

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Special Report:
Achieve blazing data transit with FDDI ${ }_{\text {pg } 88}$

Now catch the bugs that defy logic.

The HP16500A logic analysis system shows what's bothering your designs.
Power up a new design and you're in for a battle. That's when you need the HP 16500A logic analysis system. With one modular system, you can focus measurement power on those press-
ing problems. Before things get out of hand.
Choose from a wide range of modules. The state/timing module provides advanced capabilities, including 100 MHz state speed for debugging RISC and high-end CISC processors. There's a $1 \mathrm{GSa} / \mathrm{s}$ scope for sin-gle-shot troubleshooting. A 1 GHz timing module for precision timeinterval measurements. And pattern generation for functional testing.
And you get the industry's broadest microprocessor and bus support...more than 100 solutions to speed and simplify debugging of virtually any microprocessor based design. Plus an intuitive
full-color, touch-screen interface to make setup and operation easier too.
So take control of the debugging process. Call 1-800-452-4844. Ask for Ext. 2604 and we'll send a brochure on the analysis system that can catch the toughest bugs before they start bothering you.
There is a better way.

【p
 HEWLETT PACKARD

[^0]
5102

 FOR APPLCATIIONS WITH

 FOR APPLCATIIONS WITH A FUTURE-TODAY

 A FUTURE-TODAY}

REAL PRODUCTS, NOW

Ziatech's STD and STD 32 industrial computers provide a compact, low-cost alternative to VME, MULTIBUS and the AT bus. 8-, 16- and 32-bit solutions with sophisticated multiprocessing are available now.
Call for our brand-new 200 + page technical data book.

ULTIMATE CONTROL

No one can give you control of your GPIB test system like National Instruments can.

PERFORMANCE

The NAT4882 ${ }^{\text {TM }}$ chip makes our GPIB controller boards completely IEEE-488.2 compatible. When the NAT4882 is teamed with the Turbo488® performance chip, you get the maximum IEEE-488 transfer rate of $1 \mathrm{Mbytes} / \mathrm{sec}$ for both read and write operations.

Use our industry-standard $\mathrm{NI}-488^{\star}$ software to control your GPIB instruments and give your test programs maximum throughput, regardless of your choice of personal computers or workstations.

COMPATIBILITY

The NAT4882 controller chip is also compatible with the controller chips of the past, so you get the best of both worlds complete compatibility with your existing applications and the ability to meet your future requirements.

And when your controller needs change, $\mathrm{Nl}-488$ programs are compatible across many different platforms and operating systems - without modification.

UPGRADE PROGRAM

Existing PC, PS/2, and Macintosh customers can upgrade to the benefits of IEEE-488.2 and increased performance through a special upgrade program.

TRAINING

Learn even more ways to improve your test system by taking our hands-on, IEEE-488 training course.

For more information on how you can have the ultimate GPIB control, call:
(512) 794-0100 or
(800) IEEE 488
(Toll-free U.S. and Canada)

NATIONAL INSTRUMENTS
Tbe Sofivare is the Instrument.
6504 Bridge Point Parkway Austin, TX 78730-5039

Our Model 91 will make your pulse race and help you function better.

Introducing the latest member of the 90 Series family: Model 91 Synthesized Pulse Function Generator. It delivers functions and pulses to 20 MHz with five digit frequency accuracy. Out the rear it has pulses to 50 MHz and a 100 MHz clock output. Choose ECL, CMOS or TTL levels, or set your own.

The functions and pulses can be swept or modulated,
and there is even GPIB programmability. Plus an external frequency input that lets you use the Model 91 as a frequency counter.

With all these capabilities, Model 91 redefines the concept of an all-purpose benchtop instrument.

About all it doesn't do is generate arbitrary waveforms, but there's the Wavetek Model 95 Synthesized Arbitrary Function Generator for that.

Of course if you want even greater pulse generation capability, our four-channel Model 869 is among the most accurate pulse generators in the world.

For more information about our multi-purpose function generators, high performance pulse generators, or test development and arbitrary waveform software, call Wavetek at 1-800-874-4835.

Metal film resistance. Lots of people supply it, but at Dale ${ }^{\circledR}$ we have more ways to make it work to your advantage

From the start, we'll give you more alternatives for fine-tuning resistance to your application - right out of the catalog. Low cost commercial to ultra precision.

High power. Ultra high or low value. Tight tolerance. Matched sets. Thick film chips, plus thin film chips for surface mounting Qualifications include: MIL-R-10509, MIL-R-22684, MIL-R-39017, MIL-R-55182 and MIL-R-55342

All guided by Statistical Process Control and Just-In-Time Delivery systems

For high performance, high volume or both, Dale has products to meet your exact needs, plus
multiple sourcing to protect your production schedule.

Save time by contacting your Dale Representative or contact Dale Electronics, Inc., Norfolk Division, 2300 Riverside Blvd. Norfolk, NE 68701-2242. Phone (402) 371-0080

On the cover: Light traveling along fiber-optic highways lets FDDI (Fiber Distributed Data Interface) LANs transmit data at 100 Mbps . See our Special Report on pg 88. (Photo courtesy Interphase Corp)

SPECIAL REPORT

FDDI stations

Increasing network demands are straining the throughput of first-generation LANs. To meet high-performance requirements, network designers are starting to adopt the $100-\mathrm{Mbps}$ Fiber Distributed Data Interface (FDDI). Unfortunately, FDDI stations don't come cheap.-John Gallant, Associate Editor

DESIGN FEATURE

EDN's DSP-chip directory

The tools needed to develop applications that use digital signal processing (DSP) continue to improve. Now, a choice of operating systems and interfaces to host operating systems is making DSP available to more applications.-David Shear, Contributing Editor

TECHNOLOGY UPDATES

SCPI instruments will ease ATE development

Engineers who want to minimize test-system development time and maximize system flexibility should use SCPI instruments whenever possible.-Maury Wright, Regional Editor

Serial EEPROMs: Serial memory offers cheap frills

 57You don't need a byte-wide interface or large devices to add a little nonvolatile memory to your system. Serial EEPROMs are an inexpensive option that offer a few extras.
-Richard A Quinnell, Regional Editor
Continued on page 7

[^1]

PAL" 22VIO: 7.5ns.

World's fastest programmable 22V10. Here is the logic for high-performance systems running up to 111 MHz . Set-up is just 3 ns . Fast logic for fast systems. You get the same high speed and low noise with the 22 VP 10 . It offers additional flexibility, including an I/O feedback path to accelerate state machine applications.
BiCMOS. The first BiCMOS 22V10, from the company that delivered the first CMOS 22V10. ECL core path for record-setting performance. CMOS logic outside the speed path, for low power. The speed of smaller PLDs, the convenience of the popular, flexible 22 V 10 and field programmable too.
${ }^{*} 1$ (800) 833-0306 in Canada. (32) 2-652-0270 in Europe. ©1991 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: 1- (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0753. Trademarks: PAL, Advanced Micro Devices, Inc. MAX, Altera Corporation

Broad 22V10 PLD family and more. Cypress's 15 ns CMOS 22V10 consumes less power than any electrically erasable alternative. It's just one of a broad range of low-power CMOS PLDs. Also get 28-pin applications-tailored PLDs, and our high-capacity MAX ${ }^{\mathrm{mM}}$ PLDs too.

Call Today. Order our PLD Kit and we'll ship it right away. Why wait?
Hotline: 1-800-952-6300.* Ask for Dept. C4Q.

The Shot Heard

AMD Introduces The Am386"'Microprocessor.

You say you want a revolution? We've got your ammunition: The Am386 microprocessor. And it stands for the same principles you value most-higher speeds, longer battery life, better price-performance, and the freedom to choose your own vendor.

The Am386DXL-40 microprocessor shatters the 33 MHz 386 speed barrier with
a genuine, 40 MHz , plug-in replacement. Which means you can easily offer the fastest 386 system available.

Thanks to its truly static operation, the Am386 microprocessor family uses very little power. So you can expect battery life up to 5.5 hours under normal working conditions with our 25 MHz , low-power Am386SXL-25 CPU.

'Round The World.

MAGNUM

And the price you pay for such freedoms is small, and getting smaller. Because we've brought back aggressive learning curve pricing, anticipating at least a 20% price reduction each year for our Am386SXL-25 CPU.

What's more, the Am386 microprocessor family is available today, available in quantity, and available to everyone.

In truth, it's the microprocessor for the masses.
So call AMD today at 1-800-222-9323.

And start a revolution of your own with the Am386 microprocessor.

7

Advanced Micro Devices

"We're Not Your Competition."

Our pulse generators will test what you have.

That's a big statement. But these are powerful programmable pulse generators. Combined, they deliver top speed, high resolution and pulse-parameter flexibility. So you get accurate testing of your present and future highspeed designs, whether they're ICs, PCBs, or components.

Put the 500 MHz HP 8131A

HP 8130A Pulse Generator

HP 8131A Pulse Generator
to work on your hottest new devices. With a transition time of $<200 \mathrm{ps}$, plus pulse widths down to 500 ps with 10 ps timing resolution, you get the stimulus you've needed for accurate testing of your fastest designs.
For the most complete testing of your high-speed devices, choose the HP 8130A. It has

And what you have in mind.

the features you've wanted in a 300 MHz pulse generator, including variable transition times down to 1 ns , and 10 ps timing resolution. Which means you not only have the flexibility for high-speed parametric testing of digital devices, but for analog device testing as well.

So call 1-800-452-4844 today. Ask for Ext. 2631 to get data
sheets and application information. Then get the programmable pulse generators you need for the fast devices you have in hand and mind.

There is a better way.

[ip
 HEWLETT
 PACKARD

ANY WAY YOU SLICE IT, GENERATION COVERS EVERY

The squeeze is on. Today the PC market is rapidly concentrating into three segments: Notebooks, Desktops and Workstations. And once again, Conner has anticipated these changes.

Which is why we're introducing our newest wave of highperformance 2.5 -inch and 3.5 -inch drives to meet the needs of each of these evolving market segments.

For the notebook market,
take our newest Pancho drive.

Summit 540MB

With 85 Mbytes, it offers the highest capacity available in a light weight, patented 2.5 -inch form factor. Low power consumption, rugged packaging and a compact form factor

Joguar 85/700 M make it the ultimate choice for 386SX and 486SX-based notebook computers.

Then there's our new Jaguar Series for the desktop market-3.5-inch drives offering 85 and 170 Mbytes. A 17 msec. average seek time and a light weight, patented 1 -inch

CONNER'S NEWEST SEGMENT OF THE MARKET.

high form factor make them ideal for a full range of desktop computers.

For workstations, we're introducing two new 3.5 -inch drives - the 210 Mbyte Cougar and 540 Mbyte Summit. Cougar is the highest performance low-profile drive on the market today. While Summit delivers the greatest capacity and performance of any 3.5 -inch drive. Both provide a fast average seek time of 12 msec. , a 2.5 Mbyte per second sustained transfer rate and a SCSI-2 interface.

It's all a part of our innovative sell-design-build business philosophy. To identify our customer's needs sooner. Then
fill them faster with the most advanced products. In fact, we're the technological leader with nine patents issued and 27 pending. Which is why more and more PC users are asking for systems with Conner drives.

So if the changing market segments are putting the squeeze on your systems, call us today. We'll guarantee you the most refreshing results.

COMFMEO

Delivering A Generation Ahead

[^2]

Onceyou'vehad a look at the Samsung line of EEPROMs, it's easy to see why it's the broadestline available.

In commercial and industrial grades-and from 256 K , 64 K , and 16 K parallel parts down to serial chips in many organizations-the Samsung EEPROM line represents a true commitment.

Which is good news.
Particularly at a time when majormanufacturers are abandoning the EEPROM market and smaller companies are struggling.
Wehaveenormousproduction capabilities. And as one of the largest chip makers in the world, also enormousstaying power.
Which means that with SamsungEEPROMs, you're assured of a supply that's just not going to be threatened.
In the all-important 256 K EEPROM, we are the only offshore supplier, and probably the only large manufacturer to offerit.

Both our 256 K and 64 K

IF YOU'RE NOT FINDINGTHE LINE, MAYBE YOU SHOULD

chips are available with a high, 100 K cycle rating. We will introduce the $1-\mathrm{meg}$ EEPROM late this year. And in the flash EEPROM category, we're in development up to 8-meg right now.
Many of our serial parts are available in low voltage. On our 2 K and 4 K serial parts, we offer a secure access feature.
And across our entire line of both parallel and serial EEPROMs, our parts are available with industrial ratings.
If you make mainframes, or switching systems, or modems, or anything else that uses EEPROMs and is going to keep doingit-look nofurtherfor a supplierwith the staying poweryou need. For data, contact us now at 1-800-423-7364 or (408) 954-7229.

Or write to EEPROM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.

SAMSUNG
CIRCLE NO. 6
Technology that works for life.

INDUSTRY'S BROADEST EEPROM HAVE YOUR EYES CHECKED.

SIEMENS

Globally Connected.

Siemens provides computer and peripheral manufacturers with a worldwide connection for state-of-the-art integrated circuits.

Siemens is building on a tradition of innovation with state-of-the-art technology in the workplace. And we back it with worldwide service and support, providing a global partner for all your system designs.

For applications such as laptop PCs, printers and disk drives, which require lower power consumption, we offer

Innovative 8-bit microcontroller designs. CMOS 8-bit microcontrollers based on the 8051 architecture. Like the SAB80C537, with advanced features
such as 16-bit hardware multiply/divide, and 8 data pointers.

We're also the only European DRAM manufacturer, providing highquality $1-\mathrm{Mb}$ and $4-\mathrm{Mb}$ DRAMs. In fact, we're one of the world's leading suppliers, with DRAMs available worldwide, in volumes which have doubled since 1989. And we're continuing to advance this technology with our $16-\mathrm{Mb}$ and 64-Mb DRAM programs.

Siemens has a wide range of ICs for PCs. Our powerful 80286 microprocessors include a super-fast 16 MHz design. And we provide the 82C206 and the NEAT" chipset for optimized, low-cost solutions.

80286 and integrated peripherals. sign

Plus, Siemens offers an extensive line of CMOS ASIC devices.
For innovative solutions for computer and peripheral manufacturers, Siemens is the best connection you can make

For details, call (800) 456-9229, or write:
Siemens Components, Inc. 2191 Laurelwood Road Santa Clara, CA 95054-1514

Ask for literature package M14A013.
\qquad

Siemens

World Wise, Market Smart.

VME BOARD TOPS 1.1 BOPS PERFORMANGE

A single V-C40 VME board from Ariel Corp sets a VME peak-performance mark-as much as 1.1 billion operations per second (BOPS). Additionally, it can move data at rates as high as 1.3 Gbytes $/ \mathrm{sec}$. The 6U VME board holds as many as four TI TMS320C40 32-bit floating-point DSP processors along with as much as 64 Mbytes of local dynamic RAM, and 8 Mbytes of static RAM (2 Mbytes per CPU). You can hook up processors and multiple boards in a number of multiprocessing configurations. Each board has six special byte-wide DMA communications ports, three of which are brought off board for 12 communications links, each capable of moving $20 \mathrm{Mbytes} / \mathrm{sec}$. The board has a proprietary 24 -bit bus for linking to analog converter cards. The board functions as both a VME bus master and slave and costs $\$ 20$ per million operations. Ariel Corp, Highland Park, NJ, (908) 249-2900, FAX (908) 249-2123.-Ray Weiss

PALM-SIZE INDUSTRIAL PC OPERATES FROM - 40 TO $\mathbf{+ 8 5}^{\circ} \mathbf{C}$

Suitable for use in rugged environments that present extreme temperatures, the 5012 Micro PC needs no keyboard, monitor, or disk drives to operate. With DOS embedded in its ROM, this computer includes two 512-kbyte solid-state data-storage locations that you can populate with RAM and EPROM. Housed on a pc-board, the computer comes with a built-in EPROM programmer, 1 Mbyte of dynamic RAM that you can expand to 2 Mbytes, a watchdog timer, battery backup for RAM, and a battery-backed calendar/clock. This board also contains ports for a printer, a keyboard, a speaker, and two serial ports. The basic board costs $\$ 495$, and you can order enclosures starting at \$45. Octagon Systems Corp, Westminster, CO, (303) 430-1500, FAX (303) 426-8126.-J D Mosley

MULTIPLY-ACCUMULATE UNIT ENHANCES SERVO CONTROLLER

An embedded multiply-and-accumulate unit (MAU) highlights a range of features of the HPC46100 16-bit microcontroller from National Semiconductor. Running off a $40-\mathrm{MHz}$ system clock, the MAU provides 32 -bit results from 16 -bit, signed-integer multiply-and-accumulate operations in 400 nsec . Peripheral functions such as an 8 -bit ADC with $5-\mu \mathrm{sec}$ conversion, three independent timers with separate frequencyand duty-cycle control registers, a programmable UART, and 1 kbyte of onboard RAM tailor the microcontroller to such embedded servo applications as found in automo-tive-chassis and hard-disk drive control. The ADCs convert as many as eight singleended channels or four differential-channel pairs. You can trigger the converters for single readings, or you can perform these operations continuously. Eight dedicated registers let you store single-channel data for average reading calculations. The onboard UART can operate in synchronous or asynchronous modes and offers multiple character widths and stop bits, status reporting, error detection, an addressing mode, and diagnostic testing. The $\mu \mathrm{C}$ is upward-source-code-compatible with the HPC family of controllers and includes such other features as watchdog logic, vectored interrupts, and HALT and IDLE power-down modes. Available development tools for the $\$ 23$ (1000), $14 \times 14-\mathrm{mm}, 80$-pin device include a development system, serial hook hardware, logic-analyzer interface board, HP logic-analyzer disassembler, and cross-development system. The device comes in a plastic quad flatpack. National Semiconductor, Santa Clara, CA, (408) 721-5185.-Michael C Markowitz

NEWS BREAKS

COLOR PANFL-MOUNT DISPLAY INCLUDFS 80386SX PC

Computer Dynamics's Color Displaypac includes an IBM PC-compatible 80386SX single-board computer and a color LCD with infrared touch screen in a panel-mount package. The integrated package measures $11.5 \times 8.5 \times 2 \mathrm{in}$., and the display screen is 10.4 in . wide. The display provides VGA color graphics and includes a fluorescent backlight. The single-board computer includes as much as 4 Mbytes of dynamic RAM, two RS-232C serial ports, keyboard and printer ports, and hard- and floppy-disk interfaces. The computer can boot MS-DOS from an onboard RAM/ROM disk. A configuration with 1 Mbyte of memory and a $16-\mathrm{MHz} \mu \mathrm{P}$ costs $\$ 6174$. Computer Dynamics, Greer, SC, (803) 877-8700, FAX (803) 879-2030.-Maury Wright

MPLD COMBINES AS MANY AS 40 ALTERA FPLDS

Altera's Mask-Programmable Logic Device (MPLD) can replace as many as 40 of the company's erasable programmable logic devices (EPLDs) or up to 700 of its macro cells. Offered as a synthesis service, the company will take EPLD designs at the netlist level and synthesize them into a single mask-programmed device. The company guarantees results from working designs using EPLD circuits, letting engineers prototype, and even put out as initial products, EPLD-based designs. For size reduction, they can then have the design reduced to a single, foundry-programmed maskbased chip. The conversion process is automated and the company will guarantee layout timing as well as 95%-or better-fault coverage for supplied test vectors. Prototypes will be delivered within 6 weeks of receipt of the design. The cost is $\$ 0.06$ per macro cell for production units; $\$ 20,000$ to $\$ 60,000$ for design conversions (NRE). Production units are delivered within 10 to 12 weeks. Initially, Classic and MAX 5000 EPLDs are covered, with MAX 700 devices added by the fourth quarter of 1991. Altera Corp, San Jose, CA, (408) 984-2800, FAX (408) 435-1394.-Ray Weiss

SOLID-STATE RELAYS SUIT LOW-CURRENT APPLICATIONS

The LH1500 family of <1A solid-state relays from AT\&T Microelectronics each comprise a photodiode array, various switch control circuits, and DMOS switches. The relays use an LED for actuation control and an IC for the switch output. The family consists of 21 products, ranging in price from $\$ 1.25$ to $\$ 4.75$ (1000) and includes all the common switch forms: normally open, normally closed, and combinations of each. Each relay features 3750 V of isolation, thereby meeting European standards and exceeding US standards. The relays are constructed on a dielectrically isolated process, which provides for breakdown voltages between 140 and 440 V . Typical on-resistance varies from 2 to 23Ω. Special features of some of the relays include current limiting, make-before-break switching, and dual packaging. The relays come in either 6- or 8 -pin DIPs or surface-mount gull-wing packages. Sample quantities are available now; production quantities will be available by the fourth quarter of 1991. AT\&T Microelectronics, Allentown, PA, (800) 372-2447.-Anne Watson Swager

CMOS PLDS ACHIEVE 7.5-NSEC SPRED

Intel Corp's faster versions of its $\$ 10$ 85C244 24-pin and $\$ 6.10$ (1000) 85C220 20-pin PLDs have programmable I/O structures, letting them emulate a variety of 20- and 24-pin PLD architectures. They have a $7.5-\mathrm{nsec}$ input-to-output propagation delay and support clock frequencies as great as 74 MHz using external feedback. The parts consume 105 mA at maximum operating frequency and come in plastic leaded chip carriers. Intel Corp, Santa Clara, CA, contact local sales office.-Richard A Quinnell

We Deliver nswers

Current through an inductor with stepped resistance

Rise time and overshoot as a function of resistance

Explore the Intricacies of Your Circuit Design...

Using PSpice's Probe 5.0 with Performance Analysis

Witsimulations is at your fingertips. By applying any number of user-defined goal functions (such as pulse-width or overshoot) to multiple PSpice waveforms, a circuit's behavior can be tracked as a function of changing conditions (such as temperature, source voltage, or model parameter values). It becomes easy to plot quantities like propagation delay versus temperature, bandwidth versus Q, or pulse-width versus component value. Performance Analysis, along with Probe's well-known high-resolution graphical display of simulation and post-processed results, makes it easier than ever to visualize trends in the circuit's behavior.
Other features lending to Probe's popularity include multiple Y axes on a single plot (new for 5.0), fast Fourier transforms, and simultaneous display of analog and digital waveforms. Probe's interactive plotting capabilities offer the user complete control; axes can be freely defined and traces can be added to the display as functions of other waveforms or arithmetic expressions of voltages and currents.
Probe 5.0 is sold as an option to MicroSim Corporation's popular PSpice 5.0 circuit simulator-part of our Circuit Analysis package. Every copy sold comes with our extensive customer/product support. Our expert engineering team is always on hand to answer your technical product questions.
For further information on MicroSim Corporation's family of products, call toll free at (800) 245-3022 or FAX at (714) 455-0554.

DISTRIBUTION CENTERS
UNITED STATES EUROPE WEST \& EAST
${ }^{\text {MINI-CIRCUITS }}$

PO Box 350166 B'klyn NY 11235-0003 yn., NY 11235-0003 | (718) $934-4543$ |
| :--- |
| 700 |

Missouri (800) 654-7949 (417) 335-5935 MINI-CIRCUITS/DALE DALE ELECTRONICS LTD. Dale House Wharf Road Frimley Green Camberley, Surrey GU16 6LF England
44-25-283-5094

AMERICAN EXPRESS
 VISA

LOCAL DISTRIBUTORS

 NORTH AMERICA UNITED STAIESMID-ATLANTIC
${ }^{\text {MLC }}$ MLC Distributors Ltd.
Conshohocken, PA 19428 800) 442-3177
(215) $825-317$
\star MIDWEST
CFC Distributors, Inc. Mundelein. IL 60060 (708) 540-9962
, SOUTHEAST
*Component Distributors. Inc.
Huntsville, AL 35810
(800) 888-0331
(205) 851-7800

Palm Bay, FL 32905 (800) 558-2351

724-9910
Norcross, GA 30092 (800) $874-7209$ 404) 441-3320 SOUTHWEST TEXAS, OKLAHOMA * LOUISIANA

* Component Distributors, Inc. Dallas, TX 75243 (800) 848-4234 (214) $644-0373$

WEST
ARIZONA, NEW MEXICO Spirit Electronics Scottsdale, AZ 85260 (602) 998-1533
\triangle CALIFORNIA
Mini-Circuits
Tustin. CA 92680
(800) 654-7949
(417) 335 -5935

Los Altos, CA 94022 (800) 654 -7949 (800) 654-7949 (417) $335-5935$ NORTHWEST
Mini-Circuits
Bellevue, WA 98004
(800) 654-7949 417) 335-5935

CANADA
Eastern
*Giga-Tron Assoc. Ltd.
Ottawa, Ontario (613) 225-4090
\triangle Western
$\Delta_{\text {Mini-Circuits }}$
Bellevue, WA 98004 (800) 654-7949 (206) 462-2118 (417) 335-5935

* participating distributors
${ }^{\triangle}$ Distribution Centers

INTERNATIONAL

EUROPE

BELGIUM, LUXEMBOURG
ETS Freddy Leger
B-1080 Brussels, Belgium 32-2-410-1421
FINLAND
Integrated Electronics, Oy AB Helsinki, Finland 358-0-351-3133
FRANCE
SCIE-DIMES 91430 Igny, France 33-1-6-941-8282
GERMANY, AUSTRIA,
DENMARK, SWITZERLAND Industrial Electronics GMBH D-6236 Eschborn, Germany 49-6196-48689
ITALY
Dale Electronics, Ltd.
GU16 6LF, England
44-25-283-5094
NETHERLANDS
BFI IBEXSA BV
2130 KA Hoofddorp
The Netherlands
31-0-20-6531350
SPAIN
BFI IBEXSA Electronica. SA 28049 Madrid, Spain 34-1-358-47-77 SWEDEN Integrerad Elektronik Bromma, Sweden 46-8-804685
UNITED KINGDOM
BFI IBEXSA GROUP
Aylesford, Kent ME20 7NA England 44-622-882467

MIDEAST

ISRAEL
Vitel Limited
Shikun Dan
Tel Aviv 61131 Israel
972-3-479-153
JAPAN
Densho Kaisha Limited Minato-Ku, Tokyo, Japan 813-3436-0041

ALL MIN-CIRCUITS SHIPPED WITHIN

Amplifiers Frequency Mixers RF Transformers Frequency Doublers Phase Detectors
Power Splitter/Combiners 1\&Q/QPSK Modulators

Fixed Attenuators
Precision TIL-Controlled Attenuators Switches and Drivers Directional Couplers

Terminations
Limiters
Filters

All Mini-Circuits' components listed in the latest published catalog, in all configurations and connector types, will be processed and shipped within one week after an order is received, or if the order calls for scheduled shipments, we will ship on or before the due date. If we're late, we'll deduct one percent per day from your bill (maximum deduction up to 25%, as allowed by law): but don't count on this discount since we intend to meet each and every scheduled shipment.

What makes this fast turnaround possible? First, fast manufacturing throughput achieved using powerful statistical process-control techniques coupled with the latest computer-automated production and test equipment. Second, a worldwide distribution network, with a major Distributor Center in the U.S. and in England, backed by 16 regional distributors.

We wholeheartedly encourage you to place your orders with your local distributor. But let's be realistic. Although our distributors stock our products, not every distributor will carry every single catalog item, especially in substantial quantities. In such instances, when the need for components is urgent, contact a Mini-Circuits' Distribution Center listed and you will be covered by our shipment guarantee.

RF/IF CATALOG PRODUCTS ONF-WEEK... GUARANTEED!

United States

\triangle Mini-Circuits

NEW YORK
8AM-5:30 PM EST (phone) 800-247-6343 (phone) 718-934-4500 (fax) 718-332-4661

MISSOURI
9AM-8PM EST
(phone) 800-654-7949
(phone) 417-335-5935
(fax) 417-335-5945

Europe

Δ Mini-Circuits/Dale
8:30 AM-5:30 PM
(phone) 44-25-283-5094 (fax) 44-25-283-7010
Guaranteed order processing is another expression of MiniCircuits' dedicated effort for world-class quality...meeting and exceeding customers' expectations. Write, phone, or fax your order and be confident that it will be shipped on time, every time by Mini-Circuits.
finding new ways
setting higher standards

WHYTHE FIRST 040 VME MIGHTASWELL BETHELAST.

Memory modules available in 4 and 16 MB DRAM or SRAM.

DRAM memory module supports burst fill mode for 50 Mbyte/sec memory bandwidth.

On board DMA-based architecture provides maximum performance and parallel real-time operation.

gixi

3) RESET

First, we're delivering 040 VME single board computers today. In quantity. So you can get started while the rest of the world waits for a delivery date from other suppliers. our new CPU-40 board is setting else can performance standards nobody touch. Like 30,000 dhrystones sustained at 25 MHz . And DMA transfers at a screaming 50 Mbytes per second sustained (3 microseconds on the VMEbus).

So it might just be the last 040 board you'll ever need.

That's because we've fully optimized the on-board architecture. Thanks to our 281-pin gate array, DMA operations can be handled between on-board RAM, the VMEbus and on-board I/O devices. Or through our FLXi interface to other I/O drivers.

All of which means the CPU is free over 75% of the time to run your application.

VME at its best.

Developing new applications is also a snap. Choose from the broadest range of third-party software in the business, including VMEPROM, ${ }^{\text {TM }}$ pSOS $+{ }^{\text {T, }}$ VRTX32, ${ }^{\text {m, }}$ OS-9, ${ }^{\text {m, }}$ VxWorks, ${ }^{\text {™ }}$ UNIFLEX, ${ }^{\text {™ }}$ MTOS ${ }^{\text {™ }}$ and UNIX 5.4 .
Of course, we provide comprehensive support with the industry's best-rated documentation,*", complete systems integration support and technical assistance.
CPU-40 PERFORMANCE CHARACTERISTICS

Data from	CPU	CPU	CPU	CPU	VMEbus	SCSI*	Floppy Disk*	Ethernet*	Shared RAM ${ }^{*}$	VMEbus.
Transter to	Shared RAM	EPROM	Serial I/O Timers	SCSI. Ethernet Controller. Floppy Disk	Shared RAM	Shared RAM	Buffer RAM	Dual-port RAM	VmEbus	VMEbus
Transter Speed	53.7 MB/sec	16 MB/sec	$\begin{aligned} & 2 \\ & \mathrm{MB} / \mathrm{sec} \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{MB} / \mathrm{sec} \end{aligned}$	5 MB/sec	4 $\mathrm{MB} / \mathrm{sec}$	500 KBit/sec	10 MBit/sec	15 $\mathrm{MB} / \mathrm{sec}$	15 $\mathrm{MB} / \mathrm{sec}$
Local 68040 CPU Operation	100\%	100\%	100\%	100\%	70\%	80\%	100\%	100\%	75%	100\%

So be the first in your company to turn 040. Call 1-800-BEST-VME, ext. 40, for more information or fax a request to (408) 374-1146 for an immediate response.

It'll be to your lasting advantage.
*Actual dhrystone results may vary depending on compiler used **Computer Design News, March 12, 1990. All brands or products are trademarks of their respective holders. © 1991 FORCE Computers, Inc

CIRCLE NO. 11

People say boundary inlow cost,highquality Now you can test that

Increasing device complexity. Rising pattern development costs. High density packaging. Disappearing nodal access. These are the board test problems boundary scan was created to solve. Which is fine in theory. Only problem is there hasn't been any way to put boundary scan to the test. Until now.

VICTORY- the first software to automate boundary-scan testing.

Introducing VICTORY ${ }^{\text {th }}$ from Teradyne: the only software toolset ready to help you turn boundary-scan theory into a practical advantage. From the moment your first boundary-scan device is designed in, VICTORY starts
to simplify the testing of complex digital boards. And the more bound-ary-scan parts you have, the more time and money you save.

Delivers high faultcoverage.
Whether you're testing one boundary-scan part or boundary-scan networks, VICTORY software automatically gives you 100% pin-level fault coverage. Using the IEEE 1149.1 and BSDL standards, it takes VICTORY only a minute or two to generate test patterns. It would take a programmer days, even weeks to deliver the same fault coverage for conventional designs.

Now you can find stuck-at faults, broken wire bonds, wrong or missing compo-nents-even open input pins-all without manual diagnostic probing. VICTORY's fault diagnostics clearly spell out both fault type and fault location. And that's just the manufacturing process

scanisabreakthrough board testing.

 theory.

 theory.}
feedback you need to eliminate defects where it's most cost-effective-at the source.

Helps solve the test access problem.
With boundary-scan design and VICTORY software, you won't need bed-of-nails access on nodes where boundary-scan parts
are interconnected. That means fewer test pads. Fewer test probes.

That's
a compelling advantage to board designers. Which is why VICTORY's Access Analyzer was developed. With this concurrent engineering tool, designers get testability information early in the design process. They can easily see where test points are required for visibility and where they can be dropped, for opti-
mized board layout without lowering fault coverage.

Good for the bottom line.

Boundary-Scan Intelligent Diagnostics identify faults by type and location without physical probing - even on high-density SMT assemblies

Shorter test programming time. Higher fault coverage. Lower PC board and test fixture costs. The bottom line on VICTORY is how positively it will affect your bottom line. And because VICTORY works with all Teradyne board testers, you're free to tailor a test process that's cost-effective for both your boundaryscan and non-scan boards. No matter what your test objectives. For example, with our new Z1800VPseries testers, a complete solution for in-circuit and boundary-scan testing starts at well under $\$ 100,000$.

Make the next logical move. Call today.

Boundary scan is the design-for-test breakthrough that promises lower cost,

Get high fault coverage at low cost when you test boundary-scan boards with our new Z1800VP system and VICTORY software. higher quality board testing. But don't take our word for it. Call Daryl Layzer at (800) 225-2699, ext. 3808. We'll show you how, with VICTORY software and Teradyne board testers, you can test this theory for yourself.
TERADTAE

THE FINE ART OF DISC DRIVES

If your computer application has an insatiable appetite for disc storage,
Seagate's got you covered.
Seagate produces more than twenty models of our Wren, Elite and Sabre disc drives with capacities greater than a gigabyte. Ranging in size from 1.1 to 3.2 GB , Seagate offers the industry's broadest range of high-capacity solutions for anything from a desktop PC to a world class supercomputer. These 5.25" Wren and Elite drives and 8 " Sabre drives feature data rates as high as 27 MB /second, average seek times as low as 11.5 msec and latency as low as 5.56 msec . With a choice of high performance interfaces including SCSI, SCSI-2, IPI and SMD, you can easily configure the ideal storage solution for your requirement.

Because these drives utilize Seagate's own thin-film heads, thin-film discs, voice-coil motors and printed circuit boards, you can be assured you're getting the highest quality disc drive available. In fact, our MTBF specification is as high as 250,000 hours in a Class A computer room environment.

Seagate's array of gigabyte-plus solutions can turn your computer application into a work of art. For complete Wren, Elite and Sabre specifications, contact your authorized Seagate distributor. Or call Seagate directly at $800-468$-DISC, or 408-438-6550.

$d \int$ Seagate

SIGNALS \& NOISE

Juggling equation for better solution

Just as my subscription to EDN is reinstated, Peter Anderson shocks me with the equation on pg 31 of EDN (May 23, 1991), [which uses N to characterize a triode]. For example, the dual triodes 12AU7, 12BH7, and 5687 all have values of a μ of 20 , but only one may work properly in a circuit.
The value of μ is the ratio of $\mathrm{g}_{\mathrm{m}} \cdot \mathrm{MDSU} / \cdot \mathrm{MDNM} /$ to g_{p} or the product $g_{m} \mathrm{r}_{\mathrm{p}}$. You can double g_{m} and g_{p} or halve r_{p} by doubling the plate current, and the μ is unchanged. The point is that using the smallsignal equation

$$
\mathrm{I}_{\mathrm{p}}=\mathrm{g}_{\mathrm{m}} \mathrm{~V}_{\mathrm{g}}+\mathrm{g}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}
$$

where I_{p} is plate-current change and V_{g} and V_{p} are voltage changes, [would make a better basis for a Spice model.] The equation is related to the equation noted by Peter Anderson, but expresses the operating characteristics of a tube, a bipolar, or a FET device in a much more useful form. The above equation expresses the way we have to operate a [tube,] anyway. We set the plate current, then adjust the bias voltage with degeneration as needed to give that plate current.
Keats A Pullen Jr, PE
Kingsville, MD

Engineer should look for higher paying job

The author of the letter "Engineers' salaries should be professional" (EDN, March 14, 1991, pg 26) suggests that, as a member of the engineering profession, he ought, by that very fact, to be paid a commensurate salary.
The thought is very lofty, but the fact of the matter is that salaries, like most economic matters, are ultimately a question of supply and demand. I really can't imagine a doctor or a lawyer saying, "Gee, guys, I'm a professional. You ought to pay me more."

If you feel you are worth more, then put it on the line and look for a higher paying job. Finally, your salary is a measure of your own capabilities combined with your marketing ability. The professionalism of the engineering profession has nothing to do with it.
Ted Ruel
Controls Inc
Logansport, IN

Battery of tests showed his true learning skills

I appreciated Charles Small's editorial, "Intelligences theory reshapes thought" (EDN's Software Engineering Special Supplement, June 20, 1991, pg 9). His article proves to be profoundly true in my case. I thought I was stupid until I received the results of a battery of tests in the Navy that showed I was not stupid-I just couldn't spell!

Engineers are a unique bunch who, if they cannot spell, will conceptualize, innovate, and design a software program to do it for them.
Charles Cutler
Bear Medical Systems Inc
Riverside, CA

Phone number changed

The phone number for Information Storage Devices Inc (EDN, July 4, 1991, pg 93) has been changed. The new number is (408) 428-1400.

NEXT IN EDN October 3

Look to EDN News Edition's October 3 issue for a Product Watch on ICs for automatic test equipment and a Career Opportunities article on multimedia.

More answers. Every week in EDN.

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:
Power supply provides +5 v and Gnd for
board, -12 v for LCD

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock@ \$75/singles, $\$ 20 / 1000$ s (Surface mount also avail in qty.)
CyberneticMicroSystems
Box 3000 - San Gregorio CA 94074
Tel: 415-726-3000 - Fax: 415-726-3003

「

 lash| SPORTS | SCIEnce And technology |
| :--- | :--- |
| The 90
 An Exhaustive Look At High Tech
 Training Equipment | Virtual Reality
 Close But No Cigar |

How Fast Is A Flash?
A Direct Comparison

Density	AMD	Fastest Competitor
256 K	90 ns	120 ns
512 K	90 ns	120 ns
1 Mbit	90 ns	120 ns
2 Mbit	90 ns	150 ns

SUNNYVALE - The computer industry takes a giant leap forward in performance with the help of the new Flash memory family from Advanced Micro Devices, Inc.

Flash memory is a high-density, reprogrammable, non-volatile technology that has a bright future in computation, laserprinters, network and telecommunications hardware. Many military systems use Flash tectmology in radar and navigational applications.

Flashmemoryalsohas the potential to eliminate mechanical hard disks and the need for cumbersome batteries. These are twoof the biggest and heaviest obstacles in laptop and notebook computer applications.

Today, Flash memory is the most cost effective replacement technology for UV EPROMs and EEPROMs in applications that require in-system applications that require in-system
programming. Flash memories can programming. Flash memones can
literally be reprogrammed in a flash -
hence the name.
Standard, But With A Little More Flast
AMD's Flash memory famil effectively etches in silicon the de-fact standard for this burgeoning technolog that is compatible with Intel's initic Flash architecture.

Because AMDFlash memories an pin-for-pin compatible with the nov standard architecture, AMD i positioned as an altemate source fo design engineers and purchasing agent: alike.
"Alternate source may be ar inadequate term," said Jerry Sanders chairman and CEO of Advanced Micro Devices. "Given our speed and feature set, ourcustomersthink of us as a superior resource,"

Indeed, AMD's Flash memory amily offers designers significant performance advantages (see chart), with speeds almost twice as fast as the nearest competitor.

Engineer Spontaneously Comburcta At Mantina

FOOD

Chips And Salsa
 A Business Person's Guide To Silicon Valley PAGE 7F

MORNING EDITION

ASHES! Megabit,90ns, Memories

Abstract

The AMD Flash family offers denghers and purchasers many packaging options. Particularly popular AMD s advanced 2 Megabit PLCC par, Other packaging options include PDIP, CDIP and LCC in $256 \mathrm{~K}, 512 \mathrm{~K} .1$ Mbit and 2 Mbit capacities. TSOP packages will be available in the second half of this year. (LCC not currently

AMD 2 Mbit.) anem memories and eomplee withembedded program drase algorithms on board. These procestatgorithms speedupthedesign process and considerably shorten time required to Previously, engineers were consuming algorithms toimple time system reparamailislement inatomate AMD's Flash mengorimms a soallow several -ine monies to be written or erased解基, without tying-up the CPU. The ystem is now free to perform other asks while these operations are progress. AMD plans to include embedded algorithms in a future release The Ultro Flash suited to particularly reprogramming in place, because the devicescanbereprogrammed inseconds and within the system.

To update the c EPROM, the par must firs ber from the system. Oncerembe removed can take up to a full 20 moved,erasure reprogramming ull 20 minutes. After back into thg, the part is then plugged result io the systern. The process can costly damage to other components. Hervice calls, and headaches Fash memories, on the other hand, can be buik erased in about one to two seconds, without system disassembly. accomplishedving can then be lines, or even ISDN (continued)

Stop the presses!
Advanced Micro Devices makes big news again-this time with an enhanced family of Flash memory devices.

That's good news for veteran and new Flash users alike.

Because our Flash devices are pin-for-pin compatible with Intel's existing Flash memory architecture, they establish the de facto industry standard.

Our standards, however, are a bit higher. And so are yours.
That's why our Flash Memory family offers densities, speeds and packaging options that improve performance and save board space. For instance, our advanced 2 Mbit PLCC part with a scant 90 nanosecond delay.

You can also choose from Flash devices in $256 \mathrm{~K}, 512 \mathrm{~K}$ and 1 Mbit densities. As well as packaging options that fit your design best, including CDIP, PDIP, LCC, TSOP, and PLCC.

And you'll find implementation faster and easier than ever, because we've included automatic programming algorithms on all our 2 Mbit devices, and soon on our 1 Mbit parts, too. So you'll spend less time writing code, and take less time getting products to market.

To keep up to date with all the latest and greatest in Flash memory, call AMD today at $\mathbf{1 - 8 0 0 - 2 2 2 - 9 3 2 3}$. And start making some headlines of your own.

POWER
 SPIWIERS/ COM:HERS

the world's largest selection 2 KHz to 8 GHz from $\$ 495$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or MIni-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide.

Get hands-on experience at our new high-performance linear seminar.

Learn new high-performance design tricks.
Roll up your sleeves. And mix it up with the leaders in high-performance linear at our all-new seminar.

It's a can't-miss event.
You'll get hands-on experience designing with our Simple Switcher" ${ }^{\text {" family. }}$ Plus, our industryleading 5 V solutions for data acquisition design. And much, much more.

This year's agenda.
Our day-long event will consist of four sessions:
Analog Signal Processing

- National's new SPICE op amp models
- Modelling with SPICE
- Designing with new micropower op amps
Data Acquisition and Conversion

National's Linear Circuit

Sept. 25 Palo Alto, CA

Sept. 26 Newark, CA Sept. 30 Montreal, QC Oct. 1 Boxborough, MA Oct. 2 Rochester, NY Oct. 3 Edison, NJ Oct. 4 Ft. Washington, PA Oct. 7 Schaumburg, IL Oct. 8 Ft. Wayne, IN Oct. 9 Dearborn, MI Oct. 10 Toronto, ON Oct. 11 Minneapolis, MN Oct. 14 Orlando, FL
Oct. 15 Reston, VA Oct. 16 Linthicum, MD Oct. 17 Newton, MA
Oct. 21 Longmont, CO Oct. 22 Houston, TX

Oct. 23 Austin, TX

Oct. 24 Richardson, TX
Oct. 25 La Jolla, CA Oct. 28 Cleveland, OH Oct. 29 Indianapolis, IN Oct. 30 Dayton, OH Oct. 31 Dearborn, MI Nov. 1 Schaumburg, IL Nov. 4 Englewood, CO Nov. 5 Scottsdale, AZ Nov. 6 Woodland Hills, CA Nov. 7 Los Angeles, CA Nov. 8 Costa Mesa, CA Nov. 12 Burnaby, BC Nov. 13 Bellevue, WA Nov. 14 Beaverton, OR Nov. 15 San Jose, CA

National's Linear			
Sept. 25	Palo Alto, CA	Oct. 23	Austin, TX
Sept. 26	Newark, CA	Oct. 24	Richardson, TX
Sept. 30	Montreal, QC	Oct. 25	La Jolla, CA
Oct. 1	Boxborough, MA	Oct. 28	Cleveland, OH
Oct. 2	Rochester, NY	Oct. 29	Indianapolis, IN
Oct. 3	Edison, NJ	Oct. 30	Dayton, OH
Oct. 4	Ft. Washington, PA	Oct. 31	Dearborn, MI
Oct. 7	Schaumburg, IL.	Nov. 1	Schaumburg, IL.
Oct. 8	Ft. Wayne, IN	Nov. 4	Englewood, CO
Oct. 9	Dearborn, MI	Nov. 5	Scottsdale, AZ
Oct. 10	Toronto, ON	Nov. 6	Woodland Hills, CA
Oct. 11	Minneapolis, MN	Nov. 7	Los Angeles, CA
Oct. 14	Orlando, FL	Nov. 8	Costa Mesa, CA
Oct. 15	Reston, VA	Nov. 12	Burnaby, BC
Oct. 16	Linthicum, MD	Nov. 13	Bellevue, WA
Oct. 17	Newton, MA	Nov. 14	Beaverton, OR
Oct. 21	Longmont, CO	Nov. 15	San Jose, CA
Oct. 22	Houston, TX		

Power Management

- Designing with Simple Switchers
- Linear regulation for battery-powered systems
- Avoiding power supply pitfalls
Audio/Video
- One-chip video CRT pre-amp/drivers

You won't walk away empty-handed. You'll be handed free copies of our Simple Switcher and SPICE floppies. And more applications and trouble-shootinghandbooks than you can shake a circuit at. The $\$ 59$ enrollment fee also includes breakfast and lunch.

Reserve your spot today.

Space is limited, so give us a call: 1-800-NAT-SEMI, Ext. 200.

And be on hand for the linear event of the year.

[^3]
More diagrammatic programming tools for engineers

Little known or appreciated outside the world of tool and die makers, machine tools were nevertheless crucial to industrial development. Now, engineering software assumes the crucial role of the machine tool of the next industrial revolution.
Engineering software is too important and too different from ordinary software to be left solely to programmers. Give a carpenter a problem, and he thinks of solving it with hammers and nails. Give a programmer a problem, and he thinks of solving it with written-out lines of code. Unfortunately, engineers do not think or express themselves in terms of language. Instead, they use visual symbols.

Although we associate programming with text files, that association is not a fundamental given. In reality, programmers' fixation on text is an artifact of the teletypewriter output of early computers. Today, textual programming is no longer mandatory; even inexpensive computers can handle complex graphics and symbols. Few good software tools take advantage of these capabilities to let engineers construct programs visually.
Proponents of textual ASIC and FPGA software tools say that the increasing complexity of today's devices is forcing engineers to abandon diagrammatic systems for textual ones. This false imperative rests on an unproven foundation. Text is not inherently more comprehensible, lucid, compact, and rigorous than diagrams are. Few developers seem to consider the possibility that more complex devices may lead to more powerful diagrammatic design systems.

Good engineers are in the 99th percentile for spatial ability, and good programmers are in the 99th percentile for linguistic ability. Thus, we often find software kluges masquerading as tools that let users mix textual and diagrammatic design. Such tools best suit designers who are exceptional in both spatial and linguistic areas, and not enough such people are available to do all the engineering that needs to be done.
Therefore, everyone who has a hand in developing software tools for engineers should become familiar with Harvard researcher Howard Gardner's Theory of Multiple Intelligences. Gardner has written several popular books on the subject, and his theories provide the scientific underpinning for the notion that engineers need visual-not textualdesign tools. Engineering-tool companies need to research the mental activity of creative engineers and then develop new visual metaphors that support the ways engineers think.

Charles H Small Senior Editor

References

1. Gardner, Howard, "Frames of Mind, The Theory of Multiple Intelligences," Basic Books, New York, NY, 1985. ISBN 0-465-02508-0.
2. Gardner, Howard, "The Mind's New Science: A History of Cognitive Revolution," Basic Books, New York, NY, 1987. ISBN 0-465-0435-5.

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.

PRESENTING A FASTER LOW-COST D/A CONVERTER. FROM THE PEOPLE WHO'VE BEENTHE LEADERS SINCETHE BEGINNING OF DIGITALTIME.

With 10 -bit resolution and a speed of 40 Msps, a low-cost high-speed D/A converter is here. The TDC3310.

Another timely move from the company who pioneered the Monolithic Video D/A converter. TRW LSI Products, Inc.

Which means that now, you've got just what you need for low-cost video applications.

Because you know TRW LSI's standards. We provide more than innovation. We provide exactness. Performance specs with mins and maxes that you can rely on.

The TDC3310 requires only a +5 Volt power supply and has TTL-compatible inputs, with a voltage output and a control that inverts video levels. It's ideal for reconstructing both composite and component waveforms, including NTSC, PAL, SECAM and RS-343A. And with data decoded and registered ahead of the current switches, the results are outstanding low-glitch characteristics.

In essence, you're getting studio video quality and performance. At a consumer price.

Furthermore, the TDC3310 has a lowcost high-speed A/D companion - the TMC1175. And add the TMC2242 for halfband digital filtering - reducing your design complexity and cost.

The TDC3310 is available in a 32 -lead plastic J-leaded PLCC and 28 -pin plastic DIP packages, and is guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

All with the full spec performance that is synonymous with TRW standards.

Ask for the Data Sheet, applications and other information on the TDC3310 today. From the company whose standards get even better with time.

TDC3310 differential phase

TDC3310 differential gain

Call or write: TRW LSI Products Inc., P.O. Box 2472, La Jolla, CA 92038 (619) 457-1000, FAX (619) 455-6314 (800) TRW-LSIP (800) 879.5747

TRW LSI Products Inc.

STANDARDS SET STANDARDSTO BE MET.

From Conception to RealizationWe Have Your Circuit Design In Mind

Let MicroSim Corporation help you achieve your circuit engineering goals with our family of CAE packages-Genesis, Circuit Analysis, and Circuit Synthesis.

Schematics as a
Windows 3.0 application

Schematics as an
OpenWindows application

Integrated Schematic Capture, Circuit Simulation, and Analysis

Our new Genesis package includes Schematics, a versatile schematic capture front-end to our popular Circuit Analysis programs, PSpice and Probe. Circuit definition is simple and flexible with Schematics' graphical circuit and symbol editors. Netlists for PSpice are generated automatically from the schematic drawing. Iterative adjustment of PSpice analysis parameters and invocation of PSpice simulations is convenient and direct through Schematics' pull-down menus and dialog boxes. Visual inspection of simulation results is just as straightforward since Probe is run directly from Schematics.

New Schematic Capture Program

Schematic drawings are easy to create and edit with Schematics. Features include general attribute handling, auto-incrementing of names and labels, auto-repeat with stepping, rubberbanding of wires and buses, and electrical rule-checking. Any mix of analog and digital components can be used. The Schematics library contains symbols for all parts contained in the PSpice model libraries - over 3,500 analog and 1,500 digital components. An integrated symbol editor allows new symbols to be created and new part attributes to be defined while working on a schematic drawing. Whether you are running Schematics as a "native" Windows 3.0 application on the PC or as an OpenWindows application on the Sun-4 or SPARCstation, you can count on an easy-to-use system to capture, simulate, and analyze your circuit design.

Expanded PSpice Analyses

PSpice and its options form an integrated package for analog and mixed analog/digital circuit analyses. Standard simulations include DC sweep, AC sweep, noise, and transient analyses which may be performed under varying temperature conditions.

Probe provides interactive viewing of PSpice simulation results with high-resolution graphics including these features: Performance Analysis (new!), multiple Y axes (new!), flexible plot control, simultaneous display of analog and digital waveforms, fast Fourier transforms, and more.

In-depth examination and processing of PSpice simulation results is more powerful than ever with Probe's new Performance Analysis feature. By applying any number of user-defined goal functions (such as pulse-width or overshoot) to multiple PSpice waveforms, a circuit's behavior

can be tracked as a function of changing conditions (like temperature or model parameter values). Now it's easy to visualize trends in your circuit's performance by plotting quantities like delay versus temperature or pulse-width versus component value.

Digital Simulation supports mixed analog/digital circuit simulation including circuits with tightly coupled feedback between the analog and digital sections.

Monte Carlo Analysis performs statistical, sensitivity, and worst case analyses by accounting for component tolerances.
Analog Behavioral Modeling allows for the flexible definition of component models or entire circuit functions by formula or look-up tables.
Parts aids in the determination of model parameters from data sheet information for standard analog devices.

Filter Synthesis Made Easy

Active RC biquad and switched capacitor filters are a breeze to design and evaluate with Filter Designer in our Circuit Synthesis package. Low pass, high pass, band pass, and band reject filters are synthesized using classical approximations. Advanced features include Sensitivity Analysis (new!), Delay Equalization, and Non-Standard Functions for the synthesis of filters for which there are no fixed mathematical recipes. Using results from Filter Designer, your filter circuit design can be simulated and further analyzed with PSpice and Probe.

For more information on MicroSim Corporation's family of products, call toll free at (800) 245-3022 or FAX at (714) 455-0554.

The Most Diverse Family In Memory.

A Complete Line Of 1-Meg SRAMs.

Call Sony first. The largest selection of 1-Meg SRAM assures you can find the high performance, highly reliable memory you're looking for with just one call, so why go on a safari?

Fast or slow. Hot or cold. Even your massive memory requirements are right here.

And we can ship the package styles most in demand for your new designs today - and tomorrow. Our new production facility in San Antonio, TX will build on the reputation for timely delivery that has made us a breed apart.
The Best Selection Of New SRAMs.
-40° to $+85^{\circ} \mathrm{c}$, 3 volts and X 9.20 nsec

If your current designs incorporate the latest
technology, call us. Virtually every new idea in SRAM will be here at Sony first. And our U.S. design team (with their 0.8 \& 0.5 -micron CMOS technology) stands ready to get you the right product for your design; whether it's for a laptop or workstation.

Call Sony First.

We've got the product, backed by the Sony commitment to quality and service. And at competitive prices that make us the King of the SRAM Jungle.

Call today 714.229.4190 or 416.499.1414 in Canada. Or fax us

SONY

Sony Corporation of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630 Sony Canada, 411 Gordon Baker Rd., Willowdale, Ontario M2H 256

Engineers who want to minimize test-system development time and maximize system flexibility should use SCPI instruments whenever possible.

Maury Wright, Regional Editor

SCPI instruments will ease ATE development

The SCPI (Standard Commands for Programmable Instruments, pronounced "skippy") standard promises to simplify the programming of automatic test systems. Companies complying with the standard will ensure that similar instruments from different manufacturers have similar command languages. Thus, a programmer would need to learn how to program a voltmeter, frequency counter, or other instrument only once.
Most major instrument makers plan to use SCPI in all their new products. SCPI-compatible GPIB (General-Purpose Instrument Bus) and VXIbus test instruments have started to ship, but most types of SCPI instruments are still scarce. If you can find a SCPI version of a test instrument that you need now, buy it. SCPI compliance should be a determining factor when you choose instruments for a test system, and SCPI products cost the same as their non-SCPI counterparts.
The SCPI standard defines an extensible command language for the remote control of instruments. The language was developed independently of the front-panel terminology specific to individual instruments. The language uses a consistent style and English-like mnemonics, both of which make the language readable and easy to use. For example, the following command will read the de voltage from any SCPI instrument that can measure voltage:

MEASure:VOLTage:DC?

The language's keywords can be written out in full or abbreviated to the 3- or 4 -character strings indicated by the capital letters. Strings of keywords make up SCPI commands.

The creators of the SCPI standard sought to develop a language that offered what they termed vertical, horizontal, and functional compatibility. Vertical compatibility means that two instruments of the same generic instrument type, such as two digital oscilloscopes from different manufacturers, will have compatible command sets. A

The SCPI VXIbus arbitrary waveform generator from Hewlett-
Packard, the $\$ 8000$ E1445A, is one of a variety of HP instruments
The SCPI VXIbus arbitrary waveform generator from Hewlett-
Packard, the $\$ 8000$ E1445A, is one of a variety of HP instruments that comply with the SCPI standard.
single software driver could control either instrument.

Horizontal compatibility refers to a situation in which two different types of instruments can perform the same measurement. For example, both frequency counters and digital oscilloscopes can measure the frequency of a signal. The horizontal-compatibility goal mandates that the same frequencymeasurement command will properly instigate a frequency measurement in either type of instrument.

Functional compatibility refers to the

When Every Nanosecond Counts

Squeeze critical nanoseconds from your high-speed logic interface with the fastest FCT logic available. IDT's FCT-CT family offers speeds that are 50% faster than standard FCT or FAST logic families - as fast as 3.4ns (typical)!

The Perfect System Solution

As a system designer, you need the perfect combination of:

1. Fastest speed

2. Low ground bounce
3. Low power consumption

FCT-CT logic has true TTL compatibility for ease of design. The reduced output swings and controlled output edge rate circuitry ensure low system noise generation. No other technology offers higher speeds or lower power consumption.
The FCT-CT family is completely pin- and function-compatible with FCT logic, and is available today in all standard packaging.

FUNCTION	PROPAGATION DELAY (Max)	OUTPUT ENABLE (Max)	OUTPUT DISABLE (Max)
Buffers	4.1 ns	5.8 ns	5.2 ns
Transceivers	4.1 ns	5.8 ns	4.8 ns
Registers	5.2 ns	5.5 ns	5.0 ns
Latches	4.2 ns	5.5 ns	5.0 ns

Free Logic Design Kit

Call our toll-free hotline today and ask for Kit Code 3061 to get a 1991 HighSpeed CMOS Logic Design Guide and free FCT-CT logic samples.

(800) 345-7015 • FAX: 408-492-8454

The IDT logo, CEMOS, BiCEMOS, and R3051 are trademarks of Integrated Device Technology, Inc.

12ns 256K SRAMS

Fastest cache solutions for RISC and CISC CPUs. $36+$ ultra-high-speed submicron SRAMs for 33 MHz processing \& beyond are in the SRAM Data Book.

35 mips RISC CHIPS AND MODULES

R3000A for the most mips at any MHz; R3051 for CPU, cache, \&
buffers on one chip. Modules, eval. boards \& software complete the family. See them in the RISC Data Book.

HIGHEST-PERFORMANCE MEMORIES

Fast FIFOs, dense dual-ports, BiCEMOS ECL, \& memory modules. $120+$ FIFOs \& multi-port memories, 5 ns ECL, \& multi-chip modules are in the

Specialized Memories Data Book.

Call today for your new IDT data books with complete technical specifications and application information.

Integrated
Device
Technology, Inc.

TECHNOLOGY UPDATE

The SCPI standard

compatibility of specific features in different types of instruments. For example, the same frequency and sweep commands can control a spectrum analyzer and a RF source because both types of instruments can sweep in frequency.

SCPI allows instrument updates

Designers who use SCPI-compatible instruments exclusively will realize several benefits. First, updating an ATE (automatic-testequipment) system with the best voltmeter available will require minimal changes in system and test software. Second, the time required to develop software for new ATE systems should drop because SCPI leads to reusable code. Third, programmers will be more efficient when using SCPI instruments because of the three types of compatibility and the fact that the language is easy to read and consistent in style.

SCPI poses no larger challenge to the first-time user than do the one-of-a-kind command sets currently common in instruments. Senior Electronics Engineer Mike Hanus of Sundstrand Power Systems

Table 1-INPut subsystem commands

Keyword	Parameter form
INPut	
:ATTenuation	<numeric value>
:AUTO	< Boolean > ONCE
COUPling	AC\|DC
:FILTer	
[:LPASs]	
[:STATe]	<Boolean>
:FREQuency	<numeric_value>
:HPASs	
[:STATe]	<Boolean>
:FREQuency	<numeric_value>
GAIN	<numeric_value>
:AUTO	<Boolean > ONCE $^{\text {a }}$
:GUARd	LOW\|FLOat
IMPedance	<numeric value>
:LOW	FLOat\|GROund
[:STATe]	<Boolean>

(San Diego, CA) recently worked with a SCPI instrument for the first time. Hanus replaced a test set's programmable power source with a SCPI version. He reports that the software driver for the new source took no longer to write than did the original driver and that he wouldn't have had to write a new driver had the first source been SCPI compatible. Hanus says the experience has prompted him to write more modular code with the goal of reusing portions of his code for SCPIcompatible instruments.

The SCPI standard is independent of any physical interconnection specification. You will most often hear the term SCPI associated with VXIbus-based instruments and instruments that use the GPIB defined by the IEEE-488.1 specification. But SCPI works equally well on instruments connected to a controller via an RS-232C serial interface or any other interface.

Although the SCPI standard doesn't specify a physical interface, it does mandate the use of features defined in the IEEE-488.2 specification. The IEEE-488.2 standard defines controller functions, data formats, and status reportingbasically a common set of housekeeping commands for instruments. (See Ref 1 for more information on the IEEE-488.2 specification.)

Alan Hoffman, director of engineering at IOtech, points out that SCPI offers a way for manufacturers to standardize the commands used for board-level PC instruments. IOtech offers a line of GPIB controller cards for IBM PCs. The Power488 and Power488CT cards also feature SCPI-compatible test-and-measurement capabilities. The

Fig 1-The generic instrument model depicted here guided the development of the tree-structured SCPI standard.

TECHNOLOGY UPDATE

The SCPI standard

Power488 costs $\$ 495$ and includes 40 digital I/O lines in addition to the GPIB controller and driver software. The $\$ 595$ Power488CT adds counter/timer features.

SCPI's creators based the language on the generic instrument model in Fig 1 (see box, "SCPI Consortium controls standard," for a history of SCPI's creation). The SCPI standard defines a tree-like structure that has more than 20 ma-
jor subsystems as the main branches. The squares in Fig 1 correspond to major subsystems of the SCPI language. Additional major subsystems handle special instrument capabilities such as calibration and diagnostics. The box, "Major SCPI subsystems," lists the major command subsystems.

Look at Table 1 for a sample of a SCPI command subsystem taken directly from the specification. The

INPut command lets you program the conditioning an instrument applies to an incoming signal. Keywords in square brackets indicate default paths through the SCPI tree structure. A program can use one or more of the command options for the instrument in use.

Instruments don't need to implement commands from every SCPI subsystem. Instrument designers can choose the subsystems they

SCPI Consortium controls standard

A consortium of leading test-and-measurement instrument vendors defined SCPI and still controls the evolution of the standard. The consortium considers the standard to be "free and open"-any test equipment manufacturer can use SCPI commands in an instrument free of charge. The consortium continues to add to the SCPI standard to account for additional types of programmable instruments.

Customer demand led to the creation of SCPI. Sophisticated customers recognized that the time test programmers spent writing drivers for each new incompatible instrument was wasted. HewlettPackard reacted to the need for standardization among its varied instruments by creating its Test and Measurement Systems Language (TMSL), which the company introduced in August 1989. Simultaneously, a group of instrument vendors was contemplating a similar project. And for once in this intensively competitive electronics industry, the best possible thing happened. Hewlett-Packard contributed its TMSL work and joined the group of companies that went on to form the SCPI Consortium.

The consortium refined Hewlett-Packard's work and added capabilities. Tektronix contributed its Analog Data Interchange Format (ADIF) standard. ADIF provides a standard way to store analog data such as waveforms. In addition, ADIF includes environmental data such as scaling information, instrument settings, and time and date stamps.

The consortium moved quickly and published the first version of the SCPI standard in April 1990. The second version was published in June of this year, and the consortium plans to publish an updated spec annually. The consortium meets every two
months to discuss proposed additions to the SCPI standard. A private forum on the Compuserve dialup service includes up-to-date information on proposals, meeting schedules, and newly approved commands.

The founding members of the consortium are Bruel \& Kjaer (Naerum, Denmark), John Fluke Mfg Co (Everett, WA), Hewlett-Packard Co (Loveland, CO), Keithley Instruments Inc (Cleveland, OH), National Instruments Corp (Austin, TX), Philips (Almelo, The Netherlands), Racal-Dana (Irvine, CA), Tektronix Inc (Beaverton, OR), and Wavetek Inc (San Diego, CA). The consortium now has more than 20 members.

Any company can join the SCPI Consortium. Sponsor memberships cost $\$ 20,000$ annually and include one seat on the consortium's board of directors. A contributing membership costs $\$ 5000$ annulally and includes the right to vote on proposed additions to the standard. Five contributing members are elected to the board of directors each year. The $\$ 750$ associate membership grants access to the private SCPI Compuserve forum only. SCPI Consortium meetings are open to the public, and anyone can propose additions to the standard.

For more information on SCPI and to buy copies of the standard ($\$ 50$), contact

Fred Bode

Executive Director
SCPI Consortium
8380 Hercules Dr, Suite P3
La Mesa, CA 92042
(619) 697-4301

FAX (619) 697-5955.

How Design Work Becomes Teamwork.

The DAZIX Simultaneous Engineering Environment (SEE) turns design work into teamwork.
SEE allows your departments to coordinate efforts during every phase of the design process. This helps to improve product quality, lower production costs, and get products to market faster.

SEE delivers the integration

 you asked for. Common database management. Common user interface across applications. And a completetoolset, including solutions for front-to-back electronics design, mechanical design, manufacturing, and document management.

What's more, with SEE, your entire team can benefit from an open-system framework. A framework that integrates DAZIX, Intergraph, and Sun products -
as well as leading third-party tools - in a single environment.

There's more you should know. Call us today at 800-239-4111 for a free copy of Simultaneous Engineering.

In Europe, call 33-1-4537-7100. In the Asia-Pacific area, call 852-8661966.

An Intergraph Company

TECHNOLOGY UPDATE

The SCPI standard

need to control an instrument's features. The SCPI standard requires only that an instrument implement the SYSTem command subsystem.

Joe Mueller, a project manager at Hewlett-Packard and the com-
pany's representative to the SCPI Consortium, points out that SCPI allows for 100% control of an instrument's features. A typical instrument might implement 100 to 200 total SCPI commands, according to

Mueller. The average user may need no more than a dozen commands to develop a specific test program.

The most frequently used commands are those in the MEASure

Major SCPI subsystems

The following list describes the major subsystems that make up the main branches of the SCPI tree. The beginning capital letters indicate the subsystem's abbreviated form.

CALCulate-The CALCulate subsystem includes commands that control data-processing functions performed on data typically acquired by a SENSe command. For example, a CALCulate command can control the conversion of data from the frequency domain to the time domain.
CALibration-Commands in the CALibration subsystem control system-calibration functions.
DIAGnostic-The DIAGnostic subsystem includes
all the service and diagnostic commands for routine maintenance and repair.
DISPlay-Commands in the DISPlay subsystem control the selection and presentation of textual, graphical, and TRACe information.
FORMat-The FORMat subsystem commands set the data format for transferring numeric and array information.
INPut-INPut subsystem commands control the characteristics, such as the attenuation, of a sensor's input ports.
INSTrument-INSTrument subsystem commands are used for instruments, such as a dual-channel power supply, that support multiple logical instruments.
MEASure-The MEASure subsystem defines a set of high-level instructions that are used to acquire data. This subsystem includes the most commonly used SCPI commands. The concept of horizontal compatibility defined in the SCPI standard is implemented in the MEASure subsystem.
MEMory-The MEMory subsystem commands manage the semiconductor memory instruments use to store various types of data.
MMEMory-MMEMory commands manage massstorage devices, such as disk drives, that are inside instruments or directly connected to instruments.
OUTPut-Commands in the OUTPut subsystem control the characteristics of a source's output port. For example, an OUTPut command can set the output source impedance of a signal.

PROGram-The PROGram subsystem commands provide control of one or more user-programmed tasks resident in an instrument.
ROUTe-ROUTe subsystem commands control instruments primarily designed to route signals. These commands also control signal routing on instruments that offer routing capability as a front end to input and output ports.
SENSe-The SENSe subsystem includes commands that directly set device-specific features before taking a measurement. An example of such a feature is an instrument's filter bandwidth.
SOURce-SOURce subsystem commands set de-vice-specific features, such as modulation controls, on a signal source.
STATus-The STATus subsystem commands add status-reporting structures to those defined in IEEE-488.2.
SYSTem-The SYSTem subsystem includes the functions not related to instrument performance, such as the characteristics of an instrument's communications interface. This subsystem forms the command base required in all instruments.
TEST-The TEST subsystem extends standard instrument self-test procedures beyond those defined in IEEE-488.2.
TRACe-Commands in the TRACe subsystem control the definition and manipulation of trace data. TRIGger-The TRIGger subsystem commands serve to synchronize instrument actions with other events.
UNIT-The UNIT subsystem provides a way to change the units of measure associated with an instrument feature.
VXI-Commands in the VXI subsystem include the administration functions associated with VXIbusbased systems.

Limited Only By Your Imagination

Remember how quickly you could turn a concept into reality with a set of quality building blocks? How you always seemed to have just the right parts and how well they fit together? How easily you could modify your creation to explore creative alternatives?

Our VI-200 and VI-J00 families of high density converters, along with a host of compatible modular peripheral products, are designed to "plug and play" perfectly... offering you the flexibility, ease-of-use, quality and repeatability needed to implement virtually any power system solution. And with hundreds of standard models to choose from...input ratings from 10 to 400 Volts, outputs from 2 to 95 Volts and power expansion from Watts to kiloWatts... you won't be stuck at the last minute with "missing" parts.

You're not playing with toys anymore... which may be the most important reason for specifying Vicor's component-level "building blocks" for your next power system.

Component Solutions For Your Power System \qquad
23 Frontage Road Andover, MA 01810 TEL: (508) 470-2900 FAX: (508) 475-6715

The SCPI standard

subsystem. The MEASure subsystem enjoys special status although it is a major branch on the SCPI tree with the more than 20 other subsystems. The MEASure subsystem implements the horizontal compatibility the SCPI specification defines.

Hewlett-Packard's Mueller offers an example that illustrates the horizontal compatibility SCPI makes possible and the philosophy behind it. He describes the compatibility of an integrating digital voltmeter with a sampling digital voltmeter. A test programmer could use SCPI's capabilities to program the sampling meter to take 4012 samples to measure dc voltage.

A program that commanded the integrating meter to take 4012 samples, however, might receive an error as an answer because the integrating meter doesn't take samples. The instrument designer could be clever and use SCPI to design the integrating meter so that it would take a meaningful measurement after such a request. The SCPI standard doesn't require instrument manufacturers to take such precautions, however.

Mueller suggests a way to write the test program that ensures an accurate measurement from SCPIcompliant instruments. The reason the programmer set the number of samples was to limit the amount and frequency of the ac voltage rejection present in the dc voltage measurement. You could use a higher-level SCPI command to instruct either meter to account for $60-\mathrm{dB}$ rejection at 52 Hz , for example. The instrument would then take the measurement in the best possible way.

The thousands of possible SCPI command combinations will always make exact compatibility of instruments impossible. No two instru-ments-not even two voltmeters-

The synthesized sweep/function generator, Model 1378, from Wavetek demonstrates that SCPI's concept of vertical compatibility works. The command set of the VXIbus instrument on the left is compatible with that of the Hewlett-Packard E1440A sweeplfunction generator on the right.
have the exact same measurement capabilities. But SCPI does provide the means to achieve the vertical, horizontal, and functional compatibility of the specification.

Unfortunately, little evidence now exists that indicates how well SCPI will work in practice. Hewl-ett-Packard offers a line of VXIbus instruments and a few GPIB instruments that use SCPI. But HP had a head start on the industry because much of SCPI was derived from the company's Test and Measurement System Language (TMSL).

Other companies that now offer SCPI products include the Fluke
(Everett, WA) and Phillips (Almelo, The Netherlands) conglomerate. Between these two companies you can buy SCPI-compatible frequency counters, programmable power sources, and signalswitching systems. Finally, Wavetek, San Diego offers a line of VXIbus instruments for signal generation.
Thus far, the best example of SCPI success can be found in the compatibility between the Wavetek 1378 Synthesized Sweep/Function Generator (\$3295) and HewlettPackard's E1440A generator ($\$ 5750$). The products have a similar

Embedded Controllers

With these

The world of disk drive electronics, that is. By implementing Silicon Systems’ embedded interface controllers into your design you can achieve optimum performance in a low-power CMOS package.

Our complete line of embedded controller ICs-combining PC-AT/XT or SCSI interfaces with Buffer Manager and Storage Controller-gives you everything you need to span the entire spectrum of performance, power and
interface standards. Your design cycle for customized versions is shortened by our standard cell design method. You can easily port firmware from AT to SCSI designs. And, by keeping things all in the family, you're sure to come out better on pricing.

So take control, and learn more about our embedded controllers. Call us for literature package SPD-8. We'll connect you with your nearest Silicon Systems representative and
update you on our latest developments. 1-800-624-8999, ext. 151.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
European Hdq. U.K. Ph (44) 79-881-2331
Fax (44) 79-881-2117

TECHNOLOGY UPDATE

The SCPI standard

- set of signal-generation capabilities and clearly demonstrate vertical compatibility. Bill Lee, Wavetek design engineer and the company's SCPI Consortium representative, points out that the SCPI standard includes explicit commands that let the companies implement all the desired functions. Thus, the instruments were compatible.

Both Hewlett-Packard and Wavetek also offer VXIbus arbi-trary-function generators based on SCPI. The function generators were not compatible at the time of introduction. Both companies found the SCPI standard lacking in a few key areas required to exploit all the capabilities of the instruments. So each company added to the spec in different places and planned to pro-
pose the new commands to the SCPI Consortium as formal SCPI changes. Both companies worked on the new commands in secret because neither wanted to disclose features of an unannounced product.

Wavetek engineers added com-
mands to the TRACe subsystem to perform additional waveform functions. Hewlett-Packard engineers added similar capability in the SOURce subsystem. The resulting products were not vertically compatible. Both companies presented their propos-

For more information . . .

For more information on the SCPI-based products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Hewlett-Packard Co
19310 Pruneridge Ave Cupertino, CA 95014 (800) 752-0900 Circle No. 712

> IOtech Inc 25971 Cannon Rd Cleveland, OH 44146 (216) 439-4091 FAX (216) 439-4093 Circle No. 713

> Wavetek San Diego Inc 9045 Balboa Ave San Diego, CA 92123 (619) 279-2200 FAX (619) $565-9558$ Circle No. 714

DOUBLE YOUR SELLING OPPORTUNITIES

The U.S. INDUSTRIAL DIRECTORY and The U.S. INDUSTRIAL BUYERS GUIDE now reach 115,000 key buyers in U.S. manufacturing. Nearly 50% of this reach is to individuals with buying influence in the all important Fortune 500 companies.

Your advertisement will reach all these people in an extremely cost effective way and will be seen 365 days of the year.

Call or write for more information on your many advertising options in the next edition of the U.S. INDUSTRIAL DIRECTORY and BUYERS GUIDE.
U.S. INDUSTRIAL DIRECTORY \& BUYERS GUIDE

Reed International - Cahners Publications
8 Stamford Forum, P.O. Box 10277, Stamford, CT 06904 (203) 328-2500
Fax (203) 357-7864

TECHNOLOGY UPDATE

als to the committee, and a compromise ensued. Soon you will see revision B instruments from both companies that support the SCPI

Acronyms used in this article

ac-alternating current
ADIF-Analog Data Interchange
Format
ATE-automatic test equipment dc-direct current
GPIB-General-Purpose Instrument Bus
PC-personal computer
SCPI-Standard Commands for Programmable Instruments
TMSL—Test Measurement System Language
VXIbus-VMEbus extension for instrumentation

Consortium-approved compromise. The revision B function generators will be vertically compatible.

You can expect other conflicts to arise because of the competitive nature of the electronics industry and the constant influx of new products with new features. Also, the SCPI standard is admittedly short of commands that can control certain types of instruments, such as logic analyzers.

The SCPI Consortium, however, adds to the standard every two months. The consortium features an unprecedented level of cooperation in such a competitive industry. SCPI seems to be an idea with no drawbacks. Most major instrument vendors plan to use SCPI in all their new products, many of which will
be introduced over the next year. Shortly, designers who don't buy SCPI instruments exclusively will find the price, development time, and extensibility of their test systems lacking compared with SCPIbased systems.

EDN

Reference

1. Leibson, Steven H, "IEEE-488.2 products are just now appearing," EDN, April 25, 1991, pg 91.

Article Interest Quotient (Circle One)
High 515 Medium 516 Low 517

Over 150 EMC shielding gaskets to choose from, to give you freedom of design. Off the shelf.

Performance that reads like a designer's wish list.

Outstanding thermal and electrical conductivity, for shielding effectiveness over the widest frequency range: $>110 \mathrm{~dB}$ at 10 GHz plane wave, and $>46 \mathrm{~dB}$ at 14 kHz magnetic. Excellent corrosion resistance, and easily plated to match any host metal if necessary. Low compression force requirements: from 5 to $20 \mathrm{lbs} /$ linear foot to establish surface contact and provide adequate shielding. Finger gasket's compression range up to 90% of free height. Ideal for either shear or compression applications. Light weight. Superb fatigue strength.

Easily mounted with adhesive backing, (Sticky Fingers ${ }^{\circledR}$ Series shown at left), as well as with clip-on's and push rivets (not shown).

How can we help fill your wish list?
Call or write for full information and service. Or ask for our free brochure.

Instrument Specialties Co., Inc.
Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213
Western Division-Placentia, CA
TEL: 714-579-7100 FAX: 714-579-7105
TEL: 011-32-41-63-3021 FAX: 011-32-41-46-4862
osticky Fingers is a registered trademark of Instrument Specialities Co . Inc
CIRCLE NO. 30

When it comes to microcontrollers... The Choice Is Not Always Plain.

H

 itachi's new H8/300 Family of 8-Bit Microcontrollers is beefier, and includes all the extras: The best in price/performance. High-level language capability. ZTAT one-time user-programmable EPROM. The most on-chip peripherals.Hitachi's new and growing H8/300 Family of Microcontrollers takes 8 -bit beyond the ordinary, offering the right mix of ingredients to satisfy your embedded-control appetite. Hitachi's new H8/300 Series' recipe for success includes:
The best price-performance. Put more spice into your applications with the new CMOS H8/300 Family. These microcontrollers combine a modern, general-purpose register architecture with fast processor speeds, and include a CPU core with a maximum 10 MHz clock speed for minimum instruction cycle times of 200 ns ... 16 -bit adds and subtracts in a mere $200 \mathrm{~ns} .$. 8×8-bit multiplies or $16 / 8$-bit divides in only $1.4 \mu \mathrm{~s} \ldots$ and up to 32 Kbytes of ROM.
High level language capability. Enjoy fast development and easy maintenance, without the slow program execution typical of old-fashioned software. Hitachi's H8/300 microcontrollers work with "C", Forth, and real-time operating systems, like Hitachi's μ ITRON. You can also use fuzzy logic compilers to put advanced capabilities, such as artificial
 intelligence, into embedded systems quickly and easily.

ZTAT. Get to market fast with Hitachi's ZTAT (Zero Turn-Around Time) one-time userprogrammable EPROM. With these low-cost plastic package devices, production can start the very same day you finish development-with no mask charges, lead times, or large quantity commitments. You have a choice for every phase of your product's life cycle: Ceramic windowed devices for development...ZTAT for quick, small-to-medium-scale production...mask ROM devices for lowest-cost large-scale production.
On-chip peripherals. Now you can reduce your whole embedded control system to a single chip, thanks to the H8/300 Family's right mix of onchip peripherals. Choose from a variety of timers, interrupts, and I / O ports, 8 -bit A / Ds, serial communications channels, PWM timers, EEPROM, and much more.

Description	$\begin{gathered} \mathrm{H} 8 / 310 \\ \text { Smart-Card IC } \end{gathered}$	H8/322 General-Purpose Real-Time Controller	H8/323 General-Purpose Real-Time Controller	$\mathrm{H} 8 / 324$ General-Purpose Real-Time Controller	H8/325 General-Purpose Real-Time Controller	H8/330 High-End Real-Time Controller	H8/350 Servo-Positioning Controller
ROM/RAM/EEPROM	10K/256/8K	8K/256/0	$16 \mathrm{~K} / 512 / 0$	$24 \mathrm{~K} / 1 \mathrm{~K} / 0$	$32 \mathrm{~K} / 1 \mathrm{~K} / 0$	16K/512/0	$32 \mathrm{~K} / 512 / 0$
Timers		3				5	10
Serial Channel		2				1	2
A/D Converter						8 -Bit, 8 Channel	8 -Bit, 16 Channel
Interrupts		4 External 16 Internal				9 External 19 Internal	9 External 47 Internal
I/O Ports	$1-\mathrm{Bit} \mathrm{I} / \mathrm{O}$ Common	$\begin{gathered} 47 \mathrm{I} / \mathrm{O} \\ 4 \text { Input Only } \end{gathered}$				$\begin{gathered} 58 \mathrm{I} / \mathrm{O} \\ 8 \text { Input Only } \end{gathered}$	$\begin{gathered} 50 \mathrm{I} / \mathrm{O} \\ 16 \text { Input Only } \\ \hline \end{gathered}$
Other Features	Security Function	Parallel Handshake Port Programmable Pull-up for All I/O				15-Byte DPRAM, Prog. Pull-up for I/O	One 19-Bit Timer, Timer Network
Package	Die Form COB* SOP-10	DP-64SQFP-64DC-64S w / W indow				PLCC-84 QFP-80 LCC-84 w/Window	PLCC-84 QFP-80 LCC-84 w/Window

[^4]

Hitachi America, Ltd.
Semiconductor \& I.C. Division Hitachi Plaza
2000 Sierra Point Parkway
Brisbane, CA 94005-1819

Our Standards Set Standards

The basic idea behind our new

Updating your system code, to say the least, has been a pain. Well, erase those painful memories.

Introducing Intel Boot Block Flash
Memory. The first blocked flash memory architecture that includes four separately erasable blocks with one "lockable" block for
critical boot code. A remarkable design that allows one 1 Mb Boot Block Flash Memory chip to eliminate up to three memory chips.

It also allows you to reconfigure your system quickly and easily so you don't lose precious time getting to market. Also, future updates-whether it's for hardware or software - are easy. For instance, updating a PC BIOS is as easy and cheap as sending your customers a floppy disk. And all

block-erasable Flash Memory.

you need to change your embedded program code is a serial link. Life should be so simple.

Intel Boot Block Flash Memory has two configurations compatible with microprocessors and microcontrollers that boot from either high or low memory. Such as the $19600^{\prime \prime}$ microprocessor or the industry-standard Intel386" and Intel486" microprocessor families.

Now that you have the basic idea, we'd like
you to know more. So call (800)548-4725 and ask for Literature Packet \#A6A38. And be the first on your block to make updating easy with Intel's new Boot Block Flash Memory.

intel.

The Computer Inside. ${ }^{\text {m }}$

Hard Copy Was Never Easier.

Here's how B-G Instruments' OEM printer family can simplify production of high-quality data printout.

Simple from the start. Our unique DataPlot software cuts development time and effort to a minimum. Just 14 commands let you create printouts with multiple columns, orientations, fonts and graphics. And if you'd prefer, we'll write a custom program for you.

Multiple choices. Hardware options include print mechanisms like those listed here plus a powerful array of control boards and accessories. So custom systems can be configured quickly and easily to meet your precise needs.

DataPlot Thermal Print Mechanisms					
Model	Paper	Columns	Dots	Dots	OEM
Number	Width	Across ${ }^{2}$	/ Inch	/ Line	Price ${ }^{1}$
PM1224	2.6 inches	18 to 37	100	224	\$311
PM1320	2.6 inches	23 to 53	150	320	\$296
PM1416	4.5 inches	29 to 69	100	416	\$443

1 This is the 300 -piece OEM price. It is subject to change without notice.
2 The maximum number of columns depends on the font and size selected. The higher number is for 5×7 characters, approximately 16 characters $/$ in. tures like thick-film printheads, high-torque stepper motors and heavy-gauge construction provide long life. While permanently lubricated gear trains and gold-plated connectors ensure reliable operation. And special touches such as automatic paper loading simplify operation.

Smart solutions. The power of our software and microprocessor control electronics have helped many customers use our printers to create smart
 instrument systems. So the same basic tools can serve a variety of different applications.

Get the details. For brochures, sample printouts and an OEM price list, or to arrange for a demonstration at your facility, call or write: B-G Instruments, P.O. Box 1867, Vashon, WA 98070. Phone 206-567-5000. FAX 206-567-5010.

INSTRUMENTS

TECHNOLOGY UPDATE

SERIAL EEPROMs

Serial memory offers cheap frills

You don't need a byte-wide interface or large devices to add a little nonvolatile memory to your system. Serial EEPROMs are an inexpensive option that offer a few extras.

Richard A Quinnell, Regional Editor

Serial EEPROMs provide an opportunity to add nonvolatile memory to your system at very low cost, both in terms of price and system resources. Newer devices also have the ability to protect your data, speed the data-transfer rate, and operate at lower voltages.

As the name implies, you interact with a serial EEPROM by clocking addresses, data, and commands into a single data line. A complete interface requires from two to five wires, depending on the type of device you use. The most common interface type, Microwire (developed by National Semiconductor), uses four lines. Some devices add a status pin to bring the total to five. Alternatively, you can reduce the number of lines needed by tying together the data input and output lines (see box, "Interfacing alternatives"). The Philips interintegrated circuit ($I^{2} \mathrm{C}$) bus, running a close second to Microwire in availability, uses only two lines. Other available interfaces include UART-compatibles and those that work with Motorola's serialpipeline interface (SPI).

The compact nature of the serial interface is vital if you're trying to produce a minimal system and still provide nonvolatile memory. For many microcontrollers, the CPU's address and data buses are not available outside of the IC, in order to conserve I/O pins.

Compact and nonvolatile, serial EEPROMs let you add memory without using up your system's I/O resources. These 2-kbit devices from Xicor need only two wires for complete access.

Most microcontrollers offer parallel ports, however, and designers needing off-chip memory use those ports to generate the needed address and data bits. Interfacing to a conventional memory device would consume at least 8 bits of the parallel port, versus the 2 to 5 bits for serial memory. Using a microcontroller with on-chip EEPROM is a possibility, but CPU vendors such as Zilog admit that a 2-chip design is less expensive than a CPU with onboard EEPROM.
In addition to offering a compact interface, the serial EEPROMs themselves are compact. Almost all of them, regardless of their bit density, are available in 8 -pin DIPs, and many come in small-outline (SO) packages. The variety of bit densities having a common physical interface gives you the option of changing the amount of memory in

Order them in a $256 \mathrm{~K} \times 4$ or $128 \mathrm{~K} \times 8$ configuration. In a high density plastic SOJ package. Part of a full line of fast SRAMs.

For samples, orders or more information, call 1-206-834-8959.

FROM SHARP MINDS COME SHARP PRODUCTS ${ }^{\text {m }}$

SRAMs • MROMs • FIFOs • PSRAMs • Core Micro • Displays • Opto • RF

TECHNOLOGY UPDATE

Serial EEPROMs

your design to increase capacity or decrease cost without affecting board layout or wiring. If you use devices having the $I^{2} \mathrm{C}$ interface, you may not need to change software, either, because the $I^{2} \mathrm{C}$ command protocol uses a fixed-length address field.

Nothing in life is free, however, including the serial EEPROM's advantages. There are a number of design considerations you must confront before deciding to incorporate serial EEPROM in your design. For example, using a serial interface extends the time required for memory access. In addition to the time needed to shift the data in and out, you must include the time to clock in a command code and an address for each transaction. Further, the serial protocols aren't always amenable to the use of byte-oriented serial peripherals. Therefore, you'll have software overhead for converting the serial data to parallel, and vice versa. Finally, storing data in an EEPROM requires a considerable amount of time, on the order of $10 \mathrm{msec}($ Ref $\mathbf{1})$.

Page mode speeds data storage

Manufacturers of serial EEPROMs have implemented a number of improvements addressing the first of these considerations: access time. Some offer clock rates as fast as 1 MHz , for example, reducing the time required for shifting data out. Manufacturers have also reduced the command and address overhead by giving some of the serial EEPROM the ability to perform both page-oriented write transactions and sequential reads. Devices

Packaging options abound for serial EEPROMs. Microchip Technology, for example, offers DIP, small-outline (SO), chip-on-board (COB), and bare die for its products.
with the sequential-read capability let you specify a single address, then read all the data between that address and the end of memory without further addressing.
Access time is not the only consideration, however. Serial EEPROMs, like all EEPROMs, have a limited service life. EEPROMs store their data on a floating gate in each memory location. During erasing and writing, charge moves to or from the gate using quantum mechanical tunneling through the surrounding insulators. Each time an EEPROM cell is erased or written to, some electrons may become permanently trapped in the insulator. Over time, these trapped electrons build up enough charge to prevent the cell's proper operation. Using an EEPROM, therefore, requires careful attention to system design in order to
minimize the number of erase/write cycles needed at a given memory location.
Manufacturers specify the lifetime of an EEPROM in terms of endurance: the minimum number of erase/write cycles a cell is guaranteed to provide. Read cycles do not affect a cell's endurance. As shown in Table 1 (see pg 64), the endurance ratings of available serial EEPROMs range from 10,000 to 1 million cycles. Realize, however, that these are minimums; you may get a much greater lifetime in your application.

Endurance ratings vary

Ratings expressed by different manufacturers aren't always directly comparable, though, because their test methods differ. The differing conditions result in differing test results. Operation at elevated

Acronyms used in this article

CPU-central processing unit
DIP-dual in-line package
EEPROM-electrically erasable read-only memory
EIAJ-Electronic Industries Association of Japan
$\mathbf{I}^{2} \mathbf{C}$-interintegrated circuit
JEDEC—Joint Electron Device Engineering Council
SO-small-outline package
UART—universal asynchronous receiver/transmitter

Serial EEPROMs

temperatures greatly speeds the cell's failure rate and decreases the endurance rating. Allowing a cell to rest between erase/write cycles, on the other hand, enables it to release some of the trapped electrons and extends its effective life. Therefore, when examining endurance ratings, be sure you know the conditions under which devices were rated.

If the EEPROM's endurance is
a limiting factor in your designs, there are several steps you can take to extend your circuit's service lifetime. One possibility is to use a device with more capacity than you need. If you check for cell failure following each write operation, or use a counter to keep track of the erase/write cycles you've used, you can move your data into another section of memory if one section
starts failing, then resume operation.
Alternatively, you may wish to use a nonvolatile RAM that offers a serial interface, such as the Cata-lyst CAT24C44 (\$1.50) and the Xicor X24C4 (\$1.11). These devices operate like a serial RAM, but have an EEPROM array backing the RAM array. If you need a nonvolatile copy of the data in RAM, you simply signal the device to copy the

Interfacing alternatives

Although there are a variety of interface methods for serial EEPROMs, only two are widely distributed: Microwire from National Semicondutor and the interintegrated circuit $\left(\mathrm{I}^{2} \mathrm{C}\right)$ from Philips. Each method has its own strengths and weaknesses.

Several fundamental differences exist between the two interfaces, the most obvious being the number of signals required. The Microwire interface uses four signals: data in, data out, chip select, and a shift clock. You activate the device by asserting chip select and clocking in an opcode and data address (if applicable). You then clock data in or out as applicable. The $\mathrm{I}^{2} \mathrm{C}$ bus uses only two wires, a clock and a data line. The $\mathrm{I}^{2} \mathrm{C}$ protocol calls for the bus master to send a slave address to activate the device desired, then the opcode and data. The slave device acknowledges reception of the address and each byte of opcode and data, then supplies any data requested. The $I^{2} \mathrm{C}$ protocol prevents any contention on the shared data line.

You can reduce by one the number of I/O lines needed to connect to a Microwire device by tying the data-in and data-out lines together. This reduction is possible because the data-out line remains in a high-impedance state unless supplying read data. The danger in this approach is that the dataout line begins by supplying a dummy-zero bit as soon as the last address bit of the read command has entered the data-in line. If that address bit is high, the resulting bus contention may prevent the device from reading the address properly, or may result in excessive current being drawn into the device. Placing a current-limiting resistor in the connection between the data-in and data-out lines can help prevent damage, but may slow the data bus.

The two interfaces also differ in the way they indicate device status. Because EEPROMs require a relatively long time to complete erase or write
operations (worst case can be as long as 10 msec), most serial EEPROMs offer a method of indicating when the operation is complete. Using this status indication can speed your overall access to the memory; you don't have to wait for the worst-case time period to elapse before using the EEPROM again.

The Microwire interface requires you to poll the data output line following an erase or write instruction. The line changes state to indicate the device's readiness. Some older devices use the interface developed by General Instruments. They communicate with a Microwire-like serial protocol, but have separate busy/status lines. They are handy if you wish to use an interrupt to signal the processor to the memory's readiness, rather than poll a status line. $I^{2} \mathrm{C}$-compatible devices don't offer any specific sig-nal-they simply fail to acknowledge a command string if they are still busy.

The speed of the interface and depth of memory are other differences. The $\mathrm{I}^{2} \mathrm{C}$ specification limits the serial clock rate to 100 kHz . Further, its fixed addressing protocol limits the total amount of memory that can reside on a single bus to 16 kbytes. The fixed protocol is not entirely a disadvantage, however. It enables you to make your interface software independent of the EEPROM's bit density, letting you increase or reduce memory without changing software. Microwire devices have a vari-able-length address, dependent upon their bit density.

The Microwire interface has no clock and addressing limits. Clock rates as high as 3 MHz are available, and the number of devices on a bus is limited only by your bus driver's capability. Recall, though, that each Microwire device needs a chip-select signal, so you'll need additional I/O ports to handle the additional memory.

Real World "Isolutions"

THE WIDEST SELECTION OF ANALOG ISOLATION SOLUTIONS

TECHNOLOGY UPDATE

Serial EEPROMs

RAM into EEPROM. Similarly, you can load the RAM from the EEPROM array. This dual-array structure lets you make many changes to the contents of memory, using the EEPROM only when needed.

Another system consideration when choosing to use serial EEPROMs is the relative lack of standards for them. For example, the devices use a variety of interface protocols. Even with devices using the same protocol, there may be timing differences between manufacturers. Packaging is also nonstandard. The DIP versions of the EEPROMs are uniform, but surface-mount packages are diverse. There are two sizes of SO packages available, based on either the JEDEC or EIAJ standards. Although, by sizing the solder pads properly, you can accommodate either size device, the problem
doesn't end there. The pinout of the SO packages is not standardized. Two pinout patterns are available, corresponding to the direction the manufacturers' die fit within the SO package. If you are looking at alternate sources for your design, therefore, be sure to check the package size and pinouts.
If you can get past the design considerations, you'll find that serial EEPROMs offer a range of special features. During the last two years, manufacturers have added features to increase the versatility of serial EEPROMs. One such feature is selectable word size. Many serial EEPROMs are organized as a series of 16 -bit-wide registers, with some available in 8 -bit widths. To give you more flexibility in choice, manufacturers now offer devices with a selectable organization, controlled by the logic level at an I/O pin.

Another frill is the ability to write-protect a section of memory. Most serial EEPROMs will protect memory from inadvertent write access when the supply voltage is low. Further, they have a software command to disable write access to a part. Both of these features are designed to prevent inadvertent writes to the memory when power is unstable and logic behavior is unpredictable. The newer write-protection feature is the ability to lock out a portion of memory during normal operation. Parts from International CMOS Technology, for example, have a pin-controlled write protect that prevents writing to the entire memory, letting you use it as a ROM. Some parts from Microchip, on the other hand, protect only the top half of memory, allowing you free access to the lower half. This type of write-protect scheme lets you create calibration tables or con-

For more information . . .

For more information on the serial EEPROMs discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Atmel Corp	Fujitsu Microelectronics Inc	National Semiconductor Corp	SGS-Thomson Microelectronics
21250 'Nel Dr	Microelectronics Div	2900 Semiconductor Dr	1000 E Bell Rd
San Jose, CA 95131	3545 N 1st St	Santa Clara, CA 95052	Phoenix, AZ 85022
(408) 441-0311	San Jose, CA 95134	(800) 272-9959;	(602) 867-6100
FAX (408) 436-4300	(800) 642-7616;	(408) 721-5000	FAX (602) 867-6101
Circle No. 700	(408) 922-9000	FAX (408) 721-6346	Contact John Green
	FAX (408) 432-9044	Contact Bryan Liddiard	Circle No. 709
	Circle No. 703	Circle No. 706	
2231 Calle de Luna			Signetics
Santa Clara, CA 95054	International CMOS	Oki Semiconductor	811 E Arques Ave
(408) 748-7700	Technology Inc	785 N Mary Ave	Sunnyvale, CA 94086
FAX (408) 980-8209	2125 Lundy Ave	Sunnyvale, CA 94086	(408) 991-5396
Contact Krish Panu	San Jose, CA 95131	(408) 720-1900	FAX (408) 991-2069
Circle No. 701	(408) 434-0678	FAX (408) 720-1918	Contact Joe Resendes
	FAX (408) 432-0815	Circle No. 707	Circle No. 710
	Contact Ed Nieda		
Exel Microelectronics 2150 Commerce Dr	Circle No. 704	Samsung Semiconductor	
San Jose, CA 95161		S725 N 1st St	851 Buckeye Ct
(408) 432-0500	Microchip Technology Inc	San Jose, CA 95134	Milpitas, CA 95035
FAX (408) 432-8710	2355 W Chandler Blvd	(408) 954-7229	(408) 432-8888
Contact Reggie Huff, x4658	Chandler, AZ 85224	FAX (408) 954-7873	FAX (408) 432-0640
Circle No. 702	(602) 345-3400	Circle No. 708	Contact Rick Orlando
	FAX (602) 345-3390		Circle No. 711
	Contact David Lee		
VOTE	Circle No. 705		

How single-chip fuzzy logic can move your product to the head of its class

Need to make your product more intelligent? Fuzzy Logic is the solution of choice. Need to do it quickly and economically, with maximum flexibility? Then the NeuraLogix NLX230 Fuzzy MicroController™ is in a class by itself!

The NLX230 is a single-chip solution. One 40 -pin package delivers Fuzzy Logic mastery to the most complex control problems.

The NLX230 is flexible. It can be easily configured for your specific control problem, usually in a matter of hours.

The NLX230 is fast. Its rule processing time is 30 to 40 times faster than typical software-based or software/hardware hybrid solutions.

The NLX230 is economical. In production quantities, this remarkable Fuzzy MicroController is priced under $\$ 4$ per unit.

As the first true hardware based Fuzzy Logic controller, the NLX230 makes artificial intelligence available and simple. For most applications it can be an affordable highperformance replacement for 8 -bit microprocessors. See how easily it adapts to your requirements; evaluate how the NLX230 can meet your demands with our low-cost Applications Development System.

Move your product to the head of its class with hardware-controlled Fuzzy Logic. Call now for specifications and price quotation on the NLX230 and other fuzzy logic and neural network devices.

CIRCLE NO. 48

NeuraLogix

American NeuraLogix, Inc.
411 Central Park Drive
Sanford, FL 32771
Telephone 407/322-5608
FAX 407/322-5609

TECHNOLOGY UPDATE

Serial EEPROMs

figuration data, then lock them into the EEPROM.
A more flexible version of the write-protect scheme comes in the form of a programmable writeprotect. This scheme, offered by several companies including Exel, National Semiconductor, Samsung, and SGS-Thomson, lets you select the beginning address of protected memory, thus protecting only the amount of memory you desire. This protection can be temporary or, by programming a special register, made permanent.
A unique data-protection scheme is available from Catalyst Semiconductor in its CAT33C704/804 series.

These devices offer programmable write protection. Then, by programming the device with a password, you can convert the writeprotected area of memory to readprotected memory, accessible only with the proper password. The remaining section of memory becomes write-protected. This secure-access feature is particularly useful if your EEPROM is to contain proprietary information, serial numbers, or access codes that you want to deny to the user.

Another relatively new feature of serial EEPROMs is low-voltage operation. Manufacturers have extended the operating voltage range
of some serial EEPROMs to include typical battery voltages. Many now come in 3 V versions, with some tolerating as low as 2.5 V . Others, like the Exel parts, offer full operation to 3 V and allow read-only operation as low as 2 V .

EDN

Reference

1. Leibson, Steven H, "Nonvolatile, in-circuit-reprogrammable memories," EDN, January 3, 1991, pg 88.

Article Interest Quotient
 (Circle One)

High 518 Medium 519 Low 520

Table 1-Representative serial EEPROMs

Company	Part	$\begin{array}{\|l\|l} \text { Size } \\ \text { (bits) } \end{array}$	Organization (bits)	Interface compatibility	Serial clock rate	Supply current			Data retention (years)	Operating voltage range ${ }^{1}$ (volts)	Package styles ${ }^{2}$	Special features	$\begin{gathered} \text { Price } \\ (10,000) \\ \text { (DIP) } \end{gathered}$
						Active (mA)	Standby ($\mu \mathrm{A}$)						
Atmel	AT93C46	1k	64×16	Microwire	1 MHz	3	100	10k	10	5	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$0.77
	AT93C46-3	1k	64×16	Microwire	1 MHz	2	100	10k	10	3	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$0.96
	AT24C02	2 k	256×8	${ }^{12} \mathrm{C}$	100 kHz	1.5	150	10k	10	5	DIP, SO	100k/100 year endurance option	\$0.99
	AT24C02-3	2 k	256×8	${ }^{12} \mathrm{C}$	100 kHz	1	150	10k	10	3 to 6	DIP, SO	100k/100 year endurance option	\$1.51
	AT24C04	4 k	512×8	$1^{2} \mathrm{C}$	100 kHz	1.5	150	10k	10	5	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$1.70
	AT24C04-3	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	1	150	10k	10	3 to 6	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$2.46
Catalyst Semiconductor	CAT32C101	1k	64×16 or 128×8	Microwire	700 kHz	1	2	10k	10	2 to 4	DIP, SO	100k/100 year endurance option	\$1.69
	CAT33C101	1k	64×16 or 128×8	Microwire	700 kHz	2	50	10k	10	3	DIP, SO	100k/100 year endurance option	\$0.85
	CAT33C201	1k	64×16 or 128×8	General Instruments	700 kHz	2	50	10k	10	3	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$0.79
	CAT59C11	1k	64×16 or 128×8	General Instruments	250 kHz	5	100	10k	10	5	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$0.63
	CAT93C46	1k	64×16 or 128×8	Microwire	700 kHz	3	100	10k	10	5	DIP, SO	100k/100 year endurance option	\$0.77
	CAT93C46A	1k	64×16	Microwire	700 kHz	3	100	10k	10	5	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$0.77
	CAT24C02	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	3	40	100k	100	5	DIP, SO	Page mode	\$1.13
	CAT24C02Z	2 k	256×8	$1^{12} \mathrm{C}$	100 kHz	3	0	100k	100	5	DIP, SO		\$1.40
	CAT24LC02	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	3	50	100k	100	3 to 6	DIP, SO		\$1.40
	CAT35C102	2k	128×16 or 256×8	Microwire	1 MHz	3	100	10k	10	5	DIP, SO	100k/100 year endurance option	\$1.13
	CAT35C202	2k	$\left\|\begin{array}{c} 128 \times 16 \\ \text { or } 256 \times 8 \end{array}\right\|$	General Instruments	1 MHz	3	100	10k	10	5	DIP, SO	100k/100 year endurance option	\$1.44

Notes:

1. Operating voltages have $\pm 10 \%$ tolerance unless a range is shown.
2. DIPs listed are 8 -pin, dual in-line packages unless noted, SOs are 8 -pin, small-outline packages unless noted, and COB means chip on board.

The FS700 LORAN-C frequency standard

10 MHz cesium stability

$\$ 4950$

Cesium long term stability at a fraction of the cost

Better long-łerm stability than rubidium

Not dependent on ionosphere position changes, unlike WWV

Complete northern hemisphere coverage, unlike GPS.

The FS700 LORAN-C frequency standard provides the optimum, cost-effective solution for frequency management and calibration applications. Four 10 MHz outputs from built-in distribution amplifiers provide cesium standard long-term stability of 10^{-12}, with short-term stability of 10^{-10} (10^{-11} optional). Reception is guaranteed in North America, Europe and Asia.

Since the FS700 receives the ground wave from the LORAN transmitter, reception is unaffected by atmospheric changes, with no possibility of missing cycles, a common occurrence with WWV due to discontinuous changes in the position of the ionosphere layer. Cesium and rubidium standards, in addition to being expensive initially, require periodic refurbishment, another costly item.

The FS700 system includes a remote active 8 -foot whip antenna, capable of driving up to 1000 feet of cable. The receiver contains six adjustable notch filters and a frequency output which may be set from 0.01 Hz to 10 MHz in a 1-2-5 sequence. A Phase detector is used to measure the phase shift between this output and another front panel input, allowing quick calibration of other timebases. An analog output with a range of ± 360 degrees, provides a voltage proportional to this phase difference for driving strip chart recorders, thus permitting continuous monitoring of long-term frequency stability or phase locking of other sources.

Table 1-Representative serial EEPROMs (continued)

						Supply	y current		Data reten-				
Company	Part	$\begin{aligned} & \text { Size } \\ & \text { (bits) } \end{aligned}$	ization (bits)	compatibility	clock rate	Active (mA)	Standby ($\mu \mathrm{A}$)	$\begin{gathered} \text { ance } \\ \text { (cycles) } \end{gathered}$	tion (years)	range ${ }^{1}$ (volts)	Package styles ${ }^{2}$	Special features	$\begin{gathered} (10,000) \\ \text { (DIP) } \end{gathered}$
Catalyst Semiconductor (continued)	CAT93C56	2k	$\begin{array}{\|c\|} \hline 128 \times 16 \\ \text { or } 256 \times 8 \end{array}$	Microwire	1 MHz	3	100	10k	10	5	DIP, SO	100k/100 year endurance option	\$1.13
	CAT93LC56	2 k	$\begin{array}{\|c\|} \hline 128 \times 16 \\ \text { or } 256 \times 8 \\ \hline \end{array}$	Mlcrowire	250 kHz	2	50	10k	10	3	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$1.25
	CAT24C04	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	3	40	100k	100	5	DIP, SO	Page mode	\$2.25
	CAT24C04Z	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	3	0	100k	100	5	DIP, SO		\$2.50
	CAT24LC04	4 k	512×8	$1^{12} \mathrm{C}$	100 kHz	3	50	100k	100	3 to 6	DIP, SO		\$2.50
	CAT33C104	4k	$\begin{array}{\|c\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \\ \hline \end{array}$	Microwire	250 kHz	2	50	10k	10	3	DIP, SO	100k/100 year endurance option	\$2.50
	CAT33C704	4k	$\begin{array}{\|c\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \end{array}$	Synchronous	1 MHz	3	200	10k	10	3	$\begin{gathered} \text { DIP, SO, } \\ \text { COB } \end{gathered}$	$100 \mathrm{k} / 100$ year endurance option, password protection	\$4.50
	CAT33C804A/B	4k	$\begin{array}{\|c\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \end{array}$	UART	9600 Baud	3	200	10k	10	3	$\begin{array}{\|c} \hline \text { DIP, SO, } \\ \text { COB } \end{array}$	$100 \mathrm{k} / 100$ year endurance option, password protection	\$5.63
	CAT35C104	4k	$\begin{array}{\|l\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \\ \hline \end{array}$	Microwire	1 MHz	3	100	10k	10	5	DIP, SO	$100 \mathrm{k} / 100$ year endurance option	\$2.25
	CAT35C704	4k	$\begin{array}{\|c\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \\ \hline \end{array}$	Synchronous	3 MHz	3	200	10k	10	5	$\begin{array}{\|c} \hline \text { DIP, SO, } \\ \text { COB } \end{array}$	$100 \mathrm{k} / 100$ year endurance option, password protection	\$3.60
	CAT35C804A/B	4k	$\begin{array}{\|c\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \end{array}$	UART	9600 Baud	3	200	10k	10	5	$\begin{gathered} \mathrm{DIP}, \mathrm{SO}, \\ \mathrm{COB} \end{gathered}$	$100 \mathrm{k} / 100$ year endurance option, password protection	\$4.05
	CAT24C08	8k	1024×8	${ }^{12} \mathrm{C}$	100 kHz	3	40	100k	100	5	DIP, SO	Page mode	\$2.95
	CAT24C08Z	8k	1024×8	${ }^{12} \mathrm{C}$	100 kHz	3	0	100k	100	5	DIP, SO		\$3.25
	CAT24LC08	8 k	1024×8	${ }^{12} \mathrm{C}$	100 kHz	3	50	100k	100	3 to 6	DIP, SO		\$3.25
	CAT24C16	16k	2048×8	${ }^{12} \mathrm{C}$	100 kHz	3	40	100k	100	5	DIP, SO	Page mode	\$3.50
	CAT24C16Z	16k	2048×8	${ }^{12} \mathrm{C}$	100 kHz	3	0	100k	100	5	DIP, SO		\$3.75
	CAT24LC16	16k	2048×8	${ }^{12} \mathrm{C}$	100 kHz	3	50	100k	100	3 to 6	DIP, SO		\$3.75
Exel Microelectronics	XL93LC06	256	16×16	Microwire	1 MHz	2	2	100k	10	5	DIP, SO	Read operation to 2 V , auto-increment	\$0.47
	XL93LC06-3	256	16×16	Microwire	250 kHz	2	2	100k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V , auto-increment	\$0.52
	XL93C46	1k	64×16	Microwire	1 MHz	2	2	10k	10	5	DIP, SO	Read operation to 2 V	\$0.50
	XL93C46-3	1k	64×16	Microwire	250 kHz	2	2	10k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V	\$0.55
	XL93CS46	1k	64×16	Microwire	1 MHz	2	2	10k	10	5	DIP, SO	Read operation to 2 V , programmable data protection	\$0.70
	XL93CS46-3	1k	64×16	Microwire	250 kHz	2	2	10k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V , programmable data protection	\$0.75
	XL93LC46	1k	64×16	Microwire	1 MHz	2	2	100k	10	5	DIP, SO	Read operation to 2 V , auto-increment	\$0.50
	XL93LC46-3	1k	64×16	Microwire	250 kHz	2	2	100k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V , auto-increment	\$0.55
	XL35LC102	2k	128×16	Microwire	1 MHz	2	2	100k	10	5	DIP, SO	Read operation to 2 V , auto-increment	\$1.15
	XL35LC102-3	2k	128×16	Microwire	250 kHz	2	2	100k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V , auto-increment	\$1.23
	XL90C21	2k	128×16	Microwire	1 MHz	3	100	10k	10	5	DIP, SO	Read operation to 2 V	\$0.90
	XL93C56	2k	128×16	Microwire	1 MHz	2	4	10k	10	5	DIP, SO	Read operation to 2 V	\$0.90
	XL93C56-3	2k	128×16	Microwire	250 kHz	2	4	10k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V	\$1.35
	XL93LC56	2k	128×16	Microwire	1 MHz	2	2	100k	10	5	DIP, SO	Read operation to 2 V , auto-increment	\$0.90
	XL93LC56-3	2k	128×16	Microwire	250 kHz	2	2	100k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V , auto-increment	\$0.98
	XL90C41	4k	256×16	Microwire	1 MHz	3	100	10k	10	5	DIP, SO	Read operation to 2 V	\$1.25
	XL93C66	4k	256×16	Microwire	1 MHz	2	4	10k	10	5	DIP, SO	Read operation to 2 V	\$1.25
	XL93C66-3	4k	256×16	Microwire	250 kHz	2	4	10k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V	\$1.88
	XL93LC66	4k	256×16	Microwire	1 MHz	2	2	100k	10	5	DIP, SO	Read operation to 2 V , auto-increment	\$1.25
	XL93LC66-3	4k	256×16	Microwire	250 kHz	2	2	100k	10	2.7 to 5.5	DIP, SO	Read operation to 2 V , auto-increment	\$1.35

Notes:

1. Operating voltages have $\pm 10 \%$ tolerance unless a range is shown.
2. DIPs listed are 8 -pin, dual in-line packages unless noted, SOs are 8 -pin, small-outline packages unless noted, and COB means chip on board.

Company	Part	$\begin{array}{\|l} \text { Size } \\ \text { (bits) } \end{array}$	Organization (bits)	Interface compatibility	Serial clock rate	Supply current		$\begin{array}{\|l} \text { Endur- } \\ \text { ance } \\ \text { (cycles) } \end{array}$	$\left\|\begin{array}{c} \text { Data } \\ \text { reten- } \\ \text { tion } \\ \text { (years) } \end{array}\right\|$	Operating voltage range ${ }^{1}$ (volts)	Package styles ${ }^{2}$	Special features	$\begin{array}{\|c} \hline \text { Price } \\ (10,000) \\ \text { (DIP) } \\ \hline \end{array}$
						Active (mA)	Standby ($\mu \mathrm{A}$)						
International CMOS Technology	93C46A	1k	64×16	Microwire	2 MHz	3	50	10k	40	5	DIP, SO	$3 V$ version available, hardware write protect	\$0.60
	$93 C 56 \mathrm{~A}$	2k	128×16	Microwire	2 MHz	3	50	10k	40	5	DIP, SO	Hardware write protect	\$1.65
	$93 \mathrm{CX56}$	2k	128×16	Microwire	1 MHz	4	50	10k	40	2.5 to 6	DIP, SO	Hardware write protect	\$2.25
	93C66A	4k	256×16	Microwire	2 MHz	3	50	10k	40	5	DIP, SO	Hardware write protect	\$2.30
	$93 \mathrm{CX66}$	4k	256×16	Microwire	1 MHz	4	50	10k	40	2.5 to 6	DIP, SO	Hardware write protect	\$2.90
Microchip Technology	93C06	256	16×16	Microwire	1 MHz	4	100	100k	10	5	DIP, SO		\$0.53
	24C01A	1k	128×8	$1^{2} \mathrm{C}$	100 kHz	3.5	100	100k	10	5	DIP, SO	Sequential read, page mode	\$0.98
	24LC01	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	100k	10	2 to 5.5	DIP, SO	Sequential read, page mode, hardware write protect	\$1.05
	59 C 11	1k	64×16 or 128×8	General Instruments	1 MHz	4	100	100k	10	5	DIP, SO	Sequential read, page mode, hardware write protect	\$0.55
	85 C 72	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	3.5	100	100k	10	5	DIP, SO	Sequential read, page mode	\$1.03
	93C46	1k	64×16	Microwire	1 MHz	4	100	100k	10	5	DIP, SO	Sequential read, page mode, hardware write protect	\$0.55
	24C02A	2 k	256×8	${ }^{12} \mathrm{C}$	100 kHz	3.5	100	100k	10	5	DIP, SO	Sequential read, page mode, hardware write protect	\$1.02
	24LC02	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	100k	10	2 to 5.5	DIP, SO	Sequential read, page mode, hardware write protect	\$1.10
	85C82	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	3.5	100	100k	10	5	DIP, SO	Sequential read, page mode	\$1.07
	93C56	2k	$\begin{array}{\|c\|} \hline 128 \times 16 \\ \text { or } 256 \times 8 \end{array}$	Microwire	2 MHz	4	100	100k	10	4 to 5.5	DIP, SO	Sequential read	\$1.05
	24C04A	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	3.5	100	100k	10	5	DIP, SO	Sequential read, page mode, hardware write protect	\$1.44
	24LC04	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	100k	10	2 to 5.5	DIP, SO	Sequential read, page mode, hardware write protect	\$1.52
	85C92	4k	512×8	$1^{2} \mathrm{C}$	100 kHz	3.5	100	100k	10	5	DIP, SO	Sequential read, page mode	\$1.52
	93C66	4k	$\begin{array}{\|c\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \\ \hline \end{array}$	Microwire	2 MHz	4	100	100k	10	4 to 5.5	DIP, SO	Sequential read	\$1.28
	24LC16	16k	2048×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	100k	10	2 to 5.5	DIP, SO	Sequential read, page mode, hardware write protect	\$3.56
National Semiconductor	NM93C06	256	16×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	5 V -only version available	\$0.63
	NM93CS06	256	16×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	Sequential read, programmable write protect, 5 V -only version	\$1.57
	NM59C11	1k	64×16 or 128×8	General Instrument	1 MHz	0.4	25	500k	40	5	DIP, SO		\$0.82
	NM93C46	1k	64×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	5 V -only version available	\$0.75
	NM93C46A	1k	64×16	Microwire	1 MHz	0.4	25	500k	40	5	DIP, SO		\$0.82
	NM93CS46	1k	64×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	Sequential read, programmable write protect, 5 V -only version	\$1.82
	NM95C12	1k	64×16	Microwire	1 MHz	0.4	25	40k	10	5	14-pin DIP, 14-pin SO	8 onboard DIP switches	\$3.13
	NM24C02	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	0.4	25	500k	40	5	DIP, 14 pin SO	Page mode	\$0.90

Notes:

1. Operating voltages have $\pm 10 \%$ tolerance unless a range is shown.
2. DIPs listed are 8 -pin, dual in-line packages unless noted, SOs are 8 -pin, small-outline packages unless noted, and COB means chip on board.

Table 1-Representative serial EEPROMs (continued)

Company	Part	$\begin{aligned} & \text { Size } \\ & \text { (bits) } \end{aligned}$	Organization (bits)	Interface compatibility	Serial clock rate	Supply current		Endur-ance(cycles)	$\left\lvert\, \begin{gathered} \text { Data } \\ \text { reten- } \\ \text { tion } \\ \text { (years) } \end{gathered}\right.$	Operating voltage range ${ }^{1}$ (volts)	Package styles ${ }^{2}$	Special features	$\begin{gathered} \text { Price } \\ (10,000) \\ (\mathrm{DIP}) \end{gathered}$
						$\begin{gathered} \text { Active } \\ (\mathrm{mA}) \end{gathered}$	Standby ($\mu \mathrm{A}$)						
National Semiconductor (continued)	NM24C03	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	2	60	500k	40	5	$\begin{array}{\|l\|} \hline \text { DIP, } 14 \\ \text { pin SO } \end{array}$	Page mode, hardware write protect	\$1.05
	NM93C56	2 k	128×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	5 V -only version available	\$1.19
	NM93CS56	2 k	128×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	Sequential read, programmable write protect, 5V-only version	\$3.07
	NM24C04	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	2	60	500k	40	5	$\begin{aligned} & \mathrm{DIP}, 14- \\ & \text { pin SO } \end{aligned}$	Page mode	\$1.45
	NM24C05	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	2	60	500k	40	5	$\begin{aligned} & \mathrm{DIP}, 14 \\ & \text { pin SO } \end{aligned}$	Page mode, hardware write protect	\$1.60
	NM93C66	4k	256×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	DIP, SO	5 V -only version available	\$2.25
	NM93CS66	4k	256×16	Microwire	1 MHz	0.4	25	500k	40	2 to 5.5	$\begin{aligned} & \text { DIP, } 14- \\ & \text { pin SO } \end{aligned}$	Sequential read, programmable write protect, 5 V -only version	\$5.00
	NM24C08	8k	1024×8	${ }^{12} \mathrm{C}$	100 kHz	2	60	500k	40	5	$\begin{array}{\|l\|} \hline \text { DIP, } 14- \\ \text { pin SO } \end{array}$	Page mode	\$2.85
	NM24C09	8k	1024×8	${ }^{12} \mathrm{C}$	100 kHz	2	60	500k	40	5	$\begin{array}{\|l\|} \hline \text { DIP, } 14 \\ \text { pin SO } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Page mode, hardware } \\ \text { write protect } \end{array} \\ \hline \end{array}$	\$3.05
Oki Semiconductor	MSM16881	1k	$\begin{array}{\|c\|} \hline 64 \times 16 \\ \text { or } 128 \times 8 \\ \hline \end{array}$	Microwire	250 kHz	3	100	10k	10	5	DIP, SO		\$0.80
	MSM16911	1k	$\begin{array}{\|c\|} \hline 64 \times 16 \\ \text { or } 128 \times 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { General } \\ \text { Instruments } \end{array}$	250 kHz	3	100	10k	10	5	DIP, SO		\$0.80
	MSM16812	2k	$\begin{array}{\|c\|} \hline 128 \times 16 \\ \text { or } 256 \times 8 \\ \hline \end{array}$	Microwire	1 MHz	3	100	10k	10	5	DIP		\$1.50
	MSM16912	2k	$\begin{array}{\|c\|} \hline 128 \times 16 \\ \text { or } 256 \times 8 \\ \hline \end{array}$	General Instruments	1 MHz	3	100	10k	10	5	DIP		\$1.50
Samsung Semiconductor	KM93C06	256	16x16	Microwire	250 kHz	5	100	100k	10	5	DIP, SO		\$0.42
	KM93C07	256	16×16	Microwire	250 kHz	5	100	100k	10	5	DIP, SO		\$0.43
	KM93C46	1k	64×16	Microwire	250 kHz	5	100	100k	10	5	DIP, SO		\$0.45
	KM93C46V	1k	64×16	Microwire	250 kHz	5	100	100k	10	2.7 to 5.5	DIP, SO		\$0.47
	KM93C56	2 k	128×16	Microwire	1 MHz	1	50	100k	10	2.7105 .5	DIP, SO		\$0.80
	KM93CS56	2 k	128×16	Microwire	1 MHz	1	50	100k	10	2.7 to 5.5	DIP, SO	$\begin{array}{\|c} \text { Programmable write } \\ \text { protect } \end{array}$	\$1.00
	KM93C57	2k	$\begin{array}{\|c\|} \hline 128 \times 16 \\ \text { or } 256 \times 8 \\ \hline \end{array}$	Microwire	1 MHz	1	50	100k	10	2.7 to 5.5	DIP, SO		\$0.82
	KM93C66	4k	256×16	Microwire	1 MHz	1	50	100k	10	2.7 to 5.5	DIP, SO		\$1.30
	KM93CS66	4k	256×16	Microwire	1 MHz	1	50	100k	10	2.7 to 5.5	DIP, SO	$\begin{array}{\|c} \hline \text { Programmable write } \\ \text { protect } \end{array}$	\$1.50
	км93С67	4k	$\begin{array}{\|l\|} \hline 256 \times 16 \\ \text { or } 512 \times 8 \\ \hline \end{array}$	Microwire	1 MHz	1	50	100k	10	2.7 to 5.5	DIP, SO		\$1.32
SGS- Thompson Microelectronics	ST93C06	256	$\begin{array}{\|c\|} \hline 16 \times 16 \\ \text { or } 32 \times 8 \\ \hline \end{array}$	Microwire	1 MHz	2	50	1M	10	5	DIP, SO		\$0.50
	ST24C01	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	1 M	10	5	DIP, SO	Page mode, sequential read	\$0.62
	ST93C46A	1k	$\begin{array}{\|c\|} \hline 64 \times 16 \\ \text { or } 128 \times 8 \\ \hline \end{array}$	Microwire	1 MHz	5	50	1 M	10	5	DIP, SO		\$0.62
	ST93CS46	1k	64×16	Microwire	1 MHz	2	50	1M	10	5	$\begin{gathered} \text { DIP, SO, } \\ \text { 14-pin } \\ \text { SO } \end{gathered}$	Page mode, programmable write protect	\$0.84
	ST93CS47	1k	64×16	Microwire	1 MHz	2	50	1M	10	2.5 to 5.5	$\begin{gathered} \text { DIP, SO, } \\ \text { 14-pin } \\ \text { SO } \end{gathered}$	Page mode, programmable write protect	\$1.10
	ST24C02A	2k	256x8	${ }^{12} \mathrm{C}$	100 kHz	2	100	1 M	10	5	DIP, SO	Page mode, sequential read, programmable write protect	\$0.84
	ST25C02A	2k	256x8	${ }^{12} \mathrm{C}$	100 kHz	2	100	1M	10	2.5 to 5.5	DIP, SO	Page mode, sequential read, programmable write protect	\$1.10
	ST93CS56	2k	128×16	Microwire	1 MHz	2	50	19	10	5	$\begin{gathered} \text { DIP, SO } \\ 14 \text {, pin } \\ \text { SO } \end{gathered}$	Page mode, programmable write protect	\$0.94

Notes:

1. Operating voltages have $\pm 10 \%$ tolerance unless a range is shown.
2. DIPs listed are 8 -pin, dual in-line packages unless noted, SOs are 8 -pin, small-outline packages unless noted, and COB means chip on board.

Company	Part	$\begin{array}{\|l\|} \hline \text { Size } \\ \text { (bits) } \\ \hline \end{array}$	Organization (bits)	Interface compatibility	Serial clock rate	\|Supply current		Endurance (cycles)	$\left\|\begin{array}{c} \text { Data } \\ \text { reten- } \\ \text { tion } \\ \text { (years) } \end{array}\right\|$	Operating voltage range ${ }^{1}$ (volts)	Package styles ${ }^{2}$	Special features	$\begin{array}{\|c} \text { Price } \\ (10,000) \\ \text { (DIP) } \end{array}$
						Active (mA)	Standby ($\mu \mathrm{A}$)						
SGS- Thompson Microelectronics (continued)	ST93CS57	2 k	128×16	Microwire	1 MHz	2	50	1 M	10	2.5 to 5.5	$\begin{gathered} \text { DIP, SO, } \\ \text { 14-pin } \\ \text { SO } \end{gathered}$	Page mode, programmable write protect	\$1.40
	ST24C04	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	1M	10	5	$\begin{aligned} & \text { DIP, 14- } \\ & \text { pin SO } \end{aligned}$	Page mode, sequential read, programmable write protect	\$1.85
	ST25C04	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	2	100	1M	10	2.5 to 5.5	$\begin{aligned} & \text { DIP, } 14- \\ & \text { pin SO } \end{aligned}$	Page mode, sequential read, programmable write protect	\$2.40
Signetics	PCF8581	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	1.6	10	10k	10	5	DIP, SO	Page mode, sequential read	\$0.94
	PCF8581C	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	1.6	10	10k	10	2.5 to 6	DIP, SO	Page mode, sequential read	\$0.94
	PCF8582B	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	1.6	10	500k	10	5	$\begin{gathered} \hline \text { DIP, SO, } \\ \text { 16-pin } \\ \text { SO } \end{gathered}$	Page mode, sequential read	\$0.99
	PCF8582C	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	1.6	10	500k	10	2.5 to 6	DIP, SO, 16-pin SO	Page mode, sequential read	\$0.99
Xicor	X24C01	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	1	50	100k	100	5	DIP, SO	3.3 V and 3.5 to 5.5 V versions available	\$0.65
	X24C01A	1k	128×8	${ }^{12} \mathrm{C}$	100 kHz	1	50	100k	100	5	DIP, SO	3.3 V and 3.5 to 5.5 V versions available	\$0.77
	X24C02	2k	256×8	${ }^{12} \mathrm{C}$	100 kHz	1	50	100k	100	5	DIP, SO	3.3 V and 3.5 to 5.5 V versions available	\$0.94
	X24C04	4k	512×8	${ }^{12} \mathrm{C}$	100 kHz	1	50	100k	100	5	DIP, SO, 14-pin SO	3.3 V and 3.5 to 5.5 V versions available	\$1.55
	X24C08	8k	1024×8	${ }^{12} \mathrm{C}$	100 kHz	1	50	100k	100	5	DIP, SO, 14-pin SO	3.3 V and 3.5 to 5.5 V versions available	\$2.40
	X24C16	16k	2048×8	${ }^{12} \mathrm{C}$	100 kHz	1	50	100k	100	5	$\left\|\begin{array}{c} \text { DIP, SO, } \\ \text { 14-pin } \\ \text { SO } \end{array}\right\|$	3.3 V and 3.5 to 5.5 V versions available	\$3.36

Notes:

1. Operating voltages have $\pm 10 \%$ tolerance unless a range is shown
2. DIPs listed are 8 -pin, dual in-line packages unless noted, SOs are 8 -pin, small-outline packages unless noted, and COB means chip on board.

EDN REPRINTS

A Designer's Guide to
 Linear Circuits

Volume I

This original, 186 -page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs.

A Designer's Guide to Linear Circuits

Volume II

Jim Williams' analog design articles - from 1983 to 1986 - in Volume II. Volume II covers more complex circuits and systems in 66 pages.

Surface-Mount Technology Design Project

This 48-page, four-color reprint follows the progress of EDN editor Steve Leibson as he designs a 2 M -byte memory board using surface-mount technology. He includes typical problems you might encounter and objectively reports about both good and bad design decisions made along the way.

Mail coupon to: Cahners Reprint Services, 1350 E. Touhy Ave., Des
Plaines, IL 60018. Or call 708/390-2777. FAX: 708/390-2779.
US currency only.

Please send the following:

__copies of A Designer's Guide to Linear Circuits.
Volume I
व\$7.70 (USA)

- $\$ 10.70$ (non-USA)

Volume II

ㄱ \$10.70 (USA)
ᄀ \$13.70 (non-USA)
copies of the combined set of A Designer's Guide to Linear Circuits
Volumes I\&ll
ᄀ $\$ 12.70$ (USA)
ᄀ $\$ 16.70$ (non-USA)
copies of Surface-Mount

Design Project

I \$6.70 (USA)
$\square \$ 8.70$ (non-USA)

Note: All prices above include shipping \& handling.

Helps HP ItsCustomers.

low, while keeping performance high. Features like AMD's unique on-chip caches and burst mode give you maximum performance from less expensive memory.

Only the 29 K Family helps bring your product to market so fast. You'll breeze through development with AMD's own tools, or the hardware and software tools provided by over 50 Fusion $29 \mathrm{~K}^{\text {sm }}$ Partners. And the 29 K Family continues to grow, with new members offering even higher performance and integration.

So make sure your customers are happy puppies, and start designing with the 29 K Family from AMD. Call 1-800-292-9263 Ext. 3 for more information.

7

Advanced Micro Devices
 901 Thompson Place. P.O. Box 3453. Sunnyvale. CA 94088. © 1991 Advanced Micro Devices. Inc 29 K is a trademark and Fusion 29 K is a servicemark of Advanced Micro Devices. Laserjet IIISi is a trademark of Hewlett-Packard Co. PostScript is a registered trademark of Adobe Systems. Inc. All other brand or product names are trademarks or registered trademarks of their respective holders.

IWABINE BIINXININ A MIIIION TILIES A DAY FOR TWENTY YEARS, AND YOU'LL BEGIN IO UNDEBSTAND THE DUABBILITY OF OUR OPTIEAL SWIIGIES.

 penipherals. In fact, our optical switches operate thousands of times faster than electromechanical switches. And, they perform reliably for up to twenty years or more, exceeding the lifetime of the product itself.Omron's optical switches dramatically improve the reliability of your end product by virtually eliminating switch failure. Take switches. There are over 50 Or ask us about the more than components we produce. You a closer look at Omron optical standard types to choose from. 100,000 different types of control WE HAVE IHE FUTURE IN CONTROL. can reach us at l-800-62-OMRON.

$3^{1 / 2}$-in. optical drive offers MO and read-only modes

The OD-3000 optical disk drive lets designers buy optical technology in the increasingly popular $3^{1 / 2-i n}$. form factor. The multifunction drive uses read/write MO (magneto-optical) technology and reads O-ROM (optical read-only memory) disks, whose features are similar to those of $5 \frac{1 / 4-}{}$ in. CD-ROM disks. The drive stores 128 Mbytes on a removable optical disk that looks much like a $3^{1 / 2}$-in. floppy disk.

MO technology gives the OD3000 several advantages compared with $5^{1 / 4}-\mathrm{in}$. products that use other types of rewritable optical media. MO technology uses magnetic-flux transitions to store data on the physical medium. The optical system writes to the disk using a laser beam to change the magnetic polarity of data bits on the disk. Likewise, the optical system reads data by sensing the reflection of the laser beam from the surface of the disk. Disks that use MO technology can withstand 10 million write cycles and still record data reliably. Other rewritable optical technologies typically limit media to 10,000 write cycles.

The drive can also read 0-ROM disks that store prerecorded information, much like CD-ROM drives do. Mass duplication of O-ROM disks uses a stamping production technology. This technology is similar to the process used to make CD-ROM disks and audio record albums. Therefore, manufacturing costs of prerecorded O-ROM disks should soon drop to less than $\$ 2$ each.

Both CD-ROM and O-ROM disks store data via pits in the physical

A 42-msec seek time and 10-msec latency spec make the OD-3000 multifunction optical drive useful in some primary-storage applications.
medium's surface. O-ROM offers some advantages compared with CD-ROM technology, however. CD-ROMs employ a long spiral track; O-ROM disks feature a format with tracks and sectors, like magnetic disks. The track-andsector configuration results in superior seek times for computer applications. O-ROM technology also leads to a third type of medium that you can use with the OD-3000. Par-tial-ROM disks have O-ROM and rewritable technology mixed on a single surface. Users can add their own information such as graphics to the rewritable sections of a par-tial-ROM disk.
The OD-3000 features a $3000-\mathrm{rpm}$ rotational speed, which minimizes latency during seek operation. The drive's average rotational latency is 10 msec . The drive's optic components are in two different physical
locations to minimize seek time. The semiconductor laser, photodiode detector, lens, and prism are fixed in place away from the actuator arm. Only minimal optical components that provide focus and tracking functions reside on the actuator, resulting in a lower-mass actuator. The drive has a $42-\mathrm{msec}$ seek time compared with specs greater than 60 msec for some optical drives.

Other key specs include 11 W power dissipation during read/write operations and 2.6 W when the drive is inactive. A Reed-Solomon errorcorrection scheme results in less than 1 error bit per 10^{12} bits. The drive can read data continuously from disk at 640 kbytes/sec and write data continuously at 203 kbytes/sec. Write operations require the erase, write, and verify passes common to all rewritable optical drives and

, HCTPERFORMANOE TEOHNOLOEY

THAT SHEDS A NEWANHT

In-depth VLSI experience and process technology enable MHS to offer 0.7μ CMOS/ BiCMOS devices TODAY!
This is the driving force behind our balanced product offering.
The MHS OPEN ASIC concept, supported by market leading CAD tools, offers smart solutions for system integration: composite/gate arrays, sea-of-gates, PLD replacement, standard cells and full custom devices.
Our range of application-specific DATACOM products includes voice combos, network protocol controllers and compressed imaging. And when it comes to fast and/or very low power SRAMs, FIFOs or Dual Port RAMs, we can provide versions down to 8 ns access time or down to 1 HA stand-by.
We have chosen the RISC 32 bit SPARC architecture to produce chip sets and embedded solutions, in addition to 8 bit microcontrollers built around an 80C51 core.
MHS HIGH RELIABILITY products and services are an integral part of today's most sophisticated programs in Aerospace, Defense and Avionics, based on RAQ1/ AQAP1, 883C, CECC, ISO 9001 and SCC certifications or standards.
Want more information about our serviceoriented organization and highly skilled teams ?
Call us today, we'll send you our brochure.
Tel. : 8005544450
account for the slower speed.
The drive features a 128 -kbyte buffer on the SCSI-2 controller. The controller can transfer buffered data to the host at $2 \mathrm{Mbytes} / \mathrm{sec}$ in asynchronous mode and at 5.3 Mbytes/sec in synchronous mode. The drive's MTBF spec is 30,000 poweron hours.

The key to the acceptance of $3^{1 / 2-}$ in. optical drives will eventually be price. The OD-3000 costs $\$ 1050$ (1000) and the rewritable disks cost $\$ 60$ each. The company hopes to drop the prices by 50% or more within the next 18 months.
-Maury Wright
Teac America Inc, 7733 Telegraph Rd, Montebello, CA 90640, (213) 726-0303, FAX (213) 7277621.

Circle No. 733

EDN's Editors' Choice

On occasion, a new product will show a great deal of innovation and thus appear as an EDN Editors' Choice selection. To qualify for special coverage by our editors, an innovative product must:
Offer significantly higher levels of performance in ways not previously available
\downarrow Solve a continuing problem much more effectively than its predecessor
Exhibit a marked degree of cleverness, which differentiates it from earlier products
Embody new technology that advances the state of the art or use older technology in a unique and innovative way.

The PQFP Test Clip Solution...

for hands-free testing of SMT PQFP packages.

- Clips directly onto your soldered-on PQFP device.
- Support for testing, logic analysis, and emulation.
- Converts JEDEC and EIAJ PQFP package footprints to standard test points . 1 " apart.
- Available in package sizes 80 pin--160 pin.
- Custom sizes also available!

Call for FREE Catalog and Quotation:
 Emulation Technology Inc. 2344 Walsh Ave. Santa Clara, CA 95051 Phone: 408 982-0660 FAX: $408982-0664$

Check with the Guinness Book Of Records* The new RICOH PF-1 weighs just $5 \frac{1}{2}$ pounds, and faxes $81 / 2 x \times 11$ documents. So call 1-800-63-RICOH ext. 1340 and put the smallest fax in the world in your briefcase.

Worldwide Facsimile Sponsor
1992 Olympic Games

36 USC 380

Who's Behind The Simulation Acceleration Movement?

And Who's Leading It?

Generator owes accuracy and versatility to DSP and arbitrary-waveform technology

Analogic Corp's 2030 harnesses technology not yet widely used in function generators to make daunting wave-form-generation tasks seem rather straightforward. You can set it up to produce complicated waveforms with no more difficulty than you can get classical generators to output sine, square, and triangular waves. Moreover, the waveforms that the unit produces exhibit unusually low distortion and few artifacts. The firm accomplishes this feat by using digital technology-DSP technol-ogy-and playing tricks such as predistorting the samples fed to the unit's D/A converter to compensate for sampling effects and for the inherently nonideal transient response of the anti-imaging filter that follows the DAC.

Hidden within the half-rackwidth enclosure is a Motorola 56001 DSP $\mu \mathrm{P}$. The $\mu \mathrm{P}$ earns its keep; it executes algorithmic routines stored in ROM and fills the generator's dual-ported memory with samples that represent the output waveforms. The algorithms are much more compact than are point-by-point signal representations; therefore the generator can store an extensive waveform repertoire. If the individual waveforms stored this way don't meet your needs, you can add the waveforms to each other and multiply them by one another. Moreover, to remove artifacts that would otherwise appear, before routing the calculated waveforms to the DAC, the $\mu \mathrm{P}$ convolves them with the reciprocal of the output filter's impulse response.
This technique and other numeric

Adding and multiplying waveforms to produce even more complex waves is a snap with the block diagrams that appear on the bit-mapped, backlit LCD screen of the 20.30 function generator. You make your selections using soft keys next to the screen.
sleights-of-hand let the generator produce a long list of modulated and swept-frequency waves-in addition to dc and the familiar sine, square, ramp, triangular, pulse, and pseudo-random-noise waveforms. The modulated waveforms include double-sideband AM (amplitude modulation) with full and suppressed carriers; single-sideband AM, also with full and suppressed carriers; FM (frequency modulation); phase modulation; exponentially decaying waves; the $\sin (\mathrm{x}) / \mathrm{x}$ function; and both linear and logarithmic sweeps.
The sine-wave distortion level, although dependent on amplitude
and frequency, is 80 dB below the output level at or below 100 kHz , regardless of amplitude. There are four amplitude ranges, from 10 mV to 10 V full scale into an opencircuit. You can set the amplitude with 4-digit resolution, and you can select either 50Ω or 600Ω output resistance.

The generator's frequency range starts at 0.001 Hz and extends to 20 MHz for sine waves and to 5 MHz for pulses and for square, triangular, and ramp waves. Pulse rise time is approximately 15 nsec at and below $100 \mathrm{~Hz} ; 10.0$ to $10.4 \mu \mathrm{sec}$ from 100 Hz to 1 kHz ; 1 to 1.04 μ sec from 1 kHz to 10 kHz ; and 46

Why make users do this?

Changing DIP switches is a five stage process: disconnect the device, remove outer housing, reset the DIP switches, reassemble unit, and reconnect the device. Minimum downtime: 20 minutes.

When they can do this!

Changing an Address Switch takes only one step: punch in the "address" on the back of the computer. Maximum downtime: $\mathbf{2 0}$ seconds.

Introducing the Address Switch ${ }^{\text {TM }}$ It's a user-friendly world. At least, users insist it be that way. So they look for "user-friendly" features when they shop for computers and computer products. That's why one major company introduced our Address Switch on the back panel of their personal computers. Users designate the "address" of their computers and peripherals with a simple, one-step press of the Address Switch.
Wouldn't the Address Switch make your product much more user-friendly?

Make "Switch-Addressable" One of Your Selling Features.

 Just as users look for "IBM"-compatible" on today's computers and peripheral devices, they will soon start looking for "switch-addressable". As local area networks continue their rapid growth, the need to change "addresses" on network devices in a quick and easy manner is becoming increasingly important. The Address Switch puts your device in the "preferred" category.
The Address Switch

 Adapts to Your Design.Panel-mounted and easily accessible, the Address Switch adds value to your product by replacing internal DIP switches on IC boards with instant access on the external housing. Available in a variety of colors to match your product, gang-mountable in virtually any configuration, the Address Switch uses the standard SCSI design to adapt readily to any product line.

Give Us Your Address, and We'll Give You Ours.

Don't you owe it to your product to stay competitive? Call us today at 708-360-3500, and we'll send you a Specifications Sheet describing the Address Switch in detail. Don't get left behind in the user-friendly race-the competition is already off and running.
"Switch Addresses with the Address Switch."

Cherry Electrical Products
3600 Sunset Avenue
Waukegan, IL 60087
Phone: 708-662-9200
Facsimile: 708-662-2990
to 50 nsec from 10 kHz to 5 MHz . Peak pulse and square-wave overshoot is 0.1% at and below 100 kHz and 0.2% above. You can set the output frequency of any waveform with a resolution of 1 part in 10^{7} (0.1 ppm).
The vendor's earlier waveform generators relied heavily on algebraic definition of signals. If you could represent a signal as an equation and key it in, the generator would synthesize it. With the new instrument, which has a backlit, bitmapped LCD screen, instead of fumbling with formulas, you make selections from menus of stored functions and from block diagrams of multiplication and addition operations. The unit has soft keys with functions designated by legends that appear on the screen, fixedfunction keys, a numeric keypad, and, for those who prefer it to the keypad, a rotary control.

Because it incorporates the technology of a 12 -bit-resolution arbi-trary-waveform generator, the instrument can synthesize signals that are not in its library and that are not producible by manipulating the library functions. The vendor doesn't emphasize this arbitrary-function-generation capability, however. To use it, you must load wave-form-definition files from an external source, such as a PC, via the unit's IEEE-488 or RS-232C ports. The generator includes both ports as standard equipment. The ports let you use terse commands to recall any of 15 complete setups from nonvolatile memory. You can retrieve the setups manually by pressing a few keys. The unit costs $\$ 3995$.
-Dan Strassberg
Analogic Corp, 8 Centennial Dr, Peabody, MA 01960. Phone (508) 977-3000. FAX (508) 531-1266. TLX 6817021. Doug Estrich.

Circle No. 731

Get TV reception you never had before, with. .

Antenna Multiplier ${ }^{\text {m' }}$ only ${ }^{\text {² }}$ 295*

*But read this ad for an even better deal!

You won't need it if you are connected to a cable system, but if you are not you will now get TV reception that you could never enjoy before. Inside its unprepossessing housing, the Antenna Multiplier ${ }^{\text {T }}$ hides a small technical miracle -an array of electronic components that literally multiplies the reception power of your TV. The Antenna Multiplier ${ }^{\text {Tu }}$ stabilizes your TV picture, eliminates "ghosts" and static, and brings in stations that were until now only visible as flickers and annoying shadows. In most areas you will be
 plier significantly
boosts UHF, VHF Television and AM, FM, \& Shortwave radio reception. able to eliminate any outdoor antenna completely, making your-
 self independent of bad weather interference and atmospheric disturbances. The Multiplier ${ }^{\text {mw }}$ needs no outside power-it gets its "juice" right through your TV set. You place the Multiplier ${ }^{\text {m" }}$ on the television set itself, lay it on a nearby table, or hang it on the wall. And, of course, you can bid your messy and ineffective rabbit ears, loop, rod, or dish antennas good-bye. Antenna Multiplier ${ }^{\text {™ }}$ will not just enhance your TV reception manifold, it also vastly improves AM/FM radio reception and brings in new stations on multiband and shortwave receivers.
We are the exclusive importers of the Antenna Multiplier ${ }^{7 \mathrm{~m}}$ in the United States and can therefore bring you this outstanding TV accessory for just $\$ 29.95$. But we have an even better deal: Buy two for $\$ 59.90$, and we'll send you a third one, with our compliments-absolutely FREE! Unleash the full power of your television with Antenna Multiplier ${ }^{\text {™ }}$. Order it today!

FOR FASTEST SERVICE, ORDER
TOLL FREE (800) 882-3050
24 hours a day, 7 days a week
Please give order \#1429B007. If you prefer, mail check or card authorization and expiration. We need daytime phone number for all orders and issuing bank for charge orders. Add shipping/insurance: $\$ 5.95$ for one, $\$ 6.95$ for three. Add sales taxfor CA delivery. You have 30 day return and one year warranty. We do not refund shipping charges.

Looking for a bargain? Come in and visit our Catalog Outlet in San Francisco.

139 Townsend Street, San Francisco, CA 94107

CIRCLE NO. 25

Why it takes legwork to flatten your stomach.

You can't reduce stomach fat by exercising abdominal muscles alone. Research has shown that exercises that work only the abdominal region are not effective. They simply don't involve enough muscle mass to burn the calories necessary to trim fat. Instead of flattening, they merely strengthen underlying muscles, providing no reduction in girth, fatfolds, or total body fat percentage.

The exclusive

NordicTrack ${ }^{\text {® }}$ total-
body aerobic exerciser is the most effective way to flatten your stomach.

The total-body motion involves all
major body muscles. Which means you burn more body fat in less time than with many other in-home exercise machines. And while you're at it, you're toning and defining those muscle groups, as well. So you feel as good as you look.

Free information.

Call or write us today. We'll send you a free brochure and video that describe how NordicTrack can flatten your stomach and make you look and feel your best.

Nordiçrack

"The World's Best Aerobic Exerciser." Call or Write for a © 1991 NordicTrack, A CML Company

Panther SCSI

Stalking system performance is your goal. That's why Maxtor's 1.2GB SCSI Panther was designed to perform a data seek in just 13 ms . No other drive in its class features such lightning speed.
Panther's hunting prowess of 2 ms track-to-track seek time stands out compared to Seagate's Wren 7 seek time of 2.5 ms . And Panther outruns the competition with a $30 \mathrm{Mb} / \mathrm{sec}$. internal transfer rate.
Experience counts. Panther uses the reliable head disk assembly used in the Maxtor XT-8000, which boasts more than 300,000 units in the field. Panther shreds the competition with the widest range of available controllers, an MTBF of $\mathbf{1 5 0 , 0 0 0}$ hours, Novell certification and a highly competitive price.
Call about the full line of Panther drives that range from 1.2 GB to more than 1.7 GB capacity. If you're stalking performance, check out Panther's killer specs.
Call your nearest Authorized Maxtor Distributor.

1GB-plus Disk Drive Comparison Criteria	Maxtor Panther P0-12S	Seagate Wren 7
Capacity (unformatted)	1.2GB	1.2 GB
Seek Time	13 ms	15 ms
Track-to-Track	2 ms	2.5 ms
Internal Transfer	17.4 to $29.7 \mathrm{Mb} / \mathrm{s}$	$15-23 \mathrm{Mb} / \mathrm{s}$
Maximum Seek	26 ms	34 ms

[^5]A.D.P.I.

1-800-275-2374
301-258-2744
Anthem Electronics
408-452-2287
Arrow Commercial Systems Group
1-800-323-4373
Arrow/Kierulff
1-800-777-2776
Avnet Computer
1-800-422-7070
B.S.M/Business Solutions in Micro

1-800-888-3475
214-699-8300
Cal Abco
818-704-9100
800-669-2226
Compac Micro Electronics
1-800-426-6722
415-656-2244
Computer Brokers of Canada
416-660-1616
1-800-663-0042
1-800-361-6415
CPC
714-757-0505
800-582-0505
D \& H Distributing Co.
717-236-8001
Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747
Firstop Computer
1-800-832-4322
Future Electronics
514-694-7710
Intelect
011-525-255-5325
Marshall Industries
1-800-522-0084
Microware Distributors
1-800-777-2589
503-646-4492
Mini-Micro Supply Co.
408-456-9500
1-800-628-3656
Pioneer Standard Electronics
1-800-874-6633
Pioneer Technologies
1-800-227-1693
S.E.D.

1-800-444-8962
404-491-8962
Tech Data
1-800-237-8931
813-539-7429
Technology Factory
1-800-848-2073
1-800-227-4712
U.S. Computer

305-477-2288
Wyle Laboratories
1-800-289-9953

PRODUCT UPDATE

Raster image-accelerator IC renders fonts in real time

The D7001 IC renders outline fonts in real time for graphics display and printer applications. The device is the first IC in the company's RIDA (raster image device accelerator) family of ICs that accelerate the rendering of graphic objects. It can produce outline fonts scaled to any size fast enough for laser printers to print at speeds of 17 pages/ minute and slower. The IC can also be used in mother board graphics applications to directly drive WYSIWYG display and printer engines.

The IC accepts Bezier curves, Bspline curves, and vectors. You can use the chip in Truetype, Postscript, and Intellifont page-descrip-tion-language applications. Multiple filling algorithms handle both Roman characters and Kanji glyphs, and on-chip hardware compensates for pixel dropouts-a key feature for Kanji applications in which slight changes affect the meaning of glyphs. Scaling capabilities enable the chip to produce fonts ranging in size from 0.25 to 999.99 points.

Currently, most display and printer controllers use software or
firmware to render fonts. The D7001 provides 1000 -to- 1 fontrendering acceleration compared with firmware- and software-based designs. The IC treats outline fonts as objects rather than using graphics primitives.

The IC uses on-chip parallel processors with pipelined hard-wired instruction sets (Fig 1). When producing 300 -dpi-resolution fonts at 12 points, the IC can render more than 7500 cps . Such a speed lets you implement a printer controller without the traditional 1- or multi-ple-line font cache. In fact, the IC can essentially render fonts in real time and requires only an 8 -kbyte single-character font cache.
The D7001 comes in a 144 -pin quad flatpack. Samples cost $\$ 35$. Expect production quantities to be available by year's end for $\$ 25$ (1000). The company hopes to offer a companion IC next year that can accelerate the drawing of graphic images.-Maury Wright

Destiny Technology Corp, 300 Montague Expressway, Suite 150, Milpitas, CA 95035, (408) 2629400, FAX (408) 262-0221.

Circle No. 730

Fig 1-A parallel-processor architecture lets the D7001 render outline fonts in sizes ranging from 0.25 to 999.99 points. The IC can keep up with 17-page/minute printers and requires only a single-character font cache.

Multiple-stage centrifugal fan system

Now, high performance vacuum/pressure blowers that operate from 120 VAC

Compact units feature brushless dc motors with integral controller and variable speed capability

These new Windjammer ${ }^{\circledR}$ blowers combine electronics, motor, and fan system in a compact, costeffective package that operates from a standard 120 VAC input. An exclusive Lamb Electric design, they were developed from demanding, limited space applications such as business machines, medical equipment and materials

handling applications.
Just $5.7^{\prime \prime}$ in diameter, the blowers have 1 -, 2-, or 3 -stage fans for performance from $75^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ vacuum at 0 CFM to 125 CFM at $0^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. With one version, a 0 to 10 VDC signal
from a sensor or other device will control motor speed and adjust air performance from 0 to 100%. Or, a second model provides manual speed control by means of a potentiometer located in the blower housing.

These blowers also feature low noise performance and are UL/ CSA component recognized. Get complete details by contacting AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. (216) 673-3451. Fax: 216-673-8994. Telex: 433-2140. Cable: LAMETEK.

IC tester offers $200-\mathrm{MHz}$ testing for analytical applications

The Logic Master ATS test station provides characterization of new chips, failure analysis, quality assurance, and low-volume production tests for devices requiring clock rates as high as 200 MHz . Proper device characterization requires clock rates and accuracy comparable to a production tester.

Although production testers can perform characterization and other applications, they often have two drawbacks. First, they are expen-sive-the demand for high clock rates, high accuracy, and high throughput place requirements on production test systems that are difficult to achieve at any price. Because the high throughput capability of a production tester is not used during characterization, the cost of a production tester is difficult to justify. Second, because production test-system software is designed for test engineers, it's not always easy for a design engineer to use when evaluating a new chip design.

This test station is priced at $\$ 2600$ to $\$ 3200$ per pin. It offers 200-

MHz clock rates without multiplexing channels and data rates as high as $400 \mathrm{Mbits} / \mathrm{sec}$. Standard system accuracy is $\pm 500 \mathrm{psec}$. The system has 50 -psec edge-placement resolution and ± 100-psec stability and linearity, allowing you to fine-tune the calibration for special applications.

The test system uses the highest performance for the pin drivers and uses custom GaAs drivers and receivers. Other parts of the tester use ECL standard-cell devices, CMOS gate arrays, and FPGAs.

The GaAs drivers let you program driver rise and fall times between 1 and 3 nsec for 5 V swings. For $600-\mathrm{mV}$ signal swings, the rise and fall times are programmable from 500 psec to 1 nsec. Each driver and comparator is independent and can have its own drive and compare levels set with $10-\mathrm{mV}$ resolution between -1.5 and +6.5 V for drive high and -2.5 and +4.5 V for drive low. Dual threshold comparators let you perform timing-window comparisons.

The tester also provides dynamic
current loads for testing output pins under real-world load conditions and for testing the time required for 3 -state outputs to switch to their high-impedance state. Two optional parametric measurement units (PMUs) are available for the tester. One is a "per-pin" PMU that uses comparators to test voltage or current levels to programmed limits. The other PMU analyzes and measures absolute current or voltage levels.

The tester operates with dual formats for channels running at twice the clock or data rate of other channels. This feature is useful when you need to test microprocessors and other devices with multiple phase clocks.

The system is hosted by a Sun workstation and has an Ethernet port for network operation. A 502Mbyte hard disk is standard.

Software included with the tester provides simulator pattern conversion, system setup, pattern generation, and graphical waveform editing. The system has built-in soft-

As many as 448 channels of $\mathbf{2 0 0}-\mathrm{MHz}$ testing is possible with the Logic Master ATS. The drivers have programmable slew rates so you can use the optimum value for your test setup.

WHEN IT COMES TO HIGH ACCURACY CRYSTAL UNITS, ONLY RALIRON HAS IT ALL.

RALTRON manufactures one of the industry's most complete lines of high quality crystal units Call us for all your crystal needs from microprocessor to AT strip to tuning fork to high accuracy. Or call us for our 28 page catalogue.

HIEH ACCURACY CRYSTTA UNITS

- Frequency Range: $1.0 \mathrm{MHz}-360 \mathrm{MHz}$
- Mode of Oscillation: Fundamental to 9th O.T.
- Frequency Tolerance: @ $25^{\circ} \mathrm{C}: \pm 2.5 \mathrm{ppm}$ to $\pm 100 \mathrm{ppm}$
- Frequency Stability: $\pm 3 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $+60^{\circ} \mathrm{C}$) to $\pm 50 \mathrm{ppm}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$

SURFACE MOUNT CRYSTAL UNITS HC-45/U SMD, TT SMD, IC-49S SMD

- Frequency Range: $3.5 \mathrm{MHz}-360 \mathrm{MHz}$
- Mode of Oscillation: Fundamental to 9th O.T.
- Frequency Tolerance: @ $25^{\circ} \mathrm{C}: \pm 2.5 \mathrm{ppm}$ to $\pm 100 \mathrm{ppm}$
- Frequency Stability: $\pm 3 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ to $\pm 100 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

The Products. The Prices. The People. Only RALTRON has it all.
RALTRON ELECTRONICS CORP.
2315NW 107th Avenue, Miami, Florida 33172 FAX (305) 594-3973 TELEX 441588 RALSENUI (305) 593-6033

CIRCLE NO. 51

UPDATE

ware for measuring standard device parameters such as setup, hold, and propagation-delay times. Software is also available for translating test programs written for mainframe testers.
The test station is available in two versions. The ATS 1 supports 16 to 224 I/O channels and has 12 timing generators providing 24 timing edges. The ATS 2 supports 16 to 448 I/O channels and has 24 timing generators. Each channel in either system can select timing edges from 12 timing generators. A 128-I/O-channel system with 128k-deep pattern memory costs $\$ 360,000$-Doug Conner

Integrated Measurement Systems Inc, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 6267117. FAX (503) 644-6969.

Circle No. 732

JUST ASK

Have you been stumped by a design problem? Can't interpret a spec sheet? Ask EDN. Our editors are ready to help.
The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.
Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletinboard system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

SOLID StATE RELAY

Our FB Series military solid-state relay features high speed and low off-state leakage.

ACTUAL SIZE

Here's what you get:

- Availability to pending DESC drawing 89116 with screening to "W" and "Y" levels of MIL-R-28750.
- High-voltage output
- Very-low leakage current (200 nA)
- DC or bi-directional power FET output (see wiring diagrams)
- Ideal for ATE applications
- Optical isolation
- Fast switching speed
- Adjustable turn-on times
- Low profile 6-pin mini-DIP
- Cost efficiency

Review the electrical characteristics below and call us for immediate application assistance*:

INPUT ELECTRICAL CHARACTERISTICS $\left(-55^{\circ}\right.$ to $\mathbf{1 0 5}^{\circ}$ unless otherwise noted)					

Notes: 1. A series resistor is required to limit continuous input current to 50 mA (peak current can be higher).
2. Rated input current is 25 mA for all tests.
3. Loads may be connected to any output terminal.
4.ON resistance shown is for the bidirectional configuration. The DC ON resistance is $1 / 4$ of these values.
"CREATING THE STANDARD OF THE FUTURE"

N-TELEDYNE SOLID STATE
A Division of Teledyne Relays
*For immediate application assistance call 1-800-284-7007.

FDDI.

From deskwork to network.

Good news for networks!
The X3T9.5 Task Group, under the procedures of ANSI Accredited

Standards Committee X3, has reaffirmed approval of the Media Interface Connector (MIC) for the proposed FDDI (Fiber Distributed
Data Interface) Physical Layer Medium Dependent (PMD) document.

More good news! AMP
has the complete fiber optic interconnection system-the AMP OPTIMATE Fixed Shroud Duplex System-that meets all FDDI PMD requirements. And includes all the physical components you need to make your fiber optic network a reality.

Of special note: the transceiver is capable of operating at data rates up to $125 \mathrm{Mb} / \mathrm{s}$. Available in standard or raised (+5 v) ECL logic, it gives you a compact, board-mount data link in an industry-standard 22 -pin package. Reliable duplex mat-
ing and electro-optic conversion are now easier than ever.

All system components, in fact, are easy to install and reconfigure. Our field termination kit makes short work of attaching duplex connectors to fiber cable. And because all interconnections use a floating interface, you get consistent, low-loss mating (0.6 dB typical) throughout.

You can also order complete, custom-built cable assemblies from us. Either way, you'll have the assured compatibility that comes from dealing with only one supplier for all your FDDI interconnection components. A supplier whose capability

THIS IS AMP TODAY.
in fiber optic technology is everything you'd expect from the world's largest connector company.

For technical literature and more information, call 1-800-522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.

Local-area networks (LANs) are becoming as congested as our nation's highways. Packet data traveling on Ethernet LANs must share a single $10-\mathrm{Mbps}$ pathway. Packet data on a Token Ring LAN migrate at 4 or 16 Mbps . These posted speed limits can cause severe data-traffic jams during peak activity periods. The slowdowns are not only frustrating, but in some cases they can bring network activity to a virtual halt. The most expedient option to alleviate congestion is to move data faster-an option that, if employed in highway management, would have disastrous consequences.

In 1982, the X3T9.5 committee of the American National Standards Institute (ANSI) recognized these impending logjams and set about defining a set of protocols that lets packet data whiz over a LAN at 100 Mbps. This super highway is the Fiber Distributed Data Interface (FDDI). The ANSI X3T9.5 standard for FDDI defines a dual counter-rotating ring LAN that uses a fiber-optic medium and a token-passing protocol. (For definitions of FDDI terms, see box, "Glossary of FDDI terms.")

An FDDI LAN can stretch 100 km and connect more than 500 nodes spaced by as much as 2 km . In contrast, first-generation LANs such as Ethernet, defined by IEEE standard 802.3, and Token Ring, defined by IEEE standard 802.5, operate over a more limited distance. Ethernet can stretch only 2.5 km and connect as many as 1024 nodes spaced by as much as 0.5 km . Token Ring can stretch only 1.2 km and connect as many as 96 nodes spaced by as much as 0.46 km . FDDI's long distance specification coupled with its $100-$ Mbps data transmission rate make it suitable as a fast-
requirements, network designers are starting to adopt the $100-\mathrm{Mbps}$ Fiber Distributed Data Interface (FDDI). Unfortunately, FDDI stations don't come cheap.
throughput backbone that can transport data between existing LANs via gateways, bridges, and routers (Fig 1). Any network manager who is experiencing or projecting network traffic overloads should consider the pros and cons of FDDI.
The FDDI specification conforms to a general, 7-layer hierarchical model for network communications called the Open Systems Interconnection (OSI) model (Fig 2). The FDDI spec describes both a physical layer that corresponds to the OSI model's physical layer and a media-accesscontrol (MAC) sublayer that corresponds to the lower half of the OSI model's data-link layer. The spec also describes a Station Management (SMT) network supervisory function, which falls outside of the OSI model. The SMT function is implemented in software. This software resides on each station of the ring and creates logical paths between the physical layer and the MAC sublayer to permit SMT-to-SMT communications between stations. SMT software connects and disconnects the station to the ring, monitors network operations for reporting status to the host computer, isolates network faults, and detects conditions such as duplicate addresses that would inhibit ring operation.

Realizing that there would be considerable discussion about the types of fiber, connectors, and other interconnect hardware, the ANSI X3T9.5 committee decided to break the specification for the OSI physical layer into two sublayers-the Physical Medium Dependent (PMD) sublayer and the Physical (PHY) sublayer. The lower of the two sublayers, PMD, specifies the transmission wavelength to be 1300 nm . Both LEDs and lasers can emit light of this wavelength.

The PMD sublayer spec recommends $62.5 / 125-\mu \mathrm{m}$

The FDDI standard defines a dual counter-rotating ring LAN that uses fiber-optic cable and lets packet data rocket to 100 Mbps . (Photo courtesy SBE Inc, concept and photography by Imagination)

The ANSI X3T9.5 FDDI standard defines a dual counter-rotating ring LAN that uses a fiber-optic medium and a token-passing protocol.

(core diameter/cladding diameter) multimode cable and has advice on using 50/125-, 85/125-, and $100 / 140-\mu \mathrm{m}$ cable. The dispersion in multimode $62.5 / 125$ micron cable is small enough to ensure FDDI's 10^{-9} bit error rate. Debate continues over cable size. The PMD document is written so that any size cable capable of 1300 nm transmission conforms to the FDDI standard as long as the cable also meets the optical power, channel bandwidth, and distance requirements.

Trying to reduce cable costs

However, fiber-optic cable isn't cheap, and the cost of the cable, as well as the light-emitting source, increases as the wavelength increases. In fact, the highcost associated with implementing FDDI is the major drawback to its proliferation. Codenoll Technology Corp, an FDDI-node-controller vendor, has proposed using an $830-\mathrm{nm}$ LED emitter and $830-\mathrm{nm}$ multimode cable to reduce the high materials cost of an FDDI network. The wavelength does not meet the FDDI standard, but the company claims that the only effect
of the wavelength change is the shortening of the maximum allowable distance between nodes from 2 to 0.5 km .

A working group of the ANSI X3T9.5 committee is trying to lower FDDI costs by developing a PMD spec that uses less-expensive shielded twisted-pair (STP) copper wire as the medium while maintaining FDDI speeds. The specification would specify a much shorter distance between nodes-probably less than 100 m and replace optical transceivers and connectors with lower-cost STP connectors. STP is also attractive because many facilities already have STP copper wire installed for Ethernet LANs.

Because an ANSI standard for STP communication is not expected until late 1992, five companiesAdvanced Micro Devices, Chipcom Corp, Digital Equipment Corp, Motorola Inc, and Synoptics Communications Inc-recently defined and published an STP standard for $100-\mathrm{Mbps}$ data. Products conforming to this standard, which is open for public use, will be able to communicate with each other.

Copper wire costs much less than fiber cable, but

Fig 1-A 100-Mbps FDDI backbone can interconnect multiple disparate LANs using gateways, bridges, and routers.
metal-based networks are susceptible to electromagnetic interference and are less secure than fiber-optic communications-two of FDDI's big pluses. In addition, because FDDI's ring topology demands that each station operate as a repeater, nonstandard PMD implementations can't be used on the FDDI backbone.

Group encoding limits bandwidth

PHY, the upper sublayer of FDDI's physical-layer specification, defines a 4B/5B group-encoding scheme for representing 4 -bit data and control symbols. The scheme doesn't use Manchester encoding, which is typical of other LAN protocols. Manchester encoding would require a $200-\mathrm{MHz}$ clock to transmit $100-\mathrm{Mbps}$ data. The $4 \mathrm{~B} / 5 \mathrm{~B}$ group-encoding scheme requires the transmission of a 5-bit code word for each 4-bit symbol, thereby achieving a $125-\mathrm{Mbps}$ rate. The code word is converted to a nonreturn-to-zero-inverted (NRZI) signal for network transmission. The PHY sublayer also defines how to decode the $4 \mathrm{~B} / 5 \mathrm{~B}$ NRZI signal from the network into symbols that the station can recognize.

Fig 2-The FDDI specification defines three sublayers that correspond to the data-link and physical layers of the 7 -layer OSI model. FDDI also specifies an SMT function, which supervises sublayer and ringmanagement operations.

FDDI specifies a media interface connector (MIC) to attach a station to the dual ring. Formation Inc's Fibernet fv1000 node controller for the VMEbus has two MIC connectors. The controller can operate as a dual- or single-attachment station.

Because an NRZI signal has no transitions when all zeros are present in the data, the $4 \mathrm{~B} / 5 \mathrm{~B}$ encoding scheme guarantees that data have no more than three consecutive zeros. Although the encoding scheme uses less bandwidth than Manchester encoding, clock recovery is more difficult. Therefore, instead of using one master clock to generate data as the IEEE 802 standards specify, PHY sublayer specifies that each station in the FDDI ring regenerate the data with a frequencystable reference to prevent frequency-jitter from accumulating around the ring. Each station has a phaselocked loop, which clocks the received data into an accordion buffer, and a crystal-controlled frequency source, which clocks the data out of the buffer.

MAC sublayer delivers frames

The FDDI media-access-control (MAC) sublayer defines the token-passing protocol for data transmission over the ring. The MAC spec defines packet-frame fields such as headers, trailers, addresses, and cyclic redundancy checking (CRC). An FDDI informationpacket frame comprises a preamble having 16 or more IDLE (5-bit group code of all 1s) symbols, a 2 -symbol
start-of-frame field, a 2-symbol frame-control field that identifies the packet type, a 16- or 48-bit destination address, a 16- or 48-bit source address, the information field, a 32-bit CRC field, a 1-symbol end-of-frame field, and a frame-status field. The maximum packet size is 4500 octets. (Ethernet has 1514 octets max, and Token Ring has 8191 octets max.)

Stations wanting to transmit data over the ring must first obtain a unique 6 -symbol token. The Timed Token Rotation (TTR) protocol requires each station to measure the time elapsed since it last received this token. An initialization procedure guarantees fairness by establishing a target token-rotation time (TTRT) that each station must observe. When a station has the token, it can transmit synchronous data during the TTRT. If the next station receives the token before the previous station's TTRT expires, the station can transmit frames asynchronously during the leftover time.

The MAC sublayer is responsible for controlling the flow of data. Each station's MAC sublayer monitors a
packet's destination address, copies the packet into the station's memory if the packet is addressed to the station, and then relays the packet to the next station on the ring. The sending station's MAC sublayer deletes the packet once it comes full circle.

Chip set implements FDDI sublayers

Three vendors currently offer chip sets that implement the FDDI MAC and PHY sublayers-Advanced Micro Devices, National Semiconductor, and Motorola. These chip sets interface directly to the logical-linkcontrol (LLC) sublayer of the OSI model's data-link layer. All vendors offering stations that connect to an FDDI network employ one of these chip sets. The stations implement the SMT functions in software or firmware. Most stations employ the media interface connector (MIC) defined in the FDDI PMD specification. The MIC is a shrouded fiber-optic coupling in which a male plug terminates the cable and a female receptacle resides on the FDDI module. Some stations employ an ST connector to reduce cost. The ST connec-

Glossary of FDDI terms

ANSI: American National Standards Institute.
Backbone network: A primary network that interconnects two or more secondary networks via gateways, bridges, and concentrators.
BNC: Baby n connector.
bps: Bits per second.
Concentrator: A node on the FDDI ring that provides connections for multiple FDDI stations to communicate with other stations on the dual ring.
Connection management (CMT): That portion of the SMT software that controls station insertion and removal as well as the connection of a station's PHY and MAC sublayers.
CRC: Cyclic redundancy checking.
Data-link layer: The OSI layer that implements data transfer between two stations on an FDDI network.
Dual-attachment station (DAS): A station that provides two physical attachments to accommodate the dual counter-rotating FDDI ring.
Fiber Distributed Data Interface (FDDI): A standard for a $100-\mathrm{Mbps}$ token-ring LAN based on a fiber-optic medium. The ANSI X3T9.5 standard employs a dual counter-rotating ring, which provides fault tolerance. FDDI conforms to the OSI model.

IEEE: Institute of Electrical and Electronics Engineers.
LAN: Local-area network.
LED: Light-emitting diode.
Logical link control (LLC) sublayer: The upper sublayer of OSI's data-link layer. The LLC sublayer controls the flow of data.
Media access control (MAC) sublayer: The lower sublayer of OSI's data-link layer. The MAC sublayer is responsible for scheduling frames for data transmission over the FDDI ring.
Media interface connector (MIC): The specified FDDI fiber-optic connector. The connector has two $2.5-\mathrm{mm}$ ceramic ferrules within a shrouded assembly. An MIC plug terminates the cable, and an MIC receptacle resides on the FDDI attachment.
Network layer: The OSI layer responsible for routing, switching, and internetworking access.
Nonreturn to zero inverted (NRZI): A signal code that represents a logical 1 by a polarity transition and a logical 0 by no transition.
Octet: A data unit comprising eight bits. An octet represents a pair of data symbols.
Open Systems Interconnection (OSI) model: A general, 7-layer model that defines a hierarchy of services necessary to exchange information between

You can configure some FDDI node controllers, such as the V/FDDI 4211 Peregrine board for the VMEbus, as single- or dual-attachment stations. The Interphase Corp board uses the Advanced Micro Devices FDDI chip set.
tor is a spring-loaded twist-and-lock coupling similar to a BNC connector.

FDDI permits two types of stations: Class A and Class B. Class A stations are dual-attachment stations (DAS), which have dual physical layers that connect to the primary and secondary rings in FDDI's dual counter-rotating ring topology. All the stations attached to the FDDI's dual-ring backbone must be Class A stations. A Class A station on the dual-ring backbone
can function in one of three ways: as a node controller that adapts a computer or peripheral to the ring, as a concentrator that acts as the hub of a star topology when connecting multiple FDDI stations to the ring, or as an internetworking module, such as a gateway, bridge, or router. Class B stations are single-attachment stations (SAS) and have a single physical layer. They attach to a concentrator's SAS port (Fig 3) and can be node controllers or internetworking modules.

Although the FDDI specification doesn't prohibit Class A stations from transmitting data on both the primary and the secondary ring, this mode of operation isn't wise. Theoretically, you could double the datatransmission rate to 200 Mbps by using both rings, but you would defeat one of FDDI's most attractive features. FDDI's secondary ring is meant to provide fault tolerance, which is a critical need in highperformance applications. If a fault occurs in the primary ring, the SMT ring-management protocol recognizes that the TTRT is violated and notifies the network manager. The SMT software isolates the fault
computers. The International Organization for Standardization (ISO) defined the model in 1979 as a framework for defining network protocols.
PC: Personal computer.
Physical (PHY) sublayer: FDDI's upper sublayer that corresponds to the OSI model's physical layer. This sublayer is responsible for delivering symbols from the MAC sublayer to the FDDI network.
Physical layer: The OSI layer that permits the physical connection of a station to a LAN.
Physical Medium Dependent (PMD) layer: FDDI's lower sublayer that corresponds to OSI's physical layer. The PMD sublayer specifies optical power, cable specifications, the MIC connector, and optical bypassing.
RAM: Random-access memory.
Ring management (RMT): That portion of the SMT software that manages a station's MAC sublayer. RMT software detects faults, such as duplicate addresses, at the MAC layer.
Shielded twisted pair (STP): Describes copper wire commonly used in LANs.
Simple Network Management Protocol (SNMP): Software for managing a TCP/IP network.
Single-attachment station (SAS): A station that
offers one attachment to an FDDI network. Station: An addressable node on an FDDI network that is capable of transmitting, repeating, and receiving information.
Station management (SMT): Describes the supervisory software that monitors an FDDI station and controls station activity.
ST connector: A fiber-optic connector employed in many fiber-optic LANs. The AT\&T connector contains a ceramic ferrule encased in a twist-and-lock assembly similar to a BNC connector.
Target token-rotation time (TTRT): The maximum time an FDDI station has to transmit data on the ring. The TTRT is established by the lowest bidding station during an initialization process.
TCP/IP: The US Department of Defense's Arpanet suite of protocols for implementing the transport and network layers of the OSI model.
Token: A unique 6 -symbol frame that circulates around the FDDI ring. A station must have the token to transmit data.
$4 B / 5 B$: The symbol encoding method specified by the FDDI standard in which each set of four bits is encoded as five bits.
and wraps the upstream primary ring into the downstream secondary ring to reconstruct a ring network.

Multiple failures on the ring can segment the network. In these rare cases, the network manager may have another ring-reconstruction option at his or her disposal. The PMD specification provides for an optional optical bypass switch that can be activated to bypass a Class A station completely. Activating the optical bypass switch would let the network manager service the faulty station off line.

FDDI stations can be node controllers, concentrators, or internetworking modules. Node controllers are adapter boards for popular computer buses, such as the ISA bus, VMEbus, and Multibus (Table 1). One of the three commercially available FDDI chip sets provides the PHY and MAC sublayers for the station. The board's PMD hardware determines whether the node controller is an SAS or a DAS. A node controller generally has a microprocessor unit and enough RAM to run the LLC sublayer and offload communications tasks from the host computer.

Some node controllers contain EPROM for SMT
firmware; others download the SMT software into the onboard RAM. All of these boards communicate with the host at the network layer of the OSI model. Although the ANSI committee has not yet drafted protocols for the network layer, the TCP/IP suite of protocols is the most popular method for transferring files. FDDI node controllers support other network-layer protocols as well.

Concentrators play a crucial role in an FDDI network by letting you connect multiple stations to an FDDI backbone via one DAS port (Table 2). FDDI defines four types of concentrator ports: A, B, S, and M ports. The A and B ports provide the DAS connection to the dual ring. The M (master) and S (slave) ports let you cascade concentrators and SAS stations in tree topologies. A concentrator can have as many as 255 M ports. These ports can connect to the primary or secondary FDDI ring or to an S port on another concentrator.

Concentrators are either computer bus boards or stand-alone chassis containing expansion boards. Because a concentrator is a critical link for connecting

NOTE: DAS=DUAL-ATTACHMENT STATION: SAS=SINGLE-ATTACHMENT STATION.

Fig 3-You can attach multiple Class B stations to an FDDI dual ring by using a concentrator. Class A stations have dual-attachment-station (DAS) ports, which connect directly to the dual ring.

Table 1-Representative FDDI node controllers

Company	Model	Computer Bus	Protocol support	Microprocessor unit	FDDI chip set	Connector type	Power	RAM buffer	Interoperability tests ${ }^{1}$	Price	Features
CMC	$\begin{array}{\|l\|} \hline 1150 \\ \text { Series } \end{array}$	VMEbus (6U)	TCP/IP (onboard SMT firmware)	Am29000	AT\&T (PHY), AMD (MAC), CMC (LLC)	ST (SAS or DAS)	32.5W	2 Mbytes	ANTC	$\left.\begin{array}{\|c\|} \$ 11,245 \\ \text { to } \\ \$ 11,955 \end{array} \right\rvert\,$	Link-level firmware interfaces to hostbased TCP/IP. Microprocessor unit can implement networkand transport-layer protocols on board. Integrated SMT and SNMP software.
	$\begin{array}{\|l\|} \hline 1050 \\ \text { Series } \end{array}$	VMEbus (9U)	TCP/IP (onboard SMT firmware)	Am29000	AMD	ST (SAS or DAS)	140W	1 Mbyte	ANTC, UNH	$\begin{gathered} \$ 8950 \\ \text { to } \\ \$ 9950 \end{gathered}$	Integrated SMT and SNMP software. Link-level firmware interfaces to hostbased TCP/IP.
Codenoll Technology Corp	Code-net9540	EISA or ISA bus	TCP/IP	None	AMD	MIC (SAS)	10W	128 kbytes	None	\$4995	Optional support for $830-\mathrm{nm}$ fiber. Optical bypass switch support.
	Code-net9543	EISA or ISA bus	TCP/IP	None	AMD	MIC (DAS)	15W	128 kbytes	None	\$7495	Optional support for 830-nm fiber. Optical bypass switch support.
Concurrent Technologies	$\begin{gathered} \hline \mathrm{CL} \\ 386 / \\ \mathrm{DAS} \end{gathered}$	Multibus II (6U)	TCP/IP (end of 1991) (onboard SMT firmware)	80386	AMD	MIC (DAS)	45W	4 Mbytes	None	$\begin{aligned} & \$ 7140 \\ & (100) \end{aligned}$	Optical bypass control. Two RS232C serial ports.
CXi	CXMBII	Multibus II (6U)	GOSIP, TCP/IP (onboard SMT firmware)	80386	AMD	MIC (DAS)	NA ${ }^{2}$	4 Mbytes	NA	$\begin{array}{\|c\|} \hline \$ 11,280 \\ \text { to } \\ \$ 12,280 \end{array}$	Optical bypass control. Implements Intel's iNA 960 Networking software.
Digital Equipment Corp	FDDI Controller 400	XMI bus	XTP, TCP/IP (onboard SMT firmware) TCPIP	68020	Digital (licensed to AMD and Motorola)	MIC (SAS)	65W	1 Mbyte	ANTC UNH	\$19,900	Operates in VAX 6000 and VAX 9000 computers.
	FDDI Controller 700	Turbo Channel bus	TCP/IP (onboard SMT firmware)	68000	Digital (licensed to AMD and Motorola)	$\begin{aligned} & \text { ST, BNC } \\ & \text { (SAS) } \end{aligned}$	20W	1 Mbyte	ANTC UNH	$\begin{gathered} \$ 4500 \\ \text { to } \\ \$ 6000 \end{gathered}$	Operates in VAX 6000 and VAX 9000 computers. Board supports shielded twisted-pair connections.
Formation Inc	$\begin{array}{\|l\|} \hline \text { Fiber- } \\ \text { net } \\ \text { fv1000 } \end{array}$	VME bus (6U)	TCP/IP (onboard SMT firmware)	Am29000	AMD	MIC (SAS or DAS)	35W	2 Mbytes	ANTC	$\begin{aligned} & \$ 8500 \\ & \text { (SAS) } \\ & \$ 9500 \\ & \text { (DAS) } \end{aligned}$	Optical bypass control. VRTX operating system. Optional Sun OS drivers.
Interphase Corp	$\begin{aligned} & \text { M/ } \\ & \text { FDDI } \\ & 2211 \end{aligned}$	Multibus I	SNMP, TCP/IP, XTP (onboard SMT firmware)	Am29000	AMD	ST BNC (SAS or DAS)	42.5W	1.0 Mbytes	ANTC, UNH	\$8995 (SAS) $\$ 10,995$ (DAS)	Connection for dual PHY and dual MAC operation using two boards. Board supports shielded twisted-pair copper wire.
	VI FDDI 4211 Peregrine	VMEbus (6 U or 9 U)	SNMP, TCP/IP, XTP (onboard SMT firmware)	Am29000	AMD	ST BNC (SAS or DAS)	NA	1.0 Mbytes	ANTC, UNH	$\$ 8995$ (SAS) $\$ 10,995$ (DAS)	Connection for dual PHY and dual MAC operation using two boards. Board supports shielded twisted-pair copper wire.
SBE Inc	$\begin{gathered} \hline \text { VCOM } \\ 100 \end{gathered}$	VMEbus (6U)	```TCP/IP, XTP (onboard SMT firmware)```	68030	National Semiconductor	ST (SAS)	32.5W	4 Mbytes	ANTC	$\begin{aligned} & \$ 4500 \\ & (100) \end{aligned}$	Runs Synernetics's implementation of SMT. Two RS-232C serial ports. An optional mezzanine board provides DAS operation.
Summit Microsystems Corp	$\begin{aligned} & \text { smFd- } \\ & \text { AT201 } \end{aligned}$	ISA bus	Onboard SMT firmware	None	AMD	ST (DAS)	10W	128 kbytes	ANTC	\$5950	Host-to-RAM block transfer rate is 3.0 Mbytes/sec (sustained).

Notes: 1. ANTC=Advanced Networking Test Center; UNH=University of New Hampshire.
2. $N A=n o t$ applicable.
3. See box, "Glossary of FDDI terms," for definitions of other abbreviations.
multiple stations to the ring, some concentrators have fault-tolerant power supplies and let you insert and remove boards on the backplane while the power is on-a process called live insertion. In addition to the FDDI PMD, PHY, and MAC sublayers and the SMT function, concentrators also provide the Simple Network Management Protocol (SNMP) software for managing a TCP/IP network.
Internetworking modules let you integrate multiple disparate LANs onto an FDDI backbone-in effect creating a hybrid network (Table 3). A bridge is the
oldest method for transparently interconnecting two networks. Bridges communicate at the data-link layer of the OSI model. An FDDI bridge reads each destination field in an FDDI frame to infer a destination address for the frame. By comparing this information with an address table, the bridge determines whether to ignore the frame or forward it to a station on an interconnected network.

Routers operate at the network layer of the OSI model. Routers forward data packets not based on the destination address but according to a network identi-

Table 2-Representative FDDI concentrators

Company	Model	Housing	Faulttolerant power supply	Live insertion	Protocol support	Number of ports (max)	Power	Connector type	Interoperability tests	Price	Features
Codenoll Technology Corp	$\begin{array}{\|l} \hline \text { Codenet- } \\ 9041 \end{array}$	EISA or ISA bus boards	No	No	$\begin{aligned} & \text { SNMP, } \\ & \text { TCP/IP } \end{aligned}$	12	10W	MIC (SAS or DAS); ST optional	No	\$1995 (soft- ware); \$2795 (1-port card); \$4995 (2-port card)	Optional support for $830-\mathrm{nm}$ fiber. Runs on VRTX software.
Digital Equipment Corp	DEC concen- trator 500	Standalone chassis	Yes	No	Protocol independent	18	$\begin{array}{\|c\|} \hline 120 \mathrm{~W} \\ \text { (AC } \\ \text { power) } \end{array}$	MIC FC/PC, ST, BNC (DAS)	ANTC, UNH	$\$ 9000$ to $\$ 52,500$	Supports shielded twisted pair and thinwire.
Interphase Corp	Fiber hub 800	Standalone chassis	Yes	Yes	SNMP	8	NA	$\begin{aligned} & \text { MIC (SAS } \\ & \text { or DAS) } \end{aligned}$	No	$\begin{gathered} \text { From } \\ \$ 12,000 \end{gathered}$	Supports shielded twisted-pair and $830-\mathrm{nm}$ fiber.
Network Systems Corp	FDDI concen- trator	Standalone chassis	No	No	SNMP	16	150W	MIC or ST	ANTC	$\$ 3000$ (chassis and mother- board) $\$ 2200$ (2-port board)	Optional opticalbypass switch.
Summit Microsystems Corp	$\begin{aligned} & \text { smFD- } \\ & \text { AT301 } \end{aligned}$	ISA bus boards	No	NA	Onboard SMT firmware	12M ports, 2 DAS ports	10W	ST	ANTC	$\$ 12,900$ (DAS plus four M ports); $\$ 6950$ (4-M-port card) (Mapped to the ISA bus I/O space.
Synoptics Communications Inc	3000-05	Standalone chassis	Optional	Yes	SNMP (onboard SMT firmware)	40 SAS ports; 1 A/B port	$\begin{array}{\|l\|} \hline 460 \mathrm{~W} \\ \text { supply } \end{array}$	MIC	No	$\$ 4495$ (hous- ing); $\$ 14,995$ (network- manage- ment module); $\$ 7495$ (4-M-port FDDI card); $\$ 4995$ (4-M-port STP card)	Backplane accepts cards for connection to FDDI, Ethernet, and Token Ring modules. Optical bypass support. Three MAC sublayers permit dual homing to identify redundant links.

Notes: 1. NA=not applicable; ANTC=Advanced Networking Test Center; UNH=University of New Hampshire.
2. See box, "Glossary of FDDI terms," for definitions of other abbreviations.

A question for designers who aren't yet using high-performance μ PLDs.

Ever feel like your system designs aren't quite up to speed, so to speak? It's probably not your fault. Because PLDs have typically forced designers to sacrifice performance to achieve higher integration.

PLD Performance	
PLD	t PD* *
Intel 85C060	10ns
PALCE610	15ns
20RA10	15ns
EP610	16ns
Intel 85C090	15 ns
EP910	33ns
*Propagation Delay	

But not any more.
Now, with Intel's μ PLD family of programmable logic devices, you can finally achieve the higher integration you need - with the low total propagation delay you want.

In fact, with $t_{\text {PD }}$ figures as low as 10ns, Intel's 16-macrocell 85C060
and 24-macrocell 85C090 are, without question, the fastest integrated PLDs in the industry.

So what are you waiting for? Call (800) 548-4725 and ask for Literature Packet \#IA81.

We'll send you everything you need to know about how to improve system performance. Without delay.

intel The Computer Inside.'

fier. Routers are more versatile than bridges: They also perform packet fragmentation and reassembly, packet control, and priority routing. In some cases, both bridge and router functions are appropriate for
internetworking. In these cases, a hybrid bridge-router can provide routing services for two or more networklayer protocols or can implement a transparent datalink connection.

Table 3-Representative FDDI internetworking products

Company	Model	Product description	Network Support	Power	Interoperability tests ${ }^{1}$	Price	Features
Cisco Systems Inc	AGS +	Router	Appletalk, DEC net, Novell, IPX, Token Ring, Ethernet, Cheapernet, DDN X.25, Apollo Domain, Ultranet	500W	ANTC, UNH	\$12,300	Routes 16 protocols over an FDDI network. Supports 9600 -bps, 48 -kbps, 56 -kpbs, 64 -kbps, T1, E1, and fractional T1 wide-area networks. Maximum aggregate forwarding rate is 75,000 packets/sec.
Digital Equipment Corp	DEC bridge	Bridge	Ethernet, Appletalk	390W	ANTC, UNH	$\begin{gathered} \$ 25,000 \\ \text { to } \\ \$ 45,000 \end{gathered}$	Supports dual-homing to identify redundant links. Supports Internet protocol fragmentation. Singlemode fiber option permits $40-\mathrm{km}$ distance between stations.
Fibercom Inc	Ring Master 7200	Bridge	Token Ring, Ethernet, DECnet, Novell	NA ${ }^{2}$	NA	\$15,000	Maximum forwarding rate is 20,000 packets/sec. Filtering rate is 500,000 packets $/ \mathrm{sec}$. Supports Internet Protocol fragmentation. Self learning for as many as 4000 addresses. Supports spanning tree algorithm.
Fibronics International Inc	FX8210	Bridge	Token Ring, Appletalk, DECnet, Novell, Ethernet	250W	ATNC, UNH	\$14,990	Down-line loadable across networks. Performs protocol-translation bridging. Comes with Interview Network Management System software.
	$\begin{aligned} & \text { FX8210B } \\ & \text { Brouter } \end{aligned}$	Bridgerouter	Token Ring, Appletalk, DECnet, Novell, Ethernet	250W	ANTC, UNH	\$27,000	Down-line loadable across networks. Protocoltranslation bridging interview Network Management System.
In-net Corp	Fiber Talk 5000	Bridge	Token Ring, Ethernet, DECnet	360W	ANTC	\$17,500	Down-line loadable across networks. Filtering rate is 100,000 packets $/ \mathrm{sec}$. Forwarding rate is 6000 packets/sec.
	Fiber Talk 3000 Channel Bridging Unit	Gateway	Ethernet	360W	ANTC	\$35,000	Down-line loadable across networks. Connects an IBM 360/370 mainframe computer to an FDDI ring. Software provides Telnet Virtual Terminal, File Transfer Protocol, and Electronic Mail services.
Network Systems Corp	$\begin{gathered} 6400 \\ \text { Family } \end{gathered}$	Bridgerouter	Ethernet, DECnet, Appletalk, Novell, T1, T3	500W	ANTC	\$30,000	400-Mbps, 6-card backplane. Ethernet forwarding rate is 15,000 packets/sec/port. Supports the Spanning Tree Algorithm. Dynamically learns packet addresses.
	$\begin{gathered} 6600 \\ \text { Family } \end{gathered}$	Bridgerouter	Ethernet, DECnet, Appletalk, Novell, T1, T3	500W	ANTC	\$23,000	FDDI-to-FDDI bridge. Single-board chassis. Ethernet forwarding rate is 15,000 packets $/ \mathrm{sec} /$ port. Supports the Spanning Tree algorithm. Dynamically learns packet addresses.
	$\begin{gathered} 6800 \\ \text { Family } \end{gathered}$	Bridgerouter	Ethernet, DECnet, Appletalk, Novell, T1, T3	500W	ANTC	\$46,000	Supports the Spanning Tree algorithm. Deletes undeliverable packets on the network after a preset period. Dynamically learns packet addresses. 800 Mbps, 16 -card backplane.
Synernetics Inc	$\begin{aligned} & \text { LANplex } \\ & 5004 \end{aligned}$	Bridgeconcentrator	Ethernet, Token Ring	NA	ANTC, UNH	\$25,500	Backplane has three FDDI paths, three Token Ring paths, three Ethernet paths, and a VMEbus that operate in paraliel. Backplane accepts four plug-in modules. Connects as many as 24 Ethernet segments to an FDDI network. Modules support line insertion.
	$\begin{aligned} & \text { LANplex } \\ & 5012 \end{aligned}$	Bridgeconcentrator	Ethernet, Token Ring	NA	ANTC, UNH	\$32,900	Backplane has three FDDI paths, three Token Ring paths, three Ethernet paths, and a VMEbus path that operate in parallel. Backplane accepts 12 plug-in modules. Connects as many as 24 Ethernet segments to an FDDI network. Modules support line insertion.

Notes: 1. ANTC=Advanced Networking Test Center; UNH=University of New Hampshire.
2. $N A=n o t$ applicable.

Because FDDI is a fairly new LAN standard and multiple versions of the SMT function exist, the issue of interoperability is a concern. To ensure that FDDI stations from various vendors operate together properly, two groups are testing these FDDI products. Both the Advanced Networking Test Center, which Advanced Micro Devices sponsors, and the University of New Hampshire (Durham, NH) have test centers that run a suite of tests on vendor products they connect to an FDDI cable installation. The test centers try to ensure that there is one worldwide FDDI rather than multiple versions that don't interoperate.

If you already have an FDDI LAN installed and need an analyzer to troubleshoot the network in real
time, Digital Technology Inc offers the Lanhawk-5700 Network Analyzer family. The portable 5733 and 5732 analyzers cost $\$ 28,300$ to $\$ 50,000$ and passively couple into the ring. The analyzers monitor, analyze, and collect data on FDDI networks. They also let you collect traffic statistics to evaluate ring performance and maximize ring utilization.

Nice-but expensive

The high cost of FDDI networks necessitates a wait-and-see attitude, but if projected trends for the 1990s pan out, network administrators may soon be upgrading existing LANs to the $100-\mathrm{Mbps}$ standard. For example, PCs are emerging that exceed the power of

Manufacturers of FDDI products

For more information on FDDI products such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Advanced Micro Device Inc	CXi	In-net Corp	SBE Inc
Box 3453	10260 Old Columbia Rd	15150 Avenue of Science	2400 Bisso Lane
Sunnyvale, CA 94088	Columbia, Maryland 21046	San Diego, CA 92128	Concord, CA 94520
(800) 538-8450	(301) 290-9500	(800) 283-3334	(800) 347-2666
(408) 732-2400	(301) 621-8588	(619) 487-3693	(415) 680-7722
TLX 34-6306	FAX (301) 290-7012	FAX (619) 487-3697	FAX (415) 680-1427
Circle No. 650	Circle No. 656	Circle No. 662	Circle No. 667
Cisco Systems Inc	Digital Equipment Corp	Interphase Corp	Summit Microsystems Corp
1525 O'Brien Dr	550 King St	13800 Senlac	710 Lakeway, Suite 150
Menlo Park, CA 94025	Littleton, MA 01460	Dallas, TX 74234	Sunnyvale, CA 94086
(415) 326-1941	(508) 493-7161	(214) 919-9000	(408) 730-4900
FAX (415) 326-1989	Circle No. 657	FAX (214) 919-9200	FAX (408) $730-1675$
Circle No. 651		Circle No. 663	Circle No. 668
	Digital Technology Inc		
Chipeom Corp	2300 Edwin C Moses Blvd	Motorola Inc	Synernetics Inc
118 Turnpike Rd	Dayton, OH 45408	Technical Information Center	85 Rangeway Rd
Southborough, MA 01772	(513) 443-0412	Box 52073	North Billerica, MA 01862
(508) 460-8900	Circle No. 658	Phoenix, AZ 85072	(508) 670-9009
Circle No. 652		(512) 928-7726	FAX (508) 670-9015
	Fibercom Inc	Circle No. 664	Circle No. 669
CMC	Box 11966		
125 Cremona Dr	Roanoke, VA 24022	National Semiconductor Corp	Synoptics Communications Inc
Santa Barbara, CA 93117	(703) 342-6700	Box 58090	Box 58185
(805) 562-3104	FAX (703) 342-5961	Santa Clara, CA 95052	Santa Clara, CA 95052
FAX (805) 968-6478	Circle No. 659	(800) 272-9959	(408) 764-1046
Circle No. 653		(408) 721-5000	FAX (408) 988-5525
		FAX (408) 730-0764	Circle No. 670
	Fibronics International Inc	Circle No. 665	
Codenoll Technology Corp 1086 N Broadway	1 Communications Way Hyannis, MA 02601		
Yonkers, NY 10701	(508) 778-0700	Network Systems Corp	
(914) 965-6300	FAX (508) 778-0821	7600 Boone Ave N	
FAX (914) 965-9811	Circle No. 660	Minneapolis, MN 55428	
Circle No. 654		(612) 424-4888	
		FAX (612) 424-2853	
	Formation Inc	Circle No. 666	
Concurrent Technologies	121 Whittendale Dr		
701 Devonshire Dr	Moorestown, NJ 08057	VOTE .	
Champaign, IL 61820	(800) 257-0452 (609) 234-5020	Please also use the Informatio	eval Service card to rate this
FAX (217) 356-6238	FAX (609) 234-8543	article (circle one):	
Circle No. 655	Circle No. 661	High Interest 497 Medium	st 498 Low Interest 499

Futurebus + . Now you can start your design without waiting for the future.

Putting the standard

 to work today.National has long been the industry leader in BTL and mixed analog + digital technology. Now we've drawn on that heritage to make the most highly integrated Futurebus + ICs available today. We've also put together a full range of development tools to help you put that chipset to work. And the entire package is available now.

Making high-speed buses reliable and affordable.

With our new chipset, Futurebus+ gives you more bandwidth for your money, making it - for the first time fully cost-competitive withVME and Multibus. In addition to an Arbitration Controller, our chipset contains four advanced BTL devices: two 9-bit Data Transceivers (latched and unlatched), a Handshake Transceiver, and an Arbitration Transceiver.

Between them, they offer you a variety of features designed to break the throughput bottleneck in high-performance computer systems:

- Glitch filters (to eliminate wire OR-ing effects)
- Filtered and non-filtered receiver outputs
- Efficiently partitioned arbitration logic (the fastest available)
- Fault-tolerant circuitry
- Live-insertion support

Providing a broad range of development tools.

Start with our Designer's Handbook, with a slave-memoryboard application note, product data sheets, and application notes on BTL design technology. Other tools include wire-wrap
boards from Mupac and Hybricon, Spice models, and Verilog ${ }^{\text {® }}$ behavioral models.

Bringing Futurebus + into the present.

Call us at 1-800-NAT-SEMI, Ext. 127. We'll send you a Designer's Handbook, and you can start your Futurebus + design today.

Because there's nothing left to wait for.

SWITCHING POWER INC. DELIVERS POWER \& VALUE...

- BPO magnetics
- Power to grow with you.
- Field proven products
- Fully self protected

All Safety Approvals.

Reduces AC line current by 25% Extended computer operation
Reduces conducted EMI
Meets proposed standard IEC 555-2

* $50^{\circ} \mathrm{C}$ Operation
* Modular
* Economical
* Short Circuit Proof

```
                                Lightweight
                                * Efficient
                                * 115/230VAC Input
                                * Reliable
```

Call or write for our free Catalog-
SWITCHING POWER INC
3601 Veterans Highway, Ronkonkoma, NY 11779 516/981-7231, Fax: 516/981-7266 1-800-456-8118
Sunnyvale, California Sales Office
408/732-1230, Fax: 408/732-5712

FDDI stations

The FDDI chip set from National Semiconductor implements the VCOM100 VMEbus node controller. The SBE Inc board has a microprocessor unit and enough dynamic RAM to execute SMT software as well as the network- and transport-layer protocols.

80386-based computers. These PCs can manage a sea of documents and images that were traditionally the province of mainframes and minicomputers. Many applications must send the images and data to multiple locations on a LAN that has insufficient bandwidth to handle such bit-heavy traffic. In addition, multimedia applications, which integrate voice, data, and video, require a bandwidth way beyond what Ethernet and Token Ring networks can offer.

Many analysts say FDDI deployment will occur in multiple stages. In the early stages, FDDI backbones will interconnect smaller token-ring LANs that employ existing STP copper wiring for horizontal distribution. In the later stages, companies having intensive graphics and CAD communications needs will invest in a full fiber-optic LAN. The attendant drop in FDDIproduct prices will encourage the widespread use of FDDI networks.

EDN

Article Interest Quotient (Circle One) High 497 Medium 498 Low 499

EDN'S DSP-Chip Directory

The tools needed to develop applications that use digital signal processing (DSP) continue to improve. Now, a choice of operating systems and interfaces to host operating systems is making DSP available to more applications.

David Shear, Contributing Editor

This year there are many new DSP parts that add to the array of optional word formats, peripherals, and memory sizes. Naturally these family members are created to fit an existing or perceived market. In the past, if your application didn't fit easily within an existing device, you were out of luck. Now, almost all DSP manufacturers have programs that will let you configure your own DSP μ P. You can select from the available peripherals and memory options, or you can use an ASIC approach and put a gate array on the DSP chip.

Before DSP $\mu \mathrm{Ps}$ can move into general use, however, it is essential that the functions of the algorithm developer and the end-user-application developer are separated. It is hard enough for algorithm developers to keep up with DSP algorithm development. It is rare for them to have the luxury of maintaining expertise in the creation of end-user applications that use the latest whiz-bang graphical user interface.

Likewise, the end-user-application developer must be able to concentrate on his applications. He must not be distracted with new algorithms and DSP μ Ps. That is the algorithm-developer's domain.

Ideally, a DSP operates as if it is just another peripheral. When the end-user-application developer uses a hard disk, he doesn't have to know how the data is
stored on the disk. He just wants to use the hard-disk function: store data and retrieve it later.

Using a DSP must be the same. The algorithms must be available via a well-defined and standard method. If the end-user application needs a modem or a fax, speech or an image compressed, or whatever, the developer must be able to call the DSP as if he were sending data to a disk.

Right now, if an engineer creating an end-user application wants the application to use a DSP $\mu \mathrm{P}$, he must devote a significant amount of effort (and time) to create the DSP portion of the project. At the same time, he has less time to develop his product. It doesn't make sense-in terms of time and effort-for him to spend months, or more, getting up to speed in DSP.

New software interfaces

Soon, software interfaces between your DSP $\mu \mathrm{P}$ and the end-user application will let you develop DSP code that the end-user-application developer can use off the shelf. A separate group, or even a separate company, can use the DSP functions that you create. OSPA (Open-Signal Processing Architecture) from Spectron Microsystems (Santa Barbara, CA) and VCOS from AT\&T are two current interfaces.

OSPA is a set of interfaces and protocols that lets
your DSP $\mu \mathrm{P}$ communicate with an end-user application. You must use the Spox real-time, multitasking operating system on the DSP $\mu \mathrm{P}$.

Spox was introduced by Spectron Microsystems three years ago. It was first introduced to run on TI's TMS320C30. Spox has grown in acceptance to include Motorola's DSP96002, Analog Devices' ADSP-21020, and TI's TMS320C40.

Spox runs on the DSP $\mu \mathrm{P}$ while the Spox Server runs on the host. The DSP functions that you write interface to the end-user application via the Spox Server. Host- and DSP- μ P independence is achieved if you create OSPA-compatible DSP programs and use the Spox server. Your DSP $\mu \mathrm{P}$ can be transported to any computer that has a Spox Server for the host operating system.

Separate the experts

David Wong, president of Spectron Microsystems, says that Spox and OSPA separate the functions of the end-user-application developer and the algorithm developer (Fig 1). By using high-level commands and data-stream conventions described by OSPA, you can develop the application software and the real-time DSP functions independently.

Even if the end-user application moves to another host computer, the Spox server for the new host operating system lets you transport your DSP $\mu \mathrm{P}$. You can also use more powerful DSP μ Ps as they become available to create more capable DSP solutions. The end-user-application developer will then be able to use the more capable DSP solution without modifying his code.

The near industry-wide acceptance of OSPA and Spox places them in a great place to become the standard. The host independence of OSPA and the DSP- $\mu \mathrm{P}$ independence of Spox further strengthens their positions.

VCOS is another approach to separate your efforts from the end-user application. Frank Ferro, DSP Mar-
keting Manager at AT\&T, says that VCOS is not intended to be an operating system that is all things to all people. It is an approach to implement AT\&T's 32 -bit floating-point DSP3210 on the mother board of a PC or workstation.

The major emphasis of VCOS is to make the hardware implementation of the DSP3210 inexpensive and the software easy to create. The DSP3210 interfaces directly to Motorola and Intel $\mu \mathrm{P}$ buses and shares the host memory. This approach does away with the cost of high-speed static RAM (SRAM).

The VCOS kernel is a small program (fewer than 40032 -bit words) that runs on the DSP $\mu \mathrm{P}$. It handles execution control, caching, and buffer I/O. The VCOS Application Server runs on the host, loads and links the DSP tasks, and performs all memory-management functions. A debugger and library are also included to ease development.

The DSP program is loaded into the internal RAM of the DSP $\mu \mathrm{P}$. The internal RAM is used to run the program, usually in sections. The DSP μ P has access to the host memory where it can store data. Taking over the slower host bus reduces the performance of both the DSP $\mu \mathrm{P}$ and the host $\mu \mathrm{P}$. But AT\&T claims that the performance of both is not reduced significantly.

Two workstations already have DSP $\mu \mathrm{Ps}$ on the mother board: Next Inc's Next and Silicon Graphics' Iris Indigo computers both have Motorola's DSP56001.
Many chip vendors feel that it is too early to place the DSP $\mu \mathrm{P}$ on the mother board, and that add-in boards should be used for some time. The workstation market will see DSP chips on the mother board first. The workstation market traditionally has proprietary systems and can make its own decisions about how to implement a DSP μ P. Apple also has considerable control over what will end up on the mother board of its Macs. The PC market is different-with so many different manufacturers, it will take some time before a consensus is reached.

Acronyms used in this article and in the chip directory
ADC-analog-to-digital converter
ALU-arithmetic and logic unit
ASIC-application-specific inte-
grated circuit
CMOS-complementary metal-oxide
semiconductor
CPU-central processing unit
CQFP-ceramic quad flat pack
DAC-digital-to-analog converter
DIP-dual in-line package
DMA-direct memory access
DSP-digital-signal processing
EPROM-erasable PROM

ADC-analog-to-digital converter ALU-arithmetic and logic unit ASIC-application-specific integrated circuit CMOS-complementary metal-oxide semiconductor CPU-central processing unit CQFP-ceramic quad flat pack DAC-digital-to-analog converter -dual in-line package DSP-digital-signal processing EPROM - erasable PROM

FFT-fast Fourier transform
FIFO-first in, first out
FIR-finite-impulse response
IC-integrated circuit
IIR-infinite-impulse response
I/O-input-output
JTAG-Joint Test Action Group
$\mu \mathrm{P}$-microprocessor
NMOS-n-type metal-oxide semiconductor
OSPA-Open-Signal Processing Architecture
PC-personal computer

PGA-pin-grid array
PLCC-plastic leaded chip carrier
PLL_phase-locked loop
PQFP-plastic quad flat pack
PROM-programmable read-only memory
QFP-quad flat pack
RAM-random-access memory
ROM-read-only memory
SOP-small-outline package
Spox-real-time multitasking operating system

It is doubtful that the next year will bring a DSP $\mu \mathrm{P}$ to the mother board of a majority of computers. But watch for a number of announcements along these lines. Within a few years, applications will require these high speed devices.

DSP in real time

If you need a real-time operating system that can run directly on the DSP $\mu \mathrm{P}$ in embedded applications, you have the choice of Spox for floating-point chips and VRTX32 for Motorola's fixed-point DSP56001. Bryant Wilder, Motorola's DSP operations manager, says that VRTX32/DSP56000 from Ready Systems (Sunnyvale, CA) is the only real-time operating system available for fixed point DSP μ Ps. It is basically the same as the other versions of VRTX32, which have been available on a number of $\mu \mathrm{Ps}$ for many years. Users of VRTX32 can use their existing tools and experience and just add the DSP56000 version.

High-level-language options grow

Whichever operating system you choose, you will still be able to take advantage of the productivity gains from using a high-level language. By far, the most common high-level language for DSP μ Ps is C. Nearly all of the floating-point DSP μ Ps have an ANSI C compiler. You can also use an Ada compiler. Eric West, C40 Marketing Manager at TI, says that the company plans to develop a Fortran compiler for the C30 and C40.

C is not standing still. ANSI C (more appropriately called Standard C) allows program transportability. But there are an ever growing array of C variations,

Numerical C, Concurrent C, C,$++ \mathrm{C}^{*}$, and GNU C, to name a few.

Numerical C is intended to make C more applicable to calculation-intensive applications, like DSP. Tim Counihan, strategic marketing manager for DSP at Analog Devices, says that Analog Devices is actively supporting Numerical C. He feels that the standard is well enough defined to produce a product. He does admit that Analog Devices will probably have to make some changes by the time a standard is available. The Numerical C Extensions Group (NCEG) is working within ANSI (X3J11.1) on a technical report, not a standard, so an actual standard is still in the future.

Other DSP- $\mu \mathrm{P}$ manufacturers are not supporting Numerical C yet. They are waiting for either their customers to request it or a standard to be available. TI says the company will definitely support Numerical C when it becomes a standard.

All of the C compilers for DSP $\mu \mathrm{Ps}$ claim to be optimizing compilers. It is difficult to determine how well the optimizing compilers will work in your application. You will often have to optimize some sections of your high-level code by hand. On one recent project, a DSP consulting group was able to prototype the system with C code in a matter of hours. This C version proved the concept, but would only run at 12 frames/ sec . The customer needed 15 frames $/ \mathrm{sec}$. The group spent three months optimizing the code to meet the 15 frames/sec requirement.
The Comdisco (Foster City, CA) DSP Procoder is an option to the company's Signal Processing Worksystem (SPW). The SPW is a block-diagram-based devel-

Fig 1-Separating the DSP function developer from the end-user application developer lets each expert concentrate on his speciality.

EDN's DSP-chip directory

opment system. The DSP Procoder will take a block diagram of a DSP algorithm and create assembly code. Comdisco claims the resulting code is productionquality. The DSP Procoder presently uses Motorola's DSP56001. Other fixed-point DSP μ Ps will be used in the future.

Multiprox is another option for SPWs used to partition a block diagram to run on multiple processors. When used with the Code Generation System, you can automatically produce C code for multiple floatingpoint DSP μ Ps. The generated code includes the inter-processor-communication code to pass data between the processors. The TMS320C30, TMS320C40, and DSP96002 are supported.

Need quadruples performance every 18 months

As soon as you finish designing a product, you will often be called upon to start the next generation. Rick Rinehart, floating-point DSP marketing manager at Texas Instruments, points out that the market window today averages about 18 months. The market window is the length of time from when a company introduces a product until they begin ramping down production. Each new generation of a product needs about a four times increase in performance to remain competitive. The improvements in design and processes used to build ICs will double performance every three years. Rinehart feels the only way to meet the quadrupling performance needs of their customers is with parallel processing.

Making products that can see, talk, and listen is difficult. Much of that type of development is possible

Index to DSP μ Ps included in this directory					
Supplier		Device	Type		Page
Analog Devices	ADSP-2100 family	16-bit fixed-point	108		
Analog Devices	ADSP-21020	32-bit floating-point	121		
AT\&T	DSP16 family	16-bit fixed-point	109		
AT\&T	DSP32C/3210	32-bit floating point	122		
Motorola	DSP56156	16-bit fixed-point	110		
Motorola	DSP56001/2	24-bit fixed-point	111		
Motorola	DSP96002	32-bit fixed-point	125		
NEC	$77 C 25$	16-bit fixed-point	112		
NEC	77220	24-bit fixed-point	113		
NEC	77240	32-bit floating-point	126		
SGS-Thomson	ST18 family	16-bit fixed-point	114		
Texas Instruments	$320 C 1 X$	16-bit fixed-point	117		
Texas Instruments	$320 C 2 X / 5 X$	16-bit fixed-point	118		
Texas Instruments	$320 C 3 X$	32-bit floating-point	129		
Texas Instruments	$320 C 40$	32 -bit floating-point	130		
Zoran	34325	32-bit floating-point	133		

today, but it requires expensive parallel processing systems. Prices will continue to drop until today's expensive systems become tomorrow's low cost peripherals. For example, the TMS32010 started sampling at $\$ 500$. Now you can buy them in single quantities for $\$ 4.90$.

EDN

Article Interest Quotient (Circle One)
High 494 Medium 495 Low 496

Key to abbreviations used in block diagrams

AB-combined program and data
address bus
ACC-accumulator
ADC/DAC-analog-to-digital and
digital-to-analog converter
ADDR GEN-address generator
ALU-arithmetic logic unit
BIT MANIP-bit manipulation
BS-barrel shifter
CDB-control data bus
CM-cache memory
CPUB-CPU bus
DAB-data address bus
DB-combined program and data bus
DDB-data data bus
DM-memory for data only
DMAAB-DMA address bus
address bus
ACC-accumulator
ADC/DAC-analog-to-digital and digital-to-analog converter
ADDR GEN-address generator
ALU-arithmetic logic unit
BIT MANIP - bit manipulation
BS-barrel shifter
CDB-control data bus
CM-cache memory
CPUB-CPU bus
DAB-data address bus
DB-combined program and data bus
DDB-data data bus

DMAAB-DMA address bus

DMADB-DMA data bus DMAC-direct-memory-access controller
FX-fixed-point
FP-floating-point
GDB - global data bus
HOST INTER-host interface
IDB-instruction data bus
INT-external interrupt
MAC-multiplier accumulator
MULT-multiplier
PAB-program address bus
PDB-program data bus
P/DM-memory for program and data
PIO-parallel I/O
$\mathbf{P M}$-memory for program only

PPCP-parallel processor communication port
PRAB-peripheral address bus
PRDB-peripheral data bus
REG-register
REGB-register bus
SIO-serial I/O
TIM-timer
XAB-external address bus
XDB - external data bus
XDAB-external data address bus
XDDB - external data data bus
XIOAB - external I/O address bus
XIODB - external I/O data bus
XPAB - external program address
bus
XPDB-external program data bus

ADSP2100 FAMILY

16-BIT FIXED-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: The ADSP2100/A, 2101, 2102, 2106, 2111, 2112 are in production now. The 21 msp 50 and the 21 msp 51 are now sampling.

COST: ADSP2100, $\$ 45$ (1000); 2101, $\$ 36$ (1000); 2102, \$34 (5000); 2105, \$9.90; 2106, \$11.39 (25,000); 2111, \$48 (1000); 2112, \$46 (5000); 21msp50, \$57 (1000); 21msp51, \$40 (25,000).
SECOND SOURCE: None.

DESCRIPTION: The ADSP2100 family ranges from the 2100 with no on-chip memory and an off-chip Harvard architecture to the 21 msp 51 with program and data ROM, data RAM, and peripherals, including an analog-to-digital and digital-to-analog

Analog Devices Inc
1 Technology Way
Norwood, MA 02062
(617) 461-3074

Circle No. 671

FEATURES: 60-, 77-, 80-, 100-, 125-, and 167-nsec cycle-time versions.
Separate on-chip program and data buses. On-chip memory: The 2100/A has no on-chip memory. The 2101 has a $2 k \times 24$ bit program RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2102 has a $2 k \times 24$-bit program ROM or RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2105 has a $1 \mathrm{k} \times 24$-bit program RAM and a 512×16-bit data RAM. The 2016 has a $1 \mathrm{k} \times 24$-bit program ROM or RAM and a 512×16-bit data RAM. The 2111 and 21 msp 50 have a $2 \mathrm{k} \times 24$-bit program RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2112 has a $2 \mathrm{k} \times 24$-bit program ROM or RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 21 msp 51 has a $2 \mathrm{k} \times 24$-bit program RAM, $2 \mathrm{k} \times 24$-bit program ROM, and a $1 \mathrm{k} \times 16$-bit data RAM.
Separate program and data buses brought off the chip only on the 2100/A. All other parts combine program and data buses off the chip.
Off-chip memory capacity: The 2100/A has $32 \mathrm{k} \times 24$-bit program and $16 \mathrm{k} \times 16$-bit data memory capacities. All others have $16 \mathrm{k} \times 24$-bit program and $16 \mathrm{k} \times 16$-bit data memory capacities.
Boot memory controller loads program from external byte-wide EPROM (except 2100/A).
On-chip peripherals: The 2100/A has no on-chip peripherals. The 2101 and 2102 have two serial I/O ports and a timer; the 2105 has one serial I/O port and a timer. The 2111/2 have two serial $1 / O$ ports, a timer, and a host interface port.
The 21 msp 50 has two serial $1 / 0$ ports, a parallel $1 / O$
port, a timer, and a 16 -bit ADC/DAC (linear codec).
Multiplier/accumulator accepts 16-bit fixed-point input and creates 32 -bit fixed-point results within a 40 -bit accumulator. 16 -bit ALU. 32 -bit bidirectional barrel shifter. 40-bit accumulator.
Multiplier/accumulator, ALU, and shifter are separate blocks connected by the 16 -bit R-bus and the data bus.
Zero-overhead looping.
Only the $2100 /$ A has a 16×24-bit on-chip cache.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Two address generators.
No on-chip DMA. Serial port and codecs have auto buffer, which transparently transfers data to and from memory.
16-level hardware stack. Status stack limits interrupts to four levels of nesting on the 2100/A, seven levels on the others.
Four external interrupts on the 2100/A; three external interrupts on others.
The 2100/A has only hardware wait states. Others have only software-programmable wait states.
No on-chip emulation port.
Only the 21 msp 50 has power-down mode to CMOS standby levels. The 2101, 2105, 2106, 2111, and 2112 have an idle mode, which lowers power until an interrupt is detected.
Packaging: 2100/A, 100-pin PQFP and 100-pin PGA. 2101/2, 68 -pin PGA and 68 -pin PLCC. 2105/6, 68-pin PLCC. 2111, $100-$ pin PQFP and $100-$ pin PGA. $21 \mathrm{msp} 50 / 1,100-$ and $132-$ pin PQFPs, 144-pin PGA.

HARDWARE

SUPPORT

Full-featured in-circuit emulator.
Low-cost in-circuit emulator board.
Demo board.
Evaluation packages.
Third-party support: Contact Analog Devices for a list of thirdparty vendors.

C compiler.
Simulator.
Macroassembler/linker.
Application libraries.
Upcoming Numerical C.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The DSP16, 16A, and 16C are in production. The DSP1610 and 1616 are sampling with production starting in 1992.
COST: DSP16, \$9.60; DSP16A, \$16.70; DSP1610, \$125; DSP1616, \$35 $(10,000)$.
SECOND SOURCE: None.

AT\&T Microelectronics
Dept 52AL040420
555 Union Blvd
Allentown, PA 18103
(800) 372-2447, ext 802;
in Canada, (800) 553-2448, ext 802
Circle No. 672

DESCRIPTION: The members of the DSP16 family have long been the fastest fixed-point DSP chips. The DSP16A has a 25 -nsec cycle time. The DSP16A and DSP16C also have the largest on-chip program memory at $12 \mathrm{k} \times 16$ bits. Many applications that would require external ROMs with other DSP chips can fit within the DSP16 family's on-chip memory. The DSP16C
has an A/D and a D/A converter on chip. The DSP16C also has a 4 -pin JTAG interface, which assists in testing tightly packed boards. A 3.3 V version of the DSP16A is available. The DSP1610 and 1616 are enhanced versions intended for digital cellular telephones.

FEATURES: $25-, 33-$, $55-$, and $75-\mathrm{nsec}$ cycle-time versions. The DSP16C has 38.5 - and 76.9 -nsec cycle-time versions.
Separate on-chip program and data buses.
On-chip memory: The DSP16 has a $2 \mathrm{k} \times 16$-bit program ROM and a 512×16-bit data RAM. The DSP16A and -16 C have a $12 \mathrm{k} \times 16$-bit program ROM and a $2 \mathrm{k} \times 16$-bit data RAM. The DSP1610 has a 512×16-bit boot ROM and an $8 \mathrm{k} \times 16$-bit dual-port RAM. The DSP1616 has a $12 \mathrm{k} \times 16$-bit ROM and a $2 \mathrm{k} \times 16$-bit dual-port RAM.
The program ROM on the DSP16 can be replaced with as many as 64 k words of external memory.
The program ROM on the DSP16A and 16C can be replaced or augmented with as many as 64 k words of external memory.
The DSP1610/1616 can access two external 64k address spaces.
Parallel and serial I/O port.
The DSP16C has an on-chip codec.
The DSP1610 and 1616 have an on-chip timer.
The multiplier accepts 16 -bit fixed-point data and creates 32 -bit
fixed-point results within a 36 -bit accumulator.
32-bit ALU.
Only the DSP1610 and 1616 have a 36 -bit barrel shifter and bit-manipulation instructions.
Two 36 -bit accumulators.
Zero-overhead cache looping as many as 127 times.
15 -word instruction cache.
Immediate, register-indirect, and circular addressing modes.
No on-chip DMA.
Single-level hardware stack is software expandable into main memory.
One external interrupt.
DSP1610 has hardware and software wait states. DSP1616 has software wait states.
DSP1610 and 1616 have on-chip emulation ports.
The DSP16A, 16G, 1610, and 1616 have power-down mode.
The DSP1616 will run from 3.3 to 5 V .
Packaging: DSP16 and 16A, 84-pin PLCC or 133-pin PGA. DSP16C, 100-pin PQFP. DSP1610, 132-pin PQFP. DSP1616, $100-$ pin PQFP or PLCC.

Development system with in-circuit emulation.
Evaluation board that plugs into a PC.

Assembler/linker.
Simulator.
Application library.
Third-party support includes filter-design packages. Contact AT\&T for a list of third-party vendors.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: 40 MHz , $\$ 104.50$ (180); 60 MHz , $\$ 135.85$ (180). SECOND SOURCE: None.

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030

FAX (512) 891-3874
Circle No. 673

DESCRIPTION: The 56156 is a 16 -bit subset version of the 56001. It is intended for cellular telephone and other communication applications. It has a built-in codec and phases-locked
loop. Development tools are similar to the 56001 and the 96002 . The 56156 has been available to select customers and is now moving into general availability.

FEATURES: 33 - and $50-$ nsec cycle-time versions
Three address buses and three data buses.
On-chip memory includes a $2 \mathrm{k} \times 16$-bit program RAM and a $2 \mathrm{k} \times 16$-bit data RAM.
ROM-based version (DSP56156ROM) contains a $12 \mathrm{k} \times 16$-bit program ROM.
Separate external program and data memory spaces. Each can address $64 \mathrm{k} \times 16$-bit locations.
Can load program from external EPROM.
Asynchronous and synchronous serial I/O ports.
Parallel port can interface with a host $\mu \mathrm{P}$.
Has on-chip PLL.
On-chip, sigma-delta voice-band codec.
Multiplier accepts 16 -bit data and returns 40 -bit results to 40 -bit accumulator.

ALU performs arithmetic operations on 40 -bit data and logical operations on 16-bit data.
No barrel shifter.
Two 40-bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversed addressing modes.
No DMA support.
Two external vectored interrupts.
Has on-chip emulation.
Low-power mode.
Packaged in a 112-pin CQFP

Application-development system includes in-circuit emulator Contact Motorola for a list of third-party vendors.

Macro cross-assembler.
Linker.
Application-development board.

24-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: DSP56001: $27 \mathrm{MHz}, \$ 52.00(180)$ and 33 MHz , $\$ 62.40$ (180); DSP56002: in PGA, \$166 (180) and in CQFP, \$91 (180).

SECOND SOURCE: None.

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030
FAX (512) 891-3874
Circle No. 674

DESCRIPTION: The 56001 provides one 24-bit data word and two 56 -bit accumulators. This extended precision lets the chip process 16 -bit data more easily than the 16 -bit machines can. The 24 -bit word width eases scaling, and the 56 -bit accumu-
lators prevent overflow. The 24-bit data width suits digital audio applications. The 56002 is a high-speed, low-power, low-voltage version of the 56001, which is 100% software compatible, and includes a PLL and on-chip emulation.

FEATURES: 60- and 74-nsec cycle-time versions.
Three address buses and four data buses.
Separate address buses for program ROM and the two data RAMs.
Separate data buses for program ROM, the two data RAMs, and global data.
On-chip memory includes a 512×24-bit program RAM, a 32×24-bit boot ROM, dual 256×24-bit data RAMs, and dual 256×24-bit data ROMs.
ROM-based version (56000) available.
Three separate memory spaces (X, Y, and P). Each can address $64 \mathrm{k} \times 24$-bit locations.
Can load program from external EPROM.
Asynchronous 8 -bit serial I/O port.
Synchronous 8 - to 24 -bit serial interface.
Parallel port can interface with a host $\mu \mathrm{P}$
56002 has on-chip PLL.
Multiplier accepts 24 -bit data and returns 48 -bit results to 56 -bit accumulator.

ALU performs arithmetic operations on 56 -bit data and logical operations on 24 -bit data.
No barrel shifter.
Two 56 -bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversed addressing modes.
Two address generators.

No DMA support.

System stack is 15 -levels deep, but can be read by program to extend stack into main memory.
Two external vectored interrupts on 56001 , three on 56002.
Hardware and software-programmable wait states.
Only the 56002 has on-chip emulation.
Low-power mode.
56002 operates on 2.0 to 5.5 V power supplies.
Packaging: 56001, 132-pin CQFP or 88 -pin PGA. 56002, 132-pin
PGA, CQFP, or PQFP.

HARDWARE

Application-development system includes in-circuit emulator. Contact Motorola for a list of third-party vendors.

C compiler
GNU C compiler and source-level debugger.
Macro cross-assembler.
Linker/librarian.
Simulator.
Code translator from TMS320C10 to 56001.
Third-party support includes filter-design software, and VRTX32/DSP56001 real-time operating system.

16-BIT FIXED-POINT DSP μ P

AVAILABILITY: The 77C25 is available now. A 3 V operation version is planned for 1992.
COST: 77C25, \$9 (5000); 77P25, \$45 (1000); 77P25C, \$20 (1000).

SECOND SOURCE: Oki Semiconductor (Sunnyvale, CA) also makes the 7720 .

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(800) 632-3531;
(415) 965-6158

FAX (800) 729-9288
Circle No. 675

DESCRIPTION: The 77 C 25 is an upgrade of the 7720 , which was one of the first successful DSP chips. The basic architecture is out of date and its memory can't be expanded off chip. The
manufacturer says there is still interest in new 77 C 25 designs because of the chip's low cost. The 77P25 is an EPROM version of the 77C25. The 77P25C is a one-time-programmable version.

FEATURES: 100- and 122-nsec cycle time.
Single address bus only for program memory.
Pointers address data memory.
Single data bus for both program and data.
On-chip memory: The 77 C 25 has a $2 \mathrm{k} \times 24$-bit program ROM, a 256×16-bit data RAM, and a $1 \mathrm{k} \times 16$-bit data ROM. The 77 P 25 has the same memory as the 77 C 25 , but replaces ROM with EPROM.
No external memory expansion.
One 8-bit serial I/O port.
Parallel I/O port.
Multiplier accepts 16 -bit fixed-point data and produces 31 -bit fixed-point results within two 16 -bit accumulators.
16-bit ALU.

No barrel shifter.
Two 16 -bit accumulators.
No zero-overhead looping.
No address generators.
No on-chip DMA controller.
4-level stack stores the program counter during subroutines and interrupts and is not expandable.
Single external interrupt.
No wait states.
No on-chip emulation port.
No low-power mode.
Packaged in 28-pin DIP, 28-pin PLCC, 44-pin PLCC, and 32 -pin SOP.

Evaluation kit for application development also functions as incircuit emulator.

Assembler/linker.
Third-party simulator available.

24-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: 100- and 122-nsec versions available now. COST: \$27 (1000).
SECOND SOURCE: None.

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(800) 632-3531; (415) 965-6158

FAX (800) 729-9288; (415) 965-6130
Circle No. 676

DESCRIPTION: The 77220 is a scaled-down version of the 32-bit floating-point 77230 . The chip size and pin count are reduced by using 24 -bit data and removing the floating-point exponent hardware. The 24 -bit word width suits the digital audio market. The instruction set is a subset of the 77230 and is
source-code compatible with the floating-point device. The vendor says the 77220's architecture is optimized for adaptive filter applications. The 77P220R EPROM version and the 77P220L one-time-programmable version are for prototyping and lowvolume applications.

FEATURES: 100- and 122-nsec cycle-time versions.
Separate on-chip program and data buses.
On-chip memory includes a $2 k \times 32$-bit program ROM, dual 256×24-bit data RAMs, and a $1 \mathrm{k} \times 24$-bit data ROM.
Off-chip memory can be expanded to $8 \mathbf{k} \times 32$-bit program memory and $8 \mathrm{k} \times 24$-bit data memory.
One serial I/O port.
Parallel I/O port can be used as host $\mu \mathrm{P}$ interface.
Multiplier accepts 24 -bit fixed-point data and creates 47 -bit fixed-point results within a 47-bit accumulator.
47-bit ALU.
47-bit bidirectional barrel shifter.

Eight 47-bit accumulators.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Three address generators.
No on-chip DMA.
Hardware stack is eight levels deep and is not expandable.
Two external interrupts.
No supported wait states.
No on-chip emulation port.
No low-power mode.
Packaged in a 68 -pin PGA or 68 -pin PLCC.

HARDWARE

SUPPORT
SOFTWARE
Evaluation kit and PC evaluation board
Assembler/linker.
Simulator.
C compiler available by mid 1992.

ST18930/31/32/42

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: ST18930, \$15 (10,000); ST18931, \$75 (100); ST18942, $\$ 35(10,000)$; ST18R942, $\$ 80$ (100). The ST18932 is only available for ASIC designs.
SECOND SOURCE: None.

SGS-Thomson Microelectronics
1000 E Bell Rd
Phoenix, AZ 85022
(602) 867-6340

Circle No. 677

DESCRIPTION: The ST18 family consists of four devices. The ST18930 and 31 are CMOS versions of the NMOS original with a few enhancements and twice the speed. The ST18932 is a core for custom DSP $\mu \mathrm{Ps}$. The CMOS ST18942 offers
further enhancements in its arithmetic capabilities, addressing modes, and I/O functions. All family members can operate on complex and double-precision data. The ST18932 and 42 have a 32 -bit ALU and 16-bit data buses.

FEATURES: The ST18930 and 31 have $80-n s e c ~ c y c l e ~ t i m e s . ~$ The ST18932 has a $50-\mathrm{nsec}$ cycle time. The ST18942 has a $100-$ nsec cycle time.
Two address buses and four data buses on chip.
On-chip memory: The ST1 8930 has a $3 \mathrm{k} \times 32$-bit program ROM, a 192×16-bit data RAM, a 128×16-bit data RAM, and a 512×16-bit data ROM. The ST18931 has the same memory as the ST18930, but without ROM. The ST18942 has a $4 \mathrm{k} \times 32$-bit program ROM, two 256×16-bit data RAMs, and a 512×16-bit data ROM. The ST18R942 is a ROMless version of the ST18942 and has two 256×16-bit and one 128×16-bit data RAMs.
$64 \mathrm{k} \times 32$-bit external program memory (except ST18930).
The ST18930 and 31 have $4 \mathrm{k} \times 16$-bit external data memory space. The ST18932 has $8 \mathrm{k} \times 16$-bit external data memory. The ST18942 and ST18R942 have $64 \mathrm{k} \times 16$-bit external memory.
Only the ST18942 has both a serial I/O port and a parallel I/O port.
ST18932 and 42 multipliers accept 16-bit fixed-point data and return 32 -bit fixed-point results to 32 -bit accumulator. The ST18930 and 31 return 16-bit results.
In complex mode, the multiplier multiplies two complex numbers in two cycles.

16-bit ALU in ST18930 and 31. 32-bit ALU in ST18932 and 42.
16 -bit bidirectional barrel shifter in ST18930 and 31. 32-bit bidirectional barrel shifter in the ST18932 and 42.
ST18930 and 31 have two 16-bit accumulators. ST18932 and 42 have four 32 -bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, and circular addressing modes.
ST18942 has on-chip DMA.
ST18930 and 31 have a 1-level, ST18932 has a 2-level, and ST18942 has an 8 -level hardware stack for interrupts and subroutines. All can be expanded into main memory with software.
Three external interrupts on the ST18930 and 31 and eight on the ST18932 and 42.
Hardware and software-programmable wait states.
Only the ST18932 has on-chip emulation port.
Low-power mode.
Packaging: ST18930, 48-pin DIP and 52-pin PLCC. ST18931, 124-pin PGA. ST18942, 160 PQFP. ST18R942, 160 PQFP and 144-pin PGA.

[^6]Macroassembler/linker.
Simulator.

Your deadline is looming. The budget stopwatch is ticking. The scope and the complexity of your project are mounting. To weed out your design problems, you need sophisticated system analysis and integration tools which run on your Sun workstation.
Hewlett-Packard's latest emulators provide just that. They control time-critical functions in your target system. Cover the Motorola chips 020,030, 040. As well as the $68000,68302,68331$ and 68332. And their real-time
analysis capabilities will make sure you catch the bugs in your software.
Because logic and performance analysis tools and code coverage are consolidated, and with C cross compilers, simulator/debuggers and branch validators also available, you'll never have to worry about bogging down when performing comprehensive evaluations. And thanks to HP's LAN, you'll be platform independent. Now everyone on the network can share information and link up
with essential team members.
So if you want an emulator with the service, support and reliability you've come to expect from Hewlett-Packard, call our Microprocessor Development Hotline at 1-800-447-3282, Ext. 104. We'll send you a free demo disk and information package. You'll see that with our emulators, killing bugs is a snap.

NHRODUGE YOURSFAF TOTHE ALLNヨMEONNGVILE

If you've always believed the only way to get an agile, aero-styled, high-performance sedan was to buy small, you're in for a big surprise. It's time to forget the past, and get to know the all-new 1992 Pontiac Bonneville. ${ }^{\circledR}$

Under its beautifully redesigned shape lurks a potent 170 horsepower 3.8L 3800 with tuned port sequential fuel injection locked onto an advanced 4-speed automatic. Available amt-lock brakes and a precisionengineered, road-gripping sport suspension for outstanding control, stopping or steering. Available advanced traction comtroll for superb power application on slippery surfaces. Bonneville even
features a standard driverss airbag, for additional safety assurance.

That's the technical side. But to really get the feel of the new Bonneville, you've got to get behind the wheel. Notice how the solid-feeling controls react smoothly to the touch. How the analog gauges are well-defined for quick, decisive reads. How the whole cockpit is driver-oriented, and designed for performance. Then remind yourself this is a
furl/-sizzed four-door sedan that can easily and comfortably carry six adults.

The all-new 1992 Bonneville. Introduce yourself at your Pontiac dealer soon. Just be prepared for an attitude adjustment to take place. Very, very quickly.

PONTIAC. We Build Exaitement: V.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The C10, C15, C16, C17, E14, E15, E17, P15, P17, P14, LC15 (3.3V), and LC17 (3.3V) are available now. The C14 will be available in the fourth quarter of 1991.
COST: C10 (20 MHz), \$4.90; C10 (25 MHz), \$6; C14, \$9; E14, \$45; P14, \$22; C15 (20 MHz), \$7; C15 (25 MHz), \$6; E15 (20 MHz), \$35; E15 (25 MHz), \$45; P15, \$20; C16, \$9; E17, \$38; P17, \$20 (1000).
SECOND SOURCE: Microchip Technology (Chandler, AZ) for the C10, C14, and E14. No second source for other parts.

Texas Instruments Inc
Semiconductor Group, SC-001
Box 809066
Dallas, TX 75380
(800) 336-5236, ext 700

Circle No. 678

DESCRIPTION: This first generation of the vendor's DSP family was introduced in 1982. Although this family is difficult to use and slower than similar devices, the chips' cost-which has dropped to $\$ 3$ in high volumes-and the large body of associated software and expertise will keep this family going.

Newer family members have additional memory and peripheral options. EPROM (TMS320E1X) and one-time-programmable (TMS320P1X) versions are also available. 3.3 V versions of the C1X family are now available.

FEATURES: 114-, 160-, 200-, and 280-nsec cycle-time versions. Separate on-chip program and data buses.
On-chip memory: The C10 has a $1.5 \mathrm{k} \times 16$-bit program ROM and a 144×16-bit data RAM. The C14, C15, and C17 have a $4 \mathrm{k} \times 16$-bit program ROM and a 256×16-bit data RAM. The E14, E15, and E17 have a $4 \mathrm{k} \times 16$-bit program EPROM and a 256×16-bit data RAM. The C16 has an $8 \mathrm{k} \times 16$-bit program ROM and a 256×16-bit data RAM. P1X versions are one-time programmable.
Program and data buses are combined off chip.
$4 \mathrm{k} \times 16$-bit total external memory, except the C16, which has $64 \mathrm{k} \times 16$-bit external memory, and the C17, which has no external memory.
On-chip peripherals: The $\mathrm{C} 10, \mathrm{C} 15$, and C 16 have parallel I / O. The C14 has serial and parallel I/O. The C17 has two serial I / O ports, parallel I/O, and a compander.

Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 32 -bit accumulator.
32-bit ALU.
16-bit left barrel shifter.
Single 32-bit accumulator.
No zero-overhead looping.

No DMA

4-level hardware stack except the C16, which has an 8 -level hardware stack.
Single external interrupt.
No wait states.
No on-chip emulation.
LC1X devices operate at 3.3 V .
Packaging: C10, 40-pin DIP or 44-pin PLCC. C14, 40-pin DIP or 44 -pin PLCC. C15, 40 -pin DIP or 44 -pin PLCC. C16, 64 -pin QFP. C17, 40-pin DIP or 44-pin PLCC.

In-circuit emulator.

Evaluation module.
Software-development system.
Many third-party support tools. Contact Texas Instruments for a list of third-party vendors.

Assembler/linker.
Simulator.
Application library.
Many third-party support tools.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The C25, C26, and E25 are available now. The C50 and C51 are sampling now and will be in production in the fourth quarter of 1991.
COST: C25 (33 MHz), \$14; C25 (40 MHz), \$15; C25 (50 MHz), \$17; E25, \$55; C26, \$16; C50, \$130; C51, \$40 (1000).
SECOND SOURCE: None.

Texas Instruments Inc
Semiconductor Group, SC-9053
Box 809066
Dallas, TX 75380
(800) 336-5236, ext 700

Circle No. 679

DESCRIPTION: These chips make up the second generation of the vendor's DSP family. They offer higher performance than the first-generation chips and are easier to use. For many applications, the C25's price has dropped to a point where the chip is replacing the C1X. The C5X parts are enhancements to the

C 25 . They use the same basic core architecture as the C25, but have double the performance level, additional on-chip peripherals, and expanded memory. An EPROM version of the C25, the E25, is also available.

FEATURES: The C2X chips come in 78 -, 98 -, and $125-\mathrm{nsec}$ cycle-time versions. The C5X chips come in 35 - and 50 -nsec cycle-time versions.
On-chip memory: The C25 has a $4 \mathrm{k} \times 16$-bit program ROM and a 544×16-bit data RAM. The C26 has a $1.5 \mathrm{k} \times 16$-bit program RAM with boot ROM to load programs from external memory and a 544×16-bit data RAM. The C50 has a $9 \mathrm{k} \times 16$-bit program/data RAM and a 1056×16-bit dual-access RAM. The C51 has an $8 \mathrm{k} \times 16$-bit program ROM, a $1 \mathrm{k} \times 16$-bit program/ data RAM, and a 1056×16-bit dual-access RAM.
Program and data memory are combined off chip.
The C2X and C5X can address $64 \mathrm{k} \times 16$-bit programs and $64 \mathrm{k} \times 16$-bit data memories.
The C25 and C26 have one serial port each. The C5X has two serial ports.
Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 32 -bit accumulator.
32-bit ALU.
The C5X has a separate 16-bit parallel logic unit for manipulating bits without affecting the contents of the accumulator.

16-bit left barrel shifter.
Single 32-bit accumulator.
Next-instruction-repeat looping. Only the C5X has zerooverhead block looping.
Immediate, direct, indirect, and bit-reversal addressing modes. C5X also has circular addressing.

No DMA.

8-level expandable hardware stack.
C5X has a 1-level-deep shadow RAM, which stores some registers.
C2X has three external interrupts; C5X has five.
Hardware wait states. C5X also has software-programmable wait states.
The C5X has an on-chip emulation port.
The C2X is source-code compatible with the C5X.
The C5X has a JTAG interface.
The C25 and C26 have an idle mode. The C5X has a power-down mode.
Packaging: C25 and C26, 68-pin PGA or PLCC. C50, 132pin QFP.

HARDWARE

Both the C2X and C5X have an in-circuit emulator. Both also have a software-development board for PCs.
Many third-party support tools. Contact manufacturer for a list of third-party vendors.

C compiler for both C25 and C5X.
Source-level debugger for C5X.
Assembler/linker.
Simulator.
Application library.
Many third-party support tools.

Finally, a SPARC chip set that comes equipped with everything you need for the Sun.

Now, from the Advanced Products Division of Fujitsu Microelectronics - something new under the Sun. A SPARC ${ }^{\star}$ chip set that offers the world's most advanced, cost-effective solutions for Sun-compatible workstation designs and specialized, compute-intensive applications. Including voice response, medical imaging and pattern recognition systems.

Our new SPARC chip set is packed with all of the advanced features you need to differentiate your systems from Sun and yesterday's Sun clones. Such as higher integration. More system flexibility. Clock speeds of up to 40 MHz . And graphics options. All at a price to help

Fuilitu

Delivering the Creative Advantage.
you outshine the competition.
Plus, to get you to market faster, we offer three distinct hardware designs: Busless, Sbus and VME bus. What's more, from our alliance with INTERACTIVE Systems Corporation-the premier independent UNIX source - comes the latest SunOS ${ }^{m}$ 4.1.1 ported to each design.

And with comprehensive documentation and training, you'll find your place in the Sun more quickly.

So equip yourself with everything you need to develop the highest performance SPARC-based systems. Call us at $1-800-523-0034$. And discover why our new SPARC chip set is the perfect Sun set.

IF THE GUIDE IS MISSING, OR FOR MORE INFORMATION CONTACT

finding new ways
setting higher standards

떼Nini-Circuits

P.O. BOX 350166, BROOKLYN, N.Y. 11235-0003

TEL 718-934-4500 EXTENSION 231 FAX 718-332-4661

32-BIT FLOATING-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: The ADSP21020 is available now.
COST: \$147 (1000).
SECOND SOURCE: None.

Analog Devices Inc 1 Technology Way Norwood, MA 02062
(617) 461-3074

Circle No. 680

DESCRIPTION: This device is the vendor's first floating-point DSP μ P. It has an off-chip Harvard architecture and is similar to the fixed-point 2100 family. On-chip emulation supported via
a JTAG port. The device conforms to the IEEE-754 floating-point standard.

FEATURES: 40-, 50-, and 66-nsec cycle-time versions.
One 32 -bit and one 24 -bit address bus.
One 40 -bit and one 48 -bit data bus.
Seven 40-bit additional buses in the CPU.
Separate program, and data buses (off-chip Harvard Architecture).
$4 \mathrm{G} \times 40$-bit external data memory and $16 \mathrm{M} \times 48$-bit external program memory.
One 32-bit timer.
IEEE-754 32-bit and 40-bit floating-point format.
Multiplier accepts 32 -bit and 40 -bit floating-point data and returns 32 -bit or 40 -bit results. 32 -bit fixed-point operands produce 64 -bit fixed-point products. The multiplier also incorporates dual 80 -bit fixed-point accumulators.
ALU accepts 32 -bit and 40 -bit floating-point data and returns 32 -bit or 40 -bit results. 32 -bit fixed-point operands produce 32-bit results.
Parallel multiplier and ALU operate in single cycle.

32-bit bidirectional barrel shifter
32 40-bit register-based accumulators.
Zero-overhead looping.
32×48-bit instruction cache.
Cache optimizes performance by selecting only 3-bus-operation instructions for storage in cache. Cache can be frozen to keep often-used instructions in cache.
Register, direct, indirect, immediate, relative, circular buffer, and bit-reversed addressing modes. Two independent address generators.
The hardware stack is 20 deep and can be expanded into main memory.
Four external vectored interrupts.
Four bidirectional I/O flags.
Hardware and software programmable wait states.
JTAG support of in-circuit emulation.
Idle state for low-power mode.
Packaging: 223-pin PGA, plastic and ceramic. PQFP available in 1992.

SOFTWARE

Full-speed in-circuit emulator.
Demo board for PCs.
Evaluation package.
Third-party support: Contact Analog Devices for a list of thirdparty vendors.

Optimizing ANSI C and Numerical C compilers.
Source-level debugger for ANSI C and Numerical C.
Simulator, assembler, linker, PROM splitter.
Application libraries.
Third-party support includes Spox, filter-design packages with code generation, and block-level algorithm development packages.

DSP32C/3210

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: The DSP32C is available now. The DSP3210 is sampling now with production by the fourth quarter of 1991. COST: DSP32C, $\$ 70(1000)$. DSP3210, $\$ 50(100,000)$. SECOND SOURCE: None.

AT\&T Microelectronics
Dept 52AL300240
555 Union Blvd
Allentown, PA 18103
(800) 372-2447;
in Canada, (800) 553-2448
Circle No. 681

DESCRIPTION: The DSP32C has one of the simplest architectures of the 32 -bit floating-point DSP chips. It uses a single 4 M -word linear-memory space instead of the separate program and data memory common in other DSP chips. The single address bus and single data bus can be accessed as many as
four times per cycle. Each internal memory can be accessed as many as two times per cycle. The DSP3210, along with the VCOS operating system, is intended for use on the mother board of PCS and workstations, where it shares memory with the host.

FEATURES: $80-$ and 100 -nsec cycle-time versions.
Single address and data buses. Each can be accessed as many as four times per cycle to imitate separate buses.
DSP32C has three on-chip 512×32-bit RAMs. Optional ROMbased DSP32C replaces one RAM with a $4 \mathrm{k} \times 32$-bit ROM. DSP3210 has two $1 \mathrm{k} \times 32$-bit RAMs and a 256×32-bit boot ROM.
The DSP32C can address as much as $4 \mathrm{M} \times 32$-bits of external memory. The DSP3210 can address 4 Gbytes of external memory.
All memory is a general resource; both program and data can exist anywhere.
Data addressable as 8 -, 16 -, or 32 -bit words.
DSP3210 can load program from external EPROM.
The DSP32C has on-chip serial and parallel I/O. The DSP3210 has serial I/O, timer, DMA controller, and a 32 -bit bus interface that is compatible with Motorola and Intel μ Ps.
The serial I / O is a double-buffered port that allows concurrent input and output of 8 -, 16-, 24-, or 32-bit data widths.
The DSP32C has an 8 - or 16 -bit parallel I/O port that an external $\mu \mathrm{P}$ can control.
Proprietary 32-bit floating-point format.
Single-cycle conversion to/from nonstandard DSP32 floatingpoint format from/to IEEE-754 floating-point format.
Multiplier accepts 32 -bit floating-point data and creates 45 -bit floating-point results.
Separate floating-point adder accepts 40 -bit floating-point data and creates 40 -bit floating-point results.
Fixed-point ALU accepts 16 - or 24 -bit data.
Does not have a barrel shifter.
Four 40-bit accumulators.
Zero-overhead looping. As many as 2048 repeats of a block with a maximum size of 32 words.
Immediate, memory-direct, register-direct, register-indirect, and bit-reversal addressing modes.
DMA can be used with both the serial I/O and the parallel I/O.
No hardware stack.
1-level-deep shadow RAM of some registers.
Two external interrupts.
Hardware wait states. DSP3210 has software-programmable wait states.
No on-chip emulation port.
Only the DSP3210 has a low-power mode.
DSP32C packaged in a 164 -pin PQFP, 133-pin PGA, or 68 -pin PLCC (microcontroller version, no external memory).

In-circuit emulator.
IBM PC-based development board.
VME bus-based development board.
Many third-party support tools, including the HP64773 in-circuit emulator from Hewlett-Packard. Contact AT\&T for a list of thirdparty vendors.

Optimizing C compiler.
Assembler/linker.
State simulator.
VCOS operating system.
Many third-party support tools.

Experience 32-bit RISC Performance in Your 16-bit System at a Cost That'll Thrill You

Intel has given designers another exciting product breakthrough. This time it's Intel's $1960^{\text {TM }}$ SA/SB 32-bit embedded processors -- the products that let you design-in high performance in cost-sensitive applications. With a full 32-bit internal architecture and a 16 -bit data bus, the i 960 SA/SB processors provide more performance than any other l6-bit embedded processor. And they're part of the complete i960 family, which spans 5 to 66 MIPS while preserving software compatibility.
Hamilton/Avnet has the 1960 SA/SB processors and evaluation boards in stock, and the development tools to start your design now! From compilers and simulators, to debuggers and emulators, we offer the development tools you need to take full advantage of your design, while reducing time to market.
So get high performance, at a cost you'll be thrilled about with Intel's i960 SA/SB and development tools. For the Hamilton/Avnet branch nearest you or further information, call toll free, $1(800)$ 442-6458.

HAMILTON/AVNET

A-HAMILTON/AVIET

Yes we do!

Provide complete services for electronic modules -- from design, to prototyping, through to production for a complete line of SEMs. From the MIB (bare board) to a completed, fully qualified module -- regardless of quantities.
We literally program our total capabilities to meet your specific needs. Provide design to specifications; partial and complete design services; build- to-print production; manufacturing, integration and testing operations.
A self-contained group is devoted exclusively to modules. It draws upon Raytheon's 20 years' experience in the design of more than 600 module types. Their imaginative engineering, combined with cost-cutting design concepts and manufacturing methods, assures you modules costeffectively made to unsurpassed standards of quality and reliability. All work is done in facilities baseline-certified for MIB's to NWSC (Naval Weapons Support Center) requirements. We're also certified for Formats A, B, D \& E.
A phone call will get things moving. OEM's or system integrators should call or write: Marketing Manager, Production Components, Raytheon Company, Submarine Signal Division, 1847 West Main Road, Portsmouth, RI, USA 02871-1087. Phone 401 847-8000, Extension 2054.

Raytheon

32-BIT FLOATING-POINT CMOS DSP μ

AVAILABILITY: Available now. Enhanced revision available the first quarter of 1992.
COST: 96002 (33 MHz), $\$ 368$; 96002 (40 MHz), $\$ 441$.
SECOND SOURCE: None.

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030

FAX (512) 891-0400
Circle No. 682

DESCRIPTION: The 96002 is an architectural superset of the fixed-point 56001. The 96002 continues Motorola's emphasis on precision. The 96 -bit accumulators will support future double-precision parts. The 32-bit floating-point device conforms to the IEEE-754 floating-point standard. The dual 32 -bit external buses support glueless multi-96002 systems. The ex-
ternal buses can access external memory and peripherals or communicate with a host μ P. A revision of the 96002 provides some enhancements, including increased speed and letting the internal RAM act as an instruction cache. It will remain software compatible with the existing 96002.

FEATURES: $50-$, $60-$, and $74-\mathrm{nsec}$ cycle-time versions. $50-$ nsec cycle-time version scheduled for the fourth quarter of 1991.

Three 32-bit address buses and five 32-bit data buses on chip.
Separate address buses for program and the two on-chip RAMs.
Separate data buses for program, the two on-chip RAMs, global data, and DMA.
On-chip memory includes a $1 \mathrm{k} \times 32$-bit program RAM, a 64×32 bit boot ROM, dual 512×32-bit data RAMs, and dual 512×32-bit data ROMs.
On-chip boot ROM loads program from external byte-wide EPROM.
Revised version will let the internal $1 \mathrm{k} \times 32$-bit program RAM function like an instruction cache.
Two complete 32-bit external expansion ports for memory and I / O.
Three separate memory spaces (X, Y, and P). Each can address 4G words.
Each memory space is divided into eight 0.5 G -word areas. Each can be programmed to either the A or B expansion ports.
Two host interfaces allow interface to $\mu \mathrm{P}$ or other 96002s. No other on-chip peripherals.

IEEE-754 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and returns 44 -bit results. Multiplier accepts 32 -bit integer data and returns 64-bit results.
32-bit bidirectional barrel shifter.
Ten 96 -bit or thirty 32 -bit register-based accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversal addressing modes.
Two address ALUs.
Supports DMA. Uses its own internal bus and doesn't cyclesteal. Can use all of the addressing modes, including bitreversal, with the DMA controller.
The stack is 15 levels deep and can be expanded into main memory.
Three external vectored interrupts.
Hardware and software-programmable wait states.
Serial debug port for in-circuit debugging.
Low-power mode.
Packaged in a 223-pin PGA. 256-pin CQFP available in 1991.

HARDWARE - SUPPORT

SOFTWARE

Hardware-evaluation system includes in-circuit emulator.
Some third-party hardware products are available. Contact Motorola for a list of third-party vendors.

Optimizing C compiler.
Assembler/linker.
Simulator.
Application library.
GNU C compiler and source-level debugger.
Third-party support includes optimizing C compiler, block-level diagraming language, filter-design software, and Spox.

32-BIT FLOATING-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: The 132-pin PGA package is available now. NEC Electronics The PQFP will be available in 1992.
COST: $\$ 75$ (1000).
SECOND SOURCE: None.

401 Ellis St
Mountain View, CA 94039
(415) 965-6158;
(800) 632-3531

Circle No. 683

DESCRIPTION: The μ PD77240 is a 32 -bit CMOS floatingpoint DSP chip. The internal instruction and data ROM are preprogrammed with math matrix routines. It has two external
buses: one for data addressing up to $16 \mathrm{M} \times 32$-bit, and the other for instruction addressing up to $64 \mathrm{k} \times 32$-bit. The vendor says the architecture suits adaptive filter applications.

FEATURES: 90 -nsec cycle time.
Separate on-chip program and data buses.
On-chip memory: $2 k \times 32$-bit program ROM (preprogrammed), dual 512×32-bit data RAMs, and a $1 \mathrm{k} \times 32$-bit data ROM (preprogrammed).
External memory expansion: $64 \mathrm{k} \times 32$-bit program memory and $16 \mathrm{M} \times 32$-bit data memory.
Separate external program and data buses.
The 77240 has no on-chip peripherals.
Proprietary 32 -bit floating-point format.
Multiplier accepts 32 -bit floating-point data and creates 55 -bit floating-point results.
Multiplier accepts 24 -bit fixed-point data and creates 47 -bit fixed-point results.

47-bit ALU.
47-bit bidirectional barrel shifter.
Eight 55 -bit register-based accumulators.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Three address ALUs.
No on-chip DMA.
The stack is eight levels deep and is not expandable.
Two external interrupts.
No wait states.
No on-chip emulation port.
No low-power mode.
Packaged in a 132-pin PGA.

We're breaking new ground BY MAKING IT EASY TO PUT SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.
You're already a big believer in the performance and connectibility of SCSI. But you're also digging around for an uncomplicated way to design-in SCSI to your AT motherboard. Well. . Eureka! Now with Adaptec's new AIC-6260, you've just hit pay dirt.

After all, it makes a lot of sense that a single-chip solution is easier to design-in than multiple chip packages. They're also more reliable. And take up less real estate. Plus, since we've built the AT bus in, designing SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest
possible time. That's because industry-standard, Adaptec-developed SCSI software drivers and BIOS are ready and available. For all major peripherals under all major operating systems. All this, and a complete design-in package, too. Which means, you can now afford to design the performance and connectivity of SCSI in your system as a standard feature. So step on it. And call us at 1-800-227-1817, ext. 52 today. We think you're going to really dig it

When you're serious about SCSI.

To control vibration, get your hands on this brochure.

Improve product performance with
Scotchdamp" brand Vibration Control Systems

Discover why more engineers are designing Scotchdamp" brand Vibration Control Materials into electronic equipment. From disk drives and circuit boards, to video cameras, sensitive measuring devices and even jet engines, thin, light-
weight 3M damping materials efficiently dissipate vibrational energy. Mechanical fatigue, performance loss and unwanted noise are virtually eliminated.

For a free brochure loaded with application and technical information, circle
the number below, call 612-733-4076 or write: 3 M Industrial Specialties Division, Scotchdamp Vibration Control Systems, 3M Center Bldg. 220-7E-01, St. Paul, MN 55144-1000. Our FAX number is 612-733-1771.

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: The C30 and C30-27 are available now. The C30-40, C31, and C31-27 are sampling now.
COST: C30, \$160; C30-27, \$125; C30-40, \$210; C31, \$70; C3127, \$55 (1000).
SECOND SOURCE: None.

Texas Instruments Inc
Semiconductor Group, SC-91011
Box 809066
Dallas, TX 75380
(800) 336-5236, ext 700

Circle No. 684

DESCRIPTION: This device is the floating-point member of the vendor's TMS320 family. It was the first sub-100-nsec 32-bit floating-point CMOS DSP. It is not code compatible with the fixed-point chips. The C30 is available in a slower, lower-cost version called the C30-27. The C31 is object-code compatible
with the C30 and C30-27, but has only one serial port, one parallel port, and one timer. This feature reduction decreases the chip size and pin count, which allows TI to offer a floatingpoint DSP for $\$ 35$ in high volume.

FEATURES: 50 -, 60-, and 74 -nsec cycle-time versions.
Four 24-bit address buses and three 32-bit data buses.
Two 32 -bit and two 40 -bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allows two accesses per cycle.
Any of the separate memories can be used for program or data.
Two on-chip $1 \mathrm{k} \times 32$-bit RAMs and an on-chip $4 \mathrm{k} \times 32$-bit ROM.
24 -bit external memory-address bus provides $16 \mathrm{M} \times 32$-bit total address space.
13 -bit external-I/O address bus provides $8 \mathrm{k} \times 32$-bit I/O ports, which are mapped into the 16-Mbyte address space.
Two 8-, 16-, 24-, and 32 -bit serial I/O ports. Two 32 -bit timers.
Proprietary 2's-complement 32 -bit floating-point format.
Multiplier accepts 32 -bit floating-point data and returns 40 -bit floating-point result. 24-bit integers result in 32-bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data.

Parallel multiplier and ALU operations in a single cycle. 32-bit bidirectional barrel shifter.
Eight 40-bit register-based accumulators.
Single-instruction and zero-overhead block looping.
64×32-bit instruction cache.
Cache can be disabled when not needed and frozen to keep an often-used portion of code available in the cache.
Register, direct, indirect, immediate, relative, circular, and bitreversed addressing modes. Two address ALUs.
DMA controller allows concurrent I/O and CPU operation.
Hardware pointer to software stack.
Four external vectored interrupts.
Hardware and software-programmable wait states.
Serial debug port can provide in-circuit emulation.
Packaging: C30, 180-pin PGA. C30-27, 180-pin PGA. C31, 132pin QFP.

HARDWARE

Full-speed in-circuit emulator for PCs and Sun workstations. Evaluation module plugs into a PC.
Significant third-party support. Contact Texas Instruments for a list of third-party vendors. Hewlett-Packard has a version of the HP64700 in-circuit emulator for the C30.

Optimizing ANSI C compiler. Source-level debugger and code profiler. (PC or Sun).
Assembler/linker. Simulator. (PC or Sun).
Application library.
Third-party support includes Spox, Ada compiler, filter-design packages, and block-level diagraming language.

TMS320C40

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Samples available now. Production quantities in 1992.
COST: Samples cost approximately $\$ 500 . \$ 250(5000)$.
SECOND SOURCE: None.

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 336-5236, ext 700

Circle No. 685

DESCRIPTION: This device was designed for applications that require the performance of parallel processing. It is upward compatible with the C30, but adds six 32-bit FIFO dual-buffered communication ports, two complete 32 -bit external buses, an analysis module that supports multiprocessor debugging via a

JTAG interface, and a 4G-word address space. The chip also features single-cycle conversion to and from the IEEE floatingpoint standard and a cycle time of 40 nsec . Each communication port can transfer data to and from another C40 at $20 \mathrm{Mbyte} / \mathrm{sec}$ without any external logic.

FEATURES: 40- and 50-nsec cycle time
Four 32-bit address buses and three 32-bit data buses.
Two 32-bit and two 40-bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allow two accesses per cycle.
Any of the separate memories can be used for program or data.
Two on-chip $1 \mathrm{k} \times 32$-bit RAMs and a $4 \mathrm{k} \times 32$-bit ROM.
Dual 32 -bit e^ternal buses. Each has a 31 -bit address, so the 4G-word memory is equally divided between the two buses.
Six independent 32 -bit communication ports for glueless communications between C40s. Separate 8×32-bit FIFOs for input and output buffering.
No on-chip serial ports. Two 32-bit timers.
Proprietary 2's-complement 32-bit floating-point format.
Single-cycle conversion from and to the IEEE-754 32-bit format.
Multiplier accepts 32 -bit floating-point data and returns 40-bit floating-point data. 24-bit integers result in 32-bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data

Parallel multiplier and ALU operations in a single cycle.
32-bit bidirectional barrel shifter
Twelve 40-bit register-based accumulators.
Single-instruction and zero-overhead block looping.
128×32-bit instruction cache.
Cache can be disabled when not needed and frozen to keep an often-used portion of code available in the cache.
Register, direct, indirect, immediate, relative, circular, and bitreversed addressing modes. Two address ALUs.
6 -channel DMA controller for concurrent I/O and CPU operation. Transmitting DMA can control the operation of the receiving DMA, so setup for DMA transfer will not affect CPU
Hardware pointer to software stack.
Four external vectored interrupts.
Hardware and software-programmable wait states.
JTAG-based debug port controls the analysis module, which functions as an in-circuit emulator. Multiple C40s can be debugged via JTAG interface.
Packaged in a 325 -pin ceramic PGA.

HARDWARE

Development system includes in-circuit emulation via JTAG interface.
4 -processor host-independent evaluation board.

Optimizing ANSI C compiler with parallel-processing runtime support.
Source-level debugger. Assembler/linker
Simulator.
Application library.
Third-party support includes Spox with drivers for parallel processing

Now, up to twice the power of a standard battery.

Introducing Nickel-Metal Hydride and ULTRAMAX ${ }^{\text {m }}$ Nickel-Cadmium batteries, two new rechargeables from Gates that are certain to give you a lift.
$\mathrm{Ni}-\mathrm{MH}$ offers up to 100% more capacity than a standard Ni -Cd battery, while

And, with this increase in power comes unequaled design flexibility, such as longer run time, additional features, or downsizing without sacrificing performance. To contact a sales engineer near you, give us a call at 1-800-67-POWER. And see for yourself why no other battery

Energy carries as much weight.

The power of great ideas.

IHINK FAST: THINK LINEAR.

15 New High Speed Op Amps.

No Sacrifice For Speed. Not with Linear's new family of high speed op amps. LT1122, 1220, 1221, and 1222 provide 12 bit performance with nsec settling and bandwidths to 45 MHz . The LT1224, 1225 and 1226 are general purpose parts with the capability to drive unlimited capacitive loads. LT1190, 1191 and 1192 are video speed op amps with differential gain and phase errors of 0.1% and 0.06° The LT1223, 1229 and 1230 are single, dual and quad current feedback amplifiers with high output drive current $(50 \mathrm{~mA})$ and professional video quality differential gain and phase.

LT1228 is a high speed gain controlled amp with guaranteed operation down to $\pm 2 \mathrm{~V}$ or 4 V single supply and output swing to within 1 V of the rails.

LT1122 is a JFET input op amp which slews $80 \mathrm{~V} / \mu$ s. LT1193 and 1194 are video differential input amplifiers with programmable or fixed gain powered from single 5 V or $\pm 5 \mathrm{~V}$ supplies with $\pm 50 \mathrm{~mA}$ output drive.

Singles and duals are available in 8 -pin DIP and 8 -pin SOIC package, quads in 14 -pin. For data sheets and a comprehensive 132 page application note contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call 800-637-5545.

Parameter	$\mathbf{1 2 2 0}$	$\mathbf{1 2 2 4}$	$\mathbf{1 1 9 1}$	$\mathbf{1 2 2 3}$	$\mathbf{1 1 2 2}$	Units	
S.R.	Slew Rate (Typ)	250	400	450	1000	80	$\mathrm{~V} / \mu \mathrm{sec}$
G.B.W.	Gain Bandwidth (Typ)	45	45	90	100	14	MHz
t_{s}	Settling Time (to 0.1\%) (Typ)	90	90	100	75	340^{*}	nsec
AvoL	Open Loop Gain (Typ)	50	7	45	28	450	$\mathrm{~V} / \mathrm{mV}$
VOS	Offset Voltage (Max)	1	2	6	3	0.9	mV
IOS	Offset Current (Max)	0.3	0.4	1	-	.00005	$\mu \mathrm{~A}$
I_{B}	Bias Current (Max)	0.3	8	1.7	3	.0001	$\mu \mathrm{~A}$
e_{n}	Voltage Noise (f=10KHz)	17	22	25	3.3	15	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Current Noise (f=10KHz)	3	1.5	4	2.1	.002	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Min Gain Stable	1	1	1	1	1	
I_{H}	Supply Current (Max)	10.5	9	40	10	11	mA
	Price (100's) S (PDIP)	3.85	2.85	2.40	2.85	2.50	

[^7]
32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: 34325 (25 MHz), \$137; 34325 (20 MHz), \$124 (10,000). SECOND SOURCE: None.

Zoran Corp
1705 Wyatt Dr
Santa Clara, CA 95054
(408) 986-1314

FAX (408) 986-1240
Circle No. 686

DESCRIPTION: The ZR34325 is a vector-signal processor, which is a DSP chip that operates on complex data and large blocks of data with single high-level instructions. The instruction set includes a single instruction to calculate an FFT, FIR filter, IIR filter, and other complex functions. The highly specialized
architecture is optimized to perform these functions quickly. The architecture also eases programming because the programmer doesn't have to write code for complex DSP functions. The 32-bit floating-point data conforms to the IEEE-754 standard.

FEATURES: $80-$ and $100-\mathrm{nsec}$ cycle-time versions.
Single address and data bus.
Vector instructions generally take longer to execute than to fetch, so little speed penalty is incurred with this simple bus architecture.
High-level instructions, such as those to calculate FFTs and FIR and IIR filters, simplify programming:
256×32-bit coefficient dual-port ROM and 128×32-bit dual-port RAM on chip.
No on-chip program memory.
Internal memory can be directly accessed by external device.
$16 \mathrm{M} \times 32$-bit memory space.
No on-chip peripherals.
IEEE-754 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and creates 44 -bit results.

Three ALUs: two floating point and one integer. 32-bit floatingpoint data can be added to 32 bits with one ALU and to 44 bits with the other.
24-bit bidirectional barrel shifter.
Two 32-bit accumulators.
No zero-overhead looping.
Direct, indirect, register, immediate, circular, and bit-reversed addressing modes.
Address generators for internal RAM and ROM.
On-chip DMA.
Slave mode opens chip to external access.
Hardware stack maintained in main memory.
Single external interrupt.
Hardware wait states.
No on-chip emulation port.
No low-power mode.
Packaged in an 84-pin PGA or 84-pin QFP.

HARDWARE

Hardware-development-system board.
VME bus-based product for development.
Third-party hardware available.

Assembler/linker/simulator (MS-DOS and VAX/VMS).
Application library (MS-DOS and VAX/VMS).
Ada Compiler for VAX/VMS.

Take your best shot.
For emulation, analysis or chip support, we're the pros who'll improve your score.
We're American Arium, and we've created a winning combination: EZ-PRO ${ }^{\circledR}$ development software and emulators from American Automation and high-performance logic analyzers from Arium.
From the RCA 1802 to the Intel i960, the Motorola 68040 to the MIPS R3000A, we now deliver support for virtually any chip you select.

Our development systems will keep your embedded projects on course with compilers, assemblers, C source level debug, variable tracking, extensive triggering and selective trace. To give you an easy shot at debugging, our logic EZ-PRO is a registered trademark of American Automation

Arium's ML4400 configurable logic analyzer for 80486 . Priced from \$9,785 analyzers feature solid disassemblers, timestamp, symbolic debug, performance analysis and expanded memory with high-speed timing to $\mathbf{4 0 0} \mathbf{~ M H z}$. And to keep you

EZ-PRO Development System for 68302. Priced from $\$ 9,940$ clear of hidden traps, we've developed a fully integrated set of relocating linkers, assemblers, language translators, disassemblers and more than 20 different cross compilers.

Make your next project an easy chip shot. Call the pros: American Arium.

american arium

Formerly American Automation \& Arium
"See us at Wescon booth \#2134 \& 2136"

DESIGN IDEAS

High-frequency VCOs top 100 MHz

Di Paolo Franco
Ericsson Fatme, Rome, Italy

VCOs that use surface-acoustic-wave (SAW) filters have higher operating frequencies and higher pull ranges than do circuits that use crystal oscillators. Figs 1 and 2 present two practical realizations of SAW-filter-
based VCOs. The circuits' operating frequencies are 140 and 181 MHz , respectively. The differences between the two figures stem from that fact that two types of SAW filters are available. Fig 1's circuit uses a SAW filter that has 180° of phase shift. The filter in Fig 2 has a phase shift of 0°. Both circuits draw about 20 mA and operate from a 5 V supply.

Fig 1-This oscillator is based on a $\mathbf{1 8 0 ^ { \circ }}$ phase-shift SAW filter and has a free-running frequency of 140 MHz .

Fig 2-This oscillator is based on a 0° phase-shift SAW filter and has a free-running frequency of 181 MHz .

DESIGN IDEAS

Each circuit's operating frequency is solely dependent on the SAW filter's passband center frequency, which can be higher than 1000 MHz . The SAW filters have a pull range near 500 ppm when the BBY31 varactor diode's control voltage, $\mathrm{V}_{\text {Control }}$, varies by 4 V .

These circuits' typical p-to-p voltage when driving a 50Ω load is 600 mV . The spectrum of the output signals is such that all the harmonics are below 25 dB with respect to the carrier. The variation with temperature when the circuits run in the free-running mode is 100 ppm , which is typical for SAW filters.

Crystal oscillators tend to be more stable over their operational frequency range than are SAW-based oscillators. However, that range is limited compared with the range of SAW-based oscillators. SAW filters are available with center frequencies starting at 120 MHz. The components cost of Fig 1 and Fig 2, without the SAW filter, is about $\$ 1$ each. SAW filters cost about $\$ 25$. EDN BBS DI \#1030

EDN

To Vote For This Design, Circle No. 746

Three transistors convert ac to dc

Stephen Theobald
 Bang \& Olufsen, Harboфre, Denmark

The 3-transistor ac-to-dc converter in Fig 1 features a better frequency response and higher accuracy than most op-amp-based designs. The circuit runs from a 5 V supply. Q_{1} and Q_{2} form a standard amplifier to buffer the input from the output. Q_{3} bootstraps the collector load of Q_{2} to provide current drive for the rectifier diodes. Current drive is essential for high accuracy. Q_{2} also provides a low-impedance take-off point for the dc feedback to Q_{1}. Using an RF transistor for Q_{2} ensures a wide bandwidth. The transistor's critical parameter is C_{OB}, which is less than 2 pF at a V_{CE} of 2 V .

The Fig 1 circuit was tested at frequencies as high as 300 kHz . The circuit's low-frequency response is limited to 1 kHz . By multiplying the capacitor values by a constant, you can convert frequencies lower than 1 kHz provided that the time constants of the rectifier stage prove acceptable. The maximum output voltage is approximately 800 mV before limiting occurs. R_{1} ensures stability for the circuit. The resistor isn't necessary if the driving circuit's impedance is greater than 300Ω. EDN BBS DI \#1033

EDN

To Vote For This Design, Circle No. 747

Fig 1-To ensure accuracy, Q_{3} of this ac-to-dc converter bootstraps the collector load of Q_{2} to provide current drive to the rectifier diodes.

Truly incredible ...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to $+100^{\circ} \mathrm{C}$ span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24 mm). All models are available for immediate delivery with a one-year guarantee.
finding new ways
setting higher standards

SPECIFICATIONS (typ)
$\left.\begin{array}{lccc} & \begin{array}{c}\text { Absorptive SPDT } \\ \text { YSWA-2-50DR }\end{array} \\ \text { ZYSWA-2-50DR }\end{array}\right\}$

Reflective SPDT

dc-	$500-$	$2000-$
500	2000	5000
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
1.4	1.4	1.4
30	30	30
3	3	3
YSW-2-50DR (pin)	19.95	
ZYSW-2-50DR (SMA)	59.95	

NEW PRODUCTS

SOFTWARE DEVELOPMENT TOOLS

Data-Transfer Program

- Converts Macintosh to DOS
- Requires no hardware or software modifications
The PC version of Common-Link, Mac-In-DOS, lets you format Macintosh disks in your IBM PC or compatible disk drive. The software runs under Microsoft Windows 3.0. No special hardware is needed to perform conversions. The software shows listings of two directories of files side by side on the screen. On one side are the Mac files resident on a Mac disk in the drive; on the other side are the DOS files in a selected directory on the hard drive or on a disk in another drive. Files are copied from one side to the other; conversions take place automatically. Because Mac files have three parts and DOS files have one, during Mac to DOS transfers, tutorial notes pop up with prompts to let the user select the appropriate conversion level. In DOS-to-Mac transfers, the DOS files are placed in a dummy Mac file. The software comes on a DOS disk and is loaded on the DOS computer. No hardware modification is needed for either machine, but both machines must have 1.44 -Mbyte disk drives. $\$ 199$.
Pacific Micro, 201 San Antonio Circle C250, Mountain View, CA 94040. Phone (415) 948-6200. FAX (415) 948-6296. Circle No. 351

C Compiler And Source-Level Debugger

- Connect DOS or Unix computer to target hardware
- Software provides source-level debugging on target system
The Crosscode C compiler and Freeform source-level debugger are tailored specifically for Motorola MVME-165 VME CPU and 6800series evaluation boards. The tools provide source-level debugging directly on the target system. The de-
bugger includes a transparentmonitor program for the evaluation boards. The monitor can retrieve the target system's register contents and other information for the debugger, thereby eliminating the need for a hardware emulator. You can use the debugger to connect any MS-DOS or Unix computer directly to the target hardware through an RS-232C cable. The tool can debug fully optimized code in real time and can run on a laptop. It is integrated with the compiler; the compiler includes an ANSI-standard C compiler, a macro relocating assembler, linker, librarian, download, symbol listing routines, and startup routine. The tools come bundled together. $\$ 3490$.

Software Development Systems Inc, 4248 Belle Aire Lane, Downers Grove, IL 60515. Phone (708) 9718170.

Circle No. 352

Visual Programming Tool

- Object-oriented, visual system - Imports C, Pascal, Fortran code This version of Prograph 2.5 can graph code, including interfaces. It allows you to import existing C, Pascal, or Fortran code and build interactive front ends to existing applications. It incorporates a database engine for multiuser access to tables, indices, and data types. The software is compatible with the Macintosh System. The system lets you define program classes and modules graphically. Modules are defined as data-flow diagrams, using processing nodes. Prograph has an interface builder for the automatic generation of interface objects from a set of supplied System Classes. Prograph 2.5, \$495; C and Pascal interfaces, $\$ 75$ each; Fortran interface, $\$ 149$.

TGS Systems, 2745 Dutch Village Rd, Suite 200, Halifax, Nova Scotia, Canada B3L 4G7. Phone (902) 455-4446. Circle No. 353

Memory-Management Software

- Manages multiple memory resources
- Compatible with MS- and PCDOS
386Max and Bluemax memorymanagement tools are compatible with MS-DOS and PC-DOS. The tools enhance DOS's abilities by providing advanced automatic memory configuration and optimization. The software provides expanded and extended memory compatibility with LIM EMS 4.0, XMS 2.0 , VCPI, and VDS. The software recovers available memory resources and automatically relocates resident software into previously unused memory regions. Automatic ROM caching improves system performance. Video RAM and ROM, other adapter RAM and ROM, and the system ROM BIOS are located within the reserved-memory region. Both tools automatically recover the monochrome area of DOS memory. The 386Max identifies and recovers unused filler patterns within the ROM BIOS; Bluemax automatically compresses the PS/ 2 BIOS and provides an additional 80 kbytes of contiguous reserved-memory RAM. Both tools configure Micro Channel Architecture adapters. The tools also perform ROM caching and resident software instancing and can swap the fastest system memory into the first megabyte of memory. The tools require 1 kbyte of memory. The tools come bundled with the ASQ system analyzer and memory-management tutorial and the 386 Cache disk-cache program. The cache program loads its executable DOS into high DOS while leaving track buffers in conventional memory. 386Max, $\$ 130$; Bluemax, $\$ 155$.

Qualita Inc, 7101 Wisconsin Ave, Suite 1386, Bethesda, MD 20814. Phone (301) 907-6700. FAX (301) 907-0905. Circle No. 354

WELL GIVE YOU THE ${ }^{\text {t }}$

 WORLD
Of Electronic Design

You asked for an integrated set of CAE/CAD design tools which could deliver every aspect of your engineering design needs at an affordable price. CAD Software offers the highest performing design system for your PC. Schematic capture, logic simulation, printed circuit board design, auto-routing, thermal analysis, and computer aided manufacturing are all within the PADS Design system.

Your design begins with PADS-Logic, the only PC-based schematic capture system which has a true multi-sheet database for quick and accurate design capture and data transfer to your PCB design. PADS-Logic has a large circuit capacity of over 1,000 equivalent IC's per design, a Hierarchical design ability with an unlimited number of levels, superb analog design capability, forward and backward annotation, a Part Editor and Graphical Library browsing.

PADS-PCB sets the standard for affordable high performance PCB design. A one mil database, 30 layers, automatic design rules checking, SMD ability, excellent interactive routing, and a set of ECO routines which ensure fast accurate changes, are just some of the features which have made PADS-PCB the \#1 selling PC based PCB design system.

NEW! PADSUNIX operates on the Sun Sparc Station family and contains all of the advanced features of the widely used PADS 2000 product, including schematic capture, powerful component placement aids, and multiple approaches to track routing. This advanced PCB design system can handle the most complex designs, with autorouters for digital, analog and high speed/critical circuitry, an unlimited design capacity, ERC and DRC checking, intelligent copper pour and T-routing, 0.1° parts/pads rotation, and much more!

Call CAD Software today for your local Authorized Reseller, or for a no-cost Evaluation Package, and experience the world of electronic engineering design:

Software, Inc.

(800) 255-7814 Inside MA (508) 486-8929

119 Russell Street, Littleton, MA 01460

NEW PRODUCTS

COMPUTERS \& PERIPHERALS

Industrial 80486 Single-Board Computer

- Has eight SIMM sockets for as much as 32 Mbytes of DRAM
- Operates at 25 or 33 MHz

The QPC-5160 single-board computer (SBC) for a passive ISA bus
backplane contains an Intel 25- or $33-\mathrm{MHz} 80486 \mu \mathrm{P}$. It also has eight SIMM (single-inline-memory-module) sockets for as much as 32 Mbytes of dynamic RAM (DRAM). Memory options are $1,2,4,8,16$, or 32 Mbytes. In addition, the hard-

ware supports the LIM 4.0 specification. You can expand the memory to 64 Mbytes, using a piggy-back daughter board. The SBC's DRAM features page-mode and 2 -way interleaved access modes, and the daughter-board's memory has a 4 way interleaved access mode. The company designed the SBC to withstand harsh industrial conditions. The board also features a shadow RAM. Board with 4 Mbytes of DRAM (25 MHz), $\$ 3795$; (33 MHz), $\$ 4195$.

Qualogy Inc, 109 Bonaventure Dr, San Jose, CA 95134. Phone (408) 434-5200. Circle No. 355

QIC Tape Drives

- Connect to SCSI port on Macintosh computers
- Have capacities ranging from 150 to 525 Mbytes
The latest models of the Panther Tape Backup System are compatible with Apple's Macintosh Macplus, SE, SE 30, MAC II, IICX, IICI, and portable computers. Because the $5^{1 / 4}-\mathrm{in}$. drives employ the SCSI bus, you can attach them directly to the computer's SCSI port without using a host adapter board. The drives have capacities ranging from 150 to 525 Mbytes. The 525 -Mbyte model can back up the entire tape in less than 45 minutes. Backup and restore rates range from 5 Mbytes/minute to $12 \mathrm{Mbytes} /$ minute. The drives perform file-by-file and image backups, and they are compatible with the A/UX operating system. The
units use DC 6000 or equivalent tape medium, and the MTBF is 80,000 hours. Bit error rate is less than $10^{-15} .150$-Mbyte drive, $\$ 2145$; 525-Mbyte drive, $\$ 2695$.

Tandberg Data Inc, 2649 Townsgate Rd, Suite 600, Westlake Village, CA 91361. Phone (805) 4958384.

Circle No. 356
that's expandable to 128 kbytes. You can install as much as 32 Mbytes of dynamic RAM, using single inline memory modules. The board has eight 16-bit ISA bus expansion slots and a socket for an 80387 coprocessor. A shadow RAM for the system BIOS and video BIOS increases the execution speed as much as three times. The
mother board runs Windows, OS/2, MS-DOS, Unix, Xenix, and Novell software. Performance figures include a 63.6 Landmark Speed (1.14), 8.55 Power Meter MIPS (1.5), and a Norton SI rating (4.5) of 48. $\$ 855$.
Pioneer Computer Inc, 49066 Milmont Dr, Fremont, CA 94538. Phone (415) 623-0808. Circle No. 358

386 Personal Computer

- Employs AMD's $40-\mathrm{MHz} 80386 \mu P$
- Has 4 Mbytes of DRAM and one 64-kbyte cache RAM
The 386WB-40SL ISA bus personal computer employs AMD's $40-\mathrm{MHz}$ $80386 \mu \mathrm{P}$. The computer comes with 4 Mbytes of dynamic RAM, a 200Mbyte hard-disk drive, a 14 -in. super VGA monitor, a 1-Mbyte VGA Freedom Card, and 64 kbytes of cache RAM. The RAM is expandable to 64 Mbytes. In addition, the computer has FCC Class B approval, a parallel port, and two serial ports. Other features include a mouse, and DOS 4.01 and Windows 3.0 software. A 6month GE on-site service contract, which is optionally expandable to five years, is also available. $\$ 2999$.

Bell Computer Systems, 6615 Valjean Ave, Van Nuys, CA 91406. Phone (818) 909-3501. Circle No. 357

80386 Mother Board

- Employs AMD's $40-\mathrm{MHz} 80386 \mu \mathrm{P}$
- Has 64-kbyte cache RAM expandable to 128 kbytes
The 386 Cache 40 Mini-AT mother board uses AMD's $40-\mathrm{MHz} 80386$ μ P. It has 64 kbytes of cache RAM

I
Looking for a way to reduce shorting potential in a modular jack?

We've got it covered.

Because contacts are exposed in most modular jacks, the chance of a thousand volts jumping from the jack to the nearest conductor is very real.
Molex's 41314 series of modular jacks greatly reduce the risk of shorting because their top is covered by the jack's plastic housing. This cover not only protects, but adds an extra margin of design flexibility by allowing PCBs to be stacked together more closely.
Each Molex Modjack must pass three functional tests, including on-line hi-pot testing. Jack contacts are plated after stamping, eliminating bare edges in critical areas. Molex Modjacks also meet all FCC 68.5 and UL 1863 requirements.
Assembly to board, both robotic and manual, is more efficient because contact tails lock securely into housing, assuring precise location.

For the widest selection of modular jack sizes, types and configurations, contact Molex.

Bringing People \& Technology Together, Worldwide ${ }^{\text {sM }}$

Corporate Headquarters: 2222 Wellington Ct., Lisle, IL 60532 U.S.A., Tel: (708) 969-4550 European Headquarters: Munich, West Germany, Tel: 49-89-413092-0

Far East North Headquarters: Tokyo, Japan, Tel: 81-427-21-5539 Far East South Headquarters: Jurong Town, Singapore, Tel: 65-660-8555

Technical calculations made easy!

Now it's easier than ever to perform faster, more reliable engineering and scientific calculations.

- Windows graphics features make Mathcad 3.0 the simple solution to complex analytic needs. Dialogs, pull-down menus, and mouse point-and-click capabilities make it easy to combine equations, text, and graphics right on your screen and print it all in a presentation-quality document
- New Electronic Handbook Help facility serves as an on-line reference library. Paste standard formulas, constants, and diagrams from searchable, hypertext Electronic Handbooks for instant use in your Mathcad worksheet
- Symbolic calculations with a simple menu pick. Use expressions resulting from symbolic derivations in your numeric calculations or for further symbolic manipulation
- Mathcad works on PC DOS, PC Windows, Macintosh, or UNIX. More than 120,000 engineers, scientists, and educators already use Mathcad for a variety of technical applications. Applications packs are also available to customize Mathcad for particular disciplines, including electrical, mechanical, and civil engineering and advanced math.

Call 800-MATHCAD or use this coupon to request a free 3.0 demo disk!

In Massachusetts, call 617-577-1017. Please specify diskette size.
$51 / 4^{\prime \prime}$
For a free Mathcad 3.0 Introductory kit, clip this coupon and mail it back to us, or fax it to 617-577-8829. Or circle your reader service card. Yes! Tell me more about Mathcad 3.0!

Name
Title
Company or Institution
Address
City State Zip

Phone
Math S oft MathSoft, Inc.
201 Broadway
Cambridge, MA 02139
USA
TECH 3.0

NEW PRODUCTS

INTEGRATED CIRCUITS

Quad Op Amp

- Offset voltage is $50 \mu \mathrm{~V}$
- Bias current is 100 pA

According to the company, the OP497 is the industry's highest precision quad op amp. Guaranteed specifications at $25^{\circ} \mathrm{C}$ include $50 \mu \mathrm{~V}$ maximum offset voltage with offset drift of $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$; maximum bias current of $100 \mathrm{pA}\left(450 \mathrm{pA}\right.$ at $125^{\circ} \mathrm{C}$), and $2000 \mathrm{~V} / \mathrm{mV}$ minimum open-loop
gain. The maximum per-channel supply current is $625 \mu \mathrm{~A}$. The low offset voltage and high gain eliminate offset trims and additional gain stages in many designs. The superbeta input stage includes biascurrent cancellation circuitry that maintains low (pA) bias current over the full operating temperature range. This action contrasts with traditional FET-input amplifiers whose bias current is initially low but typically doubles for every $10^{\circ} \mathrm{C}$ rise in temperature. Other features include a supply-voltage operating range of ± 2 to $\pm 20 \mathrm{~V}$, and a $120-\mathrm{dB}$ PSRR and CMRR. The commonmode range extends to within 1 V of the operating supply. The quad op amp is available in industrial and military temperature ranges. Package options include 14-pin plastic

Fast Logic
 Variable Pulse Generator

Features:
Continuously adjustable.
Pulse-width variation range: 200 ns.
Pulse-width resolution: 12 ns.
Rising-edge trigger.
Input \& output TTL buffered.
Commercial \& military type.

data
delay
${ }^{201717230}$ devices, , me

FAX (201) $773-9672$
Clifton, New Jersey 07013

"We saved over \$19,000 at the demo!'

Computer Aided Product Selection

It's easy to find out more about CAPS! For your free information kit, call Jill Adams at 800-245-6696. Do it today!

Cahners Technical Information Service • 275 Washington Street • Newton, MA 02158-1630 Telephone: 617-558-4960 • Facsimile: 617-630-2168 • Telex: 940573 • Toll-free: 800-245-6696 CAPS is a registered trademark of Reed Publishing (USA) Inc.

CAPS $^{\circledR}$ is a productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors faster and easier than ever before.
"The microfilm system we purchased for IC and semiconductor search and selection just wasn't working out. It was hard to use and there weren't enough people using it to justify the cost. So, we decided to evaluate CD-ROM-based systems.
"While all this was happening, our purchasing people found a new IC vendor. They wanted to know if the new vendor made equivalents for some of our most commonly-used components. They thought we could get a better price. It would take us hours to find equivalents on the microfilm system, so we decided to challenge a couple of new CD-ROMbased systems.
"The first demonstration was a flop. Their system didn't even include the new vendor. Needless to say, we weren't impressed.
"Then Cahners came to demonstrate the CAPS system. In less than 20 minutes, CAPS found equivalents for the components we wanted. I figure we saved over $\$ 19,000$ at the demo!
"Oh yes . . . we bought the system!"

- Frank Lucas

Test Engineering Manager
Welch Allyn
Data Collection Division

Updated monthly, the CD-ROM (Compact Disc -Read-Only Memory) based CAPS system gives you fast, easy, query-driven access to technical specifications and applications data for over 575,000 ICs and semiconductors made by nearly 500 companies worldwide. Best of all, CAPS provides instant access to hundreds of thousands of pages of complete, unabridged manufacturers' datasheets, so you have everything you need right at your fingertips.

DIP, 14-pin ceramic DIP, 16-pin SOIC, and 20 -contact LCC. OP487GP in 14-pin plastic DIP specified for industrial range, $\$ 4.75$ (100).

Analog Devices, PMI Div, 1500 Space Park Dr, Santa Clara, CA 95052. Phone (408) 727-9222.

Circle No. 359

SONET Chip Set

- For STS-3 and STS-12 applications
- Satisfies both SONET and SDH requirements
This 3-piece chip set, consisting of the VP15301, VP15311, and VP15323, satisfies both SONET (Synchronous Optical Network) and SDH (Synchronous Digital Hierarchy) standards. Optimized primarily for STS-3 and STS-12 applications at 155 Mbps and 622 Mbps , respectively, the chip set is usable
at other standardized rates and has been tested to comply with ANSI, CCITT, and Bellcore standards. The VP15301 is used for terminating the section overhead of SONET data streams. The VP15311 is used for terminating line overhead, and

the VP15323 is used for processing and aligning SONET payloads to system timing. The VP15323 can also process concatenated data streams for handling asynchronous transfers and for SDH compatibil-

In a molded cable assembly, that means strong and reliable.
Belden's molded cable assemblies give your products the two things they need most: superior mechanical strength at the connector and reliable electrical performance matched to your system. Belden also gives you more shielding options than anyone else, plus a choice of finishes (textured or smooth). So, when the reputation of your products rides on the quality of the molded cable assemblies you buy from somebody else, there's simply nobody else to consider but Belden,
For more information about Belden's new line of molded cable assemblies, call: 1-800-BELDEN-4

BELDEN
ity. Package options, which vary by chip and application, include an 84 pin plastic leaded chip carrier, a 144-pin plastic pin-grid array, and a 160 -pin plastic quad flatpack. VP15301, VP15311 and VP15323, from $\$ 56, \$ 90$, and $\$ 69$, respectively (2000).

VLSI Technology, 1109 McKay Dr, San Jose, CA 95131. Phone (408) 434-3000. FAX (408) 2632511.

Circle No. 360

Power Switching Regulator

- Output switch handles 5A
- Duty cycle is adjustable

Featuring an output-switch rating of 5A, the MC34167 switching regulator comes in a 5-lead TO-220 power package, which simplifies heat sinking. The regulator operates at a fixed frequency of 72 kHz . Because the timing components are on the chip, you don't need an external resistor and capacitor to set the oscillator frequency. In addition to the oscillator and on-chip timing, the regulator contains a latching pulse-width modulator, a high-gain (80 dB) error amplifier, and a highcurrent (5 A) output transistor. The duty cycle is adjustable from 0 to 95%. Protective features include cy-cle-by-cycle current limiting, undervoltage lockout, and thermal shutdown. A low-power standby mode reduces current drain to $36 \mu \mathrm{~A}$. In addition, the regulator has an internal resistor divider, which sets the output at a nominal 5.05 V , eliminating the need for an external divider and providing an extra 50 mV to compensate for a 1% voltage drop in external wiring. The regulator is available in two temperature ranges; the MC34167T for 0 to $70^{\circ} \mathrm{C}$ operation, and the MC33167T for -40 to $+85^{\circ} \mathrm{C}$ operation. MC34167T, \$2.03; MC33167T, $\$ 2.19(10,000)$. Delivery, stock to six weeks ARO.

Motorola Inc, EL340, 2100 E Elliot Rd, Tempe, AZ 85284. Phone (602) 897-3615. FAX (602) 897-4193.

Circle No. 361

NEW PRODUCTS

TEST \& MEASUREMENT INSTRUMENTS

Enhancement For JitterSpectrum Analyzer

- Unit computes spectra of jitter in time measurements
- Instrument requires no external computer
When equipped with Option 040, the HP 5372A modulation-domain analyzer uses FFT techniques to determine the frequency spectrum

of the jitter in a series of time measurements. The unit requires no external computer and works with jitter that has a bandwidth as high as 2 MHz . When the data stream is nonrepetitive, the analyzer does not require a clock. HP 5372 A , $\$ 30,000$. Option $040, \$ 2000$ (if installed by factory in new analyzer). Option 040 field upgrade for existing analyzers, $\$ 3000$.
Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900. Circle No. 365

68HC11 Emulators

- Interface to MS-DOS PCs via 115.2-kbps RS-232C link
- Work with μ Ps that generate a 3.3-MHz E-clock

There are two versions of the Icemaster 68 HC 11 in-circuit emulator: The Model 200 is a basic emulator; the Model 400 contains all of the basic unit's features and a 4 k frame trace buffer, two real-time performance analyzers, and watchdog-timer support. Both emulators work with 68 HC 11 s that generate a $3.3-\mathrm{MHz}$ clock. You connect the instruments to an MS-DOS PC via an RS-232C link that supports host communica-

tion at speeds to 115.2 kbps . Both models have trace-on and trace-off triggers, 64 kbytes of emulation memory, 64 k hardware breakpoints, and 64 k write-access triggers. The emulators include symbolic and source-level debuggers that display dynamically annotated code in a source window. Model 200, $\$ 1999$; Model 400, $\$ 4199$; probe cards, from $\$ 599$.

Metalink Corp, Box 1329, Chandler, AZ 85244 . Phone (602) 926 0797.

Circle No. 366

Pocket-Size
 $3.5-\mathrm{GHz}$ Counter

- Operates as long as five hours from NiCd battery
- Measures $3.4 \times 3.8 \times 1 \mathrm{in}$. and weighs 9 oz
The Model 35008 -digit, $3.5-\mathrm{GHz}$ frequency counter operates as long as five hours from a rechargeable NiCd battery. The unit, which offers a display-hold function, will operate while connected to its battery charger. Input resistance is $1 \mathrm{M} \Omega$ to 12 MHz ; a second 50Ω input works from 10 MHz to 3.5 GHz . You can choose among three gate times, the longest of which gives $0.1-\mathrm{Hz}$ resolution at $12 \mathrm{MHz} . \$ 3500$.

Startek International Inc, 398 NE 38th St, Fort Lauderdale, FL 33334. Phone (305) 561-2211. FAX (305) 561-9133. Circle No. 367

When you need to fit a big idea into a little space, talk to the people who work small miracles.
Pacific Hybrid Microelectronics.
We're experts in all facets of hybrid and surface-mount technology. Simply send us your design parameters, and within 6 weeks you'll get a prototype that's up to 10 times smaller than a conventional circuit. And far more economical. So call Pacific today at 1-800-622-5574 for a free quote or more information. And see how just enjoyable getting knocked down to size can be.
10575 SW Cascade Blvd. Portland, OR 97223 (503) 684-5657 FAX (503) 620-8051

AP PACIFIC HYBRID HM MICROELECTRONICS

 We do small miracles푸Copyright © 1990 Pacific Hybrid Microelectronics

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

Expansion Chassis

- Designed for EISA systems
- Includes a backplane

The PX1591 expansion chassis is designed for EISA/ISA systems. It includes a 13 -slot, rack-mountable
passive backplane and a 200 W modular power supply. It also includes an expansion card module and one expansion card with the cables necessary to extend from the PCXI chassis to EISA/ISA desktop or rackmount PCs. The chassis provides EMI/RFI shielding, vibration protection, and industrial cooling with filtered fans. The unit accommodates as many as 10 function cards. $\$ 2395$.

Rapid Systems Inc, 433 N 34th St, Seattle, WA 98103. Phone (206) 547-8311.

Circle No. 362

Voltage Suppressors

- Will handle 300 A
- Respond in 1 nsec max

Transguard multilayer-ceramic, transient-voltage suppressors have

With a Pearson current monitor and an oscilloscope you can make precise amplitude and waveshape measurement of ac and pulse currents from milliamperes to kiloamperes. Currents can be measured in any conductor or beam of charged particles, including those at very high voltage levels.
A typical model gives an amplitude accuracy of $+1 \%,-0 \%$, 20 nanosecond rise time, droop of 0.5% per millisecond, and a 3 db bandwidth of 1 Hz to 35 MHz . Other models feature 2 nanosecond rise time, or a droop as low as 1% per second.

Contact us and we will send you engineering data.

Announcing a night to recognize greatness

EDN's Innovation and Innovator of the Year Awards Ceremony

0n the night of November 19 during Wescon, EDN will present the 1991 Innovation and Innovator of the Year awards at the Mark Hopkins Hotel in San Francisco. You are invited to show the finalists that you support greatness in innovation by attending the awards ceremony that is the culmination of their hard work. Through its Innovation Crusade, EDN hopes to inspire EDN October 1, 1991
engineering professionals within the electronics field to reach for higher plateaus of inspiration and creativity.

The dedication and involvement of EDN readers, like yourself, have made the Innovation Crusade and awards ceremony a reality. By taking the time to nominate your peers and, in
fact, select the winners, you show commitment to quality and creativity in electronics and are driving this crusade. But don't stop there ... order your ticket to the industry event of the year and show these innovators that greatness does not go unrecognized. All proceeds of the dinner will be donated to the EDN Scholarship Fund.

To receive a reservation order form to the EDN 1991 Innovation Dinner and Awards Ceremony, fax Pam Winch at (617) 558-4470.

ULTRA-MINIATURE SURFACE MOUNT (
 DC-DC Converter Transformers and Power Inductors

These units have gull wing construction which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Operation over ambient temperature range from $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- All units are magnetically shielded
- All units exceed the requirements of MIL-T-27 ($+130^{\circ} \mathrm{C}$)
- Transformers have input voltages of $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V . Output voltages to 300 V .
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to 20 mH with DC currents to 23 amps
- Inductors have split windings
 Electronics, Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514

COMPONENTS \& POWER SUPPLIES
a current capability of 150 to 300A. These surface-mount varistors have a response time of 1 nsec max and are available in a variety of package sizes. These low-voltage devices have a circuit-operation capability ranging to 60 working volts. Clamp-ing-voltage figures range from 15.5 to 30 V . Transient-energy figures span a 0.3 to 1.2 J range. $\$ 0.45$ to $\$ 0.55$ (1000). Delivery, six to eight weeks ARO.
AVX Corp, 3900 Electronics Dr, Raleigh, NC 27604. Phone (919) 878-6200.

Circle No. 363

Surface-Mount Resistors

- Rated for 250 mW
- Have a 0.1\% tolerance

SMM0204 MELF-type surfacemount resistors are rated for 250 mW at $70^{\circ} \mathrm{C}$. Resistance values range from 1.2Ω to $2 \mathrm{M} \Omega$ and tolerances range from 0.1 to 5%. Temperature coefficients vary from ± 15 to $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ depending on resistance value and tolerance. The resistors measure $0.142 \times 0.059 \mathrm{in}$. and have end caps that are reflow and wave solderable. The units are color-banded for easy identification and are available on 8 -mm tape-andreel or bulk packaging. $10-\mathrm{k} \Omega$ units with a 1% tolerance and a $\pm 50 \mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$ temperature coefficient, $\$ 0.023$ $(10,000)$. Delivery, stock to six weeks ARO.
Dale Electronics Inc, 2300 Riverside Blvd, Norfolk, NE 68701. Phone (402) 644-4247.

Circle No. 364

UNIVERSAL VOLTAGE POWER SUPPLIES

FEATURES:
UNIVERSAL INPUT
HIGH EFFICIENCY
BUILT-IN- EMI FILTER
LOW OUTPUT RIPPLE
OVER VOLTAGE AND
SHORT CIRCUIT PROTECTION
SMALL FOOT PRINT

FOR NOTEBOOK PC

FOR PC,HARD DISK \& FLOPPY DISK DRIVES,INDUSTRIAL, TELECOMMUNICATION....
WATTS MODEL O/P1 O/P2 O/P3 O/P4 DIMENSION 40 W PSA. $4031 \quad 5 \mathrm{~V} / 3 \mathrm{~V} \quad 12 \mathrm{~V} / 2 \mathrm{~A} \quad-12 \mathrm{~V} / 0.5 \mathrm{~A} \quad 127 \times 76 \times 30$ PSA 4005 5V/6A
sow PSA-5031 $5 \mathrm{FV} / 5 \mathrm{~A}, \quad 12 \mathrm{~V} / 25 \mathrm{~A}-12 \mathrm{~V} / 05 \mathrm{~A} \quad 160 \times 100 \times 45$ (3 MODELS)

WATTS MODEL O/P1 O/P2 O/P3 O/P4 DIMENSION 50 W PSA. $5231 \quad 5 \mathrm{~V} / 4 \mathrm{~A} . \quad 12 \mathrm{~V} / 2 \mathrm{~A} \quad-12 \mathrm{~V} / 0.5 \mathrm{~A} \quad 144 \times 80 \times 48$

WATTS MODEL O/P1 O/P2 O/P3 O/P4 DIMENSION 150W PSA-1500U $\quad 5 \mathrm{~V} / 15 \mathrm{~A} \quad-5 \mathrm{~V} / 1 \mathrm{~A} \quad 12 \mathrm{~V} / 1 \mathrm{~A} \quad 12 \mathrm{~V} / 5 \mathrm{~A} 198 \times 97 \times 38$ PSA-1503U 5V/30A $\begin{array}{lllllllllll}\text { PSA }-1509 \mathrm{U} & 5 \mathrm{~V} / 15 \mathrm{~A} & -5 \mathrm{~V} / 1 \mathrm{~A} & -12 \mathrm{~V} / 1 \mathrm{~A} & 12 \mathrm{~V} / 5 \mathrm{~A}\end{array}$ (10 MODELS) 200W PSA-2041U $5 \mathrm{~V} / 25 \mathrm{~A} \quad-5 \mathrm{~V} / 25 \mathrm{~A}-12 \mathrm{~V} / 2.5 \mathrm{~A} 12 \mathrm{~V} / 5 \mathrm{~A} 203 \times 114 \times 51$ (3 MODELS

SAFETY:
ALL APPROVED BY UL/CSA/TUV (PSA-2041 IS IN PROCESS)
PSA-40XX AND PSA-50XX APPROVED BY
UL/CSA/TUV/VDE
PHIHONG ENTERPRISE CO., LTD.

TAIWAN

16, LANE 530, CHUNG CHENG NORTH ROAD SAN CHUNG CITY TAIPEI, TAIWAN, R.O.C FAX: 886-2-9817086 \& 886-2-9833222 TEL: 886-2-9882126 \& 886-2-9805255 EUROPE:
HN ELEKTRONIK
POSTFACH 1113 D-6456
LANGENSELBOLD W. GERMANY
TEL: 06184-2872 FAX: 06184-62316

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

$\$ 695.00$
Supports over 800 devices including:

- 1, 2, \& 4 megabyte EPROMs
- FLASH EPROMs • E/EPROMs
- High-speed CMOS PROMs
- DSP microcontrollers

Works under Windows • Parallel Interface - Single Executable file

Call 1-800-225-2102 for information. BP Michosssims
BP Microsystems, Houston, TX 77043-3239
Phone: (713) 461-9430 Fax: (713) 461-7413

CIRCLE NO. 340

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information (212) 463-6415

SAVE SPACE WITH MINI/BUS ${ }^{\circledR}$ BARS
Improve power distribution
Reduce required board layers Eliminate up to half the decoupling capacitors
Fit between or beneath IC's
Also available in surface mount
Send for Rogers Mini/Bus ${ }^{\circledR}$ Bars Application Bulletin.
Rogers Corp., 2400 S. Roosevelt St. Tempe, AZ 85282 602/967-0624 CIRCLE NO. 346

16 MHz CPU DRAM to 512 K	The
20 MHz DSP	
SRAM to 96 K	

ANALOG I/O
DIGITAL I/O
Inputs to 235 K samples per second

CIR
CIRCLE NO. 341

IC INSTPU MENT ENCLOSUR
 "If I didn"t have a product to put in it, I'd design one."

- Reasonably priced

Wide range of stock sizes

- Readily customized by you or us
- Shortens time for prototyping and production - For literature, pricing, and No-Risk Offer, call

800-847-3535
Anywhere in the US or Canada
LANSING
Cor 14851.0730
CIRCLE NO. 344

300 MHz Programmable
Pulse Generator from LeCroy 3 Good Reasons to buy your next pulse generator from LeCroy: 1. PERFORMANCE ($300 \mathrm{MHz}, 300 \mathrm{psec}$ 2. PRICE (around $\$ 8,000$) 3. RELIABILITY (backed by a 5 year warranty). The LeCroy 9210 Programmable Pulse Generator Mainframe $(\$ 5,900)$ accepts up to two plug-in modules that feature combinations of repetition rates (to 300 MHz) edge transition times (to 300 psec) and output swings (to 16 Volts P-P into 50) Modules are priced from $\$ 1,000$ to $\$ 2,200$. Contact Art Pini at LeCroy Corporation: (914) 578-6020.

\section*{Palm-Sized Embedded Controller
 5080 is an easy-to-use embedded controller for applications where small size, rugged packaging wide temp. range, \& low cost are important factors. Use standalone or access a variety of industrial 1/0.

 "Instant on" mode lets you write your program, test it and save it in EEPROM. CAMBASIC ${ }^{\text {TM }}$ multi-
 tasking software supports all hardware features.
 | - EEPROM programmer | Display/keypad ports |
| :--- | :--- |
| - 512 K static RAM | Drives opto module racks |
| 24 digital IIO lines | 5 V only operation |
 -40° to $+85^{\circ} \mathrm{C}$
 Tel: $303-330-1500$, Fax: $303-426-8126$
 OGTAGON SYSTYEMS CORPORATIONTM 6510 W. 91st Ave., Westminster, CO 80030}

CIRCLE NO. 342

Schematic features Menu-driven, mouse-controlled operations \bullet cut/copy/paste between circuits \bullet right-angle rubberbanding. Digital simulation 13 -state, event-driven simulation - logic analyzer-style timing window \bullet PLD support. Libraries Fully-simulated $7400,4000,10 \mathrm{~K}$ series, PLDs, PROMs and RAMs, non-simulated analog and discrete components - User-definable, simulated custom symbols. Interfaces Formats for Douglas CAD/CAM, Cadnetix, Calay, Orcad, Tango, Racal Redac, Spice. • user-definable printers, dotmatrix printers, HP, Houston, Roland pen plotters.

CALL (800) 444-9064 TODAY FOR YOUR FREE DEMONSTRATION KIT!
CAPILANO COMPUTING
(604) 522-6200 Fax (604) 522-3972

CIRCLE NO. 345

Glithy clocks?
Overshoot and undershoot? Flaky system operation?

New! LineSim Pro spots problem signals and helps find solutions before you build boards.

- Linesim Pr

O features:

- simulation of 100's of

 transmission line segments per electrical net push-button schematic oscilloscope display circuit-bodel library oscilloscope display circuit-board-impedance calculators extended-memory supportOr choose LineSim, a simplified version (2 lines). LineSim Pro: \$995 (U.S.) LineSim: \$495 (U.S.) Requires 386/486 PC Requires IBM PC w/EGA Requir 3 . Requires IBM PC
min. 640 k memory extended memory; mouse.

30-day money-back guarantee, w/\$25 restock fee.

Attention: Sales Dept,
Tel. (206) 869-2320
P.O. Box 3578

Fax (206)881-1008

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

CUT PGA NOISE

Micro/Q (R) 3000 capacitors reduce noise associated with PGA and PLCC devices. Designed to be mounted under the device, take no extra board space. Can be used under MPUs, Gate Arrays, and ASICs. Choose from Z5V, X7R, and P3J dielectrics. Available in both thru-hole and surface mount versions. Several sizes available to fit all devices.

Rogers Corp.
2400 South Roosevelt St., Tempe, AZ 85282
(602) 967-0624

CIRCLE NO. 758
4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for
 more information
 (212) 463-6415

CIRCLE NO. 761

LOW COST
INTERFACE
CARDS FOR
PC/XT/AT

RS-485/422 Card [PC485] \$95/125

Dual-Port RS-485/422[PCL743] \$175
 IEEE-488 Card[PC488A/C] \$145/445

 PCA8sC Card verion with Builill Bus Anly yer hardware and software Stepper Motor Card [PCL838] \$395 Capable of independent and simultaneous control of up to 3 stepper motors.
Programmable speed from 1 to 10,000 pps;
Steps per command 1 to 65535. - Programmable speed from 1 to 10,000 pss; Steps per command 1 to 65535 . - Crystal based timing; All control signals opto-isolated.

144 Bit Digital I/O [PCL722] \$345 - 144 lines (24 bits $\times 6$ ports) of TTL compatible digital I/O. Output buffers sink
24 mA , source 15 mA. Interrupt handling capability. Opto-22 module compatible. MC/VISA/AMEX Call today for datasheets!
 CIRCLE NO. 764

LEMO'S NEW CIRCULAR CONNECTOR CATALOG

LEMO's new cir cular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or mixed designs including signal, coaxial, triaxial, high voltage, fiber optic and fluidic/pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum or stainless steel.

P.O. Box 11488, Santa Rosa, CA 95406 Phone (800) 444-LEMO, Fax 707/578-0869 CIRCLE NO. 759

27010 EPROM EMULATOR

UNIT CAN BE DAISY-CHAINED FOR 16 \& 32-BIT SYSTEMS

Emulates 2764, 27128,
27256, 27512, \& 27010.

Other emulators from \$199
Parallax, Inc.
Citrus Heights, California
(916) 721-8217

CIRCLE NO. 762
Pick Of The Week

VGA monitors up to 200 feet away at once Supports all VGA/SVGA cards and monitors 2 and 8 output models available only $\$ 495,1$ year warranty

∇ Communications ∇ Snecialties, Inc

TEL: 516-273-0404 FAX: 516-273-1638 CIRCLE NO. 765

PLCC LoClip - PLCC Probe

NEWPRODUCT
The PLCC-LoClipXX line from Ironwood is a new product line allowing probing of surface mount PLCC's at a fraction of size of other clips. The U and L ver. have right angle leads (cable connect or probing). Device heights of $0.75^{\prime \prime}, 0.57^{\prime \prime}$, and $0.45^{\prime \prime}$ for S, U, and L boards respectively enable probing of boards in backpanels. Interdevice spacing of $0.10^{\prime \prime}$ allowed. PLCC's from 24 to 84 pins supported. Kits of 10 with different sizes/carrying case available at substantial discount.

IRONWOOD ELECTRONICS

P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025

CIRCLE NO. 760
"Tango-PLD is the price/performance
leader in logic design tools."

"I regularly put this

 program through its paces It's inexpensive and works great. I'm telling as many friends as I can that Tango-PL.D is the bestvalue in
programmable logic
design." Jobw Wentroth
Chief Engiveer

Tango-PLD is a universal PLD design tool with sophisticated features including schematic entry or "C-like" language design options. Its affordable price includes great documentation and tech support and a money-back guarantee.

See for yourself. Call today to order your free P.D.D design evaluation package.

800 488-0680

619 554-1000 • FAX: 619 554-1019
ACCEL Technologies, Inc.
6825 Flanders Drive • San Diego, CA • 92121 • USA
Contact us for the represenativive nearest you
CIRCLE NO. 763

Telecom Solutions from Telton Telecom IC Data Book

The reference for telecom design engineers. Includes:

- DTMF and call progress tone receivers and transmitters
- MF trunk receivers and transmitters
- DC signaling devices

- Key system/PBX enhancements
- Test and demonstration equipment
- Telecom signaling application notes

1-800-426-3926
Or: 206-487-1515 Fax: 206-487-2288

をELTロNE
 INNOVATING SOIUTIONS
 In Telecom Interface Components

Teltone Corporation, 22121-20th Avenue SE, Bothell, WA 98021 CIRCLE NO. 766

CAREER OPPORTUNITIES

Call today for information on Recruitment Advertising:

East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Powerful People. Powerful Products.

Many choose to compromise their lifestyle to achieve success. Intel professionals in the greater Sacramento area don't make concessions. We work with the most advanced design tools and techniques to keep our technology at the leading edge, and leave the others trying to catch up.

POWER MOVE

Successful products require a strong foundation and fresh ideas. Our foundation, your ideas. Make a Power Move and consider the following openings.

We currently have opportunities available within the following dynamic and growing product areas. Our Entry Level Products Group designs microprocessors for the portable, notebook and palm-top computer markets, communication components and Intel network cards. The Integrated Microcomputer Division/Microprocessor Products Group is responsible for high-end microprocessors, bus chip sets, peripherals, and programmable logic component products for desktop computers and workstations of the future.

System Architects

Combine customer needs with emerging technologies to define future system requirements. Interact with Design and Marketing to determine cost/performance trade-offs, and create the optimized component-level partitioning. Define the components and follow-up through implementation. Keep up with market requirements to create derivative products. Specific development areas are high integration desktop, notebook, and palm-top computers, and multiprocessor servers. Requires a BS/MS in EE/CS, and at least 4 years of system design experience, knowledge of PC hardware, and familiarity with low-level programming in DOS and/or UNIX*.

Component Design Engineers

Join a team designing peripheral devices for a wide range of single or multiprocessing applications on the PC, workstation and high-end system areas. Responsibilities include CMOS, VLSI component design on products such as mp chips, EISA bus chips, DMA controllers, or cache controllers. Requires a BSEE/CE, or equivalent, and a working knowledge of computer architecture and system design concepts preferred.

System Validation Engineer

Support the verification of Intel's newest Notebook PC-based microprocessors. Requires a BSCS/BSEE and at least 3 years' experience with Intel385 ${ }^{\text {TM }}$ based PC hardware and software. Must have MASM and C programming experience.

Make a Power Move to Intel in the greater Sacramento area and experience all the personal perks of California's recreation capital. Our area happens to be ranked as one of Newsweek's top urban areas with a relatively lower cost of housing, a lower cost of living, and a rush hour that's not so rushed. For immediate consideration, please FAX or send your resume to: Intel Staffing, P.O. Box 1141, Dept. F644, Folsom, CA 95630, FAX (916) 351-5522.

Intel Corporation is an equal opportunity employer and fully supports affirmative action practices. Intel also supports a drug-free workplace and requires that all offers of employment be contingent on satisfactory pre-employment drug test results.

Electronic Engineer Analog/RF

EE sought with minimum of five years experience with analog circuit design, including thorough understanding of RF circuits. Will join small (<10) team of engineers in fast-paced project to establish altitude record for unmanned aircraft. Send resume to:

Brian Duff
Aurora Flight Sciences Box 4134
Manassas, Virginia 22110

Knock, Knock.

In EDN's Magazine and News Editions, opportunity knocks all the time.

Quality design and advanced technology. Because lives depend on it.

More than a name, Pacesetter is our way of viewing our mission and applying technology. Beginning with the first internal cardiac pacemaker, to the application of advanced NASA technology to medical science, to our present programmable, dual-chamber pacemaker, the tradition continues with our commitment to up-to-the-minute lifeassisting and life-critical bio-medical technology.
Proud of these technological achievements, our greatest satisfaction is knowing our products have enriched and extended the lives of millions. In fact, the very first pacemaker recipient, Arne Larsson, is still enjoying an active lifestyle in his 70 's. With the support of the multi-billion dollar Siemens Company, we're totally committed to living up to our name, and fulfilling the promise of quality made to the people who depend on our products every day. If you're looking for an exciting challenge in an innovative environment, you'll find your future here. Opportunities include:

AUTOMATIC TEST ENGINEER

To perform analog and digital circuit design, SW development and test system integration. Requires BSEE and $3+$ years ATE experience in the design/development of computer-based automatic production test equipment. Respond to Dept. EDNMAG/ATE.

IC DESIGN ENGINEER

Responsible for circuit design and technology development for low power implantable custom ICs, including microcomputers, switched capacitor filters, A/D and DC/DC energy converters. Requires BS/MSEE or PhD and 3+ years experience in design/development of analog/digital CMOS ICs. Respond to Dept. EDNMAG/ICDE.

PROCESS ENGINEER

Will handle machine design projects utilizing electropneumatic mechanisms/processes involving YAG laser welding. Requires BSME/EE with 5 years experience in CNC machine control, diagnostics, mechanical fixture design and repair of digital/analog circuits. Respond to Dept. EDNMAG/PE.

SR. ANALOG POWER ENGINEER

Engineering duties involve switching power supplies/hybrid power circuits for implantable medical devices. Background

must include BS/MSEE or PhD and $5+$ years experience in analog circuit design, prototype, test and debug. Respond to Dept. EDNMAG/APE.
SR. COMPONENT RELIABILITY ENGINEER
Selected candidate will have BSEE with 5 years experience in reliability engineering, failure analysis techniques and rate predictions. Knowledge of IC and hybrid design/evaluation/qualification techniques and CMOS is essential, as well as ability to establish test requirements and evaluate results. Respond to Dept. EDNMAG/CRE.
SR. ELECTRONIC DESIGN ENGINEER
Requires proven expertise in design, prototype, test, debug and documentation of analog, digital, CMOS and microprocessor-based circuitry for implantable medical products. BS/MSEE and 5+ years experience also necessary. Respond to Dept. EDNMAG/EDE.

SR. ELECTRONIC PRODUCT ENGINEER

BSEE and 3-5 years experience in analog/digital design, CMOS/TTL devices and microprocessor-based systems essential. Ideal candidate will have knowledge of hybrid microelectronics involved in the manufacture of high-reliability electronic devices. Electronic test procedure experience would be a plus. Respond to Dept. EDNMAG/EPE.

SOFTWARE ENGINEER

 Utilizing Assembly and C languages, will design/develop system and application SW for real-time embedded microprocessor-based pacemaker support products. Requires BSEE/CE or equivalent and 3+ years experience in embedded microprocessor and system-level SW design/ development. Respond to Dept. EDNMAG/SE.In addition to our desirable Southern California location, we offer competitive compensation, paid relocation and an excellent benefits package, including employer-contributed pension plan, $401(\mathrm{k})$, tuition reimbursement, vision care and a choice of dental/health plans. Send resume (NO PHONE CALLS, PLEASE!) to the appropriate department: Greer A. Brooks, Employment Representative, Pacesetter Systems, Inc., 12884 Bradley Avenue, Sylmar, CA 91342. AA/EOE

Where Reliability is a Way of Life ${ }^{\circledR}$

Pushing The Limits

 Open Systems

Firmware Developer - Dallas, Tx.

Individual will participate in the development of FDDI VMEbus products. Position leads to project-level management of board-level and standalone FDDI products. Minimum of $3-5$ years firmware development in a C and UNIX environment required. Working knowledge of protocols and FDDI is a plus. Prefer BSCS or equivalent experience.

Senior Hardware Design Engineer - Dallas, Tx.
Candidate will design and simulate ASIC devices and interface to ASIC vendors. Minimum of 3-5 years experience in board-level design and high speed CMOS design using ASIC technologies (gate array or standard cell). Knowledge and use of schematic capture, logic simulation and fault simulation tools (Verilog and/or Synopsys) desired. Working knowledge of $\mu \mathrm{P}$ and related architecture required. Disk, communication, VMEbus, Sbus and EISA bus experience are pluses. Prefer BSEE or equivalent experience.

Product Marketing Manager - Dallas, Tx.
Senior level candidate who can: formulate strategic plans, develop markets and size markets for INTERPHASE's EISA products, technologies, and protocols. Represent INTERPHASE at various national and international forums, committees and working groups. Act as Product Line Champion within the corporation. 8-10 years applicable engineering and/or marketing experience with VAR, VAD, and dealer channels desired. Prefer BSEE, BSCS or equivalent experience. M.B.A. is a plus.

of Performance!

Abstract

Applications Engineer - Dallas, Tx. Individual will provide second level technical assistance for customers and liaison between Customer Service and Engineering. Will maintain an in-depth product and system knowledge in order to identify and solve software and hardware problems. Assemble hardware, generate test scripts or programs (C, assembler, or shell language), and modify software drivers. Minimum of 3 years experience with C in an UNIX environment required. Systems administration experience a plus. Prefer BSCS or equivalent experience.

Systems Administrator - Dallas, Tx.

Candidate will be responsible for the administration of Engineering Service's UNIX based workstation network. Primary duties will involve VALID systems administration, training engineers, developing and maintaining on-line help, writing behávior models in C, supporting schematic entry, component packaging and simulation. Minimum of 2 years experience with UNIX, O/S administration, C programming, shell programming and networking required. Experience with PC-NFS, modeling and simulation desired. Prefer BSEE, BSCS or equivalent experience.

Software Engineer - Dallas, Tx.

Candidate will develop device drivers for various INTERPHASE products. Experience with UNIX, Kernal I/O, TCP/IP or other protocol experience on super-minicomputer or mini-computer required. Minimum five years writing UNIX device drivers required. BSCS required. MSCS preferred.

Networking Programmer - Mountain View, Ca.

 Individual will participate in the development of networking coprocessor products in a real-time environment. 3 years experience developing networking software in a real-time UNIX environment required. Working knowledge of TCP/IP, UDP and NFS/RPC desirable. Prefer BSCS, BSEE or equivalent experience. MSCS or MSEE a plus.
Software Performance Engineer - Mountain View, Ca.

 Candidate will benchmark and test networking products as well as interface with all OEMs/customers regarding performance issues. Minimum of 5 years experience with UNIX and C programming and 2 years of performance evaluation and benchmarking. Prefer BSCS, BSEE or equivalent experience. MSCS or MSEE a plus.
Software Engineer - Mountain View, Ca.

 Individual will install and patch install product related utilities, network management agents and user interfaces. Minimum of 3 years UNIX and C programming required. Experience with Bourne shell scripts, sed, awk, and systems administration desired. Exposure to NFS a plus. Prefer BSCS or equivalent experience. MSCS is a plus.
Systems Programmer - Mountain View, Ca.

Candidate will be resposible for integration of networking products into System V, Release 4 (VR4). VR4 driver experience and networking driver experience required. Knowledge of protocols is desired. Minimum of 4 years experiece required. Prefer BSCS, BSEE or equivalent experience. MSCS is a plus.

INTERPHASE CORPORATION offers competitive salary and excellent benefits. For immediate consideration, send resume to:

CORPORATION
Human Resources - Dept: ES10
13800 Senlac
Dallas, TX 75234
Fax: (214) 919-9200

Check Out What

 Hamilton/Avnet Has in Storage for You.$\mathrm{H}_{\text {amilton/Annet now has, in stock, the }}$ industry's first I megabyte and 4 megabyte, PCMCIA-compatible flash memory cards to help you achieve higher functionality in portable and dedicated applications. In fact, when it comes to data acquisition and firmware updates, Hamilton/Avnet has the knowledge and expertise to help you design-in flash memory cards...today!

And for applications incorporating DOS, Intel offers a flash system developer's kit that enables you to check out how easy it is to design-in flash memory cards.

To order your flash system developer's kit, a $\$ 499.95$ value, simply call Hamilton/Avnet. For the branch nearest you, call toll free, 1 (800) 888-9236. Or, for furher details, simply send in the coupon below.

Id like additional information on Intel's Flash Memory Card offering.

Name
Title
Company
Address
City
State \qquad
Phone
Application
Hamilton/Avnet. Dept. 175
P.O. Box 9000

San Fernando, CA 91341-9981

EDN's INTERNATIONAL ADVERTISERS INDEX

Abbott Ball	
Adaptec Products Co	
Advanced Micro	
N	
Ametek . .	
Atlanta Signal Processors Inc. 140	
Belden Wire \& Cable	
P Micro	
Burr-Brown Corp	
CAD Software Inc 139	
Cahners CAPS 143,	
Capital Equipment Corp 84	
Capilano Computer	
Cherry Electrical Products Inc 7	
ommunications Specialties	
Communication Specialists	
omptech	
Conner Peripherals	
Cybernetic Micro Sy	
Cypress Semiconductor	
Data Delay Dev	
Data I/O C	
Deltron Inc	
esign Comp	
Elco Corp	
Emulation Technology Inc 75, 152	
Force Computers Inc 22-23	
Gates Energy Products Inc 131	
Grammar Engine Inc 150	
Hamilton Avnet Electronics 123, 158	
Hewlett-Packard Co . . . C2, 10-11, 115	
Hitachi America Ltd* 50-53	
HyperLynxHypertronics Corp 152151	
Incredible Tech 152	
Innovative Software Systems 152	
Instrument Specialties Co Inc 49Intel $94-54$	
Intergraph Corp 43	
International Recti	
Interphase Corp	
usoft	
onwood	
Kepco Inc 18A-D	
Lansing Instrument Corp 15	
LeCroy Corp 151	
Lemo USA Inc 153	
Linear Technology Corp 132	
Link Computer Graphics In	
MathSoft Inc 142	
Matra MHS . 74	

Micro Crystal 149
Microstar Laboratories 151
MicroSim Corp 19, 36-37
Mini-Circuits Laboratories 20-21,
$30-31,120,137,160$
Molex Inc 141
National Instruments 2
National Semiconductor Corp . . . 32, 101
NEC Corp** 115
Nohau Corp 149
Noble 149
NordicTrack 79
Octagon Systems 151
Omron Electronics Inc 72
Pacific Hybrid Microelectronics 146
Pearson 146
Phihong Enterprise Co Ltd 148
Philips** 148E-H
Pico 148, 159
Planar Systems** 148L
Pontiac 116
Raltron 84
Raytheon 124
Ricoh 75
Rogers Corp 151, 153
SAAB** 148I-K
Samsung Semiconductor 14-15
Seagate Technology 26
Sharp Electronics 58
Siemens Corp* 16
Signum Systems 149
Silicon Systems Inc 47
Sony Corp of America 38
Stanford Research Systems Inc 65
Switching Power Inc 102
TEAC Corp** 16
Teledyne Solid State 85
Teltone Corp 153
Teradyne Inc 24-25
3M ISD 128
Tribal Microsystems 152
TRW LSI Products Inc 34-35
US Industrial Directory 48
US Software 150
Vicor . 45
Wavetek 3
Welch-Allyn 150
Ziatech Corp 1
Z-World 152
Zycad 76

Recruitment Advertising 154-157
Intel
Interphase Corp
Pacesetter Systems
Aurora Flight Sciences
*Advertiser in US edition
${ }^{* *}$ Advertiser in International edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

dc to 2000 MHz amplifier series

SPECIFICATIONS									
MODEL	FREQ. MHz	$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { AIN, d } \\ & 1000 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2000 \\ & \mathrm{MHz} \end{aligned}$	Min. (note)	- MAX PWR. dBm	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { PRICE } \\ & \text { Ea. } \end{aligned}$	\$ty.
MAR-1	DC-1000	18.5	15.5	-	13.0	0	5.0	0.99	(100)
MAR-2	DC-2000	13	12.5	11	8.5	+3	6.5	1.50	(25)
MAR-3	DC-2000	13	12.5	10.5	8.0	+8口	6.0	1.70	(25)
MAR-4	DC-1000	8.2	8.0	-	7.0	+11	7.0	1.90	(25)
MAR-6	DC-2000	20	16	11	9	0	2.8	1.29	(25)
MAR-7	DC-2000	13.5	12.5	10.5	8.5	+3	50	1.90	(25)
MAR-8	DC-1000	33	23	-	19	+10	3.5	2.20	(25)

NOTE: Minimum gain at highest frequency point and over full temperature range.

- 1dB Gain Compression
$\square+4 \mathrm{dBm} 1$ to 2 GHz

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers

Unbelievable, until now ...tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.,plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11 dBm output, noise figure as low as 2.8 dB , and up to DC-2000MHz bandwidth.
*MAR-8, Input/Output Impedance is not 50 ohms, see data sheet. Stable for source / load impedance VSWR less than 3:1
Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each. \dagger

Size (mils)	Tolerance	Temperature Characteristic
80×50	5%	NPO
80×50	10%	X7R
120×60	10%	X7R
T Minimum Order 50 per Value		
- Designers kit, kap-1,50 pieces of		
each capacitor value, only $\$ 99.95$		
ards		

Value
10, 22, 47, 68, 100, 220, 470, 680, 1000 pf $2200,4700,6800,10,000 \mathrm{pf}$
$022, .047, .068,1, f$

What good isapowerswitch that makese jellies and jams?

Whether you're designing controls for a line power switch to preserve uptime The IR8400 Quad Supervisory switch.
Its serial diagnostics keep you current at all times. From error flags for flash reporting through the detailed follow-up report on load, switch,
voltage, and temperature status. And it's not just smart, it's tough. The IR8400 is completely self-protected. Short-proof. Open-circuit proof. And practically bullet- $\boxed{30}^{\circ}$ proof, with power-limiting to operate and protect high-in-rush loads.

But that's not all. With one to fouramp flexibility, you get the super-
visory controls to manage any industrial application, or office and medical equipment over a 6 V to 28 V operating range.

Watching your uptime? Write or call for a data
sheet on the terrific IR8400: |-800-245-5549.
Even ifyou're not in jellies, it'll keep you out of jams.

And Now. Just one thing stands between you and your "hot" new design: a device programmer that can handle it. That's why the UniSite ${ }^{\text {TII }}$ Universal Programmer is the designer's first choice.

UniSite is always first to support the latest devices like the Altera Max, AMD MACH, ${ }^{\text {,x }}$ and the newest FPGAs. It also supports more
packages - including PLCCs and packages-including PLCCs and
LCCs up to 84 pins, pin grid arrays, and SOICs. UniSite is designed for the future. Data I/O®'s universal pin-driver technology eliminates pinout adapters, for single-site programming of each device type. And its new PinSite ${ }^{\text {TM }}$ programming module uses Data I/O's new Universal Package System, ${ }^{\text {"U }}$ to support all surface-mount packages from one site.

Adding device support is easy too, with UniSite's update diskettes. They're released quarterly, so you'll always have support for the latest devices - first.

FREE Programming Tutorial. For a FREE copy of our programming technology tutorial and more information about UniSite, call now.

> 1-800-3-DataIO $(1-800-332-8246)$

The Personal Silicon Experts

DATA I/O

Corporation

[^0]: * In Canada call 1-800-387-3867, Dept. 429.

 O1991 Hewlett-Packard Co. TMCOLI23/EDN

[^1]: EDN* (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN ${ }^{\text {is is a registered trademark }}$ of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\circ}$, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\circ}$ Copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert LKrakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Executive Officer; Robert LKrakoff, President and Chief Operating Officer; Willam M Platt, Senior Vice President. all other nations, $\$ 209.95 /$ year for surface mail and $\$ 329.95 /$ year for air mail. Single copies are available for $\$ 15$. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^2]: -London: (44) 071-409-0090 • Munich: (49) 89-129-8061 • Paris: (33) 1-47-47-41-08 • Aosta: (39) 125-800260 • U.S. - Boston: (617) 449-9550 • Dallas: (214) 680-2913 • Irvine: (714) 727-2462 • Minneapolis: (612) 449-5186 • San Jose: (408) 456-4500.

[^3]: Simple Switcher is a trademark of National Semiconductor Corporation. ©1991 National Semiconductor Corporation.

[^4]: *Call your Hitachi representative for availability.

[^5]: - 1991 Maxtor Corporation
 - Panther is a registered trademark of Maxtor Corp.

[^6]: Hardware-development system provides in-circuit emulation of as many as three DSP chips in real time.
 Stand-alone emulator board connects to PC.
 EPROM module. A ROMless version with EPROMs on a small board that plugs into a ROM-version socket.

[^7]: *12 Bit Settling Time

