

Sensitive oscilloscope measurements
Fiber-optic sensors pg 59
Electro/International Show:
Sessions and Products pg 107
Designers' guide to servo
simulation-Part 2 pg 123
ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

IE $555-2$

Special Report: Switching supplies use chips and chokes to correct power factor

Uncanny capacitance.

NEC Supercaps offer out-of-this-world performance.

Creating high capacitance in small cases has been an NEC specialty for decades. The three new Supercaps in our FM series are an extraordinary example.
To equal the 0.169 F capacitance that NEC has packed into these electric double-layer capacitors, Mother Nature would require 238 spheres the size of planet earth.

Fast charging, semipermanent life and excellent safety factors make NEC Supercaps an ideal
replacement for backup batteries. Supercaps come in eight series, covering a wide range of backup needs from CMOS RAMs and microcomputers to large-current

applications. For more information, contact NEC today.

Series	Application	Capacitance (F)	Feature
FYD		$0.022-2.2$	Space saving
FYH		$0.022-1.0$	Low profile
FYL	RAM/microcomputer backup	$0.01-0.047$	Extra low profile
FM		$0.022-0.1$	Auto insertion/soldering
FR		$0.022-1.0$	Wide operating temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
FS	Medium backup current	$0.022-1.0$	
FA		$0.047-1.0$	5.5 V
	Large backup current	$0.022-0.47$	11.0 V
FE		$0.047-1.5$	Low ESR

PC Data Acquisition Quality • Innovation • Performance

The National Instruments AT-MIO-16F-5 Sets the New Standard

It takes a serious commitment to quality to deliver data acquisition boards that reliably meet the most demanding specifications. Our new AT-MIO-16F-5 creates a new standard in excellence with several firsts, including a proprietary ultra high-performance instrumentation amplifier, a dither generator for extended resolution, and self-calibration that eliminates the need for external signals required by other "self-calibrating" boards. The quality, innovation, and
performance of our AT-MIO-16F-5 sets the new standard in PC data acquisition. As the table below shows, the rest of our extensive PC product line surpasses industry standards. Each board undergoes a 48-hour burn-in, and passes a thorough system test to guarantee linearity, fast analog input settling, high common-mode rejection, and low noise. At National Instruments, we're serious about data acquisition.

SE - Single-Ended, DI - Differential, SS - Simultaneous Sampling
$\dagger 8$ Channels $\operatorname{In}, 8$ Channels Out

Our new function generator has all the bells and whistles.

In fact, it has any kind of waveform you can imagine. Because the Model 95 combines a high performance function generator with a powerful arbitrary generator.

As a function generator, Model 95 produces remarkably pure square waves, triangles and sines, from 1 mHz to 20 MHz with synthesized accuracy up to 0.001%. It has
the power to output $15 \mathrm{Vp}-\mathrm{p}$ into 50Ω, and includes sweep, pulse and modulation modes plus four user-selectable output impedances. There's even an internal trigger generator for trigger, gate and burst.

If you'd rather be arbitrary, Model 95 gives you up to 128k of waveform memory to work with, and a sample rate of 20 MHz . Four different editing
modes help you produce even the most complicated wave shapes quickly and accurately, while analog and digital filters allow you to create the purest output possible.

For information about all the other bells and whistles you'll find on the Model 95, call Wavetek San Diego, Toll Free at 1-800-874-4835 today.

Now, find errors fast, with a portable 1 GSa/s scope that gets right to the point.

At $\$ 10,950$ *, you won't find a better value in a digitizing scope.
When you need to troubleshoot and debug digital designs fast, you can't afford to miss a thing. And now, you don't have to. The HP 54510A looks at a billion samples a second with a timequalified pattern triggering and an infinite persistence display to pinpoint rare events and elusive glitches the instant they happen.

You don't have to stick around to watch, either. The HP 54510A has 8 k of memory per channel to capture and store single events. So, you can go back and get all the details you need-with razor-sharp, 8 -bit resolutionand track the problem to its source. And to point you to the right solution, the HP 54510A gives you 17 pulse-parameter measurements, with better horizontal and vertical accuracy than the Tek DSA 602, at onethird of the cost.

So, if you're looking for a solution to high-speed troubleshooting, call 1-800-752-0900**. Ask for Ext. 1902, and we'll send you an application note on the HP 54510A that shows you how to find faults fast.
*U.S. price only.
**) In Canada call 1-800-387-3867, Dept. 423.
There is a better way.

On the cover: If you think your off-line switching power supply draws only sinusoidal current, you may be underestimating the incoming ac line current by as much as 40%. Supplies corrected for the input current's power factor-the result of the nonsinusoidal current waveshape-are better equipped to meet the needs of many ac-powered products. See our Special Report on pg 90. (Photo courtesy Kepco Inc)

SPECIAL REPORT

Power-factor-corrected switching power supplies

Goaded by the IEC and encouraged by IC vendors, firms that make switching power supplies are starting to correct a longstanding problem: their products' propensity to draw nonsinusoidal line currents.-Dan Strassberg, Associate Editor

DESIGN FEATURES

Electro/International

This show will provide you with information on new electronic products, technologies, and professional career issues.-John Gallant, Associate Editor
Electro/International Products

Designers' guide to servo simulation using PSpice-Part 2

123

Part 2 of this 2-part series describes how to use the mechanical models presented in part 1 to create more complex mechanical subsystems, such as rotational loads and gear trains. Combining these models with standard electrical circuit models lets you analyze the dc, ac, and transient response of an entire servo-control system. -Dr Vincent G Bello, Norden Systems

Designers' guide to subranging ADCs-Part 1

Subranging A/D converters offer performance levels difficult to obtain with successive-approximation or flash converters. They can deliver higher conversion speed and resolution and suit such applications as digital signal processing. Part 1 of this 3-part series explores the architecture and operation of these devices.
-Ray K Ushani, Datel Inc
Continued on page 7

[^0]

TECHNOLOGY UPDATES

Sensitive scope measurements: Scopes pluck 45 waveforms from the signal swamps

Scopes do far more than display a signal level vs time. Now they can dig through noise and sift out interference to make sensitive measurements ac-
 curately.-Charles H Small, Senior Editor

Fiber-optic presence sensors:
 Devices survive harsh environments

Because fiber-optic sensors are mainly passive devices, they are more reliable than traditional mechanical or electronic sensing devices-especially in the hostile world of industrial electronics. -Tom Ormond, Senior Editor

Synthesis tools speed PLD design efforts

PLD design tools have moved beyond the compiler approach to offer design synthesis. You provide a high-level design description, and the tool does the rest.-Richard A Quinnell, Regional Editor

PRODUCT UPDATES

RISC workstation family 85
Low-cost ac instruments 89
NEW PRODUCTS
Components \& Power Supplies 164
CAE \& Software Development Tools 168
Integrated Circuits 172
Test \& Measurement Instruments 176
Computers \& Peripherals 182
DEPARTMENTS
News Breaks 17
Signals \& Noise 26
Ask EDN 33
Editorial 41
Design Ideas 157
Business/Corporate Staff 196
Professional Issues 198
Career Opportunities 214
EDN's International Advertisers Index 221

[^1]
Because Speed Well Stop

PALCEI6V8H-10
Fast Universal
CMOS PLD Family
At 10ns

Fast Bipolar
PLD Family
At 5 ns

Is Everything, At Nothing.

Whatever kind of PLD you need, the fastest comes from AMD.

Wed love it if all our work amounted to "zero." As in zero delay. And were not far off.

Not surprising-because AMD invented the PAL ${ }^{\text {® }}$ device. That's why we know programmables better. And offer you the most choices of the best devices.

Say you want speed, but can't sacrifice density. Don't. Use our new MACH" products (Macro Array CMOS High-density) that give you up to 3600 gates and 15 ns performance. They're two to three times faster than the competition and cost 40% less

For more speed, along with low power consumption, try our new 10- and 15-nanosecond CMOS PLDs. Use our 16V8-10s and 20V8-10s anywhere you'd use a GAL device. Or choose the everpopular AMD-invented 22 VIO , at 15 ns .

Faster still are our seventh generation bipolar PAL devices. Complete families of $16 \mathrm{~L} 8-5 \mathrm{~s}, 20 \mathrm{~L} 8-5 \mathrm{~s}$, and the $22 \mathrm{~V} 10-10 \mathrm{~s}$. And for real speed freaks, were now shipping a 4.5 ns bipolar PAL device -the world's fastest TTL programmable logic.

Along with all this speed, were providing equally fast delivery. In quantity. In fact, we deliver more programmable logic devices than all our competitors combined

For details, call AMD now at 1-800-222-9323. And let nothing stand between you and your need for speed.

Advanced Micro Devices

Agiant step in a little footprint. AtSiliconix, we're doing more thanjust shrinking devicestoincrease utilization of limited board space. Now we're employing digital packagingtechnology to carry our power products. Making assembly easier than ever. And in some cases creating entirely new application possibilities.

Our latest offerings, the "LITTTLE FOOT" 8-pin additions to our Si9000 SOIC family, have the highest power density and the lowest package height available. Toachieve this, we design two MOSFETs into less space than a single transistor 4-pin DIP,TO-220, or DPAK. Not only saving valuable board space butalso improving reliability by reducing partcount.

These devicesgenerate less heat to makeyour design more efficient. The secret? OurSiMOS2.5 (2.5 million cells/sq.in.) technology combined with a copper leadframe that conducts heat directly from the backside of the die to optimize thermal performance. The result-a asmaller, cooler running device with the industry's lowest $\mathrm{R}_{\mathrm{DS}(0 \mathrm{O})}$.

The Si 9000 family consists of 22 devices with more on the way. Our latestadditionsare the Si9952DY, an nand p-channel device with high current handling capability and ideally suited for motor control applications. The Si9953DY, a dual p-channel device that is perfect for load switching. And the dualn-channelSi9955DYthat'sdesigned for higher voltage applications.

And that's not all! Our standard SOIC packaging allows you to use automated assembly techniques to ensure device compatibility. And this combined with lower part count results in reduced assembly costs. And speaking of lower costs-single MOSFETversions, the Si94XX series, are coming soon.

Step up to more compact and powerful designs! Call our toll-free hot line now. 1-800-554-5565, Ext. 957. Ask for our "LITTLE FOOT" Design Kit. And remember, atSiliconix we're committed to achieving a seamless interface between the power and digital worlds.

Siliconix

2201 Laurelwood Road, SantaClara, CA 95056

"The world runs on infor silicon breakthroughs to right to the desktop."

How national semiconductor is helping YOU MEET THE CHALLENGES OF TODAY'S - AND TOMORROW'S - DATACOM AND TELECOM SYSTEMS.

Jobn Jorgensen, National's Director, Advanced Communications Business Group, talks about applying advanced VLSI technology to next-generation communications systems.

Setting the stage

 for connectivity."National has a definitive strategy for providing voice- and data-communications solutions in silicon.
"We have solutions for: Ethernet, FDDI, and integrated-digital networks. And we're working on next-generation solutions for ultra-high-speed network applications.
"The key to building devices this sophisticated is our experience with advanced analog+ digital

integration. We have all the enabling technologies. BiCMOS, CMOS, and ECL processes. Powerful design tools. Experienced analog + digital designers.
"It isn't easy. But we're doing it:" Linking LANs with FDDI.
"Our FDDI chipset provides the backbone that links Ethernet LANs at the workgroup level with integrated-digital networks, such as ISDN and SONET - and it provides the high-speed datapipe that links workstations directly.
"We're the first manufacturer to introduce a fully-integrated FDDI solution. It offers more network management features and consumes less power than any other solution.
"Our latest device, called the BSI, provides the system interface between our core FDDI chips and the host-system bus, such as VME,

AT, Microchannel, or EISA. It gives you the maximum available system bandwidth, with burst-mode transfers of $800 \mathrm{Mbits} /$ second through a 32 -bit-wide data interface - without the need for an external processor.
"So now you can develop products for highly-integrated FDDI networks, such as bridges, routers, and concentrators, or you can develop adapter cards for highperformance workstations and PCs - all from one supplier. National.'

Linking the workgroup with Ethernet.
"Our SONIC - Systems Oriented Network Interface Controller - integrates, for the first time, a digital controller with a 10Mbit/second analog encoder/ decoder.

ISDN U Interface

mation, and we're making bring that information

"It supports all IEEE 802.3 functionality in a single chip that goes right on the motherboard in 16 and 32 -bit systems, providing full network management functions in hardware.
"And with a transfer rate of 50 Mbytes/second, it's 20 times faster than most other solutions, and cuts bus occupancy by up to 80%.
"The workgroup is linking itself with Ethernet. And we're making it happen faster, smaller, and more cost effectively. That's the standard, and we're setting it."

Linking voice and data with ISDN.
"Our U interface breaks the ISDN logjam. It allows the simul taneous transmission of voice and high-speed data over the existing twisted-pair telephone network, providing the missing link between the subscriber and the central office.
"It may be the most technically complex mixed analog+ digital device ever designed. The receiving front-end is analog, but the back-end signal processing is all VLSI digital. And this had never been done before. Until we did it:"

Putting it all to work for you.
"The communications revolu tion is accelerating. As a datacom or telecom systems designer, I'd feel the need for advanced solu tions to tomorrow's problems today. That's why I'd call National. Because we have those solutions. Today.'

1-800-NAT-SEMI, Ext. 115 National Semiconductor Corporation.
VME is a trademark of Motorola, Inc. AT and Microchannel are trademarks of International Business Machines, Inc. © 1991 National Semiconductor Corporation

Picture a smaller, Picture it with higher

Now, PICTURE IT IN YOUR

You've just pictured the Pancho Series from Conner. A new wave of 2.5 -inch hard disk drives designed specifically for today's smaller, high performance 386- and 386SX-based notebook computers.

Advanced systems that need to run storage-intensive spread sheets, data base and graphics-oriented programs without sacrificing light weight or battery life.

The Pancho Series: $32 \mathrm{MB}, 42 \mathrm{MB}$ and 64 MB of formatted storage.

Which is why our new Pancho Series is perfect. Delivering up to 64 Mbytes of capacity, the highest available in a standard 2.5 -inch form factor. Yet it draws only 1.3 watts of power. What's more, it's faster than ever, with an access time of 19 msec .

In addition, it weighs a mere 7 ounces. And can withstand up to 100 Gs of shock. A rugged feature no mobile

FASTER DISK DRIVE.

 CAPACITY THAN BEEORE.

NOTEBOOK COMPUTER.

system should be without.
Most importantly, it's available now. Because at Conner we continually create high performance drives that are a generation ahead - for all major segments of the marketplace. From high-end workstations and file servers to desktop, laptop and notebook PCs.

It's all a part of our innovative sell-design-build business philosophy. Even before we design or build a product, our engineers work closely with major systems manufac-
turers. To identify their specific needs sooner. Then fill them faster. As a result, we consistently design the exact disk drives our customers need.

So call Conner today for a new generation of 2.5 -inch disk drives that are picture-perfect for your notebook.

It's one thing to set the standard for an entire industry, as HP helped to do with FDDI. But it's quite another to follow it up with products that set the standard for performance and quality. Of course, that's just the HP way.
Case in point, our new integrated FDDI transceiver with integral MIC receptacle makes the most of its HP heritage. Engineered to meet and beat FDDI standards, this single-piece solution provides consistent performance over a wide range of operating temperatures and voltages. The bottom line is a 14.5 dB power budget that exceeds the 11 dB

FDDI PMD standard, resulting in a comfortable 3.5 dB design margin.
Attributes that stem directly from HP's role as a vertically integrated supplier. Which means we have direct control over all the active elements of our FDDI designs, ensuring you a consistently high quality product - and a constant high volume supply.
What's more, our new FDDI transceiver is just one part of a growing family of 1300 nm products. Like our individual transmitter/receiver pairfor FDDI and general-purpose applications - that offer data
speeds up to 200 MBd . With more new and innovative products on the way.
So, if you're in the process of building a name in fiber optic networks, remember this there's only one supplier of FDDI products worthy of the HP name. For more information, call HP today at 1-800-752-0900, ext. 1960. We'll make it worthy of your time.
There is a better way.

VMEBUS BOARD HAS KEYBOARD, DISPLAY, AND MOUSE

The GESVIG-4WVME interface card from Gespac Inc provides a user interface for your VMEbus system. The $\$ 1695$ board incorporates a display controller that employs the Hitachi ACRTC video-controller chip, a keyboard interface that accepts IBM PC-style keyboards, and a serial interface port for a mouse. The board's video output can display 720×540 pixels using 256 colors. The board makes the video signals available on a front-panel DB-9 connector in the pin configuration used by IBM PC systems. Therefore, you can use any common PC CRT monitors. You can also buy a companion software package for the board: The \$250 G-Windows Desktop Manager lets you implement a windowed user interface for Microware's (Albany, NY) OS-9 operating system. Gespac Inc, Mesa, AZ, (602) 962-5559, FAX (602) 962-5750, contact Don Bizios.-Steven H Leibson

SCOPES HIT STREET AT PRICES LOWER THAN PREDICTED

When Hewlett-Packard first announced its 2 -channel 54600A and 4-channel 54601A $100-\mathrm{MHz}$ digital scopes with "analog feel," the company expected them to cost $\$ 3000$ and $\$ 3500$, respectively (EDN, March 1, 1991, pg 76). Now that HP has actually started shipping the scopes, it has changed the prices to $\$ 2395$ and $\$ 2895$. Moreover, on orders of four units or more, a 10% discount applies. Hewlett-Packard, Colorado Springs, CO, (800) 752-0900.-Dan Strassberg

SPICE-MODEL LIBRARIES ADD SIMULATION ABILITTES

Analog Devices Inc and Burr-Brown Corp are the latest linear-IC companies to offer free disks of Spice models for their amplifiers. The disk from Analog Devices includes 176 models, some of which correspond to different performance grades of each of the company's amplifiers. This list includes all of the op amps from the company's newly acquired Precision Monolithics Div (formerly PMI). The library also includes current- and voltage-noise models for 26 of the devices, letting your Spice simulation predict system noise performance. The company's modeling technique lets the models use as many poles and zeros as needed to simulate each amplifier's frequency response accurately.

The 75 models in Burr-Brown's library include nearly all of the company's op amps, difference amplifiers, and instrumentation amplifiers. Three types of models are available: a standard macromodel, an enhanced macromodel, and a simplified circuit model. The company derived its macromodels using PSpice's (Microsim Corp, Irvine, CA) Parts and Enhanced Parts simulation software. The circuit model is a simplified transistor-level model that produces more accurate simulations but lengthens simulation time. The transistor-level models are available for some highspeed op amps; current-feedback op amps have simplified circuit models only. Analog Devices Inc, Norwood, MA, (617) 329-4700, FAX (617) 326-8703. Burr-Brown Corp, Tucson, AZ, (800) 548-6132, FAX (602) 889-1510.-Anne Watson Swager

QUARTZ-CRYSTAL OSCILLATOR MEETS MIL-883C

The QC6111 from Salford Electrical Industries Ltd is a quartz-crystal oscillator in an industry-standard 40 -lead ceramic chip carrier. You can choose frequencies of 375 kHz to 30 MHz and frequency stability depending on the operating temperature

NEWS BREAKS

range. For -40 to $+85^{\circ} \mathrm{C}$, the stability selection is either ± 35 or $\pm 60 \mathrm{ppm}$. For extended temperature operation from -55 to $+125^{\circ} \mathrm{C}$, the choice is ± 60 or ± 100 ppm. The module operates from a 5 V supply, consumes 90 mW of power, and drives two standard TTL gates. The oscillator is designed in accordance with MIL-883C. Prices are $£ 25$ to $£ 30$ (1000), depending upon specification. Salford Electrical Industries Ltd, Heywood, UK, (706) 67501, FAX (706) 64394.-Brian Kerridge

FMULATOR CONNFCTS TO SIMULATORS

Using the RPM Emulation System (starting at \$70,000 for a 10,000-gate, 272-I/0 configuration), you can prototype and emulate an ASIC in a system before you have working silicon. The Rapid Vector Evaluator (starting at $\$ 35,000$) lets you drive the emulator from your simulator. The evaluator includes a cascadable 416-bit-wide port to Sun workstations and driver software that enables you to transfer test vectors and capture responses from the emulator. Simulation can then proceed as fast as your simulator can process vectors. You can also use the evaluator as a functional tester and for collecting vectors from operating hardware for driving your simulations. Quickturn Systems Inc, Mountain View, CA, (415) 967-3300, FAX (415) 967-3199.-Michael C Markowitz

GRAPHICS CHIPS FNHANCE DISPLAYS

Three graphics chips from Chips and Technologies enhance VGA, flat-panel, and 8514/A display systems.

The 82C453 ultra VGA controller has 1024×768-pixel resolution with 256 simultaneous colors. It interfaces to video RAMs for image storage, thus speeding the image transfer rate. The controller also uses a single-cycle read-modify-write operation to enhance windowing operations. It comes in a 160-pin plastic flat pack and costs \$30 (1000). The 82C457 flat-panel controller supports a variety of color-panel technologies, including gas-plasma panels and supertwist-pneumatic, active-matrix thin-film transistor, and metal-insulator-metal color LCDs. It will also simultaneously drive a CRT with the flat panel. The controller uses techniques such as dithering to increase the number of colors beyond those provided by the panel alone, producing several thousand colors on a panel normally limited to a palette of 512. The $\$ 86.90$ (1000) device comes with a flat-panel color palette/DAC and a clock synthesizer.

The 82 C 480 has a resolution of 1280×1024 pixels with 256 simultaneous colors. It conforms to the 8514/A graphics standard and supports as much as 4 M bytes of video RAM. The company provides software-driver support for Windows 3.0 and AutoCAD 11.0, and BIOS and complete register specifications for applications software developers. The part costs $\$ 75$ (1000). Chips and Technologies, San Jose, CA, (408) 434-0600, FAX (408) 434-0147. -Richard A Quinnell

PERFORM REAL-TIME DATA ACQUISITION IN WINDOWS 3.0

Driverlinx from Scientific Software Tools gives you more than 70 command services for creating foreground and background I/O and measurement tasks. This tool provides language- and hardware-independent dynamic link libraries that port your data-acquisition applications to Windows 3.0. Applications communicate with the software by passing a "service request" that contains the specifications for a dataacquisition task. The software acknowledges the service request and notifies the application upon completion of each stage of the task. The package lets you operate

PSpice

The Standard for Circuit Simulation Switch-Mode Power Supply Design

Current mode power supply schematic.

Simulation using the Vorperian switch model to examine the stability of a power supply.

Power supply simulated using mixed analog/digital simulation. Plot shows subharmonic oscillation being suppressed by external ramp.

Hysteresis curve of transformer.

A cycle by cycle simulation of switch-mode power supplies is recognized as a difficult simulation task for SPICE-based simulators, which must cope with timings that can span 4 orders of magnitude. This problem invariably results in very long simulation times, but is improved considerably by MicroSim's approach of building the controller macromodel chips so that a significant section is simulated in the digital domain. PSpice's behavioral modeling and mixed analog/digital simulation capability makes this possible.
PSpice is available on the IBM-PC (running DOS or OS/2); Macintosh II; Sun 3, Sun 4, and SPARCstation; DECstation 2100,3100 , and 5000 ; and the VAX/VMS families. In addition to the PWM macromodels, the PSpice library contains over 3,500 analog and 1,500 digital parts which can be used in a variety of applications. Our technical staff has over 150 years of combined experience in CAD/CAE, and our software is supported by the engineers who wrote it.
For further information about the PSpice family of products, call us at (714) 770-3022, or toll free at (800) 245-3022. Find out for yourself why PSpice has become the standard for circuit simulation.

Keithley/Metrabyte, Advantech, Computer Boards, and Soltec data-acquisition boards within the real, standard, and enhanced modes of Windows 3.0. Adding multitasking and multiuser capabilities, the software can manage as many as six data-acquisition boards and 10 concurrent tasks. Multiple copies of one application or multiple applications can access this program without interfering with ongoing tasks. The $\$ 400$ package conducts analog I/O, digital I/O, time and frequency measurement, event counting, pulse output, and period measurement. Scientific Software Tools Inc, Malvern, PA, (215) 889-1354, FAX (215) 889-1334.—J D Mosley

DSP CARD FOR MACINTOSH USES DUAL PROCESSORS

Spectral Innovations' MacDSPII is a dual-processor DSP card for the Macintosh Nubus. The card uses two AT\&T DSP32C floating-point digital signal processors, each with 1M byte of static RAM (SRAM), for number crunching. It also has a $68000 \mu \mathrm{P}$ to run Apple's Real-Time Operating System Executive. Further, the card offers 16 -bit, dual-channel A/D and D/A converters that have sampling rates of 250 kHz max.

The DSPs run concurrently, each executing programs out of its own SRAM. The two processors share an additional 8 M bytes of SRAM for data transfer between processors at a rate of 50 M bytes $/ \mathrm{sec}$. The 68000 processor uses 2 M bytes of dynamic RAM (DRAM), which is also part of the Nubus address space. Each DSP can access the DRAM and data converters via a parallel DMA port. Support for the $\$ 7995$ card includes a C language compiler, assembler, and simulator, and a library of signalprocessing and graphics subroutines. Spectral Innovations, Santa Clara, CA, (408) 727-1314, FAX (408) 727-1423.-Richard A Quinnell

SERIAL DATA-COMMUNICATIONS ICs GAIN SPEFD

Zilog's $20-\mathrm{MHz}$ version of the Z85230 enhanced serial communications controller (ESCC) and $16-\mathrm{MHz}$ version of the Z16C35 integrated serial communications controller (ISCC) are general-purpose, multiprotocol, serial-controller ICs. They are 20 and 50% faster, respectively, than previous versions. The ESCC handles serial data rates to 5 M bps, and the ISCC handles 4 M bps when its on-chip DMA controllers manage the data transfers. The ESCC and ISCC cost $\$ 17.50$ and $\$ 22.50$ (1000), respectively. Zilog, Campbell, CA, (408) 370-8000, FAX (408) 370-8056.-Steven H Leibson

HIGH-DENSITY PLD HAS WIDE INPUT STRUCTURE

The PML2552 CMOS PLD from Signetics has the equivalent of 2500 gates and an unusual interconnect structure. You can connect the output lines from any of the device's 96 gates and 20 buried JK flip-flops to the input lines of any other gate and flip-flop, including folding the signal back on itself. To accommodate this plethora of signals, each product-term gate has 258 input lines. You can implement any combinatorial logic function with as few as two gate delays. Gate delays are 12 nsec , and the flip-flop toggle rate is 50 MHz .

The PLD also has both a low-power mode and a test mode. When you activate its low-power mode, the device freezes in its current state and drops power consumption from 525 to 52 mW . When in test mode, the device links its internal registers into a serial test loop, letting you monitor the registers' status using scan test techniques. The PLD comes in either a 68-pin J-leaded, windowed, ceramic quad flat pack for \$60 or a l-time programmable plastic leaded chip carrier for $\$ 20$. Signetics, Sunnyvale, CA, (408) 991-3266, FAX (408) 991-2268, contact Khanh Le.—Richard A Quinnell

hedulidanty bedulidaney hedulanty

Dale's Three Sourcing Locations Protect RNC "S" Level Deliveries. Stock to Six Weeks on Most Values.

RNC redundancy - from Dale®. Now more than ever, it means guaranteed delivery for "S" level orders from three qualified locations. One call lets you lock-in requirements for:

10 ohms to 7.5 megohms. Special testing at all locations.

Call today. Get instant access to our extensive RNC "S" level capacities, plus reliable, precisely-timed delivery. Discover how our decision to maintain a multi-source supply system for many components particularly MIL-R-55182 - protects you with redundancy insurance over an increased value range. Contact your Dale Representative or Distributor, or phone our RNC sourcing headquarters.

MIL-R-55182 Range "S" Level	
Style	Value Range
RNC50	10-796k
RNC55	10-2.0M Ω
RNC60	10-2.49M Ω
*RNC65	10-4.99M Ω
*RNC70	10-7.5M Ω
Available in RNR and RNN as described in Table Iof MLL-R-55182 for values above $1 \mathrm{M} \Omega$ for RNC65 size and above $70 \mathrm{~K} \Omega$ for RNC70 size.	

Norfolk Division, 2300 Riverside Blvd.
Norfolk, NE 68701-2242 • Phone (402) 371-0080 • FAX (402) 644-4206

THE WORLD'S LARGEST SELECTION OF POWER SPLITTERS/ COMBINERS

$\mathbf{2 ~ K H z}$ to $\mathbf{8} \mathbf{~ G H z}$ trom $\mathbf{\$ 1 0 4 5}$

With over 300 models, from 2-way to 48 -way, $0^{\circ} 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-theshelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee.
For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or Mini-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RFIIF Signal Processing Guide.
finding new ways
setting higher standards
만Nini-Circuits

Before youbuy CAE from the ATE leader, you'd better have some damn good reasons.

Some damn good reasons.

4Un our foundry's recommendation, we selected AIDA ATPG for automatic vector generation. AIDA ATPG has consistently produced 95% + fault coverage across a variety of DFT methods - full and partial scan, JTAG and boundary scan. Test pattern generation used to take us 3-6 weeks, but now we can do it in hours or overnight. And since our foundry supports the toolset, we can send our vectors directly into manufacturing. ${ }^{7 \prime}$
Raju Joshi,
Project Manager
Sun Microsystems, Inc.

4LASAR's modeling and timing capabilities are outstanding for both design and test. We're in a position to know because, in addition to the product design work we do for complex avionic systems, we use LASAR to design and program our own ELATS test systems. The level of accuracy we can achieve with LASAR ensures a high-quality product, whether it's an avionic subassembly, an automatic tester, or a test program set. $\boldsymbol{7 \%}$
Rick Mattice, Project Manager Litton Systems Canada Ltd.

4 Using LASAR and Frenchip, our own synthesis tool, we've developed a rigorous top-down methodology for large ASIC design. We start by simulating the design at the behavioral level with LASAR. We use our synthesis software to generate the gate-level description. We always use LASAR to verify the operation of the ASIC in the board environment. We depend on its accuracy for both functional verification of our designs and for worst-case timing analysis. 77 Francois Grillot, Director, $R \& D$ and Custom Products Dassault Electronique

4V Vanguard Schematic Design and PCB Layout give us a fully-featured well-integrated system for a very reasonable cost. The other schematic design system we had was slow and cumbersome, but with Vanguard, it's easy to create components or make design changes you just punch a couple of keys and you're done. And Vanguard macros are one of the best features of the software. When I need to make a bunch of changes, it's just hit a macro, and let it go. 97
Roger Stoops, PCB Designer II
Spectra-Physics Laserplane, Inc.

6 As a manufacturer of fault-tolerant computers, Stratus puts a high priority on quality. It's this simple: LASAR finds board-level timing problems that other tools cannot find. And with Teradyne's hardware modeler, LASAR lets us see how an ASIC will behave with other complex ICs. That means when we go to silicon, we're confident that our designs will work in the system. We've designed 6 ASICs using LASAR, and we've achieved good first-pass silicon each time. $\boldsymbol{7 \prime}$ Sandy Hirschhorn, Director, Design Automation and Diagnostics Stratus Computer

6The MultiSim Interactive Designer is excellent - it's the first CAE tool that works well with a top down design approach. It's set up so you can build and simulate block by block, and its speed makes it easy to find your mistakes, make changes, and try again without a lot of time spent recompiling. $\boldsymbol{H I}^{\prime \prime}$ Steve DeLong, Technical Team Leader Jim Walsh, Technical Staff Member
Rockwell International Corporation

Design engineers are using Teradyne's CAE tools for lots of good reasons. Interactive design analysis. Accurate design verification. Tight integration between design and test. With Teradyne CAE, you get greater speed, accuracy, and reliability than with other CAE systems. That adds up to higher product quality and faster time-to-market. And in today's competitive environment, those are the best damn reasons of all.

To learn more, call Daryl Layzer today at 1-800-225-2699, ext. 3808, or FAX (408) 748-7761.

Glass and Quartz Pistoncaps ${ }^{\circ}$

- Designed to meet MIL-C-14409D
- QPL models
- Extremely stable over temperature, frequency, voltage, etc.
- Cap ranges: 0.5-3.0 pF to 1.0-120 pF
- Zero backlash multiturn adjust mechanism
- Operating temp: -55° to $+125^{\circ} \mathrm{C}$ (models to $+200^{\circ} \mathrm{C}$)
- Q to 1500 at 20 MHz
- Wide variety of configurations for PC and panel mounting
- Voltage ratings from 500 to 5000 V

Phone, fax or write today for
Engineering Bulletin SG-205A.

SPRAGUE GOODMAN

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

CIRCLE NO. 6

Sprague-Goodman

Sapphire Pistoncaps ${ }^{\circ}$

- Q to 4000 at 250 MHz
- 6 mounting styles suitable for all RF structures
- Designed to meet MIL-C-14409D
- Operating temp: -55° to $+125^{\circ} \mathrm{C}$
- Cap ranges: 0.3-1.2 pF to 0.8-8.0 pF
- Subminiature size
- Multiturn resolution
- Extremely stable over temperature, frequency, voltage, etc.
Phone, fax or write today for
Engineering Bulletin SG-207A.

SPRAGUE G00Dman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 - Fax: 516-746-1396

More serious threat to US than Japanese competition

In Jon Titus's editorial (EDN, January 3 , 1991, pg 35), he identifies a much more serious threat to US industry than Japanese competition. As long as I can remember, telephone operators (and many secretaries) seemed to be much more interested in getting rid of the caller than helping the caller reach the right person.
Answering machines have compounded the problem. Only the rare corporate species of "self-starters" muster the energy to even look for messages, never mind answer them. (After all, a body at rest wants to stay there.)
Once I had to clarify a spec within a half hour-the typical turnaround time for the copy desk- and spent the time listening to messages and menus from the company's voicemail system. Finally, on my third try for Jim Neverin, assistant marketing manager, I did leave a message: "Jim, since no real people seem to work for your company, I'm placing my order with XYZ Corp."
The next time I needed Jim, his secretary answered and put me right through. Of course, that was sheer coincidence.
Max Schindler
Boonton, NJ

Accommodating the little guy

Scott B Rosenthal of Microsol Corp recently wrote concerning his problems in getting small quantities of parts. At our consulting and con-tract-engineering company, we face similar problems. We don't manufacture anything, but we often need small numbers of parts to build prototypes. I concur that in recent years it has become increasingly difficult to obtain small quantities.

I sometimes request samples. But I don't like doing this, because it leaves us entirely at the mercy of manufacturer's reps who don't al-
ways appreciate the time constraints we are under.
To the Hamilton Avnets and others who don't really want to be distributors except to the big guys, I have this to say: Not all little companies stay little, and some remember who served them and who didn't.
Stephen D Anderson, President Ansco
Minneapolis, $M N$

Correction for $\mu \mathrm{P}$ Directory

EDN's 17th Annual Microprocessor Directory (November 22, 1990, pg 115) lists the SGS Thomson ST9 $\mu \mathrm{P}$ chip as a derivative of the Zilog Z8. SGS Thomson reminds us that, although the company is licensed by Zilog to produce the Z8 $\mu \mathrm{P}$, members of the ST9 $\mu \mathrm{P}$ family use a separate and distinct computer architecture, as well as an instruction set that's incompatible with the Z8. Thus, the ST9 is not a derivative or an enhancement of the basic $\mathrm{Z} 8 \mu \mathrm{P}$.

IT'S EASY TO HAVE YOUR SAY

Abstract

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. You can use one of several easy ways to reach us. First, there's always the mail. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCI mail at EDNBOS. Finally, EDN's bulletin-board system is ready for use-and it's free (except for the phone call). You can reach us at (617) 558-4241 and leave a letter in the EDITORS Special Interest Group. You'll need a 2400-bps or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or $1200 / 2400$, 8 N 1 in shorthand.

HOW MORE COMPANIES ARE ADDING LIFE TO THEIR DESIGNS.

Rayovac Lifex ${ }^{\text {TM }}$ Coin Cells and Lifex $\mathrm{FB}^{\text {TM }}$ Batteries have the highest reliability ratings in the industry. That's why major electronics manufacturers worldwide already specify Lifex in their product designs.

Rayovac reliability is especially valuable for critical memory applications, such as encryption codes, cash values, or control parameters.

In bigh-temperature sustained storage, Lifex continues strong long after others fade away.

The Lifex FB offers extended temperature tolerance -operating comfortably in
a range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. And our products are made in the U.S.A., with on-time delivery available around the world.

So add longer life to your design. Specify a Rayovac Lifex Coin Cell or Lifex FB Battery in your design. Call Rayovac's Technical Sales \& Marketing Department for complete information and battery specifications at 608-275-4694.

WHYTHE FIRST 040 MME MIGHTASWELL BETHELAST.

Memory modules available in 4 and 16 MB DRAM or SRAM.

DRAM memory module supports burst fill mode for 50 Mbyte/sec memory bandwidth.

On board DMA-based architecture provides maximum performance and parallel real-time operation.

First, we're delivering 040 VME single board computers today. In quantity. So you can get started while the rest of the world waits for a delivery date from other suppliers. Second, setting else can touch. Like 30,000 dhrystones sustained at 25 MHz : And DMA transfers at a screaming 50 Mbytes per second sustained (3 microseconds on the VMEbus).

So it might just be the last 040 board you'll ever need.

That's because we've fully optimized the on-board architecture. Thanks to our 281-pin gate array, DMA operations can be handled between on-board RAM, the VMEbus and on-board I/O devices. Or through our FLXi interface to other I/O drivers.

All of which means the CPU is free over 75% of the time to run your application.

VME at its best.

Developing new applications is also a snap. Choose from the broadest range of third-party software in the business, including VMEPROM, ${ }^{\text {m, }}$ pSOS $+{ }^{\text {T, }}$ VRTX32, ${ }^{\text {m" }}$ OS-9, ${ }^{\text {mid }}$ VxWorks, ${ }^{\text {™ }}$ UNIFLEX, ${ }^{\text {m, }}$ MTOS $^{\text {T }}$ and UNIX ${ }^{*}$ 5.4.

Of course, we provide comprehensive support with the industry's best-rated documentation,*, complete systems integration support and technical assistance.

CPU-40 PERFORMANCE CHARACTERISTICS

| Data from | CPU | CPU | CPU | CPU | VMEbus | SCSI* | Floppy
 Disk* | Ethernet* | Shared
 RAM | VMEbus* |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

So be the first in your company to turn 040. Call 1-800-BEST-VME, ext. 40, for more information or fax a request to (408) 374-1146 for an immediate response.

It'll be to your lasting advantage.
FORCE Computers, Inc. 3165 Winchester Blvd. Campbell, CA 95008-6557 *Actual dhrystone results may vary depending on compiler used. **Computer Design News, March 12, 1990. All brands or products are trademarks of their respective holders. © 1991 FORCE Computers, Inc.

CIRCLE NO. 134

dc to 3 GHz _ 511^{45}

lowpass, highpass, bandpass, narrowband IF

- less than 1 dB insertion loss - greater than 40 dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount • over 100 off-the-shelf models • immediate delivery
low pass dc to 1200 MHz

$\begin{gathered} \text { MODEL } \\ \text { NO. } \end{gathered}$	PASSBAND, MHz (loss <1dB) Min.	$\begin{gathered} \text { fco, } \mathrm{MHz} \\ \text { (loss 3db) } \\ \text { Nom. } \end{gathered}$	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) (loss $>40 \mathrm{~dB}$)			VSWR		$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Qty. } \\ (1-9) \\ \hline \end{gathered}$
			Max.	Max.	Min.	typ.	typ.	
PLP-10.7	DC-11	14	19	24	200	1.7	18	11.45
PLP-21.4	DC-22	24.5	32	41	200	1.7	18	11.45
PLP-30	DC-32	35	47	61	200	1.7	18	11.45
PLP-50	DC-48	55	70	90	200	1.7	18	11.45
PLP-70	DC-60	67	90	117	300	1.7	18	11.45
PLP-100	DC-98	108	146	189	400	1.7	18	11.45
PLP-150	DC-140	155	210	300	600	1.7	18	11.45
PLP-200	DC-190	210	290	390	800	1.7	18	11.45
PLP-250	DC-225	250	320	400	1200	1.7	18	11.45
PLP-300	DC-270	297	410	550	1200	1.7	18	11.45
PLP-450	DC-400	440	580	750	1800	1.7	18	11.45
PLP-550	DC-520	570	750	920	2000	1.7	18	11.45
PLP-600	DC-580	640	840	1120	2000	1.7	18	11.45
PLP-750	DC-700	770	1000	1300	2000	1.7	18	11.45
PLP-800	DC-720	800	1080	1400	2000	1.7	18	11.45
PLP-850	DC-780	850	1100	1400	2000	1.7	18	11.45
PLP-1000	DC-900	990	1340	1750	2000	1.7	18	11.45
PLP-1200	DC-1000	1200	1620	2100	2500	1.7	18	11.45

high pass dc to 2500 MHz

MODEL NO.	$\begin{aligned} & \text { PASSBAND, MHz } \\ & \text { (loss }<1 \mathrm{~dB} \text {) } \end{aligned}$		fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) \quad (loss $>40 \mathrm{~dB}$)		VSWR		$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Qty. } \\ (1-9) \\ \hline \end{gathered}$
	Min.	Min.		Min.	Min.	chap.	$\begin{aligned} & \text { band } \\ & \text { typ. } \\ & \hline \end{aligned}$	
PHP-50	41	200	37	26	20	1.5	17	14.95
PHP-100	90	400	82	55	40	1.5	17	14.95
PHP-150	133	600	120	95	70	1.8	17	14.95
PHP-175	160	800	140	105	70	1.5	17	14.95
PHP-200	185	800	164	116	90	1.6	17	14.95
PHP-250	225	1200	205	150	100	1.3	17	14.95
PHP-300	290	1200	245	190	145	1.7	17	14.95
PHP-400	395	1600	360	290	210	1.7	17	14.95
PHP-500	500	1600	454	365	280	1.9	17	14.95
PHP-600	600	1600	545	440	350	2.0	17	14.95
PHP-700	700	1800	640	520	400	1.6	17	14.95
PHP-800	780	2000	710	570	445	2.1	17	14.95
PHP-900	910	2100	820	660	520	1.8	17	14.95
PHP-1000	1000	2200	900	720	550	1.9	17	14.95

bandpass 20 to $\mathbf{7 0 M H z}$

MODEL NO.	CENTER FREQ. MHz FO	PASS BAND, MHz (loss <1dB)		$\begin{array}{cc} & \text { STOP BAND, MHz } \\ (\text { loss }>10 \mathrm{~dB}) \quad(\text { loss }>20 \mathrm{~dB}) \end{array}$				VSWR 1.3:1 typ. total band MHz	$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Qty. } \\ (1-9) \end{gathered}$
		Max. F1	Min. F2	$\underset{\text { Min. }}{\substack{\text { Min. } \\ \hline}}$	$\begin{gathered} \text { Max. } \\ \text { F4 } \end{gathered}$	$\underset{\text { F5 }}{\underset{\text { Min }}{ }}$	Max. F6		
PIF-21.4	21.4	18	25	4.9	85	1.3	150	DC-220	14.95
PIF-30	30	25	35	7	120	1.9	210	DC-330	14.95
PIF-40	42	35	49	10	168	2.6	300	DC-400	14.95
PIF-50	50	41	58	11.5	200	3.1	350	DC-440	14.95
PIF-60	60	50	70	14	240	3.8	400	DC-500	14.95
PIF-70	70	58	82	16	280	4.4	490	DC-550	14.95

narrowband IF

THE NEW MICRO-CAP III. SO YOU CAN TEST-FLY EVEN MORE MODELS.

It wasn't easy. But we did it. Made the long-time best-selling IBM ${ }^{\circledR}$ PC-based interactive CAE tool even better.

Take modeling power. We've significantly expanded math expression capabilities to permit comprehensive analog behavioral modeling. And, beyond Gummel Poon BJT and Level 3 MOS, you're now ready for nonlinear magnetics modeling. Even MESFET modeling.

Analysis and simulation is faster, too. Because the program's now in " C " and assembly language. That also means more capacity - for simulating even larger circuits.

As always, count on fast circuit creation, thanks to window-based operation and a schematic editor. Rapid, right-fromschematics analysis - AC, DC, fourier and transient - via SPICE-like routines. The ability to combine digital/analog circuit simulations using integrated switch

Transient analysis

Schematic editor

Monte Carlo analysis
models and parameterized macros. And stepped component values that streamline multiple-plot generation.

And don't forget MICRO-CAP III's extended routine list - from impedance, Nyquist diagrams and BH plots to Monte Carlo for statistical analysis of production yield. The algebraic formula parsers for plotting virtually any function. The support for Hercules, CGA, MCGA, EGA and VGA displays. Output for plotters and laser printers.

Cost? Still only $\$ 1495$. Evaluation versions still only $\$ 150$. Brochure and demo disk still free for the asking. Call or write for yours today. And see how easily you can get ideas up and flying.

1021 S. Wolfe Road

 Sunnyvale, CA 94086 (408) 738-4387
ASK EDN

EDITED BY JULIE ANNE SCHOFIELD

Have you been stumped by a design problem so long that you don't know who to turn to? Are you having trouble locating parts? Finding companies? Can't interpret a spec sheet? Ask EDN.

This department will serve as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help. We can't answer every question, but we'll try to publish the ones that will help you most in your job.

Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

Gas-sensor circuit found

I'm looking for a circuit diagram of a gas and smoke alarm, gas monitor, gas sentinel, electronic gas detector, or gas analyzer that uses the Figaro (Wilmette, IL, (312) 256-3546) 813 or 822 gas sensor. Green, yellow, and red LEDs should indicate low, medium, and high gas concentrations, respectively. Such a system could also be a fire alarm because the sensor detects smoke also. Thank you for your help.

Dilip S Poudwal

Ocean Star CHS/G-5
Bombay, India
Linear Technology Corp's Application Note 11, "Designing Linear Circuits for 5V Operation," (September 1985) describes a circuit for a linearized methane transducer signal conditioner that uses the

Figaro 813 sensor. You can contact the company at 1630 McCarthy Blvd, Milpitas, CA 95035. (408) 4321900. FAX (408) 434-0507.

Alternate source located

We are using DM2502 successive approximation registers made by National Semiconductor. This device has been obsoleted by Na tional Semiconductor. Please let us know of alternate sources or devices.
V Ramasubramaniam
$\boldsymbol{R \&}$ D Manager
Systronics
Naroda, India
According to Brent Rowe, marketing manager for digital memory products at National Semiconductor, Rochester Electronics Inc now manufactures DM2502s. You can contact the company at

Rochester Electronics Inc 10 Malcolm Hoyt Dr
Newburyport, MA 01950
(508) 462-9332

FAX (508) 462-9512.

Readers and sources linked

In the January 21, 1991, issue of EDN, Mr Christer Berg requested a source for National Semiconductor's NS405-A12N microprocessor. We have a supply of 234 used NS405B12N microprocessors that may be of use to him.
The A12 uses a 5×7 type font, whereas the B12 uses a 7×9 type font, but both operate at a $12-\mathrm{MHz}$ video rate. These parts were used for less than one year in a video board; we are unlikely to use the board design in the future. While awaiting our management's permission to release or sell these
parts, it would be useful to know if they are of any value to Mr Berg. Please pass our phone number along to Mr Berg or relay his number to us.

Mark Foan

Manager of Technical Services
British Columbia Lottery Corp
Kamloops, BC, Canada
In the January 21, 1991, issue, someone was looking for National Semiconductor part number NS405-A12. We have some available. Have persons contact me.
Roland Levin
Videomedia
Sunnyvale, CA
We also are in need of National Semiconductor part NS405-A12; therefore, we would appreciate a source for these chips.
Forest C Sprague
Adaptrol Inc
Pontiac, MI
The appropriate parties have been put in contact with each other.

Reader seeks piggyback plug

Can you find out who manufactures piggyback plugs? A piggyback plug is a service cord with an in-line series 3 -prong plug.
Larry Shields
Custom Switches Inc
Manvel, TX
Belden Wire \& Cable has a standard product \#17666 that has a male and female connector on the same end of the cord. You can contact the company at

Belden Wire \& Cable
Box 1980
Richmond, IN 47375
(800) 235-3364;
in IN, (317) 983-5200
FAX (317) 983-5294.
EDN

Extended triggering. Sophisticated triggering in the DSA 600 A reliably discriminates glitches, transition slew-rates, runt pulses and timing violations. Long memory and pretrigger help reveal the cause.

When you need serious measurement, serious analysis, serious accuracy, nothing-but nothingdelivers it like Tek DSA 602A and 11403A oscilloscopes.

Transient capture, analysis and storage. Capture a series of transient events with automatic labeling and parametric analysis. Examine statistics of each measured parameter over the ensemble. Transport results using built-in (DOS-compatible) floppy disk.

Advanced signal processing. Transform and combine acquired waveforms at visual realtime speeds to reveal key phenomena.
FFT, correlation, convolution and calculus functions provide multiple views of critical events.

When you expect your instruments to be as serious about the truth as you are, only the DSA602/11403A, with their superb new amplifiers and probes, their unrivaled accuracy, plug-in flexibility, and their powerful new set of waveform analysis and measurement functions, come through with results like you see above.
Serious numbers? Try the new $2 \mathrm{GS} / \mathrm{s}, 1 \mathrm{GHz}$ bandwidth Tek DSA 602A. No other scope combines DSP hardware for live displays of FFTs, correlation or convolution, plus high signal fidelity and powerfully selective triggering modes. There's even a new disk drive in this latest DSA version to save setups and data.
Pit the new 11403A Digitizing Oscilloscope, with 1 GHz bandwidth and 10 -bit vertical resolution, against the toughest repetitive signals. Get more than 30 pushbutton measurements, with statistical analysis and built-in pass/fail decisions from the most accurate scope of all. Put its new FFT features to work measuring total harmonic distortion, or use the statistical data base to characterize jitter.
Configure and reconfigure your scope with new plug-ins like Tek's programmable 50 MHz current amplifier, four-channel 75Ω video amplifier and high-resolution video trigger. Choose from our true differential amplifier and voltage comparator, our 50Ω and highimpedance amplifiers. Take advantage of their unequaled overdrive recovery and wide dynamic
ar10us

Jitter and noise analysis. Analyze jitter and noise with Tek's exclusive statistical data base. Color grading, statistic readout and histograms clearly show the distribution of the edge jitter.
range, while you mix and match to the capabilities, channels and bandwidths you need.

Finally, choose from our high-impedance, high-bandwidth probes for fast logic devices . . . high-voltage and current probes for power conversion analysis. . . optical-to-electrical converters for direct measurements on lightwaves ... and more, from the best probing resource around.
Current measurements, spectrum analysis, transient capture, glitch detection, precise power measurements, jitter analysis, high-definition video design - when your work is this serious, you want serious solutions like the DSA602A/11403A. Contact your Tek sales engineer or return the card for more information.

AMPRO'S EMbedded SYSTEM MODLLEFAMILY

Introducing The Erector Set for Embedded Control Applications

Remember the challenge of constructing "engineering marvels" with your Erector ${ }^{\oplus}$ set? That red metal box held a complete set of interlocking pieces - all that was needed to assemble just about anything. Your imagination was the only limitation.

That's the idea behind Ampro's new way for OEMs to build embedded control applications. Put your application together, simply and quickly, using Ampro Embedded System Modules.

Our CoreModule ${ }^{\text {u }}$ family packs ready-made full PC- or AT-compatible intelligence into $3.6^{\prime \prime} \times 3.8^{\prime \prime} \times 0.6^{\prime \prime}$. Just plug one into your circuit board - like plugging in a chip - to easily interface to your own logic. They operate over 0 to $70^{\circ} \mathrm{C}$, and include a CMOS CPU, RAM, extended BIOS, Solid State Disk, serial and parallel I/O ports, keyboard and speaker interfaces, and a real-time clock.

Stack a CoreModule unit together with one or more of our expansion MiniModule ${ }^{\text {TII }}$ peripherals (no backplanes or card cages needed). MiniModule products, also $3.6^{\prime \prime} \times 3.8^{\prime \prime}$, can be used to add display controllers, more Solid State Disk capacity, network controllers, modem and facsimile features, additional I/0, and much more.
You'll get your product to market faster, with less risk, and at lower cost, because the CoreModule family is based on the most economical industry standard architecture. Now you can focus on the more challenging part of your system - the application itself.

Ultrasound monitors, point-of-sale terminals, robotics, network controllers - no matter what kind of "engineering marvel" you're building, you should be using Ampro's "Erector set" for your embedded control application.

Call 1-800-966-5200. Get the Information Kit on CoreModule and MiniModule products today.

[^2]
At $\pm 15 \mathrm{~V}$, our high-speed VIP ${ }^{\text {mw }}$ op amps are the ultimate driving devices.

Driving a 1,000pF C_{L} and slewing at $250 \mathrm{~V} / \mu s$, the $L M 6313$ delivers 250 mA into the load and still remains stable.

Turbocharging your loaddriving capabilities.

Our new VIP op amps are built to drive... and at very high speeds. Which makes a great deal of highperformance sense when you consider they're designed with an innovative bipolar technology called "Vertically Integrated PNP" or VIP.

With $a \pm 15 \mathrm{~V}$ power supply, our VIP op amps offer a higher signal-to-noise ratio, a higher dynamic range, and higher drive capability (none of which you can get from other high-speed $\pm 5 \mathrm{~V}$ amps). In fact, they'll drive capacitive loads without oscillating. Which means they're easy-to-use and very stable. Even at the highest speeds.

Packing precision and speed in the same op amp.

The LM6218, a dual op amp, is not only extremely precise, it's extremely fast. Which is why it provides a low offset voltage of 3 mV (1 mV max for the LM6218A), a bandwidth of 17 MHz , and a slew rate of $140 \mathrm{~V} / \mu \mathrm{s}$.

It also provides a settling time of 400 ns to 0.01% for a 10 V step and 7 mA of power dissipation. All in a dual op amp. So now you get a highperformance solution that's ideal for high-speed industrial and military applications requiring 12 -bit accuracy, such as image processing and high-speed data acquisition and instrumentation (883/SMD devices
 are available).

Delivering the world's first high-speed, high-power monolithic op amp.

Until recently, you needed multi-chip solutions to match the world-class
performance now achieved by our one-chip solution, the LM6313.

This monolithic device delivers 35 MHz performance and a $250 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Plus, it'll drive a 75Ω cable to a $\pm 11 V$ output swing -with a peak output current of 300 mA and 220 mA continuous -making it ideal for ATE and pin-driver applications.

What's more, the LM6313 provides on-chip protection. Like overcurrent and thermal shutdown protection with earlywarning error flags.

Driving with a winner.

For your design package, call or write us today. And let our highspeed VIP op amps put your designs into overdrive.
1-800-NAT-SEMI, Ext. 123
National Semiconductor Corp.
P.O. Box 7643

Mt. Prospect, IL 60056-7643

[^3]
Teach children to think about math

Jesse H Neal
Editorial Achievement Awards 1987, 1981 (2), 1978 (2), 1977, 1976, 1975
American Society of
Business Press Editors Award
1988, 1983, 1981

I am amazed at the way we introduce our children to the wonders of higher mathematics. Instead of teaching them how to think about solving problems, we dull their interest with drill sheets of unchallenging problems. It seems that many teachers learned by-the-book methods and that is how they teach. Some of those techniques baffle me. My 13-year-old daughter had a difficult time with percentages in math class. The tough part for her was deciding which way to move a decimal point. I explained that a percentage is just a fraction that always has 100 in the denominator. Once you know that, you can keep track of what you're doing without guessing. Instead, her teacher moved decimal points without discussing the techniques involved in setting up the problems.

In my 16 -year-old son's math class they studied logarithms. I was dismayed to see that they were writing down logs in an archaic way-3.6789-7, for example. Surely there are better ways to introduce children to the subject of logs. Unfortunately, the children cannot use calculators to find logs and antilogs. Neither can they use them to interpolate between log-table values. My son found it difficult to understand the interpolation method taught in school. I explained it to him by graphing a straight line between two points, which clarifies what interpolation is all about. He said they never showed him that in school.

I'm surprised by the prohibition of calculators. Some teachers and parents think that calculators encourage laziness and undermine basic math skills. Nothing could be further from the truth. Poor teaching techniques and long columns of dull exercises undermine anyone's interest in math. If school systems and teachers would concentrate on the basic skills of thinking about math, explaining how to approach problems, and applying these skills in different ways to solve realistic problems, the controversy about calculators would subside. Educators would find that many children really can enjoy math.

We should challenge youngsters with realistic problems that show them what percentages, logarithms, and interpolations are all about. It's surprising how a class' interest blossoms when you explain logs in terms of decibels and the Richter scale. We must also concentrate on explaining alternate methods of solving problems and explaining that there's no one right way, but many wrong ways, to arrive at answers-and how to know the difference. By using calculators, children can quickly try alternate routes to solving problems.

There may be some hope. I'm pleased to read that people taking the College Board math achievement test in June will be able to use calculators. That's the right approach-let the students concentrate on evaluating and setting up problems. The calculators can do the routine computations. I hope we'll see more and more calculators, computers, and other tools push their way into classrooms. I hear other parents say, "Calculators just let children get sloppy and avoid the hard math. They need more drill and work sheets on the basics." Maybe they're right. Perhaps modern tools have no place in school. But what if your daughter says she is having trouble in wood shop because it's difficult to drive a nail straight when banging it with a rock? Isn't it time for a hammer?

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.

NONVOLATILE SERIALLY PROGRAMMABLE DEVICES

NSP

IT'S A WHOLE NEW BALLGAME! Here are nine players that can work together in any order. Won't forget their plays. And can take new instructions anytime from homeplate.

From the Semiconductor Products Center of Hughes Aircraft Company comes another major development in semiconductor integrated circuits. Hughes' new NSP family of Nonvolatile Serially Programmable devices gives circuit designers new freedom and flexibility in their work....saving time, money and labor while improving overall system performance and reliability.

With these nine general purpose devices, PC boards or hybrids can be trimmed or configured electronically. Instead of using a slow, laborious, and often difficult mechanical trimming procedure, it's all done remotely through a personal computer or test station. That's because these NSP components have a serial interface feature which permits accessing the nonvolatile memory of the
 circuits to be cascaded.

Nonvolatile data latches retain the last programmed state in each device when power is removed, then automatically restore the correct state when power is resumed. In addition, a standard serial interface provides both read and write access to the nonvolatile memory. All NSP devices feature low power consumption and redundant circuit techniques to assure reliable operation and long life.

For a complete information packet, contact Hughes
Semiconductor Products Center, PO Box H, Newport Beach, CA 92658; or call (714) 759-2665 or FAX (714) 759-2913.

New SLICs cut the cost of on-premises/PBX subscriber lines

Lower cost chips that need fewer external components are the latest Subscriber Line Interface Circuit offerings from Ericsson.

Designed for cost sensitive applications such as general purpose PBX/ Key systems, they give you three other major advantages over alternative solutions: wide supply voltage operation from -24 V to -58 V dc, on-hook transmission and a very low on-hook power dissipation of just 35 mW with -48 V dc supply or 20 mW when running from a -24 V dc supply.

So you can reduce the cost of your power supply circuit too!
Each SLIC includes loop current and ring trip detection, together with a ring relay driver. And they work with either a conventional
or programmable CODEC/filter, all of which simplifies design.

Equally important, the new circuits are available in two versions: the PBL 3766 with a programmable constant loop current, and the PBL 3767 with programmable resistive battery feed and loop current limitation for short lines.

Both come in a choice of 22 -pin plastic DIP or 28 -pin PLCC packages with compliant ' j ' leads.

Simply call us for full technical data or clip the coupon.
Please send me your latest datasheets

Name
Company
Job Title
Address
Telephone
Fax

Ericsson Components Inc.
403 International Parkway, Richardson TX 75081
Tel: 214-669-9900 Fax: 214-680-1059

TECHNOLOGY UPDATE

> Oscilloscopes do
> far more than simply display a signal level versus time. Now they can dig through noise and sift out interference to make sensitive measurements accurately.

Charles H Small, Senior Editor

SENSITIVE SCOPE MEASUREMENTS

Scopes pluck waveforms from the signal swamps

In the past, engineers performed many of their most sensitive measurements with instruments other than oscilloscopes. Sensitive measurements were the domain of band-limited, special-purpose instruments such as distortion meters, spectrum analyzers, phase meters, and network analyzers. But now you can make many of these sensitive measurements with your oscilloscope, backing up a digital oscilloscope with digital signal processing.

A word of caution: As Jim Williams, at Linear Technology, says, "Highperformance circuits can work only if you negotiate compromises with nature. Ignorance of, or contempt for, physical law is a direct route to frustration." Physically, your probe and scope become part of your system under test when you hook the scope to your circuit.

Scope and probe concerns

What do you need to know about your scope and probes? For starters, become very familiar with your particular scope's input impedance, rise times, ac coupling, probe compensation, noise performance, overdrive recovery, sweep nonlinearity, triggering, and channel-to-channel feedthrough.

Without knowing your scope's limitations, you can easily fall prey to the most common mistake in oscillography. You may unwittingly measure the performance of your scope instead of the performance of your circuit.

The GIGO (garbage-in/garbage-out) principle applies to oscillography with a vengeance. Informally surveying highperformance analog-IC makers and os-
cilloscope vendors reveals that most problems designers have with their high-performance circuits are actually probing problems. In short, to take advantage of modern scopes' processing power, you must first comprehend the mysteries of probing.

You have many different kinds of probes to choose from. Each type has

You can characterize complex signals using digital post processing such as that offered by Tektronix Tek CDA 803.
its own proper sphere of application. FET probes, for example, have high input resistance and low input capacitance. But they also have substantially more delay than passive probes. FET probes' common-mode-range limitations can lead to erroneous displays if you accidentally exceed them. Not all FET probes have extremely high input resis-

Sophisticated instrumentation deserves sophisticated packaging

Give your product a competitive advantage. Package it in a Bopla enclosure.

Bopla enclosures complement your design. From a flawless molded finish to the concealed lid screws, every enclosure

Call for the Bopla master catalog.
(301) 696-9300 FAX: (301) 696-9494 combines smart looks with innovative features. Modular construction enables expansion and interchangeability. Moldedin slots and standoffs make component installation easy.

Every family of Bopla enclosures comes in a broad range of sizes and options so that you can find one that matches your packaging needs perfectly. When you're ready to bring your product to market, there's no better way to improve its marketability than with a Bopla enclosure.

7330 Executive Way Frederick, Maryland 21701

Sensitive scope measurements

tance-some types are as low as $100 \mathrm{k} \Omega$.

Current probes come in two types. The passive, transformer types are fast and have less delay than the Hall-effect versions. The Hall types, however, respond at dc and low frequencies; the transformer types typically roll off below a certain frequency limit, usually 100 Hz to 1 kHz . You can easily saturate both types of current probes, resulting in misleading displays.

Study each type of probe that you use. Different probes have different impedances and delay times. You must account for these impedances so you can hook the probes to your circuit without inducing spurious responses. Your probes' differing delays influence how you interpret your scope's displays.

A probe's resistive loading can cause amplitude distortion and alter the dc bias of your circuit. Capacitive loading can cause timing changes by introducing an RC time constant or by slew-rate limiting. Capacitive loading also causes nasty bandwidth-limiting effects. Under certain conditions, the probes parasitic effects can even cause an otherwise stable circuit to resonate.

Probing's greatest source of error is grounding. The parasitic inductance in a probe's ground connection can cause ripples and discontinuities in a displayed waveform. Probes' ground wires have about 25 $\mathrm{nH} / \mathrm{in}$. of inductance. In some cases the grounding at one channel will affect waveforms on another channel. In the worst case, connecting the probe's ground wire will shut your circuit down.

Common-mode noise wreaks havoc with sensitive measurements. Luckily, you have several ways to attack this noise. Which scheme you use to measure signals in the presence of high common-

The segmented memories in digital oscilloscopes, such as the Hewlett-Packard HP 54124A, can capture bursts of signals.
mode interference depends on frequency. Use differential plug-ins for low-speed, differential probes at frequencies as high as 200 MHz , and the familiar $\mathrm{A}-\mathrm{B}$ scope setting (with your A and B probes carefully zeroed out) for higher-frequency signals such as differential ECL signals. Digital scopes make probe zeroing a snap because they let you take care of differing probe delays by shifting memory points in software rather than trying to make up for phase differences in hardware.

Now consider your oscilloscope

Proceeding down the signal chain from probe to scope, consider a scope with a differential-amplifier front end or plug-in. Most engineers think of differential amplifiers as measuring signals not referred to ground, such as across a current shunt. However, differential amplifiers provide two not-so-obvious advantages in noisy environments as well.

At low signal levels, the ground
potential at the signal source is often not exactly equal to the ground potential at your scope. Ground loops and high groundreturn currents conspire to make your signal ground very noisy compared with low-level signals. Many ground-loop problems would disappear if scopes were double insulated. But industry standards require everything to be groundedboth systems under test and scopes.
To verify how noisy a ground can be, try putting a scope probe on your circuit's "ground" sometime. You will almost always see substantial noise and perhaps a small dc offset. The scope probe faithfully picks up and reproduces this noise. But a differential measurement cancels out the grounding differences, restoring true fidelity.

A second and related benefit of the differential amplifier is RF/EMI reduction. As is obvious, any electromagnetic flux cutting across a scope probe's cable induces a small voltage across the cable's shield.

TECHNOLOGY UPDATE

Sensitive scope measurements

Thus the scope sees the actual signal plus the noise voltage induced on its ground shield (Fig 1a). A differential amplifier cancels the spurious signal, passing only the differential signal (Fig 1b). This effect explains why telephone, audio, and data communications use balanced line transmission.

Assuming you are adept enough at oscillography to capture an accurate representation of a signal, digital postprocessing of that signal can transform your general-purpose oscilloscope into a band-limited, spe-cial-purpose, sensitive instrument. Whether you do your postprocessing with your scope's built-in routines (if any) or export the raw data files to a computer for analysis is mostly a matter of convenience and throughput. In both cases, the postprocessing principles are the same. For example, the Nicolet Series 400 oscilloscope has a built-in version of Basic that can call the scope's routines. You can use this interpreter to compose and execute a suite of signal-processing routines.

Capture multiple records

In some cases, the throughputfrom capture, to dumping the captured data into off-line memory, to re-arming the scope-is especially important. In pulsed-laser and

Fig 2-Performing a "sliding average," or "smoothing function," on a set of digitized data has the same effect as a lowpass filter: removing high-frequency noise. This graph shows the effective frequency response of various numbers of points in the sliding average. The graph normalizes frequency as a percentage of the digital scope's sample rate.
data-communication applications, for example, the device under test often produces a short burst of data followed by a relatively long interval of dead time. In most cases, you are interested in only the pulsed data, not the dead time between pulses. In these cases, the digital scope must have very fast throughput or a segmented memory.

With a segmented memory, such as that in the Hewlett-Packard HP 54510 A , the digital scope can capture several high-speed bursts before exhausting its high-speed
memory. Thus you can capture several records without pausing to dump your captured data to off-line memory.

After capturing a record, or records, digital scopes can further manipulate the captured data with post-capture processing. Digital scopes, such as LeCroy's 9400 series, commonly perform postprocessing such as averaging, filtering, phase shifting, rise- and fall-time derivation, and FFTs (Fig 2).

A feature unique to digital scopes is their ability to digitally filter al-

Fig 1-The impedance of a scope probe's ground lead (a) adds a minute, but not negligible, voltage ($V_{G G}$) to the signal's voltage that a single-ended scope sees. In b, a scope having a differential probe or differential front-end cancels out the ground lead's spurious voltage.

Imagine what you can do with the development time you save.

If your application is too demanding for a standard data acquisition package, you have just two choices. Spend valuable time writing low-level code. Or get a data acquisition system that provides its own microprocessor and control subsystem.

Microstar Laboratories' intelligent Data Acquisition Processors'" are complete control subsystems, not just hardware input/output units. The DAP 800,"' DAP 1200,"' and DAP 2400"' have on-board processors, buffer memory, and DAPL"-a complete real-time multitasking data acquisition and control operating system.
 such tasks as writing to disk and updating the screen. The Data Acquisition Processors are compatible with C, Pascal, BASIC, FORTRAN, and other PC programming languages, so you can add code to meet your own specific needs.

By providing a second processor and separating the data acquisition operating system from the PC's operating system, the Data Acquisition Processor gives you a high performance data acquisition system for the price of a nonintelligent data acquisition board.

More than 100 Built-in Commands
DAPL provides more than 100 data acquisition processing commandswithout programming. These include commands for averaging, scaling, peak detection, integration, thermocouple linearization, PID process control, event detection, digital filtering, and spectral analysis.

Call Today for the Complete Story

For all the details about our intelligent data acquisition systems, call us today at (206) 881-4286.

Then imagine what you can do with the time you save.

Microstar

LABORATORIES//

2863 152nd Avenue NE
Redmond, Washington 98052
Phone (206) 881-4286
Fax (206) 881-5494
01991 Microstar Laboratories, Inc. MICROSTAR LABORATORIES,ㅆ.m DAPL,'m DAP, DAP 800, ${ }^{\text {ma }}$ DAP 1200, ${ }^{\text {ma }}$ DAP 2400,"m and Data Acquisition Processor ${ }^{\text {mem }}$ are trademarks of MICROSTAR LABORATORIES, Inc.

CALL TODAY FOR A FREE DEMO DISKETTE

Sensitive scope measurements

ready-acquired waveforms, including one-shot transients. By properly selecting the cutoff frequency, you can reduce noise without distorting the desired signal. Filtering also improves the resolution of the digitized signal in proportion to the reduction in bandwidth. Unlike working with an analog scope's inflexible, fixed front-end filtering, trying several different digital filters on a captured signal to determine which gives the best results is quite simple. In effect, you can adjust bandwidth after capturing the signal.

Leave your eyeballs out of it

Digital scopes can also perform statistical analyses on sets of captured data. Such analyses provide more accurate and reproducible characterizations of random processes than eyeballed analyses of analog-scope displays.

For example, postprocessing allows you to measure jitter, a random process that often exhibits a normal distribution. Jitter has the same effect on a signal as does a lowpass filter, obscuring potentially valuable high-frequency information. With analog scopes, you can only look at jitter, not measure it. With a standard analog oscilloscope, you see jitter as an illuminated band, the brightest section corresponding to the location where the jittery edge occurs most often. A blot of lower intensities shows where the edge occurs less frequently.

With an analog oscilloscope, you typically would increase your CRT intensity until just before blooming occurs and record the limits of jitter as a peak-to-peak jitter measurement. This jitter measurement depends on how each engineer sets a scope's intensity. Consequently, such jitter measurements are not reproducible. And the intensity
may not be enough to illuminate the actual extremes of the jitter's range, yielding something less than the true peak-to-peak jitter.

Furthermore, you need to separate the scope's trigger jitter and time-base jitter from the signal's jitter. Digital postprocessing allows correcting for the scope's jitter contribution.

For example, the Tektronix DSA 600 series scopes remove jitter by sliding records backwards and forwards in time trying to make them fit over one another. The company's CSA 803 digitizing signal analyzer offers a false-color display. This display mode is analogous to a monochrome, Z-axis variable-intensity display, but shows different colors corresponding to the density of overlapped traces at each point in the display.
Now with certain digital scopes you can measure and characterize jitter. These digital scopes display
a histogram of the jitter's time distribution. From the histogram you can see if you have a normal distri-bution-which is ordinary noise-or if there are some peaks indicating other sources for the jitter. Using these scopes, you can get figures for your jitter and noise margins that you couldn't get before.

Digital scopes also excel over their analog siblings in triggering capability. Enhanced triggering makes capturing the one waveform you want out of a stream of similar waveforms easier. In addition to triggering on the occurrence of a signal, digital scopes can trigger on the non-occurrence of a signal, a "dropout." Modern scopes, such as the Philips/Fluke PM 3340 digital oscilloscope, now have "envelope" functions that allow you to see only out-of-bounds excursions.

Digital oscilloscopes offer an amazing array of sophisticated features, yet still rely on compara-

For more information

For more information on the oscilloscopes and probes discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Our Versatec plotters are years ahead of the competition.

They always have been.
And now our plotters offer another unmatched feature: the Xerox Total Satisfaction Guarantee. It guarantees your complete satisfaction for three years - three times longer than any other manufacturer. And only you decide when you're satisfied.

That's how confident we are about our entire line of plotters, including Turbo CADmate, our affordable, high performance wide-format electrostatic plotter; the 8900 Series high performance electrostatic color plotter featuring unattended operation; and the 8836 II Laser, the industry's most popular wideformat plain paper plotter.

All Versatec plotters are covered by this exclusive guarantee. There are no catches. No fine print.

Here it is in plain English:
"If you are not satisfied with your Xerox equipment, at your request, Xerox will replace it without charge to you with an identical model or a machine with comparable features and capabilities.
"This Xerox Total Satisfaction Guarantee applies to Xerox equipment acquired by you from Xerox and continuously maintained by Xerox or its authorized representatives under our Manufacturer's Warranty or a Service Contract."

CIRCLE NO. 104

Now that's simply the best warranty you can get. No ifs, ands or buts about it. After all, you'd expect nothing less from Xerox Engineering Systems. The world's largest supplier of engineering copiers, Versatec printers and plotters.

So, for more information, call us at 800-538-6477. In California,
 800-341-6060. Or go ahead and buy your Versatec plotter today. You'll still have a few years to think it over.

Xerox Engineering Systems

2710 Walsh Ave., Santa Clara, CA 95051 Xerox is a trademark of Xerox Corporation. Versatec and Turbo CADmate are trademarks of Versatec. Inc.

Opticaliy Coupled Rotary Encoder Switches From Grayhill

OUTPERFORM AND Outlast ElectroMechanicals But Dont OUTCOST Them!

Use affordable Grayhill Series 61

Switches to

- Move an icon on a display
- Select menu items, ranges, limits
- Set radio frequency, drill depth, RPM, etc.
- Activate data entry with integral pushbutton

Bulletin 508 describes 16 and 32 detent position Grayhill Series 61 switches with 2 Bit Quadrature Code Output and million-cycle reliability. Ask for your free copy.

561 Hillgrove Avenue, P.O. Box 10373 LaGrange, Illinois 60525-0373 USA Phone: (708) 354-1040 FAX: (708) 354-2820 TLX or TWX: 190254 GRAYHILL LAGE

CIRCLE NO. 8

Nobody does ferrites like DEXTER. We offer the industry's broadest selection of quality ferrites and associated hardware from world-class manufacturers. SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From prototype quantities to production runs. From off-the-shelf to a wide range of value-added services - precision fabrication, E-core and pot-core gapping and testing, sorting and selecting by electrical specs.
Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location

FERRITE CORES:

THE DEXTER DIFFERENCE -One-Stop-Shopping for all your ferrite needs.

THE DEXTER CORPORAIION
ATLANTA • BOSTON - CHICAGO • DALLAS •
LOS ANGELES • MINNEAPOLIS/ST. PAUL •
NEW YORK • SAN FRANCISCO • TOLEDO/DETROIT • ENGLAND® WEST GERMANY

UPDATE

Sensitive scope measurements

tively primitive probes to acquire their information. However, you can learn how to utilize these features and compensate for probe shortfalls. Instrument and IC vendors have a wealth of free applications information to help you master oscillography. The references section following this article provides a list of some of the material available.

EDN

References

1. Rush, Ken, "Understand probe impedance to assess signal distortion," EDN, April 18, 1985, pp 247-252.
2. Hurlock, Les, "ABCs of Probes," Tektronix Inc, Jack Murdock Park, Box 3500, Vancouver, WA 98668, (800) 426 2200, ext 510. (Technical Notes and Technical Briefs, too numerous to list here, also available.)
3. Application Notes 10, 13, 40, and 43, Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035, (408) 432-1900.
4. IC Data Book, Appendix B, BurrBrown, International Airport Industrial Park, Tucson, AZ 85734, (602) 7461111.
5. Applications Guides "Understanding DSO Bandwidth," "DSO Analysis Power," "DSO Truth in Digitizing," and Application Note "How to Automate Complex Timing Measurements," John Fluke Mfg Co Inc.
6. Product Note 54120-2, "Jitter Analysis Using the HP 54120 Family of Digitizing Oscilloscopes," HewlettPackard Co.
7. Application Notes ITI 008, ITI 009, ITI 011, ITI 012, and ITI 013, LeCroy Corp.

Article Interest Quotient
(Circle One)
High 515 Medium 516 Low 517

Keeping reliabilityup as form factors go down.

THIS IS AMPTODAY.

. 050 CL, leaf-contact design

In today's tight-corner designs, reliability all too often depends on precise (and costly) manufacturing practices. Our CHAMP . 050 connectors weigh in on your side with economic simplicity, and inherently tolerant contacts.
Overview: 0.050 " centers, trapezoidal interface, dual-row leaf-contact design. Small, friendly, and forgiving.
Board-to-board: our proprietary compliant-receptacle, fixed-plug contact system tolerates wide mat-
ing depth variations that come with pcb warp-happy news for high-line-count designs-and offers superior performance in assembly, especially in blind-mate applications. Parallel, perpendicular, and in-line styles, 30-200 positions.
Shielded I/0: here, compliant plug and receptacle contacts take full advantage of the controlled header-to-plug interface to meet emerging global intermateability standards. Shielded receptacles and
plugs provide EMI protection. Mass IDC termination and fast braid crimp keep production rates up; AMP tooling covers your volume requirements. 14-100 positions.

The CHAMP . 050 high-density line: think of it as a very big factor in small-form design. For details, call our Product Information Center toll-free at 1-800-522-6752 (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

THANKS TO OUR HIGF OF A NEW DAY IN USES

Until now, there's been no volume supplier of the leading-edge 256 K CMOS EEPROM, so supplies have been short.

Samsung has changed all that. We're producing

SAMSUNG'S CMOS EEPROMs

Part Number	Organization	Type	Fasteot Specd	Features
KM28C256	$32 \mathrm{Kx8}$	Parallel	150	Data polling, ioggle bit, 64 page mode
KM28C64	$8 \mathrm{Kx8}$	Parallel	200	Data polling, 32 page mode
KM28C65	$8 \mathrm{Kx8}$	Parallel	200	Data polling, ready/bury
KM28C16	$2 \mathrm{Kx8}$	Parallel	150	Data polling, 32 page mode
KM28C17	$2 \mathrm{Kx8}$	Parallel	150	Data polling, ready/busy
KM93C06	16×16	Serial	-	- KM93C07
16×16	Serial	-	Write protect, self-timed programming	
KM93C46	64×16	Serial	-	Write protect, self-timed programming

Industrial grade versions of all producto are available. All parts offered in both DIP and PLCC (SOIC for serial). 256 K Industrial available Q4 1990, otber parts all available now.
extremely high volumes, and as you can see, all kinds of new ways to use the part are turning up.

Large-memory cellular phones, and...well, we're sure you'll think of many other interesting things to do with them.

Also new from Samsung are parts proven for industrial temperature ranges, which means you can use them in robotics, automotive

VOLUMES, IT'S THE DAWN FOR 256K EEPROMs.

applications, industrial control and related areas.

Our 256 K parts boast a fast, 5 millisecond/page write time. This gives you an effective byte write time (including erase cycle) of just 78 microseconds. And the entire chip can be rewritten in only 2.5 seconds.

What all these things represent is a broad-based commitment at Samsung to EEPROMs. We also offer CMOS 64 K and 16 K parts, a variety of serial EEPROMs, and forthcoming higherdensity serial parts.

Surface mount packaging is available across the entire line.

Request a comprehensive Samsung EEPROM Quality Kit, including samples, by calling 1-800-669-5400 or 408-954-7229 now. Or write to EEPROM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.

And start planning your own new uses.

FIBER-OPTIC PRESENCE SENSORS

Devices survive harsh environments

Because fiber-optic sensors are mainly passive devices, they are more reliable than traditional mechanical or electronic sensing devices-especially in the hostile world of industrial electronics.

Tom Ormond,
Senior Editor

Fiber-optic presence and color sensors have sensor tips as narrow as a human hair and can withstand hostile environments including extreme shock and vibration, moisture, heat, and chemicals. They have no moving parts, which can wear out, and so are more reliable and more flexible than traditional copperwire sensors. In addition, fiber-optic sensors can function in all standard photoelectric sensing configurations (see box, "A primer on fiber-optic sensing modes").

Optical fibers have bandwidths in the megahertz range. As a result, you can multiplex many sensing elements onto a single fiber to form a sensor network distributed in space. This capability lets you use a single fiber to simultaneously
measure several hundred points. To match the information-carrying capacity of a single fiber, a cable with copper wire would have to be more than 200 times as thick.
Signal attenuation over distance is much lower in an optical fiber than it is in a copper wire. Lower attenuation increases the distortion-free transmission distance for an optical-based sensing system. Optical fiber is a dielectric, so it is not susceptible to electromagnetic waves. Fibers do not transmit electrical signals, so you don't have to worry about sparking.
Glass fibers can handle temperature extremes ranging from subzero to several hundred degrees Celsius with no problem. Glass fibers also resist attack from corrosive or toxic atmospheres that

Featuring response times of 0.015 to 1 msec, Ramco Electric's $F X$ sensors can operate in both the diffuse and opposed sensing modes. The sensors operate with a single supply voltage of 12 to 24V, mount on a $35-\mathrm{mm}$ DIN rail, and have an npn transistor output.

Fiber-optic presence sensors

would devastate metals. (Plastic fibers would have the same problems as metals in the aforementioned environments.) Fiber-optic sensors can interface with remotely located control electronics via a fiber-optic data link.

The numbers tell the story

Table 1 lists parameters for a sampling of fiber-optic presence sensors. The slowest sensor response time is 10 msec . Aromat's MQ-F sensors can detect targets as small as 0.0020 in . All the units in the table function with plastic fiber, which is less expensive than glass fiber and easier to terminate. In fact, Aromat supplies a plastic-fiber cutter with each of its MQ-F sensors.

Fiber-optic sensors operate from a single supply voltage and produce dc outputs that can interface directly with logic circuitry, relays, or programmable controllers. The sensors from Aromat, Omron, and Opcon can function in light- or darkdetection modes, so they can serve as either presence or absence sensors. Omron offers separate presence and absence sensors; Aromat and Opcon sensors have an integral switch that lets users configure a single sensor for either presence or absence detection.

Industrial environments can be

A speed of 1000 operations/sec suits Aromat's MQ-F sensors for high-speed, small-piece part-detection applications. The sensors can detect objects as small as 0.002-in. wide and can mount in a panel or on a DIN rail.
rough on optical sensors whose operation is based on light intensity. A change in target color or reflectivity, a dirty lens, or movement in the target background can degrade sensor performance. To circumvent such problems, Aromat employs triple-beam technology in its MQ-F fiber-optic sensors to accurately define a scanning-distance window.

The sensor employs three fibers. One fiber operates as a transmitter; the other two function as receivers. The transmit fiber sends the LED's beam to the prospective target. The two receiver fibers capture the light
reflecting back from the target to the sensor. The fibers guide the reflected light to two PIN photodiodes. These diodes generate a current that is a function of the received light. The MQ-F sensors use the diode output current ratio to determine the target's distance.
The receiver optical system comprises an aspherical lens and the two fibers. The system reacts to the angle of the incoming light rather than the intensity of the light. The angle at which the reflected light exits the receiver fibers varies as a function of target distance. Thus, the light will be hitting each of the

Table 1-Representative fiber-optic sensors

Manufacturer	Model	Detection modes	Detection range (cm)	Fiber type	Response time (msec)	Minimum target size	Operating range $\left({ }^{\circ} \mathrm{C}\right)$	Price

[^4]
Fiber-optic presence sensors

PIN diodes at a different spot, causing the diode output to vary. For example, for a distant target, the first diode will receive most of the reflected light; when the target is close, the second diode will receive the major portion of reflected light. As a result, the ratio of diode output currents will vary strictly as a measure of distance. The amount of total reflected light is of no conse-quence-just its angle of incidence.

By precisely defining a scanning
window, triple-beam technology takes away all target-color, reflectivity, and shape considerations. And because MQ-F sensors let you predetermine the sensing window, background movements and objects have no effect on measurement accuracy. In fact, because light intensity is immaterial, even a dirty fiber tip will not degrade sensor performance.
Some fiber-optic presence sensors can also sense and recognize
color. These devices suit such applications as label differentiation and sorting color-coded parts, bottles, cans, or foods and can be a costeffective alternative to an off-line color lab. CRS 300/301 Series sensors ($\$ 8000$) from Micro Switch can be programmed to recognize as many as eight colors and use the $400-$ to $800-\mathrm{nm}$ visible light spectrum to characterize colors.

CRS sensors use a halogen light source to illuminate the target. This

A primer on fiber-optic sensing modes

Photoelectric sensors operate in one of three modes-opposed, retroreflective, or proximity. The proximity mode includes several submodes: diffuse, divergent-beam, convergent-beam, and background suppression.

Opposed-mode, or through-beam, sensors have the emitter and receiver opposite each other. The emitter aims its optical beam directly at the receiver. The sensor detects an object when the object interrupts the beam between the two components.

In retroreflective sensors, the emitter and receiver are adjacent to each other. The emitter sends out a light beam at a reflector, and the receiver detects the reflected light. Retroreflective sensors detect an object when the object interrupts the light beam.

A proximity sensor detects objects by sensing the amount of its own transmitted energy that reflects back from the surface of the target object. Both the emitter and receiver are on the same side of the target object and are usually located in a single housing. An object, when present, establishes the beam.

Diffuse-mode sensors are probably the most popular type of proximity sensor. In these sensors, the light from the emitter strikes the target surface at an arbitrary angle and diffuses off the surface at many angles. This operating mode is not very efficient because the receiver looks for only a small amount of the light reflecting back from the target. Also, diffuse-mode sensors (as well as all other types of proximity sensors) are heavily influenced by the reflectivity of the target's surface. A diffuse-mode proximity sensor will have a greater sensing range for a target with a bright white surface than it
will have for a target with a dull black surface.
Short-range unlensed divergent-beam proximity sensors suit applications in which you have to avoid the effects of signal loss from shiny objects. The lack of a lens shortens the usable sensing range, but these sensors are much less dependent than dif-fuse-mode sensors on the incident angle at which their light beam strikes the target that is within range. Target size also influences the performance of divergent-beam sensors-more energy will return from large targets. However, divergent-beam sensors respond better than diffuse-mode sensors to objects that are very close to the sensing tip.
Convergent-beam proximity sensors use a lens system that focuses the emitted light at an exact point in front of the sensor. These units focus the receiver element at the same point. This design establishes an intense, well-defined sensing area at a fixed distance from the sensor lens. The technique is quite efficient. Convergent-beam sensors can readily sense small targets. They can also sense materials that have reflectivity levels too low to be detected by diffuse-mode or divergent-beam sensors.

The background-suppression sensor rounds out the list of proximity sensor types. These devices simply ignore objects that lie beyond their sensing range. The background-suppression sensor compares the amount of reflected light that each of its two optoelements receives. These sensors recognize a target if the light level reaching the base receiver equals or exceeds the light level reaching the other receiver. The sensor does not develop an output when the light arriving at the second receiver exceeds the light level reaching the base receiver.

Helping your products to operate at their peak requires the best micromachined sensors available. But even the best sensors are useless unless they arrive on time. IC Sensors has been on the cutting edge of micromachining technology for over nine years. This allows us to provide OEM's with high quality sensors and service, on time. IC Sensors also has the most extensive product line, including HIT, TO-8, Surface Mount and ISO-Diaphragm sensors, used in such diverse industries as process control, medical and aerospace. So, when pressure sensor performance is critical, call the industry leader, IC Sensors. We deliver. 1701 McCarthy Blvd., Milpitas, CA 95035, (800) 767-1888. FAX (408) 434-7322. \qquad

TECHNOLOGY UPDATE

Fiber-optic presence sensors

source light travels over the emitter portion of the fiber-optic cable and provides a uniform white light that permits accurate and repeatable color sensing. The light reflects off the target and travels back to the sensor through the receiver portion of the fiber-optic cable.
The light returning from the target then reflects off an internal diffraction grating. The grating breaks the light into a color spectrum, which shines onto an array of 128 photodiodes. These diodes sense the intensity of the light for the different colors in the spectrum. The array, in essence, converts the light-intensity pattern into a unique data set that represents a signature for the target color.
The microprocessor in the CRS sensor compares the incoming color signature data to signatures it has
stored in memory. When it detects a match, the processor turns on the appropriate output. The standard CRS unit has a 0.1 - to $2-\mathrm{in}$. sensing distance range. It has eight digital outputs, one for each of its color channels. These outputs can be either current sinking or current sourcing and can drive as much as 600 mA . You can use onboard switches or menu-driven software to configure the outputs. The sensor can also transfer data over its RS-232C or RS-485 serial ports.

A 10.5 to $30 \mathrm{~V}, 47 \mathrm{~W}$ supply provides operating power for the CRS 300/301. Reverse-polarity protection is standard, and the operating range is 0 to $40^{\circ} \mathrm{C}$. The sensor is housed in an aluminum enclosure that provides NEMA 1, 3, 4, 12, 13, IP65, and IP67 protection.

In addition to accurately monitor-
ing the performance of an industrial processing system, fiber-optic sensors can simplify the task of actually controlling the flow of a process. Photoelectric sensors with analog outputs are especially useful in process-control and similar applications in which monitoring an object's relative position or size is necessary to produce a continuously variable voltage output. You can also use analog-output sensors to monitor the optical reflectivity or optical clarity of materials.
Banner Engineering's OmniBeam sensors ($\$ 187$ to $\$ 300$) are an example of analog-output fiberoptic sensors. By properly designing the sensing-end tip of the plastic or glass fiber, you can maximize the analog response. You can monitor the linear or angular displacement between two surfaces by operating

LET YOUR IMAGINATION GO WILD

TECHNOLOGY UPDATE

the sensors in the opposed mode. You can also use this mode to measure the width of an object as a percentage of the beam blocked by the object. Opposed-mode sensors can look through a transparent or translucent material to monitor optical clarity. You can monitor the reflective characteristics of a material by using the vendor's bifurcated fiber assemblies. Custom-designed fiber assemblies can yield distance measurements as precise as a thousandth of an inch.

The sensors provide a variable dc voltage output that is directly related (noninverting output) or inversely related (inverting output) to the strength of the light signal the sensor receives. When you properly adjust the sensor, the two analog outputs are mirror images of each other and the output-voltage

For more information . . .

For more information on the fiber-optic sensors discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Aromat Corp
629 Central Ave
New Providence, NJ 07974
(908) 464-3550
FAX (908) 464-8513
Circle No. 715
Banner Engineering Corp 9714 10th Ave N
Minneapolis, MN 55441
(612) 544-3164
FAX (612) 544-3573
Circle No. 716

Opeon Inc 720 80th St SW Everett, WA 98203 (206) 353-0900 FAX (206) 347-0544 Circle No. 719

Ramco Electric Co Box 65310 West Des Moines, IA 50265 (515) 225-6933 FAX (515) 225-0063 Circle No. 720

VOTE...

Please also use the Information Retrieval Service card to rate this article (circle one)
High Interest 506 Medium Interest 507 Low Interest 508

You've got the designs. And now the only thing standing between you and successfully bringing those designs to market are your suppliers.

Fortunately when it comes to capacitors, Nichicon has removed that hurdle.

With the widest selection of quality capacitor designs. With expanded production capabilities that assure quality performance and deliverability. With responsive
customer service that's repeatedly proven Nichicon is ready to meet

your needs with just-in-time delivery capabilities, dock-to-stock quality assurance programs and answers to your questions in a single call.

Call your local Nichicon representative or distributor today for your free copy of the latest Nichicon Product Catalog. We'll help you get your designs to market... on time and within budget.

708-843-7500 • FAX 708-843-2798

CIRCLE NO. 14

HOWTO MAKE ANYDRIVEBE DIGTALY PRECISE.

Pick a drive. AC, DC servo or clutch. The M-Trim Universal Digital Speed Controller can replace its speed pot, giving you standalone accuracy within 0.01%. With zero error in the follower mode. Even more complex, multi-motor systems can be coordinated with the M-Trim.

Diagnostics are as easy as dialing a telephone. And M-Trim's RS-422 port and direct-access programming can link with your application's computers. Call 1800 FIC-4411. Or write: Fenner, 8900 Zachary Lane North, P.O. Box 9000, Maple Grove, MN 55369. Fax: 612 424-8734.

CIRCLE NO. 23

MORE IN THE SERIES OF DESIGN ADVANTAGES

THE SHORTEST CONNECTION BETWEEN IDEA AND SILICON!

Design Advantage \#2

DESIGN VERIFICATION
Functional Design Verifier provides a waveform simulator that allows you to interactively confirm the behavior of the design before deciding on device or technology to be used.

Design Advantage \#9

VHDL SYNTHESIS
Our optional VHDL Synthesis tool not only allows you to combine your behavioral and hardware descriptions, but also gives you automatic state assignment and state reduction!

Contact ISDATA 1-800-777-1202 for complete details on these and other design advantages of LOG/iC.

Fiber-optic presence sensors

waveforms intersect at 5V. Each sensor has multiturn null and span controls that set the minimum and maximum limits of the sensor's sourcing-voltage outputs. Proprietary circuitry lets you make null and span adjustments without encountering interaction problems. A 10-element moving-dot LED array provides a visual indication of the relative light-signal change and power-block voltage output to within the nearest volt.
Omni-Beam sensors consist of two basic building blocks: a sensor head and a power block. The sensor heads contain optical components, an analog amplifier, the null and span adjustment controls, and LED-indicator-array circuitry. The fiber-optic sensor heads are available in versions for both diffuse and opposed sensing applications. Sen-sor-head types include infrared- and visible-light glass-fiber models as well as a visible-light, plastic-fiber model. The power block contains power-supply and analog-voltageoutput circuitry. These blocks are available in three models: OBPT3 for 15 to 30 V de, OPBA3 for 105 to 130 V ac, and OPBB3 for 210 to 250 V ac.
As factory and process-automation requirements become more demanding, the need for reliable sensors will increase. Fiber-optic sensors will be able to satisfy these sensing needs. They can handle a large amount of data, transmit data over longer distances than traditional copper-wire sensors, overcome EMI/RFI problems, and handle the harshest industrial environments.

EDN

Article Interest Quotient
(Circle One)
High 506 Medium 507 Low 508

Sampling A/Ds

There's only one complete source.

No matter what your requirement, you will find the answer in DATEL's broad line of Sampling Analog-to-Digital Converters.

Fast becoming

the industry standard
Characterized through Nyquist operation, these converters offer superior Signal-to-Noise ratios and harmonic distortion specifications.
Bottom line, compare these converters with any competitive units, and you'll see there is no reason to look anywhere else.
 Sampling A/Ds can improve your circuit's performance call or write DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048.

Let DATEL convert you.

 Call now 800-233-2765

INNOVATION AND EXCELLENCE IN PRECISION DATA ACQUISITION DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048 (508) 339-3000

Making

You're looking at the biggest news in signal sources in years: two new families of pulse generators from Tektronix.

You can already see one reason why Tek's new pulse generators are stirring up so much interest: their what-you-see-is-what-you-get user interface vastly simplifies your life.

Now you can stop piecing the big picture together from one-line LEDs, blinking error lights and trial-anderror iteration. Tek's new scope-like display lets you set up and modify a whole set of parameters at once, with a true representation of your pulses
and instant, visual feedback.
You name your application and logic technology: Tek has a signal source to match. For the first time, you can choose channel capacities from one to six channels, or rep rates from 50 MHz to a remarkable 600 MHz . Choose tools designed for logic, fast logic, or mixed technologies. Vary transition times from 200 ps to 10 ms . Test complex timing relationships with ease.

Add to all this our popular pulse generator plug-ins from Tek TM500/

Waves.
 γ

5000 modular instrumentation, and you can see why we're making waves!

Easier to use, more precise and more expandable, Tek's new pulse generators are doing for signal sources what DSOs have done for measurements.

Contact your Tek sales office for a demonstration, or call for more information.

Taktronix

The fastest way through customs.

The PLD Design Language

 WITH SOMETHING TO DECLARE.You've probably heard about the advantages of programmable logic devices (PLD's) over conventional TTL. In design flexibility, for example. Or increased functional density. Perhaps you've learned the hard way: a competitor using PLD's has beaten you to market with a new product.

What you may not have heard, though, is that just switching to PLD's isn't enough. You've got to choose the right PLD design language, too.

FREEDOM OF
CHOICE.
CUPL ${ }^{m}$ is the one language you can apply to any PLD design. Whatever your PLD device. Whatever your programmer. Whatever your design workstation. And whatever form of design expression you choose. With CUPL, you can even write a logic specification for a PLD before you decide on the target device.

And that means simplified training. Common data structures and design rules. Consistent documentation and testing. Instant adaptability to new devices. The productivity gains with CUPL just keep mounting. In the design cycle. And in production.

POWER TOOL.

CUPL is the most powerful high-level design language for PLD's. It incorporates features like macro substitution, free-form comments, indexed variables and parenthetical capability, to speed
 program developCUPL provides superior state machine capability, and supports all popular models of logic description, including truth tables and
 igh-level equations. CUPL's logic minimizers (3 are supplied), and deMorgan expansion capability are unequalled.

And CUPL's documentation out-
put file gives you invaluable feedback on your design's progress. These features, plus continual enhancements, make CUPL the benchmark in PLD design languages - flexible and powerful enough for the most sophisticated logic designer's needs.

Now available from Logical Devices, the new version CUPL 4.0 for MS-DOS, VAX-VMS, UNIX C, SUN, APOLLO, and, soon to be announced, for the Apple Mac II Systems.

Also available from Logical Devices, a full line of PROM/PLD programmers.

Cupl:

LOGICAL DEVICES, INC.

1201 NW 65th Place Fort Lauderdale, Florida 33309

Toll Free: 800-331-7766
In Florida: (305) 974-0967 Telex: 383142
Fax: (305) 974-8531

TECHNOLOGY UPDATE

Synthesis tools speed PLD design efforts

> PLD design tools have moved beyond the compiler approach to offer design synthesis capability. You provide a highlevel design description, and the tool does the rest.

Richard A Quinnell, Regional Editor

As time-to-market pressure increases, designers' need for productivity aids is growing. Logic synthesis tools for PLDs are meeting that need. First introduced three years ago, the tools are still evolving, increasing their efficiency and expanding beyond PLDs to encompass FPGAs (field-programmable gate arrays) and other gate arrays. These tools now allow you to describe your design using whatever form is most convenient for you. They then optimize your design and automatically offer you a selection of the best parts for implementing that design.
As logic synthesis tools have evolved, vendors have shown that they differ in what they mean by logic synthesis. The simplest definition, following the model developed by Gajski and Kuhn (Ref 1), is that logic synthesis translates a behavioral design description to a structural one. In the case of simple PLDs, the translation would convert Boolean equations to fusemaps.
While some vendors still use that definition, most consider synthesis to include refining high-er-level design descriptions and optimizing circuits. Some stretch the definition of logic synthesis to include automatic partitioning of a design into multiple devices.

PLD synthesis tools' ability to optimize logic carries many advantages. The foremost advantage for today's accelerated
engineering schedules is reduction of time to market. Once you've defined the function, the tools perform the tedious and error-prone optimization process orders of magnitude faster than humanly possible. Though the tools are by no means perfect, (see box, PLD synthesis: not a push-button solution) the time they save outweighs their limitations for most applications.

Finding the best solution

PLD synthesis tools also help you reach a good design quickly by allowing you to avoid making early decisions about implementation details. Using these tools, you can quickly adapt your high-level design to a variety of parts and technologies, then you can evaluate the results. Thus, you choose the best part for your application after your design is complete, instead of having to guess what's best (perhaps wrongly) be-

Offering design entry techniques from VHDL to schematic, tools such as Mentor Graphic's PLDSynthesis allow you to focus on function, not implementation.

Count On IDT

The R3001 RISController ${ }^{\text {™ }}$: The Embedded Processing Solution

The R3001 is the first derivative of the R3000 processor designed specifically for embedded control applications. Compared to the Intel 960 and AMD 29K processors, the R3001 is the most cost-effective solution for these applications-we have the data to prove it! Call and ask for IKIT CODE 0091A to get an
R3001 Performance Comparison Report.

FCT-T Logic: Fastest Speed/ Lowest Ground Bounce

IdT's FCT-T Logic Family is the fastest logic family available and has the lowest ground bounce-up to 40% less than previous FCT devices! The FCT-T family provides direct TTL logic compatibility and is available in FCT, FCT-AT, and FCT-CT speeds. Call today for KIT CODE 0091C and get a copy of the High-Speed CMOS Logic Design Guide.

IDT Subsystem Modules:
Building Blocks for the '90s

IDT offers a complete line of board-level subsystem products, including cache memory, shared-port memory, writable control store, RISC CPU, high integration modules, and custom designs for specific applications. Call today for KIT CODE 0091 E and receive technical data and a free IDT puzzle!

BiCEMOS ${ }^{\text {m }}$ ECL SRAMs:
Technology for the '90s

Design the fastest systems with IDT's BiCEMOS ECL family. At 7 ns , the IDT10494 is the fastest BiCMOS 64 K ECL SRAM in production. 256 K and synchronous self-timed SRAMs are also available in $10 \mathrm{~K} / 100 \mathrm{~K} / 101 \mathrm{~K}$ configurations. Call and ask for KIT CODE 0091B to get a copy of the BiCEMOS ECL Product Information booklet.

12ns Cache Tag SRAMs:

Wait No Longer

IDT's cache tag SRAMs have the features you want to design in: single-pin block reset, totem-pole match output, 4 K and 8 K depths, industry standard pinouts, and an on-board comparator to simplify design. Call and ask for KIT CODE 0091 F to get free
samples of the IDT6178 cache tag.

Contact us today to receive data sheets and other design information on IDT's products.

PLD logic synthesis tools

fore beginning. A list of representative tools appears in Table 1.

Working with synthesis tools requires a design methodology that's different from methodologies used with earlier PLD tools. Early PLD tools operated like assembly-language compilers, taking your design description and converting it to a device-specific programming file. As with assembly language, you had to choose the target device before beginning design.

Choose parts last, not first

Today's synthesis tools invert the process, leaving the choosing-parts phase until close to the end of the design effort. Now you begin by describing your design in whatever form is most convenient for you. With most tools, you can choose from Boolean equations, truth tables, schematics, state-machine algorithms, and hardware description
languages (HDLs) for the description. Tools based on Minc's technology also let you describe your design in terms of its waveforms.
Next, the tools allow you to verify that your design functions as you expected. The functional verification uses unit delays for timing, so you won't find any timing problems at this stage. You can, however, make sure that sequencing is correct.

Stand-alone synthesis tools, such as Data I/O's Abel, Isdata's Log/IC, and Minc's PLDesigner, verify only your PLD designs. When you use tools that have been integrated with a complete CAD package, however, you can extend verification to include simulated interaction with the rest of your circuit board. Cadence, Dazix/Intergraph, Mentor, and Valid have all incorporated one or more of the stand-alone tools into their systems.

Once you confirm that your design is functionally correct, the synthesis tools pick up steam. They can automatically perform a series of operations designed to reduce your design to its essentials. These operations include expanding negated compound equations into simple terms using DeMorgan's rules, eliminating redundant terms in each output signal, and combining terms common to a group of signals.

The circuit optimization techniques provided were once distinguishing features among the various synthesis tools. Revisions issued during the last six months have all but erased the distinctions. Two features that used to differentiate the tools, and that are included now in most of the revisions, are automatic output polarity selection and the use of "don't care" states in truth tables. These features allow the tools to reduce circuit com-

PLD synthesis: not a push-button solution

Despite the improvements made in PLD synthesis tools during the last three years, you cannot simply set them to work and accept the results. The tools still require a designer's insight to yield the best circuit.

For example, the tools won't produce as compact and fast a design as a knowledgeable engineer can. Synthesis tool vendors consider a synthesized design that achieves 80 to 90% of human performance to be standard. Even then, the efficiency of the tools varies with the type of design.

Algorithms that optimize state-machine designs, for example, are well developed, nearly matching human skills. When dealing with complex designs, the tools may find solutions even the experts miss. Designs that are unstructured or are registerintensive, on the other hand, are hard for synthesis tools to fit into PLDs. Logic with multiple levels is equally difficult, and asynchronous designs (if anybody wants them) are even worse. Even when the tools optimize well, you still must direct the process to achieve a tradeoff between a com-
pact design and high-speed circuit operation.
The tools also force you to consider the PLDs separately from the rest of your design. With standalone tools, you have to import your partitioned PLD design to the CAD tool containing the rest of your schematics. Then you can test the PLDs as they interact with the other circuits. If the design is incorrect, you have to ping-pong between the two tools to solve the problem.

Even PLD tools integrated with a full CAD package segregate the PLD design portion. When using this integrated software, you have to collect the PLDs in their own block of schematic pages so that the PLD tool can find them.

An exception is Valid's System PLD. Valid's tool allows you to specify your programmable logic elements throughout the schematic at any level of the design description hierarchy. It will automatically collect and merge the PLD functions for optimization and partitioning, then back-annotate your schematic after you've selected the devices.

PLD logic synthesis tools

plexity substantially by eliminating unnecessary constraints. Without these features, you would have to try different polarities and truth table values manually until you found which attributes yielded the smallest design.

Partitioning methods vary

Still distinguishing the various tools are their methods for partitioning large designs into multiple devices. Some, like Minc's PLDesigner, offer automatic partitioning. All you have to do is specify constraints for the final design, such as number of devices used, device types that you allow, cost, or grouping of key signals. These tools try to fit your design into all combina-
tions of allowed parts, then they report your best options, letting you make the final choice.

Data I/O's Abel-4 and Isdata's Log/IC take a different approachtheir tools are interactive. You decide where to place each signal, then the tools advise you as to which additional signals must or should be included in the same device. The interaction may inspire you to make design changes-such as burying a node-that can substantially improve device utilization.

The best approach for you depends on which has more valueyour time or your silicon budget. In the hands of a knowledgeable designer, an interactive tool can yield
greater device utilization than an automatic one. The automatic tool, on the other hand, can work on solving your problem while you work on another project. It may even come up with designs you wouldn't think of because you're unfamiliar with some of the parts it can choose.

Synthesis tools that have optimizing and partitioning capabilities free you from having to understand the myriad architectures of simple PLDs. You're not off the hook altogether, however. You still need to understand the architectures of the more complex PLDs and of field-programmable gate arrays (FPGAs). The advent of these complex PLDs and FPGAs is stretching the capacity of automatic tools, and their par-

Table 1-Representative PLD synthesis tools

Company	Product	Additional designentry methods			Partitioning	Library size (architectures/ devices/ device families)	Operating platforms	Base cost	Comments
		Waveform	EDIF	Hardwaredescription language					
Cadence Design Systems	Amadeus PLD			Verilog	Interactive	14000/	SPARC, DEC, Apollo/HP	\$12,000	Board-level CAD using Data I/O's technology.
Data I/O	Abel-4		x	Abel-HDL	Interactive	250/6000/	PC, Sun-3, SPARC, Apollo/ HP, Integraph, DEC, Macintosh	\$1995	
	Abel-FPGA			Abel-HDL	Interactive	I/Xilinx, Actel, Plus Logic, Altera, AMD	PC, Sun-3, SPARC, Intergraph	\$7995	Can include Abel-4.
Dazix/ Intergraph	PLD Master with Abel			Abel-HDL	Interactive	275/3400/	Intergraph, Sun	\$8000	Board-level CAD using Data I/O's technology.
	PLD Master with Log/IC				Interactive		Sun	\$11,000	Board-level CAD using Isdata's technology.
	PLDesigner Plus	x		Proprietary	Automatic	180/3000/	Intergraph	\$14,000	Board-level CAD using Minc's technology.
	PGADesigner Plus	x		Proprietary	Automatic	//Actel, Altera, AMD, Xilinx	Intergraph	\$19,000	Board-level CAD using Minc's technology.
Isdata	Log/lC		x	VHDL	Interactive	380//	PC, Apollo/HP, DEC, Sun	$\begin{gathered} \$ 1480 \\ \text { to } \\ \$ 6700 \end{gathered}$	Offers graphical statemachine design (flowcharting).
Logical Devices	CUPL, with PLPartition			Cupl	Interactive	240/3000/	PC, DEC, Sun, Apollo/HP	$\begin{aligned} & \$ 695 \text { to } \\ & \$ 2295 \end{aligned}$	
Mentor Graphics	PLDSynthesis			Proprietary	Automatic	140/3000/	Apollo/HP	\$14,900	Board-level CAD using Minc's technology.
Minc	PLDesigner	x	x	Proprietary	Automatic	13200/	any DOSor Unix	\$1950	
	PGADesigner				Automatic	//Actel, AMD, Xilinx		\$2500	
Valid Logic Systems	System PLD	x	x	Proprietary	Automatic	13000/	DECstation, Sun, RS/6000	\$13,500	Board-level CAD using Minc's technology.
	System PGA					//Actel, Xilinx			

[^5]

While others talk, Pioneer's customers are enjoying the benefits of power supplies with built-in .99 active PFC today.

In over 2400 voltage-current configurations, from 250 to 2000 watts, single or multiple output.

Pioneer can give you 1000 watts of DC power from a standard 115-V 15-A wall outlet and comply with UL's 12 A limitation. That's 300 more watts of usable power for system peripherals and accessories.

Plus, insensitivity to input voltage and frequency variations over a range of $90-264 \mathrm{VAC}, \mathrm{DC}-120 \mathrm{~Hz}$ eliminates strapping or switching.

You'll also get the added benefits of improved holdup performance, reduced line harmonics, less stress on system wiring, and decreased UPS size.

Because load current drawn from the line is a sine wave rather than a spike, conducted EMI filtering is simplified. In fact, these units meet the requirements of IEC 555-2 which limits third and higher harmonics. They also meet international safety standards, including UL1950, CSA 1402 C and 220, IEC 380 and 435 and EN60950. All Pioneer standard and custom options are available.

Our 100% testing and 48 -hour full-power burn-in ensures you of Hi-Rel, top quality supplies.
We've been building high-power switchers over 30 years and shipped over 350,000 worldwide.
So call us at 800-233-1745, or 800-848-1745 in CA. Or write to 1745 Berkeley St., Santa Monica, CA 90404.

Fax: 213-453-3929.

TECHNOLOGY UPDATE

PLD logic synthesis tools

titioning software has not yet caught up. When dealing with such complexity, you'll have to select the target device based on your own knowledge.
The tool vendors are responding to the demands these complex devices place on their software by creating a separate design path for them, as shown in Fig 1. This design path includes a detour to tools outside of their own tools. Acknowledging that device vendors have the greatest insight into device architectures, the PLD synthesis tool vendors are forging links to the device vendors' design tools instead of creating their own.
This may seem like a step backward in design methodology. Instead of having a single tool handle your design from description through implementation, as with PLDs, you have to send your design to a second, device-specific tool. And if you're going to design predominantly in FPGAs, the prospect of moving from one tool to another may tempt you to use just the device vendor's tool. However, if you use the PLD synthesis tool as a

Parts selection is the final design step when using today's PLD synthesis tools, as this work-flow diagram shows. Earlier PLD design tools required that you select the part before beginning design.

For more information . . .

For more information on the PLD synthesis products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Cadence Design Systems	Dazix	Logical Devices Inc	Minc Inc
555 River Oaks Pkwy	An Intergraph Co	1201 NW 65th Pl	6755 Earl Dr
San Jose, CA 95134	1 Madison Industrial Park	Ft Lauderdale, FL 33309	Colorado Springs, CO 80918
(408) 943-1234	Huntsville, AL 35894	(305) 974-0975	(719) 590-1155
FAX (408) 943-0513	(205) 730-2000	FAX (305) 974-8351	FAX (719) 590-7330
Circle No. 700	FAX (205) 730-8344 Circle No. 702	Circle No. 704	Circle No. 706
Data I/O Corp		Mentor Graphics Corp	Valid Logic Systems
10525 Willows Rd NE	Isdata Ine	8005 SW Boeckman Rd	2820 Orchard Pkwy
Redmond, WA 98053	800 Airport Rd	Wilsonville, CA 97070	San Jose, CA 95134
(206) 881-6444	Monterey, CA 93940	(800) 547-3000	(408) 432-9400
FAX (206) 881-6856	(408) 373-7539	in CA, (503) 685-8000	FAX (408) 432-9430
Circle No. 701	FAX (408) 373-3622	FAX (503) 685-8001	Circle No. 707
	Circle No. 703	Circle No. 705	
VOTE.			
Please also use the Info	trieval Service card to rater	cle (circle one)	
High Interest 509 Me	rest 510 Low Interest 51		

$G_{\text {o ahead, explain it. }}$
Tell them how small variations in component tolerances, process parameters and operating temperatures can cause an analog design to fail in manufacturing. Or worse yet, in the field. Even though it worked in the lab or in SPICE.

That's a problem Valid can help you avoid. As the leading supplier of analog EDA systems, we understand how down stream factors can sabotage your analog circuits.

That's why our Analog Workbench II provides the most complete selection of in-process analysis tools. So you can dramatically improve the quality, reliability and manufacturability of your analog ASICs or boards.

Choose from sophisticated tools like parametric, worst case and sensitivity analysis to identify critical design dependencies. Advanced statistical analysis to predict and optimize manufacturing yields. And Smoke Alarm"'stress analysis to ensure that com-

Valid's in process anabsis lets you catch dounstream errors before they occur:
ponents stay within safe operating limits.
All analyses support DC as well as AC and transient measurements. And with Valid's unique Distributed Network Processing option, you can automatically partition computeintensive runs across a network of workstations. Providing desktop performance of 100 MIPS or more, to give you more time to refine your design.

Analog Workbench II delivers all this capability in an integrated, easy-to-use environment that ASIC Technology \mathcal{E} News calls "a designer's dream." * With system-level function blocks for topdown design. The world's largest analog component libraries. And tight integration with IC or PCB physical design tools.

It's all part of Valid's Process Integration Architecture, the industry's most practical and comprehensive approach to concurrent engineering.

For more information, call 1-800-48-VALID today. We'll take the excuses out of your next analog design.

TECHNOLOGY UPDATE

PLD logic synthesis tools

front end, you keep the advantage of being able to choose the target technology after you create the design, instead of before.

If you use a PLD synthesis tool for FPGA design, the tool will optimize your design for the target device, then produce an output file that the device vendor's tool accepts. The format of that output file varies with the synthesis tool vendor. Isdata and Minc provide ven-dor-specific formats, matching the native format of each device-vendor's tool to take maximum advantage of the part's architecture. Data I/O takes a more open-architecture approach; its output files are in PDS or Abel-PLA format, allowing a variety of FPGA and ASIC design tools to accept the same file.

Adapting to encompass FPGAs is only one way that PLD synthesis
tools are evolving. Another is their inclusion of industry standard interfaces. Electronic Data Interchange Format (EDIF) and VHSIC Hardware Description Language (VHDL) interfaces, for example, are under development at most of the PLD synthesis tool vendors. You will probably see these interfaces become widely available during the next six to nine months; some are ready now. Isdata, for example, has translators that accept VHDL and EDIF design descriptions for its Log/IC tool. In addition, Isdata, Logical Devices, and Mentor Graphics offer EDIF output files.

The continuing evolution of PLD synthesis tools isn't stopping with programmable devices. Vendors have already taken steps toward encompassing gate arrays. Data

I/O's output file format, along with the other vendors' EDIF output format, makes it possible for your design to migrate from PLD and FPGA to ASIC tools. Furthermore, Isdata offers a tool called Hint that flattens a PLD design so you can implement it in a gate array. And there is no telling how far along the path to ASICs the PLD vendors can take their tools, allowing you to design while having access to the entire range of user-defined logic.

EDN

Reference

1. Markowitz, Michael C, "Logic synthesis prepares for VHDL," EDN, March 30, 1989, pg 51.

Article Interest Quotient
 (Circle One)

 High 509 Medium 510 Low 511
BRADYTOUCH TRANSPARENT TOUCH SGREENS

Put technology at your fingertips with a BRADYTOUCH ${ }^{\text {™ }}$ Transparent Touch Screen. Available in matrix or analog designs, BRADYTOUCH ${ }^{\text {™ }}$ Screens are the ideal, affordable solution to your touch screen needs.
Best Transparency in its Class
BRADYTOUCH ${ }^{\text {TM }}$ Screens transmit light better than any other membrane screens. A unique "total surface" optical-adhesive design reduces transmission losses, resulting in improved clarity.
Reliable
BRADYTOUCH ${ }^{\text {TM }}$ Screens are made of durable, yet lightweight plastics. Abrasionresistant, non-glare finishes are available for particularly demanding applications.
Let us help you with your touch screen needs. Call or write today.

W. H. BRADY CO.

THIN FILM PRODUCTS
8225 W. Parkland Ct. • P.O. Box 571
Milwaukee, Wisconsin 53201
Phone: 414-355-8300 • Fax: 414-354-0453
Copyright 1990 W. H. Brady Co. All rights reserved.

Somewhere in this random pattern of dots is a number. Take a few minutes to gaze at the image. It's not easy to see.
Most people take quite a long time before the brain locks in on the pattern correctly.*
Standard emulators face the same problem when looking for bugs. In fact, using most in-circuit emulators can be like trying to see this number with one eye shut. That's why you need the powerful pattern recognition you get with the MIME 600 and MIME 700 from Pentica. Both give you source-level
debugging, powerful breakpoint mechanisms and real-time trace to track down errors. And that's like having the bugs jump right out at you. To find out more about the MIME series emulators, send in the coupon today. We'll also give you more information about the Random Dot Stereogram you've been staring at. We'll include lots of help in learning to see the image. If you CAN see the number, please write it in the space provided. Ten correct responses will be chosen at random to receive a special prize.

Please note the two addresses listed

 below. In the U.S., responses should go to Pentica, Inc.; in Europe please send replies to Pentica, Ltd. Reader service numbers: \#121 for U.S.; \#122 for U.K.*To see the number, diverge your eyes, as if looking at a faraway object. The two dots will fuse, forming a third central dot. When the divergence is correct, slight, controlled variations in the placement of the random dots are perceived by the brain as depth cues. A shape will appear to float above a textured background. Some see the image in seconds. Others find it more difficult. If you can't see it, let someone else try. If they succeed, perhaps they can help you. Be sure to get the full explanation along with more examples by sending us the coupon.

We developed LonWorks technology. What you do with it is your business.

Spend a day in a free LonWorks" seminar and we'll change the way you develop products forever.
You'll learn about the technology that uses the latest computer, semiconductor and networking advances to add control and communication capabilities to your products. Quickly and inexpensively.

You'll see the heart of LonWorks, the Neuron ${ }^{*}$ CHip. Small enough to fit into any product, smart enough to control and respond to other devices, flexible enough to communicate over standard media, and inexpensive enough that everyone can afford it.

You'll discover how easy it is to program and link Neuron CHIPs into virtually invisible networks of intelligent devices.
How our LonTALK" protocol communicates over powerlines, twisted pair, radio waves, and other common media.
How our LonBuilder" Developer's Workbench helps you design LonWorks networks into your products. How to connect products into smart systems. And how to connect systems into interoperating LonWorks environments as large as a building, a home or a factory. All in less time and for less money than it takes to develop your own protocols and tools.

So call $1-800-258-4 \mathrm{LON}$ for reservations. And learn about the new technology that will help you improve your products. And your business.

99.5\% PCB Reliability Guaranteed!

-

(Nobody's Perfect)

Kokusai has become a world leader in electronics by making bold claims ...and backing them up. How can we guarantee such a high percentage of first pass reliability?

First, our quality control procedures utilize the most advanced technology to weed out any less-than-perfect component before fabrication begins. Second, Kokusai's precision mounting and advanced robotics eliminate human error.

Finally, all PCBs go through a full series of automatic inspections to insure that they meet Kokusai's rigid standards. These exhaustive steps result in printed circuit boards with
the highest degree of reliability available today.

A superior product is only one of Kokusai's many advantages:

Cost Effectiveness

Based on your specifications, we'll produce finished boards with nearperfect reliability...on time, and at very competitive prices.

Design Assistance

We're specialists in hardware and software. This means we can utilize gate arrays and ASICs to satisfy any application you require, including reducing board size.

Quick Response

Our manufacturing facilities are self-contained. We have the ability to respond immediately to specification changes and other critical requirements, on-time and on-budget.

To learn more about Kokusai reliability, cost-effectiveness, design and response capabilities, ask for a free brochure.
Special gift when
you call or write to us
on company letterhead -
Kokusai Cubed Memo Pad.

Kokusai Electric Company, Ltd.

PRODUCT UPDATE

Without GaAs, RISC workstation family breaks 55-MIPS speed limit

Just as IBM made its re-entry into the workstation field with its RS6000 last summer, HewlettPackard/Apollo has declared that it shouldn't be counted out. The HP/ Apollo 9000 Series 700 workstations run at 57 and 76 MIPS, or at 55.5 and 72.2 SPECmarks using a CMOS CPU. Spec integer performance ranges from 39 to 51 VAX MIPS, and floating-point performance is 70.2 to 91 VAX MIPS.

The Precision-RISC-based computers are available in three models. The base model 720 starts at $\$ 11,990$ and, like its two siblings, comes standard with 16 M bytes of RAM.
The memory in the two lower-end machines is expandable to 64 M bytes. Although the 720 base unit is diskless, you can add as much as 840 M bytes of internal storage or as much as 10 G bytes of external disk capacity via its standard SCSI2 port. The $50-\mathrm{MHz}$ Precision CPU uses a 256 k -byte data cache and a 128 k -byte instruction cache.

The mid-level machine, the $\$ 19,990$ Model 730, uses a testselected $66-\mathrm{MHz}$ CPU to improve its throughput. The workstation also adds a 200 M -byte hard disk. Like its $50-\mathrm{MHz}$ sibling, this workstation accepts as much as 10 G bytes of disk capacity. The EISA (extended-industry-standard architecture) slot is optional in the lowend machine, but it comes standard in this machine.
The $\$ 43,190$ Model 750 rounds out the family. This desk-side workstation/server offers a 660 M -byte hard disk. Although it too comes equipped with 16 M bytes of RAM, you can furnish the system with as much as 192M bytes of 2 -way interleaved RAM. To improve instruction-cache (I-cache) hit rates, this workstation doubles its I-cache to 256 k bytes.

All of the workstations feature Ethernet, RS-232C, Centronics, and HP-HIL ports for network and peripheral-device connections. And where the 720 has an optional EISA
slot and the 730 has one EISA slot, the 750 has four EISA slots. All of the machines offer optional CDROM and 4-mm digital audio-tape capabilities. The CD-ROMs can provide operating-system, application, and documentation access.

Four levels of graphics performance are available on the Series 700. The starting gray-scale GRX is available on the basic 720 and 730 workstations. The CRX is the en-try-level color system and is included with the 750 . The GRX and CRX graphics subsystems provide 1.15M 2-D vectors/sec and 8044 X11 vectors/sec performance. The two high-end graphics systems use one to four i860 dedicated graphics processors to provide as much as 1.3M 3-D vectors/sec and 195,000 lighted and shaded polygons/sec.

For workstation users committed to some of their DOS applications, the $66-\mathrm{MHz}$ CPU provides 20 - to $25-\mathrm{MHz}$ DOS emulation via a $\$ 700$ Insignia emulator license. The

Benchmark results give an indication of the type of performance you might expect from the HP Series 700 workstations.

Gemini 1022 Dual Terminal Emulator

TAS Gemini 1022 is the only instrument that provides end-to-end testing of high-speed intelligent modems, ISDN terminal adaptors, and DDS sets.

Provides two complete data analyzers in one compact package
Measures BER/CER/BLER and throughput at rates up to 72 kbps

Built-in GPIB and RS-232 control interfaces for test automation
Supports ASYNC, SYNC, and HDLC formats for thorough testing of modem command sets

Gemini 1022 a Dual BERT and Much, Much More!

34 Industrial Way East, Eatontown, NJ 07724-9917. Phone (908) 544-8700 • FAX (908) 544-8347

CIRCLE NO. 18

Twice as Precise as Electrochemical Etching BALCO Microformed ${ }^{\text {" }}$ Parts

For encoder discs, masks, optical slits, aperture plates, ink-jet nozzles, reticles, laser electrodes and more, BALCO Microformed parts offer over two times the precision of electrochemical etching.

The Microformed process uses electrochemical plating on a mathematically calculated, photographically generated pattern. Holes and slots are routinely as small as 2 microns ± 1 micron. Complex designs with sharp, burr-free edge definition are typical. Parts can be absolutely flat or three-dimensional. And low-cost, Microformed tooling is ideal for small or large production runs.

Let us design a Microformed part with you.

Call 203/481-4277
DELKER

I
P.O. Box 427 • Branford, CT 06405 • 203/481-4277 • FAX: 203/488-6902
workstation uses HP/Apollo's 9000 Series 800 -level binary code so you won't need to recompile Series 800 applications that don't use or need the graphics or floating-point capability of the Series 700 .

Although the vendor claims that more than 2000 software applications run on Precision-based workstations, the 9000 Series workstations don't yet have a significant base of electronic-design-automation (EDA) applications. However, a few EDA vendors, among them Mentor Graphics, Cadence Design Systems, Racal-Redac, and Zuken say they will port their software. Racal's software will be released this summer. Mentor's port should be available before the end of the year, but Cadence didn't offer a release schedule. Other EDA vendors, such as Synopsys, Valid, Vantage, and Viewlogic, are waiting for user demand to grow before committing to a port.
The workstations use the HP Vue user interface, a refinement of the OSF/Motif GUI (graphical user interface). The 9000 Series machines run the OSF/1 version of Unix and are compatible with SVID (Unix System V Interface Definition), X/Open XPG3, and Posix (portable operating-system-interface for Unix). Supported networking protocols include Ethernet, FDDI (Fiber Distributed Data Interface), NCS (Network Computer System), OSI (Open-Systems-Interconnection) model, and IBM 3X70.

For HP/Apollo users working on 68040-based workstations, the vendor claims that the 9000 Series machines don't signify a change of commitment away from 68040based workstations. The vendor suggests that new 68040 -based products are in development.
-Michael C Markowitz
Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 731

THE NETWORK SOLUTION.

Speed is of the essence when installing networks. The many practical ideas incorporated in Temprack are timesavers for your network project - both at the planning stage and during on-site assembly.
1.) Model: Temprack NS 19 41 U*, Width 800, Depth 800.
with glass - door and raised top Order No. 1.113.816.3
2.) $19^{\prime \prime}$ distribution patch panel IBM for 32 connectors with mounting-kit Order No. 1.113.763.3
3.) $19^{\prime \prime}$ fixed shelf, $2 U^{\star}$ perforated for air circulation Order No. 1.113.737.3
4.) Jumpering bracket for cable feed Order No. 1.113.749.7/pair

1.) 44236,50
2.) 2788,20
3.) 1663,20
4.) 351,10

Knürr NV
Tel. 03-326.02.99
Fax 03-325.55.43

7609,00
480,00
285,00
60,00
Knürr s.a...I.
Tel. (1) 43778585
Fax (1) 43390210

763,00
41,90 571,00
14,70
5,70
Knürr (UK) Ltd.
Tel. 0480-496125
Fax 0480-496373

Knürr Norge A/S
Tel. 02-65.02.20
Fax 02-65.32.30

Knürr AG
Tel. 01-82 50707
Fax 01-8250803
Delivery ex stock. Prices ex works, excluding packing, exclusive VAT.

Consumer/Control Processor with the most exciting feature set youve ever seen.

The low-cost Z8 CCP family of microcontrollers takes full advantage of Zilog's new Superintegration"' $Z 8^{\circledR}$ core. The result is unprecedented functionality at a price that makes sense for high volume consumer and automotive products as well as intelligent embedded peripherals.

Features . .

For starters, there's a voltage detection circuit that automatically trigeers an on-board power-on reset

timer for no-fuss power up. And it continues to provide brown-out protection . . . in case Vcc falls below the $2.5-5.5$ volt operating range. Not only that, there's an on-board watchdog timer that secures your application even further.

. . . and more features.

You also get a stop mode that typically consumes less than 2 microamps. What's more, stop-mode wake-up and interrupts can be triggered from multiinput port transitions, making the Z8 CCP MCU ideal for key-pad applications. And that's not all. The Z8 CCP series gives you on-board analog comparators, two 8 -bit counter/timers, with 6 -bit pre-scaler, and the right amount of I/0. And you know you're going to get very fast code development, because you've got full compatibility with the widely used 8 -bit Z8 instruction set.
And plenty of important choices.
Choose between low EMI wide voltage range or high-speed control devices. The Z8 CCP microcontroller is also available in your choice of RC, ceramic or crystal oscillator circuits. And in 18-, 28-and $40 / 44$-pin versions, in a variety of packages, with 2 K or 4 K ROM Code sizes. All off the shelf and backed by Zilog's proven quality and reliability.

To find out more about the Z8 CCP MCU or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away.

Low-cost ac instruments offer high accuracy

Keithley is entering the ac-instrumentation field with five products: two LCZ meters and three multifunction synthesizers. These products simplify the process of testing your circuit or device by automating setup procedures and measurement parameters. The prices for these instruments are as little as one-third the prices of comparable instruments sold by other manufacturers.
The Model 3321 and 3322 LCZ meters are $4^{1} / 2$-digit, IEEE-compatible units that offer 0.1% accuracy for inductance, capacitance, and impedance measurements. Dissipation and quality measurements display with 0.0001 resolution; phase resolution is 0.01°. You can select ac test voltages of 1 V or 50 mV . To operate either meter, just connect the device you're testing and take a reading-both units automatically identify the type of circuit and display all applicable outputs. Both meters also come with an internal 2 V bias source, but you can supply an alternate external bias source as large as 35 V .
The $\$ 3490$ Model 3321 has 150msec and 480-msec trigger-reading rates and offers test frequencies of $120 \mathrm{~Hz}, 1$ $\mathrm{kHz}, 10 \mathrm{kHz}$, and 100 kHz . The Model 3322 costs $\$ 3990$, has eleven test frequencies, and adds a $64-\mathrm{msec}$ triggerreading rate. The 3320 can also read percent deviation from a preset value and identify what kind of device it's testing.

The three multifunction synthesizers use Direct Digital Synthesis (DDS) to ensure phase-
continuous waveforms. Using DDS allows the units to change frequencies without taking several cycles to stabilize. The units are accurate to 5 ppm and have five built-in waveforms, trigger/burst/gate functions, and on/off oscillation control.
The $\$ 3590$ Model 3930A offers 11digit output resolution, a range of 0 Hz to 1.2 MHz with $0.1-\mathrm{mHz}$ resolution, and a 30 V p-p output voltage. The $\$ 5390$ Model 3930 has 12digit output resolution, a range of 0 Hz to 20 MHz , a 20 V p-p output, and two built-in synthesizers that can act as a 2 -phase oscillator or a harmonic generator. Both models have a built-in IEEE-488 interface and sweep capability over the entire range. The 3930 also has burst capability over its range. If your application doesn't require such accuracy, the $\$ 1695$ Model 3910 is accurate to 30 ppm over a range of 0 Hz to 1 MHz - \boldsymbol{J} D Mosley

Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (216) 248-0400. FAX (216) 248-6168.

Circle No. 730

Offering improved price/performance ratios, Keithley en ters the ac instrumentation market with two LCZ meters priced less than $\$ 4000$ and three multifunction synthesizers priced less than $\$ 5400$.

Looking into a multichip module? Read between the lines and you'll get it.

Smaller vias,

Improved physical and electrical properties provide a dielectric constant approaching a K of 4.
Pacific Hybrid is ready now to put multichip modules to work for you fast. Just call!

10575 SW Cascade Blvd. Portland, OR 97223 (503) 684-5657 FAX (503) 620-8051 1-800-622-5574

APA PACIFIC HYBRID

 HM MICROELECTRONICS
We do small miracles. ${ }^{\text {M }}$

Copyright © 1991 Pacific Hybrid Microelectronics

Power-factor-corrected switching power supplies

> Goaded by the IEC and encouraged by IC vendors, firms that make switching power supplies are starting to correct a long-standing problem: their products' propensity to draw nonsinusoidal line currents.

Dan Strassberg, Associate Editor

You designed your system conservatively. You know that the power supplies can handle their loads. When you figured out what the worst-case ac line current would be, you took the supplies' maximum dc output power, divided it by the supplies' efficiency, and then divided the result by the lowest line voltage at which you said the equipment would operate. But when the supplies are heavily loaded, every now and then the circuit breaker inexplicably trips. You tell yourself that the problem must be transient surges-that you just need a clean ac line or a circuit breaker that has a higher rating or a less aggressive current-vs-time trip characteristic.
If the preceding scenario sounds a bit too familiar, you should start to wonder about the power factor of the incoming ac. "Power factor?" you ask, somewhat incredulously. "But electronics engineers don't need to worry about power factor!" Power factor is something you heard about in a course on electrical machinery-one of those courses your adviser made you take because the

EE faculty thought all EEs ought to know something about machines. Neither you nor any of your friends could see the relationship between electrical machinery and the kind of work you wanted to do after graduation, so none of you paid much attention.

You remember, though: Power, $\mathrm{P}=\mathrm{EI} \cdot \cos \Theta$. E and I are the rms values of sinusoidal voltage and current waveforms; Θ is the phase angle between them. Power factor, $\mathrm{PF}=\cos \Theta$. And then there was that dumb mnemonic they taught you about Eli the ice man. E (voltage) leads I (current) in an inductive circuit-one where inductance, L, predominates; I leads E in a circuit where capacitance, C, predominates. The preceding applies only when the voltage and current are sinusoidal. But, heck, back in that machinery course, the voltage and current were always sinusoidal.

If you think that the current drawn by most off-line switching power supplies is sinusoidal, think again. An off-line supply is one that first creates a high dc voltage by directly rectifying

By using power-factor correction, a switching power supply can transform a harmonic-laden current into a safely consumable sinusoidal current. (Photo courtesy Pioneer Magnetics)

If you think that the current drawn by most off-line switching power supplies is sinusoidal, think again.

and filtering the incoming ac, without first passing the ac through a transformer. The high de voltage is converted to high-frequency ac, transformed (usually to a lower voltage), rectified, and filtered. In the initial stage of directly rectifying and filtering the ac line, most off-line switchers use capacitor-input filters.
"So," you say, "it's the capacitor-input filter that makes the power supply's input current lead the line voltage." Hardly-the combination of the supply's rectifiers and input filter capacitor acts as a peak detector; current flows to charge the capacitor only when the instantaneous ac voltage exceeds the voltage stored on the capacitor. In other words, in a single-phase system an off-line supply draws a current pulse each half cycle. The pulse duration is a small fraction of the half-cycle duration. The pulse, a piece of a sinusoid whose shape is called a haversine, occurs near the midpoint of the half cycle when the ac voltage is highest. Between the peaks, the supply provides continuous power to the load by drawing on the energy stored in the input filter capacitor.

Will the real power factor please stand up?

The previous discussion leads to the real definition of power factor: $\mathrm{PF}=$ real power divided by apparent power. Apparent power is the product of the rms values of the line voltage (the line voltage is usually nearly sinusoidal) and the line current (the current drawn by most off-line switching supplies is quite nonsinusoidal). In such a supply you actually don't calculate the rms input current by dividing the supply's output power by its efficiency and dividing the quotient by the rms input voltage. The result of such a calculation would significantly understate the rms input current.

If you think about the problem in the frequency domain, you will remember that you can consider any periodic waveform to consist of a summation of sinusoids. If you integrate the product,

$$
E_{1} \cdot \sin (\omega t) \cdot I_{n} \sin (n \omega t+\Theta),
$$

where n is the harmonic number, over one cycle of the fundamental, only when $n=1$ is the result not zero. (E_{1} is the amplitude of the fundamental-frequency component of the line voltage. I_{n} is the amplitude of the $n t h$ harmonic component of the current.) Because the line voltage is essentially sinusoidal, but the current
is nonsinusoidal, only the current's fundamentalfrequency component will affect the power. However, the harmonics present in the current waveform can have a profound effect on the rms value of the current.

The reason that the harmonics affect the rms current is that $I_{r m s}$ is the average over the waveform period of the integral of the square of the current. Every harmonic term is multiplied by itself. The integral of a sinusoid squared over one or more periods is always greater than zero. Therefore, although the harmonics in the nonsinusoidal current waveform contribute nothing to the power consumed by the supply, they can make the supply's rms input current considerably greater than the rms value of the fundamentalfrequency component.

Several manufacturers offer power-factor-corrected supplies in the industry-standard fan-cooled $5 \times 8 \times 11-\mathrm{in}$. package. Jeta Power Systems' units produce 1 or 1.2 kW , provide one to four outputs, and boast power factors as high as $\mathbf{0 . 9 9 8}$.

The real power delivered to the supply is the output power divided by the efficiency. To obtain the rms input current, you must do one of two things: measure the current with a wideband ac ammeter or divide the real power by the line voltage and divide the resulting quotient by the power factor. Because the power factor can never be greater than 1 , the supply's rms input current will almost always exceed the real power divided by the rms line voltage. A typical off-line switching supply will have a power factor of approximately 0.7 , so the line current will be about 40% greater than you would calculate if you ignored power factor.

Supplies that have extra long "holdup" time-the time that they will continue to supply power to a load after the incoming ac power fails-can have even lower power factors. Off-line switchers with full-load power factors as low as 0.6 are common. At any given value
of load, a switching supply will exhibit the lowest power factor when its input line voltage is highest.

The harmonics' effect in inflating the rms current can cause other mischief besides the nuisance of tripping circuit breakers mentioned earlier. Suppose your system uses 900 W of dc power and that you intend it to operate from an ordinary $120 \mathrm{~V}, 15 \mathrm{~A}$ branch circuit. According to Underwriters' Laboratories (UL), equipment connected to a " 15 A " circuit should draw no more than 12 A for sustained periods. If your power supply is 75% efficient, its input power will be 1200 W . If you specify your system to operate normally when the line voltage drops to 100 V , it will draw a maximum current of 12 A -provided the power factor is 1 .

If the power factor is 0.7 , the current will exceed 17 A rms . That value is not merely greater than the derated value of 12 A that is considered safe on a sustained basis in " 15 A " circuits; it is greater than the circuit's 15 A rating. If a system with a supply having a 0.7 power factor and 75% efficiency is to operate for long periods with a line voltage of 100 V on a (nominally) $120 \mathrm{~V}, 15 \mathrm{~A}$ branch circuit in the US, it must consume no more than 630 W of dc power.

Three-phase, 4 -wire "wye-connected" power systems can have an even more insidious problem. In such systems, loads are connected from each phase to neutral. If the load currents are sinusoidal, equal, and in phase with the phase voltages, the current in the neutral wire will be zero. But if the loads consist of switching power supplies that draw nonsinusoidal currents, even if the fundamental-frequency components are equal and are in phase with the phase voltages, the harmonic currents that flow in the neutral wire are unlikely to cancel.
In fact they can add in such a way that the rms value of the neutral current exceeds the current in any phase. It is customary for the neutral wire to be of the same gauge (diameter) as the phase wires. For a 3 -phase system's neutral wire, choosing a wire gauge that equals the gauge of the phase wires is thought to be a conservative practice. After all, under ideal conditions, the neutral wire carries no current. But because of harmonics, the neutral wire can, in some cases, carry a current larger than the currents in the phase wires, and so should be of a larger gauge.

The situation described in the previous paragraph reveals the possibility that circuit breakers could fail to protect a building's wiring. For safety reasons, circuit breakers do not interrupt the neutral leg of 3-phase power systems. If the neutral conductor carries an rms current that is, say, 25% higher than the current in any phase conductor, there is a possibility of excessive temperature rise in the neutral conductor and,

If you don't want to switch to a new power-supply model or a new vendor, you may be able to add a PFC module between the ac line and your existing supply. These ac-in/ac-out units from HC Power offer power factors of 0.98 with 98% efficiency. Power ratings range from 500 to 4000 W .
over time, damage to the wiring insulation. (Remember, the temperature rise is proportional to the square of the current.) In existing buildings, changing the wiring to correct this potential problem is an expensive proposition. Eliminating the source of the problemthe harmonic currents-is a better solution.

IEC 555-2, a power-factor standard

The preceding discussion demonstrates that the growing use of switching power supplies in electronic equipment is making power factor increasingly important. The problem is becoming so significant that the International Electrotechnical Commission (IEC) has drafted a standard for power-factor correction (PFC). The standard, IEC $555-2$, applies to equipment that operates from 220 V (nominal) ac lines. Unless there is an unforeseen delay, beginning in 1992, equipment covered by the standard and sold in Europe will have to comply. More about IEC 555-2 later.

Ever since the invention of the off-line switching power supply, a technique has existed for increasing the supplies' power factor considerably beyond 0.7 . That technique, which really predates the invention of the off-line switcher, is the use of LC (inductivecapacitive) input filters. The problem with LC input filters is that they use inductors (chokes) that are large, heavy, and somewhat expensive. Hence, using inductors in an off-line switcher's input filter network does away with at least part of the advantage of switching technology over linear power-supply technology. Even so, because of the technique's inherent simplicity and reliability, several manufacturers continue to introduce new supplies that use LC filters for power-factor correction.

Filter inductors that operate at line frequency (or

Table 1-Representative power-factor-corrected switching power supplies ${ }^{1}$

Vendor	Product	When introduced	US price ${ }^{2}$	Added cost for PFC ${ }^{3}$	Maximum output power	Has own fan(s)?	Dimensions (inches)	Number of outputs	Input voltage and frequency
Abbot	AW and AM	11/90	\$900 (1)	20\%	75W	No	$2 \times 2 \times 0.85$	Multiple	103.5 to 126.5
Astec	JF201	1990	\$991 (1)	NA ${ }^{5}$	2 kW	Yes	$5 \times 8 \times 10$	1	$\begin{aligned} & 180 \text { to } 264 \mathrm{~V} \\ & 1 \text { or } 3 \text { phase } \end{aligned}$
Computer Products	Special	1986	Varies ${ }^{6}$	$\begin{gathered} \$ 100 \\ \text { (OEM qty) } \end{gathered}$	1500W	Varies ${ }^{6}$	Varies ${ }^{6}$	Varies ${ }^{6}$	$\begin{gathered} 90 \text { to } 130 \mathrm{~V} \\ 180 \text { to } 260 \mathrm{~V} \\ 47 \text { to } 63 \mathrm{~Hz} \end{gathered}$
Deltron	FM Series	Q2 '91	\$705 to \$827 1 kW (OEM qty) 2 kW \$1131 to \$1358	$\$ 3251$ kW $\$ 4102$ kW	$\begin{aligned} & 1 \mathrm{~kW} \\ & 2 \mathrm{~kW} \end{aligned}$	Option (1 kW) Yes (2 kW)	$1 \mathrm{~kW}: 12 \times 6.5 \times 2.5$ $2 \mathrm{~kW}: 5 \times 12 \times 6.5$	$1 \mathrm{~kW}: 1$ to 7 2 kW : 1 to 8	1 kW : 90 to 264 V $2 \mathrm{~kW}: 180$ to 264 V Both: 47 to 63 Hz
HC Power	Powermiser	1988	$\$ 300$ Stand-alone PFC	Not applicable	250 W to 4 kW	3 kW and 4 kW only	$\begin{gathered} 5 \times 3.5 \times 11.25 \text { to } \\ 1 \mathrm{~kW} \end{gathered}$	1: ac to ac to dc supply	90 to 132 V or 180 to 246 V
	HC1010	4/91	\$1450 (1)	\$300	1 kW	Yes	$5 \times 8 \times 11.25$	1 to 4	$\begin{aligned} & 90 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
	HC1501	$4 / 91$	\$1500	\$300	1.5 kW	Yes	$5 \times 8 \times 11.25$	1	$\begin{aligned} & 90 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
Jeta	N100×	3/90	Under $\$ 900$ (OEM qty)	Under \$100	1 kW	Yes	$5 \times 8 \times 11$	As many as 4	90 to 264 V
	N120×	3/90	Under \$1000 (OEM qty)	NS	1.2 kW	Yes	$5 \times 8 \times 11$	As many as 4	90 to 264 V
Kepco	Ray Series	11/90	\$2395	NA ${ }^{5}$	3 kW	Yet (3)	$4.3 \times 13.4 \times 12.7$	1	170 to 264 V 3 phase
Lambda	$\begin{aligned} & \text { SMS-1500 } \\ & \text { SMM-1500 } \end{aligned}$	8/89	SMM: \$1479 to \$1698 (100)	NA ${ }^{5}$	1.5 kW	Yes	$5 \times 8 \times 11$	SMS: 1 SMM: 1 to 5	$\begin{aligned} & 176 \text { to } 264 \mathrm{~V} \\ & 48 \text { to } 65 \mathrm{~Hz} \end{aligned}$
LH	PSMA line	1989	750W: \$1055 (1) 2 kW : from \$1700 (1)	$\begin{gathered} \$ 350 \text { to } \\ \$ 400 \end{gathered}$	$\begin{aligned} & 0.75,1,1.25, \\ & 1.5,2 \mathrm{~kW} \end{aligned}$	Yes	$\begin{gathered} 5 \times 8 \\ \text { Depth } 10 \text { to } 14^{8} \end{gathered}$	1 to 4	85 to 264V
NCR Power	$\begin{aligned} & 680 \mathrm{~W} \\ & 4 \text { output } \end{aligned}$	Q2 '91	\$500	10\%	680W	No. You provide 100 cfm	$11.25 \times 15.35 \times 3.82$	4	$\begin{aligned} & 180 \text { to } 257 \mathrm{~V} \\ & 49 \text { to } 60.6 \mathrm{~Hz} \end{aligned}$
Pioneer Magnetics	PM3187A	11/90	\$1485 (1)	\$250	1344W	Yes	$5 \times 8 \times 12.25$	2 to 5	$\begin{aligned} & 96 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
Power One	SPF4 Series	12/90	$\begin{gathered} \text { 1250W: } \\ \$ 1403 \text { (1), } \\ \$ 1091 \text { (OEM qty) } \end{gathered}$	$\begin{gathered} \$ 260(1) \\ \$ 204 \\ \text { (OEM qty) } \end{gathered}$	$\begin{array}{\|c\|} \hline 1.35 \mathrm{~kW} \\ (120 \mathrm{~V}) \\ 1.5 \mathrm{~kW}(240 \mathrm{~V}) \end{array}$	Yes	5×11 Width: 3 to 8^{9}	1 to 12	$\begin{aligned} & 85 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
Puls	PS 1000	1989	Under $\$ 3000$ (OEM qty)	NA ${ }^{5}$	4 kW	Yes	$16.8 \times 16.9 \times 6.9$	4	230 V 1 phase 115 V 3 phase 230V 3 phase
Sorensen	DCS Series	Q3 '91	\$3500 (1)	NA ${ }^{5}$	3 kW	' Yes	$3.5 \times 19 \times 18$	1 variable	$\begin{aligned} & 190 \text { to } 253 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
Todd Products	$\begin{aligned} & \text { Max-1000 } \\ & \text { line } \end{aligned}$	4/91	$\$ 1150$ (1), $\$ 800$ (OEM qty)	$\begin{aligned} & \$ 80 \text { to } \\ & \$ 1001 \mathrm{~kW} \\ & \text { (OEM qty) } \end{aligned}$	1 kW	Option ${ }^{10}$	$8 \times 12 \times 3.4$ with fan	4	$\begin{aligned} & 90 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
Transistor Devices	MPS Series	12/90	$\begin{aligned} & \$ 1096 \text { to } \$ 1750 \\ & (100) \end{aligned}$	NA ${ }^{5}$	$1 \mathrm{~kW} /$ module; $3 \mathrm{~kW} / 5.25 \mathrm{in}$.	Yes	Modules: $5.22 \times 5.3 \times 18.1$	1 to 5	$\begin{aligned} & 88 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$
	BCE Series	1984	\$4000 (100)	NA ${ }^{5}$	3450W	Yes	$6.75 \times 8.25 \times 15.88$	1	$\begin{gathered} 103 \text { to } 264 \mathrm{~V} \\ 47 \text { to } 63 \mathrm{~Hz} \\ 1 \text { phase } \end{gathered}$
Unipower	F Series	4/90	\$808 (1 output) $\$ 920$ (multiple output) (100)	\$158	1.5 kW	Yes	$4 \times 5 \times 12$	1 to 7	90 to 132 V 180 to 264 V autoranging 47 to 63 Hz

Notes: NS $=$ Not specified.
${ }^{1}$ Power-factor correction is sometimes abbreviated as PFC.
${ }^{2}$ The figure in parentheses indicates the approximate quantity at which the price applies. "OEM qty" refers to large quantities that, for competitive reasons, the vendor does not wish to describe completely. Prices shown include the added cost for PFC.
${ }^{3}$ At quantity indicated in the Price column (compared with vendor's closest equivalent supply without PFC).
${ }^{4}$ At full load and maximum line voltage.
5PFC not available as an add-on option.

Minimum ${ }^{4}$		Comments
Efficiency (\%)	Power factor	
65\%	0.9	MIL spec; 47 to 440 Hz .
80\% typ	$\begin{gathered} 0.95 \\ 3 \text { phase } \end{gathered}$	
70\%	Not specified	Auto switching between input-voltage ranges.
70 to 80% Depends on output voltage	0.99	5W/in. ${ }^{3}$; modular construction allows quick delivery of custom units.
98\%	$\begin{gathered} 0.98 \\ (50 \% \text { load) } \end{gathered}$	Stands between ac line and supply that lacks PFC.
70\%	0.99	Can directly replace supplies lacking PFC.
70\%	0.99	
70\%	0.998	Supplies 1 kW while drawing 12A at 115 V .
70\%	0.998	Meets IEC 555-2.
80\% typ	0.92 typ	Meets FCC class A EMI requirements. ${ }^{7}$
80\%	0.95	Meets VDE 0871 level B.
72 to 73%	0.99	
65\%	$\begin{gathered} 0.99 \\ \text { (low line) } \end{gathered}$	All outputs battery-backed by external 48 V battery.
70\%	0.99	Meets IEC 555-2 and VDE 0871 level A.
77\% typ	0.95	Meets UL1950(D3); meets VDE 0871 level A at 230 V .
90\%	$\begin{aligned} & 0.7 \\ & 0.9 \\ & 0.9 \end{aligned}$	Meets VDE 0871 level B ; for mobile use in high RF environment.
85\%	0.99	Output ranges: 0 to 8 V to 0 to 600 V .
75\%	0.99	Takes less than half $5 \times 8 \times 11$ unit's volume.
$\begin{gathered} 72 \%(5 \mathrm{~V}) \\ 80 \% \\ \text { (higher } \\ \text { voltage) } \\ \hline \end{gathered}$	0.95	Modular system for 19-in.-rack mounting; "hot" switching with isolation diodes.
83 to 87\%	0.95	Options include battery charger and military components.
70 to 80% (Depends on outputs)	0.98	Designed to meet IEC 555-2; meets UL1950, CSA22.2 number 220, TUVIIEC 950 and VDE0806.
${ }^{6}$ PFC is offered in custom products. Price depends on requirements. ${ }^{7}$ EMI stands for electromagnetic interference. ${ }^{8}$ Depth depends on power and number of outputs. ${ }^{9}$ Width depends on power and number of outputs. ${ }^{10}$ Unit without fan needs user-supplied air. Size: $8 \times 10.5 \times 3.38$ in.		

twice line frequency, as does an inductor that follows a full-wave rectifier in a single-phase system) must often be larger than transformers that handle the same amount of power at the same frequency. Although the inductors usually have only one winding, whereas transformers, except for autotransformers, have two or more, the inductor windings must carry dc, which tends to saturate the inductor cores. To prevent saturation, the cores often include air gaps. Even though air gaps help to stabilize a choke's inductance, they lower its inductance and frequently necessitate the use of larger cores.

Correcting an off-line switching supply's power factor by using inductors in its input filter is called passive power-factor correction. Power-factor-correction (PFC) schemes that use active circuits can overcome many of the drawbacks of passive PFC. Within the last two years or so, semiconductor vendors have introduced ICs that make possible power factors very close to 1 (Table 1). Although PFC circuits based on specialpurpose ICs are more complex than those based on passive approaches, they require the addition of fewer components than were used by earlier discrete active PFC circuits.

Moreover, some active PFC techniques improve more than just power factor. For example, some PFC circuits furnish a supply with an input voltage that, regardless of the line voltage, always corresponds to the high end of the supply's input range. As a result, the supply's holdup time-its ability to "ride through" brown outs or short-duration outages-increases. The energy stored in a capacitor (in this case, the input filter) is proportional to the square of the voltage across the capacitor, so a 30% increase in voltage yields a nearly 70% increase in holdup time. Such an increase is quite significant. Because PFC circuits can attenuate input-voltage fluctuations, incorporating PFC can improve a supply's line regulation. But as should already be clear, including PFC does raise a supply's cost.

Active correction uses preregulator

The basic technique used by most active PFC schemes is to precede the supply with a high-frequency switching preregulator that, over the course of an acline cycle, draws current from the line approximately in inverse proportion to the instantaneous line voltage. If the preregulator operates at 100 kHz , it completes 833 switching cycles in $1 / 2$ cycle of a $60-\mathrm{Hz}$ line.

Near the line-voltage zero crossing, the preregulator draws line current most of the time. As the instantaneous voltage increases, the percentage of time that the preregulator draws current decreases. The result is a

PFC switching power supplies

You don't calculate the rms input current by dividing the supply's output power by its efficiency and dividing the quotient by the rms input voltage.

current waveform that, when filtered, nearly mimics the line-voltage waveshape. If the current and voltage waveforms are exactly alike and coincide in phase, the power factor will equal 1. In practice, vendors readily achieve power factors of 0.95 . Some companies claim that their supplies exhibit power factors greater than 0.99.
Power-factor-correcting switching preregulators use inductors to store energy. But like the magnetic components in switching power supplies themselves, these inductors operate at high frequencies. Therefore, they can be smaller, lighter, and less expensive than magnetic components that operate at line frequencies. Furthermore, a preregulator can act as an ac-to-dc converter, subsuming the functions of a conventional rectifier and filter and furnishing the high-voltage de that switching supplies use internally. Combining the PFC and ac-to-dc-conversion functions in a single circuit eliminates some redundancy and thereby reduces the incremental cost of power-factor correction.
Adding the PFC function usually exacts a small penalty in a supply's efficiency. Where a vendor furnishes both power-factor-corrected and uncorrected versions of a supply, it might specify typical efficiencies of, say, 70% for the PFC version and 72% for the uncorrected version. Such a decrease in efficiency is equivalent to a 7\% increase in the supply's internal power dissipation and temperature rise. That increase, however, has a minimal effect on the line current the supply draws, especially when you compare the size of the increase to the large decrease brought about by PFC.
"But," you say, "I don't design equipment that draws kilowatts, and I certainly don't design equipment that uses 3-phase power. So I don't have to concern myself with power-factor correction." You may be surprised to discover that PFC is likely to affect you anyhow. If you design equipment that operates from 220 V ac lines and will be sold in Europe beginning in 1992, it will probably have to conform to IEC 555-2. IEC 555-2 imposes limits on line-current waveshapes and harmonic content that will require many products that use off-line switching power supplies to incorporate PFC. As for your product not using 3 -phase power, remember that in most factory and office buildings the single-phase ac lines are derived from 3 -phase service.
"OK," you concede, "but what of it? I can just go to my power-supply vendor and get him to substitute a PFC supply for one that lacks the feature." In many cases, you may indeed be able to do just that. But, at present, the number of situations where that approach won't work probably exceeds the number where it will. In some cases, you will be able to obtain an accessory PFC module that you can place between the incoming ac line and your existing power supply or supplies. You may even be able to selectively install the PFC module-for example, only on units going to Europe. Nevertheless, blindly applying PFC, even on a fraction of the units you produce, can unnecessarily increase the cost of your product. You'd be better off understanding when you really need PFC and designing it in intelligently.

IEC 555-2 defines four classes of equipment, A through D. Electronic equipment falls into classes A and D. Class A equipment requires 3 -phase ac service. The majority of electronic products use single-phase power and hence fall in class D. Class D distinguishes between equipment that consumes less than 300 W of ac power and equipment that uses 300 W or more. In the less than 300 W category, permissible harmonic currents are proportional to the equipment's power level. And at more than 300 W , the limits become absolute; they permit the equipment to draw a number of amperes that depends on the harmonic number but is independent of the power consumed. By writing the specification in this manner, the IEC essentially forced higher power-factor requirements on equipment that uses higher levels of power.

[^6]

STAKPAC $^{\text {T }}$	MINI STAKPAC $^{\text {™ }}$	
1200 Watts	Power	600 Watts
$110 / 220 \mathrm{VAC}$	Input	$110 / 220 \mathrm{VAC}$
Up to 8	Outputs	Up to 5
3.2 " $\times 5.5$ " $\times 11.5$	Dimensions	1.9 " $\times 5.5 " \times 12^{\prime \prime}$
Fan-Cooled	Cooling	Twin Fans

Each StakPAC output is factory configured utilizing Vicor's robotically manufactured power converters...VI-200 series modules. Consider the advantages of a StakPAC customized for your system needs with automized power modules: USER DEFINABLE OUTPUTS - The use of proven standard catalog modules offers the features of a custom without the associated risk or investment.
STANDARD MODELS - Many preconfigured standards available.
QUICK DELIVERY-Typical delivery 1 week or less for custom or standard evaluation units. COMPACTNESS-Low profile packages provide up to 6 watts/cubic inch, twice the industry norm.
UL, CSA, TUV SAFETY AGENCY APPROVALAll StakPAC configurations are approved, standard or custom.
EMI-FCC/VDE Level A, conducted.
StakPACs are designed and built by Westcor Corporation, Los Gatos, CA, a Vicor subsidiary. StakPACs are sold world-wide through Vicor Corporation, Andover, MA.

RoboPower

STAKPAC STANDARDS 1200 WATT MODELS					
Model	Output Voltage (VDC) and Maximum Current (amperes) per Channel				
	\#1	\#2	\# 3	\#4	\#5
Single Output					
SP1-1801	204240	Total output power may not exceed 1200^{*} watts for any model, single or multiple output. Lower power StakPAC models and many other configurations are available. *Standard models supply 1100 watts; high-powered version 1200 watts. Please contact the factory.			
SP1-1802	5 @ 240				
SP1-1603	12 (3) 100				
SP1-1604	15@80				
SP1-1605	24×50				
SP1-1606	28 (6)42				
SP1-1607	48 (1)25				
Dual Output Please contact the factory.					
SP2-1801	2 (120	50120			
SP2-1802	5 (13120	5 (4) 120			
SP2-1803	5 (120	12 @ 66			
SP2-1804	12 © 66	12 @ 66			
SP2-1805	15 (1)53	15 (1)53			
Triple Output					
SP3-1801	$5 @ 180$	12@16	12 @ 16		
SP3-1802	5 (13) 150	12@33	12@16		
SP3-1803	5 (10) 180	15 @13	15 (a) 13		
SP3-1804	5 (al 150	15@26	15 (13		
Quad Output					
SP4-1801	5 @ 150	12@16	12 © 16	5 (a)30	
SP4-1802	5 (150	15 @13	15 (1) 13	5 (1)30	
SP4-1803	5 (1)150	12 @16	12 @16	24 (1)8	
SP4-1804	5 (1)150	15@13	15 @ 13	24 @ 8	
Five Output					
SP5-1801	5@120	12 @ 16	12 @ 16	5 (30	24@8
SP5-1802	5 (10120	15 (3) 13	15 @ 13	5 (4)30	$24 @ 8$
Seven Output					
SP7-1801	$\begin{gathered} 5060 \\ \approx 6 \end{gathered}$	$\begin{gathered} 12 \text { (4) } 16 \\ \# 7 \end{gathered}$	12 @ 16	24 (4)8	24@8
	5.2028	2@30			

Model	Output Voltage (VDC) and Maximum Current (amperes) per Channel				
	\#1	\#2	\#3	\#4	\#5
Single Output					
ST1-1401	2@120	Total output power may not exceed 600 watts for any model, single or multiple output. Lower power Mini StakPAC models and many other configurations are available. Please contact the factory.			
ST1-1402	5@120				
ST1-1301	12 (6) 50				
ST1-1302	15 @ 40				
ST1-1303	24@25				
ST1-1304	28 @ 21				
ST1-1305	48 (13) 13				
Dual Output					
ST2-1401	2 (1)60	5 (1)60			
ST2-1402	5 (6) 60	5 (1) 60			
ST2-1403	5 (1)60	12 © 33			
ST2-1404	12@33	12 @ 33			
ST2-1405	15 @ 26	15 © 26			
Triple Output					
ST3-1401	5 @ 60	12 @ 16	12 (0) 16		
ST3-1402	5 (1) 60	15 @ 13	15 (1) 13		
ST3-1501	5 @ 90	12 © 8	12 © 8		
Quad Output					
ST4-1401	5 (1)30	12 (16 16	12@16	5 (1)30	
ST4-1402	$5 @ 30$	15 © 13	15 @ 13	5 (a)30	
ST4-1403	5 (13) 30	12 (6)16	12 @ 16	24 @ 8	
ST4-1501	5 @ 30	15 @ 13	15 (3) 13	24 (1)8	
ST4-1502	5 @ 60	12 @ 16	12 @ 8	5 (1) 15	
ST4-1503	5 @ 60	15 @ 13	15 (1)7	5 (3) 15	
ST4-1504	5@60	12 (6) 16	12 @ 8	24@4	
ST4-1505	$5 @ 60$	15013	15@7	24 @ 4	
Five Output					
ST5-1501	5 (3)30	12 (1) 16	12 (14) 16	5 @ 15	24 (194
ST5-1502	5 (1)30	15 [4] 13	15 (6) 13	5(1) 15	24 @ 4

MINI STAKPAC STANDARDS 600 WATT MODELS

Total output power may not exceed 600 watts for any model, single or multiple output. Lower power Mini StakPAC models and many other configurations are available.

For ordering information call Vicor Express at $1-800-735-6200$ or (508) 470-2900 at ext. 265.

For technical information contact Westcor at (408) 395-7050 or FAX (408) 395-1518 or call Vicor.

Below approximately 350 watts, single-phase equipment will not usually require power-factor correction, provided the power supply does not exhibit especially high efficiency or long holdup time. At slightly more than 1 kW , passive PFC will probably no longer enable a product to meet the spec. At 2 kW , the required
power factor is approximately 0.98 -a reasonably stringent requirement. Remember, though, that IEC 555-2 applies only to equipment that operates from 220 V . If you apply its limits to equipment that operates from 120 V , the power-factor requirements become more stringent. There is no indication, however, that the

Manufacturers of switching power supplies with PFC

For more information on power-factor-corrected switching power supplies such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN. Some companies have provided the name of a person to contact should you need more information than you find in their literature.

Abbott Electronics 2727 La Cienega Blvd Los Angeles, CA 90034 (213) 202-8820
(213) 936-8185

FAX (213) 939-1995 Hamid Emami FAX (213) 836-1027
Circle No. 650

Astec America
401 Jones Rd
Oceanside, CA 92054
(619) 757-1880

FAX (619) 439-4243
Ron Sutton
(619) 439-4337

Circle No. 651

Cherokee International
2841 Dow Ave
Tustin, CA 92680
(714) 544-6665

FAX (714) 838-4742
Circle No. 652

Computer Products

Power Conversion
3797 Spinnaker Ct
Fremont, CA 94538
(415) 657-6700

FAX (415) 683-6400
Forrest Sass
Circle No. 653

Deltron Inc

Wissahickon Ave
North Wales, PA 19454
(800) 523-2332
in PA, (215) 699-9261
FAX (215) 699-2310
Jack Phillips
Circle No. 654

HC Power Inc
17032 Armstrong Ave
Irvine, CA 92714
(714) 261-2200

FAX (714) 261-6584
Jack Graham
Circle No. 655

Jeta Power Systems Inc 2675 Junipero
Signal Hill, CA 90806
(213) 427-0095

FAX (213) 426-2417
H R Modi or Ed Feher
Circle No. 656

Kepeo Inc
131-38 Sanford Ave
Flushing, NY 11352
(718) 461-7000

FAX (718) 767-1102
Circle No. 657

Lambda Electronics
515 Broad Hollow Rd
Melville, NY 11747
(800) 526-2324
in NY, (516) 694-4200
FAX (516) 293-0519
Ron Koslow
Circle No. 658

LH Research
14402 Franklin Ave
Tustin, CA 92680
(714) 730-0162

FAX (714) 669-2562
Steven D Johnson
Circle No. 659

Magnetek Defense Systems Inc
901 E Ball Rd
Anaheim, CA 92085
(714) 956-9200

FAX (714) 956-5397
Sandra L Schaffer
Circle No. 670

Modular Devices Inc
4115 Spence St
Torrance, CA 90503
(213) 542-8561

FAX (213) 371-6331
Circle No. 671

NCR Power Systems
584 S Lake Emma Rd
Lake Mary, FL 32746
(407) 333-9250

FAX (407) 333-8312
Zelda Kuszmaul
Circle No. 672

Pioneer Magnetics
1745 Berkeley St
Santa Monica, CA 90404
(800) 233-1745
in CA, (800) 848-1745
(213) 870-9505

FAX (213) 453-3929
Arnold Hagiwara
Circle No. 673

Power One
751 Daily Dr
Camarillo, CA 93010
(805) 484-2806

FAX (805) 388-0476
Pauline Cadena
(805) 987-8741

Circle No. 674

Puls Elektronische
Stromversorgungen GmbH
Arabellastr 17
D-8000 Munchen 81, Germany
(89) 9278-0

FAX (89) 9278-299
W D Roth (89) 9278-234
Circle No. 675

Qualidyne Systems Inc
3055 Del Sol Blvd
San Diego, CA 92154
(619) 575-1100

FAX (619) 429-1011
Circle No. 676

VOTE...

Please also use the Information Retrieval Service card to rate this article (circle one)
High Interest 494 Medium Interest 495 Low Interest 496

Sprague solid tantalums meet many SMPS needs.

Sprague Type 550D SolidElectrolyte Tantalex ${ }^{\circledR}$ Capacitors, designed for use in power supply filters at frequencies to 100 kHz , feature extremely low ESR and high ripple current capability. Maximum ESR for a $300 \mu \mathrm{~F}, 6 \mathrm{VDC}$ unit is only 0.045Ω at 100 kHz . Additional ad-
vantages include small size, long life, exceptional capacitance stability and hermetic seal to withstand severe environments. Capacitance values: 5.6 to $330 \mu \mathrm{~F}$. Voltage ratings: 50 to 6 WVDC. Write for Engineering Bulletin 3548 to Technical Literature Service,

Sprague Electric Company, 41 Hampden Road, P.O. Box 9102, Mansfield, MA 02048-9102.

Some PFC circuits furnish a supply with an input voltage that, regardless of the line voltage, always corresponds to the high end of the supply's input range.

IEC intends these limits to apply to 120 V equipment. Table 2 shows the IEC $555-2$ Class D current limits as a function of harmonic number.

Given the information in the paragraph above, it is not surprising that most of the power supplies listed in Table 1 are units that produce 500 W or more. Note that the power figures given in Table 1 are supply output powers; to obtain the input power (Table 2 refers to input power), divide the output power by the efficiency. Remember, too, that if you draw less than a supply's full-rated power, its efficiency will be less than the value shown in Table 1. With no load, all supplies have zero efficiency!

Yet another fact to bear in mind is that, without PFC, as a supply's load decreases, so does its power factor. (Long holdup times indicate low power factors; lightly loaded supplies can have very long holdup times. Suppose you choose a supply that, at full load, requires PFC to meet IEC 555-2, but you never operate the supply at more than 50% of full load-a conservative practice that can greatly increase the supply's reliability. From this discussion, you can probably conclude that the supply should still incorporate PFC.

Universal operation can be a PFC bonus

Many of the listed supplies have so-called universal input ranges. That is, you can vary the input voltage from, say, 90 to 264 V without resetting any switches or changing any jumpers. Moreover, the supply vendors often indicate that you can protect the supply over this entire range with a fuse or circuit breaker of a single rating. In some cases, this universal operation is a direct consequence of PFC. As noted earlier, the preregulators in some PFC supplies produce a constant, high-output voltage over a wide input-voltage range.

For products that you will ship to customers in Europe and Asia as well as in North America, such universal operation can greatly simplify configuration, testing, and packaging. Frequently, if your product uses a universal-input supply, the only item you need change as a function of its destination is the power cord. Rather than including a cord appropriate to a specific location, some equipment vendors actually package sets of cords with their products. Other firms

have their foreign distributors provide suitable cords when they install the equipment.
Power-factor correction is not for every product. Although most ac-powered products would actually benefit from using PFC supplies, the incremental cost of PFC will prevent the technique from being adopted universally. Nevertheless, under the impetus of IEC 555-2, and with the encouragement of the IC vendors whose chips are simplifying the job of incorporating PFC in power supplies, its use will spread. As PFC's use spreads, its cost will come down. As its cost comes down, its use will spread further. There can be little doubt that PFC is a technique whose importance is destined to grow in the years ahead.

EDN

Acknowledgment

In addition to the power-supply manufacturers, several firms provided assistance in preparing this article: Venture Development Corp, a market-research organization in Natick, MA; and the following manufacturers of PFC ICs: Ixys Corp, San Jose, CA; Micro Linear, San Jose, CA; and Unitrode Integrated Circuits Corp, Merrimack, NH.

Article Interest Quotient (Circle One) High 494 Medium 495 Low 496

Mil/Pac ${ }^{\text {™ }}$ high-density military power supplies.
Now you can order Abbott's full mil-qualified compact power supplies in both DC and AC input models.

Mil/Pacs come in 20W, 35W and 50W configurations, with single ($5,12,15,24$, or 28 V) or dual ($\pm 12 \mathrm{~V} ; \pm 15 \mathrm{~V}$) outputs.

DC-to-DC models accept input from 14 V to 32 V . AC-to-DC models accept 103.4 to 126.5 V rms, $47-440 \mathrm{~Hz}$ single phase.

All Mil/Pacs operate at temperature extremes from
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening.
Mi//Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega BI., Los Angeles, CA 90034. Or call (213) 936-8185.

IN THE ERA OF MegaChip "' TECHNOLOGIES Sometimes you need easy

"Sorry, guys
There's been a last-minute change in the spec."

ASIC. TI FPGAs.

These are the gate arrays you design at your desk. And redesign until they're exactly right. Then it's on to silicon fast. Our free interactive diskette will show you just how easy easy can be.

Even when you hit last-minute changes, have a sudden inspiration or are simply intent on getting the job done, field programmable gate arrays (FPGAs) from Texas Instruments can speed your design from start to finish.
Our FPGAs are channeled devices, which gives them their true gate array characteristics. They combine the time-to-market advantages of programmable logic devices (PLDs) with the densities of gate arrays. You have a choice of 1,200 or 2,000 equivalent gate complexities, with 4 K and 8 K densities coming. And military versions are available too.
Throughout the design cycle, you are in complete control, minimizing risk and avoiding nonrecurring engineering costs.

Accelerated development

Our advanced development environment, the TI Action Logic ${ }^{\text {re }}$ System (TI-ALS), lets you design and redesign at your desk. You use TI-ALS to validate, automatically place and route, analyze, program, test and debug all within hours.
You can always see what's going on within your design. Only the unique antifuse architecture allows 100% observability of internal nodes. And you can achieve gate utilizations of up to 90%.
TI-ALS operates on '386 personal computers or popular workstations

[^7]To see how easy easy can be, call 1-800-336-5236, ext. 3712, for our free interactive diskette It will show you why our FPGAs are easy-ASIC and will introduce you to system design advantages that you can achieve quickly and efficiently.

The diskette runs on any MS-DOS ${ }^{\circledR} \mathrm{PC}$ with an EGA or VGA graphics card, and
we'll include the disgraphics card, and
we'll include the diskette with our FPGA DataFile. Just call the number above or complete the return card.
running familiar CAE tools. You can program in minutes using our Activator ${ }^{\text {r"M }}$ hardware.

Unmatched service and support
From hands-on workshops at our Regional Technology Centers to a global network of sales offices and distributors, only TI can meet your FPGA needs across the country and around the world.
What's more, you can pick up the phone and talk with our FPGA applications specialists during regular working hours (CST). Just dial our FPGA Help Line - 1-214-997-5492.

Our 10-bit multi-step conversion technique gets you from A to D in $1 / 64$ of a flash.

Designing ADCs with a powerful architecture and unsurpassed functionality.
Using a patented multi-step conversion technique, our 10 - and 8 -bit analog-to-digital converters (ADCs) now require just $1 / 64$ as many comparators as full-flash converters.

This powerful architecture not only shrinks the number of comparators, but also reduces the power consumption and die size. So now you get low-power CMOS devices-available in military (883/ SMD) and industrial temperature ranges-that are ideal for highspeed data acquisition, disk drives, and instrumentation.

What's more, our multi-step ADCs offer unsurpassed functionality.

Like on-chip multiplexer (including $2 / 4$ and 8 channel) and sample-and-hold. Which means a big savings in board space and testing, and improved system reliability.

Optimizing speed and

 power with 10-bit ADCs.Drawing a mere 235 mW of power ($1 / 2$ that of half-flash devices), our ADC10061/2/4 still display a conversion time of 900 ns . That's $1 \mathrm{Ms} /$ s, which is guaranteed over temperature.

They also guarantee zero and full-scale errors, with no missing codes, at ± 1 LSB. Plus, the ADC10061 is a pin-for-pin upgrade to our ADC1061. With twice the speed. And since their input range spans from 0 to 5 V with single 5 V operation, there's no need for a negative power supply.
Pushing the envelope on high-performance 8 -bit ADCs.
Offering the same 5 V system compatibility as our 10-bit ADCs, our new

8-bit families, the ADC08061/2/4/8 and the ADC08161/4/8, boast conversion times of 500 ns and consume only 100 mW of power. With a total error budget of $\pm 1 / 2$ LSB.
In fact, the ADC08061 is pincompatible with the industry-standard ADC0820. Of course, none of this would be possible if it wasn't for our ongoing commitment to high-performance mixed analog + digital technology.

Making the conversion to multi-step ADCs.

For samples, call or write us today. And discover why other conversion techniques could be just a flash in the pan.

1-800-NAT-SEMI, Ext. 121 National Semiconductor Corp. P.O. Box 7643

Mt. Prospect, IL 60056-7643

Electro/ International

This year it's New York City's turn. The Electro/International show, which alternates between Boston and New York City on successive years, will take place at the Jacob K Javits Convention Center from April 16 through the 18. This year, the East Coast's largest electronic trade show will feature more than 450 companies exhibiting their electronic products. Electro/ International will also offer 43 technical sessions and 11 short courses devoted to keeping the engineer and manager abreast of the current trends in electronic design and manufacturing.

The ceremonies begin at 8:30 am on Tuesday, April 16, when Congressman Don Ritter (R-PA) will deliver the keynote address on "Meeting the Challenges of the 21st Century." The Congressman will discuss how government and industry strategies, along with intense international competition, have made many electronic business sectors unprofitable for American companies. He will also discuss how high-resolution imaging systems in general, and HDTV (high-definition television) in particular, can reverse this trend and revive US consumer electronics. All Electro/International registrants may attend the address at no extra charge.

> No matter what your interests are, Electro/International will provide you with the latest information on new products, technologies, and professional career issues.

John Gallant, Associate Editor

In keeping with the theme of the keynote address, a number of the sessions deal with the issue of competition in today's tightening global economy (see table). Professionals from different parts of the world describe global marketing and communications techniques in Session 5. Session 10 discusses strategies for competing in worldwide markets, especially in Japan, the Pacific Rim, and western Europe. Session 15 gives an overview of the quality-control procedures used in the world today-essential knowledge for selling products across international boundaries. Session 20 deals with global opportunities and how education must be improved here and abroad.

The changing economic structure and the present downturn in job opportunities are topics discussed in Session 43. While companies downsize their technical and engineering staffs, many individuals are becoming certified-professional engineers. If you're considering a career change to consulting, sit in on Session 29, which weighs some of the pros and cons of this career move.

Gladly, not all of the Electro/International sessions focus on the current economic conditions. There will be plenty of old-fashioned technical discussion on emerging technologies as well. Tutorial 3 reviews the

Table 1-Electro/International sessions, tutorials, and short courses

Tuesday April 16, 1991	Medical electronics	Communicatons	IC technology	IC technology	Global electronics business colloquium	Short courses
$\begin{aligned} & \text { 10:00 am to } \\ & \text { 12:00 noon } \end{aligned}$	Tutorial 1 Medical electronics	Tutorial 2 Lightwave technology: fundamentals and fiber in the loop	Tutorial 3 Solid-state image sensors	Session 4 Memory and I/O solutions for today's microcontrollers	Session 5 International public relations, marketing, and sales promotion for the electronics industry	8:30 am to 11:30 am (1A) Advanced design techniques for surface-mount technology-Part I
$\begin{aligned} & \text { 12:30 pm to } \\ & \text { 2:30 pm } \end{aligned}$	Session 6 Medical electronics	Session 7 Lightwave technology	Session 8 Integrated microengineered sensors and actuators	Session 9 New innovative specialty memory architectures speed up systems and simplify their design	Session 10 The global marketing imperative	$1: 30 \mathrm{pm}$ to $4: 30 \mathrm{pm}$ (1B) CAD/CAM tooling/manufacturing for surface-mount technology-Part II
$\begin{aligned} & 3: 00 \mathrm{pm} \text { to } \\ & 5: 00 \mathrm{pm} \end{aligned}$	Session 11 Health effects of lowfrequency electromagnetic fields	Session 12 Photonic switching	Session 13 Programmable logic-the software side	Session 14 Evolving solid-state memory technology and device architectures promote new cost-effective memory system designs	Session 15 Quality-profiting in the global marketing	8:30 am to $4: 30$ pm (1C) Surface-mount technology-Parts I and II
						8:30 am to $5: 00 \mathrm{pm}$ (2) Grounding and shielding of electronic systems
Wednesday April 17, 1991	Manufacturing and test	Communications	Computers, digital systems, and software	Career	Global electronics business colloquium	Short courses
$\begin{aligned} & \text { 9:30 am to } \\ & \text { 11:30 am } \end{aligned}$	Session 16 Advances in electronic packaging	Session 17 New technologies for microwave systems	Session 18 Cache memories for today's systems	Session 19 Diversity in the workplace: the emerging majorities	Session 20 Global opportunities	8:30 am to 12:30 pm (3A) The 8086 family of microprocessors: software, hardware, and system applica-tions-Part I
$\begin{aligned} & 12: 30 \mathrm{pm} \text { to } \\ & 2: 30 \mathrm{pm} \end{aligned}$	Session 21 Applications of statistics to manufacturing and design	Session 22 Commercial applications for microwave technology	Session 23 New architectures in high-density/highperformance programmable logic devices	Session 24 Continuing education: a lifetime professional commitment	Session 25 Canceled	1:30 pm to $5: 30 \mathrm{pm}$ (3B) 16/32 bit microprocessors: 68000/
$\begin{aligned} & 3: 00 \mathrm{pm} \text { to } \\ & 5: 00 \mathrm{pm} \end{aligned}$	Session 26 A case study of computer-integrated manufacturing	Tutorial 27 Direct digital synthesis	Tutorial 28 Object-oriented databases: a new enabling technology for electronic design applications	Session 29 Consulting as a career path for engineers		68010/68020 software, hardware, and design applica-tions-Part II 8:30 am to $5: 30 \mathrm{pm}$ (3C) $16 / 32$ bit micro-processors-Parts I and II
						8:30 am to $12: 30 \mathrm{pm}$ (4) Talking tech: tips for technical talks
Thursday April 18, 1991	Manufacturing and test	Communications	Computers, digital systems, and software	Career	General	Short courses
$\begin{aligned} & \text { 9:30 am to } \\ & \text { 11:30 am } \end{aligned}$	Session 30 Commercial and industrial ATE	Session 31 Premises distribution systems	Session 32 Neural networks	Session 33 Employing professionals with disabilities: an untapped resource	Session 34 Public safety communications and transportation	8:30 am to $12: 30 \mathrm{pm}$ (5A) Intelligent pattern recognition and applicationsPart I
$\begin{aligned} & 12: 30 \mathrm{pm} \text { to } \\ & 2: 30 \mathrm{pm} \end{aligned}$	Session 35 New testing protocols for SMT-IEEE boundary scan	General Session 36 Superconductor applications	Session 37 Artificial neural networks	Tutorial 38 Giving us the tools: a packaged training program on employing individuals with disabilities	Session 39 Status of magnetically levitated highspeed transportation in the US today	1:30 pm to $5: 30 \mathrm{pm}$ (5B) Pattern recognition and image processing-Part II 8:30 am to $5: 30 \mathrm{pm}$ (5C) Image recogni-tion-Parts I and II
$\begin{aligned} & 3: 00 \mathrm{pm} \text { to } \\ & 5: 00 \mathrm{pm} \end{aligned}$	Session 40 Techniques for automatic testing	Session 41 OEM sensor technologies for the 90 s	General Session 42 Photovoltaic solar cells and systems	Session 43 Career problems and opportunities	Session 44 Speech synthesizers and speech-recognition technology: clinical and commercial applications	12:30 pm to $5: 00 \mathrm{pm}$ Supplier quality and electronic data interchange

basic concepts and discusses progress in the field of visible and infrared image sensors with an emphasis on VLSI sensors for HDTV. Session 7 presents four papers on new application areas for lightwave technology. High-speed cache design and a look at tomorrow's cache systems are the subjects of Session 18. Session 27 is a tutorial on direct digital synthesizers. You'll learn how to expand synthesizers' bandwidths, and suppress spurious signals.
Sessions 32 and 37 will present papers on neural networks-a topic that always stirs up interest. Session 32 will look into the effectiveness of neuralnetwork models for speech recognition, image processing, and fuzzy logic. The papers presented in Session 37 emphasize why artificial neural networks are among the top three research activities at the Defense Advanced Research Projects Agency (DARPA). Session 44 looks at how speech synthesizers are overcoming the inability of the blind to read text and numbers on a computer screen. The session will review commercially available devices and computer methods for synthesizing understandable speech.
In addition to the professional sessions, Electro/ International offers 11 short courses, on the Tuesday and Wednesday show days, covering a variety of top-
ics. A schedule and a brief course outline for the short courses offered appears in the table on the right side. The courses are not covered by the registration fee, however. Tuitions range from $\$ 200$ to $\$ 355$.

In addition, there will be a 2 -part purchasing conference at the Javits Convention Center on Wednesday, April 17, from 12:30 pm to 5:00 pm. In part 1, a distinguished group of panelists will discuss how purchasers can establish a partnership with suppliers to obtain consistent quality. Part 2 will focus on the savings Electronic Data Interchange means to purchasing. There is a $\$ 20$ registration fee for the conference.
Don't forget to explore the exhibitor's booths on the convention's main floor. The exhibition floor opens at 10:00 am all three days and closes at $6: 00 \mathrm{pm}$ on Tuesday, 7:00 pm on Wednesday, and 4:00 pm on Thursday. Whatever your interests, there are plenty of booths to attract your attention. Moreover, there's lots to see and do in New York, and the attractions continue into the late evening hours. As the Broadway tune goes, "New York, New York, it's a hell of a town." EDN

Article Interest Quotient (Circle One)
 High 497 Medium 498 Low 499

Finding your way to the show

The Jacob Javits Convention Center is located on 11th Ave between W 34th St and W 39th Ston the west side. It is easily accessible, and both public transportation and a free Electro shuttle bus have stops at the center. The 42nd St crosstown bus (M42) and the 34th St crosstown bus (M34) both serve the Javits Center. These buses run east to west and stop on every block to connect with most north to south bus routes by a free transfer. Fare is $\$ 1.15$ in coins or tokens. Buses serving the center have Javits Center signs.
The closest subway line to the Javits Center is the 8th Ave IND line ($\mathrm{A}, \mathrm{E}, \mathrm{C}$, and K trains) at either the 34th St or 42 nd St exits. Other convenient subway lines on 34th and 42nd St are 7th Ave IRT (Nos. 1, 2, and 3); Flushing Line IRT (No. 7); 6th

Ave IND (B, D, F, and JFK Express); Broadway BMT (N, Q, R); and the Grand Central to Times Square Shuttle (S). Fare is $\$ 1.15$, and connections to public buses can be made at street level.
If you're trying to get to Electro/International by car, forget it. There is no parking available at the Jacob Javits Center. However, if there are no scheduled baseball games, Electro/International attendees can park and ride from either Yankee Stadium or Shea Stadium. Both parks are adjacent to New York's subway system. You can also park at the Meadowlands Sports Complex No. 13 parking lot. An express bus, No. 322, runs between the parking lot and the downtown Port Authority Bus Terminal. Parking is $\$ 2.75$, and the trip takes approximately 15 minutes. Round-trip fare is $\$ 5.50$.

If you're flying into Kennedy or LaGuardia airports, you'll save yourself some cash if you use the Carey bus service to get downtown. The buses run every 30 minutes between 7:15 am and 11:00 pm and connect you with either the downtown Hilton, Marriott Marquis, or the Sheraton City Squire hotels. The service also stops at the downtown Port Authority Bus Terminal, which is on 42nd St between 8th and 9th Ave. The fare is $\$ 7.50$ from LaGuardia to the bus terminal and $\$ 9.50$ from Kennedy to the bus terminal. You can catch a crosstown bus from the bus terminal to the Javits Center or your hotel. The Port Authority TransHudson Corp furnishes an alternative way to get to NYC from New Jersey and the Newark Airport. Call (201) 963-2558 for transportation information.

New Albany, Indiana USA • Sacramento, California USA • Cumbernauld, Scotland UK • Singapore
SAMTEC, INC. • P.O. Box $1147 \cdot$ New Albany, IN 47151-1147 USA • Phone 812-944-6733 • Fax 812-948-5047 • TWX 810-540-4095 • Telex 333-918

Electro/International Products

Laser-Printer Cleaning Paper

The \#8022 cleaning papers for your laser printer keep your output crisp. This cleaning paper removes paper dust, dirt, and toner deposits from inaccessible parts of the machine. You can use a sheet each time you change the toner cartridge or after printing numerous copies. To use the cleaning paper, you first set the printer into its manual or bypass mode. Then you insert the paper into the manual or bypass feed. Next you send a blank document to the printer to print a blank white page. You repeat the procedure four to five times and then discard the paper. A free sample of the paper is available on request. Bag of 50 sheets, $\$ 25$; case of 12 bags, $\$ 300$.

ACL Inc, 1960 E Devon Ave, Elk Grove Village, IL 60007. Phone (800) 782-8420; in $I L$, (708) 9819212. FAX (708) 981-9278. TLX 4330251. Booth No. 2551.

Circle No. 351

Thermal Printers

The PL2040 and PL4080 are thermal printers and controllers for the OEM designs. The PL2040 has a print width of 20 or 40 columns and accepts a paper width of 60 mm . The PL4080 has a print width of 40 or 80 columns and accepts a paper width of 114 mm . Both units print at a 152 -dpi resolution and have horizontal and vertical dot pitches of 0.007 in . The minimum character size is 6×9 dots, which is expandable $15 \times$. In addition, the printers can print 12 lines/sec, and
they have bar-code-printing software built in. The printers also have bit-image and dot plot modes. PL2040, \$301; PL4080, \$328 (100).
Telpar Inc, Box 796, Addison, TX 75001. Phone (214) 233-6631. FAX (214) 233-8947. TLX 732561. Booth No. 2226. Circle No. 352

Reset-Delay Relay

The C Series is a family of resetdelay relays. The units consist of spst or spdt switches that delay for a fixed or adjustable time before being energized or de-energized after you activate the trigger terminal. You can use the units on a pc board or panel mount to prevent circuit operation for a set period of time. The units consist of solid-state circuitry that drives a relay. Standard units have five male terminals spaced at intervals of 0.11 in . You can also opt for terminals spaced at 0.25 -in. intervals or screw terminals. The relays come with preset tie delays of 0.10 to 600 sec . You can also purchase units with screw-driver-adjustable potentiometers that set the time delays between 4 and $165 \mathrm{sec}, 150$ and 300 sec , or 300 and 600 sec . Contacts have 0.5 A ratings at 115 V ac. You can specify the input voltage from 5 to 140 V ac or 6 to 30 V de. $\$ 22.50$.
Amperite Co Inc, 600 Palisade Ave, Union City, NJ 07087. Phone (800) 752-2329; in NJ, (201) 8649503. FAX (201) 864-3955. Booth No. 2452.

Circle No. 353

Vacuum-Fluorescent Display

The model 3601-30-040 vacuumfluorescent display shows two lines of $11.3-\mathrm{mm}$-high characters. Each line can have 20 characters; each character comprises a 5×7 dot matrix. The module measures $10.8 \times$ $2.75 \times 1.3 \mathrm{in}$. It communicates with a host via an RS-232C or an RS-422 port at 1200 or 9600 baud. All characters and control codes are in 7-bit

ASCII format. The module comes with a standard ASCII 96-character set and alternate General European, Scandinavian, German, and scientific characters. The characters are flicker free, and you can filter them to achieve a variety of colors. The unit can detect errors in transmission, and a test mode displays all characters. $\$ 228$ (100).

Industrial Electronic Engineers Inc, 7740 Lemona Ave, Van Nuys, CA 91409. Phone (818) 787-0311. FAX (818) 902-3723. TLX 4720556. Booth Nos. 2621, 2623.

Circle No. 354

Modular Enclosures

The ESQ family of modular enclosures comes in 19- and 24-in. panel widths and vertical, desk- and counter-height, slope-front, lowsilhouette, wedge-unit, turret, or writing-top frames. The enclosures are fabricated from cold-rolled steel, and electronically controlled resistance welders ensure uniform welds. Their construction employs speed nuts and hardened Phillipshead sheet-metal screws for fastening panels. The enclosures come in 16 standard colors, and the company can match your paint chip or any Federal-Standard-595 color using a color-matching computer system. The enclosures have a static

Electro/International Products

load capacity estimated at 800 lbs of equipment evenly distributed in the frame. Desk-top units without accessories, $\$ 252$ to $\$ 520$.
Emcor Products, 1600 4th Ave NW, Rochester, MN 55901. Phone (507) 289-3371. FAX (507) $287-$ 3405. Booth Nos. 2321, 2323.

Circle No. 355

Sealed Lead-Acid Battery

The Model PS-12120 is a rechargeable, sealed, lead-acid 12 V battery. The $5.95 \times 3.86 \times 3.70$-in. unit delivers 12.0 Ahrs at a 20 -hour rate. This capacity results in an energy density of $1.69 \mathrm{Whrs} / \mathrm{in}$. The mainte-nance-free battery weighs 8.8 lbs and can deliver as much as 120 A

[^8]of discharge current. You can use the battery in any position, and it has a life expectancy of more than 5 years or 200 to 500 recharges (depending on the average depth of the discharge). The battery operates at temperatures from -20 to $+50^{\circ} \mathrm{C}$; withstands a vibration of 2000 cy cles/minute, having a $0.10-\mathrm{in}$. excursion for 2 hours; and has a 3 -month shelf life with 91% of nominal capacity at $20^{\circ} \mathrm{C} . \$ 33.80(500)$.

Power-Sonic, Box 5242, Redwood City, CA 94063. Phone (415) 364-5001. FAX (415) 366-3662. TLX 348400. Booth No. 2733.

Circle No. 356

Portable Spectrum Analyzer

The model PL 5610 portable spectrum analyzer has a $1-\mathrm{GHz}$ frequency range. It operates from multiple ac line voltages, an external 12 to 15 V de supply, or its internal 12 V dc rechargeable battery. The battery operates for approximately 1 hour after being recharged for 2 hours. The analyzer weighs less than 20 lbs , and its input impedance is switch selectable to 50 or 75Ω. It contains an internally generated $100-\mathrm{MHz}$ signal at an $80-\mathrm{dB} \mu \mathrm{V}$ level, which you can use to calibrate the instrument in the field. The unit has a $70-\mathrm{dB}$ dynamic range and a $3-\mathrm{dB}$ IF bandwidth of 10 kHz and can measure signals ranging from 15 to $123 \mathrm{~dB} \mu \mathrm{~V}$ with a display accuracy of $\pm 2 \mathrm{~dB}$. It uses a $3^{1 / 2}$-digit LCD display to indicate the center frequency with an accuracy of ± 3 MHz. $\$ 2995$.

B\&K Precision, Maxtec International Corp, 6470 W Cortland St, Chicago, IL 60635. Phone (312) 889-1448. FAX (312) 794-9740. TLX 210017. Booth Nos. 2033, 2035.

Circle No. 357

$6^{1 / 2}$-Digit Digital Voltmeter

The Model $1826^{1} / 2$-digit digital voltmeter offers a 1-nV sensitivity. The instrument has a special low-tem-

The limits are gone

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.
For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.
OrCAD

More designs from more designers

Electro/International Products

perature input connector and cable that reduces noise for low-voltage measurements. The model maintains an input noise level of 15 nV p-p. In addition, the instrument has an input impedance greater than 10 $\mathrm{G} \Omega$ on all voltage ranges. It has a FET input design that provides 160 dB of common-mode rejection when
making differential measurements using both the positive and negative inputs. The unit has analog and digital filters that operate on the data in the unit's buffer memory. The filters reduce noise when transferring data to a host computer via its IEEE-488 bus. The model can also achieve more than 50 readings/
sec. You can program the voltmeter via the IEEE-488 bus, and an autoranging function automatically switches between 5 voltage ranges$3 \mathrm{mV}, 30 \mathrm{mV}, 300 \mathrm{mV}, 3 \mathrm{~V}$, and 30 V . $\$ 3695$. Delivery is four weeks ARO.

Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (800) 552-1115; in OH, (216) 248-0400. FAX (216) 248-6168. Booth No. 2040. Circle No. 358

Cooling Fans

Beta V brushless-dc cooling fans are available in three sizes: 60×25 $\mathrm{mm} ; 80 \times 25 \mathrm{~mm}$; and $92 \times 25 \mathrm{~mm}$. The fans employ aerodynamic impeller blades and a fan housing that produces efficient air flow at low speeds. An energy-absorbing thermoplastic housing reduces structure noise. These units are at least 3 to 5 dB quieter than their predecessors. An optional built-in or remote thermal sensor monitors the air stream or component temperature and regulates the fan speed. Depending on fan size, $\$ 7.30$ to $\$ 7.55$ (1000).

Nidec Corp, 318 Industrial Ln, Torrington, CT 06790. Phone (203) 482-4422, ext 400. FAX (203) 4897201. Booth Nos. 2315, 2317.

Circle No. 359

SMT Chip Inductors

The GLD series of shielded SMT chip inductors feature a low de resistance. Sizes range from $3.2 \times$ $2.5 \times 2.2 \mathrm{~mm}$ to $0.126 \times 0.098 \times$ 0.087 mm . The inductors also have a ferrite filler in their encapsulation to reduce magnetic coupling. They operate from -20 to $+85^{\circ} \mathrm{C}$ and

1中 \& 3 $\boldsymbol{1}$ REGULATED AC/DC POWER SUPPLIES 15 W to 2 kW

High Frequency -
High Current Switchers
MK \& MKA Series
■ 750 W to 2 kW
-40 Models From
2VDC@150 A to 48 VDC @ 40 A
-(Ll) Recognized \& CSA Certified
■ $\mathbf{n}+1$ Redundancy of Parallelable Outputs

- 5 Year Warranty
Linears Enclosed \&
Open Frame
- Single, Dual \&

Triple Outputs $\quad 5$ Year Warranty
■405 Models From 2 VDC to 500 VDC
-(Ll) Recognized \& CSA Certified

- Remote Programming Capability
- Rack Mounting Hardware Options

Ferro Resonant to 650 W

- 36 Standard Models From 8.5 VDC to 125 VDC
- Customs to 2 kW \& 400 VDC - 4 Package Sizes - Rack Mounting Hardware Options
Lab Supplies to 850 W
-SVC Series CV/CC
- 12 Models From O-20 VDC to 0-125 VDC ■Rack Mounting ■ 5 Year Warranty $■$ Regulation - Line \& Load $\pm 0.01 \%$ - Metered V \& A

For information on NJE Power Supplies or a copy of the latest NJE full line catalog, call TOLL FREE 1-800-631-4298 or write:

ELECTRONIC MEASUREMENTS INC.

405 Essex Road, Neptune, NJ 07753 (In NJ, HI, AL and Canada, call 908-922-9300)

3M Reveals New Long Term EMI/RFI Shielding Tape

Tin-alloy coating on both sides of copper foil offers superior solderability, environmental stability.

AUSTIN, Tex. - This new UL Recognized Scotch ${ }^{\text {TM }}$ Foil Shielding Tape 1183 employs a tin-alloy coating on smooth copper foil to produce a durable and effective electromagnetic shield.

The tape is a tin-

The tin-alloy coating is on both sides of the copper for thorough protection.
sures ranging from small equipment housings to large shielded rooms. The tape can also shield the energy radiating from seams between the sectors of dish antennas.

The special tin-alloy coating on both sides of the foil provides two significant benefits.

1. Thorough environmental stability and corrosion resistance.
2. Exceptional solderability for applications such as sealing the seams when the tape is used as a shield around cable connectors.
3M 1183 Tape also serves as a corrosion resistant contact surface for conductive gasketing, beryllium copper "spring fingers" or other resilient conducting media used around doors and openings of electronic cabinetry.

For more information about all 3M Foil Tapes, contact a 3M Electrical Specialties Division representative or authorized distributor or call 1-800-233-3636.

[^9]3M

Electro/International Products

achieve over 90% coverage using either wave-flow or infrared and va-por-phase-reflow soldering. The series comprises 25 models covering an inductance range from 10.0 to $330.0 \mu \mathrm{H}$. The units come in either carrier or reel packaging. $\$ 0.41$ (1000).

Sprague-Goodman Electronics Inc, 134 Fulton Ave, Garden City Park, NY 11040. Phone (516) 7461385. FAX (516) 746-1396. TLX 144533. Booth No. 2056.

Circle No. 360

High-Speed Connector Family

Micro-Strip high-speed interconnected connectors maintain a $50-\Omega$ transmission line impedance within $\mathrm{a} \pm 10 \%$ tolerance. They have contacts on $0.05 \times 0.10-\mathrm{in}$. centerline spacing and a design that can fit 40 signal lines and their associated ground lines into a linear inch. The receptacle contacts present a flat metal surface that faces the ground plane. An interconnected unit limits crosstalk to less than 4% when signals have rise times of 1 nsec . Board-to-board connectors are available as right-angle and vertical stacking units. Vertical stacking units are available in 0.43 - or 0.738 in. stack heights. Cable-to-board connectors are compatible with transmission-line cables that feature precision-controlled masssoldering terminations. The connector costs $\$ 0.15$ per mated pair for stacking configurations and approximately $\$ 0.21$ for right-angle board configurations (OEM qty).

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752. Booth No. 2322. Circle No. 361

Digital Oscilloscope

The 9414 digital oscilloscope captures and analyzes signals having frequencies as high as 150 MHz . Each of the scope's four channels employs a flash A/D converter that can digitize transient events as fast
as 100 M samples/sec and periodic signals as fast as 4 G samples/sec. $\mathrm{A} \pm 0.002 \%$ timebase simultaneously drives each A/D converter to ensure timing accuracy for measurements between channels. In addition, the scope contains 10 k bytes of memory/channel, letting you analyze waveforms by expanding them to 200 times. An optional card reader allows you to store waveforms and setups on 128 k - or 256k-byte memory cards. The scope also lets you automatically measure rise time, fall time, RMS voltage, and other signal characteristics using the IEEE-181 pulse-measurement standard. $\$ 12,990$. Delivery is six weeks ARO.
LeCroy Corp, 700 Chestnut Ridge Rd, Chestnut Ridge, NY 10977. Phone (914) 425-2000. FAX (914) 425-8967. TWX 710-577-2832. Booth Nos. 1934, 1936.

Circle No. 362

LAN Tester

The Cable Scanner tool for testing LANs operates on Ethernet, Arcnet, StarLAN, Token-Ring, and Twisted-Pair networks. The tool lets you determine if cabling is the cause of a malfunction. If the problem is cabling, the tester helps you pinpoint the location of a fault or break. The tester also provides cable resistance measurements, noiselevel measurements, and audible continuity checks. You can attach a line printer to the unit to record activity. After the scanner helps

Triple Port DRAMs

MULTIMEDIA • COMMUNICATIONS
 \section*{A New World
 \section*{A New World Of Design Freedom} Of Design Freedom}

Experience a new world of design freedom with Micron's 1 Meg Triple Port DRAM - the first DRAM designed to dramatically speed up and simplify your data manipulation. With three ports rapidly accessing a common memory array, you won't be tied down with data bottlenecks.

Our Triple Port DRAM provides three independent, asynchronous and bi-directional ports. Data may be read from and written to memory through both of the fully-static Serial Access Memory ports while normal functions of the DRAM port are also performed. Plus, multiple data input or output operations can occur at the same time - resulting in faster data transfer and more design freedom.

The Triple Port DRAM also features a Bit Mask Register for built-in masking, including windowing, and Split Read or Write Transfers that make transfer timing much easier.

So, whether you're designing multimedia workstations,
super computer networks, satellite communication links or full-motion video frame buffers, you will be worlds ahead in speed and simplicity.
Enjoy your design freedom and stay on the leading

Enjoy your design freedom and stay on the leading edge by calling Micron at 208-368-3900.

Micron. Working to improve your memory.

Part \#	Organization	Speed	Package	Availability ${ }^{* *}$
MT43C4257	$256 \mathrm{~K} \times 4$ DRAM	$80,100,120$	40-Pin SOJ	Samp: Now
	512×4 SAMs	$25,30,35$		Prod: Nar 91
MT43C4258*	$256 \mathrm{~K} \times 4$ DRAM	$80,100,120$	40 -Pin S0]	Samp: Now
	512×4 SAMs	$25,30,35$		Prod: Mar 91
MT43C8128	$128 \mathrm{~K} \times 8$ DRAM	$80,100,120$	52 -Pin PLCC	Samp: Now
	256×8 SAMs	$25,30,35$		Prod: 2Q91
MT43C8129*	$128 \mathrm{~K} \times 8$ DRAM	$80,100,120$	52 -Pin PLCC	Samp: Now
	256×8 SAMs	$25,30,35$		Prod: 2Q91
*Provides SAM stop address input	**Call for military availability			

*Provides SAM stop address input ** Call for military availability

PICO

 $\&$ inductors
PLUG-IN SURFACE MOUNT AXIAL LEADS TOROIDAL INSULATED LEADS

you locate the faulty cable or connection, a tracer lets you know the cable's exact location in the ceiling or wall. The tracer locates the fault by detecting a signal injected into the cable by the main unit. The unit comes with adapters for Ethernet, Arenet, and Twisted-Pair networks; a printer cable; IBM PCcompatible software on floppy disk; and six AA NiCd batteries. The unit measures $1 \times 4 \times 7.5 \mathrm{in}$. and weighs 2 lbs. $\$ 1495$.
Contact East, 335 Willow St S, North Andover, MA 01845. Phone (508) 682-9844. FAX (508) 6887829. Booth No. 2221.

Circle No. 363

68332 Emulator

The HMI-200 emulator for Motorola's $68332 \mu \mathrm{P}$ provides real-time emulation; four complex break and trigger points; and two $4 \mathrm{k} \times 104$-bit
trace buffers, which include 16 external trace bits and 32 bits of timetag data. It has a standard 256 k bytes of memory and an option for 1,2 , or 4 M bytes. The emulator comes with a window-driven high-level-language debugger called Sourcegate. The debugger supports C, Pascal, PL/M, and Ada compilers. Sourcegate displays source code only, assembly code only, or source and assembly code. You can display windows to monitor specified memory locations and variables. A performance analysis option provides real-time software test and analysis. Emulator and Sourcegate, $\$ 16,000$; performance analysis option, $\$ 2500$.

Huntsville Microsystems Inc, 3322 S Memorial Pkwy, Huntsville, AL 35801. Phone (205) 8816005. FAX (205) 882-6701. TWX 510-600-8258. Booth No. 2755.

Circle No. 364

- Audio Transformers ranging in size from $14^{\prime \prime} \times 1 / 4^{\prime \prime}$ to $3 / 4^{\prime \prime} \times 13 / 6^{\prime \prime} .20 \mathrm{~Hz}$ to 250 KHz . Up to 3 watts.
- Pulse Transformers $.05 \mu$ SEC to 100μ SEC miniaturized construction.
- Ultra-miniature DC-DC Converter Transformers. 40 watts.
- Miniaturized Switchmode Inverter Transformers. 60 watts.
- 400 Hz Power Transformers. Primary voltages of 115 V or 26 V . Plug-in construction. Ultra-miniature
- Microphone/Transducer Audio Input.
- MIL-STD-1553 Interface Multiplex Data BUS Pulse Transformers.

Inductance values to 20 mH with DC currents to 23 amps

Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514 FAX 914-699-5565

CIRCLE NO. 30

CIRCLE NO. 31

THE SERIES 6600/6700 THERMOSTATS

Now you can ensure the highest level of thermal protection for your P.C. board without compromising its design. Specify an Airpax Series 6600 or 6700 miniature bimetallic snap-action thermostat.

The 6600 provides precise sensing of ambient temperatures in applications where the control of high temperatures is crucial. The 6700 gives you accurate thermal surface sensing when mounted on heat sinks in applications such as

Small things come in good packages.

The 6700 conforms to Y220/TO220 international product package standards, so you can automatically insert and solder the thermostats onto your board with high-speed automated equipment. The nickelplated copper mounting bracket assures accurate thermal conductivity for heat-sink applications.

Excellent repeatability from $40^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$.

Series 6600/6700 thermostats provide fast, positive response with 1-amp switching capability at 48 Vdc over their operating range of $40^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right.$ to $\left.230^{\circ} \mathrm{F}\right)$ for a minimum of 30,000 operations. The operating temperature is pre-set at the factory. Both the 6600 and 6700 meet UL and CSA standards.

Never Has So Little Done So Much For Thermal Protection.

power supplies. Both the 6600 and 6700 are ideal for today's crowded P.C. boards, where reliable thermal protection is essential. And space is at a premium.

So much to do, so little space.

The 6600 occupies less than $.84 \mathrm{sq} . \mathrm{cm}$. of precious board space, yet provides complete, self-contained thermal protection. The STD 8-pin dual in-line package is shipped ready for use in autoinsertion assembly equipment.

The 6600 is VDE approved; the 6700 is VDE pending.

A little information goes a long way.

To find out more about Airpax Series 6600/6700 thermostats, call or write us today. You'll see how so little can do so much to increase your P.C. board's reliability. Airpax, Husky Park, Frederick, MD 21701. (301) 663-5141.

FAX (301) 698-0624.
A North American Philips Company.

ARRPAX
FREDERICK DIVISION

CIRCLE NO. 141

KEPCO TEST/BENCHTOP POWER SUPPLIES

The correct tool makes any job easier. Kepco's Power Supplies for workbench, for burn-in, and float-charging batteries are just some of the tools at your disposal.
For your workbench choose a multi-out array that you configure for the application by plugging-in modules with adjustable outputs. You can combine one, two or three modules in convenient bench-top housings or put six of them together in a rack. Other experimentalist power includes a nice selection of 100 W single output instruments (MSK), a triple output logic-analog model (MPS), and burn-in/float chargers (TBC) that range from 300 to 3000 Watts in all the popular voltages.
Custom power assemblies allow you to create your own toolkit with just the selection of voltage and power to fit your need.
Other power tools from Kepco include: ac power to 18 KVA , precision programmable dc for test applications, high voltage models and four-quadrant bipolar power. For these, and our broad selection of switching power models, including $d-c$ to $d-c$ converters, please ask for one of the three catalogs illustrated below.

Battery/float-chargers.

\square For telecommunications: maintain $12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V batteries, built-in equalize timer.
\square For burn-in: power up to 3000 Watts, current limited, over-voltage protected. Two output settings, remotely selectable for margining.
Kepco Group TBC Float Chargers/Power Supplies

Kepco Custom System Power Assemblies

We will stuff a $19^{\prime \prime}$ rack ($5^{1 / 4}$ or $7^{\prime \prime}$) full of switchers to your requirement. With modules from 3 Watts to 3000 Watts, in a wide selection of voltage ranges, we can accommodate most needs.
\square LCD output meters.
\square Test points.
\square Pilots, trimmers, circuit breakers. Convenient $1 / 8$ rack panel format allows multiple control and monitoring.
Kepco Power Assemblies.

CIRCLE NO. 135

Call/fax/write to Dept. LXT-12 for any of our three catalogs.
Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA (718) 461-7000 • FAX (718) 767-1102 • Easylink (TWX): 710-582-2631

"WEVE HAD GREAT SUCCESS WITH CARROLL TOUCH. WHY CHANGE IF IT'S WORKING?"

John Santacroce
Mechantcal Engineering E Profect Manager
Hewlet-Packard Company
"As a diverse international corporation, Hewlett-Packard manufactures everything from computers, measurement and computation equipment, medical equipment, analytical equipment and more. We're known for our high level of test and measurement systems capabilities.
"We recently developed a touch-based automotive test system for a customer and there was no debate over using Carroll Touch in designing this. Our past experience with them has been very successful.
"From my point of view, Carroll Touch has provided good, reliable touch frame assemblies. They also bring a high level of engineering expertise to our team, especially in the materials selection area.

"Carroll Touch people really approach our projects as a team project."

"Working with Carroll Touch people is great because everybody is part of the team - which helps us create a very successful product. Their willingness to go that extra step makes our job much easier.
"In developing a recent functional spec for a touch frame, Carroll Touch engineers worked closely with us in making sure that the assemblies would survive electrostatic discharge.
"We held design reviews of the various approaches and all of our recommendations were considered very sincerely by Carroll Touch. Comments were intelligently relayed back to us and everything we asked for was delivered in the specified time."

For more information on how Carroll Touch can help you create success with your touch technology applications, call $512 / 244-3500$, or simply mail your business card with this coupon to Carroll Touch, P.O. Box 1309, Round Rock, Texas 78680.

Name \qquad Title \qquad

Company Name

Addres
\qquad
Carroll Touch

The Next Level of Centast EDNO41191

Servo analysis gets a boost from parametric models

> Part 2 of this 2-part series describes how to use the basic mechanical models presented in part 1 to create more complex mechanical subsystems, such as rotational loads, gear trains, and dc motors. Combining these models with standard electrical circuit models allows you to analyze the $d c$, ac, and transient response of an entire servo-control system.

Dr Vincent G Bello, Norden Systems

Modeling and then interconnecting important subsystems simplifies the analysis of complex electromechanical servo systems. With a library of mechanical and electrical subcircuits at your disposal, you can easily simulate a servo system comprising any number of nested subcircuits. You can simulate each block or subcircuit by itself and compare the model's accuracy to measurements or data-sheet specifications. For designers of electromechanical

systems, mechanical models are an important part of that library. The following sections present PSpice models for main mechanical subsystems such as rotational loads, gear trains, and de motors.
The first of these subcircuit models is a rotational load (Fig 1). This model includes elements for moment of inertia, viscous damping, coulomb friction, shaft stiffness, and mass unbalance. A constant torque approximates the mass unbalance, which is a valid approximation if the shaft-angle variations are small. Listing 1 gives the code for the subcircuit named ROTLD. The equivalent circuit and code follow directly from the analogous circuits for simple mechanical elements developed in part 1.

The first line of Listing 1 assigns negligible default values to the parameters the listing defines as J, B, KS, BKS, FC, and MU. The program uses these defaults if the main circuit's sub circuit call statement doesn't assign alternate values. The external nodes are node 1the shaft speed in rad/sec relative to space-and node 2-the platform

In some gear trains, backlash is an important parameter. If the amount of backlash is too large, the servo system can oscillate.

Fig 1-This equivalent circuit for a rotational load (a) includes elements that simulate moment of inertia, viscous damping, coulomb friction, stiffness, and mass unbalance, whose values you define in the subcircuit call statement (c). The subcircuit block has two external connections, as b shows.
speed in rad/sec relative to space. Note that the torque delivered to the shaft will not equal the torque returned to the platform because the returns from the moment of inertia and mass unbalance connect directly to space or ground. The platform connection allows an independent platform velocity input. You might need to use such an input in the case of an airborne application in which the airframe can undergo rapid velocity changes.
This rotational-load model contains coulomb friction, so be sure to set this parameter to zero for ac smallsignal analysis, or bias the solution away from the transition regions. Part 1 discussed the potential problems that can occur at these regions.

Gear train meets its electrical match

The gear train is another mechanical subsystem and is analogous to an electrical transformer (Ref 1). The output torque or current is equal to the input torque times the gear ratio. The output shaft velocity or voltage is equal to the input shaft velocity divided by the gear ratio. For an ideal gear train or transformer, the output power equals the input power. Fig 2's equivalent circuit of a gear train includes input and output inertia, friction, and stiffness. The sources EB1 and GT2 model the ideal portion of the gear. Source VT1 is used to measure the input torque. The remaining elements model inertia, friction, and stiffness of the input and output gears. The parameters N1 and N2 are the number of teeth on the input and output gears, respectively, and define the gear ratio, N , which equals N2/N1.

Listing 2 gives the code for the gear-train subcircuit
named GEAR. The comments at the beginning of the code define the parameters. The external nodes 1 to 4 define the connection of the gear train to the system. There are two independent platform connections, nodes 2 and 4, allowing for movement between an input platform and an output platform. Generally, you would tie these together to a single platform.

The gear-train model is linear except for the two coulomb-friction parameters, F1 and F2. For ac smallsignal analysis, set $\mathrm{F} 1=\mathrm{F} 2=0$ (the default values), or bias the solution away from the transition region.

The previous gear-train model ignores backlash. However, in some gear trains, backlash is an important parameter. If the amount of backlash is too large, the servo system can oscillate (Ref 2). Backlash occurs when the input and output gears do not mesh, which stops the transmission of power.

Listing 1-PSpice code for simple rotational load

```
.SUBCKT ROTLD 1 2 PARAMS:J=1P B=1N KS=1G BKS=1N FC=0 MU=0
* SUBCKT ROTLD 1 2 PARAMS: J=1P B=1N KS=1G BKS = 1N FC=0 MU=0
ROTATIONAL LOAD MODEL INCLUDING INERTIA, VISCOUS FRICTION,
* NODE 1 IS SHAFT SPEED IN RAD/SEC RELATIVE TO SPACE
* NODE }2\mathrm{ IS PHAFT SPEEED IN RAD/SEC RELATIVE TO SPACE 
* NODE O IS SPACE REFERENCE
* CURRENT INTO NODE I IS TORQUE DELIVERED IN OZ-IN
* UNITS : OZ,IN,RAD/SEC
* B IS VISCOUS FRICTION IN OZ-IN-SEC/RAD/SEC
* KS IS SHAFT SPRING CONSTANT IN OZ-IN/RAD
* BKS IS SHAFT SPRING DAMPING IN OZ-IN/RAD/SEC
* FC IS COULOMB FRICTION IN OZ-IN
* MU IS MASS UNBALANCE IN OZ-IN
LKS 1 3 {1/KS}
RKS 11 3 (1/BK
CJ 3
* CIRCUIT TO MODEL COULOMB FRICTION
E4 40 TABLE {V (3,2)) = (-.1M, -1) (.1M,1)
R4 4 O 1G
GFC 3 2 VALUE = {FC*V(4)}
* CONSTANT MASS UNBALANCE
ENDS ROTLD
```


Fig 2—The sources EB1 and GT2 of this gear train's equivalent circuit (a) simulate ideal characteristics. Other elements model inertia, friction, and stiffness of the input and output gears. The subcircuit symbol (b) displays the four external connections. The parameters N1 and N2 in the corresponding call statement (c) define the gear ratio.

To derive the equations for backlash, first define the following variables for Fig 3:
$\omega_{1}=$ input-gear speed in rad/sec
$\theta_{1}=$ input-gear angle in radians
$\mathrm{N}_{1}=$ number of input-gear teeth
$\mathrm{R}_{1}=$ input-gear radius
$\mathrm{v}_{1}=$ input-gear linear velocity
$\mathrm{x}_{1}=$ input-gear linear distance
$\omega_{2}=$ output-gear speed in rad/sec
$\theta_{2}=$ output-gear angle in radians
$\mathrm{N}_{2}=$ number of output-gear teeth
$\mathrm{R}_{2}=$ output-gear radius
$\mathrm{v}_{2}=$ output-gear linear velocity
$\mathrm{x}_{2}=$ output-gear linear distance
$\mathrm{N}=$ the gear ratio, $\mathrm{N}_{2} / \mathrm{N}_{1}$
$\mathrm{HD}=$ backlash halfwidth angle at output gear in radians.

When the two gears are in contact, the tangential velocities, v_{1} and v_{2}, are equal. Thus,

$$
\omega_{1} \mathrm{R}_{1}=\omega_{2} \mathrm{R}_{2} .
$$

Because $\mathrm{R}_{2}=\mathrm{NR}_{1}$, it follows that

$$
\omega_{1}=\mathrm{N} \omega_{2} .
$$

In order for the two gears to contact, the linear distance traveled by the first gear relative to the second gear starting from the center position must be

$$
\mathrm{x}_{1}-\mathrm{x}_{2}=\mathrm{HD} \cdot \mathrm{R}_{2} .
$$

Dividing this entire equation by R_{1}, substituting NR_{1}

Listing 2-PSpice code for gear train

```
.SUBCKT GEAR 1 2 3 4 PARAMS: N1=1 J1=1P Bl=1P Fl=0 K1=1G BK1=1N
```



```
    NODE 2 IS INPUT PLATFORM SHAFT SPEED IN RAD/SEC RELATIVE TO SPACE
    N
    * NODE O IS SPACE REFERENCE 
    * CURRENT INTO NODE 1 IS TORQUE DELIVERED IN OZ-IN
    UNITS: OZ,IN,RAD/SEC
    * N1 IS NUMBER OF TEETH ON INPUT GEAR
    B1 IS INPUT GEAR INERTIA IN OZ-IN-SEC/RAD/SEC
    B1 IS INPUT GEAR VISCOUS FRICTION IN O2-IN/RAD/SEC
    K1 IS INPUYT GEAR SHAFT SPRING CNNTANT IN OZ-IN/RAD
    BK1 IS INPUT GEAR SHAFT DAMPING IN OZ-IN/RAD/SEC
    N2 IS NUMBER OF TEETH ON OUTPUT GEAR
    J2 IS OUTPUT GEAR INERTIA IN OZ-IN-SEC/RAD/SEC 
    F2 IS OUTPUT GEAR COULOMB FRICTION IN OZ-IN/RAD/SEC
    K2 IS OUTPUT GEAR SHAFT SPRING CONSTANT IN OZ-IN/RAD
    |(1)
    RK1 1 5 {1/ BK1
    E8 80 T T1/B1}}{\textrm{V}(5,2))=(-.1M,-1) (.1M,1
    GFC1 5 2 VALUE = (F1*V(8))
    VT1 [5 7 VALUE =((N2/N1)*V(6,4))
    CJ2 6 6 (J2),
    E990 TMABLE (V ( }6,4))=(-.1\textrm{M},-1) (.1M,1
    MR9}90
    LK2 6 3 (1/K2)
    RK2 }
```

for R_{2}, and using small-angle approximations yields the following condition for gear contact in the positive direction:

$$
\begin{equation*}
\Theta_{1}-\mathrm{NO}_{2}=\mathrm{N} \cdot \mathrm{HD} . \tag{1}
\end{equation*}
$$

If contact is to occur in the positive direction, v_{1} must be greater than v_{2} prior to contact. If, after contact occurs, v_{1} falls below v_{2}, the gears will separate until contact is made in the negative direction when the following condition exists:

$$
\begin{equation*}
\Theta_{1}-\mathrm{NO}_{2}=-\mathrm{N} \cdot \mathrm{HD} . \tag{2}
\end{equation*}
$$

This equation is the condition for gear contact in the

Backlash occurs when the input and output gears do not mesh, which stops the power transmission.

Fig 3-A gear-train model that includes backlash must take into account many characteristics such as the number of input and output gears; their linear distance, x; velocity, v; radii; x; and angle, θ. HD represents the backlash halfwidth angle at the output gear.
negative direction. If contact is to occur in the negative direction, v_{1} must be less than v_{2} just before contact.

By dividing the differential linear velocity Δv, which equals $v_{1}-v_{2}$, by the radius R_{1}, you can derive the differential angular velocity at the input gear as follows:

$$
\Delta \omega_{\mathrm{IN}}=\omega_{1}-\mathrm{N} \omega_{2} . \quad \Delta \Theta_{\text {OUT }}=\Delta \Theta_{\mathrm{IN}} / \mathrm{N}
$$

$$
\Delta \Theta_{\mathrm{IN}}=\Theta_{1}-\mathrm{N}_{2}=\int \Delta \omega_{\mathrm{IN}} \mathrm{dt}
$$

The differential angle at the output gear is
The differential angle at the input gear is

Fig 4-The equivalent circuit for a gear train with backlash (a) includes a controlled source, SBL, which acts as a switch. SBL is an open circuit when the gears are in backlash and a short when the gears mesh. The subcircuit symbol (b) is identical to the gear train without backlash; the call statement in c defines backlash parameters such as HD.

From Eqs 1 and 2, the gears mesh when either

$$
\begin{equation*}
\Delta \Theta_{\text {OUT }} \geqslant \mathrm{HD} \text { and } \Delta \omega_{\mathrm{IN}}>0, \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta \Theta_{\text {OUT }} \leq-\mathrm{HD} \text { and } \Delta \omega_{\mathrm{IN}}<0 . \tag{4}
\end{equation*}
$$

Alternately, the gears are in the backlash region when the absolute value of $\Delta \theta_{\text {out }}$ is less than HD; that is, when the relative angle of the gears is less than the backlash halfwidth angle.

Backlash circuit uses a switch

Fig 4 shows the equivalent circuit for a gear train with backlash. The main difference between Fig 4 and Fig 2 is Fig 4's controlled source, SBL, which acts as a switch. In the backlash region, SBL is an open circuit, disconnecting the input gear from the output gear. When the gears mesh, SBL acts as a short, connecting the input and output gears. Controlled current source GW and capacitor CW together determine $\Delta \theta_{\text {OUT }}$ at node 10, because the voltage drop from node 5 to 7 $\mathrm{V}(5,7)$ in Spice nomenclature-is

$$
\mathrm{V}(5,7)=\omega_{1}-\mathrm{N} \omega_{2}=\Delta \omega_{\mathrm{IN}},
$$

and the voltage at node $10-\mathrm{V}(10)$ in Spice nomencla-ture-equals

$$
\mathrm{V}(10)=\int(\mathrm{V}(5,7) / \mathrm{N}) \mathrm{dt}=\Delta \Theta_{\text {oUT. }}
$$

Listing 3 is the code for the gear train with backlash subcircuit (GEARBL). The source ESP uses the table function to set $\mathrm{V}(12)$ equal to 1 when $\mathrm{V}(10)>\mathrm{HD}$ and to set $V(12)=0$ when $V(10)<H D$. Similarly, the source ETSP uses the table function to set $\mathrm{V}(15)=1$ when $\mathrm{V}(5,7)>0$ or $\mathrm{I}(\mathrm{VT} 1)>0$ and to set $\mathrm{V}(15)=0$ when $\mathrm{V}(5,7)<0$ or $\mathrm{I}(\mathrm{VT} 1)<0$. When both $\mathrm{V}(12)$ and $\mathrm{V}(15)$ are high, the condition in either Eq 3 or 4 is satisfied, and the resistance of voltage-controlled resistor SBL is set low, connecting nodes 11 and 7 through a low resistance. The control voltage, $\mathrm{V}(20)$, and the following parameters determine the resistance of source SBL: RON $=1 \mathrm{M}, \mathrm{ROFF}=1 \mathrm{MEG}, \mathrm{VON}=1, \mathrm{VOFF}=0$.
The control voltage $\mathrm{V}(20)$ is equal to the quantity $(\mathrm{V}(12) \times \mathrm{V}(15))+(\mathrm{V}(13) \times \mathrm{V}(16))$. If both $\mathrm{V}(12)$ and $V(15)$ are high or $V(13)$ and $V(16)$ are high, then the switch resistance is low and nodes 11 and 7 are connected. If any of the nodes $12,13,15$, or 16 equal 0 ,

Listing 3-PSpice code for gear train with backlash

then the switch resistance is high, nodes 11 and 7 are disconnected, and the gear train is in the backlash region. Sources ESN and ETSN determine the backlash region for negative offset angles. Elements CC and RC slow the switch transition times, which helps improve transient convergence.

Although the equivalent circuit for the gear train with backlash is fairly complex, using the circuit isn't. You simply define the input and output node connections and give the relevant parameter values, as Fig 4 shows. In the main-system description, one line describes each subcircuit. As in all simulations, the models should be only as complex as required. If backlash is negligible, use Fig 2's model for a gear train, which

The gear-train-with-backlash model includes a controlled source that operates as a switch.

Fig $5-R A$ and LA model the armature resistance and inductance, respectively, of this dc motor equivalent circuit (a). The subcircuit has five external connections, as b shows, two inputs, two outputs, and one tachometer output. Again, the call statement (c) requires you to define a number of parameters.
is much simpler. The backlash model can greatly lengthen the simulation time because fast transients occur whenever the gear hits the backlash region, an event that can occur many times during a simulation. Backlash also causes a problem for ac small-signal analysis because the backlash condition prevents signals from transmitting through the gear train. For ac analysis, either bias the gear out of the backlash region or use the Fig 2 gear model, which has no backlash.

The servo motor connects the electrical and mechanical parts of a servo system. The motor's input is electrical, and its output is mechanical. The de motor with armature control and the permanent-magnet motor are analogous to an electrical transformer. The input's electrical power is equal to the output's mechanical power. The torque is proportional to the armature current, I_{A}, and equals

$$
\mathrm{T}=\mathrm{K}_{\mathrm{T}} \mathrm{I}_{\mathrm{A}}
$$

where K_{T} is the motor's torque constant. The back EMF, E_{B}, produced in the armature circuit is proportional to the motor speed, ω_{M}, as follows:

$$
\mathrm{E}_{\mathrm{B}}=\mathrm{K}_{\mathrm{E}} \omega_{\mathrm{M}} .
$$

K_{E} is the back EMF constant. For an ideal dc motor,

$$
\mathrm{I}_{\mathrm{A}} \mathrm{E}_{\mathrm{B}}=\mathrm{T} \omega_{\mathrm{M}} \text { (watts). }
$$

Fig 5 shows the analogous equivalent circuit for the dc motor (Refs 1, 2, and 3). Listing 4 presents the

Introducing the only linears approved to meet IEC 950 and Level B EMI.

CONDOR'S NEW INTERNATIONAL PLUS LINEAR D.C. POWER SUPPLIES MEET TOMORROW'S TOUGH STANDARDS TODAY!

Our International Plus linears offer you performance, price and one more important feature: the agency approvals you need for the 90 's, including IEC 950 and VDE 0871 level B EMI. And Condor has more approved linears in stock than anyone in the industry (including more than 30 models in IEC 601 medical versions).
International Plus linears have what you're looking for:

- 115 models (single and multi-output)
- 7 power levels -3 to 288 W
- Worldwide AC input ranges
- OVP on all 5 V outputs
- Hermetically sealed power transistors
- MTBF 200,000 + hours per Mil Hndbk 217E
- 2-hour burn-in with cycling (8 hours on medicals)
- Computerized testing (data sheets furnished)
- 3-year warranty - longest in the industry
- 30-day FREE evaluation (call us for samples)
If you need world class performance, quick turnaround, competitive pricing and full agency approvals, call Condor - the leader in linear D.C. power supplies.

- $300+$ power supplies
- Standard and medical
- Switchers and linears
- Open frame and enclosed
- Custom capability

=CONDOR

Condor Inc. D.C. Power Supplies 2311 Statham Parkway Oxnard, CA $93033 \bullet$ (805) 486-4565 CALL TOLL-FREE:
1-800-235-5929 (outside CA)
FAX: (805) 487-8911
code for the subcircuit named MOTOR. RA is the armature resistance, and LA is the armature inductance. Additional parameters define the motor inertia, viscous friction, and shaft stiffness. In addition, a tachometer output is provided at node 5 . The armature voltage connects across nodes 1 and 2 . Node 3 represents the motor shaft speed. Node 4 represents the motor platform speed. Fig 5's model is linear and fairly simple. The models for the dc motor with field control and the ac motor are even simpler.

Note that although individual parameters are provided for the back EMF constant (KE) and the motor's torque constant (KT), these parameters are not independent (Refs 2 and 3), even though they are often specified independently. KE equals KT in the SI system of units (Newton, meter, radian, second). In the system of units used here (ounce, inch, radian, second), KE equals $7.06 \times 10^{-3} \times \mathrm{KT}$. These relationships come from setting the input electrical power equal to the output mechanical power for an ideal motor. Meas-
urements of KE and KT may differ due to parasitic losses, which are not accounted for.

The following example combines these mechanical models with standard electrical components to simulate the inner-most loop of the roll axis of a complex airborne antenna-positioning servo system. Fig 6 is a block diagram of the tachometer feedback loop for the dc motor with armature control. The power amplifier uses current feedback to control the motor armature current, thereby controlling the motor torque. The demodulator provides a feedback signal from the motor tachometer output, allowing control of the motor shaft speed. The op amp acts as a summer, closing the loop.

Open the loop

Listing 5 presents the PSpice code for an ac openloop analysis of the tachometer feedback loop. The components LOL, COL, and VOL, along with their assigned values of $1 \mathrm{kH}, 1 \mathrm{kF}$, and 1 V ac , respectively, serve to open the loop for ac analysis while maintaining

Fig 6-This servo loop models a dc motor with tachometer-feedback control. The power amplifier uses current feedback to control the motor armature current thereby controlling the motor torque. The demodulator provides feedback from the motor, allowing the loop to control the motor shaft speed.

Nobody supports the Motorola line of microprocessors better than the Hewlett-Packard 64700 Series of emulators.
You see, HP has agreements with key chip manufacturers. Like Motorola. So while they're working on the next hottest chip design, we're simultaneously developing an emulator.
Our relationship with Motorola has allowed us to provide emulators this quickly for the new 68302,68331 and 68332 processors.

As well as for the upcoming 68040. And, of course, we've always had broad support for the 68000, 68010, 68020 and 68030.
HP emulators also provide a complete solution. Logic and performance analysis tools and code coverage are all in the same box. They come with C cross compilers, simulators/debuggers and branch validators.
Even better, HP emulators work in real time without halting your target system. Which means you'll ensure a thorough analysis
of your design by executing it at full speed. Not by second-guessing.
All of this is accompanied by HP's renowned service and support. So call 1-800-752-0900, Ext. 1904 for a free demo disk or videotape. They'll demonstrate all the benefits of using an HP emulator. And by the way, if we answer your call quickly, it's no coincidence.

Don't be surprised if certain parameters, especially nonlinear ones such as backlash, greatly increase the simulation time.
the correct dc operating point. VOL injects a 1 V ac signal at node 6, COL is a short at ac, and LOL is an open at ac. Under these conditions, and with VIN equal to zero, the voltage at node 10 equals the loop gain.

To perform meaningful ac analysis, the models must not include step-type nonlinearities or you must bias the circuit outside the nonlinear regions. Thus, use a power-amplifier model without deadzone, the gear model without backlash, and a simple rotational load model. Fig 7a shows the ac open-loop gain and phase
of the tachometer feedback loop. The open-loop crossover frequency is 9.5 Hz , and the phase margin is 90°. The notch at 21 Hz and peak at 40 Hz are due to the gear-stiffness parameter K2 resonating with the load inertia and motor inertia. The gear-shaft damping parameter BK2 determines the Q of this resonance. The values for K2 and BK2 match the measured data. The gain margin for the tachometer loop is 12 dB at 190 Hz .
You can obtain the ac closed-loop response by setting LOL $=1 \mathrm{nH}, \mathrm{COL}=1 \mathrm{pF}, \mathrm{VOL}=0 \mathrm{~V}$ ac, and VIN to 1V ac. WM, the motor-shaft-speed node, now repre-

Fig 7-Using a combination of electrical and mechanical models, you can simulate Fig 6's tachometer loop and investigate the open-loop gain and phase (a), the closed-loop gain and phase at both the motor (b) and the load (c), and the transient response of the motor and load (d) to a square-wave input.

The Answers for the '90s

You know that a front-panel display is the first thing your customers will notice about your product. You need something to set your product apart from the competition, but you've got tight budget and packaging constraints. Now, IEE has a new family of brilliant answers!

You can have the outstanding appearance of a vacuum fluorescent display at an affordable price, with IEE's latest generation of enhanced "Ninety Series No.Frillss" FLIP ${ }^{\text {TM }}$ VFD modules.

Price isn't the only thing that's unusually trim. Surface mount technology makes these modules exceptionally compact. Other features include:

- Bright, easy to read 5×7 dot matrix characters
- Software-controlled dimming
- Extended/Euro character set
- User-defined characters
- Only a single +5 VDC supply requried
- On-board microprocessor accepts parallel ASCII data
- RS-232 and 20mA loop serial data cards available

Call or write today and tell us your problems. We offer a wide variety of display technologies; what you se here are just a few of the answers we can give you.

Industrial Electronic Engineers, Inc. Industrial Products Division 7740 Lemona Avenue Van Nuys, CA 91405
(818) 787-0311, ext. 418

Circle 11 for Reference
sents the closed-loop gain. Note that nodes with units of rad/sec have names starting with the letter "W" in Fig 6, which helps identify the mechanical speed nodes. Fig 7b shows the ac closed-loop gain and phase of the tachometer loop at the motor-shaft-speed node, WM. The $-3-\mathrm{dB}$ bandwidth of the tachometer loop at node WM is 10 Hz . The notch resulting from the gear-shaft stiffness is clearly seen at 21 Hz .

Fig 7c shows the ac closed-loop gain and phase of the tachometer loop at the load-shaft-speed node, WL. The response at the load is down 3 dB at a crossover frequency of 30 Hz where the phase shift is -120°. Note that this response is a 2 -pole rolloff and that Fig 7b's notch at 21 Hz is no longer present. The notch at 300 Hz is caused by the high parasitic stiffness$\mathrm{KS}=1 \mathrm{G}$-included in the rotational load model and is of no consequence at such a high frequency.

To test Fig 6's transient response, the input voltage VIN steps from 0 to -7.5 V for 0.2 sec , and then steps up to 7.5 V for 0.2 sec before returning to zero (Listing 5). This input corresponds to commanding the motor speed to go to $1000 \mathrm{rad} / \mathrm{sec}$ for 0.2 sec then to -1000 $\mathrm{rad} / \mathrm{sec}$ for 0.2 sec before returning to zero. Fig 7d shows the motor-speed response and the load-speed response. There is significant slewing because of the power amplifier's 3.5 A current limit. The load torque showed some ringing because of the gear-shaft stiffness, but the load-speed response was smooth. These responses were obtained with no dead zone and no backlash.

The PSpice program is particularly efficient for ac analysis. Frequency sweeps with 150 data points typically took 20 seconds to run on a Compaq $386 / 33$ with a 80387/33 coprocessor. Transient runs took several minutes to run. Including gear backlash in the model greatly increases the transient runtime, depending on how many times the simulation traverses the backlash region. In this example, adding backlash to the tachometer loop circuit caused very little difference in the output. However, the simulation crossed the backlash region three times, causing the CPU time to triple. When running worst-case analysis, remember that the runtime is proportional to the number of cases.

As enhanced versions of Spice continue to improve, they will become even more useful for the simulation of servo systems. Areas of possible improvement include the ability to assign mechanical unit labels, the ability to directly assign tolerances to subcircuit parameters, and faster execution of behavioral models during transient analysis.

Listing 5-PSpice code for tachometer loop simulation

```
ANTENNA SERVO - TACH LOOP SIMULATION
TACHLOOP.CIR 
* NODE NAMES STARTING WITH W ARE SPEED IN RAD
* Parameters
PARAM PI2=6.2831853
* INPUT TACH VELOCITY COMMAND IN VOLTS : 7.5V=1000R/S AT MOTOR
IN 1O AC O PWL(OS OV 1MS -7.5V .2S -7.5V .201S 7.5V .4S 7.5V .401S 0)
* body to space speed input in rad/SEC
VWB WB O AC O PWL(O O IMS O)
* TACHOMETER LOOP FEEDBACK AMPLIFIER
R13 1. 62 22.6K
ll
6 0 62 2 OPAMP PARAMS: G1=200K WP=(5HZ*PI2) VLIM=13.5V
* MOTOR POWER AMPLIFIER
* FOR AC DO NOT USE DEADZONE KOWAMPDZ PARAMS: KA=120 K1FB=3 ILIM=3.5A VLIM=130V DZ=.2V
XPA 2 3 POWAMP PARAMS: KA=120 K1FB=3 ILIM=3.5A VLIM=130V RO=1
WP=(100KHZ*P12)
* MOTOR MODEL
* MOTOR MODEL
MIA 3 13 lu WB 7 MOTOR PARAMS: RA=8.4 LAA=12MH KE=72M KT=9.1 JM=.62M
VTM WM WG1
* GEAR MODEL
FOR AC SET F1=F2=0
XG WG1 WB WG2 WB GEAR PARAMS: N1=1 N2=401 K2 =4.73MEG BK2=6873
* XG WG1 WB WG2 WB GEARBL PARAMS: N1=1 N2=401 K2 =4.73MEG BK2 =6873
*
* rotational load model
VTL WG2 WL 
* FOR AC SET FC=0
XL WL WB ROTLD PARAMS: }J=272 B=\mp@code{*
XD 7 10 DEMOD PARAMS: G1=3.14 WP={19.5KHZ*PI2) Z=.47 WN=(2O2HZ*PI2)
* SET LOL=1KH ,COL=1KF, VOL=1VAC FOR AC OPEN LOOP
* LOOP GAIN = V́DB(10) VP'(10)
LOL 10 6 1 KH
COL % 11 11 1KF
* ANALYSIS commands
* . AC DEC 50 1HZ 100HZ
        PRINT AC VDB(10) VP(10) VDB(2) VDB(3) VDB(7) VDB([WM]) VDB([WL])
    + T.TRAN 5MP 600MS OMS 5MS
        .TRAN 5MS 600MS OMS 5MS (2) V(3) V([WM]) V([WL]) V(7)
        PRINT TRAN I(VIA) I(VTM) I(VTL)
        .OP
        OPTIONS ACCT LIST NODE
        OPTIONS REETOL=1M ABSTOL=1U YNTOL=1U
        O
        LIB SERVO.LIB
```


References

1. D'Azzo, J and C Houpis, Linear Control System Analysis and Design, McGraw-Hill, New York, 1981.
2. Kuo, B, Automatic Control Systems, Prentice Hall, NJ, 1987.
3. de Sa e Silva, C, "Motor Modeling Simplifies Design of Control Systems," EDN, pg 169, March 31, 1988.

Author's biography

Dr Vincent G Bello is a senior member of the technical staff at the Norden Systems (Norwalk, CT) division of United Technologies and has been with the company for 21 years. He specializes in the analysis and design of analog circuits and has used Spice extensively. He developed widely used Spice models for switching regulators. Dr Bello has
 written one book, fourteen papers, and holds four patents. He has a bachelor's degree from Manhattan College and a masters and PhD from New York University.

Strength In Numbers

The power of dual platforms - more than a promise.

The leading electronics design automation solutions are available today on two industryleading platforms.

Now DAZIX customers will benefit from products that reside on both Sun and Intergraph workstations. Robust solutions for the entire design process. Plus, an open-system framework that integrates Intergraph, DAZIX, and Sun products - as well as other leading EDA tools - in a simultaneous engineering environment.

Billion-dollar backing.
Intergraph's financial strength gives DAZIX customers an added benefit - confidence. The confidence that comes from a partnership with the only EDA company

that is part of a billion-dollar computer graphics corporation. Ranked No. 3 in worldwide EDA sales. With an installed base of 13,000-plus EDA seats and capabilities developed over more than 22 years of providing integrated graphics solutions around the globe.
DAZIX customers are assured of continued product development and excellent support. Not just today and tomorrow, but into the future.

To learn more about our numbers, call us. In the United States, 800-239-4111. In Europe, 33-1-4537-7100. In the AsiaPacific area, 852-8661966.

THE

TIME.

TODD's Partner in Power Packaging

Quality and product innovations evolve over time. One product innovation serving as a building block for yet another. One customer need sparking new ideas which transcend old limitations of size and space.
This is TODD's history . A quarter century of revolutionary achievements in advancing the design and development of switching power supplies. Setting standards which become the bench marks for the industry. Delivering quality products on time, every time, just in time.
Quality is customer satisfaction. And TODD customers are the true partners in progress. We listen. We work to under-
stand. We know the pressures of today's shorter design-tomarket cycles. We respond to the demands and requirements of our customers for smaller, more powerful, more reliable, cost-effective switching power supplies for computers, telecommunications, medical electronics and industrial products.
The result is an ever-evolving product line incorporating an array of unique features and design alternatives, custom built in concept but available in standard, off-the-shelf quantities, pricing and delivery schedules.
Get all the facts about TODD products and services. And get them fast and complete. Use the fax hotline, 800 number or mail the postage paid reply card.

THED $R^{E} E$
 Advanced Power Packages: The MAX Series of switching power suppliesthe system designers' choice.

FEATURES:

- 80% overall efficiencies
- Over 100,000 hours MTBF
- Meet International Safety Standards
- High efficiency MAGNA-FLUX $\pm 1 \%$ post regulators
- System air or self-cooling
- AC autoline select option
- Power densities up to 4/watts in ${ }^{3}$
- From 30% to 58% smaller
- Cost/watt savings up to 30\%

Call 1-800-223-TODD (516-231-3366 on Long Island) for your FREE
32-page full-color catalog of over 100 TODD
Standard Switching Power Supplies. Can't wait?
For instant facts, use our FAX HOTLINE: 516-231-3473

From standard voice and data networks to super micros and workstations, TODD's MAX series of switchers are increasingly become the \#1 power choice of OEM system designers. Here's why:
Housed in a compact (2.5 " $\times 5$ " $\times 9$ ") package, the MAX 350's provide the outputs you need for ISDN, LAN and T1 applications - with yields of over three watts $/ \mathrm{in}^{3}$ across four fully regulated outputs. Select a MAX 350 with auxiliary outputs and power common peripherals, ECL systems, RS232 outputs, and communications drivers.
The MAX 500 "bus driver" series pack 500 watts into a 2.5 " $\times 5$ " $\times 11.5$ " package with power densities of almost 3.5 watts/inch. With VMEbus and Multibus II compatibility, up to 16 amps of peak current, and the ability to power up to 80 amps of logic and four hard disk drives, these switchers will meet all your peripheral start up needs.

peciry the MAX 700/750 series and you'll get an unprecedented design freedom for your high-end computer products. Replace a 5 " $x 8$ " $x 11$ " shoe box switcher with a 2.5 " $x 5$ " $\times 13.6$ " MAX 700 or 750 switcher, and you'll get a space savings of 58%. Or build in redundancy with two MAX 700's in place of one shoe box. And while you'd expect to pay more for this kind of design flexibility, you'll actually realize cost savings of up to 30% per watt. The MAX series - evolutions in design bringing you revolutionary product enhancements.

Model	MAX SERIES HIGHLIGHTS 350 WATTS: $2.5^{\prime \prime} \times 5^{\prime \prime} \times 9^{\prime \prime *}$			
	Output \#1	Output \#2	Output \#3	Output \#4
MAX-353-0512 MAX-354-1205 MAX $-354-1212$ MAX-354-1224		+12 V @ 8/12Apk +12V @ 8/12Apk +12V @ 8/12Apk +12V @ 8/12Apk	-12V @ 4.0A $-12 \mathrm{~V} @ 4.0 \mathrm{~A}$ -12V @ 4.0A -12V @ 4.0A	$\begin{aligned} & -5.2 \text { @ } 2.0 \mathrm{~A} \\ & 12 \vee \text { Q } 2.0 \mathrm{~A} \\ & +24 \mathrm{~V} \text { @ } 1.5 \mathrm{~A} \end{aligned}$
Model	400,500 WATTS: 2.5 " $\times 5$ " $\times 11.5$ "*			
MSC-402-0512	+5V @ 20A	+12V @ 25/36Apk	-	
MAX-503-0512	+5V@80A	+12V @ 10/16Apk	-12V @ 10.0A	
MAX-504-1252	+5V @ 80A	+12V @ 10/16Apk	-5.2V @ 10.0A	12 V @ 2.0A
MAX-504-1205	+5V@80A	+12V @ 10/16Apk	-12V @ 10.0A	5.2 V @ 2.OA
MAX-504-1212	+5V@80A	+12V @ 10/16Apk	-12V @ 10.0A	12 V @ 2.0A
MAX-504-1224	+5V @ 80A	+12V @ 10/16Apk	-12V @ 10.0A	+24V @ 2.0A
MAX-504-1552	+5V @ 80A	+15V @ 10/16Apk	-5V @ 10.0A	15 V @ 2.0A
Model	700,750 WATTS: 2.5 " $\times 5$ " $\times 13.6$ "*			
MAX-704-1205	+5V @ 100A	+12V @ 12/20Apk	-12V @ 10.0A	5.2V@2.OA
MAX-704-1212	+5V @ 100A	+12V @ 12/20Apk	-12V @ 10.0A	12 V @ 2.OA
MAX-753-0512	+5 ¢ @ 120A	+12V @ 12/20Apk	-12V@10.0A	-
MSC-753-0512	+5V@120A	+12V @ 20/27Apk	-12V @ 6.OA	
MAX-754-1252	+5 ¢ @ 120A	+12V @ 12/20Apk	-5.2V @ 10.0A	12 V @ 2.OA
MAX-754-1205	+5 ¢ @ 120A	+12V @ 12/20Apk	-12V@10.0A	5.2 V @ 2.OA
MAX-754-1212	+5 ¢ @ 120A	+12V @ 12/20Apk	-12V@10.0A	12V @ 2.0A
MAX-754-1224	+5Y @ 120A	+12V @ 12/20Apk	-12V @ 10.0A	+24V @ 2.0 A

Subranging ADCs operate at high speed with high resolution

Abstract

Subranging A / D converters offer performance levels difficult to obtain with successive-approximation or flash converters. They can deliver higher conversion speed and resolution and suit such applications as digital signal processing. Part 1 of this 3-part series explores the architecture and operation of these devices. Part 2 will cover subranging-ADC parameters and specifications. Part 3 will conclude the series with test and measurement principles.

Ray K Ushani, Datel Inc

The subranging, or multipass, A/D converter has become increasingly popular in the last few years. A major reason for this popularity is digital signal processing, which demands high conversion speeds and resolution. The traditional successive-approximation converter has reached its speed-resolution limit (about $1 \mu \mathrm{sec}$ for 12 bits) and can't meet the demands of many applications. Although flash converters offer high speeds, a practical limit exists to the resolution they can provide because the number of comparators rises exponentially with the number of bits. A 12 -bit flash converter, for example, does not exist.

A flash converter, however, is an essential part of the subranging-ADC architecture. Designers have a wider choice of flash converters than they did a few years ago, and today's devices have significantly better
performance and lower prices (approximately $\$ 10$ for an 8 -bit flash converter in OEM quantities). Semicustom design has also helped spur subranging-ADC manufacturing because the devices inherently require more components than successive-approximation converters. Integrating the timing and correction logic on a single chip greatly reduces cost, the number of active components, and assembly and reliability problems.

The three types of subranging-ADC architectures are conventional, pipelined, and intermeshed; each type best suits certain applications. All subranging ADCs-whether the device is a hybrid IC or ICs and discrete components on a pc board-contain at least a sample-and-hold (S / H) circuit, a D/A converter, a scaling network, and timing and digital-correction logic.

The conventional subranging architecture (Fig 1) is a 2-stage A/D converter. With S_{1} closed and S_{2} open, the S / H circuit switches to the hold mode. The flash converter then quantizes the input signal, V_{IN}. After proper scaling, the D/A converter converts the digitized and latched signal back into an equivalent voltage. This voltage is subtracted from the original input signal at the summing junction, yielding the difference between the first conversion and the input signal. The closing of S_{2} and the opening of S_{1} feeds the difference signal back to the flash converter, which amplifies and digitizes the signal. After latching, the result of this conversion goes through the digital-correction logic to produce the output.

The three different types of subrangingADC architectures are conventional, pipelined, and intermeshed.

Fig 1-A conventional subranging ADC uses an S/H circuit, a flash converter, and a D/A converter.

Designing and fabricating a good high-resolution flash converter is a major task. Therefore, in monolithic subranging ADCs, using a lower-resolution (3- to 4 -bit) flash converter is preferable. Of course, the lower resolution means more passes through the flash converter, making the subranging ADC seem like a successiveapproximation converter with a reduced number of trials. This variation of the conventional architecture, which combines flash and successive-approximation features, is the recursive subranging architecture.
The second type of subranging converter has a pipelined architecture. Compared with the other subrang-
ing-ADC types, the pipelined architecture offers a faster throughput rate because the circuit can initiate a new conversion before the previous conversion is finished. However, the conversion time is not significantly improved, and the digital output data corresponding to the present conversion is always delayed by at least one clock.
The 2 -stage pipelined converter has an extra S / H circuit and an extra flash converter (Fig 2). In operation, the first S / H circuit switches to the hold mode after acquiring the input signal, V_{IN}. The first flash converter then quantizes the input signal, while the

Fig 2-A pipelined subranging ADC uses two S/H circuits, two flash converters, and a D/A converter.

second S/H circuit goes to the hold mode. The D/A converter latches and converts the digitized signal into an equivalent voltage. This voltage is then subtracted from the held output voltage of the second S / H circuit, which represents the input voltage at the time the first flash converter made its conversion. The second flash converter amplifies and digitizes the difference between the first conversion and the input voltage. After latching, the result of this conversion goes through the digital correction logic to produce the output.

Immediately after the second S / H circuit switches to the hold mode, the input S/H circuit can acquire a new signal, effectively increasing the throughput rate (the rate at which the converter can accept new convert commands). Another advantage of pipelining is that you can time the outputs of the S / H circuit and the A/D converter to change simultaneously. Thus, the
outputs don't overdrive the error amplifier, resulting in only a very short transient switching glitch.

In place of the S / H circuit, you could also use a delay line. For the optimum throughput rate, the delay should not exceed the conversion time of the first flash converter plus the settling time of the D / A converter. The delay line itself must be of high fidelity and have a large bandwidth.
The third type of subranging converter uses an intermeshed architecture. Fig 3 shows a block diagram of this type of converter, which operates as follows: After the S / H circuit acquires the signal, the MSB flash converter decides the range of the input. This input lies between two resistors in the ladder and determines the most significant bits. These two points on the resistor ladder then switch to the reference top and reference bottom of the second flash converter (the higher

Fig 3-An intermeshed subranging ADC uses separate flash converters for the MSBs and LSBs. Note the absence of the D/A converter, the error amplifier, and the correction logic.

Fig 4-These waveforms illustrate first-pass problems at different test points. Photo a shows the output of the error amplifier with a triangle-wave input. Photos b and \boldsymbol{c} show the reconstructed output of the $A D C$ using a 5-bit DAC (b) and a 2-bit DAC (c).
voltage on the ladder will be the reference top and the lower voltage will be the reference bottom). Upon a convert command, the LSB flash converter digitizes the original input to produce the least significant bits.

Because this architecture has no correction logic, the MSB flash converter must be as linear as the intended linearity of the overall A / D converter. Note the absence of the D / A converter, the error amplifier, and the correction logic in the block diagram. This relative simplicity, plus the fact that the circuitry is repetitive, suits the intermeshed architecture for monolithic applications.

To the uninitiated, the block diagram of a subranging A/D converter can appear to be deceptively simple, consisting merely of a few building blocks. On the contrary, subranging A / D converters are the most challenging ADCs to design and manufacture. Because many sources of error exist in a subranging ADC, engineers should be aware of each one and pay attention to the smallest details. Establishing an error budget is the only practical way designers can achieve a design goal systematically.
The vast majority of errors occur in the first conversion because that conversion is only as accurate as the first-pass flash converter ($5,6,7$, or 8 bits). The best test point to detect first-pass problems is at the output of the error amplifier, where you can look at the difference output (Fig 4a). The best analog input to the A/D converter for this observation is a triangular wave. You can also observe the effects of a particular error source at the reconstructed output of the ADC. A D/A converter provides this reconstruction. Fig $4 b$ shows the reconstructed output using a 5-bit DAC; Fig 4c is the result using a 2-bit DAC.

Perhaps the most critical design decision is choosing the flash converter. Designers must be careful to match the flash converter with the application. The linearity of the flash converter dictates the number of correction, or overlap, bits. For example, a 12-bit subranging ADC that had a 7 -bit flash converter with 12 -bit linearity would require no error correction, assuming no other sources of error. However, if you use a typical flash converter that is accurate, or linear, to six bits, you'll need at least one bit of correction. Because there are always other sources of error, such as offset and gain drift, having two bits of correction is advisable.

A lower number of bits in the first-pass conversion translates to a lower amplification factor in the second pass. As a result, the amplifier settles faster, and you can get by with a lower-resolution D/A converter,
which is easier to design. However, this lowerresolution DAC mandates a higher-resolution flash converter in the second pass, which is more expensive than a lower-resolution converter.
CMOS flash converters are attractive because of their low power consumption. Converters that operate from a single supply have especially low power consumption. However, because most CMOS flash converters use a design scheme in which the comparators switch back and forth between the reference ladder and the input depending on the clock level (Fig 5), large glitches that are synchronized to the convert command appear at the converters' inputs. As a result, CMOS converters distort the input signal, making the devices hard to drive. To overcome this problem, use a high-speed, wide-bandwidth buffer with low output impedance.

CMOS flash converters cause large spikes on the power lines, which not only degrade the performance of the converter, but also create problems for the overall system. Heavily bypassing the reference voltages and power lines right at the flash converter helps lessen, or prevent, spikes. Also, avoid external HCMOS logic when the ADC's sampling rate is greater than 5 MHz . Because of its high-speed switching, HCMOS logic also creates large spikes on the power lines.

Fig 5-Most CMOS flash converters use a design scheme in which the comparators switch back and forth between the reference ladder and the input. This switching can cause undesirable glitches synchronized to the convert command.

Compared with CMOS types, bipolar flash converters, have fewer problems. However, most bipolar flash ADCs require dual supplies (often +5 and -5.2 V) and usually consume more power than CMOS converters.
In a subranging A / D converter, the bit resolution of the D / A converter does not need to be more than the resolution of the flash converter used in the firstpass conversion. However, the DAC's differential and integral linearity must be considerably better than the desired differential and integral linearity of the A/D converter. The integral nonlinearity of the DAC not only causes integral nonlinearities but creates nonmonotonicity and differential nonlinearities every time the input of the DAC changes. This effect is called overlap; Fig 6 illustrates overlap at the ADC's reconstructed output. The DAC should have an accuracy

Fig 6-These scope photos compare the reconstructed output of the D / A converter in the typical case (a) and when the DAC has integral error (b). This error is called overlap.

Fig 7-By using a MOSFET to switch the output of the DAC to ground while it's settling, you can minimize the load impedance at the output of the DAC and optimize its settling time.
at least 1-bit greater than the desired accuracy for the total converter.

For subranging A/D converters, current-output DACs are a good choice because they settle faster than voltage-output DACs. For optimum settling time, however, you should minimize the load impedance at the output of the DAC. The best way to minimize this impedance is to switch the output of the DAC to ground with a MOSFET transistor while the DAC is settling
(Fig 7). Most current-output DACs have application resistors you can use to set the best gain and gain-drift performance. If the DAC does not have such resistors you must design them into the same resistor network that sets the reference current of the DAC.

The error amplifier

The error amplifier scales the difference between the first-conversion output and the input signal. The characteristics of the first-pass flash converter determine the gain of this amplifier. This amplifier does not have to settle to better than the accuracy of the second flash converter; therefore, most commercially available monolithic high-speed op amps will do. However, because the amplifier's closed-loop gain requirements are normally high, the device is subject to saturation while the error signal is settling. To eliminate this problem, make sure the error signal settles before it switches to the amplifier, as Fig 8 shows.

Another problem to watch for is overvoltagerecovery time. If the input of the A / D converter exceeds the analog input range even slightly, an undesirable overvoltage recovery time will occur. Usually the input capacitance of the flash converter increases the amplifier's overshoot and, as a result, increases the settling time. In this case, a small-value resistor in series with the output of the amplifier can help.

By far the most untamed errors for any system, particularly for subranging A/D converters, are those

Fig 8-Switching the input of the error amplifier to ground while the error is settling can prevent the amplifier from saturating.

Integrating data modems with Group 3 fax capability takes a worild of experience.
 The fast-growing worldwide base of 15 million fax

 machines is an audience you can't ignore. And nearly 75% use Rockwell Intemational modems. So you know who you can count on for true compatibility in a whole family of integrated datafax solutions-at remarkably reasonable prices. Rockwell technology and worldwide support from software vendors make your project easier to design and faster to market.Rockwell's TrueFAX ${ }^{\text {m }}$ modem family offers a clear migration path for present and future applications. Including the RC224ATF-a low-power, fully integrated single device with Group 3 fax send/receive capabilities based on industry-standard ANSI/EIA-578 Service Class 1 AT commands.

For open-architecture solutions, choose from Rockwell's RC9624DP datapump or RC9624AC integrated device-set families. All support major intemational protocols for data and send/receive fax. The RC9624AC family also offers a fully featured datafax AT command set, plus V. 42 V. 42 bis.

Low power consumption, low cost and small size. They're all yours with the versatile Rockwell family of datafax modems. For details, contact Rockwell
Communication Systems at P.O. Box C, M.C. 501-300, Newport Beach, CA 92658-8902; (800) 854-8099; in Califomia: (800) 422-4230; Fax-(714)833-4078 or(714) 833-4391.

- CCITT V. 22 bis, V. 22 , Bell 212 A and 103 operating modes -EIA TR30.2.2/88 AT commands
- Group 3 send and receive fax modes
-ANSI/EIA 578 Service Class 1 fax commands
-Single voltage(+5 volts)
-2-device version available
-AccelerATor ${ }^{\text {M }}$ Kit
RC9624DP/RC9623DP
RC9624DP
-CCITT V. 22 bis, V.22, V.21,V.23, Bell 212A and 103 modes
-V.29, V. 27 ter, V. 21 Channel 2, Group 3 send/receive fax capabilities
-Voice interface
-DTMF generation/detection
\cdot HDLC framing
- Single voltage (+5 volts)

TrueFAX

The characteristics of the flash converter determine the gain of the error amplifier. Most monolithic high-speed op amps are suitable.

that improper grounding introduces. Designers often think that their breadboard is functioning properly, but when they change the setup or the timing (repetition rate, duty cycle, or the fall and rise times of the convert command), major errors occur because of ground loops or poor grounding. In some cases, the breadboard stops functioning. Fig 9 shows the transients on the ground of a subranging ADC with poor grounding. You can see the effects of this poor grounding by looking at the error-amplifier output and the ADC's reconstructed output.
Because the number of overlap bits limits the digital correction, poor grounding could cause an error in the first pass that exceeds the digital-correction limit. This first-pass error can cause the remainder to go out of the correction window (Fig 10).
You can solve most grounding problems by separating the analog and digital grounds and connecting them only to heavy ground planes underneath or close to the flash converter. Making ground runs as wide as possible and decoupling the power supplies will also help. Note that CMOS logic and CMOS flash converters tend to magnify any grounding problems because of the large transients they cause whenever they switch. In such cases, you need to take additional care.
A major factor in the proper functioning of a subranging A/D converter is the error-correction logic, which is the Boolean algebra performed on the outputs of the first- and second-pass conversions to produce the ADC's output. This logic corrects for any first-pass

Fig 9-This photo shows the transients on the ground of a subranging ADC that has poor grounding. The upper trace shows the signal; the bottom trace shows the analog ground with respect to the same ground at a different physical location.

(a)

(b)

(c)

Fig 10-In this ADC, a slight change in the start-convert pulse width caused the remainder to go out of the correction window (a). Traces \boldsymbol{b} and \boldsymbol{c} show the resultant missing codes at the reconstructed output for a 2-bit DAC and a 5-bit DAC, respectively.

Take a look at what the DS345 Synthesized Function Generator offers for only $\$ 1895$.
30 MHz direct digitally synthesized source
$1 \mu \mathrm{~Hz}$ resolution
12 bit, $40 \mathrm{Msample} / \mathrm{sec}$ arbitrary waveform generation Low phase noise and distortion
Fast phase continuous frequency and phase switching Sine, square, ramp, and triangle waveforms Frequency, amplitude, and phase modulation
Sweep and burst modes
Available GPIB and RS232 interfaces
Now take a look at your function generator.

The DS345 from SRS.
At $\$ 1895$, it's the only function generator you need.

SRS Stanford research systems

You can solve most grounding problems by separating the analog and digital grounds and connecting them to beavy ground planes underneath or close to the flash converter.
errors that create remainders that stay within the correction window (Fig 11).

Generally, the device's biasing offsets the input negatively in the first-pass conversion to ensure that the error, or remainder, is positive. A positive remainder simplifies the correction logic to an addition, which means the outputs of the first and second conversion are added to get the final output of the ADC. The way these outputs are added depends on the number of correction bits, or overlaps. For example, in the case of a 7 -bit flash converter with 1 bit of correction, the ADC's output is

First-pass data: Second-pass data: The ADC output:

D7 in the first pass and D1 in the second pass must have the same weights to be added. If you use a 7 -bit flash converter with 2 bits of correction, the ADC's output is

First-pass data: Second-pass data: The ADC output:

D1 D2 D3 D4 D5 D6 D7 \rightarrow overlap bits
P1 D2 B3 D4 D1 D2 D3 D4 D5 D6 D7
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12.
In this case, D6 and D7 in the first pass must have the same respective weight as D1 and D2 in the second pass. To make sure the overlap bits have the same weight, the gain of the error amplifier must be $\mathrm{K}=\mathrm{G} \times 2^{\mathrm{N}-\mathrm{M}}$, where G is the first-pass gain, N is the resolution of the first-pass flash converter, and M is the number of correction bits. In the first example, $\mathrm{K}=\mathrm{G} \times 2^{7-1}=$

Fig 11-Correction logic in a subranging ADC corrects for first-pass errors that stay within the correction window. Photos a, b, and \boldsymbol{c} show the effects of first-pass nonlinearity, offset, and gain errors, respectively. Photo \boldsymbol{d} shows that these errors have no effect on the reconstructed output.

Unlike some people, you'll be smiling when you see how easy to use new MAXI/PC is. A new, proactive user interface saves you hundreds of keystrokes in a typical design because it anticipates your next move and logically defaults to the most likely action. MAXI/PC's OSF/Motif" style interface has clear, logical menus integrated across all functions. It's easy to learn and much easier and more productive to use than the competition.

Nice To Your Budget

MAXI/PC gives you an incredible amount of design power for the money. Rich with features, it's capable of handling

multi-layer, double-sided, surface mount boards. You get schematic capture, layout, automatic routing, and manufacturing outputs. All backed by a 30 day, no questions, money back guarantee. All for \$995.
Powerful capabilities include:

- 5,000+ part library
- Hierarchical design
- Automatic placement
- Automatic gate and pin swap
- Automatic routing
- Automatic component rename
- Automatic part/component replacement
- Back annotation
- Hotline support

From A Good Family
Racal-Redac is the only EDA vendor to offer a smooth growth path, with data migration from MAXI/PC, to the more powerful PC-based CADSTAR, to high end, workstation-based VISULA EDA. Make yourself smile, get MAXI/PC.

Call today to order MAXI/PC!
1-800-447-7332
MAXI/PC
PCB CAD SOFTWARE
RACAL-REDAC
238 Littleton Road, P. O. Box 365
Westford, MA 01886-9984, USA
Fax: (508) 692-4725
$\mathrm{G} \times 64$. In the second example, $\mathrm{K}=\mathrm{G} \times 2^{7-2}=\mathrm{G} \times 32$.
Note that the LSBs of the flash converter in the second pass are the LSBs of the output. As a result, the differential nonlinearity of the output is the flash converter's differential nonlinearity. The only time this statement is not true is if you do not adjust K to the right value. In this case, whenever the LSB of the first pass changes from 1 to 0 or 0 to 1 , discontinuities, or noisy codes, will appear in the output of the A / D converter.

One common problem with the addition logic is that when the full-scale output carries, the output of the A/D converter rolls over, thereby generating an erroneous code. For example,

To avoid this problem, use a simple OR gate that

If the first-pass data is and the second-pass data is
then the output will be
The correct output is

1111111
0100000 ,
000000000000 with a carry.
111111111111.

ORs the carry with each output bit. This action forces the output to stay at all 1s for any input exceeding full scale. Fig 12 shows an error-correcting circuit for a 12 -bit, 2 -pass converter with two bits of correction.

The S / H circuit

Another key element in the performance of any highspeed A/D converter is the S / H circuit. Because of the usually low input impedance in a subranging A/D converter, the designer must pay close attention to designing or selecting the S / H circuit. This essential element consists of an input buffer, a switch, a hold capacitor, and an output buffer that drives the A / D converter. When an S / H circuit is used in front of a subranging ADC , the circuit's dynamic output impedance and aperture uncertainty are of prime importance.
The dynamic output impedance of the S / H circuit, which is a function of the bandwidth of the output buffer, determines how fast the device responds to the

Fig 12-This diagram shows the error-correction logic for a 12-bit, 2-pass converter with two bits of correction.

UpTo 600 Watts Per Inch

Our expanding family of compact, configurable, power systems combine the flexibility of a custom supply with the availability of standard catalog products . in low profile, compact packages that let you pack the most power into the least amount of space. And they meet the specialized input voltage, noise and transient requirements of major worldwide markets. Think of them as a universal solution for most of your system power requirements . . . AC or DC input . . . in computer, telecom or vehicular applications . . . up to 600 Watts.
FlatPAC ${ }^{\text {tm }}$ is the industry benchmark for power density in off-line applications. And now, ComPAC ${ }^{\text {rm }}$ sets the standard for DC input supplies . . . in a package less than one inch tall! Both offer unprecedented flexibility in configuration along with instant availability . . . in a fraction of the space required by conventional switchers. Just define your requirements . . . we utilize our high frequency, high power-density converters to quickly configure a FlatPAC or ComPAC specific to your needs.

You benefit from the proven field performance, high efficiency and inherently high reliability of our component-level power converters, without sacrificing any of the features you need: off-line inputs for worldwide application; nominal DC inputs from 24 to 300 VDC; surge limiting; safety agency recognition; EMI/RFI to FCC/NDE, British Telecom, Bellcore or MIL-STD-461; totally isolated and trimmable outputs; AC OK and DC OK status signals and more.

You don't have to choose between costly and risky custom development or bulky catalog supplies. Call us to discuss FlatPAC and ComPAC . . . the new standards that make customs obsolete.

Does your power supply measure up?
Call vicor exprafer for a free ruler
at 1-800-735-6200 or 508-470-2900 at ext. 265

Component Solutions For Your Power System
23 Frontage Road, Andover, MA 01810

[^10]dynamic load it drives. Because of subranging ADCs' low input impedance and the switching that takes place on the input, the devices require a S / H circuit with a low dynamic output impedance to attain an optimal conversion time.

For precision A/D converters, try to avoid open-loop S/H circuits. The gain of open-loop S/H circuits changes drastically with input frequency and amplitude, and most noticeably with the output load. Any of these factors can cause large static and dynamic errors.

Another error source is the aperture uncertainty, which is the uncertainty period associated with the closing of a switch. Many factors contribute to this error source. The most common are timing jitter caused by random noise, $60-\mathrm{Hz}$ line frequency or other frequencies modulating the power lines, and the uncertainty of the sample command. The ADC's output takes on the spectral characteristics of the error source. The aperture uncertainty also limits the input frequency that the circuit can sample within the specified error budget. The relationship between aperture uncertainty (T_{A}) and the input frequency is as follows, where A is the amplitude of the input signal in volts:

$$
\text { If } \mathrm{V}_{\mathrm{IN}}=\mathrm{A} \cdot \sin (\omega \mathrm{t})=\mathrm{A} \cdot \sin \left(2 \pi \mathrm{f}_{\mathrm{t}}\right),
$$

then the maximum rate of change for V_{IN} is

$$
\begin{aligned}
& \frac{d V_{\mathrm{IN}}}{d t}=\left.\frac{d \mathrm{~A} \sin \left(2 \pi f_{t}\right)}{d t}\right|_{t=0}=\left.2 A \pi f \cos \left(2 \pi f_{t}\right)\right|_{t=0} \\
& \left(\frac{d V_{I N}}{d t}\right)_{\text {MAX }}=2 A \pi f .
\end{aligned}
$$

Aperture-uncertainty noise generally follows a Gaussian distribution similar to white noise, which means that the rms aperture uncertainty corresponds to the distribution's σ value. The distribution's 2σ point thus becomes the proper choice for the maximum value. The maximum aperture uncertainty equals $2 \mathrm{~T}_{\mathrm{A}}$. To determine the maximum full-scale sine-wave frequency ($\mathrm{f}_{\mathrm{MAX}}$) that produces ${ }^{1 / 2-L S B}$ error, first calculate the error arising from $2 \mathrm{~T}_{\mathrm{A}}$:

$$
2 \mathrm{~T}_{\mathrm{A}} \text { error }=2\left(\mathrm{~T}_{\mathrm{A}}\right)_{\mathrm{MAX}}\left(\mathrm{~d} \mathrm{~V}_{\mathrm{IN}} / \mathrm{dt}\right)=2 \mathrm{~T}_{\mathrm{A}} \mathrm{~A} 2 \pi \mathrm{f}_{\mathrm{MAX}} .
$$

Thus,

$$
\mathrm{f}_{\text {MAX }}=1 / \mathrm{T}_{\mathrm{A}} \pi 2^{\mathrm{n}^{\mathrm{n} 2}} .
$$

The error resulting from the aperture uncertainty
is primarily random, which makes the noise additive. The general expression for the noise produced by Gaussian time jitter is

$$
\mathrm{S} / \mathrm{N} \text { ratio }=-20 \log \left(2 \pi \mathrm{fT}_{\mathrm{A}}\right) .
$$

EDN

Author's biography

Ray Ushani is the manager of the Advanced Development Group at Datel Inc (Mansfield, MA). He has been with the company for six years and has been instrumental in the development of several A / D converters, multiplexers, and S/H circuits. Ray has an MSEE from Northeastern University (Boston, MA) and is a PhD candidate at Tufts University (Medford, MA). Not one to stray far from his vocation, Ray's hobbies include RF and microwave design.

Article Interest Quotient (Circle One) High 491 Medium 492 Low 493

Be An Author!

When you write for EDN, you earn professional recognition. And you earn $\$ 75$ per published magazine page.
EDN publishes how-to design application information that is read by more than 137,300 electronics engineers and engineering managers worldwide. That's an audience that could belong to you.
If you have an appropriate article idea, send your proposal and outline to: EDN , 275 Washington Street, Newton, MA 02158-1630.
For a FREE EDN Writer's Guide-which includes tips on how to write for EDN and other technical publications-please circle number 800 on the Information Retrieval Service Card.

EDN

First in Readership among Design Engineers and Engineering Managers in Electronics.

The Largest Family OFIMEGSRAMS.

Power in selection-System support for more processors than any other manufacturer in the world. Power in product range to match your needs-from economical basic configurations to fully featured systems.

EZ-Pro 2.1 industry workhorse for 16-bit and 8-bit designs.

Power in performance-Completely integrated capabilities include options such as versatile trace, performance analysis, EPROM programming, C source level debugging, over 100 personality modules with a common universal platform for different processors, C cross compilers, cross assemblers and more.

Power without compromise-All invented here. Supported here. And available to rent or purchase now.

Free Demo Disk!

See how easily you can use these sophisticated development tools. Our marketing department will ship your demo disk today. Please Call:
(714) 731-1661

Aamerican automation

C

DESIGN NOTE

Current Feedback Amplifier "Do's and Don'ts"-46

William H. Gross

Introduction

The introduction of current feedback amplifiers, such as the LT1223, has significantly increased the designer's ability to solve difficult high speed amplifier problems. The current feedback architecture has very high slew rate and the small signal bandwidth is fairly constant for all gains. Current feedback amplifiers are used in broadcast video systems, radar systems, IF and RF stages, RGB distribution systems and many other high speed circuits.

As with any new circuit, there are several new rules that must be kept in mind to prevent problems. Because current feedback amplifiers act very much the same as regular op amps, it is important to note the differences and show how some standard op amp circuits should be implemented.

The most important thing to remember about current feedback amplifiers is that the impedance at the inverting (negative) input sets the bandwidth and therefore the stability of the amplifier. It should be resistive, not capacitive. To slow the amplifier down, increase the resistance driving the inverting input. If the amplifier peaks too much due to capacitive loading, or anything else, increase the value of the feedback resistors.

The best way to demonstrate how to use current feedback amplifiers is to show some example circuits. To make it as painless as possible, I will show the traditional op amp implementation next to the current feedback amplifier version.

Op Amp Adjustable Gain Amp

Current Feedback Amp Adjustable Gain Amp

With a standard op amp you can vary the gain of the amplifier with either R_{f} or R_{g}. The only real restriction on the values is the loading affect the resistors have on the amplifier output. With a current feedback amplifier the value of R_{f} should not be varied. If R_{f} is a pot, then the bandwidth will be reduced at minimum gain and the circuit will oscillate when R_{f} is very small.

Op Amp Bandwidth Limiting

Current Feedback Amp Bandwidth Limiting

It is very common to limit the bandwidth of an op amp by putting a small capacitor in parallel with R_{f}. This works with all unity gain stable op amps; DO NOT PUT A SMALL CAPACITOR FROM THE INVERTING INPUT OF A CURRENT FEEDBACK AMPLIFIER TO ANYWHERE, ESPECIALLY NOT TO THE OUTPUT. The capacitor on
the inverting input will cause peaking or oscillations. If you need to limit the bandwidth of a current feedback amplifier, use a resistor and capacitor at the noninverting input (R1 and C1). This technique will also cancel (to a degree) the peaking caused by stray capacitance at the inverting input. Unfortunately, this will not limit the output noise the way it does for the op amp.

Current Feedback Amplifier Integrator

The integrator is one of the easiest circuits to make with an op amp. However, the circuit must be modified before a current feedback amplifier can be used. Since we remember that the inverting input wants to see a resistor, we can add one to the standard circuit. This generates a new summing node where we can apply capacitive feedback. The new current feedback amplifier compatible integrator works just like you would expect; it has excellent large signal capability and accurate phase shift at high frequencies.

Current Feedback Amplifier Summer (DC Accurate)

There is no Ios spec on current feedback amplifiers because there is no correlation between the two input bias currents. Therefore we will not improve the DC accuracy of the inverting amplifier by putting an extra resistor in the non-inverting input. This is also true of input bias current canceled op amps where the Ios spec is the same as the I_{B} spec, such as the LT1220.

TRIM $R_{g 2}$ FOR GAIN, THEN TRIM $R_{g 1}$ FOR CMRR. VOLTAGE GAIN, G, IS $V_{\text {OUT }}$ DIVIDED BY DIFFERENCE BETWEEN + IN AND -IN.
OP AMP DESIGN EQUATIONS:
$R_{f 1}=R_{g 2} ; R_{f 2}=(G-1) R_{g 2} ; R_{g 1}=R_{f 2}$
CURRENT FEEDBACK AMP DESIGN EQUATIONS:

$$
R_{\mathrm{f} 1}=R_{\mathrm{f} 2} ; R_{\mathrm{g} 1}=(\mathrm{G}-1) \mathrm{R}_{\mathrm{f} 2} ; \mathrm{R}_{\mathrm{g} 2}=\frac{\mathrm{R}_{\mathrm{f} 2}}{\mathrm{G}-1}
$$

DN46. TAOB
The two amplifier instrumentation amp is easily modified for current feedback amplifiers. The only necessary change is to make the feedback resistor of each amplifier the same and therefore make the gain setting resistors different. This way the bandwidth of both amps is the same and the common mode rejection at high frequencies is better than that of the op amp circuit. In the op amp circuit one amplifier has maximum bandwidth, since it runs at about unity gain, while the other is limited to its gain bandwidth product divided by the gain.

Cable Driver

The cable driver circuit is the same for both types of amplifiers. But because most op amps do not have enough output drive current, they are not often used for heavy loads like cables. When driving a cable it is important to properly terminate both ends if even modest high frequency performance is required. The additional advantage of this is that it isolates the capacitive load of the cable from the amplifier so it can operate at maximum bandwidth.

For literature on our Current Feedback Amplifiers, call (800) 637-5545. For applications help,
call (408) 432-1900, Ext. 456

8051 converts 16-bit integer to BCD

Jeremy Ottenstein

Allied Signal Aerospace Corp, Teterboro, NJ
For an $8051 \mu \mathrm{P}$, converting a 16 -bit binary integer to decimal form is considerably more complicated than converting an 8-bit integer. The most straightforward method uses a 16-bit-divide routine. Listing 1's alternative method takes advantage of the 8051's BCD commands. Using the BCD commands results in simple and clean code.

The listing is for the Boston Systems Office (Waltham, MA) 8051 macro assembler. Its macro defi-
nitions differ somewhat from Intel's. The listing uses (r0, r1) and (r2, r3, r4) for the input and output, respectively; but you can use any five 8051 registers or any five internal-direct memory locations. You can obtain the listing from the EDN BBS. Phone (617) 558-4241 with modern settings $300 / 1200 / 2400$, 8, N, 1. From the main menu, enter (s)ig, <s/di_sig>, rk946).

(EDN BBS /DI_SIG \#946)

EDN

To Vote For This Design, Circle No. 746

DESIGN IDEAS

Pause detector adapts to signal

Tibor Szep and Andras Pomozi
Technical University of Budapest, Budapest, Hungary

You can increase the throughput of a LAN's data transmission if you transmit only during the talk-spurt period. If your detector is sensitive enough, even the pause among the words can be utilized for data transmission. The circuit in Fig 1 distinguishes between the signal and pause states in a speech signal coming from the microphone of a telephone handset. The circuit is adaptive because the threshold level of the comparator depends on the long-time average of the speech signal's power. The detector can also accommodate background noise. Even in cases of massive continuous background noise, the detector can distinguish the signal state from the nonsignal state.

Fig 1 consists of four major parts: a 2-way precision rectifier, an integrator with two time constants, a longtime integrator, and a comparator. The rectifier produces the absolute value of the incoming speech signal.
R_{1} controls the gain. The rectifier's output drives the integrator. The integrator's rise is determined by τ_{1} which is approximately equal to $\mathrm{R}_{2} \times \mathrm{C}_{1} \cdot \tau_{2}$ which is approximately equal to $\mathrm{R}_{3} \times \mathrm{C}_{1}$ determines the fall time. R_{5} and R_{6} eliminate the op amp's offset. Two time constants are necessary because the requirements for defining the beginning and the end of a speech period are different. The circuit must be able to detect quickly the beginning of a speech period; determining the end of an active period isn't as critical. Also, making the fall time somewhat longer than necessary avoids biting off the end of a word.

The long-time integrator's time constant (τ_{3}) equals $\mathrm{R}_{4} \times \mathrm{C}_{2}$. A potentiometer controls the threshold level of the comparator. Speech quality depends on the values of all three time constants. (EDN BBS/DL_SIG \#937)

EDN

To Vote For This Design, Circle No. 747

Fig 1-Three independently adjustable time constants, τ_{1}, τ_{2}, and τ_{3}, allow this pause detector to define the beginning and end of a speech period and allow it to adapt to speech signal levels.

Design Entry Blank

\$100 Cash Award for all entries selected by editors. An additional \$100 Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co
275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry.
Name \qquad
Title \qquad Phone \qquad
Company
Division (if any) \qquad
Street
City State

Country Zip \qquad
Design Title
Home Address \qquad

Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a $51 / 4-\mathrm{in}$. IBM PC disk.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date

ISSUE WINNER

The winning Design Idea for the January 21, 1991 issue is entitled "Digital recorder speeds sampling rate," submitted by Lin Jun of Changchun University of Earth Sciences (Changchun, Jilin, Peoples Republic of China).

[^11]
Macro fixes 8096 shortcoming

John N Liddy
Simplex Time Recorder, Gardner, MA

An obvious shortcoming of the $8096 \mu \mathrm{P}$ is that you cannot save the program-status word (PSW) on the stack without disturbing the working copy stored in the PSW. The only instructions available that can access the entire contents of the PSW are PUSHF and POPF; these two instructions push and pop the con-

Listing 1-8096 PSW macro

```
    SP is the word register (18H) which contains the stack address
    WORD_REG is any general purpose word register (20H - OFFH)
PUSH_PSW MACRO
    PUSHF WORD REG
    PUSHF ; pus\overline{h}}\mathrm{ psw onto stack (clears working psw)
    PUSH WORD REG
    LD WORD_REG,2[SP]
    PUSH ;load register with original PSW contents
    PUSH WORD_REG ;push original PSW contents onto stack again
    POPF WORD REG ;restore original PSW contents
```

tents of the PSW. However, the PUSHF instruction not only pushes the contents of the PSW onto the stack, it also clears the entire PSW. Clearing the PSW causes several undesirable events, including disabling interrupts and clearing all the flags. This idiosyncrasy can be quite annoying when all you want is to save the contents of the carry flag for future use.

The macro in Listing 1 will save the PSW on the stack without altering the PSW's working value. If you use this macro in a time-critical, interrupt-driven application, be aware that for 93 clock cycles, this macro will disable interrupts. For a $12-\mathrm{MHz}$ clock, interrupts will be off for $7.75 \mu \mathrm{sec}$. You could lower this interval by not saving the general-purpose-word register, thereby lowering interrupt latency to $5.75 \mu \mathrm{sec}$. (EDN BBS /DI_SIG \#949)

EDN

To Vote For This Design, Circle No. 749

EDN's bulletin board is on line

Call EDN's free bulletin-board system (BBS) at (617) 558-4241 ($1200 / 2400,8, \mathrm{~N}, 1$) and select /DI_SIG to get additional information or to comment on these Design Ideas.

April '89
SPARCstation 1

5 JUST MADE ERSUN

Since introducing SPARCstation 1 in April '89, Sun has utilized LSI Logic's RISC and ASIC technology and design methodology to pack more processing power into smaller footprints.

This strategic partnership has enabled Sun to compress time to market to an unbelievable four months between new product announcements and has reduced their time to volume. Forever altering the rules on time to market. And capturing the dominant position in the workstation market in the process.

Sun's latest creation, SPARCstation 2, is a shining example. This powerful new workstation was brought to market just four months after the introduction of the

SPARCstation IPC. By leveraging the power of LSI Logic's RISC and ASIC technology, Sun has quickly introduced a whole new level of price/performance in UNIX workstations.

If you have some brilliant new product concepts on your horizon, with windows of opportunity opening as often as every four months, call us at 1-800-451-2742, or write to LSI Logic, 1551 McCarthy Blvd, MS D102, Milpitas, CA 95035.

We'd like to show you how quickly your new product can see the light of day.
LSILOGIC
ACROSS THE BOARD

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

Toggle-Switch Attenuators

- Have a 75Ω impedance
- Lifetime equals 100,000 cycles The TX Series of 75Ω, toggleswitch attenuators has two versions. The 75TX42 has an attenuation range of 0 to 42 dB in $1-\mathrm{dB}$ steps, and the 75 TX 82.5 has an attenuation range of 0 to 82.5 dB in $0.5-\mathrm{dB}$ steps. Both types of attenuators incorporate silver-contact switches that are rated for 100,000 cycles of operation. The units operate over a dc to $1-\mathrm{GHz}$ range and are rated for 1 W average power and 500 W peak power. Measuring $1.062 \times$
$1.062 \times 4.249 \mathrm{in}$., the units are well suited for panel or in-line applications. Connector options include a choice of BNC, F, N, or TNC. $\$ 215$ to $\$ 245$.

Alan Industries Inc, Box 1203, Columbus, IN 47202. Phone (800) 423-5190.

Circle No. 376

Industrial Keyboard

- Splash and dust proof
- Designed for rack mounting The RMK-103 PC-compatible keyboard is designed for hostile environments. Its slides make it easy to mount in a $19-\mathrm{in}$. rack. The unit's features include 103 keys with 12 function keys across the top, a numeric keypad, and a separate cur-sor-control cluster. All keys are environmentally sealed to make them splash and dust proof. An autosense switching feature provides compati-
bility with IBM PC/XTs and $\mathrm{PC} /$ ATs; an optional adapter cable provides $\mathrm{PS} / 2$ compatibility. Other keyboard features are step-sculptured keytops, frequency programmable autorepeat, and N-key rollover for all keys. The keyboard has a 6 -ft shielded cable and a standard DIN connector. $\$ 495$.

Recortec Inc, 1290 Lawrence Station Rd, Sunnyvale, CA 94089. Phone (800) 729-7654; in CA, (408) 734-3443.

Circle No. 377

Optical Encoders

- Operate from $5 \mathrm{~V} d c$
- Develop a quadrature output Series D688 units are actually two concentric-shafted optical encoders in one package. They are designed to be panel-mounted in a space that is only $0.5-\mathrm{in}$. square. The devices operate on an input power of 5 V

Make your big ideas smaller, lighter and brighter.

DURACELL XL ${ }^{\text {Lu }}$ DL123A Lithium Batteries give you the power to think small, improve performance and portability.

Today's emphasis on smaller, lighter, more powerful portable devices requires a bright idea in battery technology. It's here.

Size for size, the DL123A delivers more combined power and energy than other consumer replaceable batteries. In fact, for high current applications, this compact 3-volt lithium battery delivers up to four times more energy than a 1.5 -volt AA size battery - even more at low temperatures.
dc at 30 mA . Each section of the unit outputs two square waves in quadrature over a pulse range of 20 to 64 pulses/revolution. Output levels range from 0.4 to 2.4 V . Rotational life equals a minimum of 10^{6} revolutions, and operating range spans -20 to $+65^{\circ} \mathrm{C}$. The units are available with shaft or mounting seals and with cable terminations. $\$ 33.98$ (1000).

Clarostat Mfg Co Inc, Box 1507, Dover, NH 03820. Phone (603) 7421120.

Circle No. 378

High-Contrast Panel Meter

- Features an LCD readout
- Has 0.1\% accuracy

The DPM-54 $3^{1} / 2$-digit panel meter features an LCD readout. Designed for portable equipment applications, the unit has $12.5-\mathrm{mm}$-high characters, programmable decimal

points, and an automatically displayed low-battery warning signal. Autozero, autopolarity, and a bandgap reference are standard. Measurement accuracy equals $0.1 \% \pm 1$ digit. The meter mounts in a panel cutout measuring $2.68 \times 1.3 \mathrm{in}$. and comes with a DINcompatible bezel and a mounting kit. $\$ 63.70$.

Martel Electronics, Box 897, Windham, NH 03087. Phone (603) 893-0886.

Circle No. 379

Solid-State Relay

- Rated for 25A
- Qualified for MIL-R-28750/10

JPS Series solid-state relays are fully qualified to parts 001 and 002 of MIL-R-28750/10. The relays can handle loads 25 to 220 V ac at 25 A current levels. Internally, optical coupling techniques provide 1500 V rms isolation between the input and output. Zero turn-on switching limits in-rush current, switching transients, and associated EMI. The relay features die-cast aluminum construction, which facilitates heatsinking and is hermetically sealed to withstand harsh environments. Operating range spans -55 to $+110^{\circ} \mathrm{C}$. $\$ 215$ (100). Delivery, 8 to 10 weeks ARO.

Struthers-Dunn/Hi-G Co Inc, Lambs Rd, Pitman, NJ 08071. Phone (609) 589-7500. FAX (609) 589-2619.

Circle No. 380

DURACELL XL Lithium Batteries are engineered for single or multicell applications. They're made in the USA and distributed worldwide under the brand name consumers prefer most, DURACELL.
Find out what Duracell's latest high power technology can do for your bright ideas. Write or call for our updated DL123A Performance Portfolio. Or if you have an immediate need, contact our OEM battery engineers today.

DURACELL INC.

New Products and Technology Division OEM Sales and Marketing Berkshire Industrial Park Bethel, CT 06801
Toll-free: 1-800-422-9001 ext. 426 Facsimile: 203-791-3273
© 1989, Duracell Inc.

Electronic Business Asia:
The Business Magazine for the
Asian Electronics Industry
Hong Kong: 852-592-2037
Japan: 813-3366-8301
Taiwan: 866-2711-4833
Korea: 822-776-2096
Singapore: 65-532-4026
Thailand: 662-233-5892
Phillipines: 632-833-7616
India: 911-1543-1249
Australia: 612-283-2788
United States: 617-558-4464
United Kingdom: 4471-628-7030
For more information, contact your local sales office.
Closing Date: April 4

A Very Special Edition. Including interviews with industry leaders about the future of Asia.

NEW PRODUCTS

CAE \& SOFTWARE DEVELOPMENT TOOLS

Gerber File Viewer

- Previews pc-board artwork
- Displays Gerber files on computer screen
EZ-view, a program for IBM PCs and compatible computers with VGA or EGA displays, puts a Ger-ber-formatted pc-board artwork file on screen, allowing you to inspect it for accuracy. Viewing the file lets you detect errors before they can result in bad film or bad circuit boards; the viewing area covers as much as 36 in . of the board in both X and Y directions. Using a mouse and the computer keyboard, you can zoom, pan, and snap on a grid cursor. The package displays data containing as many as five decimal places with trailing zeros; it is available alone or as part of the Gerberjet file-printing utility. You can also
download a demo version from the supplier's computer bulletin-board system (BBS). \$99; Gerberjet (including EZ-view), $\$ 199$.

Logical Systems Corp, Box 6184, Syracuse, NY 13217. Phone (315) 478-0722. FAX (315) 4758460. BBS (315) 471-3961 (2400/ 1200, $8, \mathrm{~N}, 1$ Circle No. 381

Signal-Processing Software

- For stand-alone use or integration with other software
- For IBM PCs and compatible computers
PC Data Master 3.0, a signal-processing system for the IBM PC and compatible computers, combines routines for graphics, data sampling, test-data generation, real and

complex math, and digital signal processing. You can integrate your own software with the package using virtually any language compiler or assembler compatible with MSDOS version 3.0 or higher. The software features both pull-down menus and a traditional DOS command window for user interaction

ADVANCE REGISTRATION ENDS MAY 17, 1991.
For more information contact DAC at: 7490 Clubhouse Rd., Suite 102, Boulder, CO 80301 (303) 530-4333, FAX (303) 530-4334

> MOSCONE CENTER June 17-21, 1991 San Francisco, California

ATTEND THE WORLD'S
LARGEST DESIGN AUTOMATION EVENT
This year's conference starts Monday, June 17, 1991 !!

Phone (0 5772) 47-0. Fax (05772) 47-461
Telex 972 310-11 hed
with either a mouse or the keyboard. You can create multiple graphics windows for data display. Binary data pipes link processing modules implemented as executable (.EXE) files; you can add any number of your own modules, which can be written in any language that supports the standard DOS file system I/O. DSP utility modules included with the software are forward and inverse FFT routines; convolution; correlation; window generation; FIR and IIR filter design and implementation; derivatives and integrals; test-data generation (sinusoidal, rectangular, impulse, triangular, uniform-random, and Gauss-ian-random data); and real and complex math functions. Multistage transformations such as Cepstrum and Hilbert transforms are available by combining basic operations in data pipes. The software includes data-acquisition routines but does
not allow continuous real-time processing. $\$ 185$; demo disk, $\$ 10$.

Durham Technical Images, Box 72, Durham, NH 03824. Phone (603) 868-5774.

Circle No. 382

Image-Processing And Analysis Software

- PC software with functions of dedicated systems
- Runs alone, or with off-the-shelf applications or user-uritten code Global Lab Image, a PC-based im-age-processing and analysis software package for scientific and engineering applications, offers automatic object counting and measurement, frequency analysis, and spectrum editing. According to the supplier, these functions are normally available on dedicated systems that cost more than $\$ 20,000$. Other features include morphology, filters, arithmetic and logic operations, his-
tograms, overlays, image acquisition, and display. The software runs with Microsoft Windows 3.0, making all options available simultaneously in multiple open windows. Switching between options is a point-and-click mouse operation. Windows 3.0 also enables other software-application packages to run with the package; with cut-andpaste operations, you can move images and measurements among the different applications. A script option lets you record and replay sequences of commands. You can also edit scripts and write custom code in interpreted C. The software works with the supplier's Quickcapture frame-grabber boards for the IBM PC/AT and the PS/2. Versions for other frame grabbers will be available this spring. $\$ 2495$.

Data Translation, 100 Locke Dr, Marlboro, MA 01752. Phone (508) 481-3700.

Circle No. 383

TPADS is a Personal III| Computer based Printed Circuit board design system with many advanced features capable of outperforming most Workstation-based CAD systems-at a fraction of the cost.

As the most productive PC based board CAD system available today, PADS-2000 can handle even the most complex designs including: double sided surface mount boards, mixed technology boards, high speed designs and layouts exceeding 2000 IC's.

PADS-2000 design functionality includes:

- Over 11,000 parts/32,000 connections
- 1 micron Resolution
- True T-Routing capability
- Intelligent Copper Pour feature leaving isolated tracks and pads
- 0.1° parts/pads rotation
- Extensive Macro capability
- Digital, Analog and Critical Circuit autorouters

- On-line and Batch Design Rule Checking
- Instant track/segment length measurement
- Complete Forward/Backward ECO capability
- Uses 32 bit/386 native code for increased speed and functionality
- Easy-to-learn and Easy-touse

Call today for a demonstration at your local authorized CAD Software Dealer.

Ask about our affordable Leasing Plan.
See us at Electro Booth \#2144
Call Today
Inside MA:
(508) 486-8929

Outside MA:
(800) 255-7814

Software, Inc.
119 Russell Street Littleton, MA 01460

NEW PRODUCTS

INTEGRATED CIRCUITS

12-Bit-Plus-Sign A/D Converter

- Self calibrating
- Has differential inputs

The TLC1225 self-calibrating A/D converter combines a $12-\mu \mathrm{sec}$ conversion speed with 12 -bit integral linearity, 12 -bit-plus-sign resolution, and an $85-\mathrm{mW}$-max power requirement. For applications requiring minimum system noise, the ADC has differential inputs that reduce system error created by com-mon-mode noise. The ADC can also accommodate single-ended inputs. The converter outputs data in a parallel word and interfaces directly to a 16 -bit data bus. The output code for bipolar conversion is in 2 's complement format; for unipolar conversion, the code is in standard binary format. Maximum offset error
is $\pm 1^{1 / 2}$ LSB and unadjusted positive and negative full-scale error is ± 2 LSB. In a 28 -pin DIP, $\$ 16.74$ (1000).

Texas Instruments Inc, Semiconductor Group (SC-91009), Box 809066, Dallas, TX 75380. Phone, in North America, (800) 336-5236, ext 700; in TX, (214) 995-6611, ext 700 . Circle No. 384

Clock Converter

- Has $\times 4$ and $\times 1$ modes
- Operates to 1.5 MHz

The LS7080/LS7081 converts quadrature clocks to up/down clocks (LS7080) or to a clock and an up/ down direction control (LS7081). An input pin selects either the $\times 4$ or $\times 1$ mode. An on-chip state generator controls the up/down direc-
tion and the output clocks. In the $\times 4$ mode, output clocks occur on each edge of the input quadrature clocks so that four output clocks occur for each input cycle. In the $\times 1$ mode, up/down clocks occur on specific input-clock edges so that only one output clock occurs for each input cycle. Internal filtering eliminates clock jitter and ensures a constant output-clock width in the $\times 4$ mode. An external resistor sets the output-clock width in the $\times 4$ mode. In the $\times 1$ mode, the operating frequency, which can be as high as 1.5 MHz , sets the clock width. The LS7080/LS7081 in 8-pin miniature DIPs, $\$ 0.75$ (1000).
LSI Computer Systems, 1235 Walt Whitman Rd, Melville, NY 11747. Phone (516) 271-0400.

Circle No. 385

M and DM SERIES MODUFLEX SWITCHERS

Custom Switchers from Stock Modules Highest Power Density... 6 Watts/Cu. In.!

- 2 weeks delivery
- No engineering charge
- AC and DC input units
- Replaces expensive high density systems using potted modules

M/DM SERIES SELECTION CHARTS

Input Module Power Codes		Output Module Types		M Type Main Module Ratings			Options	
		Power Rating	Current Multiplier		Option Code	Function		
A	400W		J	1/2 Height	Single	Multiple	01	Power Fail Monitor
B		K	Full Height				02	Auto Ranger
	500w	L	Double Full	400W	0.8	0.6	08	Active Surge Limit
C	600W	R	Small Main	500W	1.0	0.8	16	Redundant
		M	Main	600W	1.2	1.0	32	Cover
D	750W	N	Super Main	750W	N/A	1.2	64	Fan Cover

Output Modules							
Output		Type					
Code	Volts	Amps	$\begin{gathered} \mathrm{K} \\ \text { Amps } \end{gathered}$	Amps	$\begin{array}{\|c\|} \hline \mathbf{R} \\ \text { Amps } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { M } \\ \text { Amps } \\ \hline \end{array}$	$\begin{array}{\|c\|} \mathrm{N} \\ \mathrm{Amps} \\ \hline \end{array}$
0	2	10	20	30	40	100	150
1	3.3	10	20	30	40	100	150
2	5	10	20	30	40	100	150
3	12	6	12	24	17	42	62
4	15	5	10	20	13	33	50
5	18	4	8	16	11	28	42
6	24	3	6	12	9	21	31
7	28	2.5	5	10	7	18	27
8	36	2	4	8	6	14	21
9	48	1.5	3	6	4	10	16
A	2.2	10	20	30	40	100	150
B	2.4	10	20	30	40	100	150
C	2.7	10	20	30	40	100	150
D	3	10	20	30	40	100	150
E	3.6	10	20	30	40	100	150
F	4	10	20	30	40	100	150
G	4.5	10	20	30	40	100	150
H	5.7	10	20	30	36	90	135
J	6.3	10	20	30	32	80	120
K	7	9	18	30	28	70	105
L	8	8	16	30	25	62	93
M	9	8	15	30	22	56	84
N	10	7	14	30	20	50	75
P	11	7	13	27	18	45	68
Q	13.5	6	11	22	15	37	56
R	17	5	9	18	12	30	45
S	19	4	8	16	11	26	39
T	21	4	7	14	10	24	36
U	23	4	7	13	9	22	33
V	26	3	6	12	8	19	29
W	29	3	5	10	7	17	26
X	32	2	5	9	6	16	24
Y	40	2	4	8	5	13	20
Z	44	2	4	7	5	12	18

For multiple output modules of a given type, voltages are arranged in ascending order by magnitude in the same sense as the output number sequence. Shaded ratings are stock, others available on special order.

Output Configurations

 Output \#1 can be Type K, L, R, M. For singles, M or N only.

30

48
 62

40

32

42

52

47

34

54

56

72

The boxes above are diagramatic representations of the power supplies as viewed from the output end. The two digit numbers above the boxes are the configuration codes. Configurations 40,47, 49 and 58 - Power Code D, Case 3. Configurations 26, 30 and 38 Power Codes C and D, Case 2. Remaining configurations - Power Codes A, B, C and D, Cases 1 and 2.

M/DM SERIES DIMENSIONS

(1) With cover (\#6-32), W/O cover (. 150 dia.)
0.500
(2) W /fan cover unit height (4.100)
(3) Terminal Blocks (\#6-32)
(4) Studs (1/4-20)

	Case 1	Case 2	Case 3
	$400 / 500 \mathrm{~W}$	$600 / 750 \mathrm{~W}$	$600 / 750 \mathrm{~W}$
A	9.000	9.630	9.630
B	8.25	8.880	8.880
C	8.260	8.890	8.890
D	.410	.425	1.725
E	3.820	4.450	4.450
F	3.930	4.560	4.560
G	5.050	5.200	6.500

DESCRIPTION

Moduflex switchers form a comprehensive line of open frame power supplies assembled from standard "off the shelf" modules. These subunits and assembly hardware are pre-approved by safety agencies so that certifications can automatically apply to custom models. Additional advantages include first piece delivery within two weeks and the elimination of engineering costs for qualified "OEM" requirements using stock modules.

ls.
 \footnotetext{

}The M and DM Series offers the highest power density available in the industry, delivering 6 watts per cubic inch at an ambient temperature of $50^{\circ} \mathrm{C}$. The design features "State of the Art" topology, a meticulous thermal structure and the use of high efficiency circuits and components to attain the desired power density.

The modular system concept reduces manufacturing to simple submodules, capable of high volume production with a superior quality level.

M Series are available in power ratings from 400 to 750 watts with only a slight size increase. This power versatility permits system expansion without the need for extra power supply space. DM Series available in power ratings of 400 or 600 watts.

FEATURES

TUV, UL, CSA.
6 watts per cubic inch.
400-750 watts output.
120 kilohertz MOSFET design.
Current mode control.
All outputs:
Adjustable
Fully regulated
Floating
Overload and short circuit proof Overvoltage protected
Standard features include:
System inhibit
Load proportional DC fan output
Options include:
Auto ranger for continuous input operation
Power fail monitor Independent pilot bias Cover
Fan cover
Active surge limit Redundant operation

MODEL SELECTION

Input modules are available in ratings of $400,500,600$, and 750 watts with corresponding code letters A through D. See Power Codes chart opposite.

L, R, and N modules not shown.

Output modules are available in six types J, K, L, R, M and N in nominal power outputs of $75,150,300,200$, 500 and 750 watts respectively. Type M or main output modules are variable power rated depending upon the power level of the input module. This is reflected in the rating table opposite which shows the corresponding multiplier applicable to the output current ratings of the M module as a function of the power rating of the input module. For example, a 750 watt multiple will have its M type module configured to produce 600 watts of output. The ratings of output modules are given in the table of output types. Ratings in shaded areas are stocked for fast delivery.

HOW TO ORDER

To form the proper model number defining a custom requirement, select the letter M to designate the series, then choose the desired configuration of output modules and list the configuration code. Insert the power code letter for the power level and follow with the output code numbers or letters for each specific output. Enter a dash and from the option table insert the sum of the option codes. Add a suffix letter K, L or R to designate the substitution of one of these module types for the type normally specified for output \#1. See example below. For $D C$ input add a prefix D to the model number.

MODUFLEX 500W QUAD SWITCHER

INPUT

90-132 VAC or 180-264 VAC, $47-440 \mathrm{~Hz}$. Strappable.
40-60 VDC for DM Series.

INPUT SURGE

Less than 68 Amps peak from cold start.
HOLDUP TIME
20 milliseconds from loss of nominal AC power.
3 milliseconds for DM Series.

OUTPUTS

See model selection table.

ADJUSTABILITY

$\pm 5 \%$ trim adjustment.

OUTPUT POLARITY

All outputs are floating from chassis and each other and can be referenced to each other or ground as required.

LINE REGULATION

Less than $\pm 0.1 \%$ or $\pm 5 \mathrm{mV}$ for input changes from nominal to min. or max. rated values.

LOAD REGULATION

$\pm 0.2 \%$ or $\pm 10 \mathrm{mV}$ for load changes from 50% to 0% or 100% of max. rated values.

MINIMUM LOAD

Main output requires a 10% minimum load for full output from auxiliaries

REMOTE SENSING

On all outputs except type J modules.

RIPPLE \& NOISE

1% or 100 mV pk-pk, 20 MHz bandwidth.

OPERATING TEMPERATURE

$0-70^{\circ} \mathrm{C}$. Derate $2.5 \% /{ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.

COOLING

A min. of 10 LFS cooling air directed over the units for full rating. Two test locations on chassis rated for max. temperature of $90^{\circ} \mathrm{C}$.

TEMPERATURE COEFFICIENT

$\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.

EFFICIENCY

80\% typical.

SAFETY

Units meet UL 1950, CSA 22.2 No. 220, CSA bulletin 1402C, IEC 950, VDE 0804, VDE 0806, VDE 0805 (proposed). Certifications in process.

DIELECTRIC WITHSTAND

3750 VRMS input to ground
3750 VRMS input to output.
700 VDC output to ground.

SPACING

8 mm primary to secondary.
4 mm to grounded circuits.

LEAKAGE CURRENT

0.75 mA at 115 VAC 60 Hz . input. Not applicable to DM Series.

EMISSIONS

Units meet FCC 20780 Part 15 Class A and VDE 0871/6.78 Class A for conducted emissions. Compliance with Class B limits by use of additional external filter. DM Series also meet Bellcore TR-TSY-000515.

DYNAMIC RESPONSE

Peak transient less than $\pm 2 \%$ or $\pm 200 \mathrm{mV}$ for step load change from 75% to 50% or 100% max. ratings.

RECOVERY TIME

Recovery within 1%.
R, M and N modules - 200 microseconds.
J, K, and L modules - 500 microseconds.

UNDERVOLTAGE

Protects against damage for undervoltage operation.

OVERVOLTAGE PROTECTION

Standard on all outputs.

REVERSE VOLTAGE PROTECTION

All outputs are protected up to load ratings.

OVERLOAD \& SHORT CIRCUIT

Outputs protected by duty cycle current foldback circuit with automatic recovery. Auxiliaries have additional backup fuse protection

THERMAL SHUTDOWN

Circuit cuts off supply in case of local over temperature. Units reset automatically when temperature returns to normal.

SOFT START

Units have soft start feature to protect critical components.

FAN OUTPUT

Nominal 12 VDC @ 12 watts maximum.

INHIBIT

TTL compatible system inhibit provided.

SHOCK

MIL-STD 810-D Method 516.3, Procedure III.

VIBRATION

MIL-STD 810-D Method 514.3, Category 1, Procedure I.
MECHANICAL
400 W/500 W - $2.5^{\prime \prime} \mathrm{H} \times 5.05^{\prime \prime}$ W $\times 9.00$ " L. Case 1.
600 W/750 W - $2.5^{\prime \prime} \mathrm{H} \times 5.20^{\prime \prime}$ W $\times 9.63^{\prime \prime}$ L. Case 2.
600 W/750 W $-2.5^{\prime \prime} \mathrm{H} \times 6.5^{\prime \prime} \mathrm{W} \times 9.63^{\prime \prime} \mathrm{L}$. Case 3.

POWER FAIL MONITOR

Optional circuit provides isolated TTL and VME compatible power fail signal providing 4 milliseconds warning before main output drops by 5% after an input failure.

AUTO RANGER

Optional circuit provides automatic operation at specified input ranges without strapping. Not applicable to DM Series.

PILOT BIAS

Optional circuit provides SELV output of 5 volts at 75 milliamps independent of the main power converter. Output isolation compliant to safety specifications referenced above.

ACTIVE SURGE LIMIT

Limits input surge to less than 18 Amps , and provides rapid reset.

COVER

Optional flat cover recommended when customer supplied fan cooling is directed through the length of the unit.

FAN COVER

Optional cover with brushless DC fan which provides the required air flow for full rating of Moduflex power supplies.

REDUNDANT

This option is specified when two or more like M units are to be used in an $\mathrm{N}+1$ redundant hookup using external isolating diodes. Cable assemblies are provided that interconnect the remote sensing leads and the single redundant wire which provides current sharing. This option not available for M units containing J modules.

POWER FACTOR CORRECTION

Refer to Bulletin FM-101 for M Series units with 0.99 power factor and harmonic currents compliant to IEC 555-2.

$\sqrt{7}$

Designing with Motorola's

Microprocessors?

Then you need HMI's development systems, we support the entire 68000 family. As Motorola enhances and increases integration of its microprocessors, you can count on HMI to be there with
high-quality development products to support your projects. HMI believes in supporting the entire family of products for the Motorola family. Ease of use and familiarity are common in all the emulators.

Features of HMI's development systems includes:

- Run at real-time with no wait states.
- Window driven source level debugging-SourceGate ${ }^{\circledR}$
- C, Pascal and ADA compiler source level support for all major compiler companies.
- Real-time hardware performance analyzer.
- Works with IBM PC family and UNIX based machines including Sun and Apollo.
- RS232 Interface up to 115.2 K .
- Parallel Interface for high-speed code downloading.
- Complex events and sequences for break and trigger conditions.
- Two independent 4 K deep trace buffers.
- $1 \mu \mathrm{sec}$ resolution interval timer.
- 100 nsec resolution Time-stamp in trace buffer.
- Logic state analyzer capabilities built into the emulator.
- 16 External Trace bits.
- Overlay memory up to 4 Mbytes.

If you are looking for one emulator company that provides support for the entire Motorola family, then look to HMI for total support.

Motorola	evices	orted Include
68000	68030	68340
68008	6809	68HC001
68010	68302	68 HC 11 including
68020	68332/331	F1 and D3

Huntsville Microsystems, Inc.
3322 South Memorial Parkway
Huntsville, AL 35801
Tel.: (205) 881-6005
FAX: (205) 882-6701

Frequency Synthesizer

- Operates to 120 MHz
- Current drain is 3 mA

Designed for use in personal communications applications where low operating power is important, the NJ88C33 frequency-synthesizer chip features a current drain of 3 mA from a 2.5 to 5.5 V supply. You
can use the IC as a single-chip 120 MHz device or with an external prescaler for operation to 2 GHz . The IC contains programmable 16-, 12 -, and 7-bit counters, which are addressed by an $I^{2} \mathrm{C}$ bus. The bus operates to 2 MHz and can achieve channel loading in $20 \mu \mathrm{sec}$. The synthesizer chip uses current-source

[^12]
outputs from the phase detector, a feature that allows the implementation of a simple passive loop-filter. The NJ88C33 comes in 14-pin DIPs or SOIC packages. $\$ 7.87$ (100).

Plessey Semiconductors, 1500 Green Hills Rd, Scotts Valley, CA 95066. Phone (408) 438-2900. FAX (408) 438-5576. TLX 494-0840.

Circle No. 386

Dual 14-Bit DAC

- Saves board space
- Includes a $3 V$ zener reference

The AD7244 dual 14-bit DAC includes a 3 V buried-zener reference, output amplifiers, and high-speed serial interface logic. A pin-compatible 12 -bit version, the AD7242, provides an upgrade path for applications that don't currently need 14bit performance. Housed in a 24 -pin DIP or 28-lead SOIC, these dual DACs save cost and board space compared with separate devices. The devices typically consume 130 mW from $\pm 5 \mathrm{~V}$ supplies. The 14 -bit dual DAC settles to $\pm 1 / 2$ LSB in less than $4 \mu \mathrm{sec}$; the 12 -bit device settles in $3 \mu \mathrm{sec}$. Both devices have a nominal output span of $\pm 3 \mathrm{~V}$. The 14-bit AD7244, from $\$ 17.95$; 12 -bit AD7242, from $\$ 14$ (100).
Analog Devices, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428. Circle No. 387

UXART The Wait Is Over Now there's a serial I/O chip designed for UNIX.

For years, dumb UARTs have been the standard datacom solution. Now there's something better for today's multi-user, multi-protocol datacom environment. Our single-chip solution gives you multiple channels - each capable of full-duplex operation at 115.2 kbps - and replaces up to 10 chips.

Cirrus Logic introduces the UXART the first and only UART with specific features to simplify and speed up serial I/O efficiency by a factor of ten or more. So your UNIX ${ }^{\oplus}$ system can support more users, with better response time - and less waiting.

The CL-CD1400 UXART ${ }^{\text {" }}$ gives you 4 fully independent datacom channels, each capable of full-duplex operation at 115.2 kbps . Each channel has two 12 byte FIFOs, one for transmit and one for receive. Separate vectored interrupts allow quick entry to the correct service routine.

A number of features reduce the load on the host system. Automatic expansion of Newline to CRNL, plus other CR and NL options. User-definable flow control characters for automatic flow control.

All five types of UNIXspecified parity and error handling. And more.

For high-line-count, cost-effective applications, there's the CL-CD180. It offers performance gains similar to the CL-CD1400, plus the advantage of 8 channels in a single 84 -pin package.

The CL-CD2400 adds synchronous capabilities. It offers 4 independent, multi-protocol channels, plus an on-chip DMA controller for fast, efficient I/O.

For all your multi-protocol, multi-user datacom needs, the Cirrus Logic family of intelligent, highperformance data communications controllers gives you superior throughput in less space - with less waiting.
Don't wait. Call today for free product information and benchmark report on the CL-CD1400. Call 1-800-952-6300. Ask for dept. LD25

An on-chip
10 MIPS RISC-based processor handles transmit and receive functions, buffer management, flow control, and all special character processing. On-chip FIFOs reduce host interrupts to give you more efficient interrupt handling. The result: faster system throughput, lower host overhead, and less waiting.
©1991 Cirrus Logic, Inc., 3100 West Warren Avenue, Fremont, CA 94538 (415) 623-8300; Japan: 462-76-0601; Singapore: 65-3532122; Taiwan: 2-718-4533/4534; Germany: 81-52-2030/6203 © Cirrus Logic, and the Cirrus Logic logo and UXART are trademarks of Cirrus Logic, Inc. All other trademarks are registered to their respective companies.

TEST \& MEASUREMENT INSTRUMENTS

191-MHz FFT
 Spectrum Analyzer

- Has 90-dB dynamic range
- Includes MS-DOS-compatible 31⁄2-in. floppy-disk drive
The SR760 is an FFT spectrum analyzer that covers frequency spans of 100 kHz to 191 MHz with a dynamic range of 90 dB . Line widths range from $476 \mu \mathrm{~Hz}$ to 250 Hz . Real-time bandwidth is 50 kHz . In dual-trace mode, you can view a time record and a spectrum simultaneously. The unit incorporates a 16 bit A / D converter and a $3 \frac{1}{2}-\mathrm{in}$. floppy-disk drive that stores 720 k bytes of data and setups in MS-DOS format. The analyzer includes RS232C and IEEE-488 interfaces, and it directly drives plotters that interpret the Hewlett-Packard Graphics Language. You can choose among
the following windowing functions: Blackmun-Harris, flat-top, Hanning, and force exponential. \$4350.

Stanford Research Systems Inc, 1290 D Reamwood Ave, Sunnyvale, CA 94089. Phone (408) 744-9040. FAX (408) 744-9049. TLX 706891.

Circle No. 388

Silicone-Rubber

Multimeter Lead Set

- Rated for 1 kV and 10 A rms
- Accepts push-on probes and accessories
The STLS 2000 lead set for multimeters includes a red and a black lead, each 1.2 m long. The TLS 2000 is similar, except that the lead length is 1.5 m . The voltage rating is 1 kV rms ; the current rating is 10 A rms. The leads are supple be-
cause the wire in each lead consists of more than 700 strands; moreover, the insulation is soft silicone rubber. The leads have banana plugs at each end. The plugs, which accept push-on probes and accessories, incorporate spring-loaded, retractable shields. $\$ 19.95$.
Test Probes Inc, 9178 Brown Deer Rd, San Diego, CA 92121. Phone (800) 368-5719.

Circle No. 389

RS-232C-Interfaced Device Programmer

- Works with computers of any type
- For PROMs, EPROMS, $\mu C s$, EEPROMs, PLDs, and EPLDs The Allpro-S device programmer works with any computer that

 cherformance. coating even ly sharp de licate sensth of $5 \mathrm{KV} /$ mil. military.
 mechanical effect on dielectric strens and proven ind ind Parylene has a die mitally safe, and industation.
of VOCs, envirmonotive, computar aplication consultation
medical
applications. Call

has an RS-232C port. The instrument handles PROMs, EPROMs, EEPROMs, PLDs, EPLDs, and single-chip microcomputers. It adapts to all devices via software; there are no plug-in adapters. Users of the vendor's IBM PC-based programmers can turn those units into the equivalent of the new programmer by adding a chassis that includes an RS-232C port, a $31 / 2-\mathrm{in}$. floppy-disk drive, and a processor based on an $8088 \mu \mathrm{P}$ with 256 k
bytes of memory. Upgrades to 640k bytes are possible. $\$ 5995$.

Logical Devices Inc, 1201 NW 65 th Pl, Fort Lauderdale, FL 33309. Phone (800) 331-7766; in FL, (305) 974-0967. FAX (305) 974-8531.

Circle No. 390

In-Circuit Emulator For MC68EC030

- Displays coprocessor registers in floating-point format
- Can include event-triggering system
The EL 3200 in-circuit emulation system now supports the MC68EC030 $\mu \mathrm{P}$. Features include support of cache-burst and singlecycle modes; symbolic and sourcelevel debugging; and $33-\mathrm{MHz}$, ze-ro-wait-state, high-speed overlay memory for normal bus cycles. The trace and event system includes access breakpoints; software and

hardware execution breakpoints; complex-event comparators; trigger inputs and outputs; counters; timers; and flags. The emulator communicates with its host via Ethernet using TCP/IP. Hosts are IBM PCs, Sun 3s, SPARCstations, DECstation 3100 s , and VAX/VMS systems. From $\$ 30,000$; trace and event system from $\$ 10,000$. Delivery, eight weeks ARO.

Applied Microsystems Corp, Box 97002, Redmond, WA 98073. Phone (800) 426-3925; in WA, (206) 882-2000.

Circle No. 391

EPSON

THE CRYSTALMASTER" ${ }^{\text {w }}$ leads new crystal oscillator technologies into the 90's with...
the most cost effective hi-temp SMD crystals and oscillators and low cost plastic thru-hole crystal oscillators.

Epson has pioneered the first truly heat resistant crystal for
 use in its surface mount crystals and crystal oscillators. Capable of withstanding $260^{\circ} \mathrm{C}$ for 20 seconds...far above the demands of standard IR and vapor phase reflow processing systems...these laborsaving high-temp SMD crystals have become the accepted standard for surface mount crystal and oscillator components.

MODEL SG-615	OSCILLATOR	MODEL MA 505/506 CRYSTAL
Frequency:	1.5 to 66.7 MHz	Frequency: 4.00 to 66.7 MHz
Symmetry:	$45 / 55$ (TYP)	MODEL MC-405 CRYSTAL
Rise/Fall Time:	5 nsec (TYP)	Frequency: 32.768 KHz
Tristate:	Available	
Compatible		
Technology: CMOS and TTL Op. Temp. Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ 		

MODEL MA 505/506 CRYSTAL
Frequency: 4.00 to 66.7 MHz
MODEL MC-405 CRYSTAL Frequency: 32.768 KHz
Compatible
Op. Temp. Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
actual size

EPSON THRU-HOLE OSCILLATORS

REPLACE METAL CAN OSCILLATORS

CRYSTALS AND OSCILLATORS

Epson has introduced the first plastic low cost, high performance autoinsertable thru-hole crystal oscillator. Its unique hermetically sealed crystal, embedded in a plastic package, gives the same EMI protection and higher performance than metal can oscillators... at a much lower cost. And, the auto-insertion feature reduces manufacturing costs associated with hand inserting metal cans...into standard fullsize or half-size hole patterns.

MODEL SG-51/SG-531 OSCILLATOR	Frequency:	1.5 to
	Symmetry:	/55 (T
	Riselfall Tristate:	$5 \mathrm{nsec}($ (T) Available
	Compatible Technology:	CMOS and

[^13]
HIGH FIN DENSITY HEAT SINKS REDUCE STZE and COST

ת EGEG WAKEFIELD ENGINEERING
60 AUDUBON ROAD, WAKEFIELD, MA 01880
TEL: (617) 245-5900 • FAX: (617) 246-0874
Western U.S. Sales Office • 3777 RUFFIN ROAD, SAN DIEGO, CA 92133
TEL: (619) 279-2253 • FAX: (619) 576-9286

Achieve maximum heat transfer efficiency with EG\&G Wakefield Engineering High Fin Density heat sinks for power-generating components. Our 510, 511, and 512 Series standard heat sinks yield the same thermal performance as other heat sinks needing nearly twice as much space.
Designed for cooling isolated power modules, amplifiers, and other powergenerating components, these heat sinks are manufactured with a unique process which we developed to maximize the surface area available to yield 130 sq in . of cooling surface per linear inch of extrusion!

Available Now

Standard heat sinks in three different profiles and several lengths are available now from stock.

Lower Cost

Because of the substantial material savings with these unique designs, our High Fin Density heat sinks save on weight and cost per unit volume. The weight savings is approximately 60% !

Call our Sales Department today for the name of our stocking distributor nearest you, at (617) 245-5900.

CIRCLE NO. 60

LET US BE YOUR PACKAGING PARTNER

ACT is an ideal packaging partner for you, because we are completely committed to increasing your competitive edge by reducing your interconnect costs and improving reliability. ACT offers:

- early technical assistance
- state of the art interconnects
- quality products delivered on time
- after sales service including order tracking and cost reduction workshops

For additional information, call or write:

Advanced Circuit Technology
118 Northeastern Blvd. Nashua, NH 03061 Tel: 603/880-6000 Fax: 603/880-1785

MT2W SERIES

Miniature DC-DC Converters
Total Output Power: 2 Watts Input Voltages: 5,12 \& 24 VD Output Voltages: Single\& Dual 5,12 \& 15 VD
Input/Output Isolation to 500VDC

QUALITY FIRST 2 year warranty

- Metal Encapsulated
- Miniature DIP Package
- No Heatsinking/derating required.
- Direct PCB Soldering
- Low Output Ripple \& Noise
- Short-Circuit Protection
- Internal EMI Filter
- High Efficency
- Competitively Priced

Announce new System HILO 4 to design engineers and managers.
Be sure they know...
\checkmark it enhances design productivity through Language Driven Design.
\checkmark its FASTCELL ${ }^{\text {™ }}$ ASIC libraries simulate sub-micron technology accurately. And up to eight times faster than traditional gate-level modeling while using less memory.
\checkmark it outperformed golden simulators in accuracy in several benchmarks at ASIC foundries.
\checkmark it's the ideal core simulation toolkit to support a concurrent engineering environment, with simulation for logic verification, worst case timing, fault grading, and non-intrusive ATPG.

And there's much more to tell so readers should contact their local GenRad office for more about System HILO 4.

Call 1-800-4-GENRAD in the U.S., or the GenRad office nearest you in Austria,
Canada, England, France, Germany, Italy, Japan, Singapore, Switzerland.

A New Way of Thinking

We offer the advantage of an EISA industrial computer. The power and speed of 32-bit EISA capability: true multi-processing; 33 megabytes $/ \mathrm{sec}$ ond data transfer for bus masters and DMA; and automatic configuration of system and modules. EISA is ideally suited to support the increased I/O requirements of industrial applications, while maintaining the unique cost-toperformance advantages that industrial PC users have enjoyed. It is fully backward compatible to all XT/AT boards.

Shown here is a 386/33 EISA industrial computer, with a passive backplane providing six EISA bus master slots, one slot-specific slot and four AT slots.

But PCXI Industrial Computers are also available on the AT bus (ISA). PCXI is a modular, interchangeable, multi-vendor industrial PC. Noise emissions, power, ground, airflow and cooling are specified and verifiable. All PC functions, from CPU (286/386/486) or power supplies, are enclosed and protected in metal-shielded modules, with front panel connectors.

Plus, PCXI gives you the best advantage of all: low cost.

433 N. 34th St., Seattle, WA 98103 (206)547-8311 • FAX: 206-548-0322

NEW PRODUCTS

COMPUTERS \& PERIPHERALS

Process Controller Board

- Displays control parameters on computer screen
- For programs having as many as 96 segments
The SMT-01 single-loop process controller board is a PID (propor-tional-integral-differential) controller. It plugs into a 16 -bit ISA bus expansion slot. The board is programmable for any number of programs having as many as 96 segments each. You can display the process variable vs time along with setpoint, high and low alarms, PID parameters, and autotuning. You can store these parameters in a bat-tery-backed RAM. A ROM-based algorithm provides thermocouple linearization. The controller accepts inputs from a thermocouple, a resistance temperature detector, a 4- to $20-\mathrm{mA}$ source, a pressure transducer, and other specified inputs. Dual 4 -to $20-\mathrm{mA}$ control outputs are selectable from the keyboard. The board's two alarm outputs drive solid-state relays. Board, including software on a $5^{1 / 4-\text { or }} 3^{1 / 2}$-in. disk, $\$ 395$.

Temp Inc, Box 929, Fairmont, WV 26554. Phone (304) 366-4088.

Circle No. 392

Portable Digitizer

- Features an 18×24-in. tablet
- Components fit inside the surface of the tablet
You can use the XLC/1824 portable digitizing tablet for CAD, drafting, and construction estimating. The 18×24-in. tablet lets you place components inside its surface, making it flat instead of sloped. The digitizer works with Timberline and Promation construction estimating software as well as popular CAD programs. The unit connects to an IBM PC or a compatible computer, and you can transport it from office to office. The vendor offers a choice

of either a corded 2 -switch pen or a corded 16-key cursor with a window cross hair. The digitizer can also emulate GTCO's L Series, Calcomp 9500, Summagraphics Microgrid, and Numonics 2200 digitizing tablets. The software driver supports Microsoft mouse and Win-dows-compatible programs. Tablet with ± 0.01-in. accuracy, $\$ 2195$; tablet with ± 0.005-in. accuracy, $\$ 3695$.

Kurta Corp, 3007 E Chambers St, Phoenix, AZ 85040. Phone (602) 276-5533. FAX (602) 276-7823.

Circle No. 393

T1 Bridge/Router

- Links remote networks together as fast as 2.048M bps
- Software features IEEE-802.1 spanning-tree protocol
The ACS 4200 T 1 bridge/router links remote networks together as fast as 2.048 M bps. The unit operates on the company's Series 4000 multiprotocol bridge/routing software. The software routes TCP/IP, DECnet, XNS, and IPX protocols while providing a bridge to all other network protocols. The software also features the IEEE-802.1 span-ning-tree protocol, automatic address learning, and dynamic and static routing. Each of the unit's two wide-area-network ports can operate at different speeds and physical connections, such as X. 25 networks or T1 leased linës. You can configure the unit from a locally

YouDon't HaveToTake ChancesWith Bugs.

THE LOWEST-COST XDB ROM MONITOR DEBUGGER FORMOTOROLA 68000, 68020, 68030, 68302, 68332 AND 68340 MICROPROCESSORS.
Every embedded microprocessor application starts off with a few bugs. But you can eliminate them without missing a beat - or a deadline. Because with InterTools XDB ROM Monitor Debuggers, you start and finish debuggingsooner in actual prototype environments. XDB's powerful user-friendly interface and "smart" ROM Monitor make it the most productive debusger available. And, starting at just $\$ 2,495$, it's also the lowest priced. Call now for more information, or to order. With InterTools, you don't have to take chances with bugs. 1-800-356-3594 617-661-0072.

Microsystems Software, Inc.

THIS DECADE, Make A Commitment

To USE ONLY THE BEST.

FOR TEN YEARS INTROL HAS BEEN CREATING THE WORLD'S BEST HIGHPOWERED TOOLS FOR EMBEDDED SYSTEMS PROGRAMMERS.
OUR C COMPILERS, MODULA-2 COMPILERS, SOURCE LEVEL DEBUGGERS, AND MACRO ASSEMBLERS ARE IN USE BY MAJOR CORPORATIONS and savvy independant consultants from san francisco to Singapore.

ALL OUR PRODUCTS ARE FULLY COVERED BY COURTEOUS AND HIGHLY EFFICIENT TECHNICAL SUPPORT TO ASSIST YOU WITH ANY PROBLEMS YOU may Encounter.

SO, THIS DECADE, MAKE A COMmITMENT - TO INTROL.

6801, 6301, $68 \mathrm{HCl1} 1,6809,68000 /$ $10,68020 / 30 / 40,68332,32000$ MSDOS, MAC-MPW, VAX VMS/ULTRIX, DECSTATION, IBM RS6000, SUN3, SUN4, APOLLO, 386 UNIX SYSTEM V
INTROL CORPORATION = 9220 WEST HOWARD AVENUE MILWAUKEE, WI 53228
TEL 414.327.7171, FAX 414.327.7734

CIRCLE NO. 46
or remotely attached terminal. Network managers can set the bridge/ router's configuration using the simple network-management protocol. $\$ 8500$.

Advanced Computer Communications, 720 Santa Barbara St, Santa Barbara, CA 93101. Phone (805) 963-9431. Circle No. 394

Workstation For Unix

- Runs MS-DOS programs on Unix operating systems
- Supports X. 25 and Ethernet communications
The DPX/Prostation workstation can run MS-DOS applications on a Unix operating system. The desktop unit runs Santa Cruz Operation's Open Desktop, Informix's WingZ, Frame Technology's Framemaker, Alfalfa's Poste, and Ingres Corp's application software. Icons connect to an array of templates so
you don't have to remember the purpose of a file. Protocols the workstation supports are TCP/IP and ISO for Ethernet networks. The unit also supports X. 25 communications and emulates a variety of terminals. The workstation uses a $25-\mathrm{MHz} 80486 \mu \mathrm{P}$. Its two configurations are the 25 i , which contains as much as 32 M bytes of RAM and a single Micro Channel Architecture slot; and the 25 e , which has as much as 64 M bytes of RAM and two Extended Industry Standard Architecture slots. Each system includes a 213 M -byte hard-disk drive and a 144 M -byte, $3^{1 / 2}$-in. floppy-disk drive that can read and write IBM PC/AT and compatible formats. 25 i package, $\$ 12,995$; 25e package, \$13,495.
Bull HN Information Systems Inc, Technology Park, Billerica, MA. Phone (508) 294-6616.

Circle No. 395

Clean sweep tol GHz.

100 watts minimum is a lot of low-cost, clean rf power. But that's what our new Model 100W1000M7 delivers for your broadband test needs.

As your hunger for power and bandwidth grows, this year and next, our all-solid-state "W" series of $100-\mathrm{kHz}$-to- $1000-\mathrm{MHz}$ linear amplifiers should become more and more important in your plans. Today you may need only 1 watt (the little portable on the top of the pile), or 5 , or 10 , or 25 , or 50 -all with that fantastic bandwidth instantly available without tuning or bandswitching-the kind of bandwidth that lets you sweep clean through with no pausing for adjustment.
And next year?
Chances are good that next year you'll be moving up into higher-power work in much the same bandwidth. Then you'll be glad you have 100 watts from 100 to 1000 MHz , using the only rf power amplifier in its power-to-bandwidth class. At that point, your smaller " W " series amplifiers can be freed for lower-power work around your lab.

What you can't see in the performance curves shown below is the unconditional stability of all AR amplifiers-immunity to even the worst-case load mismatch or shorted or open cable with no fear of damage, foldback, or system shutdown.

The "W" series is part of a complete line of amplifiers offering rf power up to 10,000 watts, in cw and pulse modes, for such diverse applications as RFI susceptibility testing, NMR, plasma/ fusion research, and a host of other test situations that demand the very finest in rf power.
Send for our free booklet, "Your guide to broadband power amplifiers."

The New STD Bus....

...Why was it written about more in the last year, than any year since 1980?
...Why is it better than other bus structures for

and out in the desert?

The fact is, The STD Bus provides powerful technology in economical, modular, reliable and extremely rugged systems. That's why it's used in tens of thousands of machines and processes worldwide.
The 100+ manufacturers of STD Bus products provide a full selection of 8,16 and 32 bit processors on single board computers and in fully packaged systems. The STD Bus is supported by the widest range of industrial I/O of any computer bus.
Find out what the excitement's about. Write
STD Manufacturer's Group
1838 Coastland Ave.
San Jose, CA 95125
...or call the following manufacturers directly:

Analog Devices	$617-326-6666$
Computer Dynamics	$803-877-8700$
Cubit Division, Proteus Industries	$415-962-8237$
Matrix Corporation	$919-231-8000$
Micro-Alde	$818-915-5502$
Micro/Sys	$818-244-4600$
Mizar Digltal Systoms	$800-635-0200$
Octagon Systems Corp.	$303-430-1500$
Pro-Log Corporation	$800-538-9570$
Robotrol Corporation	$408-683-2000$
Toknor Microsystoms	$514-437-5682$
Versalogic	$800-824-3163$
WinSystems	$817-274-7553$
XYZ Electronics	$800-852-6822$
Zatech Corporation	$805-541-0488$

Universal Counter/Timer Card

- Uses Windows 3.0 as a control panel and display window
- Operates from 10 Hz to 2.4 GHz The Model PC-10 universal frequency counter/timer operates from 10 Hz to 2.4 GHz . The IBM PCcompatible plug-in card uses Windows 3.0 as a control panel and dis-
play window. The unit captures and analyzes discrete and average frequency readings, pulse widths, time intervals, and the ratio between two frequencies. The card's 200 MHz CMOS ASIC and three bipolar monolithic microwave ICs reduce the parts count to 23 ICs. The unit operates as a self-tuning radio, and when the frequency scanning is too slow, it can tune a companion receiver. The card's minimum sensitivity is 10 mV . The unit displays the frequency with 10 -digit resolution. The unit's input-gate is continuously variable from 1 msec to 28 sec for optimum balance between time and resolution. The tempera-ture-compensated crystal oscillator has a ± 1-ppm resolution. $\$ 335$.

Optoelectronics Inc, 5821 NE 14th Ave, Fort Lauderdale, FL 33334. Phone (800) 327-5912; in FL, (305) 771-2050. FAX (305) 7712052. Circle No. 396

> THE PICTURE IS PERFECTLY CLEAR!

PILLAR/Cycle-Dyne can reduce your CRT production costs.

Four Induction Heating processes that can improve productivity and product quality in the manufacturing of Cathode Ray Tubes:

- Getter Flashing - Outgassing
- Shrink Band Heating
- Stud Welding

Contact the people
where American Technology is at its best.
N92 W15800 Megal Drive
Menomonee Falls, WI 53051
414-255-6470 FAX: 414-255-0359

Yourbusiness is safe with us.

Through all of its ups and downs.

We'll help you keep your business rolling. With our 4 megabyte diskettes and 3M Magnus' 1.35 data cartridges you have a whole new generation of data storage media for high capacity systems. So, whatever format or capacity your data is stored in, we're ready when you are.

That's why more business protects important information on 3M brand diskettes and data cartridges than any other brand in the world. Call 1-800-888-1889 ext. 4 to find out more.

Diskettes and data cartridges require compatible drives. ©3M 1991. Magnus is a trademark of 3 M .

Innovation working for you*

If you can see it, we can print it.

Power General's new 20 page catalog provides electrical and mechanical specifications for a full line of switching power supplies and DC/DC converters. Included are 25 to 150 watt single and multiple output AC/DC switchers; over 200 DC/DC models ranging from 1 to 100; and products approved to UL544. Typical product features include:
AC/DC Switchers

- Universal Input Voltage Range
- VDE/FCC Class "B" Input Filters
- ULICSA/VDE Safety Approvals
- UL 544 Approvals (medical)
- Ultra-High MTBF's

DC/DC Converters

- Wide Model Selection
- 1 to 100 Watts
- Industry Standard Pin-Outs
- Ultra-High MTBF's
- 5 Year Warranty

Power General manufactures these products in the USA (Canton, MA). The latest manufacturing technologies are used on our statistical process controlled, JIT production lines to insure repeatable quality and timely delivery.

Put
 Power General To Work For Youl

152 Will Drive, P.O. Box 189, Canton, MA 02021 (617)828-6216 TWX: 710-348-0200

FAX: 617-828-3215

LITERATURE

Listing Of Scientific Software Programs

The 1991 Cosmic Software Catalog provides a comprehensive listing of program abstracts for approximately 1200 scientific programs that are available in the US. It also lists more than 900 programs for limited distribution. Each abstract explains the program's capabilities and presents the programming language, machine requirements, size, and price of the source code and supporting documentation. The printed and microfiche catalogs provide a keyword index, and the disk versions have a search menu. NASA's Technology Utilization Program makes these computer programs available for re-use by domestic industries, governmental agencies, and universities. $\$ 25$ to $\$ 60$.

Cosmic, University of Georgia, 382 E Broad St, Athens, GA 30602.

INQUIRE DIRECT

Brochure About DigitalSignal Processing

This $8-\mathrm{pg}$ pamphlet presents DSPbased solutions for high-end signalanalysis applications in military/ signal intelligence, research physics, and satellite communications. It contains application notes and ex-

Perform engineering and scientific calculations faster... and with fewer errors.

- MathCAD 2.5 does your numerical analyses quickly, easily ... and inexpensively! The live document interface ${ }^{T M}$ lets you integrate equations, text, and graphics on your computer screen. You can see what you solve ... and update your equations and graphs with a single keystroke.
- You do the thinking while MathCAD does the work. MathCAD picks up where calculators and spreadsheets leave off. With over 120 commonly-used functions built-in, MathCAD can handle your formulas, expo nentials, differentials, cubic splines, FFTs, and matrices.
- Applications Packs customize

MathCAD to your work. Seven different packs are available for electrical, mechanical, and chemical engineering and other technical applications.

- MathCAD works on your PC,

Macintosh, or UNIX workstation. More than 100,000 engineers and scientists are already using MathCAD to turn their computers into powerful workstations that can handle virtually any technical application.

Call 800-MathCAD, ext. 335 to request a free demo disk!

In Massachusetts, call 617-577-1017, ext. 335.
For a free MathCAD
Introductory Kit, clip
this coupon and mail
it back to us. Or
circle your reader
service card.
\square Yes! Tell me more about MathCAD!

Math Soft MathSoft, Inc.
201 Broadway
Cambridge, MA 02139
Tech/EDN990 \#13 EDN 4/11/91
CIRCLE NO. 52

Electronics Division (Lithium Batteries)
Military: P.O. Box 47 • Joplin, MO 64802 • (417) 623-8000 • Commercial: P.O. Box 130 •Seneca, MO 64865 • (417) 776-2256

LITERATURE

planations on pulsed radar, fre-quency-shift keying, and other measurements. The publication describes the VMEbus-based analysis systems that have amplitude-vsfrequency; spectrogram; and phaseand view-limits color displays.

Tektronix Federal Systems Inc, Box 4495, MS 38-386, Beaverton, OR 97076. Circle No. 397

Guide To Components For Signal Processing

The 116-pg 1991 Short Form Designer's Guide covers data converters; amplifiers; analog signal-processing devices; transducers; diskdrive components; voltage references; and data-acquisition subsystems. Inside the front cover you'll find instructions on how to use the book, followed by an example of the selection-guide organization. The New Products section contains nu-

UNIVERSAL INPUT SWITCHING POWER SUPPLIES

FEATURING:

- 90-264 VAC (continuous) UNIVERSAL INPUT
- FCC CLASS 'B', VDE 0871 'B' OPTIONAL
- HIGH SURGE CURRENTS ON +12V OUTPUTS
- PRICE, DELIVERY AND QUALITY

긴

SINGLE AND QUAD OUTPUT MODELS ARE AVAILABLE.

READY To Help You Grow

We're the Vishay Electronic Components Group (VECG). Six well-known companies now linked with a common purpose: Making you more competitive. One call to the factory or your VECG Representative gives you access to the widest range of passive components available from any single organization.

Organized to save you time...make planning more precise...development time shorter and delivery more reliable. That's easy to say. Now make us prove it.

Precision Bulk Metal Foil:
$\begin{array}{lc}\text { - Resistors } & \text { Surface Mount } \\ \text { - Trimmers } & \text { Components }\end{array}$

- Networks - Specials
- Chips
(215) 644-1300

- Metal Film Resistors, Hermetically Sealed
- Power Rheostats
(301) 739-8722
$\left[\begin{array}{c}\text { A COMPANY OF } \\ \mathbf{V} \text { I S H A Y }\end{array}\right.$ ANGSTROHM

Commercial to ultra-precise. Standard to special. One call lets you focus on the combined strengths of our multiple technologies and multiple production sources. VECG:

- Thin Film Resistors
- Thick Film Chip Resistors
- Surface Mount Components: Thick Film, Thin Film and Foil
(716) 283-4025
(818) 781-1642

- Wirewound Resistors • Transformers
- Metal Film Resistors - Oscillators
- Resistor Networks - Connectors
- Trimmers
- Displays
- Thermistors - Surface Mount
- Inductors Components
(402) 563-6417

RIGGED PCBBIS solutions for Rack, Bench, or Embedded Use

12 or 20-slot Computers
Up to 6 Drives, 375 Watts of Power

All-in-One Systems
7-slot VGA with Touchscreen

Compact Computers/Cards Embedded PC/AT Designs, CPUs, EPROM and RAM Cards

Over 30 different models to choose from. Custom designs are available.

Systems Manufacturing Technology, Inc. 1080 Linda Vista Drive P.O.Box 1320

San Marcos, CA 92079 (619) $744-3590 \cdot$ FAX: (619) 471-1153 (800) 648-6262

LITERATURE

merous additions to the vendor's line of products.
Analog Devices, Box 9106, Norwood, MA 02062 . Circle No. 398

Booklet Highlights VXIbus

This 32 -pg brochure, Feeling Comfortable with VXIbus, introduces you to VXIbus, its features, and advantages. The publication explains how you can integrate VXIbus products in current test systems, and it discusses the tradeoffs in selecting various VXIbus devices. The publication is an overview of VXIbus technology rather than a manual for a particular VXIbus instrument. For more detailed technical information, the brochure provides a recommended-reading list.

Hewlett-Packard Co, Box 10301, Palo Alto, CA 94303.

Circle No. 399

Publication Catalogs

 Optoelectronic ProductsThis 48-pg catalog talks about prod-uct-quality programs such as intelligent display devices; numeric displays; and military high-reliability displays. Other devices discussed are optocouplers, LED lamps, IR emitters, photodetectors, and plastic fiber-optic emitter and detector components.
Siemens Components Inc, Optoelectronics Div, 19000 Homestead Rd, Cupertino, CA 95014.

Circle No. 400

up to 55 Watts

- Input Voltage 90 to 130 VAC ($47 / 440 \mathrm{~Hz}$)
- Single, Dual, Triple Outputs
- 1200V Rms Isolation
- Low Isolation Capacity Available
- Continuous Short Circuit Protection
- High Efficiency
- Fully Regulated Voltage Outputs
- Operating Temperature $-25^{\circ} \mathrm{C}$. to $+70^{\circ} \mathrm{C}$. with No Heat Sink or Electrical Derating Required
- Expanded Operating Temperature Available ($-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. ambient)
- Optional Environmental Screening Available

PICO manufactures complete lines of Transformers, Inductors, DC-DC Converters and AC-DC Power Supplies

Electronics, Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 in new york call 914-699-5514

EDN's

CHARTER

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products - that are immediately or imminently available for purchase

- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN's Magazine Edition also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on" engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.

EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

EDN

275 Washington St Newton, MA 02158 (617) 964-3030

BUSINESS/CORPORATE STAFF

Peter D Coley, VP/Publisher
Newton, MA 02158; (617) 558-4673 Ora Dunbar, Assistant/Sales Coordinator

Mark J Holdreith, Associate Publisher Newton, MA 02158; (617) 558-4454
Deborah Virtue, Business Director Newton, MA 02158; (617) 558-4779 BOSTON
Chris Platt, Regional Manager
Clint Baker, Regional Manager
199 Wells Ave
Newton, MA 02159; (617) $964-3730$
STAMFORD 06904
George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORK/NEW JERSEY Daniel J Rowland, Regional Manager 249 West 17th St; (212) 463-6419

PHILADELPHIA

Steve Farkas, Regional Manager
487 Devon Park Dr, Suite 206
Wayne, PA 19087; (215) 293-1212
CHICAGO
Greg Anastos, Regional Manage
Jack Johnson, Regional Manage
Des Plaines, IL 60018; (708) 635-8800

ARIZONA

John Huff, Regional Manager
44 Cook St, Denver, CO 80206
(303) 388-4511

COLORADO
Bill Klanke, Regional Manager
44 Cook St, Denver 80206
(303) 388-4511

DALLAS 75251
Al Schmidt, Regional Manager
12201 Merit Dr, Suite 730
(214) $419-1825$

SAN JOSE 95128
Frank Granzeier, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager James W Graham, Regional Manager 3031 Tisch Way, Suite 100; (408) 243-8838 LOS ANGELES Charles J Stillman, Jr Regional Manager Los Angeles, CA 90064 (213) 826-5818

Susan Green
CA $90064 \quad 18818$ Teller Ave

ORANGE/SAN DIEGO/RIVERSIDE COUNTIES
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715; (714) 851-9422
PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
1750 Skyline Blvd, Box 6
(503) 297-4305

EUROPEAN OPERATIONS
ullly Giacomazzi, Managing Director
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030
UK \& BENELUX
Colin Smith
Oliver Smith \& Partners 8 Abbeville Mews 8 Clapham Park Road London SW4 7BX

Tracey Lehane
Martin Sutcliffe
27 Paul St
Lonch EC2A 4JU UK

SCANDINAVIA

Stuart Smith
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030; Fax: 44-71-628-5984
FRANCE/ITALY
Laura Whiteman
4 Rue des Parisiens
92600 Asnieres sur Seine
Tel: 331-47900507
G Reina srl
20149 Milan Italy
el: 331-47900507 Fax:3924981283

GERMANY/AUSTRIA/BAVARIA
Karin Steinbacher
New Media Munchen
smaniger Str. 108
8000 Munchen 80
Germany
Tel: 49-89-98-51-35
Sudring 53
D-7240 Horb 1 A/N

Fax: 49-89-981-0117
Tel: 49-7451-782

GERMANY
Helmut Steinkraus
media Medien-Vertretungs GmbH, Bolkerstrasse 57 4000 Dusseldorf 1 Germany Fax: 49211132410

Manfred Horing
Media Kontakt
Bahnhofstrasse 15
D-6101 Messel
Germany

SWITZERLAND
Peter Combag, Roswitha N Kunzle
Exportwerbung AG
Kirchgasse 50, 8024 Zurich 1
Tel: 4112614690 ; Fax: 4112514542

ISRAEL

Asa Talbar, Talbar Media
Box 22917
Tel Aviv 61228, Israel
Tel: 972-3-223-621; Fax: 972-2-247-403

HONG KONG

Adonis Mak
Cahners Asia Limited
22nd fl, Lo Yong Court Commercial Bldg
212-220 Lockhart Road
Wanchai, Hong Kong

JAPAN

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: 81-3-3366-8301; Fax: 81-3-3366-8302

KOREA

Jeong-guon Seo
DooBee International Inc
Centre Bidg, $1-11$ Jeong-dong
Choong-ku, Seoul, Korea
Tel: 82-2-776-2096; Fax: 82-2-755-9860
SINGAPORE/MALAYSIA
Hoo Siew Sai
Ad Media Private Ltd
95, South Bridge Rd
\#09-13 Pidemco Centre
Singapore 0105
Tel: 65-632-4026; Fax: 65-532-4027

AUSTRALIA

Alexandra Harris-Pearson
World Media Network Pty Ltd
Level 2, 285 Clarence Street
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788; Fax: 61-2-283-2035
TAIWAN
Parson Lee
Acteam International Marketing Corp
Tel: 886-2-7114833; Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian, Manage
249 West 17th St
New York, NY 1001
(212) 463-6415; Fax: (212) 242-6987

INFO CARDS
Heather McElkenny
Newton, MA 02158; (617) 558-4282
CAREER OPPORTUNITIES/CAREER NEWS
Roberta Renard, National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
(201) 228-8602, 228-8610, 228-8608

Fax: (201) 228-4622
Nancy Olbers, Western Sales Manager
238 Highland S
Portsmouth, NH 03801
(603) 436-7565; Fax: (603) 436-8647

Wendy A Casella, James P Joyce
Advertising/Contracts Coordinators; (617) 964-3030
William Platt, Senior Vice President, Reed Publishing USA
Cahners Magazine Div
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Executive Vice President/General Manager,
Boston Div
Tom Dellamaria, VP/Production \& Manufacturing
Circulation: Denver, CO: (303) 388-451
Eric Schmierer, Group Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60017. Phone (708) 390-2240.

ForMostPeople, It Was Just AnotherWarm SeptemberDay.

For design engineers, it was the day mixed analog/digital design came of age.
The event was the mixed-signal design demonstration at the IEEE Bipolar Circuits and Technology Meeting (BCTM). The goal was to give credence to mixed-signal simulation and to benchmark companies in the marketplace. The results were conclusive.

Viewlogic came up with the right answer first.
But more to the point, what we did at BCTM in September, we can do for you now. We're the only company with a proven technology and a three year track record of success. The only one that integrates design capture, simulation and analysis.
But that's just the beginning.

Performance and Flexibility available nowhere else.
With VIEWsim/SD, you'll get the choices you need. You'll be able to mix behavioral models with gates and SPICE primitives. Choose from leading analog simulators like PSPICE and HSPICE. Include physical hardware models for devices when software models are not available. Use the most popu-

lar platforms from SUN, DEC and IBM.
Our white paper "Mixed-Signal Simulation Benchmark Report" proves the point. Call us at 1-800-422-4660, Ext. 102. You'll like the climate we're creating for mixedsignal design.

VIEWlogic The CAE Company
Viewlogic Systems, Inc. 293 Boston Post Road West Marlboro, MA 01752 508-480-0881 508-480-0882 FAX

PSPICE and HSPICE are trademarks of their respective companies.

There's a lot more to being an EDITOR than editing

An EDN editor is a writer, a talent scout, a tutor, a researcher, a reporter, a critic, a trend spotter, a production coordinator, a consultant, and a troubleshooter. On any given day, he or she may watch a new-product presentation, give some guidance to a free-lance writer, brainstorm ideas for articles with other editors, advise an engineer about a design problem, answer readers' inquiries, attend a conference, hunt down some information, or write an article. The days are sometimes long, but seldom dull.

The raw material EDN editors deal with every day is information-information about companies, information about industry trends, and, most of all, information about new products and designs. All EDN technical editors have engineering degrees and extensive hands-on experience as working engineers. Their knowledge of what engineering in the real world is like guides them as they gather, process, and present the information that goes into the magazine.

The information comes to them

such as availability dates and prices. Perhaps onefifth of the press releases that come in have information that will eventually find its way into the pages of the magazine.

Books, magazines, and newspapers-EDN editors read widely. They scan everything from prepublication copies of engineering textbooks to the newsletters of local computer societies. Some editors make a point of reading periodicals that deal with technologies outside their areas of expertise to give themselves additional perspective. It isn't just the articles that editors read; advertisements can also contain valuable information.
from a variety of sources:
Press releases-An EDN editor may receive as many as 25 or 30 press releases in a single day. Some aren't suited to the magazine. EDN doesn't print news about the promotions of executives, openings of new plants, or company mergers. Even those press releases that deal with what editors are most interested in-new products and technolo-gies-can be useless if they don't contain enough hard information,

Marketing and public relations people-EDN editors are in constant contact with marketing and PR people. The people who do their jobs best know the magazine and understand what its needs are. They sometimes call an editor to announce a new product if they think he or she might be interested in it. PR people haven't always enjoyed a lofty reputation, but the real professionals can be an invaluable source of information.

Company visits-Some compa-
nies send representatives to EDN's offices to announce new products. Sometimes they bring the products with them and demonstrate them. After an editor attends one of these meetings, he or she writes up a report and circulates it to the other editors in the office on E-mail. He or she also sends it to the regional editors on MCI mail.

Exhibitions and conferencesExhibitions and conferences are valuable because they give editors a chance to see a great many new products at one time and provide a snapshot of where an industry is and where it is heading. But exhibitions and conferences are also important because they give editors a chance to meet and talk to people-marketing people, executives, engineers, and EDN readers. There's no substitute for talking with someone face to face.

Other editors-EDN editors are constantly passing information among themselves. Editors also confer with each other to determine how to focus an article and how to best present information.

EDN has six regional editors in the USA and one in Europe. Every week they write up reports about the companies they visit, the people they talk to, and the things they see, and send them into the home office. Regional editors are consulted about story ideas just as technical editors are.

Drawing on all these sources of information, every August and February EDN editors make up a list of topics for the articles they
want to write in the coming year. They submit their lists to the editor, who then sits down with two senior editors and works out a detailed schedule. The schedules are only six months long because the high-tech industry changes so rapidly and predicting trends is difficult.

Once a topic is approved and an article scheduled, the first thing an editor usually does is send out edi-
products. The editor also asks for photographs or drawings and the name and phone number of someone he or she can contact for more information.

Then an editor begins to phone his or her industry contacts to find out about the newest products that have been introduced, or are about to be introduced, and the latest technology advances. Contacts aren't necessarily public-relations people. An editor also talks with engineers, managers, and people who have used a product.
The editor also turns to his or her files and digs out all the press releases, clips from magazines and newspapers, and faxes that might pertain to the article. In addition, the editor checks back issues of EDN to see what has been previously written about the subject.

After the replies to the editorial call letters have come in and the rest of the information has been assembled, the editor begins to write the article.
Writing is part craft and part art. The craft is extracting from the mass of information what is most important, putting it in the proper order, and making sure that it's complete and that all the pieces fit together into a smooth whole. Editors add their insight and analysis to the material, interpret what is going on in the industry, and look torial call letters. The letters go to firms that manufacture the products the editor will discuss in the article. The editor asks for detailed information-specs, part numbers, prices, applications, and the advantages and disadvantages of the

for trends. The art of writing lies in adding that indefinable spark that will bring the entire article to life and catch and hold the reader's attention.

Part of writing an article is also the painstaking compilation of ta-

P R O F E S S I O N A L I S S U E S

bles or graphs and the checking and rechecking of names, addresses, and telephone and fax numbers to make sure they're accurate.
Every EDN technical editor has a varied schedule of writing assignments. He or she is responsible for Special Reports, Technology Updates, Product Updates, Design Features, and News Breaks each

Other people start by sending in complete articles they have slaved over. That's almost always a waste of time and postage. Even if the article happens to be on a subject of interest to EDN's readers, it would almost certainly have to be rewritten to conform to the length, structure, and style EDN requires.

Occasionally an editor will re-

year, as well as a small number of miscellaneous pieces. Each editor also contributes numerous short write-ups to the New Products section. The information for these write-ups comes from press releases, visits by company representatives, and editors' visits to hightech firms.
Writing articles for the magazine is an editor's primary responsibility, but it's only part of the job. Editors also have to deal with the many proposals and manuscripts that are sent to the magazine. EDN receives hundreds of these each year. Unfortunately, most of them are unusable.
Too many people who want to write for EDN don't read the magazine carefully to understand the kind of articles it does and doesn't print. They send in proposals for articles dealing with a single product, or case histories, or Horatio Alger stories. The editors reject these proposals out of hand.
ceive an unsolicited proposal that he or she finds interesting. In that case, the editor will phone or write a letter to the person who proposed the article suggesting what should be included in it and requesting a detailed outline and a sample lead paragraph. The editor will also send a copy of "Writing for EDN," a booklet that describes what the magazine requires in a contributed article. The editor and the writer may go through a great deal of give and take and more than one rewrite to mold the article into its final form.

Some editors have additional, specialized duties. Two of them handle the Design Ideas section. They choose among the designs sent in by readers and edit the descriptions and schematics. Because they receive many more ideas than the magazine has room to print, the choices they have to make are sometimes difficult. In this situation, too, the editors' real-world
engineering experience helps them make their decisions.

After the information is distilled into a story, it is presented to the readers in the magazine. EDN is published 26 times per year, and each issue is read by approximately 160,000 working engineers. The magazine is the primary way editors have to convey information, but it isn't the only way.

Editors always welcome feedback from readers, and readers have a number of options for communicating with them. Readers can use the old-fashioned method of simply writing a letter to the editor. A letter may end up printed in the Signals and Noise section. Readers can also write comments in the space provided on the Information Retrieval Service cards that are included in every issue. If a reader has a design problem, he or she can write to the Ask EDN department. If the editors can't solve the problem themselves, they'll get in touch with experts who can.

Last October, EDN started a computer bulletin board system that enables readers to communicate with the magazine's editors and with other readers. The bulletin board offers many other services, such as providing free utility, scientific, and engineering shareware programs.

This brief summary doesn't cover every detail of an EDN editor's job, but it does touch on the many facets of it. An EDN editor does much more than simply edit manuscripts. An editor reads, listens, observes, thinks, and then conveys the information he or she has gathered. Most readers never notice the names on the masthead or on bylines, but the work the editors do is important, satisfying, and usually enjoyable.

Article Interest Quotient
 (Circle One)

High 518 Medium 519 Low 520

Power Sandwich.

 TDK Components Make Low-Profile Switching Power Supplies.

 TDK Components Make Low-Profile Switching Power Supplies.}

What happens when you "sandwich" low profile components to drastically reduce the space needed for power circuitry?
At TDK it means enhancing mechanical performance, reliability and safety while creating the world's thinnest switching power supply.

Utilizing our original material and design technology, TDK has developed various high performance components for switching power supplies. These include the new PC 50 ferrite with low power loss and high flux density, ultrathin EPC Cores and Large-Capacitance Multilayer Ceramic Chip Capacitors, HC Series.
Call or write today for more information on TDK Components for Switching Power Supplies.

㽗TDK

Tight on board space?
Only 0.58^{2} inches available? Need to isolate and switch 6 AC Amps, and turn on a DC motor?

The 1655S \& 1665S Relays from Guardian have proven over $2,000,000$ times their Relayability ${ }^{\text {TM }}$ in similar applications.

Budget and delivery schedule tight?
High volume automated assembly lines, assure consistent on time delivery at the right price.

Contact the Relay Network

for technical advice, specifications \& samples.

Select

CURRDIAN

1425 Lake Ave. Woodstock, Illinois 60098
Phone 815/337-0050
FAX 815/337-0377

LOW PRESSURE SILICON CAPACITIVE SENSORS

We offer superior silicon capacitive technology for low pressure sensing.

- Ranges from $2^{\prime \prime} \mathrm{H}_{2} 0$ to 30 PSI
- Excellent stability \& repeatability
- Accuracies to $\pm 0.5 \%$ FS
- Integrated CMOS circuits and pressure sensors with low power capability for the OEM
- Versatile plastic, TO-8 and custom packaging

At MSI, we have the experience and know-how, together with the CAD and process tools, to customize state-of-the-art sensors. Give us a call.

Phone: 708/437-8090 • FAX: 708/437-8144 CIRCLE NO. 58

INTRODUCING

WIDE \& LOMN

State of the Art DC/DC Converters offering the combination of Ultra Wide Input Voltage Ranges and Low Profile.

How They Stack Up:

30 Years of
5 WATSON BROOK RD., EXETER, NH 03833 Service \&
1-800-321-WALL 603-778-2300 FAX 603-778-9797

Reliability

Now you can afford VFD quality...VFD visibility

itrai' VFD T-Version Module

Call or write to see our entire line:

- Parallel and serial output
- Built-in test function
- Long-term reliability
- ASCII, European, Japanese Katakana characters
- Surface mount technology
- Flexible control data

Dallas

2454 Trade Mart Dallas, TX 75207 Tel. 214-742-9389 Fax 214-747-5065

If you had this...

and we gave you this...

think what you could do!

Introducing the Logic Switch ${ }^{\text {TM }}$
Imagine! Noise-free, logic-level switching from an electromechanical package! We're calling it the Logic Switch because this alternative to mechanical contact switches gives you discrete, noise-free signal through optoelectronics. Solid-state and designed for long life and reliability. Think of the possibilities!

Here's How It Works.

The Logic Switch uses an infrared emitter and phototransistor sensor combination. An internal "flag" interrupts a beam of infrared light from emitter to sensor, thus changing the switch's output when activated.
The infrared light transmission reduces dust problems associated with visible light transmission, and the solid-state life-span is estimated at 50 million cycles.

What Can You Do With It?

The Logic Switch is so new, we wouldn't presume to guess at all its uses. Instead, we invite you to examine it firsthand and try it out on your ideas. Call Cherry at 708-360-3500, and we'll send qualified engineers a free Logic Switch and a specifications sheet.
The Logic Switch is ideal for any application in which logic-level switching is necessary and traditional snap-action switches are problematic.

But perhaps you have some different ideas.
Why not call us today and put those ideas to the test right in your own laboratory-for FREE. All you've got to lose is signal noise.

The Logic Switch: an electronic device in an electrical package.

THE CHERRY CORPORATION

Cherry Electrical Products

3600 Sunset Avenue
Waukegan, IL 60087
Phone: 708-360-3500
Facsimile: 708-360-3566
CIRCLE NO. 146

EDN PRODUCT MART

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

 instruments

- Fits standard 19 " wide cabinets
- 14 gage CRS with zinc/bright
chromate finish
- Different lengths/weight capacities
- Heavy duty construction at competitive price

General Devices Company, Inc., P.O. Box 39100 , 1410 S. Post Rd., Indianapolis, IN 46239-9632 (317) 897-7009, FAX:317-898-2917

CIRCLE NO. 325

00 macrollinki inc.
1500 North Kellogg Drive - Anaheim, California 92807 Phone (714) 777-8800 \&AX (714) 777-8807

SEE EEM 90/91 Pages D 1320-1323

PC based emulators for the 8051 family
 752, 8751, 8752, OS5000 + CMOS ... more

PC plug-in boards or RS-232 box.
 - Up to 30 MHz real-time emulation

- Full Source-level Debugger w/complete C-variable support. - 48 bit wide, 16 K deep trace, with "source line trace" 83C751, 80C515/80C517, 83C752.

Prices: 32 K Emulator 8031 \$1790; 4K Trace $\$ 1495^{\circ}$ CALL OR WRITE FOR FREE DEMO DISK! Ask about our demo VIDEO

CIRCLE NO. 326

FREE 26 Page CATALOG with all styles and designs of matching instrument knobs illustrated.

Fax us your specs-we will 1 Fax you a quote...immedlately!

S5. Marion Road Columbus, OH 43207
Fax: 614/445-8224 Phone: 614/445-8433

New SMTransformer" for Telecommunications

For interconnect voice/ data modem terminals

- Meets FCC Part 68 • Ht. $0.47^{\prime \prime}$ • For dry circuits - Coupling and hybrid • Freq. resp: $300-3500 \mathrm{~Hz} \pm$ $0.5 \mathrm{~dB} \cdot-45$ to +7 dBm rating \cdot Dist. 0.5% max. - Return loss $26 \mathrm{dBm} \cdot$ Long. bal. $-60 \mathrm{~dB} \cdot 1500 \mathrm{~V}$ RMS hipot • Qty. price about $\$ 3.00$ - Custom designs available. Box 236, Valley Stream, NY 11582-0236. Tel: 516-561-6050; Fax: 516-561-1117.

CIRCLE NO. 327

SMD PICOFUSE ${ }^{\text {TM }}$ AVAILABLE FROM LITTELFUSE

New PICO SMD ${ }^{\text {M }}$ very fast-acting and SloBlo ${ }^{\text {surfacemount fuses }}$ are available from Littelfuse, Inc.
The PICO-SMDfuses
are available from $1 / 16$ ampere to 5 ampere in the fast-acting type and $3 / 8$ ampere to 5 ampere in the Slo-Blo type. The interrupting rating for the very fast-acting fuse is 50 ampere at 125 VAC and 300 ampere at 125 VDC , the Slo-Blo fuse is 50 ampere at 125 VAC and DC.

Recognized under the components program of Underwriters Laboratories and Certified by CSA, the fuses are supplied on 12 mm tape, 500 fuses per reel foruse with automatic placement equipment perEIA Standard 481-1.

Littelfuse inc.

Call or write Littelfuse, Inc., 800 E. Northwest Highway, Des Plaines, IL 60018, (708) 824-1188.

HIGH PERFORMANCE SUBMINIATURE COAX CABLE ASSEMBLIES

- Impedance controlled to the PC Board - EMI/RFI Shielded Meritec's economical Shielded Performance Interconnects (SPI ${ }^{\mathrm{TM}}$) are ideal for fast logic, dense package applications which require lownoise crosstalk and high impedance control.

For more information,
call Meritec at (216) 354-3148.

Where quality assures pefformance
CIRCLE NO. 331

SPICE SOFTWARE

CAE TOOLS FOR THE PC

From Schematic Entry, through SPICE Simulation, to Graphical Post Processing, only \$790
IsSPICE - Full Featured SPICE Circuit Simulation SpIceNet - Graphical Schematic Entry for SPICE INTUSCOPE - Waveform Display and Plotting PreSpice - Model Libraries, Monte Cario analysis SPICEMoD - SPICE Model generation from data sheets
P.O. Box 710
San Pedro, CA San Pedro, CA
$90733-0710$ FAX (213) 833-9658 CIRCLE NO. 334

PC/AT ${ }^{\text {TM }}$ COMPATIBILITY ON MULTIBUS
In 1989 our MAT286TM SBC brought PC-DOS to Multibus I. Since then no competitor has come close in terms of features, price, or technical support. We've added capabilities, such as 8 megabytes of onboard EPROM capacity, MATXSSD Solid-State Disk software, EMS 4.0, and low power CMOS components. Now we are announcing our new MATXSYSIO2 daughter-card with 16 bit VGA and LCD flat-panel interfaces, 1 1-1 interleave MFM/RLL ST506 hard-disk/floppy disk controller, and a PC/AT Bus short-card adaptor. And, yes, we are working on MAT386, the 386 -based Mutibus AT that will be compatible with the 286-
based standard. MAT286. ased standard. MAT286

Phone (408) 253-0250 for more information.
Single Board Solutions, Inc.
20045 Stevens Creek Blvd, Cupertino, CA 95014 PC/AT ${ }^{\text {TM }}$ IBM

CIRCLE NO. 337

Imagine if YOUR product could talk!
To find out how easy
it is to add speech output
to our own products, call for
your free V8600 dota book today!
 121 W Winessp Rd - Bothel, WA 98012 Europe - 0815390285 Fax: 0815588110 CIRCLE NO. 332

200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz), Timing and State - 200/100 MHz Max Sampling Rate (6 channel)
- Timing and State Simultanious on Same Probe
- 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL, or ECL Logic Threshold Levels
- 3 External Clocks and 11 Qualify Lines
- FREE Software Updates on 24 Hour BBS
\$799-LA12100 (100 MHz)
\$1299 - LA27100 (100 MHz) Price includes Card,
\$1899 - LA27200 (200 MHz)
UNIVERSAL PROGRAMMER
PAL
GAL
EPROM
EEPROM PROM
87xxx...
22V10

16Bit EPROMs FLASH EPROMs 5ns PALs 4 Meg EPROMs FREE software updates on BBS GANG PROGRAMMER
-4 32pin Sockets (8 Socket option) \$215 - 2716-27010 EPROMs

Call - (201) 994-6669
In
Link Computer Graphics, Inc.

PCB and SCHEMATIC C.A.D.

FAST Professional Quality Output at an Affordable Price
For fuil inio', write, fax, call or use Inquiry \#
REF: EDN, HARDING WAY, STIVES, HUNTINGD
REF: EDN, HARDNG WAY, ST.IVES, HUNTINGDON,
CAMBS,
$\begin{array}{ll}\text { Telephone: } & \text { Fax: } \\ \text { USA: 011-44-480-61778. } & \text { USA: }\end{array}$
USA: 011-44-480-61778. USA:011-44-480-494042 AMEX,VISA,

Intn::- +44-480-61778 | Intni:- +44-480-61778 | Intni:- + +44-480-494042 | MasterCar |
| :--- | :--- | :--- |
| UK :- 048061778 | UK :- 0480494042 | Welcome |

CIRCLE NO. 333
!!! NEW !! NEW !! NEW !!! 20 MHz single-board computer 4" \times 3" TDS 2020 FORTH controller or data-logger, based on CMOS Hitachi 16bit H8 $\mu \mathrm{P}$. On-board high-level easy FORTH language and assembler - no need for emulation! TDS9090 compatible, up to 512 K NVRAM, 45 K PROM. Attach keyboard, Icd, \mathbf{I}_{2} C peripherals. Built-in interrupts, multitasking, watchdog timer, editor and assembler. 33 I/O lines, two RS-232 ports. 6 - 16 volts $500 \mu \mathrm{~A}$ data-logging: 8-channel, 10-bit A/D, 6 ch D/A, date/time clock -- lowpower mode lasts one year on 9 v battery! Includes lots of ready-made software solutions. Program with PC. Many in use worldwide for machine control, data-logging, inspection, factory automation, robotics, remote monitoring, etc. Sale-or-return. - TDS 9092 now only $\$ 159$

CALL FOR DETAILS $\$ 299$ (25's) Saelig Company

European Tecfinology

tel: (716) 425-3753 fax: (716) 425-3835
CIRCLE NO. 336

GALAXY MICROCRAFT SYSTEMS CO., LTD. 7FL., NO. 25, LANE 23, RUI-AN ST., TAIPEI, TAIWAN, R.O.C. P.O.BOX 24-543 TAIPEI TEL: 886-2-7051622 FAX: 886-2-7016600

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

Create a DISKLESS PC ITS EASY...ITS SIMPLE... THERE'S NOTHING TO IT!! PROMDISK ${ }^{\text {mi }}$ III IBM PC DISK EMULATOR CARD IBM PC/XT/AT Compatible Mix EPROMs, EEROMs, SRAMs - Emulates up to 1.024 Mbyte Drive - Occupies 32K PC address space Phone: (619) 744-8087 FAX: (619) 744-9256 81 CIRCLE NO. 755 San Marcos, CA	A $3^{\prime \prime} \times 5^{\text {" }}$ Single Board Computer with FREE C Source Utilities! 30-Day Money-Back Guarantee! \qquad 40 digital I/O lines Over 40 FREE C source \qquad \square 8 KB or 32 KB RAM 32 KB or 64 KB EPROM \square \qquad \qquad CIRCLE NO. 756	40-PIN E/EPROM PROGRAMMER Lifetime S/W via BBS PILOT-144: Powerful PC-driven 40-pin programmer port interface means fast thru-put and no need to install high voltage cards inside your PC. Built-in power supply. Ugradable to support $875 x$ and $874 x$ 408-243-7000, 800-627-2456, Fax 408-736-2503 III) ADVIN SYSTEMS INC. CIRCLE NO. 757

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

DEVELOPERS' TOOLS

FEATURES: (T7000/T7100)

- On Board Power

80 C 88 CPU with $4.77 \mathrm{MHz} / 12 \mathrm{MHz}$ operation (H/W, S/W, Selectable)
Go Anywhere- Size and Low Pow
Board Size is $110 \mathrm{~mm} \times 200 \mathrm{~m}$
sleep mode.
Support CRT or LCD
brechy drives Mono or Colour CRT. or drives CG
640×200 Single Screen LCD pannel with 8 gray

- Built in Multi Functions

One printer port
FDC controller (1
One expansion sio

Iidolubue microtech Inc
3F. No. 7. LANE 50, SEC. 3 MAN KANG RD,
AIPEL. TAIWAN. R.O.C
TEL: 886-2-7861680/7859140/7859141
CIRCLE NO. 761

New Schematic and PCB Software
With support for extended and expanded memory, HiWIRE II can handle your most demanding schematic and PCB designs quickly and easily. The unique HiWIRE editor allows you to display and edit schematics and PCBs simultaneoously, using the same commands for each. HiWIRE II is \$995, and is guaranteed.

Wintek Corporation

1801 South St., Lafayette, IN 47904
(800) 742-6809 or (317) 448-1903

CIRCLE NO. 764

DEVELOPERS' TOOLS

STEP MOTOR CONTROL 27K steps/sec! 16 Million steps!
New CY545. Rates up to 27 K steps $/ \mathrm{sec}$, up to 16 million steps per single motion. Separately programmable start rate, accel/decel rate, and max rate. Pulse \& direction output. External jog mode and limit switch detection. Serial or parallel interface, LED/LCD \& Thumbwheel interface lines, and more. ASCII commands. Supports 64 K external memory. CMOS 40 -pin DIP. $\$ 75$ each ($\$ 25 / 1000$). Credit Cards OK.

Cybernetic Micro Systems

Box 3000, San Gregorio CA 94074 (415)726-3000 Tlx: 910-350-5842 CIRCLE NO. 762

PC BASED UNIVERSAL
DEVICE PROGRAMMER
\$695/895
: Program EEEPROMs. PALS, GALS, EPLDS, MICROs, BIPOLLARS. PEELS.s.
 - Uperadeable for virtually any future programmable devices up to t 4 p pins - Self subsisten operation No additional modules or plup-in adapier re - Commands include: FFil. Move, Insert. De lete, Search. ASCCI or HEX entry. - Friendly Menu-Driven interface Device selection by PIN and manufacturer - Prorramming algoritimiNormal, Inteli igent ISII, Quick Pulse Program - Veentiomengition periomerman an onmal \& worst case eperatine voltage.
 Technology, Motorola Hex, Intel Hex, Tektronix Hex, - Customer support via voice line, fax \& dedicated BBS. Full 1 year warranty. - Library updates can be received via fitional Lor Cictoverice Library. MC/VISA/AMEX

CIRCLE NO. 765

LEMO'S NEW CIRCULAR CONNECTOR CATALOG

LEMO's new cir cular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or
 mixed designs including signal, coaxial, triaxial, high voltage, fiber optic and fluidic/pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum or stainless steel.

(2) LENTVIFH: वunt

P.O. Box 11488, Santa Rosa, CA 95406 Phone (800) 444-LEMO, Fax 707/578-0869 CIRCLE NO. 760

- A 4K frame trace buffer with advanced searching capobilities.
- Hyperlinked On-line help guides you through the emulation process.
- iceMASTER connects eosily to your PC, requires no disossembly, or expansion
slots. Works on ony PC (DOS or OS/2), MicroChannel or EISA. Even loptops!
- Supports more than 50 different 8051 family derivatives. M68HC11 support will be available eorly in 1991
- Try iceMASTER risk free! Satisfoction Guaronteed or return for a full refund!* - RENTALS AVAILABLE! Ideal for consultonts and researchers!
- Call today for free demo disk and ask about a free

8051 Macro Assembler! (800) 638-2423

TMeraLink

- Wath 10 dide thid primed

CIRCLE NO. 763

Interactive/Real-Time

Analog Circuit Simulation

ECA-2 Electronic Circuit Analysis offers: - AC, DC, Transient, Fourier, and Temperature Analysis with Nominal, MonteCarlo and/or Worst-Case component values • Interactive or batch modes • Full nonlinear simulation - Sine, Pulse, PWL, SFFM, and Exponential generators • IBM PC/Mac • Multiple plots • On-line real time graphics - 2 to 50 times faster than SPICE - Over 500 nodes - Advanced component parameters - Component optimization sweeping • Full editing, built-in or ex ternal - New detailed 424 page manual

Call for FREE DEMO!
nuMn \qquad -【ЛЛ
Tatum Labs, Inc.
3917 Research Park Dr. B-1, Ann Arbor, MI 48108 313-663-8810
CIRCLE NO. 766

CIRCLE NO． 776

Protel Autotrax＂$\sqrt{\||||| |}$

Best PCB design solution for mixed Digital，Analog，and SMT boards Our NEW and POWERFIL Protel Autotrax ${ }^{\text {T＊}}$ is a fully integrated PCB layout system with automatic component placement and auto－ routing in a single working environment．Its latest features will definitely push the price／performance of mixed technology PCB designs to the highest level，boost your design productivity，and deliver your products to the marketplace faster than your competitors． －Integrated automatic component placement and autorouting －On－the－fly library components creation － $45^{\circ}, 90^{\circ}$ and curve tracks routing －Powerful user－definable Macros －Auto－panning －PostScript ${ }^{\text {T }}$ printing －Switchable Metric／Imperial grid －Intelligent Pad to Pad autorouting Automatic power／ground relief for SMD pads －Automatic Copper Pour leaves clearance for tracks \＆pads From schematic design，manual and automatic PCB design，Rip－up and Retry autorouting，to Gerber viewing and editing，we offer free tech and EMS support， 24 －hour BBS and 30 －day money back guarantee and our prices start at $\$ 395$
Free Evaluation Package
Toll Free：800－544－4186

Protel Technology，Inc
50 Airport Parkway，San Jose，CA 95110 Tel：408－437－7771 Fax：408－437－4913

CIRCLE NO． 779

WEBER

AS 168 Energy Limiting Circuit Breaker

－Superior Short Circuit Protection
－Selective Disconnection－No nuisance shutdown
－Easy Installation with Quick Connect Terminals， screw terminals，or DIN Rail Mounting
－Worldwide Approvals，VDE，UL，\＆CSA
－Single，Double，Triple，and four pole versions
－Current Ratings－ 0.5 to 50 Amp
－AC rating to 480 and $D C$ rating 120 Volts per pole
－Available with Switched Neutral，Auxiliary and Signal contacts
－Stock available in Connecticut
Contact：Inmark Corporation， 4 Byington Place Norwalk，CT 06850 Telephone：203－866－8474 Fax：203－866－0918

CIRCLE NO． 782

SOLUTIONS
IRONWOOD Electronics offers a comprehensive line of devices for your interconnect needs．We have hundreds of prototyping adaptors and sockets for PGA，QFP，PLCC LCC，PGA，ZIP，and many more packages．Our line of clips for probing all different sizes of the different pack－ ages also number in the hundreds．We also do custom designs quickly and inexpensively including SMT compo－ nents and tight spacing and supply the highest quality solutions．Call us for your interconnect needs．

IRONWOOD ELECTRONICS P．O．BOX 21151，ST．PAUL，MN 55121 （612）431－7025；FAX（612）432－8616 CIRCLE NO． 777

LOW COST

Data Aquisition Cards for PC／XT／AT

12 Bit A／D \＆D／A［PCL711S］ $\$ 295$
 －Digital 1／O： 16 In／Out（TTLcompatible）；External Wiring Terminal Board in 12 Bit A／D \＆D／A［PCL812］\＄395
－AD converter： 16 single ended inputs；Uses AD574；Conversion time less
than 25 sec； Built－in program mable pacer；Input Ranges： $\pm 10 \mathrm{~V}, \pm \mathrm{V}, \pm 1 \mathrm{~V}$ ． －Ahan 25 s．sece；Builting programmable pacer；Input Ranges：$: 10 \mathrm{~V}$
－D／A converter： 2 channels； 12 bit resolution；Output Range $0-5 \mathrm{~V}$
 Fast 12 Bit A／D／A［PCL718］\＄795
－AD onverter： 16 single ended or 8 differential channels； 12 bits resolution；
Programmable scan rate：Built－in Interrupt and DMA control circuitry． Conversion speed $\mathbf{6 0 , 0 0 0} \mathrm{smpls} / \mathrm{sec}$（standard）， $100,000 \mathrm{smpls} / \mathrm{sec}$（optional）． －Input Ranges：Bipolar： $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm .5 \mathrm{~V} ;$ U Unipolar： $10,5,2,1 \mathrm{~V}$ DA converter： 2 channels；Resolution： 12 bits；Settling time： 5μ sec，$\pm 5 \mathrm{~V}$ －Software：Utility software for BASIC ：ProurckBASIC included．Sample prgm． 6 Channel 12 bit D／A［PCL726］\＄495 －Setting time： 70μ S．Linearity：$\pm 1 / 2$ bii．Voltage output drive capacity：$\pm 5 \mathrm{~mA}$ ． －Digita I／O： 16 digital input and 16 digital outputs（TTL compatible）．
 CIRCLE NO． 780

Instant

 Microcontroller

Instant C Programming

Don＇t use amicroprocessor，use a SmartBlock ${ }^{\text {™ }}$ microcontroller module to build your custom controller．Our low cost Dynamic C $\mathrm{C}^{\text {m }}$ makes programming a snap． 3.5×2.5 inch module includes microprocessor，memory，time／date clock，eeprom，watchdog，serial ports and more． As low as $\$ 59$ in quantity．The efficiency of custom design without the headaches

Z－World Engineering

1340 Covell Blvd．，Davis，CA 95616 USA
Tel：（916）753－3722
Regular Fax：（916）753－5141
Automatic Fax：（916）－753－0618
（Call from your fax，hear computer voice，use touchtone dial to request desired data sheets．）

PLCC LoClip－PLCC Probe

NEWPRODUCT
The PLCC－LoClipXX line from Ironwood is a new product line allowing probing of surface mount PLCC＇s at a fraction of size of other clips．The U and L ver．have right angle leads（cable connect or probing）．Device heights of $0.75^{\prime \prime}, 0.57^{\prime \prime}$ ，and $0.45^{\prime \prime}$ for S, U ，and L boards respectively enable probing of boards in backpanels．Interdevice spacing of 0.10 ＂allowed．PLCC＇s from 24 to 84 pins supported． Kits of 10 with different sizes／carrying case available at substantial discount．

IRONWOOD ELECTRONICS

P．O．BOX 21151，ST．PAUL，MN 55121 （612）431－7025

CIRCLE NO． 778
WRITE OR CALL FOR SAMPLE Low Cost Tempilabel ${ }^{\circ}$ Temperature Monitor．

How to put a low cost temperature gauge on everything．

Label＇s center spot turns black when surface to which it is affixed reaches specified temperature．Single－or multi－spot labels with pre－determined increment of ratings： $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ to $600^{\circ} \mathrm{F}\left(316^{\circ} \mathrm{C}\right) .1 \%$ accuracy guaranteed． 1 thru 8 ratings on each monitor with various increments．Self－adhesive，removable． TEMPIL，Big Three Industries，Inc． 2901 Hamilton Blvd．，South Plainfield，NJ 07080 Phone：（201）757－8300 Telex： 138662

CIRCLE NO． 781
Telecom Solutions from Teltone
Call Progress Tone Detectors

Tone detector ICs for all telecom products．5－volt， 3.58 MHz time base，tri－statable outputs．
－M－980 band pass detector from 340 Hz to 620 Hz ．Ideal for detecting non－precise call progress tones
－M－981 provides precise detection of 350,400 440 ，and 480 Hz ．22－pin．
－M－982 provides precise detection of 350,440 ， 480 ，and 620 Hz ． 22 －pin

1－800－426－3926
Or：206－487－1515 Fax：206－487－2288

をELTロNE

INNOVATING SOLUTIONS
In Telecom Interface Components
Teltone Corporation，22121－20th Avenue SE，Bothell，WA 98021

CIRCLE NO． 783

If you want to slash fest set-up and debug ${ }^{\text {IIme, }}$ click here.

OMNILAB" INTEGRATES SIX INSTRUMENTS INTO A POWERFUL TEST PROGRAMMING ENVIRONMENT.

Develop complete functional test set-ups in $1 / 10$ th the time with OmniLab - the PC-based Programmable Test Station that integrates six test instruments into one fast and easy programming environment. Quickly develop automated test setups for pilot production runs or manufacturing tests.

lines of test program code with a few mouse clicks. Interactive software eliminates the editing, compiling, linking and most debugging tasks. OmniMacros" ${ }^{\text {w }}$ speed the entire process by recording test set-ups on-the-fly.

Save time troubleshooting hard-to-find faults, too. Mixed A/D Triggering ${ }^{\text {wx }}$ and time correlated 100 MHz analog and digital displays easily capture elusive bugs and mixed mode problems that stump other instruments

What's more, OmniLab pleases both design and manufacturing managers. It's a snap to reconfigure. Designers can zip through their R\&D test chores and manufacturing won't tie up expensive ATE equipment for prototype production runs.

Thanks to convenient pull-down menus and an intuitive graphical user interface, training is fast and easy.

If you're like most test engineers, up to 75% of your set-up time is spent developing programs. OmniLab cuts that job down to size.

FREE KIT-FREE VIDEO
Before you start another test set-up, call for your FREE Test Express Kit and video tutorial. See how easy it is to lef OmniLab slash set-up and debug time.

Call: 800/729-7700

Or, fax your request to 415/327-9881

드ㄹㅡㅡㄹㅡㅡㄹㅡㅡ르ㄹㅡㅡㄹ
 I NSTRUMENTS

Orion Instruments, Inc. 180 Independence Drive Menlo Park, CA 94025 415/327-8800
We Are At GE Medioal Systems there is a unique spirit. It is the feeling that comes when you are a true global leader and innovator in state-of-the-art medical diagnostic systems.
Our people are püit of that spirit. Smart. Proud. Thinkers and Doers working with an elite group in the evolution of diagnostic imaging systems.

[^14]GE Medical Systems

CAREER OPPORTUNITIES

1991 Recruitment Editorial Calendar

Issue	Issue Date	Ad Deadline	Editorial Emphasis
Magazine Edition	June 20	May 30	Software, ICs \& Semiconductors, High Speed Memory Technology • Computer Bus Boards
News Edition	June 27	June 7	ICs \& Semiconductors, RISC**, Regional Profile: So. California**
Magazine Edition	July 4	June 13	Product Showcase-Volume I Interconnects, ICs \& Semiconductors - Neural Networks • Power Sources, Software
Magazine Edition	July 18	June 26	Product Showcase-Volume II • Test \& Measurement, Computer Peripherals - Components, CAE/ASICs
News Edition	July 25	July 5	ICs \& Semiconductors, Peripherals**, Regional Profile: Massachusetts**
Magazine Edition	Aug. 5	July 11	CAE \cdot ASICs, Test \& Measurement \bullet Computers \& Peripherals \bullet Technical Article Database
News Edition	Aug. 8	July 19	CAE, Datacom**
Magazine Edition	Aug. 19	July 25	Military Electronics Special Issue, Image Processing • Ultra High Speed ICs/ASICs • Computer Peripherals, Software •
News Edition	Aug. 22	Aug. 2	Peripherals/Components, Test \& Measurement**, Regional Profile: Idaho, Colorado, Utah**
Magazine Edition	Sept. 2	Aug. 8	ASICs Special Issue, Semicustom ICs • CAE, Packaging •ICs \& Semiconductors Data Converters
News Edition	Sept. 5	Aug. 16	Military Electronics Special Issue, Computer Architectures, Defense Electronics**
Magazine Edition	Sept. 16	Aug. 21	DSP/Microprocessors, ICs \& Semiconductors, CAE/ASICs, Environmental Engineering - Software
News Edition	Sept. 19	Aug. 29	RISC/ICs, Computers** Regional Profile: Florida**
Magazine Edition	Oct. 1	Sept. 5	Computers \& Peripherals/Networks, DSP Chip Directory •ICs \& Semiconductors/Memory Technology, Instrumentation
News Edition	Oct. 3	Sept. 13	ICs \& Semiconductors, Multimedia**
Magazine Edition	Oct. 10	Sept. 19	Test \& Measurement Special Issue, Oscilloscopes, VXI Board Directory \bullet CAE/ASICs, Sensors \& Transducers \bullet
News Edition	Oct. 17	Sept. 27	ATE/Board \& IC Testing, Artificial Intelligence**, Regional Profile: New Mexico \& Arizona**
Magazine Edition	Oct. 24	Oct. 3	Telecommunications ICs, Graphics \& Video Circuits, Computers \& Peripherals, Software, Wescon Preview Issue

Call today for information
on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

ADVANCED MICRO DEVICES IS COMIN' THROUGH IN TEXAS!

AMD is a billion dollar high technology company with a solid business plan in place to take us through the '90s and beyond. EPROMs, microprocessors and PLDs will provide the volume. And we're focused on the leading edge technologies driving the fourth wave of computing-networked computers.

Manager Quality Assurance

Requires 5+ years' related experience in semiconductor fabrication and test. Will manage QA organization which includes incoming materials, quality audit, supplier relationships and enhancement of quality system. Management experience, data analysis and interpretation skill, as well as effective problem solving skills are a must.

Process Engineers

BS or MS in Electrical Engineering with 2-3 years' experience in photolithography with ASM steppers is desired. Extensive background in positive resist/coat and development using SQC is a plus.

Sr. Mask Designers

Your background must include CMOS IC layout experience with a heavy emphasis/exposure to CAD tools. Must have hands on experience with place \& route tools, LVS, chip planning, die size estimating and other advanced layout functions. Project leadership experience as well as UNIX, "C" and Mentor experience are preferred.

Mgr., Quality and Reliability Engineering

Requires 5+ years' experience in managing quality and reliability in IC wafer fabs and product development departments. Will design new systems, recommend equipment purchases and develop/implement plans to address areas for improvement. BS/MS degree required.

Sr. Quality and Reliability Engineers

Requires 3+ years' experience in statistical design of experiments and data analysis. Will determine and implement new ways in which process and product reliability can be evaluated. Will cover all aspects of manufacturing from incoming material to customer returns. BS degree minimum.

Device Analysis Engineer

Requires experience in failure analysis, circuit analysis, process technology, testing, microprobing and device processing. Must understand circuit schematics, test dialogs and circuit layouts. Technical bachelors degree minimum.

We are an equal opportunity employer. Trademarks are registered to their respective companies.

Microprocessor Design/Development Engineer

Requires systems/logic VLSI design experience of 32-bit microprocessors. Will design from product definition through production transfer. Product definition and design methodology experience a plus. BS/MS degree required.

Senior Process Technicians

An Associates degree with a minimum of 2 years' experience in sustaining a photolithography line is required. Applicants must demonstrate a working knowledge of steppers, positive resist coat development tracks. In addition, experience in the following areas is also desired: ASM Steppers, Perkin-Elmer Aligners, SVG \& SSI Coat and Develop Tracks, SPC/SQC-on all of above data collection using computer statistical software.

Equipment Maintenance Technicians

Requires an Associates degree with $2+$ years' experience working in a wafer fab environment. Familiarity with diffusion, thin film, plasma etch and/or photolithography equipment essential.

Sr. Operations Analyst

Requirements include extensive experience with IBM 3090 Series mainframe computer running the MVS Operating System. Must have expertise with JCL, JES2, Tape Management Subsystems, DASD Management, Batch Processing and Network Management. Will be responsible for monitoring and insuring continuous operation of our IBM/MVS Computer Environment and contribute to various operational projects. BS degree minimum.
Qualified applicants should send a resume to: Advanced Micro Devices, MS-556, 5204 E. Ben White Blvd., Austin, Texas 78741. For process \& equipment engineering positions, forward resume to Ed Moore; and for all other openings, forward resume to Paul Maack. You may also call 1-(800) 531-5202 or FAX your resume to (512) 462-5108.

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Servicess, LItd. has formed the EDN Databank. What is the Databank? it is a computerized system of matching qualifiled candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutaly free. There are no fees or charges.
- The computer never forgets. When your type of job comes up. It remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and if's affililated offices.
- Your Identity is protected. Your resume is carafully screened to be sure it will not be sent to your company or parent organization.
PRESENT OR MOST RECENT EMPLOYER
Parent Company
Your division or subsidiary:
Location (City, State)
Business Phone if O.K. to use: - Your background and carroer objectivas will pariodically be reviewed with you by ; PSL professional placement person.
We hope you're happy in your current position. At the same time. chancsas are there is an Idaal job you'd prefier if you knew about it That's why it makes sense for you to register with the EDN Databank. To do so. Just mall the completed form below, along with a copy of your rasume, to: Placement Servicas, Lto., Inc.
\qquad

IDENTITY

Professional Profile

Name \qquad
City State: Zip: \qquad

EDUCATION Degrees (List) \qquad EXPERIENCE Tre: Tre: Duties and Accomplishments: Industry of Current Employer:
\qquad

Reason for Change:
PREVIOUS POSITION:
Job Titie: \qquad From: \qquad To: \qquad City: \qquad
Division: Type of Industry: \qquad
\qquad Salary: State: Duties and Accomplishments:
COMPENSATION/PERSONAL INFORMATION

Years Experience	Base Salary	Commission	Bonus	Total Compensation		Asking Compensation		Min. Compensation
Date Available	I Will Traval			\square I own my home. How long?				net my home/apt. \square
\square Employed	\square Self-Employed	\square Unemployed		\square Married	\square Single		Height	Weight
Level of Security Clearance		\square U.S. Citizen	\square Non-U.S. Citizen		My identity may be released to: \square Any employerAll but present employer			
\square WILL RELOCATE	\square WIL	T RELOCAT		OTHER				

If somebody's ripped off your free disk, send us this coupon today.

P-CAD delivers the power, flexibility and speed you need to get your next product to market faster. Because P-CAD gives you the advanced technology, sophisticated tools, and robust functionality needed to quickly complete and verify your PCB designs. Over 18,000 users worldwide design their future products today with P-CAD. To see P-CAD on your own PC or UNIX ${ }^{\circledR}$-based technical workstation, call toll-free today or complete and mail the coupon. We'll send you the disk, absolutely free!

-aser

1-800-255-5710

World Class PCB CAD Productivity

AnalogDevices can in needs, no matter what

Whether your market is a few thousand or a few million,
there's one customer demand for your product that'll
always remain high - the demand for high performance.

The best way to meet this demand is to follow what
the leaders in the medical, military and instrumentation markets have been doing for 25 years, and what the leaders in
consumer electronics have been doing for several years now. Call Analog Devices.
These companies call us because we offer a complete line of high-performance linear, digital signal processing and mixed-signal components. ICs that allow them to achieve higher levels of system integration, greater reliability, and
ret your mixed.signal
ilume youre dealingin.

better performance in their products.

And as a global operation, we're able to respond
to calls from any corner of the earth. In fact, international
sales account for half of our $\$ 450$ million in revenues. And
three of the top five Japanese electronics companies rely on us for their mixed-signal needs.
So call 1-800-262-5643 and request a free copy of our recent white paper on Mixed-Signal Technology.

You'll see that no matter how big or small your mixed-signal needs are,we're in the best position to help.

EDN's INTERNATIONAL ADVERTISERS INDEX

Abbott Transistor Laboratories 101	Huntsville Microsystems Inc.
ACCEL Technologies Inc 136	Hwang Piin 208
Advanced Circuit Technology 180	HyperLynx 207
Advanced Micro Devices 8-9	IC Sensors 63
Advin Systems 208	IEE 133
Airpax Corp 119	Incredible Tech 208
American Advantech 208	Inmark 211
American Automation 154	Integrated Device Technology Inc 74
American Reliance 207	Intergraph 166
AMP 54-55	Intermetrics Inc 183
Amplifier Research 185	International Rectifier C3
Ampro Computers Inc 38-39	Introl Corp 184
Analog Devices Inc 218-219	Intusoft 206
Analogic Corp 135	Ironwood 211
Argosy Technology Co Ltd 207	ISdata 66
Autec Power Systems 193	ITT Pomona Electronics** 40
B\&C Microsystems 209, 211	Jomex 207
Bopla Enclosures 46	Kepco Inc 120-121
Bourns 161	KMS Advanced Products 53
BP Microsystems 212	Knuerr AG 87
Bruel \& Kjaer Instruments** 172E	Kokusai Electric 84
Buckeye Stamping Co 205	Leasametric Inc 178
CAD Software Inc 171	Lemo USA Inc 170, 209
Cad TEAM 220	Linear Technology Corp 155-156
Cadre Technologies 60	Link Computer Graphics Inc 206
Capilano Computer Systems Inc . . . 210	Littelfuse 205
Capital Equipment Corp 118, 210	Logic Devices 72
Carroll Touch Inc 122	LSI Logic Corp 162-163
Cherry Electrical Products Inc 204	3M Co 116, 187
Cirris Logic 175	Macrolink Inc 205
C \& K Components Inc 166	MathSoft Inc 191
Computer Dynamics 186, 207	MCSI 208
Computerwise Inc 211	Meritec 206
Condor 129	MetaLink Corp 209
Connor Peripherals 14-15	Micro Crystal 208
Cybernetic Micro Systems Inc 209	Micron Technology 117
Cypress Semiconductor 6	MicroSim Corp 19
Dale Electronics Inc 24, 191	MicroStar Labs 49
Data I/O Corp 52A-P, C4	Microtran Co Inc 205
Datel 67	Mini-Circuits Laboratories 22-23,
Delker 86	30-31, 159, 222
Deltron Inc 172A-D	Monolithic Sensors 202
Design Automation Conference 168	Murrietta Circuits 172
Design Computation Inc 212	National Instruments
Dexter Magnetics 52	National Semiconductor Corp . . . 12-13,
Duracell 164-165	40, 106
Eagle Picher 192	NCI 212
Echelon 82-83	NEC Electronics C2
EG\&G Wakefield Engineering Inc . . . 180	Network Research 207
Elco Corp 167	Nichicon Corp 64-65
Electronic Measurements Inc 115	Nohau Corp 112, 205
Emulation Technology Inc 210	Noise Laboratory Co 208
Epson America Inc 179	Noritake Electronics Inc 203
Ericsson Components 44	Nova Sensor 170
Fairchild Defense 210	Nova Tran Corp 176
Fenner Industrial 66	Number One Systems Ltd 206
Force Computers Inc 28-29	OrCAD Systems Corp 113
Frequency Devices 174	Orion Instruments 213
Galaxy Microcraft 206	Oyster Terminals 172F
GCOM 212	Pacific Hybrid Microelectronics 89
General Devices 205	P-Cad 217
Genrad 181	Pearson 178
Global PMX Co Ltd 210	Pentica Systems 81
Grayhill Inc 52	Pico 118, 195
Guradian Electric 202	Pillar Industries 182
Harting Electronics 169	Pioneer 77
Hewlett-Packard Co 4, 16, 131	Power General 191
Hughes Aircraft Co/Industrial	Protel Tech 211
Products 42-43	Qua Tech Inc 21

Racal-Redac 149
Raltron 184
Rapid Systems 182
Rayovac 27
RC Systems 206
RLC Enterprises 208
Rockwell 145
Rogers Corp 207, 210
Saelig Co 206
Samsung Semiconductor 56-57
Samtec Inc 110
SAT Solder Absorbing Tech 210
SBE 58
SeaLevel Systems 193
Seiko Instruments 188-190
Selco Products Inc 207
Siliconix Inc 10-1
Single Board Solutions 206
SL Waber 172
Softaid Inc 207
Sony 153
Spectrum Software 32
Sprague Electric Co 99
Sprague Goodman 26
Stanford Research Systems Inc 147
System General 210
Systems Manufacturing Tech 195
Tatum Labs 209
T-Cubed Systems Inc 212
TDK Corp of America 201
Tek 34-37, 68-7
Telebyte Technology Inc 210
Telecom Analysis Systems 86
Teltone Corp 21
Tempil Div 211
Teradyne Inc 24-25
Texas Instruments Inc 102-105
Tidalwave Microtech 209
Todd Products Corp 137-138
Transera 114
Tribal Microsystems 209
Tri-L Data Systems Inc 208
Valid Logic Systems Inc 79
Versatec 51
Vicor 151
Viewlogic Systems Inc 197
Volgen America 180
Wall Industries* 202
Wavetek 3
Westcor 97
WH Brady 80
Wintek Corp 209
Xeltek 212
Xerox Engineering Systems/Versatec Products 51
Ziatech Corp 1
Zilog Inc 88
Z-World 211
Recruitment Advertising 214-216
*Advertiser in US edition
${ }^{* *}$ Advertiser in International edition
This index is provided as an additional service. The publishe
does not assume any liability for errors or omissions.

Truly incredible ... a superfast 3 nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR
nsertion loss, typ (dB) solation, $\operatorname{typ}(\mathrm{dB})^{\star}$ 1 dB compression, typ (dBm@ in port) RF input, max dBm (no damage) VSWR (on), typ Video breakthrough
to RF, typ (mV p-p) Rise/Fall time, typ (nsec)

dc-	$500-$	$2000-$
500 MHz	2000 MHz	5000 MHz
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
	1.4	
\square	30	

$\star_{\text {typ }}$ isolation at 5 MHz is 80 dB and decreases
$5 \mathrm{~dB} /$ octave from $5-1000 \mathrm{MHz}$

IGBTWWHThoutid aceof Gompetion.

IRannounces Ultra FastIGBTs: our 600V power transistors that switch faster and run cooler than any you've ever used.

Forgetaboutbipolar.Putthese
breakthrough devices in your highvoltage, high-current, medium-frequency applications and get performance unparalleled for the price.

Which should come as no surprise. IR IGBTs build on the same proprietary technology that made IR's HEXFETs ${ }^{\text {s }}$ world leaders.

Call I (2|3) 640-6534 and ask aboutStandard, Fast or UltraFast IGBTs, optimized for your operating frequency. And available from IOA to 70A, in commercial or hi-rel packages.

We'll be happy to arrange a screening.

And Now. Just one thing stands between you and your "hot" new design: a device programmer that can handle it. That's why the UniSite ${ }^{\text {T1 }}$ Universal Programmer is the designer's first choice.

UniSite is always first to support the latest devices like the Altera Max, AMD MACH, ${ }^{\text {,Tx }}$ and the newest FPGAs. It also supports more
packages-including PLCCs and hat UniSite is designed for the future. Data $\mathrm{I} / \mathrm{O}^{\text {® }}$ s universal pin-driver technology eliminates pinout adapters, for single-site programming of each device type. And its new PinSite ${ }^{\text {TMM }}$ programming module uses Data I/O's new Universal Package System, ${ }^{\text {Tu }}$ to support all surface-mount packages from one site.

Adding device support is easy too, with UniSite's update diskettes. They're released quarterly, so you'll always have support for the latest devices - first.

FREE Programming Tutorial. For a FREE copy of our programming technology tutorial and more information about UniSite, call now.

1-800-247-5700

The Personal Silicon Experts

Corporation

[^0]: EDN* (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN ${ }^{\text {is }}$ a registered trademark dent/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN is a registered trademark
 of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company,
 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO $80206-5800$ and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\text {© }}$, PO Box 173377 , Denver, CO 80217-3377. EDN ${ }^{\circ}$ copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$119.95/year; Canada/Mexico, \$169.95/year; all other nations, $\$ 209.95 / y e a r$ for surface mail and $\$ 329.95 / y e a r$ for air mail. Single copies are available for $\$ 15$. Please address al subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Home Furnishings \square and Interior Design. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning

[^2]: Pioneering Solutions for Embedded Control

[^3]:

[^4]: * Nominal value for a $60-\mathrm{cm}$ length of fiber.

[^5]: Note: All tools offer schematic, Boolean, truth-table, and state-machine design entry.

[^6]: Specifying a PFC supply doesn't mean you necessarily have to choose a look-alike product. Deltron's Moduflex series uses modular construction to accomplish twin objectives: The power density is very high-as high as $5 \mathrm{~W} / \mathrm{in}^{3}{ }^{3}$-and the firm quotes rapid delivery on custom multi-ple-output units.

[^7]: ${ }^{\text {TM }}$ MegaChip is a trademark of Texas Instruments Incorporated. Action Logic and Activator are trademarks of Actel Corporation.
 ${ }^{(}$® MS-DOS is a registered trademark of Microsoft Corporation. (c) 1991 TI

[^8]: Australia (02) 654 1873, Austria (0222) 3876 38, Benelux +31 1858-16133, Canada (514) 689-5889, Denmark (42) 6581 11, Finland $90-452$ 1255, France (01)-69 4128 01, Great Britain 0962-73 3140 , Hungary $01-1372182$, Israel (03) 4848 32, Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portugal (01) 8150 454, Sweden, Norway (040) 9224 25, Singapore (065) 284-6077, Spain (93) 217 2340, Switzerland (01) 7404105 , Taiwan (02) 7640215, Thailand (02) 281-9596, West Germany 08131-25083, Yugoslavia 061-57 1949.

[^9]: 3M Electrical Specialties Division
 PO Box 2963
 Austin, TX 78769-2963

[^10]: Common Stock Traded on NASDAQ under "VICR"

[^11]: Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

[^12]: Multi-Channel Filter for Data Acquisition Systems

[^13]: EPSON
 Component Sales Department Telephone: 213/787-6300

[^14]: We Need
 SOFIWARE ENGINEERING MANAGER
 Lead the development of real-time software for diagnostic imaging systems, using computer aided tools and structured design methodology.
 Requires: BS/MS EE, CE and experience managing software development for large-scale real-time systems.

 ## PROJECT ENGINEER - EMI

 Develop design guidelines/tests for diagnostic imaging systems to meet international regulatory requirements for EMI/EMC; define project tasks and schedules; track progress.
 Requires: BS/MS EE, ME and EMI, electronicpackaging/power grounding/cabling design experience, domestic/international regulatory requirements knowledge.

 ## PERFORMANCE FEEDBACK

 ## PROJECT LEADER

 Design and implement product performance feedback process, including a cause and effect failure analysis mechanism and associated tools.
 Requires: BS/MS EE, CS, ME, project leadership background, and quality data analysis, program planning and design or manufacturing experience.

 ## SOFTWARE SYSTEMS ENGINEER

 Specify and develop software for applications/ data acquisition/display or diagnostics.
 Requires: BS/MS EE, CS and real-time/scientific software design experience, including ' C ' and Unix.

 ## SOFTWARE DEVELOPMENT ENGINEER

 Develop X-Ray product applications/diagnostics/ calibration software and participate in crossfunctional designs/reviews.
 Requires: BS/MS EE, CS and structured software development, PL/M86 and INTEL microprocessor experience, digital hardware knowledge.

 ## ELECTRICAL DEVELOPMENT

 ENGINEERDesign complex circuit boards encompassing low signal analog control, position and velocity feedback servos and phase lock loop circuitry.
 Requires: BS/MS EE and experience in analog control systems design and development.

 GE's highly competitive salary and benefits befit an industry leader. Please send resume in strict confidence to: JMB, GE Medical Systems, P.O. Box 414, W-407, Milwaukee, WI 53201. Replies will be made, within 20 days, to candidates of interest.

