Europe's Electromagnetic
Compatibility Law pg 57
High-density PLD
architectures \quad pg 75
Windows-based engineering software
pg 130
Writing Spice models pg 149

Special Report:
 DSP coprocessor boards share the workload with CPUs pg 108

Real-Time Software Performance Analysis and Test Coverage

HMI's Performance Analysis Card (PAC) provides real-time software performance analysis and real-time software test coverage for all HMI-200 series in-circuit emulators. This option operates completely transparent to the system under test and collects its data in real-time to establish a true profile of the software execution.

Features:

- Hardware implemented
- Up to eight modules can be defined
- Histograms for each module are displayed
- Minimum, Maximum and Average time duration for each module displayed
- Coverage mode displays which pieces of the code did and did not execute
- Trace data has a time stamp

Benefits:

- More efficient code produces higher performance products for your company
- Better tested code eliminates bugs generated from untested code and creates higher quality software for your company
- The Emulator and Performance Analysis together shorten the design cycle time allowing your company to have its window of opportunity in the marketplace
Available Emulators:

68000	68030	68340	68HC11 Family	8085
68008	68302	$6809 / 6809 \mathrm{E}$	includes D1 \& F3	$64180 /$ Z180
68010	68331	68HC001	DS5000	Z80
68020	68332	8051 Family	$8096 / 80196$ Family	

HUNTSVILLE MICROSYSTEMS, INC.
3322 South Memorial Parkway, Huntsville, AL 35801
(205) 881-6005

The phone book is full of magnetics suppliers. But one call to Dale ${ }^{\oplus}$ Electronics - can add more than just a supplier to your next project.

We have the breadth of line, the staff and the facilities to deliver the exact part you need, exactly on time. We can document this in many ways - including a customer list full of firms who've proven it's more efficient to turn in-house magnetics production over to us.

So tell us your needs: A molded, shielded inductor, a MIL-C-15305

model, a high-volume, roll-coated choke, a custom switch model design. Off-the-shelf or one of a kind, Dale can be the partner you need to provide time-saving cost-efficient magnetic components.

Call today or write for a copy of our expanded Magnetic Components Catalog Dale Electronics, Inc., East Highway 50, P.O. Box 180, Yankton, South Dakota 57078-0180 Phone: 605-665-9301.

Circle No. 1

MEASURE LEADTIMES W HOURS, NOT DAYS!

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and free catalog, call toll free: 1-800-344-4539

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to $+100^{\circ} \mathrm{C}$ span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24 mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS
Price (1-9 qty) YSW-2-50DR (pin)
ZYSW-2-50DR (connector)
YSWA-2-50DR (pin) ZYSWA-2-50DR (connector)

Frequency, (MHz)
Insertion loss, typ(dB) Isolation, typ (dB)

1dB compression, typ (dBm@in port)
RF input, max dBm (no damage) VSWR (on), typ
Video breakthrough
to RF, typ $(\mathrm{mV}$ p-p) Switching speed, typ (nsec)

50100	$\begin{aligned} & \text { dc- } \\ & 500 \end{aligned}$	1000	$\begin{aligned} & 500- \\ & 2000 \end{aligned}$		$\begin{aligned} & 2000- \\ & 5000 \end{aligned}$	
	0.91 .1		1.3	1.4	1.4	1.9
6554	50	37	40		28	
6360	42	37		31		20
	$20 \quad 18$		20	20	24	22.5
	22		22		26	
	20 ("off"	ort), 2	(tota			
	1.41 .25		1.4	1.35	1.4	1.5
	$30 \quad 30$		30	30	30	30
ec)	$3.0 \quad 3.0$		3.0	3.0	3.0	3.0

finding new ways
setting higher standards
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156
from \$450

UITRA-REL MIXERS
 5-YR. GUARANTEE *

Our tough SBL-mixers just got tougher, by including Mini-Circuits' exclusive Ultra-Rel diodes that can endure 160 hours of test at a scorching $300^{\circ} \mathrm{C}$. Rugged, more reliable mixers in your systems lower production and test costs and increase systems reliability.

Over the past fifteen years, millions of SBL-units were installed in formidable industrial and commercial applications. Under severe operating conditions, they have earned the reputation as the world's most widely accepted mixers, based on quality, consistent performance in the field, and lowest cost.

In addition to the Ultra-Rel diodes, each SBL contains components that can withstand the strenuous shock and vibration requirements of MIL-STD-28837 along with more than 200 cycles of thermal shock extending from -55 to $+100^{\circ} \mathrm{C}$. Every Ultra-Rel ${ }^{\text {TM }}$ SBL-mixer carries a five-year guarantee.

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered last year.

Tougher SBL-mixers, spanning 25 KHz to 2000 MHz , with $+7 \mathrm{dBm},+10 \mathrm{dBm}$, and +13 dBm LO models, priced from $\$ 4.50$ (10 qty) are available only from Mini-Circuits. Don't settle for a substitute or equivalent ... insist on Ultra-Rel ${ }^{\text {TM }}$ SBLs.

	Frequency	Conv. Lo	Iso	(dB)	LO Level	P
Model	(MHz)	${ }_{55}$ (dB)	L-R	L-1	(dBm)	(10 qty)
SBL-1X	10-1000	6.0	40	40	$+7$	6.25
BL-12	10-1000	6.5	35	25	+7	7.25
BL-1-1	0.1-400	5.5	35	40	+7	7.25
SBL-3	0.025-200	5.5	45	40	+7	7.25
- SBL-11	5-2000	7.0	3.5	30	+7	$\begin{array}{r}18.75 \\ \hline 50\end{array}$
	- $\begin{array}{r}\text { 2-500 } \\ 02-400\end{array}$	5.8	68	45	+10	5.50 8.25
BL-1 $\times 1$ L	10-1000	6.0	40	55	+10	7.25
L-2LH	5-1000	5.9	61	54	+10	8.25
SBL-3LH	07-250	4.9		53	+10	88.25
-	- ${ }_{\text {c-2000 }}$-500	5.5	45	40	+10 +13	19.75
SBL-1ZMH	2-1100	6.5	40	25	+13	11.70

* ULTRA•REL ${ }^{\text {TM M MIXERS }} 5$ yr. Guarantee

with extra long life due to unique HP monolithic diode construction, $300^{\circ} \mathrm{C}$ high temp. storage, 1000 cycles thermal shock, vibration finding new ways

On the cover: Faster coprocessor boards accelerate your computer's speed by keeping DSP (digital signal processing) functions on track while the main processor performs low-speed chores. EDN examines 38 DSP coprocessor boards and the technological trends they represent. See our Special Report on pg 108. (Photo courtesy Texas Instruments Inc; photography, Rusty Hill; art direction, Ken Martin)

SPECIAL REPORTS

DSP coprocessor boards

The technology in these number crunchers is developing so fast that about the only things moving faster are the instructions and data they handle. Besides faster $\mu \mathrm{Ps}$, architectural innovationsespecially parallel and pipelined processors-are adding to the boards' speed. But as is so often the case, software is struggling to keep pace.-Dan Strassberg, Associate Editor

Windows-based engineering software

The PC is the most popular computer for engineering development work, but lack of graphics-display and printing standards has blocked developing appropriate workstation-class engineering software. Windows 3.0 opens the flood gates. -Steven H Leibson, Executive Editor

DESIGN FEATURES

Techniques let you write general-purpose Spice models

By incorporating flexibility into your Spice models, you'll develop a library of accurate models that you can adapt for many applications, rather than reinventing the wheel every time. An example of such a model is a universal power converter.-David Caldwell, Consultant

Phase compensation extends op amp stability and speed

Because most op amps lack provision for altering internal phase compensation, circuit designers often add external compensation to counter the effects of capacitance loading and parasitic capacitance and inductance.-Jerald Graeme, Burr-Brown Corp

Continued on page 7

[^0]
Power Revelation

Our Westcor division's family of configurable AC or DC input fan cooled StakPAC switchers reveals a new world of power density and output flexibility to the system designer...whatever your power needs. Each StakPAC is built with field proven robotically manufactured Vicor VI-200 Series power components providing you the flexibility of a customized supply combined with the off-the-shelf availability of standard catalog products..."first article" StakPACS are typically delivered in 2 weeks.

Compact, up to $6 \mathrm{~W} / \mathrm{in}^{3}$, low profile StakPACs set the standard for "box"or open frame switchers. Besides meeting conducted EMI standards, custom configured StakPACs are pre-approved to UL, CSA, TÜV and VDE safety standards (DC Mini- in process).

MODEL POWER OUTPUTS INPUT

StakPAC	$1,200 \mathrm{~W}$	up to 8	$110 / 220$ VAC
MINI	600 W	up to 5	$110 / 220$ VAC
DC MINI	800 W	up to 5	5 Ranges

IMENSION (inches)
$3.2 \times 5.5 \times 11.5$
$1.9 \times 5.5 \times 12.2$
$2.5 \times 4.3 \times 12.2$

Whether your application is OFF-LINE or DC INPUT, chances are we have a solution for you...we are designed into computer, telecom, and test measurement systems worldwide. Please call us to discuss your needs, then relax...bulky standards and risky long lead-time custom supplies belong to the past. Discover the new world of configurable supplies: StakPAC, MiniStakPAC and DC Mini.

Call VICOR EXPRESS for information and be sure to ask for a StakPAC or DC Mini Handbook: (800) 735-6200 or (508) 470-2900 at ext. 265. Or call Westcor (west coast) at (408) 395-7050.

Milin VICDR

> VP/Publisher
> Peter D Coley
> Associate Publisher Mark Holdreith VP/Editor/Editorial Director Jonathan Titus Executive Editor Steven H Leibson Managing Editor Joan Morrow Lynch
> Assistant Managing Editor Christine McEIvenny Special Projects Gary Legg
> Home Office, Editorial Staff 275 Washington St, Newton, MA 02158 (617) 964-3030

> Tom Ormond, Senior Editor Charles Small, Senior Editor Jay Fraser, Associate Editor John A Gallant, Associate Editor Michael C Markowitz, Associate Editor Dave Pryce, Associate Editor
> Carl Quesnel, Associate Editor
> Susan Rose, Associate Editor Julie Anne Schofield, Associate Editor

> Dan Strassberg, Associate Editor
> Chris Terry, Associate Editor
> Helen McElwee, Senior Copy Editor
> James P Leonard, Copy Editor
> Brian J Tobey, Production Editor
> Gillian A Caulfield, Production Editor Editorial Field Offices
> Doug Conner, Regional Editor
> Atascadero, CA: (805) 461-9669
> J D Mosley, Regional Editor
> Arlington, TX: (817) 465-4961
> Richard A Quinnell, Regional Editor
> Aptos, CA: (408) 685-8028
> Anne Watson Swager, Regional Editor Wynnewood, PA: (215) 645-0544
> Maury Wright, Regional Editor
> San Diego, CA: (619) 748-6785 Brian Kerridge, European Editor (508) 28435

> 22 Mill Rd, Loddon
> Norwich, NR14 6DR, UK
> Contributing Editors
> Robert Pease, Don Powers,
> David Shear, Bill Travis
> Editorial Coordinator
> Kathy Leonard
> Editorial Services
> Helen Benedict
> Art Staff
> Ken Racicot, Senior Art Director
> Chinsoo Chung, Associate Art Director
> Cathy Madigan, Staff Artist
> Production/Manufacturing Staff
> Andrew A Jantz, Production Supervisor
> Sheilagh Hamill, Production Manager Melissa Carman, Production Assistant

> Diane Malone, Composition
> Director of Art Department
> Robert L Fernandez
> Norman Grat, Associate
> VP/Production/Manufacturing Wayne Hulitzky
> Director of Production/Manufacturing John R Sanders
> Business Director
> Deborah Virtue
> Marketing Communications Kathy Calderini, Manager Pam Winch, Promotion Assistant

TECHNOLOGY UPDATES

European EMC regulations:
 Europe lays down EMC Law

A law regulating the electromagnetic compatibility of many products takes effect in Europe on January 1, 1992. Deciding how to make the products conform will be up to the design engineer. -Brian Kerridge, European Editor

High-density PLD architectures:
 Family tree sorts out high-density PLDs

Bringing order to the welter of high-density programmable-logic devices is no easy task. After conferring with experts, EDN bravely offers this hopefully comprehensive and extensible overview.-Charles H Small, Senior Editor

EDITORS' CHOICES

CMOS monolithic 5-tap, delay-line IC 93
Surface-micromachined acceleration sensor 95

PRODUCT UPDATE

Low-power, $1.8-\mathrm{in}$. hard-disk drive

NEW PRODUCTS

Integrated Circuits 215
CAE \& Software Development Tools 223
Test \& Measurement Instruments 233
Computers \& Peripherals 247
Components \& Power Supplies 251
DEPARTMENTS
News Breaks 17
Signals \& Noise 29
Ask EDN 39
Calendar 40
Editorial 49
Design Ideas 199
Literature 257
Professional Issues 261
Career Opportunities 273
Business/Corporate Staff 278
EDN's International Advertisers Index 280

[^1]
At ${ }^{\mathrm{s}} 60,000$ each, only two of t

Option A Arilible from most EDA supplier

The Conventional Workstation Package

There used to be only limited choices. For $\$ 60,000$ or so, you could get overpriced EDA software and a single PCB design environment. It also came with free, virtually endless levels of frustration, because these systems are hard to use and even more difficult to learn. Which made productivity look something like an inverted bell curve.

Option B Azilable enly from orcad

The OrCAD Sun Productivity Package

Now, OrCAD brings you better options - OrCAD EDA tools and a high-performance UNIX ${ }^{\circledR}$ environment on the Sun SPARCstation ${ }^{\text {™ }}$. Put OrCAD tools in the hands of an entire PCB design team for the same $\$ 60,000$ or so. Get four times as many workstations. And with OrCAD's intuitive, easy-to-learn tools, your designers will set a new precedent for productivity.

hese EDA options make sense

Option C Available only from OrCAD
The OrCAD Sun Vacation Package

Or with the same budget, you can set up one PCB designer with a truly inspiring, high-performance environment, including a hot car, a fast boat, and a view!
With OrCAD EDA tools and a Sun SPARCstation, you'll have enough cash left over to requisition these extras. It's outrageous. But it is a feasible solution to creating exceptionally happy, motivated design engineers.

> To find out how OrCAD

can solve your PCB design challenges, call us today at (503) $690-9881$ for the sales office nearest you.

More Designs From More Designers Than Anyone in the World

hours and 45 minutes (100%) longer battery life than the i386SX-20. Or 2 hours (57%) longer than the i386SL-20.

The Am386SXL-25 and Am386DXL-33 microprocessors are available now in PQFP packages for the most compact notebook and palmtop designs ever. Our Am386DXL-40 CPU is available in standard PGA. Better still, they're now shipping in quantity.

So if you want longer battery life from your next design, it's time to retire that old 386.

Call 1-800-222-9323. And rest easy with a low power Am386 microprocessor.

7
 Advanced Micro Devices

"Were Not Your Competition."
901 Thompson Place, PO. Box 3453. Sunnyvale. CA 94088. © I991 Advanced Micro Devices, Inc. Am386 is a trademark of Advanced Micro Devices. Inc. All brand or product names

IN MEMORY MOD CROSSOVER HAS J

You've heard the old saying, "we'll cross that bridge when we come to it." Well, we have.

Cost crossover today makes $4-m e g$ DRAMs more economical per bit than 1-meg DRAMs. And given all the benefits in reliability and board real estate, that's good news.
M, MEMORY MODULES

People are lining up to take advantage of it.

One specific advantage is in memory modules. Samsung 4-meg-based modules are actually more cost-effective today than their 1-meg-based counterparts.

All the modules listed here have reliability specs based on 600 temperature cycles $\left(0-125^{\circ} \mathrm{C}\right)$ and 500 hours $\left(85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}\right)$. Available features include 70,80 , and 100 ns access

ULES, COST-PER-BIT UST BEEN COMPLETED.

times, fast page mode, low-power versions, gold lead finish, and customerspecific labeling.

SAMSUNG MEMORY MODULES
 BASED ON 4-MEG DRAMs

Megabytes	Part Number	Organization
1	KMM581000AN	$1 \mathrm{M} \times 8$
1	KMM591000AN	$1 \mathrm{M} \times 9$
4	KMM584000A	$4 \mathrm{M} \times 8$
4	KMM594000A	$4 \mathrm{M} \times 9$
4	KMM5321000A	$1 \mathrm{M} \times 32$
4	KMM5331000A	$1 \mathrm{M} \times 33$
4	KMM5361000A	$1 \mathrm{M} \times 36$
8	KMM5322000A	$2 \mathrm{M} \times 32$
8	KMM5332000A	$2 \mathrm{M} \times 33$
8	KMM5362000A	$2 \mathrm{M} \times 36$

Samsung is one of the world's leading manufacturers of both DRAMs and memory modules. Our outstanding quality, reliability, and availability have helped us gain this leading position.

For data sheets on our 4-meg DRAMs and 4-meg-based modules, call 1-800-423-7364 or (408) 954-7229 today. Or write to Memory Module Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.

HAMSUNG

Technology that works for life.
CIRCLE NO. 12

WE DESIGNEDTHE BEST A/D CONVERTER IN NO TIME ATALL. BUT THEN,WE HAD A 30-YEAR HEAD START.

8-bit resolution. 40 Msps . Two-step architecture and CMOS technology that reduces power dissipation to less than 180 mW .

All with a significant cost advantage. And all from a single +5 Volt power supply.

That is the TMC1175, developed in only months by TRW LSI Products Inc. But then, that's what you can expect from the industry leader in high-performance A / D converters.

Our years of setting standards have given us the ability to respond quickly to changing needs in the industry, continually improving our line of products in terms of performance and cost. The same dedication to perfection that earned us an Emmy award in 1989 for video technology.

With the TMC1175, video driving amplifiers can be eliminated. The Track-and-Hold circuit is built-in; so is the voltage reference. All digital inputs and three-state outputs are TTL-compatible. And all performance specifications are guaranteed over the $20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ temperature range.

All of which makes the TMC1175 excellent for Digital Television designs. Video Digitizing. Image Scanners. Multimedia. And low cost, high speed Data Conversion. It can even be used in PC video board designs.

The TMC1175 is available in 24 -pin plastic skinny DIP, 28 -lead PLCC and 24-lead plastic SOIC (small outline) suitable for surface mount applications.

And of course, TRW LSI backs you with all the support you need. With field and in-house application engineers. Application notes. And a full line VLSI Data Book.

All with the full spec performance that is synonymous with TRW standards.

Ask for the Data Sheet, applications and other information on the TMC1175 today. You'll agree, it's an A/D converter that meets your standards. From the company that has been setting them for years.

TMC1175 differential phase

TMC1175 differential gain

Call or write: TRW LSI Products Inc., P.O. Box 2472, La Jolla, CA 92038 (619) 457-1000, FAX (619) 455-6314 (800) TRW-LSIP (800) $879 \cdot 5747$

TRW LSI Products Inc.

Want some great news about GaAs? Check into HP. As a leader at the forefront of GaAs technology, we've got a full line of high performance products to choose from.
Consider our GaAs MMIC attenuator, the only device in the world operating from DC-50GHz. Its wide attenuation range, exceptional bandwidth, and fast switching speed make it ideal for automatic gain control, amplitude, and pulse switching.
Our line of GaAs Schottky diodes is optimized for $26-60 \mathrm{GHz}$. But its low series resistance and low
capacitance ensures a high cutoff frequency, giving you solid performance from 5 GHz to 100 GHz .
If you're looking for the right general purpose switch, switch to HP. Our new broadband GaAs MMIC SPDT devices offer low insertion loss and high isolation for improved system performance from DC-6GHz.
HP's great GaAs news also includes a family of high-gain, high-power MMIC traveling wave amplifiers. Each is designed to operate from $2-26.5 \mathrm{GHz}$,
and $100 \% \mathrm{RF}$ tested to provide guaranteed spec performance.
No wonder HP sets the standard for quality, reliability, and innovation. If you'd like more information about HP's broad line of highperformance GaAs products and a listing of your nearest HP Components distributors, call 1-800-752-0900, ext. 2396. And step on the GaAs.

There is a better way.

NEWS BREAKS

VARIABLE-GAIN AMPLIFIER KEEPS BANDWIDTH CONSTANT

You can vary the gain of Analog Devices' AD600 and AD602 dual amplifiers from 0 to 40 dB and -10 to 30 dB , respectively, without affecting the $35-\mathrm{MHz}, 3-\mathrm{dB}$ bandwidth of the device. The amplifiers comprise a fixed-gain amplifier preceded by a variable attenuator. The attenuator is made up of a 7 -section $R-2 R$ ladder network, which continuously interpolates between the tap points. The result is very accurate gain; the gain error is $\pm 0.5 \mathrm{~dB}$ max at the extremes of the voltagecontrol range and $\pm 0.2 \mathrm{~dB}$ max in the center. The attenuator also prevents large input voltages from reaching the fixed-gain stage, letting its design be optimized for low noise. This fact combined with the linearity of both the attenuator and fixed-gain stages leads to low noise and THD specifications of $1.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and -60 dBc , for $\pm 1 \mathrm{~V}$ outputs, respectively.

The amplifiers implement, in terms of dB , a linear gain law. For example, applying a gain-control voltage of -0.625 to +0.625 V , the gain of the AD600 increases linearly from 0 to 40 dB . Group delay is stable and typically $\pm 2 \mathrm{nsec}$. The amplifiers are optimized for driving flash ADCs in ultrasound applications, but also apply to those circuits that require a combination of precise gain, low noise and distortion, and wide bandwidth. Each amplifier dissipates a maximum of 125 mW . The $\$ 15$ (100) amplifiers are available in either 16 -pin DIPs or SOICs, and operate over a 0 to $70^{\circ} \mathrm{C}$ temperature range. Analog Devices Inc, Wilmington, MA, (617) 937-1428, FAX (617) 821-4273.-Anne Watson Swager

COMBINATION OPTICAL DRIVE FITS $3^{1} / 2-$ IN. FORM FACTOR

The $3^{1 / 2}$-in. OD- 3000 multifunction optical drive stores 128 M bytes using MO (mag-neto-optical) technology and can read optical ROM (O-ROM) disks. The MO media can withstand 10 million write cycles and still record data reliably, where other rewritable optical technologies typically limit media to 10,000 write cycles. The drive features a 3000-rpm rotational speed that results in an average rotational-latency spec of 10 msec . The drive requires an average of 42 msecs to seek to data. Other key specs include llW power dissipation during read/write operations and 2.6W when the drive is inactive. The drive can read data continuously from disk at 640 k bytes/sec and write data continuously at 203 k bytes/sec. The drive costs $\$ 1050$ (1000) and the rewritable media costs $\$ 60$ per disk. Teac America Inc, Montebello, CA, (213) 726-0303, FAX, (213) 727-7621.-Maury Wright

SCSI BUS MONITOR PROVIDES MENU-DRIVEN DEBUGGING

For $\$ 895$, you can buy Workstation Products Inc's Pathfinder 1000 SCSI bus monitor, which analyzes the activity on your bus- or debug-driver software. Plug this device between your SCSI bus and an ASCII terminal to achieve nonintrusive synchronous or asynchronous monitoring. The device does not use an address on the SCSI bus. In its run mode, the monitor captures commands and data until its event buffers are full. In continuous mode, the monitor continues to capture data until you stop it. In trigger mode, you can specify the condition under which the device begins or stops capturing data. The monitor comes with 2 kbytes of memory, a power supply, manual, and a 6 -in. SCSI cable with a $50-\mathrm{pin}$ connector. A monitor with 8 kbytes of memory costs \$995. Workstation Products Inc, Richardson, TX, (214) 6699587.—J D Mosley

LOGIC-ANALYZER FAMILY BETTERS PRICE/PERFORMANCE RATIO

The TA4000 series of logic analyzers from Thurlby-Thandar embodies a range of advanced features at a bundled price substantially below competitor's products. Three models offer a choice of 32,48 , or 80 channels. Asynchronous sampling is at 100 MHz max across all channels, or at $400 \mathrm{MHz} \max$ across 8 or 16 channels. Memory depth at 100 and $400-\mathrm{MHz}$ sampling is 2 and 8 kwords, respectively. A 5 -nsec glitch capture operates on eight channels without loss of memory depth. Synchronous sampling is at 50 MHz max across all channels, and includes an 8 -level branching-trigger facility that steps at up to 20 nsec . Optional disassemblers cover a range of 8 -, 16 -, and 32 -bit μ Ps. In addition to internal nonvolatile memory, you can store 512 kbytes of data on a front-panel plug-in memory card. Included as standard in the price are interfaces for IEEE-488, Centronics, RS-232C, and composite video. The $32-, 48$-, and 80 -channel logic analyzers cost $£ 2495$, £2995, and $£ 3995$, respectively. Disassemblers cost £195. Thurlby-Thandar Ltd, Huntingdon, UK, (480) 412451, FAX (480) 450409.-Brian Kerridge

FHNGINEERING SPREADSHEFT WORKS WITH PICTURFS

If you've adapted Lotus l-2-3 to help you analyze data and complex functions, you've sacrificed the visual impact of looking at plots, graphs, and curves. DSP Development Corp's Dadisp (Data analysis and display) provides the spreadsheet's utility while maintaining the visual effect of your data. The data analysis software, which runs on PCs and under the X-Window system on most common workstations, accepts data from numerous sources, including ASCII and binary file formats and many data-measurement and -acquisition devices. Additionally, you can manually enter data sets into a spreadsheet-like table. Once entered, you view and manipulate the data either graphically or in tables. The software includes a range of mathematical, statistical, and engineering functions and lets you create and add custom functions as needed. Special functions include contour plotting, density plots, spectral 3 -D plots, and 4-D plots. The user interface provides as many as 100 windows that operate as cells in the X-Y dimension of a 3-D spreadsheet; changing data in the Z-dimension of a cell causes the software to recalculate all dependent data in other cells. You can overlay data and zoom in and out of windows as needed. The software starts at $\$ 895$. The PC version costs $\$ 1695$. DSP Development Corp, Cambridge, MA, (617) 577-1133, FAX (617) 577-8211.-Michael C Markowitz

DRIVERS LET YOU COMPARE DRAWINGS IN AUTOCAD

Nth Graphics's Nth Drive display-list processing software and Nth Engine displaycontroller drivers now include a drawing management and viewing module called Nth View/AC, which lets you open an unlimited number of AutoCAD .DWG files for viewing and plotting without leaving your active drawing. This module produces display-list zooms and real-time pans. An icon-based interface and a command window called the Top N provide pop-up control of your screen. Each drawing you add to the screen appears in a window that you can size, move, and overlap onto other windows. In addition, a garbage-collection scheme works continuously in the background to purge the display list of each vector you erase or move during an edit session. The display controller with a suite of drivers starts at $\$ 995$. The processing software sells for $\$ 595$. Both products include the drawing management module. Nth Graphics Ltd, Austin, TX, (800) 624-7552 or (512) 832-1944, FAX (512) 832-
5954.-J D Mosley

A REVOIUTIONARY ADVANCE IN SPARC MULTIPROCESSING.

The industry's first integrated SPARC* multiprocessing solution - the CY7C605 Multiprocessing Cache Controller/MMU.
High-performance systems designers have migrated to RISC in a race for performance. Just as rapidly, there is a movement to multiprocessing, which represents the most cost-effective way to load more power into a single system.
Multiprocessing RISC design is not simple. There are substantial technological challenges, particularly in the area of multi-level memory systems.
Now we offer a breakthrough to help you implement multiprocessing systems rapidly.

Cache coherency without stealing processor cycles - a leap in performance.

Maintaining cache coherency is one of the biggest problems to solve in shared memory multiprocessing systems.
This approach solves it.

Pin compatible with our CY7C604 Uniprocessing Cache Controller/MMU, this new device lets you cascade to build cache size to 256 K .

SPARC multiprocessing is now enabled. Now you can design-in multiple high-performance SPARC chipsets. Our revolutionary Multiprocessing Cache Controller and Memory Management Unit (CMU-MP/CY7C605) provides memory management facilities and a unique cache architecture for higher performance. Our complete SPARC chipset solution shortens your time to market.

It is the only VLSI solution that performs concurrent bus snooping and processor execution.
Our unique dual cache tag directories provide for simultaneous bus snooping and processor access to cache. No other cache management unit provides dual tags on-chip.
As a result, your system maintains cache coherency without stealing execution cycles from the microprocessor.
You get multiprocessing with the most efficient cache coherency protocol available, allowing data to pass from CPU to CPU in a single clock cycle. That translates directly to higher performance systems.

MBus compliant.

MBus compliance means you have a SPARC-standard, plug-and-play route to even more powerful, higher rewing systems.

An integrated part of the industry's highest performance SPARC chipset.

Our chipset approach simplifies the complexities of multiple CPUs working together in a shared memory system.
This VLSI solution means you don't have to design and pay for boards full of logic to accomplish fast multiprocessing.

It is all available now.
For more information on the industry's most complete multiprocessing solution, please call for our literature package today.

SPARC	Multiprocessing Information Hotline: 1-800-952-6300. Ask for Dept. C4V.

[^2] SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.

DESIGN SFRVICE VALIDATES HIGF-SPEFD INTERCONNECTS

AMP is now offering design analysis and support through AMP Interconnection Systems to provide performance prediction and validation of critical high-speed digital and analog systems. This service can benefit any design that includes fast-edge-rate logic requiring transmission-line performance through the interconnects. The analysis capabilities include critical net simulation, crosstalk and noise margin prediction, timing verification, and EMI/EMC, thermal, and power-distribution analysis. Services include connector and subassembly characterization and activedevice modeling; connector, cable, net-topography, system-impedance, and layoutrules recommendations; waveform analysis; components placement optimization; and backplane and board layout design. Price for the service varies with customer requirements. AMP, Harrisburg, PA, (800) 522-6752, FAX (717) 986-7575.
-Anne Watson Swager

RASTER-IMAGE ACCELERATOR IC RENDERS FONTS IN REAL TIME

The D7001 IC renders outline fonts on the fly in graphics-display and page-printer applications. The IC can render outline fonts scaled to any size fast enough for laser printers to print at full engine speeds of 17 pages per minute and slower. A single IC can also be used in mother-board graphics applications to directly drive WYSIWYG (what you see is what you get) display and printer engines. You can use the IC in applications with fonts based on Bezier curves, B-spline curves, and vectors. The chip includes multiple filling algorithms to handle both Roman characters and Kanji glyphs. For 12-point type at 300 -dpi-resolution fonts, the IC can render more than 7500 cps . Available now for $\$ 35$ samples, the IC comes in a 144 -pin quad flatpack. Destiny Technology Corp, Milpitas, CA, (408) 262-9400, FAX (408) 262-0221.
-Maury Wright

GATE-ARRAY FAMILY OFFERS HIGH I/O-TO-GATE RATIO

The HG62S gate-array family from Hitachi offers as many as two I/O pins for each 100 used gates. Family members come in sizes from 14,451 to 34,797 raw gates, with 160 to 240 I/O pads. The array uses $0.8-\mu \mathrm{m}$, 2-layer metal CMOS technology, has input buffers with 0.8 -nsec propagation delay and output buffers with 1.8 -nsec delay and 24-mA drive. Internal gate delays are 0.3 nsec for a 2 -input power NAND with a fanout of two. The devices are available in EIAJ plastic quad flatpacks in 64- to 208 -pin sizes at a cost of $\$ 0.07$ to $\$ 0.10$ per pin (10,000). Hitachi America Ltd, Brisbane, CA (415) 589-8300, FAX (415) 583-4207.—Richard A Quinnell

DEVICE CONVERTS CMOS SRAM INTO NONVOLATILE MEMORY

More than just a power source for static RAMs (SRAMs), the bq2502 Integrated Backup Unit from Benchmarq provides power monitoring and switching for one or two banks of RAM. This encapsulated DIP module contains a nonvolatile-SRAM controller chip and a 3 V lithium battery. To avoid accidental discharge and simplify handling procedures, the manufacturer ships each module with its battery-output pin electrically isolated. After installation, the module monitors V_{CC} to detect an out-of-tolerance power supply, switches to the internal battery supply if V_{CC} decays, write-protects the memory during power failures and during system power-up, then switches back to the V_{cc} supply when reliable operation resumes. Priced at $\$ 6$ (1000), these modules come in 12 -pin DIPs that are less than $0.375-\mathrm{in}$. tall. Benchmarq Microelectronics, Carrollton, TX, (214) 407-0011, FAX (214) 407-9845, contact John Landau.-J D Mosley

Why Settle for $1 / 2$ an 040 Board?

You've chosen the '040 because you 5 need maximum performance in your VME system. But look carefully, because other Single Board Computers may only give you only half of what you expected from the ' 040 .

Compare Synergy's SV430 performance to any other SBC. Compare bus speed, MIPs, support, flexibility, documentation, reliability, I/O intelligence or any spec you can think of. We think you'll find the same thing we did-the
the market by as much as 150%.
Surprisingly, this kind of quality won't cost you any extra, because Synergy products lead in another important area-value. At Synergy, you don't have to pay a premium price for premium performance.

Let us show you just how far ahead your system can be with a Synergy processor board. Call us today, and get the whole '040 story.

Compare our specs. Synergy is superior across the board!

VME Transfers VME64 doubles bus performance to $66 \mathrm{MB} / \mathrm{s}$ - and the SV430 is the only ' 040 board that has it. But we don't need VME64 to win this comparison.
Even normal 32 -bit transfers race at $33 \mathrm{MB} / \mathrm{s}$. That's 200% faster than Force or Motorola.

I/O Modules
Synergy's EZ-Bus modules are compatible with our entire line of SBCs. This means Synergy's current line of 12 intelligent I/O modules are immediately available for the SV430 - today. No other vendor comes close for selection, functionality or availability.

Data from Motorola MVME165 data sheet dated 2/90, and Force CPU-40 data sheet AI Rev. 1. DRAM measurement shown are with parity. VMEbus transfers are to a 60 ns slave

VME64 is a trademark of Performance Technologies. Inc

DRAM
Burst Rates
A $25 \mathrm{MHz}{ }^{\prime} 040$ is capable of accessing memory at $80 \mathrm{MB} / \mathrm{s}$. The closer you are to this maximum, the more '040 performance you're gaining. SV430 bursts are 26\% faster than Force and Motorola.

'020/'030 Compatibility Software compatibility between Synergy SBCs means users have simple upgrades to the SV430 from our '020 and
'030 SBCs. Force offers compatibility only from the ' 030 level, and Motorola offers "upward migration"-a polite phrase that means rewriting your code.

faster than Force or Motorola, it the on-board memory - 32 MB.

2 years		Product Warranty
Synergy backs		
the reliability of		
its SBCs with a		
two year standard		
warranty. Force		
and Motorola		
only offer		
you one.		

dc to $3 \mathrm{GHz}=\$ 1745$ lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40 dB stopband rejection
- 5-section, $30 \mathrm{~dB} /$ octave rolloff - VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount • over 100 off-the-shelf models • immediate delivery
low pass dc to 1200 MHz

MODEL	PASSBAND, MHz (loss <1dB) Min.	fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) \quad (loss $>40 \mathrm{~dB}$)			VSWR pass- stop- band band typ. typ.		$\begin{gathered} \text { PRICE } \\ \text { Oty } \\ (1-9) \end{gathered}$
			Max.	Max.	Min.			
PLP-10.7	DC-11	14	19	24	200	1.7	18	11.45
PLP-21.4	DC-22	24.5	32	41	200	1.7	18	11.45
PLP-30	DC-32	35	47	61	200	1.7	18	11.45
PLP-50	DC-48	55	70	90	200	1.7	18	11.45
PLP-70	DC-60	67	90	117	300	1.7	18	11.45
PLP-100	DC-98	108	146	189	400	1.7	18	11.45
PLP-150	DC-140	155	210	300	600	1.7	18	11.45
PLP-200	DC-190	210	290	390	800	1.7	18	11.45
PLP-250	DC-225	250	320	400	1200	1.7	18	11.45
PLP-300	DC-270	297	410	550	1200	1.7	18	11.45
PLP-450	DC-400	440	580	750	1800	1.7	18	11.45
PLP-550	DC-520	570	750	920	2000	1.7	18	11.45
PLP-600	DC-580	640	840	1120	2000	1.7	18	11.45
PLP-750	DC-700	770	1000	1300	2000	1.7	18	11.45
PLP-800	DC-720	800	1080	1400	2000	1.7	18	11.45
PLP-850	DC-780	850	1100	1400	2000	1.7	18	11.45
PLP-1000	DC-900	990	1340	1750	2000	1.7	18	11.45
PLP-1200	DC-1000	1200	1620	2100	2500	1.7	18	11.45

high pass dc to 2500 MHz

MODEL NO.	PASSBAND, MHz(loss <1dB)		fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) \quad (loss $>40 \mathrm{~dB}$)		VSWR		$\begin{aligned} & \text { PRICE } \\ & \mathbf{\$} \\ & \text { Oty. } \\ & (1-9) \end{aligned}$
	Min.	Min.		Min.	Min.	typ.	typ.	
PHP-50	41	200	37	26	20	1.5	17	14.95
PHP-100	90	400	82	55	40	1.5	17	14.95
PHP-150	133	600	120	95	70	1.8	17	14.95
PHP-175	160	800	140	105	70	1.5	17	14.95
PHP-200	185	800	164	116	90	1.6	17	14.95
PHP-250	225	1200	205	150	100	1.3	17	14.95
PHP-300	290	1200	245	190	145	1.7	17	14.95
PHP-400	395	1600	360	290	210	1.7	17	14.95
PHP-500	500	1600	454	365	280	1.9	17	14.95
PHP-600	600	1600	545	440	350	2.0	17	14.95
PHP-700	700	1800	640	520	400	1.6	17	14.95
PHP-800	780	2000	710	570	445	2.1	17	14.95
PHP-900	910	2100	820	660	520	1.8	17	14.95
PHP-1000	1000	2200	900	720	550	1.9	17	14.95

bandpass 20 to $\mathbf{7 0 M H z}$

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	CENTER FREQ. MHz FO	PASS BAND, MHz (loss $<1 \mathrm{~dB}$)		$\begin{array}{cc} & \text { STOP BAND, MHz } \\ (\text { loss }>10 \mathrm{~dB}) \quad(\text { loss }>20 \mathrm{~dB}) \end{array}$				VSWR 1.3:1 typ. total band MHz	$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Cty. } \\ (1-9) \end{gathered}$
		Max. F1	Min. F2	Min. F3	Max. F4	Min. F5	Max. F6		
PIF-21.4	21.4	18	25	4.9	85	1.3	150	DC-	14.95
PIF-30	30	25	35	7	120	1.9	210	DC-330	14.95
PIF-40	42	35	49	10	168	2.6	300	DC-400	14.95
PIF-50	50	41	58	11.5	200	3.1	350	DC-440	14.95
PIF-60	60	50	70	14	240	3.8	400	DC-500	14.95
PIF-70	70	58	82	16	280	4.4	490	DC-550	14.95

narrowband IF

Presenting the
 biggest little innovation in software
 history.

Ask any computer maker; our little memory cards are big news. And the software media of choice for the next generation of portable systems.

The little, palmsized systems driving tomorrow's market won't have room for heavy floppy drives and hard disks. They'll take their software "to go.' In the form of 68 -pin memory cards from Fujitsu Microelectronics.

As the leading maker of 68 -pin memory cards, Fujitsu did more than pioneer a new technology. We took a leading role in making it the international standard.*

Which means that the software you put on our memory cards will run on a whole new generation of portable computers.

It also means that we have a head start in producing an entire family of

FUJITSU MICROELECTRONICS, INC.
Integrated Circuits Division
3545 North First Street, San Jose, CA 95134-1804.
1-800-642-7616.

Oki's Advanced ASIC Tools Reduce Your Risk.

As an ASIC designer for highperformance systems, you know the sinking feeling of working for weeks on a highdensity design-only to have it crash. You know the risks involved in designing with tools that offer no assur-ances-Will path delays meet spec? Will routed signals violate timing? Will power problems cause unexpected voltage drops?

Oki's advanced tools provide the lift you need to dive comfortably into the highest levels of ASIC design:

Timing-driven layout -

enables control of critical net and path delays, better ensuring a design-to-silicon match.

Clock tree structures -

automatically route logic signals where you want them and when you want them, optimizing clock distribution.

Power calculator - locates and corrects power distribution and dissipation problems, increasing overall system reliability.

Coupled with our $0.8 \mu \mathrm{~m}$ leading-edge sea-of-gate technology and our high-level support-such as Verilog, Synopsys, and IKOS - these Oki software tools not only optimize ASIC performance but also optimize design time.

So go ahead and take the plunge. Call 1-800-OKI-6388, Dept. 050, for Oki's ASIC capabilities brochure. See how risk-free ASIC design can be.

Oki ASIC Design Tool Support for $0.8 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}$, and $1.2 \mu \mathrm{~m}$

Vendor	Platform	Operating System/Rev	Description
Cadence	Sun/SPARC	Sun OS 4.1.1	Simulation Solbourne
Verilog 1.5C	Fault grading Design verification		
IKOS		4.0 up	Simulation Fault grading
Mentor	HP/Apollo	DNIX 5.03, Sun OS 4.1.1	Capture
Graphics	DNx Series	Digital application 6.1	Simulation
	Digital application 6.3	Design check	
	HP9000	Digital application 8.0 (in qualification)	
	Sun/SPARC	Parade	Layout
	Solbourne		Clock Structures
Synopsys	Sun/SPARC	Sun OS 4.1.1	Design synthesis
	Interface to Mentor, Valid, Viewlogic	Test synthesis	
Valid	Sun/SPARC	Sun OS 4.1.1	Design capture
	Sun-3	GED, ValidSIM,	Simulation
	RECstation 3100	RapidSIM	ULTRIX, ValidSIM, GED
	IBM RS6000	GED, ValidSIM, RapidSIM	
Viewlogic	Sun/SPARC	Sun 0S 4.1.1	Design capture
		Workview 4.0	Simulation
	PC386	DOS 3.3, Workview 4.0	

TRANSFORMING TECHNOLOGY INTO CUSTOMER SOLUTIONS

WHEN YOU PLUNGE INTO ASIC DESIGN, YOU WANT SUPPORT TOOLS THAT WORK.

OKI

Semiconductor
785 North Mary Avenue
Sunnyvale, CA 94086-2909
1-800-0K1-6388, Dept. 050

Introducing the New Generation

A
 New
 Classic

We designed our new 12-bit CMOS A/D
converter with you in mind. . . by adding several innovative features to the standard ADC574 pinout. ADS574 and ADS774 drop into most applications without any system modifications, use minimal power, and operate from a single +5 V supply. Complete with on-chip sample/ hold, clock, reference, $\mu \mathrm{P}$ interface, three-state outputs, and internal scaling resistors, ADS574 and ADS774 set a new standard for your design.

A New Standard in Savings

ADC574 input ranges, ADS574 and ADS774 use only one-fourth the power of that old standard. On-chip sampling combined with our new skinny-DIP package ($0.3^{\prime \prime}$ wide) or SOIC gives you a lot more board space. And, our pricing sets a new standard-starting at \$14.15*

Replace your old standard with our new classic and save...design time, power, board space and money. Designed to operate from a single power supply while still supporting all of the

Innovative Features

- Throughput time (acquire \& convert) $25 \mu \mathrm{~s}$ max........ADS574 $8.5 \mu \mathrm{~s}$ max.......ADS774
- Power consumption 100mW max...ADS574 120 mW max...ADS774
- Single +5 V supply
- Guaranteed AC, DC performance
- Industry standard input ranges
- Industry standard digital interface
- Compact $0.3^{\prime \prime}$ or $0.6^{\prime \prime}$ wide 28-pin plastic or ceramic DIP, 28-pin SOIC, die
- From \$14.15*

Try it

We're so convinced that our new parts are the next industry standardwe'll give you the first one free! Just call
1-800-548-6132 for samples and detailed data sheets or contact your local Burr-Brown sales office for assistance.

Burr-Brown Corp.

P.O. Box 11400

Tucson, AZ 85734

* U.S. OEM prices, in 100s.

BURR-BROWN

Questionable values appear in table

In J D Mosley's article, "Improvements unleash new application areas" (EDN, October 11, 1990, pg 97), there is a mistake in Table 1. The data corresponding to Optical Output Power are in fact the data corresponding to Total Power Dissipation. Values of about 100 mW of optical output power for the IREDs (infrared emitters) are far off the values of commercial products.

I have verified the values of the Motorola IREDs in the manufacturers' data book:
MLED71
Total power dissipation . . 90 mW
Power output 5 mW

MLED930

Total power dissipation . . 250 mW Power output 4 mW

It's impossible to check the other IREDs, but I think they are also wrong.

One of the most important applications for these devices is in optical communications; for a good comparison, an additional column should indicate the speed, such as rise and fall times.
Francisco J Gabiola Ondarra
Profesor Titular de EU
Dpto-Ingenieria Electronica
ETSI Telecomunicacion
Ciudad Universitaria S/N
Madrid, Spain
(Ed Note: In Table 1, I used the Motorola Semiconductor values listed in the Motorola data book.)

How discontinued parts affect engineering design

We have had the experience of designing a part (Allegro Microsystems UCN5825B) into a product, and then, just as we introduced the product, found out that the company was discontinuing the part. The part is advertised in the 1991

IC Master, and our distributor [at the time of this writing] had not been informed that the part was discontinued. We found out by accident when calling an applications engineer at the company about another problem.
This part is a BiMOS combination of a shift-register and high-voltage driver. It has four outputs, each of which can handle a 2 A drive. Not only is there not a second source for the part, no other part even comes close-at least none that we can find. We not only have to redesign the board, but we also have to either change specifications or squeeze in two packages where one served before.
Perhaps we were foolish in using a single-sourced part, even if it has been available for several years, but most of the company's parts in this category are single sourced. Why would anyone ever use any of them if he or she seriously suspected that the parts would be abruptly discontinued?
I understand that the company has been bought by a foreign company. Do the new owners think that this method of operation is going to protect their investment?
Norman L Rogers
President
Z-World Engineering
Davis, CA

HAVE YOUR SAY

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158, or leave a note via MCI mail at EDNBOS. Or use EDN's bulletinboard system at (617) 558-4241: From the Main System Menu, enter SS/SOAPBOX, then W to write us a letter. You'll need a 2400 -bps or less modem and a communications program set for $8, N, 1$.

Sprague-Goodman

Multiturn Plastic Trimmer Capacitors

- Cap ranges: 0.25-1.5 pF;
$2.0-10 \mathrm{pF}$
- Multiturn resolution at low cost
- Q typically > 2000 to VHF
- Temp coefficient of capacitance: $-50 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; $0 \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Operating temp: -55° to $125^{\circ} \mathrm{C}$; -40° to $100^{\circ} \mathrm{C}$
Phone, fax or write today for Engineering Bulletin SG-401B.

SPRAGUE G00Dman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

CIRCLE NO. 20

Rugged 5 \& 7 mm types
Operating temp: -55° to $+125^{\circ} \mathrm{C}$
Cap ranges: $1.3-2.0 \mathrm{pF}$ to $12-160 \mathrm{pF}$
Miniature types suitable for hybrids
Operating temp: -25° to $+85^{\circ} \mathrm{C}$
3 series: $2.0 \times 1.2 \mathrm{~mm} ; 3.0 \times 1.5 \mathrm{~mm}$; $5.0 \times 2.0 \mathrm{~mm}$
Cap ranges: $2.5-10 \mathrm{pF}$ to $5.5-40 \mathrm{pF}$

Microwave types

Operating temp: -55° to $85^{\circ} \mathrm{C}$
Cap ranges: $0.5-2.0 \mathrm{pF} ; 1-4.0 \mathrm{pF} ; 2.0-10 \mathrm{pF}$ $\mathrm{Q}>500$ at 100 MHz
Plastic encased $4 \times 4.5 \mathrm{~mm}$ and 5 mm types Designed for volume applications
Surface mount and printed-thru-hole models Cap ranges: $1.7-3.0 \mathrm{pF}$ to $10-50 \mathrm{pF}$
Phone, fax or write today for
Engineering Bulletin SG-305B.

SPRAGUE goodman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

People say boundary inlow cost,highquality Now you can test that

Increasing device complexity. Rising pattern development costs. High density packaging. Disappearing nodal access. These are the board test problems boundary scan was created to solve. Which is fine in theory. Only problem is there hasn't been any way to put boundary scan to the test. Until now.

VICTORY - the first software to automate boundary-scan testing.
Introducing VICTORY ${ }^{\text {th }}$ from Teradyne: the only software toolset ready to help you turn boundary-scan theory into a practical advantage. From the moment your first boundary-scan device is designed in,

VICTORY starts

to simplify the testing of complex digital boards. And the more bound-ary-scan parts you have, the more time and money you save.

Delivers high faultcoverage.

Whether you're testing one boundary-scan part or boundary-scan networks, VICTORY software automatically gives you 100% pin-level fault coverage. Using the IEEE 1149.1 and BSDL standards, it takes VICTORY only a minute or two to generate test patterns. It would take a programmer days, even weeks to deliver the same fault coverage for conventional designs.

Now you can find stuck-at faults, broken wire bonds, wrong or missing compo-nents-even open input pins-all without manual diagnostic probing. VICTORY's fault diagnostics clearly spell out both fault type and fault location. And that's just the manufacturing process

scanisabreakthrough board testing.

 theory.

 theory.}
feedback you need to eliminate defects where it's most cost-effective-at the source.

Helps solve the test access problem.
With boundary-scan design and VICTORY software, you won't need bed-of-nails access

mized board layout without lowering fault coverage.

Good for the bottom line.

Boundary-Scan Intelligent Diagnostics identify faults by type and location without physical probing - even on high-density SMT assemblies

Shorter test programming time. Higher fault coverage. Lower PC board and test fixture costs. The bottom line on VICTORY is how positively it will affect your bottom line. And because VICTORY works with all Teradyne board testers, you're free to tailor a test process that's cost-effective for both your boundaryscan and non-scan boards. No matter what your test objectives. For example, with our new Z1800VPseries testers, a complete solution for in-circuit and boundary-scan testing starts at well under $\$ 100,000$.

Make the next logical move. Call today.
Boundary scan is the design-for-test breakthrough that promises lower cost,

Get high fault coverage at low cost when you test boundary-scan boards with our new Z1800VP system and VICTORY software. higher quality board testing. But don't take our word for it. Call Daryl Layzer at (800) 225-2699, ext. 3808. We'll show you how, with VICTORY software and Teradyne board testers, you can test this theory for yourself.

TERADNAE

RFTRANS

Over 50 off-the-shelf models...

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific frequency range? ... Mini-Circuits offers a solution.

Choose impedance ratios from $1: 1$ to $36: 1$, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series. Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types. Available for immediate delivery with one-year guarantee.

Call or write for 68-page catalog or see our catalog in EEM, or Microwaves Product Data Directory.
finding new ways setting higher standards Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156 C72-1 REV. B
case styles
T, TH, case W $38, \times 65$ bent lead version, KK81 bent lead version TMO, case A 11, + case B 13 FT, FTB, case H 16
NEW TC SURFACE MOUNT MODELS from 1 MHz to 1500 MHz

NSN GUIDE

MCL NO. NSN

FTB1-1-75 5950-01-132-803 FTB1-6 5950-01-225-877 T1-1 5950-10-128-374 T1-1T 5950-01-153-0668 T2-1 5950-01-106-1218 T3-1T 5950-01-153-0298 T4-1 5950-01-024-7626 T9-1 $\begin{array}{ll}\text { T-1 } & 5950-01-105-8153\end{array}$ T16-1 5950-01-094-7439 TMO1-1 5950-01-178-2612

MCL NO. NSN

TMO2-1 5950-01-183-6414 TMO2.5-6 5950-01-215-4038 TMO2.5-6T 5950-01-215-8697 TMO3-1T 5950-01-168-7512 TMO4-1 5950-01-067-1012 TMO4-2 5950-01-091-3553 TMO4-6 5950-01-132-8102 TMO5-1T 5950-01-183-0779 TMO9-1 5950-01-141-0174 TMO16-1 5950-01-138-4593

$3 K \mathrm{~Hz}-800 \mathrm{MHz}$ from $\$ \mathbf{3} 25$

You have to build a to build just

ThenewTekTDSSeries

More than a million Tektronix oscilloscopes have all been leading up to this: the most powerful, versatile, and intuitive instruments ever developed for the mainstream of test and measurement.

The new TDS 500 Series is the culmination of everything Tek has learned in the design, manufacture and use of digitizing oscilloscopes. It's an achievement made possible only by the unique integration of acquisition functions and combinational trigger logic onto a single board.

Only by the development of a milestone multiprocessor architecture.

Only by the addition of Tek's TriStar ${ }^{\text {TM }}$ Digital Signal Processor (DSP).

Only by Tek's capacity for taking the hard work out of high performance.

The TDS Series performs, live, up-
dates and measurements that inhibit most other digitizing scopes. Its real-

time DSP lets you perform single-shot averaging and extend resolution to 12 bits. The TDS Series arms you with up to four full-featured channels. 500 MHz bandwidth. Up to $1 \mathrm{GS} / \mathrm{s}$ sampling and 4 ns peak detect. Up to 50 K record lengths. Time interval, 2 ns glitch, runt, pattern and state triggers. With acquisition sensitivity and fast overdrive recovery bringing greater waveform detail within your grasp.

And if you think oscilloscopes aren't as easy to use and comprehend as they

million oscilloscopes one like this.

powerful instruments from the world's leading supplier of digitizing and analog oscilloscopes. To get a firsthand feel for why performance like this only comes along about once in a million scopes, contact your Tek sales engineer or call 1-800-426-2200.

One company measures up.

Tektronix

The TDS Series signals the start of a new generation of friendlier, more

70 S E R I E S I I

8 New Meters. 8 Old-Fashioned Values.

Introducing Fluke's 70 Series II, nextgeneration multimeters that meet the increasing demands of your job and your budget.
Consider. At the top of the line, the new Fluke 79 and 29 deliver more high-performance features - capacitance, frequency, a fast 63segment bar graph, Lo-Ohms range, Smoothing ${ }^{\text {TM }}$, faster ranges - than DMMs costing much more.
At the entry level, the new model 70, Fluke's lowest-priced DMM ever, delivers unparalleled Fluke quality at a price comparable to "disposable" meters.
And in between are all the models that have made the 70 Series the most popular DMM family in the world - updated, refined and delivering even more value than ever.
"BASICS" REDEFINED
No matter which 70 Series II you choose, you get simple, one-handed operation. High resolution. And built-in, go anywhere reliability.
Automatic Touch Hold ${ }^{\circledR}$ - standard on every model - locks the reading on the display and signals you with a beep, automatically updating for each new measurement without a reset. Leaving you free to concentrate on your work, not on your meter.
YOUR BEST CHOICE
Best of all, every 70 Series II is a Fluke, backed by a worldwide service network and an industryleading 3 year warranty.
So the next time you're in the market for a new meter, ask for the one that guarantees oldfashioned value. Fluke 70 Series II. For more information call 1-800-6789-LIT. Or call $1-800-44-$ FLUKE, ext 33 for the name of your nearest Fluke distributor.

Fluke 79 Series II \& 29 Series II

\$185*
4000 Count Digital Display (9999 in Hz \& - $-(-$)
63 segment Analog Bar Graph
0.3% Basic DC Voltage Accuracy
Automatic Touch Hold ${ }^{\infty}$
Diode Test, Audible Continuity Beeper
Autoranging, Manual Ranging
Holster with Flex Stand ${ }^{\text {TM }}$
Frequency Counter to over 20 kHz
Capacitance 10 pF to $9999 \mu \mathrm{~F}$
Lo-Ohms Range with Zero Calibration
Smoothing ${ }^{\text {TM }}$
700 Hours Battery Life (alkaline)
3 year Warranty

79/77/75/73/70 for measurements to 4800 V-A.

29/23/21 for higher energy measurements.
*Fluke 70 Series II suggested U.S. list prices range from $\$ 69$ to $\$ 185$.
John Fluke Mig. Co., Inc. P.O. Box 9090 M/S 250E Everett, WA 98206 U.S: 206- $356-5400$ Canada 416-890-7600 Other Countries 206-356-5500 © Copyright 1991 John Fluke Mig Co. Inc. All riehts reserved. Ad no. 00091 Prices and specifications subject to change without notice.

FடபKE

Reader wants to send real－time video via phone lines

I am looking for videophone boards or modules that will accept／deliver NTSC video and that will send ＂still＂or maybe even near－real－time video signals over standard phone lines．
Tom Hill
Sammons Communications Duncanville，TX

Unfortunately，off－the－shelf technol－ ogy hasn＇t yet advanced to the stage where you can plug a television broadcasting station into your PC． However，sending individual video images via modem is a piece of cake－ as long as you don＇t mind tying up your computer for hours and running up your phone bill．
The simplest and least expensive way to do what you propose is to make sure that both the sending and receiving computers are equipped with VGA boards that also output recordable NTSC im－ ages．（Refer to J D Mosley＇s article on image－processing hardware in the August 19，1991，issue of EDN for a representative sample of such boards．）These boards produce in－ terlaced NTSC images in a $512 \times 400-$ pixel， $60-\mathrm{Hz}$ recordable format，but typically display a maximum of only 256 colors．As long as you aren＇t concerned with photographic－quality images，you can buy such cards for your applica－ tion for $\$ 1000$ or less．Note，how－ ever，that VGA images are nonin－ terlaced，whereas NTSC images are interlaced．Accordingly，this method actually lets you transmit a normal VGA image via modem， but the sending and receiving VGA boards will automatically convert that image to the NTSC format．

For photographic－quality images， use a Targa board or other compat－
ible video graphics board to create a recordable NTSC image that con－ tains 32,768 to as many as 16 million colors．You＇ll pay $\$ 1500$ or more for these boards，but if realistic image quality is important，you＇ll need the broad color palette of these boards．
The principal stumbling block is your requirement for using＂stan－ dard phone lines，＂which seems to indicate that you also want to use a standard $2400-$ bps phone－line mo－ dem．You can do that．You can even use your favorite communications package－just have your communi－ cations software send the image as a binary file，rather than ASCII．

However，you have to consider the practical aspects of the task．It isn＇t unusual for a full－color com－ puter image to encompass half a megabyte of data．To pump this much data through a 2400 －bps mo－ dem would theoretically take about 56 minutes per image－and that doesn＇t include pauses for hand－ shaking or error correction．Even if you beefed up your equipment to include a $9600-\mathrm{bps}$ modem，each im－ age would require 14 minutes for transmission．Such requirements preclude the 30 －frame $/$ sec display rate required for real－time video．

One alternative，suggested by Videotex Systems（Dallas，TX），is to equip both the sending and re－ ceiving computers with image－ compression boards．Although such boards can reduce your transmis－ sion time，they also degrade the im－ age：The greater the compression， the greater the degradation．But even if you bought boards that could provide $100 \times$ compression， you still wouldn＇t reach real－time video rates．And even if you could transmit 15 M bytes every second， where would you store all that data？

Our advice is to videotape what－ ever it is you want to record in＂real
time＂and let an overnight delivery service hand the tape to the person you＇re trying to reach．You＇ll both save a lot of time，money，and has－ sle．And if the objective is to have the recipient alter your images in some way，this delivery method lets that person use the video－input port of a video graphics card to download your recorded images into his or her computer for subsequent manipula－ tion．

Wants to access EDN BBS

I am interested in obtaining a pro－ gram from your bulletin board sys－ tem（BBS）．I do not have a modem attached to my computer，but the computer is linked to the Janet net－ work，which can access the Ameri－ can Internet system．I am writing to inquire if your bulletin board has an Internet address and if so the method of accessing the program from this connection．
Paul Drummond

The New Medical School

Newcastle－upon－Tyne，UK
The United States National Science Foundation runs Internet，which is a noncommercial service，so we can＇t get an address on it．EDN has investi－ gated links to commercial services and X． 25 networks，but we found that the fees were too high for us to con－ tinue to offer a free BBS．However， we＇re getting some high－speed mo－ dems soon and are considering put－ ting another EDN BBS computer in the United Kingdom．This computer would be updated every week via streaming tape．

コロハ

Ask EDN solves nagging design problems and answers difficult questions．Address your letters to Ask EDN， 275 Washington St，Newton，MA 02158．FAX（617）558－4470；MCI：EDNBOS． Or send us a letter on EDN＇s bulletin－board system at（617）558－4241；leave a letter in the ask＿edn Special Interest Group．

NEW PRODUCTS - NICOLET'S PRO OSCILLOSCOPES

"Measurement Experts" get more choices from Nicolet

Nicolet Pro Oscilloscopes offer advanced trigger options in a waveform-analyzer-class scope

Nicolet invented the first digital oscilloscope to help engineers make better measurements. And for almost twenty years, they continued to focus on producing and improving top-end instruments for their "measurement expert" customers. Nicolet's new line of "Pro" digital oscilloscopes offers advanced trigger, display and programming features, while maintaining Nicolet's insistence on the highest standards of data integrity.

Nicolet Pro Oscilloscopes

The seven Nicolet Pro Oscilloscopes range from 8 -bit units running at 200 Megasamples per second to differentialinput 12 -bit high-accuracy models. The Nicolet Pro 90 is a unique configuration of both, with independent timebases for simultaneous recordings at different accuracy levels and speeds.

Advanced Triggering in an Analog World

But the real innovation is that Nicolet has found a way to apply logic-analyzer style "advanced" triggering to the analog world. Many scopes have logic-analyzer style trigger modes. But logic-analyzer
implementations of glitch and dropout triggers assume the input signals are square-waves. With most scope applications, baseline noise and variations of input slew rate can mimic the intended trigger events. The results are false triggers, spurious "jitter" on repetitive signals, and incorrect timing on single-shot events - in short, false data.

Conventional scope

Nicolet's new scopes are different, with a unique variable-sensitivity control to prevent false triggers. Only Nicolet Pro Oscilloscopes arm or trigger when the input passes sequentially through two operator-selected voltages, eliminating triggers due to noise or baseline instability. And using the advanced modes is easier than you'd think - Nicolet displays the trigger level and sensitivity right on the waveform, and provides an on-screen icon of the chosen trigger type, source and key parameters.
Quality Measurement for Electronics
Of course, every Nicolet Pro model offers the familiar "quality measurement" features characteristic of Nicolet products, including ultra-long 256 K memory, built-in MS-DOS floppy plus optional hard drive, and Nicolet's on-board programming language, TACT, for custom solutions to most measurement problems without an external PC. And even with four records of 256 K each on the screen, Nicolet's crisp vector display instantly shows you a one-in-a-million transient.

Nicolet is entering its third decade of designing digital oscilloscopes still "on target" with instruments for today's measurement expert.

Call Nicolet Test Instruments

 (800) 356-8088

Nicolet Pro Digital Oscilloscopes offer advanced triggering with sensitivity control for the analog world of noisy signals.

Transmission and Distribution Conference \& Exposition, Dallas, TX. IEEE/PES Registration, 2368 Eastman Ave, Suite 11, Ventura, CA 93003. (805) 654-0171. September 22 to 27 .

Electronics Design Show, Birmingham, W Midlands, UK. MGB Exhibitions Ltd, Marlowe House, 109 Station Rd, Sidcup, Kent DA15 7ET, UK. (81) 302-8585. FAX (81) 302-7205. TLX 918389. September 24 to 25.

Electrical Overstress/Electrostatic Discharge Symposium, Las Vegas, NV. EOS/ESD Association, Box 913, Rome, NY 13440. (315) 3396726. FAX (315) 339-6793. September 24 to 26 .

Failure Mode and Effect Analysis (seminar), Boston, MA. Quality Alert Institute, 1475 S Colorado Blvd, Suite 206, Denver, CO 80222. (800) 221-2114; in CO, (212) 3534420. FAX (800) 473-8348. September 27 .

Information Security 91, Vienna, Austria. Diebold GesmbH, Graf Starhemberg-Gasse 25, A-1040, Wien (Vienna), Austria. (504) 13000. FAX (504) 1309. September 30 to October 1.

Electronic Imaging East, Boston, MA. Miller Freeman Expositions, 1050 Commonwealth Ave, Boston, MA 02215. (800) 223-7126; in MA, (617) 232-3976. FAX (617) 232-0854. September 30 to October 3.

IEEE-Holm Conference on Electrical Contacts, Chicago, IL. IEEE, Holm Conference Registrar, Box 1331, Piscataway, NJ 08855. (201) 562-3863. FAX (201) 562-1571. TLX 833233. October 6 to 9.

Telecom '91: World Telecommunications Exhibition, Geneva, Switzerland. International Telecom-

THE FINE ARTOFDISC DRIVES

CIRCLE NO. 28

Come bi
\square Complete, bi-directional simulation of transmission impairments for thorough testing
\square Fully automatic emulation of worldwide central office (exchange) formats
\square Compatible with U.S., international, and major manufacturer standards
\square Works with the TAS Gemini dual data analyzer and TASKIT software to provide completely automatic modem performance evaluation.

34 Industrial Way East, Eatontown, NJ, 07724-9917 - (908) 544-8700 • FAX (908) 544-8347

CALENDAR

munication Union, Place des Nations, CH-1211 Genève 20, Switzerland. (22) 730-5236. (22) 733-7256. October 7 to 15.

DOD-STD 2167A/2168 Seminar, San Diego, CA. David Maibor Associates Inc, Box 846, Needham Heights, MA 02194. (617) 449-6554. FAX (617) 455-8928. October 8 to 10 .

Modern Electronic Packaging Seminar, Burlington, MA. Technology Seminars Inc, Box 487, Lutherville, MD 21093. (301) 252-3425. FAX (301) 761-7942. October 9 to 11 .

Symposium on High Density Integration in Communications and Computer Systems, Waltham, MA. Harry Lockwood, GTE Laboratories Inc, 40 Sylvan Rd, Waltham, MA 02254. (617) 466-2786. FAX (617) 890-9320. October 17 to 18.

Paris Cité: International Forum for Creative Technologies, Paris, France. ADAC/Paris Cité, 27 Quai de la Tournelle, 75005, Paris, France. (43) 26-29-99. FAX (43) 29-38-01. October 18 to 21.

IEEE GaAs IC Symposium '91, Monterey, CA. Jo Ann McDonald, The Legacy Co, Box 151, King City, CA 93930. (408) 385-5321. Registration: (202) 347-5900. FAX (202) 347-6109. October 20 to 23.

ISHM '91: International Symposium on Microelectronics, Orlando, FL. ISHM, Box 2698, Reston, VA 22090. (800) 535-4746; in VA, (703) 471-0066. FAX (703) 471-1937. October 21 to 23.

Object-Oriented Analysis and Design Seminar, Washington, DC. Technology Transfer Institute, 741 10th St, Santa Monica, CA 90402. (213) 394-8305. FAX (213) 451-2104. October 21 to 23.

Introducing a revolutionary new idea in a 1000 -watt, "shoe box" power supply.

It's TODD SUPERMAX 1000, an extraordinary OEM power supply of revolutionary proportions. And those proportions are small. Smaller than anything in its class. At just $3.38^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{L}$, its compact size allows for great flexibility in a system's mechanical design. In fact, three SUPERMAX 1000 units can be mounted where two standard shoe box units fit before.
SUPERMAX 1000 is the $\mathbf{1 0 0 0}$-watt power supply designed right from scratch with Power Factor Correction built in for maximum performance and economy.
Long recognized as the leading innovator in the power supply industry, TODD now brings its advanced open frame switching power
supply technology to the high-power shoe box world. SUPERMAX
1000 requires fewer components, so reliability, efficiency-even "no-fan" cooling-are greatly enhanced.
For a smaller, more reliable, lower cost 1000 -watt power supply that meets every US and international requirement, evaluate the TODD SUPERMAX 1000. When it comes to quality and innovation, no one can fill our shoes.
To receive a catalog showing our broad line of switching power supplies, for an evaluation unit, or to speak with an engineer who can supply immediate response and immediate solutions to your power supply problems, call the TODD Power-Phone:

You Eintif Hill il

OR YOU DON'T.

See for yourself why competition to the Tek Centurion hasn't materialized.

No other logic analyzer, rumored or real, can keep up with the single-card, 100 MHz sync $/ 400 \mathrm{MHz}$ async Tek Centurion, the comprehensive solution for RISC and high-speed CISC.

Compare its accuracy against multi-card 100 -channel solutions. Discover its vast expandability for multimicroprocessor debugging. See the advantage of Tek analysis tools, backed by up to $128 \mathrm{~K} /$ channel memory.

Disassembly support? Only Tek gives you the 80386, 80486, 80960CA, i860, 88100, 68020, 68030,
68040 , R3000, R3000A, and AMD 29000. Not soon, someday, or maybe, but shipping now.
Don't buy less without seeing Centurion first! See your Tek sales engineer for a demo, or call 1-800-426-2200 to get the facts.

For months we've been
saying that our nine new Nonvolatile Serially Programmable (NSP) devices are a "whole new ballgame" when it comes to designing electronic systems and hybrid circuits.

Now to help speed your evaluation, the Semiconductor Products Center of Hughes Aircraft Company is offering a special evaluation kit to assist in the development phase of your design. All you need is an $\mathrm{IBM}^{\text {TM }}$ compatible PC. You can read and program any of the NSP devices, including future NSP devices, right from your keyboard.

The kit contains all the necessary hardware and software. You can be up and running in just minutes. Included is a custom interface circuit, cable to connect to the parallel port of your PC, sample devices, data sheets, complete documentation, and "quick start" instructions.

The Evaluation Kit allows you to program and test a single NSP device or to access a ring of up to 15 devices. Moreover, three operating modes provide real flexibility for setting the state of the NSP devices. All can be programmed directly from the keyboard.

Send for your kit today at our special introductory price of $\$ 50.00$. To help expedite your orders, we have arranged through our distributor to accept major credit cards for your added convenience. Phone or fax your request to: Zeus Components, call (714) 921-9000 or FAX
(714) 921-2715. Or call our plant at (714) 759-6589 or FAX (714) 759-2913.

WITH OVER 70 VARIETIES OF 68HCO5s, THE IDEAL MCU IS YOURS FOR THE PICKING.

Motorola's 68HC05 MCUs. Eightbit microcontrollers by any other name are simply not as affordable. Accessible. Or abundant.

We expanded this remarkably diverse, low-cost family by nearly two dozen new MCU devices in the past few months alone.

And the number is growing daily.

BRANCH OUT WITH

THE WORLD'S MOST POPULAR 8-BIT MICROCONTROLLER.
Motorola's economical 68HC05 MCU Family features an incredibly varied selection of memory options, timers, A/D, serial ports, LCD drivers, and other tried and true subsystems. We've developed this unparalleled array of devices into a series of MCUs to fit the 8-bit needs of virtually every segment of the electronics industry. From cameras and cars to phones and VCRs.

With our huge portfolio of existing devices, chances are we already have the MCU that's right for you. Or, with our Customer Specified Integrated Circuit (CSIC) design methodology, we may be able to develop a new MCU for your application's requirements.

GREAT IDEAS ARE GROWING AT MOTOROLA.

When you pick the world's largest 8-bit supplier, it's only natural you get a lot to choose from. Including new MCUs just released today! Check with Motorola for our very latest 68HC05 developments. If you don't find the MCU you need, you may want to contribute your own CSIC product requirements to Motorola through FREEWARE, our 24-hour electronic bulletin board, by calling (512) 891-FREE.

Before you make your next 8-bit decision, stop and smell the roses at Motorola. Where new varieties are blooming everyday.
To receive more information concerning Motorola's newest
68HC05 CSIC Family members and our Pathway to
Performance, please complete and return this coupon to:
Motorola, Inc.
EDN 9/16/91
P.O. Box 1466
Austin, Texas 78767
Name
Company
Title
Address
City_
State

Now catch the bugs that defy logic.

The HP16500A logic analysis system shows what's bothering your designs.
Power up a new design and you're in for a battle. That's when you need the HP 16500A logic analysis system. With one modular system, you can focus measurement power on those press-
ing problems. Before things get out of hand.

Choose from a wide range of modules. The state/timing module provides advanced capabilities, including 100 MHz state speed for debugging RISC and high-end CISC processors. There's a $1 \mathrm{GSa} / \mathrm{s}$ scope for sin-gle-shot troubleshooting. A 1 GHz timing module for precision timeinterval measurements. And pattern generation for functional testing.
And you get the industry's broadest microprocessor and bus support...more than 100 solutions to speed and simplify debugging of virtually any microprocessor based design. Plus an intuitive
full-color, touch-screen interface to make setup and operation easier too.
So take control of the debugging process. Call 1-800-452-4844. Ask for Ext. 2604 and we'll send a brochure on the analysis system that can catch the toughest bugs before they start bothering you.
There is a better way.

(hp)
 HEWLETT PACKARD

[^3]
The IEEE gets it wrong

Jesse H. Neal
Editorial Achievement Awards 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

American Society of Business Press Editors Award 1988, 1983, 1981

In June, I received an announcement from the IEEE (Institute of Electrical and Electronics Engineers) that the group was presenting an award to Apple Computer Inc for creating the personal computer. The award singles out Apple "for the creation and establishment of the broadly successful personal computer." The Apple II computer was very successful and it-along with the Visicalc spreadsheet pro-gram-pushed desktop computers into commercial use. However, Apple neither created nor established the personal computer.

The award committee's chairman told me that the IEEE chose its words carefully so that it would not appear that Apple had invented the first personal computer. However, my thesaurus says that both create and establish can also mean originate and start.

The chairman also told me that the committee used only published resources and that it didn't interview people who developed small computers in the 70 s . By not talking with those people, the IEEE was led astray. If nothing else, I'm disappointed in the IEEE for its misinformed role in helping to further solidify myth into historical fact. There are many people and many computers that deserve recognition for their roles in advancing us toward today, when PCs are a part of daily life for almost everyone.

History proves that Apple was not the first to create a PC. Back in the late 60s and early 70s Digital Equipment Corporation shrank its 12 -bit PDP-8 into a desktop computer, the PDP-8/L, which became popular in controller applications. A group calling itself the Amateur Computer Society was founded by hard-core hackers in 1970, and many members spent considerable time and money trying to clone DEC's PDP-8/L. As I recall, coming up with the proper core memory was a nightmare.

Once Intel's 8 -bit 8008 microprocessor arrived in 1973, designing your own computer became easier. Hobbyist computers such as the Mark-8 and Scelbi-8 became available. Intel's more sophisticated 8080 made possible computers such as the MITS Altair and the IMSAI. Later processors from Zilog and MOS Technology formed the heart of the Apple II, Radio Shack's TRS-80, and Commodore's PET. Let's not forget IBM's 5100, a portable computer from 1975 that you could program in APL. Other mid-70s computer developments from the Digital Group, Southwest Technical Products, Processor Technology, Sphere, and others are just too numerous to relate.

In the early days of the microprocessor revolution, there were many parallel and sequential efforts-often somewhat blurred even in the minds of those of us who were present. Apple came in on the tail end of that first burst of innovation. One thing is for sure; Apple neither created nor established the personal computer. The IEEE should withdraw its award as graciously and as quickly as possible.
 Editor

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400, 8, N, 1.

YouDesign Actel FP YouDoA PLD. But Th

Use PLD Tools.
You design Actel FPGAs using the same tools as you would a PLD: ABEL, ${ }^{\text {T }}$ CUPL, ${ }^{\text {T }}$ LOG $/ \mathrm{iC}^{1 "}$ and PGADesigner." But that's where the similarity ends.

Fast. Fost. Fast.
Our FPGAs are real speed demons. Whatever application you may be working on, our parts will give you the kind of performance you're looking for.

100\% Automatic Place And Route.
Coupled with your PLD tools, Actel's Action Logic ${ }^{\text {T }}$ System (ALS) software lets you create your own FPGAs - using a 386 PC or workstation - right at your own desk. With Auto Place and Route that's proven in thousands of applications.

Announcing A Simple Way To Get From PLDs to FPGAs.

If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design techniques, we'd like to change your mind.

Actel's ALES' 1 program translates the output of PLD tools like CUPL" and LOG/iC" into logic optimized for our $\mathrm{ACT}^{\mathrm{w}}$ devices.

Entire FPGA designs can be developed with PGA Designer." ABEL" 4.0 includes optimization for Actel devices. You don't have to give up your existing PLD design tools or Boolean equations. Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100\% automatic
place and route gets you to market fast.

Once your FPGA is designed, our Action Logic" System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, desktop-configurable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive ActionProbe ${ }^{\text {w }}$ diagnostic tools, give you
100% observability of internal logic signals. So you don't have to give up testability for convenience.

It's never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44,68 and 84 pin PLCC versions and implementing up to 273 flip-flops or up to 546

[^4]
GAs The SameWay e Similarity Ends There.

More Flexibility And Capacity.
Designing with Actel FPGAs gives you more freedom than you ever imagined. More gates More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGAs give you far more gates per square inch. As much as ten times as many as the densest PLDs. That can save a lot of real estate.

More Fun.
Designing Actel FPGAs is so simple that you'll have more time to do the things that made you want to become an engineer in the first place. Or just relaxing. You've earned it.
latches. And the first member of our ACT 2 family, the powerful A1280. With 8,000 gates, up to 998 flipflops, and 140 I/O pins, it's the highest capacity FPGA today. And our A1240-1 is the fastest. In the A1240-1, 16 -bit counters run at 75 MHz , 16-bit accumulators at 33 MHz . Enough capacity and speed to handle almost any application.

The superior speed, capacity, and auto place and route capabilities of our FPGAs are made possible by Actel's revolutionary PLICE" antifuse programming element. The advanced technology that makes our family of FPGAs an ideal way to unleash your engineering creativity. Call 1-800-228-3532 for more information on Actel FPGAs.

Risk-Free Logic Integration

You'll Find Som At Both Ends With

We've all seen the light regarding Ethernet on twisted-pair. Now we'd like to show you the full spectrum in 10BASE-T - with the most complete selection of silicon for both ends of the LAN.

At the terminal end, the TPEX"'(twisted-pair Ethernet transceiver) provides the physical layer connection for add-in cards, motherboards and stand-alone MAUs. At the hub end, the IMR ${ }^{m}$ (Integrated Multiport Repeater) integrates eight
transceivers and an expansion port on one chip,

Am79C980JC and replaces over a dozen ICs. And that brings down your per-port cost. assemble everything from compact Velcro hubs that hang virtually anywhere, to larger intelligent hubs using multiple IMRs.

And you won't find the design

risks you normally face. We'll lead you to market faster, supplying you with complete board level solutions. And we're behind you all the way with 10 years experience in Ethernet, including strategic partnerships with SynOptics and HP -co-developers of our TPEX and IMR, respectively. And of course, all our 10BASE-T products comply with current IEEE specs.

So call AMD today at 1-800-222-9323
for a free information package. And give your' next 10BASE-T design a truly brilliant ending.

Advanced Micro Devices

 of Velcro Industries B.V. ((etherlands Corporation): Amsterdam. Netherlands.
Our pulse generators will test what you have.

High Speed Bi-polar

BICMOS

ECL

ECLips

GaAs

That's a big statement. But these are powerful programmable pulse generators. Combined, they deliver top speed, high resolution and pulse-parameter flexibility. So you get accurate testing of your present and future highspeed designs, whether they're ICs, PCBs, or components.
Put the 500 MHz HP 8131A

HP 8130A Pulse Generator

HP 8131A Pulse Generator
to work on your hottest new devices. With a transition time of $<200 \mathrm{ps}$, plus pulse widths down to 500 ps with 10 ps timing resolution, you get the stimulus you've needed for accurate testing of your fastest designs.

For the most complete testing of your high-speed devices, choose the HP 8130A. It has

And what you have in mind.

The right tools make all the difference...

Introducing jOMEGA!

Tired of Using RF Design Tools That Don't Measure Up to the Task? EEsof introduces jOMEGA, the first design automation software developed expressly for RF engineers. jOMEGA has the features you need for fast, manufac-turing-oriented design at frequencies below $3,000 \mathrm{MHz}$: easy-to-use schematic entry, fast linear and nonlinear circuit simulation, an RForiented model set including largesignal BJT transistor library, and builtin documentation capability.
jOMEGA Has the Edge You Need to Create Better RF Designs in Less Time:
jOMEGA's harmonic-balance simulator gives you fast optimization of linear and nonlinear circuits with simultaneous access to circuit response in both time- and fre-quency-domains. And jOMEGA has advanced features, like manufacturing yield optimization and optional board layout, that let you make manufacturing tradeoffs during engineering design.

Call Us Today, Let Us Show You How jOMEGA Can Make the Difference on Your Next RF Design!
We'd like to send you an informative product brochure which describes
 the many features of jOMEGA. Call us at (800) 624-8999, ext. 155. Or if you prefer, contact us by FAX at (818) 889-4159. In Europe, call (49) 8105-24005 or FAX (49) 8105-24000

CIRCLE NO. 36

Breaking the Barriers...

EUROPEAN EMC REGULATIONS

Europe lays down EMC Law

hm's Law, Kirchoff's Laws, and now Europe's EMC Law. All electronic circuits produce netic compatibility of many products takes effect in Europe on January 1, 1992. Deciding how to make the products conform will be up to the design engineer. Some specifications have yet to appear, but enough technical information is
available to make a start.

Brian Kerridge, European Editor electromagnetic emissions (EMI) at some level. Equally, all circuits become susceptible to EMI at some level. Europe's Electromagnetic Compatibility (EMC) Law sets out exactly what levels are acceptable in both cases for your product. In the future, when designing products for Europe, you will have to consider the EMC Law alongside other circuit constraints.
As part of Europe's move toward a single market structure, politicians and technocrats decided to formalize and harmonize EMC regulations. The result is European Directive $89 / 336 /$ EEC (European Economic Community), entitled Approximation of the Laws of the Member States relating to Electromagnetic Compatibility issued by the Council of European Communities. Products will require a "CE" mark, as well as other documentary evidence, as proof of confor- mance.
In principle, as from January 1, 1992, it becomes a criminal offense to contravene the regulations. In practice, you still have a breathing space of two or three years in which to prepare.

If you declare compliance and your product fails to conform, ultimately it must be re-

Setting up a lab for EMC-emission and -immunity testing is expensive. Test equipment alone costs about $£ 200,000$, and you'll need a shielded and damped room to put it in.

- Highest volumetric efficiency for capacitive filtering in connectors by restricting high frequency current at the interface, sharply reducing EMI emissions.
- Gold plated terminations provide superior solderability and leach resistance.
- MLC capacitor arrays deliver costeffective filtering, increased yields and an unlimited range of cap values.
CIRCLE NO. 37
TransGuard ${ }^{\text {M }}$

- Low voltage transient suppressors (5.6 v to 60 vdc).
- Miniature SMT case sizes 0805, 1005 , 1206, 1210.
- High peak current capability 40 to 300 Amps.
- Sub-nanosecond response time.
- High reliability avionic and commercial versions available.
CIRCLE NO. 38
Switch Mode Power Supply
Capacitors SupraCap ${ }^{\text {TM }}$

- Lowest ESR and ESL available.
- Highest current carrying capability.
- Supplied with lead frames for throughhole or surface mount assembly.
- Can be built in any shape or form factor.
- For high frequency power applica-tions-SupraCap ${ }^{\text {TM }}$ MLCs have less than 20 pico Henries Inductance.
CIRCLE NO. 39
EMI/RFI Filters

- All filters constructed with rugged MLC discoidal capacitors.
- Smallest available hermetically-sealed filters.
- Custom designed multicircuits, filter brackets and cylindrical filters meet mil spec MIL-F-28861 or MIL STD-461, NASA SSQ drawing and other EMI specifications.

WE PREFER THE STRONG, SILENTTYPE.

With their solid construction and ability to silence EMI/RFI, these Advanced Products are quietly becoming the number one choice of design engineers.

Their variety of sizes and configurations allow easy implementation at the critical design stage-whatever your application. They're proven effective in helping design engineers meet the FCC's EMI/RFI standards. And as with all our products, they come backed with the worldwide service and reliability that can only come from AVX.

From capacitors and resistors to resonators and piezo devices, AVX offers the broadest line of passive components in the world.

So, the next time your design demands a product to reduce EMI/RFI, call on one of these Advanced Products. And enjoy the silence.

For more information, contact AVX Corporation at (803) 448-9411, or fax us at (803) 448-1943. Write to AVX Corporation, 17th Avenue South, P.O. Box 867, Myrtle Beach, SC 29577.

European EMC regulations

European Standard prefix "EN" (from its title in German)). Generally, the new documents specify harmonizations of existing specifications from CISPR (International Special Committee on Radio Interference), or the national standards of the European countries. Table 1 identifies the EN documents produced so far and the provisional EN documents (prENs) under development, cross-referenced to established specifications. When deciding which specifications apply to your product, look for productspecific versions first, such as in the case of information technology equipment. If more than one specification applies, adopt the toughest. In the case where no specification exists for your product, the Directive still requires your product to conform to the EMC law. (How to deal with that situation appears later.)

Transition period eases pain

But don't think all issues are cut and dried. Although legislation will be in place from day one, some of the technical specifications will come later. Partly because of this delay, a transition period will enable a smoother switch from National to harmonized European specifications. The end date of the transition period is under consideration, but may extend to 1995. In the transition period, you can either wait, or attain compliance from day one using a mixture of whatever new specifications exist together with prevailing national specifications. Naturally, there is some confusion, and even experts in the same European countries cannot entirely agree on what you need to do to conform. Differences also exist between the EEC's member states over what technical specifications should apply. Even wording of the Directive itself

Table 1-European standards relating to EMC

	European standard ${ }^{1}$	Subject	Equivalent standard
Emission	prEN 50081-1	Generic domestic, commercial, and light industrial equipment	None
	prEN 50081-2	Generic industrial equipment	None
	EN 55011	Industrial, scientific, and medical equipment	CISPR 11
	EN 55013	Radio and TV receivers	CISPR 13
	EN 55014	Household appliances	CISPR 14
	EN 55015	Lighting equipment	CISPR 15
	EN 55022	Information technology equipment	CISPR 22
	EN 60555	Line disturbances	IEC 555
Immunity	prEN 50082-1	Generic domestic, commercial, and light industrial equipment	None
	prEN 50082-2	Generic industrial equipment	None
	EN 55020	Radio and TV receivers	CISPR 20
	prEN 55101-2	Information technology equipment-ESD	None
	prEN 55101-3	Information technology equipment-RF radiation	None
	prEN 55101-4	Information technology equipment-RF disturbances	None
	HD 4812 ${ }^{2}$	Industrial process, measurement and control equipment	IEC 801

Notes:

1. European standard designation is EN; provisional status is prEN.
2. No EN number yet, still at harmonization status.
proves troublesome. The Council intends to publish a further document by the end of this year to clarify some issues, such as what "taken into service" and "placed on the market" mean.

Make no mistake, though-despite these discordant notes, the EMC Directive exists and will soon apply throughout the EEC's 12 member states and the four EFTA (European Free Trade Association) countries. By the end of the transition period at the latest, all electronic products must conform, and only harmonized EN specifications will count. Compliance will be mandatory for products in current production, regardless of country of origin.

When politicians, specmakers, and marketeers have had their say, it will be up to you, the design engineer, to decide how to make the product conform.
That your product must ulti-
mately conform is certain. How you reach conformance is less certain. The issues are complex, and subject to various interpretations. At the very least, your company will need to assign one person the responsibility of studying, interpreting, and tracking the developing situation.
Fig 1 shows EDN's interpretation of the various routes to compliance. Several organizations are already offering specialist help and advice. (See box, "Who can help?")

Three ways lead to compliance

In overall terms, the route to placing a compliant product on the European market is straightforward. First, you adopt one of three possible methods to convince yourself that the product conforms technically. Then, you apply a "CE" mark to the product and ship it with a declaration-of-compliance certificate.
The certificate must name a com-

TECHNOLOGY UPDATE

European EMC regulations

pany signatory. Ideally, that person should be a resident European native. In the case of manufacturers outside the EEC, that person would normally be in the employ of your representative or distributor.

The three methods of reaching a level of confidence that your product complies are:

- self-certification
- third-party certification
- technical-construction file.

Self-certification appears to be the most direct route, as it is informal and involves minimal interactions outside your company. As the Directive stands, this route allows you freedom to do whatever convinces you that your product complies. When you feel certain of compliance, then your path is clear to apply the CE mark and get on with the selling.

The danger with this route is if someone officially challenges your product's conformance. How able will you be to support your belief that the product does indeed conform? If you are unable to convince the EEC trade authorities, then your product must be withdrawn and your company stands the risk of being blacklisted. In extreme cases, your European signatory could end up explaining things in court.

Nonetheless, companies outside Europe will favor this route, especially where the convenience of local EMC test facilities exist. In the case of a challenge, when test results from a reputable source are available, the danger of a product ban diminishes.
Third-party certification is the route that offers optimal assurance that your product conforms. Essentially, you subcontract the work to an accredited laboratory. The laboratory tests, reports, and certifies product compliance. A third-party test house must be accredited, oth-
erwise the laboratory is not authorized to issue certificates. In the UK, NAMAS, a department of NPL, accredits such laboratories. DAE is the accrediting authority in Germany.

At present, accredited labs exist only in Europe. By the end of 1991, NAMAS expects there will be around 30 accredited labs for EMC testing in the UK. Germany will have around 15 . Ideas to allow third-party testing in laboratories outside Europe are in the early
stages. In the case of self-certification, it is not essential for your laboratory to be accredited.

Paperwork proves powerless

The technical-construction-file route is the most uncertain way to have your product declared compliant. In the first place, there is no clear idea yet of what should be in a technical-construction file. The attraction of this route is that the need for testing is not mandatory. The general intention is that the file

Fig 1-EDN's guide to compliance with Europe's EMC Directive.

When Every Nanosecond Counts

Squeeze critical nanoseconds from your high-speed logic interface with the fastest FCT logic available. IDT's FCT-CT family offers speeds that are 50% faster than standard FCT or FAST logic families - as fast as 3.4ns (typical)!

The Perfect System Solution

As a system designer, you need the perfect combination of:

```
I. Fastest speed
2. Low ground bounce
3. Low power consumption
```

FCT-CT logic has true TTL compatibility for ease of design. The reduced output swings and controlled output edge rate circuitry ensure low system noise generation. No other technology offers higher speeds or lower power consumption.
The FCT-CT family is completely pin- and function-compatible with FCT logic, and is available today in all standard packaging.

FUNCTION	PROPAGATION DELAY (Max)	OUTPUT ENABLE (Max)	OUTPUT DISABLE (Max)
Buffers	4.1 ns	5.8 ns	5.2 ns
Transceivers	4.1 ns	5.8 ns	4.8 ns
Registers	5.2 ns	5.5 ns	5.0 ns
Latches	4.2 ns	5.5 ns	5.0 ns

Free Logic Design Kit
Call our toll-free hotline today and ask for Kit Code 3061 to get a 1991 HighSpeed CMOS Logic Design Guide and free FCT-CT logic samples.

(800) 345-7015 • FAX: 408-492-8454

12ns 256K SRAMS

Fastest cache solutions for RISC and CISC CPUs. $36+$ ultra-high-speed submicron SRAMs for 33 MHz processing \& beyond are in the SRAM Data Book.

35 mips RISC CHIPS AND MODULES

R3000A for the most mips at any MHz; R3051 for CPU, cache, \& buffers on one chip. Modules, eval. boards \& software complete the family. See them in the RISC Data Book

HIGHEST-PERFORMANCE MEMORIES

Fast FIFOs, dense dual-ports, BiCEMOS ECL, \& memory modules. $120+$ FIFOs \& multi-port memories, 5 ns ECL, \& multi-chip modules are in the

Specialized Memories Data Book

Call today for your new IDT data books with complete tech nical specifications and application information.

European EMC regulations

contains sufficient information to convince a "competent body" that your product complies. A competent body is another independent agency, authorized by governments to vet technical-construction files and issue approval certificates. By the end of 1991, each EEC member state's trade department will issue a list of accredited test houses and competent bodies.

Geoff Orford, at NAMAS, believes the technical-construction-file route, as the directive has outlined it, has little merit. He says that
most EMC Standards are simply recipes for testing, and therefore you cannot hope to demonstrate compliance without some tests.

Grimes says the value of the tech-nical-construction-file route shows up when manufacturers have a range of similar products. He recommends manufacturers to thirdparty test the worst-case product in the range, and then seek compliance for the rest of the range with technical-construction files. The technical-construction-file route also theoretically allows early com-
pliance with the directive in the case of temporary absence of standards. Although, on what basis a competent body will make a judgment remains uncertain.
Grimes says he expects a technical file to include a technical report, a detailed block diagram, photographs, a wealth of EMC test data, and the test equipment's history.
A CE mark signifies that your product complies with all applicable EEC Directives. Some toys, for example, have to comply with three earlier Directives, and are among

Who can help?

For more information on Europe's EMC Law, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following companies or organizations directly, please let them know you read about them in EDN. When you contact them directly from outside Europe, faxing is the best option. For example, the UK Government's Department of Trade and Industry EMC office operates a system of taking phone calls by answering machine. The office answers routine overseas queries by fax.

For a copy of Directive 89/336/EEC:
Alan Armstrong Ltd
2 Arkwright Rd
Reading RG2 0SQ, UK
(734) 751771

FAX (734) 755164
Circle No. 719

For European Norm documents:
BSI Sales
Linford Wood
Milton Keynes MK14 6LE, UK
(908) 221166

FAX (908) 322484
Circle No. 720

For general information on
the EMC Directive:
Bundesamt für Post und Telekom
Herr Lehning, Referat 124
Postfach 8001
Templestrasse 2-4
W-6500 Mainz 1, Germany
(6131) 181200

FAX (6131) 185600
Circle No. 721

Department of Trade and Industry

Tony Bond
Manufacturing Technology Div 4E
151 Buckingham Palace Rd
London SW1W 9SS, UK
(71 215) 1408
FAX (71 215) 1529
Circle No. 722

For accreditation information:
Deutsche Akkreditierungsstelle
Elektrotechnik
Herr Dr Facklam, Geschaftsstelle
Stresemannallee 19
W-6000 Frankfurt, Germany
(69) 6302380

FAX (69) 6302317
Circle No. 723

NAMAS Executive

Geoff Orford
National Physical Laboratory
Teddington TW11 0LW, UK
(81) 9437140

FAX (81) 9437134
Circle No. 724

International EMC Standards and
Test house facilities:
ERA Technology Ltd
Gordon Jackson
EMC Dept
Cleeve Rd
Leatherhead KT22 7SA, UK
(372) 374151

FAX (372) 374496
Circle No. 725

Siemens Plessey Assessment Services Ltd
Chris Grimes
Segensworth Road
Titchfield, Fareham P015 5RH, UK
(329) 844440

FAX (329) 853234
Circle No. 726

TRL Technology Ltd
Mark Heaven
Alexandra Way
Ashdown, Tewksbury GL20 8NB, UK
(684) 850438

FAX (684) 850406
Circle No. 727

EMC Products:
Schaffner EMC Ltd
Headley Park Area 10
Headley Rd E
Woodley, Reading RG5 4SW, UK
(734) 697179

FAX (734) 699846
Circle No. 728

Siemens Matsushita Components GmbH
Product Marketing EMC Components
Balanstrasse 73
W-8000 Munchen 80, Germany
(89) 41444269

FAX (89) 41442575
Circle No. 729

VOTE . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 515
Medium Interest 516
Low Interest 517

NOW 14 AND 16 BIT SMALLEST MULTICHANNEL S/Ds

0Our present line of multichannel Synchro- or Resolver-to-Digital converters has been expanded to include additional features such as 16 bit resolution. Assigned model numbers SDC-14575, SDC-14605, and SDC-14615 series, these products offer the smallest size, and lowest cost per channel of any hybrid product available.

The SDC-14575 is a single-channel device featuring a small size 1.0 x 0.8 inch ($0.8 \mathrm{in}^{2}$) package. The series is available in either Synchro or Resolver format, 2 volt, 11.8 volt, or 90 volt line-to-line, $47-1000 \mathrm{~Hz}$. Based on a high-reliability singlechip monolithic, the device features velocity output to eliminate a tachometer and an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Also featured is a BIT output, which is a digital output to flag excessive error
or fault condition, (LOS) Loss-OfSignal or (LOR) Loss-Of-Reference, and a "no 180° hangup" feature.

The SDC-14575 series can be programmed for either 14 bit (0.022 degrees perbit) or 16 bit (0.11 degrees per bit) resolution. Resolution control is accomplished by a digital line (logic " 0 " $=14$ bits, logic " $1 "=16$ bits). Resolution control can also be used to influence tracking rate and settling time.

The SDC-14605 and SDC-14615 series, are two- and three-channel versions of the SDC-14575. All channels are independent, except for the reference inputs and digital output pins, which are shared. Output angle data is enabled onto the tri-state data bus intwo or three bytes. Enable MSB $(\overline{\mathrm{EM}})$ is used for the most significant 8 bits and Enable LSB ($\overline{\mathrm{EL}}$) is used for the least significant 8 bits.

With both the 2- and 3-channel units, resolution is fixed at 16 bits. The 2 -channel will occupy $0.6 \mathrm{in}^{2}$ per channel and the 3 -channel $0.5 \mathrm{in}^{2}$ per channel. Cost per channel is reduced significantly due to the sharing of costs as such as the package and substrate.

All units in the series lend themselves to applications where multiple channels must be converted and space is at a premium. It will prove to be cost effective even in those applications where a low-cost, multiplexed scheme is being considered. Converters can be mixed together, such as a 5 -channel application that could use one 2-channel and one 3-channel. All converters are available with military screening.

For additional information please contact Bill Cullum at (516) 567-5600, extension 389.

[^5]
European EMC regulations

the first products already displaying CE marks. The first CE marks showing adherence to the EMC Directive should appear by the end of 1991, according to Tony Bond, head of the EMC office of the UK's Department of Trade and Industry. He believes manufacturers will want to demonstrate compliance sooner rather than later in order to beat competitors.

As the transition period passes, Bond expects purchasing managers to show increasing preference to CE-labeled goods. By the end of the transition period, only goods with the CE mark will be acceptable. Bond warns against procrastinating in complying with the Directive. He points out that it's more expensive to massage a finished product through to compliance than it is to design in EMC features from the outset.

He also thinks manufacturers in the UK will provide a natural watchdog service over other suppliers. He says the system will be "complaints driven"-competitors will step forward to expose one another.

In Germany, the Ministry of Telecoms has 50 offices spread throughout the country to police contraventions of EMC and other Directives. These offices routinely purchase and test products. If your product is found lacking, you will have to pay heavily for the test work, and be given a fixed period in which to conform. You may also be punished for importing the goods in the first place. Essentially, if you get to this stage in Germany, you're in big trouble.

All routes demand heavy toll

Attaining compliance will be expensive. Even discounting your additional design effort and manufacturing costs, the extra work in assembling documentation, and the

The CE mark signifies that your product complies with all applicable Directives of the EEC. The letters must be semicircular, greater than 3 mm in height, and the E-bar must be $>80 \%$ of the radius.
likely need for third-party testing, will cost at least $\$ 2500$ per design. Naturally, companies flinch at this level of penalty, especially coming at a time when business is not exactly booming. The authorities, recognizing this situation, claim the transition period introduces a degree of flexibility into the approval procedure. But still there is not really a low-cost route.

At a recent forum of EMC-Directive experts in the UK, a delegate from a small company producing custom designs asked how he could afford to meet the Directive and survive. The experts had no satisfactory answer. The only advice from the panel (a test house representative), was to discuss the problem with a test house. It seems that companies in this predicament have a difficult decision to make: They can either dodge the directive and risk getting caught, or go out of business.
If you consider self-certification using your own set-up, the cost is exorbitant. Tom Leahy, technical manager with Schaffner EMC Ltd, estimates a minimum of $£ 280,000$ is necessary in order to do emission and immunity testing. Of that figure, $£ 100,000$ buys you an electromagnetically shielded and damped room of around $25 \mathrm{~m}^{2}$, which he says is essential to obtain repeatable test results. Leahy sees that the main
problem with setting up your own facility is in locating experienced engineers to make the measurements. He reports mainly multinationals following this route, and only a few of the smaller companies.

For third-party EMC testing, TRL Ltd charges a daily rate of $£ 750$, which is typical for the industry. Mark Heaven, EMC consultant with TRL, estimates that compliance tests on the average product will take about two or three days. This period assumes the work goes smoothly, and the product passes. Before you submit a product to TRL, the company likes to consult with you on critical aspects of the design. These consultations minimize the chance of failure in the test house, and therefore limits your expense. According to Heaven, 80% of all EMC failures result from cables. Offending cables include linecords, data-links (such as RS-232C and IEEE-488), and signal leads. Apertures in the product's enclosure have the second largest effect on a product's failure.

Heaven says fixing EMC problems in a finished product is often a losing battle, and costly. Unless you carry out substantial redesign, involving changes to the pc-board layout, all you can do is install more shielding or filtering. The best way is to be conscious of EMC requirements throughout the design process. In that way, you can minimize, or even eliminate, additional product and manufacturing cost. Also, you optimize your chance of passing the test routine the first time. Some products cannot avoid cost penalties, however-notably, enclosures for information-technology products. Additional shielding using electroless plating on plastic surrounds increases component cost as much as three to ten times.

Wolfgang Sammet, EMC specialist with Siemens, also emphasizes

Maxim Offers All New Analog Applications Seminar

Maxim's top engineering staff will present half-day seminars covering a variety of innovative circuit solutions, featuring 60+ products introduced in the past year, and previewing products soon to be announced. For reservations, call us at (408) 737-7600, or FAX (408) 737-7194.
SEMINAR HIGHLIGHTS:

- RS-232 Interface Circuits
- Power Supply Circuits
- Data Acquisition: A/D, D/A
- Analog Switches and Multiplexers
- Active Filters
- Op Amps
- High Speed Comparators, Video Products
- Microprocessor Supervisory Circuits

ATTENDEES RECEIVE:

- Seminar Slide Book - 900 page Design Guide reference with sample Request Cards.

AL. Huntsville
AZ, Phoenix
AZ. Tucson
CA, Culver City
CA, Irvine
CA, San Diego
CA, Santa Clara
CA, Santa Clara
CA, Van Nuys
Calgary, Alb.
Richmond, B.C.
Missisauga, Ont.
Napean, Ont.
Montreal, Que.
C0, Boulder
CT. Meriden Heights
FL, Altamonte Springs
FL, Clearwater
FL, Ft. Lauderdale

Sept. 19 Oct. 15 Oct. 16 Nov. 12 Oct. 8 Nov. 13 Oct. 17 Oct. 16 Oct. 10 Sept. 13 Sept. 12 Sept 26 Sept 25 Seot. 24 Dec. 10 Oct. 3 Dec. 3 Dec. 2 Dec. 5

SEMINAR SCHEDULE:

FL. Indialantic
GA. Norcross
IN, Ft. Wayne
IN, Indianapolis
MA, Burlington
MA, Westford
MD, Gaithersberg
MI, Novi
MN, Minneapolis
M0, Kansas City
MO, Maryland Heights M0, Maryland Heights
NC, Raleigh
PA, Ft. Washington
PA, Ft. Washington
NM, Albuquerque
NY, Liverpool
NY, Melville
NJ, Fairfield

Dec. 4 Sept. 17
Sept. 4
Sept. 5
Oct. 1
Nov. 13
Dec. 11
Sept. 4
Oct. 16
Sept. 17
Sept. 18
Sept. 18
Dec. 10
Oct. 9
Oct. 9
Oct. 17
Oct. 1
Oct. 22
Oct. 24

NY, Rochester	Sept. 30
OH, Columbus	Nov. 11
OH, Dayton	Nov. 20
OH, Independence	Nov. 19
OH, Sharonville	Nov. 21
OK, Tulsa	Sept. 13
OR, Beaverton	Sept. 10
OR, Lake Oswego	Sept. 11
TN. Knoxville	Sept. 20
TX, Austin	Dec. 14
TX, Grapevine	Sept. 11
TX, Houston	Sept. 10
TX, Richardson	Sept. 21
UT, Murray	Sept. 6
UT, Ogden	Sept. 6
WA, Bothell	Nov. 11
WI. Brookfield	Nov. 6
WI, Madison	Nov. 7

Isolated RS-232 in One Package!

The MAX252 provides a complete isolated interface in one +5 V-powered standard 40 -pin DIP package by delivering voltage isolation up to UL levels (1500 V for 1 sec).
-48 V to +5 V Output Switching DC-DC Converter

The MAX650 contains all control functions and a $140 \mathrm{~V}, 250 \mathrm{~mA}$ PNP transistor, reducing external components. The converter has a selectable soft-start function, a shutdown pin for output on-off control, and peak-current limiting on the PNP output.

New +5V RS-232 Transceiver Doubles Speed of Existing +5 V RS-232 Devices!

The MAX232A +5 V dual RS-232 transceiver is guaranteed to operate at data rates up to $116 \mathrm{~kb} / \mathrm{s}$, while driving real loads -2500 pF and $3 \mathrm{k} \Omega$. And, the MAX232A uses space-saving $0.1 \mu \mathrm{~F}$ caps.

Evaluation Kit for Simple $+3 \mathbf{V}$ to +5V Step-Up Converter

The MAX655 Evaluation Kit includes everything needed to build and test a circuit that converts 2 AA cells to +5 V . The kit includes an evaluation board with low-noise layout, a MAX655, and all components necessary for prototyping with the MAX655

RS-232 Transceivers at 1/10th the Power!

The MAX220 dual +5 V transceiver is designed specifically for low-power operation. Quiescent operating supply current is a mere $500 \mu \mathrm{~A}$ unloaded. And, the MAX220 is guaranteed to operate at data rates up to $20 \mathrm{~kb} / \mathrm{s}$.

+5V Linear Voltage Regulator

 Has 150 mV Dropout at $\mathbf{2 0 0 m A}$

The MAX667 is the only CMOS linear voltage regulator that has both low dropout and ultra-low, $20 \mu \mathrm{~A}$, no-load quiescent current. Ideal for battery-powered applications. Also features $1 \mu \mathrm{~A}$ shutdown mode.

Maxim Integrated Products, Inc., 120 San Gabriel Drive, Sunnyvale, CA 94086. Tel. 408/737-7600. FAX 408/737-7194

European EMC regulations

the importance of good design practice from the beginning. He says particular attention to grounding and short signal paths on your pcboard layout pays dividends. He also meets many problems at a system level. It is quite common for a collection of modules that pass an EMC test as individual units to fail when connected together. This situation highlights the problem of "configuration control," which Sammet sees as the major obstacle in the future. Several EMC specialists suggest Henry W. Ott's Noise Reduction Techniques in Electronic Systems (Wiley-Interscience, 1988) as a comprehensive and readable text to help you design around EMC problems.

Germany leads Europe on the EMC specification front. German National Standards Institution (VDE) specifications for commercial equipment have been around for decades. Siemens's commitment to the EMC business is exceptional. The company has extensive test facilities in Munich and markets a va-
riety of EMC components for products and installations. Siemens has run EMC training seminars for design engineers for the last 20 years. Currently, the program takes place six times a year at international venues. Despite these advances, it is Sammet's view that a lot more needs to be done. In particular, he thinks electricians and technicians, as well as design engineers, need to be aware of, and understand how their work affects EMC.
The impact and complexity of the new EMC legislation is likely to influence all involved to move cautiously through the early months of 1992. Nobody knows exactly what to expect.
So far, every sign from the authorities suggests a commonsense approach, particularly in the UK. The objective of the EMC Law is to be protective more than pernicious. If you can demonstrate that you've taken a responsible attitude, then your problems should be few. The authorities anticipate that most companies will respond in this way,
just as they have with safety regulations.

Some anomalous and difficult areas persist, however. It's not likely that they will disappear until the new regulations have passed a burn-in period.

Lack of commonality throughout the EEC is one such problem. In the transition period, for example, it will be possible for different specifications to apply in different countries, but all these specifications will lead to qualifying for the same CE mark. For example, as German VDE specifications are the toughest, it will be attractive to qualify elsewhere. Even after the transition period, it's likely that there won't be common rules for authorizing competent bodies or accrediting test houses. At present, NAMAS in the UK has mutual agreements with France and the Netherlands. The Western European Laboratory Accreditation Cooperation is engaged in providing common rules, but progress is at snail's pace.

Looking further afield, there is

What does it all mean?

The following list of acronyms are in common usage in the Standards and EMC world:
ANSI: American National Standards Institute
BSI: British Standards Institution
CE: European Community, used for CE mark of compliance (from its title in French)
CENELEC: European Committee for Electrotechnical Standardization (from its title in French)
CISPR: International Special Committee on Radio
Interference (from its title in French)
DAE: German Laboratory Accreditation Service
(from its title in German)
EEC: European Economic Community (Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain, and the United Kingdom)
EFTA: European Free Trade Association (Austria, Finland, Sweden, and Switzerland)

EMC: Electromagnetic Compatibility
EMI: Electromagnetic Interference
EN: European Standard (from its title in German)
ESD: Electrostatic Discharge
ETSI: European Telecoms Standards Institute
FCC: Federal Communications Commission
IEC: International Electrotechnical Commission
ILAC: International Laboratory Accreditation Cooperation
NAMAS: National Measurement Accreditation Service (Department of NPL)
NPL: National Physical Laboratory (in UK) prEN: Provisional EN, not fully ratified RFI: Radio Frequency Interference
VDE: German National Standards Institution (from its title in German)
WELAC: Western European Laboratory Accreditation Cooperation

15-BIT ADC USES ONIY 10μ A SUPPIL CURRENT!

Simple 8 -bit μ P Interface for $\$ 8.00 \times 1$

Maxim's new MAX135, low-noise, ± 5 V-powered, multi-slope integrating ADC, provides $\pm 0.005 \%$ accuracy at 16 conversions per second, while requiring only $125 \mu \mathrm{~A}$ of supply current over temperature. The MAX135 extends resolution to 18 bits with 3 internal Super LSBs - sub-LSB bits for data averaging. 8 -bit data bus and 3 logic control lines simplify $\mu \mathrm{P}$ interfacing. All this comes packaged in space-saving 28-pin DIP and SO packages!

- $\pm 0.005 \%$ Accuracy \& $15 \mu \mathrm{~V}$ Resolution at 16 Conv/sec
- 28-Pin SOIC Replaces 40-Pin DIP
- Supply Current Over Temp: 125 μ A max (Normal Mode) 10 μ A max (Sleep Mode)
- 18-Bit Resolution and Improved Accuracy with Data Averaging
- $\pm 10 p A$ Input Current

Maxim's MAX135 and MAX480 team up with a bridge and a μP for high-accuracy measurements over temp.

3-Wire Serial $\mu \mathbf{P}$ Interface Available Soon

Soon, Maxim will introduce the MAX132, a 3-Wire serial-interface version of the MAX135, packaged in a space-saving 24-pin DIP and SO.

FREE Analog A/D Design Guide

Including: Application Notes Data Sheets Cards For Free Samples To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353: Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (201) 428-0600, (609) 778-5353; New Mexico, (602) 730-8093; New York̄, (516) 351-1000, (607) 754-2171; N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 8510010; Tennessee, (404) 447-6124; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

LOW DROPOUT REGULATORS

TK114xx

- 200 mW Power Rating
- Super Small SOT23L Package
- ON/OFF Switch
- Internal Protection Features

TK115xx

- 600 mW Power Rating
- Low Noise
- Internal Protection Features
- ON/OFF Switch
- Active HIGH and Active LOW Control
- External Boost Transistor Connectable

- 500 mW Power Rating
- Internal Protection Features

Call Your TOKO Representative For Data Sheets and Additional Information

books that work the way you work

Analog Circuit Design:
 Art, Science, Personalities Jim Williams, Linear Technology Corp., Editor

24 masters of analog circuit design share their experience in this comprehensive and useful guide to analog theory and applications.
June 1991 352pp. cloth
$0750691662 \$ 44.95$

Troubleshooting Analog Circuits Robert A. Pease, National Semiconductor

Don't understand analog troubleshooting? Relax. Bob Pease does. Expanding on his popular series in EDN, this book includes all of Bob's battle-tested methods. June 1991 208pp. cloth $0750691840 \$ 32.95$

The best of EDN
Electronic Circuits, Systems \& Standards Edited by lan Hickman

Ian Hickman has collected and filed EDN articles from the last 15 years, selected his favorites, and cross̊-referenced and indexed them. April 1991 256pp. cloth 200 illus. $0750600683 \$ 32.95$
to order call 1-800-366-2665
M-F 8:30-4:30 E.T.
BUTTERWORTH-HEINEMANN
80 Montvale Ave. Stoneham MA 02180
The EDN Series
for Design Engineers

UPDATE

European EMC regulations

a strong case for establishing equivalent competent bodies and accredited test houses outside Europe. This move would make it much more straightforward for international manufacturers to use the third-party test route to comply. However, the likelihood of this happening in the next five years seems remote. Yet another organization, the International Laboratory Accreditation Cooperation, supports the idea, but implementing any program is way off.
The most persistent headaches will result from difficulties of configuration control. For example, if a PC plug-in card complies in PC type A, but fails in PC type B, you will have to decide how many other PC types you should try it in. If you are a systems integrator, your headaches multiply. All your systems may have a different configuration, and the system may pass at one site, but fail at another. If you're a small company making custom designs, it's unlikely you can pass the cost of testing to your customer for every single product.
Europe's EMC Law is here to stay and is certain to disturb the tranquility of your R\&D lab. In de-sign-cycle terms, the 1995 dropdead date is not so far away. Tune in to Europe's EMC emissions, before Europe designs in immunity to your products.

EDN

Article Interest Quotient
(Circle One)
High 515 Medium 516 Low 517

FASTEST, $+5 V$-SUPPLY 12-BIT ADC-ONLY S10*

FREE Precision Laser-Trimmed Reference Included On-Chip

Maxim now offers a 7.5μ s analog-to-digital converter (ADC) with internal voltage reference, clock, and track/hold that typically consumes less than $3 \mathrm{~mA}(15 \mathrm{~mW})$. The MAX190 saves additional power with an on-command power-down that extends battery life in portable applications. And, the new ADC simplifies external circuitry with high-impedance differential inputs and rail-to-rail signal range for both unipolar and bipolar conversions.

- Single +5V Supply
- 12-Bit Resolution, 1/2LSB Linearity
- Internal or External Reference
-7.5 $\mathbf{~}$ s Conversion Time
- Low Power: 15mW typ.
- 150 H W Power-Down with 35 $\mu \mathrm{S}$ Start-Up
- Internal Clock and Track/Hold
- High Immunity to Latch-Up

Choose Your Interface: 3-Wire Serial or 8-Bit Parallel

The MAX190 features a 3 -wire serial and two 8-bit parallel interface modes for easy $\mu \mathrm{P}$ connection. The MAX190 comes in both plastic and ceramic DIP and SO packages with less than 1/2LSB linearity over temperature.

FREE A/D Converter Design Guide

Includes: Application Notes * Data Sheets - Cards For Free Samples To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

AMAKI/V

[^6]
Reduce Your Risc

New PACEMIPS"Components - Less Space, Lower Cost

Now design your single-board RISC computer with three NEW Performance components: CPU/FPA R3400, PACEWRAP, and BiCameral SCRAM.

PACEMIPS R3400

CPU/FPA in a CPU Socket

- $25 / 33 \mathrm{MHz}$ Operation
- Only 1.2 Clock Cycles/nstruction
- Up to 28 Mips and 9.7 MFLOPS
- 172 Lead Flat Pack/144 Pin PGA
- Full R3000/R3010 Functionality

PACEWRAP R3100

- Replaces four R3020s and up to 24 other chips.
- Eight-word-deep Write Buffer - with readback.
- Programmable Read Buffer - to 32 words and matches refill.
- Parity generation - allows use of main memory without parity.
- Bus snooping support.

PACEWRAP R3100 Block Diagram

BiCameral SCRAM Cache ZIP

 Module- Dual 8 Kx60 High-Speed SCRAM
- 32K Byte I and D caches from a single module including address latches.
- Available for up to 33 MHz CPU with minimum board space required.
- Space saving 6.350×0.815-inch 124-pin ZIP module

16Kx60 Cache SCRAM ZIP Module

- Two modules implement 64K Byte I \& D caches including address latches.
- Available for up to 33 MHz CPU with minimum board space required.

For information or to order write or call
Performance Semiconductor Corporation 610 E. Weddell Drive, Sunnyvale, California 94089 Telephone: (408) 734-9000

QUAD VOLTAGE-OUTPUT 12-BIT DACS REPLACE 40 A AMPS AND 4 DACS!

Save Valuable Board Space With 24-Pin SO Package

Maxim's new MAX526 quad voltage-output A/D converter replaces 4 digital-to-analog converters (DACs) and 4 op-amps with a single CMOS monolithic IC! The new DAC delivers performance you'd expect from hybrid and module quad DACs. Maxim guarantees monotonic 12 -bit performance with $1 / 2 \mathrm{LSB}$ relative accuracy over temperature for all 4 outputs, and 1LSB total unadjusted error with no zero- or full-scale adjustments. And, 10V outputs settle to $1 / 2 \mathrm{LSB}$ in $5 \mu \mathrm{~s}$.

- Four 12-Bit DACs in One Package
- Buffered Voltage Output
- 1LSB Total Unadjusted Error
- Double-Buffered Logic Inputs
- 24-pin DIP and SO Packages
- Parallel μ P Interface

Typical MAX526 performance-output settling to 1/2LSB $(1.2 \mathrm{mV})$ in less than 3μ s with a $5 \mathrm{k} \Omega+100 \mathrm{pF}$ load.

Input Double Buffering \& Output Amplifiers Simplify Design

[^7]To put VGA graphics on your motherboard, you need a cost-efficient, highly integrated, powerful solution that uses minimal board space. You need the new CL-GD5320 Enhanced VGA-Compatible Graphics Chip from Cirrus Logic.

Use it to incorporate full 16-bit or 8-bit VGA into low-cost personal computers. You only need two industry standard 256 K x 4 DRAMs and as few as five other ICs. Whatever memory speed you select $80 \mathrm{~ns}, 100 \mathrm{~ns}$, or 120 ns - you'll get a complete VGA display system with greater performance than systems using a more expensive solution with $64 \mathrm{~K} \times 4$ DRAMs.

You don't sacrifice features. You get 16 -bit and 8 -bit support for the VGA graphics standard, and full, register-level backwards compatibility. For maximum performance, it has an $8 / 16$-bit CPU interface, independent video and DRAM clocks,
internal FIFOs, and page mode DRAM access. And it will interface to both analog (PS/2 and multisync) and TTL monitors.

You can also pick a ready-to-use solution that's right for you. Anything from a chip with full BIOS, drivers, utilities, user's manual, and documentation - to a complete manufacturing kit including everything you need to quickly move into high-volume production.

Make your PC more competitive and save time, space, and money. Call Cirrus Logic today.
「 Get on board. Call today for more information on our motherboard VGA solutions.
Call 1-800-952-6300. Ask for dept. LM22.

This full 16 -bit
CL-GD5320 lets you implement 16 -bit or 8 -bit VGA capabilities on your motherboard with as few as 5 other chips and two $256 \mathrm{~K} \times 4$ DRAMs. Get a complete solution that saves time, space, power, and expense. You still get all the speed, features and flexibility you're looking for
©1990 Cirrus Logic, Inc.. 3100 West Warren Avenue, Fremont, CA 94538 (415) 623-8300; Japan: 462-76-0601; Singapore: 65-3532122; Taiwan: 2-718-4533/4534; West Germany: 81-52-2030/6203 Cirrus Logic, and the Cirrus Logic logo are trademarks of Cirrus Logic, Inc. All other trademarks are registered to their respective companies.

WORID'S LOWEST POWER HIGH SPEEE COMPARATOR18mW, 8ns!
 Maxim now offers you a selection of the fastest low-power single, dual and quad TTL comparators. For example,

 the new MAX903 can deliver an 8 ns response time, while drawing only $3.6 \mathrm{~mA}(18 \mathrm{~mW})$ per comparator from a +5 V supply (enabling signals in excess of 100 MHz to be processed). Although other comparators may operate from a single supply, the MAX900 series are the only high-speed comparators with an input voltage range that extends down to ground. In many applications this eliminates the negative supply, saving board space, power consumption and cost!

Separate Analog and Digital Supplies Allow:
Single +5 V to $+\mathbf{1 0 V}$ Analog Supply
Split $\pm 5 \mathrm{~V}$ for Bipolar Operation
Input Range Includes Ground and
Eliminates Need for Negative Supply

Power Consumption/Comparator(mWtyp)

Select A High Speed Comparator For Your Low Power Application

Device	\# Comps	Prop Delay (ns)		\qquad	Single +5 V Operation	Input Voltage (Single +5 V Supply)	TTL Outputs	Price ${ }^{\dagger}$
		Typ	Max					
MAX900	4	8	10	70	YES	-100 mV to +2.5 V	Single Ended	\$7.01
MAX901	4	8	10	70	YES	-100 mV to +2.5 V	Single Ended	\$5.98
MAX902	2	8	10	35	YES	-100 mV to +2.5 V	Single Ended	\$4.01
MAX903	1	8	10	18	YES	-100 mV to +2.5 V	Single Ended	\$3.15
MAX912 ${ }^{1}$	2	8	10	40	YES	-100 mV to +2.5 V	Complementary	\$4.00
MAX913 ${ }^{1}$	1	8	10	25	YES	-100 mV to +2.5 V	Complementary	\$3.13
LT1016 ${ }^{1}$	1	10	14	125	YES	+1.25 V to +3.5V	Complementary	\$3.13

FREE High Speed Comparator Design Guide

Includes: Application Notes Data Sheets Cards For Free Samples
To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600,
FAX (408) 737-7194

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 238-7500; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454: Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (201) 428-0600, (609) 778-5353; New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171; N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 238-7500; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 238-7500, (512) 835-5822. (713) 789-2426; Utah; (801) 561-5099; Virginia, (301)644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373 (514) 337-7540
\dagger 1000-up FOB USA, suggested resale
Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.

SIEMENS

Globally Connected.

Siemens provides computer and peripheral manufacturers with a worldwide connection for state-of-the-art integrated circuits.

Siemens is building on a tradition of innovation with state-of-the-art technology in the workplace. And we back it with worldwide service and support, providing a global partner for all your system designs.

For applications such as laptop PCs, printers and disk drives, which require lower power consumption, we offer

Innovative 8-bit microcontroller designs. CMOS 8-bit microcontrollers based on the 8051 architecture. Like the SAB80C537, with advanced features
such as 16-bit hardware multiply/divide, and 8 data pointers.
We're also the only European DRAM manufacturer, providing highquality $1-\mathrm{Mb}$ and $4-\mathrm{Mb}$ DRAMs. In fact, we're one of the world's leading suppliers, with DRAMs available world wide, in volumes which have doubled since 1989. And we're continuing to advance this technology with our $16-\mathrm{Mb}$ and $64-\mathrm{Mb}$ DRAM programs.

Siemens has a wide range of ICs for PCs. Our powerful 80286 microprocessors include a super-fast 16 MHz design. And we provide the 82C206 and the NEAT" chipset for optimized, low-cost solutions.

80286 and integ integrated peripherals.

Plus, Siemens offers an extensive line of CMOS ASIC devices

For innovative solutions for computer and peripheral manufacturers, Siemens is the best connection you can make.

For details, call (800) 456-9229, or write:
Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514
Ask for literature package M14A013

(thntry

fixwn

Siemens
 World Wise, Market Smart.

Bringing order to the welter of highdensity program-mable-logic devices is no easy task. After conferring with numerous experts, EDN bravely offers this hopefully comprehensive and extensible overview.

Charles H Small, Senior Editor

HIGH-DENSITY PLD ARCHITECTURES

Family tree sorts out high-density PLDs

Amind-numbing variety of highdensity PLDs (those having more than 2000 "equivalent gates") is already available. And hardly a month passes without yet another new or enhanced high-density PLD or two becoming available. Further, unconfirmed sightings of "stealth chips" (publicized, but not announced) suggest that soon even more devices may appear.
EDN interviewed experienced users and high-density-PLD makers, asking each to take a stab at categorizing these devices. No two replies were even remotely similar. However, we synthesized some very general categories, and we submit the family-tree chart in Fig 1 and a supplementary chart (Table 1) for your approval. Though comprehen-
sive, the charts need to be extensible, because when the stealth chips bolt from their secret black projects into the market, they will have to fit in somewhere.

The companies listed offer PLDs having , significantly higher capacity than standard PLDs such as the 22 V 10 . Yet notice that neither chart mentions just how much larger. The only metric available for comparing high-density PLDs' capacities is "equivalent gates." However, the high-density-PLD industry has not converged on a unified method of calculating equivalent gates. The industry is even further away from coming up with a metric that designers will accept and can use.

This lack of a useful capacity specification for high-density PLDs is unfortu-

Fig 1-This family tree attempts to break down available high-density PLDs down into useful categories. Hopefully, as new devices appear, they will hang from branches that fit organically into this tree.

The Most Diverse Family In Memory.

A Complete Line Of 1-Meg SRAMs.

Call Sony first. The largest selection of 1-Meg SRAM assures you can find the high performance, highly reliable memory you're looking for with just one call, so why go on a safari?

Fast or slow. Hot or cold. Even your massive memory requirements are right here.

And we can ship the package styles most in demand for your new designs today - and tomorrow. Our new production facility in San Antonio, TX will build on the reputation for timely delivery that has made us a breed apart.
The Best Selection Of New SRAMs.
-40° to $+85^{\circ} \mathrm{C}, 3$ volts and X 9.20 nsec

If your current designs incorporate the latest
technology, call us. Virtually every new idea in SRAM will be here at Sony first. And our U.S. design team (with their 0.8 \& 0.5-micron CMOS technology) stands ready to get you the right product for your design; whether it's for a laptop or workstation.

Call Sony First.

Weve got the product, backed by the Sony commitment to quality and service. And at competitive prices that make us the King of the SRAM Jungle.

Call today 714.229.4190 or 416.499.1414 in Canada. Or fax us
 your current requirements for a quick response from our technical staff 714.229 .4285 (fax) or 416.497.1774 (fax/Canada).

SONY

Sony Corporation of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630 Sony Canada, 411 Gordon Baker Rd., Willowdale, Ontario M2H 256

High-density PLD architectures

nate. Experienced users agree that the three most important specs for a high-density PLD are capacity, speed, and price. Incidentally, users are not thrilled with the specs for speed either, finding that using such specs requires careful study of the fine print and considerable experimentation. And while they can get firm specs for price, most think the prices are too high.

Returning to Fig 1, the first and most definite cut of the analytical scalpel divides field-programmable gate arrays (FPGAs) from devices that realize canonical, sum-of-products, Boolean equations. FPGAs have largely uncommitted interconnections. That is, both ends of each possible internal connection are user programmable; the connections between logic elements on-chip are not deterministic. FPGAs compose the logic-basedcell branch of the tree.
The sum-of-products devices, in a fashion very similar to their PALdevice and PLA-device forbears, have at least one end of every internal connection fixed, leaving only one end for you to connect. Their internal connections are deterministic. Sum-of-products devices compose the logic-gate-based branch.

A couple of comments are in order. First, you must realize that FPGA is a misnomer. FPGAs do not resemble conventional maskprogrammed gate arrays at all. Unfortunately, the much more apt term "logic-cell array," LCA, is a trademark of Xilinx. If you could see the die of an FPGA, you would find a rectangular array of logic cells surrounded by a phalanx of I/O cells. Running between (and, in some cases, over) the cells are uncommitted connecting lines of different length and current-carrying

Actel's Act devices were simple combinatorial-logic blocks; the company's second-generation devices have combinatorial cells and cells containing registers. Compared to Plessey's Era logic cell, Xilinx's LCA logic cell is complex, containing both combinatorial logic and registers.

Quicklogic's devices defy classification. Conceptually, they are AND/OR SOP devices. Physically, they resemble logic-cell arrays, having core macrocells surrounded by interconnection channels. Algotronix's logic-cell devices easily connect into rectangular arrays so that you can assemble large blocks of tiled, programmable logic. At
logic cell, the more coarse is its granularity. The divisions between fine, medium, and coarse granularity in Table 1 are rough estimations made only for comparison.

An FPGA's granularity is a compromise between complexity and fan-in. If the granularity is fine, then the FPGA's simple logic cells will each need few inputs. Hence, fan-in will not be a problem. However, the device will obviously need many logic cells to perform a given function. If, on the other hand, an FPGA's granularity is coarse, then its more-complex logic cells will be relatively powerful, and you will need fewer of them for a given task. But a complex logic cell will, perforce, need more inputs than a simple cell would, perhaps leading to fan-in problems that may strain the internal-connection resources of the device.

GEC Plessey's logic cell is little more than a simple gate. Toshiba's cell is similar because both FPGAs stem from Pilkington designs. The logic cells in initial offerings of
Table 1-FPGA granularity

	Granularity			Programming technology	
	Fine	Medium	Coarse	RAM	Antifuse
Actel		\checkmark			\checkmark
Algotronix		\checkmark		\checkmark	
Fujitsu		\checkmark		\checkmark	
GEC Plessey	\checkmark			\checkmark	
Toshiba	\checkmark			\checkmark	
Xilinx			\checkmark	\checkmark	

capacity. The logic cells of the various FPGAs contain different amounts of logic, and you can program each device's logic cell into a unique-and sometimes quirkyset of Boolean functions.
The fewer logic elements in an FPGA's logic cell, the more fine is its "granularity"; conversely, the more logic elements in an FPGA's press time, information on the Fujitsu devices was sketchy.
Designing with these logic-cellbased devices hearkens back to the days when engineers used discrete logic or small-scale integration (SSI). Breaking up a logic design into bits that will fit into individual cells and then connecting those cells is usually too complex a task to be done manually. Hence, designers rely on software for these tasks. The software they use has much in common with place-and-route software for printed-circuit boards.

Boolean equation realized

The logic-gate devices on the left of Fig 1 have the same theoretical underpinning as earlier PAL devices and PLA devices: the fundamental theorem that says you can realize any logic function with a sum-of-products Boolean equation. You can sum ORed, NANDed, or NORed products leading to ANDOR, NAND-NAND, or NOR-NOR sum-of-products equations. The elegance and simplicity of these equa-

TECHNOLOGY UPDATE

High-density PLD architectúres

tions translates into a simple, regular structure for a programmablelogic device.

Their simplicity and regularity also beget simpler and faster-compiling software than the software for FPGAs. Designing with the logic-gate-based devices has much in common with designing for PAL devices. However, their prewired structure suffers from the same bugaboo that haunts PAL devices: low gate-utilization rates.

The designers of logic-gatebased, high-density PLDs have enhanced earlier PAL-device and

PLA-device architectures in several ingenious ways, striving to make their devices' layouts more flexible. Altera, for example, hard wires only three AND terms to each OR gate in its Max devices. To set up product terms having more than three ANDed inputs, you wire in some floating, uncommitted AND gates. Thus, the device does not have the rigid 8-AND-gates/ORgate structure of many PAL devices. Note that this flexibility costs you some extra delay when you wire in floating gates.

Similarly, Advanced Micro De-
vices' Mach devices allow you to assign blocks of ANDed terms, in groups of four, among OR gates. Actel's Act devices also share product terms. Lattice's pLSI devices permit you to allocate groups' connections at several levels. National's MAPL devices contain "pages" of PLAs. Just like the MAPL devices' PLA-device ancestors, the connections between ANDed terms and OR gates are completely programmable.

Signetics' and Exel's novel devices actually come closest to meeting the literal definition of an

For more information . . .

For more information on the high-density PLDs discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

AT\&T Microelectronics	Atmel Corp	National Semiconductor Corp	Signetics Corp
Dept 52AL040420	2125 O'Nel Dr	Box 58090	811 E Arques Ave
555 Union Blvd	San Jose, CA 95131	Santa Clara CA 95052	Box 3409
Allentown, PA 18103	(408) 441-0311	(408) 721-5341	Sunnyvale, CA 94088
(800) 372-2447; in Canada, (800) 553-2488	Circle No. 705	Circle No. 711	(408) 991-2000 Circle No. 715
Circle No. 700			
	Exel Microelectronics	Pilkington Micro-electronics Ltd	
	Box 49038	Sherwood House	Texas Instruments
Actel Corp	San Jose, CA 95131	Gadbrook Business Center	(Actel second source)
955 E Arques Ave	(408) 432-0500	Rudheath, Northwich	Semiconductor Group (SC-91018)
Sunnyvale, CA 94086	Circle No. 706	Cheshire, CW9 7TN, UK	Box 809066
(408) 739-1010		060649582	Dallas, TX 75380
Circle No. 701		FAX 060649615	(800) 336-5236, ext 700;
	Fujitsu	(408) 721-5341	(214) 995-6611, ext 700
	3330 Scott Blvd ${ }^{\text {d }}$	Circle No. 712	Circle No. 716
Advanced Micro Devices	Santa Clara, CA 95054		
901 Thompson Pl	(408) 562-1000		
Sunnyvale, CA 94088	Circle No. 707	Plus Logic	Toshiba America
(408) 732-2400		1225 Parkmoor Ave	Electronic Components Inc
Circle No. 702		San Jose, CA 95126	9775 Toledo Way
	GEC Plessey Semiconductors	(408) 293-7587	Irvine, CA 92718
	Sequoia Research Park	FAX (408) 298-7587	(714) 455-2000
Algotronix Ltd	1500 Green Hills Rd	Circle No. 713	Circle No. 717
Technology Transfer Centre	Scotts Valley, CA 95066		
King's Buildings	(408) 438-2900		
Mayfield Road	Circle No. 708	Quicklogic Corp	Xilinx
Edinburgh, EH9 3JL		2933 Bunker Hill Lane	2100 Logic Dr
Scotland	Intel Corp	Santa Clara, CA 95054	San Jose, CA 95124
(031) 6681550 FAX (031) 6624678	(Altera second source)	(408) 987-2000	(408) 559-7778 (408) 559-7114
Circle No. 703	3065 Bowers Ave	Circle No. 714	FAX (408) 510-600-8750
	Santa Clara, CA 95052		EasyLink 62916309
	(800) 548-4725		Circle No. 718
Altera Corp	Circle No. 709	VOTE.	
2610 Orchard Pkwy			
San Jose, CA 95134		Please also use the Information	trieval
(408) 984-2800	5555 N E Moore	Service card to rate this article	
Circle No. 704	555s N E Moore Hillsboro, OR 97124	one):	
	(503) 681-0118	High Interest 470	
	Circle No. 710	Medium Interest 471	
		Low Interest 472	

The mil-spec solderless switch for land, sea or air.

Our QUIK-CONNECT ${ }^{\text {TV }}$ module is physically separate from the switch. It can be pre-wired without solder and pre-checked for correct continuity. The
 QUIK-CONNECT ${ }^{\text {TN }}$ module can then simply be pressed into place in the Vivisun Series 95 switch.

It's also compatible with NVIS night vision goggles per MIL-L-85762A. A unique optics system eliminates the glare. When voltages are
trimmed, the switch is easily readable with the unaided eye. It's also readable in direct sunlight and deadface when not energized.

Compact and light. No other Mil-Spec switch can match it. Options: High-Impact Shock • Dustproof/ Dripproof/Watertight/Splashproof • Split Ground • Standard Solder Terminations •EMI

Contact us today.

AEROSPACE OPTICS INC.

3201 Sandy Lane, Fort Worth, Texas 76112 (817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 95,
the advanced QUIK-CONNECT ${ }^{\text {T }}$ solderless pushbutton switch.

True 16-Bit
 1 MHz sampling rate

from baseband to SUPER Nyquist

The ADC4344 A/D converter achieves true 16-bit performance up to Nyquist. Plus, unlike other converters, it features an unprecedented -84 dB peak distortion from Nyquist to the sample rate. For stringent multiplexed applications, the ADC4344 (with a step input) will settle to 1 LSB in less than 800 ns .

- Low noise: $55 \mu \mathrm{~V}$ RMS Max.
- Peak distortion at 1 MHz sample rate:
-99 dB at 100 kHz input -84 dB at 980 kHz input
- Signal to noise ratio: 91 dB at 300 kHz input
- Compact size: 2 1/2" x 3 1/2"

Applications include:

- Sampling oscilloscopes
- Medical instrumentation
- Vibration analysis instrumentation
- Test equipment
- CCD detectors

All specifications tested and guaranteed over full temperature range.

CALL NOW! (508) 977-3000 X2170

360 Audubon Road
Wakefield, MA 01880

TECHNOLOGY UPDATE

High-density PLD architectures

Fig 2-Right now, programmable-logic devices perform control functions. Future devices may incorporate functions from the data-storage and data-handling axes. (Courtesy Plus $\underline{\text { Logic) }}$

FPGA. These devices are indeed arrays of a single type of gateNAND gates and NOR gates, respectively. However, these arrays of gates still do not even remotely resemble a conventional maskprogrammed gate array. In Signetics' and Exel's devices, a programmable crosspoint matrix potentially connects any gate's output to any gate's input. Thus, these devices' so-called "folded" architecture permits chaining NAND or NOR gates to realize the sum-ofproducts form.

But these are no ordinary gates. Even the most brilliant logic designer will have to spend some time thinking through the possibilities inherent in, for example, Signetics' array of 256 -input NAND gates. Obviously, fan-in will never be a problem.

Future high-density PLDs will add more leaves and branches to the family tree in Fig 1. Fig 2 provides a conceptual model for other areas high-density PLDs may move into. This figure ranges digital devices along three axes. Note that, except for finite-state-machine sequencers, programmable logic falls on the control-logic axis. Future
high-density PLDs could move in new directions, combining control logic with data storage or data handling.

EDN

Article Interest Quotient
(Circle One)
High 470 Medium 471 Low 472

WHAT'S COMING IN EDN

The Magazine Edition's October 1, 1991, issue will include EDN's DSP-chip directory. This annual feature updates the latest developments in the rapidly evolving technology of digital signal processing (DSP). In addition to updating the chips' many parts and features, this year's directory addresses how the choices of operating systems and interfaces to host operating systems are making DSP available to more applications.

Also coming in EDN in October and November is more from the mind of Jim Williams. We'll devote 50 pages to his study of highspeed analog design.

Introducing fast, high resolution A/D-DSP Coprocessor boards for VME and PC/AT - DVME-630 Series, PC-430 Series

DATEL's new A/D-DSP coprocessor boards include a very high performance analog front end which is efficiently integrated with an advanced floating point Digital Signal Processor. This perfect blend of fast A/D with DSP delivers continuous, non-stop A/D streaming plus concurrent DSP math blocks with no lost samples. Use them for fast FFT or filter graphics, signal compression onto disk or LAN, system simulation or communications testing. A half-megabyte, dual-ported RAM window enables simultaneous block transfers, disk I/O and screen refresh needed for engine testing, vibration and resonance studies and phased sensor arrays.

- 12 or 14 -bit A/D resolution with excellent input bandwidth and low noise
- 4 to $16 \mathrm{~S} / 8 \mathrm{D}$ analog input channels
- A/D sample rates: $1-4 \mathrm{MHz}$ (12 bits), 500 KHz (14 bits)
- 4-channel simultaneous sampling
- Simple, fast "no programming" command Executive and comprehensive DSP math library with FFT's, filters, etc.
- $32 \mathrm{MHz} 320 \mathrm{C} 30 \mathrm{DSP}, 512 \mathrm{~Kb}$ Dual Port RAM

DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048 (508)339-3000 FAX (508)339-6356

For FREE catalog call 800-233-2765

Signetics. Because we offer y

u the most 80C51 derivatives.

YOU'UL FIND THE SAME STRATEGYAT THE CORE OF OUR 16-AND 32 -BIT MICROCONTROLLERS.

To design the perfect features into your application, choose the industry's most complete and feature-rich family of 8-bit 80C51 and 84CXX microcontrollers.
Available in OTP and EPROM versions, you're assured of faster time to market and cost-efficient low-volume runs. And for designs demanding individual program code, our OTP devices offer you the ultimate flexibility.

You'll always have complete development support, too. Because you can choose from a growing list of emulators, programmers and software tools from Philips and third-party vendors including Ashling, Ceibo, Data I/O, Logical Systems, MetaLink,
Needham's, Nohau, Tasking and many more.
Today our microcontrollers are the driving force behind thousands of products. For applications ranging from consumer and automotive to
nsumer and automotive to

At the center of our family is a unique cell methodology. Through it you can select devices with a broad range of features. Like versions with an $I^{2} \mathrm{C}$ or CAN serial bus. Plus models with low voltage/low power, A/D, EEPROM, small packaging, PWM and more. Plus, each device is available as a standard derivative and as a core for customized ASIC designs.

A Sampling Of Our More Than 40 Leading 80C51 Derivatives					
Product	OTP	$1^{2} \mathrm{C}$	ROM	RAM	NO SIMILAR PRODUCT OFFERS:
8XC751	\checkmark	\checkmark	2 K	64	24-pin skinny DIP
8XCL410		\checkmark	4K	128	Operation at down to 1.5 volts
8XC851			4K	128	256 bytes EEPROM
8XC552	\checkmark	\checkmark	8K	256	10-bit A/D converter
8XC528	\checkmark	\checkmark	32K	512	512 bytes RAM

You'll also find that we offer a wide variety of embedded memory, ranging from 2 K to 32 K bytes of program memory (ROM, EPROM or OTP). And up to 512 bytes of embedded data memory (RAM). With speeds of up to 30 MHz .
Plus we're applying the same strategy to 16 -bit 68000 -based and 32 -bit SPARC ${ }^{\circledR}$-based microcontrollers. So as needs change, you'll have the building blocks to tailor designs.
communications, aerospace and defense, and computer peripheral products.
For more information, contact your local Philips Components-Signetics sales office. Or call today for your Microcontroller Derivative Brochure and Data Book: (800) 227-1817, ext. 716D.
SPARC is a registered trademark of SPARC International, Inc., based on technology developed by Sun Microsystems, Inc.

MasterDesigner 5.0, the shortest distance from concept to reality.

Master Designer" 5.0 is the shortest distance from PCB design concept to reality. And the fastest, most productive and reliable way to get your designs to market using an IBM ${ }^{\circledR}$ or compatible PC.

And now Master Designer 5.0 has been enhanced with more than 100 new features, requested by PCB master design engineers like you.
New features, more productivity.
Master Designer 5.0 shortens the entire design cycle with new features like extended memory for 4 -times larger designs. Automatic real-time on-line design rule checking. User configurable
menus. And automatic periodic file save with user-definable time increments.
First with $\mathbf{1 9 , 0 0 0}$ PCB designers.
You can rely on Master Designer 5.0 for the quality and dependability that has made it the choice of more than $19,000 \mathrm{PCB}$ designers worldwide.

Master Designer 5.0 gives you the interactive support of Master Layout" ${ }^{\text {t" }}$ to handle surface mount, analog, and digital technology. The flexibility of Master Schematic",' fully automated optional Rip-n-Route, and our optional Master Placer.". Not to mention the plus of a consistent menu-driven interface.

With Master Designer 5.0, you're backed by CADAM, the world's leading CAD/CAM/CAE software supplier, and
the international network of expert P-CAD Value Added Resellers.
Your finished designs are a lot closer than you think and so is your free P-CAD Demo Disk.

Here's how to get all the details on Master Designer 5.0 , and shorten the distance between your next great concept and reality. Just call P-CAD toll-free today and we'll send your free Master Designer 5.0 Demo Disk absolutely free.

1-800-255-5710
World Class PCB CAD Productivity

PRODUCTS FROM CADAM, AN IBM COMPANY

LabVIEW ${ }^{\circledR} 2$ Where The Only Barrier Is Your Imagination

 By now, you are probably familiar with LabVIEW 2, the most celebrated application soffware for data acquisition and instrument control on the Macintosh. It recently won the 1990 MacUser Magazine Editors' Choice Award. Five years ago, LabVIEW introduced the combination of front panel interfaces and graphical programming. Today, engineers and scientists around the world are using LabVIEW 2 in a broad spectrum of applications.

Unlike other graphical packages, LabVIEW 2 does not sacrifice power and flexibility for ease of use. With LabVIEW 2, you quickly build block diagram programs and
add your own blocks to expand upon our libraries. You also create front panel user interfaces and import pictures to customize the panels. Yet LabVIEW 2 virtual instruments run as quickly as compiled C programs.

If you thought LabVIEW 2 was just for test and measurement, call us to find out what LabVIEW 2 is really about.
For a tree LabVEW 2 Demo disk cal: (512) 794:0100 or (800) $258-7014$ (U.S. and Canada)

national

INSTRUNENTS ${ }^{\circ}$

6504 Bridge Point Parkway Austin, TX 78730-5039

How AMD

 KeepUpWith

 KeepUpWith}

The Elegance Inside The HP LaserJet IIISi" ${ }^{\text {" }}$ Printer: The $29 \mathrm{~K} "$ " RISC Microprocessor Family.
 HP's customers were on the prowl. And Hewlett-Packard knew exactly what they were hunting for - a faster, PCL5 and PostScript ${ }^{*}$ compatible, affordable desktop laser printer.
So they built the HP LaserJet IIISi printer. And naturally, they built it around the most versatile, high performance embedded RISC processor ever:

The $29 \mathrm{~K}^{\mathrm{m}}$ 32-bit microprocessor from AMD
Only the 29 K Family gives you the widest range of performance - thanks to its innovative register file and high-velocity memory interface. That's how HP achieves its blistering 17 page-perminute throughput, even with complex PCL5 and PostScript documents.

Only the 29K Family keeps your system costs

Helps HP Its Customers.

low, while keeping performance high. Features like AMD's unique on-chip caches and burst mode give you maximum performance from less expensive memory.

Only the 29 K Family helps bring your product to market so fast. You'll breeze through development with AMD's own tools, or the hardware and software tools provided by over 50 Fusion $29 \mathrm{~K}^{\text {sm }}$ Partners. And the 29 K Family continues to grow. with new members offering even higher performance and integration.

So make sure your customers are happy puppies, and start designing with the 29 K Family from AMD. Call 1-800-292-9263 Ext. 3 for more information.

4

Advanced Micro Devices

901 Thompson Place. P.O. Box 3453. Sunnyvale. CA 94088 . © 1991 Advanced Micro Devices. Inc. 29 K is a trademark and Fusion 29 K is a servicemark of Advanced Micro Devices. Adobe Systems. Inc. All other brand or product names are trademarks or registered trademarks of their respective holders.

ANY WAY YOU SLICE IT, GENERATION COVERS EVERY

The squeeze is on. Today the PC market is rapidly concentrating into three segments: Notebooks, Desktops and Workstations. And once again, Conner has anticipated these changes.

Which is why we're introducing our newest wave of highperformance 2.5 -inch and 3.5 -inch drives to meet the needs of each of these evolving market segments.

For the notebook market, take our newest Pancho drive.

Summit 540MB

With 85 Mbytes, it offers the highest capacity available in a light weight, patented 2.5 -inch form factor. Low power consumption, rugged packaging and a compact form factor

Jaguar 85/170 MB make it the ultimate choice for 386SX and 486SX-based notebook computers.

Then there's our new Jaguar Series for the desktop market - 3.5 -inch drives offering 85 and 170 Mbytes. A 17 msec. average seek time and a light weight, patented 1 -inch

World Headquarters: 3081 Zanker Road, San Jose, CA 95134 Telephone: (408) 456-4500 FAX: (408) 456-4501 Sales Offices: Asia - Singapore: (65) 296-1992 - Taipei: (886) 2-718-9193 - Tokyo: (81) 3-3485-8901 - Seoul: (82) 2-551-0511 Europe O 1991 Conner Peripherals, Inc.

CONNER'S NEWEST SEGMENT OF THE MARKET.

high form factor make them ideal for a full range of desktop computers.

For workstations, we're introducing two new 3.5 -inch drives - the 210 Mbyte Cougar and 540 Mbyte Summit. Cougar is the highest performance low-profile drive on the market today. While Summit delivers the greatest capacity and performance of any 3.5 -inch drive. Both provide a fast average seek time of 12 msec ., a 2.5 Mbyte per second sustained transfer rate and a SCSI-2 interface.

It's all a part of our innovative sell-design-build business philosophy. To identify our customer's needs sooner. Then
fill them faster with the most advanced products. In fact, we're the technological leader with nine patents issued and 27 pending. Which is why more and more PC users are asking for systems with Conner drives.

So if the changing market segments are putting the squeeze on your systems, call us today. We'll guarantee you the most refreshing results.

Delivering A Generation Ahead

[^8]

Getting To The Core Of Interference Problems. TDK Ferrite Cores Offer Superior EMI/RFI Suppression.

What if you could effectively eliminate noise from your circuit designs simply by inserting a small plate over IC pins? It's that simple when you use TDK Multi-hole Ferrite Plates MH series to deal with EMI/RFI.

TDK pioneered the development of ferrite, a key weapon in the battle against interference, over 50 years ago.
The company has applied its expertise by offering a full range of the most advanced highly efficient ferrite cores on the market today.
These cores come in all shapes and sizes and are made of materials ranging from μ iac $45-1,500$. Our large selection allows you to simply select the optimum frequency-impedance characteristics for your application.

Ferrite Chip EMI Suppressors Ferrite Bead Cores Axial Leaded Ferrite Beads EEMI Suppression Multi-hole Plates \quad Ferrite EMI Suppressors for Cables Ferrite Toroidal Cores for EMI/RFI Filters EFerrite Plates for Shielding
Call or write TDK today for more information on TDK Ferrite Cores for EMI/RFI suppression.

CMOS monolithic 5-tap, delay-line IC features variable 25 - to 400 -nsec range

Avariable range and a 50 MHz bandwidth make the Bt630 5-tap delay line ideal for applications such as CPU-clock, memory, and bus-interface timing. The IC can provide full-scale delay ranging from 25 to 400 nsec . Furthermore, the monolithic CMOS 14-pin-DIP IC dissipates only 50 mW of power typically.
The IC has a number of advantages compared with delay lines built with hybrid circuits. For example, the $50-\mathrm{mW}$ power dissipation is substantially better than the $300-\mathrm{mW}$ power dissipation typical of hybrid circuits. And although specs can't quantify the reliability of hybrid or IC delay lines, ICs are generally considered more reliable than hybrid circuits.

You can use the delay-line IC in applications that require inputpulse widths as narrow as 15 nsec . The IC offers an output-delay accuracy spec of the greater of $\pm 5 \%$ of delay setting or ± 2 nsec. Furthermore, the accuracy spec applies to both the leading and trailing edge of a signal pulse. Many other delay lines only specify the accuracy relative to the leading edge. The IC's five buffered taps output signals at $20,40,60,80$, and 100% of full-scale delay.

Fig 1 depicts the IC and a simple control circuit. The D_{0} and D_{1} digital inputs select a delay range from a choice of four for operation. The ranges are 25 to 50,50 to 100 , 100 to 200 , and 200 to 400 nsec. You set the exact delay using the RC input. The frequency-based

Fig 1-A simple RC control circuit and two digital inputs vary the output delay of the Bt630 delay line from 25 to 400 nsec .
range control eliminates drift problems common to CMOS circuits.

The variable delay lets OEMs stock a single part for a variety of applications requiring delay lines. You can also use the variable delay in applications such as PCs with optional CPU upgrades to solve problems of mismatch between CPUand system-clock speed. The circuit shown uses a simple capacitor and potentiometer circuit to control delay setting. You can substitute programmable control in applications such as PCs that you can upgrade.

The company also offers a demonstration board that you can use to
test and evaluate the IC's performance. The demo board includes circuitry that can generate a TTL input signal, of which you can vary the period and pulse width. The board includes DIP switches to set the delay range and potentiometers for fine adjustments. The $\$ 39$ demo boards and samples of the $\$ 11.10$ (100) IC are available now.

-Maury Wright

Brooktree Corp, 9950 Barnes Canyon Rd, San Diego, CA 92121. (800) 843-3642; (619) 452-7580. FAX (619) 452-1249. Deborah Hancko.

Circle No. 731

The 224 Low Power Modem IC One-half size fits all.

No need to worry if modem communication is the last thing you consider in your new product design.

There's always room for our K224L Low Power Modem IC.

Called "The Communicator," the single-chip, K224L measures out to just under $1 / 2$ square inch, thus requiring less than one-quarter of the design space needed for current generation V. 22 bis data pumps.

The K224L is now available in a wide range of packaging options, is designed for
worldwide application and provides you both synchronous and asynchronous communications.

The 5v only "Communicator" understands the constraints of your power budget, too. And seamlessly connects you to any Silicon Systems K-series modem chip. In other words, it's the perfect fit for wherever you need to apply full-duplex, 2400 bit/s data communications.

For the second half of the story, call us for a K224L Sample Kit and literature package CPD-9. We'll give you the name

Circle No. 206 For Career Info
of your nearest Silicon Systems representative and update you on our latest developments. 1-800-624-8999, ext. 151.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
European Hdq. U.K. Ph (44) 79-881-2331
Fax (44) 79-881-2117

Surface-micromachined acceleration sensor includes on-chip signal conditioning

The ADXL-50, a surfacemicromachined acceleration sensor and signal conditioner is targeted for multiple automotive applications, such as air-bag devices and antiskid braking systems.

Although the science-fiction concept of a micromachined motor of pin-head size has yet to materialize, this accelerometer actually improves upon today's state-of-the-art siliconprocessing capabilities. The device uses current technology in a unique way: Although accelerometers using bulkmicromachining methods to fabricate a silicon membrane have existed for several years, the ADXL-50 uses surface micromachining, a more difficult and sophisticated method.

Bulk-micromachined accelerometers combine a silicon membrane-formed by chemical etching-with thin-film piezo resistors connected in a bridge circuit. In operation, acceleration exerted on the device deforms the membrane, resulting in a change in the resistance of the piezo resistors and producing a small output from the bridge circuit. But bulk-micromachined accelerometers are usually sensitive to temperature variations-not a desirable attribute in automotive applications-and require complex external signal-conditioning circuitry to amplify and linearize the output signal. The size of bulkmicromachined devices also makes them relatively expensive.

Featuring a surface-micromachined sensor, the monolithic ADXL-50 device includes signal-conditioning circuitry and a self-test capability. Designed for automotive air-bag applications, this accelerometer is also useful in antiskid braking systems. -

By contrast, surface-micromachined devices are typically only 10 to 20% as large as bulk-type devices, thereby providing more efficient use of silicon real-estate. Of even greater importance, surface micromachining uses conventional IC fabrication techniques, which allow
the manufacturer to include the sig-nal-processing circuitry on the same chip as the micromachined structure. The specific nature of its sur-face-micromachined structure and signal-processing circuitry distinguishes this accelerometer.
The structure forms a capacitive sensor that, when viewed from above, looks like a letter H. The
long, thin arms of the " H " act as tethers to secure the floating micromachined element to the substrate. The thicker central mass is free to move in a plane perpendicular to the tethers. Projecting from the central mass is a series of filaments that look like the fingers of a comb. Each of these filaments is one plate of a series of parallel-plate variable capacitors; the other plates are secured to the substrate and interleave with the movingmass plates. Acceleration or deceleration in the axis of sensitivity exerts a force on the central mass that displaces the interdigitized capacitor plates, causing a fractional change in capacitance.
The device operates within a force/balance electronic control loop. Basically, this circuitry splits a carrier signal into two phases, 180° apart. These signals then are transferred to electrodes on opposite sides of the movable center member. There is no signal on the center member if the structure is perfectly centered. Under acceleration, one capacitor increases in value while the other one decreases, causing the phase of the carrier on the higher side to appear on the center member. Other circuitry then amplifies, demodulates, and filters this signal to produce a 0.25 to 4.74 V output that is proportional to acceleration.

Compared with a membrane and piezo-resistor sensor, the capacitive sensing used in the accelerometer

- 100\% IBM-AT Compatible STD Bus Industrial Computer
- Fast 10, 12, 16 or 20 MHz 80286 CPU
- Phoenix Bios
- 20, 40, 100 Mbyte 27 ms Hard Disk
- VGA, EGA, CGA, MDA Color Graphics
- Industry Standard IEEE 961 STD BuS
- Compact, Rugged, Industrial Packaging

The STD-AT ${ }^{\text {Tu }}$ is the first 80286 IBM-AT compatible STD Bus computer offering over 18 times the performance over a standard XT. The compact $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ STD Bus card size makes it ideal for mounting in disguised and embedded controllers in a wide variety of industrial and commercial applications. The STD-AT is the blending of proven hardware and software standards to provide the most rugged, compatible, cost effective industrial solutions.

WRITE OR CALL FOR A FREE STD-AT BROCHURE
P.0. Box 121361, Arlington, TX 76012 Phone (817) 274-7553 Fax (817) 548-1358

```
WinSystems
"THE STD BUS AUTHORITY"'m
```

CIRCLE NO. 64

Binary Coded Miniature Rotary Switches

LET YOU INTERFACE

 WITH MICROPROCESSOR-
Controlled Equipment.

Establish Data Rate
 Select Address
 Replace Thumbwheels

- Only half-an-inch in diameter!
- Choice of 16 or 8 positions maximum
- Adjustable stops permit limited rotation
- Shaft and panel seal
- Shorting contacts
- Very affordably priced
- Off-the-shelf availability through your local Grayhill distributor

Ask for Bulletin Number 438 with code and truth table and detailed specs.

561 Hillgrove Avenue, P.O. Box 10373
LaGrange, Illinois 60525-0373 USA
Phone: (708) 354-1040 FAX: (708) 354-2820 TLX or TWX: 190254 GRAYHILL LAGE

EDN EDITORS' CHOICE

is essentially immune to temperature variations. Capacitive sensing also allows operation over a frequency range from de to 1 kHz . In addition, the monolithic device has a guaranteed accuracy of 5% over its full $\pm 50 \mathrm{~g}$ range. Of particular importance in automotive air-bag applications is the device's self-test feature that assures the user that the accelerometer is functional. Present systems use multiple switch modules that either work when needed or they don't; you can't test them beforehand. And, at about $\$ 15$ each, these modules are expensive.

The ADXL-50, which operates over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, comes in a 10 -pin, TO-100 metal can. The device costs $\$ 23$ (100); in automotive OEM quantities, it costs \$5.-Dave Pryce
Analog Devices, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428.

Circle No. 732

EDN's Editors' Choice

On occasion, a new product will show a great deal of innovation and thus appear as an EDN Editors' Choice selection. To qualify for special coverage by our editors, an innovative product must:
$\boxed{\square}$ Offer significantly higher levels of performance in ways not previously available
\checkmark Solve a continuing problem much more effectively than its predecessor
$\boxed{\square}$ Exhibit a marked degree of cleverness, which differentiates it from earlier products
\square Embody new technology that advances the state of the art or use older technology in a unique and innovative way.

Rugged Solutions to Tough Design Problems.

Portable data products from Datakey are meeting the needs of electronic OEM design engineers in a wide range of commercial and military applications. They can help you:
\square Save valuable system space
\square Reduce system power requirements
\square Cut the cost of memory/feature expansion
\square Improve system and facility security
\square Speed data transfer, make data handling more convenient
\square Make ROM upgrades quicker, easier
\square Simplify system design and manufacturability
\square Ruggedize your system or I/O device
\square Reduce repetitive data input
\square Differentiate your product in the marketplace
These versatile devices withstand rough handling and retain your data even when exposed to dust, dirt, moisture, magnetic fields, and other environmental hazards.

We've developed a whole array of solutions for tough portable data applications - including the access device for the U.S. government's secure phone system. Hundreds of thousands of these devices are in use today.

Choose from our standard products, including Serial Memory Keys ($1 \mathrm{~K}, 2 \mathrm{~K}$, or 4 Kbit capacity), Parallel Memory Keys (64 K to 512 Kbit capacity), Memory Cards (chip-on-card or edge-connect with embedded memory), Low-Cost Personal ID and Memory Tokens, Mechanical/Electronic Keys, and more.
We also design and manufacture custom portable data devices.
So, call today for our free booklet. It just may help you solve some of the toughest design problems around. Yours.

Call 1-800-328-8828
Need it fast? We'll fax it.

Tek's complete digital characterization system. Because a mask is a terrible thing to waste.

Even the smallest timing errors can trash today's highspeed designs. But for the cost of a single turn, you can beat the odds and reduce your time to market with the world's best AC characterization system.

On the stimulus side, Tek's new HFS pulse generators feature a revolutionary digital architecture with up to 18 channels and full functionality to 630 MHz .

placement with 10 ps resolution at all frequencies. In acquisition, Tek's 11801A with modular sampling heads measures crosstalk, metastability, setup and hold times, and characterizes controlled impedances using TDR — with 1 ps measurement resolution, up to 136 channels, and high-impedance probing to 2.5 Ghz and .25 pF . Push the limits without pushing your luck: let your Tek sales engineer show you the characterization system that easily pays for itself. Or call 1-800-426-2200 for assistance.

One company measures up.

PRODUCT UPDATE

Low-power, 1.8 -in. hard-disk drive holds 21.4 Mbytes, withstands 200 g shocks

Discard your notions of the appropriate applications for hard-disk drives. The 1.8 -in. Model 1820 drive stores 21.4 M bytes in a head-disk assembly measuring $0.394 \times$ $2.01 \times 2.76 \mathrm{in}$. The drive employs a separate controller card measuring $0.276 \times$ $2.01 \times 3.03 \mathrm{in}$. Together, the two components weigh 95 g . You can mount the drive and controller card independently or piggyback the controller on the head-disk assembly. The controller card has an IDE (integrated drive electronics) interface, which is the interface PCs commonly use. Engineering samples of the product cost $\$ 485$.

The disk drive runs on 5 V and can run from batteries. It draws 2 W while reading or

About the size of a small matchbox, this 1.8-in. hard-disk drive can store 21.4 Mbytes and operate from batteries. writing information, 1 W
when idle, 35 mW in standby mode, and 15 mW in sleep mode. The drive spins up in 1.5 sec typ, so you can keep it in the sleep mode most of the time for many applications. Its automatic power management lets you realize large power savings using the drive's sleep mode while still servicing data-transfer requests.

During the first second of activation after receiving a data-transfer request, the drive consumes 3.5 W . In the next second, the drive consumes 2 W while performing the requested data transfer. For the next five seconds, the drive is in its 1 W idle mode. While in the idle mode, the drive keeps the platter spinning in case another data-transfer request appears. If no requests are made during the 5 -sec idle time, the drive drops into its $35-\mathrm{mW}$ standby mode. After another five seconds
of inactivity, the drive goes into its $15-\mathrm{mW}$ sleep mode. The company claims the hard-disk drive consumes much less power than competing products because of this powermanagement scheme.
The 1.8 -in. hard drive employs a loading ramp that keeps the heads off the disks while the drive is switched off. The loading ramp gives the drive its 200 g shock immunity. The ramp also pushes the number of start/stop cycles the drive can endure to $1,000,000$ because the heads never touch the storage media. Because no reliability penalty is incurred for stopping the platter's rotation, the $1.8-\mathrm{in}$. hard drive can save power by frequently entering its idle and sleep modes. Consequently, the automatic time delays for activating these modes are much shorter than
for disk drives that land their heads on the media when the platters stop rotating.

The drive's electronics are on a separate controller card, so you can fit the device into thin spaces. The controller and head-disk assembly communicate via a flat cable. The controller circuitry includes a 32 kbyte data buffer, and the IDE disk interface can transfer data in bursts at $4 \mathrm{Mbytes} / \mathrm{sec}$. The drive's average seek time is 20 msec , and the heads can move from track to track in 8 msec . A 40-Mbyte version will be available in the second quarter of 1992. -Steven H Leibson

Intégral Peripherals Inc, 5775 Flatiron Pkwy, Suite 100, Boulder, CO, 80301. Phone (303) 449-8009. FAX (303) 449-8089.

Circle No. 730

The basic idea behind our new

Updating your system code, to say the least, has been a pain. Well, erase those painful memories.

Introducing Intel Boot Block Flash
Memory. The first blocked flash memory architecture that includes four separately erasable blocks with one "lockable" block for
critical boot code. A remarkable design that allows one 1 Mb Boot Block Flash Memory chip to eliminate up to three memory chips.

It also allows you to reconfigure your system quickly and easily so you don't lose precious time getting to market. Also, future updates-whether it's for hardware or software-are easy. For instance, updating a PC BIOS is as easy and cheap as sending your customers a floppy disk. And all

[^9]

block-erasable Flash Memory.

you need to change your embedded program code is a serial link. Life should be so simple.

Intel Boot Block Flash Memory has two configurations compatible with microprocessors and microcontrollers that boot from either high or low memory. Such as the $1960{ }^{\text {m' }}$ microprocessor or the industry-standard Intel386 ${ }^{\text {'w }}$ and Intel $486^{\text {'w }}$ microprocessor families.

Now that you have the basic idea, we'd like
you to know more. So call (800)548-4725 and ask for Literature Packet \#A6A38. And be the first on your block to make updating easy with Intel's new Boot Block Flash Memory.

inte.

The Computer Inside.m

Get five times faster throughput from NEC K-Series ${ }^{\text {™ }}$ microcomputers.

As a developer of real-time control systems, you know that designing in a faster CPU is not enough. You also need intelligent I/O management for the best possible system throughput.

NEC's K-Series ${ }^{\text {™ }}$ microcomputers are perfect for real-time control designs requiring multitasking, such as automotive control, ISDN and computer peripheral controllers.

Peripheral Management Unit ${ }^{\text {™ }}$

The K-Series' unique architecture includes a revolutionary Peripheral Management Unit ${ }^{\text {ww }}$ macro service for nonstop instruction execution while processing up to $16 \mathrm{I} / 0$ requests at the same time. By designing in the K-Series microcomputer, you can improve your system throughput by as much as 5 X .

The K-Series 8 -bit and 16 -bit microcomputers give you a realtime output port; an advanced counter/timer system; a highspeed, high-resolution A/D converter; and many other onchip intelligent peripherals.

microcode, and complete K3 software compatibility.

To learn more about the K-Series microcomputers with up to 1 K bytes of on-board RAM, 32 K bytes of ROM/EPROM, and Peripheral Management Unit coprocessing power, call now.

For fast answers, call us at:

Australia Tel:03-267-6355. Telex:38343 France Tel:1-3067-5800. Telex:699499. Germany Tel:0211-650302. Telex:8589960. Hong Kong Tel:755-9008. Telex:54561. Ireland Tel:1-6794200. Telex:90847. Italy Tel:02-6709108. Telex:315355. Korea Tel:02-551-0450. Fax:02-551-0451 The Netherlands Tel:040-445-845. Telex:51923. Singapore Tel:4819881. Telex:39726. Spain Tel:1-419-4150. Telex:41316. Sweden Tel:08-753-6020. Telex:13839. Taiwan Tel:02-719-2377. Telex:22372. UK Tel:0908-691133. Telex:826791. USA Tel:1-800-632-3531. Fax:1-800-729-9288

The K-Series provides you a worry-free upgrade path from the 8-bit K2 microcontroller family to the 16 -bit K3 devices. And your future designs will exploit the power of the light-ning-fast $125-\mathrm{ns}$ K6, with realtime operating system in

Not since the invention of the hourglass has anyone come up with a more ingenious way to speed up silicon.

A PERSPECTIVE ON DESIGN ISSUES: Breaking the analog barriers to optimum system design

Advanced Linear extends the boundaries of system performance.

Innovative analog circuits from Texas Instruments add a new edge to Digital Equipment's proven market winners. They can do the same for you.

The goal Digital Equipment Corporation set was clear: Strengthen its position as the leading supplier of Ethernet-based local area network products. Achieving the goal has been spurred by the use of Advanced Linear circuits from Texas Instruments.

These leadership ICs meet growing industry demand for linear circuits that can improve overall system performance and reliability, reduce costs and speed design cycles.

These were precisely the advantages Digital's designers needed.

Expertise and teamwork carry the day
For many years, Digital has used a wide variety of TI linear circuits from op amps to mixed-signal devices - and values our analog viewpoint toward system design.

As Digital defined the requirements to meet its market goal, the decades-long relationship entered a new era of even more intense cooperation. With Digital handling system-level design and TI applying its linear expertise, the two teams fully utilized our LinASIC ${ }^{\text {m }}$ design methodology to create a series of mixed-signal Ethercell ${ }^{\text {'" }}$ functions. They are the basis for the advanced linear devices Digital requires.

The design flow was aided by our

Boston-area Regional Technology Center that provides access to LinASIC development tools and by the extensive use of EDIF to exchange information.

Enhancing Digital's

 competitive edgeTo date, close teamwork has produced components that can enhance Digital's ability to respond quickly to market demands for feature-rich but lower cost Ethernet and communications products:

- A dual driver and dual receiver IC that minimizes the number of components required for the Attachment Unit Interface (AUI) function in an Ethernet network.
"Utilizing TI's LinASIC mixed-signal design methodology allows us to design cost-effective solutions with aggressive time-to-market goals."
— Nick Ilyadis, Product Engineer Telecommunications and Networks Group

Digital Equipment Corporation

- A single-channel 10BASE-T twisted pair interface chip that includes internal precompensation and full duplex operation. Also fabricated in our LinBiCMOS process, this IC cuts component count and improves data transmission.
The Ethercell devices developed by Digital and TI will be incorporated into our existing LinASIC cell library.

Extensive mixed-signal capabilities

As Digital recognizes, few in the industry can match our experience in analog design and digital design. This expertise enables us to effectively combine high-performance
analog functions with leadership digital functions. The resulting mixed-signal devices typify our capabilities to design and develop the Advanced Linear circuits our customers need.

Let us help you meet your challenge

We are ready to provide information and assistance, as well as access to the hardware and software development tools you need, to help extend the boundaries of your system performance.

Our service circles the globe, and our worldwide manufacturing capability can support your production schedules wherever you are.

TI's analog viewpoint: From process technologies come Advanced Linear ICs.

TI's LinASIC mixed-signal methodology -

A cell-based design methodology allowing the combination of high-performance analog and digital functions on the same chip. This mixed-signal capability is used for many of our catalog products and for custom/semicustom solutions. It is supported by large cell libraries, design-automation tools and these TI Advanced Linear wafer process technologies:

LinBiCMOS - Combines Advanced LinCMOS, digital ASIC CMOS and up to $30-\mathrm{V}$ bipolar technologies to allow the integration of digital and analog standard cells and handcrafted analog components on a monolithic chip.

LinEPIC ${ }^{\text {T }}$ - One-micron CMOS double-level metal, double-level polysilicon technology that adds highly integrated, high-speed analog to the highperformance digital EPIC $^{\text {¹" }}$ process.

Advanced LinCMOS - An N-well, silicon-gate, double-level polysilicon process featuring improved resistor and capacitor structures and having threemicron minimum feature sizes.

Power BIDFET ${ }^{\text {"M }}$ - Merges standard linear bipolar, CMOS and DMOS processes and allows integration of digital control circuitry and high-power outputs on one chip. Primarily used for circuits handling more than 100 V at currents up to 10 A .

Multi-EPI Bipolar - A very costeffective technology that utilizes multiple epitaxial layers instead of multiple diffusion steps to reduce mask steps by more than 30%. Used to produce intelligent power devices that can handle loads as high as 20 A and voltages in excess of 100 V .

Excalibur - A true, single-level poly, single-level metal, junction-isolated, complementary bipolar process developed for high-speed, high-precision analog circuits providing stable op amp performance.

For more information on our Advanced Linear process technologies and the products they are producing, call 1-800-336-5236, ext. 3425 .

Abstract

TI's LinASIC methodology and Advanced Linear process technologies are enhancing these product families

Data Transmission - This family meets the needs of most industrystandard interfaces (EIA, IEEE, ANSI) and ranges from drivers/ receivers/transceivers to fully integrated controller/transceivers.

Data Acquisition - The family ranges from stand-alone A/Ds and D/As to complete data conversion subsystems on a chip; from generalpurpose functions to highly integrated digital signal processor and graphics signal processor analog interface circuits. Other specialized family members include telecom and speech synthesis functions.

Intelligent Power - These devices combine high-voltage and/or high-current switches with the analog and digital circuitry required to perform interface, control, protection and diagnostic functions in microcontroller-based systems.
Operational Amplifiers - A family of op amps and comparators ranging from standard bipolar to leadership high-performance CMOS and Excalibur complementarybipolar devices, meeting needs ranging from low power and/or low noise to high speed and/or high precision.

Custom/semicustom Functions -

 In modifying existing products to fit your needs or in defining your own unique functions, our LinASIC methodology allows access to existing analog cells used in the development of our catalog products and compatibility with our digital cell libraries.
Announcing a night to recognize greatness

EDN's Innovation and Innovator of the Year Awards Ceremony

0n the night of November 19 during Wescon, EDN will present the 1991 Innovation and Innovator of the Year awards at the Mark Hopkins Hotel in San Francisco. You are invited to show the finalists that you support greatness in innovation by attending the awards ceremony that is the culmination of their hard work. Through its Innovation Crusade, EDN hopes to inspire
engineering professionals within the electronics field to reach for higher plateaus of inspiration and creativity.

The dedication and involvement of EDN readers, like yourself, have made the Innovation Crusade and awards ceremony a reality. By taking the time to nominate your peers and, in
fact, select the winners, you show commitment to quality and creativity in electronics and are driving this crusade. But don't stop there \ldots order your ticket to the industry event of the year and show these innovators that greatness does not go unrecognized. All proceeds of the dinner will be donated to the EDN Scholarship Fund.

To receive an Innovation Ceremony Reservation form, please Circle no. 59.

DSP coprocessor boards

The technology in these number crunchers is developing so fast that about the only things moving faster are the instructions and data they handle. Besides faster $\mu \mathrm{Ps}$, architectural innovations-especially parallel and pipelined processors-are adding to the boards' speed. But as is so often the case, software is struggling to keep pace.

Dan Strassberg, Associate Editor

Digital signal processing (DSP) is one of the most rapidly evolving areas of electronics. And within the DSP field, coprocessor boards are quite possibly the fastest-changing product category. Most of these boards plug into a computer's I/O bus and increase the computer's speed by performing DSP functions while the main processor handles housekeeping chores and other low-speed tasks. In April 1990, when EDN last took a comprehensive look at these boards (Ref 1), they were just beginning to employ parallel and pipelined processors. Today, the use of multiple DSP chips is rapidly becoming commonplace. However, system developers who use the boards have few software options to simplify allocating tasks among the multiple μ Ps.
Table 1 (pg 112) lists 38 DSP coprocessor boards from 26 firms. We se-
lected these products from a field of more than 70 boards, most of which had not yet been introduced at the time of our April 1990 story. In choosing units for the table, we picked products that, by and large, did not appear in our earlier listing and which, in our opinion, indicate trends. As noted above, one trend is the use of multiple processors. Twenty of the boards in the table contain more than one $\mu \mathrm{P}$. And the product information that vendors sent us covered even more multiprocessor boards. Another clear trend is the use of floating-point DSP chips. Two dozen of the boards in the table include them.
Despite its throughput limitations, the ISA bus-represented by 20 boards-remains the most popular bus for DSP coprocessor boards. All but one of the ISA bus boards are for the 16 -bit, IBM PC/AT version. The VMEbus is well represented too; 11

[^10]
Processors from Texas Instruments, Motorola, and AT\&T are the most prevalent, with a smattering of boards using parts from other semiconductor companies.

boards plug into the VMEbus. The table also shows three Nubus boards for Apple Computer's Macintosh II family, one Micro Channel Architecture board for IBM's PS/ 2 series, one board for the STD Bus, and one board in the diminutive Sbus format of Sun Microsystems' SPARCstations. Bear in mind that, despite its length, the table lists no more than half of the boards introduced in the past 18 months. For example, although the only Sbus board shown comes from Sonitech International, at least one other firm, Ariel Corp, makes Sbus DSP boards. Moreover, nearly all of the boards in EDN's April 1990 listing are still available.

As you might expect, processors from Texas Instruments, Motorola, and AT\&T are the most prevalent, with a smattering of boards using parts from other semiconductor companies. Intel's i860 makes an appearance on a VMEbus board from CSPI. CSPI chose the Intel RISC chip because of the μ P's extremely powerful floating-point processor. CSPI's competitors don't question the chip's floating-point capability; they do ask whether the i860's performance justifies its price. Some doubt whether the i860, which has the I/O structure of a general-purpose processor, can keep pace with the I/O data rates DSP chips must usually handle. CSPI is not alone in liking the i860 for DSP, though; you should look for the IC in board-level DSP products scheduled to appear within the next six months from at least one other manufacturer.

The i860 is not the only unusual DSP $\mu \mathrm{P}$ to appear on a DSP board. Array Microsystems' boards use the

A complete 25-MHz i386DX-based PC and a 33-MHz TMS320C31 DSP μ P work together on Spectrum Signal Processing and Loughborough Sound Image's Media-Link DSP/PC, a full-length board for the 16-bit ISA bus in passive-backplane systems.

The board size, the bus's high performance, and the capabilities of workstations that use the bus are some of the reasons for the growing popularity of VMEbus DSP coprocessor boards. Without appearing particularly crowded, Ariel Corp's V96 contains two DSP96002s and a massive amount of memory.
firm's own frequency-domain processor and controller chips. Array's literature boasts that its boards let you "plug in the world's fastest DSP." Impact Technologies' Viper 8704/30-30 sports four vector processors from Zoran Corp. Multisignal Technology's MTAP-90 also uses four processors, three of which come from United Technologies. Two of the listed boards use processors from Analog Devices Inc. One comes from the transoceanic partnership of Spectrum Signal Processing in British Columbia, Canada and Loughborough Sound Images in England. The other is the lowest-priced board in the table, Street Electronics' $\$ 175$ Echo DSP, scheduled for introduction next month. Analog indicates that several other firms offer coprocessor boards based on its DSP chips, but these board vendors failed to respond to our information requests.

Most DSP operations are I/O intensive. Consequently, many DSP boards have extensive I/O capabilities. As standard features, at least six of the listed boards provide analog I/O facilities (A/D and D/A converters). Many other boards have high-speed parallel or serial digital I/O ports. Some of the parallel ports, especially the wide ones, are extraordinarily fast. Two vendors specify their boards' parallel-port transfer rates at 20 M bytes $/ \mathrm{sec}$. One claims its port operates at 40 M bytes $/ \mathrm{sec}$, and another says its port runs

DSP coprocessor boards

at 64 M bytes $/ \mathrm{sec}$. (That's more than 0.5 G bits/sec!)
Despite many engineers' perceptions that DSP techniques are mainly for speech and audio work, the use of DSP has expanded into motion control and many other fields. As DSP applications diversify, users' I/O requirements are changing. Board vendors are responding to the changing requirements in several ways. One way is the inclusion of mezzanine buses. Mezzanine buses turn plug-in boards into small systems. A mezzanine bus is a connector with defined pinout and timing standards that accepts daughter cards. The daughter cards usually perform I/O functions, but some provide other facilities. For example, they can add extra memory for a processor, and sometimes they contain additional (parallel) processors.

Mezzanine-bus daughter cards often fit within the confines of the board they plug into, but not always. Sometimes, the daughter cards occupy additional slots in the bus that accept the main board. In such cases, the daughter cards may connect with the main bus only to receive power and ground. Daughter cards that occupy main-bus slots receive mezzanine-bus signals from the main board via a short cable or "frontplane." A frontplane is a printed board or semirigid set of conductors that plugs onto a connector at the edge of a board opposite its main-bus connector.

A mezzanine bus by another name . . .

Apparently, some vendors use definitions of a mezzanine bus that are broader than the one given above, whereas other firms use more restrictive definitions. For example, Datel Inc sells its DSP boards only with plug-on daughter cards that perform I/O. Even though Datel has a family of pin-compatible daughter cards, the company refuses to categorize these cards' interface as a mezzanine bus. When you review the table, be mindful that different vendors have different understandings of the meaning of a mezzanine bus.

Although bus-board manufacturers have defined several mezzanine buses, each of which is vying for acceptance as a de facto industry standard, only a few of these buses appear on the listed boards. One mezzanine bus that is compatible with products from at least three DSP-board vendors is Data Translation's DT-Connect. The table shows a large number of proprietary buses. In general, if you select a board that uses a widely supported mezzanine bus, you will have a greater choice of compatible devices than if you select a board whose mezzanine bus is proprietary.

Not only is DSP I/O intensive, it is memory inten-
sive. Some of the listed boards have provisions for accommodating prodigious amounts of memory. DSP μ Ps need fast memory, and the boards almost always implement their fastest memory with static randomaccess memory (SRAM) chips. Often, the boards configure the SRAM as cache, but the maximum size of the cache is frequently larger than the tens of kilobytes common with most CISC (complex-instruction-setcomputer) $\mu \mathrm{Ps}$.

For economy (and to hold pc-board area within practical limits), when DSP boards accommodate many megabytes of memory, most of the memory usually consists of dynamic RAM (DRAM). DRAM, though slower than SRAM, is less costly and more dense. Approximately one-third of the listed boards accommodate 8 M bytes or more of DRAM without need of mez-zanine-bus memory cards. The table lists six DSP boards that accommodate 64 M bytes of DRAM. The six boards come from three vendors. Note that 64M bytes is more storage than you'll find on the much slower but nonvolatile hard disks of most personal computers in use today!

DSP work demands EEs' skills

As has happened time and again during the last decade, hardware developments have outpaced software advances. Many of the key players in DSP applications development have had no formal training in software engineering. Instead they are EEs who have acquired software skills on the job. But DSP work cries out for

Packing DSP onto the tiny format of Sun Microsystems' Sbus presents a difficult challenge to board designers. But several firms have met the challenge. One of them is Sonitech International.

Table 1-Representative DSP coprocessor boards

Vendor	Model; when introduced; price	Processor/clock speed (MHz)! number of procesors	Bus/DMA?/ mapping	Mezzanine bus/width (bits)/speed (bytes per sec)	Memory (bytes) for program and data		I/O functions	
					Min	Max	On base board	mezzanine card(s)
Analogic/CDA	MSP-8C30; 5/91; $\$ 7050$ to $\$ 18,500$	TMS320C30/33/2	ISA-16/yes/ NS	SCSI/8/1.5M; Pixel/16/NS	$\begin{gathered} 0-D^{2} \\ 64 \mathrm{k}-S^{3} \end{gathered}$	32M-D	SCSI, $\$ 500$Pixel bus connects to separateVCA ${ }^{5}$ card.	
Array Microsystems	$\begin{gathered} \text { a66550; } \\ \text { NS }{ }^{1} ; \\ \$ 11,900 \end{gathered}$	$\begin{aligned} & \text { a66111/25/1/ } \\ & \text { a66211/25/1 } \end{aligned}$	ISA-16/no memory	NA	768k	768k	1/O port-15MHz burst-rate I/O; magnitude and phase	NA
Ariel Corp	$\begin{gathered} \hline \text { DSP-C40; } \\ 6 / 91 ; \\ \$ 4995 \end{gathered}$	TMS320C40/NS/1	ISA-16/yes/ I/O and memory	DT-Connect/ 16/20M ${ }^{7}$ Proprietaryl 32-bit/40M	$\begin{aligned} & 1 \mathrm{M}-\mathrm{D} \\ & 32 \mathrm{k}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 64 \mathrm{M}-\mathrm{D} \\ & 6 \mathrm{M}-\mathrm{S} \end{aligned}$	2-channel, 16-bit oversampling ADC and DAC	Industry- standard digital-audio interface, Next computer DSP port
	$\begin{gathered} \text { MP3210; } \\ 5 / 91 ; \\ \$ 4995 \end{gathered}$	DSP3210/33/2	ISA-16/yes/ I/O and memory	DT-Connect/ 16/20M Proprietaryl 32-bit/40M	$\begin{aligned} & 1 \mathrm{M}-\mathrm{D} \\ & 16 \mathrm{k}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 64 \mathrm{M}-\mathrm{D} \\ & 2 \mathrm{M}-\mathrm{S} \end{aligned}$	See unit above	See unit above
	MM-96; 6/90; $\$ 3995$ to $\$ 5995$ (dual processors)	DSP96002/33/1 or 2	ISA-16/yes/ I/O and memory	DT-Connect/ 16/20M Proprietary/ 32-bit/30M	$\begin{aligned} & 1 \mathrm{M}-\mathrm{D} \\ & 192 \mathrm{k}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 64 \mathrm{M}-\mathrm{D} \\ & 768 \mathrm{k}-\mathrm{S} \end{aligned}$	All I/O functions are on external cards	NA
	Quad- processor; $11 / 91 ; \$ 8995$ to $\$ 13,995$	DSP56001/NS/2 or 4	VME 6U9/ yes/NS	Proprietaryl 24/NS	144k-S	576k-S	Next computer DSP. port	NA
Atlanta Signal Processors Inc	$\begin{array}{\|c} \text { Vortex; } 5 / 91 ; \\ \$ 4995 \text { to } \\ \$ 13,995 \end{array}$	TMS320C40/50/1 TMS320C31/33.33/1	ISA-16/yes/ I/O and memory	$\begin{aligned} & \text { 'C31/32/ } \\ & 22.2 \mathrm{M} \\ & \text { Memory/ } \\ & 32 / 33.3 \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { 2M-D } \\ & 256 \mathrm{k}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 64 \mathrm{M}-\mathrm{D} \\ & 2 \mathrm{M}-\mathrm{S} \end{aligned}$	6 8-bit, 20Mbyte per sec communication ports; 2 1 -way, 16 -bit ports; 1 serial	Industrystandard digital audio interface, \$1195; 16-bit dual ADC DAC, $\$ 795$
	$\begin{gathered} \text { Banshee I } \\ \text { VMD; } 1 / 91 \text {; } \\ \$ 4995 \text { to } \\ \$ 14,295 \end{gathered}$	TMS320C30/33/1	VME 6U/ depends on host/memory and $1 / O$	$\begin{aligned} & \text { 'C30/321 } \\ & 22.2 \mathrm{M} \end{aligned}$	256k-S	$\begin{aligned} & 16 M-D \\ & 2 M-S \end{aligned}$	1 TTL serial; 2 RS-422	See unit above
	Cheetah; $6 / 90 ; \$ 3995$ to $\$ 12,795$	DSP96002/33/1 DSP56001/NS	ISA-16/yes/ I/O and memory	$\begin{aligned} & 96002 \mathrm{l/O} / \\ & 32 / 22.2 \mathrm{M} \\ & \text { Memory/ } \\ & 32 / 22.2 \mathrm{M} \end{aligned}$	$64 \mathrm{k}-\mathrm{S}$	$\begin{aligned} & 64 M-D \\ & 2 M-S \end{aligned}$	2 TTL serial	See above Multiprocessor interface, \$995
AT\&T Microelectronics	WE- DSP32C- BD-VME; Q4/90; $\$ 9995$	$\begin{gathered} \text { DSP32C-5E/25/4 } \\ \text { DSP32C/25/2 } \end{gathered}$	VME 6U/ yes (serial and parallel ports)/ memory	Serial bus/ 2 wire/100k (Phillips IICbus)	$\begin{aligned} & 1 \mathrm{M}-\mathrm{D} \\ & 512 \mathrm{k}-\mathrm{S} \end{aligned}$	$\begin{gathered} 4 \mathrm{M}-\mathrm{D} \\ 512 \mathrm{k}-\mathrm{S} \end{gathered}$	2 25M bit per sec serial; 20M byte per sec parallel	NA
Burr-Brown	ZPB3400; 6/91; $\$ 4495$	DSP32C/50/1 or 2	VME 6U/ yes/ memory	$\begin{aligned} & \text { Proprietary/ } \\ & \text { 18/20M } \end{aligned}$	$\begin{gathered} 1 \mathrm{M}-\mathrm{D} \\ 256 \mathrm{k}-\mathrm{S} \end{gathered}$	$\begin{gathered} 4 \mathrm{M}-\mathrm{D} \\ 512 \mathrm{k}-\mathrm{S} \end{gathered}$	NA	Several analog I/O cards
Communications Automation and Control Inc	$\begin{gathered} \text { XC4-AO; } \\ 3 / 91 ; \$ 995 \\ \text { to } \$ 1295 \end{gathered}$	DSP-32C/40/1	ISA-8/nol $1 / 0$	NA	64 k	256k	Serial communication with ADCs, DACs, DSP boards	NA
	MC5-C0; $6 / 91 ; \$ 1495$ to $\$ 3495$	DSP-32C/50/1	Microchannel/ NS/NS	Proprietary/ serial/16M bps	256k	1M	Serial communication with DSP boards	Serial communication with mezzanine boards

Notes:

1. $N S=$ Not specified.
2. '-D' after number of bytes denotes dynamic random-access memory (DRAM).
3. '-S' after number of bytes denotes static random-access memory (SRAM).
4. $N A=N o t ~ a p p l i c a b l e . ~$
5. VGA =IBM Video Graphics Array display standard.
6. Also performs block floating-point operations.
7. The DT-Connect standard originated with Data Translation Inc.
8. 'OS' =operating system.
9. The so-called '6U' VME board is the most common VMEbus board size.
10. Although the boards are available only with daughter cards, the vendor does not describe the interface between the main card and the daughter cards as a mezzanine bus.
11. I/O daughter cards mount to Tiger 40 board but cause the board to use two bus slots
12. ' $-E$ ' after number of bytes denotes electrically programmable read-only memory (EPROM).
13. In the $\$ 5995$ version, the UT69532 operates at 15 MHz and performs 75 M floating-point operations per sec (FLOPS).
14. $M O P S=$ millions of operations per sec.
15. SRAM is divided equally between processors. Each processor's memory is half local and half global.
16. '-N' after number of bytes denotes nonvolatile memory.
17. '-R' after number of bytes denotes read-only memory.

	Supporting software (and price, if not included with board)	Comments
	Drivers for Interactive Unix; image libraries; MSPrtx OS8	Dual-banked memory lets both processors access 32M bytes of RAM simultaneously with no wait states.
	IBM PC- and VAX-based system simultators	Vendor says board does FFTbased frequency-domain functions faster than any competitor. Vendor also sells VME boards using same μ Ps.
	Assembler/linker, optimizing C compiler, C drivers, DT-Connect drivers applications libraries	Has oversampling inputs and outputs with tracking filters.
	C compiler/assembler; C drivers; DT-connect drivers; VCOS OS; applications libraries	Same as unit above. In addition, dual processors perform 50M FLOPS peak.
	Optimizing C compiler and OS, \$2425; C and hardware drivers; monitor; applications libraries	Proprietary Hyperbus has two ports per board, allowing daisy chains of indefinite length. Dual processors perform 100M FLOPS peak.
	C drivers; Assembler/linker, \$495; Symbolic debugger, \$495	Operates at 54 MIPS. Lower indicated price includes two processors; higher price includes four.
	Assembler/linker/C compiler; source debugger; Spox OS; signal generation and analysis, $\$ 3000$	The 'C31 can process I/O for the 'C40 or can function independently. Uses dual-port memory for communicating with host PC. The Ashell program provides an integrated development interface.
	Assembler/linker/optimizing C compiler/source debugger, \$1595	Listed software tools run on IBM PCs. Data communication uses true dual-ported memory.
	See Vortex board	Works with same Ashell program as Vortex board. 56001 processors can control I/O or function independently.
	C compiler assembler, simulator, applications library, $\$ 3800$	175M floating-point operations per sec; 75M instructions per sec. All three I/O ports (2 serial; 1 parallel) have DMA.
	Driver, monitor; applications developer (DisplayXL), \$1495	
	Assembler/linker/simulator, \$495; C compiler, \$1000; application library, \$95; debugger, \$395	A similar board for the 16-bit ISA bus (Model AC5-A0) costs \$200 more and has a $50-\mathrm{MHz}$ DSP32C. This board also has the serial mezzanine bus of the board below.
	See board above; also spectral display/digital scope (no charge)	

DSP coprocessor boards

EEs' background in the underlying theory relating the time- and frequency-domain descriptions of signals; the work does not place a premium on the discipline that a software-engineering curriculum instills. DSP work also demands the resourcefulness that many EEs have developed through working on projects without having sufficient tools.

EEs are pragmatic as well as resourceful, though. When they have the option of creating their own tools (because few exist) or taking advantage of existing ones, they will usually try to use what's available. For example, EEs no longer write much DSP code in assembly language. The advent of complex floating-point DSP chips with rich instruction sets and tools such as high-level-language compilers and source-level debuggers has made coding DSP routines in assembly language unattractive in comparison with writing high-level code. Of the high-level languages, C is by far the most popular. Assembly still often gets the nod for fixedpoint DSP chips and for coding routines whose operating speed is critical. Usually though, system software developers don't write such routines themselves; they take the routines from libraries developed by others.
Multiprocessing has added a new dimension to developing DSP applications software. The most straightforward multiprocessing case occurs in a real-time system that has many similar input channels, each of which produces data requiring identical or nearly identical processing. If a single DSP $\mu \mathrm{P}$ can't handle all the processing chores quickly enough, several processors can. You can assign groups of channels to each $\mu \mathrm{P}$, but you have to make sure not to assign more tasks to a processor than it can complete before it must work on the next set of data.

Mezzanine buses make for flexible expansion of a DSP board's I/O, memory, or processing capabilities. Here, Data Translation's DTConnect bus (on the ribbon cables at the top) links a frame grabber board to the firm's DT2878, which contains a DSP32C.

Table 1-Representative DSP coprocessor boards (continued)

Vendor	Model; when introduced; price	Processor/clock speed (MHz)/ number of procesors	Bus/DMA?/ mapping	Mezzanine bus/width (bits)/speed (bytes per sec)	Memory (bytes) for program and data		I/O functions	
					program Min	Max	On base board	$\begin{aligned} & \text { With } \\ & \text { mezzanine } \\ & \operatorname{card}(\mathrm{s}) \end{aligned}$
Communications Automation and Control Inc	SC5-A0 12/90; $\$ 1495$ to $\$ 1795$	DSP-32C/50/1	STD (8 or 16 bit)/no/ I/O	Proprietaryl serial/16M bps	64k	256k	See board above	See board above
CSPI	Supercard SC-2XL/ VME; 6/91; From $\$ 8500$	1860/40/2	VME and VSB/yes/ memory	CSPI (publicly available)/ 64/160	2M	16M	VSB interface is operation	NA
Dalanco Spry	$\begin{aligned} & \text { 250; 12/90; } \\ & \$ 1095 \text { to } \\ & \$ 1395 \end{aligned}$	$\begin{aligned} & \text { TMS320C25 or } \\ & \text { TMS320E25/40/1 } \end{aligned}$	$\begin{gathered} \text { ISA-16/no/ } \\ 1 / 0 \end{gathered}$	$\begin{gathered} \text { Proprietary/ } \\ 16 / 20 \end{gathered}$	72k	384k	DSP serial port; 8-channel 12bit ADC (250k samples/sec) timer; 2 12-bit DACs	None
Data Translation	DT2878 Series; $10 / 90$ $\$ 4495$ to $\$ 7995$	DSP32C/50/1	$\begin{gathered} \text { ISA-16/no/ } \\ \text { I/O } \end{gathered}$	DT-Connect/8 or $16 / 10 \mathrm{MHz}$	2 M mezzanin allows do men	8M ne board ubling of nory	NS	Frame grabbers; image processors; dataacquisition boards
Datel Inc	 PC-430 Series; $5 / 91 ;$ $\$ 3995$ to $\$ 4595$	TMS320C30/32/1	ISA-16/yes/ I/O and memory	NS ${ }^{10}$	$\begin{gathered} 512 k-D \\ 32 k-S \end{gathered}$	$\begin{gathered} 512 \mathrm{k}-\mathrm{D} \\ 32 \mathrm{k}-\mathrm{S} \end{gathered}$	All configurations include daughter cards	Variety of ADCs to 4M samples/sec; serial ports
DSP Research	Tiger $40 ;$ $8 / 91 ; \$ 4995$ to $\$ 6995$	TMS320C40/50/1	ISA-16/yes/ NS	2 (1/O and memory)/32/ 100M DT-Connect/ 16/40M	64k-S	$\begin{gathered} 66 \mathrm{M}-\mathrm{D} \\ 2 \mathrm{M}-\mathrm{S} \end{gathered}$	Six communication ports	${ }^{11}$ Digital sound I/O; telephony interface 12-bit analog 1/O
Eighteen Eight Laboratories	PL2500 Series; $1 / 91 ;$ $\$ 2495$ to $\$ 5995$	DSP32C/50/1	ISA-16/yes (3 channel)/ I/O	$\begin{aligned} & \text { Span 32/32 } \\ & \text { (data) } 24 \\ & \text { (address)/20 } \end{aligned}$	$\begin{array}{\|c\|} \hline 256 \mathrm{k}-\mathrm{E}^{12} \\ 256 \mathrm{k}-\mathrm{S} \\ \text { to } 4 \mathrm{M} \text { on } \\ \text { bo } \end{array}$	$4.25 \mathrm{M}-\mathrm{S}$ mezzanine ard	NS	Boards interface to DT-Connect, Univision bus, and memory
Heurikon	Surfboard; 8/91; \$8495 to $\$ 9695$	$\begin{gathered} \hline \text { DSP32C-5E/25/4 } \\ \text { DSP32C/25/2 } \end{gathered}$	VME 6U/ yes (serial and parallel ports)/ memory	Serial bus/2 wire/100k (Philips IICbus)	$\begin{gathered} 1 \mathrm{M}-\mathrm{D} \\ 512 \mathrm{k}-\mathrm{S} \end{gathered}$	$\begin{gathered} 4 \mathrm{M}-\mathrm{D} \\ 512 \mathrm{k}-\mathrm{S} \end{gathered}$	2 25M bit per sec serial; 1 20M byte per sec parallel	NA
Impact Technologies	Viper8704I $30-30 ; 1990 ;$ $\$ 15,990$ to $\$ 33,990$	Zoran ZR34161/30/4	This board was described more fully in EDN's April '90 directory but is included here because of its unusual use of four vector processors.					
Multisignal Technology Corp	$\begin{aligned} & \text { MTAP-90; } \\ & 8 / 91 ; \$ 5995 \\ & \text { to } \$ 6995 \end{aligned}$	One UT69532IQMAC Two 74ACT8832As One 74ACT8818/ all $20 \mathrm{MHz}^{13}$	\|SA-16/nol through address and data registers	Proprietary/ 32/80M	768k-S	4 M with mezzanine board	Data transfer via 6 local buses	NA
National Instruments Corp	NB-DSP2301; 5/91; $\$ 3495$	TMS320C30/27/1	NuBus/yes/ memory	RTSI/serial bus/8.33M bits per sec	256k	1.28M	NA	Vendor supplies 9 boards for RTSI bus
Pacific Cyber/ Metrix Inc	$\begin{aligned} & \hline \text { DSP-3A; } \\ & \text { 6/91; } \\ & \$ 17,779 \end{aligned}$	TMS320C30/40/3	VME 6U/ yes/ memory	Yes (not named)/32/ 100 M	$2 \mathrm{M} \quad 3.5 \mathrm{M}$7.5 M withmezzanine board		VSBbus; 3 40M-byte per sec parallel ports	NA
Pentek Inc	$\begin{gathered} 4823 ; 6 / 90 \\ \$ 6995 \text { to } \\ \$ 7995 \end{gathered}$	TMS320C30/32/1	VME 6U/ NS/memory and I / O	Intel Mix bus/ 32/10M	$\begin{aligned} & 128 \mathrm{k}-\mathrm{E} \\ & 256 \mathrm{k}-\mathrm{S} \end{aligned}$	8M-D	2 serial (synchronous); 2 timer/counters; 2 general I/O	10 types include ADCs, DACs, and additional $\mu \mathrm{P}$

Notes:

1. $N S=$ Not specified.
2. '-D' after number of bytes denotes dynamic random-access memory (DRAM).
3. '-S' after number of bytes denotes static random-access memory (SRAM).
4. $N A=$ Not applicable.
5. VGA $=1 B M$ Video Graphics Array display standard.
6. Also performs block floating-point operations.
7. The DT-Connect standard originated with Data Translation Inc.
8. 'OS'=operating system.
9. The so-called '6U' VME board is the most common VMEbus board size.
10. Although the boards are available only with daughter cards, the vendor does not describe the interface between the main card and the daughter cards as a mezzanine bus.
11. I/O daughter cards mount to Tiger 40 board but cause the board to use two bus slots.
12. '-E' after number of bytes denotes electrically programmable read-only memory (EPROM).
13. In the $\$ 5995$ version, the UT69532 operates at 15 MHz and performs 75 M floating-point operations per sec (FLOPS).

[^11]

Using the Macintosh II family to develop and run DSP applications is simpler if you have a powerful coprocessor board. This unit from Spectral Innovations includes two DSP32Cs and runs Apple's Realtime Operating System Executive (A/Rose).

Another approach-exemplified by boards from AT\&T and Heurikon-uses both parallelism and pipelining. In these boards, there are two groups of three pipelined processors. The three processors in each group work in sequence on the same data: The first processor places its output data in a buffer; the second processor takes data from the buffer, processes it further and deposits it into a second buffer; the third processor receives its input from the second buffer and does still more processing. The processors run algorithms that divide the tasks so the buffers don't overflow and the processors don't have to wait for new data. The pipelined processors are fast enough to keep up with new data as it appears in real time.

Designing the algorithms so that the pipelined processors get along harmoniously and keep up with real time is not a trivial job. So far, there doesn't appear to be any commercial software that automatically optimizes the sharing of tasks among the processors. However, Comdisco's (Foster City, CA) Signal-Processing Worksystem (SPW), a $\$ 25,000$ (approximately) work-station-based development package, optionally includes a graphical tool called Multiprox (MPX) that assists you in dividing the work. Once you've made a cut at assigning the tasks to processors, SPW will generate the code and simulate the results. If you are unsatisfied, you can try dividing the work differently.

As happens early in the life of most technologies that exhibit great potential, DSP is in ferment. The processor chips' capabilities are increasing rapidly. The cost of a given amount of computational power is declin-

Table 1-Representative DSP coprocessor boards (continued)

Notes:

1. $\mathrm{NS}=$ Not specified.
2. '-D' after number of bytes denotes dynamic random-access memory (DRAM).
3. 'S' after number of bytes denotes static random-access memory (SRAM).
4. $N A=$ Not applicable.
5. VGA $=1 B M$ Video Graphics Array display standard.
6. Also performs block floating-point operations.
7. The DT-Connect standard originated with Data Translation Inc.
8. 'OS' =operating system.
9. The so-called '6U' VME board is the most common VMEbus board size.
10. Although the boards are available only with daughter cards, the vendor does not describe the interface between the main card and the daughter cards as a mezzanine bus.
11. I/O daughter cards mount to Tiger 40 board but cause the board to use two bus slots.
12. '-E' after number of bytes denotes electrically programmable read-only memory (EPROM).
13. In the $\$ 5995$ version, the UT69532 operates at 15 MHz and performs 75 M floating-point operations per sec (FLOPS).

	Supporting software (and price, if not included with board)	Comments
	Runtime and DSP libraries included, development systems	Architecture is same as those of vendor's VME, ISA-16, and Micro-channel boards.
	Same as board above	VMEbus master operation lets board transfer data from frame grabbers without host intervention.
	Runtime library included, development systems	80M FLOPS. Communication ports, each with its own DMA control, let you set up $\mu \mathrm{P}$ arrays of your choice (tree, ring, cube, etc).
	Signal analysis, \$495; array processor library, \$495; assembler/ simulator, \$500; DSP library, \$100; C compiler, \$1500	Supports Apple Real-time Operating System Executive (A/ROSE), which provides pre-emptive multitasking and round-robin task scheduling with $110-\mu \mathrm{sec}$ context switching. DSP- μ Ps communicate via dual-ported SRAM.
	Assembler/linkers, C compilers for IBM PCs and Sun stations, $\$ 495$ to $\$ 3900$	Three board types: general signal processing, 1/O, and 2-port memory. Maximum price includes 5 fully loaded memory boards. Typical configuration processes 2.2G FLOPS peak.
	Symbolic monitor/debugger, assembler/linker, C compiler, simulator, Spox OS	Unit is both a DSP board and a complete i386-based PC system board for passive-backplane systems.
	Monitor/debuggers, high-level language interface library, assembler, $\$ 500$; C compiler, $\$ 2500$; simulator, $\$ 2000$	Board has 55-square-cm prototype area.
	See board above, Spox OS (Price NS)	Has 2 memory expansion connectors. Allows 80 M bytes of program and 24 G bytes of data storage.
	Assembler, linker, debugger, signal-processing library, Spox OS	
	Low-bit-rate speech coding and music recording/playback software	Very low-cost board with a programmable DSP $\mu \mathrm{P}, \mathrm{ADC}$, and DACs. Development software comes from the chip vendor, Analog Devices. Microphone and speakers included.
	Optimizing ANSI C compiler, assembler, linker, debugger, runtime library, Spox OS drivers, simulator	Parallel debugger uses JTAG scan interface to permit development of software that runs simultaneously on a virtually unlimited number of TMS320C40s.
	Assembler, linker, librarian, \$495; algorithm design and modelling package, $\$ 895$; sound recording, editing playback, $\$ 995$	Base price is for board alone. Maximum price is for board, external data-acquisition unit and software

[^12]
DSP coprocessor boards

ing just as quickly. As costs decline, the number of applications that become candidates for DSP techniques multiplies. You can safely say that, at present, the number of DSP applications that engineers are investigating exceeds by several orders of magnitude the number of applications with designs in commercial production.

When you expect to sell a DSP-based product in low or moderate quantities, using an OEM DSP board as a component of your product cuts hardware-development costs and lets you bring the product to market sooner than would developing unique hardware. When you are buying large quantities of boards for volume production of a DSP-based product you've already developed, the availability of development tools is no longer important. However, as long as most of the DSP boards sold go into developing new applicationsthe current situation-having development tools available will be a key factor in a board's success.

The abundance of tools that run on IBM PCs is a major reason for the dominance of the PCs' ISA bus as a format for DSP boards (Ref 2). As long as a significant amount of DSP work relates to audio, DSPboard vendors will continue to develop new ISA bus products. But applications that demand higher performance strain the bus's capabilities-not just its datatransfer rate but also its ability to deliver the de power that high-performance boards use. Interestingly, among the vendors' submissions, we found little evidence of strong interest in the most obvious alternatives to the ISA bus. There were no boards for the EISA bus and only one for the IBM PS/2 Micro Channel Architecture bus.

Spectrum Signal Processing and Loughborough Sound Images have an interesting answer to many of the limitations of the ISA bus. The Medialink is a complete $25-\mathrm{MHz} 80386 \mathrm{DX} \mathrm{CPU}$ on a full-size, 16 -bit ISA bus plug-in board for passive-backplane systems. Besides a ' 386 with as much as 8 M bytes of RAM and facilities for an 80387 or Weitek numeric coprocessor, the board contains a TI TMS320C31 DSP $\mu \mathrm{P}$ with as much as 2 M bytes of its own RAM. It also contains an interface that can communicate with off-board DSP $\mu \mathrm{Ps}$ at speeds as great as 66 M bytes $/ \mathrm{sec}$.
Placing the DSP chip and the ' 386 on the same board considerably speeds up interprocessor communication. This architecture is very likely a precursor of things to come. Workstations from Next Computers Inc already include a DSP chip on their system boards. That chip performs a variety of functions, among them most of those of a modem. Spectrum and Loughborough are not alone in envisioning the not-too-far-distant day

Manufacturers of DSP coprocessor boards

For more information on DSP coprocessor boards such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Analogic CDA
8 Centennial Dr
Peabody, MA 01960
(508) 977-3030

FAX (508) 977-9220
TLX 681-7408
Mike Drumm
Circle No. 401
Array Microsystems
1420 Quail Loop Rd
Colorado Springs, CO 80906
(719) 540-7999

FAX (719) 540-7950
Circle No. 402

Ariel Corp

433 River Rd
Highland Park, NJ 08904
(908) 249-2900

FAX (908) 249-2123
TLX 4997279
Tony Agnello, President
Circle No. 403
Atlanta Signal Processors Inc 770 Spring St
Atlanta, GA 30308
(404) 892-7265

FAX (404) 892-2512
William E Jouris
Circle No. 404
AT\&T Microelectronics
555 Union Blvd
Allentown, PA 18103
(800) 372-2447

Circle No. 405
Bridgeworth Signal
Processing Ine
Box 469
Custer, WA 98240
(604) 538-0003

FAX (604) 535-9073
Circle No. 406
Bruel and Kjaer
Naerum Hovegarde 18
DK-2850 Naerum Denmark
(452) 800500

Circle No. 407
Burr-Brown Corp
Box 11400
Tucson, AZ 85734
(800) 548-6132;
(602) 746-1111

FAX (602) 741-3895
TWX 910-952-1111
Paul Smith
Circle No. 408
Communications
Automation \& Control
1642 Union Blvd, Suite 200
Allentown, PA 18103
(800) 367-6735;
(215) 776-6669

FAX (215) 770-1232
Circle No. 409
Crystal River Engineering Inc
12350 Wards Ferry Rd
Groveland, CA 95321
(209) 962-4118

FAX (209) 962-4873
Circle No. 410

Loral Space
Information Systems
Box 58487, Bldg VII, F268N
Houston, TX 77528
(713) 335-6445

Jim Chester
Circle No. 420
Micro Industries
8399 Green Meadows Dr N
Westerville, OH 43081
(800) 446-6762;
(614) 548-7878

Bill Jackson
Circle No. 421
Multisignal Technology Corp
4662 Katella Ave, Suite J
Los Alimitos, CA 90720
(213) 431-3503

FAX (213) 598-1741
Chai Heng
Circle No. 422
National Instruments Corp
6504 Bridge Point Pkwy
Austin, TX 78730
(800) 433-3488;
(512) 794-0100

FAX (512) 794-8411
TLX 756737
David Koenig
Circle No. 423
Pacific Cyber/Metrix Inc
6805 Sierra Ct
Dublin, CA 94568
(415) 829-8700

FAX (415) 829-9796
Bob Nelson
Circle No. 424

Pentek Inc

55 Walnut St
Norwood, NJ 07648
(201) 767-7100

FAX (201) 767-3994
Mario Schiavone
Circle No. 425
Signalsys Ltd
Buckland, Aylesbury
HP22 5HU, UK
(296) 631306

FAX (296) 631815
Gene Merrill
Circle No. 426
Sky Computers, Inc
27 Industrial Ave
Chelmsford, MA 01824
(508) 250-1920

FAX (508) 250-0036
TLX 4991331
Colin Barton
Circle No. 427
Sonitech International Inc
14 Mica Lane, Suite 208
Wellesley, MA 02181
(617) 235-6824

FAX (617) 235-2531
TLX 650-328-1622
Brewster LaMacchia
Circle No. 428

Spectral Innovations Inc
4633 Old Ironsides Dr, Suite 401
Santa Clara, CA 95054
(408) 727-1314

FAX (408) 727-1423
John Klem, VP Marketing
Circle No. 429
Spectrum Signal Processing Inc
3700 Gilmore Way, Suite 301
Burnaby, BC, Canada V5G 4M1
(604) 438-7266

FAX (604) 438-3046
Circle No. 430
Loughborough Sound Images Ltd
The Technology Centre, Epinal Way
Loughborough, Leics, LE11 0QE, UK
(0509) 231843

FAX (0509) 262433
TLX 341409
Circle No. 431
Note: Spectrum Signal Processing
distributes Loughborough's products
in North America; Loughborough
distributes Spectrum's products
in Europe.
Star Technologies Inc
515 Shaw Rd
Sterling, VA 22170
(800) 782-7005;
(703) 689-4400

FAX (703) 478-3600
Joe Caso
Circle No. 432
Street Electronics Corp
6420 Via Real
Carpinteria, CA 93013
(805) 684-4593

FAX (805) 684-6628
Bill Adler
Circle No. 433
Symmetric Research
16 Central Way, Suite 9
Kirkland, WA 98033
(206) 828-6560

FAX (206) 827-3721
Circle No. 434
Texas Instruments Inc
Semiconductor Group (SC-9052)
Box 809066
Dallas, TX 75380
(800) 336-5236 ext 700;
(214) 995-6611 ext 700

Circle No. 435
Valley Enterprises Inc
RD \#4, Route 309
Tamaqua, PA 18252
(717) 668-3737

FAX (717) 668-6360
Thomas J Martin
Circle No. 436
Zola Technologies, Inc
6195 Heards Creek Dr, NW,
Suite 201
Atlanta, GA 30328
(404) 843-2972

FAX (404) 257-1047
Lester Longley, President
Circle No. 437

DSP coprocessor boards

when the system boards of all PCs and workstations include at least one DSP $\mu \mathrm{P}$. The firms are hoping that Medialink will establish the standard for communicating with DSP $\mu \mathrm{Ps}$ in computers based on 80x86 CPUs.

A move to workstations and to the VMEbus

But DSP-board vendors' interest in the VMEbus-a bus that has long been a mainstay of the workstation world-provides evidence of a different sort of change: The increasing power of DSP chips and the growing popularity of multiprocessor architectures are causing engineers to look closely at developing new DSP products on VMEbus-based workstations rather than on PCs. Not only do workstations perform important development tasks, such as compilation, faster than most PCs do, the VMEbus can accommodate larger boards that use more dc power than those that fit PCs. Also encouraging the use of workstations for DSP development is the growing availability of workstation-based DSP development tools.
But from a DSP-board standpoint, not all is rosy on the workstation front. Although several vendors have introduced boards for the Sbus of Sun Microsystems' SPARCstations, the small board format limits the units' capabilities.

All the evidence points to a continuation-even an acceleration-of the breakneck pace of change in the world of DSP boards. Fueled by increases in the power of DSP chips and reductions in the chips' cost, potential new applications will mushroom. With the explosion in applications will come the need for new and different boards-flexible ones for development work and lowcost ones for use in some of the DSP-based products the development work will produce.

EDN

References

1. Gallant, John, "Plug-in DSP boards," EDN, April 26, 1990, pg 142.
2. Leibson, Steven H, "DSP development software," $E D N$, November 8, 1990, pg 156.

Article Interest Quotient (Circle One) High 491 Medium 492 Low 493

ADVERTISEMENT NEW PRODUCT

DSP SUPPORT
FOR THE CONFIGURABLE LOGIC ANALYSIS SYSTEM

Biomation's New CLAS 2000

- Reliable Full-Speed Probing and Symbolic Disassembly
- Multi-Processor Systems Support

Biomation announces Configurable Logic Analysis System (CLAS) support for Texas Instruments and Motorola Digital Signal Processors (DSPs). The DSP tools include support for the TMS 320C25, TMS 320C30, and DSP 56001. The tool consists of probing hardware, disassembly software, and all setup files. Each DSP support tool for the CLAS range in price from $\$ 2950$ to $\$ 3950$.

The CLAS family of logic analyzers provides up to 384 channels configurable as one to four independent analyzers for monitoring multiple processors at speed. The analyzer can capture and correlate all bus cycles at up to 50 MHz on all channels and can provide hardware timing capabilities with 1 nsec resolution. The new CLAS 2000 features an embedded controller with a $13^{\prime \prime}$ color monitor. The 96 -channel base unit sells for $\$ 15,950$, including probes.

BIOMATION

19050 Pruneridge
Cupertino, CA 95014
(408) 988-6800
(408) 988-1647 FAX

CIRCLE NO. 108

PROGRAMMERS

Our Programming line includes:

- CP-1128 Combination EPROM / PROM / PLD Programmer: Supports devices up to 28-pins \$1295
- PLD-1128 Logic Programmer: Supports PLDs up to 28pins $\$ 995$
- PLD-1100 Logic Programmer: Supports PLDs up to 24pins $\$ 798$
- EP-1140 E/EPROM Programmer: Supports E/EPROMs up to 40-pins and Intel Microcontrollers \$895
- EP-1132

E/EPROM Programmer: Supports E/EPROMs up to 32 -pins \$695

- EP-1 EPROM Programmer: Supports E/EPROMs up to 28-pins \$349

All of our programmers

 include: software, editor, interface cable, user's manual, one-year warranty (parts and labor) unlimited toll-free technical support, unconditonal thirty-day moneyback guarantee, and lifetime free software updates.

713/461-9430
FAX 713/461-7413

The competition will call us ruthless. You can call us at1-800-234-4VME.

It's enough to make other VME board builders call us names. Or call it quits. A new 23 MIPS VME single board computer based on the 88100 RISC microprocessor. Or a new 20 MIPS VME board based on the 68040 CISC microprocessor.

Both are built by Motorola and offered at $\$ 3,995$ each. That's just $\$ 174 / \mathrm{MIPS}$ for the RISC board, which compares nicely with the $\$ 1,000 /$ MIPS you've been asked
to pay for somebody else's board. And it's just $\$ 200 / \mathrm{MIPS}$ for the CISC board.

The MVME187 (RISC) and MVME167 (CISC) boards employ VME D64 architectore. And both come with four 32bit timers.

For a free color brochure, call the 800 number above. And see why the competition undoubtedly wishes wed call the whole thing off.

Their way.

Our way.

Here's how to łurn a relay with $\mathbf{2}$ changeover contacts into one with 4.

The MT4, our new relay with 4 changeover contacts, hardly occupies more board space than the MT2, our relay with 2 changeover contacts.

So if you need 6 twin changeover contacts on your board, simply install an MT2 and an MT4. Two relays of virtually identical size.

And the expensive space you formerly needed for a third MT2 is now free for other important functions.

Plus: less testing, less component cost, less assembly effort, greater reliability.

What more can you want?
(The new MT4: Power consumption at $20^{\circ} \mathrm{C} 300 \mathrm{~mW}$. Temperature range $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Space occupied per contact $12 \mathrm{M}^{2}$.)

I'm interested in the new MT4 relay. Please send me your literature.

Company \qquad

Name \qquad

Address \qquad

Telephone
EDN 9/16/91
Alcatel STR AG
CH-8055 Zurich/Switzerland, Friesenbergstrasse 75

8ave hours over your current curve fitting methods with the new TableCurve v3.0! TableCurve will fit and rank 3320 linear and non-linear equations to your dataset in one highly automated processing step! Step through ranked equations, view residuals, statistics and graphs - and output data and graphs easily in a variety of formats! Features include: 4 3,320 Linear and Non-linear equations Includes polynomial, rational, peak (Gaussian, Lorentzian, etc), transition, waveform and many others. Select only the equation groupings of interest or let Table Curve fit all equations to your data! Δ User defined equations Define your own equations -
TableCurve fits and ranks them along with the extensive list of built-in equations.
\triangle Extensive fitting and ranking choices Choose curve fitting algorithm (Singular Value Decomp., Gauss-Jordan, LU Decomposition), best fit ranking criteria (DOF adj. ré, Fit Std Error, F-statistic and Std r^{2}), smoothing functions (polynomial interpolation, FFT and Lowess) and more! Δ High speed processing Automatically fit and rank all 3,304 linear equations to a 50 point dataset in 46 seconds (using $80386 \mathrm{SX}, 16 \mathrm{MHz}$ with math coprocessor). Iteratively fit non-linear equations are also processed in amazing speed! a Unique graphical review process Graphically

view the fit of each equation to your data by pressing a key. Also obtain a full numerical review of confidence/ prediction limits, residuals and other statistics.
a Flexible data input/output Import a huge dataset from ASCII, Quattro Pro, Lotus, ${ }^{,}$dBase, and other formats. Customize selected graphs and output to a variety of devices including LaserJet, ${ }^{\text {© }}$ Postscript" ${ }^{\text {t" }}$ printers, or export directly One Step Fits 3,320 Linear and Non-linear Equations to Your Data-Automatically!
to SigmaPlot, Lotus and more!

- Export programming code for any selected equation Automatic code generation for programming in C, Pascal, FORTRAN, and several BASIC languages.
\triangle Outstanding ease of use With a superb user interface, full mouse support and extensive online help, TableCurve brings powerful linear and non-linear curve fitting to your PC in an easy-touse, intuitive format.
TableCurve is reasonably priced, backed by a full money-back guarantee and one of the strongest technical support staffs in the industry. Call Jandel today for more information on TableCurve and other scientific software: 1-800-874-1888 (inside U.S.) or 1-415-924-8640.

SCIENTIFIC "Microcomputer Tools for the Scientist"

Our European office is: Schimmelbuschstraße 25 D-4006 Erkrath $2 \cdot$ FRG 02104/36098 02104/36098

The Best
 Starting at \$75/MFLOP

The Best Price and Performance of Any off-the-shelf DSP/VMEbus in the world!

VALLEY ENTERPRISES, INC. offers you the BEST choice . . . The VE-32C-0IV series starting at $\$ 75 /$ MFLOP provides an excellent performance to cost ratio for VMEbus-based signal processing applications. This single board can perform up to 100 MFLOPS or 50 MIPS using four AT\&T DSP32C digital signal processors. Designers can put up to 16 VE-32C-01V boards in a VMEbus chassis for a total system performance of 1.6 GFLOPS. A 10 MHz FIFO-buffered input data port and a 10 MHz non-buffered output data port allow the board to capture, process, and generate high-speed data streams.
ANNOUNCING COMPLETION OF: Companion AND Module . . . A 40 MHz Sample Rate, 10 -bit $A V$ converter on a single-slot $6 U x$ 160 mm VMEbus board. This board interfaces directly to the high-speed FIFO port of the VE-32C-xxV family of DSP modules. Can be ganged for multi channel application.

All trade names are Trademarks of their respective companies
". . . 100 MFLOPS on a single board. Software support for target systems using VxWorks, OS/9, Motorola V/68 Unix, and SunOS. Call Valley about this unbeatable combination . . ."
*. . . Software development tools and a DSP Library are available for the following host computers: SUN-3 and SUN-4, IBM-PC and compatibles, HP-9000 workstations, and Apple MacIntoshes. Target environments that are supported include VxWorks, OS/9, SunOS, and Motorola V/68 systems . . .9

VALLEY ENTERPRISES, INC.
RD\#4, ROUTE 309 • TAMAQUA, PA 18252 USA Phone (717) 668-3737 • Fax: (717) 668-6360

When great musicians work...they play! And so do great engineers. The right instrument puts the joy back into solving hardware/software integration puzzles.

Not to strain an analogy, but all the embedded systems engineers we know do have a basic love of the work they do. And one thing that will really get them inspired is a truly responsive emulator!

Our MIME-600 (for the 68HC11,
64180, 6301, and others) and our

MIME-700 (68000, 68001, 68302, 68332, $68 \mathrm{HC16}$, and others) deserve your attention. Our technical service and support record speaks for itself. All of our customers are references!

It takes more than the space of this ad to describe all of our powerful features. So call or write (note two different addresses below) for all the advantages of having a MIME. And let us help you make your own special kind of music!
*Yes, it is a random dot stereogram! To see the number, diverge your eyes, as if looking at a faraway object. The two white dots will fuse, forming a third central dot. Keep gazing until a shape begins to appear floating above a textured background. Some see the image in seconds. Others find it more difficult. If you can't see it, let someone else try. If they succeed, perhaps they can help you. If you want to find out more about random dot stereograms, please write N.E. Thing Enterprises at the US address below, or call 617-621-7174 formoreinformation.

PENTICA IN-CIRCUIT EMULATORS

We lone to solve puzzes!

Pentica Systems, Ltd.
Oaklands Park
Wokingham, Berkshire
RG112FE, U.K.
(0734) 792101

Fax (0734) 774081

Pentica Systems, Inc. One Kendall Square

Building 200
Cambridge, MA 02139, USA
(617) 577-1101 Fax (617) 494-9162

Us
 Them

Dhrystone	per sec. size (bytes)	$\mathbf{2 0 5}$	203	96
Pointer	speed (microsecs)	$\mathbf{3 0 6 4}$	3926	3528
	code/data (bytes)	$\mathbf{2 8 0}$	921	1144
Tint	$\mathbf{8 2 / 4 0}$	$233 / 48$	$316 / 52$	
	speed (microsecs)	code/data (bytes)	$\mathbf{4 0 7}$	683
Array	speed (microsecs)	$\mathbf{1 0 2 K}$	$628 / 84$	$630 / 84$
	code/data (bytes)	$\mathbf{3 4 7 / 2 0 5 6}$	129 K	158 K
ANSI C	FULL	$284 / 2056$	$325 / 2056$	
In-Line Assembly		YES	Partial	Full
C Source Debugger		FULL (CXDB)	Partial	No
Price (PC)	$\mathbf{\$ 1 2 0 0}$	$\$ 1595$	Partial	

Dhrystone v. 1.1 from CACM vol. 27; Pointer, Tint, Array from Byte Magazine 8/83. Whitesmiths v.3.32, Franklin v.3.07, Archimedes v.4.05A
Whitesmiths 8051 C Compilers win the race for small, fast code. And with the CXDB Debugger, you can get your product to market ahead of the competition. Call or fax today for more information about our free demo products.

How to spend less time thumbing through books and more time thumbing through results. New Mathcad 3.0

New Mathcad 3.0 crunches, graphs, updates, and documents your work in real math notation. Automatically.

New symbolic capabilities are available with a simple menu pick.

It's the fast, efficient, comprehensive way to do technical calculations.

Move those reference texts off your desk. Put that calculator back in your pocket. And save that cryptic spreadsheet for your budgets and bookkeeping.
It's time to get problems out of the way and make room for answers. With new Mathcad 3.0, the major new upgrade to the world's best-selling math software.
It's the all-in-one solution with a singular purpose: to put results in your hands as quickly and thoroughly as possible.
New Mathcad is a workhorse that handles everything from simple sums to matrix manipulation. Effortlessly, naturally.
Simply type your calculations into the live document, just like you'd write them on a scratch pad. And let Mathcad do the work for you. It performs the calculations. Graphs in 2-D or 3-D. Automatically updates results each time you change a variable. And prints out presentationquality documents, complete with equations in real math notation, even scanned-in graphics.
Newly upgraded Mathcad 3.0 now has Electronic Handbooks for instant access to

hundreds of standard formulas, useful data, even entire calculations. Just click 'n' paste them from a hypertext window into your documents, ready to use.
When you need to simplify a formula, Mathcad's symbolic calculation capabilities are available with a simple menu pick. There's no arcane programming language to learn, so you can do integrals, Taylor series, infinite sums, and more-all with point ' n ' click simplicity. The symbolic answer can be used for both numerical calculations or further symbolic transformation.
You'll also find improved equation editing, enhanced graphing features, and more documentation options. So why waste time working with problems? Join the 120,000 users that get results-with Mathcad.

- New easy to learn and use Microsoft Windows 3.0 interface - New easy to use symbolic calculations - New Electronic Handbooks with hundreds of built-in solutions
- Optional Applications Packs with adaptable templates for Electrical, Mechanical,

New Windows 3.0 interface makes calculation fast and effortless.

New Electronic Handbooks give instant access to hundreds of standard formulas. Just click' n ' paste.

Civil and Chemical Engineering, Statistics, Advanced Math, and Numerical Methods - Differentials, cubic splines, FFTs, matrices and more

- Enhanced 2-D and 3-D graphics
- Improved presentation-quality

\section*{	MAGAZINE
EDTORS	
CHOICE	}

Mathcad 2.5
$3-14-89$ isure.
3-14-89 issue.
Best of ' 88 Best of ' 88
Best of ' 87 documentation

- PC DOS, Macintosh ${ }^{*}$, and Unix ${ }^{\infty}$ versions also available
For a FREE Mathcad demo disk, or upgrade information*,
call 1-800-MATHCAD
(or 617-577-1017,
Fax 617-577-8829). Or
see your software dealer.
Available for IBM ${ }^{*}$ compatibles, Macintosh computers, and UNIX workstations.

TM and $(8$ signify manufacturer's trademark or registered trademark respectively.

1-800-MATHCAD

Free upgrades available for those who purchase Mathcad 2.5 for DOS from 5/1/91-6/30/91. Call for details.

The answer is Mathcad

MathSoft, Inc.
201 Broadway, Cambridge, MA 02139 USA

Windows-hased engineering software

The PC is the most popular computer for engineering development work, but lack of graphics-display and printing standards has blocked developing appropriate workstationclass engineering software. Windows 3.0 opens the flood gates.

IISteven H Leibson, Executive Editor
hile workstation vendors and users continue their quest for the framework grail, PC software vendors have had most of the major framework components dropped in their laps in one package. This boon, in the form of Microsoft Windows 3.0 , promises to unshackle the PC's latent ability to do workstation-level engineering work and costs less than $\$ 100$ per copy. Many vendors of software packages for applications ranging from engineering design to data acquisition already offer Windows-compatible programs, and many more programs are being developed.

According to the EDN News Edition's 1991 EDA survey, the PC holds a solid lead over all other computers as an engineering development platform (Ref 1). Of the top four computer types used for electronic design automation, 80386-, 80286-, and 80486-based PCs hold positions 1, 2, and 4, respectively. The 80486 $\mu \mathrm{P}$ is relatively new, so you can expect PCs to hold the top three positions next year.

PCs dominate engineering

Taken as a group, PCs dominate engineering work. Even so, several factors prevent engineering-software vendors from fully exploiting the advanced PC hardware available today. One of the chief culprits has been DOS. Even version 5, the latest DOS incarnation, offers little support for graphics and suffers from a relative lack of memory. Programs running under DOS 5 are still limited to 640 kbytes of RAM. Consequently, PCs with many megabytes of RAM and high-performance, high-resolution displays need individual treatment from engineering-software vendors. Each machine is a special case.

DOS program developers either ignore high-performance PCs by writing code for the lowest common denominator or create and support numerous device drivers for the various PC displays, printers, and mice. These hardware-support activities can divert software
vendors' resources away from making improvements to the engineering aspects of their products. For example, a vendor of pc-board layout tools may have to choose between adding yet another display driver or improving its automatic router.
Microsoft's Windows 3.0 solves DOS's display-driver and memory-scarcity problems, so application developers can work on the application instead of wasting time and effort on the PC's hardware needs. Windows manages the PC's display-no matter what displayadapter card you haveand presents a unified display interface to the application software. It does the same for printers and mice. Further, Windows frees application programs from DOS's 640-kbyte barrier. In fact, engineering-software vendors cite these features as the main reasons for adopting Windows 3.0. Table 1 lists a healthy sample of Win-dows-based engineering software already on the market. Many more such products are on the way.

Some stalwart holdouts (both users and vendors) have put off the switch to Windows claiming that graphical user interfaces (GUIs) are for sissies and that DOSbased applications run faster. In truth, Windows does ask more from the PC, and lower-performance machines will bog down to the point where they're unusable. However, PCs based on 80386 and 80486μ Ps-the type most often used for scientific and engineering applications-have little trouble running Windows. PC hardware advances, which seem to occur on a daily basis, make Windows' performance less of a problem as time passes.

In effect, Windows 3.0 uncouples PC hardware and software. If a PC-hardware vendor develops a faster display adapter or builds a higher-resolution display,

Many engineering tasks formerly done by hand, such as creating and analyzing timing diagrams, translate quite well to the Windows graphics environment. Timing Designer from Chronology not only lets you draw timing diagrams, it calculates timing margins from the data you enter to ensure that your design meets setup- and hold-time requirements.

Even text-oriented applications benefit from the Windows environment. Model Technology's V-System/Windows creates a total development environment by displaying your VHDL source code in one window, simulation control in a second window, and the VHDL simulator's results in a third window.

Windows can adapt without requiring changes in the application software. The only new software you'll need is a Windows display driver, and the display vendorthe appropriate party-becomes responsible for developing that code. The same fortuitous situation exists for printer manufacturers. Software vendors cite this feature, above all others, as the main reason for switching to writing Windows applications.

The second most popular reason for switching is Windows' ability to make more than 640 kbytes of memory available to an application program. Some programs, such as Deutsch Research's Spicewindows Professional, simply cannot run in 640 kbytes. Prior to Windows, the only remedy for this lack of memory was thirdparty DOS extenders, which have several drawbacks: They're not standardized, they cost the vendor and the user extra money for each application program, and they can cause compatibility problems for other DOS programs.

Windows lets application programs use more memory than the PC has RAM by implementing a simulated form of virtual memory that spools parts of programs to disk when the PC runs out of RAM. But unlike true virtualmemory systems such as Unix, Windows requires the software developer's cooperation to pull this trick off successfully. Similarly, Windows provides a form of multitasking called "cooperative multitasking" that also works only if the application code cooperates. (For more information about developing Windows-based applications, see box, "Hints from veteran Windows application developers.")

Even if graphics standards and memory management were all that Windows offered, many engineeringsoftware vendors would still adopt the GUI because

"Windows has got to be the future of ECAD on the PC."-Jeff Deutsch, president, Deutsch Research

of its popularity with PC users. However, Windows now has several additional features that make the PC a far better candidate for engineering applications than ever before. One such feature is the built-in, contextsensitive help system. This system is rapidly replacing paper user manuals because it is more
paste it into another with blissful disregard of the operation's machinations. Depending on the application program, you can transfer a bit map, a block of text, a scalable representation called a Windows metafile, or all three representations to the clipboard. Altera's Max + Plus II, for example, can transfer all three object types. convenient to use and serves the user better than a book.

Altera is one vendor that cites this advantage to writing Windows programs. The company's Max + Plus II PLD development system includes 3 Mbytes of on-line help information. Tim Southgate, software development manager at Altera, says that con-text-sensitive help isn't a radical idea for Windows applications, but it is radical for CAD tools. Altera's help system lets you click on a displayed object and immediately find out what it does and how to use it.
Mathsoft used Windows' help system in its Mathcad technical computation package and was even able to extend the concept. Using the Windows help system, the company created electronic handbooks that let you cut standard formulas from the handbook and paste them into your Mathead document. These formulas are not just text representations, they're "live." You can feed constants and variables to them, and they'll compute results.
Mathsoft's use of the help system demonstrates Windows' ability to link the operation of different applications. Software developers can use these intertask communications channels to pass information between applications programs. In addition to the help system, Windows provides for intertask communications through three other means: the Windows clipboard, a facility called dynamic data exchange (DDE), and shared memory in dynamic link libraries (DLLs).

The Windows clipboard lets you cut an object from one window and

Vendor	for Windows 3.0		
	Product name	Product description or use	Price
Altera Corp	Max+Plus II	PLD development system	\$9995
CAD/CAM Group	Design Capture Tool	Schematic entry	\$995 to \$2495
	Design Analysis Tool	Design veritication	\$495 to \$995
	Waveform Tool	Simulation interface	\$695 to \$1995
Chronology Corp	Timing Designer	Timing-diagram entry	\$995 ${ }^{1}$
Data Translation	Global Lab Image	Image analysis	\$2495
Dazix	Ace+ PC Entry	Schematic entry	\$3500
Design Systems sA	DS-Carte	Pc-board layout	Fr 6000
	DS-Logic	Schematic entry	Fr 8000
	Start-CAD	Schematic entry and pc-board layout	Fr 4900
Deutsch Research	Spicewindows Professional	Analog simulation	\$2295
Dolphin Integration	Smash	Mixed analog and digital simulation	\$3950 to \$4950
	Interactive Curve Display	Visual analysis of Spice output files	\$295
Foresight Resources Corp	Drafix Windows CAD	Mechanical CAD	\$695
Geotest Inc	ATEasy	Autoamted testing	\$2995
Hewlett-Packard Co	HP 4990A Probeview	LAN-protocol analysis	\$5000
Hyperception Inc	Hypersignal-Windows	DSP design	\$795 to \$2995
Laboratory Technologies Corp	Labtech Notebook for Windows	Laboratory data acquisition	\$1495
Mark V Systems Ltd	Objectmaker	CASE for Ada, C, and C++	\$8000
MathSoft inc	Mathcad	Mathematical analysis	\$495
Microsim Corp	Schematics	Schematic entry	\$1250 ${ }^{2}$
Microsoft Corp	Microsoft Project for Windows	Project Management	\$695
Model Technology Inc	V-System/Windows	VHDL development system	\$1495
NCI	PA480/485	$25 / 50-\mathrm{MHz}$, 48-channel logic analyzer	\$1200 to \$1400
Popkin Software \& Systems Inc	System Architect	CASE	\$1395 to \$1595
Quicklogic	pASIC Toolkit	FPGA development system	\$3995
Scientific Software Tools Inc	Driverlinx	Data-acquisition software drivers	\$400
Simucad Inc	Silos III	Logic and fault simulation	\$1200
Symantec Corp	On Target	Project management	\$399
Notes: 1. The price of Chronology's Timing Designer software changes to $\$ 1495$ on October 1, 1991. 2. The price of Microsim's Schematics software package changes to $\$ 1750$ on October 1, 1991			

At times, you may want information to move from one application to another without manual intervention. Hyperception's Hypersignal-Windows package illustrates the advantages of this transfer mode. You can set up a simulated system in the product's blockdiagram editor and, through DDE, send signals generated by the simulation to a graphical-analysis package for scrutiny. There are other ways to send data from one program to another, but the DDE facility provides a standardized method for performing this function. Jim Zachman, Hyperception's president, says that DDE will enable software developers and engineers to solve new types of problems.

Quicklogic also uses DDE to carry information between concurrently running programs in its pASIC Toolkit. The PLD compiler and the schematic editor are independent programs that run concurrently, and the two programs need to communicate. The editor sends netlists to the compiler, and the compiler sends back-annotation information to the editor. If an error occurs during compilation, you can click on the error message in the compilation window, and the offending node will be highlighted in the schematic window. Messages to perform these feats flow through the Windows DDE pipeline.
However, DDE doesn't solve all intertask communications problems. DDE creates a conduit between concurrently running application programs, but it doesn't define the format of the information that flows through that conduit. Application-program developers must agree on the data format before DDE can become use-

You can perform data acquisition and analysis simultaneously under Windows. Laboratory Technologies' Labtech Notebook for Windows can capture data while a spreadsheet analyzes and presents results.

Instruments can also exploit multiple windows to present information more logically. Hewlett-Packard's Probeview puts each network information packet in its own window for easier analysis.
ful. For programs written by the same vendor, the data-format problem doesn't present much of an obstacle. But until engineering-software vendors band together to create some DDE communications standards, you should not expect Windows programs "with DDE support" to work together unless the vendors explicitly state that the programs can communicate with each other.

Microsoft set a de facto DDE standard for business software with its $\$ 495$ Excel spreadsheet. Most business applications that "support DDE" actually conform to the Excel protocol. That standard doesn't serve the engineering community's needs well because it concerns itself with only business-type information. Microsoft is in the early stages of developing a higher-level messaging specification called object linking and embedding (OLE), which may move the industry towards a more comprehensive communications protocol.

Bridging the communications gap

Like DDE, Windows DLLs can also ease the burden of communications between different programs. Quicklogic employs DLLs to translate information passed between the program components of its pASIC Toolkit. Rather than reinvent schematic entry, Quicklogic's tool employs the CAD/CAM Group's Schematic Capture Tool for the graphic design of PLDs. Quicklogic's Toolkit generates a netlist from the completed schematic. CAD/CAM's product didn't use the netlist format Quicklogic wanted to use, so Quicklogic linked a

Hints from veteran Windows application developers

If you haven't written code for a graphical user interface (GUI) before, Windows will probably throw you a few curves. Unlike conventional programming, in which the computer drives the user, GUIs are event driven: The user drives the computer. Consequently, your programming style must change. Instead of writing a monolithic piece of linear code that runs from initialization to completion, you must create numerous program modules that wait for appropriate activating events to transpire before executing. Most first-time Windows programmers interviewed for this story cited the need for this shift in perspective. Once you're over this initial hurdle, most programmers say that writing code for Windows is no different from writing other types of programs.

You will have to learn about Windows' idiosyncrasies, however. For example, C programmers are accustomed to using C's malloc function to allocate memory and to obtain a pointer to that memory from the operating system. They then use free to dispose of that memory. Under Windows, you cannot use malloc and free because Windows simulates a virtual memory system. Thus, Windows doesn't hand out absolute memory addresses unless you really need to use that memory.

Name that memory block

To allocate a block of memory, you must first use a Windows function call to get a memoryblock "handle," or name. When you want to use that memory, you use a second call to lock the block of memory and obtain a pointer to the locked memory block. Your program should keep the memory pointer only for as long as it plans to actively use the memory. When the program no longer needs that memory, you should free the memory block
for other applications' use.
Alternatives to Windows mem-ory-allocation techniques can make programming a lot easier. Chronology found one way to reduce the complexity of Windows memory allocation. The company developed its Windows product, Timing Designer, using a $\$ 400$ $\mathrm{C}++$ compiler for Windows from Zortech (Woburn, MA, (617) 9370696, FAX (617) 937-0793).

The C + + compiler's new and delete memory-allocation calls replace C's malloc and free functions and mask the complexities of memory management under Windows. Incidentally, Windows limits the total number of memory allocations to 8000 for all active programs. Windows programmers soon learn to independently suballocate 32 -kbyte memory blocks within their programs.

Several veteran developers note that C compilers for Windows have a tough time with large programs. Altera's Tim Southgate and Deutsch Research's Jeff Deutsch both say they used compilers running under OS/2 because Windows compilers simply could not accommodate the multimegabyte size of their programs. Deutsch cites the 32-bit addressing capabilities of OS/2 compilers as a real benefit for developing large Windows applications. As an alternative to running compilers under $\mathrm{OS} / 2$, Model Technology employed Oxygen, a $\$ 99$ package from Rational Systems Inc (Natick, MA, (508) 653-6006, FAX (508) 6552753). Oxygen lets you run OS/2 compilers under Windows.

The Windows user interface also adds a great deal of complexity to your code. "You may need as many as 300 Windows function calls to open a dialog box," says Bill Falk, Quicklogic's interface specialist. Falk overcame the complexity of the Windows userinterface model by adopting XVT
(Extensible Virtual Toolkit), a \$795 Windows-development product from XVT Software Inc (Boulder, CO, (303) 443-4223, FAX (303) 443-0969). XVT lets you create a dialog box with one call. The package handles both display and printing functions.

Writing code for XVT instead of Windows not only reduces complexity, it makes your program portable. XVT Software offers compatible versions of the product for the Apple Macintosh operating system, $\mathrm{OS} / 2$ on the PC , and Unix systems running the X Window system. In fact, the IEEE's P1201.1 standards committee has selected the XVT product specification as the base document from which it will draft a standard application programming interface for portable GUI applications. (This move neatly sidesteps the Motif-vs-Open Look GUI debate that has been raging in the Unix community for almost two years.) Falk says XVT lets you make 90% of your code portable across the four operating environments. According to Falk's tests, you pay a 2% performance penalty for this flexibility.

Windows' display performance is an issue you must deal with. Chronology experimented with rubber-band animation for waveform editing in Timing Designer but found Windows' display performance sluggish in that mode. (Note that even workstations running the X Window system have trouble providing speedy user-interface performance. Fast graphics operation seems to be one of the toughest performance problems for any GUI to crack.) The current version of Timing Designer uses a simpler approach to waveform editing, but the code contains a compile-time switch to restore the rubber-band visual effect when PC display performance improves.

Snappy performance is merely
nice for user responsiveness, but real-time products that run under Windows must execute with dispatch to perform their assignments. Because Windows employs "cooperative multitasking" instead of preemptive multitasking, any Windows application program can completely take over the PC. Should this situation arise, a real-time application program could easily find itself without enough CPU cycles to complete its tasks. A real-time application can also monopolize the PC. This situation ensures that the real-time program completes its duties, but it diminishes Windows' usefulness.

A real-time crash

Even if an application program does take over the PC, Windows doesn't allow "bare-metal programming." You cannot interact directly with the PC's hardware under Windows without crashing the system. For example, you cannot write directly to the PC's screen, and you cannot manipulate the PC's interrupt controller for your own purposes.

Real-time programs often try such maneuvers to meet harddeadline requirements. Consequently, real-time Windows application programs may simply not be able to meet hard deadlines. Fred Putnam, president of Laboratory Technologies, notes that the initial version of his company's Labtech Notebook for Windows, a real-time data-acquisition package, can't always meet hard deadlines, although the DOS version can.

Putnam also has direct experience creating international versions of Labtech Notebook for Windows. Microsoft offers international versions of Windows 3.0 with appropriate character sets for various countries. Good Windows programming practice places all program text into re-
source files instead of embedding the text in the program modules. This technique greatly eases converting programs to other languages, says Putnam, because almost all the internationalization effort focuses on translating text in the resource file.
Even if you plan to offer only English versions of your product, you must work carefully on the program's look and feel when writing Windows application programs. Users expect Windows programs to be consistent from one application to the next. Chronology employed a graphics designer to help create Timing Designer's user interface because, as Chronology's president Lawrence E Lewis says, most engineers and programmers lack training in contemporary visual styles or color matching.

Chronology also put together a Windows style guide for its program developers by combining published style guides for OS/2's Presentation Manager, Windows, and Apple's Macintosh. "Existing business packages set the expected operating style for all Windows programs," says Lewis. "Even if you can think of a better way to do things, you should stick with existing de facto standards because that's what Windows users expect," he adds. Lewis says that Microsoft's Excel spreadsheet for Windows sets a lot of those standards. Chronology wasn't afraid to violate this rule, however. Timing Designer's prototype trials indicated that users preferred text information in the product's tool bar instead of the icons Excel uses. Consequently, Timing Designer's tool bar contains no icons.

For early product trials, you may want to use a software prototyping tool to build a mock-up version of your product. Prototype programs incorporating just the user interface can help devel-
opers and users alike get a feel for how your product will work in the early development stages. Simucad used this approach to create a user interface for its Si los III simulator. The company employed the $\$ 495$ CASE:W package from CASEworks (Atlanta, GA, (404) 399-6236, FAX (404) 399-9516) to create the prototype interface. Simucad selected this package because it generates compilable interface code once you are satisfied with your design. You finish your program by adding the code that does the application's real computational work.

Once your application is up and running under Windows, you'll find debugging the program more difficult than debugging programs under DOS. The eventdriven nature of Windows applications splits your code into relatively independent modules that you must test individually. The Windows user interface complicates testing because you can't use simple keyboard-macro programs for regression testing as you can with DOS programs. You need a program that records both mouse movements and keystrokes for Windows. None of the developers interviewed could recommend such a program.

Symantec's Dave Richards says debugging Windows applications is difficult because you can't isolate concurrently running programs. Consequently, a runaway application can kill the Windows kernel or step on some other memory location and crash the operating system. That's a tough debugging environment, indeed. In general, most of the Windows programmers interviewed for this article thought that Windows debugging tools are still somewhat immature. "Event-driven debugging is a nightmare," summarizes Quicklogic's Falk.
translation DLL it wrote to CAD/CAM's tool. One added line to the schematic-capture tool's initialization file creates this link. The DLL converts netlists in CAD/CAM's format to Quicklogic's format.

Translation is a popular use for Windows DLLs among many application developers. Symantec uses more than 30 DLLs to translate text files among word-processor file formats in its $\$ 199$ Justwrite word-processing pack-
age for Windows. The word processor loads only the DLLs it needs to satisfy a user request. Thus, using DLLs minimizes the amount of RAM the translation code consumes while retaining a broad ability to handle many file formats. Conversely, Symantec's On Target project-management package doesn't employ DLLs because Dave Richards, the engineering manager for the product, saw no inherent advantages to using DLLs.

Manufacturers of Windows-based engineering software

For more information on Windows-based engineering software packages such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Altera Corp	Dolphin Integration	Laboratory Technologies Corp	NCI
2610 Orchard Pkwy	8, chemin des Clos,	400 Research Dr	6438 University Dr
San Jose, CA 95134	ZIRST	Wilmington, MA 01887	Huntsville, AL 35806
(408) 984-2800	BP 65	(508) 657-5400	(205) 837-6667
FAX (408) 248-6924	38240 Meylan, France	FAX (508) 658-9972	FAX (205) 837-5221
Circle No. 650	(33) 76411096	Circle No. 663	Circle No. 669
	FAX (33) 76902965		
	TLX 980990		
CAD/CAM Group	Circle No. 657	Mark V Systems Ltd	Popkin Software \& Systems Inc
20480-B Pacifica Dr	Circle No. 657	16400 Ventura Blvd,	11 Park Pl
Cupertino, CA 95014		Suite 303	New York, NY 10007
(408) 725-0204	Dolphin US	Encino, CA 91436	(212) 571-3434
FAX (408) 725-0207	Box N	(818) 995-7671	FAX (212) 571-3436
Circle No. 651	Santa Clara, CA 95055	FAX (818) 995-4267	Circle No. 670
	(408) 727-4123	Circle No. 664	
	FAX (408) 727-2541		
Chronology Corp	Circle No. 658		Quicklogic
2849 152nd Ave NE		Mathsoft Inc	2933 Bunker Hill Lane
Redmond, WA 98052		201 Broadway	Santa Clara, CA 95054
(206) 869-4227	Foresight Resources Corp	Cambridge, MA 02139	(408) 987-2000
Circle No. 652	Kansas City, MO 64153 (816) 891-1040	FAX (617) 577-8829 Circle No. 665	Circle No. 671
Data Translation	Circle No. 659		
100 Locke Dr		Microsim Corp	30 E Swedesford Rd
Marlboro, MA 01752	Geotest Inc	20 Fairbanks	Malvern, PA 19355
(508) 481-3700	18207 E McDurmott St,	Irvine, CA 92718	(215) 889-1354
FAX (508) 481-8620	Suite K	(714) 770-3022	FAX (215) 889-1334
Circle No. 653	Irvine, CA 92714	FAX (714) 455-0554	Circle No. 672
	(714) 263-1200 ${ }^{\text {FAX }}$	Circle No. 666	
Dazix	FAX (714) Circle No. 660		
An Intergraph Co	Circle No. 660	Microsoft Corp	32970 Alvarado-Niles Rd
1 Madison Industrial Park		1 Microsoft Way	Union City, CA 94587
Huntsville, AL 35894	Hewlett-Packard Co	Redmond, WA 98052	(415) 487-9700
(205) 730-2000	19310 Pruneridge Ave	(206) 882-8080	FAX (415) 487-9721
FAX (205) 730-8344	Cupertino, CA 95014	FAX (206) 883-8101	Circle No. 673
Circle No. 654	(800) 752-0900	TLX 160520	
	Circle No. 661	Circle No. 667	
			Symantec Corp
Design Systems sA			10201 Torre Ave
14, rue Menard	Hyperception Inc	Model Technology Inc	Cupertino, CA 95014
78000 Versailles, France	9550 Skillman LB 125	15455 NW Greenbrier Pkwy,	(408) 253-9600
39508612	Dallas, TX 75243	Suite 210	FAX (408) 253-4092
FAX 39533245	(214) 343-8525	Beaverton, OR 97006	Circle No. 674
TLX 689814	FAX (214) 343-2457	(503) 690-6838	
Circle No. 655	Circle No. 662	FAX (503) 690-2093	
		Circle No. 668	
Deutsch Research	VOTE . . .		
761 DeSoto Dr	VOTE. .		
Palo Alto, CA 94303	Please also use the Inform	ieval Service card to rate this	
(415) 327-8677	article (circle one):		
FAX (415) 327-0325	High Interest 473 Med	est 474 Low Interest 475	
Circle No. 656	High Interest 473 Med		

The RightChoice Could Save You $\$ 25,000$.

HTBasic from TransEra will turn your PC into a scientific workstation at a fraction of the cost. A real alternative to a high-priced dedicated workstation, a PC with HTBasic gives you the capabilities you need for complex scientific/engineering applications, while retaining compatibility to run and share data with standard PC software.
The savings don't end with the workstation itself. With an HTBasic system, you can use industry-standard printers, graphic output devices, and networking systems. You get the flexibility you need to lay out the system you want without being tied to limited offerings from one supplier.

HTBasic is a state-of-the-art language which gives you a number of advanced scientific/engineering features not found in other BASIC packages.

Features such as data acquisition and IEEE-488/RS-232 instrument control syntax, COMPLEX arithmetic, matrix mathematics, complete HP-style graphics, a comprehensive on-line help facility, and many more, add up to increased productivity for all levels of users.

The right choice for your next engineering workstation is a PC with HTBasic. Call or write us today for more information.

Jeff Deutsch, president of Deutsch Research, points out that DLLs help keep the source code of his company's Spicewindows Professional analog simulation package private. Earlier versions of Spice from a variety of vendors embedded the simulation models in the program code, which made adding models quite difficult. By specifying a DLL-based model interface for its simulator, Deutsch Research permits outside model development while still keeping its proprietary application code secure.

Altera's Tim Southgate also finds DLLs useful. He says they're efficient because different programs can share one image of a DLL loaded into memory. Programs that use C runtime libraries, for example, can use this feature to greatly reduce the memory the programs consume. Also, DLLs make a program modular, which reduces the time required to link a program together during development. (Southgate notes that linking a 1.8 -Mbyte program using static linking can take an hour. One-hour cycle times can really impede software development.) Altera's Max + Plus II uses more than 50 DLLs. Further, DLLs make field upgrades easy. A vendor need send out only the new or revised DLL instead of an entirely new program. This ability can significantly reduce media-distribution costs for large programs.

One aspect of Windows software engineeringsoftware vendors don't often mention is the wealth of Windows-based business software that can cross over to serve engineers. Word processors, spreadsheets, and data-base managers all work as well in the engineering domain as they do in business. You might be surprised at the engineering abilities of some business packages. For example, Winrix is a $\$ 495$ imagecreation and -editing package from Rix Softworks Inc (Irvine, CA, (714) 476-8266, FAX (714) 476-8486). The product performs several 24 -bit color image-enhancement operations such as brightness and contrast control, color correction, and sharpening. It can also import and export a wide variety of PC image file formats.

You can easily move data back and forth between engineering packages and business packages through Windows' various forms of intertask communications. Quicklogic employed this Windows feature to create user manuals for its pASIC Toolkit. Bruce Kleinman, then Quicklogic's CAE tools architect and now the company's manager of customer engineering, used the Windows clipboard to transfer display screens from the company's PLD development tools directly into the document files that became the product's user manuals. Kleinman points out that engineering is far more than just design entry. "Engineers also must write docu-

Communications links between windows provide a standard way to improve a product's interactiveness. When you select waveforms in the simulation window of Altera's Max + Plus II PLD development package, the corresponding nodes in the schematic representation of your design will change color to highlight the circuitry you're studying.
mentation, do analysis, and perform tests," he says. Engineering and business applications for Windows support all these tasks.
Major vendors of PC business software have either introduced Windows versions of their flagship packages or are currently developing such products. Vendors of PC-based engineering software products are following suit. Now that Windows has severed the hobbling linkage between advances in PC hardware and software, developers of both product types can devote their full energy to getting every last bit of application performance from their products. Moreover, they can survey the field and find new application problems to overcome instead of worrying about recently introduced graphics cards that now need device drivers. This turn of events will draw even more software developers into the fray and further solidify the PC's position as the top engineering computer. EDN

References

1. Russell, John, "1991 EDA Survey: Your tools haven't changed much, but designs are more complex," EDN News Edition, June 13, 1991, pg S48.
2. LeBlond, Geoffrey T, William B LeBlond, and Jennifer L Palonus, Windows 3 Power Tools, Bantam Computer Books, New York, NY, 1991.
3. Petzold, Charles, Programming Windows, Microsoft Press, Redmond, VA, 1990.

Article Interest Quotient (Circle One) High 473 Medium 474 Low 475

Finally, engineering software that clears the way to problem solving without programming.

With HP VEE, you simply link the icons.

Computers are great for problem solving, if only programming didn't get in the way and slow you down. And now, it doesn't
have to. Because the HP visual engineering environment (HP VEE) lets you solve problems without programming.

With HP VEE, you explore solutions visually by arranging and linking icons on the CRT. Each icon represents and executes a specific function for data collection, analysis -from simple mathematics to complex algorithms-and presentation. You don't have to write a single line of code.
There are two HP VEE software packages for prototyping, experimentation, and problem modeling. HP VEE-Engine, at $\$ 995^{*}$, is a
general-purpose tool for analysis and presentation of existing data. HP VEE-Test includes HP VEEEngine and adds extensive I/O capability, including soft panels and device I/O objects for $\$ 5,000^{*}$.
So, if programming is keeping you from solutions, call 1-800-752-0900. Ask for Ext. 2380, and we'll send a brochure on clearing the way with HP VEE.

* U.S. list prices.

There is a better way.

SENIOR PRODUCT PLANNER/MANAGER

As a member of a state-of-the-art telecommunications design team, this senior level position will be responsible for supporting sales and marketing through business plan and competitive analysis and provide high service interface to engineering, manufacturing and sales.
This position requires technical familiarity with current transmission technology for voice and data interfaces, and proven planning/project management success in the public/private network marketplace. You should possess at least $5+$ years of telecommunications experience and outstanding oral and written skills. Your educational background should include a business degree coupled with strong current technology skills and computer literacy. A BSEE/CS or equivalent coupled with an MBA would be a plus.

ELECTRONIC TECHNICIANS

We seek team players who can set up electronic and electrical test apparatus, perform minor trouble-shooting and record test data. Will also construct, service, repair and/or make modifications to prototypes.
Positions require an Associates Degree in Electronics or equivalent work experience. An ability to read technical manuals, blueprints and schematics is essential.
We offer opportunities for advancement, a comprehensive salary and benefits package. Send/Fax your resume and salary requirements (principals only) in confidence to: Human Resources, Department J-31, Tellabs, Inc., 4951 Indiana Avenue, Lisle, IL 60532.

> Fax \#708-969-7314

YOUR NET MORKING PARINER. ${ }^{\text {TM }}$
An Equal Opportunity Employer
Unix is a Trademark of AT \& T

SR. SOFTWARE ENGINEERS

UNIX PROGRAMMERS

E-Systems Garland Division, a leading supplier of high technology electronic systems, is seeking experienced UNIX Programmers.

Positions involve software development, software test, tools development and software integration. Qualified applicants must have a four-year technical degree and a minimum of three years of recent programming experience in working with UNIX and "C" on large-scale computer systems. Knowledge of systems and network interface and relational databases desired. Preference given to those with object oriented design or expert systems experience.

E-Systems offers competitive salaries and an outstanding benefits program that includes medical and dental insurance, a $401(\mathrm{k})$ plan, and a company-paid Employee Stock Ownership Plan. Qualified candidates should send a resume detailing work experience and salary history to: Locke Alderson, Senior Staffing Representative, E-Systems, Inc., Garland Division, Department 31 UX, Post Office Box 6600023, Dallas, Texas 75266-0023.

U.S. Citizenship Required. An Equal Opportunity Employer, M/F, V, H.

[^13]
SOIFTMARIE RNGINIDRIRS

Real-time Embedded Software Development with Ada!

Bring your top-notch software engineering skills to Wilcox Electric, Inc., a leader in the electronics communication industry for over 50 years. Here, you'll apply the latest tools and technologies to real-world challenges.
Associate to senior-level positions are available for individuals with a BSEE/CS and two+ years experience with realtime embedded software development using Ada. Experience with structured or object-oriented development methodologies in a DOD-STD-2167A environment is a must; CADRE TEAMWORK and ALSYS ADA experience is a plus.
At Wilcox, we have the resources and opportunity you need for a challenging and rewarding career. Plus, our location in Kansas City offers a great quality of life as well as many recreational and cultural activities.
For immediate consideration, FAX your resume to (816)453-3084 or mail it to: Teresa Griffin, Wilcox Electric, Inc., Dept. EDN-M, 2001 N.E. 46th Street, Kansas City, MO 64116. An equal opportunity employer.
R wILCOX

TELECOMMUNCATON TECHNOLOGY DEVELOPMENT

WilTel has become a leader in the fiber-optic telecommunications industry by completing an aggressive network construction and acquisition program that in just five years has spanned the nation with 11,000 miles of fiber Wiltel is now fully focused on developing and marketing new technology and services. WilTel has formed an Advanced Technology and Development Group to implement a broadband network. Located in the Woodlands of South Texas, away from the day-to-day operations at WilTel's Tulsa-based headquarters, this group is using state-of-the-art tools and techniques to create breakthrough telecommunications technology

Software Development Engineers

Team leaders and staff engineers with object-oriented design capabilities are needed for work on next generation network management and/or central office switching modules. Experience with real-time switching applications such as call processing/call handling, high-speed packetized data applications, and graphics user interfaces is highly desirable. Must have experience with object-oriented design using SMALLTALK, Objective C, or $\mathrm{C}+$

Systems Development Engineers

Team leaders and systems engineers are needed for challenging development work including network planning, network management, fault tolerant high speed control, congestion management, bandwidth policing, protocol conversion, interworking units, cell multiplexers, and routers. The initial services include Frame Relay, SMDS and ATM. Experience with ATM, Fast Packet technology, B-ISDN, SONET, DS3, DS1 is applicable

These exceptional career opportunities require BSCS or BSEE credentials and a high performance track record.
WilTel offers competitive salaries and an excellent benefits package. If you are qualified and have the determination to work for a leader, please submit your resume to:
Williams Telecommunications Group, Inc., Human Resources Dept. \#JVA, P.O. Box 21348, Tulsa, OK 74121

Our success is built by people like you. People with the commitment and motivation to help us keep Altera's name at the forefront of technology. We invented high density CMOS Erasable Programmable Logic Devices (EPLDs) and associated computer aided engineering development systems. Now, we have our name on the industry's broadest line of CMOS Programmable Logic Devices. Your decision to join Altera will be a step into a bright future. We can boast record sales and profitability and a commitment to provide our employees with tools and resources to be the best they can be. Join us now. Our future is you!

PRODUCT PLANNING MANAGER

Provide architecture definition and competitive analysis for advanced general purpose and application specific PLD products. You'll also develop software interfaces between Altera PLD compilers and workstation schematic capture and simulation tools. Requires a BS/MSEE with 5-10 years' system/logic design or applications engineering experience. Good communication skills and experience with PLDs are essential.

CAD ENGINEERING MANAGER

Manage CAE tools and acquisition strategy for future tools; define CAD methodology in conjunction with design managers; and manage a $20+$ IC layout organization and system administration support group. You'll also act as a gatekeeper for all IC tape outs. Requires 5 years' CAE management experience, including IC design/digital logic custom design and a BSEE (MS preferred). Familiarity with IC CAD tool requirements, especially Cadence tools such as Dracula, Symbad and the Opus tool set is essential.

IC DESIGN ENGINEERS

Design high performance Erasable Programmable Logic Devices. Requires a BSEE and 2 years' related semiconductor experience, including verification, simulation, product characterization and circuit design. Contributions to several projects, from design start to production release is preferred.

ADDITIONAL OPPORTUNITIES

- Test Engineer (Q2/62)
- Device Yield Engineer
- Software Engineer
- Layout Design Engineers

Related degrees and experience required.

Please send your resume to: Altera Corporation, Human Resources, 2610 Orchard Parkway, MS1101, San Jose, CA 95134-2020. Principals only. No phone calls, please. EOE

Micron Technology, Inc., a leading semiconductor manufacturer, has the following positions available in Boise, Idaho for:

PROGRAMMER/ SYSTEM ANALYSTS

Qualified applicants should have $1+$ years experience in at least two of the following areas:

- FORTRAN, PASCAL, OR COBOL PROGRAMMING
- C++ OR OTHER OOP LANGUAGES
- OBJECT ORIENTED ANALYSIS, DESIGN OR PROGRAMMING
- 4GL EXPERIENCE
- STRUCTURE ANALYSIS AND DESIGN
- RELATIONAL DATABASES . SYBASE
- DEC VAX/VMS OR UNIX ${ }^{\oplus}$ OPERATING SYSTEM
- PROGRAMMING IN A MANUFACTURING SEMICONDUCTOR ENVIRONMENT
- ASYNCHRONOUS EQUIPMENT CONTROL/ ROBOTICS

Accelerate the process to personal and professional success with a principal leader in memory technology. We offer competitive salaries and benefits as well as the beautiful setting of our Boise, Idaho headquarters. Please send your resume to Micron Technology, Inc., 2805 E. Columbia Rd., Boise, Idaho 83706 or fax your resume to (208) $368-4641$. We are an equal opportunity employer. U.S. Permanent Residency Required.

FIND YOUR CAREER

niche

Your Future Starts Here

— \square | $\left.\right|_{\text {Edtion }} ^{\text {Magazne }}$

Is it rugged? $50 \mathrm{~V} / \mathrm{ns} \mathrm{dv} / \mathrm{dt}$ at -55 to $150^{\circ} \mathrm{C}$ in plastic. Versatile? Operates off 12 to 500 V rails with 5 to 20 V input, in any circuit topology. Reliable? The IR2110 meets the same high standards as IR's incomparable HEXFET* power MOSFETs.

Call (800) 245-5549 for more information. We'll get it off the ground and on your desk in no time.

. 050 centerline stackers. Close, closer, closest.

AMPMODU 50/50 Grid Connectors

give you a choice of parallel pcb stack heights: $.390^{\prime \prime}, .320^{\prime \prime}$, and a very close .250 " (the tightest in the industry). So you can squeeze everything possible out of (or into) your design.

This surface-mount system utilizes a .050 " contact grid in double row, polarized shrouded headers and receptacles, and offers our exclusive plated copper alloy holddowns. On standard . 062 " thick boards, the
barbed holddowns do their job without protruding through, allowing surface mounting on both sides. And holddowns are soldered during reflow, providing long-term strain relief.

Dual-beam receptacle contacts and duplex gold plating provide high reliability, in selected sizes from 10 to 100 positions. Dimensional tolerances, reference datums, holddown characteristics, and packaging support robotic application; materials are fully
compatible with IR and vapor phase reflow processing.

Ask us for more information on the AMPMODU $50 / 50$ Grid SurfaceMount Connector System. Call the AMP Product Information Center at $1-800-522-6752$ (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

Dont settle for graphics

Read the writing on the wall. You don't want to compromise your image with graphics that don't paint the best picture. With IBM's new line of graphic adapters, you don't have to.

IBM has unveiled new levels of price/performance for fast 2D and 3D solids graphics applications. And the faster you can visualize data, the faster you can get your ideas across. Within the RISC System/ $6000{ }^{\text {w }}$ family of POWERstations, you can get graphics

performance that will really help you make your mark. For instance, the Gt4x graphics subsystem can draw $800,0002 \mathrm{D}$ and 3 D vectors and 80,000 Lighted Gouraud-shaded triangles per second, and gives you up to 16.7 million colors to work with to really showcase projects such as solids designs and scientific visualization. When you really want to display your vision, there's the POWERgraphics GTO

	Gt3	Gt4	Gt4x	GTO
2D Vectors/Second	650 K	650 K	800 K	990 K
3D Vectors/Second	NA	400 K	800 K	990 K
Lighted 3D Gouraud-shaded triangles/Second	NA	20 K	80 K	120 K

[^14]
that don't do you justice.

subsystem which produces almost a million 3D vectors and 120,000 Gouraudshaded triangles per second, for fast, realistic shading effects.

And for those who need 2D graphics, for things like electrical design, there's the Gt 3 that delivers $650,0002 \mathrm{D}$ vectors per second in up to 256 striking colors. Best of all, GTO, Gt 4 and $\mathrm{Gt4x}$ clearly lead the way on all APIs including X Windows Systems, ${ }^{\text {w" }}$ CL,', graPHIGS ${ }^{\text {m }}$ and Motif.'

These impressive graphics are all part of the family portrait of RISC System/6000 POWERstations and POWERservers-

For the Power Seeker.
offering performance ranging from 9 to 25 MFLOPS and from 33 to 72 SPECmarks ${ }^{\text {T }}$ and AIX, IBM's enhanced version of UNIX. The brains behind the beauty.

Don't accept a primitive picture, when you can have the picture of perfection. So, find out how RISC
System/6000 graphics can do your masterpiece justice. Get in touch with your IBM marketing representative or Business Partner. For literature, call 1800 IBM-6676, ext. 828 . And paint your own picture.

The Power in Telecommunications

How component power is contributing to the future of telecom networks

Of all the developments in the 1990 's, advances in telecom technology may well have the most profound impact on our daily lives.

The integration of speech/data and video technology, computers and communications systems will bring businesses and individuals closer together.

But as the power of communications increases, so must its reliability. And nowhere is that more important than in the power supplies which power the systems.

Here, Ericsson has been at the forefront of technology for decades, and is ready to provide many more innovative, highly reliable solutions in the years to come.

When the PKA DC/DC converter was launched in 1983 it represented the first real power supply 'component', starting a trend towards distributed power architectures which has gained global acceptance.

In 1988 these 25-40 Watt units were complemented by 15-18 Watt DC/DC converters in the PKC series. Power components the size of a credit card.

Both series boast a remarkable MTBF of over 200 years.
Ericsson continues to lead the way in smaller, more reliable power supplies for advanced power architectures. They are vital components enabling technologies which shape the telecom networks of the future.

A complete technical information pack is just a 'phone call away. Alternatively, just fax us the coupon.

Sweden Ericsson Components AB, Stockholm Tel:(08) 7216247 Fax:(08) 7217001
France Ericsson Components Europe, Guyancourt Tel:(01) 30648500 Fax:(01) 30641146
$\begin{array}{lll}\text { Germany } & \text { Ericsson Components Europe GbmH, Neu-lsenburg, Tel:(06102) } 20050 \text { Fax:(061 } \\ \text { Great Britain } & \text { Ericsson Components Europe, Coventry Tel:(0203) } 553647 \text { Fax:(0203) } 225830\end{array}$
Hong Kong Ericsson Components AB East Asia, Wanchai Tel: 5756640 Fax:834 5369
Italy $\quad \begin{array}{ll}\text { Ericsson Components Europe, Milano Tel:(02) } 3320 & 0635 \text { Fax:(02) } 33200641\end{array}$
Norwa
United States Ericsson Components Inc, Richardson, TX Tel:(214) 9976561 Fax:(214) 6801059 Ericsson Components A/S, Oslo Tel:(02) 650190 Fax:(02) 644138

Please send me your

latest information

Design Feature

Techniques let you write general-purpose Spice models

> By incorporating flexibility into your Spice models, you'll develop a library of accurate models that you can adapt for many applications, rather than reinventing the wheel every time. An example of such a model is a universal power converter.

David Caldwell, Consultant

Computer simulations can save you valuable time by letting you work out the major bugs in a circuit design before building it in hardware. Unfortunately, if the device models you need aren't readily available, you may not be able to make substantial design improvements before committing to hardware. One way to increase your model library is to build models general enough so you can adapt them to a variety of applications. Such models will save you time in future simulations by eliminating the need to develop new models. Also, over time these reusable models reduce the likelihood of encountering errors.

Creating a universal power-converter model illustrates several techniques for adding flexibility to Spice models. This model simulates the buck, boost, and

buck-boost pulse-width-modulated (PWM) topologies; continuous and discontinuous conduction modes; de op-erating-point, large-signal transient, and small-signal frequency-domain analyses; and positive and negative polarities. The model's versatility lets you simulate a wide variety of converters quickly and easily.
You can simulate capabilities with a flexible model that you cannot simulate with specific-case models. For example, the universal power-converter model can simulate multiquadrant converters, such as uninterruptible power supplies and power-factor-correction units. These subsystems require a versatile model because each cycle of processed power (usually $60-\mathrm{Hz}$ line voltage) forces the converters to operate under a variety of conditions. To perform a complete transient simulation, the model must automatically adjust its transfer function to handle all combinations of conduction modes and polarities.

The converter model is a simple power-transfer subcircuit with several enhancements. You can add flexibility to other Spice models by using the same enhancement techniques. These techniques let you transform a specific subcircuit into a versatile analysis tool for a broad spectrum of applications. The techniques include

- Using time averaging to simplify switching networks
- Taking advantage of application similarities

Writing general-purpose Spice models lets you reuse existing models rather than creating new models for every application.

- Generating external control ports
- Using diode networks to simulate if-then-else conditions
- Performing calculations via dependent sources
- Using internal feedback to realize difficult expressions.
Fig 1 shows a functional power-converter subcircuit. A de transformer, an ideal device linear down to dc, represents the power transfer between the reference (R) and diode (D) ports and the inductor (L) and diode (D) ports. It transfers energy by translating voltage levels without power losses. By arranging the R, L, and D nodes, you can simulate the various converter topologies, so that the input current satisfies the derived equations.

The transformer has a variable turns ratio, N , which lets the simulator change the transformer's gain as a function of the external voltage at node C 1 . The simulator adjust the turns ratio through a high-gain feedback network until the resultant current flow from node R to node D is equal to the value the simulator calculates. The simulator performs the math using dependent sources and diode networks.

Spice has difficulty simulating switching networks directly, and calculating transient solutions is time consuming. In power converters, the corner frequency of the LC output filter is much lower than the switching frequency to minimize output-voltage ripple. To observe the response to a sudden load change, you must look at a time frame that is very long compared with the switching period, and Spice's algorithms do not handle the disparity in time constants very well.

Fig 1-This functional model of a power converter includes an ideal dc transformer; four user-accessible nodes-reference (R), diode (D), inductor (L), and control (C1); and an internal control node, C2, that Spice uses to adjust the model's gain.

You can't perform ac analyses of the subcircuit because Spice generates a linear network based on a single operating point. Switches are either closed or open in the discrete-time model, and neither condition is representative of a switch's average state. You must replace the switching components with a timeaveraged model to obtain meaningful results.

The time average is the peak amplitude of the switching waveform multiplied by the duty cycle. Replacing the switching waveform with the timeaveraged waveform in Spice costs you the ability to

Glossary of terms

Boost topology-The PWM power-converter topology in which the magnitude of the output voltage is always greater than that of the input, and the polarities of the two are the same.

Buck topology-The PWM power-converter topology in which the magnitude of the output voltage is always less than that of the input, and the polarities of the two are the same.

Buck-boost topology-The PWM power-converter topology in which the magnitude of the output voltage can be greater or less than that of the input, and the polarities of the two are opposite, unless an isolation transformer is used.
Continuous conduction modeThe mode in which the inductor current never reaches zero.

Discontinuous conduction

 mode-The mode in which the in-ductor current reaches zero every cycle.
Duty cycle-The ratio of the switch on time to the switching period.

Pulse-width modulation

 (PWM)-Duty-cycle variation of a fixed-frequency switching waveform.Switch-mode power converterA high-efficiency circuit that utilizes pulsating switches and magnetics to transform voltage levels.
see period-to-period transient responses. In return, time-averaging waveforms simplify the circuit, eliminate problems associated with simulating vastly different time constants, and provide accurate results in both the time and frequency domains. Sampling theory states that time averaging waveforms is valid at frequencies as great as half the switching frequency.
To create a time-averaged model in Spice, derive the transfer function for the switching device and generate the Spice-equivalent network to realize the equation. For an explanation of time averaging for the input current of a buck converter in both continuous and discontinuous modes, see box, "Determining the conduction mode."
The dashed box in Fig 1 shows the Spice implementation of a converter power section. The subcircuit is a time-averaged model of a switch-mode power converter. Fig 2 shows models of the three basic PWM power-converter topologies: buck, boost, and buckboost. Note that all three models contain the same elements but in different configurations. You can derive most power-converter models from this primary set.

All three topologies operate under the same basic

Fig 2-You can derive most power-converter models from three basic PWM power-converter topologies: buck (a), boost (b), and buckboost (c).

Determining the conduction mode

The time-averaged value of the input current for both the discontinuous and continuous operational modes is a control parameter for the Spice power-converter model. The three topologies use the same model with rearranged nodes, so the buck-converter subcircuit (Fig 2a in the main text) can illustrate the analysis for all three.
In discontinuous-mode operation, the inductor discharges completely during every cycle. During each cycle the inductor current is zero at some point, and neither the switch nor the diode conducts. The switch pulse width causes the magnitude of the average inductor current to vary and is unaffected by previous cycles. You can characterize discontinu-ous-mode converters as PWM-
controlled current sources because their output voltage is loaddependent.

In continuous-mode operation, the inductor discharges partially every cycle, so either the switch or the diode is always conducting. The output voltage must adjust to balance the volt-second product across the inductor at any given duty cycle. The average inductor current will automatically vary over a number of cycles until it satisfies the load at the resultant output voltage. Because the output voltage of continuousmode converters is not loaddependent, these converters are modeled as PWM-controlled voltage sources.

A converter regulated to a constant output voltage operates in discontinuous mode at light loads
and approaches continuous mode as the load draws more output current. If a simulator solves the current equations for both modes of operation, the value of greater magnitude is the correct one. When the calculated discontinuous current is greater than the calculated continuous current, the load is not heavy enough to push the converter to continuousmode operation. Therefore, the discontinuous-current value is correct, and you can ignore the continuous-current value.

You can confirm the validity of the conduction-mode equations you derive by comparing these equations to the equations in well-established and proven references, such as Refs 1 and 2.

Diode networks can simulate if-then-else conditions.

principles. Closing the switch causes the inductor to charge. When the switch opens, the inductor kicks back and discharges its stored energy through the diode into the capacitor. The charge storage of the capacitor holds the output voltage steady. A simple way of looking at this operation is that the switch and diode generate a PWM waveform that the inductor and capacitor average.

The time-averaged de transformer subcircuit shown as the Unicon (universal converter) 4-terminal block in Fig 1 replaces the nonlinear switch and diode of Fig 2. Adding the inductor and capacitor gives the converter the proper dynamic response. Rearranging the power nodes of the model lets you simulate any of the three converter types.

You can obtain even greater model versatility by taking a critical parameter of the circuit, such as C2 in Fig 1, and defining it as a variable whose value you set via a control voltage. This control voltage lets you adjust the characteristics of the circuit and permits more types of analysis. C2 lets you examine the transient response to a control-voltage step in the time domain and measure gain and phase as a function of the control voltage in the frequency domain.

The power-converter model has two control nodes. C 1 is a user-accessible node that selects the duty cycle

Fig 3-This Spice model contains both a positive and a negative diode network, which together accurately model continuous and discontinuous conduction.
of the simulated switch. Internal control node C2 selects the turns ratio of the de transformer, which simulates the average voltage across the switch and diode. The internal control node is necessary because the selected duty cycle cannot directly set the transformer's turns ratio. The relationship between the duty cycle and the turns ratio is different for the discontinuous and continuous conduction modes, so the simulator must mathematically manipulate the model to deter-

Spice convergence

The biggest drawback of flexible Spice models is that they tend to be more complicated than singleapplication models. Therefore, you may encounter more difficulties in the convergence of the computer algorithms. The universal converter model used with Intusoft's (San Pedro, CA, (213) 833-0710) IsSpice PC simulation package has successfully analyzed many power supplies. But expecting to never encounter convergence problems is unrealistic.

If convergence problems do arise, the .NODESET command lets you estimate any node voltage and allow the Spice algorithm to use that voltage for the first iteration of its computation. Setting the expected output voltage and duty cycle of the power con-
verter increases the probability of convergence if your initial simulations fail to converge.

You can also aid convergence by using the .OPTIONS command to modify parameters. You can instruct the simulator to increase the number of iterations it can take to find a solution by changing the values of ITL1 and ITL2. You can increase the error tolerance of the program by altering RELTOL (relative tolerance) and ABSTOL (absolute tolerance).

A less sophisticated approach to obtaining convergence is to alter the topology of the circuit without changing the circuit's function. The power-converter subcircuit of Fig 4 and Listing 1 of the main text is the result of
some experimentation. There are several other ways to realize the same transfer function, but the one shown has the best convergence.

One alternate way to arrange the circuit is to switch the voltage and current sources of the dc transformer. Another way to realize the circuit is by setting the input current of the converter with a current source and varying the output voltage until the output power is equal to the input power. Because altering the circuit may be time consuming, you should only attempt such modifications after trying the .NODESET and .OPTIONS commands. Ref 3 discusses more methods to aid Spice convergence.

Fig 4-The complete Spice universal power-converter model contains four subcircuits, which perform lossless energy transfer, generate the duty cycle, and calculate the reference-diode current and the turns ratio.
mine the proper turns ratio given the operating conditions of the converter.
In addition to rectifying circuits, diodes are useful for controlling Spice's mathematical operations. This diode action is similar to the flow of a software program in which an executed expression is a function of the response to an if-then-else statement.

Diode networks in the power-converter subcircuit determine if the model is operating in the discontinuous or continuous conduction mode. If the simulator calculates the current for both modes of operation, the value of greater magnitude is the correct one. The diode network in Fig 3 models this effect. The left half shows the diode ORing scheme for positive polarity currents; the right half shows the scheme for negative currents. Either of the networks would work alone if you knew the polarity of the current, but both networks are necessary to make a flexible model that can handle currents of either polarity.

By taking the voltage across the load resistor in the positive network (node X) and subtracting the loadresistor voltage of the negative network (node Y), you can find the correct magnitude and polarity of the converter's input current. If the current is positive, the voltage at node X will be the greater of the calculated currents for both conduction modes, and the simulator sets the voltage at node Y to zero. Conversely, if the polarity of the current changes, then the simulator
sets the voltage at node X to zero, and the voltage at node Y represents the absolute value of the current. The simulator negates the voltage at node Y when it again calculates the difference between the voltages at nodes X and Y .

The diode network determines the greater of the two voltage magnitudes while retaining the original polarity of the signals. This characteristic means that you can change conduction modes or polarities during a simulation, and the model will automatically modify its transfer function to fit the new operating conditions. Thus, you can use the Spice subcircuit to model and simulate multiquadrant converters such as uninterruptible power supplies and power-factor-correction units.

Note that using diodes to select which expression executes is an approximation that includes the error of the forward voltage drop of the diode. Fortunately, you can minimize this error. Multiplying the signals by a scale factor can ensure that the result is very large compared with the diode drop. You might also reduce the forward voltage of the diode by changing its default parameters. Increasing the value of the saturation current or reducing the emission coefficient will also minimize the approximation error.

Polynomial-equation-based dependent sources enable you to realize mathematical functions in Spice. These equations have the form of $\mathrm{A}+\mathrm{Bx}+\mathrm{Cx}^{2}+\ldots$ and may contain several variables. Despite the restric-
tive appearance of the polynomial format, it allows Spice to execute many types of expressions. You can even implement division and other desirable functions that don't appear to fit this format. Spice literature, such as Ref 3, provides examples of many of these functions.
Spice calculates the input current to the powerconverter model using polynomial-dependent sources. Although the polynomial format is powerful, Spice doesn't perform some computations easily. Carefully selecting parameters may help circuit generation and simulation run more smoothly.

By using dependent sources and the diode network, the op amp forces the input current of the converter model to equal the reference value that the simulator calculates. Fig 1 illustrates this internal feedback. The op amp multiplies the difference between the measured current and the calculated value by $1,000,000$. The simulator uses the result to select the dc-transformer turns ratio. An increase in the turns ratio results in a decrease in the input current; thus, this operation is similar to that of a high-gain op amp with negative feedback.

You can use internal feedback when an expression is difficult to derive or realize in Spice. In the converter model, deriving the turns ratio of the dc transformer as a function of the duty cycle for the discontinuous mode is not trivial. Deriving the input current for both conduction modes is easier. You can use high-gain negative feedback to satisfy the derived equations.
Fig 4 is the complete Spice schematic of the universal power-converter model; Listing 1 is its associated netlist. The model limits the duty cycle to between 1 and 99%, which corresponds to voltage values of 0.01 to 0.99 V at control node C . The model also limits the turns ratio of the de transformer to values greater than 1 , which is the value that represents the operational limits of the converter topologies. Scale factors convert the voltage across the sense resistors to current and amplify voltage signals so that the relative voltage drops across the diodes are negligible.

You can further generalize the model to simulate additional converters by altering one value. Inserting the variable $\mathrm{T} / 2 \mathrm{~L}$ in the discontinuous-current calculation (EDIS in Listing 1 and Fig 4) tells the subcircuit the switching period and the output inductance value of the converter. Substitute T/2L for 0.02273 in the Spice listing as follows:

Listing 1-Spice netlist for power converter model

. SUBCKT UNICON 12234

* NODE $1=$ SWITCH NODE R (REFERENCE)
* NODE $2=$ SWITCH NODE D (DIODE)
* NODE $3=$ SWITCH NODE L (INDUCTOR
* NODE $4=$ SWITCH NODE C (CONTROL, $1 \mathrm{~V}=100 \%$ DUTY CYCLE $)$
* SWITCH MODEL (IDEAL TRANSFORMER)

RR 15 1U
ERD 52 POLY(2) 19032000001
GL 27 POLY (2) 19015000001 MEG
RL 3

* DUTY CYCLE INPUT AND LIMIT

RDC 40 lomeg
$\begin{array}{lllll}\text { RDC } & 8 & 0 & 4 & 0 \\ \text { R }\end{array}$
RCLIP $8 \quad 9 \quad 1 \mathrm{~K}$
VLO 10010
DLO 109 DEF
VHI 110990

* CALCULATE PORT R-D CURRENT

EDIS 120 POLY (2) 12390000000000000.02273
ECONT 140 POLY (2) $77^{9} 90000001 G$
DD 1213 DEF
$\begin{array}{lllll}\text { DD } & 12 & 13 & \text { DEF } \\ \text { DC } & 14 & 13 & \text { DEF }\end{array}$
RMODE 13001

* DUAL POLARITY

EDN $15 \begin{array}{llll} & 0 & 12 & 0\end{array}-1$
ECN 170140 -
DDN 1716 DEF
RMN 16 D

* CALCULATE

TRANSFORMER TURNS RATIO
ERATIO 18 O POLY (2) 1851316
DSD 1819 DEF
RSD $1920 \quad 1 \mathrm{~K}$
VSD 2001
.MODEL DEF D
. ENDS UNICON

References

1. Middlebrook, R D and S Cuk, "A General Unified Approach to Modeling Switching-Converter Power Stages," IEEE PESC Conference Proceedings, 1976.
2. Cuk, S and R D Middlebrook, "A General Unified Approach to Modeling Switching Dc-to-Dc Converters in Discontinuous Conduction Mode," IEEE PESC Conference Proceedings, 1977.
3. Meares, L G and C E Hymowitz, "Simulating With Spice," and Intusoft Newsletters, Intusoft, San Pedro, CA, (213) 833-0710.
4. Vorperian, V, "Simplified Analysis of PWM Converters Using the Model of the PWM Switch, Part I: Continuous Conduction Mode," IEEE Transactions on AES, Vol 26, No. 2, March 1990.

Author's biography

David J Caldwell works as a consultant in the field of analog-circuit design and analysis in Hermosa Beach, CA. He has worked on power and control systems and has been responsible for developing custom hardware in a variety of applications. David has a BSEE from the University of Michigan and an MSEE from the University of Southern
 California and is a member of the IEEE.

1 Meg. 20ns. Available Now!

Order them in a 256 K x 4 or 128 K x 8 configuration. In a high density plastic SOJ package. Part of a full line of fast SRAMs.

For samples, orders or more information, call 1-206-834-8959.

FROM SHARP MINDS COME SHARP PRODUCTS ${ }^{\text {m }}$

Actual output

20 WATTS

Actually meets

MIL-STD-2000
MIL-STD-810C
MIL-S-901C
MIL-STD-461C
MIL-STD-704D
NAVMAT GUIDELINES

Mil/Pac ${ }^{m}$ high-density military power supplies.
Now you can order Abbott's full mil-qualified compact power supplies in both $D C$ and $A C$ input models.

Mil/Pacs come in 20W, 35W and 50W configurations, with single ($5,12,15,24$, or 28 V) or dual ($\pm 12 \mathrm{~V} ; \pm 15 \mathrm{~V}$) outputs.

DC-to-DC models accept input from 14 V to 32 V . AC-to-DC models accept 103.4 to 126.5 V rms, $47-440 \mathrm{~Hz}$ single phase.

All Mil/Pacs operate at temperature extremes from
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening.

Mil/Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega BI., Los Angeles, CA 90034. Or call (213) 936-8185.
whenelualitis mperative

"We saved over $\$ 19,000$ at the demo!'"

Computer Aided
Product Selection

It's easy to find out more about CAPS! For your free information kit, call Jill Adams at 800-245-6696. Do it today!

[^15]CAPS ${ }^{\circledR}$ is a productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors faster and easier than ever before.
"The microfilm system we purchased for IC and semiconductor search and selection just wasn't working out. It was hard to use and there weren't enough people using it to justify the cost. So, we decided to evaluate CD-ROM-based systems.
"While all this was happening, our purchasing people found a new IC vendor. They wanted to know if the new vendor made equivalents for some of our most commonly-used components. They thought we could get a better price. It would take us hours to find equivalents on the microfilm system, so we decided to challenge a couple of new CD-ROMbased systems.
"The first demonstration was a flop. Their system didn't even include the new vendor. Needless to say, we weren't impressed.
"Then Cahners came to demonstrate the CAPS system. In less than 20 minutes, CAPS found equivalents for the components we wanted. I figure we saved over $\$ 19,000$ at the demo!
"Oh yes . . . we bought the system!"

- Frank Lucas

Test Engineering Manager
Welch Allyn
Data Collection Division

Updated monthly, the CD-ROM (Compact Disc -Read-Only Memory) based CAPS system gives you fast, easy, query-driven access to technical specifications and applications data for over 575,000 ICs and semiconductors made by nearly 500 companies worldwide. Best of all, CAPS provides instant access to hundreds of thousands of pages of complete, unabridged manufacturers' datasheets, so you have everything you need right at your fingertips.

Talk Is Cheap.

At Zilog we're not afraid to do things a little differently: Has it been worth it? We think the facts speak for themselves.

We've never been much for making grandiose claims about ourselves or our products. The proof is in the performance. For instance, Zilog has put together a continuing streak of month-to-month profitability that started back in February of 1986. Our new product sales have continued to grow steadily, as have our overall sales and net income.

Our achievement is due to the impressive efforts of a very talented and dedicated team of employees, to the fact that we continue to offer some of the industry's most innovative, technologically advanced products and services, and to an insightful management strategy. The Superintegration is a trademark of Zilog, Inc. © 1991, Zilog, Inc.
bottom line is this: We said we were going to make this company a success, and we did it.

Others may proclaim advances in highly complex devices for workstation and PC environments. With an eye on the real needs of the wider marketplace, we've been steadily developing high integration, value added 8- and 16 -bit solutions for the volume consumer, communications, computer peripheral, industrial and military arenas. At the same time, we've continued to develop 32bit RISC devices, and we are the first in the industry to offer a highly sophisticated microcontroller with an onboard DSP. Our success in the marketplace speaks volumes about the appropriateness of our strategy.

These days everybody's talking about ASSPs. Beginning in 1985, Zilog began to implement its own ASSP strategy which we termed Superintegration ${ }^{\text {TM }}$ technology.

At Zilog, we've been producing ASSPs and refining Superintegration technology longer and better than anyone else, which is why we provide the largest library of familiar cores and cells in the industry. And that means a significantly quicker migration path to upgrades and higher performance designs. Because we have our own fabrication facilities, we can ensure that every new part we produce will have the same high quality for which Zilog has always been known.

Zilog's highly regarded Datacommunication, Intelligent Peripheral Controller and Microcontroller families

as.anas
intioner
offer consistent performance that speaks for itself. Our name stands solidly for value, quality, reliability and innovation in products and services . . . and in business strategy. Enough said.

To find out more about any of Zilog's Superintegration product families, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008$6600,(408) 370-8000$.

Zilog Intelligent Peripherals

Get Smart. Fast.

Zilog's Z 80^{\circledR} MPU Family: It's the smartest way to add impressive performance and innovation without having to spend time learning and writing new code.

It's little wonder the Z80 8 -bit MPU is the world's most popular 8-bit microprocessor. It's the only CPU with an architecture that makes task switching so fast, simple and accurate. In fact the Z80 outperforms many 16bit parts. And that makes it especially valuable as the core for the wide range of Superintegration ${ }^{\mathrm{TM}}$ devices that make up the industry's leading family of intelligent peripheral controllers.

So if you're looking for a way to upgrade an existing design, or for the extra performance you need for some-

[^16]thing entirely new, the smart move is to look to the Z80 MPU family. You'll find the combinations of features that will give you just what you need, including the highperformance Z181, ${ }^{\text {TM }}$ Zilog's Smart Access $\left(\mathrm{SAC}^{\mathrm{TM}}\right)$ Controller. And best of all, since you're already familiar with the Z 80 code, the migration path couldn't be quicker.

Others may choose to concentrate on highly complex solutions for workstation and PC environments. But we think the wiser strategy is to go on developing high . integration, value added 8 - and 16 -bit solutions for the intelligent peripherals, datacommunication and consumer microcontrollers markets. At the same time, we're continuing to develop 32 -bit RISC and DSP devices and to produce some of the most sophisticated ASSPs in the industry.

It's very clear that ASSPs are the best option for a rapidly growing number of designs. At Zilog we've been producing ASSPs and developing Superintegration design methodology longer and better than anyone, which is why we have the largest library of familiar cores and cells in the industry. You can be sure Zilog will continue to develop new members of the Z80 MPU family. And, because we have our own fabrication facilities, you know that every new part will have the same high standards for quality, cost/performance and reliability for which

The smart thing to do is to find out more about the Z80 family of Intelligent Peripheral Controllers, or any of Zilog's rapidly growing Superintegration product families. Contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.

Zilog's SCC ${ }^{\text {TM }}$ and USC ${ }^{\text {TM }}$ datacom controller families give you a tremendous selection and the most flexibility in protocols, system interfaces and data transfer rates in the industry:

At Zilog, we understand our markets. We provide the devices that meet the needs of datacommunication designs right now, yet we always have an eye on the future. We offer serial communications controllers that ensure quick, easy and flexible interconnection of hosts and peripherals into LANs and WANs. And we provide flexibility in protocols allowing designers to build CPU-based boards with custom software, rather than hardware or firmware.

Our SCC and USC families of 8 - and 16 -bit SCC controllers range from Serial Input/Output controllers
Appletalk is a registered trademark of Apple Computer, Inc.
SCC, USC, SIO, ESCC, IUSC and Superintegration are trademarks of Zilog, Inc. © 1991, Zilog, Inc.
($\mathrm{SIO}^{\mathrm{TM}}$ controller) and the versatile industry standard SCC controller that's used in all Appletalk ${ }^{\circledR}$ networks . . to the Enhanced SCC (ESCC ${ }^{\text {TM }}$ controller), which boosts performance up to 10 times. Plus our Integrated USC (IUSC ${ }^{\text {TM }}$ controller), which provides sophisticated buffer management capability, is perfect for handling fast, packetized data across networks. And you get simplified, faster system operation with an on-board DMA. Since all these controllers offer code compatibility in their families, you're also assured a quick, easy migration path.

There's no question that ASSPs are the best option for a rapidly growing number of designs. At Zilog we've been producing ASSPs and refining Superintegration ${ }^{\mathrm{TM}}$ design methodology longer and better than anyone, which is why we provide the largest library of familiar

cores and cells in the industry. We' 're continually developing new members of Zilog's SCC and USC controller families, and, because we have the manufacturing control that comes from having our own fabrication facilities, you can rest assured that every exciting innovation will reflect the high standards of quality and reliability for which Zilog is known . . . and all the flexibility you need for today's complex designs.

To find out more about Zilog's Datacom families, or any of our rapidly growing Superintegration product families, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.

No Matter
What the Application, SBE Fits.

Matching your high-speed data communications requirements with a quality supplier has never been easier. Whether you're a manufacturer of mini/superminicomputers, workstations or high-performance data communications products, only SBE provides a perfect fit.

Only SBE offers a complete line of intelligent high-performance communications controllers for all major interface technologies: FDDI, Token Ring, Ethernet and High Speed Serial. Only SBE adds premium features, without a premium cost, for the best price/performance in the industry.

Add integrated hardware/software solutions; availability in VMEbus, Multibus and SBus; plus legendary development assistance and continuing product support.

Discover how SBE's intelligent high-performance controllers can meet your LAN and WAN interface requirements. Turn to SBE today.

Design Feature

Phase compensation extends op amp stability and speed

> Because most op amps lack provision for altering internal phase compensation, circuit designers often add external compensation to counter the effects of capacitance loading and parasitic capacitance and inductance. External phase compensation also permits the use of lightly compensated, higher-speed amplifiers in low-gain circuits.

Jerald Graeme, Burr-Brown Corp

To counter the effects of capacitance loading and parasitic capacitance and inductance, circuit designers can use one of four external phase-compensation methods that suit almost any application. Two of the methods specifically address capacitance loading requirements by controlling the amplifier's open-loop response. The first method requires empirical component selection, but also offers a unique filtering action. The second method removes much of the empirical selection, but can restrict output voltage range.
The other two methods address any phase compensation requirement by controlling the $1 / \beta$ curve of the amplifier feedback. These two methods also offer an opportunity for increased slew rate. The second $1 / \beta$ method is especially useful for the voltage-follower configuration. An analysis of differential-input configurations defines which method out of the four is best for your design.

All four methods satisfy the external-phase compensation that a capacitive-load drive commonly requires. As Fig 1 illustrates, capacitive loading degrades frequency stability. Load C_{L} reacts with the op amp's open-loop output resistance (R_{o}) to produce an added pole in the feedback path. This pole transforms the amplifier's open-loop response as illustrated by the unloaded and loaded curves of the plot. Phase shift from the added pole introduces response ringing and can even cause oscillation.
Adding the inverse feedback-factor curve, $1 / \beta$, to the open-loop response quantifies this response degradation. The nature of the intercept of this curve with the amplifier's open-loop gain predicts stability conditions. The difference in the slopes of the two curves relates to the net phase shift in the feedback loop. At the intercept, internal phase compensation limits this slope difference, or rate-of-closure, to preserve stability (Ref 1). For Fig 1, the $1 / \beta$ curve has zero slope, and the loop phase-shift depends only on the slope of the amplifier's open-loop response. In the unloaded case, this response has a single-pole roll off at the intercept for a slope difference of $20 \mathrm{~dB} /$ decade at the intercept. This rate-of-closure predicts a stable 90° phase shift in the loop.

In the loaded case, a second pole at $f_{p}=1 / 2 \pi R_{0} C_{L}$ alters the amplifier's open-loop response. The resulting 2 -pole, or $40-\mathrm{dB} /$ decade, response slope signals a phase shift that eventually reaches 180°. If the phase shift reaches 180° at or before the intercept with the $1 / \beta$ curve, oscillation results. Even if oscillation does not occur, this second pole increases response overshoot and ringing, gain peaking, and bandwidth limiting. The

When driving a capacitive load, you commonly need to add external phase-compensation to the op amp.
phase margin (the amount of phase shift $<180^{\circ}$) predicts the actual response degradation (Ref 2). Typically, a phase margin between 45 and 60° is desired to limit overshoot to 30% and peaking to 3 dB .

For the capacitive-load case of Fig 1, the net phase shift at the intercept is $\phi_{i}=90^{\circ}+\tan ^{1}\left(f_{i} / f_{p}\right)$. Here, the 90° shift results from the first amplifier pole, and f_{i} is the frequency of intercept with the $1 / \beta$ curve. This intercept frequency is also the bandwidth limit of the circuit. At the intercept, the feedback demand for gain and the available amplifier gain cross. Beyond this frequency, there is insufficient amplifier gain for continuance of the full-circuit response.

Graphical analysis provides insight

You can obtain a design equation for f_{i} by a graphical analysis of Fig 1's curves. In the unloaded case, the response has a maximum bandwidth defined by the unity-gain crossover frequency f_{c}. For gains higher than unity, the β factor reduces the maximum bandwidth to the frequency $\beta \mathrm{f}_{\mathrm{c}}$. With capacitance loading, the intercept retreats along the $1 / \beta$ curve to an intercept frequency, f_{i}, as shown. You can define this frequency in terms of βf_{c} and f_{p} through a geometric evaluation of the curves. Note that the dashed line indicating f_{p} forms right triangles bounded by the $1 / \beta$ curve and the two open-loop responses. The hypotenuse of the loaded triangle has a 2 -pole slope, or twice the slope of the hypotenuse of the unloaded triangle. Thus, the base of the loaded triangle is one-half the length of the base of the unloaded triangle.

Given the logarithmic nature of the frequency axis, this relationship between triangle bases is expressed as $\log \left(f_{i}\right)-\log \left(f_{p}\right)=0.5 \log \left(\beta f_{c}\right)-\log \left(f_{p}\right)$. Solving this expression for f_{i} defines this new bandwidth limit at the geometric mean of f_{p} and βf_{c}. And, for Fig 1,

$$
B W=f_{i}=\sqrt{\mathrm{f}_{\mathrm{p}} \beta \mathrm{f}_{\mathrm{c}}} .
$$

For the specific components of Fig $1, \mathrm{R}_{\mathrm{o}} \approx 30 \Omega$, making $\mathrm{f}_{\mathrm{p}}=530 \mathrm{kHz}$. Also, $\mathrm{f}_{\mathrm{c}}=6 \mathrm{MHz}, \beta=0.5$ and the resulting intercept frequency and bandwidth limit is $\mathrm{f}_{\mathrm{i}} \approx 1.26$ MHz . Then, from before, $\phi_{i}=90^{\circ}+\tan ^{1}\left(\mathrm{f}_{\mathrm{i}} / \mathrm{f}_{\mathrm{p}}\right)=157^{\circ}$. The resulting phase margin is $\phi_{\mathrm{m}}=180^{\circ}-\phi_{\mathrm{i}}=23^{\circ}$, which predicts marginal stability.

Little can be done to restore bandwidth under capacitive loading, although the technique in Fig 3, described later, offers some improvement. More important is the restoration of stable performance, which requires added phase compensation. The most fre-
quently used external-phase compensation permits stable drive of large capacitive loads through the addition of a decoupling resistor and a feedback capacitor. Fig 2 shows this configuration, with R_{C} and C_{C} providing the phase compensation. In this circuit, R_{2} is part of the total gain-setting network and is also integral to the overall phase compensation. For a voltage-follower circuit, you also need R_{2} for phase compensation. The circuit shown is a noninverting amplifier, but you can apply the compensation technique to any configuration. However, using this technique with differential-input connections degrades common-mode rejection, as discussed later with Fig 6.

The Fig 2 phase compensation provides a bypassfeedback loop that takes control of the op-amp feedback at higher frequencies. With this compensation, the response of the primary feedback loop still develops a 2 -pole roll off, but this response does not reflect op-amp-feedback conditions. Instead, the bypass-feedback loop retains stable feedback conditions and the response curve is largely unaffected by the capacitive

Fig 1-Capacitive loading of an op amp's output resistance introduces a second pole in the open-loop gain response for a $-40 \mathrm{~dB} /$ decade slope at the $1 / \beta$ intercept.
load. Compensation resistor R_{C} first isolates the op amp from the effect of C_{L} and then compensation capacitor C_{C} bypasses the primary feedback loop.

At first, the addition of R_{C} would seem to aggravate the problem because it moves the pole created by C_{L} to an even lower frequency, $\mathrm{f}_{\mathrm{p}}{ }^{\prime}$. Similarly, the addition of C_{C} causes the $1 / \beta$ curve to drop to the unity-gain axis for the maximum possible demand on stability. As shown, the response curve of the primary loop has a well-developed 2 -pole response at this curve's intercept with the $1 / \beta$ curve. This action suggests poor frequency stability.

However, this response curve only represents the open-loop gain from the op-amp inputs to the circuit output. This curve does not represent the feedback conditions controlling the amplifier at higher frequencies. With two feedback paths, the op amp is controlled by whichever path supplies the feedback current to resistor R_{1}. At low frequencies, the impedance of C_{C} is large, and the feedback path through R_{C} and R_{2} dominates. At high frequencies, C_{C} prevails and the response curve of the bypass loop is in control at the $1 / \beta$ intercept. As a result, the bypass response curve represents the open-loop gain from the op-amp inputs to the op-amp output and not to the overall circuit output.

The amplifier input-to-output response normally provides stable conditions for gain or $1 / \beta$ all the way down to unity gain. As shown, the resulting bypass response is almost unaffected by C_{L} because of the decoupling provided by R_{C}. This response intercepts the $1 / \beta$ curve before fully developing a 2 -pole roll off and predicts good stability characteristics. In practice, Fig 2's OPA2604 drives the $10,000-\mathrm{pF}$ load with only 12% overshoot and $0.3-\mathrm{dB}$ gain peaking. For audio amplifiers like the OPA2604, this phase compensation permits stable drive of the capacitance of long shielded cables.

Component selection remains empirical

The actual choice of R_{C} and C_{C} in Fig 2 is complicated by the nature of the op amp's open-loop output impedance. This impedance is not simply resistor R_{0} as modeled in Fig 2. A typical op amp has an open-loop output resistance in the range of 100Ω to $1 \mathrm{k} \Omega$ at dc, but the output impedance drops dramatically to about 10 to 50Ω as frequency increases. At very high frequencies, this impedance may rise again. Also, the output impedance is sensitive to the instantaneous level of the amplifier's output current.

Numerous factors contribute to these effects, making

Fig 2-A decoupling resistor, \boldsymbol{R}_{C}, and bypass capacitor, \boldsymbol{C}_{C}, isolate an op amp from the effects of the capacitance load, C_{L}.
complete modeling of output impedance not generally worthwhile. As a result, circuit analysis only offers a basic guide to selection of R_{C} and C_{C}, and the final choice is empirical. Note that circuit simulation with op-amp models is limited by this same constraint. Spice op-amp models typically include high- and lowfrequency output impedances that are modeled by resistors.

Despite these limitations, guidelines can expedite the initial selection of R_{C} and C_{C}. First, you choose a value for R_{C} that is in the range of the op amp's highfrequency output resistance, typically 10 to 50Ω. To determine the high-frequency value of R_{0}, you find frequency f_{p} from a measured response plot and then $R_{0}=1 / 2 \pi C_{L} f_{p}$. You should not make R_{C} arbitrarily large, because the voltage drop across R_{C} detracts from the output-voltage range. This voltage drop does not introduce a gain error because R_{C} is enclosed in the primary feedback loop. Larger values of R_{C} also restrict the bandwidth, which is now limited to $f_{p}{ }^{\prime}=1 /$ $2 \pi\left(\mathrm{R}_{\mathrm{o}}+\mathrm{R}_{\mathrm{C}}\right) \mathrm{C}_{\mathrm{C}}$. Fortunately, even small values of R_{C} dramatically reduce the phase shift developed across R_{o} by C_{L}. or the control of the 1β curve of the amplifier's feedback loop.

Once R_{C} is selected, bench tests complete the phase compensation with the selection of C_{C}. A good initial value for C_{C} is one that causes the bypass path to take effect around the frequency $f_{p}{ }^{\prime}$. This choice avoids disturbance to the open-loop gain curve of the bypass loop and places the closed-loop bandwidth limit at $\mathrm{f}_{\mathrm{p}}{ }^{\prime}$. For very large capacitive loads, this initial C_{C} value is too conservative, but the required bench testing corrects for this. To calculate the initial C_{C}, you approximate the $f_{p}{ }^{\prime}$ value by $f_{p}{ }^{\prime}=1 / 2 \pi\left(R_{o}+R_{C}\right) C_{L}$, where R_{o} equals the high-frequency value of the output impedance. Then, the break frequency of C_{C} with the $R_{C}+R_{2}$ path is set at this f_{p}^{\prime} value. Assuming $R_{2} \gg R_{0}$, the initial compensation capacitance for Fig 2 is

$$
\mathrm{C}_{\mathrm{C}} \approx\left[\left(\mathrm{R}_{0}+\mathrm{R}_{\mathrm{C}}\right) / \mathrm{R}_{2}\right] \mathrm{C}_{\mathrm{L}} \text {, and } \mathrm{R}_{\mathrm{C}} \approx \mathrm{R}_{0} \text {. }
$$

With this capacitor in place, you adjust its value while observing the circuit's square-wave response. This adjustment is made by tests using the full range of C_{L} and load-resistance values expected in the application. Fortunately, the compensated circuit response has a low sensitivity to the resistance and capacitance values. The circuit retains degraded, but stable, response over a $100: 1$ range around the design center. Thus, $2: 1$ variations in R_{0}, due to manufacturing tolerances, do not greatly affect circuit stability. However, you still need bench testing to define the design center.

Compensation also filters noise

The phase compensation of Fig 2 also provides unique filtering that rejects amplifier noise better than most op-amp filter circuits (Ref 3). The op amp amplifies the input-voltage noise by a gain of $1 / \beta=1+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)$ in Fig 2 and in the analogous inverting configuration. To filter out high-frequency noise, it's common practice to bypass R_{2} with a capacitor. However, this only removes the R_{2} / R_{1} portion of the op amp's noise gain. Without R_{C} and C_{C}, the amplifier's high-frequency noise continues to receive a gain of $1 / \beta=1$ up to the open-loop roll-off of the op amp's gain. This same condition is true for almost any op-amp connection, including active filters. For low-frequency applications, the inadvertently included op-amp noise can dominate noise performance.
In the Fig 2 configuration, the filter formed by R_{C} and C_{L} interrupts the continuation of a unity noise gain. At higher frequencies, the op amp is still under the control of a unity feedback factor as provided by the C_{C} feedback. Thus, amplifier input noise continues
to receive a corresponding unity gain at high frequencies. However, this unity gain extends only to the op-amp output. Between this output and the actual circuit output is the lowpass filter of R_{C} and C_{L}. This filter shunts the high-frequency amplifier noise to ground. For filter applications, C_{L} is not incidental and you must add it as an element in the circuit design.

Pole and zero compensate for C_{L}

A second external-phase-compensation method removes most of the empirical component selection. However, this method does reduce the output voltage range when significant output currents are supplied. This second method (Fig 3) introduces a paralleled resistor and capacitor in series with the amplifier output, but inside the feedback loop. The result is a pole and zero compensation of a capacitive-loaded amplifier. As illustrated, the circuit is a voltage follower, but this compensation method applies to all op-amp configurations.

With the circuit in Fig 3's compensation, the capacitive load that creates the problem becomes part of the phase compensation solution. As before, load C_{L} reacts with the circuit's open-loop output resistance, creating a second response pole. In the uncompensated case, C_{L} reacts with R_{0} to produce a pole at f_{p}, which compromises frequency stability as described with Fig 1. To restore stability, this pole is first moved back to $f_{p}{ }^{\prime}$ by adding resistor R_{C}. The resulting response is free to be redirected anywhere within the bounds of the uncompensated response. Bypassing R_{C} with C_{C} gradually removes the effect of the lower frequency $f_{p}{ }^{\prime}$ by restoring a $20-\mathrm{dB} /$ decade response slope. This is the response slope at the new $f_{i}{ }^{\prime}$ intercept with the $1 / \beta$ curve, and stability is improved.

To quantify the improvement and select the compensation components, you need to examine the frequencies of the compensated poles and zeros relative to $f_{i}{ }^{\prime}$. You can use many pole and zero combinations. Different combinations produce optimum conditions for different op-amp configurations. However, it is desirable to use a systematic approach to select compensating components. Fortunately, circuit stability is rather insensitive to the chosen pole-zero combination, and a single selection method adequately restores phase margin for all configurations.

Phase shift at the compensated intercept is interpreted from the duration of the new $20-\mathrm{dB} /$ decade region. For about 90° of phase margin, you would set this region to span one decade of frequency both before and after $\mathrm{f}_{\mathrm{i}}^{\prime}$. Experience shows that the decade after

Fig 3-A parallel-connected resistor and capacitor provide polezero phase compensation for a capacitive-loaded op amp.
$\mathrm{f}_{\mathrm{i}}{ }^{\prime}$ is important because secondary poles in this region add even more phase shift. However, the decade before the intercept is unnecessarily restrictive of bandwidth. In practice, the $20-\mathrm{dB}$ /decade span before intercept is reduced to about one-half of a decade of frequency. Given the logarithmic nature of the frequency axis, the one-half decade equates to about a factor of three in frequency.

Fig 3 shows a compensated response that approximates the above conditions. The compensated intercept frequency is set at $f_{i}^{\prime}=f_{i} / 3$, which results in a $20-\mathrm{dB} /$ decade response span up to $3 \mathrm{f}_{\mathrm{i}}$. Thus, above $\mathrm{f}_{\mathrm{i}}^{\prime}$, the reduced response slope covers a frequency range of 9:1 or almost a decade. Before the intercept, this span continues as set by the choice of f_{z}. For one-half decade in this region, you should place the compensation zero at $\mathrm{f}_{2} \approx \mathrm{f}_{\mathrm{i}}^{\prime} / 3$, which is approximately equal to $0.1 \mathrm{f}_{\mathrm{i}}$. The result is a $20-\mathrm{dB} /$ decade span covering a frequency range of about $30: 1$.

The component selection for the Fig 3 circuit follows
from the previously stated conditions and the measurement of f_{p}. Resistor R_{C} is chosen first through a relationship between frequencies f_{p} and f_{p}. These two frequencies are also separated by a $30: 1$ range as seen from the geometry of the responses. The straight-line extensions of the compensated and uncompensated responses form a parallelogram. Thus, the distance between f_{p} and $f_{p}{ }^{\prime}$ equals that between $3 f_{i}$ and $0.1 \mathrm{f}_{\mathrm{i}}$-a $30: 1$ span. To make $f_{p}{ }^{\prime}=f_{p} / 30$, the compensation resistor is set at $R_{C} \approx 30 R_{0}$. Note that this setting makes $R_{C} \gg R_{0}$, and the resulting phase compensation is insensitive to the actual impedance of R_{0}. Thus, empirical fine tuning of the compensation is no longer necessary.
A drawback of the higher R_{C} value is reduced output voltage range due to the large voltage drop across this resistor. The high-frequency value of R_{0} is still approximated by empirical measurement of frequency, f_{p}. Opamp data sheets do not always reflect this R_{0} value, which is determined from the relationship $R_{0}=$ $1 / 2 \pi f_{\mathrm{p}} \mathrm{C}_{\mathrm{L}}$.

Using the selected value of R_{C}, capacitor C_{C} is defined by the response conditions established for Fig 3. For $\mathrm{f}_{2}=0.1 \mathrm{f}_{\mathrm{i}}=1 / 2 \pi \mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}$, the compensation capacitance is defined by $\mathrm{C}_{\mathrm{C}}=5 / \pi \mathrm{R}_{\mathrm{C}} \mathrm{f}_{\mathrm{i}}$. Frequency f_{i} is known from the previous expression of $f_{i}=\sqrt{f_{p} \beta f_{c}}$, where $f_{p}=$ $1 / 2 \pi R_{o} C_{L}$, and f_{c} is the unity-gain crossover frequency of the op amp. For Fig 3 with $\mathrm{R}_{\mathrm{C}}=30 \mathrm{R}_{\text {o }}$,

$$
\mathrm{C}_{\mathrm{C}}=\sqrt{0.018 \mathrm{C}_{\mathrm{CL}} / \mathrm{R}_{\mathrm{o}} \beta \mathrm{f}_{\mathrm{c}}} .
$$

With the resulting phase compensation, the OPA2604 again drives a $10,000-\mathrm{pF}$ load. The resulting overshoot is 18% and gain peaking is 1.3 dB . As with Fig 2, Fig 3's phase compensation retains a degraded but stable response for a 10:1 increase or decrease in the value of the load capacitance, C_{L}. Bandwidth is again set by the intercept of the open-loop gain and the $1 / \beta$ curve. As described, this intercept is set at $f_{i}^{\prime}=f_{i} / 3$. As with Fig 1, $f_{i}=\sqrt{f_{p} \beta f_{c}}$, where $f_{p}=1 / 2 \pi R_{o} C_{L}$, and the Fig 3 bandwidth is

$$
B W=\sqrt{0.18 \beta f_{c} / \mathrm{R}_{0} \mathrm{C}_{\mathrm{L}}} .
$$

With the specific components shown, the capacitance loading reduces bandwidth to 600 kHz from the 6 MHz of the unloaded case.

For the voltage-follower example, $1 / \beta$ follows the 0 dB or unity-gain axis in Fig 3, but this axis does not generally define the critical intercept. In other op-amp configurations, the $1 / \beta$ curve is shifted upward and the
intercept with this curve defines f_{i} for the component selection. The β factor in the previous equation for C_{C} automatically adjusts the component selection for this difference in intercept. A second caution with Fig 3 is that the pole-zero compensation results in poor settling time (Ref 4). Where settling time is important, you should use the circuit of Fig 4 or Fig 5 without capacitor C_{C}.

Compensation tailors $1 / \boldsymbol{\beta}$

In the previous two circuits, phase compensation is directed toward control of the amplifier's open-loop response at the $1 / \beta$ intercept. The circuits that follow control the $1 / \beta$ response itself. Instead of reshaping the open-loop response, these circuits tailor the $1 / \beta$ curve to intercept the open-loop response at the point where this response offers good stability, which is accomplished with either negative or positive feedback. The $1 / \beta$ phase compensation permits the same capacitive load drive as the previous circuits. In addition, the $1 / \beta$ method offers an opportunity for a higher slew rate.

The circuit in Fig 4 alters the feedback factor using negative feedback provided by R_{C} and C_{C}. This method, shown in Fig 4 as a noninverting-amplifier configuration, also applies to all other op-amp configurations. For the voltage-follower case, resistor R_{2} is again added as part of the phase compensation. In addition, the Fig 4 phase compensation applies to a 2-pole amplifier response of any origin. The second pole can be the result of capacitive loading, a lightly phase-compensated amplifier, or parasitic effects in a high-frequency amplifier. This versatility is not available for the circuits in Figs 2 and 3. Fig 2 depends on a unity-gain-stable op amp, and Fig 3 requires the load capacitance as part of the phase compensation.

Fig 4's circuit connects the phase-compensation elements between the op-amp inputs to alter the feedback factor without altering the circuit's closed-loop gain. Elements R_{C} and C_{C} are bootstrapped on the input signal e_{i} and they produce no feedback current in direct response to e_{i}. This signal is impressed only upon R_{1}, where the signal creates a feedback current to produce a corresponding voltage on R_{2}. Thus, R_{1} and R_{2} continue to control the closed-loop gain experienced by e_{i}.

The circuit does, however, impress the feedback error signal between the op-amp inputs on R_{C} and C_{C}. This error signal produces a current in these elements, as well as in R_{1}. All three elements contribute to the gain received by the feedback error signal. Thus, the
three elements contribute to the net feedback factor. This factor is the divider ratio of the voltage divider formed by these three elements with R_{2}. Then, $\beta=$ $\left(\mathrm{R}_{1} \| \mathrm{Z}_{\mathrm{C}}\right) /\left(\mathrm{R}_{1} \| \mathrm{Z}_{\mathrm{C}}+\mathrm{R}_{2}\right)$, where $\mathrm{Z}_{\mathrm{C}}=\mathrm{R}_{\mathrm{C}}+\left(1 / \mathrm{C}_{\mathrm{C}} \mathrm{s}\right)$. At low frequencies, Z_{C} is very large and β reduces to the familiar $\beta_{0}=R_{1} /\left(R_{1}+R_{2}\right)$.

The addition of Z_{C} introduces a frequency dependence to β that tailors the $1 / \beta$ response of Fig 4 . There, a zero and then a pole lift the $1 / \beta$ curve above the curve's low-frequency level of $1 / \beta_{0}$. This action raises $1 / \beta$ to a region of stable intercept with the open-loop gain response. Otherwise, the $1 / \beta_{0}$ curve shown would continue on to an intercept in a region of 2-pole gain slope.

The zero, f_{z}, results when C_{C} breaks with the net resistance presented to this capacitance. This resistance includes R_{C} plus the resistance presented at the R_{1} and R_{2} junction. Because the last two resistors are both returned to low impedances, they are effectively in parallel, and $f_{z}=1 / 2 \pi\left(R_{C}+R_{1} \| R_{2}\right) C_{C}$. Following this response-zero, the impedance of C_{C} continues to decline, causing $1 / \beta$ to rise. R_{C} terminates this impedance decline, setting the minimum impedance presented by R_{C} and C_{C}. The result is a pole in the $1 / \beta$ response at $\mathrm{f}_{\mathrm{p}}=1 / 2 \pi \mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}$.

The selection of the component values for Fig 4's phase compensation begins with the second amplifierresponse pole. Whatever the cause of the pole, its position defines a minimum amplifier gain, $\mathrm{A}_{\min }$, for which the amplifier displays good stability. Placing the $1 / \beta$ intercept at this pole assures about 45° of phase margin; less phase margin is undesirable. An intercept prior to the second pole increases phase margin but also increases noise gain and reduces bandwidth. An earlier intercept requires raising the $1 / \beta$ curve further at high frequencies. This increases the gain for high-frequency noise. Similarly, an earlier intercept reduces bandwidth, since f_{i} defines the circuit bandwidth.

To place the intercept at the second pole, select R_{C} to set the high-frequency $1 / \beta$ equal to $A_{\text {min }}$. In the case of a lightly compensated amplifier, $\mathrm{A}_{\min }$ is a specified value. For other cases, you determine $A_{\text {min }}$ empirically as the open-loop gain level at the second amplifier pole. For Fig 4, the high-frequency $1 / \beta$ is $1 / \beta_{0}+R_{2} / R_{C}=A_{\text {min }}$. Solving for R_{C} yields

$$
\mathrm{R}_{\mathrm{C}}=\mathrm{R}_{2} /\left(\mathrm{A}_{\min }-1 / \beta_{0}\right)
$$

where $1 / \beta_{0}=1+R_{2} / R_{1}$.
To phase compensate the circuit in Fig 4 for capaci-
tive loading, you first approximate $\mathrm{A}_{\text {min }}$ from the specified amplifier output resistance. Resistance R_{o} forms a pole with C_{L} at $1 / 2 \pi R_{0} C_{L}$, and you choose the compensation to align the $1 / \beta$ curve with this pole. The pole nearly always occurs in a region of the amplifier response where the amplifier gain (A) is approximately equal to f_{c} / f. Here, f_{c} is the unity-gain crossover frequency of the op amp. At the intercept frequency $f=f_{i}$, making $\mathrm{A}_{\text {min }}=\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{i}}=2 \pi \mathrm{R}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}} \mathrm{f}_{\mathrm{c}}$.

Next, you choose C_{C} to ensure that f_{p} and f_{z} do not disturb the phase conditions at the intercept chosen above. Making $f_{p}=0.1 f_{i}$ sufficiently removes f_{p} and f_{z} from the intercept. Then, the phase contributions of f_{p} and f_{z} are both fully developed and cancel when the intercept is reached. For $f_{p}=0.1 f_{i}, C_{C}=5 / \pi R_{C} f_{i}$. In this case, f_{i} is the frequency of the intercept and also the frequency at which $\mathrm{A}_{\text {min }}$ occurs. For lightly compensated amplifiers, you can read this frequency from the open-loop response curve of the data sheet. In other cases, you determine the value of f_{i} by measurement.

Phase compensation has side effects

The phase compensation for Fig 4's circuit offers access to an increased slew rate but reduces input impedance. A higher slew rate results when you use lightly compensated op amps in low gain applications. Several op amps are available with two phasecompensation options to offer higher slew rate and bandwidth to high-gain applications. One option phasecompensates the amplifier for unity-gain stability and serves all applications. The other option uses lighter phase compensation to avoid restriction of slew rate and bandwidth for gains at or above some value of $\mathrm{A}_{\text {min }}$. The circuit in Fig 4's external phase compensation bridges the difference. The higher slew rate normally available to higher gain applications becomes available to lower gains as well.

The key to this speed benefit is the altered $1 / \beta$ curve. The Fig 4 circuit applies the faster, lightly compensated version of the amplifier to low-gain applications, with frequency stability restored by the external phase compensation. For the OPA37 shown, the compensation extends the slew rate to $12 \mathrm{~V} / \mu \mathrm{sec}$ from the $2 \mathrm{~V} / \mu \mathrm{sec}$ of the unity-gain-stable OPA27 companion product.

Bandwidth, however, does not similarly enjoy this increase because the elevated $1 / \beta$ curve moves the f_{i} intercept back in frequency. As a result, bandwidth is essentially unchanged from that of the unity-gainstable version. Settling time is improved with this op-

Fig 4-The addition of a zero and pole to $\mathbf{1 / \beta}$ phase-compensates any 2-pole op-amp response, regardless of the cause of the second pole.
tion because of the increased slew rate. However, this improvement is counteracted by a long settling tail introduced by f_{z} and f_{p}. To avoid this tail, caused by the added pole and zero, you can replace C_{C} by a short circuit. However, removing C_{C} increases the gain available to the amplifier's input offset voltage and lowfrequency noise.
The circuit's (Fig 4) phase compensation also alters input impedance for noninverting applications. At first, you might expect a very low impedance because the compensation elements connect directly to the circuit input. However, as described earlier, these elements are bootstrapped on the input signal, and no input current flows from them in direct response to e_{i}. Indirectly, e_{i} creates a signal on R_{C} and C_{C} through the gain-error signal between the op-amp inputs. This signal is $e_{0} / A=A_{C L} e_{i} / A$, where $A_{C L}$ is the closed-loop gain of the circuit and A is the open-loop gain of the amplifier. The resulting current supplied to the circuit input defines an input impedance of $\mathrm{Z}_{\mathrm{I}}=\mathrm{AZ}_{\mathrm{C}} / \mathrm{A}_{\mathrm{CL}}$, where $\mathrm{Z}_{\mathrm{C}}=\mathrm{R}_{\mathrm{C}}+\left(1 / \mathrm{C}_{\mathrm{C}} \mathrm{s}\right)$. Thus, the bootstrapping of Z_{C} boosts

> One method of phase compensation adds the benefit of a filtering action that can significantly reduce amplifier noise.
the resulting input impedance by the loop gain $\mathrm{A} / \mathrm{A}_{\mathrm{CL}}$.
For higher-frequency voltage followers, the input capacitance of Fig 4's amplifier degrades the phase compensation. When used in a voltage-follower circuit, this compensation requires the addition of an R_{2} resistance in the negative feedback path. This added resistance reacts with the amplifier input capacitance and introduces additional phase shift in the feedback loop. Both the differential and common-mode input capacitances of the amplifier react with this R_{2} resistance.

The result is another zero in the $1 / \beta$ response, causing this response to rise as shown by a dashed line in the Fig 4 plot (Ref 1). The rise signals increased phase shift in the loop at higher frequencies. For wideband amplifiers, this added phase shift significantly degrades stability. For example, consider the $16-\mathrm{MHz}$ OPA637 connected as a follower using the phase compensation of Fig 4. With $\mathrm{R}_{2}=2 \mathrm{k} \Omega$ and C_{C} chosen by the previous equation, the circuit develops 65% overshoot and extensive ringing.

Normally, a follower has no R_{2} resistance in the negative feedback path and totally avoids the effect of the input capacitance. This feedback resistance is removed for follower compensation by using positive, rather than negative, feedback to alter the $1 / \beta$ curve (Ref 5). The resulting configuration actually benefits from amplifier input capacitance. Moreover, positive feedback is the only external phase-compensation method available to committed, voltage-follower op amps . The positive-feedback method also works for phase compensation of other noninverting configurations. However, these configurations require an R_{2} resistance and little advantage remains over Fig 4's method. Also, you should not use the positive feedback approach for differential-input configurations, as explained by Fig 6.

The Fig 5 voltage-follower case illustrates positivefeedback phase compensation. In this circuit, compensation elements R_{C} and C_{C} again form a feedback voltage divider with R_{2}. However, R_{2} is no longer in the negative feedback path where it could react adversely with amplifier input capacitance. Instead, the circuit adds a positive feedback path to the normal follower connection. With both negative and positive feedback factors, β_{-}and β_{m}, the net feedback of an op amp is the difference between the two feedback factors (Ref 6). For Fig 5, $\beta_{-}=1$ and $\beta_{+}=R_{2} /\left(\mathrm{R}_{2}+\mathrm{Z}_{\mathrm{C}}\right)$, where $\mathrm{Z}_{\mathrm{C}}=\mathrm{R}_{\mathrm{C}}+\left(1 / \mathrm{C}_{C} \mathrm{~s}\right)$. The result is a net feedback factor of

$$
\beta=\left(1+\mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}} \mathrm{~S}\right) /\left[1+\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{2}\right) \mathrm{C}_{\mathrm{C}} \mathrm{~s}\right]
$$

Fig 5-For a high-frequency voltage follower, positive feedback provides phase compensation with less sensitivity to amplifier-input capacitance.

The resulting $1 / \beta$ curve, which is much like that of Fig 4, has a pole and zero to lift the $1 / \beta$ curve before the intercept. For Fig 5, the zero occurs at $1 / 2 \pi\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{2}\right) \mathrm{C}_{\mathrm{C}}$ and the pole occurs at $1 / 2 \pi \mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}$. The bootstrapped phase-compensation elements limit disturbance to closed-loop gain and input impedance. The compensation elements ride on signal e_{i} because of bootstrap feedback from the amplifier output. Because e_{i} does not directly develop a signal on these elements, the circuit remains a voltage follower with $e_{0}=e_{i}$. The only signal on these elements results from the gainerror signal between the op-amp inputs. This signal, $e_{o} / A=e_{i} / A$, appears across $Z_{C}=R_{C}+\left(1 / C_{C} s\right)$, resulting in a circuit input current of $\mathrm{e}_{\mathrm{i}} / \mathrm{AZ} \mathrm{Z}_{\mathrm{C}}$. Thus, the input impedance of $\mathbf{F i g} 5$ is $\mathrm{Z}_{1}=A Z_{C}$.

Component selection favors \mathbf{Z}_{1} or noise

The choice of the Fig 5 components follows the Fig 4 approach but with an added degree of freedom. The high-frequency value of $1 / \beta, 1+\left(R_{2} / R_{C}\right)$, is again chosen for an intercept at the amplifier's minimum stable gain $\mathrm{A}_{\text {min }}$. Typically, $\mathrm{A}_{\text {min }}$ occurs at the second amplifier re-

Appliance specific.

Four new microcontrollers optimized for small home appliances.

We've applied our minds to the needs of home appliance designers and come up with four new microcontrollers specifically for applications such as hot pot, coffee maker and battery charger. Providing all core functions in a 28 -pin package, our 17 K microcontrollers are more efficient and more economical than standard chips.

17K microcontrollers also require significantly less programming time. Running in the MSWINDOWS ${ }^{\text {TM }}$ V3.0 environment, our exclusive SIMPLEHOST ${ }^{T M}$ debugger offers full screen and source-level debugging. For even greater speed to market, we provide one-
time PROM types for all four microcontrollers.

Instead of going out of your way to design around a standard
device, use the microcontrollers that go out of their way to suit your system. For information on the 17 K Series, contact NEC today.

Device	$\mu \mathrm{PD} 17134 \mathrm{~A}$	$\mu \mathrm{PD} 17135 \mathrm{~A}$	$\mu \mathrm{PD} 17136 \mathrm{~A}$	$\mu \mathrm{PD} 17137 \mathrm{~A}$
ROM (bits)	1024×16		2048×16	
RAM (bits)	112×4			
I/O port	22 lines (including one input, one sense input and 8 N -ch open-drain lines)			
Analog input	4 channels (usable as port pins)			
Timer	8-bit timer: 2ch Basic interval timer/Watchdog timer: 1 ch			
Serial interface	1 channel (usable as a port pin)			
Stack	5 levels			
Power-on reset	Provided			
System clock	RC oscillation	Ceramic oscillation	RC oscillation	Ceramic oscillation
Instruction execution time	$8 \mu \mathrm{~s}(2 \mathrm{MHz})$	$2 \mu \mathrm{~s}(8 \mathrm{MHz})$	$8 \mu \mathrm{~s}(2 \mathrm{MHz})$	$2 \mu \mathrm{~s}(8 \mathrm{MHz})$
Standby function	STOP/HALT			
Power supply	2.7 to 5.5 V ($5 \mathrm{~V} \pm 10 \%$ when A / D in use)			
Package	28-pin plastic shrink DIP/28-pin plastic SOP			
One-time PROM	μ PD17P136A	$\mu \mathrm{PD17P137A}$	μ PD17P136A	$\mu \mathrm{PD17P137A}$
SIMPLEHOST: Trademark of NEC Corporation. MS-WINDOWS: Trademark of Microsoft, Inc.				
CIRCLE NO. 135				
302. Telex:8589960. The Netherlands Tel:040-445-845. Telex:51923. x:699499. Spain Tel:1-419-4150. Telex:41316. Italy Tel:02-6709108. Telex:315355. 94081. Hong Kong Tel:755-9008. Telex:54561. Taiwan Tel:02-719-2377. Telex:22372. :250-3583. Australia Tel:03-267-6355. Telex:38343.				

> Phase compensation often involves tradeoffs in performance parameters such as slew rate, input impedance, and bandwidth.
sponse pole as shown. Again, $\mathrm{A}_{\text {min }}$ is a specified value for the op amp or often set by capacitance loading at $\mathrm{A}_{\text {min }}=2 \pi \mathrm{R}_{0} \mathrm{C}_{\mathrm{L}} \mathrm{f}_{\mathrm{c}}$. For Fig 5, $\mathrm{R}_{\mathrm{C}}=\mathrm{R}_{2} /\left(\mathrm{A}_{\text {min }}-1\right)$. Next, the pole of the $1 / \beta$ response is set a decade below the intercept or $f_{p}=1 / 2 \pi R_{C} C_{C}=0.1 f_{i}$. This setting assures that the f_{p} and f_{z} shown have canceling phase effects when the intercept is reached. Then, $\mathrm{C}_{\mathrm{C}}=5 / \pi \mathrm{R}_{\mathrm{C}} \mathrm{f}_{\mathrm{i}}$.
The above equations for R_{C} and C_{C} define the relative values of the compensation elements. However, the absolute values depend upon first choosing a value for R_{2}. In Fig 4, this resistor is part of the normal feedback network and the resistor value is chosen with other criteria. In Fig 5, however, R_{2} only serves as a phase compensation element, and you are free to set its resistance value.
The factors now guiding the R_{2} choice are input impedance and noise. With $\mathrm{Z}_{\mathrm{I}}=\mathrm{AZ}_{\mathrm{C}}$, input impedance increases with higher values of R_{C} and lower values of C_{C}. The previous equations for R_{C} and C_{C} show that input impedance increases with increasing R_{2} values. However, noise also increases because R_{2} generates a

Fig 6-External phase compensation for differential-input connections is placed where no common-mode signal appears across the compensation elements.
voltage noise of $\sqrt{4 \mathrm{KTR}_{2}}$ at the amplifier input. Thus, the choice of the R_{2} value is a compromise.

With the specific components shown in Fig 5, a compromise $R_{2}=2 \mathrm{k} \Omega$ results in $\mathrm{R}_{\mathrm{C}}=500 \Omega$ and $\mathrm{C}_{\mathrm{C}}=200$ pF . The OPA637 then delivers a slew rate of 135 V / $\mu \mathrm{sec}$, as compared with the $55 \mathrm{~V} / \mu \mathrm{sec}$ available with the unity-gain-compensated OPA627. Resulting overshoot is 16%, as compared with 65% in an equivalent solution from Fig 4. This latter improvement is the result of the difference in effects of amplifier input capacitance. As described with Fig 4, this input capacitance causes the circuit's $1 / \beta$ curve to rise at high frequencies, which increases the loop phase shift. In Fig 5 , the opposite effect occurs, and the $1 / \beta$ curve declines as a result of amplifier-input capacitance. The amplifier's common-mode input capacitance bypasses R_{2}, which rolls off the positive feedback and the $1 / \beta$ curve. As indicated by a dashed line, this action reduces, rather than increases, the rate-of-closure of the $1 / \beta$ and gain curves.

Where noise is more important than input impedance, you choose R_{2} so that its noise voltage is only about one-third that of the amplifier input. This onethird factor turns into a one-ninth contribution to overall rms noise. The rms addition of the resistor and amplifier noises first raises each term to the second power. As a result, the resistor noise is essentially negligible. For a resistor noise $\sqrt{4 \mathrm{KTR}_{2}}$ equal to onethird the amplifier noise $\left(e_{n}\right), R_{2}$ is set to

$$
\mathrm{R}_{2}=\mathrm{e}_{\mathrm{n}}{ }^{2} / 36 \mathrm{KT},
$$

where K is Boltzman's constant, or 1.38×10^{-23}, and T is the temperature in degrees Kelvin, or ${ }^{\circ} \mathrm{C}+273$. Under these conditions, the $\mathrm{e}_{\mathrm{n}}=5-\mathrm{nV} / \sqrt{\mathrm{Hz}}$ of the OPA637 calls for $R_{2}=500 \Omega$. Then, $R_{C}=125 \Omega$ and $\mathrm{C}_{\mathrm{C}}=820 \mathrm{pF}$.
Differential input connections of op amps impose a special restriction on external phase compensation. The benefit realized with differential inputs is commonmode rejection, and phase compensation added to the circuit can degrade this rejection. To retain high com-mon-mode rejection, you must place any added phasecompensation where there is no common-mode swing across the compensation elements.
Fig 6 illustrates this technique with the differentialamplifier connection. Consider a common-mode signal connected to the e_{1} and e_{2} inputs. Under balanced conditions, the circuit rejects this signal and produces no signal at the e_{0} output terminal. However, a common-

HAWKER

Differential-input connections of op amps impose special restrictions on external phase compensation.
mode signal is present at the op-amp input terminals. The voltage divider formed by R_{3} and R_{4} transmits a portion of the e_{2} signal to the op amp's noninverting input. This signal is also developed at the inverting input of the amplifier through the feedback control of this input. For the equal-value resistors shown, onehalf of any common-mode signal connected to the e_{2} terminal appears at both amplifier inputs.

These input and output signal conditions are representative of all differential-input connections of op amps. A common-mode signal is transmitted to the op-amp inputs but not to the op-amp output. Any phase compensation elements added between these inputs and the output contain a common-mode signal. The resulting signal current degrades common-mode rejection by introducing a signal imbalance.

For example, if you apply the circuit in Fig 5's compensation to the circuit in Fig 6, R_{C} and C_{C} are connected from the op-amp output to the amplifier's noninverting input. Common-mode swing on these elements then introduces a signal current to the junction of R_{3} and R_{4}. The effect of this current is not balanced by a matching current at the junction of R_{1} and R_{2}, and a common-mode error signal results at the circuit output. A similar error develops with application of Fig 2's external phase compensation.

For differential-input op-amp connections, any external phase compensation added should be of the type illustrated in Fig 3 or Fig 4. With Fig 3's method, the compensation elements are in series with the amplifier output and do not support a common-mode swing. With Fig 4's method, demonstrated by the circuit in Fig 6, the only signal across R_{C} and C_{C} is the differential error signal between the op-amp inputs. This error signal contains a component of common-mode error but is small compared to the actual common-mode signal.

The resulting signal current in R_{C} and C_{C} degrades common-mode rejection, but far less than the compensation methods in Figs 2 and 5. Selection of the R_{C} and C_{C} values in Fig 6 follows directly from the discussion of Fig 4. Fig 6 also includes R_{3} and R_{4}, which are not present in Fig 4, but these resistors do not alter the feedback factor. The phase-compensation effects are the same for the two circuits.

References

1. Graeme, J, "Feedback plots offer insight into operational amplifiers," EDN, January 19, 1989, pg 131.
2. Tobey, G, J Graeme, and L Huelsman, "Operational Amplifiers: Design and Applications," McGraw-Hill, 1971.
3. Burt, R, and R Stitt, "Circuit lowers photodiode amplifier noise," $E D N$, September 1, 1988, pg 203.
4. Dostal, J, "Operational Amplifiers," Elsevier, 1981.
5. Graeme, J, "Creating phantom circuits simplifies remote monitoring," EDN, August 19, 1991, pg 123.

Author's biography

Jerald Graeme is the manager of instrumentation components design at Burr-Brown and has been with the company for 25 years. During that time, he has developed numerous linear circuits, including op amps, instrumentation amplifiers, analog multiplexers, V/F converters, and D/A converters. Jerry has a BSEE from the University of Arizona and a MSEE from Stanford University. Leisure-time activities include scuba diving, photography, and woodworking.

Article Interest Quotient (Circle One) High 494 Medium 495 Low 496

SOME
SEE OUR NEW INTEGRATED PROCESSOR FUTURE OF FULL MOTION VIDEO.

BUTYOU MAY SEE IT DIFFERENTLY.

 Look at it this way.

The first thing you'll see is a flat-out screaming data mover. Namely, Motorola's 68340 Integrated Processor with DMA. The first and only processor with the performance to meet the high speed data handling needs of next generation applications.

Applications like future Compact DiscInteractive multimedia machines. Or applications like yours. Say, for instance, optical drives, laser printers, hand-held computers, telecommunication switches and line cards, workstation I/O processors, servers, terminals, robotics or that hot new project only you know about.

A closer look at the 68340 will reveal a 32-bit integrated processor built on a 68020 foundation with a host of pertinent peripherals on-chip. Foremost among these is a two channel DMA (direct memory access) controller that delivers a sustained data transfer rate of

33 megabytes per second. Imagine for a moment what you could do with that.

Also on the chip are a pair of serial I/O channels, a couple of timers and a whole bunch of glue logic you won't have to add elsewhere. And, of course, you get all that power in one
tidy little package.

Speaking of power, the 68340 doesn't use much at all. In fact, its low power consumption and standby mode make it perfect for a
 wide variety of battery-powered applications.

But then again, as the highest performance data mover you'll see anywhere, the 68340 is perfect for a whole lot of applications.

Including yours. So call Motorola at 1-800-441-2447 for a free sample. Or contact your Motorola Semiconductor Sales Office. You'll like what you see.

[^17]

§ IGNAI PROCESSING AND

POWER CONIROL FROM HARRIS.

$500 \mu A$ RS485 is here

60x Less Power.

Linear introduces the industry's first CMOS/Schottky low power RS485 transceiverthe LTC485. This rugged new part meets the RS485 interface standard and is pin compatible (DIP and SOIC) with the industry standard 75176 bipolar devicebut the LTC485 consumes 60 times less power. With an innovative new technology that combines CMOS transistors and Schottky diodes, Linear's new LTC485 withstands drive voltages above and below the power supply rails without latch up. Its supply current is 300 microam-

LTC485 differential driver output.

C) LIIEAR

peres typical and 500 microamperes maximum. The LTC485 driver output skew is a very low 5 nS . During power up and power down, the outputs remain glitch free. The LTC485 is available in 8 lead DIP and SOIC packages. Commercial, industrial and military temperature grades are available. Pricing in $100-\mathrm{up}$ quantity in plastic DIP is $\$ 1.35$ and samples are available now. For a free sample and a datasheet contact: Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035.
Or call 800-637-5545.

Programmable oscillator runs without $\mu \mathrm{P}$

Jon Klein
 Micro Linear, San Jose, CA

The circuit in Fig 1, using a clever scheme adaptable to other programmable devices, allows you to operate the ML2035 programmable sine-wave generator, IC_{3}, without a controlling $\mu \mathrm{P} . \mathrm{IC}_{1}$, a 74 HC 4060 counter, provides both the sine-wave generator's clock as well as a gating pulse to shift register IC_{2}. When IC_{1} 's pin $5, \mathrm{Q}_{5}$, goes high, IC_{2} begins shifting eight hard-wired bits into the sine-wave generator to program it. After IC_{2} shifts the 8 bits, Q_{5} goes low, enabling normal operation. The circuit can produce both $50-$ and $60-\mathrm{Hz}$ outputs from a NTSC color-burst crystal (3.579545 MHz). Table 1 lists binary codes for other crystal frequencies. The sine-wave generator's output exhibits a maximum of 0.5% THD. EDN BBS /DI_SIG \#1019

EDN

Table 1-Shift register values and frequency errors for standard crystal values

fCRYSTAL (MHz)	fOUT	D $_{10}$	DHEX	ABCD	EFGH	Error
$\mathbf{4 . 0 0}$	50	105	69	1001	0110	0.14%
4.00	60	126	$7 E$	1000	0001	0.14%
$\mathbf{4 . 1 9 4 3 0 4}$	50	100	64	1001	1011	0.00%
$\mathbf{4 . 1 9 4 3 0 4}$	60	120	78	1000	0111	0.00%
$\mathbf{6 . 0 0}$	50	70	46	1011	1001	0.14%
$\mathbf{6 . 0 0}$	60	84	54	1010	1011	0.14%
$\mathbf{8 . 0 0}$	50	52	34	1100	1011	-0.82%
$\mathbf{8 . 0 0}$	60	63	$3 F$	1100	0000	0.14%

To Vote For This Design, Circle No. 746

Fig 1-Counter IC C_{1} first clocks in an 8-bit programming code via shift register $I C_{2}$, subsequently clocking sine-wave generator $I C_{3}$.

Slow peripherals interface to fast 68000 s

Don Atkins
Motorola, Austin, TX

If you plan to interface slow peripherals to 68000 -family $\mu \mathrm{Ps}$, you may have to lengthen the μ P's data-hold time during write operations. At faster frequencies, the M68000 family shortens the Address Strobe- Data $\overline{\text { Strobe }}(\overline{\mathrm{AS}}-\overline{\mathrm{DS}}$) to data-invalid time (ie, the data-hold time) because the clock cycle is shorter. If data from the $\mu \mathrm{P}$ is buffered and the $\overline{\mathrm{DS}}$ signal qualifies the chip-select signal to the peripheral, then worst-case propagation delays may violate the data-hold-time specification of the peripheral. Even fast peripheral devices may be at risk if the propagation-delay skews through the data buffer and the chip-select qualifier is large enough.

Fig 1 shows a sample circuit where the $\mu \mathrm{P}$ interfaces to a write-only hardware register $\left(\mathrm{IC}_{3}\right)$, a 74 LS 273 octal D-type flip-flop. Decoded address lines generate
a chip-select $(\overline{\mathrm{CS}})$ signal for IC_{3}, qualified by both the read/write $(R / \overline{\mathrm{W}})$ and data strobe $(\overline{\mathrm{DS}})$ signals.

The $\overline{\mathrm{AS}}$ signal qualifies the $\overline{\mathrm{IOSEL}}$ signal from the address-decode block, connecting to both the 74 F 245 $\left(\mathrm{IC}_{1}\right)$ and the $74 \mathrm{~F} 164\left(\mathrm{IC}_{2}\right)$. The 74 F 245 bidirectional data buffer allows the $\mu \mathrm{P}$ to read and write 8 -bit peripheral devices. The 74F164 shift register generate the DSACK0 signal, which terminates the bus cycle.

During write operations, the $\mu \mathrm{P}$ transmits data and clocks them into IC_{3} on the negative edge of the $\overline{\mathrm{DS}}$ signal. The problem with this circuit is that without the components shown connected by dashed lines (and $\overline{\mathrm{DS}}$ hooked directly to the third 74 F 32), the design violates IC_{3} 's 5 -nsec data-hold time. Calculations show that the hardware provides 0.9 nsec of data-hold time, whereas the 74LS273 requires 5 nsec. An easy fix to this problem would be to substitute a faster D-type flip-flop that requires 0 nsec of data-hold time. This quick fix only provides 0.9 nsec of safety for data-hold

Fig 1-Adding the dashed-line components to this peripheral-interface circuit adds extra data-hold time so that the relatively slow 74LS273 $\left(I C_{3}\right)$ can work with the fast μP.

dc to 2000 MHz amplifier series

SPECIFICATIONS

MODEL	FREQ. MHz	GAIN, dB				- MAX PWR. dBm	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { PRICE } \\ & \text { Ea. } \end{aligned}$	\$
		$\begin{gathered} 100 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 1000 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2000 \\ & \mathrm{MHz} \end{aligned}$	Min. (note)				
MAR-1	DC-1000	18.5	15.5	-	13.0	0	5.0	0.99	100
MAR-2	DC-2000	13	12.5	11	8.5	+3	6.5	1.50	(25)
MAR-3	DC-2000	13	12.5	10.5	8.0	+80	6.0	1.70	(25)
MAR-4	DC-1000	8.2	8.0	-	7.0	+11	7.0	1.90	(25)
MAR-6	DC-2000	20	16	11	9	0	2.8	1.29	(25)
MAR-7	DC-2000	13.5	12.5	10.5	8.5	+3	50	1.90	(25)
MAR-8	DC-1000	33	23	-	19	+10	3.5	2.20	(25)

NOTE: Minimum gain at highest frequency point and over full temperature range

- 1dB Gain Compression
- +4 dBm 1 to 2 GHz

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers

only \$59.95
finding new ways.

Unbelievable, until now ...tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.,plastic-packaged units are $50 \mathrm{ohm}^{*}$ input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11 dBm output, noise figure as low as 2.8 dB , and up to DC-2000MHz bandwidth.
MAR-8, Input/Output Impedance is not 50 ohms, see data sheet. Stable for source/load impedance VSWR less than 3:1

Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each. \dagger

time and limits the design to a maximum of 33 MHz .
The components connected by dashed lines generate an early data-strobe signal ($\overline{\mathrm{EDS}}$) to provide longer data-hold times. The EDS signal asserts when $\overline{\mathrm{DS}}$ asserts. The $\overline{\text { EDS }}$ signal then negates during write cycles when the DSACKx signal asserts. This action creates an extra clock cycle of data-hold time. At 33 MHz , the data-hold time increases to 35 nsec.

If you need longer data-hold times, you can use IC_{2} to negate the EDS signal sooner. Each successively lower-numbered output pin you choose to connect on IC_{2} retards the EDS signal and increases the data-hold time by one clock period.

Peripherals like the MC68681 Dual Asynchronous Receiver/Transmitter (DUART) and the MC68901 Multi Function Peripheral generate their own dataacknowledge ($\overline{\text { DTACK }}$) signal. Fig 2 shows how to interface an MC68681 DUART (IC_{3}) to increase the data-hold time from the $\mu \mathrm{P}$. In this case, an EarlyAddress Strobe (EAS) qualifies the memory-mapped chip select ($\overline{\mathrm{CS}}$) signal through a 74 F 32 2-input OR gate. The output of the 74F32, DUARTCS, then connects to the $\overline{\mathrm{CS}}$ input of IC_{3}. Like the $\overline{\mathrm{EDS}}$ signal, the
$\overline{\mathrm{EAS}}$ signal asserts with the $\mu \mathrm{P}$'s $\overline{\mathrm{AS}}$ and negates during write cycles based on one of the outputs of the 74 F 164 shift register $\left(\mathrm{IC}_{2}\right)$. The $\overline{\mathrm{AS}}$ signal qualifies the memory-mapped $\overline{\text { IOSEL }}$ signal from the address decode block to generate the Buffered-Output Enable $(\overline{\mathrm{BOE}})$ signal used to enable the 74 F 245 data transceiver $\left(\mathrm{IC}_{1}\right)$ and to release IC_{2}.
The final major difference between Fig 1's circuit and Fig 2's is a third memory-mapped signal DTACKEN from the address-decode block. The DTACKEN signal asserts whenever a peripheral that generates its own acknowledge signal is selected. This action prevents IC_{2} from terminating the access until IC_{3} asserts the $\overline{\mathrm{DTACK}}$ signal. If the $\mu \mathrm{P}$ selects a peripheral that does not generate its own DTACK signal, then the DTACKEN signal does not assert. This sequence allows IC_{2} to start shifting data immediately and terminate the access by asserting the $\overline{\text { DSACK } 0}$ signal. EDN BBS /DI_SIG \#1021

EDN
To Vote For This Design, Circle No. 747

Fig 2-Similarly to Fig 1, this peripheral-interface circuit allows slower peripherals that develop their own acknowledge signal to interface to fast μ Ps.

Were breaking new ground BY MAKING IT EASY TO PUT SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.
You're already a big believer in the performance and connectibility of SCSI. But you're also digging around for an uncomplicated way to design-in SCSI to your AT motherboard. Well...Eureka! Now with Adaptec's new AIC-6260, you've just hit pay dirt

After all, it makes a lot of sense that a single-chip solution is easier to design-in than multiple chip packages. They're also more reliable. And take up less real estate. Plus, since we've built the AT bus in, designing SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest
possible time. That's because industry-standard, Adaptec-developed SCSI software drivers and BIOS are ready and available. For all major peripherals under all major operating systems. All this, and a complete design-in package, too. Which means, you can now afford to design the performance and connectivity of SCSI in your system as a standard feature.

So step on it. And call us at 1-800-227-1817, ext. 52 today. We think you're going to really dig it.
adaptec
When you're serious about SCSI.

DESIGN IDEAS

Relay has electrically resettable fuse

Sam Ochi

IXYS Corp, San Jose, CA

Fig 1 shows an intelligent, fully isolated, solid-state ac relay, having a resettable 10 A electronic fuse. The relay can switch $6 \mathrm{~kW}(600 \mathrm{~V}$ ac at 10A). A 5 V signal from either a system controller or a manual switch applied to $\mathrm{V}_{\text {IN }}$ turns the relay on. Within $1 \mu \mathrm{sec}$ of sensing a short circuit or an overload, the relay will shut itself off, turn on LED D_{1}, and set flag FLT. Under system control, this solid-state relay can complete an on/off cycle in less than $1 \mu \mathrm{sec}$ at repetition rates as high as 50 kHz . Such cycling proves useful for starting highly inductive loads.

A 5 V signal applied to $\mathrm{V}_{\text {IN }}$ enables IC_{1}, a PWM single-phase, dc-motor controller, to turn on the relay. Pushing switch S_{1} or energizing the $\overline{\mathrm{RST}}$ line resets the relay. IC_{1} drives terminals 3 and 4 of the primary
of transformer T_{2}, a communications transformer, through C_{1} and R_{1}. T_{2} 's secondary, terminals 5 and 6 , energizes motor controller $\mathrm{IC}_{2} . \mathrm{C}_{2}, \mathrm{C}_{3}$, and R_{2} serve to filter any high $\mathrm{dV} / \mathrm{dt}$ common-mode noise present between the ac power line and IC_{1} 's ground.
IC_{2} converts its received differential signal to a full $\mathrm{V}_{\mathrm{EE}}-$ to $-\mathrm{V}_{\mathrm{DD}}$ swing (pin 15). The pin- 15 signal drives the series-connected NMOS power transistors, Q_{1} and Q_{2}, via gate resistors R_{3} and $R_{4} . V_{D D}$, which is typically 15 V with respect to the sources of Q_{1} and Q_{2}, is more than enough to turn them on. Conversely, V_{EE}, which is typically -5 V , provides a noise margin of 5 V to hold the power NMOS devices off in very-high-noise environments.

Once Q_{1} and Q_{2} are on, IC_{2} uses R_{5} and R_{6} to sense the currents flowing through Q_{1} and Q_{2}. During the positive half cycle of the input-ac waveform, Q_{2} acts as the main switching device, and Q's internal drain-to-

Fig 1- This intelligent, fully isolated, solid-state ac relay has a resettable 10A electronic fuse and can switch 6 kW .

Only Ariel Delivers 100 MFLOPS DSP96002 Signal Crunching Across The Board

ISA, EISA, or VMEbus, Ariel processor boards unleash all the power of Motorola's DSP96002. Both the MM-96 for ISA/EISA and V-96 for VMEbus combine lightningquick speed with large memory arrays, versatile I/O with $120 \mathrm{Mbyte} / \mathrm{sec}$. total bandwidth, and the ability to deliver almost unlimited signal-crunching power via Ariel's two exclusive highspeed expansion buses. And Ariel's steadfast commitment to service and support ensures that once you've become an Ariel customer, you'll never work alone.

To find out more about the MM-96 and V-96, or any of Ariel's broad range of DSP products for Motorola, Texas Instruments, and AT\&T DSP chips, you can send us a fax, leave us a message on the BBS or E-mail, or just give us a call.

IBM	
APPLE	
NEXT	
SUN	
VME	
HP	

Ariel offers a full line of DSP products for popular platforms
Ariel
The DSP Authority
433 River Road
Highland Park, NJ 08904
(908) 249-2900

FAX: (908) 249-2123
DSP BBS: (908) 249-2124
Email:ariel@ariel.com
Distributed in: England, SSE Marketing Ltd., tel: 071387 1262, fax: 071388 0339; France, REA Informatique, tel: 149652550 , fax: 1496525 69; Israel, Militram Futuristic Technology Ltd., tel: 52-545685, fax: 52-574383; Italy,

DESIGN IDEAS

source diode conducts. The voltage across the currentsense resistor $\left(R_{6}\right)$ is positive with respect to the floating common ground point, FGND, the intersection of R_{5} and R_{6}.
When more than 10 A flows through Q_{1} and Q_{2}, a positive 1 V or more appears across R_{6} that will forward bias D_{2} and drop the remaining voltage across R_{7} and R_{8}. About 200 nsec after 300 mV or greater potential appears across $\mathrm{R}_{8}, \mathrm{IC}_{2}$'s output, OUT, will go to V_{EE} from V_{DD}, and IC_{2} 's $\mathrm{T}+(\operatorname{pin} 5)$ and $\mathrm{T}-(\operatorname{pin} 6)$ outputs will transmit a fault signal. R_{9} and C_{4} communicate the fault signal through T_{2} to IC_{1} 's R - (pin 6) and $\mathrm{R}+$ (pin7).

When IC_{1} receives a fault signal, it sets latch IC_{3}, disabling the relay's input and lighting LED D_{1}. The circuit's operation during negative ac-power swings is similar. You can reset the relay manually with switch S_{1} or via input RST.
Transformer T_{1} and associated circuitry provide the
fully floating V_{DD} power for IC_{2}. IC_{1} 's charge-pump clock drives power-transfer transformer $\mathrm{T}_{1} . \mathrm{T}_{1}$ is a ferrite toroid (Fair-rite part \#5975000201) transformer that is segment wound using 10 turns of \#30 Kynar for the primary and 22 turns of \#30 Kynar for the secondary. This transformer has 2500 V input-to-output isolation. Also, you can obtain this transformer from PSC Electronics part \# PSC-5061.
T_{2} is two ferrite-bead transformers in one encapsulated 8-pin DIP. One source of this transformer is Delta Electronics part \#BD4414/15. Of course, you can purchase the ferrite beads from Fair-rite (Fair-rite part \#2664000101) and wind 6 turns of \#36 magnet wire for the primary and two turns of \#30 wire with Kynar insulation for the secondary.
EDN BBS /DI_SIG \#1020
EDN

To Vote For This Design, Circle No. 748

Temperature sensor produces pulse train

Jhoti Vandana
SEMP, Kalpakkam, India

The circuit in Fig 1a converts the current output of the AD590/592 temperature sensor, IC_{1}, into a pulse train. The sensor measures temperatures from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. The width of interval T_{1} (Fig 1b) varies inversely with temperature. The time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ sets interval T_{2}. Because T_{2} can vary with power-
supply fluctuations, make sure your supply is well regulated. Also, you must use low-leakage diodes to preserve IC_{2} 's accuracy.
EDN BBS /DI_SIG \#1018 EDN

To Vote For This Design, Circle No. 749

Fig 1-A simple dual multivibrator converts a temperature sensor's current output (a) to a variable-width pulse train (b).

Need to make your product more intelligent? Fuzzy Logic is the solution of choice. Need to do it quickly and economically, with maximum flexibility? Then the NeuraLogix NLX230 Fuzzy MicroController ${ }^{\text {TM }}$ is in a class by itself!

The NLX230 is a single-chip solution. One 40-pin package delivers Fuzzy Logic mastery to the most complex control problems.

The NLX230 is flexible. It can be easily configured for your specific control problem, usually in a matter of hours.

The NLX230 is fast. Its rule processing time is 30 to 40 times faster than typical software-based or software/hardware hybrid solutions.

The NLX230 is economical. In production quantities, this remarkable Fuzzy MicroController is priced under \$4 per unit.

As the first true hardware based Fuzzy Logic controller, the NLX230 makes artificial intelligence available and simple. For most applications it can be an affordable highperformance replacement for 8-bit microprocessors. See how easily it adapts to your requirements; evaluate how the NLX230 can meet your demands with our low-cost Applications Development System. Move your product to the head of its class with hardware-controlled Fuzzy Logic. Call now for specifications and price quotation on the NLX230 and other fuzzy logic and neural network devices.

NeuraLogix

American NeuraLogix, Inc. 411 Central Park Drive
Sanford, FL 32771
Telephone 407/322-5608
FAX 407/322-5609

Design Entry Blank

\$100 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co 275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone

Company
\qquad

Division (if any)
Street \qquad
City \qquad State

Country Zip \qquad
Design Title \qquad
Home Address

Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a $51 / 4-\mathrm{in}$. IBM PC disk.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
Date

ISSUE WINNER

The winning Design Idea for the June 6, 1991, issue is entitled "Multiplier lowers impedance," submitted by lan Hickman of Ian Hickman Partners (Waterlooville, UK).

[^18]
Op amp works as clamp

Greg Schaffer
Maxim Integrated Products, Sunnyvale, CA

Forget about amplifying. Instead, think of an op amp as a clamp. The input-protection diodes of a precision op amp can serve as clamping diodes for two independent analog-signal lines (Fig 1). When not clamping, the device's diodes offer extremely low leakage currents of 50 to 100 fA at $20^{\circ} \mathrm{C}$. Maximum clamping current is $\pm 10 \mathrm{~mA}$. Table 1 lists the clamping diodes' forward voltage versus forward current.
Clamping voltages V_{1} and $-\mathrm{V}_{2}$ connect to the supply terminals of the low-voltage CMOS op amp. You can set these clamping voltages at any level between zero and the op amp's absolute-maximum supply voltage (12 V total), provided V_{1} is more positive than $-\mathrm{V}_{2}$. With 10 V across the supply pins, the amplifier draws less than $50 \mu \mathrm{~A}$ typ. If pin 3 remains positive with respect to pin 2, the typical supply current is less than $1 \mu \mathrm{~A}$. Leakage approximately doubles for each $8^{\circ} \mathrm{C}$ rise in temperature. EDN BBS /DI_SIG \#1017 EDN

To Vote For This Design, Circle No. 750

Fig 1-This circuit takes advantage of the low-leakage input diodes of a precision CMOS op amp, using them to clamp two analogsignal lines.

Table 1-Diode forward voltage
vs current

Positive $\left(\mathrm{V}_{1}\right)$		Negative $\left(-\mathrm{V}_{2}\right)$	
Diode current (mA)	Diode voltage (V)	Diode current (mA)	Diode voltage (V)
0.01	0.635	-0.01	-0.608
0.10	0.714	-0.10	-0.670
1.00	0.822	-1.00	-0.751
2.00	0.861	-2.00	-0.787
5.00	0.921	-5.00	-0.858
10.00	0.980	-10.00	-0.931

Take your best shot. For emulation, analysis or chip support, we're the pros who'll improve your score. We're American Arium, and we've created a winning combination: EZ-PRO ${ }^{\circledR}$ development software and emulators from American Automation and high-performance logic analyzers from Arium.
From the RCA 1802 to the Intel 1960 , the Motorola 68040 to the MIPS R3000A, we now deliver support for virtually any chip you select.
Our development systems will keep your embedded projects on course with compilers, assemblers, C source level debug, variable tracking, extensive triggering and selective trace. To give you an easy shot at debugging, our logic EZ-PRO is a registered rademark of American Automation
analyzers feature solid disassemblers, timestamp, symbolic debug, performance analysis and expanded memory with high-speed timing to $\mathbf{4 0 0} \mathbf{~ M H z}$. And to keep you clear of hidden traps, we've developed a fully integrated set of relocating linkers, assemblers, language translators, disassemblers and more than 20 different cross compilers.
Make your next project an easy chip shot. Call the pros: American Arium.

american arium

Formerly American Automation \& Arium

14281 Chambers Road, Tustin, CA 92680 Fax: (714) 731-6344
EZ-PRO Division (714) 731-1661 • Arium Division (714) 731-2138

MICROTRON*
STANDARD
SUBMINIATURE

WHY YOU NEED IT
 TOCOMPETE IN THE WORLDWIDE '90s

Bussmann makes more fuses than anyone. But during the 90 's, as your designers face increased worldwide competition, it is our solid-matrix fuses that are growing the fastest because they make your products more competitive. Our advanced PC-Tron radial lead, SMD Tron surface mount and Microtron standard subminiature fuses, all save board space. Both Bussmann high performance PC-Tron and SMD Tron fuses provide currentlimiting capability never before available to designers. The solid matrix surrounding the fuse element rapidly extinguishes the arc, when a fault occurs...predictably. So for the first time, both PC board components and equipment are protected. That's a competitive edge for you. Both Bussmann high performance fuses provide for the economies of automatic insertion and are completely sealed, to withstand rigorous board washing. For designs locked into the conventional subminiature fuse footprint, Bussmann offers Microtron-the reliable standard. Contact your Bussmann distributor or Bussmann directly for samples and literature on solid-matrix fuses; $5 \times 20 \mathrm{~mm}$ or $1 \times 1-1 / 4 \mathrm{in}$. glass tube fuses; fuseholders, blocks and accessories.

BUSSMANN-LEADER IN CIRCUIT PROTECTION-WORLDWIDE

BUSSMANN

P.O. Box 14460

St. Louis, MO 63178
Phone: (314) 394-2877
FAX: (314) 527-1445

BUSSMANN

Cooper (U.K.) Limited
Beswick Works
Frome, Somerset BA111PP
United Kingdom
Phone: 44-0373-464-311
FAX: 44-0373-473-175

BUSSMANNFAREAST
The Plaza
7500 A Beach Road
No. 14-319/320
Singapore 0719
Republic of Singapore
Phone: 65-2988311
FAX: 65-2963807

How do you create a liftle lightning?

4 At Astec we create it by design. The result is the new Lightning power supply series.

Astec introduces the new Lightning ALS Series, the smallest medium wattage power supplies in the industry.
The ALS Series achieves its small size through unique thermal packaging by integrating an efficient heat sink with the housing. This results in higher density, more efficient performance, and higher reliability through fewer parts.
The ALS Series is available in the wattage range from 300 watts to 550 watts and one to four outputs. The multiple output ALS 304 offers 325 watts in an $8.5^{\prime \prime}$ long package, and the single output ALS 301 offers 300 watts in $6.5^{\prime \prime}$.

Standard features include universal input, high auxiliary channel peak loading capability, power fail and inhibit signals, and a versatile mounting design.
The ALS lives up to the Astec standard of high reliability, outstanding quality, and leading edge technology. It accommodates an almost endless range of applications, from serving the fundamental needs of computer and peripheral applications to the more complex power requirements of communication and network systems.
To find out how Lightning can strike your application, call the tollfree number below for literature.

ASTEC STANDARD POWER Division of Astec America, Inc. 401 Jones Road
Oceanside, CA 92054-1216
Telephone: 619-757-1880
Facsimile: 619-439-4243

For information or literature please call:
1-800-233-9973

Until Now, Density
 A Pretty Awkwa

And Speed Were rd Combination.

AMD Presents The MACH ${ }^{m}$ Family Of High Speed, High Density PLDs.

Nothing can squash an elegant, high density design faster than a slow, unpredictable and expensive PLD.That's why we've developed the MACH PLD family-for both density, and speed.

The MACH family gives you everything you need in a PLD on state-of-the-art CMOS: Densities up to 128 macrocells or 3600 equivalent gates. Clock speeds up to 66.7 MHz . And absolutely predictable, worst-case delays as low as 12 ns per 16 product term macrocell.
And they work for peanuts. The MACH family can bring your costs down as low as a penny per gate-up to 40\%

Model Number	Equiv. Gates	Macro Cells	Max. Delay	System Speed	I/O Pins	Hard-Wired Option
MACH 110	900	32	12ns	66.7 MHz	44	MASC 110
MACH 210	1800	64	12ns	66.7 MHz	44	MASC 210
MACH 120*	1200	48	15 ns	50 MHz	68	MASC 120
MACH 220*	2400	96	15 ns	50 MHz	68	MASC 220
MACH 130	1800	64	15 ns	50 MHz	84	MASC 130
MACH 230*	3600	128	15ns	50 MHz	84	MASC 230

With the MACH family you'll get to market faster, too. Because it's supported by most popular design tools: Including ABEL", CUPL,' LOG/iC"' ${ }^{\text {m }}$ MINC, OrCad, and AMD's own PALASM ${ }^{*}$ software. There's also hardware and software support from over 20 additional FusionPLD partners.

Every MACH part migrates easily to a pin-compatible hard-wired MASC ${ }^{m}$ counterpart-for high volume orders with no redesign, no NRE, no performance glitches, no problems.

So don't horse around with slow, unpredictable, high density PLDs-start designing with the MACH family from AMD. Call 1-800-222-9323 for more information.

NEW PRODUCTS

INTEGRATED CIRCUITS

Multichannel Analog I/O IC For Servo Systems

- Combines A / D and D / A conversion
- Has adjustable operating parameters
The AD7774 multichannel I/O device is specifically designed for closed-loop motion control and servo systems. The device includes a 4-channel, 8-bit A/D converter (sharing two track/hold amplifiers), two 8-bit and one 11-bit D/A converters, analog output amplifiers, an internal reference, and a microprocessor interface. The I/O device allows either independent or simultaneous sampling of inputs. Three key operating parameters are independently adjustable: the mid-point of the ADC's transfer function (bias), the input voltage swing of the ADC (span), and the mid-point output voltage of the DAC (bias). By adjusting these biases and the span, you can optimize the perform-

Encoder For TV And VCR Computer Graphics

- Accepts seven digital formats
- Generates NTSC or PAL analog signals
The SAA7199 digital video encoder enables high-quality computer graphics and digital video to be displayed on TV monitors or stored on video tape. The encoder allows personal computers and workstations to perform the same display, editing, titling, and special-effects functions that normally require ex-

ance of the converters-especially in applications where only a positive supply rail is available-by referencing the input and output voltages to a point other than analog ground. The AD7774 operates from

5 and 12 V supplies. In 28-pin DIP and plastic-leaded-chip-carrier packages, from $\$ 18$ (1000).

Analog Devices, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428. Circle No. 380
pensive analog editing boards and systems. The encoder accepts seven different digital formats including CCIR601 (a common digital data structure for NTSC, PAL and SECAM) or computer graphics such as 24 -bit RGB or 8 -bit VGA. The encoder generates analog output signals in both NTSC and PAL formats. Three user-selectable modes are available. In the master mode, the SAA7199 accepts timing information from the graphics system; in the stand-alone mode, it generates graphics timing signals based on a provided video clock; in the genlock mode, it locks to an analog video signal and generates all graphics timing signals. The genlock mode allows graphics overlay on any video source. $\$ 47$ (100).

Signetics Co, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-4577. Circle No. 381

Floppy-Disk Controller

- Supports 4-Mbyte drives
- Pin-compatible with standard devices
The FDC37C65C + floppy-disk controller supports all drive formats including 360 -kbyte, $1.2-\mathrm{Mbyte}$, and the new 4 -Mbyte format used in "super-floppy" drives. The C + controller offers the same features as the industry-standard FDC37C65C floppy-disk controller, with additional support for 4 -Mbyte floppy disks. The + designation represents the addition of a 16 -byte FIFO and a vertical recording format. The pinout remains the same, which significantly reduces development time and expense when replacing the earlier device. The support for vertical-format drives is enabled by addressing the modecontrol register. The FDC37$\mathrm{C} 65 \mathrm{C}+$ controller operates from a
single 5 V supply and is 100% compatible with IBM software. $\$ 6.31$ $(50,000)$.

Standard Microsystems Corp, Component Products Div, 35 Marcus Blvd, Hauppauge, NY 11788. Phone (516) 273-3100.

Circle No. 382

Real-Time Clock

- Includes on-chip static RAM
- Available as a complete module

The MCCS146818B real-time clock includes 128 bytes of low-power static RAM and features a timing system that lets you use the device with either Motorola or Intel microprocessor timing cycles. The CMOS device includes all the common bat-tery-backup functions, such as a complete time-of-day clock with a 12 - or 24 -hour mode, a daylight-savings-time option, an alarm with a programmable interrupt, and a

100-year calendar with leap-year compensation. The device counts seconds, minutes, hours, days, day of the week, date of the month, and year. A module version, which interfaces with $1-\mathrm{MHz}$ processor buses, includes the CMOS clock, a $32.768-\mathrm{kHz}$ crystal, and a lithium battery. Clock chip, in a 24 -pin plastic DIP, $\$ 4.65$; in a 28 -pin plastic leaded chip carrier, $\$ 5.03$; complete 24 -pin module, $\$ 8.08$.
Motorola Inc, MOS Digital-Analog IC Div, Box 6000, Austin, TX 78762. Phone (800) 521-6274.

Circle No. 383

64-Bit Microprocessor

- Operates at 50 MHz
- Features 100-Mflops performance
Designed for use in high-end computing systems, the 64 -bit i860-XP microprocessor provides a peak performance rate of 100 Mflops at 50 MHz . Available in both 40 - and $50-$ MHz versions, the CPU maintains full binary compatibility with the first-generation i860-XR. At 50 MHz , the i860-XP offers performance of 20 double-precision Linpack Mflops and can exceed 40 SPECmarks to meet the numbercrunching computing needs of scientific and engineering applications. The CPU includes a RISC (reduced-instruction-set computer) integer unit, two pipelined floating-point units, a graphics unit, 16 -kbyte instruction and data caches, and a memory-management unit. An onchip bus unit supports pipelined

When considering DSP, take

burst transfers of 400 Mbps . Other features include bus-snooping hardware and a cache protocol that maintains cache consistency between multiple XP processors. The i860-XP comes in a 262 -pin ceramic pin-grid array. $50-$ and $40-\mathrm{MHz}$ versions, $\$ 699$ and $\$ 560$ (1000), respectively.

Intel Corp, Box 7641, Mount Prospect, IL 60056. Phone (800) 548-4725, or local office.

Circle No. 384

12-Bit A/D Converters

- Include S/H circuit
- Have 8.5-and 25- μ sec conversion times
Designed to plug into most ADC574 sockets without system modification, the ADS574 and ADS774 are 12-bit successive approximation A/D converters. Both devices feature an internal sample/hold circuit,

a 2.5 V reference, a clock, a digital interface for microprocessor control, 3-state output drivers, and internal scaling resistors for input ranges of 0 to $10 \mathrm{~V}, 0$ to $20 \mathrm{~V}, \pm 5 \mathrm{~V}$, or $\pm 10 \mathrm{~V}$. For 12 -bit conversion, the ADS574 and ADS774 have a maximum acquisition-and-conversion time of 25 and $8.5 \mu \mathrm{sec}$, respectively. Both parts operate from a single 5 V supply. Depending on the operating mode, a -12 or -15 V supply is optional, but a +12 or +15 V supply is not used. Other key specifications are $\pm 1 / 2$-LSB integral
nonlinearity, $\pm 3 / 4$-LSB differential nonlinearity, $-77-\mathrm{dB}$ THD and 78 dB SFDR (spurious-free dynamic range). The ADS574 and ADS774 are available in 0.3 - or 0.6 -in.-wide, 28-pin plastic or side-brazed hermetic DIPs, and in 28-pin SOIC packages. From $\$ 14.15$ (100).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 7461111. FAX (602) 889-1510. TWX 910-952-1111. Circle No. 385

Audio/Video Op Amps

- Have nonsaturating outputs
- Have gain-bandwidth products to 80 MHz
Designed for use in active filters, audio preamplifiers and baseband video applications, TLE2027 and TLE2037 op amps feature an out-put-saturation recovery circuit. This circuit prevents output saturation, eliminating recovery time and

a look at the full Spectrum.

At Spectrum Signal Processing we're putting DSP to work with a full range of OEM and development solutions.
We begin by working with you at every step of your design. We utilize the industry's most complete line of DSPs, buses and interfaces and provide all of the development tools and technical applications support you'll ever need. Then our Quality Management Program ensures that we build quality in.

What this means is a tailored DSP solution that works immediately and easily - whatever your application. Including telecommunications, military, medical monitoring and diagnostics. Even digital audio, multimedia and array processing.
So call today for your free catalog to see our spectrum of DSP Development Tools and OEM Solutions: 1-800-663-8986 (U.S.) or 604-438-7266 (Canada). And let us help you put DSP to work.
 PLUG-IN SURFACE MOUNT AXIAL INDUCTORS TOROIDAL INSULATED LEADS
allowing the output to respond correctly to the applied input. The TLE2027 has a unity-gain bandwidth of 15 MHz and a typical voltage gain of $45 \mathrm{~V} / \mu \mathrm{V}$ with a 2000Ω load. The TL2037, which is a faster, decompensated version of the TLE2027, has a gain-bandwidth product of 80 MHz , a 50° phase margin, and is stable at gains of five or greater. Package options include DIP, SO and metal can. In commercial plastic DIPs, $\$ 1.19$ (1000).

Texas Instruments Inc, Semiconductor Group (SC-91047), Box 809066, Dallas, TX 75380. Phone (800) 336-5236, ext 700; (214) 9956611 , ext 700 .

Circle No. 386

Power Converter/Regulator

- Generates \pm voltages locally
- Operates over a 3.5 to 15 V range For components such as op amps and comparators that need voltages unavailable from the system power supply, you can use the UC1054 to generate the required voltage locally. A charge-pump device, the UC1054 can generate or regulate positive and negative voltages between 3.5 and 15 V , using any supply voltage in that range. The chip provides as much as 100 mA of output with a typical voltage loss of 1.1 V over the full range. Typical circuit configurations include a voltage inverter, voltage regulator, and negative or positive voltage doubler. You can configure the device as a voltage regulator by placing a voltage divider between the output and the on-chip 2.5 V reference pin. An oscillator pin lets you adjust the $25-\mathrm{kHz}$ frequency of the internal oscillator or to synchronize it with another device. A shutdown feature reduces the quiescent supply current to $100 \mu \mathrm{~A}$. In 8-pin plastic and ceramic DIPs, from $\$ 2.10$ (1000).

Unitrode Integrated Circuits, 7 Continental Blvd, Merrimack, NH 03054. Phone (603) 424-2410.

Circle No. 387

Silicon Delay Line

- Includes logic functions

- 6000 permutations are possible

Integrating logic and delay lines into a single chip, the DS1012 lets the designer choose from a variety of timing values and logic functions. More than 6000 permutations are possible. The device provides two inputs, each of which provides independent delays to a pair of outputs. Logic output options include AND, NAND, OR, NOR, XOR, XNOR, HALF-XOR and HALF-XNOR. The manufacturer can independently invert any of the four outputs, thereby saving the designer a logic gate in his or her application. When not cycling, the DS1012 draws only $10 \mu \mathrm{~A}$ of supply current, making it suitable for battery-operated applications such as laptop and notebook computers. In 8-pin DIP and SOIC packages, from $\$ 2.40(10,000)$.

Dallas Semiconductor, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0448.

Circle No. 388

14-Bit A/D Converter

- Includes S/H amplifier
- Converts at rates to 2 MHz

The ADS-942 14-bit A/D converter uses a subranging architecture to provide high speed and precision. The converter, which features a fast S/H amplifier, can digitize sinusoidal signals to 1 MHz at a $2-\mathrm{MHz}$ sampling rate or step inputs at a $1.3-\mathrm{MHz}$ conversion ratè. Functionally complete, the ADC also contains an internal clock, 3 -state outputs, and an internal 10 V reference. The reference can supply 5 mA to

INTEGRATED CIRCUITS

external circuitry. Other key specifications include total harmonic distortion of -85 dB and a S / N ratio of -77 dB . A pin-selectable feature provides analog input signals of 0 to 10 V or $\pm 5 \mathrm{~V}$. The digital inputs and the 3 -state outputs are TTL and CMOS compatible. The ADS942 , which comes in a small, 32 -pin DIP, operates from 5 V and $\pm 15 \mathrm{~V}$ supplies and consumes 2.9 W . From \$374 (OEM qty).

Datel, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 339-3000. FAX (508) 339-6356. TLX 174388.

Circle No. 389

Analog Interface Chip

- Has $25-\mathrm{kHz}$ sampling rate
- Extends voice band to 7600 Hz

For processing signals beyond the 300 to $3000-\mathrm{Hz}$ voice band, the TLC32046 features a user-programmable, analog-input bandpass/lowpass filter having a nominal bandwidth of 300 to 7600 Hz . The maximum sampling rate is 25 kHz . The chip is a complete analog-to-digital and digital-to-analog input/output system that interfaces directly with the TMS320 DSP family. The chip integrates several functions, including 14-bit A/D and D/A converters, a bandpass antialiasing filter, a lowpass output-reconstruction filter, signal conditioning, control, and timing. The device offers three operating modes-telephone, word, and byte-and a selectable $(\sin \mathrm{X}) /$ X correction for D / A conversion. For flexibility, the device offers programmable sampling rates, filter bandwidths, A / D path gain, and multiplexed analog inputs. The analog input can be single-ended or differential. TLC32046, in a 28 -pin DIP or 28 -pin quad flatpack, $\$ 14.63$ (1000).

Texas Instruments Inc, Semiconductor Group (SC-91045), Box 809066, Dallas, TX 75380. Phone (800) 336-5236, ext 700; (214) 9956611, ext 700. Circle No. 390

Signal Processing Solutions
CIRCLE NO. 150

Higher integration. Higher speed. Less power. Less space. SCSI never had it so good.

Introducing the industry's next-generation quad EIA-485 transceiver.

Today's SCSI designs need faster, more reliable signal transmissions to increase performance. And they require highly integrated transceivers with smaller footprints to save precious board space. They need National's DS36954.

Our newest quad EIA-485 transceiver is small enough to save space in the most compact SCSI designs and fast enough to meet SCSI's need for speed. And that makes the DS36954 the best device for high-speed, parallel, multipoint and computer I/O bus applications.

Four transceivers in one.

By integrating four transceivers in a single 20-pin PLCC or SOIC package, our new quad device lets you reduce part counts

DS36954 Specifications			
	Min. (ns)	Typ. (ns)	Max. (ns)
DRIVER			
$\mathrm{t}_{\text {PLH }}$	9	15	19
$\mathrm{t}_{\text {PHLD }}$	9	12	19
$\mathrm{t}_{\text {SKD }}$		3	6
RECEIVER			
$\mathrm{t}_{\text {PLH }}$	9	14	19
$\mathrm{t}_{\text {PHLD }}$	9	13	19
$\mathrm{t}_{\text {SKD }}$		1	3

1.-FAST is a registered trademark of National Semiconductor Corporation. © 1991 National Semiconductor Corporation.

and save valuable board space: A single DS36954 in a PLCC takes up 60% less space than four separate transceivers in DIPs and 20% less than four SOICs. And just five DS36954s are needed to complete a SCSI interface, compared to 18 single transceivers with competitive solutions.

More speed on less power.

The DS36954 is fabricated in L-FAST, ${ }^{\otimes}$ an advanced linear bipolar process that allows higher performance with lower power consumption. It operates at 10 Mega-transfers per second, yet it draws under 20 mA per transceiver, 60% less than conventional bipolar transceivers. And that combination increases your system's performance and reliability.

The innovator in interface.

The DS36954 joins a long list of National interface breakthroughs, including the industry's first CMOS EIA-232 drivers and receivers, the first CMOS EIA- 422 line drivers and receivers, and the first EIA-485 military-grade drivers, receivers and transceivers.

For a datasheet, call us at 1-800-NAT-SEMI, Ext.137. We'll tell you more about the DS36954, a device that gives you higher integration and speed without sacrificing board space and power consumption.

And for SCSI, it doesn't get any better than that.

CAE \& SOFTWARE DEVELOPMENT TOOLS

Basic Math Library

- Compiled subroutines callable from HTBasic
- For statistics, signal processing, and numerical analysis
The HTBasic Advanced Math Library is an addition to HTBasic, a PC-based engineering Basic. The library is a collection of fast, compiled subroutines that are callable from HTBasic and that are useful in statistics, data reduction, signal processing, and numerical analysis. It includes routines for probability density functions, curve fitting, FFTs, digital filtering and windowing, built-in waveforms, root finding, Bessel and related functions, and other higher mathematical functions. HTBasic, compatible with HP 9000 Series $200 / 300$ HP BASIC, offers features such as HPstyle IEEE 488.2 commands, data acquisition and RS-232C instru-ment-control statements, complex arithmetic, HP-style graphics, and SCPI compatibility. The library re-

quires use of the DOS 386 version of HTBasic. Library, \$400; DOS 386 HTBasic, $\$ 925$.

TransEra, 3707 N Canyon Rd, Provo, UT 84604. Phone (801) 2246550

Circle No. 360

User-Interface Software Package

- Simplifies user-interface development
- For test-and-measurement applications
HP Basic Plus software reduces the number of lines of programming code required to create user interfaces on instrument controllers. The software has 29 commands that create graphical objects needed for user-interface development. The graphical objects are dialogue boxes (for error messages, file information, warnings, and other user messages); data displays (bar display, meters, XY displays, and strip charts); text displays, user-input devices (such as sliders, buttons, and string inputs); pull-down and cascading menus; and displays for HP graphics-language (HP-GL)
files. The software, which requires use of HP Basic release 6.2, runs on HP Basic workstations such as the HP 9000 Series 300 controllers. It also runs on PCs with either an HP 82300 C or HP 82324 A measurement coprocessor. HP Basic Plus, $\$ 450$; HP Basic 6.2, $\$ 1050$; upgrade, $\$ 250$. Delivery, eight weeks ARO.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014.

Circle No. 361

Process Automation Kit

- Defines and implements automatic process management
- For software-, electronic-, or me-chanical-engineering projects
Teamnet is a Unix-based engineering data-management system for tracking product development. It
can use any tool that runs on any computer on an NFS-based network without the need to modify or encapsulate the tool. The kit provides the tools necessary to automate the flow of information between work groups, project leaders, and corporate management. Organizations can extend and customize it to meet their needs with reusable process modules. The kit allows automation of processes such as sign-off requests at each release level; it also provides dependency management, tracking components of a product that might be affected by a proposed change. Including 5 day on-site training, $\$ 45,000$.
Teamone Systems Inc, 710 Lakeway Dr, Sunnyvale, CA 94086. Phone (408) 730-3500.

Circle No. 362
Text continued on pg 227

The Magic Module-DC/DC Converter... the ultimate in proven performance, power capability, size and features...

When designing a DC/DC converter into your system, you want the assurance that a surprise is not going to pop up. With Electronic Measurements' EMQ Series of Magic Modules, you have the assurance of dependable performance, since the design incorporates proven fixed frequency, forward converter technology with current mode control and a nominal frequency of 250 kHz . Another good reason to choose the Magic Module is size. The EMQ Series also offers the highest power rating for any self-contained 5-V output, high density, board mounted unit available.

For example, the EMQ48-05-40, rated at 200 W , occupies a footprint of only $2.4^{\prime \prime} \times 4.6^{\prime \prime}$ with a $0.625^{\prime \prime}$ profile, and a nominal input of 48 VDC .

For a pleasant surprise, check these MAGIC MODULES features:

- More watts per cubic inch than any other 40 Amp. converter
- Forward converter topology for proven reliability

A PRODUCT OF

ELECTRONIC MEASUREMENTS INC.

Finally, a SPARC chip set that comes equipped with everything you need for the Sun.

Now, from the Advanced Products Division of Fujitsu Microelectronics - something new under the Sun. A SPARC ${ }^{\circ}$ chip set that offers the world's most advanced, cost-effective solutions for Sun-compatible workstation designs and specialized, compute-intensive applications. Including voice response, medical imaging and pattern recognition systems.

Our new SPARC chip set is packed with all of the advanced features you need to differentiate your systems from Sun and yesterday's Sun clones. Such as higher integration. More system flexibility. Clock speeds of up to 40 MHz . And graphics options. All at a price to help

Delivering the Creative Advantage.
you outshine the competition.
Plus, to get you to market faster, we offer three distinct hardware designs: Busless, Sbus and VME bus. What's more, from our alliance with INTERACTIVE Systems Corporation - the premier independent UNIX ${ }^{\text {a }}$ source - comes the latest SunOS ${ }^{\text {m }} 4.1 .1$ ported to each design. And with comprehensive documentation and training, you'll find your place in the Sun more quickly.

So equip yourself with everything you need to develop the highest performance SPARC-based systems. Call us at $1-800-523-0034$. And discover why our new SPARC chip set is the perfect Sun set.

WHO NEEDS THE SIGNAL PROCESSING WORKSYSTEM?

Anyone involved in DSP and communications design can benefit from the Signal Processing WorkSystem. Because SPW'" is the only complete, integrated CAE software tool for signal processing design, simulation, analysis and implementation.

Satellite communications. Modems. Mobile radios. Cellular phones. Radar. Sonar. Speech encoding. Voice processing. Image processing. Digital audio. Multimedia. Automotive electronics. Robotics. Neural nets and pattern recognition. Data compression. HDTV. Biomedical instrumentation. All these and much more can be designed using SPW on industry-standard platforms from Sun, DEC and HP/Apollo.

That's why over 200 of the world's leading telecommunications, aerospace and electronics companies around the world now use SPW.

With SPW you first create a high-level, hierarchical design using its extensive libraries of DSP and communications function blocks, as well as your own custom blocks. SPW then automatically converts your design into an error-free simulation program that can accept real-world signals and parameters for accurate design analysis.

SPW also provides several optional paths to implementation, including bit-accurate fixed-point simulation, VHDL generation, logic synthesis and other ASIC/PCB support. A code generation system produces generic-C for fast prototyping on any DSP platform, links SPW to DSP chips from AT\&T, Motorola and TI, and supports boards from leading vendors.

To preview the Signal Processing WorkSystem, call (415) 574-5800 for a free video demonstration tape. In fifteen minutes, you'll see how SPW can save hundreds of hours and thousands of dollars in DSP design.

CEMDISCO SYSTEMS,INC

919 East Hillsdale Blvd., Foster City, CA 94404 (415) 574-5800

CAE \& SOFTWARE DEVELOPMENT TOOLS

Integrated Tool Set For Layout And Analysis

- Provides layout for high-speed, high-density modules
- Includes tools for thermal and transmission-line simulation
The CAD Expert suite of tools, part of the supplier's Visula EDA Expert series, provides rules-driven physical-layout tools for highspeed, high-density modules (including pe boards, hybrids, multi-ple-chip modules, and high-density interconnects). The layout tools are integrated with physical-analysis tools for thermal and transmissionline simulation. The tools allow users to define engineering and manufacturing rules and parameters in the design process and later use those definitions in processes such as component placing and signal routing. By bringing manufacturing constraints into the design and layout phases, they ensure that designers adhere not only to engineering rules in the design process, but also to manufacturing rules. To guarantee design integrity, signal analysis is possible at any phase of the design cycle. Key features of the tool set are a grid-free system architecture that applies to a mixture of fine-line geometries, an ob-ject-oriented structure that represents components and data as objects, and an expandable relational database that holds the design and manufacturing rules. From $\$ 32,000$.

Racal-Redac, 1000 Wyckoff Ave, Mahwah, NJ 07430. Phone (201) 848-8000. FAX (201) 848-8189.

Circle No. 363

Reverse-Engineering Tool For Fortran Programs

- Shows structure of existing programs written in Fortran
- Helps create documentation for previously undocumented code
Teamwork/Fortran Rev graphically reveals the structure of existing Fortran programs, helping engi-
neers understand undocumented code and create new documentation. It automatically generates structured-design charts from Fortran source files; Teamwork/SD, another tool in the supplier's line of CASE products, can display the charts. Users can use a mouse to browse or edit the source code un-
derlying displayed modules, and they can suppress the display of individual modules or entire groups of modules. For example, a user can choose to suppress the display of specific subroutine calls or eliminate all common-block data modules. The product works with many dia-

Text continued on pg 230

[^19]
From Sketch Pad to Keypad...Fast

Conductive Silicone Rubber Keypads from ICHIA TECHNOLOGIES INC.

From complete in-house design and tooling through total process SPC, ICHIA has what it takes to create high performance keypads fast.
-Fastest turnaround times
-Highest quality finished keypad
-Lowest price
Call or FAX your requirements today.

ICHIA NORTH AMERICA
2 Essex Road New Milford, CT 06776
(203)350-1153 FAX:(203)350-1155

CIRCLE NO. 190

Leading in Sub-Miniature Fuses Technology

NASA's Space Shuttle Program had over 10,000 suppliers. To join their exclusive list of Top Forty Suppliers (0.4% of the total) is quite an honor. MP was included on that list for excellence in both quality and service. If you're looking for circuit protection from a supplier who can meet today's rigorous performance standards, look to MP.

CIRCLE NO. 191

The WSB-100 waveform synthesizer offers speed and memory at a price that's half what you'd expect to pay. With its analog module, the WSB-100 becomes a 12 -bit waveform board for the PC-AT and compatibles that can be used in a wide range of testing and control applications. Multiple boards can be connected to store longer waveforms or to run several waveforms simultaneously.

Optional modules enable the WSB-100 to act as a digital pulse generator or 16 -bit word generator.

A $10 \mathrm{MHz} / 32 \mathrm{~K}$ configuration is available at an even lower price.
Call for our free Interface Handbook: 1-800-553-1170

662 Wolf Ledges Parkway Akron, OH 44311

FUTABA

Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules

CUSTOM DESIGN

Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color
 graphic panels.

TECHNICAL SUPPORT

Futaba engineers have a broad range of application experience including automotive, point of sale, appliance, medical, and instrumentation products. They are ready to assist you in optimizing your display system design.

U.S. MANUFACTURING

NCR "S1" Supplier.

Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the North American market.

QUALITY

Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.

Appliance Control Display.

711 E. State Parkway Schaumburg, IL 60173
lects of Fortran, such as ANSI For-tran-77, MIL-STD 1753, and several language extensions. The language extensions that are covered include those used on workstations from Sun, DEC, HP Apollo, and IBM as well as for several IBM and Cray mainframes. The tool also features preprocessing to assist with
uncommon dialects, plus an open interface between its Fortran parser and its structure-chart generator for customers who need to reverseengineer custom or proprietary languages. The product is available on Sun systems now; versions for DEC VAX VMS, DEC Ultrix, HP-UX, Apollo Domain, and IBM AIX will

OTTO Precision Switches

ACTUAL SREE
 A Snap-Action Basic Switch so small yet delivers 1,000,000 cycles!

And, would you expect a big 2 Movement Differential typically ampere switching capability in less than .002"; Operating Posisuch a small package? That's twice the others! Our new B1 series basic switch also handles low level logic signals as well. Thanks to our patented switch design, you can expect 1,000,000 mechanical cycles; 25,000 electrical cycle life! Truly a precision switch, the B1 has a
 tion tolerance of $.015^{\prime \prime}$ max. Molded-in and sealed terminals. Industrial and military grades. Ask about our full service value added capability, too. We will take your requirements from concept, through prototype, and on to your complete end product's assembly.

Call or Fax for our new 44 page Catalog today.

2 E. Main St. • Carpentersville, IL 60110 • Tel: 708/428-7171 • Fax: 708/428-1956
be available in the future. $\$ 9700 /$ seat.
Cadre Technologies Inc, 222 Richmond St, Providence, RI 02903. Phone (401) 351-2273. FAX (401) 351-7380. Circle No. 364

DSP Software-Design Tools

- Increase user productivity in programming and debugging
- For fixed- and floating-point DSP families
Two software-design tool sets aid software development and debugging for the supplier's DSP processors. Tool set ADDS-210xx-SW is for floating-point chips, including the recently announced ADSP21020; tool set ADDS-21xx-SW is for fixed-point devices, including the ADSP-2100A, ADSP-2101, ADSP-2105, ADSP-2111, and ADSP-21msp50. The floating-point set comprises an assembler, linker, assembly library, librarian, simulator, and PROM splitter. The assembler creates object files in industrystandard Common Object File Format (COFF). The simulator, which has context-sensitive help, windowing interface with mouse support, and reconfigurable windows, features full symbolic disassembly and multiple breakpoints. The fixedpoint tool set includes an assembler, linker, simulators, and PROM splitter; an optional C compiler package (standard in tool set for VAX) includes a runtime library with more than 100 mathematical and DSP functions. (A C compiler and runtime library for the floating-point set are in beta test.) The floatingpoint set runs on PCs; the fixedpoint set is available for PCs, Sun-3 and Sun-4 workstations, and DEC VAX (VMS 5.3-1) systems. Float-ing-point set, $\$ 995$; fixed-point set, $\$ 795$ (PC version); $\$ 1295$ (Sun version); and $\$ 5995$ (VAX version); C compiler and runtime library, $\$ 1995$ (PC); $\$ 2995$ (Sun).

Analog Devices Inc, Box 9106, Norwood, MA 02062. Phone (617) 461-3911.

Circle No. 365

We Support Your HV Power Supply... All The Way!

YouDon't HaveToTake Chances With Bugs.

THE LOWEST-COST XDB ROM MONITOR DEBUGGER FORMOTOROLA 68000, 68020, 68030, 68302, 68332 AND 68340 MICROPROCESSORS.
Every embedded microprocessor application starts off with a few bugs. But you can eliminate them without missing a beat - or a deadline. Because with InterTools XDB ROM Monitor Debuggers, you start and finish debuggingsooner in actual prototype environments. XDB's powerful user-friendly interface and "smart" ROM Monitor make it the most productive debugger available. And, starting at just $\$ 2,495$, it's also the lowest priced. Call now for more information, or to order. With InterTools, you don't have to take chances with bugs. 1-800-356-3594 617-661-0072.

NEW PRODUCTS

TEST \& MEASUREMENT INSTRUMENTS

VMEbus Tracer With SCSI Port And Deep Memory

- Records 64 k or 256 k frames of bus activity
- Sends records to mass-storage device via SCSI port
The XMEM-PB/SCSI board plugs onto the vendor's VBT-321B VMEbus tracer, which is, itself, a VMEbus board. The daughter card stores a 64 k -frame (optionally 256 k frame) trace and sends it through an onboard SCSI port to a massstorage device as a Unix-compatible file. Firmware on the main board is compatible with Sun Microsystems' SunOS version of Unix. The vendor can also furnish a version of the board that incorporates a 2 bank interleaved trace memory. This arrangement allows you to capture SCSI traces continuously and to transfer them to mass storage without gaps. From $\$ 2850$.

Vmetro Inc, 2500 Wilcrest Dr, Suite 550, Houston, TX 77042. Phone (713) 266-6430. FAX (713) 266-6919.

Circle No. 351

Vmetro A/S, Box 213, Leirdal, 1101 Oslo 10, Norway. Phone (472) 322580. FAX (472) 322880.

Circle No. 352

IEEE-488 DACs

- Can have two or four 16-bit DACs
- Each DAC is ohmically isolated from chassis to 500 V
The DAC488/HR2 and DAC488/ HR4 D/A converters are $1^{3} / 4$-in.high, ac-powered units that you can mount in an equipment rack. They connect to the IEEE-488 bus and contain either two or four plug-in boards, respectively, which hold a 16 -bit DAC. Each DAC is optically isolated from the chassis and the bus, and can continuously transfer data from the bus to its output at 100 kwords/sec. Each DAC includes an 8 -kword buffer. Two options are available: One option increases a buffer to 128 kwords; the other option increases a buffer to 480 kwords. Because the unit is $\mu \mathrm{P}$ controlled, you can increase the size of any buffer by looping-repeatedly routing a range of stored values to a DAC. Linking buffer segments lets you create still longer
waveforms. To create a function generator, you can synchronize the unit to an external clock or use one of its several built-in clocks and trigger sources. DAC488/HR2, \$2495; DAC488/HR4, \$3495; 128-kword-buffer option, $\$ 195$; 400-kword-buffer option, $\$ 395$.
IOtech Inc, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 431-4093. TWX 650-282-0864.

Circle No. 353

2- and 4-Channel, $150-\mathrm{MHz}$ Digital Scopes

- Take 400 Msamples/sec
- Have 16 nonvolatile waveform memories
The 4060 family of DSOs includes the model 4062, a 2-channel unit and the 4064, a 4 -channel unit. Both DSOs offer $150-\mathrm{MHz}$ bandwidth and, in single-shot mode, take 400 Msamples/sec on each channel.

Each unit includes 16 nonvolatile waveform memories. You can position cursors to obtain an on-screen numeric display of voltage or time. In addition, the scopes display pulse parameters measured according to IEEE-194 (1977). Pretriggering to 100% of the sweep time and posttriggering to 999 sec let you acquire only the portion of a waveform you want to view. A limit-comparison function lets the scopes check every sample against a range of allowable values. If any sample falls outside the range, the scopes capture the Text continued on pg 237
$H_{\text {miniond Anectown hax in sack the }}$ industry's first 1 megabyte and 4 megabyte, PCMCIA-compatible flash memory cards to help you achieve higher functionality in portable and dedicated applications. In fact, when it comes to data acquisition and firmware updates, Hamilton/Avnet has the knowledge and expertise to help you design-in flash memory cards...today!

And for applications incorporating DOS, Intel offers a flash system developer's kit that enables you to check out how easy it is to design-in flash memory cards.

To order your flash system developer's kit, a $\$ 499.95$ value, simply call Hamilton/Avnet. For the branch nearest you, call toll free, 1 (800) 888-9236. Or, for furher details, simply send in the coupon below.

I------------------------7 I like additional information on Intel's Flash Memory Card offering.

Name \qquad Title \qquad Company \qquad Address \qquad City \qquad State \qquad Zip Phone \qquad Application \qquad

Hamilton/Avnet. Dept. 175
P.O. Box 9000

San Fernando, CA $91341-9981$

It wasn't easy. But we did it. Made the long-time best-selling IBM ${ }^{\ominus}$ PC-based interactive CAE tool even better.

Take modeling power. We've significantly expanded math expression capabilities to permit comprehensive analog behavioral modeling. And, beyond Gummel Poon BJT and Level 3 MOS, you're now ready for nonlinear magnetics modeling. Even MESFET modeling.

Analysis and simulation is faster, too. Because the program's now in "C" and assembly language. That also means more capacity - for simulating even larger circuits.

As always, count on fast circuit creation, thanks to window-based operation and a schematic editor. Rapid, right-fromschematics analysis - AC, DC, fourier and transient - via SPICE-like routines. The ability to combine digital/analog circuit simulations using integrated switch

Transient analysis

Schematic editor

Monte Carlo analysis
models and parameterized macros. And stepped component values that streamline multiple-plot generation.

And don't forget MICRO-CAP III's extended routine list-from impedance, Nyquist diagrams and BH plots to Monte Carlo for statistical analysis of production yield. The algebraic formula parsers for plotting virtually any function. The support for Hercules, CGA, MCGA, EGA and VGA displays. Output for plotters and laser printers.

Cost? Still only $\$ 1495$. Evaluation versions still only $\$ 150$. Brochure and demo disk still free for the asking. Call or write for yours today. And see how easily you can get ideas up and flying.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387

In 1807, Joseph Fourier had a great idea. In 1991, SRS makes it affordable.

Presenting the SR760 FFT Spectrum Analyzer. 16 -bit 100 kHz performance for only $\$ 4350$.

Have you been waiting for someone to make a truly affordable FFT spectrum analyzer? One with 90 dB dynamic range, 100 kHz frequency span, and a blazing 50 kHz real time bandwidth?

The wait is over.
SRS delivers the SR760. The perfect spectrum analyzer for a wide range of applications, including acoustics, vibration, noise analysis, electronic design and testing. Applications that previously meant buying a $\$ 15,000$ instrument.

The SR760. Power, performance and price. Everything you've been waiting for.

SR760

- DC to 100 kHz frequency span
- 90 dB dynamic range
- 16 bit A/D conversion
- Single channel with true differential input
- 50 kHz real-time bandwidth
- Internal or External Trigger
- Limit testing and data tables
- Menu based user interface
- 3.5 inch DOS compatible disk drive
- Direct hardcopy to printers and plotters
- GPIB, RS232, and Printer interfaces
signal or alert you. An optional, integral plotter can record anything the CRT displays. From $\$ 5200$.

Gould Inc, 8333 Rockside Rd, Valley View, OH 44125. Phone (216) 328-7000. FAX (216) 328-7400.

Circle No. 354

Benchtop PC-Board Diagnostic Tester

- Tests analog and digital ICs in circuit
- Uses test history to optimize test routines
The Pro-Line PL 5000 pc-board diagnostic system is an in-circuit tester for analog and digital ICs. It can test TTL, CMOS, and ECL devices. The basic unit has 48 channels including six guard lines. You can expand it to 64 channels. Menu-based software helps you create programs for specific boards. You tell the tester the component designations and IC types and indicate their X-Y locations on the board. You then move a test clip from IC to IC, and the unit "learns" the board. During testing, the tester prompts you to enter the board's serial number and fault symptoms. The tester uses this information to optimize the test routines and to help it determine probable causes of the symptoms. From \$14,950.

Maxtec International Corp, 6470 W Cortland St, Chicago, IL 60635. Phone (312) 889-1448.

Circle No. 355

Sbus and VMEbus-Based Timebase Generators

- Synchronize computer systems to an external time code
- Maintain 1-usec accuracy

The AITG timebase generator boards use an externally supplied time code to synchronize the time kept by Sun Microsystems worksta-
tions. The boards also generate time codes for use elsewhere. A board that synchronizes other equipment need not receive a time code from a separate source. The boards accept codes in such formats as Interrange Instrumentation Group (IRIG) -A and -B and Na-

Text continued on pg 241

INNOVATION OF THE YEAR AWARD WINNER

THE SMALLEST, MOST EFFICIENT, EASY-TO-USE 1.5 AMP DC-DC CONVERTER AVAILABLE TODAY!

If you're designing battery-powered products such as notebook/laptop computers, cellular telephones, or products using distributed power-you need a small, efficient, and easy-to-use power converter. You need Power Trends' new DC-DC converter-the power supply product that beat out all competition last year for the prestigious EDN Innovation of the Year Award.

SMALLEST

- $0.88^{\prime \prime} \times 0.92^{\prime \prime}$ x $0.30^{\prime \prime}$
- 35 to 100 watts/ cubic inch
- Surface mount technology

EASY TO USE

- Self-contained inductor
- No heat sinks
- V_{0} laser trimmed
- Pin-compatible/ 78-series linears

FREE SAMPLES TO QUALIFIED USERS.
This tiny innovative product that to you at a lower cost-per-watt than won the vote of EDN editors and its thousands of readers in 1990 has since proven itself in a diversity of end-product designs. And now this same breakthrough product is available conventional DC-DC converter solutions. For more information or a free sample, call Power Trends today or FAX your request with your business card to the number below.

STACKING THIE DEC"

VMIC'S VMIVME-7300, VMIC's VAX on VME, () combines the mature software environment of Digital's VAX ${ }^{\mathrm{TM}}$ architecture and the industry standard VMEbus for an unparalleled basis for solutions to real-time applications.

The VMIVME-7300, VMIC's VAX on VME, is designed specifically to support the features of VAXELN ${ }^{\text {TM }}$, Digital's Real-Time Kernel and development environment. The VAXELN ${ }^{\text {TM }}$ system provides for software development on VAXNMS host, using standard Digital languages (C, FORTRAN, Ada, EPascal).

Applications are combined with the ELN kernel using a user-friendly, menu-driven configuration utility. The resulting image can be loaded to the VMIVME-7300, VMIC's VAX on VME, via Ethernet or burnt into PROM should stand-alone operation be required.

- 20 MHz rtVAX 300 with 1 Kbyte CACHE
- Ethernet coprocessor supports full IEEE 8023 frame encapsulation and media access control (MAC)
- VME Interface (Master/Slave): Systems Controller, Interrupter, Interrupt Handler and Broadcast Signal
- Dual Ported On-board Memory with Parity: 1,2,4, or 8 Mbytes Memory and Interlocked VAX Transactions
- Time of Year (TOY) Clock with Battery Back-up
- Two 16-bit Timers
- EPROM (128 Kbytes to 2 Mbytes): Boot Diagnostics and Support for PROM Resident Applications
- Automatic/Transparent VAX/VME Byte Ordering Mechanism
- DMA Controller for Interprocessor Message Transfer
- Nonvolatile Memory for Configuration
- Dual Asynchronous Serial Ports
1-800-322-3616

FOR MORE INFORMATION CALL: VME Microsystems International Corp. 12090 South Memorial Parkway Huntsville, Alabama 35803 (205)880-0444 - Fax (205)882-0859

[^20]
Searching...For A R3000 VME Hardware/Sotiware Solution?

Omnibyte has the most complete line of MIPS R3000 VME hardware, software and systems for your project. In fact you may select from 72 distinct VME configurations.

You can get the fast and powerful Pulsar $3000^{\text {tm }}$, shown above, featuring:

- 25MHz R3000A RISC CPU
- 25 MHz R3010A Floating-Point Coprocessor (opt.)
- (4) R3020 Write Buffers
- 128 KB (or 32 KB) I-cache
- 128KB (or 32 KB) D-cache
- $32,16,8$ or 4 MB DRAM
- High speed SCSI port (opt.)
- Ethernet interface (opt.)
- (4) serial ports
- (4) ROM sockets (up to 4MB)
- Real time calendar clock w/battery
- 2KB NV RAM
- VIC068 VME Interface (slot 1) Controller
And the Pulsar is available with the following software:

Title	Type				
SPP/e ${ }^{1}$	PROM monitor I/O library				
SPP 1	SPP/e with cache simulator				
IDT/c ${ }^{2}$	IBM/SUN X-compiler				
C EXECUTIVE					
Real time					
monitor		$	$	ADA ${ }^{4}$	ADA compiler
:---	:---				
VxWorks 5	Real time o.s.				
RISC/os 1	UNIX ${ }^{6}$				

In addition to our boards and software, we can also provide you with a complete line of MIPS development systems.

For further information, give Larry Snow a call today at 800-638-5022, (708-231-6880 in IL).

OMNIBYTE CORPORATION

 245 W. Roosevelt Rd.West Chicago II 60185

Trademarks: 1-MIPS Computer Systems Inc. (available in binary or source), 2-Integrated Device Technology, Inc., 3-JMI Software Consultants Inc., 4-DOD, 5-Wind River Systems (available for MIPS and DEC workstations), 6-AT\&T

68040 VME 33 MHz 0-Wait-State

Your Vision of High Performance at an Affordable Price is Now Real!

With the OB68K/VME40 ${ }^{\text {™ }}$ you no longer have to compromise on performance or price in your VME embedded control application. We start by giving you a very basic board which includes:

- $25-33 \mathrm{MHz} 68040$.
- (8) 28-pin RAM sockets.
- Up to 2.256 MB of dual access static RAM (32KB standard).
- (8) 32-pin sockets for up to 8MB of ROM.
- (2) asynch RS232C serial ports.
- (16) lines of parallel I/O.

You can combine it with just the right amount of RAM and ROM you need. And you do not have to sacrifice features. Our Omnimodule ${ }^{\text {Tm }}$ modular I/O connector allows you to implement a wide variety of serial, parallel, SCSI, GPIB, analog, digital and other I/O options - all fitting into one slot. Other features include:

- VTC's V1C068 VME interface chip with arbiter, inter-
rupter, mailbox and more.
- Terminal monitor/ debugger/diagnostic firmware program included.
- 2 year limited warranty.
- Worldwide availability.

All of this gives you a high performance board at a price you can afford with the features you need.

To learn more about our OB68K/VME40 contact our Marketing Manager, Pete Czuchra at 1-800-6385022 or (708) 231-6880 in Illinois.
tional Aeronautics and Space Administration (NASA) 36 and 2137. The boards keep time with an accuracy of $1 \mu \mathrm{sec}$. The AITG-VME-9U is for Sun workstations that use VMEbus I/O boards in the so-called 9 U format. The AITG-S is a singlewidth Sbus card for Sun's SPARCstations. VME device, $\$ 2250$. Delivery, 30 to 45 days ARO. Sbus device, $\$ 2350$. Delivery, November 1991.
Odetics Inc, 1515 S Manchester Ave, Anaheim, CA 92802. Phone (714) 774-5000. Circle No. 356

Programmable Lowpass Filter

- Has 4-pole Butterworth response
- Corner frequency is settable from 170 Hz to 25.6 MHz
The Model 35 is a plug-in board for the vendor's IEEE-488-programmable modular-instrument chassis. The board contains a 4 -pole Butterworth active lowpass filter with cutoff frequencies that you can program from 170 Hz to 25.6 MHz with $2 \frac{1}{2}$ digit resolution. Below 2.56 MHz , the cutoff frequencies are accurate to $\pm 2 \%$; from 2.56 to 25.6 MHz , accuracy is $\pm 5 \%$. The board offers both de and ac coupling and has an input amplifier with selectable gains of 1 , 10 , and $100 \pm 1 \%$. You can bypass the filter and use the board as an amplifier with $50-\mathrm{MHz}$ bandwidth. The maximum input is $\pm 1.5 \mathrm{~V} \mathrm{pk}$ divided by the gain. $\$ 1800$. Delivery, six to eight weeks ARO.
Kron-Hite Corp, 255 Bodwell St, Avon, MA 02322. Phone (508) 5801660.

Circle No. 357

Network Analyzer

 For RF-Component Testing- Has $300-\mathrm{kHz}$ to $1.3-\mathrm{GHz}, 1-\mathrm{Hz}$ resolution synthesized source
- Provides dynamic range of 90 dB The HP 8711A RF network analyzer helps you characterize circuit components at high frequencies. The instrument contains a $1-\mathrm{Hz}$
resolution, $300-\mathrm{kHz}$ to $1.3-\mathrm{GHz}$, swept, synthesized signal source that completes a full-band sweep in 50 msec . The analyzer has a 9 -in. CRT display and a dynamic range of 90 dB . The unit has a $3^{1 / 2}-\mathrm{in}$. floppy-disk drive. With an optional interpreter but without a host com-

Text continued on pg 245

VORTEX ${ }^{\text {m" }}$ Concentrates I/O for top 'C40 performance

Atlanta Signal Processors, Inc. • 770 Spring Street
Atlanta, GA 30308 USA
(404) 892-7265 • FAX: (404) 892-2512

SOLID State relay

Our FB Series military solid-state relay features high speed and low off-state leakage.

ACTUAL SIZE

Here's what you get:

- Availability to pending DESC drawing 89116 with screening to "W" and "Y" levels of MIL-R-28750.
- High-voltage output
- Very-low leakage current (200 nA)
- DC or bi-directional power FET output (see wiring diagrams)
- Ideal for ATE applications
- Optical isolation
- Fast switching speed
- Adjustable turn-on times
- Low profile 6-pin mini-DIP
- Cost efficiency

Review the electrical characteristics below and call us for immediate application assistance*:

INPUT ELECTRICAL CHARACTERISTICS $\left(-55^{\circ}\right.$ to $\mathbf{1 0 5}^{\circ}$ unless otherwise noted)					

Notes: 1. A series resistor is required to limit continuous input current to 50 mA (peak current can be higher).
2. Rated input current is 25 mA for all tests.
3. Loads may be connected to any output terminal.
4.ON resistance shown is for the bidirectional configuration. The DC ON resistance is $1 / 4$ of these values.
"CREATING THE STANDARD OF THE FUTURE"

B-directional and ac configuration

DC configuration

だTELEDYNE SOLID STATE
A Division of Teledyne Relays
*For immediate application assistance call 1-800-284-7007.

TOKIN TECHNOLOGY UPDATE

Gourmet Capacitors at Fast-Food Prices

High-performance mini-capacitors from TOKIN

There's no question that TOKIN's new chip-type highcapacitance multilayer ceramic capacitors are earning a loyal following. Suddenly, one can find them in the fanciest equipment and devices in town, and with good reason. One explanation is their large permittivity (capacitance). Another is size-only $1 / 5$ that of conventional products.

And to clinch the ideal, they can be had for a very competitive price.

The story doesn't end there, though, because these

TOKin

gourmet capacitors are ideal for surface mounting and offer outstanding reliability.

TOKIN was able to accomplish all this by firing two special materials with different temperature characteristics at a low temperature (less than $1,000^{\circ} \mathrm{C}$), thereby

increasing capacitance while cutting costs. A dramatic breakthrough in capacitor technology.

What's more, you can put these devices to work in a wide range of application including EMI/EMC filters

Stability at Low and High Temperatures

and bypass capacitors.
Compact and high performance at budget prices, who could refuse?

Call us today.

Characteristics

Temp. Characteristics Y $5 \underline{\mathrm{U}}$ ($\mathbf{Z 5 0}$)				Temp. Characteristics Y 5 V			
	25 V	50V	75v		25V	50V	75v
$10 \mu \mathrm{~F}$	$\begin{aligned} & \text { IE106ZYSU-C205M } \\ & \text { IE106ZYSU-C205F } \end{aligned}$	IH106ZYSU-C505P	IN106ZYSU-C610F	$10 \mu \mathrm{~F}$	IE106ZY5V-C408F	IH106ZY5v-C610F	IN106ZY5V-C812F
$22 \mu \mathrm{~F}$	IE226ZYSU-C505F	IH2262Y50-610F	-	$\mathbf{2 2 \mu} \mathrm{F}$	IE226ZY5v-C610F	IH226ZY5V-C812F	-
$33 \mu \mathrm{~F}$	IE336ZYSU-C610F	IH335ZYSU-C812F*1	-	$33 \mu \mathrm{~F}$	EE336ZY5V-C610F	-	-
$47 \mu \mathrm{~F}$	IE4762Y5U-C812F*1	-	-	$100 \mu \mathrm{~F}$	IE107ZY5V C812F	-	-

${ }^{\circ} \mathrm{C812F}(8 \times 12.5 \times 3 \mathrm{~mm})$: The product is in the experimental stage.

Tokin Corporation

Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan
Phone: 03-3402-6166 Fax: 03-3497-9756

Tokin America Inc.

155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375
Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090, U.S.A
Phone: 708-215-8802 Fax: 708-215-8804
Boston Branch
945 Concord Street, Framingham, Massachusetts 01701, U.S.A.
Phone: 508-875-0389 Fax: 508-875-1479

The Superior VMEbus Analyzer

Only VMETRO's VBT-321B and the Modular VMEbus Analyzer System offers a complete system solution to your development needs.

- 100 MHZ TIMING: Waveforms and State listing shown on time correlated split screen.
- Integrated VMEbus Anomaly Trigger (VBAT): Provides on-screen explicit violation messages.
- Separate analysis of P2-busses: VSB, SCSI or userdefined P2-bus analyzed simultaneously with VMEbus.
- $\mathbf{2 5 6 K}$ deep Trace with dump to SCSI disk: For archival or post-processing. Continuous SCSI download while sampling also possible.
- VMEbus Master and Slave simultaneously with VMEbus analysis: Implemented with VIC068 chip to provide real VME cycles. Powerful commands for test pattern generation.

The VBT-321B Advanced VMEbus Analyzer with a proper piggyback module solves any kind of VMEbus development task. The piggyback functions are also available as standalone products, independent of the VBT-321B.

To develop the best products, you need the best tools!

VMETRO A/S
Professor Birkelandsvei 24, P.O. Box 213
Leirdal, 1011 Oslo 10, Norway
Phone: +472322580 Fax: +472322880

UMETRO
The Bus Analyzer Specialist

VMETRO, INC.
2500 Wilcrest, Suite 550
Houston, Texas 77042
Tel.: (713) 266-6430 Fax: (713) 266-6919

CIRCLE NO. 170

SPOTLIGHT: DESIGN \& DEVELOPMENT

Finally, attendees determined the most impressive product of the show was CAD Software's PADS.
Each vendor provides its resultan
PE\&I News 6/90 on CAD Showdown Results

PADS SETS THE STANDARD

for CAE/CAD design on Personal Computers
Complete thru-put logic capture and board design functionality including:

- A true multi-sheet database for Schematic capture with hierarchical design capability • Design verification for analog and digital designs • Both automatic and interactive PCB layout tools - Most complete set of autorouters for Analog, Digital and SMD designs - Cam outputs including database ASCII In and ASCII Out format • NEW! PADS-2000, board designs with no system limits. 1 micron database, copper pouring, T-routing. Workstation capability at PC prices! Easy to learn, easy to use
Call today for a free demonstration package, and for your local Authorized PADS Reseller.
Software, Inc.

CIRCLE NO. 172

surface smart...

Count on the 'smart'' surface mount components from Taiyo Yuden to help you solve your surface mount problems...Today!

- SMART... INCREASED PRODUCTION Our passive rectangular and melf surface mount components can help you increase production rates over existing through-hole designs. Accurate and consistent packaging can increase the throughput of your existing surface mount production lines
- SMART... SPACE REDUCTION - With smaller sizes, increased densities can help you fit more into your designs. New applications are possible, along with improved performance. - SMART... COMPLETE PRODUCT LINES Taiyo Yuden offers - Multilayer Ceramic Capacitors - Melf Tubular Ceramic Capacitors and Resistors - Chip Inductors - Surface Mount EMI Filters and, we're constantly developing new and exciting products. Keep watching... we're making the smart moves
- QUICK DELIVERY - Our distribution and stocking programs maintain inventories of popular sizes and values to help you make your own smart moves, quickly.
SURFACE SMART... Find out how our "smarts' can work for you. Our new catalog outlines the details and products already in place to do the job... contact:

See us al our new booth,
$\$ 121$ \& 123 at the Wescon Show.

TAIYO YUDEN (USA), INC.

714 West Algonquin Road, Arlington Heights, IL 60005 Tel 1-800-34-TAIY0 (1-800-348-2496) Fax (1-708) 870-7828
EASTERN REGION: 1-800-36-TAIYO (1-800-368-2496) WESTERN REGION: 1-800-25-TAIYO (1-800-258-2496)

Power supply needs?...contact Xentek, Inc. (a subsidiary of Taiyo Yuden) at (1.619) 727-0940 or ask your Taiyo Yuden representative

TEST \& MEASUREMENT

puter, it can run programs written in the Instrument Basic language. This capability lets you use the analyzer by itself to automate procedures. You can write programs on an external computer, but you can do so without a computer by recording keystrokes or by using a plug-in keyboard. $\$ 13,500$; Basic, $\$ 1350$; keyboard, $\$ 210$. Delivery, 16 weeks ARO.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 358

Logic Analyzer

- Captures data at 200 MHz
- Can have up to 384 channels

The Clas 2000 logic-analysis system captures data at speeds to 200 MHz and can have 384 channels. The system includes a 40 -Mbyte hard drive, a floppy-disk drive, a keyboard, and a mouse. The graphic operator interface uses a windowed, iconbased display. You can configure all channels as a single analyzer or split them into two independent, synchronized, cross-triggered logic analyzers that have 5 -nsec timing resolution. Microprocessor analysis packages include disassembly software and interface hardware for popular processors including the $68020,68030,68040$, and 88000 ; the 80286, i386, i486, and i960; the T800 family, and the TMS320C25 and TMS320C30. $\$ 15,950$ to $\$ 45,950$.

Biomation Corp, 19050 Pruneridge Ave, Cupertino, CA 95014. Phone (408) 988-6800. Circle No. 359

RealTime Devices

"Accessing the Analog World"
Quality U.S.-manufactured PC Bus cards and software for single user, OEM, or embedded applications.

AD3700-\$395

200 kHz THROUGHPUT

- 8 S.E. analog inputs, 12 -bit $5 \mu \mathrm{sec}$ A/D - FIFO interface \& DMA transfer
- Trigger-in and trigger-out; pacer clock
- 4 Conversion modes \& channel scan
- 4 Independent timer/counters
- 16 TTL/CMOS digital I/O lines
- Assembler, BASIC, Pascal \& C source code

DataModule PRODUCTS

Plug-compatible with Ampro CoreModule DM402 12-bit 100 kHz analog I/O board with trigger, T/C, DMA \& 16 DIO lines \$395 DM602 12-bit 4-channel D/A; voltage range select; current loop \& DIO control \$289 DM802 24-Line opto 22 compatible 82C55 PPI-based DIO interface
\$149

POPULAR XT/AT PRODUCTS

AD1000 8 S.E. 12 -bit A/D inputs; 25 kHz throughput; three $8-\mathrm{MHz}$ timer/counters; 24 PPI-based digital I/O lines. \qquad \$275 ADA1100 AD1000 with 38 kHz throughput, 2 D/A outputs, and configurable gain $\$ 365$ ADA2000 8 Diff. 16 S.E. analog inputs; $12-$ bit $20 \mu \mathrm{~s}$ A/D; 12 or $8 \mu \mathrm{~s}$ A/D optional; two 12bit D/A outputs; programmable gain; 3 T/Cs; 40 DIO lines from 82C55 PPI \qquad T/Cs;
\$489 ADA3100 8 Diff./S.E. 12-bit analog inputs; 200 kHz throughput; gain select; FIFO interface \& DMA transfer; pacer clock; external trigger; 4 conversion modes, multi-channel scan \& channel burst; 4T/Cs; 16 DIO lines; two fast-settling analog outputs \$659 AD510 8 S.E. inputs; 12-bit integrating A/D with programmable gain.
ADA900 4 Diff./S.E. inputs; 18 -bit V/F type A/D; variable resolution \& conversion speed; 16-bit @ $16 \mathrm{~Hz} ; 12$-bit D/A, T/C \& 16 DIO lines \$410 DA600/DA700 Fast-settling 2/4/6/8 -channel 12-bit D/A; double buffered $\mathbf{\$ 1 9 2 / 3 5 9}$ DG24/48/72/96 Digital I/O lines; 82C55 based; optional buffers \& line resistors \$110/256 TC24 Am9513A System Timing \& 82C55 Digital I/O control card.. MX32 External analog multiplexer \$198 ATLANTIS/PEGASUS/PEGASUS Acquire Menu-driven, real-time monitoring, control, data acquisition and analysis turn-key software packages.
\$150/290
Call for your Free Catalog!
RTD logo. AAccessing the Analog Wortr. and DataModule are trademarks of
Real Time Devices. Inc. AMPRO and CoreMocule are eregsterect tracemarks of Real Time Devices. Inc AMPRO and CoreModula are registered trademarks
Ampro Computers, Inc. ppto 22 is a registered tracemark of Opto 22 , Inc.

Custom/ODM designs on request!

Real Time Devices, Inc.
State College, PA USA
Tel.: 814/234-8087
FAX: 814/234-5218
CIRCLE NO. 174

C\&K gives you more solutions and better solutions to your switching problems than any other manufacturer. We listen better. We understand your needs. That's why we offer the broadest line of miniature and sub-miniature electro-mechanical switches in the industry. You get fast delivery from stock to four weeks on literally millions of different switch configurations-surface mount, through-hole and solder types. Over $5,000,000$ configurations in our 7000 Series alone. Or we can design and build the application-specific switch that meets

The Primary Source Worldwide...
your exact requirements. Send for free samples and our $\quad \mathrm{C} \& \mathrm{~K}$ Components, Inc. $\quad \mathrm{C} \& \mathrm{~K}$ Components, Inc latest catalog.

Newton Division
Tel: (800) 635-5936
Fax: (617) 527-3062

Clayton Division
Tel: (800) 334-7729
In NC: (800) 672-8209
Fax: (919) 553-4758

At half the price, our current limiting diodes have few limitations.

Designing in our high reliability current limiting diodes makes a lot of sense.
They offer superior circuit performance, superior lot-to-lot consistency, and superior thermal characteristics . . in a space-saving, hermetically sealed glass case. Motorola-equivalent leaded or SMD versions are available at about half the price. Special selections also available.

Available Types:

1N5283 THRU 1N5314 (leaded). CCL0035 THRU CCL5750 (leaded) CMCL 1300 THRU CMCL 1304 (leaded). CCLM0035 THRU CCLM5750 (SMD)
Pencil in Central. For more information, write or call.

Central
 semiconductor Corp.
Central: We make the difference
145 Adams Avenue, Hauppauge, NY 11788
Phone (516) 435-1110 FAX (516) 435-1824

NEW PRODUCTS

COMPUTERS \& PERIPHERALS

$40-\mathrm{MHz} 386$ Computer

- Uses AMD's Am386DX μP and a 64-kbyte cache
- Has 4 Mbytes of dynamic RAM and a 220 W power supply
The ME 386-40 ISA bus computer uses AMD's $40-\mathrm{MHz}$ Am386DX $\mu \mathrm{P}$. The base configuration has a 64kbyte cache, 4 Mbytes of dynamic RAM, a 1.2 -Mbyte, $5-1 / 4-\mathrm{in}$. floppydisk drive, a parallel port, two serial ports, a keyboard, and a 220 W power supply. The cache is expandable to 256 kbytes, and you can expand the mother board's memory to 64 Mbytes. The mother board has a socket for either an Intel 80387 or a Weitek 3167 coprocessor. The computer delivers 9.71 MIPS. The mother board has six 16-bit and two 8 -bit ISA bus expansion slots. You can opt for a hard-disk drive with capacities ranging as high as 750 Mbytes, and you have a choice of a 101-key keyboard or a keyboard with a trackball mouse. Base configuration, $\$ 1949$; base configuration with an 80 -Mbyte, hard-disk

drive, 1.44 -Mbyte, $3^{1 / 2}$-in. floppydisk drive, super VGA color card and monitor, and either DOS 3.3 or 4.01, \$2899.

Micro Express, 1801 Carnegie Ave, Santa Ana, CA 92705. Phone (800) 642-7621; (714) 852-1400. FAX (714) 852-1225. Circle No. 374

Facsimile Relay

- Digitizes and compresses Group III fax data
- Connects a PBX trunk to a modem's data input port
The FR-100/EM4W facsimile (fax) relay lets you transmit Group III fax data over a data network. The unit digitizes and compresses the analog output signal from a Group III fax machine and produces 9600 or $4800-\mathrm{bps}$ digital data. The unit connects a fax machine or a PBX trunk to the data port of a modem or a multiplexer. To transfer fax data over a data network, you need a fax relay at each end of the link. The relay supports both DTMF and pulse dialing and handles PBX signals type I through V. The relay operates from 110 to 220 V ac and consumes 15 W max. The unit meas-
ures $5.5 \times 9.0 \times 8.5 \mathrm{in}$. and weighs 7 lbs. $\$ 3640$.
Entropic Speech Inc, 10011 N Foothill Blvd, Cupertino, CA 95014. Phone (408) 973-9800. FAX (408) 973-0336. TLX 1561464.

Circle No. 375

Pen Recorders

- Display 24 input signals in four colors
- Sequentially scan each channel for 0.1, 0.2 , or 0.5 secs
The HR Series of pen recorders measure and record as many as 24 input signals. The recorders display the data in three modes-analog trends, analog trend with digital printout, and data logger. The units scan each input channel for $0.1,0.2$, and $0.5 \mathrm{sec} /$ channel. They display
analog data in four different colors, permitting six channels/color. You can program the units to record the following parameters using LCD displays-year, month, day, minute, recording mode, chart speed, data size, print interval, type of input signal, and measuring range. The recorders can also print a message of as many as 79 characters/ line at any location on the chart. A clock and a timer for starting and stopping measurements are also included. The recorders have IEEE-488 or RS-232C ports for computer communications. From $\$ 3495$.

Soltec Corp, Sol Vista Park, 12977 Arroyo St, San Fernando, CA 91340. Phone (800) 423-2344; (818) 365-0800. FAX (818) 365-7839.

Circle No. 376

Panther SCSI

Stalking system performance is your goal. That's why Maxtor's 1.2GB SCSI Panther was designed to perform a data seek in just 13 ms . No other drive in its class features such lightning speed.
Panther's hunting prowess of 2ms track-to-track seek time stands out compared to Seagate's Wren 7 seek time of 2.5 ms . And Panther outruns the competition with a $30 \mathrm{Mb} /$ sec. internal transfer rate.
Experience counts. Panther uses the reliable head disk assembly used in the Maxtor XT-8000, which boasts more than 300,000 units in the field. Panther shreds the competition with the widest range of available controllers, an MTBF of 150,000 hours, Novell certification and a highly competitive price.
Call about the full line of Panther drives that range from 1.2 GB to more than 1.7 GB capacity. If you're stalking performance, check out Panther's killer specs. Call your nearest Authorized Maxtor Distributor.

1GB-plus Disk Drive Comparison Criteria	Maxtor Panther P0-12S	Seagate Wren 7
Capacity (unformatted)	$\mathbf{1 . 2 G B}$	1.2 GB
Seek Time	$\mathbf{1 3 m}$	15 ms
Track-to-Track	$\mathbf{2 m s}$	2.5 ms
Internal Transfer	$\mathbf{1 7 . 4}$ to $\mathbf{2 9 . 7 \mathbf { M b } / \mathrm { s }}$	$15-23 \mathrm{Mb} / \mathrm{s}$
Maximum Seek	$\mathbf{2 6 m s}$	34 ms

We Drive Harder:

COMPUTERS \& PERIPHERALS

Sbus Graphics Board

- Drives 1280×1024-pixel displays
- Runs on Sun's Open Windows 2.0 software
The GXTRA 1280 single-slot graphics card works with the Sbus in Sun SPARCstations. It drives $1280 \times$ 1024-pixel displays and has a Sun-4 keyboard and mouse port. The board contains an 8-bit-color frame buffer, and it runs on Sun's Open Windows 2.0 software. Windows executes partially on the board and partially on the host CPU. You can install multiple Sbus boards to service additional users on a single SPARCstation. The board uses a proprietary gate array, which accelerates low-level graphics primitives such as drawing 2-D vectors, solid and stipple fills, and characters. $\$ 2250$.
Tech-Source Inc, 442 S North Lake Blvd, Suite 1008, Altamonte Springs, FL 32701. Phone (407) 8308301. FAX (407) 339-2554.

Circle No. 377

80286 Single-Board Computer

- Contains 4 Mbytes of PROM disk emulation
- ISA bus board contains 4 Mbytes of DRAM and two RS-232C ports The IND-286 single-board-computer (SBC) works with a passive 8 -bit ISA bus. The SBC contains a $16-\mathrm{MHz} 80 \mathrm{C} 286 \mu \mathrm{P}$ and features ROM-DOS, an MS-DOS 3.3-com-
patible, ROM-based, disk-operating system. The board also includes a battery-backed, 4-Mbyte, PROM disk emulator and a watchdog timer. The emulator boots the system and lets you place application software in EPROM or batterybacked static RAM. The board's flash EPROM programmer permits field upgrades. The SBC features as much as 4 Mbytes of dynamic RAM. It has five kinds of ports: two RS-232C; one parallel printer; one keyboard; one floppy disk; and one IDE hard disk. A clock/calendar and a socket for an optional 80 C 287 coprocessor also comes with the board. Using an embedded BIOS setup utility, you can configure a system and set the clock/ calendar. The board consumes 4W. $\$ 795$.

Micro Computer Specialists Inc, 2598-G Fortune Way, Vista, CA 92083. Phone (619) 598-2177. FAX (619) 598-2450. Circle No. 378

Ethernet Board

- Installs in Macintosh IIsi and SE/30 computers
- Comes in coax or 10BaseT twisted-pair versions
The Ether DS Ethernet adapter board installs in the direct slot of a Macintosh IIsi or SE/30 computer. A coax version supports thick or thin Ethernet and a twisted-pair version supports 10BaseT Ethernet networks. The board's drivers for Apple's Ethertalk Phase I and Phase II protocols free you from using high-level protocols. Macintosh computers can communicate via Appletalk, TCP/IP, DECnet, or other high-level protocols. Network management software, which comes with each board, provides statistics on Ethernet performance and lets you run loop-back diagnostic tests. $\$ 395$.

Compatible Systems Corp, Box 17220, Boulder, CO 80308. Phone (800) 356-0283; (303) 444-9532. FAX (303) 444-9595. Circle No. 379
A.D.P.I.

1-800-275-2374
301-258-2744
Anthem Electronics
408-452-2287
Arrow Commercial Systems Group
1-800-323-4373
Arrow/Kierulff
1-800-777-2776
Avnet Computer
1-800-422-7070
B.S.M/Business Solutions in Micro

1-800-888-3475
214-699-8300

Cal Abco

818-704-9100
800-669-2226
Compac Micro Electronics
1-800-426-6722
415-656-2244
Computer Brokers of Canada
416-660-1616
1-800-663-0042
1-800-361-6415
CPC
714-757-0505
800-582-0505
D \& H Distributing Co.
717-236-8001
Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747
Firstop Computer
1-800-832-4322
Future Electronics
514-694-7710
Intelect
011-525-255-5325
Marshall Industries
1-800-522-0084
Microware Distributors
1-800-777-2589
503-646-4492
Mini-Micro Supply Co.
408-456-9500
1-800-628-3656
Pioneer Standard Electronics
1-800-874-6633
Pioneer Technologies
1-800-227-1693
S.E.D.

1-800-444-8962
404-491-8962
Tech Data
1-800-237-8931
813-539-7429
Technology Factory
1-800-848-2073
1-800-227-4712
U.S. Computer

305-477-2288
Wyle Laboratories
1-800-289-9953

Whatever strikes your microprocessor, you'll be ready.

Mitsumi safeguards more microprocessors than any other company in the world. Not so surprising when you realize that our power guarding ICs are more reliable at half the cost of any others. It's helped us become the number one OEM supplier of quality peripherals over the last 38 years, with more than $\$ 1$ billion in sales and over 14,000 employees in 27 facilities worldwide, manufacturing more than 100 million IC pieces each year. If you have high volume IC needs, call today, (214) 550-7300, and discover how, with Mitsumi power guarding ICs, you're protected and ready for anything.

WATCHDOG TIMER. Protects microprocessor from external noise and electric current.

SYSTEM RESET IC. Detects micro processor voltage supply and keeps the microprocessor under control.

璌 MITSUMI

CIRCLE NO. 179

WHY NOT USE A MEMORY CARD? WE PROPOSE THE BEST PRODUCTIT'S A LSI CARD.'

LSI CARD is the most reliable memory card applying contactless access system(CCL Technology) and solves all the problems for other memory cards such as water, oil, dust, stain, contact wear, static electricity etc.

LSI CARD provides a variety of memory capacity/technology from 32 KByte to 8 MByte to meet different applications.

LSI CARD
LSI CARD provides a variety of card drive from CPU BUS Direct connection to PC bus drive to complete your system design.

DRIVE UNIT

You may call now the following contact for further information.

NIPPON LSI CARD U.S.A. LIAISON OFFICE c/o. ADVANCED TECHNOLOGY DEVELOPMENT, INC. 3301 El Camino Real, Atherton, CA94027
TEL:415-367-0522/FAX:415-368-7717

Brushless

 DC motors provide extended life in demanding applicationsThese compact 12-24 VDC motors are designed for tape cartridge drives, business machines, medical equipment, pumps/compressors and similar applications. Available in $2.0^{\prime \prime}$ and $3.2^{\prime \prime}$ diameters with stall torque from 10 to $840 z-i n$. Custom shaft and housing and configurations to match your requirements. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031.
Fax: 611-370033.

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

Pressure Transducers

- Designed to handle rugged environments
- Provide gauge or absolute-pressure measurements
The Model 1230 and 1231 pressure transducers feature all 316 L stainless construction and employ a proprietary technology that isolates the semiconductor sensor from harsh media and environments. Both are available in gauge and ab-solute-measurement versions in pressure ranges of 5 to 5000 psi . Static pressure-measurement accuracy for standard B grade units
equals $0.25 \% ; 0.125 \%$ accuracy is available in A grade units. Respective thermal errors from -28 to $+82^{\circ} \mathrm{C}$ are ± 2.5 and $\pm 1.25 \%$. Standard versions are available with a choice of constant current or voltage excitation. Output span is a normalized $100 \pm 2 \mathrm{mV}$ dc, and longterm measurement repeatability equals $\pm 0.02 \%$. A 4 -pin, in-line connector provides electrical connections. Model 1230, $\$ 75$ to $\$ 80$; Model 1231, $\$ 90$ to $\$ 115$.

Foxboro/ICT Inc, 199 Riveroaks Pkwy, San Jose, CA 95134. Phone (408) 946-1010. Circle No. 391

Current Source

- Develops a 4- to 20-mA output
- Has a $\pm 1 \%$ accuracy

Model 930 in combination with the MK298 mounting kit can convert a 0 to 10 V input into a 4 - to $20-\mathrm{mA}$ output. With a different mounting kit, the unit develops a constant output of 0.5 to 500 mA . Converter accuracy equals ± 15 of full scale. The response time to a step change in the load of 10 to 100Ω in 100 msec is $10 \mu \mathrm{sec}$ max. Typical frequency response with a 100Ω load equals 10 kHz . The converter operates with any supply voltage in the

12 to 32 V range and draws 60 mA max at full load. $\$ 108$. Delivery, stock to six weeks ARO.

Calex Mfg Co Inc, 3355 Vincent Rd, Pleasant Hill, CA 94523. Phone (800) 542-3355; (415) 932-3911. FAX (415) 932-6017. Circle No. 392

Crystal Oscillator

- Features $\pm 55-\mathrm{ppm} / V$ sensitivity - Has $25-\mathrm{ppm}$ stability

The Model VC-7025 voltage-controlled crystal oscillator (VCXO) features a specified control sensitivity of $\pm 55 \mathrm{ppm} / \mathrm{V}$. Sensitivity val-

上过 100V DC Output

- 365 Standard Models
- Single, Dual \& Triple Output
- Remote Disable Pin Standard
- Up to 100V DC Output now Standard
- 500 V DC Isolated Input to Output
- All Units Shielded

```
MIL-STD-883 UPGRADES AVAILABLE
- Expanded operating temp. \(\left(-55^{\circ} \mathrm{C}\right.\) to \(+85^{\circ} \mathrm{C}\) )
- No Heat Sink Required
- Stabilization Bake ( \(125^{\circ} \mathrm{C}\) ambient)
- Temperature Cycle \(\left(-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\) )
- Hi temp., full power burn in (100\% power, \(125^{\circ} \mathrm{C}\) case temp.)
```

PICO also manufactures over 850 standard DC-DC converters and over 2500 ultra-miniature transformers, inductors and new AC-DC power supplies.

Deliverystock to one week

Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064 in new york call 914-699-5514
ues as high as $\pm 70 \mathrm{ppm} / \mathrm{V}$ are attainable. Housed in a 14 -pin DIP measuring only $0.31 \times 0.52 \times 0.82$ in., the oscillator has a $25-\mathrm{ppm}$ frequency stability over a 0 to $70^{\circ} \mathrm{C}$ range and features 5-nsec rise and fall times. Output frequency range for the oscillator spans 2 to 35 MHz . The unit can drive a 10 -gate load (TTL or CMOS) and operates from a single 5 V supply. Current drain equals 35 mA . Nominal controlvoltage level equals 2.5 V dc, and control-voltage range spans 0.5 to 4.5 V dc. Deviation sensitivity measures $\pm 50 \mathrm{ppm} / \mathrm{V}$ typ, and monotonic linearity equals 20% max. Aging characteristic for the oscillator is specified at $\pm 1 \mathrm{ppm} /$ year. $\$ 14.50$ (1000). Delivery, 8 to 10 weeks ARO.

Raltron Electronics Corp, 2315 NW 107th Ave, Miami, FL 33182. Phone (305) 593-6033. FAX (305) 594-3973.

Circle No. 393

High-Power Resistors

- Handle 250W
- Available in 0.1\% tolerances

Designed specifically for snubber protection circuits, REG resistors can handle continuous loads of 250 W and withstand $2-\mathrm{kW}$ instantaneous pulses. Resistance values range from 1 to 1500Ω, and resistance tolerances of 0.1 to 5% are available. Over a 20 to $60^{\circ} \mathrm{C}$ range, temperature coefficient of resistance equals $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. Isola-
tion and inductance values equal 5000 V ac \min and 400 nH max, respectively. Resistor construction provides an efficient thermal interface. The Manganin resistive element mounts on a ceramic plate, which then mounts directly to a large copper baseplate. This construction guarantees an internal heat resistance of $0.1^{\circ} \mathrm{K} / \mathrm{W}$ max. From $\$ 150$.

Isotek Corp, 566 Wilbur Ave, Swansea, MA 02777. Phone (508) 673-2900. FAX (508) 676-0885.

Circle No. 394

Cooling Module

- Controls fans or blowers
- Is RS-232C compatible

The CMM cooling management module is a smart control system that accepts temperature, air flow, or other sensor data as inputs. The unit provides failure prediction and

Every connecting product for every kind

overall system management such as speed control and on/off functions. The module features an embedded microcontroller with PID (periph-eral-integral-differential) loops to control fans or blowers. The unit is RS-232C compatible and allows you to perform system upgrades using software. The modules are available with custom I/Os in 5 to 48 V versions, and they can control from 6 to 20 fans or blowers. The module can synchronize all fans to avoid "beat" phenomenon, and it
can compensate for filter blockages and other user-defined temperature variations. From $\$ 150$ (100).

Cambridge Aeroflo Inc, 900 Mount Laurel Circle, Shirley, MA 01464. Phone (508) 425-2346. FAX (508) 425-2338. Circle No. 395

Power MOSFETs

- Feature on-chip current limiting
- Protected from shorted load conditions
The MLP1N06CL and MLA1N06CL TMOS power MOSFETs have integrated on-chip current limiting, gate-to-source 'voltage clamping, and gate-voltage protection. The voltage-clamping capability protects the device against unclamped inductive switching transients and overvoltage stress conditions. This feature provides high immunity to ESD. The devices also self-protect against shorted load
conditions by limiting current flow when the gate is fully enhanced. Both units can be driven directly with CMOS or TTL drivers. MLP1N06CL, in a standard TO-220 package, $\$ 1.48$; MLA1N06CL, in a fully isolated TO-220 package, $\$ 1.73$ (1000). Delivery, stock to eight weeks ARO.
Motorola Inc, 5005 E McDowell Rd, Phoenix, AZ 85008. Phone (602) 244-3370. FAX (602) 244-4015.

Circle No. 396

Futurebus + Backplane

- Conforms to the hard metric specification
- Features 13 slot positions This 128-bit Futurebus + backplane conforms fully to the P1301 hard metric specifications as well as the P896.2 specification from revision 5.4. The unit has 13 slots positioned on a $30-\mathrm{mm}$ spacing and accepts

That's AT\&T "Customerizing."

ATRT is your one-stop quality source for everything from cable to splicing and test equipment. Whether it's data cable, composite cable, optical cable or fiber, AT\&T has it all.
Along with 110 Connecting Blocks,
ST ${ }^{*}$ Connectors, FDDI Jumpers, and any number of other connecting products.
Everything you need in copper and fiber optics for the transmission of voice, data, image, and remote sensing.
Everything you need for all your applications, such as LAN and harsh environment, off-the-shelf or custom designed.

Technical support? We'll work side-by-side with you to design special situation connections. And we'll provide system as well as component solutions.

You also have AT\&T's assurance of product quality and reliability. Backed by the design and technology expertise of AT\&T Bell Laboratories. And by a century of AT\&T cable and apparatus manufacturing experience.
Giving you everything you need. Exactly the way you need it. That's what we mean by "Customerizing."
For more information, just give AT\&T a call at $1800344-0223$, ext. 1053.

Stalking the field for an intercomnect solution specialist?

12SU daughter boards. Each slot has 80 pins available for userspecified I/0 via a rear connector. Arbitration is implemented as an optional 48-pin connector located at the center of each slot of the backplane. Power distribution is implemented via press-fit connectors rated for 45A. Multiple power and ground planes are provided on the 5 and 2.1 V lines to alleviate the problem of ground bounce. $\$ 1920$. Delivery, four to six weeks ARO.

Bicc-Vero Inc, 1000 Sherman Ave, Hamden, CT 06514. Phone (203) 288-8001. FAX (203) 287-0062.

Circle No. 397

Digital Panel Meter

- Has an LCD readout
- Features 0.1\% accuracy

The Model DPM5035L $31 / 2$-digit voltmeter features snap-in installation and a built-in bezel. It has a basic measurement range of $\pm 199.9 \mathrm{mV}$ de with an accuracy of $0.1 \% \pm 1$ digit. Power consumption is 2 mW at 9 V dc and 1 mW max at 5 V dc. A 0.5 -in.-high LCD provides the readout. The unit operates from a 5 to 15 V power supply and has an input impedance of $10^{10} \Omega \mathrm{~min}$. Decimal-point position is user selectable. The meter operates over a 0 to $50^{\circ} \mathrm{C}$ range, measures $3.1 \times 1.7 \times 0.95 \mathrm{in}$., and weighs approximately $1.6 \mathrm{oz} . \$ 22.55$ (100). Delivery, stock to six weeks ARO.

DI International Inc, 95 E Main St, Huntington, NY 11743. Phone (516) 673-6866. Circle No. 398

DC/DC Converters

- Only 0.27 in. high
- Operate to $125^{\circ} \mathrm{C}$

MSA Series 5 W de/dc converters are only 0.27 in . high and are rated for full-power operation from -55 to $+125^{\circ} \mathrm{C}$. The units operate over the full MIL-STD-704 input range of 16 to 40 V . Single- and dual-output models are available with $5,12,15, \pm 12$, and $\pm 15 \mathrm{~V}$ options. Dual-output models support unbalanced loading with as much as 90% of the total rated load available from either output. The converters are fully isolated and offer typical line and load regulation as low as 15 mV . Typical output-ripple voltage is 50 mV , input-ripple current is $40 \mathrm{~mA} p-\mathrm{p}$, audio-rejection specifications are 50 dB . From $\$ 225$ (100).
Interpoint Corp, Box 97005, Redmond, WA 98073. Phone (206) 882-3100.

Circle No. 399

Optical Switch

- Has no contact mechanism
- Activates with a $15 g$ force

The EE-SA105 optical switch operates without a contact mechanism, using an infrared LED and phototransistor combination to indicate activation. It activates with a 15 g operating force and has a $0.059-\mathrm{in}$. pretravel. The infrared LED accommodates $50-\mathrm{mA}$ forward current levels and has an output of $0.5 \mathrm{~mA} \min$ at V_{CE} equals 5 V . The switch has a high output when in the rest position; fully activated, the switch has a $200-\mathrm{mA}$-max dark-current output. LED output intensity degrades only 7.5% after 500 hours of continuous operating time. \$0.99 (5000).
Omron Electronics Inc, 1 E Commerce Dr, Schaumburg, IL 60173. Phone (708) 843-7900. Circle No. 400

Add up the savings.

NEC chip tantalum capacitors make it easy.

NEC chip tantalum capacitors deliver big three-way savings. Our surface-mount packages save precious board real estate. Standard 8 or 12 mm tape supply formats, designed for automatic placement, minimize assembly time. And NEC caps are 100% burned-in for optimum reliability and greater MTBF.

NEC has 149 different types available for immediate shipment. Capacitance values range from 0.047 to $100 \mu \mathrm{~F}$ and working voltages from 2.5 to 50VDC.

Contact your local NEC representative today and discover 149 ways to save space, time and trouble with surface-mount tantalum capacitors.

For fast answers, call us at:

USA Tel:1-800-632-3531. Fax:1-800-729-9288. Germany Tel:0211-650302. Telex:8589960. The Netherlands Tel:040-445-845. Telex:51923.

LITERATURE

Justifying Bar-Code

 Data-Collection SystemsThis workbook, Economic Justification, details investing in a barcode data-collection system, using one of three economic-analysis techniques: payback, present value, or rate of return. The $28-\mathrm{pg}$ booklet also presents examples such as time and attendance, labor tracking, work-in-process tracking, shipping and receiving, and warehouse management. Worksheets and formulas round out the publication.

Burr-Brown Corp, Box 11400, Tucson, AZ 11400.

Circle No. 366

Catalog Documents Add-On Products For CAD/CAM

The 1991 Third Party Catalog features the vendor's software. It discusses approximately 200 hardware and software products that complement or extend the uses of the Personal Designer CAD package and the Personal Machinist CAM package. More than 80 third partiesincluding hardware and software vendors, CAD/CAM users, and CAD/CAM resellers-developed and now offer the products described in the catalog. Included are Application Software for augmenting the company's two software packages in areas such as solid de-
sign, parametrics, sheet-metal folding and unfolding, and kinematics; Symbol Libraries for applications ranging from mold design and steel detailing to tool design and welding; Data Management Software for tracking, revision control, and controlling access to engineering documents; Translators for exchanging
the software packages' databases with Chrysler, Ford, GM, and other databases; Networking Products, which links more than one of the two software-package systems; Macros and Utilities for time saving and convenience in areas such as text editing, plot spooling, and redefining keyboard and menu lay-

The principle behind the Hydra Series.

No matter what input you're measuring, you always have the right tool with Hydra.

Think of Hydra as an entire test bench in a box. Its unique Universal Input Module lets you directly connect up to 20 different inputs to measure temperature, DC volts, AC volts (true rms), resistance, and frequency. In any combination. All without having to change hardware or use any external signal conditioners.
With Hydra, set up and reconfiguration are a snap. Simply wire all input types directly into the
removable Universal Input-Module and plug it into Hydra. Then, just touch a button on the unit's front panel or on your PC to start testing. Scanned readings are automatically time-stamped to aid in your analysis.
Why waste time, effort, and money on an army of instruments when Hydra does it all? For a very economical price.

For a free demo disk or more information, give us a call today at 1-800-44-FLUKE. We look forward to your input.

John Fluke Mfg. Co., Inc. P. O. Box 9090, Everett, WA 98206
U.S.: (206) 356-5400.

Canada: (416) $890-7600$.
Other countries: (206) $356 \cdot 5500$
(c) 1991 John Fluke Mig. Co., Inc All rights reserved. Ad No. 00121.

FLபKE
outs; Training Manuals and Teaching Aids to augment the standard documentation and tutorials; and PC Hardware, which provides graphics boards, plotters, digitizers, and other peripherals.

Computervision, 100 Crosby Dr, Bedford, MA 01730.

Circle No. 367

Source Book Covers IBM PC-Related Products

Computer Systems Edition II features more than 800 IBM PC-related products. It describes applica-
tions in telecommunications, industrial and education laboratories, factory automation, and process measurement and control industries. The $96-\mathrm{pg}$ publication notes the addition of $20-, 15-$, and 10 -slot rack and benchtop chassis, 8 - and 15 -slot chassis with electroluminescent displays, 6 -, 10 -, and 15 -slot OEM card cages, industrial portable and transportable computers, and a universal rack-mount kit. Other additions include an 80486 25MHz , EISA plug-in CPU card, 19in. rack accessories, A/D and communications cards, and Labtech Notebook with Iconview.

Industrial Computer Source, 4837 Mercury St, San Diego, CA 92111.

Circle No. 368

Support Products For Peripherals And Computers

This catalog offers an array of support products for the company's peripherals and computers. Divided into seven sections, the publication covers serial HP-IB (IEEE-488) converters; IBM PC/AT, PS/2, and 386 interfaces; HP 900 file-transfer packages; HP-IB bus extenders; the Macintosh/HP-IB converter; the parallel/HP-IB converter; and cables and accessories. Block dia-
grams, specifications, and pricing complete the catalog.

IOtech, 25971 Cannon Rd, Cleveland, OH $44146 . \quad$ Circle No. 369

Comprehensive Handbook Covers MIL-STD-1553 ICs

The 608-pg 1553 Product Handbook describes the vendor's line of monolithic MIL-STD-1553 ICs for highreliability aerospace and defense markets. A tutorial on MIL-STD1553 explains how to design systems to meet its requirements. The publication covers the monolithic protocol devices and details monolithic transceivers with block diagrams, features, characteristics, and package pinouts for each product. Application notes, discussions of quality and reliability, ordering information, and the complete text of MIL-STD-1553B round out the handbook.

United Technologies Microelectronics Center, 1575 Garden of the Gods Rd, Colorado Springs, CO 80907.

Circle No. 370

DMA, Data-Acquisition Fundamentals, And Interrupts

Three application notes examine fundamentals of DMA and data ac-

quisition, and programming interrupts. Data Acquisition Fundamentals (Part No. 340019-01) explains the use of PCs such as the IBM PC/XT, PC/AT, PS/2, or Macintosh for laboratory research, industrial control, and test and measurement. It illustrates such elements of data acquisition as transducers, signal conditioning, data acquisition, and analysis hardware and software. Programming Interrupts for Data Acquisition on 80x86-Based Computers (Part No. 340022-01) deals with interrupt programming on computers based on the 80×86 family of $\mu \mathrm{Ps}$ that are used on IBM PC/XT, PC/AT, PS/2, and EISA computers. DMA Fundamentals on Various PC Platforms (Part No. 340023-01) shows how DMA is implemented in a typical PC architecture and compares several PC DMA applications.

National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730.

Circle No. 371

Publication Lists New And Used Test Equipment

This catalog of new and used electronic test equipment provides listings of oscilloscopes, spectrum analyzers, DMMs, power supplies, signal sources, and environmental chambers from manufacturers such as

Hewlett-Packard, Tektronix, and Fluke. It also highlights factory-new test equipment, including Tektronix oscilloscopes and Fluke DMMs.

RAG Electronics Inc, 21418 Parthenia St, Canoga Park, CA 91304.

Circle No. 372

Listing Of Nanosecond Waveform Generators

This 113-pg catalog mentions more than 300 models of nanosecond waveform generators, including ul-trahigh-speed pulse generators, impulse generators, monocycle generators, samplers, delay generators, and accessories. Approximately 40% of the models presented are new, and the book provides an enlarged applications-information section.

Avtech Electrosystems Ltd, Box 5120, Station F, Ottawa, ON K2C 3H4, Canada. Circle No. 373

Technical calculations made easy!

ALL NEW VERSION 3.0 .

Now it's easier than ever to perform faster, more reliable engineering and scientific calculations.

- Windows graphics features make Mathcad 3.0 the simple solution to complex analytic needs. Dialogs, pull-down menus, and mouse point-and-click capabilities make it easy to combine equations, text, and graphics right on your screen and print it all in a presentation-quality document
- New Electronic Handbook Help facility serves as an on-line reference library. Paste standard formulas, constants, and diagrams from searchable, hypertext Electronic Handbooks for instant use in Electronic Handbooks for
- Symbolic calculations with a simple menu pick. Use expressions resulting from symbolic derivations in your numeric calculations or for further symbolic manipulation Mathcad works on PC DOS, PC Windows, Macintosh, or UNIX. More than 120,000 engineers, scientists, and educators already use Mathcad for a variety of tech nical applications. Applications packs are also available to customize Mathcad for particular disciplines, including electrical, mechanical, and civil engineering and advanced math.

Call 800-MATHCAD or use this coupon to request a free 3.0 demo disk!

In Massachusetts, call 617-577-1017. Please specify diskette size:

$$
31 / 2^{\prime \prime} \quad \square 1 / 4^{\prime}
$$

For a free Mathcad 3.0 Introductory kit, clip this coupon and mail it back to us, or fax it to 617-577-8829. Or circle your reader service card. Yes! Tell me more about Mathcad 3.0!

Name
Title
Company or Institution
Address
City State Zip
Phonel
Math Soft MathSoft, Inc.
201 Broadway
Cambridge, MA 02139

ATTENTION ENGINEERING EXECUTIVES, PROJECT MANAGERS AND DESIGN ENGINEERS:

This November there is only one place to evaluate the competitive advantages of programmable logic, ASICs, memories, DSPs, discrete devices, A to D convertors, analog and digital ICs and other semiconductor devices from a wide variety of vendors:

The Semiconductor Show at WESCON.

And only one place to evaluate the competitive advantages of PC-based EDA tools from leading manufacturers:

The EDA Show at WESCON.

Don't miss this once-a-year opportunity to see the latest advances in semiconductors and EDA tools, as well as test and measurement instruments, passive components, production materials and supplies, and engineering services. At the largest event for senior executives, project leaders, and electronics engineers:

November 19-21, 1991 Moscone Convention Center San Francisco, Calif. USA Those who know, go. For a preview program with a complete exhibitor list, technical conference schedule, short course synopsis, and special event itinerary, call 1-800-877-2668 or complete the coupon below and fax or mail today.

[^21]Name \qquad Title \qquad Company

Address

City \qquad State \qquad Zip \qquad

Professionallssues

Your local schools want YOU

Volunteers are needed to improve math and science education.

Jay Fraser, Associate Editor

Remember when you were in high school and those people came in to talk about careers? You probably saw an airline pilot and a nurse and maybe even an engineer. The engineer spoke briefly about what he did, and you didn't understand very much of it. Then he left, and you never saw him again. Years ago, that was considered volunteering in the schools.
Today volunteer programs are much more sophisticated and much more important. The problems besetting the American educational system are well known-falling test scores, American students ranking far behind foreign students in science and math, and fewer American students going into engineering every year. American schools need to be revitalized, and engineers are being called upon to help.

On February 19th of this year, the two honorary cochairmen of the National Coalition of Engineering Societies for Precollege Mathematics and Science Education met with President George Bush in the Oval Office of the White House. They presented him with a nine-foot scroll that included the signatures of the presidents and executive directors of the 41 national engineering societies that make up the Coali-
tion. At the meeting they announced their goal of recruiting 100,000 volunteer engineers to help in improving math and science edu-

President Bush and Dr Lawrence P Grayson, chairman of Engineers for Education, hold up a scroll listing the 41 engineering societies pledged to improving math and science education.

No one has attempted a volunteer program on this scale before, and it will require some real effort from the engineers who choose to join it.
"We're not interested in having someone come into a school one time and do a Mr. Wizard or a Mr. Math," says Lee DeLorme, the acting executive director of Engineers for Education. "We're asking our volunteers to make a long-term commitment. Commitment is the key to the program."
One of the nagging problems with volunteer programs in the past was that engineers and teachers sometimes didn't coordinate their efforts. The engineers would give demonstrations that had little to do with the course, or, worse yet, try to take on the role of teacher.
"I think the focus shouldn't be on teaching," says DeLorme. "Rather, the volunteer should be an
cation. The Coalition, better known as Engineers for Education, wants to make an engineer available to every elementary and secondary school in the United States.
added resource for the teacher and the school. The role that the volunteer assumes in the school-tutor or adviser or what-ever-should be done, not in a vacuum, but in consultation and agree-

Professionallssues

ment with the individual teacher. Once they determine what the school needs and what the engineer can contribute, then they can develop an effective program."
DeLorme says the response to Engineers for Education has been surprisingly quick and very gratifying. During the first three months following the formal announcement of the program at the White House, more than 500 engineers have called the hot line and volunteered.

As Engineers for Education has expanded its working relationship with industry, it has found that many high-tech companies already support various volunteer programs, and many engineers already donate their time to local schools. Hewlett-Packard, for example, is involved in dozens of volunteer programs around the country.
Russ Herrell is an electrical engineer who works in the research and development laboratory at Hewl-ett-Packard's facility in Fort Collins, CO. He's also the chairman of the steering committee of the Visiting Scientists program, which pairs up a company scientist or engineer with a teacher in one of the local schools. The program was founded in 1983 and has been very popular with both students and teachers.
Herrell says that the program benefits teachers because they see demonstrations that give insights into applications of some of the things they're teaching. "At the high-school level, teachers are aware they're teaching skillscomputer skills or engineering skills-but they don't know how they're applied. A little hands-on demonstration of the fruit of the labor usually goes over very well with the students, too. Students are always awed by some of the fancier technologies that we can bring into the classroom to show them," he says.

Engineers who volunteer in
schools have an important function that goes beyond giving demonstrations or even teaching. They are also role models for the students.
"When I was growing up, an engineer was someone like Steven Douglas on 'My Three Sons.' What
be improved if a company has flex time or if it simply gives its engineers the time off they need.
Another problem is the lack of a comprehensive, national plan for improving the schools. Volunteering helps bring industry and educa-

A student displays a picture he created with a computer after only a few hours of instruction.
did he do? I didn't know," says Herrell. "If you get to a certain age and you don't know anything about a topic, you begin to lose interest in it. You mentally close the door on it. We want to prevent that.
"We actually had one female engineer go into a second-grade class, and a little girl came up to her and said, 'Gee, I don't think I can be an engineer. I'm a girl.' Where did she get that idea? We do a lot of good just by being role models."

Volunteers face problems

There are problems involved in volunteering beyond making sure the engineer is working closely with the teacher and is contributing something meaningful to the class. First among the complaints is that there's never enough time. Business hours aren't the same as school hours, and it's sometimes difficult for engineers to get away in the middle of the day. The situation can
tion closer together, but the local, state, and federal government also have a role to play.
One of the most persistent problems is the difficulty in measuring results. Students' test scores don't give an accurate picture of the effectiveness of a volunteer program because so many other factors are involved. The people who run the programs usually don't attempt a strict quantitative analysis of the students' progress. They have other ways of measuring success.
"We get many letters from teachers expressing their appreciation, and we've had several incidents of students who have decided to go into engineering because of our activities," says Herrell. "One of the things we feel is a measure of success is the number of pairings (between an engineer and a teacher) that have continued the next year. We figure that if the teachers feel they're getting something out of it
and the engineers feel they're getting something out of it, then they must be doing something successfully."

Like Hewlett-Packard, IBM supports many volunteer programs around the country. An unusual one took place at a summer camp in Fairlee, VT, and was funded by the state. Last year three IBM employees taught children eight to thirteen years old how to use a computer. Many of them were the sons and daughters of migrant farm workers and had never seen a computer before. Penny Swank, a systems analyst, was one of the volunteer instructors.

A feeling of accomplishment

"We tried to give the students some confidence with computers," she says. "We provided programs so they could walk out of that room having produced something, whether it was a greeting card or a picture or a banner. The idea was to give them the feeling they could accomplish something using a computer."

The camp took in 80 to 90 children and had a network of 10 computers. Students were given at least one hour of instruction each week, and they could also work with the computers in their spare time. The computer room quickly became one of the most popular places in the camp.
"We had to schedule hours for it to be closed so we wouldn't be totally inundated with kids," says Swank. "There was a lot of work that had to be done to prepare the curriculum from day to day, and we just had to close the room to do that work. In fact, after we put the kids to bed at 10 o'clock, we worked until one or two in the morning getting ready for the next day.
"There's no way to give a child a computer-science education when you only have a few hours. Our goal was to give the children some sort

A volunteer instructor works with children in the computer room at a summer camp in Fairlee, VT.
of confidence level with the computer, particularly those who were afraid when they came in. The idea was to give them an opportunity to
achieve some sort of success, and I think we did that. It was an excellent program."

Not all stories about volunteer programs have happy endings. Last year the state of Vermont withdrew its funding for the camp. Unless the director can raise money from another source, it will close permanently.

Some professional organizations sponsor volunteer programs. The National Society of Professional Engineers (NSPE), for example, runs MathCounts, a series of competitions between teams of seventh and eighth graders from around the country that culminates in a national championship each May in Washington, DC. The purpose of MathCounts is to build mathematics skills and promote strategic problem solving among students. More than 8000 volunteers from the NSPE donate their time to the program each year as organizers, coaches, and administrators.
The Junior Engineering Technical Society (JETS) sponsors academic competitions among highschool students, engineering design

You can help

The organizations listed sponsor nationwide programs aimed at improving precollege science and math education. Write or phone them to find out about the activities near you and how you can help.

[^22]Nobody does ferrites like DEXTER. We offer the industry's broadest selection of quality ferrites and associated hardware from world-class manufacturers. SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From prototype quantities to production runs. From off-the-shelf to a wide range of value-added services - precision fabrication, E-core and pot-core gapping and testing, sorting and selecting by electrical specs.
Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location

FERRITE CORES:

THE DEXTER DIFFERENCE -One-Stop-Shopping for all your ferrite needs.

THE DEXTER CORPORATION
ATLANTA • BOSTON • CHICAGO • DALLAS •
LOS ANGELES • MINNEAPOLIS/ST. PAUL •
NEW YORK • SAN FRANCISCO • TOLEDO/DETROIT • ENGLAND• GERMANY

Professionallssues

contests, and a national engineering aptitude search. The aptitude search is a guidance test that helps students evaluate their chances of success if they choose to go to engineering school. JETS has been running these programs for 40 years. Other professional organizations also support precollege educational activities (see box, "You can help").
You don't have to work for a large high tech firm or belong to a professional organization to help improve our schools, however. You can make a contribution by doing something as simple as attending a meeting of your local school board. You understand what kind of preparation a student needs to succeed in engineering school or in a technical profession. Talk to your school administrators and teachers and make sure that your schools are providing sufficient instruction in science and math. You can help, but first you have to become involved.

EDN

Article Interest Quotient (Circle One)
High 518 Medium 519 Low 520

ASK EDN

Have you been stumped by a design problem? Are you having trouble locating parts? Finding companies?
Can't interpret a spec sheet? Ask EDN.
The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.

Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 5584470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.
CIRCLE NO. 328

To find out how easy It is to add speech output to your own products, call for your free V8600 data book today!

$$
\begin{array}{lc}
\text { Converts plain ASCII text } & \text { Built in } \mu \mathrm{P} \text {, serial and } \\
\text { into high quality speech } & \text { printer interfaces } \\
\text { Requires only a single } 5 \mathrm{~V} & \text { Less than } \$ 100 \text { in OE } \\
\text { supply and speaker } & \text { quantities } \\
\text { Use in computers, voice- } & \text { Customization service } \\
\text { mail, warning systems, etc. } & \text { available }
\end{array}
$$

SEE EEM 90/91 Pages D 1320-1323

PC based emulators for the 8051 family
 752, 8751, 8752, D55000 + CMOS \ldots more.

- PC plug-in boards or RS-232 box - Full Sourcelevel Debuger wicon

Full Source-level Debugger w/complete C-variable support, - "Bond-out" pods for 8051, 83C552, 83C451, 83C652 83C751, 80C515/80C517, 83C752.
Prices: 32K Emulator 8031 \$1790; 4K Trace $\$ 1495^{*}$ (us only CALL OR WRITE FOR FREE DEMO DISK! Ask about our demo VIDEO
กона Call 408-378-2912
555 Marion Road Columbus, OH 43207 Phone: 614/445-8433

FREE 130 Page Catalog
"Optics for Industry"
Free 130 page product catalog from Rolyn, world's largest supplier of "Off-the-Shelf" optics. 24-hour delivery of simple or compound lenses, filters, prisms, mirrors, beamsplitters, reticles, objectives, eyepieces plus thousands of other stockitems. Rolyn also supplies custom products and coatings in prototypes or production quantities. ROLYN OPTICS Co., 706, Arrowgrand Circle, Covina, CA 91722-2199, (818) 915-5707, FAX (818) 915-1379
 121W Wnesesp Rd Bathel Wa se8012 Europe - 0815390285 Fax: 0815588110

IN ONE STEP FIT \& RANK B.320 EQUATIONS TO YOUR X-Y DATA... Automatically!
 Automated Curve Fitting Sottware
 For Your IBM PC

TableCurve ${ }^{\text {m" }} \mathbf{3 . 0}$

Δ Linear, Non-linear \& User Defined Equations
Δ Unique \& Easy Graphical Review
Δ Rank by r^{2}, F -statistic, DOF r${ }^{2}$, or Fit Standard Error Δ Display Fractional Error at Xmin, Xmean, Xmax. Automatic Code Generation in Several Languages Tandel \triangle Complete Numeric Summaries Call for FREE Brochure PH 415-924-8640 Fax 415-924-2850 800-874-1888 CIRCLE NO. 327

New SMTransformer" for Telecommunications

For interconnect voice / data modem terminals

- Meets FCC Part 68 • Ht. $0.47^{\prime \prime}$ • For dry circuits - Coupling and hybrid • Freq. resp: $300-3500 \mathrm{~Hz} \pm$ $0.5 \mathrm{~dB} \cdot-45$ to +7 dBm rating \bullet Dist. 0.5% max - Return loss $26 \mathrm{dBm} \bullet$ Long. bal. $-60 \mathrm{~dB} \cdot 1500 \mathrm{~V}$ RMS hipot • Qty. price about $\$ 3.00$ • Custom designs available. Box 236 , Valley Stream, NY 11582-0236. Tel: 516-561-6050; Fax: 516-561-1117. CIRCLE NO. 330

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

PROTOTYPING

IRONWOOD offers a complete line of prototyping adaptors for QUAD FLATPAK devices for all sizes of EIAJ and JEDEC QFP's. The line includes surface mount adaptors for highest reliability or socketed adaptors for convenience. Parts sizes go from 60 to 208 pins and include all EIAJ pin spacings. Parts are constructed with gold plated soldertail or wirewrap pins and high quality sockets for highest reliability. Most wirewrap and PGA patterns available.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 340
Plug and Play!

Welch Allyn's SCANTEAM family of Instant Interface products plugs your business directly into bar coding.

- For laptops, PCs or terminals
- Bar code scanning and decoding in a compact wand scanner
- No footprint; single cable connection SCANTEAM 2380 keyboard wedge. SCANTEAM 6180 for RS-232 compatible output.

Welch Allyn $14{ }^{\circ}$

4619 Jordan Road, P.O. Box 187
Skaneateles Falls, NY 13153-0187
Telephone: 315-685-8945
CIRCLE NO. 343

How To Geł More Emulation for Less
 ORION 8620 ANALYZER-EMULATOR

- High-Level language/Symbolic debug support Over 170 processors supported with the same base hardware and software environment Easy-to-use, powerful triggering Extensive MACRO capabilities Program Performance Analyzer © Built-In EPROM programmer Go ahead and compare. The 8620 Analyzer-Emulator gets your product to market faster and costs less. Base prices start at $\$ 5080$. Send for more information and free demo disk.

Toll Free 800/729/7700 㕸 or 415/327/8800

IND-286 SBC

 ATCompaitible DISKIESS SBC Includes DOS in ROM Complete 16 MHz 80 C 286 Single Board Computer for embedded PC applications features a 4M-byte PROMDISK disk emulator with battery back-up and an MS-DOS 3.3 compatible disk operating system in ROM.Features Include:
4M-byte DRAM XT Size Board Keyboard Port 80287 Socket 2 COM, 1 LPT WatchDog IDE Disk Port Timer 4M PROMDISK Floppy Port 100% PC/AT Optional Video Compatible Optional Video
Daughter Bd.
Other Products:

- IND-88 PC/XT Single Board Computers - PROMDISK III \& IV Disk Emulators - FlexScan I \& II Bar Code Decoders

브ㄴㅡㅡ릉 micro

2598-g fortune way vista, ca 92083 phone: 619/598-2177 fax: 619/598-2450

CIRCLE NO. 341

Meritec's impedance matched PCB Solderable Interconnects solder directly to the PC Board for a permanent connection. Available in 1×2 and 1×3 configurations with connector heights as low as .150 " from the PC Board. For more information, call 216-354-3148

CIRCLE NO. 344

PRINTER PORT MOTION CONTROL

Indexer LPTTM $\$ 249$ Mc software

- Controls up to six simultaneous stepper motors
- Linear and Circular Interpolation
- Advanced features for machine control
- Easy to use DOS device driver
- CAD/CAM interface available

Ability Systems Corp
 1422 Arnold Ave., Roslyn, PA 19001 (215) 657-4338 FAX (215) 657-7815

Instrument Control and Data Acquisition

Free 1992 Catalog of instrumentation products for PCs, workstations, and more. Features IEEE-488.2 interfaces and software, plug-in data acquisition boardds, VXIbus controllers, DSP hardware and software, and signal conditioning accessories Application software for complete acquisition, analysis, and presentation of data, including graphical interfaces. Applica tion tutorials and training classes are detailed. National Instruments. 6504 Bridge Point Parkway, Austin, TX 78730 (512) $794-0100$ (800) $433-3488$ (U.S. and Canada) Fax: (512) 794-8411

CIRCLE NO. 342

RAINBOW LED
 CREATE ANY COLOR OF THE RAINBOW

- COMBINES RED

GREEN \& BLUE CHIPS
$470.660 \mathrm{~nm})$

- PHOTIC SIMULATION - MOVING DISPLAYS - ALL CHIPS ACCESSIBLE - T13/4 (5 mm) PACKAGE LEDTRONICS, INC.
4009 PACIFIC COAST HWY. - TORRANCE, CA 90505 TEL: [213] 549.9995 * FAX: [213) 5494820 * TLX: 4945454

CIRCLE NO. 345
High Speed Data Acquisition for Windows 3.0

DriverLINX ${ }^{\text {m }}$

- Real-time, multitasking, multiuser DLL device driver
- Language and hardware independent data-aca. interface to all OEM supported hardware
- Includes C source to a digital oscilloscope application
Scientific Software Tools, Inc.
30 E. Swedesford Rd.
Malvern, PA 19355
(215) 889-1354 FAX (215) 889-1630

CIRCLE NO. 755

Free Catalog

The World's Largest Collection of Adapters \& Accessories for VLSI/Surface Mount Devices

- Emulator Pods \& Adapters - Debugging Accessories
- Debug Tools
- Programming Adapters
- Prototyping Adapters
- Socket Converters
- Custom Engineering

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051 ${ }^{\text {E }}$

CALLER I.D. MADE EASY

CH1845 -

DAA Line Interface

- FCC Part 68 Approved
- Off-Hook Detect
- Ring Detect
- +5 Volt Operation
- Compatible with Caller I.D. Chips Your Source for Modem Components

Cermetek Microelectronics, Inc. 1308 Borregas Ave. • Sunnyvale, CA 94089

CIRCLE NO. 759
 PARISONS AND HAVE THE INFORMATION AT YOUR FINGERTIPS! THIS MENU DRIVEN PROGRAM WILL ALLOW YOU TOENTER THE UNIT OF MEASURE AND WILL DISPLAY AUTOMATICALLY ALL POSSIBLE CONVERSIONS. Whatever the question, "Quick Convert" has the answer. We offer this time saving package FOR ONLY $\$ 49$

Eclipse Computer Solutions, Inc. 2270 Lake Avenue, Suite 210 Fort Wayne, IN 46805 Telephone: (219) 424-2299 CIRCLE NO. 765

8051, 8096, 68HC11, 68332 SINGLE BOARD COMPUTERS

We feature a series of single board computers for process control applications. Each is available as a bare printed circuit board, or fully assembled and tested. Optional development software is also available. Please contact us to discuss your requirements and receive a literature package covering technical specs and pricing

ALLEN SYSTEMS
2346 Brandon Road, Columbus, OH 43221 614-488-7122

CIRCLE NO. 760

CMOS 186
Single Board Computer
Runs C or QuickBASIC Programs
Powerful 16 -bit computer directly executes EPROM's containing any C or BASIC. EXE file. NO LOCATORS! Software includes multi-tasking multi-drop comm, PID control, OPTOMUX.

- 10, 12, 16 MHz 80 C 186
- CMOS design

1011 Grand Central Ave., Glendale, CA 91201 (818) 244-4600 FAX (818) 244-4246

CIRCLE NO. 763

"Tango-Schematic. . .Corvette" power

CIRCLE NO. 762
UNIT CONVERSIONS. MADE EASY

ECS HAS TAKEN THE TEDIOUS TASK OUT OF CONVERTING MEASUREMENT UNITS OF OVER 200 DIFFERENT types. Withour "Quick Convert" software, you WILL SAVE VALUABLE TIME SEARCHING FOR COM-

- 512K RAM
- 384K EPROM
- STD BUS Expansion
- COMI RS232/485
- COM2, LPT1
- RTC Avail
- 80C187 Avail
- OEM discounts at a Chevette" price."
"I've tried other popular
schematic entry packages but
find that Tango-Schematic puts its performance and powerful features right at my
 interface. I alway recommend TangoSchematic." Mark Ross
Design Enginer

Tango-Schematic, featurerich and easy to use, is a truly complete program for schematic capture. Its affordable price includes great documentation and tech support and a moneyback guarantee.

See for yourself. Call today to order your free schematic entry evaluation package.

800 488-0680
619 554-1000 • FAX: 619 554-1019
ACCEL Technologies, Inc.
6825 Flanders Drive • San Diego, CA • 92121 • USA
6825 Flanders Drive - San Diego, CA
Contact us for the representative nearest you

CIRCLE NO. 767
Pick Of The Week
 - Real time color image capturing to 640×480 resolution NTSC or PAL Composite, S-Video, and RGBS inputs - 256 colors from a palette of 65,536 PC bus and Micro Channel versions available Only $\$ 895$ (NTSC/PC), 1 year warranty

TEL: 516-273-0404 FAX: 516-273-1638
CIRCLE NO. 770

ROM
 Turbo or Microsoft-C

C thru ROM is the complete fullfeatured ROM development kit you need to ROM your application. C_thru_ROM contains a CodeView-like remote debugger and the Turbo Debugger interface for debugging on your target system. It also contains a powerful 80×86 locator, startup code, and a ROMable library in source.
Call 1 (800) 221-6630 Today, and get full details on C_thru_ROM or ROM-DOS for embedded system.

Datalight

17455-68th Avenue N. E. Suite \# 304 Bothell, WA 98011 USA
Phone (206) 486-8086 FAX: (206) 486-0253 CIRCLE NO. 773

4MEG VIDEO Model 10
Flexible Image Processor and Application Accelerator For The PC/AT

- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPs Programmable Accelerator
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCIR input/output
- Variable timing for nonstandard formats
- Genlock to external timing sources
- Analog or digital inputs
- Software programmable timing/resolution

ODE P1M

3005 MacArthur Blvd., Northbrook IL 60062 708-498-4002 FAX: 708-498-4321
CIRCLE NO. 768

200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz), Timing and State - 200/100 MHz Max Sampling Rate (6 channel) - Timing and State Simultanious on Same Probe - 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL, or ECL Logic Threshold Levels
- 3 External Clocks and 11 Qualify Lines - FREE Software Updates on 24 Hour BBS
\$799-LA12100 (100 MHz)
\$1299 - LA27100 (100 MHz) Pice includes Card, \$1899 - LA27200 (200 MHz) Pods, and Sotware
UNIVERSAL PROGRAMMER PAL
GAL
EPROM EEPROM PROM
87xxx... 22V10

16Bit EPROMs FLASH EPROMs 5ns PALs 4 Meg EPROMs FREE software updates on BBS

GANG PROGRAMMER

- 4 32pin Sockets (8 Socket option) \$215
$-2716-27010$ EPROMs - 2716-27010 EPROMs

Call--(201) 808-8990
Link Computer Graphics, Inc.
369 Passaic Ave, Suite 100
Fairfield, NJ 07004 FAX:808-8786

CIRCLE NO. 774

REILABIITIY AND MAINTAINABIIITY prediction and filca anailsis sofiwart

Hundreds have used this leading computer-aided engineering software since 1982.
Powertronic Systems offers software to predict Reliability and Maintainability and for Failure Modes Effects and Criticality Analysis. Hundreds of users have selected from PS''s large, versatile and integrated software family for military and industrial equipment and for both electrical and mechanical systems. And, data inputs to these programs may be interactive or batch mode from other CAE or database programs.
Programs implement MIL-STD-1629; MIL-HDBK-217 including E Notice 1; and MIL-HDBK-472.

Powertranic Systems, Inc.
P. 0. Box 29109 New Orleans. 70189
(504) 254-0383 FAX (504) 254-0393

CIRCLE NO. 769

WRITE SOFTWARE WITHOUT LANGUAGE

DIRECT CODING
Software made easy. Professionals, Scientists, Engineers, Technicians.

M-Code $\$ 179.00$

A tool to write software for the 8088 family, 8051 family and other processors Call or send for data sheet

Box 4601 Carmel CA 93921 ystems (408)6259016 CIRCLE NO. 772

High Density Circular

 Process and Medical Equipment Connectors

D Series 7,9 and 12 contact cable to cable and chassis connectors provide MIL quality contacts in impact resistant Polycarbonate housing. Keyed simple push button lock minimizes use problems. Solder cup or crimp contacts are useable in either housing. For additional information, contact:

Hypertronics Corporation
16 Brent Drive, Hudson, MA 01749
(800) 225-9228 FAX: (508) 568-0680

CIRCLE NO. 775

You don't need a lot of pull to get our free catalog.

There's excitement brewing in the power supply industry! Get the details in TODD's free, 32-page full-color catalog. Full specs, performance, mechanical, pinout, mounting and applications information for over 100 outstanding OEM switching power supplies including the revolutionary, ultra-compact SUPERMAX 1000. TODD

PLCC LoClip - PLCC Probe

NEWPRODUCT
The PLCC-LoClipXX line from Ironwood is a new product line allowing probing of surface mount PLCC's at a fraction of size of other clips. The U and L ver. have right angle leads (cable connect or probing). Device heights of $0.75^{\prime \prime}, 0.57^{\prime \prime}$, and $0.45^{\prime \prime}$ for S, U, and L boards respectively enable probing of boards in backpanels. Interdevice spacing of 0.10 " allowed. PLCC's from 24 to 84 pins supported Kits of 10 with different sizes/carrying case available at substantial discount

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431-7025 CIRCLE NO. 777

YOUR WINDOW TO EMULATION PRODUCIVITY

- Easy to learn \& use

 Windowed interface -user contigurable FAST! Download -< 3 sec. typ. af 115 K Source Level debugA 4 K frame trace buffer with odvonced searching copobilities.

- Hyperlinked On-line help guides you through the emulation process.
- iceMASTER connects easily toy your PC, requires no disossembly, or exponsion slot. Works on ony PC (DOS or OS/2), MicroChannelor EISA Even loptops!
- Supports more than 50 different 8051 family derivatives. M68HC11 supportwill be ovaiboble early in 1991.
- Try ieeMASTER risk free! Sotisfaction Guoranteed or return for afull refund ! * - RENTALS AVAILABLEI Ideal for consultonts and researchers
- Coll today for free demo disk and ask about a free 8051 Macro Assembler! (800) 638-2423

Y/MeraLink

CIRCLE NO. 780
Now \$1495!*

Save $\$ 1000$
on our entry-level logic system.

- Includes the 212 Multi Programmer with logic module, ABEL-PLD ${ }^{\text {TM }}$ and
PROMlink
TM
Ltd.
PC Interface
Software
- Supports 20 -
and 24 -pin CMOS
logic devices
- Full-hex keypad for extensive editing - Compatible with JEDEC standard programming files

Optional EPROM and microcontroller modules
Call today to order!
No-risk, moneyback guarantee!
1-800-3-DataIO (1-800-332-8246)
*U.S. list price only.

Call for your FREE
ABEL-PLD ${ }^{\text {TM }}$ Design Softwar start-up kit!

1-800-3-DatalO (1-800-332-8246)
*U.S. list price only.

SNAP ACTION THERMOSTATS

Reliable, surface mounted, snap-action hermostats make or break current to temperature-critical devices. Some models open on temperature rise, others close, at open on temperature rise, others close, af fixed set points between $35^{\circ} \mathrm{F}$ and $550^{\circ} \mathrm{F}$.
Average delta is $30^{\circ} \mathrm{F}$. Various mounting and Average delta is $30^{\circ} \mathrm{F}$. Various mounting and
terminal options. Some units feature manual reset. Broad selection from stock. Attractive discounts in OEM quantities. Four-color catalog, free samples, and quotations on request.

Sdeco products co

7580 Stage Road, Buena Park, GA 90621 (213) 921-0681, (714) 521-8673, or (800) 229-2332.

FAX (714) 739-1507, TWX 655457
CIRCLE NO. 778

IF YOU DO
 TIMING DIAGRAMS

YOU NEED TIINGGDESIGNER
Δ TimingDesigner is the fast, accurate way to draw and analyze timing diagrams. Δ Calculates timing margins and instantly highlights timing violations.
\triangle Automatically generates complete, clear, standardized timing documentation.
Δ Runs under Windows ${ }^{\text {TM }} 3.0$ which means it supports hundreds of printers, plotters, and graphics cards.
Call 1-800-800-6494 to get a free demonstration. Chronology Corporation 2721 152nd Ave. NE Redmond WA 98052 (206) 869-4227 Fax: (206) 869-4229

RDER NOW FOR \$995
CIRCLE NO. 781
Surface Mount Chip Component

CC-1 Capacitor Kit contains 365 pieces, 5 ea of every 10% value from 1 pf to $.33 \mu$ f. CR-1 Resistor Kit contains 1540 pieces; 10 ea. of every 5% value from 10 ito 10 megn. Sizes are 0805 and 1206. Each kit is ONLY $\$ 49.95$ and available for Immediate One Day Delivery!

Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD, or Pre-paid orders. Company P.O.'s accepted with approved credit. Call for free detailed brochure.

Samtec New
 Sudden
 Solution
 Intercomnect
 Guide
 Samtec Interconnect Solutions Guide

Samtec's new 64 page Interconnect Solutions Guide features Board Stacking systems, $.025^{\prime \prime}$ Square Header and Socket systems, Micro and Low Profile Interconnects, Specialty Sockets and Adaptors, Surface Mount Interconnects and Custom Interconnects. The Guide introduces these systems with extensive applications drawings, and follows with complete specifications and ordering information.

For information contact Samtec, Inc., P.O. Box 1147, New Albany, IN 47151-1147. Phone 1-800-SAMTEC9, Fax 812-948-5047.

CIRCLE NO. 785

Lifetime FREE software updates via BBS/US Mail Unlimited toll-free technical support in USA
EP-1140 E/EPROM Programmer

$\$ 895.00$
Supporis over 1,000 devices
Recommended by Intel, Signetics, Dallas Semi, Xicor Qualified by intel, Signetics, Dallas Semiconductor $1,2, \& 4$ megabyte including the 16 -bit wide versions FLASH EPROMs - E/EPROMS • PSD301
High-speed CMOS PROMs
8 -pin serial E/EPROMs - $P^{\circ} C$ Microwire All variations of $87 C 51$ from AMD, Intel, Signetics 87 C58 and 87 C54 - DSP microcontrollers Works under Windows - Parallel Intertace - Single
Executable file Executable file
Call 1-800-225-2102 for information

BPMICROSYSTEMS

BP Microsystems, Houston, TX 77043-3239
Phone: (713) 461-9430 Fax: (713) 461-7413

CIRCLE NO. 788
PALs, PEELs, GALs, MICONs

and up

- Supports PDLs: PAls, GAls PEELs, Bipolar PROMs, plus
MICONs \& E/EPROMs MICONs \& E/EPROMS - Accepts HEX, -records,
Binary \& $J E D E C$ Ciles \rightarrow High-speed bus interface -8 , 16, \& 32-bit word splits -40 pin IIF socket - 1 BM PC/ XT/AT/386 compatible
- Expert technical support - 1 year warranty -30 day money-back guarantee

Order today Call 800-448-8500

SYSTEMS, INC. 4856

120 Union St., Rockport, ME 0485

 Outside US 207-236-9055 - FAX 207-236-6713 The source for quality embedded-system foolsIntegrates Schematic Capture, PCB Layouts \& Autorouting
This top-rated CAD out-routed the competition in the 1990 CAD Showdown. DC/CAD displayed its power and flexibility when
routing a double-sided board while competing routers used four to six layers. This non-copy protected package with surface mount support includes:

- Multi-strategy 1 -mil parts autoplacer
- "1-mil" autorouting w/ripup \& retry

- Thorough annotating design rule checker (priced from $\$ 395$)
- Full 2-way GERBER and DXF support
- Optional autoground plane support with cross-hatching
- Optional simulation capability \& protected mode for 386 users

LEASE PROGRAM \& SITE LICENSE AVAILABLE 30 DAY MONEY BACK GUARANTEE
IDESIGN
CCOMPUTATION कोण

DC/CAD . . Innovative, Intelligent \& Integrated Software CIRCLE NO. 786

Nichicon Electronic
Components

Aluminum Electrolytic Capacitors, Plastic Film Capacitors, Positive Thermistors "Posi-R", and Hybrid I.C.s "Hi-Net", are all listed in Nichicon's latest full line catalog. Over 150 pages complete with operating and test specifications. Chip type, ultra miniature, standard type, high realiability, special type audio, and can type electrolytic capacitors. Also Positive Thermistors for color TV auto degaussing circuits, thermal protection and overcurrent protection. Hybrid I.C.s include diode arrays graphic equalizer custom-made and switching regulator power series.
Nichicon (America) Corporation
927 East State Parkway, Schaumburg, IL 60173
Phone (708) 843-7500 FAX: (708) 843-2793
CIRCLE NO. 787

HYBRIDS
 PHONE: (913) 764-6400 FAX 913-764-6409

 311 NORTH LINDENWOOD DRIVE / OLATHE, KANSAS 66062CIRCLE NO. 790

> 4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

- Programs 2764A in 10 seconds

16/32 bit split programming - Menu driven software

- No personality modules required
- Adapter for $8748,49,51,52,55$, TMS 7742, 27210,

57C1024, and memory cards

- 1 year warranty $\bullet 10$ day money back guarantee - Made in the U.S.A.

For more information, call (916) 924-8037 EMPDEMO.EXE available BBS (916) 972-8042

NEEDHAM'S ELECTRONICS

4539 Orange Grove Ave. • Sacramento, CA 9584 (Monday - Friday 8:00 a.m. - 5:00 p.m. PST)

EPROM PROERAMWER

FOR THE PC \$139.95

CIRCLE NO. 792

CAREER OPPORTUNITIES

See pages 140-142 for Software Career Opportunities

區DN:
SINGAPORE
 DRAMatic MEGAbit Opportunities

TECH Semiconductor Singapore Pte. Ltd., a newly formed joint venture of Texas Instruments Incorporated, the Singapore Economic Development Board, Canon Inc., and Hewlett-Packard Company, is building a new state-of-the-art wafer fab in Singapore. Located in the Woodlands area in the northern part of the island, this fab will produce 16 Mb DRAMs using 0.5 micron, 8 inch wafer technology supplied by Texas Instruments.
We have exciting opportunities for Sr . Technologists/Managers, Process, Product, Equipment and Manufacturing Engineers who are currently authorized to work in Singapore. You will join our multi-national teams of professionals from around the world including the United States, Japan and Singapore. Opportunities exist for professionals with expertise in the following areas:

Diffusion/Clean-up
Plasma Dry Etch
Thin Film/CVD
Photolithography
Facilities (wafer fab) Product/Test (IC)
Responsibilities: All positions require a technical degree (with strong preference for advanced degrees), a minimum of 3 years experience for individual contributors and 8 for Sr. Technologists/Managers, as well as strong background and accomplishments in device physics, semiconductor manufacturing and process engineering and current authorization to work in Singapore.
To Apply: Send resume to Roger G. Coker, c/o Texas Instruments, P.O. Box 655303 M.S. 8333, Dept. EDN/SING, Dallas, Texas 75265 or fax 214-997-5536.

1991 Recruitment Editorial Calendar

Magazine Edition	Oct. 10	Sept. 19	Test \& Measurement Special Issue, Oscilloscopes, VXI Board Directory \bullet CAE/ASICs, Sensors \& Transducers $~$
News Edition	Oct. 17	Sept. 27	ATE/Board \& IC Testing, Artific- ial Intelligence**, Regional Pro- file: New Mexico \& Arizona**
Magazine Edition	Oct. 24	Oct. 3	Telecommunications ICs, Graphics Peripherals, Software, Wescon
			Preview Issue

Call today for information on
Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Scan the field. And you'll find few opportunities more intriguing.

INTERMEC, the world leader in automated data collection and pioneer of the bar code, has the technologyand a future - you can count on.

Greater Seattle - One of America's most livable areas!

The greater Seattle area offers unique geography with many recreational and cultural entertainment opportunities. The water, mountains and forests provide a feast of activities for outdoor enthusiasts. If you want to join our team, we are looking for a:

Sr. Electrical Engineer/DSP

You will design complex digital embedded systems incorporating DSP and microprocessor elements. Design covers all aspects from overall hardware architecture to detailed schematics. Requires an MSEE degree and a minimum of 7-10 years' related experience. Familiarity with high speed memory, gate array, PAI and programmable logic devices a plus. Xilin x design experience and familiarity with machine vision and pattern recognition would be useful.

You will find an outstanding salary and benefits package, including cash profit sharing and a 401 K . Please send your resume to: INTERMEC Corporation, Attn: Human Resources-CD, 6001 36th Avenue West, Everett, WA 98203-9280. Equal Opportunity Employer.

Powerful People. Powerful Products.

Many choose to compromise their lifestyle to achieve success. Intel professionals in the greater Sacramento area don't make concessions. We work with the most advanced design tools and techniques to keep our technology at the leading edge, and leave the others trying to catch up.

POWER MOVE

Successful products require a strong foundation and fresh ideas. Our foundation, your ideas. Make a Power Move and consider the following openings.

We currently have opportunities available within the following dynamic and growing product areas. Our Entry Level Products Group designs microprocessors for the portable, notebook and palm-top computer markets, communication components and Intel network cards. The Integrated Microcomputer Division/Microprocessor Products Group is responsible for high-end microprocessors, bus chip sets, peripherals, and programmable logic component products for desktop computers and workstations of the future.

System Architects

Combine customer needs with emerging technologies to define future system requirements. Interact with Design and Marketing to determine cost/performance trade-offs, and create the optimized component-level partitioning. Define the components and follow-up through implementation. Keep up with market requirements to create derivative products. Specific development areas are high integration desktop, notebook, and palm-top computers, and multiprocessor servers. Requires a BS/MS in EE/CS, and at least 4 years of system design experience, knowledge of PC hardware, and familiarity with low-level programming in DOS and/or UNLX*.

Component Design Engineers

Join a team designing peripheral devices for a wide range of single or multiprocessing applications on the PC, workstation and high-end system areas. Responsibilities include CMOS, VISI component design on products such as mp chips, EISA bus chips, DMA controllers, or cache controllers. Requires a BSEE/CE, or equivalent, and a working knowledge of computer architecture and system design concepts preferred.

System Validation Engineer

Support the verification of Intel's newest Notebook PC-based microprocessors. Requires a BSCS/BSEE and at least 3 years' experience with Intel $385^{\text {TM }}$ based PC hardware and software. Must have MASM and C programming experience.

Make a Power Move to Intel in the greater Sacramento area and experience all the personal perks of California's recreation capital. Our area happens to be ranked as one of Newsweek's top urban areas with a relatively lower cost of housing, a lower cost of living, and a rush hour that's not so rushed. For immediate consideration, please FAX or send your resume to: Intel Staffing, P.O. Box 1141, Dept. F644, Folsom, CA 95630, FAX (916) 351-5522.

Intel Corporation is an equal opportunity employer and fully supports affirmative action practices. Intel also supports a drug-free workplace and requires that all offers of employment be contingent on satisfactory pre-employment drug test results.

Knock, Knock.

 In EDN's Magazine and News Editions, opportunity knocks all the time.
If you're looking for work, just look here.

Engineers

DELL IS TO COMPUTER DESIGN AS AUSTIN, TEXAS, IS TO LVING

At Dell, we believe in letting the imagination of our engineers shape the design of our award-winning products.
From the technically advanced Dell System 320N notebook, with state of the art power management, to Dell's newly announced i486 desktop system with upgradeable processor cards, through Dell's innovative UNIX Y.4, Dell is a leading high technology company.
Dell engineers enjoy a technical environment virtually free from the bureaucratic hassles of most large corporations. So you get to focus on the things that really matter - designing better computers.
And beyond our unique work environment, we also offer a truly unique living environment in Austin, Texas. With scenic foothills, crystal lakes, a variety of cultural activities and beautiful neighborhoods, the lifestyle in Austin compliments the work style of Dell.

ENGINEERING

- Personal Computer Motherboard Design
- UNIX Development
- Persenal Computer Network

Development

- EISA BUS Logic Design
- BIOS Firmware Design
- Systems Integration Expert
- Mechanical Engineer

The biggest challenges in the computer industry are taking shape at Dell in Austin, Texas, where you will find the opportunities are challenging, the cost of living is low, the quality of life is high and the compensation and benefits packages are excellent. If you have a minimum of two years of computer industry experience and a related degree, please fax or mail your resume with a cover letter to: 512/343-3330, Dell Computer Corporation, Jerry Holt, Professional Employment, Department EDN-9/16/91, 9505 Arboretum Boulevard, Austin, Texas 78759.

Dell is proud to be an equal opportunity employer.

Announcing a new placement service for professional engineers!

To heip you advance your carser. Placement Services, Ltd. has lormed the EDN Databank. What is the Databank? it is a computerized system of matching qualified candldates with positions that meat the applicant's prolessional needs and desires. What are the advantages of this now service?

- It's absolutaly free. There are no fees or charges.

IDENTITY

- The computer never forgets. When your type of job comes up. It remembers you're quallifed.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and it's affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sant to your company or parant organization.
- Your background and career objectives will periodically be reviowed with you by a PSL professional placement persen. We hope you're happy in your current pesition. At the same time, chancas are there is an Ideal job you'd prefer if you knew about it. That's why it makes sanse for you to register with the EDM Databank. To do se, just mall the completed form below, along with a cepy of your resume, to: Placement Services, Ltud., Inc.

PRESENT OR MOST RECENT EMPLOYER

POSITIONDESIRED

| EMPERAEMAE | Present or Most
 Recent Position \quad From:\quad To: \quad Industry of Current Employer: |
| :--- | :--- | :--- | :--- |

\qquad

Reason for Change:
Job Title:
\qquad From: \qquad To: \qquad City: \qquad State: \qquad
Division: Type of Industry: \qquad Salary:
Duties and Accomplishments:
COMPENSATION/PERSONAL INFORMATION

Our New Attitude Is A Winner. So Is Our Location.

A fresh determination to improve upon our already premier position in the personal computer field. Bold new management. A substantial increase in R\&D expenditures. Progressive new work options. Breakthrough award winning products. It's happening today in a location where you can reclaim a more pleasant way of life. Zenith Data Systems has all this and more. Maybe it's time you gave us a new look.

We're now involved in an unprecedented hiring effort for engineers with 3 or more years' related experience. It's your opportunity to join our $\$ 1+$ billion organization at the R\&D center for PCs and laptops with one of the world's top 10 information technology companies.

HARDWARE
 DESIGN ENGINEERS

We desire a BSEE and Intel Chip Technology 286/386/486 experience.

ASIC Design:

- Gate Equivalent
- Gate Array
- Behavioral Modelling
- Gate Level Simulation
- Fault Coverage
- HDL/VHDL
- IEEE Standard \#1076
- Logic Synthesis
- CMOS
- Gate Level Design
- "C" Programming

Board Level Design:

- Logic Design to Gate Level
- Component Level PAL's/PLD
- FPGA
- State Machines
- RFI
- DOS-Windows-UNIX
- Performance Techniques
- Bus Design EISA - ISA
- System Design

SYSTEM SOFTWARE ENGINEERS

Requires BSCS or related degree and experience with "C" Assembler and Intel x86 protected mode architecture. Develop and maintain device drivers and system software for:

- Network server operating systems
(Netware, LAN Manager, VINES, etc.)
- UNIX Operating System
-OS/2 Operating System
- Software Engineering on DOS Windows

ZAFWTH

Groupe Bull

Giving you a new view.

EDN's CHARTER

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN's Magazine Edition

 also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on"' engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

275 Washington St Newton, MA 02158
(617) 964-3030

BUSINESS/CORPORATE STAFF

Peter D Coley, VP/Publisher
Newton, MA 02158; (617) 558-4673
Ora Dunbar, Assistant/Sales Coordinator
Mark J Holdreith, Associate Publisher
Newton, MA 02158; (617) 558-4454
Deborah Virtue, Business Director
Newton, MA 02158; (617) 558-4779
BOSTON
Chris Platt, Regional Manager
Clint Baker, Regional Manager
Newton, MA 02159; (617) 964-3730
NEW YORK/NEW JERSEY
Daniel J Rowland, Regional Manager
249 West 17th St; (212) 463-6419
New York, NY 10011
PHILADELPHIA
Steve Farkas, Regional Manager
487 Devon Park Dr. Suite 206

CHICAGO

Greg Anastos, Regional Manager
Jack Johnson, Regional Manager
1350 E Touhy Ave, Box 5080
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60018; (708) 635-8800

ARIZONA

John Huff, Regional Manager
44 Cook St, Denver, CO 80206
303) 388-4511

COLORADO

Bill Klanke, Regional Manager
44 Cook St, Denver 80206
(303) 388-4511

DALLAS 75251
Al Schmidt, Regional Manager
12201 Merit Dr, Suite 730
(214) 419-1825

SAN JOSE 95128
Frank Granzeier, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100; (408) 243-8838

LOS ANGELES

Charles J Stillman, Jr
Regional Manager 12233 W Olympic Blvd Los Angeles, CA 90064 213) 826-5818

Susan Green

 18818 Teller Ave,ORANGE/SAN DIEGO/RIVERSIDE COUNTIES
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715; (714) 851-9422
PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
1750 Skyline Blvd, Box 6
(503) 297-4305

EUROPEAN OPERATIONS
Tully Giacomazzi, Managing Director
27 Paul St, London E
Fax:011-44-71-628-5984
UK \& BENELUX
Colin Smith
Oliver Smith \& Partners
18 Abbeville Mews
88 Clapham Park Road
London SW4 7BX
SCANDINAVIA
Stuart Smith
27 Paul St, London EC2A 4JU UK Tel: 44-71-628-7030; Fax: 44-71-628-5984

FRANCE

Laura Whiteman
14 Rue des Parisiens
92600 Asnieres sur Seine
France
Tel: 331-47900507
Fax: 331-47900643
BAVARIA
Karin Steinbacher
New Media Munchen
New Media Munche
Ismaniger Str 108
8000 Munchen 80
Germany
Tel: 49-89-98-51-35
Fax: 49-89-981-0117

SWITZERLAND

Peter Combag, Roswitha N Kunzle
Exportwerbung AG
Tel: 411261 4690; Fax: 4112514542

ISRAEL

Asa Talbar, Talbar Media
Box 22917
Tel Aviv 61228, Israel
Tel: 972-3-223-621; Fax: 972-2-247-403

HONG KONG

Adonis Mak
Cahners Asia Limited
22nd fl, Lo Yong Court Commercial Bldg
212-220 Lockhart Road
Wanchai, Hong Kong
Tel: 852-572-2037; Fax: 852-838-5912
JAPAN
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tel: 81-3-366-8301; Fax: 81-3-366-8302

KOREA

Jeong-guon Seo
DooBee International Inc
Centre Bldg, 1-11 Jeong-dong
Choong-ku, Seoul, Korea
Tel: 82-2-776-2096; Fax: 82-2-755-9860

SINGAPORE/MALAYSIA

Hoo Siew Sai
Ad Media Private Ltd
\#09-13 Pidemco Centre
\#09-13 Pidemco
Tel: 65-532-4026; Fax: 65-532-4027

AUSTRALIA

Alexandra Harris-Pearson
World Media Network Pty Ltd
Level 2, 285 Clarence Street
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788; Fax: 61-2-283-2035

TAIWAN

Parson Lee
Acteam International Marketing Corp
Tel: 886-2-7114833; Fax: 886-2-7415110
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415; Fax: (212) 463-6404

INFO CARDS

Heather McEIkenny
Newton, MA 02158; (617) 558-4282
CAREER OPPORTUNITIES/CAREER NEWS
Roberta Renard, National Sales Manager
Roberta Renard, National Sales Manager
Janet O Penn, Eastern Sales Manager
Janet O Penn, Eastern Sales Mana
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
(201) 228 -8602, 228-8610, 228-8608

Fax: (201) 228-4622
Nancy Olbers, Western Sales Manager
238 Highland St
Portsmouth, NH 03801
(603) 436-7565; Fax: (603) 436-8647

Andrea Marwitz, Reprint Orders
(708) 390-2240

Direct Mail Service
(708) 390-2361

Wendy A Casella, Mary Beth Cassidy, Muriel Murphy
Advertising/Contracts Coordinators; (617) 964-3030
William Platt, Senior Vice President, Reed Publishing USA
Cahners Magazine Div
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Executive Vice President/General Manager,
Tom Dellamaria, VP/Production \& Manufacturing
Circulation: Denver, CO: (303) 388-4511
Eric Schmierer, Group Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60017. Phone (708) 390-2240.

Yes we do!

Provide complete services for electronic modules -- from
 design, to prototyping, through to production for a complete line of SEMs. From the MIB (bare board) to a completed, fully qualified module -- regardless of quantities.
We literally program our total capabilities to meet your specific needs. Provide design to specifications; partial and complete design services; build- to-print production; manufacturing, integration and testing operations.
A self-contained group is devoted exclusively to modules. It draws upon Raytheon's 20 years' experience in the design of more than 600 module types. Their imaginative engineering, combined with cost-cutting design concepts and manufacturing methods, assures you modules costeffectively made to unsurpassed standards of quality and reliability. All work is done in facilities baseline-certified for MIB's to NWSC (Naval Weapons Support Center) requirements. We're also certified for Formats A, B, D \& E.
A phone call will get things moving. OEM's or system integrators should call or write: Marketing Manager, Production Components, Raytheon Company, Submarine Signal Division, 1847 West Main Road, Portsmouth, RI, USA 02871-1087. Phone 401 847-8000, Extension 2054.

EDN's INTERNATIONAL ADVERTISERS INDEX

Ability Systems Corp 267	Hughes Aircraft Co
Abbott Electronics 156	Huntsville Microsystems Inc C2
ACCEL Technologies Inc 269	Hybrids International 272
Actel . 50-51	Hypertronics Corp 266, 270
Adaptec Products Co 203	IBI Systems Inc 269
Advanced Micro Devices 10-11, 52-53,	IBM Corp 146-147
Advanced Technology Development Inc . . . 250	IDT . 61
Aerospace Optics 79	ILC Data Device Corp 63
Alcatel . 125	Incredible Tech 266
Allen Systems 269	Innovative Software Systems 266
American Arium 209	Intel . 100-101
American Neuralogix 207	Intermetrics Inc 128, 232
American Reliance 268	International Rectifier 143
Ametek . 250	IOtech Inc 258
AMP 144-145	Ironwood Electronics Inc 267, 271
Analogic Corp 80	Jandel Scientific 126, 265
Ariel . 205	John Fluke Manufacturing Co Inc* 38, 257
Asahi Kasei Microsystems** 173	Ledtronics Inc 267
Astec America 211	Linear Technology Corp 198
AT\&T 252-253	Link Computer Graphics Inc 270
Atlanta Signal Processors Inc 219	Loughborough Sound Images Ltd ${ }^{* *}$. 107
Avocet Systems Inc 272	MathSoft Inc 129, 259
AVX Corp 58	Maxim Integrated Products . .65, 67, 69, 71, 73
BASF** 26-27	Maxtor 248-249
Belden Wire \& Cable C4	MCSI . 267
Biomation 119	Mechanical Products 228
P Micro 272	Meritec . 267
BP Microsystems 68	MetaLink Corp 271
Buckeye Stamping Co 265	Micro/Sys 269
Burr-Brown Corp 28, 219	Microtran Co Inc 265
Bussmann 210	Mini-Circuits Laboratories 3, 4, 22-23,
CAD Software Inc 244	32-33, 201
Cahners CAPS 173	Mitsumi Electronics 250
Capital Equipment Corp 219	Motorola 122-124
Capilano Computer Systems Inc 268	Motorola Semiconductor
C \& K Components Inc 246	Products Inc 46-47, 193-195
Central Semi 246	Murrietta Circuits 264
Cermetek 269	National Instruments 94, 267
Chronology 271	National Semiconductor Corp* 220-222
Cirrus Logic 72	NEC Corp 102, 189, 256
Comdisco 226	Needham Electronics 272
Communications Specialties Inc 270	Nichicon Corp 272
Communication Specialists 271	Nicolet . 40
Compu Digital 268	Nohau Corp 227, 265
Conner Peripherals 90-91	OKI Semiconductor 26-27
Cypress Semiconductor 19	Omnibyte Corp* 239-240
Dale Electronics Inc 1, 244	OrCAD Systems Corp 8-9
Data I/O Corp 157-172, 271	Orion Instruments 267
Datakey . 97	Otto Controls 230
Datalight . 270	Paradigm 121
Datel . 107	P-Cad . 84-86
Deltron Inc* 256A-D	Pentica Systems 120, 127
Design Computation Inc 272	Performance Semiconductor Corp 70
Dexter Magnetics 264	Philips Components** 81-83
DigiKey . 2	Pico 218, 251
DOS Systems 270	Planar Systems 259
ECM . 260	Power Trends Inc 237
Eclipse Computer 269	Powertronic 270
sof . 56	Pulse Engineering 241
Elcon . 266	Qua Tech Inc 228
Electronic Measurements Inc 224	Raytheon 279
Emulation Technology Inc 42, 269	RC Systems 265
EPIX Inc . 270	Real Time Devices 245
Ericsson Components 148	R O Associates Inc 214
Fujitsu Inc 2225	Rogers Corp 272
Fujitsu Microelectronics Inc 24-25	Rolyn . 265
Futaba Corp of America 229	Samsung Semiconductor 12-13
GE Plastics 268	Samtec Inc 254-255, 272
Glassman High Voltage Inc 231	SBE . 180
Grammar Engine Inc 268	Scientific Software 267
Grayhill Inc 96	Seagate Technology 41
Hamilton Avnet Electronics 234	Selco Products Inc 271
Harris Semiconductor 196-197	SenSym . 191
Hewlett-Packard Co 16, 48, 54-55, 139	Sharp Electronics 155

To build the fastest gun in the mobile remote data gathering business, UDS has combined a 9600 bps modem with a Motorola Radius crystal controlled radio. The combination, packaged in a single, high-impact polycarbonate case weighs in at 15.5 ounces and is the size of a walkie-talkie.
The result is the DR96, the ideal RF solution for point-to-point or point-to-multipoint data acquisition applications.
The unit's small size and light weight belie it's usefulness, while its 2 W transmitter gives it plenty of output muscle. The half-duplex modem communicates at 9600 bps , synchronous or asynchronous. It includes integral self-test capabilities and transmit/receive indicators. Since it has no protocol overhead, the full throughput of the channel is available for data handling. A nine-pin TTL DTE interface is provided, and an optional external interface can convert signals to standard RS-232 levels.

The frequency modulated Motorola radio operates in the $450-470 \mathrm{MHz}$ commercial band. It is "keyed" by the RTS signal. There's even a belt clip for true portability and hands-free operation.

When you face a datacomm showdown in places where phone lines don't go, give yourself the edge. For specifications and prices on the DR96, contact UDS at 800/451-2369 (in Alabama, 205/430-8000);FAX 205/430-8926.

BELDEN brings out the custom in our customers.

Belden is known worldwide as a leading supplier of wire and cable products including fiber optic cables, multi-conductor/multi-paired cables, flat cable and connectors, coaxial cables, lead wire, plenum cables, power supply cords, and molded cable assemblies. What is not so well-known is the fact that every "standard" wire and cable in our Master Catalog started out as a custom design for a specific application.
World's largest wire and cable engineering facility.
In May, 1990, Belden dedicated the most progressive and innovative cable development facility in the world today: the Belden Engineering Center (BEC). Housing over 100 engineers and technicians, this 70,000 square foot facility is committed
to keeping our OEM customers on the leading edge of technology with product development samples, process capabilities equipment, compound materials analysis, and testing and evaluation labs.

The BEC is where Belden brings out the custom in our customers with custom design or co-development of new products, custom modification of standard products, and all the technical assistance you need to keep you ahead of your competition.
Quality you can stake your reputation on.
As a leading edge manufacturer, Belden's mission is continuous improvement toward a goal of 6 -Sigma quality. Total Quality Control is the central theme in
all of our processes, from vendor quality assurance through customer service. That's why original equipment manufacturers (OEMs) like IBM, Black \& Decker, Motorola, DEC, Skil, Makita, and Milwaukee Electric Tool rely on Belden for wire, cable, cords, and assemblies they can count on for flawless performance and exceptional reliability.

For more information about how Belden can turn your dreams into reality, call:
1-800-BELDEN-4

BELDEN

Copyright © 1990 Cooper Industries, Inc.

[^0]: EDN (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN ${ }^{\text {® }}$ is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{*}$, PO Box 173377 Denver, CO 80217-3377. EDN ${ }^{*}$ copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$119.95/year; Mexico, \$169.95/year; Canada, \$181.85/year all other nations, $\$ 209.95 / y e a r$ for surface mail and $\$ 329.95 / y e a r$ for air mail. Single copies are available for $\$ 15$. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Media \square Home Furnishings \square Interior Design \square and Lodging. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^2]: *(32) 2-652-0270 in Europe. © 1991 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: 1 (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0753.

[^3]: * In Canada call 1-800-387-3867, Dept. 429 O1991 Hewlett-Packard Co. TMCOL123/EDN

[^4]: C1991 Actel Corporation, 955 E Arques Ave., Sunnyvale, CA 94086. ACT, Action Logic, Activator, ALES, PLICE, and Action Probe are trademarks of Actel Corporation. All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.

[^5]: HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, NY 11716, (516) 567-5600, TLX: 310-685-2203, FAX: (516) 567-7358, (516) 563-5208

 WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
 WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767 WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
 NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
 UNITED KINGDON: 44 (635) 40158, FAX: 44 (635) 32264; FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762 GERMANY: 49 (8191) 3105, FAX: 49 (8191) 47433; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181 JAPAN: 81 (33) 814-7688, FAX: 81 (33) 814-7689; IRELAND: 353 (21) 341065 , FAX: 353 (21) 341568

[^6]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 238-7500; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (201) 428-0600, (609) 778-5353; New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171; N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 238-7500; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 238-7500, (512) 835-5822, (713) 789-2426; Utah, (801) 561-5099; Virginia, (301)644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

 1000-up FOB USA, suggested retail.

[^7]: The MAX526's double-buffered 8-bit parallel interface simplifies digital connections by eliminating "glue" logic. The analog interface is also simplified by built-in output amplifiers, eliminating external op-amps and providing the speed and drive needed for most applications.

 ## FREE Analog D/A Design Guide

 Including: Application Notes \bullet Data Sheets \bullet Cards For Free Samples To receive your free design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194

 Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware (609) 778-5353: Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan. (313) 352-5454; Minnesota, (612) 941-9790 Mississippi, (205) 830-0498; Missouri. (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (201) 428-0600, (609) 778-5353; New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171; N. Carolina (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) $278-0714$; Wiscon $\sin ,(414)$ 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540

[^8]: -London: (44) 071-409-0090 • Munich: (49) 89-129-8061 - Paris: (33) 1-47-47-41-08 - Aosta: (39) 125-800260 • U.S. - Boston: (617) 449-9550 • Dallas: (214) 680-2913 • Irvine: (714) 727-2462 • Minneapolis: (612) 449-5186 • San Jose: (408) 456-4500.

[^9]: Intel386 and Intel486 are trademarks of Intel Corporation. Pink Pearl ${ }^{\text {® }}$ is a registered trademark of Eberhard Faber Inc. © 1991 Intel Corporation.

[^10]: DSP coprocessor boards incorporate multiple $\mu \mathrm{Ps}$, high-speed I/O, and extensive memory capacity to broaden the field of applications within your computer's grasp. (Photo courtesy AT\&T Microelectronics and Heurikon Corp)

[^11]: 14. MOPS=millions of operations per sec.
 15. SRAM is divided equally between processors.

 Each processor's memory is half local and half global.
 16. '- N ' after number of bytes denotes nonvolatile memory.
 17. ' $-R$ ' after number of bytes denotes read-only memory.

[^12]: 14. MOPS=millions of operations per sec.
 15. SRAM is divided equally between processors. Each processor's memory is half local and half global.
 16. '- N ' after number of bytes denotes nonvolatile memory.
 17. '-R' after number of bytes denotes read-only memory.
[^13]: SUNBELT OPPORTUNITIES
 BSEE Director Linear I C Design
 to \$80K
 BSEE Director Software Test Development to $\$ 80 \mathrm{~K}$
 BSEE Commercial Switch Mode Power Supply Design to $\$ 60 \mathrm{~K}$ Linear power amplifier/P-Spice a plus
 BSCS Commercial DSP Software Eng. TI chip C25 BSCS SW Project Leader X. 25
 BSCS Software Development Eng. Unix kernal
 BSCS Software Development Eng. R/T Embedded VAXELIN
 BSCS Software Test Evaluation Engineer
 to \$55K
 to \$55K
 to $\$ 55 \mathrm{~K}$
 to $\$ 55 \mathrm{~K}$

 BSEE VHDL Modeling Engineer
 to \$55K
 to $\$ 55 \mathrm{~K}$
 BSME Mechanisms design, gears, motors, to $\$ 50 \mathrm{~K}$ plastic housings

 FORTUNE PERSONNEL CONSULTANTS of Raleigh, Inc.
 P.O. Box 98388E, Raleigh, NC 27624-8388 919/848-9929 Fax: 919/848-1062

 STAN DECKELBAUM

[^14]: IBM and AIX are registered trademarks and RISC System/6000 and graPHIGS are trademarks of International Business Machines Corporation. SPECmark is a trademark of Standard Performance Evaluation Corporation. X Windows Systems is a trademark of Massachusetts Institute of Technology. GL is a trademark of Silicon Graphics Inc. Motif is a trademark of The Open Software Foundation, Inc. UNIX is a registered trademark of UNIX System Laboratories, Inc. HAGAR THE HORRIBLE Character(s) (C) 1991 King Features Syndicate, Inc. (c) 1991 IBM Corp.

[^15]: Cahners Technical Information Service - 275 Washington Street • Newton, MA 02158-1630 Telephone: 617-558-4960 - Facsimile: 617-630-2168 - Telex: 940573 - Toll-free: 800-245-6696 CAPS is a registered trademark of Reed Publishing (USA) Inc.

[^16]: Z8 is a registered trademark and Superintegration is a trademark of Zilog, Inc (C) 1991, Zilog, Inc.

[^17]: ${ }^{*}$ Limited quantities available. All brand and product names appearing in this ad are registered trademarks or trademarks of their respective holders. (C) 1990 Motorola, Inc.

[^18]: Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

[^19]: Australia (02) 654 1873, Austria (0222) 3876 38, Benelux +31 1858-16133, Canada (514) 689-5889, Czechoslovakia 0202-2683, Denmark (42) 6581 11, Finland $90-452$ 1255, France (01)-69 4128 01, Germany $08131-25083$, 'Great Britain $0962-7331$ 40, Greece 01-862-9901, Hungary (1) 117 6576, Israel (03) 4848 32, Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portugal $01-80$ 9518, Norway 02-649050, Singapore (065) 284-6077, Spain (93) 217 2340, Sweden 040-9224 25, Switzerland (01) 7404105 , Taiwan (02) 7640215, Thailand (02) 281-9596, Yugoslavia 061621066

[^20]: VAX ${ }^{I M}$, VAXELN ${ }^{T M}$ and DEC ${ }^{T M}$ are trademarks of Digital Equipment Corporation.
 VMIC products are internationally represented by Distributors throughout the world.

[^21]: \square Send me more information about attending WESCON/91
 ㄴ Send me more information about exhibiting at WESCON/91

[^22]: Engineers for Education American Association of Engineering Societies 1111 19th St NW, Suite 608 Washington, DC 20036 (800) 489-0348

 MathCounts
 National Society of Professional Engineers 1420 King St
 Alexandria, VA 22314 (703) 684-2828

 Junior Engineering
 Technical Society
 1420 King St, Suite 405 Alexandria, VA 22314
 (703) 684-5387

 Science Olympiad 5955 Little Pine Ln Rochester, MI 48064 (313) 651-4013

 Physics Olympics
 American Association of Physics Teachers
 5110 Roanoke Pl
 College Park, MD 20740
 (301) 345-4200

 VOTE . .
 Please also use the Information
 Retrieval Service card to rate this article (circle one):
 High Interest 488
 Medium Interest 489
 Low Interest 490

