the MPC Marketing Council. And by agreement, the Council has stipulated that MPC upgrade kits include an audio board, a CD-ROM player, and Windows Multimedia 1.0, thus making it impossible to simply upgrade one component. Although that ensures that Multimedia Windows users will have MPC-compatible components attached to their PCs, people may balk at the limited selection currently offered. Therefore, they will simply delay their plunge into multimedia until more vendors join the Council, thus giving them more choices. If so, the Council may actually alienate the early technology adopters who are so critical in driving the demand for new products.

More than a million non-MPC audio boards have been installed in PCs. But since you can't buy an upgrade kit for the board alone, many of the people who are already dabbling in multimedia have dismissed Multimedia Windows in anticipation of Windows 3.1, which

Touted as the first engineering software product to embed multimedia enhancements, Signal Analyzer/QT from Spectral Innovations lets Apple Macintosh users tap the power of System 7.0's Quicktime multimedia extension.

Microsoft promises will have audio support. An object linking and embedding protocol will let developers draw upon the audio services code in Windows 3.1 for integrated audio and voice annotation in their applications. A subset of Windows 3.0 with Multimedia Extensions 1.0 , Windows 3.1 is currently in beta test with release scheduled for the end of the first quarter of 1992. However, if you currently use a non-MPC CDROM player, you won't be able to circumvent the Council because Windows 3.1 will not have CD-ROM support.
Of course, the one business computer that has always had a way with pictures and sound is the Apple Macintosh. Therefore, many of the standards issues plaguing PC users will not affect Mac users. And engineers who

Table 1-Multimedia workstations and videoconferencing systems				
Manufacturer	Product	Communication coverage	Price	Description
Commtex	Multimedia LAN	Novell Netware LAN	From \$78,000	Includes one Cx-90 hub unit and 8 sets of demultiplexers, camcorders, headsets, and speakers.
Compression Labs	Rembrandt	Wide-area; multisite	From \$31,500	Picture-within-picture option; NTSCPAL conversion capability.
Compuadd	333MPC	Workstation	\$4595	$33-\mathrm{MHz} 80386$ CPU; MPC-compatible.
IBM	PS/2 Ultimedia M57 SLC	Workstation	\$5995	$20-\mathrm{MHz} 80386$-based CPU, 4-Mbyte RAM, 80-Mbyte SCSI hard-disk drive, XGA, CD-ROM, musical-instrument digital interface.
Picturetel	System 4000	Wide-area; multisite	From \$19,900	Low-priced videoconferencing system uses integrated dynamic echo cancellation technology.
Tandy	4033 LX Multimedia	Workstation	\$5499	$33-\mathrm{MHz} 80386$ CPU, 4-Mbyte RAM, 105-Mbyte IDE hard-disk drive, Super VGA, CD-ROM, musical-instrument digital interface.
Videotelecom	Mediamax	Wide-area; multisite	\$34,950 to \$85,000	Wide-area videoconferencing; based on 80386 or 80486 ISA PC; LAN compatible; graphics.

have relied upon Macs for test and measurement applications from such companies as National Instruments (Austin, TX) and IOtech (Cleveland, OH) will be pleased to know that Apple's latest operating system now comes with a multimedia extension called Quicktime. (See box, "How many standards can the market bear?")

Spectral Innovations' Signal Analyzer/QT lets you create video and audio animations with engineering data. You can use this program to create, compress, and play back data sets of time-sequenced information. In a typical application, a researcher who is sampling
signals and displaying their frequency components on a color display in real time can compress that data and store it on disk for subsequent playback. Using a mouse, the researcher can shift between the time domain and the frequency domain to view different aspects of the data set by selecting from a variety of display options, including histograms and spectrograms.

Sounds good to me

However, multimedia includes sound as well as video. And although the audio capability of multimedia is one of its most potent tools, most design engineers

How many standards can the market bear?

Comprising 40 software firms and 30 hardware manufacturers, the Multimedia PC (MPC) Marketing Council includes vendors such as AT\&T Computer Systems, Compuadd Corp, Creative Labs Inc, Fuilisu, Headland Technology, Media Vision, NEC Technologies, Olivetti, Philips, Tandy, Zenith Data Systems, and (of course) Microsoft. A subsidiary of the Software Publishers Association (Washington, DC), this council endorsed a specification in May 1991 for a standard ISA multimedia-PC platform.

The council estimates that 15 million PCs worldwide are upgradable candidates for meeting the MPC spec. As a minimum configuration, the spec calls for a $10-\mathrm{MHz} 80286$ CPU, 2 Mbytes of RAM, a 1.44Mbyte $3^{1 / 2-i n}$. floppy-disk drive, a 30-Mbyte hard-disk drive, a CDROM drive, a VGA graphics adapter, an 8 -bit audio board, and a musical-instrument digital interface 1/O port. This basic configuration was established in an effort to provide a low-cost entry-level machine for home and small business usage. Unfortunately, such a computer realistically lacks the power to be effective in a multimedia environment, and the council is currently reassessing its edict.

Meanwhile, Tandy has launched a line of mulitimedia PCs ranging
from the $\$ 27992500 \mathrm{SX}$ with a $16-\mathrm{MHz} 80386 \mathrm{SX} \mathrm{CPU}$ and a $40-$ Mbyte hard-disk drive to the $\$ 5499$ 4033 LX that sports a $33-\mathrm{MHz}$ 80386 CPU and a 105-Mbyte harddisk drive. Each of the five PCs in this family comes with the MS-DOS 5.0 operating system, Windows 3.0 with Multimedia Extensions 1.0, a Tandy CDR-1000 CD-ROM drive, and an 8 -bit audio board. You have to pay an extra $\$ 400$ to $\$ 629$ for a VGA monitor.

Big Blue eschews convention

IBM, on the other hand, has elected to ignore the MPC bandwagon and has introduced its PS/2 Ultimedia Model M57 SLC. Instead of 8 -bit audio, the Ultimedia has enhanced internal speakers and contains a 16 -bit audio capture and playback adapter. Its digital-video-interface-compatible CD-ROM/XA has an extended architecture that Multimedia Windows can't even communicate with.

The IBM machine comes with OS/ 22.0 and Multimedia Presentation Manager, although after you boot under OS/2, you can load DOS 5.0 and Multimedia Windows, which IBM is currently shipping with the Ultimedia PCs. The primary reason for this apparent concession to Microsoft and MPC is a lack of software for Multimedia Presentation

Manager and a shipping date of March 1992 for OS/2 2.0. The Ultimedia comes with an 80-Mbyte SCSI hard-disk drive and a highdensity 2.88 -Mbyte $31 / 2$-in. floppydisk drive.

It's Quicktime for Apple

And in the Apple arena, Macintosh users receive a free operatingsystem upgrade with multimedia extensions for System 7.0, called Quicktime. A Mac user can now drop a Quicktime icon into the screen's System Folder to manipulate animation sequences and audio just like any other type of data. Quicktime specifies a standard way of displaying, compressing, cutting, and pasting multimedia information.
So, once again, users seem to be faced with the dilemma of selecting an off-the-shelf machine that either lacks state-of-the-art performance or lacks the massive amount of software support generated by the sheer volume of MSDOS machines in existence. Except, this time it seems that IBM is playing the part of the nonconformist renegade, while the ISA-proponents struggle to maintain the status quo. Meanwhile, Apple continues to set its own standards and ignore the DOS world.

MULTIMEDIA

Videotelecom's Mediamax is a PC-based video conferencing system. Companies can reduce the expense of business travel by communicating via video conferences, which save not only plane fares and hotel costs, but dramatically increase personal productivity by reducing the time executives spend away from the office.
fail to consider its value beyond background music and sound effects. Computers have always been capable of displaying information in a visual way, but now your PC can become a vocal member of your design team by providing voice annotation capabilities and explanatory dialogue.

You can add audio to your PC by plugging one of many available sound boards into an expansion slot. The two de facto standards that software and hardware vendors have embraced for compatibility purposes are Creative Labs' Soundblaster and Adlib's sound board (also called Adlib). However, if you find that all of your expansion slots are currently occupied, you can still use a product such as ATI Technology's VGA Ste-reo-F/X. This ISA board not only combines $32,768-$ color SuperVGA graphics with 8 -bit stereo sound and a musical-instrument digital interface, but even includes a Microsoft-compatible mouse port and mouse.
Ed Callway, multimedia engineering manager at ATI agrees that the value of audio in engineering applications is often overlooked. "Adding sound to PCs brings users closer to real-world experiences-audio cues are just as important to people as video cues and tasks that include any kind of matching provide better retention when coupled with sound," Callway says. For example, a common engineering task involves comparing two listings. But instead of glancing continuously between the listings-and running the risk of losing your place-you can compare strings by having
the computer read one to you while you keep your eyes on the other.
Callway further observes that digital-audio utilities included with ATI's multimedia boards will let you add voice annotations to your schematics. In fact, he suggests that audio would provide a useful enhancement for a schematic rule-checker, so that instead of generating page upon page of printed warning messages, a verbal message could be associated with a visual flag on the schematic itself. That way, the engineer could continue looking at the screen, listen to the error message, and fix the problem.
Similarly, CD-ROMs can replace service manuals. Beyond the obvious benefits of compact size and the simplicity of issuing revisions, these disks can include a voice narration that talks the technician through the repair process, explains what should be visible, and describes any processes that are occurring. These verbal messages provide insight without popping up a window that could cover much of a PC screen.

Likewise, a sound track can make product prototypes, presentations, and walkthroughs more effective because audio helps to focus your audience's attention. And as Callway observes, a single-slot portable PC coupled with a board such as ATI's VGA Stereo-F/X card provides a completely transportable multimedia presentation system that you can plug into any available VGA or multisync monitor.
The magic of multimedia will also let you tackle those

Table 2-Multimedia authoring software

Manufacturer	Product	Price	Description ${ }^{1}$
Aimtech	Iconauthor	\$4995	Graphical interface, flowchart design for branching applications.
Asymetryx	Multimedia Toolbook	\$695	Cut and paste simplicity, 250 prescripted objects, plays Animator .FLI files, C-language compatible.
	Toolbook1.5	\$395	Same object-oriented features as Multimedia Toolbook, but without MPCcompatibility.
Authorware	Authorware Pro for Windows	\$8000	Integrates text, graphics, sound, video, animation; no scripting languageflowchart design.
Autodesk Inc	3D Studio	\$2995	3-D animation with modeler, materials editor, renderer, and keyframer.
	Animator Pro	\$795	2-D animation with tweening, color cycling, and optical and cel animation.
	AutoCAD for Windows	\$495	DDE facility, on-line reference manual.
Brown-Wagh Publishing	Curtain Call	\$199.95	Windows-based multimedia authoring program; includes automatic rendering and paint box.
	PC Animate Plus	\$199.95	DOS-based 2-D paint and animation program, compatible with Sound Blaster audio board.
Compton's Newmedia	Smartbuild	\$7000	Multimedia database-building software; retrieves objects such as pictures, audio, and animation.
	Smartdoc	\$1000	Provides Windows 3.0, DOS, and Macintosh user interfaces for Smartbuild databases.
	SmartAPI	\$20,000	Set of C callable subroutines for custom development of DOS TSRs; Windows DLL and DDE.
First Byte	Monologue for Windows	\$149	Speech synthesizer for Windows text and Excel spreadsheets, customizable dictionary.
Gold Disk Inc	Animation Works Interactive	\$495	Vector-based animation, imports .FLI files, audio capabilities, Multimedia Extensions 1.0 recommended.
IBM Corp	Storyboard Live!	\$495	Combine audio and video graphics for electronic slide show-style presentations.
Instant Replay Corp	Instant Replay Professional	\$595	Authoring program with support for touchscreens, VCR output, frame capture, audio, and hypertext.
Jovian Logic Corp	Audio/Visual Link	\$245	Interface program for firm's video and audio boards; JPEG compression; \$295 PAL version.
Logos Systems IntI	AV + Programmer's Toolkit	\$300	Subroutine libraries for the firm's Doubletake AV+ audio/video-capture boards.
	Doubletake Runtime	\$350	File viewer/player for runtime distribution of multimedia presentations; no special hardware required.
	Verify!	\$250	dBASE-compatible program that integrates photo, signature, and voice with ASCII text.
Macromind Inc	Macromind Director	\$995	Multiple-award-winning multimedia authoring package for the Macintosh; dual sound channels.
	Action!	\$495	Windows 3.0 program with more than 100 presentation templates; sound and graphics library.
Matrox	Personal Producer	\$695	Edits video, audio, graphics, titles, and digital video effects; Includes Multimedia Extensions 1.0.
MP Technologies Inc	Sound Palette	\$69	DLL and control program with DDE support, plays digitized sound through PC speaker.
Ntergaid Inc	Hyperwriter 3.0	\$495	DOS authoring program for interactive hypermedia and multimedia documents; $\$ 895$ version.
	Hyperwriter 3.0 for Windows	\$495	Windows authoring program for interactive hypermedia/multimedia documents; $\$ 895$ pro version.
Paul Mace Software Inc	Grasp version 4.0	\$349	Synchronized digital sound, creates run-time files, plays Autodesk Animator files, image capture.
Pix-L Laboratories	Tap Plus	\$299	Audio/video authoring program provides an automatic interface with firm's touch-screen monitors.
Spectral Innovations Inc	Signal Analyzer/QT	\$495	Multimedia authoring software for engineering signal-analysis, runs on Macintosh computers.
Texas Instruments	Multimedia Developer's Toolkit	\$5000	DSP development board and software kit for implementing PC-based multimedia capabilities.
	Multimedia Evaluation Toolkit	\$2000	For system developers who need to determine whether DSP would be useful in their application.
Turtle Beach Systems	56k Digital Recording System	\$1995	Hardware/software combination for creating CD-quality audio on your harddisk drive.
Vision Imaging	Multimedia Studio	\$295	Database and presentation authoring software that combines graphics, text, sound, and animation.
	Imagebase	\$595	Multimedia database package; image capturing and scanning into userdefined fields.
	Media Master	\$995	Creates self-running interactive multimedia presentations, Hyperbutton, screen editing.

Note: 1. DLL=dynamic link libraries, DDE=dynamic data exchange, TSR=terminate and stay resident.

MULTIMEDIA

long-distance design problems that require face-to-face brainstorming without requiring you to hop on a plane. With PC-based video conferencing you can meet with engineers scattered across a local-area network (LAN) or even across the world. By taking the multimedia concept to its logical climax, video conferencing lets separated members of a design team observe, comment upon, and even manually annotate or alter files, such as schematics, graphs, photos, animations, and videos.
Suppose a designer in Silicon Valley needs to present the current revision of her latest circuit to an analyst in New York, a colleague in Houston, and a field engineer in Denver. Instead of spending her time trying to arrange air travel, hotel rooms, and meals, she could instead schedule a video conference for a fraction of the expense and personal-productivity downtime that cross-country travel entails. An actual example offered by Todd Clayton, vice president of Marketing at Videotelecom involves the common scenario of a corporate moratorium on all but essential travel. When nine engineers at Motorola in Austin, TX were faced with such
an edict while developing ICs for Chrysler's 1996 cars, they conferred with the Detroit-based auto engineers via Videotelecom's video conferencing studios and Mediamac equipment. Their meeting cost $\$ 1800$, but Motorola estimated that a business trip from Austin to Detroit for this design team would have cost the company around $\$ 27,000$.

The Mediamac equipment is based upon an 80386 or 80486 PC with open expansion slots that let you customize the system to suit your needs. You can use your own MS-DOS-based software and plug the equipment into your company's LAN to share and manipulate files interactively with the other conference participants, print and review hard copies, and then send each participant away with the revised data on a floppy disk. Mediamac uses an in-band fax, which transmits on the same carrier that transmits the video and audio data, thus letting you exchange written documents during the conference. You can make interactive annotations of drafts and revisions using the systems graphics capability. You can also use an electronic white-

Table 3-Multimedia boards

Manufacturer	Product	Price	Description
Adaptec	Multimedia Connection	\$179	SCSI host adapter interface for CD-ROM.
ATI Technologies Inc	VGAStereo-FIX	$\begin{gathered} \$ 449 \\ \text { (0.5-Mbyte RAM) } \end{gathered}$	32,768-color VGA graphics with musical-instrument digital interface, stereo generator, and mouse port; $\$ 499$ for 1-Mbyte version.
Cardinal Technologies Inc	Soundvision	\$459 (1-Mbyte RAM)	Single ISA card contains SuperVGA, stereo sound, and CD-ROM interface, Multimedia PC-compatible.
Compuadd Co	Multimedia Upgrade Kit	From \$1069	Includes an audio board, Sony CD-ROM drive, MS-Windows 3.0 with Multimedia Extensions 1.0.
	AM/FM Tuner	\$299	Includes an infrared remote control.
	TV/Video Board	\$525	Integrates audio and full-motion digitized video.
Creative Labs	Multimedia Upgrade Kit	From \$849.95	Includes Soundblaster Pro audio board, Panasonic CD-ROM drive, lots of software.
Dolch	Multimedia PAC	\$3995	Upgrades the company's line of portable computers to meet MPC standards.
Jovian Logic	SuperVIA	\$895	Captures 640×480-pixel images with 65,536 colors in $1 / 30$ th of a sec; RGB and S-Video inputs.
	Gloria	\$695	8 - or 16 -bit digital stereo audio-capture and playback adapter; CD quality; software included.
Logos Systems IntI	Doubletake AV+Monochrome	\$295	8 -bit audio and video digitizer for NTSC and PAL; ports for composite video input, mic, and audio.
	Doubletake AV+Color	\$495	24-bit color video-capture board with 8-bit audio I/O.
Media Vision Inc	MPC Upgrade Kit	\$995	Pro Audio Spectrum sound board, Sony CD-ROM drive, multimedia encyclopedia, software.
	Pro Audiospectrum	\$389	22-voice musical-instrument digital interface-compatible stereo synthesizer, conforms to MPC spec, Audiomate TSR software.
New Media Graphics Corp	Super Videowindows	\$895	Full-motion digital video in a window with stereo audio capability; runs under Windows or DOS.
Radius Inc	RadiusTV	\$1699	Video-processing engine with external audio-video input and TV tuner for the Macintosh.
Tandy Corp	Multimedia PC Upgrade Kit	From \$799.95	16-bit audio board, Tandy CDR-1000 CD-ROM drive, Windows 3.0 with Multimedia Extensions 1.0.
Video Seven	Multimedia Upgrade Kit	From \$749	Texel America CD-ROM drive, MS-Windows 3.0 with Multimedia Extensions 1.0.
	Media FX	\$349	Upgrades PC audio to digital stereo.

You can really jazz-up a presentation by adding sound to clarify your point and focus your audience's attention. ATI Technologies' VGA Stereo-F/X board lets you add audio capability to your PC without sacrificing another expansion slot.
board (the electronic equivalent of a blackboard, which all participants can write on at the same time) for brainstorming.

But what if our hypothetical designer needs to confer with engineers in the Pacific Rim and Europe? The time differences involved would seem to make video conferencing an inappropriate forum. However, Mediamax lets you send all of your video, audio, documents, and computer information to remote sites for later review by distant colleagues. A video tape that illustrates these and other video conferencing scenarios is available upon request from the company.

The disk is in the mail

Yet, even at the current price of $\$ 400$ per hour on a high bandwidth video conferencing telephone line, such a solution may be too costly for some projects. But with a bit of work, you can stay within your budget and still provide interactive, animated, voice-annotated information to members of your design team who may be in different locations. Asymetryx's Multimedia Toolbook and Paul Mace Software's Grasp version 4.0 are multimedia authoring programs that let you develop and distribute runtime versions of your presentation that will operate on almost any engineer's PC with a VGA monitor. Then transmit the data via modem or download the presentation onto a floppy and mail it. Make sure your presentation is limited to the hardware capabilities of the recipient's PC.

If you are a Windows 3.0 devotee, Toolbook is an
icon-driven authoring program that lets you write multimedia applications for MPC platforms. Using a simple copy-and-paste approach to building applications, you can tap a library of more than 250 multimedia-script objects, which the company calls widgets. So, by pointing and clicking to access engineering drawings stored on the Windows Clipboard, you can create a multimedia presentation without learning yet another paint program or programming language.

More experienced programmers can combine Toolbook's prescripted widgets with their own C-language subroutines. A graphics display facility lets you store as many as 256 bitmaps for display as pop-up or overlap windows. So you can actually add hundreds of annotations to your schematic without obliterating the screen with messages. Incidentally, for PCs that aren't yet running Windows 3.0 with Multimedia Extensions 1.0, Toolbook 1.5 is a similar Windows authoring program. It includes a runtime module for free distribution of interactive applications that don't include MPCcompatible audio and video capabilities.

On the other hand, if you want to create a disk-based presentation that combines both MS-DOS and Windows 3.0 images, Steven Belsky, Business Manager for Paul Mace Software, suggests using Grasp 4.0. Like Toolbook, Grasp offers a runtime module that lets you distribute tamper-proof executable files that incorporate sound, animation, and text. Belsky notes that you can use Grasp to capture a CAE drawing of a circuit, access Grasp's Pictor paint program to draw bright dots representing electrical signals, and then tap

Multimedia Toolbook is an MPC-compatible authoring program that lets you combine text, graphics, digital video, audio, and animation to create multimedia presentations within Windows 3.0 and distribute your presentations for free.

MULTIMEDIA

Grasp's Artools module to animate those dots for illustrating signal flow, delays, and critical paths. The Realsound enhancement for Grasp lets you add verbal comments as clarification, questions, or warnings.
Of course, the limiting factor for such disk-based distribution techniques is the size of the disk you are sending. A floppy disk gives you little more than 1 Mbyte in which to get your point across. Even with compression techniques such as those offered by the JPEG and MPEG standards, you will probably find
that a floppy will provide minimal options for a multimedia presentation. You can send greater amounts of information via modem, but the recipient's available disk space may not be sufficient to accept all of it.

Obviously, the opportunities for engineers to exploit the technology promised by the ensuing multimedia tidal wave of applications is limited only by imagination, budget, CPU power, and storage capacity. Just as a slide rule on someone's desk is a nostalgic oddity in today's design departments, it may not be long be-

Manufacturers of multimedia products

For more information on multimedia products such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Adaptec Inc
691 S Milpitas Blvd
Milpitas, CA 95035
(408) 945-8600

FAX (408) 262-2533
Circle No. 650
Aimtech Corp
20 Trafalgar Sq
Nashua, NH 03063
(800) 289-2884
(603) 883-0220

FAX (603) 883-5582
Circle No. 651
Apple Computer Inc
20525 Mariani Ave
Cupertino, CA 95014
(408) 996-1010

Circle No. 652
Asymetryx Corp
110 110th Ave NE
Suite 717
Bellevue, WA 98004
(800) 624-8999, ext 299
(206) 462-0501

FAX (206) 455-3071
Circle No. 653
ATI Technologies Inc
3761 Victoria Park Ave Scarborough, Ontario
Canada MIW 3S2
(416) 756-0718

FAX (416) 756-0720
Circle No. 654
AT\&T Computer Systems
225 Littleton Rd
Morris Plains, NJ 07950
(201) 631-1019

Circle No. 655
Authorware Inc
275 Shoreline Dr
Suite 535
Redwood City, CA 94065
(800) 756-9602
(415) 595-3101

FAX (415) 595-3077
Circle No. 656

Autodesk Inc
2320 Marinship Way
Sausalito, CA 94965
(800) 525-2763
(415) 332-2344

FAX (415) 331-8093
Circle No. 657
Brown-Wagh Publishing
130-D Knowles Dr
Los Gatos, CA 95030
(408) 378-3838

FAX (408) 378-3577
Circle No. 658
Cardinal Technologies Inc
1827 Freedom Rd
Lancaster, PA 17601
(800) 233-0187
(717) 293-3000

FAX (717) 293-3055
Circle No. 659
Commtex
2412 Croftion Blvd
Crofton, MD 21114
(301) 261-3668

FAX (301) 721-1513
Circle No. 660
Compression Labs Inc
2860 Junction Ave
San Jose, CA 95134
(408) 435-3000

Circle No. 661

Compuadd Co

12303 Technology Blvd
Austin, TX 78727
(512) 250-1489

FAX (512) 331-6236
Circle No. 662

Compton's Newmedia

722 Genevieve
Suite M
Solana Beach, CA 92075
(619) 259-0444

FAX (619) 793-4813
Circle No. 663

Computer Aided
Communications
270 Scientific Dr
Suite 24
Norcross, GA 30092
(404) $417-1075$

Circle No. 664
Computer and Control
Solutions Inc
1510 Stone Ridge Dr
Stone Mountain, GA 30083
(404) 491-1131

Circle No. 665
Creative Labs Inc
2050 Duane Ave
Santa Clara, CA 95054
(408) 986-146

Circle No. 666
Dolch Computer Systems
372 Turquoise St
Milpitas, CA 95035
(408) 957-6575

Circle No. 667
First Byte
19840 Pioneer Ave
Torrance, CA 90503
(800) 523-2983
(310) 793-0610

FAX (310) 793-0601
Circle No. 668
Floyd Design
1465 Northside Dr
Atlanta, GA 30318
(404) 351-4518

FAX (404) 350-9823
Circle No. 669
Fuiitsu America Inc
Computer Products Group
3055 Orchard Dr
San Jose, CA 95134
(408) 432-1300

Circle No. 670

Gold Disk Inc
Box 789
Streetsville Mississauga, Ontario
Canada I5M 2C2
(416) 602-4000

FAX (416) 626-4001
Circle No. 671
Headland Technology Inc
46221 Landing Pkwy
Fremont, CA 94538
(800) 238-0101
(510) 656-7800

FAX (510) 656-0397
Circle No. 672

IBM Corp

Old Orchid Rd
Armonk, NY 10605
(800) 426-2468
(914) 765-1900

Circle №. 673
Image Data Corp
$11550 \mathrm{IH}-10 \mathrm{~W}$
San Antonio, TX 78230
(512) $641-8340$

FAX (512) 641.7428
Circle No. 674
Instant Replay Corp
4525 S Wasatch Blvd
Salt Lake City, UT 84124
(800) 388-8086
(801) 272-0671

FAX (801) 272-0675
Circle No. 675
Interactive Multimedia

Association

800 K St NW
Suite 240
Washington, DC 20001
(202) 408-1000

Circle No. 676
Jovian Logic Corp
47265 Fremont Blvd
Fremont, CA 94538
(510) 651-4823

FAX (510) 651-1343
Circle No. 677
fore a silent, text-based computer is considered a relic for any engineering team.

EDD

References

1. Arnett, Nick, Multimedia Computing and Presentations, Vol 3, No 7, May 28, 1991, pgs 7 to 11.
2. Floyd, Steve, The IBM Multimedia Handbook, Brady
J D Mosley is a Technical Editor for EDN. You can reach her at
 (817) 465-4961.

Logos Systems Inti

100 Royal Oak
Scotts Valley, CA 95066
(408) 438-5012

FAX (408) 439-9440
Circle No. 678
Macromind Inc
Box 2110
Carmel Valley, CA 93294
(800) 248-4477
(415) 442-0200

Circle No. 679
Matrox Electronic

Systems Ltd

1055 St Regis Blvd
Dorval, Quebec
Canada H9P 2T4
(514) 685-2630

FAX (514) 685-6066
Circle No. 680
Media Vision Inc
47221 Fremont Blvd
Fremont, CA 94538
(800) $348-7116$
(415) 770-8600

FAX (415) 771-8648
Circle No. 681
Microsoft Corp
1 Microsoft Way
Redmond, WA 98052
(800) 426-9400
(206) 882-8080

FAX (206) 883-8101
Circle No. 682
Mitsumi Electronics Corp
35 Pinelawn Rd
Melville, NY 11747
(561) 752-7730

Circle No. 683
MPC Marketing Council 1730 M St NW, Suite 700 Washington, DC 20036
(202) 452-1600

Glenn Ochsenreiter
Circle No. 684

MP Technologies Inc
4801 Fairmont Ave
Suite 310
Bethesda, MD 20814
(301) 907-0042

Circle No. 685
NEC Technologies Inc
1414 Massachusetts Ave
Boxborough, MA 01719
(508) 264-8000

Circle No. 686
New Media Graphics Corp
780 Boston Rd
Billerica, MA 01821
(800) 288-2207
(508) 663-0666

FAX (508) 663-6678
Circle №. 687

Ntergaid Inc

2490 Black Rock Tpk
Suite 337
Fairfield, CT 06430
(203) 380-1 280

FAX (203) 380-1465
Circle No. 688
Olivetti
765 US Hwy 202
Bridgewater, NJ 08807
(908) 526-8200

Circle No. 689
Paul Mace Software Inc
400 Williamson Way
Ashland, OR 97520
(800) 523-0258
(503) 488-2322

FAX (503) 488-1549
Circle No. 690

Philips Consumer Electronics Co
1 Philips Dr
Knoxville, TN 37914
(615) $521-4366$

Circle No. 691
Picturetel
1 Corporation Way
Peabody, MA 01960
(508) 977-9500

FAX (508) 977-0948
Circle No. 692

Pix-L Laboratories

4225 Phil Niekro Pkwy
Suite 107
Norcross, GA 30093
(404) 717-9955

Circle No. 693

Radius Inc

1710 Fortune Dr
San Jose, CA 95131
(408) 434-1010

FAX (408) 434-0770
Circle No. 694
Spectral Innovations Inc
4633 Old Ironsides Dr
Suite 401
Santa Clara, CA 95054
(408) 727-1314

FAX (408) 727-1423
Circle No. 695
Tandy Corp
7001 Tandy Center
Fort Worth, TX 76102
(817) 390-3011

FAX (817) 390-3688
Circle No. 696

Texas Instruments

12203 SW Freeway
Box 1443
Houston, TX 77251
(713) 274-2517

Circle No. 697
Turtle Beach Systems
Box 5074
York, PA 17405
(717) 843-6916

Circle No. 698
Video Seven
46221 Landing Pkwy
Fremont, CA 94538
(800) 238-0101
(510) 623-7857

FAX (510) 657-8013
Circle No. 699
Videotelecom Corp
1901 W Braker Lane
Austin, TX 78758
(512) 834-2700

FAX (512) 834-3792
Alison Raffalovich, ext 223
Circle No. 700
Vision Imaging
10231 Slater Ave
Suite 112
Fountain Valley, CA 92708
(714) 965-7122

Circle No. 701
Zenith Data Systems
2150 E Lake Cook Rd
Buffalo Grove, IL 60068
(800) 553-0331

Circle No. 702

VOTE . . .

Please also use the information Retrieval Service card to rate this article (circle one):
High Interest 470 Medium Interest 471 Low Interest 472

PHILIPS

100% get a free $D M M$.

Our logic analyzers sell themselves. All we have to do is get one in your hands. To make sure you do, we're giving you a Fluke DMM*, whether you buy our analyzer or the competition's. (See attached card for complete details).
Only the Philips PM 3580 family of logic analyzers give you true dual state and timing on up to 96 channels - simultaneously. All accessible with one probe and one keystroke. Which means no more dual probing or reconfiguration between state and timing. Or no probes at all if you use our boundary-scan test option!

[^9]All our analyzers feature 50 MHz state and up to 200 MHz timing speeds. As well as integrated state and timing triggering for fast debug of complex hardware and software problems. Plus broad $\mu \mathrm{p}$ support like Intel ${ }^{\text {® }}$ S i486; i386; 80286; 80186/88 families. The MCS-96, 8051, and i960 families. And the Motorola 68040 to 6800, 68HC11, 68332/1, 68302, 68340, 56001 AMD ${ }^{\text {® }}$'s AM 29030, and TI's 320Cxx family. The PM 3580 family of logic analyzers is priced from $\$ 4495$ to $\$ 11,450$ - about half the cost of comparable analyzers. What's more you can have them up and running in only 30 minutes.
Find out why the PM 3580 family of logic analyzers were the only ones cited for
excellence and innovation by Electronic Design, EDN, Embedded Systems, Electronic Products, and R\&D magazines. Take the Fluke Challenge. The odds are 100% you'll be totally impressed.
For literature, our video or a demonstration, call 1-800-44-FLUKE.

John Fluke Mifg. Co., Inc., P. O. Box 9090, M/S 250C,
Everett, WA 98206-9090. U.S. (206) 356-5400.
Canada (416) 890-7600. Other countries: (206) $356-5500$. (c) 1992. All rights reserved. Registered T.M. of Advanced Micro-Devices and Intel Corp. Ad No. 00178

FAST ANSWERS

Piecewise analysis and accurate emulation yield precise power estimates

William Hall and Ray Mentzer, National Semiconductor Corp

Abstract

Newer logic-IC families let you obtain high speed and low power simultaneously. But with these ICs, if you use time-honored ways to estimate system power consumption, the errors can kill your design.

Designers have long sought low-power components for their system designs. Low power dissipation allows denser component packing, reduces the temperature inside equipment, and permits the use of batteries. These three advantages facilitate miniaturization, increase reliability, and make portability possible. In addition, low power dissipation reduces or eliminates the need for cooling hardware and decreases system cost.

In the past, to obtain low power you had to pay a steep price in operating speed. Now you don't have to choose between high speed and low power. Using advanced CMOS and BiCMOS logic-IC technologies, several IC families combine microwatt power dissipation with speed similar to that of ECL. At low frequencies, CMOS logic families clearly are the minimal power consumers; but at higher frequencies, the need to continually charge and discharge CMOS device capacitances raises the ICs' current requirements. Above some crossover frequency, CMOS actually draws more current than bipolar TTL or BiCMOS.
Many engineers have tried to define the crossover frequency by using data-book calculations and data collected from standard test fixtures. Using these approaches can yield crossover frequencies anywhere from 3 to 50 MHz . Because of their unrealistic load values and their inability to compute average power over time as devices change operational modes, these
approaches fail to emulate actual system conditions. For example, they ignore the effects of 3 -state devices going in and out of the high-impedance (high-Z) state.
Determining total system power requires a piecewise analysis of a system's many circuit structures and an accurate emulation of those structures. Such an analysis will help you minimize a system's power dissipation by tailoring your selection of ICs to the system's specific parameters and configuration.

Start with a single device

The following equation describes the energy used in any electric circuit:

$$
\mathrm{W}=\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}}(\mathrm{vi}) \mathrm{dt},
$$

where
$\mathrm{v}=$ voltage across the two nodes where power is measured,
$\mathrm{i}=$ current through the two nodes where power is measured, and
$\left(t_{1}, t_{2}\right)=$ interval of time in which total power is measured.
For a trapezoidal waveform, you can break time into segments and develop a piecewise solution to the energy equation. IC vendors have simplified this approach by providing all of the key parameters you need to determine the power for a single device. A plethora of specifications exists: $\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CCQ}}, \mathrm{I}_{\mathrm{CCT}}, \mathrm{I}_{\mathrm{CCD}}$, $\mathrm{C}_{\mathrm{PD}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}$, and $\mathrm{I}_{\mathrm{CCZ}}$, for example, each specify different aspects of power-supply current. Which parameter is most significant at any instant depends on the I/O conditions, the operating mode, and the state of the device's outputs.

POWER OPTIMIZATION

The normal starting point for calculating the power dissipation of any digital IC is to break power into its three main components:

Power $=$ static power + dynamic power + TTL power.
Static power is the easiest to calculate. Bipolar ICs consume significant amounts of static power because their circuit structures have transistor bias currents that always flow from $V_{\text {CC }}$ to ground. The amount of current flowing depends on the ICs' output state. Therefore, bipolar ICs specify three static-power components: $\mathrm{I}_{\mathrm{CCL}}$ in the output-low state, $\mathrm{I}_{\mathrm{CCH}}$ in the out-put-high state, and $\mathrm{I}_{\mathrm{CCZ}}$ in the high-Z (output-disabled) state.
For a 74 F 245 , the maximum data-book specifications are $\mathrm{I}_{\mathrm{CLL}}=120 \mathrm{~mA} ; \mathrm{I}_{\mathrm{CCH}}=90 \mathrm{~mA}$; and $\mathrm{I}_{\mathrm{CCZ}}=110 \mathrm{~mA}$. The total static power dissipated by active and outputdisabled bipolar devices is

$$
\begin{aligned}
& \mathrm{I}_{\text {STATIC (ACTIVE) }}=\mathrm{DDC} \times \mathrm{I}_{\mathrm{CCH}}+(1-\mathrm{DDC}) \times \mathrm{I}_{\mathrm{CCL}}, \\
& \mathrm{I}_{\text {STATIC }(\mathrm{HIGH}-\mathrm{Z})}=\mathrm{I}_{\mathrm{CCZ}},
\end{aligned}
$$

where DDC is the data duty cycle (\% of time high).
The total static power consumed by a bipolar IC takes into account the percent of time that the outputs are active vs disabled, and is given by the equation

$$
\begin{aligned}
\mathrm{I}_{\text {STATIC (TOTAL) }}=\mathrm{EDC} & \times \mathrm{I}_{\text {STATIC (ACTIVE) }}+(1-\mathrm{EDC}) \\
& \times \mathrm{I}_{\text {STATIC }(\mathrm{HIGH}-\mathrm{Z}),}
\end{aligned}
$$

where EDC is the enable duty cycle (\% of time the outputs are enabled).

BiCMOS spec'd in manner similar to bipolar

BiCMOS logic families have specifications equivalent to the bipolar $\mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}$, and $\mathrm{I}_{\mathrm{CCZ}}$. Moreover, you calculate the total static power dissipation in the same way. The major difference results from BiCMOS's strategic use of MOS devices that switch to a high-impedance state to block the flow of dc current in 3 -state enable paths. This approach lowers $I_{C C Z}$ to about one-sixth of the value in bipolar devices. The data-book maximum specifications for a 74 BCT 245 are $\mathrm{I}_{\mathrm{CCL}}=90 \mathrm{~mA}$; $\mathrm{I}_{\mathrm{CCH}}=57 \mathrm{~mA}$; and $\mathrm{I}_{\mathrm{CCZ}}=15 \mathrm{~mA}$.
Pure CMOS logic families have long been known for their extremely low static-power characteristics. The input, internal, and output stages of CMOS devices consist of pairs of PMOS and NMOS transistors in the V_{CC}-to-ground path (more properly, in the V_{DD}-toground path). If the input of any of these stages is at
one of the power rails (V_{CC} or ground), either the PMOS or the NMOS device will be in a high-impedance state, limiting the flow of current to microamperes. Because the current is negligible no matter what the output state, data books provide only one specification for CMOS static current drain: I_{CC} (some CMOS logic families call it $\mathrm{I}_{\mathrm{CCQ}}$). The maximum data-book specification for a 74 ACT 245 is $80 \mu \mathrm{~A}$.
Dynamic power dissipation is misunderstood much more often than static power dissipation is. Dynamic dissipation consists of the power dissipated under switching conditions within the IC and the load. In CMOS devices, under dynamic conditions, three factors cause large amounts of current to flow:

- CMOS ICs have output swings as much as 50% greater than those of bipolar ICs.
- CMOS ICs have more capacitive stages in parallel than bipolar ICs have.
- When the voltage to an NMOS/PMOS pair is in transition, both transistors turn on partially, creating a relatively low impedance path from $V_{C C}$ to ground (a phenomenon called simultaneous conduction).
For these reasons, CMOS-device vendors specify a dynamic power component for an IC, whereas vendors of bipolar and BiCMOS devices do not. For bipolar and BiCMOS logic families, you need to consider only the dynamic power dissipation caused by the load.

The dynamic power for a CMOS device is specified in one of two ways: as $\mathrm{I}_{\mathrm{CCD}}$ or as C_{PD}. $\mathrm{I}_{\mathrm{CCD}}$ is the dynamic current as a function of frequency. Each of the noninverting buffers in a 74 FCT 245 has a maximum $\mathrm{I}_{\mathrm{CCD}}$ of $0.25 \mathrm{~mA} / \mathrm{MHz}$. Therefore, at 10 MHz , each buffer has a guaranteed dynamic current of less than 2.5 mA . Instead of $\mathrm{I}_{\mathrm{CCD}}$, some logic families choose to specify dynamic power via C_{PI} (power dissipating capacitance-a misnomer; capacitors don't dissipate energy, they store it). Both C_{PD} and $\mathrm{I}_{\mathrm{CCD}}$ come from the same JEDEC equation for power; however, $\mathrm{C}_{\mathrm{I}^{\prime},}$ lets you represent the device as a capacitance and integrate it more easily into an analysis that accounts for the power consumed by both the IC and its load. For ICs having the same output frequencies and loads:

$$
\mathrm{I}_{\text {DYNAMIC (TOTAL) }}=\left(\mathrm{C}_{\mathrm{PD}}+\mathrm{C}_{\mathrm{l}}\right) \times \mathrm{V}_{\mathrm{SW}} \times \mathrm{f} \times \mathrm{N} \text {, }
$$

where:

- C_{1} is the total load capacitance, including transmis-sion-line capacitance, IC input capacitances, and termination capacitance,
- V_{sw} is the output voltage swing of the device (for CMOS, $\mathrm{V}_{\mathrm{sw}}=\mathrm{V}_{\mathrm{CC}}$),
- f is the output frequency, and
- N is the number of outputs toggling.

The data-book specification for a 74 ACT 245 is
$\mathrm{C}_{\mathrm{PD}}=45 \mathrm{pF}$. Note that for bipolar and BiCMOS devices, you can consider C_{PI} to be zero, but you must still calculate the dynamic power needed to drive the load capacitance.

The final component of total CMOS-IC power dissipation is "TTL power." Contrary to its name, this component is associated only with CMOS devices. Bipolar and BiCMOS devices have no TTL-power component. This power component is the steady-state power consumed by a CMOS device whose input is at a voltage between the power rails. Logic levels between the rails are common in mixed CMOS/TTL systems where a TTL output drives a CMOS input. In such cases, both transistors of an NMOS/PMOS input pair turn on and allow a large de current to flow from V_{CC} to ground. (The most common TTL output levels are 2.4 to 3.4 V .) The additional current beyond the standard I_{CC} is called $\mathrm{I}_{\mathrm{CCT}}$. The data-book specification for a 74 ACT 245 is $\mathrm{I}_{\mathrm{CCT}}=1.5 \mathrm{~mA}$ for each high input (defined as $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$). To calculate the total TTL power, you must also incorporate the input-data duty cycle, DDC , and N , the number of high inputs:

$$
\mathrm{I}_{\text {TTL (TOTAL) }}=\mathrm{I}_{\mathrm{CCT}} \times \mathrm{N} \times \mathrm{DDC} \text {. }
$$

The complexity of static, dynamic, and TTL power components has led many designers to develop comparisons from data gathered in simple lumped-load test fixtures. Unfortunately, data gathered using such in-dustry-standard fixtures does not give designers an "apples-to-apples" comparison of power consumed by different logic families.

Data from classic test fixtures can mislead

Test fixtures have evolved over the last 20 years to provide repeatable standards for measuring ac and dc specifications. Test-fixture data is easy to measure in any laboratory and is also readily available from most IC vendors. In addition, some data-book specifications (like C_{PD} and $\mathrm{I}_{\mathrm{CCD}}$) are based on measurements from industry-standard fixtures. However, the fixtures don't accurately simulate the power consumed by real systems, nor do they predict which logic family will dissipate the least power in a particular application.

The fixtures use lumped loads, whereas real systems present distributed loads. A fixture's standard load is a 500Ω resistor in parallel with a $50-\mathrm{pF}$ capacitor from output to ground (see Fig 1). The 50-pF load capacitance, standardized in the late 1970s, represents 10 $5-\mathrm{pF}$ IC inputs. The 500Ω resistor provides a convenient $10: 1$ voltage divider with the 50Ω input impedance of an oscilloscope. Yet, for all its convenience, this setup often yields misleading measurements.

Dynamic power measurements in a test fixture also
can prove misleading. The problem arises from test fixtures' favorable bias toward logic families that produce TTL output swings-for example, bipolar and BiCMOS. The power dissipated in the test-fixture load for an 8-bit device is calculated below:

$$
\begin{aligned}
\mathrm{I}_{\text {TEST FIX }} & =\mathrm{I}_{\text {CAPACITOR }}+\mathrm{I}_{\text {RESISTOR }} \\
& =\mathrm{V}_{\mathrm{sw}} \times \mathrm{f} \times \mathrm{C}_{1} \times 8+\left(\mathrm{V}_{\mathrm{sw}} / \mathrm{R}_{\mathrm{L}}\right) \times \mathrm{DDC} \times 8 .
\end{aligned}
$$

Because the CMOS output swing is 5.0 V (if $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$) and the TTL-output swing is 3.4 V , the additional current used by a CMOS-populated test fixture vs a TTL test fixture is

$$
\begin{aligned}
\mathrm{I}_{\text {DELTA }}= & (5.0-3.4) \times \mathrm{f} \times 50 \times 10^{-12} \times 8 \\
& +((5.0-3.4) / 500) \times 0.5 \times 8 \\
= & 0.64 \mathrm{~mA} / \mathrm{MHz}+12.8 \mathrm{~mA} .
\end{aligned}
$$

From the equation, you can see that the power consumed in the 500Ω resistor provides a constant 12.8 mA bias in favor of families that have TTL output swings. The power difference in the $50-\mathrm{pF}$ load capacitor is a linear function of frequency. At 20 MHz , the capacitor would contribute another 12.8 mA to the CMOS-based test fixture.

Fig 1-At 16 MHz , the power consumed by ACMOS (FACT) devices becomes greater than that used by BiCMOS (BCT). The crossover points shown here are not necessarily accurate, however, because the test setup contains an unfavorable bias against ACMOS that adds 12.8 mA to its current drain.

The graph in Fig 1 shows an actual test fixture comparison of CMOS (FACT-Fairchild Advanced CMOS Technology), bipolar (FAST-Fairchild Advanced Schottky TTL), and BiCMOS (BCT-Bipolar CMOS Technology). In the test fixture, CMOS begins to draw more current than BiCMOS at 16 MHz and to draw more current than bipolar at 19 MHz .

In a pure CMOS system, the load's resistance measures in the megohms, reflecting the ultra-high input impedance of CMOS. Even TTL loads approach 100 $\mathrm{k} \Omega$. for logic-high input signals. CMOS systems designed for low power generally don't use parallel or Thevenin terminations. Thus, they eliminate other possible low-output-state resistive paths. The test fixture's 500Ω load therefore does not accurately represent the megohm load of a CMOS system and overstates the power dissipated by CMOS.
The $50-\mathrm{pF}$ capacitive load may or may not correlate to that of a real system. If the real system has fewer than 10 IC input loads, minimal distributed capacitance, and no termination capacitance, the test fixture will again be overly pessimistic when measuring CMOS power consumption. However, if the equivalent load capacitance
is higher than 50 pF , the test fixture may understate CMOS power. This confusion reinforces the point that to obtain a true picture of system power or to select a logic family, you must analyze the actual system.

Application determines capacitance

Three circuit applications: pipelines, bus drivers, and memory-array drivers (Fig 2), tend to dominate in many systems. Radically different capacitive loads and active duty cycles distinguish these applications.
The capacitance associated with a pipeline is small (on the order of 5 to 10 pF) and consists of input and trace capacitance. As shown in Fig 2, pipelines generally have small fanouts and usually drive a single load. Typical embodiments include pipeline registers and serial structures in DSP systems, synchronization blocks, and clock rejuvenation circuits. Reducing the power consumption of these circuits depends largely on selecting a logic family or on using a power-down scheme to shut down entire sections of logic when they aren't in use.

Bus driving is perhaps the most common digitalcircuit application and definitely is the most complex

Fig 2-A logic IC's power consumption depends on its capacitive load. This figure shows how to model pipeline, bus, and memory circuits when calculating power dissipation. The curves show the supply current drawn as a function of frequency by equivalent circuit configurations using three logic families (BCT, FACT, and FAST) under differing capacitive loads.
from a power perspective. A bus-driver IC drives several listeners; a listener is any IC other than the driver itself whose inputs or outputs load the bus. Commonly, a bus driver drives longer traces than pipeline or mem-ory-array drivers do. In addition to IC loads, bus drivers often drive such elements as the bus trace, edge connectors for daughter boards, pin sockets, ribbon cables, connectors, and plated through holes. Because buses are usually terminated, you must also consider the termination elements. The sum of all capacitive elements may range from 30 to 70 pF for a small internal bus to 220 pF for an EISA-bus application. A fully configured VMEbus-21 slots at a maximum of 20 pF per slot-can present a severe, worst-case, $420-\mathrm{pF}$ bus load.

You can minimize bus power consumption through logic-family selection, termination selection, and the design of bus loads and enable schemes. More importantly, the enable cycles of the bus elements significantly affect the power consumption of complex buses. A later section covers this topic in detail.

Take your lumps from a memory array

Memory arrays usually are densely packed, and their data and address drivers are apt to have very high fanouts. Typical values of total capacitance are on the order of 200 pF , but this value can vary widely with the size and composition of the array. Memory-array designers can control the amount of power dissipated in an array by carefully selecting the array organization.

Consider a memory-array architecture commonly found in personal computers: 4 M words deep by 16 bits wide. Table 1 gives the fan-in capacitances for seven configurations using 5 pF per input; this example neglects other capacitive elements that add to the values shown-traces and sockets, for example. In Table 1, observe that the address load depends directly on the number of ICs in the array. Using higher storage capacity devices will reduce the address load in proportion to the storage capacity of the individual ICs. If you fix the memory size, choosing to maximize the memory depth will save power by reducing the datapath fan-in.

When you make comparisons among logic families, segmenting systems into capacitive categories can be very useful. You can use this approach, for example, when you compare an ACMOS (advanced CMOS) function to a bipolar or BiCMOS one. The plots at the bottom of Fig 2 come from data gathered in a realistic system environment. The plots show the effect of load capacitance on different families. As you increase the capacitance from 5 to 200 pF , the CMOS crossover frequency decreases from the $40-\mathrm{to}-50-\mathrm{MHz}$ range to the $10-\mathrm{to}-20-\mathrm{MHz}$ range. Therefore, you can see that

Table 1-Capacitive loads presented by different memory configurations

Memory IC size	Architecture	No. of ICs	Data load	Address load
4 Mbit	$4 \mathrm{M} \times 1$	16	5 pF	80 pF
4 Mbit	$1 \mathrm{M} \times 4$	16	20 pF	80 pF
1 Mbit	$1 \mathrm{M} \times 1$	64	20 pF	320 pF
1 Mbit	$256 \mathrm{k} \times 4$	64	80 pF	320 pF
256 kbit	$256 \mathrm{k} \times 1$	256	80 pF	1280 pF
256 kbit	$64 \mathrm{k} \times 4$	256	320 pF	1280 pF
64 kbit	$64 \mathrm{k} \times 1$	1024	320 pF	5120 pF

not just the architecture, but also the external capacitive load dictates the choice of logic family.

So far, the examples and discussions have taken a worst-case approach; all data bits were assumed to be switching at the highest frequency. This situation is likely to occur only in a subset of clock-distribution applications. If you were to design for this case everywhere, power supplies would need unrealistic excess capacity to account for an unlikely set of conditions. Consider the clock-distribution example shown in Fig 3. Also recall the results in Fig 2, where the plot shows that with a $50-\mathrm{pF}$ load, the data-pattern frequency at which FACT begins to draw more current than BCT is 28 MHz . In the same plot, FACT begins to draw more current than FAST at 39 MHz . In Fig 3, the

Fig 3-Above 30 MHz a single-frequency clock-distribution system will dissipate the least power if you implement it with BiCMOS (BCT) or bipolar (FAST) logic. Because many circuit elements operate well below the clock frequency, CMOS (FACT) can be a better choice in multifrequency systems-even at 50 MHz .

FACT/BCT crossover lies beyond 50 MHz . The change really shouldn't surprise you; in effect, the circuit is operating at a lower frequency. The general equation for $I_{\text {dinnamic }}$ is

$$
\mathrm{I}_{\text {IVNAMIC }}=\mathrm{N}^{\prime} \times \mathrm{f} \times \mathrm{V}_{\mathrm{SW}} \times \mathrm{C}_{\mathrm{l}},
$$

where N ' equals the effective number of bits switching
at the maximum clock frequency, f. For the multifrequency case of Fig 3:

$$
\mathrm{N}^{\prime} \times \mathrm{f}=\mathrm{f}+\mathrm{f} / 2+\mathrm{f} / 4+\mathrm{f} / 8=1.875 \mathrm{f} .
$$

Therefore, in this case, N^{\prime} and the resulting dynamic power are 46% of the equivalent quantities in the case where four outputs are toggling at f.

System emulation predicts power precisely

The right kind of emulation board can help designers think about system power and get away from a test-fixture mindset. To accomplish this objective, a universal bus board emulates a generic bus architecture with enough flexibility to allow measuring the effect of the following variables on $I_{\text {cc: }}$

- Frequency
- Termination
- Enable duty cycle
- Bus data pattern
- Listener load
- Logic family

The authors have constructed a multifunction bus-emulation board that makes its LCD's ammeter reading tell the whole story about com-plex-system power dissipation.

At the core of the board is a 16 -bit bus that drives 18 -in.-long traces (see Fig A). Along the traces are sockets that accommodate a maximum of 32 listeners per bit. A listener is an input, output, or I/O device that loads the bus.

A fully configured board, with 32 listeners per bit, yielded unrealistically low effective line impedances. (Moreover, there was horrendous noise when all bits switched at once). The low impedance limited the bandwidth of the board system. As a result, testing involved 16 or fewer listeners per bit. Even with this number of listeners, the effective line impedances still ranged from 30 to 55Ω. Driving these impedances was a device of the same logic family as the listeners.

Because of Miller capacitance in the pull-down transistors, bipolar and BiCMOS devices generally produced the lowest impedance lines. The bipolar devices also include an output short-circuit currentlimiting resistor that raises their output impedance under some conditions. The result is lower bandwidth for these families than for CMOS or BiCMOS .

At the end of the bus are pin sockets that accept ac, parallel, or Thevenin SIP terminators. The component values in the terminations are appropriate for each logic family and for the number of devices connected to the bus.

Load with representative C

Each of the listeners has pads to permit loading its output with a chip capacitor. The goal was to choose capacitor values that have a basis in practice. The options are $5-\mathrm{pF}$ "pipeline," $50-\mathrm{pF}$ "bus-driver," and 200-pF "array-driver" capacitances. The board has five layers. Among them are two V_{cc} planes, one for the listeners and one for the control logic. This setup allows isolating the I_{CS} of the devices under test (DUTs).

The only way to meet the testflexibility goals was through automation (Fig B). A personal computer with an IEEE-488 interface card controls the system. At the heart is a Hewlett-Packard word generator that can operate at 50 MHz . Downloading vectors from
the PC to the word generator is quite flexible and permits generating any data pattern and emulating any enabling scheme.
System designers often use several bus architectures in a single product. Multiple architectures are also an issue when upgrading an existing design. The flexible exaluation board satisfies the multiplearchitecture requirement and reduces project cost and evaluation time.

The graph in Fig A is one example of data taken on the poweremulation board. The setup had 16 listeners per bit, for a total of 34 monitored devices. The enable duty cycle was set to $6.25 \% \times 1 / 16$. Hence, at any instant, only one pair of listeners was enabled.

In conjunction with the control logic, the word generator writes two bytes of checkerboard data to the enabled bank and then steps through the banks one by one before looping back to the beginning. Because of Fig A's low enable duty cycle, the ac termination's capacitance controls the shape of the curve. Compare the curve shapes in Fig A with the ac-termination curve in Fig 5 (see main text). The low enable duty cycle also demonstrates the differences between families with high and low Iccz valves (note that FAST's typical $\mathrm{I}_{\mathrm{CCz}}$ is $85 \mathrm{~mA})$.
When you compare the measured results with the calculations of Table 2, you can see that, at

EDN-DESICN FEATURE

Though this example is for clock distribution, you can apply its principles more broadly. Power measurements are almost always based on "worst-case" checkerboard data patterns. Average system power will be considerably lower than the worst case because of the random nature of most data. In addition, some system structures have frequencies predictably lower than the maximum. You should take this effect into account
during circuit design and logic-family selection. Examples of lower frequency structures include clock and memory-address generators, address comparators, circuits that perform some arithmetic operations, and virtually all circuits that use counters.

Resistors serve many purposes in system design, but no resistors have a larger impact on power consumption than those used as terminators. Termination
different frequencies, the calculations exaggerate the CMOS power requirements by 10 to 50%. For battery-operated designs, the calculations' pessimism will most certainly be critical. In other designs, the pessimism may cause you to add an unnecessary cooling fan, or change from a 150 W supply to a 225 W supply.

You can use the hardware model for more than just power measurement; you can use it to evaluate crosstalk and ground bounce, as well as line-driving and termination schemes. For your next design, give some thought to using hardware modeling for comparing logic families. The technique can be a quick and easy route to accurate power optimization, and more.

Fig A-A bus-emulation system is the best tool for predicting how much power a complex bus will consume. Although the calculations of Table 2 predict that FACT will consume more power than BCT above 28 MHz , the actual crossover occurs at 48 MHz .

Fig B-Although the busemulation board is the heart of a system for predicting bus power consumption, the test setup includes a personal computer, a word generator, several power supplies, and three multimeters. The Keithey meter monitors the curient from the $\mathbf{V}_{\text {cCI }}$ supply.

POWER OPTIMIZATION

resistors can appear in series, in parallel, in Theveninequivalent networks, or in conjunction with a capacitor in ac-termination schemes. As long as terminations properly match the transmission-line impedance, their topology will have little affect on the degree of noise reduction they achieve. Termination topology will significantly affect cost, circuit-board area, and power dissipation, however. When you choose a termination design, you must thoroughly understand how to apply each type of termination network.

Of the possible termination styles, the parallel configuration has a reputation for dissipating the most power. When the driver output is high, parallel terminations introduce an I_{CC} component equal to $\mathrm{V}_{(\mathrm{H}} / \mathrm{Z}_{0}$. You can select an optimum form of termination only if you know the signal pattern traveling down the transmission line. For instance, suppose you are considering termination styles for a control line or a set of control lines driving a distributed load. If these lines dwell low (Fig 4a), a parallel termination might be a good choice. However, if the dwell is high (Fig 4b), parallel termination quickly becomes the worst choice.

Clock-distribution structures usually represent electrically long transmission lines having distributed loads that normally are terminated. A relationship exists between the length of the transmission line (in nanoseconds) and the frequency of the signal passing down the line. For example, if the line is 15 nsec long and the signal has a duty cycle of 50% at 40 MHz , the pulse will be high for 12.5 nsec , which is 2.5 nsec less than the length of the line. The driver therefore has no insight into what is at the end of the transmission line. The load current for the driver, although still equal to $\mathrm{V}_{\mathrm{OH}} / \mathrm{Z}_{0}$, is now totally independent of any termination at the end of the line. For this example, a parallel termination might be the best choice; such a single-component solution would be more reliable and less expensive than ac or Thevenin configurations, which use multiple components.

Like its parallel counterpart, a Thevenin termination also consumes relatively large amounts of de power. The Thevenin termination is a paradox: Its strength is also its weakness. Its strength is its effect on the driver circuit's power consumption. In the high state, a Thevenin termination dissipates roughly half the power a parallel termination does. However, in the low state, the Thevenin termination consumes an additional $\mathrm{I}_{\mathrm{OL}} \times \mathrm{V}_{\mathrm{OL}}$. The actual power savings for the driver depend on the difference between $\mathrm{V}_{O L}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{O H}$. Because ACMOS devices have approximately equal source-to-drain voltage drops across their pull-up and pull-down transistors, the choice of Thevenin or parallel terminations has little effect on such circuits' dissi-

Fig 4-Signal dwell time or duty cycle can affect your choice of termination styles and component values. If you use a parallel termination, the signal of (b) will dissipate much more power than the one in (a).
pation. However, Thevenin terminations reduce the chip power used by logic families such as bipolar or BiCMOS that don't switch from rail to rail.

In bipolar circuits, halving the source current of the pull-up Darlington pair has little effect on the voltage across the pull-up; that voltage may change by as little as 100 mV , yielding a dissipation decrease of nearly 50%. That reduction exceeds the additional power dissipated in the pull-down transistor. The Thevenin termination's weakness is its constant current drain; that is, the addition of an I_{01}, component. There is no way to define data patterns or system characteristics that reduce I_{OL}.

For terminating transmission lines that have distributed taps, ac terminations can be the lowest power choice. The dc-blocking capacitor allows current flow only during signal transitions. The current drain of the termination is therefore a function of frequency and is described as

$$
\mathrm{I}_{\mathrm{TERM}}=\text { frequency } \times \mathrm{C}_{\text {TERM }} \times \mathrm{V}_{\text {SWING }}
$$

For a signal with a 50% duty cycle, the current in the termination will increase monotonically with frequency until the termination time constant, τ, comes into play-at a signal period of approximately 6τ. As the period of the incoming signal decreases below 6τ, the termination current's rate of increase decreases. At periods below 3τ, you can consider the voltage change across the capacitor to be negligible, and thus assume a termination current of approximately $\mathrm{V}_{\mathrm{sw}} / 2 \times \mathrm{Z}_{10}$.

The following example compares the power consumed by a $50 \Omega / 300-\mathrm{pF}$ ac termination with that consumed by a 50Ω parallel termination. In both cases, the signal is at 10 MHz , and has a $50 \% \mathrm{DDC}$ and a 5 V swing.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{TERM}(\mathrm{AC})} & =\text { frequency } \times \mathrm{C}_{\text {TERM }} \times \mathrm{V}_{\text {SWING }} \\
& =10^{6} \times 300 \times 10^{-12} \times 5.0=15 \mathrm{~mA} . \\
\mathrm{I}_{\text {term (parallel) }} & =\left(\mathrm{V}_{\text {swing }} / \mathrm{Z}_{0}\right) \times \text { Duty Cycle } \\
& =(5.0 \mathrm{~V} / 50 \Omega) \times 0.5=50 \mathrm{~mA} .
\end{aligned}
$$

In this and many other examples, ac terminations save significant power compared with de terminations. Therefore, ac terminations are an excellent choice in many systems, particularly those using battery power. (To conserve board space, passive component manufacturers make off-the-shelf ac terminators in various RC combinations in a SIP format. If you buy sufficient quantities, you should be able to find vendors that will manufacture custom termination networks in several standard packages.)

The series termination is far and away the lowest power consumer (Fig 5). At 50 MHz , series terminations consume half the power of parallel or Thevenin ones. However, in many situations, series terminations are not useful. A series-terminated driver sends a halfheight signal down the trace, preventing incident-wave switching at any tap along the line except the one at the very end. The series termination actually uses reflections to achieve full-voltage swings. Until the initial wave has made its round trip from the driver to the end of the line and back, the logic levels at stubs along the line may not be valid. This phenomenon can cause oscillations (which raise power) and can raise the TTL current drawn by CMOS devices. Thus, series terminations are effective only in point-to-point connections.

The power and noise benefits of series terminations come from the series resistor's limiting of the dynamic current that flows into and out of the driver. Limiting the dynamic current reduces the di/dt seen by the inductance of the driver's power leads. Therefore, both power and noise (that is, the undershoot and the tran-sient-peak low-state output voltage, $\mathrm{V}_{\text {OLIP }}$) decrease. This noise reduction is the reason that many designers of memory arrays use series limiting resistors.

When implemented in an integrated resistor package, series termination requires twice as many pins as the other termination forms. Driver ICs can easily integrate series terminations, however. Such terminations are especially attractive to ASIC designers. IC vendors already implement 25 or 33Ω series resistors within standard devices.

Proper selection of termination schemes and components is essential to reducing power consumed by a bus; however, numerous other factors affect bus power.

Bus power is a function of the logic family, load, data characteristics, and the amount of time that bus elements are enabled and disabled.

As stated earlier, the input and output capacitance of the bus elements and the capacitive loading on those elements dictates the load on the bus. In addition, pc-board trace capacitance, termination capacitance and resistance, and other stray loads affect a bus's power dissipation.

Fig 5-Because ac and series terminations do not draw de bias currents, they consume the least power. However, before you select such low-power termination styles, you must understand their limitations.

The data pattern and duty cycle will also affect the dynamic, static, and TTL power components. In power tests that exercise all bits, checkerboard patterns are the worst case, pseudo-random patterns are middle-of-the-road, and counting patterns consume the least power. You usually assume the duty cycle to be 50%. If the duty cycle is greater than 50%, TTL power for CMOS suffers; if it is less than 50%, static power for bipolar and BiCMOS suffers. As discussed, the duty cycle also has a major effect on the termination power.
The most important factor on bus power is busenable duty cycle (EDC). This factor determines the average amount of time the bus elements are active vs disabled. Typically, two bus elements (one talker and one listener) are active at any instant. If there are eight listeners, each one has $\mathrm{EDC}=12.5 \%$. EDC determines if the bus power is mostly static or mostly dynamic.

The following data-book calculation and logic-family comparison illustrate how complex determining bus power can be. Fig 6 represents a complex bus that exercises all of the power-dissipating mechanisms of the different logic families. In this example, a CPU

EDN-DESIGN FEATURE

POWER OPTIMIZATION

with a 3 V output swing drives a transceiver $\left(\mathrm{IC}_{1}\right)$ that in turn drives a 16 -bit bus loaded with 16 ports. (The ports consist of pairs of 8-bit transceivers.) Each port sends and receives $10-\mathrm{MHz}$ data to and from $105-\mathrm{pF}$ loads. The bus is terminated in a $300-\mathrm{pF}$ ac termination.

If you implement the circuits of Fig 6 all in CMOS, you can divide the power calculation into two parts: $\mathrm{I}_{\mathrm{IC} 1}$ and $\mathrm{I}_{\mathrm{IC} 2}$ through IC_{17}.

In this case, the number of outputs switching (eight because of the checkerboard data pattern) will dictate the dynamic power of IC_{1}. The voltage swing, V_{SW} equals 5.5 V , because IC_{1} has a CMOS output swing and V_{CC} equals 5.5 V . The frequency, f, equals 10 MHz . C_{PD} of IC_{1} equals 45 pF and is the total capacitive load on IC_{1}. The capacitive load on IC_{2} through IC_{17} consists of a $300-\mathrm{pF}$ termination capacitor and the $200-\mathrm{pF}$ distributed capacitance of the transmission line. The TTL power component comes from the fact that a CPU with a 3 V output swing and a standard 50% data duty cycle drives IC_{1}. Once again, because of the checkerboard data pattern, all outputs of the 8 -bit 74 XXX 245 are switching, so you multiply the TTL power by 8 $\left(\mathrm{N}_{1}=8\right) . \mathrm{IC}_{1}$ is enabled 100% of the time, so its power in the output-disabled state doesn't enter into the calculation. Multiply the total power by 2 to account for the 16 -bit function's two 8 -bit ICs.

Total power $=$ static power + dynamic power + TTL power

$$
\begin{aligned}
\mathrm{I}_{\mathrm{IC} 1}= & 2\left(\mathrm{I}_{\mathrm{CC}}+\mathrm{N}_{1} \times \mathrm{V}_{\mathrm{SW}} \times \mathrm{f} \times\left(\mathrm{C}_{\mathrm{PD}}+\mathrm{C}_{\mathrm{TERM}}+\mathrm{C}_{\mathrm{DIST}}\right)\right. \\
& \left.+\mathrm{N}_{1} \times \mathrm{I}_{\mathrm{CCT}} \times \mathrm{DDC}\right) \\
= & 2\left(80 \times 10^{-6}+8 \times 5.5 \times 10^{6} \times\left(45 \times 10^{-12}+300 \times 10^{-12}\right.\right. \\
& \left.\left.+200 \times 10^{-12}\right)+8 \times 1.5 \times 10^{-3} \times 0.5\right) \\
= & 160 \times 10^{-6}+479 \times 10^{-3}+12.8 \times 10^{-3} \\
= & 492 \mathrm{~mA} .
\end{aligned}
$$

For this example, the fact that IC_{1} passes data through only one of the other $16\left(\mathrm{~N}_{2}=16\right)$ bus transceivers at a time heavily influences the total power consumed by IC_{2} through IC_{17}. The enable duty cycle is $6.25 \% \times 1 / 1$. Also, because IC_{1} has CMOS output swings, the steady-state inputs to IC_{2} through IC_{17} will always be at one of the power rails, eliminating any TTL power components. You can also assume that IC_{2} through IC_{17} each drive $105-\mathrm{pF}$ devices, so the total load on each output is approximately 50 pF . The total power dissipated by IC_{2} through IC_{17} is

$$
\begin{aligned}
\mathrm{I}_{\mathrm{IC} 2 \text { THROUGH IC17 }}= & 2\left(\mathrm{~N}_{2} \times\left(\mathrm{I}_{\mathrm{CC}}+\mathrm{EDC} \times \mathrm{V}_{\mathrm{SW}}\right.\right. \\
& \left.\left.\times \mathrm{f} \times \mathrm{N}_{1} \times\left(\mathrm{C}_{\mathrm{PD}}+\mathrm{C}_{1}\right)\right)\right) \\
= & 2\left(1 6 \left(80 \times 10^{-6}+0.0625 \times 5.5 \times 10^{6}\right.\right. \\
& \left.\left.\times 8 \times\left(45 \times 10^{-12}+50 \times 10^{-12}\right)\right)\right) \\
= & 86 \mathrm{~mA} .
\end{aligned}
$$

The total power for the CMOS system of Fig 1 is

$$
\begin{aligned}
\mathrm{P}_{\mathrm{CMOS}} & =\mathrm{V}_{\mathrm{CC}} \times\left(\mathrm{I}_{\mathrm{IC} 1}+\mathrm{I}_{\mathrm{IC} 2 \text { through IC17 }}\right) \\
& =5.5 \mathrm{~V} \times(492 \mathrm{~mA}+86 \mathrm{~mA}) \\
& =3.179 \mathrm{~W} .
\end{aligned}
$$

If you implement the circuit in Fig 6 in a bipolar logic family, you can calculate the power using the same approach as with CMOS but with these differences:

- Divide the static component into a high and a low component. Devices that are in the output-disabled state have an $\mathrm{I}_{\mathrm{CCZ}}$ component.
- The bipolar circuit has no TTL power component or dynamic power-dissipating capacitance (except for the load).
- The voltage swing on the bus is $1.6 \mathrm{~V}\left(2 \times \mathrm{V}_{\mathrm{BE}}\right)$ less than V_{CC}.

Fig 6-Power calculations for complex buses must account for transmission-line impedance, talker I/O levels, driver and listener load capacitance, trace and input capacitance, enable and data duty cycles, data pattern and frequency, and $V_{c c}$.

EPSON

PRESENTIS ANOTHER LEADINE TECHNOLOEY FRODUCT:

Re CeMrazitleLE

 REEFL TIIKLE CLOCKS
ESA BUS COMPAIIELIE (AI/XI compailible available soon)

4 KBYIES OF SRAM MEMORY

CRYSTAL AND OSCIITAION CIRCUIT BUITI IN COMPARIMENT FOR 2 REFLACEABIE BAIIERIES

PROPUCER BY SEIKO EPSON CORP.

POWER OPTIMIZATION

Calculate the power as:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{IC1} 1}= & 2\left(\mathrm{DDC} \times \mathrm{I}_{\mathrm{CCH}}+(1-\mathrm{DDC}) \times \mathrm{I}_{\mathrm{CCL}}+\mathrm{N}_{1} \times \mathrm{V}_{\mathrm{SW}}\right. \\
& \left.\times \mathrm{f} \times\left(\mathrm{C}_{\mathrm{TERM}}+\mathrm{C}_{\mathrm{DIST}}\right)\right) \\
= & 2\left(0.5 \times 90 \times 10^{-3}+(0.5) \times 120 \times 10^{-3}+8 \times 3.9 \times 10^{6}\right. \\
& \left.\times\left(300 \times 10^{-12}+200 \times 10^{-12}\right)\right) \\
= & 210 \times 10^{-3}+312 \times 10^{-3} \\
= & 522 \times 10^{-3} .
\end{aligned}
$$

$\mathrm{I}_{\mathrm{IC} 2 \text { THROUGH IC17 }}=2 \mathrm{~N}_{2} \times \mathrm{EDC} \times\left(\mathrm{DDC} \times \mathrm{I}_{\mathrm{CCH}}+(1-\mathrm{DDC})\right.$ $\left.\times \mathrm{I}_{\mathrm{CCL}}+\mathrm{N}_{1} \times \mathrm{V}_{\mathrm{SW}} \times \mathrm{f} \times \mathrm{C}_{1}\right)$ $+(1-\mathrm{EDC}) \times \mathrm{I}_{\mathrm{CCZ}}$

$$
=2\left(1 6 \left(0.0625 \times\left(0.5 \times 90 \times 10^{-3}\right.\right.\right.
$$

$$
+0.5 \times 120 \times 10^{-3}+8 \times 3.9 \times 10^{6}
$$

$$
\left.\left.\left.\times 50 \times 10^{-12}\right)+0.938 \times 110 \times 10^{-3}\right)\right)
$$

$$
=3542 \mathrm{~mA} .
$$

$$
\mathrm{P}_{\text {BIPOLAR }}=\mathrm{V}_{\mathrm{CC}} \times\left(\mathrm{I}_{\mathrm{IC} 1}+\mathrm{I}_{\text {IC2 THROUGH IC17 }}\right)
$$

$$
=5.5 \mathrm{~V} \times(522 \mathrm{~mA}+3542 \mathrm{~mA})
$$

$$
=22.35 \mathrm{~W} .
$$

The method for calculating the power of a BiCMOS system is identical to that for a bipolar one except that BiCMOS has much lower $\mathrm{I}_{\mathrm{CCZ}}$ components than bipolar. The circuit of Fig 6 implemented in BiCMOS would have a total power of $\mathrm{P}_{\text {вісмоя }}=5.9 \mathrm{~W}$.

Table 2b summarizes the results of comparing the power of CMOS, bipolar, and BiCMOS logic families in the complex system of Fig 6. Note that at 10 MHz the total power of IC_{1} (IC_{1} is 100% enabled) is larger for the pure CMOS system than for the BiCMOS because of the large dynamic power component. However, the CMOS system has the lowest total power at

10 MHz because of the low output-disabled-state power consumed in IC_{2} through IC_{17}. As the bus frequency increases from 10 to 40 MHz , CMOS begins to lose its advantage and, because of its negligible dynamic currents, BiCMOS becomes the lowest total-system-power consumer at approximately 31 MHz . Bipolar always consumes more power.

Use data-book values with utmost caution

Remember that this calculation is based on data-book worst-case values, which can introduce inaccuracies into a power calculation (for example, test fixture bias and parametric guard band). Also, in a real system the voltage across the load capacitance decreases with frequency, lowering the actual system power. You can overcome these inaccuracies by using power emulation tools.

Based on data-book specifications, at 10 MHz , the system in Fig 6 will use the least current if you implement it in CMOS (because of the low output-disabledstate power of IC_{2} through IC_{17}). As the frequency increases beyond 20 MHz , dynamic power becomes the dominant component, allowing BiCMOS to consume the least power.

Begin a system design by understanding all of the system's functional, performance, and I/O requirements. Next, devise a strategy for reducing power consumption. (For example, determine the optimum configuration for the memory, bus, and power-down subsystems.) Finally, minimize the power consumption through your selection of a logic family. Of course, all of these steps are related, and the approach is iterative. That is, you may choose certain strategies with a specific logic family in mind; but with the family you settle on, the tradeoffs may be different. In general, complex systems that use several families consume the least possible power. For this reason, a piecewise approach to calculating power dissipation is best.

Any kind of surface mount in no time. Flat.

You already know General Instrument's reputation for quality, reliability and high volume production capacity.
You also know the advantages of surface mount rectifiers: How they withstand mechanical strain and thermal stress, facilitate high-speed pick and place and reduce board size by increasing surface density.
Now you can have all the advantages of General Instrument plus all the benefits of flat pack - because General Instrument has the industry's broadest range of chip technology in surface mount.

SMA, B and C. In standard, fast and ultrafast recovery. Schottky, Zener and TVS. And when reliability is most critical, only General Instrument has the flat pack Superectifier. ${ }^{\text {™ }}$

Of course, cylindrical MELF-style surface mounts are still available, too.
The answer to every rectifier application has come to the surface - at General Instrument.

For more information, contact General Instrument, Power Semiconductor Division, 600 West John Street, Hicksville, NY 11802; (516) 933-3333.

EDN-DESICN FFATURE

POWER OPTIMIZATION

The example, Fig 7 shows a standard personalcomputer system. The piecewise approach would divide the system into sections in which you calculate power using capacitive and frequency-based approaches. For example, you would separately calculate the power dissipation in the clock generator/buffer and in the subsequent loads. Keep in mind that the system operates at several frequencies and you should calculate the power at the average frequency. For subsystems of this type, if the crystal is toggling at less than 66 MHz , CMOS logic families will usually use the least power.
The video controller and peripheral controller represent pipeline elements. For pipeline elements operating at speeds above 40 MHz , if CMOS-voltage-level compatibility is not an issue, bipolar or BiCMOS will normally yield the lowest power. For pipeline systems, data-book calculations are normally accurate.
You should treat the dynamic-RAM array as a highly capacitive load. Once you have determined the memory
organization and you know the capacitance, you can determine the power by emulating the subsystem in a test fixture. You should remove the load resistor bias (either mechanically or mathematically) before comparing logic families. In most cases, BiCMOS and bipolar are preferable for driving memory arrays at frequencies above 20 MHz .
Finally, analyze the bus itself. A complex data-book calculation can point you in the right direction, but a power emulation tool, such as the one discussed in the box, "System emulation predicts power precisely," will more accurately predict which logic family will dissipate the least power. Moreover, an emulation tool can help in selecting a termination scheme or in segmenting the number of loads. In most cases, to conserve power, you should use CMOS to implement bus elements that have low EDCs (for example, keyboards, peripherals, BIOS ROMs, and video transceivers). On the other hand, you should implement the CPU transceiver, which toggles constantly, in bipolar or BiCMOS.

Fig 7-When you determine a strategy for minimizing a system's power consumption, you may want to implement different portions of the system using different IC families. The major subsystems of a high-performance personal computer are no exception.

PowerMagset Planar Transformers and Inductors Reduce DC-DC ConverterSize-Simplify Design

Compact motorized blowers provide high vacuum and pressure

Windjammer ${ }^{\circledR}$ centrifugal blowers, only $5.7^{\prime \prime}$ in diameter provide performance from $75^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ vacuum at 0 flow to 125 CFM at $0^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. Designed for business machines, medical equipment and materials handling systems. Drive options include brushless DC motors with or without an integral controller, featuring manual or remote speed control. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240.
Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031. Fax: 611-370033.

lamb electric division

CIRCLE NO. 63

Introducing...CD quality, stereo high fidelity, digital audio you record and playback on your PC-AT/286/ 386/Model 30 or compatible.
Featuring. .. real time direct to disk data transfer.. 16 -bit resolution... 20 Hz to 20 kHz audio response. . 0.005% THD... 6.25 to 50 kHz programmable sample rate...92 dB dynamic range...90db s / n... digital input ... 4 to 1 ADPCM compression.
Use for digital audio recording, editing, mastering and transmission in broadcasting, entertainment systems, film production, audio/visual presentations and interactive CDI/DVI systems.
If you're an audiophile with microcomputer resources call 1-800-338-4231 (ex. CA.) for details on our Audio Pro... the Series 2/Model SX-10.

POWER OPTIMIZATION

Of course, these steps are just guidelines. The real keys to designing low-power systems are having an intimate understanding of the systems' requirements, being aware of the complexities of power, and being willing to use several logic families in a single design. ह००

Authors' biographies

William M Hall is National Semiconductor's advanced CMOS logic marketing manager for its Standard Products Div. He is a graduate of Drexel University in Philadelphia, PA. Prior to joining Fairchild Semiconductor in 1985 (which later became part of Na tional Semiconductor), he was responsible for designing and testing radar-
 based digital signal processors at RCA. Bill has written numerous papers on topics ranging from device and system noise to high-speed-design techniques.

Ray Mentzer is National's staff advanced bipolar design engineer for the FAST, FASTr, BCT, and F100K/300 Series ECL logic families. With more than 10 years in design, applications, and product engineering at Fairchild and National Semiconductor, his expertise covers bipolar, BiCMOS, and ECL device design as well as board-
 level design. A graduate of Purdue University, Ray has authored several papers on topics that include designing to deter metastable conditions, ground bounce, and EMC faults. He has one patent pending and has developed 18 new products.

Article Interest Quotient (Circle One) High 476 Medium 477 Low 478

WHAT'S COMING IN EDN

EDN Magazine's April 9, 1992 and April 23, 1992, issues will present a 2 -part, hands-on FPGA (field-programmable gatearray) project. EDN Regional Editor Doug Connor takes you through an actual FPGA design from start to finish: Part 1 describes the design specifications, what the circuit does, and differences between FPGAs and tools. Part 2 picks up with the FPGA's place-and-route and timing-verification functions and an analysis of the completed design.
In addition, the News edition's April 30, 1992, Product Watch section will examine FPGAs and EPLDs. This round-up will look at what silicon is on the market as well as the availability and cost of related tools. Look for both editions of EDN for complete coverage on FPGA design.

Battery Powered DC/DC

 Conversion Circuit CollectionThe following tables form a shortform component selection guide for a collection of commonly used battery powered DC to DC conversion applications. No design is required since inductor, capacitor and resistor values are completely specified. Choose the appropriate LTC DC to DC converter for your application from the following tables.

Step Up From One Cell (1V)

Vout lout PN lo L C R

5 V	40 mA	LT1073-5	95uA	82 $\mu \mathrm{H}$	100 F	0Ω	Lowest lo
	40 mA	LT1110-5	$350 \mu \mathrm{~A}$	27, H	$33 \mu \mathrm{~F}$	0Ω	Best For Surface Mount
12 V	15 mA	LT1073-12	$95 \mu \mathrm{~A}$	82 $\mu \mathrm{H}$	100 ${ }^{\text {F }}$	0Ω	Lowest lo
	15 mA	LT1110-12	350 A	27, H	$33 \mu \mathrm{~F}$	0Ω	Best For Suriace Mount
-ADJUSTABLE VERSIONS ALSO AVAILABLE FOR V Out UP TO 50V							

Step Up From Two Cells (2V)

Vout lout PN lo L C R
$5 V \quad 90 \mathrm{~mA}$ LT1173-5 $110 \mu \mathrm{~A}$ 47 HH H $100 \mu \mathrm{~F}$ 47 Ω Lowest lo
90 mA LT1111-5 $350 \mu \mathrm{~A} \quad 18 \mu \mathrm{H} \quad 33 \mu \mathrm{~F} \quad 47 \Omega$ Smallest Board Space/Best For Surface Mount
$150 \mathrm{~mA} \quad$ LT1073-5 $95 \mu \mathrm{~A} \quad 100 \mu \mathrm{H} \quad 100 \mu \mathrm{~F} \quad 47 \Omega$ More Output CurrentLlowest l 0_{0}
150mA LT1110-5 350 A A33 H $33 \mu \mathrm{~F} \quad 47 \Omega$ More Output CurrentSmallest Board Space/Best For Surface Mount
20 mA LT1109CZ-5 1mA $33 \mu \mathrm{H}$ 10 HF NA 3 Pin Package/Lowest Cost/Best For Surface Mount (8 Lead Version)
$12 \mathrm{~V} 20 \mathrm{~mA} \quad$ LT1173-12 $110 \mu \mathrm{~A} \quad 47 \mu \mathrm{H} \quad 47 \mu \mathrm{~F} \quad 47 \Omega$ Lowest l_{0}
$20 \mathrm{~mA} \quad$ LT1111-12 $350 \mu \mathrm{~A} \quad 18 \mu \mathrm{H} \quad 22 \mu \mathrm{~F} \quad 47 \Omega$ Smalest Board Space/Best For Surface Mount
$40 \mathrm{~mA} \quad$ LT1073-12 $\quad 95 \mu \mathrm{~A} \quad 82 \mu \mathrm{H} \quad 100 \mu \mathrm{~F} \quad 47 \Omega$ More Output CurrentLlowest lo
$40 \mathrm{~mA} \quad$ LT1110-12 $350 \mu \mathrm{~A} \quad 27 \mu \mathrm{H} \quad 33 \mu \mathrm{~F} \quad 0 \Omega$ More Output Current/Smallest Board Space/Best For Surface Mount
$20 \mathrm{~mA} \quad$ LT1109CZ-12 $1 \mathrm{~mA} \quad 20 \mu \mathrm{H} \quad 4.7 \mathrm{pF}$ N/A 3 Pin Package/Lowest Cost/Best For Surface Mount (8 Lead Version)

- ADJUSTABLE VERSIONS ALSO AVALLABLE FOR V VUTUP TO 50 V

Step Up From 5V To 12V

Vout lout PN

90 mA	LT1173-12	$110 \mu \mathrm{~A}$	120 H	100 μ	0Ω	Lowest ${ }_{0}$
90 mA	LT1111-12	$350 \mu \mathrm{~A}$	47 HH	33 HF	0Ω	Smallest Board Space/Best For Surface Mount
175 mA	LT1073-12	95uA	180 H	100 μ	0Ω	More Output Currentlowest l_{0}
175mA	LT1110-12	$350 \mu \mathrm{~A}$	60 H	3345	0Ω	More Output Current/Best For Surface Mount
60 mA	LTI109CZ-12	1 mA	33 HH	10\%F	N/	3 Pin PackagelLowest Cost/Best For Surface Mo

-ADJUSTABLE VERSIONS ALSO AVALLABLE FOR V OUT UP TO 50V

Flash Memory Vpp (12V) Generation

$V_{\text {IN }}$	$V_{\text {out }}$	lout	PN	lo	L	C	
5 V	12 V	60 mA	LT1109-12	$350 \mu \mathrm{~A}$	$33 \mu \mathrm{H}$	$22 \mu \mathrm{~F}$	All Surface Mount
		120 mA	LT109A-12	$350 \mu \mathrm{~A}$	$27 \mu \mathrm{H}$	$47 \mu \mathrm{~F}$	All Surface Mount
2 Cells	12 V	60 mA	LT1109A-12	$350 \mu \mathrm{~A}$	$10 \mu \mathrm{H}$	$22 \mu \mathrm{~F}$	All Surface Mount

$5 \mathrm{~V} \quad 12 \mathrm{~V} \quad 60 \mathrm{~mA} \quad$ LT110g-12 $\quad 350 \mu \mathrm{~A} \quad 33 \mu \mathrm{H} \quad 22 \mu \mathrm{~F}$ All Sufface Mount

2 Cells 12 V 60mA LT1109A-12 $350 \mu \mathrm{~A} \quad 10 \mu \mathrm{H} \quad 22 \mu \mathrm{~F}$ All Sufface Mount

Battery Powered DC/DC

Step Down Conversion to 5V

Conversion Circuit Collection
VIN lout PN lo L C R
6.5V to $12 \mathrm{~V} \quad 50 \mathrm{~mA} \quad$ LT1173-5 $\quad 110 \mu \mathrm{~A} \quad 47 \mu \mathrm{H} \quad 100 \mu \mathrm{~F} \quad 100 \Omega$ Lowest l_{0}
$50 \mathrm{~mA} \quad$ LT1111-5 $\quad 330 \mu \mathrm{~A} \quad 18 \mu \mathrm{H} \quad 33 \mu \mathrm{~F} \quad 100 \Omega$ Best For Surface Moun
$90 \mathrm{~mA} \quad L T 1073-5 \quad 95 \mu \mathrm{~A} \quad 47 \mu \mathrm{H} \quad 100 \mu \mathrm{~F} \quad 220 \Omega \quad$ More Output Current/Lowest l_{0}
$90 \mathrm{~mA} \quad \mathrm{LT} 1110-5 \quad 330 \mu \mathrm{~A} \quad 15 \mu \mathrm{H} \quad 33 \mu \mathrm{~F} \quad 220 \Omega \quad$ More lout/Best For Surface Mount
9V to 20V $300 \mathrm{~mA} \quad$ LT1073-5 $95 \mu \mathrm{~A} \quad 180 \mu \mathrm{H} \quad 330 \mu \mathrm{~F} \quad 100 \Omega$ Lowestlo
300 mA LT1110-5 $330 \mu \mathrm{~A} \quad 60 \mu \mathrm{H} \quad 100 \mu \mathrm{~F} \quad 100 \Omega$ Best For Surface Mount
12 V to $20 \mathrm{~V} \quad 300 \mathrm{~mA} \quad$ LT1173-5 $110 \mu \mathrm{~A} \quad 220 \mu \mathrm{H} \quad 220 \mu \mathrm{~F} \quad 220 \Omega$ Lowestlo l_{0} 300 mA LT1111-5 $330 \mu \mathrm{~A} \quad 82 \mu \mathrm{H} \quad 100 \mu \mathrm{~F} \quad 220 \Omega$ Best For Surface Mount

20V to 30V 300mA LT1173-5 110 $\mathrm{AA} \quad 470 \mu \mathrm{H} \quad 470 \mu \mathrm{~F} \quad 100 \Omega$ Lowestlo
300 mA LT1111-5 $330 \mu \mathrm{~A} \quad 180 \mu \mathrm{H} \quad 220 \mu \mathrm{~F} \quad 100 \Omega$ Best For Surface Mount

* See Tables For Recommended Part, Inductor, Capacitor and Resistor Values
- ADJUSTABLE OUTPUT VOLTAGES UP TO 6.2V CAN BE OBTAINED WITH THE ADJUSTABLE VERSIONS OF LT1173, LT1111, LT1073 OR LT1110

Positive to Negative Voltage Conversion

$V_{\mathbb{N}}$	Vout	lout	P/N	10	L	c	R	
5V	-5V	75 mA	LT1173-5	250, A	100以H	100 F	100Ω	Lowest lo
	-5V	75 mA	LT1111-5	650 A	33 HH	33,F	100Ω	Best For Suriace Mount
	-5V	150 mA	LT1073-5	$220 \mu \mathrm{~A}$	180, H	470, F	100Ω	More Output Current
	-5V	150 mA	LT1110-5	$650 \mu \mathrm{~A}$	68 $\mathrm{HH}^{\text {H }}$	$150 \mu \mathrm{~F}$	100Ω	More lou/Best For Surface Mount
12 V	-5V	250 mA	LT1173-5	110 $\mu \mathrm{A}$	470川H	$220 \mu \mathrm{~F}$	100Ω	Lowest lo
	-5V	250 mA	LTT111-5	$330 \mu \mathrm{~A}$	180 HH	$82 \mu \mathrm{~F}$	100Ω	Best For Suriace Mount

* See Tables For Recommended Part, Inductor, Capacitor and Resistor Values

Inductor and Capacitor Part Numbers/Manufacturers

Inductor Value Caddell-Burns Coiltronics \dagger Sumida \dagger

$15 \mu \mathrm{H}$	7070-15	----	CD54-150LC	Inductor Manufacturers			
$18 \mu \mathrm{H}$	7070-16	CTX20-1	CD54-180LC	Caddell-Burns Min	Mineola, NY, USA 11501	516-746-2310 FAX	FAX: 516-742-2416
$20 \mu \mathrm{H}$	----	CTX20-1	-----				
$22 \mu \mathrm{H}$	7070-17	CTX20-1	CD54-220LC	Gowanda Elect. Goi	Gowanda, NY, USA 14070	716-532-2234 FAX	FAX: 716-532-2702
27 HH	7070-18	----	CD54-270LC	Coiltronics Intl. Por	Pompano Beach, FL, USA	305-781-8900	305-782-4163
33 HH	7070-19	CTX50-1	CD54-330LC	Sumida Arli	Arrington Heights, III, USA	708-956-0666 FAX	AX: 708-956-0702
47 ${ }^{\text {6\% }}$ H	$7300-09$	CTX50-1	CD74-470LC				
68 H	7300-11	----	CD74-680LC				
82 $\mu \mathrm{H}$	7300-12	CTX82-1	CD74-820LC		Capacitor Ma	acturers	
$100 \mu \mathrm{H}$	7300-13	CTX100-1	CD105-101MC			durers	
$120 \mu \mathrm{H}$	7300-14	CTX100-1	CD105-121MC	Best: OS-CON Series	Sanyo Video	Diego, CA, USA 92073	3 619-661-6322
180 $\mathrm{HH}^{\text {H }}$	$7200-16$	CTX250-4	CDR125-181MC	Better: PL Series	Nichicon America	umberg, IL, USA 60173	73 708-843-7500
$220 \mu \mathrm{H}$	7200-17	CTX250-4	CDR125-221MC CDR125-471MC	Good: 1500 or 5500	Sprague Electric	Ord, ME, USA 04073	207-324-4140

† Surface Mount Inductors

Call Linear Technology!

For a Datasheet	$800-637-5545$
For Applications Help or the Marketing Dept:	$408-432-1900$
FAX:	$408-434-0507$

Multipliers implement tunable filters

Tom Napier, Aydin Computer and Monitor Div, Horsham, PA

The circuits illustrated in Fig 1 use multiplier ICs to implement tunable filters. Tunable filters perform important antialiasing functions in sampled data systems that have variable sampling rates. The circuit in Fig 1a is a simple 1-pole filter. Fig $\mathbf{1 b}$ is a form of 2-pole state-variable filter. You can use the same architecture to build higher order filters. The Harris HA-2547 ana\log multiplier chip is essentially a voltage-controlled transimpedance amplifier with a very high output impedance and a large output compliance. When driving capacitive loads, the multipliers behave like voltagetunable integrators with a $\pm 6 \mathrm{~V}$ output. With a 2 V control input, the multiplier's effective transimpedance is 2500Ω. With a $100-\mathrm{mV}$ control input, the transimpedance rises to $50 \mathrm{k} \Omega$.

Each filter requires only two or four parts, with the exception of the bypass capacitors. The filters' cut-off frequencies are voltage tunable over a 20 -to- 1 range and usable from very low frequencies to as high as several megahertz. The filters do exhibit high input impedances and high output impedances. Thus, unless the filter drives a high-input-impedance ADC, it requires an output buffer. Offset trimming may be necessary in critical applications.

The theoretical transfer functions of Fig 1a and Fig 1b, respectively, are as follows:

$$
\frac{1}{1+\mathbf{s T} \mathrm{T}_{1}}
$$

and

$$
\frac{1}{1+\mathrm{sT}_{2}+\mathrm{s}^{2} \mathrm{~T}_{2} \mathrm{~T}_{3}}
$$

Time constants T_{1}, T_{2}, and T_{3}, equal the variable transimpedances multiplied by $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}, respectively. In Fig 1b, the product of T_{2} and T_{3}, sets the cut-off frequency, and the ratio of T_{2} to T_{3}, controls the Q. For a Butterworth response, C_{2} should be twice C_{3}. With capacitor values of 62 and 30 pF , the 2 -pole filter's tuning range spans 50 kHz to 1 MHz . The filter's useful range is limited to about 5 MHz by the output capacitance of the multiplier, which is approximately 10 pF . The measured response indicates that a zero exists due to feedthrough, but the measured stopband attenuation is over 30 dB . EDN BBS /DI_SIG \#1097 E. हD

To Vote For This Design, Circle No. 746

Fig 1-Using multipliers as voltage-controlled transimpedance amplifiers gives these filters a 1-pole and 2 -pole state-variable low-pass filter and a tuning range of 20 to 1 .

Compiler generates PROM decoder HEX file

Ralph Ursoleo, Inovec Inc, Eugene, OR

BBS
8
8PROMs have long been recognized as excellent address decoders because of their great flexibility compared with discrete logic decoders. PROMs can generate contiguous chip-select signals for multiple devices of different sizes without wasting address space, and the PROM implementation uses only one level of logic so it's relatively fast. PROMs also allow for device-size changes without hardware modifications.

Unfortunately, generating the PROM data has always been a tedious, manual process, usually involving large tables of binary/HEX addresses to map the entire PROM. Once you generate the table, you manually enter the PROM data into a programming device and upload to a computer that creates the .HEX file for later use. Entering or changing the .HEX file requires that you use a typically crude programmer editor, which can be a frustrating, error-prone experience.
The compiler called PROMGEN, which you can download using EDN's BBS, lets you describe the decoder in text format using a standard text editor. This text (source) file, which allows descriptive comments, can be as detailed in its explanation as you wish. Once generated, PROMGEN scans the source file for errors and generates an Intel HEX format file for downloading to a programmer. Listing 1 shows the general format of the source file.

Note that there are two keyphrases: DEFAULT OUTPUT XX and DEVICE XX. DEFAULT OUTPUT XX specifies the value for all PROM locations not specified in an address range. DEVICE XX specifies the size of the target PROM and thus the size of the resulting HEX file. The compiler flags many types of errors such as invalid HEX address/data characters, address range overlaps, unrecognizable device sizes, and missing PROM outputs. Optional EQUATE statements, such as those in Listing 2, let you equate PROM

Listing 1-General format of compiler source file

Listing 2—Equate-statement examples

EQUATE	RAM_ENABLE
EQUATE	ROM_ENABLE
; address	
; range	PROM
OOOO-OOA5	RAM_ENABLE
OOB8-OOBA	ROM_ENABLE

output values to text strings for easier reading. Without this feature, you'd have to refer to schematics to decipher exactly what a PROM output of 7 E does. EDN BBS /DI_SIG \#1099 [ना]

To Vote For This Design, Circle No. 747

Clock adapter generates 2- and 4-MHz signals

William S JenningsCheck, Level One Communications Inc, Folsom, CA

The LXP600A clock adapter is excellent for many T1/ E1 transmission applications because it generates a jitter-free $1.544-\mathrm{MHz}$ clock frequency when locked to a $2.048-\mathrm{MHz}$ master clock or vice-versa. However, some applications require a $4.096-\mathrm{MHz}$ clock with a
$244-\mu \mathrm{sec}$ frame-sync pulse locked to the rising edge. Many of these applications also require a synchronous $2.048-\mathrm{MHz}$ clock. For these applications, you can combine a clock adapter with an HCT4046A phased-locked loop (PLL), two 74 HCT 00 NAND gates, and three

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units....high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to $+100^{\circ} \mathrm{C}$ span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24 mm). All models are available for immediate delivery with a one-year guarantee

SPECIFICATIONS (typ)
$\left.\begin{array}{lccc} & \begin{array}{c}\text { Absorptive SPDT } \\ \text { YSWA-2-50DR }\end{array} \\ \text { ZYSWA-2-50DR }\end{array}\right\}$

Reflective SPDT
YSW-2-50DR
ZYSW-2-50DR

dc-	$500-$	$2000-$
500	2000	5000
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
1.4	1.4	1.4
30	30	30

YSW-2 3 ZYSW-2-50DR (SMA) 59.95

EDN-DESIGN IDEAS

74HCT74 leading edge-triggered flip-flops to produce the desired outputs.
Fig 1 shows a clock adapter, IC_{1}, functioning in the $1.544-$ to $2.048-\mathrm{MHz}$ mode. In this mode, the clock adapter produces a $2.048-\mathrm{MHz}$ clock output plus an $8-\mathrm{kHz}$ frame-sync output. The frame-sync output is a $488-\mu \mathrm{sec}$ pulse that is locked to the falling edge of the clock output. The potentiometer attached to IC_{2} 's PLL's R_{1} pin lets you tune the PLL's VCO (voltage controlled oscillator) to 4.086 MHz . The VCO's output is synchronized to the clock adapter's clock output. The comparison input is provided by the Q output of flip-flop 1, at one-half the VCO frequency.

The VCO produces both the $4.096-$ and $2.048-\mathrm{MHz}$ clock frequencies at the ${\overline{\mathrm{C}_{4}}}^{4}$ and C_{2} outputs, respectively (Fig 2). $\mathrm{IC}_{3 \mathrm{~A}}$ functions as a simple inverter, producing the $\overline{\mathrm{C}}_{4}$ clock from the clock-adapter-synchronized VCO output. The \bar{Q} output of $\mathrm{IC}_{4 \mathrm{~A}}$ produces the C_{2} clock, which is also tied back to the D input. Flip-flops IC_{411} and $\mathrm{IC}_{5 A}$, and $\mathrm{IC}_{3 \mid}$ produce $\overline{\mathrm{FO}}$ from the clock adapter's FSO output. EDN BBS /DI_SIG \#1098
E.

To Vote For This Design, Circle No. 748

Fig 1-Adding a phase-locked loop, three flip-flops, and a pair of NAND gates to a clock-adapter IC gives you a 4.096-MHz clock with a $244-\mu \mathrm{sec}$ frame-sync pulse, plus one synchronous $2.048-\mathrm{MHz}$ clock.

Fig 2-This timing diagram illustrates the relationships between the 2- and 4-MHz clock signals generated by Fig 1's circuit.

Autolearn system macros

Versatile trace

The Universal Tool for 8 and 16 Bit In-Circuit Emulation

Outdoors, the Swiss Army knife is the universal standard. But indoors, for 8 and 16 bit emulation, American Arium's EZ-Pro ${ }^{\text {TM }}$ is the preferred choice. It's flexible. Reliable. User-friendly. You can rent it or buy it. It comes complete with C cross-compilers, performance analysis, C source-level debugging, powerful breakpointing, and an ever-increasing list of supported processors (now over 160).
So call us for a free demo disk. Then, let us send you a system for a risk-free, 10 -day trial. With our easy-to-learn user interface, you'll find out what thousands of experienced engineers have known for over 10 years... it's simple and convenient to use. Just what you need to whittle down and shape your next development project.

EDN-DESIGN IDEAS

High-voltage regulator has low dropout

Dana W Davis, Maxim Integrated Products, Sunnyvale, CA

The positive voltage regulator of Fig 1 maintains 5V regulation at 1 A with inputs as low as 5.02 V . The circuit's pass transistor is an n-channel MOSFET. MOSFETs having low $\mathrm{R}_{\mathrm{DS}\left(\mathrm{ON}^{\prime}\right)}$ are the key to this application because dropout voltage is proportional to $\mathrm{R}_{\mathrm{DS}(O \mathrm{~N})}$. Fortunately, high-power MOSFETs having extremely low $\mathrm{R}_{\mathrm{DS} \text { (oN) }}$ are both inexpensive and readily available.
IC_{2}, an LM10, contains a precision op amp, a voltage reference, and a variable-gain buffer. External resistors configure the buffer for a gain of 25 , boosting the 0.2 V reference to a regulated 5 V at IC_{2} 's pin 1 . By comparing this 5 V reference with the regulated output, $\mathrm{V}_{\text {out }}, \mathrm{IC}_{2}$'s internal op amp produces an error voltage that drives the MOSFET's gate. Powered by the highside power supply, $\mathrm{IC}_{1}, \mathrm{IC}_{2}$ delivers a gate drive of $\mathrm{V}_{\mathrm{CC}}+11 \mathrm{~V}$ (approximately 16 V). At $\mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$, the resulting dropout voltage is under 400 mV for an IRF541 MOSFET, and under 100 mV for an SMP60N06. The output voltage depends on R_{1} and R_{2} :

$$
\mathrm{V}_{\text {OUT }}=0.2\left(\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)+1\right) .
$$

Gate-leakage current in the MOSFET, unlike base current in a bipolar transistor, does not change with the load current. Therefore, the operating supply cur-
rent of Fig 1's circuit, drawn only by IC_{1} and IC_{2}, is relatively independent of the load current.

The ENABLE/SHUTDOWN input controls the regulator and must supply at least 2 mA . Diode D_{1} shortens the turn-on time following an ENABLE/ SHUTDOWN command. During shutdown, the only current that the circuit draws is leakage current through the pass transistor. If you do not need the shutdown function, eliminate D_{1} and connect V_{CC} directly to the input power.

At power-up with the regulator enabled, the PR output of IC_{1} remains low, holding the MOSFET off by depressing the reference voltage at the noninverting input of IC_{2}. The regulator thus remains off until the gate-drive voltage rises to an acceptable level, typically $\mathrm{V}_{\mathrm{CC}}+8.5 \mathrm{~V}$.

The output capacitor, C_{1}, stabilizes the output voltage against load changes. If your load is relatively constant, you can reduce or eliminate C_{1}.

Input voltage may range as high as 16.5 V , but a lower level (produced by a stack of five NiCd cells, for example) offers higher efficiency.
EDN BBS /DI_DIG \#1090
[उ]

To Vote For This Design, Circle No. 749

Fig 1 -This power supply takes advantage of n-channel MOSFETs' low $\mathrm{R}_{\text {OSOON }}$ to provide dropout voltages measured in hundreds of millivolts.

We Like to Illustrate How Well We Adapt

Link Your Sun Sparc, DEC, IBM, PC-AT, ISA or EISA Bus to VMEbus Computers.

VMIC's new family of VMEbus adapters gives you the ability to easily connect your workstation to your VMEbus. VMIC's new adapter family links Sun Sparc Stations, DEC 5000 Workstations, IBM 6000 Series Workstations, and machines based on PC-AT, ISA or EISA bus to VMEbus computers.

The product line supports master(s) and slave(s) in the VMEbus chassis and features a software-controlled dynamic address mapping mode. A software transparent mode is supported at power-up and requires no additional initialization.

VMIC also offers a Reflective Memory product line. Call VMIC toll-free and let us illustrate how easy it is to connect you.

VME Microsystems
International Corporation
12090 South Memorial Parkway

Feedback \& Amplification

Reader questions circuit

I believe the printed schematic of Mr Cuthbert's interesting circuit, "Charge pump halves voltage," on pg 204 of the December 5, 1991, issue of EDN contains a critical error. Q.'s drain-source connections are across the $\mathrm{C}_{1} 330-\mu \mathrm{F}$ capacitor. When Q_{2} : turns on, this connection will create a short circuit across C_{1}. Also, why use two inverters, $\mathrm{IC}_{1 \mathrm{E}}$ and $\mathrm{IC}_{1 \mathrm{~F}}$, in parallel?

Finally, there was no mention of another key point. IC_{1} 's dc supply voltage must be large enough to ensure proper turn on of Q_{1} to Q_{1}. For example, the gate-tosource voltage of $Q_{\text {: }}$ is IC_{11} 's $\mathrm{V}_{\text {OUT }}$ minus $1 / 2 \mathrm{~V}_{\text {IN }}$. Therefore, with an input of 12 V , the 4049 inverter should be supplied by at least $\mathrm{V}_{\text {Gision) }}+6 \mathrm{~V}$. So the typical 5 V regulated V_{C} on IC_{1} wouldn't work. However, I think he could use the V_{IN} voltage itself as the supply to guarantee turn on.
Tony Veneruso
Schlumberger
228, rue Einstein
BP 59277005 Melun Vedex, France

Author reply

Mr Veneruso is correct concerning the circuit connections. The drain-source connections of Q; connect to the opposite drain lead of Q_{2}, and not to C_{1} as incorrectly drawn. To address his other questions, I used two inverters in parallel because I had one left over, and the input capacitance of Q_{1} is double that of Q_{2}, Q_{i}, or Q_{1}. Also, I thought it was implied that the $V_{i \prime}$ for IC_{1} is the same as $\mathrm{V}_{1 \mathrm{~N}}$.
Two other minor discrepancies exist between my original circuit and the one published. The resistor between IC_{11} and IC_{11} was supposed to be $100 \mathrm{k} \Omega$. Also, the gate resistor Q_{2} is 100 ohms . Neither of these resistor-value differences will degrade the circuit's performance.
Dave Cuthbert
Tektronix
Box 500, M/S W3-100
Beaverton, OR 97077

How to use our bulletin board

四This icon identifies those Design Ideas that have computer-readable material posted on EDN's bulletin-board system (BBS). Call our free BBS at (617) 558-4241 (300/1200/2400 8,N,1). Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. Once you get into the system, you can use that number to find more information on a particular idea. If you'd like to comment on any Design Idea, include the number in the subject field of your message.

EDN-NEW PRODUCTS

Integrated Circuits

RAMDAC With Resolution Of 1280×1024 Pixels

- Supports 24-bit color displays - Features a 5:1 input multiplexer The Bt464 RAMDAC supports true 24-bit color displays at resolutions to 1280×1024 pixels. Multiplexed input ports provide multiplexer options of $1: 1,2: 1,4: 1$, and $5: 1$, and a $5: 1$ frame buffer reduces video RAM (VRAM) memory requirements. With binary frame-buffer addressing, 48 1-Mbit VRAMs are needed to support 1280×1024 monitors for 24 bits. With a $5: 1$ multiplexer, a frame buffer using quinary addressing can reduce the number of VRAMs to 30, lowering memory costs. Other features of the Bt464 include pixel interleaving, which provides the end user with a faster line-drawing time in complex CAD/

CAM applications, and the ability to allow users to switch between true color and pseudocolor on a pixel-×-pixel basis. The RAMDAC is available in speed grades of 110 , 135 , and 150 MHz and comes in a

208-pin, pin-grid-array package. $135-\mathrm{MHz}$ version, $\$ 328$ (100).

Brooktree Corp, 9950 Barnes Canyon Rd, San Diego, CA 92121. Phone (619) 452-7580. FAX (619) 4521249. TLX $383596 . \quad$ Circle No. 413

Simultaneous-Sampling 4- or 8-Channel ADCs

- Low channel-to-channel phase delay
- Have track-and-hold circuits for each channel
The MAX155 (8-channel) and MAX156 (4-channel) A/D converters simultaneously sample each analog input signal and sequentially digitize them to 8-bit accuracy in $3.6-\mu \mathrm{sec} /$ channel. Each channel has its own track-and-hold (T/H) circuit, which reduces channel-to-channel phase delay to less than 4 nsec , compared with several $\mu \mathrm{sec}$ for ADCs with a single T/H circuit. Both devices contain a 2.5 V reference, an 8×8-bit RAM to store results, and an 8 -bit microprocessor interface. The ADCs operate from $\pm 5 \mathrm{~V}$ supplies or a single 5 V supply and perform unipolar or bipolar conversions with either single-ended or differential inputs. The internal data bus provides for bidirectional data flow, allowing user-defined setup and access to stored RAM conversion data. The MAX155 comes in 28 -pin DIP and SO packages; the

MAX156 comes in 24-pin DIP and 28 -pin SO packages. From $\$ 10(1000)$.

Maxim Integrated Products, 120 San Gabriel Dr, Sunnyvale, CA 94086. Phone (408) 737-7600.

Circle No. 414

Baseband I/O Ports For Digital Radio Systems

- Combine A / D and D / A converters - Provide audio-to-IF/RF interface Designed for digital-mobile-radio systems such as the Pan-European

Digital Cellular Telephone, the AD7001 and AD7002 baseband I/O ports provide key functions in the transmit and receive paths. Combining A / D and D / A converters for I and Q channel information, along with filtering, a serial interface, and pulse-shaping ROM, these devices perform signal conversion between the audio section and the $\mathrm{IF} / \mathrm{RF}$ sections in mobile telephones. By digitizing and encoding the voice at the source and transmitting entirely in digital format, several online users can share each available channel. Although both I/O ports perform similar functions, they use different internal architectures to meet specific user needs. The AD7001 uses a successive-approximation A/D converter; the AD7002 features a sigma-delta converter, along with additional DACs for frequency control, gain control, and signal shaping. Both devices operate from a 5 V supply and come in 44-pin quad flatpacks. $\$ 25$ (1000).

Analog Devices, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428.

Circle No. 415

EDN-NEW PRODUCTS

Integrated Circuits

Field-programmable gate arrays. The CLi6000 series of high-speed, static-RAM-based, field-programmable gate arrays (FPGAs) feature a toggle rate of 150 MHz and run to 70 MHz . Power consumption is less than $2 \mathrm{~mA} /$ MHz . The first members of the series are the CLi6002, CLi6003, and CLi6005, with 2000,3000 , and 5000 gates, respectively. Package options include 84-pin plastic leaded chip carriers and 132 -pin plastic quad flatpacks. From $\$ 58$ to $\$ 180$ (OEM qty). Concurrent Logic Inc, 1290 Oakmead Pkwy, Sunnyvale, CA 94086. Phone (408) 522-8700. FAX (408) 732-2765.

Circle No. 416
$\mathbf{3 0 - M H z}$ Transputer. A $30-\mathrm{MHz}$ version of the IMS T805 Transputer, the T805-G30S, provides a peak performance of 30 MIPS and 4.3 Mflops, 50% greater than the $20-\mathrm{MHz}$ version. This version features an interrupt response time of 630 nsec and average power consumption of 660 mW . The T805 integrates a 32 -bit CPU, a 64 -bit floatingpoint unit, 4-kbytes of memory, a 4Gbyte multiplexed memory bus and four communications links. In an 84-pin
pin-grid array or 100 -pin ceramic flatpack. From $\$ 390$ (500). SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867 6228.

Circle No. 417

Low-power op amps. The OP-282 (dual) and OP-482 (quad) op amps combine precision and moderate speed with low-power operation. Drawing a maximum supply current of $250 \mu \mathrm{~A}$, each amplifier features a unity-gain band-

width of 4 MHz , a slew rate of $7 \mathrm{~V} / \mu \mathrm{sec}$ and a settling time of $1.6 \mu \mathrm{sec}$ to 0.01%. Typical bias current is 3 pA at $25^{\circ} \mathrm{C}$.

Offset voltage is 3 mV for dual units and 4 mV for quad units. OP282 and OP482, $\$ 1.05$ and $\$ 1.72$, respectively, (1000). Analog Devices Inc, PMI Div, 1500 Space Park Dr, Santa Clara, CA 95052. Phone (408) 562-7456.

Circle No. 418

20-MHz floating-point DSP. The ADSP-21020 floating-point DSP features a clock speed of 20 MHz ($50-\mathrm{nsec}$ cycle time). The DSP performs a 1024point complex FFT in 0.96 nsec , three times faster than comparable devices. The DSP, which comes in a 223 -pin pin-grid-array package, is available in commercial (0 to $85^{\circ} \mathrm{C}$) and military (-55 to $+125^{\circ} \mathrm{C}$) temperature grades. From $\$ 198$ (1000). Analog Devices Inc, Box 9106, Norwood, MA 02067. Phone (617) 461-3881.

Circle No. 419

High-resolution audio DAC. Using bit-stream (delta-sigma) technology, the SAA7350 20-bit DAC interfaces with all known digital input formats, including the Sony serial format and the Philips intersound bus. The DAC pro-

For decades, Synchron has been the motor of choice for time keeping and HVAC applications

Hansen stepper motors mee the critical standard medical and computer electronics

Two things matter most in a motors, to precision stepper motors. motor. How fast it turns. And how Hansen motors deliver great
fast it gets turned around. performance, they also For over 80 years, get delivered as namate TURNAROUNDS mem $=$ IURNARUNDS
designing motors for the HVAC, automotive and electronic industries.

Hansen motors are workhorses, from DC motors that deliver up to 18,000 RPMs, to our world renowned Synchron hysteresis

A subsidiary of IMC Magnetics Corp.
P.O. Box 23, Princeton, Indiana 47670-0023 Telephone: (812) 385-3415 Fax: (812) 385-3013

EDN-NEW PRODUCTS

Integrated Circuits

vides a choice of two clock frequencies, which results in internal oversampling factors of 128 or 192 . Connecting the SAA7350's third-order noise-shaper outputs to the companion TDA1547 1bit DAC results in a THD +N of -104 dB (0.0006%), linearity deviation of 0.2 dB , and channel separation of better than 120 dB . The SAA7350 comes in a 44-pin quad flatpack; the TDA1547 comes in a 32 -pin DIP. $\$ 26$ and $\$ 17.50$, respectively, (100). Signetics Co, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2111.

Circle No. 420

Low-cost, 8-bit microcontrollers. Combining a 68 HC 05 CPU with peripherals and memory, the K-series microcontrollers ($\mu \mathrm{Cs}$) offer design flexibility. The 68 HC 05 K 0 adds 32 bytes of RAM, 504 bytes of ROM, a 15 -stage multifunction timer, 10 bidirectional I/O lines, an oscillator, a watchdog timer, and other features. The 68 HC 05 K 1 has all of the common features of the 68 HC 05 K 0 plus 64 bits of personality EPROM, programmed via software. The 68 HC 705 K 1 incorporates all of the features of the other $\mu \mathrm{Cs}, 504$ bytes of one-time-programmable EPROM that replaces the 504 bytes of ROM, and an EPROM mask-option register. 68 HC 05 K 0 , 68 HC 05 K 1 , and $68 \mathrm{HC} 705 \mathrm{~K} 1, \$ 1, \$ 1.50$, and $\$ 2.50$, respectively, $(50,000)$. Motorola Inc, 6501 William Cannon Dr W, Austin, TX 78735. Phone (512) 8912035.

Circle No. 421

High-speed ECL comparators. The MAX905 (single) and MAX906 (dual) edge-triggered, ECL-compatible comparators feature an overdrive-insensitive propagation delay of 2 nsec . Whether the input overdrive is 3 mV or 1 V , the propagation delay does not change. You can clock the comparators at speeds to 500 MHz , and both devices have separate analog and digital power supplies to isolate the noisy digital circuitry from the analog input section. The MAX905 (14-pin) and MAX906 (16-
pin) come in DIPs and SO packages. From $\$ 3.98$ and $\$ 5.98$, respectively, (1000). Maxim Integrated Products, 120 San Gabriel Dr, Sunnyvale, CA 94086. Phone (408) 737-7600.

Circle No. 422

Mixed-signal array. Fabricated in a 32 V process that supports industrial and control applications, the RLDA80 semicustom array combines analog and
digital macrocells on a single chip. The analog macrocells accommodate applications from dc to 1 MHz , and the digital macrocells deliver propagation delays typical of LS TTL logic. RLDA80, in 44-pin ceramic leadless chip carriers and plastic leaded chip carriers, from $\$ 30,000$ (includes layout 10 prototypes and test development). Raytheon Co, Semiconductor Div, 350 Ellis St, Mountain View, CA 94043. Phone (415) 9689211.

Circle No. 423
\qquad

THE 2 C SOLUTION
to your marketing budget blues - the EDN Info Card Pack. At 2¢ per name, the EDN Info Card Pack can reach over 131,172 engineering specifiers affordably.

A Partnership in Power and Prestige Worldwide

UNIVERSAL INPUT SWITCHING POWER SUPPLIES

FEATURING:

- 90-264 VAC (continuous) UNIVERSAL INPUT
- FCC CLASS 'B', VDE 0871 'B' OPTIONAL
- HIGH SURGE CURRENTS ON + 12V OUTPUTS
- PRICE, DELIVERY AND QUALITY

7

WATTS	MODEL NUMBER	OUTPUT 1	OUTPUT 2 (Peak)	OUTPUT 3	SIZE in.
20	UPS20-5002	+5V@1.6A	+12V@1.0A (2.0)		$3.0 \times 4.0^{\prime \prime}$
30	UPS30-4003	+5V @ 1.5A	+12V @ 1.5A (3.0).	-12V @ 0.3A	$5.1 \times 2.8^{\prime \prime}$
40	UPS40-1002	+5V @ 3.0A	+12V@ 2.0A (4.5)		$2.0 \times 7.0^{\prime \prime}$
40	UPS40-2002	+5V @ 3.0A	+12V @ 2.0A (4.5)		$3.0 \times 5.0^{\prime \prime}$
40	UPS40-2003	+5V@3.0A	+12V@ 2.0A (4.0)	-12V@ 0.3A	$3.0 \times 5.0^{\prime \prime}$
50	UPS50-1002	+5V @ 3.0A	+12V @ 3.0A (5.5)		$2.0 \times 7.0^{\prime \prime}$
50	UPS51-2002	+5V @ 4.0A	+12V@3.0A (5.5)		$3.0 \times 5.0^{\prime \prime}$
65	UPS65-1002-X	+5V @ 3.5A	+12V @ 4.0A (7.0)		$3.5 \times 6.0^{\prime \prime}$
65	UPS65-1003	+5V @ 6.0A	+12V@ 2.5A (4.0)	-12V@ 0.5A	$3.5 \times 6.0^{\prime \prime}$

SINGLE AND QUAD OUTPUT MODELS ARE AVAILABLE.

HUTEC
POUER
5Y5TEMS

CALL NOW...
818-341-6123

9301-101 JORDAN AVENUE CHATSWORTH, CA 91311 FAX: 818-341-5726

LOOKING FOR A QUALITY BOARDHOUSE?

ALL YOUR CIRCUIT BOARD NEEDS UNDER ONE ROOF

PCB LAYOUTS

- Backplanes
- Impedance control
- Analog and ECL
- SMT both sides

PCB MANUFACTURING

- 2 Day turn on multi-layers
- Prototype and production
- Gerber Data Review
- Database/Netlist test

TECHNICAL ASSISTANCE

- PCB layout tips
- Mfg cost cutting tips
- Artwork standards
- Gerber Data via modem, 24 hours (714) 970-5015

CALL FOR A QUOTE!

A MANUFACTURING, LAYOUT AND SUPPORT CENTER

4761 E. HUNTER AVE. ANAHEIM, CA. 92807
TEL: (714) 970-2430 FAX: (714) 970-2406

Their way.

Our way.

Here's how to turn a relay with $\mathbf{2}$ changeover contacts into one with 4.

The MT4, our new relay with 4 changeover contacts, hardly occupies more board space than the MT2, our relay with 2 changeover contacts.

So if you need 6 twin changeover contacts on your board, simply install an MT2 and an MT4. Two relays of virtually identical size.

And the expensive space you formerly needed for a third MT2 is now free for other important functions.

Plus: less testing, less component cost, less assembly effort, greater reliability.

What more can you want?
(The new MT4: Power consumption at $20^{\circ} \mathrm{C} 300 \mathrm{~mW}$. Temperature range $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Space occupied per contact $12 \mathrm{M}^{2}$.)

I'm interested in the new MT4 relay. Please send me your literature.

Company

Name \qquad

Address \qquad

Telephone \qquad
EDN 3-16-92
Alcatel STR AG
CH-8055 Zurich/Switzerland, Friesenbergstrasse 75

How to stay ahead in telecommunications design

When you need to keep at the leading edge of telecommunications technology, talk to Ericsson.

Our 100 years of experience in the industry could take months off your system development time and cut the cost and size of your final product. Whether it's a PCM repeater or a complete line card.

Ericsson offers the ultimate in integration for every application. Like customised or semi-standard Complete Line Interface Circuits which only need the addition of relays and line protection. Or regenerative PCM repeaters for 2.048 or $1.544 \mathrm{Mbit} / \mathrm{s}$ lines.

Then there's a comprehensive range of SLICs for PBX and DLC systems, complemented by Central Office versions with on chip regulators. In addition, a SLAC and a range of Line Protection Circuits.

But Ericsson is more than just another component supplier. As a truly international telecommunications company, Ericsson has developed close partnerships with customers in many countries. So the design of our components reflects this by conformance to every major national and international specification. And quality is assured.

The telecommunications world constantly threatens to leave you one step behind. Ericsson can help you stay ahead. Simply call us for more information.

Ericsson Components Inc.

403 International Parkway Richardson TX 75081
Tel: 214-669-9900 Fax: 214-680-1059

Floptical-Disk Drives

- Versions for ISA and Micro Channel Architecture buses
- Provide 21-Mbyte formatted capacity on 3.5-in. media
Four versions of Floptical-diskdrive subsystems are available. The RT3000I and RT3000E connect an internal or an external, respectively, Floptical-disk drive to an ISA bus computer. The RT4000I and RT4000E connect an internal or an external, respectively, Flopti-cal-disk drive to an IBM Micro Channel Architecture computer. The drives have 21 Mbytes of formatted capacity on $3^{1 / 2-i n}$. media. Dual-mode heads can also read and write to standard $1.44-$ Mbyte and 720 -kbyte, $3^{1} / 2$-in. disks. The subsystems include a SCSI host adapter and come with SCSI hard-

disk software and a SCSI tapebackup utility. RT3000I, \$750; RT3000E, $\$ 950$; RT4000I, $\$ 800$; RT4000E, $\$ 1000$.

Rancho Technology Inc, 8632 Archibald Ave, Suite 109, Rancho Cucamonga, CA 91730. Phone (714) 987-3966.
circle No .351

Radio Modem

- Transmits and receives over a 2mi line of sight
- Operates over a 450- to $470-\mathrm{MHz}$ FM band
The Model IC-20 radio modem for wireless LANs has a 2 W transmitter and a receiver sensitivity of 0.5 $\mu \mathrm{V}$, allowing the modem to communicate over a $2-\mathrm{mi}$ line of sight. The unit operates over a 450 - to 470 -

MHz FM band, and it uses Manchester II frequency-shift keying to encode asynchronous data at baud rates from 50 baud to 19.2 kbaud. The modem accepts data from an RS-232C port, assembles the data in packets as large as 128 bytes, and appends a 16 -bit cyclic redundancy check. The transmit and receive response time is less than 2 msec, and the unit polls mobile stations at a 30 -station/sec rate. The modem operates in temperatures ranging from -30 to $+60^{\circ} \mathrm{C}$ and in humidity as high as 90%. FCC Certification No. is GES4BA IC-20. $\$ 1999$ to $\$ 2499$.

Monicor Electronic Corp, 2964 NW 60th St, Fort Lauderdale, FL 33309. Phone (305) 979-1907. FAX (305) 979-2611.

Circle No. 352

PA-RISC μ P Workstations

- Use 35- or 50-MHz PA-RISC CPU
- Grayscale or color options for a 1280×1024-pixel monitor
The Series 9000 Model 705 and 710
are low-end workstations based on HP's PA-RISC μ P. Model 705 has a $35-\mathrm{MHz}$ CPU, 8 Mbytes of RAM, and a 19 -in., 1280×1024-pixel grayscale monitor. Model 710 uses a $50-$ MHz CPU, 16 Mbytes of RAM, an $8-\mathrm{kHz}$ audio channel, and three 8 bit monitor options. The workstations run the HP-UX 8.07 operating system. Model 705 delivers 35 MIPS, 34 SPECmarks, and 8 Mflops. Model 710 delivers 57.9 MIPS, 49.7 SPECmarks, and 12.2 Mflops. Both units have a 32 -kbyte instruction cache, a 64 -kbyte data cache, as much as 840 Mbytes of internal hard-disk capacity, and internal removable media. Model 705, \$4990; Model 710 with 19 -in. 1280×1024-pixel grayscale monitor, $\$ 9490$; with 16 -in., 1024×768 color monitor, $\$ 11,490$; with 19 -in., 1280×1024 color monitor, $\$ 13,900$.

Hewlett-Packard Co, Inquiries, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle №. 353

Computers \& Peripherals

VMEbus MIL-STD-1553 board. The BCU-VME-M 6U VMEbus board has a MIL-STD-1553 interface. It contains $128 \mathrm{k} \times 16$ bits of dual-port RAM for storing control block and message data. Modes of operation include bus controller; multiple-remote-terminal simulation; and concurrent monitor. The unit features error detection; bit-error injection; built-in loopback tests on transmissions; and a programmable time lag having 1- or $64-\mu$ sec resolution. $\$ 5495$. SCI Systems Inc, Box 1000, Huntsville, AL 35807. Phone (205) 882-4569. FAX (205) 882-4652.

Circle No. 354

VMEbus RISC SBC. The RISQengine/ 5 e is a VMEbus single-board computer (SBC) containing a $25-$, $33-$, or $40-\mathrm{MHz}$ R3000 RISC (reduced-instruction-set computer) $\mu \mathrm{P}$. It also contains an 8kbyte instruction cache; a 2 -kbyte data cache; 2,8 , or 32 Mbytes of 2-way interleaved dynamic RAM (DRAM); 256 kbytes of EPROM expandable to 1 Mbyte; two RS-232C ports; a real-time clock; 8 or 32 kbytes of nonvolatile RAM; and three counter/timers. 25MHz board with 2 Mbytes of DRAM
and 256 kbytes of EPROM, from less than $\$ 3000$. RISQ Modular Systems Inc, 39899 Balentine Dr, \#200, Newark, CA 94560. Phone (415) 490-0732. FAX (415) 489-0635.

Circle No. 355

Laser printer. The LZR 1560 laser printer incorporates Adobe System's Postscript Level 2 software. The $400-$ dpi printer handles $11 \times 17-\mathrm{in}$. paper and prints at 15 pages/minute. Models are available with one to three paper trays. Each model has an Appletalk, RS-232C and a Centronics parallel port.

In addition, the printer has a SCSI port to connect a hard-disk drive and you can configure the unit as a network printer. Less than $\$ 6000$. Dataproducts Corp, Box 746, Woodland Hills, CA 91367. Phone (818) 887-8000. FAX (818) 887-4789.

Circle No. 356

Terminal concentrator. The 8/tctp + concentrator connects as many as eight terminals to a host containing one of the company's $8 \times 4 \mathrm{AT}, 8 \times 4 \mathrm{GT}, 8 \times 4 \mathrm{MC}$, or 8×2 adapters. The concentrator has RS-422 or RS-423 ports to communicate with terminals located 2500 ft away. You can connect RS-232C over standard distances. An optional power supply lets you install the concentrator at long distances from the host. $\$ 695$. Corollary Inc, Box 18977, Irvine, CA 92713. Phone (714) 250-4040. FAX (714) $250-$ 4043.

Circle No. 357

MicroVAX memory board. The DCME-576 board provides 4 or 8 Mbytes for DEC's MicroVAX Models 30, 40, 76, and 80 computers. It uses double-sided surface-mount chips on the same form

Computers \& Peripherals

factor as DEC's MS44-AA memory board. The company provides 24 -hour repair or replacement and 24 -hour technical hotline support. 4-Mbyte version, $\$ 780$; 8-Mbyte version, $\$ 1560$. Clearpoint Research Corp, 35 Parkwood Dr, Hopkinton, MA 01748. Phone (508) 4352000. FAX (508) 435-7504.

Circle No. 358

Dot-matrix printer. The NX-2430 24pin dot-matrix printer has a front-panel LCD. It comes with two $5^{1 / 4} / \mathrm{in}$. floppy disks containing utilities and fonts. The printer's 11 resident fonts include nine letter-quality and two draft fonts. You can download 256 font characters to 16 kbytes of RAM. \$399. Star Micronics America Inc, 420 Lexington Ave, Suite 2702, New York, NY 10170. Phone (212) 986-6770. FAX (212) 286-9063.

Circle No. 359

Transputer graphics system. This graphics subsystem comprises three boards for the company's TIP bus. The TIP-VPU/T8 processor board uses a T805 Transputer and 1 or 4 Mbytes of
dynamic RAM. A T400 Transputer serves as the bus controller. The TIPMFG frame grabber captures images from RS-170- or CCIR-compatible CCD (charge-coupled-device) cameras and video recorders. The TIP-CGD colorgraphics display generates 800×600 - or 1280×1024-pixel images. 1 Mbyte TIPVPU/T8, \$4600; TIP-MFG, \$5200; TIPCGD, $\$ 5800$. Parsytec Inc, Bldg 9, Unit 60/61, 245 W Roosevelt Rd, West Chicago, IL 60185. Phone (708) 293-9500.

Circle No. 360

Fax-data modem. The COMstation Five modem sends and receives facsimiles and data for Apple Macintosh computers. It conforms to V. 17 fax/ modem and V. 32 bis data-modem specifications for $14.4-\mathrm{kbps}$ communications. The unit also conforms to V.42, V. 42 bis, and MNP5 CCITT standards for error correction and data compression. The unit runs on the System 7.0 operating system and measures $2 \times 8 \times 5.5 \mathrm{in}$. \$899. PSI Integration Inc, $851 \mathrm{E} \mathrm{Ha-}$ milton Ave, Suite 200, Campbell, CA 95008. Phone (800) 622-1722; (408) 5598544. FAX (408) 559-8548. Circle No. 361

Bar-code reader. The PC-Wedge II reader connects between the keyboard and a DOS-compatible computer. It reads bar-code type automatically in both directions. Bar-code types include Code 39, UPC/EAN, 2 of 5, Codabar, Code 93, Code 11, Code 128, and MSI. Stainless-steel-wand version, $\$ 349$; plastic-wand version, $\$ 289$. Timekeeping Systems Inc, 1306 E 55th St, Cleveland, OH 44103. Phone (216) 361-9995. FAX (216) 361-0030. TWX 650-3183986.

Circle No. 362

Network hub. The BMX45N bandwidth manager provides hub functions for Synchronous Optical Network

less and less and less.

That's ATET "Customerizing."

Smaller, quieter and cooler, our 5 V and 12 V -input board mounted power modules (BMPMs) help you solve today's toughest EDP design problems.

Less volume, less heat

High-density SMT circuitry from AT\&T Bell Laboratories delivers high efficiencies at low input voltages, providing power conservative solutions for such applications as logic, interface functions and battery-based systems like laptops and notebooks. Less PCB space, less noise AT\&T combines power processing and control in an industry-compatible pinout and package as small as $1.1^{\prime \prime} \times 2.00^{\prime \prime} \times 0.55^{\prime \prime}$. Each module includes EMI filtering that meets FCC class $\mathrm{A} B$ requirements, eliminating the need for external filters, giving you a smaller, quieter, more
cost-effective power solution. That's what we mean by "Customerizing."

Less to worry about

Standard features include over-voltage protection, short-circuit current limiting and complete input/ output filtering. And our 10W modules offer a remote on/off option.

5 Watt Power Module Specifications	
Size	$11^{\prime \prime} \times 2^{\prime \prime} \times 0.50$
Efficiency	>70\%
Filtering	FCC Clas
MTBF	>1 Million H
Ambient Temp	Up to $70{ }^{\circ}$

All AT\&T BMPMs are manufactured to meet UL, CSA and TUV safety standards. Available in a range from 0.5 W to 150 W , with $5 \mathrm{~V}-72 \mathrm{~V}$ input voltages,
2 V and higher output voltages. And they come in five industry-standard package sizes.

Call AT\&T Microelectronics for our BMPM 5V/2V brochure: 1800 372-2447, ext. 638. In Canada: 1800 553-2448, ext. 638.

Computers \& Peripherals

(SONET) OC3, Cell-Relay, and Switched Multimegabit Data Service (SMDS) networks. It provides a nonblocking switching matrix, which allows circuits to be switched from one port to another to achieve load balancing. The unit provides SNMP, OSF Motif/X-Windows, and CMIP network management functions. Nonredundant system, from $\$ 42,000$; redundant system, from $\$ 65,000$. T3plus Networking Inc, 2840 San Tomas Expressway, Santa Clara, CA 95051. Phone (408) 727-4545. FAX (408) 727-5151.

Circle No. 363

SCSI bus switches. The SM-90/R can connect as many as 21 SCSI peripherals to a single host computer. You can switch the units manually or automatically under program control. The SM90/12 connects a single SCSI port to one of two SCSI branches. The SM-90/ 13 connects a single SCSI port to one of three SCSI branches. The SM-90/22 connects two SCSI ports to two SCSI branches. From $\$ 3290$. Ancot Corp, 115 Constitution Dr, Menlo Park, CA 94025. Phone (415) 322-5322. FAX (415) 322-0455.

Circle No. 364

Notebook computer. The $20-\mathrm{MHz}$ 80386SX notebook computer has an internal 9600/2400 fax/modem. Standard configuration includes 2 Mbytes of RAM, expandable to 5 Mbytes; an 80Mbyte $2^{1 / 2}$-in. hard-disk drive; and a 1.4Mbyte, $3^{1} / 2$-in. floppy-disk drive. The unit has AMI's BIOS in shadow RAM and a socket for an 80387 coprocessor. The monitor displays 32 gray scales composed of 640×480 pixels. The unit weighs 7.1 lbs , including batteries. $\$ 2395$. Centrix Computer, 15316 Valley Blvd, Industry, CA 91746. Phone (800) 888-9988; (818) 855-2800. Circle No. 365

Macintosh video board. The EyeQ Authoring System contains a video display board for Nubus Macintosh com-
puters. It uses an Intel i750 videoprocessor chip to implement the digital video interactive (DVI) mode. The board compresses and decompresses 30 frame/sec video data to hard-disk format in real time. The media files produced by MacDVI software are compatible with files for DVI implementations on IBM PS/2 and DOS-compatible computers. $\$ 4495$. New Video Corp, 220 Main St, Suite C, Venice, CA 90291. Phone (213) 396-4000. FAX (213) 3960282.

Circle No. 366

Ethernet adapter cards. These two Ethernet adapter cards have an RJ-45 connector for 10Base-T twisted-pair and a DB-15 connector for attached-unitinterface (AUI), coaxial-cable communications. The Model 513 is an 8 -bit ISA bus board, and the Model 515 is a 16 -bit ISA bus board. Novell users can switch to 10Base-T communications using existing software drivers. Model 513, $\$ 295$; Model 515, $\$ 355$. Telebyte Technology Inc, 270 E Pulaski, Greenlawn, NY 11740. Phone (800) 835-3298; (516) 423-3232. FAX (516) 385-8184.

Circle No. 367

Ault, the leader in external power, has slashed delivery times on our already low cost universal input single and multiple output switch mode power supplies. Now the finest in the industry is also the fastest. UL, CSA, TUV approved.

In Conductive Silicone Rubber Keypads, Only One Company Lets You Press All The Buttons.

From total design through subassembly production, Keytek is your one source for conductive rubber keypads. Our domestic plant assures fast turnaround for design and short-run manufacturing. And our overseas facilities assure the best price for high volumes. Call today to learn how we can help you.

[^10]
NEC chip tantalum capacitors

Bigger capacitance. Smaller cases.

Our technology constantly succeeds in putting a given rating in a smaller case. Our popular $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ chip now comes in a B_{2} case measuring $2.8 \times 3.5 \times 1.9 \mathrm{~mm}$. The case size has been reduced by almost 80% since 1983.

NEC's chip tantalum capacitors have three more advantages. One is our lineup - among the broadest in the industry. Another is our production volume - the largest in the world. And the third is reliability - 100\% burn-in.

So if you're looking for the right chip tantalum caps, come to NEC. It's an open-and-shut case.

$\mu \mathrm{F}$	VDC	2.5	4	6.3	10	16	20	25	35	50
0.047									A	
0.068									A	
0.10							A2		A	A
0.15							A2		A	A
0.22							A2		A	B2
0.33							A2		A	B2
0.47							A2	A	A B2 B	B2
0.68						A2	A2 A		A B2 B	C
1.0					A2	A2 A		A	B2 B	C
1.5				A2	A2 A	A	A	B2 B	B2 B C	
2.2			A2	A2 A	A	A	B2 B	B2	B2 B C	D
3.3			A2 A	A	A	A B2 B	B2	B2 B C	$C D$	
4.7		A2	A	A	A B2 B	B2	B2 B C	C	CD2 D	
6.8			A	$A B 2 B$	B2	B2 B C	B2 C	CD2 D	D2 D	
10			A B2 B	A B2	B2 B C	B2 C	$C D_{2}$	D2 D	D	
15		A	A B2	B2 B C	B2 C	C D2	D2 D	D		
22		A	B2 B C	B2 C	C D2 D	D2 D	D2 D			
33		B2	C	C D2 D	D2 D	D2 D	D			
47			C D2 D	D2 D	D2 D	D				
68			D2 D	D2 D	D					
100			D2 D	D						
150			D							

	W		L		H	
A2 case	1.6 mm	.063 inch	3.2 mm	.126 inch	1.2 mm	.039 inch
A case	1.6	.063	3.2	.126	1.6	.063
B2 case	2.8	.110	3.5	.138	1.9	.075
B case	2.6	.102	4.7	.185	2.1	.083
C case	3.2	.126	6.0	.236	2.5	.098
D case	4.3	.169	7.3	.287	2.8	.110
D2 case	4.6	.181	5.8	.228	3.2	.126

CIRCLE NO. 117

For fast answers, call us at:

USA Tel:1-800-632-3531. Fax:1-800-729-9288. Germany Tel:0211-650302. Fax:0211-6503490. The Netherlands Tel:040-445-845. Fax:040-444-580. Sweden Tel:08-753-6020. Fax:08-755-3506. France Tel:1-3067-5800. Fax: 1-3946-3663. Spain Tel:1-504-2787. Fax: 1-504-2860. Italy Tel:02-6709108. Fax:02-66981329. UK Tel:0908-691133. Fax:0908-670290. Ireland Tel:01-6794200. Fax:01-6794081. Hong Kong Tel:755-9008 Fax:796-2404. Taiwan Tel:02-719-2377. Fax:02-719-5951. Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:253-8311. Fax:250-3583. Australia Tel:03-8878012. Fax:03-8878014. Japan Tel:03-3454-1111. Fax:03-3798-6059.

You Design Actel FF You Do APLD. But Th

Use PLD Tools.
You design Actel FPGAs using the same tools as you would a PLD: ABEL,", CUPL,", LOG/iC" ${ }^{\text {² }}$ and PGADesigner." But that's where the similarity ends.

Fast. Fast. Fast.
Our FPGAs are real speed demons. Whatever application you may be working on, our parts will give you the kind of performance you're looking for.

100\% Automatic Place And Route.
Coupled with your PLD tools, Actel's Action Logic" System (ALS) software lets you create your own FPGAs - using a 386 PC or workstation - right at your own desk. With Auto Place and Route that's proven in thousands of applications.

Announcing A Simple Way To Get From PLDs To FPGAs.

If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design techniques, we'd like to change your mind.

First of all, you don't have to give up your existing PLD design tools or Boolean equations. Actel's ALES ${ }^{\text {m }} 1$ program translates the output of PLD
tools like CUPL ${ }^{\text {m }}$ and LOG/iC ${ }^{m}$ into logic optimized for our ACT ${ }^{\text {T }}$ devices. $\mathrm{ABEL}^{\mathrm{m}} 4.0$ includes optimization for Actel devices. Entire FPGA designs can be developed with PGADesigner."'

Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100% automatic place
and route gets you to market fast.

Once your FPGA is designed, our Action Logic ${ }^{\text {m }}$ System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, field-programmable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive Actionprobe ${ }^{*}$ diagnostic tools, give you 100%
observability of internal logic signals. So you don't have to give up testability for convenience.

It's never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44,68 and 84 pin PLCC versions and implementing up to 273 flipflops or up to 546 latches. And the first member of our ACT 2 family, the power-

GAs The SameWay 2Similarity Ends There.

More Flexibility And Capacity.
Designing with Actel FPGAs gives you more freedom than you ever imagined. More gates. More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGAs give you far more gates per square inch. As much as ten times as many as the densest PLDs. That can save a lot of real estate.

More Fun.
Designing Actel FPGAs is so simple that you'll have more time to do the things that made you want to become an engineer in the first place. Or just relaxing. You've earned it.
ful A1280. With 8,000 gates, up to 998 flip-flops, and 140 I/O pins, it's the highest capacity FPGA today. And our A1240-1 is the fastest. In the A1240-1, 16-bit counters run at $75 \mathrm{MHz}, 16$-bit accumulators at 33 MHz . Enough
 capacity and speed to handle almost any application.

The superior speed,
capacity, and auto place and route capabilities of our FPGAs are made possible by Actel's revolutionary PLICE* antifuse programming element. The advanced technology that makes our family of FPGAs an ideal way to unleash your engiThe FPGA Design Guide neering creativity. Call 1-800-228-3532 for your free FPGA Design Guide.

EDN-NEW PRODUCTS

Test \& Measurement Instruments

1-GHz Data-Generator System

- Provides 2-psec edge-placement resolution
- Modular construction allows 20 channels
The mainframe of the 80000 modular system accommodates as many as 20 channels. Most data generators don't provide the degree of control over signal attributes that pulse generators do; however, this data generator offers 2 -psec edgeplacement resolution, 10 to 90% transition times in $<200 \mathrm{psec}$, and output levels variable to 2.5 V p-p into 50Ω with an error of $<3 \%$. The user interface is based on a touchsensitive, windowed color display. 4-channel system, $\$ 30,100$; 20-channel system, $\$ 77,400$. Delivery, six weeks ARO.
Hewlett-Packard Co, Inquiries, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 368

Inductance-CapacitanceImpedance Meter

- Measures at 201 frequencies from 40 Hz to 100 kHz
- Provides fine signal-level adjustment from 10 mV to 1.1 V
The $33304^{1 / 2}$-digit instrument, in addition to voltage and current, measures inductance, capacitance, resistance, impedance magnitude, quality and dissipation factors, equivalent series resistance, conductance, reactance, and phase angle. It controls sorting and binning
of parts and allows programming from its front panel or via an IEEE488 interface. To simulate components' actual operating conditions closely, the unit lets you choose 201 operating frequencies from 40 Hz to 100 kHz , and lets you set the test voltage in increments as small as 1 mV from 10 mV to 1.1 V . $\$ 4590$. Delivery, eight weeks ARO.

Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (800) 552-1115; (216) 2480400. FAX (216) 248-6168.

Circle No. 369

MS-Windows Software

Standard For Data Acquisition

- Standardizes interface between programs and functions
- Allows hardware upgrades without changes to applications
DT-Open Layers software provides
standard ways for MS-Windowsbased data-acquisition application programs to interface with libraries of functions and with instruments. Applications that follow the standards will support new hardware and functional extensions without recompilation. Copies of the standards are free of charge; 1.0 versions of data-acquisition and signalprocessing libraries include Global Lab Data Acquisition software, \$1495; Global Lab Image software, \$1995; data-acquisition library, free with purchase of the firm's dataacquisition hardware, otherwise $\$ 95$; image library, $\$ 1995$. Users of Global Lab V2.1, which does not support Windows, will receive a $\$ 500$ credit when they upgrade to the Windows-compliant version.
Data Translation Inc, 100 Locke Dr, Marlborough, MA 01752. Phone (508) 481-3700.

Circle No. 370

There is a far side to the world of oscilloscopes, a place filled with all sorts of bizarre characters. Like those who swear you need digital, for the sole reason that digital is all they wish to sell. Then there's the gang
that wants to push nothing but analog. Luckily, there's also a place called Tektronix. Where they manufacture a complete line of analog and digital scopes. Making them uniquely qualified to provide you with a more honest assessment of your needs. With anyone else, you could be hearing only half the story. For complete information

on the full line of Tektronix analog and digital oscilloscopes, get in touch with a Tek representative today.

PC-board test systems. Three systems meet the challenges of what the vendor calls RCT (reduced-contact testing). The 576-channel L323RCT and L353RCT, and the 1152 -channel L357RCT test at clock rates to 40 MHz , perform combinational (functional and in-circuit) testing, and provide deeper pattern memory than traditional board testers. The systems use VXIbus modules to implement analog functions. The L323RCT is smaller and less expensive than ear-
lier systems. Depending on the model, $\$ 400,000$ to approximately $\$ 1$ million. Teradyne Inc, 321 Harrison Ave, MS L-57, Boston, MA 02118. Phone (617) 422-3567. FAX (617) 422-3440.

Circle No. 371

Trouble-shooting aid for pc boards.

The 9110 FT isolates faults to the component level by using emulative functional and stimulus routines and a sin-

gle-point probe. Among the test techniques the unit uses are signature analysis, logic-level detection, frequency and event counting, and pulsing. From $\$ 13,000$; typically less than $\$ 20,000$. Delivery, six weeks ARO. John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (800) 4435853.

Circle No. 372
Philips Test and Measurement, Bldg TQ III-4, 5600MD Eindhoven, The Netherlands. Phone local office.

Circle No. 373

Universal IC programmers. Systems 1040 (40 channels, $\$ 2995$) and 1084 (84 channels, $\$ 3995$) are universal IC programmers using a DAC per pin. They accommodate center-ground-pin devices without needing adapters. The programmers interface to the host PC via the parallel-printer port. This arrangement combines the advantages of PC hosting with fast downloading and simplifies moving the programmer from PC to PC. Stag Microsystems Inc, 1600 Wyatt Dr, Santa Clara, CA 95054. Phone (800) 227-8836; (408) 988-1118. TWX 910-339-9607.

Circle No. 374

Tester for digital communications
links. With the $\$ 2280$ E1 option, the PF-45 analyzer can drop (separate for analysis) 2.048-Mbit/sec Europeanstandard channels from a $44.736-\mathrm{Mbit} /$ sec signal. Data-link option, $\$ 2090$; software upgrades to existing PF-45s (for example, to sound an alarm on a bit error), $\$ 800$. Wandel and Goltermann Inc, 2200 Gateway Center Blvd, Morrisville, NC 27560. Phone (800) 3466332.

Circle No. 375

PC-based emulator for $\mathbf{6 8 H C} 16 \mathbf{s}$ and 68300s. The Emul16/300-PC consists of an ISA bus plug-in emulator board, a 5 - ft twisted-pair cable, a pod board, and an optional trace board. The pod board includes 1 Mbyte of breakpoint RAM; the emulator board con-

EDN-NEW PRODUCTS

Test \& Measurement Instruments
tains 1 Mbyte of shadow RAM. The mulator does not slow $\mu \mathrm{P}$ operation. You can connect the unit to the target board by clipping onto the processor, plugging the emulator into a socket you substitute for the $\mu \mathrm{P}$, or soldering the emulator cable in place of the μ P. $\$ 1995$. Nohau Corp, 51 E Campbell Ave, Campbell, CA 95008. Phone (408) 8661820. FAX (408) 378-7869. Circle No. 376

PC-based SCSI-bus analyzer. The PED-4572 is a daughter card for the vendor's SCSI bus analyzer. It inreases the analyzer's speed and permits tracing signals as brief as 20 nsec ($\%$ of the nominal minimum duration of signals on the bus). Configuration software lets the daughter card work with unshielded single-ended or differential $50-\mathrm{pin}$ connectors. \$995, including software. Pacific Electro Data Inc, 14 Hughes, Irvine, CA 92718. Phone (800) 676-2468; (714) 770-3244. FAX (714) 770-7281.

Circle No. 377

Memory-IC test systems. The J997, optimized for use in engineering and for wafer probing, runs at speeds to 200 MHz and exhibits an overall timing inaccuracy of 300 psec. It can test as many as 32 devices in parallel on two test stations. The corresponding specs for the J994, a model optimized for final test of packaged ICs, are $120 \mathrm{MHz}, 500$ psec, and 64 devices. Both models accommodate devices that store as much as 1 Gbit each. Teradyne Inc, 30801 Agoura Rd, Agoura Hills, CA 91301. Phone (818) 991-2900. FAX (818) 7072805.

Circle No. 378

1-MHz to $\mathbf{1 - G H z}$ spectrum ana-

 lyzer. The P-7802 displays center frequencies with $\pm 1 \%$ error and 1% resolution. It measures amplitudes from 15 to $129 \mathrm{~dB} \mu \mathrm{~V}$ with 70 dB of dynamic range. The ac-powered unit weighs 25 lb. $\$ 3500$. Protek, Box 59, Norwood, NJ 07648. Phone (201) 767-7242. FAX (201) 767-7343.Circle No. 379

Digital audio interface. The Proport Model 656 self-contained unit enables PCs and workstations to record studioquality 2 -channel audio via 16 -bit oversampling ADCs. You can select sampling rates from 5 to 96 k samples $/ \mathrm{sec}$. The passband response is flat within $\pm 0.1 \mathrm{~dB}$ from 20 Hz to 40 kHz . Interpolating reconstruction filters provide 20 bit output signals that, via DACs, drive balanced, low-impedance line drivers. $\$ 1595$. Ariel Corp, 433 River Rd, High-

land Park, NJ 08904. Phone (908) 2492900. FAX (908) 249-2123. FAX (908) 249-2123. TLX 4997279. Circle No. 380

Zilog Intelligent Peripherals

Get Smart. Fast.

Zilog's Z 80^{\circledR} MPU Family: It's the smartest way to add impressive performance and innovation without having to spend time learning and writing new code.

It's little wonder the Z80 8-bit MPU is the world's most popular 8-bit microprocessor. It's the only CPU with an architecture that makes task switching so fast, simple and accurate. In fact the Z80 outperforms many 16bit parts. And that makes it especially valuable as the core for the wide range of Superintegration ${ }^{\text {TM }}$ devices that make up the industry's leading family of intelligent peripheral controllers.

So if you're looking for a way to upgrade an existing design, or for the extra performance you need for some-

[^11] © 1991, Zilog, Inc.
thing entirely new, the smart move is to look to the Z80 MPU family. You'll find the combinations of features that will give you just what you need, including the highperformance Z181, ${ }^{\text {TM }}$ Zilog's Smart Access (SAC ${ }^{\text {TM }}$) Controller. And best of all, since you're already familiar with the Z 80 code, the migration path couldn't be quicker.

Others may choose to concentrate on highly complex solutions for workstation and PC environments. But we think the wiser strategy is to go on developing high . integration, value added 8 - and 16 -bit solutions for the intelligent peripherals, datacommunication and consumer microcontrollers markets. At the same time, we're continuing to develop 32 -bit RISC and DSP devices and to produce some of the most sophisticated ASSPs in the industry.

Now you can and not get

Introducing new RISC System/6000 POWERstations

If you're interested in open systems but don't want to suffer the slings and arrows of outrageous prices, IBM is about to hit you where you live. The RISC System $/ 6000^{\text {w }}$ POWERstation 220 gives you more wallop for your money, while delivering a hefty 25.9 SPECmarks." That's compared to the SUN IPC's ${ }^{\text {s" }} 13.4$ SPECmarks and the DEC5000 $\mathrm{s}^{\text {m" }} 17.8$.

Model	Entry Grayscale Workstation**	Entry 8-bit Color Workstationt
IBM 220W	$\$ 7,185$	$\$ 9,995$
HP 705/710	$\$ 8,415$	$\$ 14,065$

Scientists see stars. CASE users can start with a grayscale workstation with a paging disk for just $\$ 7,185$. If it's CAD clout you're after, you can get a workstation specially outfitted for mechanical design-with 2D color graphics and
 400 MB of fixed disk storage-for only $\$ 9,995$. All models in the POWERstation 220 series come with two expansion

[^12]
get more clout, clobbered.

and POWERservers that pack more punch for less.

slots and upgradable components. And industrystandard memory upgrades and add-ons for both are affordable, so growing won't be a pain.

Striking a blow for business. The POWERserver 220 is great for commercial UNIX ${ }^{\circledR}$ solutions, too. You can configure it as a commercial server, to give your business the speed, muscle and openness of UNIX, for only $\$ 9,715$. And the POWERserver 220 is as expandable as all our other models.
machines, configure your network and integrate all your systems, whether they're made by IBM or not. And IBM Credit Corporation has flexible financing packages to meet your needs. Get hit with the details. Call your IBM marketing representative or Business Partner. For literature, call 1800 IBM-6676, ext. 769*

And, for those who decide to shop for UNIX solutions elsewhere, a word of advice. Duck.

IBM is in your corner. Nobody else delivers the knockout support of IBM. An IBM customer engineer can install your

Somewhere in the world a Sanyo battery is bein "designed-in" to a high performance application

Right now.

Industry leaders select industry leaders.
CADNICA. In 1964 Sanyo's proprietary technology led to a breakthrough battery that withstands continuous overcharging and overdischarging...the sealed, rechargeable nickel cadmium Cadnica.
LITHIUM. Sanyo developed the technology for manganese dioxide compounds to be used in Lithium batteries which produced a cell with high voltage and high energy density characteristics.

CADNICA EXTRA

Sanyo's Cadnica E series incorporates high-density electrode plates in a new concept design for 40% greater capacity than conventional batteries and 1 -hour charge capability via Sanyo's $-\Delta \mathrm{V}$ voltage sensor changing method
SOLAR. Sanyo leads the development of solar cells with the application of amorphous silicon for physical flexibility and the ability to be fabricated into large-area cells.

For specification and design assistance please contact
your regional Sanyo sales office at the following address:
SANYO Energy (U.S.A.) Corporation In Florida: (904) 376-6711
2001 Sanyo Avenue
In Illinois: (312) 595-5600
San Diego, California 92173
(619) 661-6620

SANYO Energy (USA) Corporation

EDN-NEw PRODUCTS

Components \& Power Supplies

General-Purpose Transponder

- Has an address range of 1 to 255
- Measures $8 \times 15 \mathrm{~mm}$

The 3135 general-purpose transponder connects to a 2 -wire parallel multiplex bus on one side and to a sensor/contact on the other side. It provides identification to each sensor connected on the bus as well as continuous supervision for reporting failure in normal operation. Key specifications include an address range of 1 to 255 , operating voltage of 5 to 15 V , and a current drain of $25 \mu \mathrm{~A}$ typ. The transponder measures $8 \times 15 \mathrm{~mm}$ and operates over a -25 to $+70^{\circ} \mathrm{C}$ range. It provides nonvolatile memory for address storage if desired. $\$ 6.95$.

Tracer Electronics Inc, 200 Broadacres Dr, Bloomfield, NJ 07003. Phone (201) 338-1234. FAX (201) 338-1125.

Circle No. 424

DC/DC Converters For

Battery-powered Applications

- Available in surface-mount packages
- Available in adjustable and fixed versions
LT1110 and LT1111 de/dc converters are available in adjustable versions and in fixed 5 and 12 V models. The devices are housed in either 8pin DIPs or 8-lead SO surfacemount packages. The LT1110 operates from a 1 V input, and the LT1111 requires a 2 V input. Both devices operate in step-up, step-
down, or inverting mode. The 1111 delivers 5 V at 100 mA from a 2-cell input; the 1110 delivers 5 V at 150 mA from the same input level. The 1110-12 also generates a 12 V output. Both units also contain lowbattery detector circuitry. In 8-pin DIPs: LT1110, \$3.15; LT1111, \$2.40 (100); in SO-8 packages: LT1110, $\$ 3.60$; LT1111, $\$ 2.80$ (more than 100).

Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 432-1900, ext 359. FAX (408) 434-0507. Circle No. 425

LCD Module

- Fits in a keyswitch cap
- Features 864 pixels

The D880 LCD module integrates a low-power graphics LCD, which utilizes super-twist technology with a custom IC driver and multicolor backlighting. The entire unit fits in the key cap of an spst momentarycontact switch, which measures ap-
proximately $1 \mathrm{in}^{2}$. The display consists of 864 pixels configured in a 24×36 matrix that provides fullscreen graphics. Using a 5×7 font, the display has an 18-character capability- 3 lines $\times 6$ characters. You can change the red and green backlighting by reversing the 5 V

applied to the LED terminals. Amber is obtained by using an ac voltage across the LED terminals. $\$ 37.50$ (250).

C Itoh Technology Inc, Box 19657, Irvine, CA 92713. Phone (800) 347-2484, ext 4529. FAX (714) 757-4423.

Circle No. 426

Components \& Power Supplies

Surface-mount dc/dc converters.

 NME Series converters are surfacemount, single-output units. They accept 5 V inputs and deliver outputs of 5,9 , 12 , or 15 V . The units feature 1000 V dc isolation, 80% max efficiency, and a -50 to $+85^{\circ} \mathrm{C}$ operating range. $\$ 19.50$; less than $\$ 10$ (OEM qty). Delivery, six to eight weeks ARO. International Power Sources Inc, 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 8817434. FAX (508) 879-8669. Circle №. 427

Why Do So Many Engineers Specify Keeper II ${ }^{\circ}$ Lithium Batteries?

At Eagle-Picher, we don't think you should have to compromise valuable circuit board space simply because some battery manufacturer elected to make round batteries.
Electronic circuit board "real estate" is becoming increasingly valuable. Consequently, engineers are faced with more complex decisions regarding their back-up power source. Keeper II's unique prismatic configuration provides effective utilization of board space with maximum energy density characteristics.
Packaged the way circuit board components were meant to be, the Keeper II has been proven highly dependable in stand-by power applications where years of reliable memory back-up is required. Eagle-Picher manufactures 100% of the Keeper products in the USA.
So, no matter what your power requirements are, count on Eagle-Picher. Because Board Space Is Too Valuable To Waste.

ELECTRONICS DIVISION
Box $130 \cdot$ Bethel Road • Seneca, MO 64865
Phone: 417-776-2256•TWX: 62864271•FAX: 417-776-2257

Dielectric filters. Series 4DF surfacemount dielectric filters have center frequencies ranging from 800 to 2500 MHz . The units are available in 2 - and 3-pole versions. They offer low loss perform-ance- 2 dB max for 2 -pole versions. The 2 - and 3-pole units measure $12.5 \times$ $14.5 \times 5 \mathrm{~mm}$ and $17.5 \times 14.5 \times 5 \mathrm{~mm}$, respectively. From $\$ 6$ (100). Toko America Inc, 1250 Feehanville Dr, Mount Prospect, IL 60056. Phone (708) 297-0070. FAX (708) 699-7864.

Circle No. 428

3-terminal power MOSFET. The BUK101-50 3-pin power MOSFET provides integrated short-circuit, overtemperature, and overvoltage protection. Housed in a TO-220 package, the device can be driven directly from conventional FET driver circuitry. All the protection circuitry is powered from the control input allowing the unit to achieve a $25^{\circ} \mathrm{C}$ off-state $\mathrm{I}_{1><}$ rating of 1 $\mu \mathrm{A}$ for a V_{15} voltage of 12 V .3 gld $(50,000)$. Delivery, eight weeks ARO. Philips Semiconductors, 5600 MD , Eindhoven, The Netherlands. Phone 31 40722091 . FAX 3140724825.

Circle No. 429

DC/DC converter. The PKA 2411 40W converter is designed for 24 V systems. It provides 5 V at 8 A at 80% efficiency. The unit uses convection cooling and operates over a -45 to $+65^{\circ} \mathrm{C}$ range. Isolation is 500 V dc. $\$ 105$ (100). Ericsson Components Inc, 4031 International Pkwy, Richardson, TX 75081. Phone (214) 997-6561. FAX (214) 680-1059.

Circle No. 430

Ovenized oscillator. The 250-0504 ovenized crystal oscillator has phasenoise figures ranging from -100 dBc at 1 Hz to -160 dBc at 10 kHz . The unit develops a $7-\mathrm{dBm}$ output level, operates from a supply of 11 to 15 V , and has a stability of 1.5×10^{-1} over -30 to $+70^{\circ} \mathrm{C}$. Aging per year is $3 \times 10 . \$ 355$ (1 to 1000). QK Genware Corp, 2 New Pasture Rd, Newburyport, MA 01950. Phone (508) 465-6064. FAX (508) 4656637.

Circle No. 431

Noise-blocking triacs. BT139H Series triacs feature a built-in trigger threshold of 10 mA to eliminate tendencies for the devices to be triggered by noise impulses. They are available with blocking-voltage ratings of 500,600 , or 800 V . The units have a $10 \mathrm{~V} / \mu \mathrm{sec}$ com-

Serious Performance

Workstations and The Design Center ${ }_{\text {m }}$

Engineers have been realizing the power of their workstations with MicroSim's popular PSpice simulator for five years. Now, that power, performance, and much more are available with the Design Center - the universal design environment.

The Design Center capabilities are masterfully integrated to simplify your circuit design projects from conception through verification. It is cost effective, robust, easy to install and use. The SPICE algorithms have been enhanced for rapid and accurate answers.
The OpenWindows schematic capture program serves as the starting point for your design process. The graphical waveform analyzer provides a straightforward, interactive mechanism for evaluating your analog and digital simulation results. The PSpice mixed analog/digital simulator has no performance compromises;
digital components are processed at logic simulation speeds, and the analog response is calculated with the usual accuracy of PSpice.
Features such as analog behavioral modeling, Monte Carlo analysis, and digital worst case timing are standard. You can add your own models, or create new versions of our models.

All this adds up to serious performance. The Design Center is powerful because it is an integrated design environment. MicroSim pioneered the use of sophisticated CAE tools on desktop computers. We remain the most successful vendor in this market, with over 15,000 production programs in use - for designs from DC through microwave frequencies, and power supplies to integrated circuits.

For further information on using the Design Center to harness the power of your workstations, call toll free (800) 245-3022 or FAX at (714) 455-0554.

MicroSim Corporation

So many interconnection choices.

 the right solution for your semiconductor and board to board interconnection needs.Augat is providing real solutions to interconnecting today's Industry Standard Microprocessors with our extensive line of PGA and PLCC Sockets. We offer an enhanced metal latch SIMM Socket that allows easy insertion and extraction of the varied SIMM Module configurations that are available.

Augat's patented PAI Contact Technology in our LGA socket, grants your requests for innovation by providing a real world solution to interconnecting the new LGA packages. This technology is the basis for our newly introduced MEZCON line (mezzanine board connector), which solves the typical problems associated with interconnecting parallel stacked boards on a high density grid.

If your board to board needs are more in-line with Industry Standard Bus Structures, Augat's . 100 inch centerline cardedge (PC, XT, AT-style), our . 050 inch centerline cardedge (MCA Style), and our DIN family of connectors, are value oriented solutions for today's motherboard to daughterboard interconnections.

When you look to Augat for solutions, we provide you with experience, technology and quality that maximizes your value and satisfies your needs.

One solution.

Components \& Power Supplies

mutating voltage for a commutated current of $7.2 \mathrm{~A} / \mathrm{msec}$ and a peak current rating of 140 A . The triacs are housed in TO-220 packages. $\$ 0.75$ (1000). Delivery, four to six weeks ARO. Philips Components, 2001 W Blue Heron Blvd, Riviera Beach, FL 33404. Phone (800) 447-3762.

Circle No. 432

Power supplies. LT-GPIB Series supplies provide outputs as high as 60 V at currents ranging to 500 A . They feature 3-phase input ranges of 187 to 265 , 340 to 455 , and 430 to 530 V ac. The units operate in both constant-current and constant-voltage modes with automatic crossover. $\$ 3745$ to $\$ 3938$ (25). Lambda Electronics Inc, 515 Broad Hollow Rd, Melville, NY 11747. Phone (516) 694-4200.

Circle No. 433

Precision termination. Model 6003 is a 50Ω SMA female termination. It is designed for de to $18-\mathrm{GHz}$ applications and has a $1.2: 1$ max VSWR. The unit has a $1 W$ average power-handling capability at $25^{\circ} \mathrm{C}$ and is made of passivated stainless steel. The contact is gold plated. $\$ 29.95$. Pasternack Enterprises, Box 16759, Irvine, CA 92713. Phone (714) 261-1920. Circle No. 434

SCSI adapters. These units are designed to interconnect SCSI I and SCSI II devices. They are fully EMI shielded and are available with both bail-lock and jackscrew fixtures. The adapters conform to all applicable ANSI standards and FCC specifications. From $\$ 20$ (1000). Honda Connectors, 960 Corporate Woods Pkwy, Vernon Hills, IL 60061. Phone (708) 913-9566.

Circle No. 435

DC/DC converter. The CPS873 device features three outputs- 5 V at 13.5 A , and $\pm 12 \mathrm{~V}$ at 0.5 A . Standard devices operate on a 28 V input. The unit is con-
duction cooled. Regulation is 0.4%, and operating range spans -40 to $+85^{\circ} \mathrm{C}$. Approximately $\$ 700$ (OEM qty). Delivery, stock to 12 weeks ARO. Custom Power Systems Inc, 33 Comac Loop, Ronkonkoma, NY 11779. Phone (516) 467-5328.

Circle No. 436

Crimp-style connector. The Type VR insulation-displacement-style connector can be daisy chained or end con-
nected to accommodate various powersupply circuits. It is available in versions having 2 to 15 positions with pins on $0.156-\mathrm{in}$. centers. The connector is color coded for AWG wire sizes from \#26 to \#18. Contacts are rated for 7A at 250 V ac or dc. From $\$ 0.04$ to $\$ 0.25$ (OEM qty). JST Corp, 1200 Business Center Dr, Suite 400, Mount Prospect, IL 60056. Phone (800) 947-1110; (708) 803-3300. FAX (708) 803-4918.

Circle No. 437

Alphanumeric and graphics display. The M1000 display combines AlGaAs LEDs, multiple-character fonts, and graphics capability in an extruded NEMA 12 enclosure. Simple escape commands control all display functions. Six different fonts provide 2 - to 4.5 -in. characters that are easily read from $200-\mathrm{ft}$ distances. Users can mix any of the fonts to the limits of 402 -in. characters or $104.5-\mathrm{in}$. characters. $\$ 1650$. Vorne Industries Inc, 5831

Each technological terrain has its most prominent landmark

The DSP landscape is dotted with vendors offering products and promises. But only one vendor has loomed large from the very beginning.
Atlanta Signal Processors' pioneering DSP experience dates back to 1969. In 1982, ASPI began creating leading-edge DSP design tools and established itself as the DSP workstation source.
Today, ASPI continues to cast the longest shadow across the DSP market. ASPI products support the entire range of TI and Motorola DSP processors. Banshee, Vortex, ${ }^{\text {TM }}$ Cheetah ${ }^{\text {TM }}$ and DFDP3/plus are our principal product lines. They represent the industry's most significant advancements in DSP development, from 83 MFLOPS processing to simple, intuitive filter design. A variety of daughter boards adds extended features such as expanded memory, A-D/D-A conversion, and multiprocessor capability.
As a serious DSP craftsman, you can use this arsenal of design tools to lead the pack in today's emerging technologies - robotics, speech coding, image processing, etc. And, with new products continuously in development at ASPI, you can take the high ground in tomorrow's DSP landscape as well. Call now for detailed product specifications and pricing.

Northwest Hwy, Chicago, IL 60631, Phone (312) 775-9440. FAX (312) 775: 3854.

Girde No. 438

Sockets. Series 654-SMO plastic-leaded-chip-carrier sockets accept MO47 and MO-52 devices with $0.05-\mathrm{in}$. pin spacings. The surface mount units are available in $20-, 28-, 32-44-52$ -, $68-$, and 84 -pin versions. The units have a $0.173-\mathrm{in}$. mounted profile and feature PPS insulators, which have an open design to facilitate solder-joint inspection. $\$ 2.53$. Andon Electronics Corp, 4 Court Dr, Lincoln, RI 02865. Phone (401) 333-0388. FAX (401) 333-0287.

Circle No. 439

Power supplies. LZ Series 1000 W supplies feature EMI compliance to FCC Class B and VDE 0871B. They feature an autoselectable 85 to 132 V or 187 to 265 V input and operate over a -30 to $+71^{\circ} \mathrm{C}$ range. The units feature a power-fail alarm, inverter-good indicator, and overtemperature protection. The supplies are UL, CSA, TUV, and SELV compliant. From $\$ 1025$ (25). Lambda Electronics Inc, 515 Broad Hollow Rd, Melville, NY 11747. Phone (516) 694-4200.

Circle No. 440

Hygristor. The Veco hygristor features a -90 to $+50^{\circ} \mathrm{C}$ operating range. Relative humidity ranges span 0 to 100%. and the nominal time constant is 2 sec . Available in sizes as small as $0.25 \times 0.25 \mathrm{in}$. square and disks of 0.375 in. in diameter, the unit is comes in leaded or unleaded versions. Resistance values of 4 to $20 \mathrm{k} \Omega$ are available. From $\$ 6$ (1000). Delivery, six to eight weeks ARO. Victory Engineering, Victory Rd, Springfield, NJ 07081. Phone (201) 379-5900. FAX (201) 379-5982.

Circle No. 441

Box-header connectors. Constructed of glass-filled polyester with a UL $94 \mathrm{~V}-0$ rating, the NFHL and NFHLR Series box-header connectors feature phosphor bronze contacts plated with $12 \mu \mathrm{in}$. of gold in the contact area and $100 \mu \mathrm{in}$. of tin lead in the tail area. The contacts are rated for 0.5 A . Dielectric voltage is 500 V ac, and insulation resiso tance measures $10 \Omega \mathrm{~min}$. Approxio mately $\$ 0.08 /$ contact (1000) for the NFHL header. Circuit Assembly Corp, 18 Thomas St, Irvine, CA 92718. Phone (714) 855-7887. FAX (714) 850-4298,

Circle No. 442

Were breaking new ground BY MAKING IT EASY TO PUT SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.
You're already a big believer in the performance and connectibility of SCSI. But you're also digging around for an uncomplicated way to design-in SCSI to your AT motherboard. Well. ..Eureka! Now with Adaptec's new AIC-6260, you've just hit pay dirt.

After all, it makes a lot of sense that a single-chip solution is easier to design-in than multiple chip packages. They're also more reliable. And take up less real estate. Plus, since we've built the AT bus in, designing SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest
possible time. That's because industry-standard, Adaptec-developed SCSI software drivers and BIOS are ready and available. For all major peripherals under all major operating systems. All this, and a complete design-in package, too. Which means, you can now afford to design the performance and connectivity of SCSI in your system as a standard feature.

So step on it. And call us at 1-800-227-1817, ext. 52 today. We think you're going to really dig it.

adaptec. inc.

adaptec

When you're serious about SCSI.

Super Silicon

Roseville, 1992.

Field of champions.

If there were a championship Bowl for semiconductors, they'd have to play it in Roseville, California. Our new six-inch wafer fab line is longer than two football fields end-to-end.

With a total of 676,000 square feet, Roseville is the largest semiconductor manufacturing facility in America. And, this advanced 0.6 micron line is capable of astonishing DRAM production trillions of bytes per month.

We've spent $\$ 600$ million to bring world-class IC manufacturing closer to you. No other Japanese semiconductor maker has invested as heavily in America.

FUTABA

Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules

CUSTOM DESIGN

Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color
 graphic panels.

TECHNICAL SUPPORT

Futaba engineers have a broad range of application experience including automotive, point of sale, appliance, medical, and instrumentation products. They are ready to assist you in optimizing your display system design.

U.S. MANUFACTURING

Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the North American market.

QUALITY

Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.

Appliance Control Display.

711 E. State Parkway
Schaumburg, IL 60173
708-884-1444
FAX 708-884-1635

EDN-NEW PRODUCTS

CAE \& Software Development Tools

Software Development System

- Compiles code for multiple target processors
- Runs on DOS-based personal computers
The Isil 4.0 Development System compiles C, assembly, and a proprietary high-level language that offers features more typical of assembly into a wide range of target processors. The compiler produces optimized code for 80386,8051 , 8096, 6801/3, HC05, HC11, HC16, 32000, COPS, Z8, Z80, Z180, and

Super8 processors. The system uses subexpression elimination, variable preservation, and loop optimization to produce dense, fast code. Among the features of the proprietary language are 10 parameter-passing modes. The language also simplifies programming loops, byte indexing, and stack access. The software comes with a 30 -day money-back return option. From approximately $\$ 250$.

Eris Systems Inc, 2301 Newton Ave S, Minneapolis, MN 55405. Phone (612) 374-2967. Circle No. 381

32-bit extender for MS-Windows.
Ezwin32 allows the company's numeric data-processing (NDP) Fortran, C, C ++ , and Pascal compilers to take advantage of MS-Windows' enhanced mode. The compilers cost $\$ 595$ each and include one year of upgrades. Compiler owners can purchase the Ezwin upgrade for $\$ 395$. Micro Way, Box 79, Kingston, MA 02364. Phone (508) 7467341. FAX (508) 746-4678. Circle No. 382

Project-management software.

CIM/AIT (Concurrent Information Management/Action Item Tracking) manages and tracks projects and activities. The software runs on PCs, Macs, workstations, minicomputers, and mainframes. From $\$ 290$ for single-user licenses on a networked PC. CIMware Technologies Inc, 3031 E LaJolla St, Anaheim, CA 92806. Phone (714) 6661200. FAX (714) 666-0400. Circle No. 383

SCSI programming interface software. The SCSI Software Developer's Kit simplifies programming for the Advanced SCSI Programming Interface (ASPI). The kit contains a copy of the ASPI specification, programming guides for DOS, OS/2, and Netware, a DOS/ASPI interface to test device drivers, and an exerciser program. $\$ 150$. Adaptec, Inc, 691 S Milpitas Blvd, Milpitas, CA 95035. Phone (408) 945-6761.

Circle No. 384

32-Bit Extender. Aimax-Plus/Pro is a DOS Extender for the vendor's man-machine-interface control and dataacquisition software. The software pro-
vides 4 Gbytes of linear addressing and permits accessing parameters with process controllers. From $\$ 4500$. TA Engineering Co Inc, 1605 School St, Moraga, CA 94556. Phone (510) 3768500. FAX (510) 376-4977. Circle No. 385

Data-management system. Tekbase is a data-management system designed for scientists and engineers who work with large amounts of technical data. It is suited for applications in the aerospace, automotive, telecommunications, and semiconductor industries. Users can create applications based on Motif or Open Look. From $\$ 4875 /$ seat for 4-user system. Leading Technology Inc, 6 New England Executive Park, Suite 400, Burlington, MA 01803. Phone (617) 229-8686.

Circle No. 386

Prolog Runtime Generator. The Quintas Prolog Runtime Generator moves Quintas Prolog applications from Unix and VAX workstations to DOS 386/486 computers. The supplier charges no runtime fees for the ported applications. The software includes a basic development system, a Prolog compiler, and a link editor. $\$ 4000$. Quintas Corp, 2100 Geng Rd, Suite 101, Palo Alto, CA 94303. Phone (415) 813-3800. FAX (415) 494-7608.

Circle No. 387

OOP for Windows. Version 2.0 of Knowledgepro Windows, an objectoriented programming (OOP) environment, adds visual design tools, simplified access to dynamic-link libraries, and support for Windows multimedia

Analog Circuit Design: Art, Science, Personalities Jim Williams, Linear Technology Corp., Editor

24 masters of analog circuit design share their experience in this comprehensive and useful guide to analog theory and applications.
June 1991 352pp. cloth
$0750691662 £ 30.00$

Based on the EDN Series -- 20\% New Material!
 Troubleshooting Analog Circuits Robert A. Pease, National Semiconductor

Don't understand analog troubleshooting? Relax. Bob Pease does. Expanding on his popular series in EDN, this book includes all of Bob's battle-tested methods, advice, and step-by-step procedures.
June 1991 208pp. cloth 99 illus. $0750691840 £ 19.95$

The best of EDN
 Electronic Circuits, Systems \& Standards Edited by lan Hickman

Ian Hickman has collected and filed EDN articles from the last 15 years, selected his favorites, and cross-referenced and indexed them.
April 1991 256pp. cloth 200 illus. $0750600683 £ 20.00$

BUTTERWORTH-HEINEMANN

The EDN Series for
 Design Engineers

Order from:
Reed Book Services Ltd. Special Sales Department P.O. Box 5, Rushden Northants. NN10 9YZ U.K.

To order by phone:
TEL. 093358521
FAX 093350284

400 MOPS FOR $6 U$ VMEbus SYSTEMS

This 6 U VMEbus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP features a private 32 -bit, 20 MHz highspeed data $/ / O$ bus and extensive double buffering for continuous processing of real-time data. An additional 32 -bit complex output provides phase/magnitude data. The a66540 is available in 25 MHz and 40 MHz versions. A single 40 MHz version can execute a 1 K point FFT in 132.7μ s and a 64 K point FFT in 13.1 ms . These times are nearly halved for real input. Multiple FDaPs can be cascaded to achieve almost linear improvement in FFT performance. Plug 400 MOPs into your system by calling array Microsystems' Hotline: 719-540-7999.

CORNERTURN PROVIDES QUANTUM LEAP

 IN 2D IMAGE PROCESSING PERFORMANCEThe a66545 Cornerturn ${ }^{\text {TM }}$ board, used in conjunction with the a66540 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256×256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 $\times 512$ images, the board set transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging, radar, sonar, machine vision, and other real-time 2D image processing applications, the board set features performance of 400 MOPS at a clock rate of up to 40 MHz . The Cornerturn accepts 32 -bit complex I/O data through 10 MHz doublebuffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers. For technical assistance, call array Microsystems' Hotline: 719-540-7999.

SOFTWARE DEVELOPMENT TOOLS LAST LINK IN COMPLETE SYSTEM SOLUTION

arrayso ${ }^{f_{f_{R}}}$, a complete DSP software development system supporting array Microsystems' a66 Family of Products, provides a menu driven user interface allowing easy access to a suite of powerful developmenttools at the click of a mouse. This development system features a $\mathrm{DaSP} / \mathrm{PaC}$ code generator, assembler, disassembler, window generator, full DaSP/PaC program control, on-screen display of data, and board-level diagnostics. For technical information or original program assistance, call array Microsystems' Hotline: 719-540-7999.

THE DaSP/PaC CHIPSET:
The heart of the world's fastest DSP product family
The Digital array Signal Processor (DaSP) executes 16 high-level instructions, including FFT butterflies, windowing, complex multiplies, and general-purpose functions. The Programmable array Controller (PaC) manages the entire system, including address generation for the DaSP and memory, and $/ / O$ up to 80 MHz . Using a single chipset, for example, a 1024 point FFT requires only 12 instructions and can execute in only $131 \mu \mathrm{sec}$; a complex FIR filter, using 28 instructions, processes at a 2.3 MHz rate. For even higher performance, you can cascade the chipset. Both utilize a 144 -pin PGA format and are available in 30 and 40 MHz versions. To receive complete technical information, call array Microsystems' Hotline: 719-540-7999.

PC-FDaP PERFORMS 250 MOPS!

The a66550 Frequency Domain array Processor (FDaP) brings high performance FFT processing to any PC-AT compatible computer. The two board set will fit into two full size PC-AT slots, operate on the 16 bit PC-AT (ISA) bus, and allow real or complex input from either the high speed connectors on the back panel or from the PCAT bus. The FDaP accommodates an optional complex I-and-Q to magnitude-and-phase converter for post-FFT processing. Available in two memory configurations, the a66550 handles complex FFTs up to 32 K points and real FFTs up to 64 K points. The a66550 can compute a 1024 point complex FFT in just $210 \mu \mathrm{~s}$. For complete technical information, call array Microsystems' Hotline: 719-540-7999.

extensions. You can point and click to select from a library of objects and then drop them into a window, specify their size, and choose fonts, colors, and styles. Multimedia support covers CDROM and stereo sound. \$249. Knowledge Garden Inc, Stony Brook Technology Center, 12-8 Technology Dr, Setuaket, NY 11733. Phone (516) 2465400. FAX (516) 246-5452. Circle No. 388

Solder-process analyzer. PCB Soldersim is a simulation tool for analyzing the preheating, soldering, and curing operations of a pe-board soldering process. It can help you avoid problems such as cold solder joints, solder starvation, poor wetting, board warpage, and interconnect cracking. Boards to be simulated must have been previously analyzed with the supplier's PCB Explorer product. PCB Soldersim, $\$ 10,000$; PCB Explorer, $\$ 20,000$ to $\$ 30,000$. Pacific Numerix, 1200 Prospect St, Suite 300, La Jolla, CA 92037. Phone (619) 587-0500. FAX (619) 4594031.

Circle No. 389

ASIC-design software. The ASIC Navigator Design System links your graphical ASIC system specification to system design tools by generating behavioral VHDL (VHSIC Hardware Description Language). Simulation of the specification at the behavioral level allows design changes and debugging to occur early in the design process. The package is suited for two types of users: the ASIC end user who is part of a product-design team in a systems house and the application-specific standard product designer. From $\$ 100,000$. Compass Design Automation, Inquiry Dept 231, 200 Parkside Dr, San Fernando, CA 91340. Phone (408) 433-4880. FAX (408) 434-7820.

Circle No. 390

GUI development tool. The Teleuse development tool for graphical-user interfaces (GUIs) is now available on the Hewlett-Packard $9000 / 700$ family of workstations and servers. The software is a user-interface management system for interactive development of user interfaces based on OSF/Motif. By letting you paint a static user interface with a WYSIWYG approach, it avoids manually coding calls to the X-Window System or OSF/Motif. Including OSF/ Motif, $\$ 7500$. Telesoft, 5959 Cornerstone Ct W, San Diego, CA 92121. Phone (619) 457-2700. FAX (619) 4521334. TLX 855300.

Circle No. 391

Object-oriented libraries. CVDORS (Developers Open-Resource Software) consists of a set of objectoriented software libraries which provides access to the supplier's CADDS-5, an integrated wire frame, surfaces, and solid-geometric modeler. You can also use the product independently of CADDS-5. The product is available on SPARC-based computers. Development license, $\$ 50,000$; OEM runtime licenses, $\$ 1000$ to $\$ 2500 /$ seat. Computervision, 100 Crosby Dr, Bedford, MA 01730. Phone (617) 275-1800.

Circle No. 392

Imaging library. The T-Base Version 3 software library lets you add pictures and document images to database applications written in $\mathrm{C}, \mathrm{C}++$, and most Xbase dialects. It works with any image in the PCX file format. The package includes Chromatools, a color manipulation and image-conversion utility. It works with Super VGA, VGA, EGA, CGA, and monochrome displays and with HP Laserjet II and III printers. $\$ 495$. Videotex Systems Inc, 8499 Greenville Ave, Suite 205, Dallas, TX 75231. Phone (800) 888-4336; (214) 3434500. FAX (214) 348-3821. Circle No. 393

RS-232C data trapper. Easydata helps eliminate manual data entry. While your program is running in the foreground, it traps incoming RS-232C data and fools your program into thinking that the data is coming from the keyboard. The package is compatible with any software that allows manual data entry. \$145. Labtronics Inc, 2C-95 Crimea St, Guelph, ON, Canada N1H 2Y6. Phone (519) 767-1061. Circle No. 394

Metric shareware. Metric-X utility helps you convert between English and metric units. It features drop-down menus from which you can select any of 10 categories and 138 units of measure. It meets ANSI/IEEE Standard 268-1982 for accuracy. The program runs on DOS systems and comes with a comprehensive user's manual. Singleuser registration, \$15. Orion Development Co, Box 2323, Merrifield, VA 22116. Phone (800) 992-8170.

Circle No. 395

FPGA design kits. These two design kits allow FPGA device models from Actel and Xilinx to run in the Dazix EDA environment for device- and
board-level-design analysis, simulation, and test. Additional tools in the environment assist in board, hybrid, and multichip-module design, analysis, layout, and manufacturing. The kits are available as part of the latest Dazix Gemini software release. Each kit, \$2500. Dazix, 1 Madison Industrial Park, Huntsville, AL 35894. Phone (205) 730-2000.

Circle No. 396

ASIC-design translators. The Ikos Compass tool kit lets users of design tools from Compass Design Automation migrate their designs to Ikos systems for high-speed hardware-assisted simulation. It runs on workstations from Sun and HP/Apollo and supports the Compass Navigator series of ASIC design tools. The Ikos hardware-assisted simulators can simulate as many as 1.2 million gates at speeds as high as 75 million events per second. Tool kit, $\$ 10,000$. Ikos Systems Inc, 145 N Wolfe Rd, Sunnyvale, CA 94086. Phone (408) 2451900. FAX (408) 245-6219. Circle No. 397

OCR software tool kit. The Textpert Developer's Tool kit lets you put opti-cal-character-recognition capabilities into your software applications. The package comes in versions for Macintosh Systems 6 and 7, MS-DOS, OS/2, and Microsoft Windows. It works with numerous scanners. Tool kit with one runtime license, $\$ 495$. CTA Inc, 25 Science Park, New Haven, CT 06511. Phone (203) 786-5828. Circle No. 398

Database-design tool. DB Designer helps you design and reverse engineer relational databases. It also assists in migrating nonrelational files and databases to Oracle Corp's Oracle database and IBM's DB2 database. The tool runs on IBM PS/2 and compatible computers under the OS/2 operating system. From approximately $\$ 20,000$. Cadre Technologies Inc, 222 Richmond St, Providence, RI 02903. Phone (401) 351-5950.

Circle No. 399

Project-management software. Primavera 5.0 is a DOS-based program that combines scheduling; resource allocation and leveling; cost control; custom reporting; and presentation graphics. The software allows for multiproject control. Software licenses, $\$ 4000$. Primavera Systems Inc, 2 Bala Plaza, Bala Cynwyd, PA 19004. Phone (215) 6678600.

Circle No. 400

Bar-code software. Mac-Barcode Version 2.0 lets Macintosh users design bar codes for labels. This Version 2.0 supports the UCC/EAN 128 application identifiers and the bar codes of Version 1.1: 128, 39, interleaved 2 of 5 , Codabar, UPC/EAN, 93, and 11. The software comes with templates for Avery laserprinter labels. \$199. Data Capture Institute, Box 1625, Duxbury, MA 02331. Phone (800) 733-7592; (617) 934-7585.

Circle No. 401

Data-analysis tool. Muse lets users interactively analyze complex data. By combining features of spreadsheets and relational database managers, it helps you answer questions about your data. It also has graphics capabilities. $\$ 695$. Occam Research Corp, 42 Pleasant St, Watertown, MA 02172. Phone (617) 9233545. FAX (617) 926-3262. Circle No. 402

Design and drafting tool. Version 6.0 of Generic CADD enhances the compatibility of that product with AutoCAD. It directly loads any 2D (.DWG) file for review, editing, print-
ing, and plotting. The software comes with matching AutoCAD Release 11 fonts and hatch patterns. \$495. Autodesk Retail Products, 11911 North Creek Pkwy S, Bothell, WA 98011. Phone (206) 487-2233. Circle No. 403

Employee-evaluation software.

The Employee Evaluator and Salary Manager, version 3.0 is a tool to standardize review and appraisal of employees. This network version provides centralized control of criteria, salary, and performance. Software, \$590; standalone version, $\$ 195$. Hi Tech Enterprises, 857 Taylor St, \#5, Monterey, CA 93940. Phone (800) 437-1222; (408) 373-5117.

Circle No. 404

Microcode development system.

This user-retargetable microcode development system lets you create high-level-language compilers and other software development tools for any microprogrammable architecture. Microcode tools include a macropreprocessor, C compiler, peephole optimizer, code converter and compactor, retargetable mi-
crocode assembler, linker, object librarian, and vertical-operations level simulator. The system is available for MSDOS and for Unix on 386 -based and Sun workstations. $\$ 3495$ to $\$ 4995$. Archelon Inc, 460 Forestlawn Rd, Waterloo, ON, Canada N2K 2J6. Phone (519) 746-7925.

Circle No. 405

PC diagnostic software. The Microscope diagnostic software package lets you format-at low level-any IDE hard-disk drive. It can repair IDE drives that have been incorrectly formatted so you don't have to return them to the factory. It runs under DOS, Novell, OS/2, Unix, Xenix, Pick, PC MOS, C.DOS, and other systems. \$449. Micro 2000 Inc, 1100 E Broadway, 3rd Fl, Glendale, CA 91205. Phone (818) 5470125.

Circle No. 406

Multiprocessing operating system. OS/MP 4.1 A .2 is a symmetric multiprocessing operating system that has been tuned for database performance. The software, fully compatible with SunOS, will be offered at no cost

The CEO wants to know when it will be finished.

The staff wants to know when they can start.

As a project manager, you've seen it all before. Everyone who needs to know, all too often, needs to know something different. Which is why there's new Microsoft Project version 3.0 for Windows." It not only makes it easy to present

things the way they want, but also lets you plan things the way you want.

Now you can enter and view data in a variety of ways-Gantts, tables, graphs, forms and more. Microsoft Project also has a customizable Toolbar,", giving you access
to existing customers under their maintenance agreements. Solbourne Computer Inc, 1900 Pike Rd, Longmont, CO 80501. Phone (303) 772-3400. FAX (303) 772-3646.

Circle No. 407

Expert troubleshooting develop-

 ment tools. Testbench contains the Testbuilder and Testview development and delivery tools. Where the development tool creates and maintains knowledge bases, the delivery tool provides diagnostic assistance to field engineers. A client/server capability lets you embed the software in your applications. Optional modules link the software to existing knowledge bases and generate reports. From approximately $\$ 33,000$. Carnegie Group Inc, 5 PPG Pl, Pittsburgh, PA 15222. Phone (412) 642-6900. FAX (412) 642-6906.Circle №. 408

Help-system aid. Robohelp assists you in writing help systems for applications that run under Windows. It lets you concentrate on the content of your help system rather than on the Windows help compiler's source-code for-
mat. It generates source code for indexes, topics, keywords, categories, defined terms, pop-up definitions, bit maps, cross references, and hypertext links. $\$ 495$. Blue Sky Software Corp, 7486 La Jolla Blvd, Suite 3, La Jolla, CA 92037. Phone (800) 677-4946; (619) 459-6365. FAX (619) 459-6366.

Circle No. 409

Pascal compiler. Version 2.0 of FS:pascal is a protected-mode Pascal compiler that generates native 32 -bit code. It does away with the 64 -kbyte segment-size limit of real-mode programs and allows variables and arrays to be as large as available RAM. The compiler is compatible with Turbo Pascal; it runs on 80386- and 80486-based computers under MS-DOS versions 3.0 and higher. \$149.95. Frontier Software, 66-22 Fleet St, Suite 2C, Forest Hills, NY 11375. Phone (800) 934-3732; (718) 520-4197.

Circle No. 410

MAP software. MicroMAP, an implementation of the ISO/IEEE Manufacturing Automation Protocol (MAP),
allows communication on the factory floor among computers from multiple vendors. This release works simultaneously with Ethernet and token-ring bus interfaces and also improves the communications stack's performance. It runs on the supplier's Deltaseries 3000 and 4000 computers. $\$ 1250$. Motorola Inc, Computer Group, 2900 S Diablo Way, Tempe, AZ 85282. Phone (800) 234-4863.

Circle No. 411

Connectivity software for Windows 3. Dynacomm/Elite APPC is a program-to-program communications software tool that generates transaction programs. These programs can communicate on a peer-to-peer basis with transaction programs on other computers. Featuring a nonlanguage-specific application programming interface (API) based on IBM's OS/2 API, you can generate programs using any language offering Windows Dynamic Link Library calling. Stand-alone pricing, from $\$ 495$. Network Software Associates, 39 Argonaut, Laguna Hills, CA 92656. Phone (800) 352-3270; (714) 7684013. FAX (714) 768-5049. Circle No. 412

The controller wants to know how much it will cost.

Wewant to know what you're waiting for.

to the functions you use most with a click of the mouse. While PlanningWizards give you online assistance to help develop plans.

What's more, new Microsoft Project has WYSIWYG and Multi-Page Print Preview, so plan on visiting the printer less.

For your upgrade or the name of a reseller, call (800) 541-1261, Dept. X18. You'll satisfy a lot more people. Including yourself.

KEPCO
 DIGITAL POWER CONTROLLERS

Choose your tools carefully for the work at hand. Choose a single unit ATE power supply and drive it with an SN digital analog interface to translate GPIB commands to useful voltage and current. Or choose a multiple-unit TMAMAT system and drive up to 27 independent voltages and currents from a single GPIB address. Get full status monitoring and read back of actual values.

dc, unipolar power

\square Listen only, GPIB
$\square 12$ bit control, 0-6V to 0-325V, unipolar dc
\square Power: 50W, 100W, 250W, 500W, 1000W
\square Control one, four or eight units, analog drive
Kepco Group SN/ATE Power Supplies
dc, bipolar power
\square Listen only, GPIB
$\square 12$ bit control, $\pm 20 \mathrm{~V}$ to $\pm 200 \mathrm{~V}$, bipolar dc
\square Power: 100W, 200W, 400W
\square Single unit, self-contained
Kepco Group BIT/BOP Power Supplies

dc, unipolar power

\square Listen, talk-verify, GPIB
$\square 12$ bit control, $0-6 \mathrm{~V}$ to $0-325 \mathrm{~V}$, unipolar dc
\square Power: 50W, 100W, 250W, 500W, 1000W
\square Control one to sixteen units, analog drive Kepco Group TLD/ATE Power Supplies

dc (selectable polarity) power

\square Talk-listen, GPIB, full read back of both voltage and current
$\square 12$ bit control, $0-6 \mathrm{~V}$ to $0-150 \mathrm{~V}$ unipolar dc with polarity selection \square Power: 360W, 720W, 1080W \square 1-27 unit control, digital (bit-bus) drive Kepco Group TMA/MAT Power Supplies

software controller

\square Talk-listen on bit-bus
\square Control up to 27 power supplies (Kepco type MAT)
\square Plugs directly into DOS computer

ac power

\square Talk-listen, GPIB
$\square 12$ bit amplitude and frequency control,
$0-125 \mathrm{~V}$ ac, $47-2000 \mathrm{~Hz}$ ac power
$\square 1 \mathrm{KVA}$ to 18 KVA
\square Expandable to 90KVA
Kepco Group RGB/BOP Power Supplies

SEE OUR PAGES IN VOLUME D
eem

Call/fax/write to Dept. MCF-12 for any of our three catalogs.

Single Signal Interconnects -high performance in a subminiature package

Meritec's economical 1×2 and 1×3 Single Signal Interconnects (SSITM), are engineered to match application requirements for controlled impedance and propagation rate while minimizing crosstalk. A spring latch connects the termination to the housing or to Meritec's Single Signal Carrier Systems (SSCTM), which allow grouped interfacing with single, dual or triple row headers. Precision, high strength molded terminations provide reliability in critical applications. Boxed contacts with thermo resistance

welding provide the ultimate in electrical continuity.

Digital and analog interconnectsystems that maximize board density and budget.

If you need speed and performance in a digital or analog interconnect system but have a limited budget, turn to Meritec. Meritec digital and analog interconnect systems are designed to meet the requirements of electrically sensitive applications using high speed CMOS, ECL or GaAs logic Our systems are engineered to provide controlled impedance and propagation delay while minimizing crosstalk. You get ship to stock quality, backed up with technical service and applications support. All at a cost that's well in line with tight project budgets.
For more information and free literature on the complete line of Meritec digital and analog interconnect systems, call 216-354-3148.

11 MERITEC

Where quality assures performance
1359 West Jackson Street P.O. BOX 8003 Painesville, Ohio 44077 Phone: 216-354-3148 FAX: 216-354-0509

96 Position DIN Cable Assembly

- Impedance matched
- Programmed grounds and signals
Meritec's impedance matched 96 Position DIN Cable Assemblies feature an internal PCB which allows programming of grounds and signals to customer specifications. The high speed, low noise controlled impedance assemblies are designed for TTL fast and fast CMOS logic. Standard impedances are available from 50 to 120 ohms using low dielectric FEP cable to ensure less propagation delay. EMI/RFI electrical shielding is optional. Signal and ground wires are mass solder terminated to the PCB. Insert molded strain relief provides high reliability in critical applications.

CIRCLE NO. 169

Impedance matched PCB Solderable Interconnects

- Solders directly to the PCB
- Low profile

Meritec's PCB Solderable Interconnects can be soldered directly to the PCB for a permanent connection. Pin lengths of $.110^{\prime \prime}$ and .160 " are available for different board thicknesses. The impedance matched connectors feature precision, high strength molded terminations for reliability in critical applications. Available in 1×2 and 1×3 configurations, the connectors are side-to-side stackable and feature heights as low as .150 " from the PCB, making them ideal for dense package applications. The connectors can be terminated to a variety of different cable styles.

CIRCLE NO. 170

When your production is on the line, your supplier's promises of support shouldn't require a leap of faith.

With GE Plastics, the only leaps you need to make are in your imagination.

We know the success of our business depends on the day-to-day success of your business. That's why we've committed complete resources in seven cities nationwide to help our customers make the most
productive use of our engineering resins.
More than just traditional troubleshooting, we're ready to provide world-leading technological capabilities in application development, material selection, processing automation and productivity enhancement.

We offer you the benefit of the most advanced materials, processes, hardware and software, backed by the best brains in the business.

How Important Is Reliable Technical Support?

If you've got a promising new application, count on our experience to help you make it fly. Call (800) 845-0600.

GE Plastics

USER-FRIENDLY ASIC SUPPORT AT YOUR FINGERTIPS

Local Resources Speed ASIC Design Cycle

-1asy access to ASIC support means fast design cycles - and fast time to market. Oki's East and West Coast design centers offer the local, comprehensive ASIC resources you need for quick turnaround times.

With Oki, you work in a userfriendly environment equipped with state-of-the-art workstations, industry-standard CAD tools, advanced software support, and an experienced staff. We provide leading-edge $0.8 \mu \mathrm{~m}$ sea-of-gate, standard cell, and 3 -volt technology. Plus we assign a task team to your project, ensuring a steady communications link and a speedy, successful design flow.

For easy access to complete, local ASIC design support, call 1-800-OKI-6388 today. To receive Oki's ASIC Capabilities Brochure, ask for Package 057.

Oki ASIC Design Tool Support for $0.8 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, \& 1.2 \mu \mathrm{~m}$

Vendor	Platform	Operating System/Application
Cadence	Sun/Solbourne	Verilog: Simulation, fault grading, design verification
DAZIX	Sun	Design capture, simulation
IKOS	IKOS	Simulation, fault grading
Mentor	HP/Apollo	Design capture, simulation
Graphics	Sun/Solbourne	Parade: Layout, clock and timing structures
Synopsys	Sun-4	Design synthesis, test synthesis
	Interface to Mentor, Valid, Viewlogic	
Valid	Sun/Solbourne	Design capture, simulation
	DECstation 3100	Design check
	IBM RS6000	GED, ValidSIM, RapidSIM
VIEWlogic	Sun-4	Design capture, simulation
	PC386	Design check

Test-and-measurement-interface

 handbook. The Instrument Communication Handbook describes interfaces used for test-and-measurement applications. It focuses on the IEEE-488 and IEEE-488.2 standards and evaluates the RS-232C, RS-422, RS-485, and VXI standards. Topics include SCSI, SCPI (standard commands for programmable instruments), and local-area networking using Ethernet. $\$ 14.95$. (Free to qualified requesters.) IOtech Inc, 25971 Cannon Rd, Cleveland, OH 44146.INQUIRE DIRECT

Instrumentation-amplifier guide.

The Instrumentation Amplifier Application Guide explains instrumentation amplifiers in medical instrumentation, audio, data acquisition, and high-speed signal conditioning. The $44-\mathrm{pg}$ guide's three sections cover basic instrumenta-tion-amplifier theory, designing instrumentation amplifiers, and instrumenta-tion-amplifier applications. The guide also contains an introduction to operating this type of amplifier and application notes. It provides two appendices. The first appendix reviews specifications such as operating conditions, gain, gain
range, and nonlinearity. The second appendix provides an instrumentationamplifier selection chart. Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Circle No. 443

Encyclopedia of hard drives. The Hard Drive Encyclopedia is a reference work covering PC-compatible hard drives; it comes with a disk full of utilities. The 3 -ring binder holds almost 600
pages, covering ST506, ESDI, IDE, and five other types of interface specifications. The listings present controller parameters, hard-disk parameters, and manufacturers. More than 1600 models are listed by manufacturer. $\$ 89$ plus shipping. Annabooks, 12145 Alta Carmel Ct, Suite 250-262, San Diego, CA 92128. Phone (800) 462-1042; (619) 271-9526. FAX (619) 592-0061.

INQUIRE DIRECT

EMI-measurement publication. This revised edition of the News Special, totaling approximately 120 pages and entitled Measuring EMI and wanted signals, surveys electromagnetic compatibility measurement technology. It describes test receivers and interferencemeasurement systems and peripherals. Articles deal with current standards, regulations, and measurement procedures, as well as those that will be adopted in the European Community in 1992. Evaluations from 17 users report on their applications of the vendor's instruments for signal strength and interference measurements. Rohde \& Schwarz, Mühldorfstr 15, 8000 Munich 80, Germany.

Circle No. 444

NO 80C186eb

DARE TO COMPARE!

Compare our new SBX-C186EB to ANY Single Board Computer on ANY bus. Our new Powerful, Expandable, Inexpensive, Easy to Program Single Board Computer was designed to eliminate expensive and complicated Bus systems. All of the basic functions needed for most embedded applications are on-board. Additional I/O expansion is provided by four on-board iSBX ports which may be used to accommodate any of the iSBX modules currently available.

HARDWARE FEATURES

* 16-Bit 80C186Eb Up To 16 MHz
* On-Board 80C187 Co-Processor
* 8570 Real Time Clock
* Four 8/16-Bit iSBX Expansion Ports
* Watch Dog Timer And Power Fail Detect
* Two Serial Ports (RS-232/422/485)
* 10 Year Lithium Battery For RTC And RAM
* Up To 512K Of EPROM/FLASH EPROM
* Up To 512K Of Battery Backed Static RAM
* 32 Parallel I/O Lines With Open-Collectors
* Five 16-Bit Interrupt Timers
* Program Controlled Dip-Switch And LED's
* Available In -40 to +85 C Temperature Range

SOFTWARE FEATURES

* On-Board FLASH EPROM Programming
* Borland Turbo C++ Fully Supported
* Borland Turbo Debugger Supported
* I/O Driver Library Provided Free
* Demo Programs Provided Free
* No Software Royalities
* No DOS Required

Catalog of CATV products. This 28pg catalog presents CATV (communityantenna TV) products, including 18 new drop cables and fiber-optic Supertrunk cables. The cable-to-connector cross reference highlights PPC F-connectors and Gilbert and LRC connectors. The CATV technical section features shield effectiveness. Cooper Industries, Belden Div, Box 1980, Richmond, IN 47375. Phone (800) 235-3364.

Circle No. 445

Data-acquisition-products brochure. This $4-\mathrm{pg}$ brochure describes Microsoft Windows 3.0-compatible DataLink Libraries for data-acquisition and instrument control. The products covered in the publication consist of NIDAQ, NI-488.2, and NI-VXI Windows software drivers. Applications for these products encompass laboratory automation, data acquisition, process monitoring and control, physiological monitoring, personal instrumentation, and automated testing. National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730.

Circle No. 446

Embedded software standards. The Guide to Embedded Software Standards is part of an applications-guide series for developing embedded systems. This set of ground rules for programmers of 8 - and 16 -bit embedded systems is essentially a pro forma document that even very small companies can use. Softaid Inc, 8300 Guilford Rd, Columbia, MD 21046. Phone (800) 4338812; (301) 290-7760. FAX (301) 3813253.

Circle No. 447

Demonstration program. Labwindows 2.0 demonstration program provides an overview of the Labwindows 2.0 software development system for
programming C and Basic data-acquisition and instrument-control applications. National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in US and Canada, (800) 433-3488; (512) 794-0100. FAX (512) 794-8411.

Circle No. 448

Catalog of development tools. This $76-\mathrm{pg}$ catalog is divided into eight sections. The first five sections present development tools for series x86 $\mu \mathrm{Ps}$;

MCS-51 microcontrollers ($\mu \mathrm{Cs}$); MCS$96 \mu \mathrm{Cs}$; i $960 \mu \mathrm{Ps}$; and i $860 \mu \mathrm{Ps}$. The three remaining sections deal with service and support, reference, and resources. Each product section furnishes a development cycle for the products described within the section. Intel Corp, Development Tools Operation, 5200 NE Elam Young Pkwy, MS JF115, Hillsboro, OR 97124. Phone (800) 874-6835. FAX (503) 696-4633

Circle No. 449
Text continued on pg 206

CIRCLE NO. 135

Are you depending on a plastic latch to maintain your data I/O connection integrity?

Better think twice.

Twice, because only the Molex SEMCONN ${ }^{m}$ I/O interconnect system features two points of contact, rather than just one.

This two point contact system helps "lock" the connection, and maintain it through vibration as well as other demanding applications.

Take a look at the SEMCONN system and you'll see that its positive locking plugs are constructed of a rugged, clear $94 \mathrm{~V}-\mathrm{O}$ polycarbonate that allows for easy verification of wire color code before termination.

The result is one extremely durable and reliable connection you can depend on.

If you've been relying on a plastic latch to secure your data I/O connection, make it a point to contact Molex today for more information on the advanced SEMCONN.

Bringing People \& Technology Together, Worldwide ${ }^{\text {sm }}$

CIRCLE NO. 115

Optically Coupled Rotary Encoder Switches From Grayhill

OUTPERFORM AND Outlast
 Electromechanicals But Don't OUTCOST Them!

Use affordable Grayhill Series 61 Switches to

- Move an icon on a display
- Select menu items, ranges, limits
- Set radio frequency, drill depth, RPM, etc.
- Activate data entry with integral pushbutton

Bulletin 508 describes 16 and 32 detent position Grayhill Series 61 switches with 2 Bit Quadrature Code Output and million-cycle reliability. Ask for your free copy.

561 Hillgrove Avenue, P.O. Box 10373 LaGrange, Illinois 60525-0373 USA Phone: (708) 354-1040 FAX: (708) 354-2820 TLX or TWX: 190254 GRAYHILL LAGE

Combined catalog and application handbook. This 1992 catalog and application handbook provides a set of application notes on data-acquisition products. The notes discuss topics such as comparisons of program control, program interrupt, and DMA; gain and system resolution; how to select a highresolution A/D board; and signal-conditioning solutions and techniques. ADAC Corp, 70 Tower Office Park, Woburn, MA 01801. Phone (800) 648-6589; (617) 935-6668. FAX (617) 938-6553.

Circle No. 450

Catalog of nuclear-research instruments. The 368-pg Research Instrumentation Catalog, summarizes a product line and presents technical data sheets and specifications, application notes, and ordering information. The introductory tutorial deals with research instrumentation and has a glossary of technical terms. Products covered in the publication include instruments in VME, CAMAC, and Fastbus formats. LeCroy, 700 Chestnut Ridge Rd , Chestnut Ridge, NY 10977.

Circle No. 451

Newsletter of MIL-STD-1553 products. This 4-pg newsletter describes boards, transformers, and development software that meet the requirements of MIL-STD-1553. It features a question-and-answer column and an application note. The newsletter also publishes related information, such as the opening of a manufacturing faciiity in Ireland, which will export products to the European market, the US, and the Far East. ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600. FAX (516) 567-7358. TWX 310-685-2203.

Circle No. 452

FM SERIES MODUFLEX SWITCHERS WITH 0.99 POWER FACTOR

SINE WAVE CURRENT

HARMONICS MEET IEC 555-2
1-7 OUTPUTS, 600-2000 WATTS
MODELS FOR VME, VXI, FUTUREbus, etc.
120 kHz. MOSFET DESIGN

UNIVERSAL INPUT

OUTPUTS REGULATED \& FLOATING

MEET UL, CSA, TUV/VDE

Call Toll Free 1-800-523-2332 In PA: 215/699-9261

OUTPUT LOCATIONS

12	\#1 M5			
24	\#1 M4	\#2		
26	\#1 M 4	\#2		
30	\#1	\#2	\#3	
36	\#1	\#2	\#3	
48	\#1 M3	\#2	\#3	$\begin{aligned} & \text { \#4 } \\ & \text { K } \end{aligned}$
56	$\begin{aligned} & \# 1 \\ & \text { M3 } \end{aligned}$	\#2	$\begin{aligned} & \text { \#3 } \\ & \mathrm{K} \end{aligned}$	$\begin{aligned} & \# 5 \mathrm{~J} \\ & \# 4 \mathrm{~J} \end{aligned}$
64	$\begin{gathered} \hline \# 1 \\ \text { M3 } \end{gathered}$	$\begin{gathered} \# 2 \\ \mathrm{~K} \end{gathered}$	\#6 J	\#5 J
72	$\begin{aligned} & \text { \#1 } \\ & \text { M3 } \end{aligned}$	\#7 J	\#6 J	\#5 J

61 | AC | | | |
| :---: | :---: | :---: | :---: |
| | \#5 J | \#6 J | \#2 |
| $\# 1$ | | | |
| | $\# 4 \mathrm{~J}$ | $\# 3 \mathrm{~J}$ | G | M 6 c

2000 Watt FM Configurations

FM SERIES DIMENSIONS

DESCRIPTION

Moduflex switchers form a comprehensive line of open frame power supplies assembled from standard "off the shelf" modules. These subunits and assembly hardware are pre-approved by safety agencies so that
certifications can automatically apply to custom models. Additional advantages include first piece delivery within two weeks and the elimination of engineering costs for qualified "OEM" requirements using stock modules.

FM Series are corrected to produce a 0.99 power factor. The resultant input current waveform is nearly a perfect sine wave compliant to the harmonic requirements of IEC 555-2.

Modular construction permits high volume manufacturing with an outstanding quality level and at competitive cost.

FEATURES

0.99 power factor.

5 watts per cubic inch.
600-2000 watts output.
120 kilohertz design.
TUV/VDE, UL, CSA.
All outputs:
Adjustable
Fully regulated
Floating
Overload and short circuit proof Overvoltage protected
Standard features include:
System inhibit
Fan output

MODEL SELECTION

Input modules are available in ratings of 600, 1000, and 2000 watts with corresponding code letters of C, E and G. Refer to Power Code Table.

Output modules are available in ten types ranging in nominal power from 75 to 2000 watts. Refer to Output Code Table for codes and nominal power output.

Input Power Codes	
Codes	Watts
C	600
E	1000
G	2000

Output Codes	
Codes	Nominal Power
J	75
K	150
G	300
L	300
M3	400
M4	500
M5	600
M6	750
M7	1000
M9	2000

The Table of Ratings for the various types of output modules lists the maximum current for each type as a function of corresponding voltage rating.

Ratings in the shaded area are Preferred and are stocked for fast delivery.

Note: When computing output load power, multiply the fraction of actual current to max. rated current by the nominal power rating of the output module.

RATINGS OF OUTPUT MODULES

Nominal Power	75 W	150 W	300 W	300 W	400 W	500 W	600 W	750 W	1000 W	2000 W	
Code	Volts	J	K	G	L	M 3	M 4	M 5	M 6	M 7	M 9
0	2	10	20	20	30	80	100	120	150	200	400
1	3.3	10	20	20	30	80	100	120	150	200	400
2	5	10	20	30	30	80	100	120	150	200	400
3	12	6	12	20	24	34	42	50	62	84	168
4	15	5	10	20	20	26	33	40	50	67	134
5	18	4	8	16	16	22	28	33	42	56	112
6	24	3	6	12	12	17	21	25	31	42	84
7	28	2.5	5	10	10	14	18	21	27	36	72
8	36	2	4	8	8	11	14	17	21	28	56
9	48	1.5	3	6	6	8	10	12	16	21	42

HOW TO ORDER

Select the letter F for power factor correction, then select the letter M to designate the series. Choose the desired configuration of output modules and list the configuration code. Insert the power code letter and follow with the output code numbers for each individual output. Enter a dash and from the option table insert the sum of the option codes. See example below.

	OPTIONS
Option Code	Function
1	Power Fail Monitor
2	Cover (600W only)
4	End Fan Cover (600W only)
8	Top Fan Cover (600W only)

INPUT

$90-264 \mathrm{VAC}, 47-63 \mathrm{~Hz}$.
190-264 for 2000W units.

POWER FACTOR

0.99 at full load.

HARMONIC CURRENTS

Compliant to IEC 555-2.

INPUT SURGE

230 VAC - 75A max.
115 VAC - 40A max.

HOLDUP TIME

20 milliseconds from loss of AC power.

OUTPUTS

See model selection table.

ADJUSTABILITY

$\pm 5 \%$ trim adjustment.

OUTPUT POLARITY

All outputs are floating from chassis and each other and can be referenced to each other or ground as required.

LINE REGULATION

Less than $\pm 0.1 \%$ or $\pm 5 \mathrm{mV}$ for input changes from nominal to min. or max. rated values.

LOAD REGULATION

$\pm 0.2 \%$ or $\pm 10 \mathrm{mV}$ for load changes from 50% to 0% or 100% of max. rated values.

MINIMUM LOAD

Main output requires a 10% minimum load for full output from auxiliaries. Main output is \#1 on 600 W and 1000 W units and \#2 on 2000 W units.

REMOTE SENSING

On all outputs except type J modules.

RIPPLE \& NOISE

1% or 100 mV pk-pk, 20 MHz bandwidth.

OPERATING TEMPERATURE

$0-70^{\circ} \mathrm{C}$.- Derate $2.5 \% /{ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.

COOLING

A min. of 10 LFS cooling air directed on cooling surfaces over the 600W units for full rating. Two test locations on chassis rated for max. temperature of $90^{\circ} \mathrm{C} .1000 \mathrm{~W}$ and 2000 W models have built-in ball bearing fan.

TEMPERATURE COEFFICIENT

$\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.

EFFICIENCY

70% to 80%.

SAFETY

Units meet UL 1950, CSA 22.2 No. 234, IEC 950, EN 60950 , VDE 0804, VDE 0805, VDE 0806. Certifications in process.

DIELECTRIC WITHSTAND

3750 VRMS input to ground.
3750 VRMS input to output.
700 VDC output to ground.

SPACING

8 mm primary to secondary.
4 mm primary to grounded circuits.

LEAKAGE CURRENT

3.5 mA max.

EMISSIONS

Units meet FCC 20780 Part 15 Class A and VDE 0871 Class A for conducted emissions. Compliance with Class B limits by use of additional external filter.

DYNAMIC RESPONSE

Peak transient less than $\pm 2 \%$ or $\pm 200 \mathrm{mV}$ for step load change from 75% to 50% or 100% max. ratings.

RECOVERY TIME

Recovery within 1%.
M3, M4, M5, M6, M7, and M9 modules - 200 microseconds.
J, K, G, and L modules - 500 microseconds.

UNDERVOLTAGE

Protects against damage for undervoltage operation.

OVERVOLTAGE PROTECTION

Standard on all outputs.

REVERSE VOLTAGE PROTECTION

All outputs are protected up to load ratings.

OVERLOAD \& SHORT CIRCUIT

Outputs protected by duty cycle current foldback circuit with automatic recovery. Auxiliaries have additional backup fuse protection.

THERMAL SHUTDOWN

Circuit cuts off supply in case of local over temperature. Units reset automatically when temperature returns to normal.

SOFT START

Units have soft start feature to protect critical components.

FAN OUTPUT

Nominal 12 VDC @ 12 watts maximum.

INHIBIT

TTL compatible system inhibit provided.

SHOCK

MIL-STD 810-D Method 516.3, Procedure III.

VIBRATION

MIL-STD 810-D Method 514.3, Category 1, Procedure I.

MECHANICAL

600 W - Case 1. $-2.5 \times 5.05 \times 12$
1000W - Case 2. $-5.05 \times 5.05 \times 12$
2000W - Case 3. $-5.05 \times 8 \times 12$

POWER FAIL MONITOR

Optional circuit provides isolated TTL and VME compatible power fail signal providing 4 milliseconds warning before main output drops by 5% after an input failure.

FAN COVER

Optional covers with brushless DC ball bearing fan which provides the required air flow for full rating of 600 W units. Choice of low profile or top mounted types.

Specifications subject to change without notice.

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

OPERATOR INTERFACE

INDUSTRY PROVEN RELIABILITY

* 30 or 45 key Tactile Keypad
* 80 Character (4 Line X 20 Character)
* 300 to 19200 BAUD
* Programmable

Function Keys

* RS-232 or RS-422 Interface
* Simple Menu Set-up
* Standard or Custom
 Keypad Graphics
* 5 VDC or Extended 8-24 VDC
* Less than 8 Ounces
* Full Two Year Warranty

Two Technologies, Inc. 419 Sargon Way Horsham, PA 19044 PHONE (215) 441-5305
FAX (215) 441-0423
CIRCLE NO. 331
UNIVERSAL PROGRAMMER ALL-03
\$649*

MOST COMPLETE DEVICE LIST \& SMD SUPPORT (PLCC, PGA, OFP, SOP)

- PAL, GAL . . E(E)PROM, SPECIAL PROM, MPU, DSP
TEST DIGITAL IC \& DRAM
FREE SOFTWARE UPDATES
EPROM PROGRAMMERS (UP TO 2 MB) EPP-01A/04A/08A FROM \$169* CALL (510) 623-0430

4580 ENTERPRISE ST., FREMONT, CA 94538 FAX (510) 623.7260 *U.S. ONLY

We've Got You Covered!

- Video Monitors - Analog Units \quad Keyboards

Molded of $94-5 \mathrm{~V}$ approved Resin and available off-the-shelf in quantities of 1 to 1,000.

Painting, shielding, fabrication and custom molding available.

Call or write for our complete catalog PRIEMA PLASTICS, INC.
O. Box 3625 - Des Moines, lowa 50322 Tel: 1-800-776-7628 • FAX: 1-515-270-1333 CIRCLE NO. 332
BACKUP ALL OF YOUR PCS WITH ONE PORTABLE TAPE SYSTEM

NO MORE LOST DATA OR
FLOPPY DISKS TO MANAGE

- No Add-In Cards
- Backup at $61 / 2$ Megabytes per Minute
- "Plug and Go" over Printer Port
- 160 Megabytes of Storage Per Data Cassette
- Easy "Windows Like" Menu-Driven Interface
- Portable, Small, and Lightweight
- Reliable TEAC Drive

Analog \& Digital Peripherals, Inc.

SCANTEAM ${ }^{*} 2380$
Welch Allyn's SCANTEAM family of Instant Interface products plugs your business directly into bar coding.

- For laptops, PCs or terminals
- Bar code scanning and decoding in a compact wand scanner
- No footprint; single cable connection SCANTEAM 2380 keyboard wedge SCANTEAM 6180 for RS-232 compatible output.

Welch Allyn NX8

4619 Jordan Road, P.O. Box 187
Skaneateles Falls, NY 13153-0187
elephone: $315-685-894$
CIRCLE NO. 337

CIRCLE NO. 335
EP-1140 E/EPROM PROGRAMMER

$\$ 895.00$

CAPTIVE

 PANEL SCREWS

Globe's captive panel screws are available in stainless steel, brass or steel and can be finished to meet Mil, QQ and other standards in fortytwo protective and decorative finishes Avaiable in American or Metric Standards. Globe, the specialists in custom screw machine parts, will also tabricate a captive panel screw to your specifications. Call, write or fax to receive Globe's NEW, FREE comprehensive 240 -page catalog on captive panel screws and our extensive line of electronic hardware

MICROSYSTEMS
0681 Haddington • Houston, TX 77043-3239
800/225-2102 • FAX 713/461-7413
CIRCLE NO. 338 Telephone: 617-558-4960 Facsimile: 617-630-2168
Product Selection Telex: 940573
CIRCLE NO. 336

GLOBE ELECTRONIC HARDWARE 34-24 56TH STREET • WOODSIDE, NY 11377 (800) 221-1505 • NEW YORK: (718) 457-0303 FAX: (718) 457-7493

CIRCLE NO. 339

Imagine if YOUR product could
talk!

- Converts plain ASCII tex
- Built in $\mu \mathrm{P}$, serial and into high quality speech
- Use in computers, voice printer interfaces mail, warning systems, etc.
- Requires only a single 5 V quantities supply and speaker

 121 W Wnesesp Rd Bontel, WA 9 Soll UK/Europe 815390285 Fax: 815588110 CIRCLE NO. 333

625,000

ICs and Semiconductors at Your Fingertips
Cahners CAPS is the newest component search and selection tool for electronic design engineers:

- PC-driven, CD-ROM-based
- Includes unabridged manufacturers' datasheets
- Represents more than 520 manufacturers worldwide

Call toll-free: 1-800-245-6696
 275 Washington Street Newton, MA 02158-1630

© Advin

ADVIN versus DATA I/O

- Data I/O and Model 2900: reputable company. dependable equipment, supports 40 -pins. Software updates: fair amount.
- Advin and PILOT-U40: reputable company. dependable equipment, supports 40 -pins. Software updates: free via electronic BBS.

ADVIN SYSTEMS INC.
Smaller Company, Better Service.
800-627-2456, 408-243-7000, Fax 408-736-2503 CIRCLE NO. 340

Control Cross-C

Z280, Z180, Z80 \& 8085 Full ANSI C Compilers

- Completely automatic MMU support (no programming effort) for UP TO ONE MEGABYTE Z180 programs.
- DOS based cross-compilers for ANSI and K\&R C code.
- Complete with high-speed assembler, linker, and librarian. Includes macros to interface C and assembly.
- NOT A SMALL C!! Full ANSI C at a small C price.
- All ANSI .H files and applicable functions provided.
- Optimized code generation for all data types. Char types
are not promoted to int. Generates inline port I / O.
- Allows in-line assembly with access to C variables.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Supports C interrupt service routines and pseudo variables to access registers at the C level. Can compile to user defined segments.
ANSI C Compiler, Assembler, Linker - $\$ 699$ Assembler and Linker Only - \$279

CIRCLE NO. 343
NOISE REDUCTION FOR SMT-PLCCS

Micro/Q ${ }^{\circledR} 3500$ SM family of surface mount capacitors designed to fit under PLCCs. Pads absorb CTE between board and device during soldering. Low inductance, 0.5-0.6 nanoHenries. Choose Z5V or X7R dielectric. Tape and reel format available. Use under MPUs, DSPs, GSPs, FPPs, gate arrays, standard cells, fully custom ASICs. Send for your free sample.

Rogers Corp.

2400 S. Roosevelt St., Tempe, AZ 85282 Tel: 602/967-0624

analog i/O
DIGITAL I/O
Inputs to 235 K samples per second
Outputs to 250 K samples per second

Or call for
FREE demo diskette.
CIRCLE NO. 341
8051 68HC11 COP8

- iceMASTER connects easily to your PC, requires no disossembly, or exponsion slots. Works on any PC (DOS or OS/2), MicroChannel or EISA. Even laptoos!
- iceMASTER is versatile: iceMASTER-8051, iceMASTER-68HC11 and iceMASTER-COP8 support mostfomily derivatives.
- Rental and 10-day trials available.
- 68HC11 A,D,E,F; 8XC528;8XC552; 8XC515A and 8XC517A support - Call today for free demo disk and ask about a free 8051 Macro Assembler! (800) 638-2423

Y MeraLink ${ }^{\circ}$

CIRCLE NO. 344

The Perfect Fit

X25C02 SERIAL E ${ }^{2}$ PROM: X68C64 MULTIPLEXED E ${ }^{2}$ PROM:

```
SPI Bus interface
3VTo 5.5 V Power Supply
1 MHz Clock
256 X8 Bits
Low Power CMOS
- Inacvertent Write Protection
High Endurance 100,000 Cycles
8 Pin DIP & SOIC Packages
Simutaneous Software Execution While Writing - Organized \(8 \mathrm{~K} \times 8\)
- Organized \(8 \mathrm{~K} \times 8\)
- Mutiplexed Address/Data Bus
- High Performance Low Power CMOS Soltware Data Protection
- Block Protection
Toggle Bit Early End Of Write Detection
- 32 Byte Page Mode Write
```


Yicar

Interactive/Real-Time

Analog Circuit Simulation - AC, DC, Transient, Fourier, Temperature, MonteCarlo and/or Worst-Case Analysis • Interactive or batch modes - Full nonlinear simulation - On-line real time graphics - Multiple plots - 2 to $\mathbf{5 0}$ times faster than SPICE - Component optimization sweeping - New 424 pg. manual All the Features, Twice the Speed at Half the Cost
Call for FREE DEMO!
-rumin ITR -ЛルתИ Tatum Labs, Inc. 1287 N. Silo Ridge Drive Ann Arbor MI 48108

IND-286 SBC

 AT Compatible DISKIESS SBC Includes DOS in ROM Complete 16 MHz 80 C 286 Single Board Computer for embedded PC applications features a 4 M -byte PROMDISK disk emulator with battery back-up and an MS-DOS 3.3 compatible disk oper ating system in ROM.Features Include:
4M-byte DRAM XI Size Board Keyboard Port 80287 Socket 2 COM, 1 LPT WatchDog IDE Disk Port Timer - 4 M PROMDISK \square Floppy Port - 100% PC/AT Optional Video Compatible Daughter Bd.
Other Products:

- IND-88 PC/XT Single Board Computers
- PROMDISK III \& IV Disk Emulators
- FlexScan I \& II Bar Code Decoders

으르ㄹㅡㅡ를 micro

㖽 2598-g fortune way vista, ca 92083 phone: 619/598-2177 fax: 619/598-2450

CIRCLE NO. 350

U.S.A WATAHAN NOHARA INTERNATIONAL, INC. TEL(800)366-3515

CIRCLE NO. 753

SOLID STATE DISK

- bootable

VERSATILE
SIMPLE
: COMPATIBLE

- DURABLE
- fast
- ANOTHER SEALEVEL/ANNABOOKS InNOVATION

CIRCLE NO. 755

REMOVE

 HARDWARE LOCKSPROTECT YOUR INVESTMENT MAINTAIN PRODUCTIVITYI
Software utility that allows for the removal of hardware locks.

Available for most major CAD/CAM and PCB software programs
Easy - Simple - Guaranteed
Programs start at \$99.00 U.S.
Visa and Mastercard Welcome
Call or Fax for more Information
SafeSofl Systems Inc.
202-1100 Concordia Ave.
202-1100 Concordia Ave.
Winnipeg, Mb. R2K 4B8
Canada

The power of a consistent and colorful campaign can be yours with EDN's Product Mart Section.

CIRCLE NO. 751

INFOMATRIX

- Programs most PLDs and memories up to 40 pins
- Menu driven device selection by P / N and manufacturer
- Full screen editor for fuse
maps and memory buffers
- JEDEC standard vector test functions
- New devices can be easily added by yourself
- Self test and diagnosis for high programming yield
- One year warranty and free device update 408/371-4642
2265 Bascom Ave. \#20, Campbell, Ca 95008
CIRCLE NO. 754

> 4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information (212) 463-6415

END WARPAGE WITH BOARD STIFFENERS

- Rigidize board during, after assembly
- Prevent vibration and shock damage
- One-step installation
requires no hardware
- Use as ground or carry up to 64 amps Send for Rogers Board Stiffeners Application Bulletin.
Rogers Corp., 2400 S. Roosevelt St. Tempe, AZ 85282

602/967-0624
CIRCLE NO. 758

Communicate Weekly

to the electronics OEM through EDN's Magazine and News Editions Product Mart

Get more schematic design power, for less.

For just \$895*
FutureNet ${ }^{8}$
Schematic Designer gives you the most features and support for your money.

- Graphical symbol browser
- Integrated postprocessing Unlimited hierarchy
- Extended memory support for large, complex designs
- Standard EDIF 200 netlist writer
Get a FREE
Cadnetix translator when you order FutureNet! Call Data I/O ${ }^{\otimes}$ Direct today.
1-800-3-DataIO (1-800-332-8246)
*US. list price only.
Look for FutureNet
in the Data I/O
Direct Catalog.

```
                    DATA I/O
```


CIRCLE NO. 759

\$249.TERMINAL

Featuring - Standard AS. 232 Serial Asynchronous ASCII Communications 48 Character LCD Display (2 Lines of 24 Each) - Ten key Membrane Keyboard with embossed graphics - Optional RS-422 multidrop protocol mode 8 位 - Keyboard selectable SET UP features - baud rates, parity, eto - Size (5.62" W $\times 6.9^{\prime \prime} \mathrm{D} \times 1.75^{\text {" H H }}$), Weight
$.5 \times 7$ Dot Matrix font with underine cursor

- Displays 96 Catracacter ASCII Set (upper and lower case) - MPUTERT
[ロMPUTERTJ5E, inc.
302 N . Winchester - Olathe, KS 66062 - 800-255-3739 - FAX (913) 829-0810
CIRCLE NO. 762

FREE
CATALOG

Affordable
tools for
programmable
devices are just
a phone call away.

- Unbeatable values on Data I/O ${ }^{\oplus}$ device programmers,
software,
updates, and
accessories
- 30-day, moneyback guarantee

Access to Data I/O's toll-free technical hotline and online bulletin board
To order your FREE catalog, call Data I/O Direct today. 1-800-3-Datal0 (1-800-332-8246)

DATA I/O

SBC Supports Floppy Drives

Log Data into Lotus 1-2.3
Log data on the model 9600 , put your disk into a PC, and read it into your Lotus spreadsheet.
Fast Industrial BASIC
ROM-based BASIC supports
disk and all on-card hard-
ware. Programs easily like
GW BASIC but runs much
faster. Supports 2 floppy
disk drives in DOS format.

- Keypad \& display ports 2 RS-232 serial ports - 768K RAM/ROM sockets Calendar clock
- 1 MB addr. memory - 3 year warranty
- Drives Opto 22 racks - -20° to $+65^{\circ} \mathrm{C}$

Guse Cali or Fan for Sil Bues watoleoon Tel: 303-430-1500, Fax: 303-426-8126 OCTAGON SYSTEMS CORPORATION 6510 W. 91st Avenue, Westminster, CO 80030

CIRCLE NO. 760

Baby Bullet-386SX ${ }^{\text {™ }}$

- Single Board Computer

AT Compatible = SCSI Interface
On Board Serial (2), \& Parallel (1) Ports
Solid State Disk : Low Power

- Small Size - $5.25^{\prime \prime}$ Disk Form Factor
- Watch Dog Timer - Keyboard Interface
- Up To 16MB DRAM = AMPRO Compatible

Dyna Five Corporation
173 Freedom Avenue = Anaheim, CA 92801 (714) 525-8795 : FAX (714) 525-9310

CIRCLE NO. 763

CIRCLE NO. 766

SCHEMA III 3.3

Schematic Capture

COMPLETE DESIGNS ON YOUR PC OR UPLOAD

TO YOUR WORKSTATION FREE DEMO DISK

One schematic capture program stands alone in features, speed, user friendliness \& performance SCHEMA. The new SCHEMA

III 3.3 is still only \$ 495.
HEMA
800-553-9119
CIRCLE NO. 767

Powerful - Affordable
Fully Integrated, Easy to use, Analog Circuit Simulation Environment, From One Vendor, Featuring: A powerful SPICE simulator performing AC, DC, and Transient, analyses, extensive model libraries, schematic entry, graphical waveform processing, and report quality printouts.

CIRCLE NO. 770

- Create timing diagrams in minutes
- Get effective tradeoffs on memory, wait states and logic speeds
- Analyze worst-case uncertainty
- Display available time between edges
- Create timing documentation quickly and easily

8950-1200 Villa La Jolla Drive, LaJolla, CA 92037 CIRCLE NO. 773

RUGGED \& HIGH PERFORMANCE COMPUTER SYSTEMS WITH FOLD DOWN KEYBOARD \& VGA MONITOR FOR RACK, BENCH OR PORTABLE APPLICATIONS STANDARD FEATURES INCLUDE

- 12 SLOT PASSIVE BACK PLANE, 250W POWER SUPPLY - 80386 CPU CARD AT $20 / 25 / 33 \mathrm{MHz}$, UP TO 8 MB OF ZERO WAIT STATE RAM
- SONY TRINITRON TUBE, HIGH RESOLUTION VGA (640×480) MONITOR AND CARD
- ROOM TO MOUNT THREE HALF HEIGHT DRIVES - 2 SERIAL, 1 PARALLEL PORT, MS DOS/GW BASIC ALSO AVAILABLE WITH 80486 OR 80286 CPU CARDS IN VARIOUS CONFIGURATIONS, FOR FURTHER DETAILS CONTACT:
IBI SYSTEMS INC., 6842 NW 20 AVE. FT. LAUDERDALE, FL 33309. 305-978-9225
FAX: 305-978-9226
CIRCLE NO. 768

400 MHz Logic Analyzer

- upto 128 Channels, Timing and State
- 400 MHz Max Sampling Rate
- Timing and State Simultanious on Same Probe
- 16K Samples/Channel (high speed mode)
- 16 Levels of Sequential Triggering
- Variable, TTL, or ECL Logic Threshold Levels
- 8 External Clocks
- FREE Software Updates on 24 Hour BBS \$799 - LA12100 (100 MHz) \$1299 - LA32200 (200 MHz-32channels) \$1899 - LA32400 (400 MHz-32channels) \$1950 - LA64200 (200 MHz-64channels) \$2750 - LA64400 (400 MHz-64channels)

UNIVERSAL PROGRAMMER

PAL
GAL
EPROM
EEPROM
PROM
87xxx...
22V10
26CV12

16Bit EPROMs FLASH EPROMs 5ns PALs 4 Meg EPROMs FREE software updates on BBS

Call - (201) 808-8990 Link Computer Graphics, Inc. 369 Passaic Ave.,\# 100, Fairfield, NJ 07004 FAX:879-8786

CIRCLE NO. 774

Free Catalog
The World's Largest Collection of Adapters \& Accessories for VLSI/Surface Mount Devices

- Emulator Pods \& Adapters - Debugging Accessories
- Debug Tools
- Prototyping Adapters
- Programming Adapters
- Custom Engineering

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX:408-982-0664
CIRCLE NO. 769

Combine Your Product Mart Ads

In EDN's Magazine and News Editions for higher impact and a lower rate.

CIRCLE NO. 772

New Schematic and PCB Software With support for extended and expanded memory, HiWIRE II can handle your most demanding schematic and PCB designs quickly and easily. The unique HiWIRE editor allows you to display and edit schematics and PCBs simultaneoously, using the same commands for each. HiWIRE II is $\$ 995$, and is guaranteed.

Wintek Corporation

1801 South St., Lafayette, IN 47904
(800) 742-6809 or (317) 448-1903

Learn How To Turn Schematics Into Circuits That Work

Get Practical Analog Circuit Design Information From The Expert At This Half-Day Seminar

Linear Technology Corporation and EDN are proud to sponsor a seminar for designers focusing on high speed amplifier techniques. This seminar is primarily devoted to familiarizing designers with the realities and difficulties of high speed circuit design.
However, circuit techniques for converters and off-line switchers will also be covered. While the mechanics and subtleties of achieving precision circuit operation at DC and low frequency have been well documented, relatively little has appeared which discusses, in practical terms, how to get fast circuitry to work ... until now. Jim Williams, the industry expert on both high speed amplifier and switching regulator techniques will discuss the complex world of circuit design. A staff scientist at Linear Technology, Williams has written over 100 application articles for numerous industry trade magazines including EDN. In addition to being one of EDN's

Jim Williams, Staff Scientist at Linear Technology Corporation.

LTC is a recognized leader in high performance op amps, linear and switching regulators,
interface devices, data converters, references, comparators, and filters.
most popular contributors, Williams is also one of the principle authors of the popular Linear Technology Applications Handbook.
If you are involved in circuit design, take advantage of this opportunity to get the insights of the industry's leading expert. Reserve your space today.

SEMINAR LOCATIONS

Date	Location
March 30	Orlando
March 31	Boston
April 1	Northern New Jersey
April 2	Chicago
April 3	Dallas
April 7	Santa Clara
April 8	Orange County

Note: Seminar Schedule:
8:30 am-12:00 pm
Lunch 12:00 pm-1:00 pm.

Tickets for this half-day seminar are $\$ 30.00$ (price includes lunch). Reserve your place by calling 1-800-637-5545. Or send your check with this coupon to:

Linear Technology Corporation
Marketing Communications Department
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Please reserve
My check for \qquad ticket(s)* for this half-day seminar

VISA/MC \# \qquad Exp. Date \qquad
*If ordering multiple tickets, please list names and titles of other attendees.

Name \qquad
Title \qquad
Company
Street
City State Zip
Telephone \qquad

EDN-CAREER OPPORTUNITIES

1992 Recruitment Editorial Calendar			
Issue	Issue Date	Ad Deadline	Editorial Emphasis
News Edition	Apr. 2	Mar. 19	ICs \& Semiconductors • Multimedia Software/Development Tools • Engineering Management Special Series
Magazine Edition	Apr. 9	Mar. 19	CAE • EDN Hands-on Special Project—Part I: Field-programmable Gate Arrays • Software - Memory Technology
Magazine Edition	Apr. 23	Apr. 2	Portable Computer Design • EDN Hands-on Special Project-Part II: Field-programmable Gate Arrays • Electromechanical Devices • Computer Peripherals
News Edition	Apr. 30	Apr. 16	ASICs SPECIAL ISSUE \bullet FPGAs and EPLDs • CICC Hot Products • ASICs • Regional Profile: Northern California
Magazine Edition	May 7	Apr. 16	Communications/Networks • Test \& Measurement • Surface-Mount Components • Power Sources • Electro Show \& Products Issue
ELECTRO SHOWGUIDE \& PRODUCT SPOTLIGHT		Apr. 3	A free page available to all advertisers running a full page in 2 out of 3 Electro issues
News Edition	May 14	Apr. 30	Graphics Technology • Computers \& Peripherals
Magazine Edition	May 21	Apr. 30	Analog ICs \bullet Analog CAE \bullet PC Board CAE Tools \bullet Programmable-Logic Devices

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

HDTV ENGINEERS

Digital Video Compression and Transmission

At Panasonic Advanced TV-Video Laboratories, Inc. (ATVL) in southern New Jersey, the teamwork of creative engineers enables us to advance the state-of-the-art in television. We seek Hardware Engineers to develop digital HDTV video compression and transmission hardware.
To qualify, you will need a BSEE degree (MSEE preferred), and experience in the following areas:

- High speed (at least 20 MHz) digital hardware design
- Design of CMOS ASICs
- Use of FPGAs/PLDs
- Use of CAE workstations (preferably Mentor Graphics) for schematic capture, simulation and ASIC design
Knowledge of digital video, video compression, digital transmission or image processing is desirable.
We offer highly competitive salaries and comprehensive company-paid benefits. Qualified individuals are invited to respond by sending their resume, including salary history and requirements, in confidence to: Panasonic ATVL, ATTN: Sai Naimpally, 95-E Connecticut Drive, Burlington, NJ 08016. An Equal Opportunity Employer.

> Panasonico
> Advanced TV-Video Laboratories, Inc.

BEHIND THE MAGIC.

Behind the smiles and unforgettable memories of Walt Disney Theme Parks, are Imagineers. These are the people who imagine outer space and take you there, make history come alive, create adventures for the adventurous, and turn dreams into reality. Walt Disney Imagineering's involvement ranges from the tiniest wink of an eye to final installation of an entire theme park. Current opportunities are available within our R\&D group for:

- R\&D Electronic Engineers
- R\&D Optics Engineers
- R\&D Mechanical Engineers

We offer an exceptional benefits package, a stimulating environment where each day brings a new challenge, and the opportunity to make an impact on the most magical organization in the world. If you're ready to make magic, please mail/ FAX your resume to: Walt Disney Imagineering, 800 Sonora Avenue, Glendale, CA 91221-5020. Attn: Human

Resources Dept. GD/EDN. FAX:

(818) 544-3189. We are an Equal Opportunity Employer.

$\omega_{\text {alf }}$ Disnep Imagineering

© The Walt Disney Company

looking for a superior career path in integrated circuits and solutions? You can travel farther, faster with Advanced Micro Devices. Innovation and the right industry moves have put AMD in a commanding position in microprocessors and related peripherals, programmable logic devices, high performance memories, and the World Network ${ }^{\text {TM }}$ Solution. We're ready to challenge the world with our simply superior products. Take the Advanced path to the leading edge in the exceptional living and working environment of our Austin, Texas facility.

THEADVANCEDPATH TO THE LEADING EDGE.

SR. DESIGN ENGINEERS

Requires experience in CMOS ASIC design and an understanding of PC Systems. BSEE required.

SR. TECHNICAL MARKETING ENGINEERS

Requires the ability to make effective customer presentations using product value characteristics and competitive analysis data. An in-depth understanding of CMOS microprocessors and portable PC systems or graphics is also required BSEE required; MS preferred.

SR. PRODUCT ENGINEER

BSEE with $3+$ years product engineering experience in testing and evaluating complex MOS integrated circuits. Position responsible for yield analysis, new test equipment introduction, and supporting all reliable testing and reject failure analysis.

SR. DESIGN ENGINEER

Requires experience in Verilog simulation on ASIC chips, Logic Design and simulation of high speed integrated circuits using SPICE. UNIX and "C" programming knowledge helpful. BS required

PROCESS INTEGRATION ENGINEER

Responsible for the transfer of technologies and optimization of processes for high quality and yields. $5+$ years experience in process integration of CMOS memory devices and hands-on development of submicron process technology. Experience with EPROM, FLASH and other non-volatile memories. MSEE/PhD preferred.

CAD ENGINEER

$1+$ years of experience in VLSI design with knowledge of " C " programming: BSEE required.

SR. PROCESS ENGINEERTHIN FILMS/IMPLANT

$5+$ years of direct wafer fab process engineering experience required. Must be familiar with Ion Implantation, thin films, SPC and DOE. Supervisory experience a plus. Technical BS degree required.

HARDWARE ENGINEER

Requires digital design experience involving high speed microprocessors. Knowledge of RISC Architecture and RISC microprocessors also required. Surface Mount Printed Circuit Board design knowledge helpful. BS required; MS preferred.

APPLICATIONS ENGINERR

Responsible for hardware and software customer support. Requires knowledge of RISC Architecture, Compilers, and "C" language programming. Excellent communication skills a must. BSEE or BSCS required.

PHYSICAL DESIGN

Responsible for Physical Design of CMOS VLSI chips. Background in using state-of-the-art CAD tools from Mentor, Cadence, Silvar Lisco and others in the performance of chip layout, verification and analysis is essential. Compiled, cell based and custom layout techniques will be used in a networked workstation environment. BSEE a plus.

NETWORK ENGINEER

Must have 1-2 years experience with the design and implementation of network configurations, as well as familiarity with the following media: Ethernet10Base T. 10Base5, 10Base2; RS232, V.35, fiber and Apollo token ring. Operating systems should include UNIX, DEC-VMS and IBM-VM, MVS. BS/BA in Computer Science or Electrical Engineering required.

SYSTEM
 ADMINISTRATOR

Requires experience as a System Administrator for Sun and/or HP (Apollo) Systems. Will install and maintain system updates, user problems and generate software to improve productivity of Design, Product, Test and Layout. UNIX, "C" Shell programming also required. BS preferred, with Sun Certification.

Qualified applicants should send a resume to:
Advanced Micro Devices, MS-556/EDN2/17, 5204
E. Ben White Blvd., Austin, Texas 78741, Attn:

Professional Staffing. You must also call (512) 462 5355 or FAX your resume to (512) 462-5108.
We are an equal opportunity employer

Trademarks are registered to their respective companies

Hughes Network Systems is an industry leader in the development and manufacture of highly innovative telecommunication products for solving the advanced communications needs of our customers. To continue our success, we're currently seeking a Sr. Designer to implement satellite modem and baseband circuit designs into ASIC.
The ideal candidate will possess demonstrated knowledge of ASIC gate-level design, simulation, test vector generation, design tools and processes, backed up by a strong background in telecommunications and digital circuit design. Experience with larger chip designs, mixed-mode designs, HDL and Mentor Graphics tool is highly desirable. The candidate should possess a BSEE (MSEE preferred).
We offer a competitive salary and benefits package, and relocation assistance. For immediate consideration, send your resume to: Hughes Network Systems, Inc., Dept. 902N382, 11717 Exploration Lane, Germantown, MD 20876. An equal opportunity employer.

Knock, Knock.

In EDN's Magazine and News Editions, opportunity knocks all the time.

EDN Databank

Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Services, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.

IDENTITY PRESENT OR MOST RECENT EMPLOYER

- Service is nationwide. You'll be considered for openings across the U.S. by PSL and it's affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objective will periodically be reviewed with you by a PSL professional placement person.
We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mail the completed form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

POSITIONDESIRED

PREVIOUS POSITION:

SENIOR SYSTEMS ENGINEERS SYSTEMS ENGINEERS SIMULATION ENGINEERS

Loral Defense Systems-Akron, a division of the Loral Corporation, is seeking experienced simulation systems engineers for its growing simulator and training systems arena. The individuals we are seeking should have a strong background in the following: Simulator systems engineering, S/W development, Test and Integration, H/W Integration; Languages-Fortran, Microcode, and/ or Ada. Military Program experience with Commercial/ Foreign Military experience a plus. Key areas of experience:
-Project level systems engineering
-Flight/Aerodynamics

- Aircraft systems
-Avionics/radar
- Navigation, communications
-Tactics-weapon systems
-Simulation computational systems
-Database management systems
Please send resume to: Bill Turnbow; Loral Defense Systems-Akron; 1210 Massillon Road; Akron, OH 44315.

Equal

Opportunity
Employer
1X0200X
DEFENSE SYSTEMS-AKRON A DIVISION OF LORAL CORPORATION

Application Engineer, BS/EE/E, with 10 years Smart Bipolar IC design, Silicon solutions. Must have Power Electronics work exp's. Northeast to \$70.K

Transformer SIs Manager, BS/EE, with OEM, solving customer design problems, understand MFG of Transformers. Small Company. Southwest $\$ \$ \$ \$ \$ \$$

Transformer Engineers, BS/EE, to design Distributions/Maintenance exp's. Must
have Project Mgmt exp's. S.E. to \$55.K
Military Electronics MFG Engineers Southwest
Quality Engineers,BS/EE/IE, with M4520, data root analysis, \& production support.

Reliability Engineers, BS/EE/IE, with design analysis, and enhancement programs.

Mechanical Designers, $\mathrm{BS} / \mathrm{ME} / \mathrm{EE}$, with production of power supplies/amplifiers. layout, prototype,conceptional designs. Fax's or send your resume to:

Power Supply Recruiters
P.O. Box 420209

Houston, Texas 77242-0209
Fax's: 713-977-2666

If you're looking for work, just look here.

EMPLOYMENT OPPORTUNITY

Company needs a Research Scientist to use mathematics theory to develop and design the 3 -dimensional graphic representation with the realistic image and the effect of motions of objects for the industries and government use. Applicant must have aPh.D. in Mathematics and have done research and produced at least one published paper or dissertation in the area of complex analysis and extremal problems on the unit circle, and must know how to use computer lan guages C, Basic and PCTEX. $40 \mathrm{hr} /$ week $\$ 38,000$ / year. Send resume and proof of qualifications to J. Gaston, 505 Washington, St. Louis, Missouri 63101, (314) 340-4748. Re: Job \#536113

Business/Publishing Headquarters
275 Washington St
Newton, MA 02158
Fax: (617) 558-4470

VP/Publishing Director
Peter D Coley
(617) 558-4673
Ora Dunbar, Sales Coordinator

Peter D Coley
(617) 558-4673
Ora Dunbar, Sales Coordinator

VP/Publisher
Roy W Forsberg
(617) 558-4367

Darlene Fisher, Assistant

Advertising Sales Director
Jeff Patterson
(617) 558-4583

Julie Dooley, Sales Coordinator

Marketing/Business Director
Deborah Virtue
(617) 558-4779

HUNGARY

Erika Alpar
Publicitas Budapest
Kossuth L ter 18
1055 Budapest, Hungary
Tel: 111-48-98 or 111-44-20
Fax: 111-12-69

AUSTRIA

Harald Brandt
Permedia
Mozartstrasse 43
A-4020 Linz
Tel: 732-79-34-55
Fax: 732-79-34-58
ISRAEL
Asa Talbar, Talbar Media
Box 22917
Tel Aviv 61228, Israel
Tel: 972-3-223-621
Fax: 972-3-524-2177

SWITZERLAND

Peter Combaz, Roswitha N Kunzle
Exportwerbung AG
Kirchgasse 50, 8024 Zurich 1
Tel: 4112614690
Fax: 4112514542

CENTRALISOUTHWEST

GERMANY

Franz Fleischmann, MediaPac Hanauer Landstrasse 294
D-6000 Frankfurt/Main 1
Germany; Tel: 4969422951
Fax: 4969421288

HONG KONG

Adonis Mak
Cahners Asia Limited
22nd fl, Lo Yong Court
Commercial Bldg
212-220 Lockhart Road
Wanchai, Hong Kong
Tel: 852-572-2037
Fax: 852-838-5912

JAPAN

Kaoru Hara
Dynaco International Inc Suite 1003, Sun-Palace Shinjuku 8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: 81-3-366-8301
Fax: 81-3-366-8302

KOREA

Jeong-guon Seo
DooBee International Inc
Centre Bldg, 1-11 Jeong-dong
Choong-ku, Seoul, Korea
Tel: 82-2-776-2096
Fax: 82-2-755-9860

SINGAPORE/MALAYSIA

Hoo Siew Sai
Major Media Singapore PTE Ltd 52 Chin Swee Rd
\#06-00 Resource Bldg
Singapore 0316
Tel: 65-738-0122
Fax: 65-738-2108

AUSTRALIA

Alexandra Harris-Pearson
World Media Network Pty Ltd
Level 2, 285 Clarence Street
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788
Fax: 61-2-283-2035

TAIWAN

Parson Lee
Acteam International Marketing Corp
Box 82153 , Taipei, Taiwan ROC
Tel: 886-2-7114833
Fax: 886-2-7415110
PRODUCT MART
Joanne Dorian
249 W 17th St
New York, NY 10011
Tel: (212) 463-6415
Fax: (212) 463-6404

INFO CARDSI

LITERATURE LINK
Heather McElkenny
Tel: (617) 558-4282

CAREER OPPORTUNITIESI
 CAREER NEWS

Roberta Renard
National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
Tel: (201) 228-8602, 228-8610,
228-8608; fax: (201) 228-4622
Nancy Olbers
Western Sales Manager
238 Highland St
Portsmouth, NH 03801
Tel: (603) 436-7565
Fax: (603) 436-8647
Direct Mail Service
(708) 390-2361

Wendy A Casella, Mary Beth Cassidy, Muriel Murphy
Advertising/Contracts Coordinators
(617) 964-3030

Cahners Magazine Div

Terry McDermott, President
Cahners Publishing Co
Frank Sibley, Executive Vice President/ General Manager, Boston Div
Tom Dellamaria, VP/Production \& Manufacturing

Circulation: Denver, CO
(303) 388-4511

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of $\mathbf{5 0 0}$ or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy
Ave, Box 5080, Des Plaines, IL
60017. Phone (708) 390-2240.

EDN-INTERNATIONAL ADVERTISERS INDEX

Recruitment Advertising 214-217

Loral Defense Systems
Panasonic ATVL
Power Supply Recruiters
Walt Disney Imagineering
*Advertiser in European edition

[^13]

How many times have you been wishing to bring your desktop computer to a job site without having to carry a monitor, a desktop body and a keyboard ? Now you can with Bi-Link's PORTABLEdesktop color display PC.

The PORTABLEdesktop comes with a choice of three processors of 80486-33, 80386-33 to 80386-25 CPU board with memory up to 32 megabytes and an internal hard disk drive up to 500 megabytes! The advanced on-board write-back cache controller even out perform many more expensive full size desktop computers! Besides the above features, it also has 3 full length 16 -bit ISA expansion slots for your add-on peripherals and a built-in color SVGA monitor. We built the PORTABLEdesktop for all the engineers and scientists that demand the absolute best. For more information on the PORTABLEdesktop and other products, please call our toll free number today.

1-800-888-5369

For information or order

9" Color SVGA Monitor

This high resolution color monitor is suitable for all industrial and commercial applications. It is ideal for special project cabinets, data acquisition stations, point of sales machines, system control centers, vending machines, security systems and on.

PORTABLEworkstation System A portable computer that comes with a choice of 486-33, 386-33 and 386-25 CPUs and a hard disk drive of up to 500MB! Three full length ISA or EISA expansion slots are available for add-on peripherals. The display is a high contrast gas plasma screen.

PORTABLEdesktopSystem The PORTABLEdesktop is a desktop computer in disguise. This portable come with a choice of 3 processors: 486-33, 386-33 and 386-25. An affordable scientific instrument as well as a powerful PC complete with a built-in color SVGA monitor.

Rack Mounted Industrial PC (IPC)
The IPC comes with a built in 9 " color SVGA or a monochrome MGA monitor. An 8 slot ISA backplane is standard for add-on CPU cards for the lowest MTBR. Two 3.5 " drive slots for floppy and hard disk drive are standard and available CPU cards including 286, 386SX/DX and 486SX/DX CPU

EDN-ACRONYMS \& ABBREVIATIONS

ACMOS-Advanced CMOS
ANSI-American National Standards Institute API-application programming interface
ASIC-application-specific integrated circuit BCDMOS-bipolar complementary doublediffused metal-oxide semiconductor
BCT-Bipolar CMOS Technology
BiCMOS-bipolar CMOS
BIOS-basic I/O system
CAD-computer-aided design
CD-ROM-compact dise read-only memory; a sister product to audio compact dises that publishers use for software distribution and to electronically store large reference works such as encyclopedias
C_{L}-total load capacitance
CMOS-complementary metal-oxide semiconductor
C $_{\text {PD }}$-"power-dissipating" capacitance of a CMOS logic device (a misnomer, because capacitance doesn't dissipate power)
CPU-central processing unit
CSA-Canadian Standards Association
DDC-data duty cycle
DDE-Dynamic Data Exchange
DIP-dual in-line package
DLL-Dynamic Link Library
DMOS-double-diffused metal-oxide semiconductor
DRAM-dynamic random-access memory
DVI-digital video interface
DVM-digital voltmeter
ECL-emitter-coupled logic
EDC-enable duty cycle
EISA bus-Extended Industry Standard Architecture bus
EMI-electromagnetic interference
FACT-Fairchild Advanced CMOS Technology (now a trademark of National Semiconductor Corp)
FAST-Fairchild Advanced Schottky TTL (now a trademark of National Semiconductor Corp); a member of the bipolar logic-IC family high-Z-high impedance; the state of a 3 state device whose output you've disabled IC-integrated circuit
\mathbf{I}_{CC}-collector current (that is, a device's power-supply current; also applied incorrectly to the drain current of MOS ICs because the drain current is also the powersupply current)
$\mathbf{I}_{\mathrm{CCD}}$-the dynamic component of the supply current of a CMOS logic device. ($\mathrm{I}_{\text {CCD }}$ is directly proportional to the frequency at which the device's output is switching.)
$\mathbf{I}_{\mathrm{CCH}}$-a logic device's high-state quiescent current
$\mathbf{I}_{\text {CCL }}$-a logic device's low-state quiescent current

$\mathbf{I}_{\text {cco-quiescent supply }}$ current

I cct-the extra supply current drawn by a CMOS logic element when its inputs are held between the supply rails by the output of a TTL device
$\mathbf{I}_{\mathrm{CCz}}$-the quiescent current of a 3 -state device in the output-disabled high-Z state
I_{DD}-the drain current (power-supply current) of a MOS IC
IEEE-488-a standard interface that connects peripherals to a computer, also known as the GPIB or general-purpose interface bus I/O-input-output
$\mathrm{I}_{\text {oL }}$-output-low current for a Thevenin termination

ISA-Industry Standard Architecture ISO-International Standards Organization JEDEC-Joint Electron Device Engineering Council
JPEG-Joint Photographic Experts Group LCD-liquid-crystal display
LED-light-emitting diode
MCI-media control interface
MO-magneto-optical; a data-storage technology that uses a combination of magnetic fields and lasers to store data
MOS-metal-oxide semiconductor
MOSFET-metal-oxide-semiconductor field-effect transistor
MPC-multimedia personal computer
MPEG-Motion Picture Experts Group NC-normally closed
NMOS-n-type metal-oxide semiconductor; an insulating-gate field-effect transistor whose channel is n-type silicon (Electrons are the majority carrier).
NO-normally open
NTSC-National Television System Committee O-ROM-optical read-only memory. Publishers use O-ROM data cartridges as a medium to distribute software and reference material.
OEM-original equipment manufacturer partial ROM-partial read-only memory; a type of optical disk that includes some sectors with O-ROM capability and some sectors with MO capability
PC-personal computer
PMOS-p-type metal-oxide semiconductor;' an insulating-gate field-effect transistor whose channel is p-type silicon (Holes are the majority carrier).
\mathbf{R}_{L}-load resistance
RAM-random-access memory
RFI-radio-frequency interference
ROM-read-only memory
SAM-serial-access memory
SCSI-Small Computer System Interface
SIP-single in-line package
spdt-single-pole, double-throw
spst-single-pole, single-throw
SSR—solid-state relay
TTL-transistor-transistor logic
UL-Underwriter's Laboratories Inc
$\mathbf{V}_{\mathrm{BE}}-\mathrm{a}$ transistor's base-to-emitter voltage $\mathbf{V}_{\text {cc }}$-the (positive) power-supply voltage for TTL-compatible logic families, including CMOS families
\mathbf{V}_{DD}-in CMOS, the positive power-supply voltage
VDE-Verband Deutscher Elektrotechniker
VGA-video graphics array
$\mathbf{V}_{\text {IN }}$-the input voltage
VMEbus- 32 -bit data bus that has a theoretical maximum data-transfer rate of 40 Mbytes/sec
$\mathbf{V}_{\text {oH }}$-the high-state output voltage
$\mathbf{V}_{\text {oL }}$-the low-state output voltage
$\mathbf{V}_{\text {olp-the }}$ the transient-peak low-state output voltage
VRAM-video random-access memory
$\mathbf{V}_{\text {SW }}$-voltage swing
WORM-write once, read many; a type of optical disk that can have data written to it once
\mathbf{Z}_{0} characteristic impedance

[^14]A Designer's Guide to
Linear Circuits

Volume I

This original, 186 -page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs.

A Designer's Guide to
 Linear Circuits

Volume II

Jim Williams' analog design articles from 1983 to 1986 - in Volume II. Volume II covers more complex circuits and systems in 66 pages.

> SurfaceMount Technology Design Project

This 48-page, four-color reprint follows the progress of EDN editor Steve Leibson as he designs a 2Mbyte memory board using surfacemount technology. He includes typical problems you might encounter and objectively reports about both good and bad design decisions made along the way.

CALL NOW!
Cahners Reprint Services 708/390-2777

${ }^{\text {E/toney. }}$

Why iseveryoneswithing from bipolarto|RIGBB5!

Performance. IR IGBTs switch faster, generate less heat, and operate athigher frequencies than bipolars.

Simplicity. Our IGBT's MOS gate makes it much simpler to drive than a bipolar.
Size. Its smaller footprint and lower component count saves a lot of board space. Butall threeanswers add up to one: Cost effectiveness. Any way youlookatit, the price/

performance ratio improves. Or, the bottom line is the bottom line.
For your high voltage, high current power transistor circuit designs, remember, costefficiency has four initials: IGBT.

Make that six. IRIGBT.

NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O ${ }^{\circledR}$'s new ABEL-FPGA ${ }^{\text {™ }}$ Design Software has the power to pack in maximum logic. It combines the indus-try-standard ABEL Hardware Description Language (ABEL-HDL' ${ }^{\text {m }}$)
with our new intelligent
FPGA Device Fitter ${ }^{\text {TM }}$
technology. So, you can create more complex designs with less effort-ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, Cypress, ICT, National, Plus Logic, Texas Instruments, and Xilinx. And with built-in knowledge of its target
complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

Pack more logic into your next
FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA. Call us today to find out more about DATA I/O NEW

ABEL-FPGA.
1-800-3-DataIO (1-800-332-8246)
DATA I/O
CIRCLE NO. 166

[^0]: * In Canada call 1-800-387-3867, Dept. 440

[^1]: WaveTest ${ }^{\text {® }}$ is a registered trademark of Wavetek Corporation. $\mathrm{DEC}^{\text {TM }}$ is a trademark of Digital Equipment Corporation. Windows ${ }^{\text {TM }}$ is a trademark of Microsoft Corp. X Window System ${ }^{\text {TM }}$ is a trademark of MIT. ©1991 Wavetek Corporation

[^2]: EDN ${ }^{\text {(}}$ (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (twice monthly with 2 additional issues month, except for March and October, which have 3 additional issues and July and December which have 1 additiona issue) by Cahners Publishing Company, Á Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630 Terrence M McDermott, President/Chief Operating Officer; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-50.Telephor. CO 80217-3377. EDN \odot OSMAN CO80217-3377. EDN copyright 1992 by Reed Publishing USA; Robert LKrakoff, President and Chief Executive Of ficer. Annual subscripionrates ornonqualified people. USA, 19.9 /year; Mexico, 169.9 lyear; Canada, $181.85 / y e a r$ and $\$ 25$ foreign. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^3]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing
 \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Media \square Home Furnishings \square Interior Design \square and Lodging. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^4]: Pacific Data Products, Inc., 9125 Rehco Road, San Diego, CA 92121. ProTracer is a trademark of Pacific Data Products, Inc. PostScript is a registered trademark of Adobe Systems, Inc. All other trade names referenced are the trademarks or registered trademarks of the respective manufacturer. Nozzle image courtesy of AutoDesk Inc. Tiger rendering, artist unknown; picture part of public domain. ProTracer uses the latest in high technology innovation including PeerlessPage ${ }^{T M}$, the advanced Imaging Operating System from Peerless. EUROPEAN OFFICES: Geneva Tel (41) 22412650 , Fax (41) 22410682 , France Tel (33) 1392320 00, Fax (33) 1396331 20, U.K. Tel (44) 442 231414, Fax (44) 442236540

[^5]: FUJITSU MICROELECTRONICS, INC., Advanced Products Division. 77 Rio Robles, San Jose, CA 95134-1807. Ph: 408-456-1161 Fax: 408-943-9293. FUJITSU MICROELECTRONICS ASIA PTE LTD. (Head Office, Singapore): Ph: 65-336-1600 Fax: 65-336-1609. HONG KONG SALES OFC: Ph: 852-723-0393 Fax: 852-721-6555. TAIPEI SALES OFC: Ph: 886-2-757-6548 Fax: 886-2-757-6571. JAPAN SALES OFC: Ph: 81-3-3216-3211 Fax: 81-3-3216-9771.

[^6]: Combining the SRAM cache on chip with a DRAM array allows the M5M44409TP CDRAM to transfer a 16 -line block to cache within 70 nsec.

[^7]: All product and company names are trademarks of their respective holders.

[^8]: Emulex Micro Devices Sales Representatives: NEW ENGLAND: Advanced Tech Sales, Inc. (508) 664-0888 • CANADA: Electro Source (416) 675-4490 • MICHIGAN: JMJ Associates (616) 774-9480 • SOUTHEAST: Montgomery Marketing, Inc. (919) 851-0010 • MIDWEST: Oasis Sales Corporation (708) 640-1850 • NORTHERN CALIFORNIA: Promerge Sales (408) 453-5544 • NORTHWEST: QuadRep-Crown, Inc. (503) 620-8320 • SOUTHERN CALIFORNIA: QuadRep Southern, Inc. (714) 727-4222 • FLORIDA: Sales Engineering Concepts (407) 830-8444 - MID-ATLANTIC: T.A.1. Corporation (609) 778-5353 • ROCKY MOUNTAINS: Wescom Marketing, Inc. (303) 422 -8957 • TEXAS FOUR-STATES: West Associates (214) 680-2800
 © 1992 by Emulex Corporation. All rights reserved.

[^9]: *The top-of-the-line Fluke 12 in our newest DMM family. It combines a smart set of troubleshooting features in a new design that's exceptionally ast and simple to operate - with one hand. It's yours after our 30 minute demo, no matter whose logic analyzer you purchase.

[^10]: 2 Essex Road • New Milford, CT 06776 • 203-350-1153 Fax: 203-350-1155

[^11]: Z8 is a registered trademark and Superintegration is a trademark of Zilog, Inc.

[^12]: *In Canada, call 1800 465-1234. **16MB, Paging Disk, Display, Operating System, Graphical User Interface. 1 16MB, 400MB Disk, Display, Operating System, Graphical User Interface. IBM is a registered trademark and RISC System/6000 is a trademark of International Business Machines Corporation. SPECmark is a geometric mean of the ten SPECmark tests and is a trademark of Standard Performance Evaluation Corporation. All SPECmark figures listed are as published by their respective manufacturers. All prices listed are MSRP. Remarketer prices may vary. IPC is a trademark of Sun Microsystems, Inc. DEC5000 is a trademark of Digital Equipment Corporation. UNIX is a registered trademark of UNIX Systems Laboratories. HAGAR THE HORRIBLE Character(s) (c) 1992 King Features Syndicate, Inc. (c) 1992 IBM Corp.

[^13]: This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

[^14]: This list includes acronyms and abbreviations found in EDN's Special Report, Technology Updates, and feature articles.

