

SPECIAL ISSUE
Communications Technology
CAE tools help cure transmission-line woes pg 47 Fiber-optic transceivers pg 61 Real-time programming series-Part 11
pg 97

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Special Report: ISDN links product-developmẹ́nt parties concurrently pg 80

Count On IDT

The R3001 RISController ${ }^{\text {m }}$:

 The Embedded Processing SolutionThe R3001 is the first derivative of the R3000 processor designed specifically for embedded control applications. Compared to the Intel 960 and AMD 29 K processors, the R3001 is the most cost-effective solution for these applications - we have the data to prove it! Call and ask for KIT CODE 0091A to get an R3001 Performance Comparison Report.

FCT-T Logic: Fastest Speed/

 Lowest Ground Bounce

IDT's FCT-T Logic Family is the fastest logic family available and has the lowest ground bounce-up to 40% less than previous FCT devices! The FCT-T family provides direct TTL logic compatibility and is available in FCT, FCT-AT, and FCT-CT speeds. Call today for KIT CODE 0091 C and get a copy of the High-Speed CMOS
Logic Design Guide.

IDT Subsystem Modules:

Building Blocks for the '90s

IDT offers a complete line of board-level subsystem products, including cache memory, shared-port memory, writable control store, RISC CPU, high integration modules, and custom designs for specific applications. Call today for KIT CODE $0091 E$ and receive technical data and a free IDT puzzle!

RISController, BiCEMOS, and SyncFIFO are trademarks of Integrated Device Technology; Inc The IDT logo is a registered trademark of Integrated Device Technology, Inc.

Contact us today to receive data sheets and other design information on IDT's products.

12ns Cache Tag SRAMs: Wait No Longer

IDT's cache tag SRAMs have the features you want to design in: single-pin block reset, totem-pole match output, 4 K and 8 K depths, industry standard pinouts, and an on-board comparator to simplify design. Call and ask for KIT CODE 0091 F to get free samples of the IDT6178 cache tag.

When cost-effective performance counts

MILITARY TRIMMERS from the Techno Division include broad MIL qualification to RT24, 26, 27: RTR24: RJ24, 26 and RJR24, 26. Techno RJ24 and RJR24 trimmers offer you 25 turns for precision adjusting, while the RJ26 and RJR26 offer 22 turns. They have zero backlash and offer a monolithic clutch In addition, Techno offers $1 / 4^{\prime \prime}$ and $3 / 8^{\prime \prime}$ multiturn trimmers with a TCR of $\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ for precision applications. All Established Reliability trimmers meet the requirements of MIL-STD-202. Method 208. Contact: Techno Division, Dale Electronics, Inc 7803 Lemona Avenue, Van Nuys, California 91405-1139 Phone (818) 781-1642.

Dale Can.

Add trimmers to the list of ways Dale ${ }^{\circledR}$ can help keep your project under budget and on-time. We offer immediate interchangeability with models you're using now. Cermet, wirewound. Military, industrial, commercial. Square, round rectangular. Surface mount and through-hole. Discover how Dale trimmers can end your search for multiple suppliers. More than ever we're your 1 -stop source for resistive components - always ready to match your delivery schedule from factory or distributor stock. Call today.

COMMERCIAL TRIMMERS include Surface mount: Thick film chips (.2W) plus .197" (.2W) and $1 / 4^{\prime \prime}(.25 \mathrm{~W})$ square cermet styles. Through-hole cermet styles include: $276^{\prime \prime}(5 \mathrm{~W})$ round $1 / 4^{\prime \prime}$ (.25W) $9 / 32^{\prime \prime}(.5 \mathrm{~W})$ and $3 / 8^{\prime \prime}(.5 \mathrm{~W})$ square cermet Rectangular: $3 / 4^{\prime \prime}(.75 \mathrm{~W}$) wirewound
For more information contact: Dale Electronics, Inc. 1155 West 23rd Street, Tempe, Arizona 85282-1883 Phone (602) 967-7874.

Now, find errors fast, with a portable 1 GSa/s scope that gets right to the point.

Abstract

At $\$ \mathbf{1 0 , 9 5 0}$ *, you won't find a better value in a digitizing scope.

When you need to troubleshoot and debug digital designs fast, you can't afford to miss a thing. And now, you don't have to. The HP 54510A looks at a billion samples a second with a timequalified pattern triggering and an infinite persistence display to pinpoint rare events and elusive glitches the instant they happen.

You don't have to stick around to watch, either. The HP 54510A has 8 k of memory per channel to capture and store single events. So, you can go back and get all the details you need-with razor-sharp, 8-bit resolutionand track the problem to its source. And to point you to the right solution, the HP 54510A gives you 17 pulse-parameter measurements, with better horizontal and vertical accuracy than the Tek DSA 602, at onethird of the cost.

So, if you're looking for a solution to high-speed troubleshooting, call 1-800-752-0900**.
Ask for Ext. 1902, and we'll send you an application note on the HP 54510A that shows you how to find faults fast.
*U.S. price only.
**In Canada call 1-800-387-3867, Dept. 423.
There is a better way.

up to 35 dB 10 to 1000 MHz ony $\$ 5995$

TOAT-R512 Accuracy		TOAT-124		TOAT-3610		TOAT-51020	
		Accu (dB)	$\begin{aligned} & \mathrm{acy} \\ & (+/-\mathrm{dB}) \end{aligned}$		$(+/-d B)$	Acc (dB)	$(+/-d B)$
0.5	0.12	1.0	0.2	3.0	0.3	5.0	0.3
1.0	0.2	2.0	0.2	6.0	0.3	10.0	0.3
1.5	0.32	3.0	0.4	9.0	0.6	15.0	0.6
2.0	0.2	4.0	0.3	10.0	0.3	20.0	0.4
2.5	0.32	5.0	0.5	13.0	0.6	25.0	0.7
3.0	0.4	6.0	0.5	16.0	0.6	30.0	0.7
3.5	0.52	7.0	0.7	19.0	0.9	35.0	1.0

Now...precision TTL-controlled attenuators accurate over 10 to 1000 MHz and -55 to $+100^{\circ} \mathrm{C}$. Four models are available in the new TOAT-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels (see chart). Cascade all four models for up to 64.5 dB control in 0.5 dB steps. Custom values available on request. The 50 -ohm TOAT-series performs with $6 \mu \mathrm{sec}$ switching speed

Truly incredible ... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR

Insertion loss, typ (dB) Isolation, $\operatorname{typ}(\mathrm{dB})^{\text {* }}$ 1 dB compression, typ (dBm@ in port) RF input, max dBm (no damage)
VSWR (on), typ
Video breakthrough
to RF, typ ($\mathrm{mV} \mathrm{p}-\mathrm{p}$) Rise/Fall time, typ (nsec)

dc-	$500-$	$2000-$
500 MHz	2000 MHz	5000 MHz
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
	1.4	
\square	30	
	3.0	

$\star_{\text {typ }}$ isolation at 5 MHz is 80 dB and decreases
5 dB /octave from $5-1000 \mathrm{MHz}$

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

On the cover: Using existing telephone lines, the ISDN (Integrated Services Digital Network) lets marketing, design, test, and manufacturing teams merge their efforts simultaneously. See the Special Report on pg 80. (Photo courtesy Philips Components)

SPECIAL ISSUE:
 COMMUNICATIONS TECHNOLOGY

SPECIAL REPORT

ISDN-based concurrent design

High-bandwidth, all-digital telephone lines will let you develop products using simultaneous inputs from everyone with an interest in the product's success.-Michael C Markowitz, Associate Editor

DESIGN FEATURES

Real-time programming-Part 11
Earlier parts of this series described several types of task coordination. This final installment classifies the various methods, diagrams the relationships among them, and provides guidelines for choosing methods that suit your requirements.-David L Ripps, Industrial Programming Inc

Spice simulations use controlled sources to model NTSC signals

You can use Spice-variety circuit-simulation software to model NTSC video signals. You can then use these models to design and test video circuits.-Anthony M Radice, General Instrument Corp

TECHNOLOGY UPDATES

CAE tools help cure transmission-line woes

When pe-board traces act like transmission lines, all manner of problems can arise. CAE tools can help forestall those problems before you build your board.-Richard A Quinnell, Regional Editor

Fiber-optic transceivers: Modules satisfy FDDI and other standards

Transceiver modules are key factors in fiber-optic data links and can implement communications in both local- and wide-area networks.-Dave Pryce, Associate Editor

Continued on page 7

[^0]

Time is finally on your side. Our new GAL20RA10-15, with ten individually programmable clocks and a 15 ns propagation delay, offers the world's fastest performance. A combination that delivers the ultimate in design flexibility and speed, all in a 24 -pin E^{2} CMOS ${ }^{\circ}$ GAL device.

For example, design engineers can independently clock, reset and preset each of ten output logic macrocells. These individually programmable clocks enable asynchronous designs, taking your system performance to even higher levels.

If your design is ready for the big time, call 1-800-FASTGAL, and ask for dept. 203. We'll send you free samples and a databook describing our entire line of high speed E^{2} CMOS GAL devices. Fast.

LLatlice
Semiconductor Corporation ${ }^{\text {TM }}$

VP/Publisher

Peter D Coley
Associate Publisher
Mark Holdreith VP/Editor/Editorial Director Jonathan Titus
Managing Editor Joan Morrow Lynch
Assistant Managing Editor
Christine McElvenny
Special Projects Gary Legg
Home Office Editorial Staff 275 Washington St, Newton, MA 02158 (617) 964-3030 Tom Ormond, Senior Editor Charles Small, Senior Editor Jay Fraser, Associate Editor John A Gallant, Associate Edito Michael C Markowitz, Associate Editor Dave Pryce, Associate Editor Carl Quesnel, Associate Editor Susan Rose, Associate Editor Julie Anne Schofield, Associate Editor Dan Strassberg, Associate Editor Chris Terry, Associate Editor
Helen McElwee, Senior Copy Editor James P Leonard, Copy Editor
Gabriella A Fodor, Production Editor Brian J Tobey, Production Editor Editorial Field Offices
Steven H Leibson, Senior Regional Editor Boulder, CO: (303) 494-2233
Doug Conner, Regional Editor Atascadero, CA: (805) 461-9669 J D Mosley, Regional Editor Arlington, TX: (817) 465-4961
Richard A Quinnell, Regional Editor Aptos, CA: (408) 685-8028
Anne Watson Swager, Regional Editor Wynnewood, PA: (215) 645-0544
Maury Wright, Regional Editor San Diego, CA: (619) 748-6785 Brian Kerridge, European Editor (508) 28435

22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
Contributing Editors Robert Pease, Don Powers, David Shear, Bill Travis
Editorial Coordinator
Kathy Leonard

Editorial Services

Helen Benedict
Art Staff
Ken Racicot, Senior Art Director Chinsoo Chung, Associate Art Director Cathy Madigan, Staff Artist Sharon O'Brien, Staff Artist Production/Manufacturing Staff Andrew A Jantz, Production Supervisor
Sandy Wucinich, Production Manager Melissa Carman, Production Assistant Diane Malone, Composition Director of Art Department Robert L Fernandez Norman Graf, Associate VP/Production/Manufacturing Wayne Hulitzky
Director of Production/Manufacturing John R Sanders
Business Director
Deborah Virtue
Marketing Communications Anne Foley, Promotion Manager Pam Winch, Promotion Assistant

EDITORS' CHOICE

Logic-synthesis software

PRODUCT UPDATE

100-MHz-bandwidth DSOs 76
DESIGN IDEAS
Amplifier scheme lowers drift and noise 135
IC converts from TTL to ECL and back 136
Feedback and amplification 138
EDITORIAL 41

Although we're in a recession, you can still work toward identifying technical and business opportunities.
NEW PRODUCTS
Test \& Measurement Instruments 143
Integrated Circuits 147
Computers \& Peripherals 155
CAE \& Software Development Tools 160
Components \& Power Supplies 166
DEPARTMENTS
News Breaks 15
Signals \& Noise 27
Ask EDN 33
Career Opportunities 174
Book Review 181
EDN's International Advertisers Index 183

[^1]The NEW Tek Centurion:
400 MHz timing analysis. 100 MHz state analysis. 100 MHz complex triggering. 100 MHz synchronous clocking. 100 MHz timestamp.

RISC chips. CISC chips. High-speed busses. At the leading edge of clock speeds, channel counts and complex integration, one logic analyzer is equal to the test.

The Tek Centurion.
Centurion supplies an unprecedented 400 MHz timing. Plus 100 MHz synchronous acquisition on 96 channels at onceall on one card. You can expand to hundreds of channels in a single mainframe, with up to 32 K memory depth per channel!

Add the most revealing disassembly in the industry, for any processor pictured here. Add the easiest, most compact probing. Get real powers of analysis, not just ordinary acquisition capabilities.

Call 1-800-426-2200 to learn more about this great leap forward in logic analysis. Or see your Tek sales engineer for a personal demo soon.

IVSIS OF RISC.

Tektronix

May '90
SPARCstation $1+$

November '90
SPARCstation 2

I2

May '90 SPARCstation SLC

Since introducing SPARCstation 1 in April '89, Sun has utilized LSI Logic's RISC and ASIC technology and design methodology to pack more processing power into smaller footprints.

This strategic partnership has enabled Sun to compress time to market to an unbelievable four months between new product announcements and has reduced their time to volume. Forever altering the rules on time to market. And capturing the dominant position in the workstation market in the process.

Sun's latest creation, SPARCstation 2, is a shining example. This powerful new workstation was brought to market just four months after the introduction of the
 \section*{s JUST MADE
 \section*{s JUST MADE

 SHINE.}

 SHINE.}

SPARCstation IPC. By leveraging the power of LSI Logic's RISC and ASIC technology, Sun has quickly introduced a whole new level of price/performance in UNIX workstations.

If you have some brilliant new product concepts on your horizon, with windows of opportunity opening as often as every four months, call us at 1-800-451-2742, or write to LSI Logic, 1551 McCarthy Blvd, MS D102, Milpitas, CA 95035.

We'd like to show you how quickly your new product can see the light of day.
LSI LOGIC ${ }^{\circ}$
ACROSS THE BOARD

"Technology Solutions"

from a Globewide Partner

Better design and production solutions with Oki Systems Thinking

Around the world, Oki Systems Thinking takes an overall look at your project's many needs, based on our all-round expertise in design, packaging and manufacturing, and finds integrated solutions, to help you more easily meet every demand of the project. With Oki Systems Thinking, our goal is nothing less than total customer satisfaction.

Regional production centers

Oki sometimes has to give you more than you ask for in meeting your diverse needs, such as regional production centers that assure you of stable supplies of critical components and enhance Oki's flexible customer support capabilities...

Oki is establishing these capabilities within each overseas market, whether its at Portland, Oregon; Nancy, France; Aguadilla, Puerto Rico, or Ayutthaya Province, Thailand. At Oki, manufacturing is closely integrated with our regional design and packaging facilities as part of Oki Systems Thinking-to provide "technology solutions" in memories, ASICs, microprocessors, custom LSIs, telecom LSIs and complex custom board-level products.

Sharing technology and manufacturing expertise Oki works hard to be a part of each
community we operate in, transferring expertise to local sites and forming joint ventures to more quickly integrate advanced technology into markets where it is needed.

And, speaking of technology, at Oki you'll find super-clean environments, ultra-fine rule process technology, advanced factory automation, and, of course, total quality control.

Tualatin, Oregon, USA: Oki's newest US semiconductor plant currently manufactures 1 M DRAMS and SIMMs, with plans to diversify its production.

Oki Electric Industry Co., Ltd. Electronic Devices Group Overseas Marketing Group 7-5-25 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan Tel: $+81-3-5386-8100$ Fax:- $81-3-5386-8110$
Telex:J27662 OKIDENED
Oki Electric Europe GmbH
Hellersbergstraße 2, 4040 Neuss Germany
Tel:+49-2101-15960
Fax:+49-2101-103539
Telex:8517427 OKI D
Oki Semiconductor Group
785 North Mary Avenue, Sunnyvale, CA 94086, U.S.A. Tel:+1-408-720-1900 Fax: $+1-408-720-1918$ Telex:910-338-0508 OKI SUVL
\section*{Oki Electronics (Hong Kong) Ltd.} Suite 1801-4, Tower 1 China, Hong Kong City, 33 Canton Road., T.S.T. KLN, Hong Kong
Tel:+852-7362336
Fax:+852-7362395
Telex: 45999 OKIH HX

OKI
Oki Electric Industry Co., Ltd.
Tokyo, Japan

If you're looking for the right LED display solution, take a look at HP. We've got a full line of low-power, easy-to-use alphanumeric CMOS displays.

All featuring an integrated on-board CMOS IC. And all designed to provide you with a better way to meet your display requirements.

Take our eight-character 5×7 smart alphanumeric display, for example. It's the industry's only customizable display. With up to 16 user-defin-
able characters and the capability to generate foreign characters, special symbols and logos.
Or choose from four-character 5×7 CMOS displays in all four LED colors.
Smart 16-segment displays with built-in RAM, ASCII decoder and LED drive circuitry. Which also come in a drop-in 5×7 dot-matrix upgrade.
And single-character red hexadecimal displays with a 4×7 dot-matrix display.

Best of all, they're from HP. So you're always assured of HP's commitment to excellence in service, support and reliability.

For a free brochure describing our full line of CMOS display solutions, call 1-800-752-0900 ext. 233 H . And see how easy it is to shine.
There is a better way.

HEWLETT
PACKARD

PC-BASED SYSTEM READS 50,000 SAMPLES/SEC

Dataq Instruments' Codas version 5.3 is a computer-based oscillograph for realtime data acquisition and analysis that combines IBM PC/AT hardware and MCA software. The oscillograph can acquire, display, and store waveform data at rates reaching 50,000 samples/sec over as many as 16 channels. The package lets you select from three real-time display modes, a variety of frequency-domain analysis tools, and a built-in statistics program. It also performs automatic date and time stamping, on-the-fly control of all recording functions, X-Y waveform plotting, and channel-by-channel scaling and calibration in any linear unit of measure. You can customize the $\$ 2790$ system by linking it to C-language programs. Dataq Instruments Inc, Akron, OH, (800) 553-9006, FAX (216) 434-5551.—J D Mosley

REPEATER IC HANDLES TWISTED-PAIR FTHERNET

National Semiconductor's DP83950 repeater interface controller (RIC) for Ethernet hub applications has 13 ports. One port is Attachment Unit Interface (AUI) compatible; the other 12 have integrated 10Base-T transceivers. You can cascade devices to form a hub that contains as many as 832 ports and behaves as a single logical device.

The IC has internal counters and registers that collect network performance statistics, such as time between packets, collision occurrence, and phase-lock errors. It also provides status display signals that let you drive as many as 60 LEDs to indicate the status of each port visually. The IC includes an encoder/decoder and PLL clockrecovery circuits, an elasticity buffer for regenerating preamble codes, and a $\mu \mathrm{P}$ interface. The $\$ 145$ (100) IC is available in sample quantities. National Semiconductor Corp, Santa Clara, CA, (408) 721-7020, FAX (408) 732-9742.
-Richard A Quinnell

DEVELOPMENT BOARD INCORPORATES FERROELECTRIC MEMORY

After five years of development, you can finally get your hands on nonvolatile memory based on ferroelectric materials from Ramtron Corp. However, you cannot buy the memory chips themselves. Instead, these devices are installed on the company's $\$ 4995$ FEDS-1 evaluation and development board. This board plugs into an IBM PC/AT bus slot and couples 16 FMx 1208 ferroelectric RAM chips to an Intel 8097 microcontroller. Each chip contains 512 bytes of $250-n s e c$, nonmultiplexed, ferroelectric-based dynamic RAM (DRAM). The board can operate this memory in two modes: In the dynamic mode, the ferroelectric RAMs operate like DRAMs with unlimited read/write capabilities. In nonvolatile mode, the memory chips will store data for more than one year without power and can endure more than 10^{6} power cycles.

The onboard $8097 \mu \mathrm{C}$ and the host PC have access to the ferroelectric memory. The package includes development software that runs on the host PC and a monitor program that runs on the onboard $8097 \mu \mathrm{C}$. The board is a demonstration vehicle for the company's initial ferroelectric parts; the company plans to offer highercapacity parts later this year. Ramtron Corp, Colorado Springs, CO, (719) 481-7000, FAX (719) 481-9170.-Steven H Leibson

PRECISION OP AMPS FIT IN DIGITAL BITS

Max425 and Max426 CMOS op amps from Maxim Integrated Products use internal nulling for low drift. First, a nulling cycle shorts the op amps' input and determines a correction factor for zeroing the input stages. On-chip control logic stores the correction factor, which remains applied to the input stages via 8 - and 16 -bit DACs. You can program the $50-\mathrm{msec}$ nulling cycle at power-up, once per minute, or on command. The second nulling technique uses a $300-\mathrm{Hz}$ commutating input stage to minimize the effect of the op amp's input offset voltage (V_{I}) and $1 / \mathrm{f}$ noise. Key maximum specifications are $5-\mu \mathrm{V} \mathrm{V}_{\mathrm{I} 0}, 0.05-\mu \mathrm{V} /{ }^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{IO}} \mathrm{TC}$, and 200-pA input bias current. V_{10} noise in a 0.1 - to $10-\mathrm{Hz}$ bandwidth is typically $0.25 \mu \mathrm{~V}$ p-p. Both op amps have $140-\mathrm{dB}$-min open-loop voltage gain, and a common-mode and power-supply rejec-tion-ratio of 120 dB min. Internal compensation yields gain bandwidths of 350 kHz and 15 MHz for the Max425 and Max426, respectively. Price is $\$ 9.50$ (100). Maxim Integrated Products, Sunnyvale, CA, (408) 737-7600, FAX (408) 737-7194.
-Brian Kerridge

SCIENTISTS MASS PRODUCE SEMICONDUCTOR LASERS

Scientists at IBM's Zurich Research Laboratory have fabricated between 5000 and 20,000 lasers on a 2 -in. wafer by using $1 / 5000$ th-in.-deep trenches etched into a semiconductor wafer. In addition to being useful for reading compact discs, printing copy in laser printers, and transmitting information along fiber-optic networks, these lasers might be integrated onto optoelectronic chips that carry data using both light and current. Once etched into the wafer, the lasers are coated with a semireflective material that improves reliability. IBM Research Div, Yorktown Heights, NY, (914) 945-2885, FAX (914) 945-1263.—Michael C Markowitz

ASIC CHIP SET INTEGRATES TOUCH-INPUT TECHNOLOGY

CT ASIC is a 3-chip set of mixed-mode ICs from Carroll Touch. The chip set includes one ASIC, a masked 80C52, and an EEPROM that stores your touch system's parameters. This chip set uses 40% less pc-board space than an equivalent circuit made from discrete components. The chips' phototransistor conditioning circuits handle complex signal-processing functions, such as calibration, gain storage, and ambient-light level tracking. The chip set starts at $\$ 2000$, which includes 10 hours of engineering consultation and support. You must negotiate a royalty fee and a per-program fee for the schematic. Carroll Touch, Round Rock, TX, (512) 244-3500, FAX (512) 2447040.—J D Mosley

KIT LOWERS MULTIPROCESSOR DEVELOPMENT COST

The Transputer Education Kit from Computer System Architects includes a PCbased expansion card (which incorporates one Inmos T400 Transputer), a large collection of development software, and 1500 pages of documentation. The $\$ 236$ kit eliminates one of the many factors impeding multiprocessor system development-the cost of development hardware and software. (Note: You must add 1 to 4 M bytes of RAM chips to the board.) The expansion card incorporates five high-speed serial ports for connecting additional processor boards to create a multiprocessor system. Additional processor boards without software, documentation, or memory cost \$150. The development software package includes Occam and C cross-compilers; a crossassembler; a source-level debugger; and example, demonstration, and diagnostic programs. Computer System Architects, Provo, UT, (801) 374-2300, FAX (801) 374-2306.-Steven H Leibson

COMPLETE DATA-ACQUISITION SYSTEM ON ONE BOARD

The DAP 800 from Microstar Laboratories is an IBM PC/XT and PC/AT dataacquisition board with an 80 C 188 processor and 256 k bytes of buffer memory. The board accepts eight 12-bit analog inputs and provides two 12-bit analog outputs. A programmable gain amplifier offers gains of $1,10,100$, and 1000. For digital signals, the board has 8 -bit input and output ports. The sample rate is 60,000 samples $/ \mathrm{sec}$ max.

The board comes with software for real-time multitasking data-acquisition and control. The software performs more than 100 standard data-acquisition and -processing functions from closed-loop process control to spectral analysis with fast Fourier transforms. You can also download custom commands from a host computer. Because the board logs and processes data internally, it doesn't slow down the host computer while operating, which frees the host for other activities. The board is $\$ 1195$. A higher-speed version of the board (100,000 samples $/ \mathrm{sec}$) is $\$ 1295$. A standalone version, the DAP 801, which requires a single 5V supply, is $\$ 1395$. Microstar Laboratories, Redmond, WA, (206) 881-4286, FAX (206) 881-5494.-Doug Conner

SPICE SIMULATOR MODELS SWITCH-MODE POWER SUPPLIES

The PSpice circuit-analysis program, version 4.05, from Microsim Corp makes simulating switch-mode power supplies easier. A cycle-by-cycle simulation of switchmode supplies is difficult for Spice-based simulators and usually lengthens simulation times. However, this program's behavioral modeling and mixed analog/digital simulation features, which are separately priced options, let you use PWM macro models that simulate the controller section in the digital domain. Other new features include .SAVEBIAS, .LOADBIAS, and .WATCH statements. You can also specify the voltage between two nodes using the .NODESET and .IC statements. Prices for the package start at $\$ 950$. A power-supply-simulation package costs $\$ 3950$. Microsim Corp, Irvine, CA, (800) 245-3022, FAX (714) 455-0554.-Anne Watson Swager

VTC VMEBUS CONTROLLERS STILL AVAILABLE

The VIC068 and VACO68 interface and control ICs for the VMEbus, developed by Control Data Corp's VTC facility, are still available. Cypress Semiconductor, the facility's new owner, will operate the plant as a wholly-owned subsidiary, Cypress Minnesota Inc.

The two ICs provide interface and address control for central processors and peripherals connecting to the VME bus. The VAC068 provides address transceivers, address decoding, DMA, and block-level transfer circuitry. The VICO68 handles arbitration, interrupts, and data transfers. Both devices connect directly to CPUs in the 680XO family, but are usable with other CPUs. In 144-pin plastic pin-grid arrays, the parts cost $\$ 126$ (100) for the VIC068 and $\$ 159$ for the VAC068. Cypress Semiconductor, San Jose, CA, (408) 943-2600, FAX (408) 943-2796.—Richard A Quinnell

CAE VENDOR STRENGTHENS HDL OFFERINGS

Viewlogic Systems has enhanced their VHDL (VHSIC hardware description language) software tools with logic synthesis from personal-computer clone vendor Arche Technologies. The software is already integrated into Viewlogic's tools and includes VHDL synthesis, retargeting software, and a technology-library compiler. Viewlogic Systems, Marlboro, MA, (508) 480-0881, FAX (508) 480-0882. Arche Technologies, Fremont, CA, (415) 623-8100, FAX (415) 683-6754.-Michael C Markowitz

OrCAD presents

The limits are gone

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.

- Expanded memory capabilities
OrCAD

More designs from more designers

For more information, call (503) 690-9881
or write to OrCAD Sales Department, 3175 N.W. Aloclek Drive, Hillsboro, Oregon, 97124

THE WORLD'S LARGEST SELECTION OF POWER SPLITTERS/ COMBINERS

$\mathbf{2 ~ K H z}$ to $\mathbf{8} \mathbf{~ G H z}$ from $\mathbf{\$ 1 0 4 5}$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-theshelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee.
For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or Mini-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contactus for our free 68-page RF/IF Signal Processing Guide.
finding new ways
setting higher standards

CIRCLE NO. 111

Take the risk out of V. 32 and V. 32 bis speeds.

Reaching for the upper limits of modem performance needn't mean taking chances with the results. Rockwell International's RC9696 family gives you the confidence of proven turnkey solutions, the highest installed base in its class, a 5 -year warranty and compatibility with V. 32 or V. 32 bis protocols, as well as with other Rockwell products.
For a basic modem with exceptional throughput, select the V. 32 N .32 bis RC9696/14 for its 14.4 kbps speed and Group 3 fax compatibility. Or use the V. 32 RC9696AC for 9600 bps speed and extensive features such as V. 42 and V. 42 bis error correction and data compression.
For a low-risk introduction to Rockwell's speedy RC9696 products, contact Rockwell Communication Systems at P.O. Box C,M.C. 501-300, Newport Beach, CA 92658-8902; (800) 854-8099; in Califomia: (800) 422-4230.

Fax-(714) 833-4078 or (714) 833-4391.

RC9096/14

- Complete V.32 and V.32 bis compatibility
- Highest installed base
- First worldwide product compatible
with Group 314.4 fax (V.17)* and
V. 32 bis
- 14.4 kbps transmission speed, with
12.0 kbps fallback
- Extensive diagnostic capabilities
- Complies with all international
standards, including V. 22 bis,
V. 21 and V. 23

RC9696AC

-V. 32 compatibility

- AT command set
-V. 42 and MNP® 4 error
correction protocols
-V. 42 bis and MNP® 5 data compression
- Device set includes controller and protocol conversion chip
- Extensive compatibility with other Rockwell products
*V. 17 approval is anticipated in 1991.
MNP is a registered trademark of Microcom, Inc.

where science gets down to business

mulation. Finally, a break from tradition.

Traditional emulation techniques only provide a limited set of diagnostic capabilities and require highly-skilled engineers to prepare test programs and diagnose bad boards. GenRad's solution automates both programming and diagnostics.
Hardware interface boards (pods) are processor-specific, hard to develop, and must be continually maintained and verified. GenRad's integrated emulation approach eliminates this.

Many processor-specific pods are difficult to connect to the UUT. Some emulation systems even require that the microprocessor be removed, usually impractical in high-efficiency manufacturing operations. Not so with GenRad.
GenRad's 275X Performance Test Systems and the GENESIS ${ }^{\text {m }}$ software environment support GenRad's new SoftPod,' a software technology that eliminates the need for special-purpose hardware pods. Combined with GenRad's new Emulation Toolset for GENESIS (ETG ${ }^{\text {mM }}$), you have an easy-to-use, integrated emulation test solution, complete with automatic program preparation and comprehensive diagnostics.
If you're ready for a new way of thinking about a cost-effective testing technique, request your copy of "Perspectives On Emulation: An Economic Test Technique."

Call 1-800-4-GENRAD in the U.S., or the GenRad office nearest you in Austria, Canada, England, France, Germany, Italy, Japan, Singapore, Switzerland.

WHYTHE
 FIRST 040 MME MIGHTASWELL BETHELAST.

Memory modules available in 4 and 16 MB DRAM or SRAM.

DRAM memory module supports burst fill mode for 50 M byte/sec memory bandwidth.

On board DMA-based architecture provides maximum performance and parallel real-time operation.

First, we're delivering 040 VME single board computers today. In quantity. So you can get started while the rest of the world waits for a delivery date from other suppliers. our new CPU-40 board is performance standards nobody touch. Like 30,000 dhrystones Second, setting else can sustained at 25 MHz : And DMA transfers at a screaming 50 Mbytes per second sustained (3 microseconds on the VMEbus).

So it might just be the last 040 board you'll ever need.

That's because we've fully optimized the on-board architecture. Thanks to our 281-pin gate array, DMA operations can be handled between on-board RAM, the VMEbus and on-board I/O devices. Or through our FLXi interface to other I/O drivers.

All of which means the CPU is free over 75% of the time to run your application.

VME at its best.

Developing new applications is also a snap. Choose from the broadest range of third-party software in the business, including VMEPROM, ${ }^{\text {m, }}$ pSOS $+{ }^{\text {m, }}$ VRTX32 ${ }^{\text {m, }}$ OS-9, ${ }^{\text {TM }}$ VxWorks, ${ }^{\text {™ }}$ UNIFLEX, ${ }^{\mathrm{mM}}$ MTOS $^{\text {TM }}$ and UNIX ${ }^{*} 5.4$.

Of course, we provide comprehensive support with the industry's best-rated documentation,*', complete systems integration support and technical assistance.
CPU-40 PERFORMANCE CHARACTERISTICS

Data from	CPU	CPU	CPU	CPU	VmEbus	SCSI*	Floppy Disk*	Ethernet*	Shared RAM ${ }^{*}$	VmEbus*
Transfer to	Shared RAM	EPROM	Serial I/O Timers	SCSI. Ethernet Controiler, Floppy Disk	Shared RAM	Shared RAM	Buffer RAM	Dual-port RAM	VmEbus	VmEbus
Transter Speed	53.7 MB/sec	16 MB/sec	$\stackrel{2}{\mathrm{MB} / \mathrm{sec}}$	$\begin{aligned} & 2 \\ & \mathrm{MB} / \mathrm{sec} \end{aligned}$	5 MB/sec	4 MB/sec	500 KBit/sec	10 MBit/sec	15 MB/sec	15 $\mathrm{MB} / \mathrm{sec}$
Local 68040 CPU Operation	100\%	100\%	100\%	100\%	70\%	80\%	100\%	100\%	75\%	100\%

So be the first in your company to turn 040. Call 1-800-BEST-VME, ext. 40, for more information or fax a request to (408) 374-1146 for an immediate response. It'll be to your lasting advantage.

FORCE Computers, Inc. 3165 Winchester Blvd. Campbell, CA 95008-6557 *Actual dhrystone results may vary depending on compiler used. **Computer Design News, March 12, 1990. All brands or products are trademarks of their respective holders. © 1991 FORCE Computers, Inc.

CIRCLE NO. 92

Zilog's MUSC, mono-channel universal serial communications controller ($\mathrm{Z} 16 \mathrm{C} 33^{\text {" }}$), has been designed specifically for high-performance applications that require only one high-speed channel. And it costs you about 40% less than the dual-channel USC
All the performance you want.
The MUSC's $10 \mathrm{Mbit} / \mathrm{sec}$ data transfer rate makes it the fastest single-channel general purpose controller available. CMOS and Superintegration" give you higher throughput,

Expanding the USC family:
Zilog's Superintegration" technology bas resulted in a rapidly growing library of working CPU and peripheral cores and cells that bave been combined use the same for specific applications. And artuction sets you're already proven architectures anm unications applications, specijfworking with. For com the popular, fast growing SCC and cally, we've deverronce USC families that provide the extra the bigh-performana yse you need to release the bost speed and performance rocessing.

The bigh-performance USC family is a diverse one. Because, as our development of the single-channel Mosc illustrates, we're well aware of he needs of a wide rang. of users. And soon, the smart seved levels of integration and performance in bigh-speed serial communicaperformancollers.

while helping reduce the CPU workload. And the 32-byte FIFO transmit-and-receive buffers help reduce CPU overhead. So does the fact that the MUSC integrates two time slot assignment cells-one for receive and one for transmit. So data is automatically inserted into programmed time slots, reducing CPU overhead and external logic even more. And all of that frees up more CPU power for the system. The final touch is a separate 8 -bit parallel I/0 port, ideal for status or displays, that adds flexibility in local control or data presentation. All the flexibility you need.

The MUSC's multiprotocol design lets you adapt your system to a variety of networks. But not only do you get 10 protocols, you get 8 encoding formats-including asynchronous, bit and byte synchronous, isochronous, Ethernet, and MIL-STD 1553B. And the Open Systems Interconnect (OSI) model features Time Slot Assignment that allows transmission of time multiplexed Synchronous Data Link Control (SDLC) protocol to the ISDN link level.
All the reliability you've come to expect.
Of course, the MUSC comes to you off the shelf, with Zilog's proven quality and reliability. And you have the advantage of CMOS and Superintegration. But you also have the MUSC's unique built-in bus-oriented testability, which allows access to nodes and registers for testing program functionality in real time. And, since dedicated pointer registers provide a window to serial flow during on-line testing, you can test transmission reliability of the controller during system operation.

To find out more about the MUSC or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away.

 C 919) $790-7706$, OH (216) $447-1480$, PA (215) 653-0230, TX (214) 987-9987, WA (206) 523-3591, CANADA Toronto (416) 673-0634, UNITED KINGDOM Maidenhead (44) (628) 39200, GERMANY Munich (49) (89) 672045, Sommerda (37) (626) 23906, JAPAN Tokyo (81) (3) 587-0528, HONG KONG Kowloon (852) 723-8979, KOREA (82) (2) 552-5401, SINGAPORE 65-235 7155 Future Electronics, SEMAD, LATIN AMERICA Argentina-Yel.-(1) 46-2211, Brazil-Digibyte (011) $581-1945$, MEXICO Semiconductores Profesionales (5) 536-1312, Proyeccion Electronica (5) 264-7482.

The B-2 is not

 just an airplaneRegarding the editorial by Jon Titus (EDN, November 22, 1990, pg $31)$, enough already. The B-2 is not just an airplane; it's a system. It has not just one manufacturer, but many. All share in a piece of the pie. No one, except those who have access to all characteristics and capabilities of the plane, can even come close to making a judgment about the worth of the program. At worst, it's no more than a publicworks program.

Nor can anyone, except those with program clearance, even begin to judge the stealth abilities of the plane. It takes complete system knowledge.

As for the SR-71, when has the military ever given up something without getting something in return? Sure, the Black Bird is valuable, but is it as valuable as what
has replaced it? I wonder what that replacement is. I bet, if it is a plane, it's pilotless. No Gary Powers to worry about; I'll also bet it can be destroyed-completely-no pieces big enough to compromise its secrecy would be acceptable. Perhaps we'll be commenting about its mothball status 20 years from now.

Defense, no matter how costly, is the only thing our government is obligated to provide. Anything else, like HDTV, is a free ride.

L Alan Kudravy
 Hawthorne, CA

What's the correct word?

In the second sentence of the second paragraph of the editorial (EDN, December 6, 1990, pg 51), did Jon Titus mean 'enormousness' rather than 'enormity?'
Bill Woodward
Westinghouse Savannah River Co

IT'S EASY TO HAVE YOUR SAY

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. You can use one of several easy ways to reach us. First, there's always the mail. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCl mail at EDNBOS. Finally, EDN's bulletin-board system is ready for use-and it's free (except for the phone call). You can reach us at (617) 558-4241 and leave a letter in the EDITORS Special Interest Group. You'll need a 2400-bps or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or 1200/2400, 8 N 1 in shorthand.

Versatility was a prime consideration as we developed our Symmetrical Slotted Shielding Series.

For low force, secure mounting, and optimum attenuation, the gasket design is symmetrical.
Each gasket has a wide radius profile to create the greatest surface contact for maximum conductivity and increased cycle life. It also helps reduce compression requirements down to 10 to $35 \mathrm{lbs} /$ linear foot, and provides a compression range up to 50% of free height.

In addition, the gaskets are bi-directional, allowing transverse movement in each direction over the width of the strip.

By design, you're assured of shielding effecitveness at a minimum of 100 dB at 100 MHz . And you have a choice of mounting methods: Sticky Fingers ${ }^{\circledR}$ self-adhesive backing for non-wiping applications, or rivet mounting where bi-directional stability is a requirement.

Next time you need the perfect blend of form, fit, and function in your EMC designs, draw one of our Symmetrical Slotted Shielding gaskets onto your blueprint. For more information, call us.

Instrument Specialties

Headquarters
Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213
Western Division-Placentia, CA
TEL: 714-579-7100 FAX: 714-579-7105
European Division-Liege, Belgium
TEL: 011-32-41-63-3021 FAX: 011-32-41-46-4862

Where shielding

 is a science.

Introducing The Erector Set for Embedded Control Applications

Remember the challenge of constructing "engineering marvels" with your Erector ${ }^{\circledR}$ set? That red metal box held a complete set of interlocking pieces - all that was needed to assemble just about anything. Your imagination was the only limitation.

That's the idea behind Ampro's new way for OEMs to build embedded control applications. Put your application together, simply and quickly, using Ampro Embedded System Modules

Our CoreModule ${ }^{\mathrm{TM}}$ family packs ready-made full PC- or AT-compatible intelligence into $3.6^{\prime \prime} \times 3.8^{\prime \prime} \times 0.6^{\prime \prime}$. Just plug one into your circuit board - like plugging in a chip - to easily interface to your own logic. They operate over 0 to $70^{\circ} \mathrm{C}$, and include a CMOS CPU, RAM, extended BIOS, Solid State Disk, serial and parallel I/O ports, keyboard and speaker interfaces, and a real-time clock.

Stack a CoreModule unit together with one or more of our expansion MiniModule ${ }^{\mathrm{TM}}$ peripherals (no backplanes or card cages needed). MiniModule products, also $3.6^{\prime \prime} \times 3.8^{\prime \prime}$, can be used to add display controllers, more Solid State Disk capacity, network controllers, modem and facsimile features, additional I/O, and much more.
You'll get your product to market faster, with less risk, and at lower cost, because the CoreModule family is based on the most economical industry standard architecture. Now you can focus on the more challenging part of your system - the application itself.

Ultrasound monitors, point-of-sale terminals, robotics, network controllers - no matter what kind of "engineering marvel" you're building, you should be using Ampro's "Erector set" for your embedded control application.

Call 1-800-966-5200. Get the Information Kit on CoreModule and MiniModule products today.

[^2]

dcto 3CHz $\$ 1145$
 lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models - immediate delivery
low pass de to 1200 MHz

Two displays. One great meter.

Dual displays provide two accurate measurements. Combined with 16 different measurement capabilities. The Fluke 45 is making people take a second look.
The Fluke 45 has the specs to get the job done right. 0.02% basic dc voltage accuracy and 100,000 count resolution on both displays. Basic dc current accuracy is 0.05%, making the 45 ideal for servicing $4-20 \mathrm{~mA}$ current loops. The Fluke 45 measures true-rms voltage and current, including $\mathrm{ac}+\mathrm{dc}$. Closed-case calibration simplifies the calibration process and increases uptime.

Twice as much information.

The 5 -digit, 100,000 count dual displays give you more information in less time - and with less effort. For example, measure the VDC output of a power supply while measuring the VAC ripple. Or check the amplitude and frequency of an AC signal. From a single test connection!

More measurement combinations.

With the Fluke 45 complex measurements become simple, with standard features like a 1 MHz frequency counter, Min Max, limits testing (Hi/Lo/Pass), Touch Hold® and Relative modes. There are 21 different reference impedances for dB measurements; in the 2Ω to 16Ω ranges, audio power can be automatically displayed in watts. The variety of electrical parameters, measurement functions and display combinations is incredible.
Even an RS-232 interface is standard. Connecting the Fluke 45 to PCs, RS-232 printers and modems is as easy as attaching the cable. An IEEE-488.2 interface and internal, rechargeable lead-acid batteries are available as options.
Get a great value.
Contact your local distributor today for complete information on the new Fluke 45. Or call toll-free 1-800-44-FLUKE, ext 33.

FLUKE 45 DUAL DISPLAY MULTIMETER

\$635*	dB, with 21 reference impedances, and audio power calculations
Dual Display	
True-rms voltage and current, including ac + dc	Compare and Relative functions
	Min Max and Touch Hold* functions
0.02% basic dc voltage accuracy	
	Optional PC software for RS-232 applications
0.05% basic dc current accuracy	
	Optional IEEE-488.2 interface, battery pack
1 MHz frequency counter	
RS-232 interface standard	One year warranty

John Fluke Mfg. Co., Inc. P.O. Box 9090 M/S 250 C Everett, WA 98206 U.S.: 206-356-5400 Canada: 416-890-7600 Other Countries: 206-356-5500 © Copyright 1989, 1990 John Fluke Mig. Co., Inc. All rights reserved. Ad no. 00015 . IBM PC is a registered trademark of International Business Machines Corporation.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

ASK EDN

EDITED BY JULIE ANNE SCHOFIELD

Have you been stumped by a design problem so long that you don't know who to turn to? Are you having trouble locating parts? Finding companies? Can't interpret a spec sheet? Ask EDN.

This department will serve as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help. We can't answer every question, but we'll try to publish the ones that will help you most in your job.

Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

Free guide for modem standard

I need a detailed description of the Microcom Network Protocol (MNP) 2-5, a kind of data transmission standard for modems. Would you mind helping me find out how I can get it? Thanks. Gábor Kiss
Software Consultant
Budapest, Hungary

We're here to help: The MNP guide is free from

Microcom Inc
500 River Ridge Dr
Norwood, MA 02062
(800) 822-8224;
in MA, (617) 762-9310.

Tracking down a transmitter

I'd like to know the names of some
American manufacturers of stereo
AM radio transmitters. Thank you for your help.

Bing Han

Bolycore Enterprises USA
Westlake Village, CA

We tracked down three sources of such transmitters

Allied Broadcast Equipment
Division of Harris Corp
Box 4290
Quincy, IL 62305
(217) 222-8200

Continental Electronics
Box 270879
Dallas, TX 75227
(214) 381-7161

Nautel Maine Inc
201 Target Industrial Circle
Bangor, ME 04401
(207) 947-8200.

PC-based layout packages not plentiful

As director of technical services, it is my responsibility to keep my company's CAD capabilities current and adjust them to meet a changing technology. We currently have a CAD system consisting of three Applicon color workstations utilizing a PDP11/34 processing facility with a 216 k byte memory and a Cal-comp 965 pen plotter.

It is a company goal to retreat from the central CPU approach and place a personal computer at each design station. The reasoning was due in part to the inflexibility of a CPU-driven system and the reliance on one piece of equipment. Also, the current business picture does not allow for the purchase of a workstation. I have investigated one software package, Cadisys, which runs on an IBM $386 / 486$, and found it to have limited autorouting capabilities. I have reached a dead end in trying to locate other PC-based layout packages for hybrids. Your assistance in this search would be greatly appreciated.

Len Giambald
ILC Data Device Corp
Bohemia, NY

Mike Markowitz found the quasidefinitive word on PC-based hybrid software packages: According to Jim Hill of Layout Concepts (Boca Raton, FL, (407) 241-2823), Cadisys Corp's (San Jose, CA, (408) 4418800) Cadisys is currently the best-and only-PC-based hybrid layout package. Layout Concepts has written a PC-based hybrid batch router, but the software needs another company to integrate it with tools that provide placement, support, and a user interface.

Don Davis of Accel Technologies, (San Diego, CA, (619) 554-1000) claims you can get away with using pc-board software from Accel, CAD Software (Littleton, MA, (508) 4868929), and Orcad Systems Corp (Hillsboro, OR, (503) 640-9488) for mixed A/D hybrid designs. Unfortunately, Davis thinks that for ceramic substrates, you'll have to use a workstation.

EDN

When you need serious measurement, serious analysis, serious accuracy, nothing-but nothingdelivers it like Tek DSA 602A and 11403A oscilloscopes.

Extended triggering. Sophisticated triggering in the DSA600A reliably discriminates glitches, transition slew-rates, runt pulses and timing violations. Long memory and pretrigger help reveal the cause.

Transient capture, analysis and storage. Capture a series of transient events with automatic labeling and parametric analysis. Examine statistics of each measured parameter over the ensemble. Transport results using built-in (DOS-compatible) floppy disk.

Advanced signal processing. Transform and combine acquired waveforms at visual realtime speeds to reveal key phenomena. FFT, correlation, convolution and calculus functions provide multiple views of critical events.

When you expect your instruments to be as serious about the truth as you are, only the DSA602/11403A, with their superb new amplifiers and probes, their unrivaled accuracy, plug-in flexibility, and their powerful new set of waveform analysis and measurement functions, come through with results like you see above.
Serious numbers? Try the new $2 \mathrm{GS} / \mathrm{s}, 1 \mathrm{GHz}$ bandwidth Tek DSA 602A. No other scope combines DSP hardware for live displays of FFTs, correlation or convolution, plus high signal fidelity and powerfully selective triggering modes. There's even a new disk drive in this latest DSA version to save setups and data.
Pit the new 11403A Digitizing Oscilloscope, with 1 GHz bandwidth and 10 -bit vertical resolution, against the toughest repetitive signals. Get more than 30 pushbutton measurements, with statistical analysis and built-in pass/fail decisions from the most accurate scope of all. Put its new FFT features to work measuring total harmonic distortion, or use the statistical data base to characterize jitter.
Configure and reconfigure your scope with new plug-ins like Tek's programmable 50 MHz current amplifier, four-channel 75Ω video amplifier and high-resolution video trigger. Choose from our true differential amplifier and voltage comparator, our 50Ω and highimpedance amplifiers. Take advantage of their unequaled overdrive recovery and wide dynamic

Video and HDTV. Analyze video waveforms, including HDTV. Line and field select on up to 1280 lines with the new 11 T 5 H
Video Trigger Unit. New 4-channel 11A34V 75Ω Video Amplifier provides excellent signal fidelity up to 300 MHz .

Current and power. Make accurate, highbandwidth power measurements and energy calculations with our new 11A16 Programmable Current Amplifier.
Current and voltage maintain their proper phase relationship to 50 MHz .

Jitter and noise analysis. Analyze jitter and noise with Tek's exclusive statistical data base. Color grading, statistic readout and histograms clearly show the distribution of the edge jitter.
range, while you mix and match to the capabilities, channels and bandwidths you need.
Finally, choose from our high-impedance, high-bandwidth probes for fast logic devices . . . high-voltage and current probes for power conversion analysis . . optical-to-electrical converters for direct measurements on lightwaves . . and more, from the best probing resource around.

Current measurements, spectrum analysis, transient capture, glitch detection, precise power measurements, jitter analysis, high-definition video design - when your work is this serious, you want serious solutions like the DSA602A/11403A. Contact your Tek sales engineer or return the card for more information.

"Integrating analog But we have a bigger tool anyone else in the world."

HOW NATIONAL SEMICONDUCTOR IS HELPING YOU PUSH THE LIMITS OF ADVANCED SYSTEMS PERFORMANCE.

Tom Redfern, National's Director of New Product Development, Interface/Peripherals Group, talks about the challenges of mixed analog+ digital technology.

Making Futurebus+ a reality.
"Traditional bus protocols are starting to hit the wall. They can't accommodate the wide data paths and high transfer rates demanded of the next generation of 32 - and 64 -bit microprocessors.
"That's why we' ve been an active participant on the IEEE's Futurebus+ committee since its founding in 1979. And that's why we invented the Backplane Transceiver Logic (BTL) that makes

Floppy Disk Controller

Futurebus+ a reality today.
"Our first Futurebus+ chipset contains five devices, and they employ some of the most advanced analog+digital integration ever achieved. Our BTL drivers, for example, let the digital CPU send information to the digital memory over the analog bus at peak rates of 2-3 Gbytes/second!
"This is the future - and we've got it today."

Setting the pace in
system-level integration.
"Another great example is CLASIC, our powerful Custom Linear ASIC family.
"To reach system-on-chip performance, you've got to integrate analog and digital functions onto the same substrate.
"Well, CLASIC does that.

Op amps, comparators, references, DACs, VCOs, PLLs, plus digital cells - a huge library of building blocks. In bipolar, CMOS, and BiCMOS. With user-friendly design tools that let you do your own design on your PC or workstation.
"It's that simple."
Reaching a new level of ADC accuracy.
"Our new ADC1251 takes a quantum leap in integration. It's powered by a sophisticated digital controller and is totally self-calibrating, so it will maintain linearity over time, temperature, and supply voltage.
"You get 12 -bit-plus-sign resolution with a $8.0 \mu \mathrm{~s}$ conversion

Hard Disk
Synchronizer/ENDEC

and VLSI digital isnt easy. box for doing that job than

time and $\mathrm{a} \pm 1 / 2$ LSB non-linearity accuracy while dissipating 113 mW max at $\pm 5 \mathrm{~V}$.
"Try to find that in any other ADC. You can't."

Pushing the limits of analog + digital integration.
"To achieve these levels of integration, you need powerful tools in the hands of experienced designers.
"We've got them. A full range of process technologies, including fourth-generation bipolar ECL and

BiCMOS, which give us 0.8μ lithographies with bipolar F_{T} of 15 GHz and 50ps gate delays.
"We also have some of the most advanced design tools in the industry, developed through our strategic alliance with Cadence.
"And we have seasoned analog and digital designers who know the art of putting those tools to work in advanced analog+ digital designs.
"This is the leading edge - and we're leading it."

Putting it all to work for you.
"The only way to make the systems-performance breakthroughs and the systems-cost breakthroughs demanded by nextgeneration products is to integrate analog+ digital. We're doing it all, right now. So if I were a designer, I'd call us. Soon."

1-800-NAT-SEMI, Ext. 117

Greater Than The Sum Of Its Parts

EEsof High-Frequency CAE Software Puts It All Together.

Frustrated by piecemeal CAE software that gives you partial solutions for circuit and system design but leaves you with pieces that don't fit together? EEsof's new Version 3.0 software suite cuts through multilevel microwave and high-frequency
analog design problems with ease. Designed to work together from the ground up, Version 3.0 provides a smooth, seamless interface between simulation, modeling, and physical layout. Version 3.0 is a unified and upgraded release of our entire suite of highfrequency analog design tools. From device characterization to linear and nonlinear circuit design
to top-level hardware system design, Version 3.0 puts it all together.

Call Us Today; Let Us Help You Put the Pieces of Your Puzzle Together!
For more information on EEsof's full suite of software tools for high-frequency analog design, call us today at (800) 624-8999, ext. 155. Or if you prefer, send the details of your CAE puzzle by FAX to (818) 889-4159. In Europe, call (49) 8105-24005, or FAX to (49) 8105-24000. We'll answer your questions and send you a copy of our new Version 3.0 catalog.

Corporate office:
5601 Lindero Canyon Road,
Westlake Village, CA 91362

European office:

Rudolf Dieselstrasse 17,
D-8031 Gilching, Germany

Breaking the Barriers...

Look for recession opportunities

Jesse H Neal
Editorial Achievement Awards 1987, 1981 (2), 1978 (2), 1977, 1976, 1975
American Society of
Business Press Editors Award 1988, 1983, 1981

Without a doubt, the US and many of its trading partners are in a recession. Although the economic times look dim, opportunities still exist for those who are willing to pursue them. Over the last few years, I've come up with some observations that can help you identify present technical opportunities. Keep in mind that these points apply mainly to areas in which technical change is rapid.

1. Technology spreads downward. Put another way, technology destroys centralization. Several examples come to mind-the telephone, the photocopier, and the personal computer. When the telephone became popular, few people could imagine its rapid spread through businesses because there just wouldn't be enough people to act as central-office operators. Today's pushbutton phone lets me control a global communication network. The communication technology-and the control of the phone networkspread downward from large central offices to individual users. Similar stories exist for the copier and the PC. Many centralized technologies are ripe for "fragmentation."
2. Innovative people bootleg technology. Take a look at the technology that people sneak into a company or organization to help them on the job. When personal computers became available, many people bought their own and put them in their offices. People will go to great lengths to get products that help them do a better job-even if those products aren't sanctioned or are forbidden by "management." Locating bootlegged products can lead to opportunities and to plans for new products.
3. Late adopters often surpass early adopters. Although this sounds contradictory, it's true. Many of the newcomers to the semiconductor industry are the ones who are willing to learn from the mistakes of the early adopters and adapt their businesses to new conditions. If you need confirmation of this, simply try to recall the names of three of the earliest transistor manufacturers. Although we hear about shorter times to market and narrower market windows, it can pay to let someone else go first. You don't always have to create something brand new.
4. People buy tools, not technology. It's easy to forget that most people don't care what kind of microprocessor is in their personal computer. Likewise, customers don't buy a fax machine because of the type of modem circuits it uses. Keep your eye on solving the customers' problems and keep the technology secondary. Sure, the technology is important, but it's a means to an end. Don't fall in love with it.
5. Technology bottlenecks are opportunities. One of today's biggest bottlenecks is software development. We're still at the craftsman leveleveryone develops their own software, and software is recreated endlessly. Computer-aided software engineering (CASE) and object-oriented programming may yet prove to be helpful, but the software world still awaits a breakthrough akin to the development of mass-produced integrated circuits. Taking the hardware analogy further, software is still at the level of point-to-point wiring. Identify bottlenecks and find innovative solutions to remove them.
 Editor

You can send me your comments via FAX at (617) 558-4470, or through the EDN Bulletin Board System at (617) 558-4241 2400,8,N,1.

IMAGINE WHATACMO COULD DO TO YO

Now you can really stick it to 'em. And you can be sure they'll get the point. Because our two new MAX ${ }^{*}$ parts will make your next design

ANETEA

EPM 5192JC

Abrbial unbeatable. And get it to market faster.

Introducing Altera's 100-pin EPM5130 and 7500-gate EPM5192. Both packed with I/O and logic unheard of in a CMOS EPLD.

In fact, they're your best programmable alternative to gate arrays yet. Because MAX delivers high logic density and superior 50 MHz in-system speed. All thanks to our innovative MAX architecture.

Even design is faster. That's because our new MAX+PLUS ${ }^{\circ}$ II software takes full advantage of the enhanced memory management and multitasking capabilities of Windows ${ }^{\text {m" }}$ 3.0.

MAX+PLUS II can also automatically partition large logic designs into a set of EPLDs. In minutes. So you can deliver your finished design while

2610 Orchard Pkwy. San Jose, CA 95134-2020/(408) 984-2800/Fax: (408) 248-6924

remote possibilities are ttion breakthroughs.

The F80 Programmable Filter

Many said it was impossible. Create a truly programmable filter that lets you skip over do-it-yourself passive-filter design and do away with many external components.

Well, they were wrong. Our F80 Series of Programmable Low Pass Filters do it dramatically. It's a real breakthrough that lets you program channel bandwidth from $5-13 \mathrm{MHz}$. Continuously. And easily. It lets you program on the fly and fully realize the potential of constant density Circle \#48 for Product Information
recording.
It's here. The F8011. One of a family of customizable filters designed for a variety of custom applications. It requires only $\mathrm{a}+5 \mathrm{~V}$ power supply and reduces the costs and time associated with what had been one of the most engineering-intensive tasks in electronics design.

Whether you're designing hard disk drives, LANs, cellular telephone systems, radar systems or whatever, your next mission is to contact your nearest Circle \#49 for Career Information

Silicon Systems representative or distributor. Or call us for literature package SPD-4.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680 Ph 1-800-624-8999, ext. 151 Fax (714) 669-8814 European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117

CAE tools help cure transmission-line woes

When pc-board traces act like transmission lines, all manner of problems can arise.
CAE tools can help forestall those problems before you build your board.

Richard A Quinnell, Regional Editor

Increasing logic speeds are forcing digital designers to consider transmission-line effects in printed-circuit boards. Yet most digital designers working with CMOS and TTL circuitry have little experience in recognizing and dealing with such effects. Fortunately, a variety of CAE tools can help to predict and correct transmission-line effects at all stages of pc-board design.
Transmission-line effects manifest in your circuit in many ways. They show up as delays that prevent clock and data signals from meeting IC setup and hold requirements. They also cause ringing signals, which can cross logic thresholds several times, thus wreaking havoc on counters and other edge-sensitive circuits. Ringing signals can swing beyond the rail voltages, possibly damaging components. Crosstalk noise can also be a manifestation of transmission-line effects.
ECL designers have long faced these problems and have developed a robust set of design rules to handle them. Unfortunately, well-established rules for highspeed CMOS and TTL design do not exist. There are guidelines, but those guidelines are broad rules of thumb (see box, "Do I need transmission-line tools?").

Such rules of thumb leave considerable room for error and are not adequate for many designs.

If the rule you follow is too loose, you may produce a marginal design. A conservative rule becomes a tyranny if you follow it blindly-for example, placing line terminations where they aren't really needed. The resulting pc board will be much more expensive than necessary. In either case, rules of thumb give only crude estimates of critical parameters such as timing delays.

Broad as they are, rules of thumb do provide adequate guidance if your circuit's timing is not critical and if board cost is not a design constraint. If the timing has little margin, or if cost is an issue, however, you'll want stricter guidance as you calculate the expected behavior of every potential transmission line in your circuit. In such circumstances, transmission-line CAE tools really prove their worth.

You can use transmission-line CAE

Catching transmission-line problems before they happen is the job of transmission-line screening tools such as Valid Logic Systems' Signal Delay Analyzer. Working within the Allegro pc-board design tool, the analyzer finds and highlights problem traces.
tools at three stages in pc-board design: before beginning board layout, following component placement, and after routing. Not every tool is suitable for use at each stage, however. Table 1 shows a representative selection of transmission-line CAE tools.

The tools fall into two categories: analysis and screening tools (Ref 1). The analysis tools analyze individual signal traces and let you study the circuit's behavior in detail using simulated waveforms. The screening tools check an entire circuit board in one pass but only give waveforms for selected traces. These tools produce tabular results for the remaining traces, flagging the ones that fail to meet noise margins. You can also use screening tools to analyze individual circuits.

A good use of analysis tools is to help establish design rules before you begin your pc-board layout. Use the tools to calculate the behavior of representative circuits. From these test cases, you can develop
design rules specifically for your board. The rules you'll want to establish include maximum trace and stub lengths, minimum trace separation, maximum length of parallel runs with critical circuits, and linetermination type and value. You can also use the test-case information to select parameters such as trace width, substrate type and thickness, and the number and placement of ground planes.

Screening tools let you check for transmission-line effects once you know what your circuit will tolerate. For example, a placement screening tool yields an estimate of trace delays given your component placement. These estimates use a network's Manhattan distancesthe shortest possible routes between nodes if the traces were to follow an X-Y grid. Screening tools that have this capability include Shared Resources' Crystal Placement and Quad Design Technology's PDQ.

The placement-based delay esti-
mates will help you catch timing problems caused by long traces before investing time in a complete board routing. By feeding the estimated trace delays back into a logic simulator, you can determine whether the design possesses a fatal timing flaw.

If your timing simulator and the placement screening tool share the same database, you will save time and effort in arriving at a final layout. For example, a tool such as Valid Logic's Sigdelay, which is part of the company's Allegro pcboard CAD tool, lets you modify the board layout and quickly check the results using the same software. This interactive capability lets you quickly achieve a working design.

Don't stop short

The accuracy of these delay estimates peaks at $\pm 20 \%$. If your timing margins can absorb this error, you may be tempted to stop the analysis at this point. After all, you can usually add fixes for noise and

Do I need transmission-line tools?

When you're not sure that your designs require transmission-line analysis, estimate the number of transmission lines your design has. If a large number of your traces are transmission lines, your design will likely benefit from CAE analysis tools.

One rule of thumb for identifying potential transmission lines is that an unterminated trace will act as a transmission line if the time it takes a signal to propagate down the trace and back is more than $1 / 2$ the signal's rise time. More conservative versions of the rule cut that ratio to $1 / 4$ or $1 / 5$ (Ref 2).

Fig A translates these timing rules into suggested trace lengths for a given rise time. The graphs are for a propagation time of 2 nsec/ft, a typical value. You can use the chart to see if your circuits fall into the problem zone. If they do, you'll need to treat them as transmission lines to evade trouble.

Rules of thumb are only guidelines, however, and may be too loose or too tight. Fig B shows simulated waveforms for traces designed with the $1 / 2$ and $1 / 5$

Fig A-Rules of thumb help you determine if a trace might act like a transmission line. The graph translates the ${ }^{1 / 2}$ and ${ }^{1 / 5}$ timing rules into suggested trace lengths for a given rise time. The graphs assume a propagation time of 2 nsec/ft, a typical value.

TECHNOLOGY UPDATE

ringing problems after the board is fabricated. Only timing problems would have required you to do extensive redesign.

However, today's short design cycles may not allow you the luxury of chasing down noise and ringing problems. To minimize debug time, check your board's design for such transmission-line effects before building it. Use screening tools to check your board for crosstalk and ringing that violate the limits you set on each network. In addition, screening tools provide more accurate trace-delay information than placement-screening-only tools do. Several tools, such as Swiftlogic's Swiftline and Valid's Signal Noise Analysis tools, also check for signal overshoot and undershoot.

Here again, having the transmis-sion-line CAE tool and your pcboard CAD system share the same database can be an advantage. For example, Valid's Sigdelay and Signal Noise Analysis tools will highlight the failed traces directly on

Analysis tools let you test single circuits and calculate the results in detail. Tools such as Hyperlynx's Linesim Pro also simulate waveforms.
the pc-board plot and let you correct the problem interactively. The Swiftlogic tools bring the same capability to Mentor Graphics' CAE tools. The ability to design interactively is more than a convenience. Moving traces on a fully routed
board can create new problems as fast as it cures old ones. Repeatedly iterating the design in batch mode can be quite tedious.

But such tight integration is advantageous only if you have access to the pe-board database. Some
rules. In this example, the traces are microstrips 6 in . long, 10 mils wide, and 20 mils above a ground plane. The $1 / 2$ rule yields signals of marginal quality; the $1 / 5$ rule yields extremely high-quality signals. Neither rule is the best choice for this board: The $1 / 2$ rule might produce a marginal design, and the $1 / 5$ rule would result in a board much more expensive than necessary.

These two rules, then, define a region of ambiguity. Outside the region you can be fairly certain that your trace either requires termination or doesn't. Within the region, the traces may or may not need termination; you can't tell without further analysis. If a significant number of your board's traces fall in the ambiguous region, a transmissionline CAE tool becomes almost a necessity.

Fig B-Simulated waveforms for traces designed with the $1 / 2$ and $1 / 5$ rules can be generated with the Hyperlynx Linesim tool. In this example, the traces are microstrips 6 in. long, 10 mils wide, and 20 mils above a ground plane. The $1 / 2$ rule gives marginal results; the $1 / 5$ mule is too restrictive.

Transmission-line CAE tools

companies separate the circuit and pc-board design efforts, perhaps handling them at different locations. In such cases, interactive CAD tools may be pointless. Instead, try putting an analysis tool in the engineer's hands to handle whatever problems the pc-board designer's screening tool identifies.

Speed/accuracy tradeoffs

All screening tools calculate transmission-line effects, but they don't calculate in the same way. Each vendor has made its own tradeoffs between speed and accuracy. Valid's tools, for example, are fast enough for you to scan and modify your board interactively.

But to achieve this speed, Valid uses simple linear behavioral models for ICs, and the tool calculates transmission-line effects based only on the circuit's topology.

At the other end of the spectrum is Quantic Laboratories' Boardscan. Boardscan uses electromagneticfield theory as well as complex behavioral models that account for ICs' nonlinear behavior to calculate transmission-line effects. The complex calculations take their toll in compute time.

The tools you choose will depend on the accuracy you need, among other factors such as cost and computer type. One way to determine the accuracy you require is to test
the tools using some of your existing pc-board designs. Then, check the results against the actual boards.
If you want to avoid transmis-sion-line problems without using analysis tools, consider using one of the transmission-line-rule-driven pc-board autorouters. Valid's Allegro, Cadence's Amadeus Prance, and Shared Resources' Crystal pcboard design systems let you constrain their autorouters. You can use these tools to limit trace and stub lengths, match trace lengths, and control the connection ordering when routing. These features help control ringing and signal skew and ensure that signal transmitters and

Company	Table 1-Representative transmission-line analysis tools										Price
			Features							Platforms	
	Product name	Tool type	Postplacement screening	Trace delay		Multiple-thresholdcrossing detection	Overshoot/ undershoot	Crosstalk analysis	Other features		
Design Analysis Consultants	Timing Margin Analyzer	Analyzer		\bullet	\bullet				Worst-case timing analysis	IBM PC	\$350
Hyperlynx	Linesim	Analyzer		\bullet	\bullet	\bullet	-			80286-, 80386-, and 80496based PCs	\$495
	Linesim Pro	Analyzer		-	\bullet	-	-			$\begin{aligned} & \text { 80386- and } \\ & 80486 \text {-based } \\ & \text { PCs } \end{aligned}$	\$995
Quad Design Technology Inc	Preroute Delay Quantifier (PDQ)	Screening	-	-						Daisix, HP/Apollo, Sun, Valid, Viewlogic workstations	$\$ 11,000$ for all
	Transmissionline Checker (TLC)	Screening		\bullet	\bullet	\bullet			Also analyzes cables		
	Crosstalk Toolkit (XTK)	Screening						\bullet	Also analyzes cables		
Quantic Laboratories Inc	Boardscan	Screening	\bullet	\bullet	\bullet	\bullet	-		Behavioral models	Unix workstation	\$15,000
	Greenfield	Analyzer		-	\bullet	\bullet	-	-	Electromag-netic-field analysis	Unix workstation	\$35,000
Shared Resources Inc	Crystal Placement Tool Set	Screening	\bullet	\bullet					Includes crystal pc-board design system	HP/Apollo, Sun workstations	\$40,000
Swiftlogic Inc	SwiftLine	Screening	-	-	-	\bullet	-		Includes package models	HPIApollo, Sun workstations	$\begin{aligned} & \$ 17,500 \\ & \text { for both } \end{aligned}$
	SwiftNoise	Screening						\bullet			
Valid Logic Systems	Sigdelay	Screening	\bullet	-	-	\bullet			Lossy-line modeling	DECStation, VAXStation, Sun, IBM R6000 workstations	$\begin{aligned} & \text { From } \\ & \$ 12,500 \end{aligned}$
	Signal Noise Analysis	Screening					-	-			

SYNCHRO INSTRUMENTS ON CARDS

The IAC-37001 Simulator and Indicator provides independent channels for Synchro/Resolver-to-Digital and Digital-to-Synchro/Resolver conversion on the same VXI card. These in-strument-grade converters operate independently with separate references and are mounted on a "C" size card conforming to VXI register-based specifications.

The S / D section allows selection of 20 or 16 bit mode, with accuracy to 18 arc seconds in either Synchro or Resolver mode. Signal inputs are transformer isolated, with programmable levels of $11.8,26$, or 90 volts L-L, and a frequency from 360 to 10 KHz .

The D/S section of the IAC-37001 may be programmed for Synchro or Resolver output with an accuracy up to 20 arc seconds. A new feature is dynamic rotation, producing a constant clockwise rotation.

Applications include production testing, quality control inspection, and laboratory instrumentation.

D D

ILC DATA DEVICE CORPORATION

The SIM-36010 Simulatoris a full size IBM PC ${ }^{\circledR}$ based card containing a single-channel, wideband, high-accuracy instrumentation-grade Synchro/Resolver Simulator.

It accepts either a 36 or 115 Vrms reference signal and outputs a Synchro or Resolver signal at 11.8, 26 , or 90 Vrms L-L with a drive capability of 1.5 VA . It includes a programmable dynamic rotation feature that provides a constant output rate, clockwise or counterclockwise, from 0.07 degrees per second to over 30 revolutions per second.

The SIM-36010 is a versatile Synchro/Resolver instrument for production testing, quality control inspections, and laboratory instrumentation. It is ideal for use on a standalone simulator in an engineering department or as part of PC based Automatic Test Equipment (ATE).

Demonstration software, which shows the SIM-36010 capability is available with the card.

Sales Contact Circ. \#37 Literature Circ. \#38

The API-36005 Indicator is a full size IBM PC ${ }^{\circledR}$ based card containing a single-channel, wideband, high-accuracy, instrumentation-grade Synchro/Resolver Angle Position Indica:or (API).

It accepts a reference signal of 26 or 115 Vrms, along with Synchro/ Resolver signals of $11.8,26$, or 90 volts L-L, and converts these signals into 16 or 20 bits of binary angular information. Input signals are isolated over 360 to 5000 Hz . It contains a built-in single-angle self-test feature for confidence testing. It is faster than conventional IEEE bus test systems.

It is ideal for use as a stand-alone Angle Position Indicator in the engineering lab or as part of PC based Automatic Test Equipment (ATE).
The API-36005 comes with an operating and maintenance manual, and demonstration software.

For additional information, contact Bill Cullum, 1-800-DDC-1772 ext. 389 .
(81BM is a registered trademark of International Business Machines. Sales Contact Circ. \#39

Literature Circ. \#40 HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, NY 11716, (516) 567-5600, TLX: 310-685-2203, FAX: (516) 567-7358, (516) 563-5208

WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767 WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
NORTHERN NEW JERSEY: (201) 785-1734, TLX: 130-332, FAX: (201) 785-4132
UNITED KINGDON: 44 (635) 40158, FAX: 44 (635) 32264; FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762 GERMANY: 49 (8191) 3105, FAX: 49 (8191) 47433; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181 JAPAN: 81 (3) 814-7688, FAX: 81 (3) 814-7689; IRELAND: 353-21-341065, FAX: 353-21-341568

Iransmission Line Problems?

Glitchy clocks? Overshoot and undershoot? Flaky system operation?

Naw LineSim Pro

spots problem signals and helps find solutions before you build boards. It handles even the toughest geometries: large clock nets, backplane designs, etc. Fully integrated and interactive: no netlists, no translations, no hassles.

LineSim Pro features:

- simulations of up to 200 transmission line segments per electrical net
- push-button schematic
- oscilloscope display
- device-model library
- circuit-board-impedance calculators
- extended-memory support
- uses 386/486 protected mode

Or choose the original LineSim, a simplified version (two lines) for an unbeatable price.
(It's upgradable, too.)

LineSim Pro: \$995 (U.S.)

Requires 386/486 PC w/EGA/VGA; $\min .2 \mathrm{Mb}$ extended memory; mouse.
LineSim: \$495 (U.S.)
Requires IBM PC w/EGA; min. 640k memory.
30-day money-back guarantee, w/\$25 restock fee.

Attention: Sales Dept. P.O. Box 3578 Redmond, WA 98073-3578
Tel. (206) 869-2320
Fax (206)881-1008
terminators are at the ends of networks.
The boards a rule-driven autorouter designs will be correct by construction, in theory. But the design will only be as good as its design rules. You still have to tell the autorouter what rules to use.

Although transmission-line CAE tools can help you control transmis-sion-line effects, they don't guarantee a problem-free production board. The ICs you purchase and the boards you build will inevitably vary from their nominal specifications. Yet, the tools don't automatically account for those variations. You must handle the variations manually to ensure the integrity of your design.

Many transmission-line CAE tools do have device libraries that provide both nominal and worst-
case models. No tool provides Monte-Carlo simulation using those models, however, nor do any handle variations in trace thickness or width. It's up to you to scan your design repeatedly to test for all relevant combinations of device and board variations.

References

1. Conner, Margery, "Simulators for high-speed board design spot trouble," $E D N$, December 21, 1989, pg 152.
2. Royle, David, "Rules tell whether interconnections act like transmission lines," EDN, June 28, 1988, pg 131.

Article Interest Quotient
 (Circle One)

High 515 Medium 516 Low 517

For more information . . .

For more information on the transmission-line products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Cadence Design Systems Inc
555 River Oaks Pkwy
San Jose, CA 95134
(408) 943-1234

Circle No. 700

Design Analysis Consultants
10014 N Dale Mabry
Suite 101
Tampa, FL 33618
(813) 265-8331

Circle No. 701

Hyperlynx

Box 3578
Redmond, WA 98073
(206) 869-2320

FAX (206) 881-1008
Circle No. 702

Quad Design Technology Inc
1385 Del Norte Rd
Camarillo, CA 93010
(805) 988-8250

FAX (805) 988-8259
Circle No. 703

Quantic Laboratories Inc
46750 Fremont Blvd
Suite 206
Fremont, CA 94538
(800) 665-0235;
in CA, (415) 770-8383
FAX (415) 770-8395
Circle No. 704

Shared Resources Inc
3047 Orchard Pkwy
San Jose, CA 95134
(408) 434-0444

FAX (408) 434-0746
Circle No. 705

Swiftlogic Inc
5201 Great America Pkwy
Suite 3223
Santa Clara, CA 95054
(408) 562-6060

Circle No. 706

Valid Logic Systems
2 Omni Way
Chelmsford, MA 08124
(508) 256-2300

FAX (508) 250-0087
Circle No. 707

MEGA MEMORY.

SONY HIGH-DENSITY SRAMS				
MODEL	CONFIG.	SPEED (ns)	PACKAGING	DATA RETENTION
CXK581000P*	$128 \mathrm{~K} \times 8$	100/120	DIP 600 mil	L, LL
CXK581000M*	$128 \mathrm{~K} \times 8$	100/120	SOP 525 mil	L, LL
CXK581100TM*	$128 \mathrm{~K} \times 8$	100/120	TSOP	L, LL
CXK581100YM*	$128 \mathrm{~K} \times 8$	100/120	TSOP (reverse)	L, LL
CXK581001P	$128 \mathrm{~K} \times 8$	70/85	DIP 600 mil	L
CXK581001M	$128 \mathrm{~K} \times 8$	70/85	SOP 525 mil	L
CXK581020SP	$128 \mathrm{~K} \times 8$	35/45/55	SDIP 400 mil	
CXK581020J	$128 \mathrm{~K} \times 8$	35/45/55	SOJ 400 mil	
$L=\text { Low power. }$ LL = Low, low power.				

MEGA COMMITMENT.

As you can see, Sony's more committed than ever to meeting your high-density SRAM needs.
Just consider the enhancements we've made in a few short months: TSOP and TSOP-reverse packaging.Low dataretention current. And extended temperature range.

All based on our unique 0.8 -micron CMOS technology, and available in 32-pin DIP and surface-mount plastic packages.
Then consider our ever-increasing production capabilities. We've just added yet another SRAM facility in Japan. And acquired a large AMD facility in San Antonio, Texas.

So you can really count on us in a crunch.
Need more proof we're serious about your each and every SRAM need?

Call us. We've got more breakthroughs on the way. Well over 100 SRAM products spanning the performance spectrum. And the desire to meet-or exceed - your toughest performance spec.

Sony high-density SRAMS are shipping now, complete with competitive pricing. So call (714) 229-4190 today. Or write Sony Corporation Of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630, Attention: Semiconductor
sales. FAX (714) 229-4285.

HOW MORE COMPANIES ARE ADDING LIFE TO THEIR DESIGNS.

Rayovac Lifex ${ }^{\text {TM }}$ Coin Cells and Lifex $\mathrm{FB}^{\text {TM }}$ Batteries have the highest reliability ratings in the industry. That's why major electronics manufacturers worldwide already specify Lifex in their product designs.

Rayovac reliability is especially valuable for critical memory applications, such as encryption codes, cash values, or control parameters.

In high-temperature sustained storage, Lifex continues strong long after others fade away.

The Lifex FB offers extended temperature tolerance -operating comfortably in
a range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. And our products are made in the U.S.A., with on-time delivery available around the world.

So add longer life to your design. Specify a Rayovac Lifex Coin Cell or Lifex FB Battery in your design. Call Rayovac's Technical Sales \& Marketing Department for complete information and battery specifications at 608-275-4694.

KILL THE NOISE WITH

 MICRO/Q CAPACITORS

Reduce voltage noise spikes in ICs by as much as a factor of 10 . Without redesign. Without using additional space.
With Micro/Q ${ }^{\circledR}$ decoupling capacitors from Rogers.
Micro/Q capacitors mount under the IC. Share mounting holes. To improve noise suppression where it's most effective-at the source.
Best of all, Micro/Q capacitors kill the noise without killing a lot of valuable time.

Micro/ Q^{8} is a registered trademark of Rogers Corporation.
Another MEKTRON ${ }^{\circledR}$ Interconnection Product.

For all the facts, including the Micro/Q capacitor track record for noise-reduction in dynamic RAMs, EPROMs, static RAMs and boards that need EMI/RFI fix, call a Rogers' Product Specialist today at (602) 967-0624 (Fax 602-967-9385). And ask for a free sample.

Technology for tomorrow built on TQC today.

(1) ROGERS
 CIRCLE NO. 52
 Rogers Corporation
 Circuit Components Division 2400 S. Roosevelt Street Tempe, AZ 85282

DISTRIBUTION: Europe, Japan, Taiwan, Singapore, Hong Kong, Korea, Brazil, Australia

MICRO/Q 1000 STANDARD CAPACITORS

Improve board performance without redesign. Noise problems are solved by retrofitting on existing boards.

CIRCLE NO. 53

MICRO/Q 3000 CAPACITORS

Reduces noise associated with the use of PGA and PLCC devices. Several part sizes are available to address a variety of package sizes, Micro/Q 3000 is designed to be used with all 16/32-bit MPUs, DSPs, GSPs, FPPs, gate arrays, standard cells, and fully custom ASICs.

MICRO/Q 1000 CUSTOM CAPACITORS

Special pinouts are available to address the wide variety of specialty DIPs such as analog devices, op-amps, and the center pinout advanced CMOS devices. Applications include: decoupling, EMI/RFI filtering, and compensation.

CIRCLE NO. 54

MICRO/Q 3500SM CAPACITORS FOR SMT-PLCCs

Family of surface mount capacitors designed to fit under 44,52,68,84/larger pin count PLCCs. Low inductance, 0.5-0.6 nanoHenries.Pads absorb coefficient of thermal expansion mis-match between board and device during soldering. Supplied in tape and reel or in bulk. Available with Z5V or X7R dielectrics.

FDDI.
 From deskwork to network.

Good news for networks!
The X3T9.5 Task Group, under the procedures of ANSI Accredited

Standards Committee X3, has reaffirmed approval of the Media Interface Connector (MIC) for the proposed FDDI (Fiber Distributed
Data Interface) Physical Layer Medium Dependent (PMD) document.

More good news! AMP
has the complete fiber optic interconnection system-the AMP OPTIMATE Fixed Shroud Duplex System-that meets all FDDI PMD requirements. And includes all the physical components you need to make your fiber optic network a reality.

Of special note: the transceiver is capable of operating at data rates up to $125 \mathrm{Mb} / \mathrm{s}$. Available in standard or raised (+5 v) ECL logic, it gives you a compact, board-mount data link in an industry-standard 22-pin package. Reliable duplex mat-
ing and electro-optic conversion are now easier than ever.

All system components, in fact, are easy to install and reconfigure. Our field termination kit makes short work of attaching duplex connectors to fiber cable. And because all interconnections use a floating interface, you get consistent, low-loss mating (0.6 dB typical) throughout.

THIS IS AMP TODAY.

You can also order complete, custom-built cable assemblies from us. Either way, you'll have the assured compatibility that comes from dealing with only one supplier for all your FDDI interconnection components. A supplier whose capability
in fiber optic technology is everything you'd expect from the world's largest connector company.

For technical literature and more information, call 1-800-522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.

Two New SBE 16 Mbps Controllers Bring High-Speed Token Ring to VMEbus/Multibus Systems.

Your Seat Belt... Token Ring Accelerates to 16 Mbps .

One advantage of Token Ring is that it provides an efficient, highperformance interconnect with IBM mainframes. In a multinodal LAN environment, Token Ring provides four times the tbroughput of Ethernet.
SBE delivers high-performance Token Ring with two new intelligent 16 Mbps communications controllers that interface VMEbus/Multibus Systems with Token Ring LANs.

SBE's Token Ring Controllers include these features:

- Software-selectable interface for 4 or 16 Mbps .
- High-speed, on-board 32-bit $68020 / 6803025 \mathrm{MHz}$ processors.
- 1 MB or 4 MB of DRAM.
- Support for IEEE 802.5 standards.

Turn to SBE and discover the difference these new 16 Mbps VMEbus/ Multibus Controllers can make in your LAN application.

For fast action, call: 1-800-347-COMM.
SBE, Inc., 2400 Bisso Lane, Concord, CA 94520

Fasten

TECHNOLOGY UPDATE

FIBER-OPTIC TRANSCEIVERS

Modules satisfy FDDI and other standards

Transceiver modules are key factors in fiber-optic data links and can im-plementcommunications in both local- and widearea networks.

Dave Pryce, Associate Editor

COMMUNICATIONS
SPECIAL ISSUE

Advances in fiber-optic components and the implementation of new standards are having a dramatic effect on both short- and long-haul telecommunications. Rather than using a traditional copper-based system with its inherent bandwidth limitations and EMI/RFI problems, an increasing number of communications networks are implemented with fiber-optic cables. Lo-cal-area networks (LANs) based on the Fiber Distributed Data Interface (FDDI) are making their presence felt, and the emerging Synchronous Optical Network (SONET) standard will likely play a major role in long-distance applications. (For a description of these standards, see box, "Fiber-optic-network standards," pg 64.)

Of critical importance to the implementation of these state-of-the-art networks are the transmitter and receiver modules, which interface with the fiber-optic link. Many of these modules take the duplex form of a transceiver, which combines the functions of both the transmitter and receiver.

Typical of these transceivers are the multisourced FDDI modules available from such companies as AT\&T, Hewl ett-Packard, AMP, and Siemens. These modules have similar circuitry and feature a similar package
that mounts on a printed-circuit board.
In the Hewlett-Packard version of the FDDI transceiver (Fig 1), the transmitter section consists of a $1300-\mathrm{nm}$ InGaAsP LED and a single custom bipolar LED-driver IC. The driver circuit provides temperature compensation to regulate the optical output power. The receiver section of the FDDI module consists of a $1300-\mathrm{nm}$ InGaAs PIN (positive intrinsic negative) photodiode and two custom bipolar ICs. The preamplifier IC mounts in the optical subassembly with the PIN detector to maximize receiver sensitivity. The quantizer IC provides the final pulse shaping for both the logic output and the signal-detect

This pin-compatible multisourced FDDI transceiver from AMP is similar to those available from Hewlett-Packard, AT\&T, and Siemens.

Sprague delivers tantalum chips off-the-shelf.

Need tantalum chip capacitors in a hurry? Need ten thousand? Or hundreds of thousands? Sprague can deliver Type 293D TANTAMOUNT® ${ }^{\text {© }}$ tantalum chip capacitors from stock to meet your surface mount requirements.
Featuring rugged, fully molded construction, they conform to EIA

IS-28. Depending on size, they are supplied taped on 8 mm or 12 mm reels per EIA 481A, for automatic placement. Available in four package sizes covering 4 to 50 WVDC ratings. Capacitance values: 0.10 to $100 \mu \mathrm{~F}$. When it comes to machine-friendly tantalum chips, we're ready NOW!

For complete technical data, write Sprague Technical Literature Service, P.O. Box 9102, Mansfield, MA 02048-9102. Or call 1-800-SPR-0800.

CIRCLE NO. 58

©SPRAGUE

TECHNOLOGY UPDATE

Fiber-optic transceivers

function. The data input to the transmitter and the data and signaldetect logic outputs of the receiver are differential, 100 K ECL-compatible circuitry referenced to a 5 V power supply.
Regardless of any minor circuit variations between FDDI transceiver modules from different vendors, all work in the same manner and provide essentially identical performance. Moreover, all come in a similar-size package with identical pin arrangements in the form of two rows of 11 pins each for pc-board connection. The module also has a built-in MIC (media interface connector) receptacle for connection to the fiber-optic link. HewlettPackard sells its HFBR-5125 version of these multisourced transceiver modules for $\$ 550$ (1 to 9).
Hewlett-Packard also offers individual transmitter (HFBR1125) and receiver (HFBR-2125) modules for $\$ 270$ and $\$ 330$, respectively. These FDDI-compatible modules come in a smaller 20-pin package with an ST simplex connector originally developed by AT\&T. This combination is handy

FDDI modules are also available in simplex form. These transmitter and receiver modules from Hewlett-Packard are individual, 20-pin devices with an ST-style fiber-optic connector.
for designs, such as equipment that uses optical bypass switches, that can't use the duplex MIC connector.

FDDI-compatible products and applications have been expanding at an accelerated pace, but the same has not been true for the stillemerging SONET standard. Nevertheless, authorities such as Mark Melliar-Smith, chief operating offi-

Fig 1-Multisourced FDDI transceivers all work in the same manner. In HewlettPackard's version, the transmitter section uses a 1300-nm InGaAsP LED and custom driver IC. The receiver section uses a $1300-n m$ InGaAs PIN photodiode and two custom ICs. Regardless of the manufacturer, these FDDI modules come in similar-sized packages with identical pin connections.
cer of the lightwave unit of AT\&T Microelectronics, remain convinced that the networks of the future will likely be SONET networks. This conviction is a sound one. By standardizing transmission-line rates and specifying common rules of operation, SONET enables equipment from different vendors to function seamlessly across network boundaries.
AT\&T, among others, is backing up its conviction in SONET's future with products that are available now. At the Conference on Optical Fiber Communications recently held in San Francisco, AT\&T introduced several SONET-compatible modules as part of its Astrotec series. Among these modules are the 1227 transmitter and 1310 receiver, which the company sells as a pair for $\$ 900$ to $\$ 1100$ (1000).
The 1227 transmitter consists of an InGaAsP $1300-\mathrm{nm}$ Fabry-Perot laser diode, a low-power CMOS IC, and an InGaAs PIN photodetector as a backface monitor. These devices are contained in a hermetically sealed 20 -pin package for pcboard mounting. Although uncooled, the transmitter meets all

TECHNOLOGY UPDATE

Fiber-optic transceivers

SONET specifications over the -40 to $+85^{\circ} \mathrm{C}$ range. The transmitter operates from a single 5 V supply and can serve intraoffice links as long as 15 km . The 1227 operates at line rates of $51 \mathrm{M}, 155 \mathrm{M}$, and $622 \mathrm{M} \mathrm{bps}$. . At the latter rate, the transmitter can carry the equiva-
lent of 80642 -way voice telephone connections.

The 1310 receiver consists of an InGaAs PIN photodetector, a GaAs preamplifier, and a silicon bipolar comparator circuit. Like its companion transmitter, the receiver operates over the -40 to $+85^{\circ} \mathrm{C}$
range. You can optimize the performance of the receiver for any data rate from 20 M to 650 M bps. In addition, the receiver is SONET compatible at 51.84 M and $155.52 \mathrm{M}-$ bps data rates for intraoffice distances as long as 40 km . The device requires -5.2 and 5 V supplies.

Fiber-optic-network standards

Networks with bit rates greater than 50 M bps are handled by ANSI (American National Standards Institute). The two principal ANSI standards for use with fiber-optic networks are FDDI and SONET.

The ANSI Fiber Distributed Data Interface (FDDI) uses counter-rotating dual rings (Fig A). The topology is essentially compatible with the IEEE-802.5 token-ring standard, but is slightly altered to accommodate high data rates. FDDI improves on the 802.5 standard by allowing the ring to pass the token to the next station for immediate access after transmitting the information packet. As a result, more than one packet of information can circulate at a time. The conventional 802.5 standard requires that the token return to the originating station before the next token is passed.

FDDI networks operate at 100 M bps. They have a 2 -km maximum cable length between nodes (stations), a $100-\mathrm{km}$ maximum ring circumference, and
a maximum of 500 nodes. The total length of the network can be 200 km . In contrast, Ethernet networks have a $0.5-\mathrm{km}$ maximum cable length between nodes and a maximum length of only 2.8 km . Although the actual data rate for FDDI is 100 M bps , the 4 -bit/ $/ 5$-bit encoding scheme requires a 125 M baud transmission rate. The FDDI standard also specifies a $1300-\mathrm{nm}$ LED for the photoemitter and a $1300-\mathrm{nm}$ PIN diode for the photodetector. FDDI networks use multimode fiber cable with a core/ cladding diameter of $62.5 / 125 \mu \mathrm{~m}$.
Conceptually, a large-scale implementation of FDDI (Fig B) can support front-end, back-end, and backbone networks. The front-end network operates through a wiring concentrator to link equipment such as engineering workstations. The back-end network supports communications between mainframe computers or minicomputers and their associated storage devices. The backbone network uses gate-

Fig A-The Fiber Distributed Data Interface (FDDI) uses counter-rotating dual rings, which allows more than one packet of information to circulate at a time.

TECHNOLOGY UPDATE

The implementation of FDDIbased systems is probably the most prevalent and the development of SONET-based systems the most dynamic among fiber-optic-transceiver applications, but many other applications exist for the devices.

Perhaps one of the least known,
but most noteworthy examples is the use of fiber-optic transmitters and receivers in CATV systems. These systems use seemingly countless numbers of amplifiers to transmit and receive wide-band signals over 75Ω coaxial cable. By replacing the coaxial cable with fiber,

CATV companies can greatly reduce the number of amplifiers in the typical system while reducing noise levels and expanding the bandwidth. Indeed, many suppliers of CATV equipment believe that future systems must use fiber if channel capacities are to grow beyond
ways to tie together various types of lower-speed LANs such as Ethernet, token-bus, and token-ring to form larger wide-area networks.

The ANSI Synchronous Optical Network (SONET) is not, by original intent, a local-area network. The standard was created to standardize transmission-line rates and architectures for longhaul fiber-optic systems. By specifying common rules of operation, SONET enables diverse vendor equipment to function seamlessly across network boundaries while transporting high-volume digitized voice, image, or data communications. SONET specifies a $1300-\mathrm{nm}$ data link using either LEDs or lasers, depending on the distance and line rate. The standard encompasses line rates of 51.84 M to 2488.32M bps and assigns specific line rates for each
optical-carrier (OC) level. Examples include

Optical-carrier level
OC-1
OC-9
OC-12
OC-18
OC-24
OC-36
OC-48

Line rate (M bps)
51.840
155.520
466.560
622.080
933.120
1244.160
1866.240
2488.320

Although SONET's primary application is in longhaul transmission over the switched telephone network, the standard may also prove useful for local loops. For example, SONET-compatible products are available that function well in single-mode FDDI applications as well as other single-mode private networks needing high capacity or lengths of 2 to 40 km .

Fig B-The FDDI standard supports the requirements of many networks, including Token Ring, Token Bus, and Ethernet.

TECHNOLOGY UPDATE

Fiber-optic transceivers
today's $550-\mathrm{MHz}, 80-\mathrm{channel}$ limit.
One of the companies addressing this need is Ortel Corp, which offers transmitter and receiver modules for CATV systems. Although ex-pensive-single-quantity prices are $\$ 10,530$ for the 1610A transmitter and $\$ 2295$ for the 2610A receiverthese modules can be cost effective in certain sections of a CATV system. For example, the trunk network that moves signals from the head end to distant neighborhoods typically extends 15 to 20 miles. Spanning this distance using coaxial cable requires 30 to 50 amplifiers. A single laser-based transmitter can easily power a fiber-optic cable for a distance of 10 to 15 miles.

Ortel's 1610A CATV transmitter uses a distributed-feedback laser integrated with an optical isolator. The low-noise laser, which emits light at 1310 nm , suits 10 - to 550 MHz AM CATV links for fiberbackbone and super-trunk applications. The optical output power is greater than 4 mW into single-mode $9 / 125-\mu \mathrm{m}$ fiber cable.

The 2610A photodiode receiver, which also operates over the 10 - to $550-\mathrm{MHz}$ range, suits suboctave systems where low second-harmonic distortion is important. Sec-ond-order products are -60 dBc ; third-order products are -75 dBc .

The module, which has a gain 7 dB higher than that of an unmatched photodiode, uses a broadband RF output circuit to maximize delivered power. Like the transmitter, the receiver uses single-mode $9 / 125-$ $\mu \mathrm{m}$ cable.

Other applications

In addition to the fiber-optic modules suitable for FDDI, SONET, and CATV systems, a variety of general-purpose types are available for point-to-point and data-bus applications. Typical of these are the TX5000S010 transmitter and RX5237S010 receiver (\$297/pair) from Litton Poly-Scientific. These modules operate at NRZ data rates of 1 M to 25 M bps and can serve a wide range of commercial and military applications. The modules have ECL-compatible inputs and require a single 5 V supply. Both the transmitter and receiver come in 24 -pin hermetically sealed packages that you can mount on a pe board.

Other examples of fiber-optic modules include the XMT1300 transmitter and RCV1201 receiver from BT\&D Technologies and the V23800 series of video modules from Siemens. Useful for highspeed data transmission in localarea and metropolitan-area networks, the XMT1300 and RCV1201
modules are capable of data speeds as fast as 1.2 Gbps at distances of 10 km . Both the transmitter and receiver utilize GaAs integrated circuits to achieve this performance. The modules come in 28 -pin, $1.5 \times$ $1.0 \times 0.25-\mathrm{in}$. hermetically sealed packages. The transmitter and receiver cost $\$ 860$ and $\$ 1000$ (1000), respectively.
The V23800-S1 and V23804-E1 video modules from Siemens suit security and surveillance applications. Using FM transmission, the $1300-$ nm devices can handle $7-\mathrm{MHz}$ sin-gle-channel operation. The modules can transmit video signals over distances greater than 4 miles without a repeater. The $45 \times 22 \times 9-\mathrm{mm}, 16$ pin package lets you place as many as four modules on a single VMEbus board. In OEM quantities, the modules cost $\$ 260$ each.
Although fiber-optic cables are not likely to completely replace the ubiquitous twisted pairs of copper wire and coaxial cable, an increasing number of applications are turning to fiber for its performance advantages. Vendors will continue to support this trend with a plethora of new products.

Article Interest Quotient
 (Circle One)

High 512 Medium 513 Low 514

For more information . . .

For more information on the transceiver modules discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

AMP Inc	BT\&D Technologies Box 3608 Harrisburg, PA 17105
(800) 522-6752 2 Righter Corporate Center	
Circle No. 718	Wilmington, DE 19803
	(800) 545-4306
Circle No. 720	

Litton Poly-Scientific
Fiber Optic Products
1213 N Main St
Blacksburg, VA 24060
(800) 336-5917
Circle No. 722

Ortel Corp
2015 W Chestnut St
Alhambra, CA 91803
(818) 281-3636
Circle No. 723

[^3]
We developed LONWORKS technology, a better way to add control and communications capabilities
 to your products
 quickly and inexpensively.

What You Do With It Is Your Business.

Spend a day in one of our free LonWorks" seminars and we'll change the way you develop products forever.
You'll learn about the technology that uses the latest computer, semiconductor and networking advances to add control and communication capabilities to your products.

You'll see the heart of LonWorks, the Neuron* Chip that's small enough to fit into any product. Smart enough to control and respond to other devices. Flexible enough to communicate over standard media. Inexpensive enough that everyone can afford it.

You'll discover how easy it is to program and link Neuron Chips into virtually invisible networks of intelligent devices.
How our powerful LonTALK"' protocol lets you use electrical powerlines, twisted pair, radio waves, and other common media as communication paths.

How our LonBuilder"' Developer's Workbench helps you design LonWorks networks into your products to make them work "smarter." How to connect your LonWorks-based products into smart systems. And how to connect those systems into interoperating LonWorks environments as large as a building, a home or a factory. All in far less time and for much less money than it takes to develop your own protocols and tools.

LonWorks technology is something every designer in every industry can use. A day at a LONWORKS seminar will give you the information and inspiration to make your products sense, control, communicate and cooperate better than ever.

So find the seminar nearest you. Call I-800-258-4LON for your reservation. And learn all about the new technology that will help you improve your products. And your business.

From Laserjets ${ }^{\text {to }}$ fighter jets, our high-performance FACT QS and FCTA set the pace in logic.

Portable
Computing

Workstations

Delivering high performance to a broader range of applications.
Whether it's a printer churning out 8 PPM or an F-18 scorching the sky at Mach $2+$, your application requires advanced logic solutions that deliver low power. Which is exactly what you get with our lownoise FACT Quiet Series and high-speed FACT FCTA families.

Together, these devices provide innovative solutions to the distinctly different needs of a broad spectrum of high-performance applications.
Needs that range from the ultralow power of battery-operated

systems to the searing speeds dictated by RISC processing. To guaranteed 50 -ohm dynamic drive for low-impedance bus environments (something that reducedoutput swing ACMOS technologies and BCT can't do). To the 64 mA lowlevel static drive required of VMEtype termination schemes.

Silencing noise with advanced circuitry.

Beyond speed, power, and drive there's the issue of noise. Our USC ${ }^{\text {w }}$ (Under-Shoot Corrector) and patented GTO"' (Graduated Turn-On Output) circuits enable our devices to offer the lowest ground bounce of any ACMOS family. And their split-ground bus results in the best dynamic noise margins of any logic technology.

Plus, with controlled output edges and negligible ringing, FACT QS generates lower spectral content than BCT and non-standard-pinout ACL families**

Producing a complete family of ACMOS logic.
With our high-performance FACTQS and FACT FCTA devices, we've enhanced our multi-functional, broad-based line of ACMOS logic devices, which already includes standard FACT and FCT. What's more, FACT is available with Standard Military Drawings, JAN 38510 level B, and S-level processing. So regardless of your application, we have the solution.

Keep pace with the leaders in logic.
For more information, including datasheets and samples, on our ACMOS families, call or write us today.
We'll get you up to speed in no time at all.

1-800-NAT-SEMI, Ext. 111
National Semiconductor Corp.
P.O. Box 7643

Mt. Prospect, IL 60056-7643

National Semiconductor

Logic-synthesis software shares simulation model libraries

The Improvisor and Optivisor are logic-synthesis tools that begin their existence using the Verilog HDL (Hardware Description Language). Unlike synthesis tools that accept VHDL (VHSIC Hardware Description Language) input, these tools can synthesize any construct allowed by the HDL.

Although the IEEE has sanctioned VHDL as an industry-standard HDL (IEEE-1076-1987), VHDL has a few shortcomings. The Improvisor and Optivisor synthesis tools address the major chinks in the VHDL armor.

First, Verilog-HDL ASIC libraries are currently more prevalent than VHDL ASIC libraries. The synthesis tools allow you to use the same library to drive both the synthesis and the simulation of your design. Rather than simulating to verify the approximate delay paths provided by the synthesis models, the delay from the synthesis tools will be the delay from the simulator. As a result, the tools perform some static-timing analyses. Consistent model libraries also allow you to use the Veritime and Verifault timing- and fault-analysis tools.

VHDL's second weakness is that, as a simulation language, it cannot synthesize some of its constructs. This shortcoming can cause problems for designers who don't limit their use of VHDL in designs that are to be synthesized. The synthesis tools, however, can synthesize the entire Verilog HDL.

Like the synthesis tools from

By sharing a single model library with simulation and layout tools, the Improvisor and Optivisor logic-synthesis software can closely integrate the design flow.

Synopsys (Mountain View, CA), these tools divide the conversion of HDLs into logic as two operations. First, the Improvisor lets you perform architectural tradeoffs using RTL-level behavioral models. Then the Optivisor allows you to optimize the design for your particular performance or area needs.

The synthesis tools are integrated within the company's IC-and systems-design tool suites. In fact, where many simulation tools can extract delay information introduced by a circuit's physical layout, the Improvisor goes one better. Because the synthesis tools use the same library as the simulation tools,
the synthesis software accepts delays added by the layout.
Back-annotated physical delays allow you to find, modify, and resynthesize paths whose performance falls out of specification as a result of layout effects. You can minimize the effect and time penalty of resynthesis by defining the section of code you want to synthesize. Also, going back to the HDL source code maintains data consistency and the integrity of your design.

To optimize your logic, the software uses two algorithms. A fast algorithm optimizes the circuit, using algebraic rules that treat the

With ZAXPAK in-circuit emulators, it's easy to impersonate your favorite chip. So now you can test, debug and integrate your design so fast, your competition will think it's a crime. We're the leader in 16 -bit emulation, including 68000, 80C186, V50 and most others. We also support 8 and 32bit chips and specialized applications like the Mitsubishi MELPS 7700.

ZAX has been delivering design tools for over a decade. Now we've put that experience into our new ZAXPAK family of
hardware/software solutions featuring source-level debug and one million breakpoints. All under the control of your terminal, PC, workstation or Ethernet. Or use our optional built-in host platform.

So call us today at 1-800-421-0982. (In CA call 1-800-233-9817). With ZAX you'll be saving time, not doing it.

ZNX
Zax Corporation
2572 White Road, Irvine, CA 92714.
Put your design to the test.

CIRCLE NO. 27

Nobody does ferrites like DEXTER. We offer the industry's broadest selection of quality ferrites and associated hardware from world-class manufacturers. SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From prototype quantities to production runs. From off-the-shelf to a wide range of value-added services - precision fabrication, E-core and pot-core gapping and testing, sorting and selecting by electrical specs.
Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location
FERRITE CORES:
THE DEXTER DIFFERENCE -One-Stop-Shopping for all your ferrite needs.

MACNEIC
 mairitas
 DIVISION

THE DEXTER CORPORATION
ATLANTA • BOSTON • CHICAGO • DALLAS •
LOS ANGELES • MINNEAPOLIS/ST. PAUL
NEW YORK • SAN FRANCISCO • TOLEDO/DETROIT •
ENGLAND• WEST GERMANY

EDN EDITORS' CHOICE
circuit as a polynomial equation. This algorithm temporarily replaces variables that it can't understand, such as inverted signals, with variables that it can understand. The second, more thorough algorithm optimizes the logic, using Boolean algebra rules where concepts such as inverted signals make sense.
You can choose the algorithm that applies to your circuit. However, because the second algorithm is more CPU intensive, it may be more appropriate for arithmetic circuit functions. Conversely, the vendor claims the first algorithm works better on control and random logic.

Both software packages run on Unix workstations from DEC, Sun, and HP/Apollo. The logic-synthesizing Improvisor costs $\$ 15,000$. The cost of the optimization tool, the Optivisor, depends on your hardware configuration. The software's price starts at $\$ 35,000$ and requires at least one copy of the Improvisor. A subsequent release of the software will accept a subset of VHDL.-Michael C Markowitz

Cadence Design Systems Inc, 555 River Oaks Pkwy, San Jose, CA, 95134. Phone (408) 943-1234. FAX (408) 943-0513.

Circle No. 731

WHAT'S COMING IN EDN

EDN Magazine's March 28, 1991 issue will be accompanied by a special supplement on software engineering. That issue begins with a guide to embedded DOS. Also, see our staff-written report on objectoriented programming and other useful software-related stories.

STAKPAC $^{\text {™ }}$	MINI STAKPAC $^{\text {™ }}$	
1200 Watts	Power	600 Watts
$110 / 220 \mathrm{VAC}$	Input	$110 / 220 \mathrm{VAC}$
Up to 8	Outputs	Up to 5
$3.2^{\prime \prime} \times 5.5^{\prime \prime} \times 11.5$	Dimensions	$1.9^{\prime \prime} \times 5.55^{\prime \prime} \times 12^{\prime \prime}$
Fan-Cooled	Cooling	Twin Fans

Each StakPAC output is factory configured utilizing Vicor's robotically manufactured power converters...VI-200 series modules. Consider the advantages of a StakPAC customized for your system needs with automized power modules: USER DEFINABLE OUTPUTS-The use of proven standard catalog modules offers the features of a custom without the associated risk or investment.
STANDARD MODELS - Many preconfigured standards available.
QUICK DELIVERY-Typical delivery 1 week or less for custom or standard evaluation units,
COMPACTNESS - Low profile packages provide up to 6 watts/cubic inch, twice the industry norm.
UL, CSA, TUV SAFETY AGENCY APPROVALAll StakPAC configurations are approved, standard or custom.
EMI-FCC/VDE Level A, conducted.
StakPACs are designed and built by Westcor Corporation, Los Gatos, CA, a Vicor subsidiary. StakPACs are sold world-wide through Vicor Corporation, Andover, MA.

RoboPower

STAKPAC STANDARDS 1200 WATT MODELS						MINI STAKPAC STANDARDS 600 WATT MODELS					
Model	Output Voltage (VDC) and Maximum Current (amperes) per Channel					Model	Output Voltage (VDC) and Maximum Current (amperes) per Channel				
	\#1	\#2	=3	\#4	$=5$		\#1	*2	\#3	\#4	\#
Single Output						Single Output					
SP1-1801	2 (4)240	Total output power may not exceed 1200^{*} watts for any model, single				ST1-1401	2 (1)120	Total output power may not exceed 600 watts for any model, single			
SP1-1802	5@240					ST1-1402	5 (1) 120				
SP1-1603	12 (1) 100	or multiple output. Lower power				ST1-1301	12 © 50	or multiple output. Lower power			
SP1-1604	15@80	StakPAC models and many other				ST1-1302	15 (4)40	Mini StakPAC models and many other			
SP1-1605	24 (130	configurations are available.				ST1-1303	24@25	Please contact the factory.			
SP1-1606	28 © 42	*Standard models supply 1100 watts;				ST1-1304	28 @21				
SP1-1607	48@25	high-powered version 1200 watts.				ST1-1305	48@13				
Dual Output Please contact the factory.						Dual Output					
SP2-1801	2 (2) 120	5 (120				ST2-1401	2 @ 60	$5 @ 60$			
SP2-1802	5 @ 120	5 @ 120				ST2-1402	5 @ 60	5 @ 60			
SP2-1803	$5 @ 120$	12 @ 66				ST2-1403	5 (1)60	12 @ 33			
SP2-1804	12 @ 66	12 @ 66				ST2-1404	12@33	12 (1)33			
SP2-1805	15 @ 53	15 @ 53				ST2-1405	15@26	15 (1)26			
Triple Output						Triple Output					
SP3-1801	5 (1)180	12 (4) 16	12 (1) 16			ST3-1401	5060	12 (1) 16	12 (1) 16		
SP3-1802	5 (150	12.333	12 (9) 16			ST3-1402	5@60	15 (1) 13	15 (1) 13		
SP3-1803	50180	15 @ 13	15 (4) 13			ST3-1501	5®90	12 @ 8	12 @ 8		
SP3-1804	5 (1)150	15@26	15 (1) 13			Quad Output					
Quad Output						ST4-1401	5 @ 30	12 (1) 16	12 (14) 16	5 (4)30	
SP4-1801	5 @ 150	12 @ 16	12 (10) 16	5 @ 30		ST4-1402	5 @ 30	15 (1) 13	15 (1) 13	5 (1)30	
SP4-1802	5 (3) 150	15@13	15 © 13	5 @ 30		ST4-1403	5 @ 30	12 (4) 16	12 (1) 16	2408	
SP4-1803	50150	12 © 16	12 @ 16	2408		ST4-1501	5 @ 30	15 (a) 13	15 (a) 13	24 @ 8	
SP4-1804	5 (150	15 (c) 13	15 (0) 13	24 (08		ST4-1502	5060	12 (c) 16	12 (4)8	5 (8) 15	
Five Outpu						ST4-1503	5060	15 (a) 13	15 (1)7	5 (10) 15	
SP5-1801	50120	12 (c) 16	12 @16	5030	24 (1)8	ST4-1504	5 (13) 60	12 (1) 16	12 © 8	24 (1)4	
SP5-1802	5 (120	15 @13	15 (1) 13	5 @30	2498	ST4-1505	5 (a60	15 (13) 13	15 (1)7	24 (1)4	
Seven Output						Five Output					
SP7-1801	5 @ 60	12 @ 16	12 © 16	24 (1) 8	24 @ 8	ST5-1501	5030	12 (16 16	12 (3) 16	54315	24 (3) 4
	$\begin{gathered} =6 \\ 52 @ 28 \end{gathered}$	$\begin{gathered} \# 7 \\ 2 \ddot{70} 30 \end{gathered}$				ST5-1502	5 (13) 30	15 (4)13	15013	5 (4) 15	24 (1)4

For ordering information call Vicor Express at $1-800-735-6200$ or (508) 470-2900 at ext. 265.

For technical information contact Westcor at (408) 395-7050 or FAX (408) 395-1518 or call Vicor.

Afly VICDR
Common Stock Traded on NASDAQ under "VICR"

WESTCOR CORPORATION
485-100 Alberto Way
Los Gatos, CA 95032
VICOR CORPORATION
23 Frontage Road
Andover, MA 01810

PRODUCT UPDATE

Moderately priced, $100-\mathrm{MHz}$-bandwidth DSOs offer quick updates and analog-scope "feel"

If you look at individual characteristics of the HP 54600A (2-channel) and 54601A (4-channel) DSOs (digital storage oscilloscopes) one at a time, without looking at any of the other attributes, you may not be especially enthusiastic; each of the DSO capabilities already exists in other products. On the other hand, if you consider all of the features the vendor has packed into each of these portable units, particularly if you think about what you get for the price, you may conclude that these oscilloscopes are indeed revolutionary.

You would be hard-pressed to disprove the assertion that no scope makes the power of digital technology more accessible. In this case, accessibility refers to affordability as well as ease of use. The 2-channel unit costs $\$ 3000$, and the 4 -channel unit costs $\$ 3500$. Moreover, the controls have the familiar "feel" of ana-log-scope controls.

Although the use of analog-style controls-separate knobs for such functions as gain, position, and sweep speed-is hardly new in DSOs, these scopes are the vendor's first to incorporate the feature. (The vendor notes that it has no intention of abandoning the menudriven interface that characterizes its DSOs. The new products, however, will appeal to a wider audi-ence-one for which the analog feel is more appropriate.)

Unlike the majority of comparable units, these units accompany the analog controls with a fast dis-play-update rate. No perceptible lag appears when you observe the output of a circuit under test and manually adjust the parameters of that circuit. With the exception of a few scopes that incorporate high-

"Analog feel" in a digital scope involves more than just familiar controls. The HP 54600A and 54601A DSOs offer users a speedy display-update rate. In addition, an autostore mode provides infinite persistence in combination with a superimposed bright display of the last waveform captured.
speed DSP μ Ps (such scopes have much higher prices than those of the new units), nearly all DSOs exhibit a noticeable lag in display updates. DSO vendors don't like to talk about this lag; understandably, their demonstrations don't make it obvious.
The $100-\mathrm{MHz}$ analog bandwidth of the new scopes represents a "magic number." Despite the continuing increase in circuit clock rates, many users still regard 100 MHz as marking the boundary between low- and high-performance scopes. In these units, the bandwidth is usable when you view repetitive waveforms. In addition to their bandwidth, the scopes' maximum vertical sensitivity of $2 \mathrm{mV} /$ div and 8 -bit resolution contribute to their broad applicability.

The A/D-conversion rate is 20 M samples/sec. Unlike scopes from this vendor that are optimized for capturing single-shot events, these units incorporate no reconstruction
filters. Therefore, to obtain repeatable results with nonrepetitive waveforms, you should take 10 samples of each signal cycle. Observing this caveat limits the scopes to displaying single-shot events whose frequency is less than about 2 MHz .

When a DSO designer endows a product with an analog feel, the product need not sacrifice the conveniences users have come to expect of digital scopes. In these units, conveniences include cursor measurements of voltage and time and 12 automatic measurement modes. With an optional parallel, RS-232C or IEEE-488 interface and a graphics-capable printer, you can obtain hard-copy output. Internal memories can store 16 setups, and you can also use the RS-232C and IEEE-488 interfaces to control the scopes.-Dan Strassberg

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 730

INTRODUCING THE BEST DISK DRIVES

The newest generation of disk drives from Conner. Lighter. Cooler. Smarter. Faster. With more capacity than ever before. Precisely what highperformance dreams are made of. And, for the fourth consecutive year, Conner is delivering a generation ahead of the competition. Helping major OEMs get new systems to market faster than they ever dreamed possible.

Summit 510MB

Hopi 80MB

Sell. Design. Build.

Before we design or build a product, our engineer work closely with the most respected experts in the industry-our customers. By asking
 the right questions, we identify specific needs. Sooner. And fill those needs with the right products. Faster.

So it's no surprise that more of the world's leading OEMs work with Conner.

[^4]

OUR CUSTOMERS COULD DREAM UP.

Because we consistently design the exact disk drives our customers need. Then build those drives in volume.

Keeping You A Generation Ahead.

The results of this unique sell-design-build strategy have been remarkable. Using proven technologies, our high-performance 3.5 -inch and 2.5 -inch disk drives continuously set the standards. For all major segments of the market.

The fact is, Conner delivers disk drives for today's powerful systems. From high-end workstations
and file servers to desktop, laptop and notebook PCs.
And Conner has sales offices and manufacturing facilities in Europe, Asia and America. Keeping us close to our customers around the globe.

So call Conner today. And we'll work together to turn your dreams into realities.

Conner

DELIVERING A GENERATION AHEAD.

ISDN-hased concurrent design

ISDN will let you hold desktop conferences with colleagues all over the globe. (Photo courtesy AT\&T Microelectronics; Dave w Morrow, photographer; A Taryn Troiani, art director; Judy A Bullard, assistant artist)

Michael C Markowitz, Associate Editor

The Integrated Services Digital Network (ISDN) can merge diverse product-development functions into a single operation. Recent standards-bodies decisions have finally stabilized ISDN, so vendors are beginning to develop applications that will fuse product definition, specification, and design. Don't hold your breath waiting for these new products, though; upgrading and installing all the switching equipment necessary to empower ISDN will take a few years.

ISDN applications fall into three categories: desktop conferencing, networking, and supplementary services. All are possible because of ISDN's inherent advantage over discrete networks: the existing telephone network of approximately 375 million miles of copper cable. The cable provides a universal local-, municipal-, and wide-area network that connects anyone or any machine with access to a telephone line.

Briefly (and with a minimum of acronyms-see box, "ISDN acronyms and terms," pg 84), the heart and soul of the Integrated Services Digital Network is a bidirectional, 192 k -bps digital communications path. This path comprises two 64 k -bps channels (B channels) for voice or data, one 16 k bps channel (D channel) for network signaling and control, and 48 k bps of channel overhead for framing and error detection.

Phone interface stays the same

Under ISDN, ordinary phone calls have the same look and feel as they did before. But ISDN's internal workings differ significantly from those of the phone network you're using now. Consider how you place a call using a $2 \mathrm{~B}+\mathrm{D}$ ISDN
line. When you dial a number, information such as your number, the number you've dialed, and callsetup data all flow on the D channel to a central-office switch. The switch routes the call through the local or long-distance carrier to the call destination's central office and, ultimately, to the number dialed.
The destination terminal reacts to the call by returning an acknowledgment over the D channel. Your receipt of the acknowledgment completes the connection and lets you send voice or data over one of the B channels. The second B channel gives you a range of options. You could carry on a conversation on one B channel while exchanging data on the other B channel. Alternately, you could send information on the second B channel to a second destination. You can use the D channel to send messages or data to yet another destination. Now, apply this convenience to your design responsibilities.
Sequential product design begins when marketers create a specification. They then turn this spec over to the designers. Design engineers design to meet the spec before throwing the project over the wall to the test and manufacturing people. The inefficiencies of this sequential method have forced companies to consider multidiscipline project teams that include marketing, design, test, and manufacturing personnel. Merging all of a product's development into a single operation is called concurrent engineering and is much easier when all personnel are on one campus.
Multisite concurrent engineering becomes possible by integrating design, marketing, manufacturing, reliability, and management functions via a dial-up, universal network. ISDN extends concurrent en-

High-bandwidth, alldigital telephone lines will let you develop products using simultaneous inputs from everyone with an interest in the product's success.

COMMUNICATIONS SPECIAL ISSUE

ISDN can connect any person, computer, or machine that has access to a phone line to any other person, computer, or machine with similar access.

gineering to include both customers and suppliers. Including the customer and supplier in the design from the beginning offers substantial benefits: You ensure a buyer for the product you're creating, and you'll know that the components you need will be available.

Request, send, and analyze data in one call

Contrast a voice and data party line with using a facsimile machine. A simple fax transaction currently requires three separate phone calls-the first to request the fax, the second to send it, and the third to discuss it. Using ISDN lets you complete the same transaction with one call. While you and your associate converse on one B channel, you can send your data across the second 64 k -bps B channel, which is more than six times as fast as 9600 -baud fax machines.

To lower costs, future fax machines could use either the high-speed B channel or the slower-speed D chan-
nel. Most users could send facsimile transmissions on the $16 \mathrm{k}-\mathrm{bps} \mathrm{D}$ channel using fax machines connected to their computer networks. The speed and image quality would be comparable to the transmissions of existing fax machines. The costs, however, will be lower because the D channel sends packet-switched data, for which you pay by the packet rather than for connect time. Engineering users who need better quality and faster throughput than D channel transmissions offer could attach next-generation fax machines to a B channel to transmit at either 64 k or 56 k bps.

But sending a fax is hardly concurrent engineering. Desktop conferencing is concurrent engineering. An ISDN 2B + D line lets two people in remote locations converse and share a workstation session via access to each other's local-area network. You and a colleague could discuss and write a project specification using a word-processor program, enter financial projections into a spreadsheet, draw a schematic, or run and evaluate a circuit simulation.

One workstation controls the application; the other acts as a dumb terminal. Control of the application passes between the two users via a message on the D channel. The desktop conference would demand only that each workstation have an internal ISDN terminal adapter. Expanding the conference to include multiple

An ISDN acronym workout

No article about ISDN would be complete without a quick tour of the network. And no tour of ISDN would be complete without using at least 10 acronyms:
The CCITT (Consultative Committee on International Telegraph and Telephone) standard defines several reference points within ISDN (Fig A). Starting at the CO (central office) switch, the V interface connects the ET (exchange termination) to the LT (line termination). The V interface, ET, and LT all exist within the CO.

A 2-wire link called the U interface runs from the centraloffice switch to the subscriber's premises. Inside the premises, the 2 -wire link becomes a 4 -wire
link at the NT1 (network termination 1) box. The 4 -wire link allows extension phones; the 2 -wire link doesn't.

If the box connects to companyowned ar -leased private switchboards, it uses the T interface and terminates at an NT2 (network termination 2) box. Otherwise, the box uses the S interface to connect to the TE1 (terminal equipment 1). You can also connect non-ISDN equipment to the network by inserting a TA (terminal adapter) between the TE2 (non-ISDN equipment) and the S interface.

The S interface, unlike the other interfaces, allows point-tomultipoint operation in addition to point-to-point operation, but
does not let you cascade ISDN terminals. As a result, the network permits additional extensions only from the T interface at the NT2 box.

Many of the capabilities that ISDN provides are available today via leased 24 -channel, 1.544 M -bps lines (T1). However, these lines are dedicated and inflexible, and you pay for them whether you use them or not. In contrast, ISDN offers on-demand, dial-up access for any two ISDN-ready sites. And because ISDN is a switched rather than a dedicated service, ISDN can route around failed network components.

ISDN-based concurrent design

participants would require adding control software. This ISDN conference would minimize or eliminate throw-it-over-the-wall sequential design flow by putting project team members a phone call away.

ISDN is a network

In addition to desktop conferencing through workstations connected directly to ISDN, you can also use ISDN to connect to existing local- and wide-area networks. These gateway applications let you connect to any remote homogeneous or heterogeneous networks via the telephone network.

Using an RS-232C cable between a Macintosh Appletalk network and an ISDN terminal adapter, you can use ISDN as a gateway into Appletalk. An ISDNEthernet bridge allows access into Ethernet networks. ISDN also enables gateways between token-ring networks.

Some of the supplementary features of ISDN also facilitate concurrent engineering. Engineering organizations can use these features to provide better service to their customers and tighter integration to their field representatives. These features include automatic number identification, automatic call back, messaging, electronic directories, call waiting, and call forwarding.

Because your number is sent out with the call-setup
data, equipment at the destination can decode the source address and reference it to data stored in a computer memory. Based on the results of the comparison, an internal network at the destination can identify the calling party and route the call to a specific application, shipping, marketing, or design source. In addition, the person who fields the call can have all appropriate information on his or her workstation terminal before picking up the handset.

In fact, a mail-order firm had this capability in an ISDN trial a few years ago. The firm thought answering the phone with the customer's name would improve both service and customers' impressions. The company learned otherwise. Customers became highly suspicious, confused, or disoriented when they were greeted by name before they even had a chance to say hello.

Although the initial results of this trial were disappointing, consider the time savings for both callers and callees. Suppose, for example, your personal computer goes down or you need to order more memory to run a CAE application in Windows 3.0. You call your friendly out-of-the-neighborhood mail-order company, but all the attendants are busy. Do you postpone everything else while you hold the line? If the mail-order company has the appropriate ISDN services, you're

Text continued on pg 86

Fig A-Understanding all the interfaces and equipment that you can connect to ISDN is easier if you visualize the network.

ISDN acronyms and terms

Historians credit former US President Franklin Delano Roosevelt and the New Deal with creating an avalanche of acronyms to lift America out of the Great Depression. Roosevelt and the New Dealers have nothing on ISDN.
You won't need an immersion language course to use the features that the Integrated Services Digital Network provides. However, you'll need more than just a quick read through the following list to understand the technobabble spouted by the ISDN intelligentsia, who seem to create an acronym for any combination of words they use more than once. (ISDN elite might want to test themselves by seeing how many of the 68 acronyms they can define.)

ADPCM: Adaptive differential pulse-code modulation.
AMI: Alternate Mark Inversion. A trilevel coding scheme for transmitting data.
ANI: Automatic number identification.
ANSI: American National Standards Institute. The organization that coordinates voluntary US standards.
Application layer: The top layer of the open-systems-interconnection (OSI) reference model. This layer is the user interface to the terminal.
ATM: Asynchronous transfer mode.

B channel: A switchable, optionally transparent, 64 k -bps channel; two B channels are included in the basic-rate service.
Basic rate: An ISDN access rate of 192 k bps allocated as two B channels of 64 k bps, one D channel of 16 k bps, and 48 k bps of overhead for framing and error detection.
BISDN: Broadband ISDN. An ISDN that carries digital data at rates of $1.544-\mathrm{MHz}$ or higher by
putting the data into fixed-length packets.
BRA: Basic-rate access.
BRI: Basic-rate-access interface.
BRITE: Basic-rate-interface T extension.

CCITT: Consultative Committee on International Telegraphy and Telephony. The international standards body responsible for ISDN.
CCS: Common-channel signaling. See also SS\#7.
Circuit switching: Establishing a dedicated path between two devices via switching nodes.
CO: Central office.
Codec: Coder-decoder. A device that translates analog data into digital bit streams and vice versa.
Common carrier: In the US, generally long-distance telecommunications companies.
CPE: Customer-premises equipment.
CRC: Cyclic redundancy check.
CSD: Circuit-switched data.
CSDN: Circuit-switched digital network.
CSU: Channel service unit. Provides signal conversion and maintains the local loop's electrical characteristics.

D channel: A channel whose primary purpose is to convey signaling information between a terminal and the network switch. Its surplus capacity can be used for user packet data and other data such as telemetry. It operates at 16 k bps for basic-rate access and 64 k bps for primary-rate access. DCE: Data communications equipment.
DSL: Digital subscriber loop.
DSS1: Digital subscriber signaling system 1.
DTE: Data-terminal equipment. Equipment connected to a network to send or receive data.

EC: Echo canceling.
ET: Exchange termination.

FDM: Frequency-division multiplexing. Multiple-source data transmission over a line using different transmission frequencies for each source's data.
4B3T line code: 4 binary bits are converted into 3 ternary bits for transmission across the U interface.
Frame: Transmitted bits that define, either through timing protocols in synchronous transmission or sequence in asynchronous transmission, a transport element.

Gateway: A connection between multiple networks.

HDLC: High-level datalink control. A protocol for bit-oriented, frame-delimited data communications.

IDN: Integrated Digital Network.
ISDN: Integrated Services Digital Network. Supports digitized voice, data, text, and image transmission.
ISDN islands: Central-office switches made by different manufacturers are incompatible. As a result, ISDN customers served by a CO switch made by one vendor may be unable to use their ISDN features to communicate with an ISDN customer served by another vendor's CO switch. These isolated facilities are called ISDN islands. Replacing existing switches with new ones made to the latest version of SS\#7 should eliminate this incompatibility.
ISPBX: Integrated-Services Pri-vate-Branch Exchange.

LAPB: Link-access-protocol balanced.
LAPD: Link-access-protocol on D channel.
LEC: Local-exchange carrier.
LLC: Lower-layer compatibility element.
LT: Line termination. A line card
that terminates the subscriber loop at the PBX or central office.

NCTL: Network channel-terminating equipment.
NT1: Network termination 1. A box that physically and electromagnetically terminates the 2 wire U-interface transmission line and converts the line into the 4 -wire S or T interface.
NT2: Network termination 2. A box that switches and concentrates subscriber's lines at the S interface.

OSI reference model: Defines a 7-layer architecture of communications functions that contains the application, presentation, session, transport, network, data-link, and physical layers.

PABX or PBX: Private (automatic) branch exchange. Essentially an automatic private switchboard linked to the central office via a trunk line.
Packet switching: Transmission by breaking up messages into smaller packets and independently sending them to their destination, where they are reassembled to recreate the message.
PCM: Pulse-code modulation. Regularly sampling an analog signal and converting the sample to a binary number.
PCTA: Personal-computer terminal adapter. Allows the personal computer to act as an ISDN terminal.
PDN: Public data network.
PID: Protocol identifier.
POTS: Plain, old-fashioned telephone service.
PRA: Primary-rate access.
Primary rate: An ISDN access rate of either 1.544 M bps- 23 B channels and one 64 k -bps D channel, which is the North American and Japanese standard-or 2.048 M bps- 30 B channels and one D channel, which is the European standard.

PRI: Primary-rate access interface.
PSDN: Public-switched data network.
PSPDN: Public-switched packet data network.
PSTN: Public-switched telephone network.

R interface: Connects TA to nonISDN TE2 equipment, often through an RS-232C port.
RBOC: Regional Bell operating company.

S interface: A reference point at the customer premises to which you can connect either an ISDN terminal (TE1) or a terminal adapter (TA); for example, the interface through which a digital telephone could connect to a PABX. This interface accommodates point-to-point and point-tomultipoint operation.
SAPI: Service access point identifier.
SDLC: Synchronous data-link control. A bit-oriented data communications protocol that IBM developed.
SLIC: Subscriber's line interface circuit.
SMDI: Simplified message desk interface.
SNA: Systems network architecture. A network architecture for IBM computer products.
SONET: Synchronous optical network. A standard for optical network elements.
SS\#7: Signaling system 7. A family of standards that define mes-sage-transfer protocols, error and overload recovery, and call-related services.
STDM: Statistical time-division multiplexing. Allocates bandwidth based on the amount of data being sent by assembling data packets.

T1: The US's basic 24-channel, $1.544 \mathrm{M}-$ bps pulse-code-modulation system.

T1D1: The subcommittee (D1) of the T1 committee of the American National Standards Institute responsible for ISDN.
TA: Technical advisory.
TA: Terminal adapter. Connects non-ISDN terminals (TE2) to the digital network via the S interface. The interface between the TA and the TE2 is the R interface.
TCM: Time-compression multiplexing.
TDM: Time-division multiplexing. Using time divisions to combine many signals into a higherbandwidth signal.
TE: Terminal equipment. A TE1 or a TA and a TE2.
2B1Q line code: 2 binary bits are converted into 1 quaternary bit for transmission across the U interface.
TE1: Terminal equipment type 1. Standard ISDN terminal equipment that you can connect to the S or T interface.
TE2: Non-ISDN terminal. Connects to ISDN via a terminal adapter.
TEI: Terminal endpoint identi-

fier.

T interface: Electrically identical to the S interface, the T interface has a different protocol than the S interface to link NT2 boxes to the NT1 box.
TR: Technical requirements.
U interface: A twisted-pair subscriber loop that provides basicrate access to the NT1 reference point from ISDN. Supports only point-to-point operation.
V interface: At the central office, the interface between the line termination and the exchange termination.

VAN: Value-added network.
X.25: CCITT standard that defines the interface between packet-type equipment and the phone system.

ISDN-based concurrent design

treated to a personalized message that promises the company will call you back when an attendant is available.

The order takers at mail-order companies would spend less time on the phone with each customer because order entry would be limited to the order itself; the customer's name, address, phone number, and account history would appear on the attendant's workstation as the attendant answers the phone. Similarly, when the order taker returns your call, all your account information would already be on the workstation before you answer.

Line busy? Leave a message

To improve the security of their local-area networks, many companies without ISDN use automatic call back to prevent unauthorized access. ISDN extends this application by enabling your internal communications system to monitor your phone. If you are unavailable for a call-either because you're away from your desk or on another call-the system reads the incoming call
data. The system then looks up the phone number in an on-line database and stores the pertinent information in a call-back file. Your phone system also sends a message to your terminal notifying you of a message.

When you query the system, it displays the phone number stored during the initial call. The system can also display other relevant information, such as the caller's name, account, and clearance level. In addition, the system could call back the originating number. Automatic call back ensures that companies don't accidentally ignore customers' orders, requests, and comments; suppliers' inventory questions; test engineers' test-program development questions; or product managers' feature-analysis suggestions.

ISDN also gives users the ability to leave voice messages. Like the voice-mail systems in vogue today, ISDN could give users their own message-service box. The network could function as an executive assistant by letting you record a message for the network to deliver to one or more people. You could even schedule the message for delivery at a specific date or time.

Manufacturers of ISDN ICs

For more information on ISDN ICs, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Advanced Micro Devices	Mietec Alcatel	Philips International BV	Siemens Components Inc
5900 E Ben White Blvd	Raketstraat 62	Bldg BAF-1	2191 Laurelwood Rd
Austin, TX 78741	B-1130 Brussels, Belgium	Box 218	Santa Clara, CA 95054
(512) 462-5395	(32) 02-728-1811	5600 MD	(408) 980-4500
Circle No. 650	FAX (32) 02-242-7552 Circle No. 654	Eindhoven, The Netherlands (011) 3140722243	Circle No. 660
		FAX (011) 3140724825	
AT\&T Microelectronics		Circle No. 658	Signetics Corp
Dept 52AL330240	Mitel Corp		811 E Arques Ave
555 Union Blvd	Box 13089		Sunnyvale, CA 94088
Allentown, PA 18103	Kanata, Ontario	SGS-Thomson Microelectronics	(408) 991-4519
(800) 372-2447	Canada K2K 1 X3	1000 E Bell Rd	FAX (408) 991-2069
Circle No. 651	(613) 592-2122	Phoenix, AZ 85022	Circle No. 661
	FAX (613) 592-6909	(602) 867-6136	
	Circle No. 655	FAX (602) 867-6291	
Hitachi America Ltd		Circle No. 659	
Semiconductor and IC Div		Circle No. 659	
2000 Sierra Point Pkwy	National Semiconductor		
Brisbane, CA 94005	2900 Semiconductor Dr		
(800) 448-2244;	MS11-125		
in CA, (415) 589-8300	Santa Clara, CA 95052		
FAX (415) 583-4207	(408) 721-6944		
Circle No. 652	FAX (408) 733-0613 Circle No. 656		
Level One Communications		VOTE	
105 Lake Forest Way	NEC Electronics	Please also use the Informatio	trieval
Folsam, CA 95630	401 Ellis St	Service card to rate this articl	
(916) 985-3670	Mountain View, CA 94039	one):	
FAX (916) 985-3512	(800) 366-9782;		
Circle No. 653	in CA, (415) 965-6159	High Interest 473	
	FAX (415) 965-6437	Medium Interest 474	
	Circle No. 657	Low Interest 475	

A few words of advice from high-performance μ PLDs.

Chill out, PAL.

Many designers have hot, high-performance designs. Literally.

Fortunately, Intel has a simple way to reduce system heat and still get incredible performance. The μ PLD Family of programmable logic devices.

Take, for example, the 85C220 and 85C224. They operate at 80 MHz (100 MHz internally) with only a 10ns total propagation delay.

And since μ PLDs are manufactured using Intel's CHMOS* technology, they require just $1 / 4$ the power of their pin-compatible bipolar PAL* alternatives. Which means they can lower
system heat by 35 percent and help reduce board-level failures, too. So they're certain to give your high-performance system a boost. And send chills up the spine of your motherboard.

Learn more about Intel μ PLDs and receive a μ PLD/PAL heat comparison. Call (800) 548-4725 and ask for Literature Packet \#IA28.

Otherwise, you could take some heat over your system design.
intel

ISDN-based concurrent design

Outlet strips with hospital grade components

When performance is critical, SL. Waber performs. Our heavyduty outlet strips with hospital grade components mean reliability and safety you can count on in labs, hospitals, clean rooms and other exacting environments. With components tested to UL Standard 544, these strips offer guaranteed voltage breakdown, superior ground integrity and low leakage current. And as the world's largest manufacturer of custom design outlet strips, we can handle anything else you need. Because if you use electricity, you need SL Waber.

These products are not recommended for use in patient care environments or near explosive gases.

WABER, INC.
A Subsidiary of SL Industries, Inc. (800) 634-1485 • In NJ call (609) 866-8888

CIRCLE NO. 32

These compact 12-24 VDC motors are designed for tape cartridge drives, business machines, medical equipment, pumps/compressors and similar applications. Available in $2.0^{\prime \prime}$ and $3.2^{\prime \prime}$ diameters with stall torque from 10 to 84 oz-in. Custom shaft and housing and configurations to match your requirements. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 6121-370031. Fax: 6121-370033.

A feature of ISDN not possible with a nonintegrated voice and data communications network is electronic directory service. To find a phone number and other, nonprivate information about a subscriber, you could query an electronic-directory database. After you receive the response from the database, you could place the call. The distinction from today's system is that rather than manually dialing the number, you hit the Enter key on your telecommunications terminal-much as you would place a call from a communications program. The directory, too, enhances concurrent engineering by putting you closer to the networks of data and people most likely to help your product design.
Most of the capabilities that ISDN offers aren't new. Many, in fact, are available today. What ISDN promises is lower cost and greater convenience than current phone systems. Today you must use multiple phone lines to perform multiple functions. In the future, ISDN will use one phone line to make your workstation both a computation engine and an integrated voice and data transporter.

EDN

References

1. ISDN Sourcebook, Information Gatekeepers Inc, Boston, MA, 1990.
2. Compilation of ISDN Applications, Information Gatekeepers Inc, Boston, MA, 1990.
3. Hardwick, Steve, ISDN Design: A practical approach, Academic Press, San Diego, CA 1989.
4. Leibson, Steven H, "ISDN," EDN, November 12, 1987, pg 118.
5. Markowitz, Michael, "The U interface comes of age," EDN, April 27, 1989, pg 53.
6. Morgan, David, Michael Lach, and Roger Bushnell, "ISDN as an enabler for enterprise integration," IEEE Communications Magazine, Vol 28, No 4, April 1990, pg 23.

Note: For more information on Refs 1 and 3, see the Book Reviews on page 181.

Article Interest Quotient (Circle One) High 473 Medium 474 Low 475

68040 VME 33 MHz 0-Wait-State

Your Vision of High Performance at an Affordable Price is Now Rea!!

With the

OB68K/VME40 ${ }^{\text {ru }}$ you
no longer have to compromise on performance or price in your VME embedded control application. We start by giving you a very basic board which includes:

- $25-33 \mathrm{MHz} 68040$.

You can configure it with just the right amount of RAM and ROM you need. And you do not have to sacrifice features. Our Omnimodule ${ }^{\text {tw }}$ modular I/O connector allows you to implement a wide variety of serial, parallel, SCSI, GPIB, analog, digital and other I/O options - all fitting into one slot. Other features include:

- VTC's VIC068 VME interface chip with arbiter, inter-
rupter, mailbox and more.
- Terminal monitor/ debugger/diagnostic firmware program included.
- 2 year limited warranty.
- Worldwide availability.

All of this gives you a high performance board at a price you can afford with the features you need.

To learn more about our OB68K/VME40 contact our Marketing Manager, Pete Czuchra at 1-800-6385022 or (708) 231-6880 in Illinois.

Our VME and Multibus Product Lines Stretch for Over 124 Miles

That's 854,738 uniquely configured boards to choose from and all from Omnibyte. You can choose from different processor types, RAM sizes, I/O options and other features to put together a board that gives you the features you need. With Omnibyte's quality, selection and 2 year limited warranty, you can count on finding exactly what your looking for.
Here are just a few of the boards we offer:

OB68K/VME20 ${ }^{\text {m }}$ VME SINGLE BOARD COMPUTER	OB68K/VSBC20 ${ }^{\text {™ }}$ VME SINGLE BOARD COMPUTER
- 68020 16.66-33 MHz CPU - (8) 28 -pin RAM sockets for up to 265 KB of dual-access zero-wait-statestatic RAM - (8) 32 -pin sockets for up to 8 MB of ROM, (4) sockets may be EEPROM - (2) RS232C asynch serial ports - (16) lines of parallel IIO - (1) (OMNIMODULE socket for a wide variety of I/O (i.e. 2 serial ports, 20 parallel lines) - VIC068 VME Interface Controller	- 68020 16-33MHz, CPU - 1-4 MB of dual-access, zero-wait-state DRAM with parity - 68882 (optional) - (2) 32 -pin ROM sockets - (2) RS232C serial ports - (2) 8 -bit parallel ports - (1) OMNIMODULE socket for a wide variety of I/O (i.e. 2 serial ports, 20 parallel lines) - 4 level bus arbiter (optional)
OB68K/VSBCIITM VME SINGLE BOARD COMPUTER	OB68K/VME $1^{\text {™ }}$ VME SINGLE BOARD COMPUTER
- 68000 12.5MHz $16 / 32$ bit CPU - 512 KB of dual-access, zero-wait-state DRAM with parity - (4) 28 -pin ROM sockets - (3) 16 -bit counter/timers - (2) Omnimodule ${ }^{\text {rw }}$ I/O sockets for a wide variety of I/O (i.e. 4 serial ports, 40 parallel lines) - DMA controller (optional) - VME bus interrupt generator (optional) - Optional 4 level bus arbiter - Two year limited warranty	- 12.5 MHz 68000 CPU - (8) pairs of 28 -pin sockets for RAM or ROM - (2) RS-232C serial ports - (2) 8-bit parallel I/O ports - System Controller
$\begin{aligned} & \text { OB68K/VIO }{ }^{\text {TM }} \text { VME } \\ & \text { UNIVERSAL I/O BOARD } \end{aligned}$	OB68K/MSBC30™ MULTIBUS I SINGLE BOARD COMPUTER
(4) Omnimodule I/O sockets for a wide variety of I/O (i.e. 8 serial ports, 80 parallel lines) - One (1) interrupt per Omnimodule, two (2) optional	-25-33 MHz 68030 CPU - 4-32 MB dual access, zero-wait-state DRAM w/parity - 68882 Math Co-Processor (optional) - 2 channel DMA controller (optional) - (2) RS232c synclasync serial ports - (2) 8 -bit parallel ports - (1) OMNIMODULE" socket - (4) 32 -pin ROM sockets

All our different configurations are built to give you the best in quality. And they are backed by our famous 2 year limited warranty. For more information call Pete Czuchra today. He'll help you pick the card you need.

International Exchange.

Siemens integrated circuits help bring the world closer together with telecommunications.

Siemens is continuing to provide innovative solutions in communications which are making a sound impact, throughout the industry. And the world.
We offer the most comprehensive communication IC family in the world, facilitating the incorporation of data, speech, and picture sources, to meet your applicationspecific needs.
With the development of our PEB2091 ISDN Echo Cancellation Circuit (IEC-Q), we introduced the industry's

High-integration echo cancellation transceiver first single-chip CMOS solution for the standardized U-interface. It can double the traffic-handling capability of existing
telephone lines. And it's ideal for transmission systems such as digital added main line and other pair gain systems and intelligent channel banks.
For applications such as cellular or full-featured telephones or line cards, which require lower power consumption, we offer CMOS 8-bit microcontrollers based on the 8051 architecture.

Micro Like the SAB80C537, which features 16-bit hardware multiply/divide, and 8 data pointers.
Siemens CMOS ASIC technology features both Sea-of-Gates and stan-dard-cell families. Our 1.5, 1.0 and sub-micron technologies are compatible with Toshiba even at the GDS2 database level, for true alternate sourcing
worldwide. And they come with the European content and U.S. design support you need, as well as the best service in the industry.
For the most advanced

ASIC solutions in both Sea-of-Gates telecommunications ICs, hook up with the leader.
For details, call (800) 456-9229, or write:
Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514.
Ask for literature package M12A 010.

Siemens
World Wise, Market Smart.

Choose your tools carefully for the work at hand. Choose a single unit ATE power supply and drive it with an SN digital analog interface to translate GPIB commands to useful voltage and current or choose a multiple-unit TMAMAT system and drive up to 27 independent voltages and currents from a single GPIB address with full status monitoring and read back of actual values.
Kepco's power tools are carefully calibrated to provide you with just the right combination for the work you need to do.

Call/fax/write to Dept. LVT-12 for any of our three catalogs.
Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA (718) 461-7000 • FAX (718) 767-1102 • Easylink (TWX): 710-582-2631 KEPCO EUROPE, LTD., London, England: Salamander Quay West, Park Lane, Harefield, Middlesex UB9 6NZ -
Tel: $+44895825046 \cdot$ Fax: +44895825045 BRITISH ISLES: PPM Instr. Ltd. • Tel: (0483) $301333 \cdot$ Fax: (0483) 300862 GERMANY: Compumess Elektronik GMBH - Tel: (089) 32009556 •Fax: (089) 32009525 FRANCE: M.B. Electronique Tel: (1) $39568131 \cdot$ Fax: (1) 39565344 ITALY: Sistrel, S.p.A. - Tel: (02) $6181893 \cdot$ Fax: (02) 6182440

It's Everything a PC Isn't.

ALL THE BENEFITS OF A PC, NONE OF THE HASSLES.

We've changed the rules for industrial PCs.

PCXI is a modular, interchangeable, multi-venctor PC bus system. Noise, emissions, power, ground, airflow and cooling are specified and verifiable. All PC functions, from CPU (286/386/486) to power supplies, are enclosed in metal shielded modules. Connectors are on the front panel.

It's what industrial PCs always should have been.

PCXI modules plug interchangeably into slots in the ISA passive backplane. All PC boards are universally accomodated.

PCXI IS ALSO EISA: 32 BITS AND BUS MASTERED.

The PCXI EISA system offers full PCXI modularity combined with the power and speed of 32-bit EISA capability: true multi-processing; 33 megabytes/second data transfer for bus masters and DMA; automatic configuration of system and modules.

It's the first ever EISA PC designed from the ground up for industry.

ALMOST VXI FOR MUCH LESS.

If you have a true VXI application, we'd never suggest PCXI.

But for all those thousand and one other jobs, well, PCXI is a lot like VXI. VXI is modular and upgradeable, so is PCXI. They primarily use a $286 / 386$ CPU, so do we (except we can also offer you a 486). VXI has quite a few instrumentation and function modules from manufacturers, so does PCXI (except there are thousands of modules, off-theshelf, from hundreds of manufacturers). We even look alike.

The only difference is that we cost so much less.

PCXI
 (206) 547-8311

WE'VE GOT THE PCXI SYSTEM FOR YOUR APPLICATION.

INDUSTRIAL COMPUTERS

ISA Chassis: Tabletop, Rackmount \& Portable 286/386/486 CPUs Hard/Floppy Drives Graphics
Expansion Chassis Monitors/Keyboards/Mice PC Peripherals

EISA INDUSTRIAL COMPUTERS
EISA Chassis: Tabletop \&
Rackmount
EISA 386 CPU
EISA Function Modules

FUNCTION MODULES

Analog Input Modules
Analog Output Modules Digitizer Modules Analog Filter Modules Logic Analyzer Modules Multiplexer Modules Relay I/O Modules

Time Modules
Transducer Modules
Counter/Timer Modules
Data Logger Modules
Multifunction A/D, D/A, DIO Modules
Digital Scope Modules
FFT Spectrum Analyzer Modules
GPIB/IEEE 488 Interface Modules
Programmable Power Supply Modules
Signal Source Modules
1553/ARINC 429 Modules
Stepper Motor Control Modules
Prototype Modules
Bus Analyzer Modules

Communication Modules RS422/485 Interface Modules Industrial Modules Digital Signal Processing Modules Digital Multimeter Modules Digital I/O Modules Matrix Switch Modules Memory Modules Fiber Optics Interface Modules Image Processing Modules Digital Panel Meter Modules UPS Power Modules
Voice Modules

Plan to attend this one day seminar given by Linear's fop designers.

If you design analog circuits or sub-systems, this is one seminar you don't want to miss. It's presented by Linear Technology's senior design engineers. The emphasis is on "real world" applications and the typical challenges facing today's design engineer. Each application presented has been breadboarded at Linear Technology. And because our top engineers are also giving this seminar, they're intimately familiar with the ICs and their applications.
Topics To Be Covered Include: Operational and Instrumentation Amplifier Applications

- High speed op amps with slew rates ≥ 250 volts $/ \mu$ sec.
- Single supply micropower devices
- Selection techniques to minimize noise
Power Supply Design
- High efficiency ($\geq 90 \%$) switching regulators
- Transformer and inductor design/ selection
- Micropower switchers
- Single cell converters

Filter Applications and Design

- New family of high performance, low noise, switched capacitor filters.
- Filter design software ("FilterCAD")

PHASE II

Seminar Number	Seminar Location	Date
12	Santa Clara	$1 / 29$
13	San Diego	$2 / 6$
14	Los Angeles/Woodland Hills	$2 / 7$
15	Baltimore	$2 / 26$
16	Orlando	$2 / 27$
17	Irvine/Garden Grove	$2 / 27$
18	St. Petersburg (FL)	$2 / 28$
19	Portland	$3 / 19$
20	Dayton	$3 / 19$
21	Detroit	$3 / 20$
22	St. Louis	$3 / 21$
23	Santa Rosa	$3 / 21$

We'll be adding additional seminar locations. Watch for them.

TOUGH PRODUCTS FOR TOUGH APPLICATIONS.

Data Converters

- New A-D converters with serial protocol
- Simplified microprocessor interfacing
Low Power Interface Circuits
- Both RS232 and RS485 transceivers
- Design and application notes for: Driving long lines • Capacitive loading \cdot Power down and power up

New Products

- Preview of new 1991 products

And these are just a few highlights from the topics to be covered. You'll also receive: Lunch • 1500 page Databook $\cdot 1000$ page Application Handbook • NOISE Disk • SPICE Disk - FilterCAD Software and Filter Handbook • Product samples
Plan to attend now. You'll learn "tricks of the trade" from our Seminar Presentation Teams headed by industry experts including:

Bob Dobkin	Carl Nelson
Jim Williams	George Erdi
Nello Sevastopoulos	

Cost is $\$ 30.00$ and you can register now by calling 800-637-5545. VISA and MasterCard accepted. Or send your check to Linear Technology Corporation, 1630 McCarthy Blvd ., Milpitas, CA 95035.

Power to shrink the world.

Motorola's MEGAHERTZ Family of semiconductors increases power density in high-frequency power supplies.

Today's smaller, more advanced applications require compact, higher frequency power supplies. The MEGAHERTZ ${ }^{\text {" }}$ Family of semiconductors gives you the capacity to shrink your power supply designs through increased switching frequency. It's the total system solution for high frequency power supplies that gives you the key to more watts per cubic inch. Low loss, low noise Rectifiers.
The MEGAHERTZ Family includes the highest voltage Schottky barrier and ultrafast rectifiers in the industry. Schottky devices range from 20 amps and 30 volts to 20 amps and 200 volts in TO- 220 packages. Ultrafast devices are rated from 8 amps and 400 volts to 8 amps and 1000 volts, also in TO- 220 packages. They're avalanche energy rated and perfect for most high frequency switching power supplies and converters.

TMOS Power MOSFETs.

MEGAHERTZTMOS ${ }^{\text {w }}$ Power
MOSFETs are designed to operate in
switching environments from 100 kHz to 5
MHz . These devices have avalanche energy ratings and offer faster switching times, lower gate charge, lower turn off delay time and lower on resistance. They come in the popular TO-220 package and they're
compatible with all common square-wave topologies, including quasi-resonant. Linear MOSFET Driver and Mode Controller.

The MEGAHERTZ Family also includes Linear Integrated Circuits that operate in the MHz frequency range. There's a dual high speed MOSFET driver, a high performance resonant mode controller and a fixed frequency current mode controller. Yours free for the asking.
We've put together an information package, including free samples of three
rectifiers, one TMOS MOSFET and three Linear ICs. To get yours, simply complete and return the coupon below, write to us on your company letterhead at P.O. Box 20912, Phoenix, AZ 85036, or contact your local Motorola Sales office.
MEGAHERTZ is a trademark of Motorola Inc TMOS is a trademark of Motorola Inc.

MOTOROLA
To: Motorola Semiconductor Products, Inc., P.O. Box 20912 , Phoenix, AZ 85036
To: Motorola Semiconductor Products, Inc., P
Please send me the MEGAHERTZ information pack.
Please send me the MEGAHERTZ information pack.74EDNO30191
Name 1
Title I
Company I
Address I
City I
State 1
Zip
Zip State I
Call me I

Task coordination: specific methods, general principles

Earlier parts of this series described several types of

 task coordination. This final installment classifies the various methods, diagrams the relationships among them, and provides guidelines for choosing methods that suit your requirements.
David L Ripps, Industrial Programming Inc

Task coordination is a fundamental and essential part of a real-time application. In principle, each task is an independent program that is capable of running asynchronously with respect to all other tasks. In practice, tasks are highly interrelated; they work in unison. Specifically, most tasks act upon the same body of current data. Some tasks bring fresh data into the body, others transform the data, and finally, some output a product or response based on the data. In every case, tasks feed data to each other, with producers and consumers

[^5]coordinating to be sure that transformations are performed with consistent values.
The last few parts of this series described several different types of coordination that have evolved over many years and hundreds of applications. People have discovered that there is no one universal method that solves all coordination problems easily and efficiently. But they have also discovered that just a small set of basic techniques and methods does suffice for the vast majority of real-time applications.
In essence, coordination is the blocking of a task until some specified condition is met. Often, the condition is a function of information that is produced by one or more tasks and maintained by the operating system. But this need not be the case. With "pause/ cancel-pause," for example, coordination is achieved without any transfer or permanent storage of information.
The specific methods of coordination described in previous parts differ significantly in both the nature of the unblocking condition and the type of information involved. These internal differences, in turn, lead to corresponding differences in the user-level characteristics and capabilities of the methods. As a result, the

In principle, tasks are independent programs that can run asynchronously with other tasks. In practice, tasks are highly interrelated.

application designer can usually choose a scheme that is exactly right at each point for which coordination is needed.

Nevertheless, to make a proper choice of coordination scheme, the designer must understand what the underlying differences are and how they appear at the task level. This final part attempts to classify the various methods and to diagram the relationships among them. This is an expanded version of a classification scheme originally published in 1983 (Ref 1).

Many alternate diagrams could be drawn, each of which represents a valid classification. The goal is to find a classification that will guide in the selection process. The end product is essentially a decision tree: If you need this characteristic, choose this branch.

Single-sided vs double-sided coordination

The first division (Fig 1) separates those methods in which only one partner can be held for coordination from those in which both partners are coordinating with each other. Single-sided methods are totally asymmetric: One task issues a wait for a certain condition to be true, another task sets the condition that ends the wait. However, the second task itself cannot be blocked while setting the condition. Furthermore, with most single-sided coordination methods, it is possible that no task waits since the end-wait condition may already have been set before the wait request is

Fig 1-Task-coordination methods can be either single sided or double sided. Single-sided methods are asymmetric: One task issues a wait for a certain condition, and another task sets the condition. With double-sided methods, there is mutual coordination: Either task can wait for the other.
issued. Event flags always provide single-sided coordination.

Coordination can also be double sided to provide a greater degree of symmetry between the partners. With double-sided methods there is a mutual coordination between both partners; either partner can wait for the other. Specifically, the first task to issue a coordination request always waits for the second task to issue a matching request. One task always waits; there is no sense in presetting the end-wait condition. The pair "send-message-to-mailbox-with-wait-for-transfer/receive-message-from-mailbox-with-wait-fortransfer" produces this type of synchronization. However, unless both requests include the optional "with-wait-for-transfer," coordination via a mailbox will not be double sided.

Single-sided coordination

For lack of better terms, the partners in single-sided, task-to-task coordination will be referred to as the coordinator (C) and target (T), respectively. The target issues the wait; the coordinator sets the end-wait condition to continue the target.

Referring again to Fig 1, the next division separates those single-sided methods for which the identity of the target task must be specifically known to the coordinator and those for which such knowledge is not necessary. Consider, for example, the coordination that can be produced by the services pause and canpau (cancel-pause).

Task T pauses (for a given maximum time interval, or "forever").
pause ($200+\mathrm{MS}$);
When task \mathbf{C} wants \mathbf{T} to continue, it cancels that pause.
canpau (tskTid);
The cancel-pause is always directed at a specific task. Thus, the identity of the target inherently must be known. Furthermore, only that one target task is unblocked, and no message or other information is transmitted from C to T. (Strictly speaking, when the pause is for limited duration (rather than with NOEND), one bit of auxiliary information is sent: Did the pause end because the time elapsed or was it canceled early for coordination?)

The term "directed" refers to those coordination methods for which the identity of the target task inherently must be known to the coordinator. In contrast, coordination based on event flags or messages is "non-
directed." The task that supplies the unblocking information need never know the identity of the target task or tasks, if any.

Use directed methods whenever you need direct control over one specific task. Use nondirected methods whenever the coordination is not with any given task, but with any that may be interested or with the next task that has requested coordination. Among the nondirected schemes, public event flags provide broadcast, that is, coordination with any task that may be interested; message exchanges maintain multiple-server queues for coordination with the next available task.
In this discussion, the separation is based on inherent or necessary knowledge. In any given application, there could be only one task waiting for a particular public event flag or at a particular message exchange. Thus, there could be a priori knowledge of the coordination target even with public event flags or message exchanges. But this knowledge is not necessary to coordinate via public event flags or messages. With "pause/ cancel-pause," target identity is an absolute necessity.

Nondirected methods

At the next lower level in the diagram, nondirected methods can be split further into those that never unblock more than one task upon a change in coordination data and those that unblock all waiting tasks that meet some function of the data. The first class is called singly enabling, the second multiply enabling. Public event flags are multiply enabling. Multiply enabling methods are used mainly for the broadcast of binary coordination data.
Singly enabling coordination methods can be subdivided even further into those that are internally latched by the operating system and those that are not. With latched methods, there is an internal busy/ free flag (the latch) that is maintained by the operating system as part of the coordination data. A target task (TskA) makes a request to wait until a certain facility (such as a semaphore) is free. When TskA is permitted to proceed, the OS sets the flag busy. While the flag is set, the OS will not permit any other target task (TskB) to proceed. TskA must issue a specific release request to unlatch the facility to permit TskB to continue. (In this special case, each task is first the target and then the coordinator for the next target.)

Latched coordination methods provide mutual exclusion, that is, one-task-at-a-time access. Examples are semaphores (SFs) and controlled shared variables (CSVs). The major difference between these methods is the amount of auxiliary information that is associated with the coordination mechanism and the flexibility of

Most tasks act upon the same data. Some tasks add fresh data, others transform the data, and some create a product or response based on data.

the unblocking condition. (The auxiliary information isn't transmitted directly from the coordinator to the target in the same sense that a mailbox message is transmitted. The auxiliary information is associated with the coordination mechanism as a whole, not with any single act of coordination. Thus, the CSVs that the target receives may have been set by several tasks, or by one task at several different times.) SFs work only with the busy/free latch, the identity of the current owner of the latch, and the wait queue; this is all the unblocking function can depend upon. In contrast, CSVs permit complete freedom to maintain any amount of auxiliary information and to use that information in any arbitrary way via the unblocking function.

A message exchange is not inherently latched and hence does not necessarily lead to mutual exclusion. If there are 10 messages available at the exchange, then 10 tasks will be permitted to proceed. Dijkstra's P/V coordination works the same way.

Of course, a designer can force a message exchange to be effectively latched by permitting only one message to be posted. The message becomes an external (task-level) latch. Whichever task has been given the message at a given moment has also been granted permission to continue.

Directed methods

Now turn your attention to single-sided, directed methods (Fig 2). In selecting among these schemes, it is important to decide if the end-wait condition supplied by the coordinator should be stored or transient. Transient means that the end-wait information is lost if the target is not already blocked. The coordination provided by "pause/cancel-pause" is transient. So is "pause-for-signal/send-signal." (With this mechanism, for pure coordination without "side effects," the response of the target should be to ignore the signal.)

Fig 2-Single-sided task-coordination methods can be either directed-when the coordinating task knows the identity of the target task-or nondirected.

Of the two, "pause/cancel-pause" requires less internal overhead and thus is recommended if no auxiliary data needs to be sent to the target. Since the target task is told which of the 32 signals ended the pause, "pause-for-signal/send-signal" inherently transmits five bits of auxiliary data. Nevertheless, the OS does not retain those five bits after coordination is achieved. If the target doesn't save the information, it is lost.

Use local event flags if you need directed coordination with storage of the unblocking data. Up to 16 bits of data are available per task. However, although the target receives a snapshot of the 16 event-flag bits, they are not strictly information transmitted from the coordinator to the target; other tasks may have set (or reset) some of the bits. Even more important, although the unblocking data is stored, it is held in a single variable (the current value of the local event flags); there is no sense of queuing. Thus, if more than one task attempts to start a given target by setting the same local event flag (or flags), there will be only one continuation.
"Wait-for-start/start-task-without-coordination" is another single-sided method that is directed to a specific task. In this special case, the target is Dormant while it waits. Without stretching the definition too much, interpret Dormant as wait-for-start.
"Wait-for-start/start-task-without-coordination" differs from the local event flags by queuing the requests and thus guaranteeing that each separate act of coordination (ie, start request) will eventually be serviced. Because of the runtime argument, the coordinator can send an unlimited amount of information to the target.

Double-sided coordination

Next, focus your attention on double-sided coordination. The terms target and coordinator that were introduced for single-sided coordination must be redefined if they are to be applied to the partners of double-sided methods. Since in double-sided coordination either partner can wait, the target cannot be defined as the task that issues the wait request. However, doublesided methods always involve at least one transfer of information. The coordinator for double-sided methods is that task that supplies the information and the target is that task that receives the information (at the first transfer if there are two).

Double-sided methods can be subdivided into those that have a unidirectional transfer of information at the coordination point and those that have a bidirectional exchange of information upon coordination (Fig 3). When the coordination is achieved via a mailbox (with wait on both the send and receive), there is first a mutual and symmetric synchronization: The first task to arrive waits for the second. Once both tasks have reached the coordination point, the content of one mes-

Attributes of task-to-task coordination methods

Method	1	2	3	4	5	6	7
pause (=wait for time)/ cancel pause	SS	DI	SE	NL	FC	TR	none
wait for signal/ send signal	SS	DI	SE	NL	FC	TR	signal number
wait for local EFG/ set local EFG	SS	DI	SE	NL	PC	ST	group value
wait for start/ start task without coordination	SS	DI	SE	IL	FC	ST	runtime argument
wait for semaphorel release semaphore	SS	ND	SE	IL	FC	ST	none
wait for CSVI release CSV	SS	ND	SE	IL	GC	ST	variables
send msg with wait/ receive msg without wait or recv msg with wait/ send message without wait	SS	ND	SE	NL	FC	ST	message
wait for public EFG/ set public EFG	SS	ND	ME	NL	PC	ST	group value
wait for start/ start task with wait	DS	DI	SE	IL	PC	ST	runtime argument
send msg with wait/ receive msg with wait	DS	ND	SE	NL	FC	ST	message

Notes:

Column 1: SS = single sided, DS= double sided
Column 2: $\mathrm{DI}=$ directed, $\mathrm{ND}=$ nondirected
Column 3: $\mathrm{SE}=$ singly enabling, $\mathrm{ME}=$ multiply enabling
Column 4: IL = internally latched, $\mathrm{NL}=$ not internally latched
Column 5: FC = fixed unblocking condition (uc), PC = parametric uc, $\mathrm{GC}=$ general uc
Column 6: $\mathrm{ST}=$ unblocking condition stored, $\mathrm{TR}=$ unblocking condition transient
Column 7: Amount of information transferred
sage is transferred from the sender to the receiver. That ends the coordination partnership; both tasks then continue.

In contrast, with the pair "wait-for-start/start-task-with-wait-for-termination," there are two transfers of information, one into the target and another into the coordinator. The target is the task being started. It is either already at the coordination point by being Dormant (waiting for start) or arrives there by issuing a termination request (which is equivalent to wait for restart). The coordinator issues the start request with wait for termination. If the target is not Dormant, the coordinator waits until the target terminates and thus becomes available for restart. In either case, there is an initial mutual synchronization of the two partners. Next, the runtime argument is transferred from the coordinator to the target, and the target continues (restarts at its entry point). However, the coordinator does not continue. It takes a second event, the termination of the target, to continue the coordinator. At that second event, there is another transfer of information, this time a transfer of the return argument from the target back to the coordinator. You can characterize this type of coordination as stimulus/response. The simple Ada rendezvous is also of this type.

The two double-sided coordination methods that

Although no one method will solve all task-coordination problems easily and efficiently, a small set of basic methods can suffice.

have evolved happen to have another significant difference: Start task is directed, mailboxes are not. In choosing between these two methods, this difference can be decisive, especially if there are many transactions to perform by any of several equivalent tasks. If mailboxes are chosen, the parameters of the transaction can be queued as a message. When one of the equivalent consumer tasks becomes available, it seeks the next message from the mailbox. Thus, with the work queue maintained via a nondirected mailbox, there can never be both an available transaction and an available consumer task. In contrast, when the transaction parameters are sent to a specific consumer via a start-task runtime argument, you have no simple way to distribute the work equitably. You could have some consumers idle (Dormant) while others have a long queue of restart requests. To help balance the scales, start task has the advantage of bidirectional transfer of information, whereas the mailbox has only a unidirectional transfer.

In some cases, you have to decide whether it is
more important to have automatic load leveling (which favors mailbox coordination) or more important to be able to coordinate with the completion of the transaction (which favors start-task). When both features are required, it is necessary to combine two different methods of coordination. For example, a mailbox can be used to receive the transaction parameters. Included with the parameters is the identity of the task that produced the transaction. After depositing the parameters at the mailbox, the producer issues a wait for one of its local event flags. A consumer task receives the parameters, completes the transaction, and then sets the local event flag to continue the producer. Thus, you have achieved nondirected, double-sided coordination with two coordination peints, but at the expense of extra service calls.
The concept of coordination, as expounded here, requires that each partner task issue a service call to indicate its desire to participate in the coordination. Consider a task that receives coordination information. It performs a willful act (the invocation of a service call) to activate the transfer of information. Since the receiving task selects the point within its code at which the information is to be received, this type of transfer is synchronous. Information transfer during coordination must be synchronous.

Of course, it is possible to send information to a task even when that task is not calling for it. Signals provide that type of asynchronous transfer whenever the re-

Fig3-Double-sided task coordination can involve either a unidirectional or a bidirectional transfer of information.

ceiving task has not issued a wait-for-signal. In this case, the sending task is imposing information on the receiver, not coordinating with it.

Equivalence of coordination methods

Are the methods diagrammed in Fig 1 a fundamental set of coordination primitives, or can the coordination they provide be achieved by an even smaller set? You should consider three issues: (1) the extent to which the attributes of one class of methods can be simulated by restricting or limiting the use of another class, (2) the degree to which the unblocking function used in one method can be simulated using different methods, and (3) the efficiency, clarity, and vulnerability of such simulations.

Altering attributes by restricted use

As you have already seen, nondirected coordination can always be reduced to a corresponding directed method by permitting only one task to be the target. Thus, if only one task ever waits at a given message exchange, any task sending a message to that exchange is, in effect, sending it to that specific task. However, this restriction is imposed by the application designer; it is not enforced by the OS.

Similarly, the mutual exclusion that results from internal latching can be achieved with message exchange, by providing external latching. Suppose a given exchange is primed initially with a single message. That message may be taken from the exchange and put back, but no other message is allowed to be posted. In this case, the message becomes the latch; the exchange functions as a (binary) semaphore.

Generally, singly enabling coordination becomes multiply enabling when each task immediately releases the facility to any other task that may be waiting. For example, suppose you need a big event-flag group, say one that is 128 flags long. You could use controlled shared variables to create the group and submit the address of correspondingly big AND and OR unblocking functions in the waicsv requests. Then, all you have to do is always follow the waicsv calls by rlscsv to make the big event-flag group multiply enabling.

Thus, you see that the inherent attributes of certain coordination methods can be simulated by imposing task-level restrictions on the use of more general (and hence slower) methods. It remains to be seen whether the unblocking functions themselves can be simulated.

Synthesizing unblocking functions with CSVs

With a sufficiently general primitive, such as controlled shared variables, it is easy to synthesize the deblocking function of a wide range of other coordina-
tion methods. Making a priority-enqueued message exchange illustrates this point.

First, define a message structure, $m s g$, that has a header (used to queue and control the message) and some text (shown as a nominal single character).

\#define msgptr struct msg^{*} /* pointer to this type of message*/
If all messages are of known fixed length, len could be omitted; if the queue is first in, first out, pty could be omitted.

At the task level, the message exchange would be a group of controlled shared variables that contain a pointer to the first message and a pointer to the last message in the queue. Both are 0 when the exchange is empty.

```
struct mx
    {
        msgptr first; /* pointer to first message*/
        msgptr last; /*pointer to last message*/
    };
#define mxlen sizeof(struct mx) /* size of exchange*/
#define mxid struct mx* /*identifier of exchange*/
```

Synthesize four basic functions:

mxid	create_x ();	/*create (empty) messa
int	send_x ();	/*send to message exchange*/
int	receive_x ();	/*receive from msg exchange*/
int	delete_x ();	/*delete message exchange*/

Create entails just a direct call of crcsv.

For example,
\#define MEX1 0x4D455831
mxid mex1; $\quad / *$ id of message exchange*/

The delete follows a similar pattern.
The procedure to add a new message first waits for exclusive access to the exchange variables, inserts the new message, and then releases access. For efficiency, two special cases are recognized. The first is an empty exchange. In this trivial case, both exchange pointers

An application designer can usually choose a task-coordination scheme that is exactly right at each point for which coordination is needed.

are set to the new message. In the second special case-an incoming message with 0 priority-the message is immediately placed at the end of the queue. In the general case, the program must traverse the message queue.

```
send_x (xid, smsg)
    mxid xid;
    msgptr smsg;
    {\mp@code{}
        int result;
        msgptr prev;
        short int npty;
/*send to message exchange*/
/*id of message exchange \(* /\)
/*ptr to message*/
/*result of OS service call*/
/*ptr to previous messages*/
/*ptr to next messages*)
/*priority of new message*/
/*wait for exclusive access*/
\[
\begin{aligned}
& \text { if ((result }=\text { usecsv }(\text { xid, WAIFIN }))!=\underset{/ * \text { failure** }}{\text { NOERR })} \\
& \text { return (result); }
\end{aligned}
\]
/*add new message to priority chain*/
if \((\) xid \(->\) first \(==0)\)
\{ /*exchange is empty* xid \(->\) first \(=\) xid \(->\) last \(=\) smsg; \(/{ }^{*}\) new msg is only \(\mathrm{msg}^{*} /\) smsg \(->\) next \(=0 ; \quad / *\) new msg is end of chain*/
            }
\[
\text { if }(\text { smsg }->\text { pty }==0)
\]
\{ \(/ * 0\) priority: place new msg directly at end \({ }^{* /}\)
next \(=\) xid \(->\) last; \(\quad / *\) get current last* \(/\) next \(->\) nxt \(=\) smsg; \(\quad \mid *\) chain new msg to last \(* /\) xid \(->\) last \(=\) smsg; \(\quad \mid *\) new msg is last \(\mathrm{msg}^{* /}\) smsg \(->\) next \(=0 ; \quad \quad / *\) new msg is end of chain* \(/\) \} \{ /*find proper place based on priority*/ npty \(=\) smsg \(->\) pty; \(\quad \mid\) get priority of new message \({ }^{* /}\) prev \(=\) xid \(\rightarrow\) first; \(\quad / *\) get current first on chain*/ if (npty > prev->pty)
\{ /*new message is to be first*/ xid \(->\) first \(=\) smsg; \(\quad /\) new msg becomes first msg*) smsg \(\rightarrow\) next \(=\) prev; \(\quad 1 *\) connect msg to chain \({ }^{*} /\) \} else while \((((\) next \(=\) prev \(->n x t)!=0) \& \&(n e x t->\) pty \(>=n p t y))\) prev \(=\) next; \(\quad / *\) continue down chain \(*\) prev \(->\mathrm{nxt}=\mathrm{smsg} ; \quad \mid\) connect msg to chain* \(\mid\) if \(((\mathrm{smsg} \rightarrow>\mathrm{nxt}=\) next \()==0)\)
xid \(->\) last \(=\) smsg; \(\quad /^{*}\) new msg is new last msg* \}
\}
```

/*release access*/ return (rlsesv (xid));
$\}^{r}$

Typical use would be
struct msg msg1;
/*test message*/
send_x (mex1, \&msg1);
/*send messages to exchange*/

The receive procedure waits for the exchange to be nonempty and then dequeues the first message.

A sample receive call is
msgptr buf; /*buffer for addr of test messages*/
result $=$ receive_x (mex1, \&buf, $1+$ SEC); /*receive msgs from exchange*/ printf ("Receive:- result $=\% x$, text $=\% \mathrm{e} \backslash n$ ", result, buf $->$ text);

By similar techniques the task-level programmer can fabricate a message exchange with whatever priority or nonpriority queuing algorithm is desired. The problem is efficiency. Every task waiting for a message has the same not_emp calculation performed every time the exchange is released. Say there are four tasks waiting for a message at an empty exchange. A message is added. As a result, the same not_emp calculation is performed four times: once (successfully) upon release after the message is added, and then three times (unsuccessfully) after the first task takes the message and releases the exchange.
However, you know by the inherent nature of an exchange queue that not_emp must succeed for the first task and must fail for all remaining ones. Thus, you could build this knowledge into the specific send and receive request functions of an OS-level exchange and completely avoid the overhead of not_emp. But, for a task-level exchange, you cannot do this. The generality of the CSV primitive requires that you compute

You can have a simple OS with just a few coordination primitives, but the application suffers as a result.

the unblocking function each time, since in principle, the result could be to block or unblock.

In addition, every message transfer with a task-level exchange requires four OS services: two to get the controlled shared variables and two to release them. An equivalent OS-level exchange uses only half that many calls and thus has only half that many context switches. As always, the penalty for generality is loss of efficiency. In real-time applications, the loss of efficiency is often disastrous to overall system performance.

Synthesizing unblocking functions with mailboxes

Only the MTOS-UX operating system provides controlled shared variables. With most other real-time operating systems, the mailbox is the only general primitive with which all coordination is to be done. Can various unblocking functions be formed from just mailboxes?

A technique for simulating semaphores with mailboxes has already been described. Beyond that, the road becomes long and treacherous. To take one example, simulate the AND unblocking function of an eventflag group using only mailboxes. To make it even simpler, forgo the maximum wait limit; waits can be forever.

Define a public variable to house the value of the group

> extern short int values; /*value of simulated EFG*/
and control access to that variable through a mailbox (MB1) that acts as a semaphore. MB1 is primed with a dummy initial message. A trivial implementation of waiefg would then be

[^6]This method fails as soon as no task can use the group. At that point, the access message remains in the mailbox causing the do loop to be repeated constantly.
To avoid such repetition, after one unsuccessful test do not repeat the loop until some task has used and released the group. For this, you need a second mailbox. MB2 receives a dummy "group was released" message and is initially empty. The simulated waiefg now becomes

```
rcvmbx (MB1,&access,&stabuf,WAIFIN);
curval = values;
curval = values;
if ((curval & mask) != mask)
    { /* condition not immediately satisfied: wait for change*/
    do
        {
            rcvmbx (MB2,&access,&stabuf,WAIFIN); /* wait for change*/
            sndmbx (MB2,&access,0L,&stabuf,CTUNOC); /*release change msg*/
            rcvmbx (MB1,&access,&stabuf,WAIFIN); /*gain access to EFG*/
            curval = values; /*capture value*/
            sndmbx (MB1,&access,0L,&stabuf,CTUNOC); /*release access*/
        }
    while ((curval & mask) != mask);
}
```

/*gain access to EFG*/
/*capture value*/
/*release access*/

```
if ((curval \& mask) ! = mask)
\(\left\{/^{*}\right.\) condition not immediately satisfied: wait for change*/ \({ }^{\text {do }}\)
revmbx (MB2, \&access, \&stabuf,WAIFIN); \(\quad{ }^{*}\) wait for change*/ sndmbx (MB2,\&access,0L, \&stabuf,CTUNOC); /*release change msg*/
rcvmbx (MB1,\&access,\&stabuf,WAIFIN); /*gain access to EFG*/ curval \(=\) values;
\({ }^{\text {/* }}\) capture value*/
```

The function to set some of the bits (corresponding to srsefg) is

While this is a proper simulation of an event flag, it is terribly slow. The work performed by a single srsefg requires four separate calls in the mailbox simulation. Since most of the processing time of any service call is in the context switch and similar fixed overhead, the time required to do sndmbx or rcvmbx is about equal to that required for srsefg. Thus, the simulation of srsefg runs about four times slower. The simulation of waiefg is even worse. When waiefg is fabricated at the task level, it takes four mailbox calls per waiting task to do the unblocking calculations. This costs four context switches per task. When the same unblocking calculations are performed within the OS as part of srsefg, there are no additional context switches, no matter how many tasks are waiting for the event flags.

A mailbox simulation of an event flag is also subject to a serious side effect. After a task (C) changes the flag values, all waiting tasks must be continued via MB2 so that they can perform their coordination condition tests. While these tests are going on, \mathbf{C} is blocked waiting for the access message to be passed from task to task. It is not until the last task has seen the change

THE NETWORK SOLUTION.

Speed is of the essence when installing networks. The many practical ideas incorporated in Temprack are timesavers for your network project - both at the planning stage and during on-site assembly.
1.) Model: Temprack NS 19 41 U*, Width 800, Depth 800. with glass - door and raised top Order No. 1.113.816.3
2.) $19^{\prime \prime}$ distribution patch panel IBM for 32 connectors with mounting-kit Order No. 1.113.763.3
3.) $19^{\prime \prime}$ fixed shelf, $2 U^{\star}$ perforated for air circulation Order No. 1.113.737.3
4.) Jumpering bracket for cable feed Order No. 1.113.749.7/pair

$19^{\prime \prime}$ distribution patch panels also available for all other types of connector
(IBM 8, 16, 32, 64 way, BNC, fiber optic connectors etc.).

Other types of racks:

- i.e. with swing frame
- i.e. for 650 mm wide equipment
- i.e. for 735 mm wide equipment
- i.e. for equipment $19^{\prime \prime}$ and $650 / 735 \mathrm{~mm}$ mixed also available as standard product.

Vast range of accessories available.

KNÜRR - MECHANIK FÜR DIE ELEKTRONIK AG

Schatzbogen 29
D-8000 München 82 Telefon (089) 42004-0 Telex 529608-10
Telefax (089) 42004-118
1.) 44236,50
2.) 2788,20
3.) 1663,20
4.) 351,10

Knürr NV
Tel. 03-326.02.99
Fax 03-325.55.43

7609,00
480,00 285,00 60,00
Knürr s.a.r.l.
Tel. (1) 43778585
Fax (1) 43390210

763,00
41,90
14,70
5,70
Knürr (UK) Ltd.
Tel. 0480-496125
Fax 0480-496373
MKl
9047,00
571,00
338,00
72,00
Knürr Norge A/S
Tel. 02-65.02.20
Fax 02-65.32.30

Knürr USA Inc.
Tel. (805) 526-7733
Fax (805) 584-8371

Knürr AG
Tel. (089) 420 04-0
Fax (089) 42004-118
(*) $U=13 / 4^{\prime \prime}=44.45 \mathrm{~mm}$

> A classification guide for selecting task-control processes takes the form of a decision tree: If you need this characteristic, choose this branch.

and returned the message to MB2 that \mathbf{C} can continue. But if even one of the tasks that must see the change message is relatively low in priority, it can take indefinitely long for that message to work its way back to C. Thus, with a simulated event-flag group, a highpriority task can become blocked for reasons unrelated to it and beyond its control. However, when the OS does the unblocking, the calculations are performed directly and immediately so that there cannot be any uncontrolled delays.

High overhead and undesirable side effects are typical whenever one attempts to simulate a specific coordination method at the task level using general coordination primitives. To answer the question posed earlier, yes, you can have a simple OS with just a few coordination primitives, but the application suffers as a result.

To sum up, coordination is the blocking of one or more tasks until some specified condition is met. Over the years, various methods of coordination have evolved to solve the specific kinds of problems that arise in real-time applications. These methods are fundamentally different in their attributes and effects. For example, some methods require that the identity of the coordination partner be specifically known, while others work with total anonymity. Another basic difference is in the amount of auxiliary information transmitted during the act of coordination or associated with the coordination scheme.

This final part of the real-time programming series has analyzed and classified the major coordination schemes to help guide your selection of the most appropriate technique, based on desired coordination properties and communication requirements. The classification rests upon the following dichotomies:

- single sided vs double sided-Double-sided schemes are symmetrical; whichever task gets to the coordination point first waits for the other. Thus, two tasks are mutually coordinating with each other. In contrast, single-sided schemes are asymmetrical. One task coordinates with another, but not vice versa. The roles of the coordinator and target tasks are always distinct.
- directed vs nondirected-In directed methods the identity of the target task must be specifically known to the coordinator. In nondirected methods, the identity of the target is hidden.
- singly enabling vs multiply enabling-Singly enabling procedures permit only one task at a time to proceed when more than one is waiting for coordination. Multiply enabling procedures release all tasks that satisfy the coordination condition.
- transient vs stored-With a stored mechanism, the OS retains the coordination information until it is needed. With a transient mechanism, if the target is not waiting for coordination, the con-tinue-task information is lost.
- unidirectional vs bidirectional-When coordination is accompanied by an exchange of information, the flow of that information can be in one or two directions.
In some cases, the properties of one coordination method can be constructed from another (often more general) scheme. For example, a nondirected mecha-

Companion disk offer

All of the C examples in this series, plus applications of your own, can be run on a PC with a set of demonstration disks available from Industrial Programming Inc. The disks contain a full version of MTOS-UX for an IBM PC/AT or compatible. An application program is edited, compiled, linked, and loaded under MSDOS. The MTOS-UX then takes over the hardware to execute the program in real time. At any
time, you can enter an ctl/dlt command from the console to return control to MS-DOS.
The demonstrator requires an AT with a least 512 k bytes of RAM and a hard disk with 2 M bytes available for MTOS libraries and scratch storage. Program preparation requires the Microsoft C compiler/linker, version 5.0 or later. Microsoft tools are not included with the MTOS-UX demonstrator.

The demonstration version has all of the features and facilities of standard MTOS-UX. Hownever, there is a limit of six of each type (six tasks, six mailboxes, six semaphores, and so forth). The disk set costs $\$ 25$; unlimited versions are also available. For more details, call IPI at (800) 365-6867 or (516) 9386600 , or write to 100 Jericho Quadrangle, Jericho, NY 11753.

Your business is safe with us.

Especially when its serious business.

Small business is just as serious as big business. That's why, since developing the first data cartridge, we've continued to offer virtually every size and format data cartridge you'll need to help protect your business data-from 20 megabytes to 1.35 gigabytes.

No wonder more business protects important information on 3 M brand diskettes and data cartridges than any other brand in the world. Call 1-800-888-1889 ext. 8 to find out more.

Innovation working for you*

Fast turnaround on U.S. made DIPs and coated/ molded SIPs. • Unlimited schematics combining resistors, inductors, capacitors and diodes. \cdot Complete capabilities from design through production. - Lead lengths up to $0.290^{\prime \prime}$. Special performance ranges, plus production and testing to M83401 levels.
Call or Fax your requirements to:
DALE ELECTRONICS, INC.
Techno Division
7803 Lemona Avenue
Van Nuys, CA 91405-1139
Phone (818) 781-1642 • FAX (818) 781-8647
nism reduces to a directed one if (by the design of the application) only one task is ever allowed to be the waiting target. Furthermore, controlled shared variables are sufficiently general to enable the task-level programmer to build almost all the other coordination mechanisms. Nevertheless, such task-level constructions are very inefficient compared with OS-level services.

EDN

Reference

1. Ripps, David L, "Multitasking OS Manages a Team of Processors," Electronic Design, July 21, 1983.

Article Interest Quotient (Circle One)
High 497 Medium 498 Low 499

Looking to Add TCP/IP Network Access to Your System Designs? Introducing . . .

Now you can incorporate the industry standard TCP/IP protocol suite in your system designs with FUSION Developer's Kit.

Designed for the OEM and systems integrator, FUSION Developer's Kit provides the full TCP/IP protocol suite including TELNET virtual terminal, file transfer protocol (FTP), and R-Commands to name a few.

FUSION Developer's Kit also has a flexible C-source code architecture, making it processor- and operating systemindependent.

Currently used in hundreds of process control, embedded systems, and end user designs, FUSION Developer's Kit from Network Research comes with full support and porting services.

To receive a FUSION Developer's Kit information package, including data sheet, technical specifications and licensing plans call (800) 541-9508 or write to Network Research, 2380 N. Rose Ave., Oxnard, California 93030, FAX (805) 485-8204.

Because our product line is so complete, our inventory so large, and our nationwide distribution system so streamlined, RALTRON can offer pricing that is always competitive, and often far lower than the competition.

We've got some of the best people in the busi-ness-fromtechnical support and sales to customer service and shipping. You can count on RALTRON people to come through for you on time, every time.
Call us today with your requirements or for our 28 page product catalogue.

SURFACE MOUNT CRYSTAL UNITS HC-45/U SMD, IT SMD, HC-49S SMD

- Frequency Range: $3.5 \mathrm{MHz}-360 \mathrm{MHz}$
- Mode of Oscillation:

Fundamental to 9th O.T.

- Frequency Tolerance: @ $25^{\circ} \mathrm{C}$: $\pm 2.5 \mathrm{ppm}$ to $\pm 100 \mathrm{ppm}$
- Frequency Stability: $\pm 3 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ to $\pm 100 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

WORLD'S SMALLEST OCXO, ROXO 210A

- Frequency Range 1.0 MHz to 20.0 MHz
- Temperature Stability: $\pm 2 \times 10^{-7}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$
- Long Term Stability: $\pm 2 \times 10^{-7}$ per year
- Phase Noise:
- 145 dbc (10 KHz offset)
- Power consumption
(stabilized): 2.0 W
- Size:
$35.3 \times 27 \times 25.4 \mathrm{~mm}$
$\left(1.40^{\prime \prime} \times 1.06^{\prime \prime} \times 1.0^{\prime \prime}\right)$

SMALLEST VCXO WITH
HILH SENSITIVITY VC-7025

- Frequency Range: 2 MHz to 35 MHz
- Frequency Stability: $\pm 25 \mathrm{ppm}$ (0 to $70^{\circ} \mathrm{C}$)
- Deviation Sensitivity:
$\pm 50 \mathrm{ppm} / V$ typ.
(up to $\pm 70 \mathrm{ppm} / \mathrm{V}$)
- Size:

14 pin DIP package

CRYSTAL UNITS

Microprocessor crystal units Microprocessor crystal units HC-49 short (AT strip)
Microprocessor crystal units surface mount -"TT-SMD" family AT strip crystal units cylindrical package
Tuning fork quartz crystal units 32.768 KHz

High accuracy crystal units

OSCILLATORS

Clock oscillators TTL compatible
Clock oscillators HCMOS compatible
Clock oscillators surface mount
Clock oscillators enable/disable
Clock oscillators dual output
Clock oscillators
ECL compatible
Temperature compensated
crystal oscillators - TCXO
Oven controlled crystal oscillators - OCXO
Voltage controlled crystal oscillators - VCXO

FIllers

Monolithic crystal filters

CERAMIC RESONATORS

Ceramic resonators 200 to 800 KHz
Ceramic resonators -
2.000 to 6.000 MHz

RAURON
 ELECTRONICS CORP.

2315 NW 107th Avenue
Miami, Florida 33172
FAX (305) 594-3973
TELEX 441588 RALSENUI
(305) 593-6033

Only RALTRON has it all.

THE TOUGHEST FIBRE OPTIC CONNECTORS FOR ANY ENVIRONMENT

- Hughes fibre optic connectors are designed and manufactured for survivability and high reliability in hostile environments
- Designed to meet the requirements of military specifications

Connector MIL-C-83526
Terminal MIL-T-29504
Repeatable characteristics after continuous mating
Designed for Single and Multimode fibre
Low insertion losses; as low as 0.5 DB with certain cables

- Single and Multi-Channel product range
- Non-standard connector can be designed and manufactured to exact customer requirements

Hughes Microelectronics Europa (France)

Headquarters.
Hughes Microelectronics Europa Ltd. Queensway Indusṭrial Estate
Glenrothes, Fife
KY7 5PY, Scotland
Tel: (0592) 754311
Fax: (0592) 759775

Hughes Microelectronics Europa

Hughes Microelectronics Europa Ltd. Clive House, 12/18 Queens Road Weybridge, Surrey

Knock Days Off Your Multichip Design Time.

When it comes to building high-speed, highdensity multichip modules, Intergraph has the technology you need.

MCM Engineer Series. A fully integrated family of advanced software that accelerates the entire MCM cycle. From design to manufacturing.

Component placement. High-speed layout analysis. Timingdriven routing. Area calculations. And much more - all under one common user interface.

Now, instead of relying on existing PCB or IC systems, you have technology developed specifically for MCM designers. Easily tailored to your requirements.

Isn't that what you expect from

 Intergraph? After all, we've installed microelectronics design systems at over a hundred sites. In almost every part of the globe.Which is why customers worldwide rely on our integrated automation to trim product cycles. Improve quality. And reduce the cost of development and production. For more information on the MCM Engineer Series, call us today at 800-826-3515. And discover the difference our experience can make for you.
INTERGRNDH
Everywhere you look.

FOR:
 MEDICAL INDUSTRIAL HVAC

Sensym's 142/163 Series

Features Include:

Guaranteed precision over temperature: $\pm 1 \%$ Max $\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+63^{\circ} \mathrm{C}\right)$!

- High level calibrated output: $1.0 \mathrm{~V} \pm 50 \mathrm{mV}$ offset $5.0 \mathrm{~V} \pm 50 \mathrm{mV}$ span
- Linearity: <0.75\% FSO Max

These precision transducers are priced starting at $\$ 40$ eal 100's. Stock delivery.

Available parts:
163SC01D48 ... - 20 to $+120 \mathrm{cmH}_{2} \mathrm{O}$
142SC series .. 0 to 1 psi up to 0 to 150 psi

Free Handbook

 product notes and ideas.

Sensym's new 1990 Sensor Handbook gives complete specifications plus over 200 pages of application

Call or fax us today for your free Sensor Handbook.

Uncanny capacitance.

NEC Supercaps offer out-of-this-world performance.

Creating high capacitance in small cases has been an NEC specialty for decades. The three new Supercaps in our FM series are an extraordinary example.

To equal the 0.169 F capacitance that NEC has packed into these electric double-layer capacitors, Mother Nature would require 238 spheres the size of planet earth.

Fast charging, semipermanent life and excellent safety factors make NEC Supercaps an ideal
replacement for backup batteries. Supercaps come in eight series, covering a wide range of backup needs from CMOS RAMs and microcomputers to large-current

applications. For more information, contact NEC today.

Series	Application	Capacitance (F)	Feature
FYD		$0.022-2.2$	Space saving
FYH		$0.022-1.0$	Low profile
FYL	RAM/microcomputer backup	$0.01-0.047$	Extra low profile
FM		$0.022-0.1$	Auto insertion/soldering
FR		$0.022-1.0$	Wide operating temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
FS	Medium backup current	$0.022-1.0$	
FA		$0.047-1.0$	5.5 V
FE	Large backup current	$0.022-0.47$	11.0 V

For fast answers, call us at:

COMMUNCAFTIONS
SPECIAL ISSUE

Spice simulations use controlled sources to model NTSC signals

> You can use Spice-variety circuit-simulation software to model NTSC video signals. You can then use these models to design and test video circuits.

Anthony M Radice, General Instrument Corp

As simulation tools become less expensive and more readily available to design engineers, simulating a design accurately before production release becomes more practical. Because the computer can do a spread of analyses while you work on something else (or even go home for the evening), being able to accurately describe a variety of conditions and operational models for a circuit is to your benefit. You could improve the accuracy of video-circuit models if you could simulate a video input signal. This article details how to use Spice to build models of NTSC video signals from a set of controlled sources.

The methods presented here were tested with MicroSim Corp's (Laguna Hills, CA) PSpice circuit-simulation software. With minor modification, the technique should work with any software that simulates independent and controlled voltage and current sources. The general procedure is to build several common video signals in a piece-wise, linear fashion. These signals are the modulated-ramp, multiburst, and composite test signals, and are typically used on the bench to do circuit testing. Thus, simulation results and actual tested results should match well. For background infor-
mation on PSpice, see Refs 1 and 2; for methods of testing video signals, see Ref 3; and for details on video-signal composition," see Ref 4.
To build simulated video signals, start by establishing some ground rules and setting up a template for a variety of signals. These chores are not difficult because video is very repetitive. You can make the following assumptions:

- Vertical sync will not be a factor at this time in this discussion.
- The horizontal interval is $63.56 \mu \mathrm{sec}$. All timing signals are rounded to the nearest $0.01 \mu \mathrm{sec}$, and all add up to the $63.56-\mu \mathrm{sec}$ period. The total cumulative rounding error, about 4 nsec , works out to an error of about $5.7^{\circ} /$ line.
- All references to time are relative to the beginning of the "front porch" of the video signal. The front-porch interval is the first of the six video signal intervals and is $1.4 \mu \mathrm{sec}$ long.
- In the signal descriptions, volts will represent IRE levels, so the simulated output voltage will be 1.4 V p-p. If $1 \mathrm{~V} p-\mathrm{p}$ is required, use a final scaling multiplier of 0.7143 . An IRE (Institute of Radio Engineers) unit is a measurement unit used for video signals. It represents 1% of the voltage difference between blanking (where the visible spot is gone, or "blanked," and defined as 0 IRE) and peak = white level (defined as 100 IRE). The horizontal pulse of NTSC video signals, as well as other timing pulses, extend to a point 40 IRE below blanking, making the video signal 140 IRE p-p.

To build simulated video signals, start by establishing some ground rules and setting up a template for a variety of signals.

Table 1-Parameters for PSpice PULSE command

Symbol	Parameter	Default	Typical value
$\langle\mathrm{v} 1\rangle$	Initial voltage	None	OV
$\langle\mathrm{v} 2\rangle$	Pulsed (t0) voltage	None	TV
$\langle\mathrm{td}\rangle$	Initial delay	0	\star
$\langle\mathrm{tr}\rangle$	Rise time	TSTEP	$0.2 \mu \mathrm{sec}$
$\langle\mathrm{tf}\rangle$	Fall time	TSTEP	$0.2 \mu \mathrm{sec}$
$\langle\mathrm{pw}\rangle$	Pulse width	TSTEP	$*$
$\langle\mathrm{pr}\rangle$	Cycle period	TSTEP	$63.56 \mu \mathrm{sec}$
Varies with selected waveform.			

These simulations describe only the time response (.TRAN) of the circuit. You should undertake other analyses, such as .AC, .DC, and .NOISE, separately.
Before starting the waveform simulations, review the PULSE independent-voltage-source PSpice command. This command, whose parameters are given in Table 1, has the form:

```
V<name> <(+) node> <(-) node> PULSE(<v1>
+ <v2> <td> <tr> <tf> <pw> <pr>)
```

Each parameter is a separate entity. For example, the rise and fall times are not part of the pulse width. Thus, you can have a very long rise or fall time and a very short pulse width. The PULSE command builds up the gating signals necessary to turn various parts of the video signal on and off. Ref 1 gives detailed information about this command. Table 1 uses typical

Fig 1-A video line has six distinct periods. The bulk of the line consists of active video information; the rest contains the front porch, the horizontal-sync pulse, the breezeway, the color burst, and the back porch.
values to build a template for this command; you can change these values to suit a particular application.
First, build up the horizontal interval and then use it as a template to build the test signals. Each video line comprises six distinct periods (Fig 1) totaling 63.56 $\mu s e c$. The horizontal interval consists of periods 1 through 5 in Table 2 and Fig 1. Active video occurs during period 6 .

Using the information in Table 2, you can specify the horizontal interval as the sum of an independent pulsed voltage source and a controlled voltage source. The controlled source is a sine-wave generator for color burst. This generator is gated, or multiplied, by a pulse that enables it at the correct interval. Fig 2 shows the progression of this process. Fig $\mathbf{2 a}$ is the HSync pulse. Fig $2 \mathbf{b}$ is the gating pulse for the color-burst signal, followed by the $3.58-\mathrm{MHz}$ sine-wave generator (Fig 2c). Fig 2d is Fig 2a plus the product of Fig 2b and Fig 2c.
The first Spice statement builds the negative-going horizontal $=$ sync pulse. (Nodes are represented as <nnn>.)

```
V_HSync <+1> <-1> PULSE(0 -0.4 1.4u 0.2u
+}+0.2u 4.7u 63.56u) ()
```

The output of this pulse is zero for the front-porch interval ($1.4 \mu \mathrm{sec}$). The pulse has $0.2-\mu \mathrm{sec}$ rise and fall times, a full amplitude of $-0.4 \mathrm{~V}(-40$ IRE $)$, and a width of $4.7 \mu \mathrm{sec}$. The period of this pulse is 63.56 $\mu \mathrm{sec}$.
To build the color-burst signal, start with a sinewave generator that has a peak value of 0.2 V and, thus, a peak-to-peak amplitude of 40 IRE:

```
V_CB <+2> <-2> SIN(0 0.2 3579545 0 0 0)
```

The generator's signal has a 0 V offset, a 0.2 V peak amplitude signal at 3.579545 MHz , and no delay, damp-

Table 2-Video-signal intervals		
Interval	Length $(\mu \mathrm{sec})$	Transition time $(\mu \mathrm{sec})$
Front porch	1.4	0.2
Horizontal-sync pulse	4.7	0.2
Breezeway	0.5	0.2 (envelope)
Color burst	2.6	0.2 (envelope)
Back porch	1.4	0.2
Video information	51.76	0.2

Fig 2-Summing and gating various sources simulates the horizontal interval. The horizontal-sync pulse (a), summed with the product of the color-burst gating pulse (b) and the $3.58-M H z$ sine wave (c), produces the composite horizontal-interval signal in \mathbf{d}.
ing, or phase offset. The following pulse will gate this generator:

```
V_CB Gate <+3> <-3> PULSE(0 1.0 7.0u
    + 0.2u 0.2u 2.6u 63.56u)
```

This pulse has a delay of $7 \mu \mathrm{sec}$ after the start of the front-porch interval, a $2.6-\mu \mathrm{sec}$ burst width, a ± 20 IRE amplitude centered on 0 IRE, and a period of $63.56 \mu \mathrm{sec}$. Now, multiply V_CB and V_CB_Gate, which produces a gated, controlled voltage source, E_CB:

```
E_CB <+4> <-4> POLY(2) (<+2> <-2>)
+(<+3> <-3>) 0}000000
```

Note that the terms following a second-order polynomial in Spice are the following " p " coefficients: p 0 is the offset, p 1 is the V1 term, p2 is the V2 term, p3 is the $\mathrm{V1}^{2}$ term, and p 4 is the $\mathrm{V} 1 \times \mathrm{V} 2$ term. Because V2 (V_CB_Gate) is zero over all but the color-burst interval, this term effectively gates the color burst. This gating is the key aspect of all the signals you will build. Finally, add the terms E_CB and V_HSync to obtain another controlled source, E_HI:

```
E_HI <+5> <-5> POLY(2) (<+1> <-1>) (<+4>
+<<-4>) 0 1 1
```

This expression shows that the summation of nodes ± 1 through ± 4 generates the horizontal interval. At this point, writing the previous terms into a simulation file and running it would be useful. Once successful, you're ready to move to the next step. Use this horizon-tal-interval template to build the first of the full video signals: the modulated ramp.

The characteristic of the modulated ramp is a $40-\mathrm{IRE}$ p-p chroma signal superimposed on a 0 - to $100-$ IRE luminance ramp (Fig 3). This signal is useful for determining differential phase (change of phase relative to burst as a function of signal amplitude) and differential gain (change of gain as a function of signal amplitude). You can adjust the level of the envelope of the chroma so that it does or does not exceed the 0-IRE level, the 100-IRE level, or both. Start with a signal that has a minimum envelope value of - 20 IRE and a maximum envelope value of 120 IRE. Start with a specific chroma generator and its "switch":

```
V_CHROMA <+10> <-10> SIN(0 0.2 3579545
+-0 0 76)
V_CHR_SW <+11> <-11> PULSE(0 1 11.4u
+-0.2\overline{u}}0.2\textrm{u}51.76u 63.56u
```

These terms generate a chroma signal 76° ahead of the V_CB generator, which has a phase of 0°. The signal is 40 IRE p-p and centered on the 0 -IRE refer-
ence. Now, generate the ramp to which this signal is added. Generate the ramp by rearranging the pulsewidth ($0.2 \mu \mathrm{sec}$) and rise-time ($51.756 \mu \mathrm{sec}$) terms in the pulse specification:

```
V_RAMP <+12> <-12> PULSE(0 1 11.4u
+}+51.76u 0.2u 0.2u 63.56u),
```

You can now sum together the ramp and chroma signals using a third-order-polynomial controlled voltage source:

```
E_VID1 <+13> <-13> POLY(3) (<+10> <-10>)
+-}(<+11> <-11>) (<+12> <-12>
+000101
p0 - Offset
p1 - V_CHROMA
p2 - v_CHR_SW
p3 - V_RAM\overline{P}
p4 - v_CHROMA }\mp@subsup{}{}{2
p5 - V_CHROMA * V_CHR_SW
p6 - V_CHROMA * V_RAMP (not included)
p7 - V_CHR_SW2 - (not included)
p8 - V_CHR_SW * V_RAMP (not included)
```

As the terms of the polynomial increase, the coefficients can rapidly become difficult to visualize. Writing down the terms can help. The final step in building a modulated ramp is to sum this video signal with the horizontal interval. You could perform this summation
in a fourth-order polynomial, but, for simplicity's sake, the last term is a second-order controlled source:

```
E_MODRAMP <+14> <-14> POLY(2) (<+5>
+-<-5>) (<+13> <-13>) 0 1 1
```

Now would be a good point to build and simulate this signal. If you want to change the maximum IRE level to 100 rather than 120 , change the V _Ramp statement to a maximum voltage level of 0.8 V , rather than 1 V . Because the addition of 20 IRE $(0.2 \mathrm{~V})$ from the maximum level of the chroma source would directly add to this 0.8 V (80 IRE), the maximum level would then be 100 IRE, or 1 V . Next, move to a more proces-sor-intensive signal: the multiburst signal.

The multiburst signal is useful for determining several frequency-dependent characteristics of video circuits. The ac-sweep facility in Spice is also useful for showing these traits, but because the multiburst signal is commonly available on video test generators, we will build the signal here. Note that you can build all these simulated signals into subcircuits and then use the subcircuits in a library of analysis tools.

In the video portion, a multiburst signal consists of a white bar (100 IRE) and several bursts of frequencies: 500 kHz and $1,2,3,3.579545$, and 4.2 MHz . These frequencies are centered on 50 IRE and are 50 IRE p-p in amplitude (Fig 4). Sometimes these bursts are part of another test signal, such as the NTSC combina-

Fig 3-The modulated ramp is useful for determining differential phase and gain. The signal is a 40-IRE p-p chroma signal superimposed on a 0 - to 100-IRE luminance ramp. By manipulating the coefficients in the Spice listings, you can change chroma offset, ramp levels, and other parameters.
tion test signal (Ref 4). But for this application, the bursts will take up the entire horizontal line.
Build the white bar by generating a pulse of 100 IRE, then dropping it to 50 IRE (by adding a -50 -IRE term) to form the center of the bursts. Considering just this portion of the signal, you can generate

```
V_WB <+20><<-20> PULSE(0 1 11.4u
+ 0.2u 0.2u 51.76u 63.56u)
V_DRP <+21> <-21> PULSE(0 -0.5 15.4u
+}+0.2u 0.2u 47.76u 63.56u) (
E_LUM <+22> <-22> POLY(2) (<+20> <-20>)
+-}(<+21\rangle<-21>) 0 1 1
```

V_WB strongly resembles V_CHR_SW in the simulation of the modulated ramp. This term is useful for gating the entire video portion of the line. Now, generate the six frequency terms of the signal. They are all similar.

```
* 500-kHz Signal, 6-usec width, envelope
* +0.2 usec each end.
V_FR1 <+23> <-23> SIN(0 0.25
+500000 0 0 0)
V_FRI_SW <+24><-24> PULSE(0 1 18.0u
+}+0.2\overline{u}0.2u 6.0u 63.56u
* 1-MHz Signal
V_FR2 <+25> <-25> SIN(0 0.25 1MEG
+-O 0 0)
V_FR2_SW <+26><<-26> PULSE(0 1 25.0u
+ 0.2u 0.2u 6.0u 63.56u)
* 2-MHz Signal
V_FR3 <+27><-27> SIN(0 0.25 2MEG
+-0}0000
V_FR3_SW <+28> <-28> PULSE(0 1 32.0u
+-0.2\overline{u}}0.2u 6.0u 63.56u) (
* 3-MHz Signal
V_FR4 <+29><-29> SIN(0 0.25 3MEG
+-0}0000
V_FR4_SW <+30><<-30> PULSE(0 1 39.0u
+'0.2\overline{u}}0.2u 6.0u 63.56u)
* The "Magic Number", 3579545 Hz, zero
* reference phase.
V_FR5 <+31><-31> SIN(0 0.25
+}3579545 0 0 0)
V_FR5_SW <+32><<-32> PULSE(0 1 46.0u
+0.2\overline{u}}0.2u 6.0u 63.56u
* 4.2-MHz Signal
V_FR6 <+33><<33> SIN(0 0.25
+4.2MEG 0 0 0)
V_FR6_SW <+34><<-34> PULSE(0 1 53.0u
+0.2u 0.2u 6.0u 63.56u)
```

You must gate each of the above frequency compo-

Fig 4-A multiburst signal contains bursts of six different frequencies. The Spice simulation of this signal uses an eighth-order polynomial to sum the individual frequency terms. You can modify these expressions to reflect different phases and burst widths of the individual frequency components.
nents, in its respective set, by the appropriate pulse. These terms are as follows:

```
E_F1<<+35><<-35> POLY(2) (<+23><<-23>)
+-}(<+24\rangle<-24>) 00000
E_F2<<+36><<-36> POLY(2) (<+25> <-25>)
+'}(<+26><-26>) 000001
E_F3 <+37> <-37> POLY(2) (<+27> <-27>)
+-}(<+28><-28>) 000001
E_F4<<+38><-38> POLY(2) (<+29><<-29>)
+-}(<+30\rangle<-30>) 000001
E_F5<<+39><<-39> POLY(2) (<+31><<-31>)
+'}(<+32\rangle<-32>) 000001
E_F6<+40><<-40> POLY(2) (<+33><<-33>)
+-}(<+34><-34>) 000001
```

Finally, sum the individual terms. Use an eighthorder polynomial because you are strictly taking a SUM. Not dropping any nodes is crucial, as Spice would deliver bizarre results.

```
E_MBRST <+41> <-41> POLY(8)
+(<+ 5> <- 5>) (<+22> <-22>) (<+35>
+<-35>) (<+36><<-36>) (<+37><<-37>)
+(<+38><-38>) (<+39> <-39>) (<+40>
```


As before, now is a good time to build this signal and simulate it. Variations on the signal include varying the phase of the individual components or the width of individual frequency components. Because of the rounding of the time periods, the phase of an individual

> You can specify the horizontal interval as the sum of an independent pulsed voltage source and a controlled voltage source.
burst relative to the color burst in a given horizontal line may vary.
You have now generated all but one of the three video test signals. This signal is the NTC7 composite test signal (Ref 4) and includes a set of signal components that have a $\sin ^{2}$ characteristic (Ref 2).
The composite test signal has four major components: a white bar (100 IRE), a 2 T pulse ($\mathrm{T}=125 \mathrm{nsec}$), a modulated 12.5 T pulse, and a 6 -step modulated staircase (Fig 5). The white bar is relatively long, which lets it test for insertion gain and medium-time waveform distortions. The 2 T pulse is used to test for shorttime waveform distortions. The modulated 12.5 T pulse lets you test for luminance-chrominance delay inequalities. Finally, the modulated-stairstep signal lets you test for differential-gain and -phase errors.
First tackle the 2T pulse in Fig 5. This pulse has a $\sin ^{2}$ characteristic and a pulse width equal to two periods of the $3.58-\mathrm{MHz}$ chroma subcarrier. Therefore, take the output of a generator with a frequency of $(3.58 \div 4) \mathrm{MHz}$ (Fig 6a) and square it through a con-trolled-source polynomial. This squaring doubles the frequency to $(3.58 \div 2) \mathrm{MHz}$ and puts the voltage characteristics at the correct levels, which are between 0 and 1V (Fig 6b). Phase the generator properly to get the 0-IRE intercepts to match the gating generator and your desired location. First, generate the frequency and square the output.

```
V_2TGEN <+50> <-50> SIN(0 1 894886
+-}00 0) ; To Be Modified **
E_2TGN <+51> <-51> POLY(1) (<+50>
+
```

This pulse should be centered on $35.4 \mu \mathrm{sec}$. (All numbers for location and pulse widths are from the NTC7 television report in Ref 4.) The pulse, from zero crossing to zero crossing, is $1 /(894,886 \times 2)=0.559-\mu \mathrm{sec}$ wide. Because of the short length of this pulse, you must make an exception to the accuracy assumption. The gating pulse and its associated multiplication statement are, therefore,

```
V_2TGAT <+52> <-52> PULSE(0 1 35.1255u
+}+0.001u 0.001u 0.559u 63.56u) ()
E_2TGTE <+53> <-53> POLY(2) (<+51>
+-<-51>) (<+52> (-52>) 000001
```

You calculate the delay of the gating pulse (35.1205 $\mu \mathrm{sec}$) from the desired center location ($35.4 \mu \mathrm{sec}$) minus half of the 2 T pulse width $(0.559 \mu \mathrm{sec})$. The $0.001-\mu \mathrm{sec}$

Fig 5-Multiple video-system testing opportunities are inherent in the NTC 7 composite test signal. The white bar is useful for testing insertion gain and medium-time waveform distortions; the 2T pulse lets you test short-time waveform distortions; the 12.5T pulse lets you test for luminance-chrominance delay disparities; and the modulated staircase provides a handy test for differential-phase and -gain errors.

Fig 6-To generate the 2T and 12.5T signals, square the output of an $895-\mathrm{kHz}$ generator (a) to produce the $1.79-\mathrm{MHz}$ waveform at the correct voltage levels in b. Several Spice manipulations are necessary to calculate correct delays and phasing to form the envelope of the output (c).
rise and fall times and the $0.559-\mu \mathrm{sec}$ pulse width must total the zero intercepts of the 2 T pulse because the rise and fall times and the pulse width are independent time periods. During the rise and fall times, the output product will not be zero because the gating signal has a value during the transitions. This transitional value helps form the envelope of the output ($\mathbf{F i g} \mathbf{6 c}$).
Now, you can calculate the phase of the 2 T generator

Table 3-Chroma staircase characteristics

Burst	Amplitude $(\mathrm{p}-\mathrm{p})$	Centered	Time $(\mu \mathrm{sec})$	Start $(\mu \mathrm{sec})$
1	40 IRE *	0 IRE	4	43.4
2	40 IRE	18 IRE	3	47.4
3	40 IRE	36 IRE	3	50.4
4	40 IRE	54 IRE	3	53.4
5	40 IRE	72 IRE	3	56.4
6	40 IRE	90 IRE	3	59.4

*IRE stands for Institute of Radio Engineers. One IRE unit represents 1% of the voltage difference between blanking, which is 0 IRE, and peak white level, which is 100 IRE.
to "arrange" a zero crossing at exactly 35.1255μ sec into the simulation. While performing this calculation, keep in mind that the $\sin ^{2}$ wave comes from a signal at half the frequency. You want to center either the 90° or the 270° peak at $35.4 \mu \mathrm{sec}$. Because one period of the V 2 TGEN signal is $1.117 \mu \mathrm{sec}$, the timing works out to 31.678 cycles to get from start at 0° phase to $35.4 \mu \mathrm{sec}$ into the signal. Subtracting the 31 cycles and converting to degrees $\left(0.678 \times 360^{\circ}\right)$, you can see that the generator's phase would be 244° if it started at reference 0°. The generator's phase should be 270°, so start the generator at reference 26°. The V $2 T G E N$ statement is thus

```
V_2TGEN <+50> <-50> SIN(0 1 894886
+ 0 0 203)
```

Put the 12.5T pulse aside for now and assemble the easy part of the line so you can experiment. The composite test signal has a white bar $18-\mu \mathrm{sec}$ long that starts at $13.4 \mu \mathrm{sec}$ and then drops to 0 IRE prior to the 2 T pulse. After the 2 T pulse, the signal drops to 0 IRE for the 12.5 T pulse. The 12.5 T pulse is centered at 38.4μ sec. After this pulse, the composite signal drops to 0 IRE until $43.4 \mu \mathrm{sec}$ into the waveform. At this point comes the modulated-staircase signal, which you can regard as six bursts of chroma with the characteristics Table 3 shows.

The phase of this staircase signal does not change relative to each step and to the color-burst signal. You can build the signal from a chroma source and a series of pulses for the "steps." First, build the white bar, which resembles $V_{-} W B$ of the multiburst signal, only shorter.

```
V_WB2 <+55> <-55> PULSE(0 1 13.4u 0.2u
+-0.2u 18.0u 63.56u)
```

Now, assemble the staircase for the chroma. Because the first chroma burst is centered on 0 IRE, the first step of the staircase is 0 . Thus, skip the first step and proceed to the remaining five. Each step adds 0.18 V (18 IRE) to the base level of the chroma. Note that the chroma switches on at $43.4 \mu \mathrm{sec}$ and the first "riser" on the staircase switches on at 47.4μ sec.

```
V_SC1 <+56> <-56> PULSE(0 0.18 47.4u
+0.01u 0.01u 15.0u 63.56u)
V_SC2 <+57> <-57> PULSE(0 0.18
+-0.01u 0.01u 12.0u 63.56u)
V_SC3 <+58> <-58> PULSE(0 0.18 53.4u
+}+0.01u 0.01u 9.0u 63.56u
V SC4 <+59> <-59> PULSE(0 0.18 56.4u
+}+0.01u 0.01u 6.0u 63.56u)
V_SC5 <+60> <-60> PULSE(0 0.18 59.4u
+-0.01u 0.01u 3.0u 63.56u)
```

Because the phase should be 0° and $\mathrm{V} _\mathrm{CB}$ is already the correct amplitude, you can take the chroma itself directly from V_CB. You now need to generate the correct gating pulse and gate the chroma.

```
V_CB_STC <+61> <-61> PULSE(0 1 43.4u
+ 0.01u 0.01u 19.0u 63.56u) E_CBSTC
+<+62><-62> POLY(2) (<+2> <-2>)
+(<+61><<-61>) 0 0 0 0 1
```

You can now assemble the composite signal short of the 12.5 T pulse. You can accomplish this task with one statement. Again, be very careful with node numbers.

```
E_COMP <+64> <-64> POLY(9)
+-}(<+ 5> <- 5>) (<+55> <-55>) (<+50>
+<-50>) (<+62> <-62>) (<+56> <-56>)
+(<+57> <-57>) (<+58> <-58>)
+(<+59> <-59>) (<+60> <-60>)
+01111111111
```

The above statement is in the order horizontal interval, white bar, 2 T pulse, space, and the chroma and staircase signal. Now would be a good time to assemble and simulate the above statements.

The last step in building the composite test signal is adding the 12.5 T modulated pulse to the chroma signal. Build this pulse by generating an envelope of the $12.5 \mathrm{~T} \sin ^{2}$ characteristic, the modulation pulse, and the gating pulse. Then, multiply them together. You build the 12.5 T pulse in much the same way as the 2 T pulse. First, generate a sine wave at $3.58 \div 25 \mathrm{MHz}$, then square it to get a frequency of $3.58 \div 12.5 \mathrm{MHz}$

Each video line comprises six distinct periods totaling $63.56 \mu \mathrm{sec}$. The horizontal interval consists of periods 1 through 5; active video occurs during period 6.

Fig 7-The last step in simulating an NTC7 composite test signal is adding the 12.5T modulated pulse to the chroma signal. Squaring a $3.58-\mathrm{MHz} \div 25$ signal in a produces the $286.4-\mathrm{kHz}$ waveform in \boldsymbol{a}. Modulation produces the signal in \boldsymbol{b}, and gating this signal with \boldsymbol{c} yields the composite waveform (d).
(Fig 7a). The statements for these operations are

```
V_12TGEN <+65><<-65> SIN(0 1 143182
+0 0 0) ; To Be Modified **
E_12TGN <+66> <-66> POLY(1) (<+65>
+-<-65>) 0001
```

Now, generate the modulation as a $100-$ IRE p-p chroma signal centered on 50 IRE, and multiply the envelope by the modulating signal (Fig 7b).

```
V_12TCHR <+67> <-67> SIN(0.5 0.5
+-3579545 0 0 0) E_12TEM <+68> <-68>
+ POLY(2) (<+66> <-66>) (<+67> <-67>)
+00001
```

The zero-crossing period of this signal is $3.492 \mu \mathrm{sec}$. This signal should be centered at $38.4 \mu \mathrm{sec}$. You can generate the gating pulse for the 12.5T signal (Fig7c):

```
V_12TGAT <+69> <-69> PULSE(0 1 36.654u
+-0.001u 0.001u 3.49u 63.56u)
```

Now, multiply the gating pulse by the product of the envelope and modulation (Fig 7d) and adjust the phase of the envelope to make the intercepts of the
envelope symmetrical at the 0-IRE level. The gating product is

```
E_12TPRD <+70> <-70> POLY(2) (<+68>
+-<-68>) (<+69><<-69>) 0 0 0 0 1
```

The zero-crossing point must occur at $36.654 \mu \mathrm{sec}$, so the phase of V_12TGEN must be

$$
\operatorname{MOD}\left[\frac{36.654 \times 10^{-6}}{\left(\frac{1}{143,182}\right)}\right] \times 360^{\circ}=89^{\circ} .
$$

The modified simulation statement is

```
V_12TGEN <+65><-65> SIN(0 1 143182
+00 89)
```

Finally, change the summation statement to a tenthorder polynomial and add the E_12TPRD term:

```
E_COMP <+64> <-64> POLY( 10 )
+'(<+ 5> <- 5>) (<+55> <-55>) (<+50>
+<-50>) (<+70> <-70>)+(<+62> <-62>
+(<+56><-56>) (<+57> <-57>) (<+58>
+<-58>) (<+59> <-59>) (<+60> <-60>)
+011111111111
```

Note the three separate changes in this equation with respect to the earlier E_COMP equation, which had no 12.5 T signal:

- Change the POLY term in the first line from a 9 to a 10
- Add nodes ± 70 in the second line
- Add a tenth 1 in the last line.

Fig 8 gives the Spice listing for the simulation of the NTC7 composite test signal. Note that both the 2 T and the 12.5 T pulses rely on low-frequency generators as sources. The phase relationship of these generators, relative to the respective pulse location, changes from line to line. Thus, the first simulation of these pulses is correct in time, but the next line is not. You could build up a longer simulation file to correct this problem. This more extensive simulation file would set up the various phase relationships between burst and the respective pulses; a final gating pulse train would enable the correct lines as outputs at the appropriate times. Such a subcircuit would be from two to four times the size of this model.

Smart PCs and FAX machines are spreading the word. Because now they can have complete voice recording and playback capability! Easily. And quickly. With Yamaha's YM7109 FAX Modem chip and FAXSIM ${ }^{\text {mu }}$ software.
The YM7109 gives designers a voice/FAX solution in a single chip. It provides a complete send/receive 9600bps Group 3 FAX Modem. Plus, 12-bit A/D and D/A converters sampling at 9.6 k samples/second for high resolution voice processing. And voice quality that surpasses even today's digital telephone systems.
The YM7109 opens up a new world of applications. A FAX machine can answer phone calls and record messages. A PC can provide added utility as a FAX and telephone answering machine. Or a FAX board can greet callers and send requested information. The possibilities are endless.
But remember, those who get to market first - are the winners. That's where Yamaha's FAXSIM software gives you a head start.

It includes all the FAX modules, plus Bulletin Board Service using EIA Binary File Transfer/Bell 103, and ADPCM for storing and playing back voice. The source code is available in Turbo $\mathrm{C}^{\text {™ }}$ and makes integration a breeze. Letting you move from design to production fast.
Beat the competition. Call us at 1-800-543-7457.

YAMAHALSI

Yamaha Corporation Japan Electronic Systems Division 203 Matsunokijima, Toyooka-mura, Iwata-gun, Shizuoka-ken, 438-01 Japan Telefax: 81-539-62-5054 Telephone: 81-539-62-4918

```
Test to generate an NTC7 composite test signal
* Major point of this test signal is to develop the Sin}\mp@subsup{}{}{2}\mathrm{ characteristics
* of the 2T and 12.5T pulses.
* Horizontal Sync Tip
* Horizontal Sync Tip (1 0 PULSE(0 -0.4 1.4u 0.2u 0.2u 4.7u 63.56u) ; Make HSync
* Color Burst
```



```
* Horizontal Interval
E_HI 5 0 POLY(2) (1 0) (400) 0 1 1 ; Sum
* Active Video - White Bar
V_WB2 55 0 PULSE(0 1 13.4u 0.2u 0.2u 18.0u 63.56u)
* Active Video - 2T Pulse
V_2TGEN 50 0 SIN(0 1 894886 0 0 203)
E-2TGN 51 0 POLY(1) (50 0) 0 0 1
V-2TGAT 52 0 PULSE(0 1 1 35.1255u 0.001u 0.001u 0.557u 63.56u)
* Active Video - Staircase
\begin{tabular}{llllllllll} 
V_SC1 & 56 & 0 & PULSE (0 & 0.18 & 47.4 u & 0.01 u & 0.01 u & 15.0 u & \(63.56 \mathrm{u})\) \\
\(\mathrm{V}_{\text {-SC2 }}\) & 57 & 0 & PULSE (0 & 0.18 & 50.4 u & 0.01 u & 0.01 u & 12.0 u & \(63.56 \mathrm{u})\) \\
\(\mathrm{V}_{\text {-SC3 }}\) & 58 & 0 & PULSE (0 & 0.18 & 53.4 u & 0.01 u & 0.01 u & 9.0 u & \(63.56 \mathrm{u})\) \\
\(\mathrm{V}_{\text {-SC4 }}\) & 59 & 0 & PULSE (0 & 0.18 & 56.4 u & 0.01 u & 0.01 u & 6.0 u & \(63.56 \mathrm{u})\) \\
\(\mathrm{V}_{-}\)SC5 & 60 & 0 & PULSE (0 & 0.18 & 59.4 u & 0.01 u & 0.01 u & 3.0 u & \(63.56 \mathrm{u})\)
\end{tabular}
* Active Video - Chroma
V_CB_STC 61 lllllll
E_COMP 
+011111111111
\begin{tabular}{lrll} 
R0 & 1 & 0 & lMEG \\
R1 & 2 & 0 & 1MEG \\
R2 & 3 & 0 & 1MEG \\
R3 & 4 & 0 & 1MEG \\
R4 & 5 & 0 & 1MEG \\
R5 & 50 & 0 & 1MEG \\
R6 & 51 & 0 & 1MEG \\
R7 & 52 & 0 & 1MEG \\
R8 & 53 & 0 & 1MEG \\
R8A & 55 & 0 & 1MEG \\
R9 & 56 & 0 & 1MEG \\
R10 & 57 & 0 & 1MEG \\
R11 & 58 & 0 & 1MEG \\
R12 & 59 & 0 & 1MEG \\
R13 & 60 & 0 & 1MEG \\
R14 & 61 & 0 & 1MEG \\
R15 & 62 & 0 & 1MEG \\
R16 & 64 & 0 & 1MEG
\end{tabular}
.OPTIONS ITL5=0 RELTOL=0.01 ACCT
.TRAN 35nS 100uS
. PROBE
. END
```

Fig 8-This routine lets you simulate the complex NTC7 composite test signal. The main complication in generating this signal is the careful attention you must devote to timing considerations. Once simulated, this signal lets you test a multitude of performance parameters in video systems.

Vomitater
 smmes sta BIGGER VALUE

Now you can afford the quality and visibility of itron' VFD T-Version Module.

-Low power \cdot Long-term reliability • Surface mount technology - ASCII, European, Japanese Katakana characters • Easy user interface -Built in test function Flexible control data Parallel and serial input

Part No.	No. of Characters	Character Size (WxH)mm	Tpy. Icc (mA)
CU165SCPB-T20A*	1X16	3.05×5.05	TBD
CU205SCPB-T20A*	1×20	3.30×5.00	TBD
CU209SCPB-T20A	1×20	4.45×8.80	300
CU406SCPB-T20A	1×40	3.00×5.00	350
CU20025SCPB-T20A	2×20	2.60×5.00	320
CU200211SCPB-T60A	2×20	3.40×11.20	1200
CU40026SCPB-T20A	2×40	3.00×5.00	700
CU20045SCPB-T23A	4×20	6.40×9.10	400
CU20049SCPB-T20A	4×20		1100

*Available April 1991

Los Angeles 23820 Hawthorne Blvd.

Chicago
415 E. Golf Rd.
Suite 109
Arlington Heights, IL 60005
Tel. 708-439-9020
Fax 708-593-2285

Boston 263 Winn St.	Dallas
Suite 1D	
Burlington, MA 01803	2454 Trade Mart
Dallas, TX 75207	
Tel. 677-270-0360	Tel. 214-742-9389
Fax 617-273-2892	Fax 214-747-5065

Europe
Frankfurter Strasse 97-99 6096 Raunheim F.R. Germany Tel. 06142-43095/96/97 Fax 06142-22799

> You can use the modulated-ramp signal for determining differential phase and gain.

Fig 9 shows the equivalent circuit the routine in Fig 8 produces. As you can see, the circuit uses 15 pulse and sine-wave generators, as well as two squaring circuits and a large collection of signal summers and multipliers. The $1-\mathrm{M} \Omega$ resistors are tokens, essentially open circuits, inserted because Spice will not work without generator and load impedances. Configuring such a circuit without the aid of Spice would be frightening to contemplate.

If your simulation of this last test signal is complete, you have all the tools necessary to build video test signals. Every test signal is a composite of luminance and chrominance information. All you have to do is provide the timing; superposition takes care of the rest.

You should also now understand this technique well enough to tackle other complex waveforms. PAL and proposed HDTV signals are easy to simulate if you take the time to sit down and disassemble them into pulses, levels, and frequencies.
The computational load of these simulations is much greater than that of a simple transient or ac analysis of a circuit. Completing these simulations takes a correspondingly longer time. The signals described here were run on both a standard IBM PC/XT and a Compaq 386/25. The numbers in Table 4 are those for a Compaq $386 / 25$. A VAX 780 would have comparable numbers, and a $4.77-\mathrm{MHz}$ IBM PC/XT with a coprocessor would take approximately 18 times longer. At the completion

Fig 9-You need a plethora of generators, squarers, summers, and multipliers to generate the NTC7 test signal. This equivalent circuit, which is useful for testing all essential video parameters in a video-circuit model, corresponds to the PSpice listing in Fig 8.

he pressure is always on. You've got to figure out how to get to market faster and more cost-efficiently. You've got to reduce the after-sales service costs that dilute profitability. Plus, you've got to increase your share-of-market and maintain revenues that will keep your management and the stockholders happy.

Card technology offers the newest concept in memory storage. And, it's the technology that could catapult your company ahead of the competition.

But, once you've decided to base your next-
generation systems or software on memory cards, the design decisions don't stop there.

There's the issue of standard versus custom cards. And, with card standards garnering significant press coverage, plus some standards not yet finalized, every decision is critical.

Most important, whatever the decision, you need to know you can get your products to market on time and within budget. That means getting the memory type and density you need, standard or custom, from one convenient source. Solutions, fast and simple.

PROM-III

- PUT DOS AND APPLICATION IN EPROM
- ALLOWS DISKLESS OPERATION
- UP TO 1 MBYTE ROM-DRIVE WITH 16K FOOTPRINT
- PROMKIT SOFTWARE BY ANNABOOKS
- FLASH EPROM SUPPORTED
- BATTERY RAM MODULES SUPPORTED
- DELIVERY FROM STOCK

SEALEVEL SYSTEMS INC SEALEVEL PO BOX 1808 EASLEY, SC 29641
(803) 855-1581

CIRCLE NO. 31

When the problem is economics. . .

Sculptured ${ }^{\circledR}$ flexible circuits from ACT require no additional hardware such as staked-in pins or connectors to mate with PWBs. Your specified terminations are an integral part of the circuit conductors, not added on!

Sculptured circuits, useable as received, eliminate:

- Connector purchasing and inventory
- Connector and pin assembly
- Costly subassembly inspection

To find out how you can save time and money with Sculptured circuits, call or write:

Advanced Circuit Technology
We Make Interconnects Simple. Box 547X, Nashua, NH 03061 (603) 880-6000

Author's biography

Anthony Radice is a senior digital design engineer in General Instrument's (Hatboro, PA) Broadband Communications Group, where he's worked for eight years. He's responsible for the design and development of digital audio and video transmission systems. He holds a BSEE from Drexel University. Tony is a volunteer fireman and enjoys
 personal computing as a hobby.

Solutions.

t Mitsubishi, we give you memory card solutions, not more decisions.

We help you determine the benefits of both standard and custom cards, then provide you with the version that best suits your design needs. We give you cards in the memory type you need. In quantity. Fast.

If your objective is hardware or software compatibility across several platforms, standard cards may be the best choice. As the world's leading supplier of cards, Mitsubishi serves on all three standards committees (PCMCIA, JEIDA and JEDEC). So, our cards are available in the current version of each standard. Plus, we'll keep you abreast of the status and future of standards issues. In fact, over the past four years, we've found that our 50 - and 60 -pin devices have become standards for many users.

If a proprietary design is the only way to maintain your competitive edge, Mitsubishi offers custom cards. We mix memory types, consolidate logic into ASIC, even add

MCU on board. Whatever it takes, we work with you to achieve your custom card needs.

No matter what design decisions you face, Mitsubishi gives you the solutions. Standard or custom. All memory technologies. The highest densities. From the same source. Fast and simple.

MITSUBISHI MEMORY CARDS

Memory Type	Density Range	PCMCIA	JEIDA	JEDEC	CUSTOM	MITSUBISHI $50-\& 60-$ Pin (card-edge \& pin-\&-socket) UL Component Recognized
SRAM	128KB - 2MB	\checkmark	\checkmark		\checkmark	\checkmark
OTPROM	128 KB - 4 MB	\checkmark	\checkmark		\checkmark	\checkmark
MASK ROM	512 KB - 8MB	\checkmark	\checkmark		\checkmark	\checkmark
	16MB	\checkmark	\checkmark		\checkmark	\checkmark
EEPROM	8 KB - 192KB	\checkmark	\checkmark		\checkmark	\checkmark
FLASH EEPROM*	512 KB - 2 MB	\checkmark	\checkmark		\checkmark	\checkmark
DRAM	512 KB - 2 MB			\checkmark	\checkmark	\checkmark
	$4 \mathrm{MB}-12 \mathrm{MB}^{* *}$			\checkmark	\checkmark	\checkmark

Call today and set your vision into action with memory card solutions. (408) 730-5900, ext. 2214.

12 BIT A/D +

8 chMUX + S/H + 4wire I/0 + 13 $\mu \mathrm{s}+10 \mu \mathrm{~A}$ Shutdown

= $\$ 15,95$

New LTC 1290 A to D
 System on a Chip.

Linear Technology presents the LTC1290, the new standard in serial 12-bit data acquisition solutions. With exceptionally stable accuracy over temperature, the LTC1290 includes an 8-channel MUX, S/H, and ADC all in one low power CMOS design. Normal power consumption is a mere 25 mW , and its design includes a software selectable shut down that reduces consumption to microwatt levels.

And the LTC1290 is pin and function compatible with the LTC1090. That means that you can upgrade from 10-bit to 12-bit resolution and accuracy with a simple part change and little or no software modifications.

The LTC1290's efficient serial I/O allows easy interface to virtually any microprocessor and is ideal for remote or electrically isolated

$\cdot 50 \mu \mathrm{~W}$ in shuttown
applications. The 50 kHz throughput rate and S / H acquisition time of less than 1 microsecond make digitizing higher frequency waveforms easy. Software configurability of the MUX and analog to digital converter provide unmatched functional flexibility. The LTC1290 operates from either a single +5 V supply for 0 to 5 V inputs or $\pm 5 \mathrm{~V}$ supplies for -5 V to +5 V inputs and is available in 20 pin skinny DIP or SO packages.

Pricing for the LTC1290 commercial grade plastic device starts at $\$ 15.95$ in 100 's. Take a hard look at the new LTC1290. We think you'll agree, it's the high performance 12-bit ADC solution to your data acquisition needs.

For additional information, contact Linear Technology
Corporation, 1630 McCarthy Blvd.,
Milpitas, CA 95035. Or call
800-637-5545.
CIRCLE NO. 78

Amplifier scheme lowers drift and noise

Jim Williams
Linear Technology Corp, Milpitas, CA

Fig 1's circuit combines a low-noise op amp, IC_{1}, with a chopper-based carrier-modulation scheme to achieve a low-noise, low-drift dc amplifier whose performance exceeds any currently available monolithic amplifier. The amplifier's offset is less than $1 \mu \mathrm{~V}$, and its drift is less than $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The circuit in Fig 1 has noise within a $10-\mathrm{Hz}$ bandwidth less than 40 nV . The amplifier's bias current, which is set by the bipolar input of IC_{1}, is about 25 nA . These specifications suit the demands of transducer signal-conditioning circuits.

The 74 C 04 inverters $\left(\mathrm{IC}_{3}\right.$ to IC_{6}) form a simple 2phase square-wave clock running at about 350 Hz . The complementary oscillator signals (ϕ_{1} and ϕ_{2}) provide drive to S_{1} and S_{2}, respectively, causing a chopped version of the input to appear at IC_{1} 's input. IC_{1} amplifies this ac signal. S_{3} and S_{4} synchronously demodulate IC_{1} 's square-wave output. Because S_{3} and S_{4} switch synchronously with S_{1} and S_{2}, the circuit presents
proper amplitude and polarity information to IC_{2}, the dc output amplifier. This output stage integrates the square wave to provide a dc voltage output. R_{1} and R_{2} divide down the output and feed it back to the input chopper where the divided output serves as a zero signal reference. The ratio of R_{1} and R_{2} sets the gain, in this case to 1000 . Because a $1-\mu \mathrm{F}$ capacitor accouples IC_{1} to the output stage, IC_{1} 's dc offset and drift don't affect overall circuit offset, resulting in the overall amplifier's low offset and drift.

When using this amplifier, it's important to realize that IC_{1} 's bias current flowing through the input-source impedance causes additional noise. In general, to maintain low-noise performance, the source resistance should be below 500Ω. Fortunately, the resistances of transducers such as strain-gauge bridges, RTDs, and magnetic detectors are well below this figure.
(EDN BBS /DI_SIG \#936)
EDN

To Vote For This Design, Circle No. 746

Fig 1-By synchronously modulating the input and ac-coupling a low-noise op amp to a dc amplifier, this circuit achieves noise and drift specs of $1 \mu \mathrm{~V}$ and $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, respectively.

IC converts from TTL to ECL and back

Rolf R Safferthal
Independent Consultant, Dreieich, Germany

The circuits in Fig 1 and Fig 2 convert as many as six signals per chip either from ECL to TTL or from TTL to ECL using the same IC. The IC holds six translators and typically consumes less than 8 mW per ECL-TTL converter. It consumes 4 mW when converting from TTL to ECL. These power levels are 10 to 20 times less than the popular 10124 and 10125 translators. The tradeoff for lowering the power is speed-the propagation delay is 60 nsec for ECL-TTL translation and 100 nsec for TTL to ECL.

The data sheet for the LTC-1045 IC shows a typical application for ECL-to-TTL conversion. You can reduce the power consumption of this circuit by another 30% by reducing the -5.2 V supply to -2 V . Also, you can improve upon the reference-voltage generation. $\mathrm{V}_{\text {TRIP1 }}$ is the reference input for inputs 1 through 4, and $V_{\text {TRIP2 }}$ is for inputs 5 and 6. A simple resistor divider works well with a clean ECL supply. However,

Fig 1-Improvements to a standard data-sheet application of the IC's ECL-to-TTL converter include lowering the supply voltage to $-2 V$ and using an ECL gate to generate the reference voltage.
if the reference input picks up too much noise, you can easily replace the resistor divider by an unused, inverting 10101 ECL gate with direct feedback (Fig 1). The output of such a configuration delivers a stable reference voltage and exactly tracks the ECL trip point with voltage and temperature. To attain the highest possible speed and a hysteresis of approximately 20 mV , the $\mathrm{I}_{\text {SET }}$ pin should connect directly to V^{-}.

You can also use this IC as a TTL-to-ECL converter (Fig 2). The device has four power-supply connection pins. Two of them, V^{+}and V^{-}, power the internal circuit. The minimum voltage difference between these pins has to be 4.5 V , and the input voltage must stay within these rails. For a TTL-to-ECL converter, V ${ }_{\text {CC }}$ normally equals 5 V . Because the incoming voltage swing is relatively large with TTL, the easiest way for building up the reference voltage is with a resistor divider.

The other two power-supply connections, V_{OH} and $\mathrm{V}_{\text {oL }}$, power the output-driver stage. The minimum voltage difference between these pins has to be 3 V , and the values determine the output levels, swinging

Fig 2-By tying V^{+}and V^{-}to TTL power levels, and $V_{O L}$ to $E C L$ levels, you can reverse the circuit in Fig 1 and create a TTL-to-ECL converter.

пwY SPDT SWITCHES ABSORPTIVE... REFLECTIVE

Tough enough to pass stringent MIL-STD-883 vibration, shock, thermal shock, fine and gross leak tests ... useable to 6 GHz ... smaller than most RF switches ... Mini-Circuits' hermetically-sealed (reflective) KSW-2-46 and (absorptive) KSWA-2-46 offer a new, unexplored horizon of applications. Unlike pin diode switches that become ineffective below 1 MHz , these GaAs switches can operate down to dc with control voltage as low as -5 V , at a blinding 2 ns switching speed.

Despite its extremely tiny size, only 0.185 by 0.185 by 0.06 in., these switches provide 50 dB isolation (considerably higher than many larger units) and insertion loss of only 1 dB . The absorptive model KSWA-2-46 exhibits a typical VSWR of 1.5 in its "OFF" state over the entire
frequency range. These surface-mount units can be soldered to pc boards using conventional assembly techniques. The KSW-2-46, priced at only $\$ 32.95$, and the KSWA-2-46, at $\$ 48.95$, are the latest examples of components from Mini-Circuits with unbeatable price/performance.

Connector versions, packaged in a $1.25 \times 1.25 \times 0.75 \mathrm{in}$. metal case, contain five SMA connectors, including one at each control port to
maintain 3ns switching speed.
Switch fast... to Mini-Circuits' GaAs switches.
Switch fast...to Mini-Circuits' GaAs switches.
finding new ways
setting higher standards

DESIGN IDEAS

Design Entry Blank

Abstract

\$100 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine Cahners Publishing Co
275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry.
Name \qquad
Title \qquad Phone \qquad
Company
Division (if any)
Street
City _ State ___

Country Zip \qquad
Design Title
Home Address \qquad

Social Security Number
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously pubiished (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a $51 / 4-\mathrm{in}$. IBM PC disk
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date

ISSUE WINNER

The winning Design Idea for the December 6, 1990, issue is entitled "Sensor and logic form digital compass," submitted by Brian Grenoble of Maxim Integrated Products (Sunnyvale, CA).

[^7]nearly from rail to rail under moderate loads. The selection of these voltage levels does have some constraints. V^{+}must always be more positive than $\mathrm{V}_{\text {OH }}$. For ECL output levels, you can use the standard ECL supply of -5.2 V . To prevent saturation effects on high levels at a receiving ECL input, you should use a silicon diode between $\mathrm{V}_{\text {OH }}$ and ground to limit the high level to -0.7 V . The IC has push-pull output stages. Therefore, it's not necessary to use pull-down resistors on the outputs. Compared with the 10124, the circuit in Fig 2 saves 10 to 30 mW per converted signal.
(EDN BBS /DI_SIG \#940)
BDN

To Vote For This Design, Circle No. 750

FEEDBACK AND AMPLIFICATION

PLD is really a PROM

We did some checking for an interested reader and found out that a part an author (and company) called a PLD was really a PROM. The Design Idea "PLD adds flexibility to motor controller" on pg 177 of EDN's March 1, 1990 (DI \#808) issue contains a part labeled PLE5P8. This part number is an obsolete MMI designation for a simple 32×8-bit PROM.
Charles H Small and Anne Watson Swager
Design Ideas Editors

Ladder improves design

Stephen C Hageman's Design Idea, "Peak detector holds signals indefinitely" (EDN, May 24, 1990, pg 173), will work better if you use an $R / 2 R$ ladder network.
Heiner V Schlichting
Project Engineer MBB
342 Schrobenhause 8898, Germany

EDN's bulletin-board is on line

Call EDN's free bulletin-board service (BBS) at (617) 558-4241 ($1200 / 2400,8, \mathrm{~N}, 1$) and select /DI_SIG to get additional information or to comment on these Design Ideas.

More OP Amp Options

Solve your toughest noise, DC, and dynamic error problems.

Need ultra-low noise or bias current? High speed? Exceptional precision? Low Power? Best performance /price?

Advanced wafer-level laser trimming assures maximum precision and stability for Bur- Brown op amps.

Choose the perfect part for your application from our selection of versatile Op amps. No other supplier offers such a variety of performance options. With over 35 + years of op amp design, manufacturing, and quality assurance experience, no other supplier makes parts as good as these.

Performance Choices

Low Power, Dual
OPA1013

- $150 \mu \mathrm{~V}$ max offset
- $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max drift
- +5 V to $\pm 15 \mathrm{~V}$ single or dual power supply
- from $\$ 2.30^{*}$

High Speed, Current-feedback OPA603

- $1000 \mathrm{~V} / \mu$ s slew rate
- 100 MHz ($\mathrm{G}=1$ to 10$)$ bandwidth
- $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- from $\$ 4.95^{*}$

Low Noise, High Speed OPA627/637

- 450ns (0.01%) settling
- $4.5 \mathrm{nV} \sqrt{\mathrm{Hz}}$ at 10 kHz noise
- $0.8 \mu \mathrm{~V} / \mathrm{C}^{\circ}$ max drift
- from $\$ 7.50^{*}$

Low Noise, Ulitra-Precision OPA177/77

- industry-standard replacement
- $0.1 \mu \mathrm{~V} / \mathrm{C}^{\circ}$ max drift
- 1.5 mA typ quiescent current
- from 95\%*

High Performance,
 RF/Video
 OPA620/621
 - 500 MHz gain-bandwidth
 - $\pm 100 \mu \mathrm{~V}$ offset
 - $500 \mathrm{~V} / \mu \mathrm{s}$ slew rate
 - from $\$ 9.95^{*}$
 Even more OP Amps

Our new Operational Amplifiers guide contains key product specs, applications information and more . . . including info on our newest amps. This free selection guide, data sheets, and evaluation samples are available now from your Burr-Brown sales rep or call 1-800-548-6132 for immediate assistance.

Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734
*U.S. OEM prices, in 100 s .

GREATER

WORLD CLASS POWER FROM OUR NEW GLOBAL CONNECTIONS

The recent alliance of Elco and AVX with Kyocera forms a solid business relationship that gives us even stronger connections to today's exciting world of technology.

These connections strengthen our own high quality standards and link us to new sources of innovation throughout the world.
assure you of timely response to your everevolving needs.

From a new source of energy emerges a powerful new Elco.

A Kyocera Group Company
World Class Connections

Looking for a function generator with all the bells and whistles,

like direct digital synthesis,

 100002000001 arbitrary waveforms, v that doesn't cost an arm and a leg? and modulation,
Take a look at the DS345 from SRS.

At $\$ 1895$, it's the only function generator you need.

It's a general purpose signal generator with standard waveforms, frequency sweeps, and synthesized accuracy. It's a 40 Msample/sec arbitrary waveform generator with 16 k points of non-volatile memory. It's a complex signal source with amplitude, frequency, and phase modulation, complete with synthesized modulation waveforms. It's a remarkably agile source capable of making phase continuous frequency jumps in only 25 ns . And it's all available at the touch of a button.

What other generator has everything you want, and more? For more information about the DS345, call SRS at

- 30 MHz direct digitally synthesized source
- $1 \mu \mathrm{~Hz}$ resolution
- 12 bit arbitrary waveforms
- Fast phase continuous frequency switching
- Low phase noise and distortion
- Sine, square, ramp, and triangle waveforms
- Linear and log sweep with markers
- Frequency, amplitude, and phase modulation
- Arbitrary and burst modulation
- Optional GPIB/RS232 interfaces with

Arbitrary Waveform Composer Software (408) 744-9040.

Our new GD DIPs let you have it your way!

Slide, piano, rocker, button, thru board or surface mount. Augat/Alcoswitch's GD Series DIP switches give you the choices and options that you've been looking for.

SAVE PCB REAL ESTATE.
The end stackable GDS model is up to 26% smaller than other low profile dip switches. This space saving design lets you reduce the size of your PCB or place more components on it. Also,
laying out your board now becomes easier. All holes are on a .100 x .300 grid regardless of how many switches you stack.

SAVE EVEN MORE.
For surface mount boards the GDH half pitch DIP is only. 244 "Wx:444"L for the 8 position version. All GD seriesDIPs are molded in high temperature polymer which withstands 260° continous reflow soldering temperatures.
EASE OF REMOVAL
No cumbersome tape tab to interfere with component placement equipment. Our unique corner notch allows easy tape removal.

Learn how to buyityourway. Call or write for a copy of the new GD Series Dip switch brochure. Alcoswitch ${ }^{*}$ Quality and Innovation

Augat Inc., Interconnection Product Division
1551 Osgood Street, North Andover, MA 01845
(508) 685-4371 FAX (508) $686-9545$
INTERNATIONAL SALES
OFFICES

AUGAT LIMITED	England	44908676655
AUGAT SA	France	33146683090
AUGAT GMBH	Germany	49896129090
AUGAT AB	Sweden	468960270
AUGAT SRL	Italy	39396058029
AUGAT ELECTRONICS INC.	Canada	4166701500
AUGAT PTY LTD.	Australia	6129137100
AUGAT KK	Japan	81448338671
AUGAT PTE LTD.	Singapore	657530688
AUGAT TAIWAN	Taiwan	88625812373

NEW PRODUCTS

TEST \& MEASUREMENT INSTRUMENTS

68302 In-Circuit

Emulators

- Have two $4 k \times 72$-bit trace buffers
- 256k-byte emulation memory expands to $2 M$ bytes
The HMI-200-68302 supports all features of the $68302 \mu \mathrm{P}$. The HMI-200-68000 with the HMI-240-68302 adapter also supports the 68302 but has some limitations. However, this
emulator and adapter also work with the 68000,68008 , and 68010. Both emulators permit real-time emulation, provide four complex break and trigger points, and offer a pair of $4 \mathrm{k} \times 72$-bit trace buffers. Emulation memory is 256 k bytes expandable to 1 M or 2 M bytes. The Sourcegate debugger works with C, Pascal, Ada, and PL/M compilers from more than a dozen sources. A performance-analysis option is also available. HMI-200-68302, \$8995; HMI-200-68000 with HMI-24068302 , $\$ 8495$; Sourcegate for MSDOS, $\$ 1500$; Sourcegate for Sun and Apollo workstations, $\$ 3000$; performance-analysis option, $\$ 2495$.

Huntsville Microsystems Inc, Box 12415, Huntsville, AL 35802. Phone (205) 881-6005. FAX (205) 882-6701. Circle No. 351

FFT-Based Spectrum/ Network Analyzer

- Makes swept-sine measurements
- Automates tests using programs written in Basic
The 35665A FFT-based instrument performs spectrum analysis to 102.4 kHz and network analysis to 51.2 kHz . Among the unit's capabilities are swept-sine measurements and

More Emulation For Less!

Go ahead and compare the 8620 . For 8 - and 16 -bit processors, there's nothing else like it. The feature-rich 8620 gets your product to market faster and costs less. Call for a demonstration and free demo disk. Orion Instruments, Inc.

INSTRUMENTS 180 Independence Drive, Menlo Park,CA 94025. FAX (415) 327-9881.
curve fitting. The analyzer's capture memory can store as many as 6.4M bytes. Frequency resolution is 400 lines. A 1.44 M -byte floppydisk drive stores instrument states, data, and programs. You can program the unit in the vendor's Instrument Basic language. In the fast-average mode, the analyzer
makes 30 sets of measurements/sec; with its display enabled, it updates its display to faster than 10 times/ sec. From $\$ 12,500$. Delivery, 12 weeks ARO.
Hewlett-Packard Co, 19319 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 352

Super Cache
 Bring your entire application aboard Mizar's MZ 7132.

If your application requires not only superior 68030 performance, but plenty of on-board memory, Mizar's MZ 7132 is the answer. An economical, yet powerful, VMEbus single board computer, the MZ 7132 provides 16 Mbytes of dualported memory as well as a 16 Kbyte cache. Now, you can implement your memory-intensive applications more efficiently by avoiding the performance degradation of off-board memory. And, if you need more than 16 Mbytes, treat the on-board memory as a large cache and use the MZ 7132's optional VSB interface to access an additional memory pool.

The fully-featured MZ 7132 includes a 68 EC 030 or 68030 CPU with on-board SCSI, serial I/O, and optional Ethernet. OS- $9^{T M}$ and $\mathrm{VxWorks}{ }^{\top \mathrm{M}}$ support is also available. For more information on the MZ 7132 and other Mizar products, call today: 1-800-635-0200.

Synthesized

 Function Generator- Generates sine, square, triangular, and ramp waveforms - Operates from de to 1.6 MHz

The 2003 synthesized function generator produces sine, square, triangular, and ramp waveforms from dc to 1.6 MHz . The unit, which displays messages on a 2 -line LCD, receives commands from a keyboard and a rotary control. For an essentially long life, the rotary control is a position encoder, rather than a potentiometer. An optional RS-485 interface allows remote control. You can place several generators on a single serial loop and assign each generator a unique address. Output is 20 V p-p into an open circuit and 10 V p-p into 50Ω. $\$ 500$.

Global Specialties, 70 Fulton Terrace, New Haven, CT 06512. Phone (800) 527-1028; in CT, (203) 624-3103. FAX (203) 468-0060.

Circle No. 353

V20H/V30H In-Circuit Emulator

- Has 131,072 hardware breakpoints
- Displays trace data in C or $P L / M$ formats
The V20H/V30H Icealyzer is an incircuit emulator for the NEC V20H and V30H μ Ps. It includes 131,072 hardware breakpoints that you can set on any condition or machinecycle type-including data accesses. The included source-level debugger shows trace data in $\mathrm{C}, \mathrm{PL} / \mathrm{M}$, or assembly language. A real-time performance analyzer identifies time-critical routines for optimization. The performance analyzer captures every instruction to ensure acquisition of infrequently accessed routines-for example, those that service interrupts. $\$ 7295$.

Softaid Inc, 8930 Route 108, Columbia, MD 21045. Phone (800) 433-8812; in MD, (301) 964-8455. FAX (301) 596-1852.

Circle No. 354

Our reputation precedes us! From 5 subsidiaries and 35 distributors in more than 40 countries worldwide, thousands of customers purchased more in 1989 than ever before. And they were able to choose new products from an everexpanding array of plotters, penless plotters, digitizers, recorders and supplies.
The Graphtec reputation is one of building products that work well and last a long time. We earned that reputation the hard way, by delivering over 40 years of the best innovation, support, and after-sales service in the industry.

You really can see the difference in Graphtec products. Our new WR7800 Thermal Arraycorder not only has a 14 -bit A/D converter for better waveform accuracy, it also includes an easy-to-read 320×256 dot electroluminescent screen for monitoring real-time or stored data. Other notable features include 32 Kb and 256 Kb memory cards, 3 built-in thermocouple inputs, an RS-232C interface (GPIB optional), and a jog dial for easy operability.
We invite you to go see a Graphtec WR7800 and experience these enhanced features firsthand.

TVI GRRPHTEC
GRAPHTEC CORPORATION 503-10 Shinano-cho, Totsuka-ku, Yokohama 244, Japan Tel: (045) 825-6250 Fax: (045) 825-6396 U.S.A.: Western Graphtec, Inc. Tel:(714)770-6010 Fax:(714)855-0895 Australia: Southern Graphtec Pty. Ltd. Tel:(02)748-4888 Fax:(02)748-4882 Europe: Graphtec Europe GmbH Tel:(040)511-5059 Fax:(040)511-9155 United Kingdom: Graphtec (UK) Ltd. Tel:(0270)625-115 Fax:(0270)626-733

How To Avoid Losing Face On Your Color LCD Display.

Face it. The first thing everybody notices about your newest laptop is the display quality. Is it bright? Are the images clear and well modeled? Are the colors vivid?

With Cirrus Logic LCD VGA controllers, your answer is yes. Which is why we're the leading supplier of display controller chips in the laptop and notebook market.

For life-like 3-dimensional imaging, Cirrus Logic color LCD controllers offer technology leadership for your color products. With direct support for the latest active-matrix color LCD panels. Our controller chips do more than support your panel's color capabilities - they enhance it with full VGA color support and a fuller color palette. To give you color so good it competes with CRT quality.

Our monochrome solutions give you displays that PC Magazine called "the stars of our VGA color-mapping tests"* with up to 64 shades of gray. And with a lower dot clock rate, your power consumption
is lower than other solutions for longer battery operation.

Cirrus Logic LCD controllers are fully compatible with the popular PC video standards and will work with LCD, plasma, or electroluminescent displays.

Simplify your design job. A higher level of integration gives you all this in the smallest form factor available. We also supply software and hardware design notes and full design support. You get the results you want quickly and easily.

Design a more competitive product. One that looks better - and makes you look better. That lasts longer on a battery. Use the display solutions from a proven technology leader in laptop and motherboard VGA: LCD controller chips from Cirrus Logic.
Get the picture. Get more information on LCD controllers. Call 1-800-952-6300, ask for dept. LL24

Cirrus Logic monochrome LCD controllers will also make everything from realistic scanned images to business charts look tastier.

[^8] Cirrus Logic and the Cirrus Logic logo are trademarks of Cirrus Logic, Inc. All other trademarks are registered to their respective companies. *PC Magazine, March13,1990, p. 204.

NEW PRODUCTS

INTEGRATED CIRCUITS

Dual-Port RAMs

- Have 9-bit width
- Access times as low as 25 nsec

The first two members of this family of dual-port RAMs have configurations of $1 \mathrm{k} \times 9$ bits (IDT70101, IDT7010, IDT70105) and $2 \mathrm{k} \times 9$ bits (IDT70121, IDT7012, IDT7015). Speed ratings range from 25 to 55 nsec. The $\times 9$ configuration of these devices allows designers to use the extra bit as a parity bit for error detection. In addition, the devices are true dual-port memories that include on-board arbitration logic-an arrangement that allows simultaneous access of data from both ports by multiple processors, without risk of data corruption. Another advantage is that the $25-$ nsec devices allow zero wait-state operation. The devices come in 48-pin DIP and

LCCs, and sidebrazed 52-pin LCC and plastic leaded chip carriers. IDT70105-25P, \$21.65 (100).

Integrated Device Technology Inc, Box 58015, Santa Clara, CA 95052. Phone (408) 727-6116. FAX (408) 988-3029. Circle No. 355

Low-Voltage Compandor

- Operates from 2.1 to 7 V
- Provides 40 dB of control

The MC33110 compandor IC contains two variable-gain circuits. One circuit is configured as an expander, and the other is configured as either a compressor or expander. Each circuit has a full-wave rectifier to provide average-value information to a variable gain cell located in either the input stage or the feedback path. A stable bandgap refer-
ence provides the necessary precision voltages and currents. Operating from a supply voltage of 2.1 to 7.0 V , the compandor can compress an $80-\mathrm{dB}$ dynamic range to 40 dB and re-expand it to 80 dB . The reference unity-gain level is 100 mV rms. 14-pin DIP or 14-pin SO package, $\$ 0.82(10,000)$.
Motorola Inc, EL340, 2100 E Elliot Rd, Tempe, AZ 85284. Phone (602) 897-3615. Circle No. 356

Video Crosspoint Array

- Has eight inputs and four outputs
- Bandwidth is 300 MHz

According to the vendor, the DG884 is the first monolithic crosspoint array to offer a $300-\mathrm{MHz}$ bandwidth in an 8×4 configuration. A digitally

selectable switching matrix is able to route any of the array's eight inputs to any of its four outputs. The use of DMOS switches connected in a T arrangement is instrumental in providing the $-3-\mathrm{dB}$ bandwidth of 300 MHz , and adjacent-input crosstalk of -85 dB at 5 MHz . The array also features an $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ resistance of
45Ω (typ) and an off-state input capacitance of 8 pF max. Extensive TTL-compatible control and two sets of on-chip latches simplify interfacing to a microprocessor data bus. The on-chip data latches also provide a readback feature to interrogate any of the switches' existing status in a network. The DG884 in

You can start your debugging with this FREE demo simulator. You can load up to 512 bytes of code, assembler, C, or PL/M and do full debugging/simulation in assembly and source level. A great way to get started for FREE. Fantastic for schools! Just call and we'll send it!

Full Simulator

The full-blown simulator is an extension of the DEMO. You can load up to 64 K of code and use 64 K of XDATA space. You can program an "external environment" to interact with your code to simulate your target system. The emulator is the hardware extension of the simulator!

The 24 MHz real-time emulator has been the industry standard for years. With its complex breakpoint logic and advanced trace, nobody can beat it for performance Plug-in or RS-232 configuration. All 8051 derivatives are supported!

noHau

CORPORATION
51 E. Campbell Avenue, Campbell, CA 95008 (408) 866-1820 • FAX (408) 378-7869

[^9]a 44-pin plastic leaded chip carrier or ceramic LCC, from $\$ 24$ (1000).

Siliconix, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (800) $554-5565$, ext 1900.

Circle No. 357

Programmable-Gain Amplifiers

- Have 100-kHz bandwidth
- Three models available

Featuring a full-power bandwidth of $100 \mathrm{kHz}, 830$ PGA programmablegain amplifiers have a rated output of $\pm 10 \mathrm{~V}$ at $\pm 10 \mathrm{~mA}$. The amplifiers are available in gain ranges of 0 to 20 dB in $0.5-\mathrm{dB}$ steps, 0 to 40 dB in $1.0-\mathrm{dB}$ steps, and 0 to 60 dB in $2.0-\mathrm{dB}$ steps. Gain selection is achieved by an 8-bit data word, a latch-strobe bit, and a transitionpolarity bit, all of which are CMOS compatible. The amplifiers have a CMRR of 80 dB typ at 1 kHz and 60 dB min from 10 Hz to 100 kHz . THD is 0.003% at 1 kHz and 0.02% at 90 kHz . Gain matching between individual amplifiers is 0.04 dB , and phase matching is 0.5°. Other specifications include an input impedance of $1 \mathrm{M} \Omega$ shunted by 47 pF , an input noise of $20 \mu \mathrm{~V}$ over the $100-\mathrm{kHz}$ bandwidth, and an output impedance of less than 1Ω. The amplifiers operate from a $\pm 15 \mathrm{~V}$ supply. $\$ 70$ (100).

Frequency Devices Inc, 25 Locust St, Haverhill, MA 01832. Phone (508) 374-0761. FAX (508) 521-1839.

Circle No. 358

For RF Components with the Quality and Performance Difference, the Name to Know Is Toko.

Look inside leading personal communications products, and you'll find more of Toko. From dielectric antenna duplexers to power line chokes, Toko can offer an applicationspecific RF solution for every stage of your design.

Our selection of RF components is the most comprehensive in the industry and includes: surface mount, fixed, variable, and molded inductors; LC, SAW, ceramic, helical and dielectric filters; Balun transformers; and communication-specific ICs.
All are designed to work together and feature low loss for exceptional performance. Tuneable or fixed construction magnetics, ceramics, hybrids, and ICs... all are available from one source: Toko.

Toko is also the world's largest manufacturer of coils and filters and one of the most vertically integrated. Our quality and reliability are unequalled; an enviable industrylow failure rate has resulted in numerous top supplier preferred classifications.

Whatever your RF/IF application-personal communications, satellite communications, computer, automotive convenience systems, or video-the name to know is Toko.

Discover the quality and performance difference Toko products can make in your RF/IF application. For more information, write Toko today, attention: RF/IF Engineering, or call the Toko location nearest you: Midwest, (708) 297-0070; East, (203) 748-6871; Southeast, (205) 772-8904; West, (408) 432-8281.

r:눈 TOKO
 TOKO AMERICA, INC.

1250 Feehanville Drive, Mt. Prospect, IL 60056
Your strategic partner...
for all the right reasons.
CIRCLE No. 96

Specs for Hard Drivers.

Maxtor 7080

Simplicity of design makes Maxtor's Cheyenne Series inch-high 80MB 7080 disk drive the most reliable in its class. Compare Maxtor's four-head, two-platter design to Seagate's six-head, three-platter design. Fewer moving parts make Maxtor's drives inherently more dependable.
Power consumption is a very low 2.8 watts, making it one of the lowest in the 80 MB class. The 7080 is also Novell Labs certified, and is available with either SCSI or AT interface, giving you flexibility for a winning system.
Exceptionally fast 17 ms seek time and 32 K cache buffer in the new generation inch-high form factor give Maxtor faster data throughput than the competition.
Call and ask about our entire Cheyenne family of disk drives with capacities from 40 MB to 130 MB . Don't fall for the off-the-wall claims. Give us a shot and we'll prove Maxtor specs can't be matched. Call your nearest Authorized Maxtor Distributor.

3.5-inch Disk Drive Spec.	Maxtor 7080 A	Seagate 1102 A
Seek Time	$\mathbf{1 7} \mathbf{~ M s e c .}$	19 Msec.
Standard Buffer Size	32 K	8 K
Form Factor	$3.5^{\prime \prime} \times \mathbf{1}^{\prime \prime}$	$3.5^{\prime \prime} \times 1.6^{\prime \prime}$
Heads-Disks	$\mathbf{4 / 2}$	$6 / 3$
Avg. Power Consumption	$\mathbf{2 . 8}$ watts	9 watts

We Drive Harder.
Maptor

Call Your

Authorized Maxtor Distributors

A.D.P.I.

1-800-275-2374
301-258-2744
Anthem Electronics
408-452-2287
Arrow Commercial Systems Group
1-800-323-4373
Arrow/Klerulff
1-800-777-2776
Avnet Computer
1-800-422-7070
B.S.M/Business Solutions in Micro

1-800-888-3475
214-699-8300
Cal Abco
818-704-9100
800-669-2226
Compac Micro Electronics
1-800-426-6722
415-656-2244
Computer Brokers of Canada (C.B.C.)
416-660-1616
604-273-1155
CPC
714-757-0505
800-582-0505
Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747
Firstop Computer
1-800-832-4322
Future Electronics
514-694-7710
Intelect
011-525-255-5325
JACO
214-733-4300
Marshall Industries
1-800-522-0084
Microware Distributors
1-800-777-2589
503-646-4492
Mini Micro
408-456-4500
Pioneer Standard Electronics
1-800-874-6633
Pioneer Technologies
1-800-227-1693

S.E.D.

1-800-444-8962
404-491-8962
Tech Data
1-800-237-8931
813-539-7429
Technology Factory
1-800-848-2073
1-800-227-4712
Technology Marketing Group
1-800-688-7000
612-942-7000
U.S. Computer

305-477-2288
Wyle Laboratories
1-800-289-9953

NEW PRODUCTS

COMPUTERS \& PERIPHERALS

Rack-Mount VGA Monitor

- Has a 10-in. screen with a $0.28-\mathrm{mm}$ dot pitch
- Has 8.75×15.3-in. enclosure

The RMM-213 rack-mount, $10-\mathrm{in}$. color monitor comes in an $8.75 \times$ 15.3 -in. enclosure and is VGA compatible. It operates with computers that have an RGB analog video output and a TTL synchronization output. Its input-signal connector is a 15 -pin D-shell. The CRT has a 0.28 mm dot pitch, and a short-persistence phosphor produces sharp pictures. The monitor produces $640 \times 480-, 640 \times 400-$, and $640 \times$ 350 -pixel images. A tinted Lexan protective panel covers the screen. Front-panel controls include power on/off, brightness, and contrast. An internal switching power supply operates from 110 V ac having 50 - or $60-\mathrm{Hz}$ line frequencies. The unit has a horizontal scan rate of 31.5 kHz $\pm 400 \mathrm{~Hz}$ and a vertical scan rate of 60 or 70 Hz . $\$ 1095$.
Recortec Inc, 1290 Lawrence Station Rd, Sunnyvale, CA 94089. Phone (800) 729-7654; in CA, (408) 734-3443. FAX (408) 734-1240.

Circle No. 362

NTDS Interface Adapter

- Contains single LLS channel for VMEbus
- Multichannel DMA controller permits full-duplex operation The Model 10042601 VMEbus board provides a low-level-serial (LLS) Type-E interface for a Navy Tactical Defense System (NTDS). An MC68000 μ P lets you write applica-
tion software to integrate or emulate NTDS devices. The board's features include a 32 k -word dual-port static RAM buffer, a 4-channel DMA controller, a 16 -bit VMEbus data path, 24-bit VMEbus addressing, and programmable interrupt levels and vectors. The DMA controller permits full-duplex operation for the LLS channel. Softwarecontrolled Abort and Interrupt features simplify LLS transaction protocols. An EPROM provides the device driver, which supplies buffer transfers, interrupt control, asynchronous data transactions, data and command detection, and configuration commands. The device driver also lets you use high-level languages, such as C, Fortran, or Ada, to control operations. $\$ 4975$.
Get Engineering Corp, 9350 Bond Ave, El Cajon, CA 92021. Phone (619) 443-8295. FAX (619) 443-8613.

Circle No. 363

Video Printers

- Include one color and two b/w models
- Produces peel-off adhesivebacked prints
The UP-910 b/w printer, one of three video-printer models, produces prints as large as $6 \times 8 \mathrm{in}$. It produces 128 levels of gray and a maximum resolution of 750×508 dots. It takes 25 sec to produce a print, and it operates on EIA or CCIR b/w video standards. The UP-610 b/w sticker printer produces $2^{1 / 8} \times 3^{1 / 2}$-in. prints. The unit

Count yourself in with the Wildcard 88^{TM}

- Supports XT Turbo mode CPU clock speeds of 4.77, 7.15 and 9.54 MHz
- 10 MHz CPU clock frequency
- Supports up to 32 K Bytes of onboard BIOS EPROM
- Small $2^{\prime \prime} \times 4^{\prime \prime}$ form factor
- Bios available for easy integration
- Onboard DRAM controller for easy system design
- Onboard bus controller supports XT I/O channel

Magatel is expanding the Wildcard family to offer you more development flexibility.

The Wildcard family offers the lowest cost, smallest footprint solution for your XT class system. It integrates all functions of the IBM PC, XT ${ }^{\circledR}$ motherboard minus DRAM and DRAM drivers. All on a circuit

- Supports 8087 co-processor operation (with socket) for high speed numeric data processing
- Reduces XT parts count by 75%
- Supports up to 640 K of system DRAM
- Onboard sound generator supports speaker control
- Improves total system reliability
- Reduces overall system costs and factory overhead
- Onboard Keyboard Controller card the size of a business card. For more information call us today.

Megatel Computer

 Corporation125 Wendell Ave., Toronto,
Ontario M9N 3K9
(416) 245-3324

FAX (416) 245-6505
Wildcard $88^{\text {T3 }}$ is a trademark of Megatel Computer Corp. IBM PC, XT are registered trademarís of IBM Corp.

COMPUTERS \& PERIPHERALS

produces peel-off, adhesive-backed prints. A typical application is the labeling of parts with a video photo; this application augments barcoding methods that are used to identify and control inventory. The UP-3000 color printer produces 500 -line resolution prints. It produces 256 colors from a palette of more than 16 million colors/pixel. A wide-scan mode produces prints as large as $4^{3} / 8 \times 3^{1 / 4}$ in. UP-610, $\$ 2000$; UP-910, $\$ 2150$; UP-3000, $\$ 3895$.
Sony Security Systems, 3 Paragon Dr, Montvale, NJ 07645. Phone (201) 358-4954. FAX (201) 358-4927.

Circle No. 364

SCSI Supervisor

- Lets you remove devices while system is operating
- Runs 17 diagnostic tests on individual drives
The SSM6 SCSI Manager equips a SCSI-drive enclosure with a variety of supervisory functions. It lets you remove a SCSI disk, tape, or optical drive while the host system is operating, or "hot." The unit maintains the integrity of the SCSI bus so that removal or installation of a device in an active system doesn't affect ongoing operations. Because the unit can essentially isolate an attached device, it can also perform the following functions: change SCSI ID numbers; copy data from one device to another; compare contents in different devices; power individual devices up and down; format drives; run as many as 17 diagnostic tests on individual drives; and reset the SCSI bus. You can operate the unit from a front-panel keyboard and LCD or from a system terminal. A terminal connects to the unit via a serial port. The SSM6 adds approximately $\$ 1500$ to the price of a drive enclosure (OEM qty).

Sigma Information Systems, 3401 E La Palma Ave, Anaheim, CA 92806. Phone (714) 630-6553.

Circle No. 365

EPSON THE CRYSTALMASTER ${ }^{\text {m }}$ leads new crystal oscillator technologies into the 90 's with...

the most cost effective hi-temp SMD crystals and oscillators and low cost plastic thru-hole crystal oscillators.

EPSON

 SURFACE MOUNT CRYSTALS AND OSCILLATORSEpson has pioneered the first truly heat resistant crystal for
 use in its surface mount crystals and crystal oscillators. Capable of withstanding $260^{\circ} \mathrm{C}$ for 20 seconds...far above the demands of standard IR and vapor phase reflow processing systems...these laborsaving high-temp SMD crystals have become the accepted standard for surface mount crystal and oscillator components.

MODEL SG-615 OSCILLATOR
Frequency: $\quad 1.5$ to 66.7 MHz
Symmetry: $\quad 45 / 55$ (TYP)
Rise/Fall Time: 5 nsec (TYP)
Tristate: Available
Compatible
Technology: CMOS and TTL
Op. Temp. Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

MODEL MA 505/506 CRYSTAL
Frequency: 4.00 to 66.7 MHz
MODEL MC-405 CRYSTAL
Frequency: 32.768 KHz

EPSON THRU-HOLE OSCILLATORS
 REPLACE METAL CAN OSCILLATORS

Epson has introduced the first plastic low cost, high performance autoinsertable thru-hole crystal oscillator. Its unique hermetically sealed crystal, embedded in a plastic package, gives the same EMI protection and higher performance than metal can oscillators...at a much lower cost. And, the auto-insertion feature reduces manufacturing costs associated with hand inserting metal cans...into standard fullsize or half-size hole patterns.

MODEL SG-51/SG-531	Frequency:	1.5 to 66.7 MHz
Symmetry:	$45 / 55$ (TYP)	
OSCILLATOR	Rise/Fall Time:	5 nsec (TYP)
	Tristate:	Available
	Compatible Technology:	CMOS and TTL

EPSON
Component Sales Department Telephone: 213/787-6300

Rack-Mount Industrial Computer

- Uses 80386 and optional 80486 module
- Has FCC Class A, UL, and CSA approval
The Selectable Performance rackmount industrial computer is compatible with the IBM PC/AT. It has
a $25-\mathrm{MHz} 80386 \mu \mathrm{P}$ and supports the functions of an $80486 \mu \mathrm{P}$. An optional plug-in module contains an $80486 \mu \mathrm{P}$ running at 25,33 , or 50 MHz . According to the manufacturer, you can install the module in five minutes without changing the existing configuration. The computer comes with a modified

From the first discussion about your specs, through prototype design, testing, fine tuning and full-scale production, Toyocom is devoted to developing a completely reliable solution for your computer application - one that delivers maximum performance at a minimal price.
Our crystal clock oscillators offer performance you would typically aasociate with customization, at standard prices. Our TCO-700 series performs to the most exacting specs:

- TTL output levels to 100 MHz .
- CMOS output levels to 70 MHz .
- Full (14-pin) and half-size (8 -pin) models.
- Tri-state output feature.

Let us develop a reliable solution for your computer applications. Contact TOYOCOM, 617 E. Golf Road, Arlington Heights, IL 60005.

Phone Toll-Free today $1-800-\mathrm{TOYOCOM}$.

TOYOCOM

TIMINGIS EVERYTHING

Award BIOS that runs the 386 or 486 CPU without modifications. Its features include 1 M to 16 M bytes of 32-bit memory, support for a numeric coprocessor, two RS-232C ports, one 8 -bit and seven 16 -bit expansion slots, a parallel-printer port, and a game port. A 16 -bit SCSI controller permits data-transfer rates as fast as 10 M bytes/sec. The computer meets the requirements for FCC Class A, UL, and CSA approval. $\$ 6995$.

VGS, 12165 Branford St, Unit Q, Sun Valley, CA 91604. Phone (818) 834-2852. FAX (818) 834-2854.

Circle No. 366

Dual-Port DSP Board

- Uses 33-MHz TMS320C30 chip for the ISA bus
- Provides 512k bytes of static RAM and two RS-232C ports
The C30 DSP board for the ISA bus uses a $33-\mathrm{MHz}$ TMS320C30 DSP chip and 512k bytes of static RAM (SRAM) that's expandable to 768 k bytes. It also has two RS-232C ports, a DSP-Link parallel-expansion interface, and a reserved area for prototyping additional circuitry. A daughter board uses 64 k byte dynamic RAMs (DRAMs) to expand the memory to the DSP chip's address capability of 16 M words. Bank interleaving achieves one- to three-wait-state access times. Another daughter board contains as much as 1.28 M bytes of SRAM with zero-wait-state access time. The memory is divided into five banks of $64 \mathrm{k} \times 32$ bits each. C30, \$3795; development package with TI's assembler-linker, TI's C compiler, and Spox operating system, $\$ 5995 ; 256 \mathrm{k}$-byte SRAM daughter board, $\$ 595$; 1 M -word DRAM daughter board, $\$ 2495$.

Spectrum Signal Processing Inc, 3700 Gilmore Way, Suite 301, Burnaby, BC Canada V5G 4M1. Phone (800) $663-8986$; in BC, (604) 438-7266. FAX (604) 438-3046.

Circle No. 367

MEASUPE LEADTIWES wh houris, not dars!

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and
free catalog, call toll free: 1-800-344-4539

701 Brooks Avenue South
Thief River Falls, MN 56701
Toll-Free: 800-344-4539, FAX: 218-681-3330

CAE \& SOFTWARE DEVELOPMENT TOOLS

Ada Editor And Tool Set For X-Window System

- Syntax-directed editor assists Ada programming
- Direct access to text of Language Reference Manual
Release 3.0 of the Keyone syntaxdirected editor and design tool set
runs under the X -Window system and assists in the design, development, and documentation phases of Ada software projects. The editor displays Ada language control structures; access to the text of an integrated Language Reference Manual (LRM) is possible at any

time during an editing session. Language templates assist the user in selecting language constructs, and the editor's syntax analysis reduces the number of errors encountered during later compilation. The new release is available under the X-Window system on HewlettPackard, Sun, IBM RISC, and DEC workstations, and on IBM PS/2 computers. On Sun workstations, it is also available under Sunview and Openlook. From $\$ 900$ for PC systems to $\$ 18,000$ for large DEC VAX networked systems.

Ada Technology Group Inc, 1900 L St NW, Suite 500, Washington, DC 20036. Phone (202) 2961321.

Circle No. 376

Schematic-Capture Software

- Runs on PCs
- Provides quick access to design information
Version 2.0 of Pads-Logic sche-matic-capture software has the advantage of a multisheet database; it holds all design information in memory and it provides the quick response time of a single-sheet database. Enhancements in the new version include library browsing of graphical symbols and parts, a new graphics driver for additional graphics cards (including Metheus and Elsa cards), interfaces to laser printers and Post Script devices, and improved transfer of data to Pspice and Aldec's Susie Simulator. $\$ 450$.

CAD Software Inc, 119 Russell St, Suite 6, Littleton, MA 01460. Phone (508) 486-9521. FAX (508) 486-8217.

Circle No. 377

Slam chips And everything in between.

When you need a creative solution for a packaging, size or interconnect problem, talk to the people with the most on the ball.

Pacific Hybrid Microelectronics.
We're experts in all facets of hybrid and surface-mount technology, no matter how exotic. If your application calls for a swizzle stick, single layer metalized chip, green tape, 2 mil spacing, combination or high-density pinhead solution, we can handle it.
Quickly, reliably, and economically. So the next time a tough problem has you reaching for a drink, reach for the phone instead. And call PHM at 1-800-622-5574.
10575 SW Cascade Blvd. Portland, OR 97223 (503) 684-5657 FAX (503) 620-8051

Modeling Software For Mixed-Mode Designs

- Works with OrCAD/SDT III schematic capture
- Allows designing functions in block-diagram form
OOTM (Object-Oriented Transcendental Modeling) uses Orspice and OrCAD/SDT III to enhance the be-havioral-modeling option available with Pspice. You can use it to graphically describe blocks of circuitry; you define block functions and link those definitions to icons. Using the OrCAD netlist, Orspice then matches each icon with the representative circuit netlist to generate a complete simulation file automatically. You can then evaluate your block diagram with the behavioral modeling option in MicroSim's Pspice simulation software by using "Probe" to display or print any voltage or current waveform. After completing your conceptual
design, you can substitute actual subcircuits for the conceptual blocks one at a time. The software runs on IBM PCs and compatible computers with floating-point processors. From $\$ 2785$ for a minimum DOS-only package (OrCAD/SDT III, Pspice/Probe with behavioralmodeling option, Orspice with Basic and OOTMs) to $\$ 5540$ for OS/2 and DOS/ 16 M versions.
NW Silicon Specialists Inc, 2700 NW 185th Ave, Suite 1200, Portland, OR 97229. Phone (503) 6458297.

Circle No. 378

Linker/Compressor For DOS Program Files

- Shrinks .EXE filles as much as 50\%
- Runs fast and saves disk space Optlink/Compress 2.50, an upgrade version of a linker that produces compressed DOS program files,

2000is a Personal Computer based Printed Circuit board design system with many advanced features capable of outperforming most Workstation-based CAD systems-at a fraction of the cost.

As the most productive PC based board CAD system available today, PADS-2000 can handle even the most complex designs including: double sided surface mount boards, mixed technology boards, high speed designs and layouts exceeding 2000 IC's.

PADS-2000 design functionality includes:

- Over 11,000 parts/32,000 connections
- 1 micron Resolution
- True T-Routing capability
- Intelligent Copper Pour feature leaving isolated tracks and pads
- 0.1° parts/pads rotation
- Extensive Macro capability
- Digital, Analog and Critical Circuit autorouters

- On-line and Batch Design Rule Checking
- Instant track/segment length measurement
- Complete Forward/Backward ECO capability
- Uses 32 bit/386 native code for increased speed and functionality
- Easy-to-learn and Easy-touse

Call today for a demonstration at your local authorized CAD Software Dealer.

Ask about our affordable Leasing Plan.

Call Today
Inside MA:
(508) 486-8929

Outside MA: (800) 255-7814

(A)Software, Inc.

119 Russell Street Littleton, MA 01460

Conai Mo PL standards available MIL-T-27/356-1 thru 63 QPL standards available MIL-T-27356-1

- Temperature range $-55^{\circ} \mathrm{C}+130^{\circ} \mathrm{C}$
- All units are magnetically shielded
- Inductance values to 20 mH with DC currents to 23 amps
- Split windings

See EEM or THOMAS REGISt $\left.\begin{array}{l}\text { TH send direct for } \\ \text { or sRE PICO Catalog } \\ \text { FRES }\end{array}\right]$ 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514 FAX 914-699-5565

CIRCLE NO. 17
saves as much as 50% of file space. According to the supplier, it runs at least four times faster than Microsoft's Link. Each compressed .EXE file produced by the program contains an embedded decompression routine that requires less than 1 k byte of extra memory. When you run the .EXE file, the decompression routine takes control and expands the compressed program back to its original form. Package for new buyers, $\$ 250$; users' upgrade, $\$ 29.95$.

SLR Systems, 1622 N Main St, Butler, PA 16001. Phone (412) 2820864. FAX (412) 282-7965.

Circle No. 379

Schematic Design

- Front-end schematic-design tools for ASICs, and PLDs
- Costs less than $\$ 1000$

Capfast, a schematic-design and interface package for Sun workstations, has a hierarchical multipage schematic editor, an on-line electrical rules checker, an interactive simulation grapher, a parts library, an intelligent packager, a symbolcreation editor, and interfaces for Spice, Hilo, Susie, Actel, Xilinx, and popular pc-board design packages. The Sun version is compatible with a PC version, so users can transfer schematics between the two types of computers without modifying their designs. The Sun version runs on all Sun models, color and monochrome, and comes with a year of free support. The package features ASCII file formats and open databases, allowing designers to integrate Capfast tools with their own applications and
those of other vendors. It allows designers to create complex schematics for pc-board, PLD, and ASIC designs. Options include EDIF 20 0 translators, which allow the translation of complete schematics to workstations from Mentor Graphics, Cadence, and Valid. Other options allow translation to and from the Computervision CADDstation and the Intergraph EDA system. $\$ 995$.

Phase Three Logic Inc, 1600 NW 167th Pl, Beaverton, OR 97006. Phone (503) 645-0313.

Circle No. 380

Development-Tool Package

- Allows programming in C for DSP
- Provides workstation functions on IBM PC
A new release of the Intertools soft-ware-development package helps embedded-systems designers develop applications for Motorola's DSP96002 on an IBM PC. It includes an optimizing C cross-compiler, a Motorola-compatible macro assembler, utility programs (runtime library routines, formatter, linking-locator, ROM processor, global symbol mapper, symbol list utility and librarian) and XDB, a source-level cross-debugger. This version offers the convenience of programming in C as well as taking advantage of the 96002's unique architecture. The C cross-compiler features optimization techniques that include instruction scheduling and coalescing, lifetime analysis, and C loop construct analysis. The package also provides hand-coding of critical routines through in-line assembler routines or through the use of the Motorola-compatible assembler. Compiler, $\$ 1350$; assembler, $\$ 1100$; debugger, $\$ 2000$.

Intermetrics Microsystems Software Inc, 733 Concord Ave, Cambridge, MA 02138. Phone (800) 3563594; in MA, (617) 661-0072. FAX (617) 828-2843. Circle No. 381

When it comes to logic devices, no one offers you a wider array of programmable gate arrays than Xilinx.

With toggle rates of up to 100 MHz and densities up to 9,000 gates, Xilinx Field Programmable Gate Arrays offer you the speed you need.

And if that isn't enough, we'll soon be offering even higher speeds and greater gate densities.

All at a fraction of the cost of anything else in the industry.

What's more, our new

Automated Design Implementation and Design Manager software run on PCs and the most popular engineering workstations. So no matter what your platform, you'll benefit from the easiest interface in the industry.

Which means your turnaround time on design revs will be measured in hours, not months. And non-recurring engineering charges will simply be non-existent.

No matter what application you're developing, there's a Xilinx

Field Programmable Gate Array that will make your design faster, cheaper and easier than ever before.

Call 1-800-255-7778 or, if you're working in California, call 408-559-7778. And we'll send you a free copy of the FPGA fact book. It's an objective look at the key reasons why FPGAs should be in your next design.

EXILINX

The Programmable Gate Array Company. ${ }^{\text {s" }}$

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

DC/DC Converters

- Output $30 W$
- Offer single or dual outputs Housed in a package that requires only 2.4 in. ${ }^{2}$ of board space, MTR Series dc/dc converters output 30 W . They operate from inputs of 16 to 40 V and feature single or dual outputs of $5,12,15, \pm 12$, and $\pm 15 \mathrm{~V}$. Efficiency ratings equal 80% min, and typical line and load regulation measures 0.1%. In sin-gle-output models, remote sensing controls the converter output based
on the voltage levels at the load. Soft start and synchronization features are standard on all models. The converters are housed in hermetically sealed metal cases and offer full power operation from -55 to $+125^{\circ} \mathrm{C}$. Working in combination with the manufacturer's EMI filters, the converters comply with MIL-STD-461's CEO3 noise limits and MIL-STD-704's CS06 transient suppression standards. \$362 (100).

Interpoint Corp, Box 97005, Redmond, WA 98073. Phone (206) 882-3100. FAX (206) 882-1990.

Circle No. 372

Multiturn Trimmers

- Have a 200-cycle rotational life
- Resistance values range to $2 M \Omega$ Model 3224 trimmers are 4-mm 11turn trimmers that are sealed for compatibility with all surface-

mount placement, soldering, and cleaning processes. The units have a rotational life of 200 cycles and are available with resistance values ranging from 10Ω to $2 \mathrm{M} \Omega$. Contact resistance variation equals 1%, temperature coefficient measures 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and resistance tolerance equals 10%. Constructed of hightemperature plastic material, the units can be wave or reflow soldered. Also, they will survive cleaning systems that rely on aqueous or semiaqueous high-pressure wash

Make your big ideas smaller, lighter and brighter:

DURACELL ${ }^{\circ}$ XL" DL123A Lithium Batteries give you the power to think small, improve performance and portability.

Today's emphasis on smaller, lighter, more powerful portable devices requires a bright idea in battery technology. It's here.

Size for size, the DL123A delivers more combined power and energy than otier consumer replaceable batteries. In fact, for high current applications, this compact 3-volt lithium battery delivers up to four times more energy than a 1.5 -volt AA size battery - even more at low temperatures.
and solvent techniques. The trimmers feature a smooth-top surface and a flush side-adjustment screw. The trimmers are supplied on $12-$ mm-wide tape; the $7-\mathrm{in}$. reel has 500 pieces, and the $13-\mathrm{in}$. reel houses 3000 units. $\$ 1.98$ (1000). Delivery, eight weeks ARO.

Bourns Inc, 1200 Columbia Ave, Riverside, CA 92507. Phone (714) 781-5071. TLX 676423.

Circle No. 373

SIP Sockets

- Feature solderless termination
- Stackable side-to-side

These SIP sockets feature compliant pins, which permit solderless termination of components to backplanes and pc boards. The socket contacts feature posts that accommodate the standard plated-through-hole tolerance of 0.040 in .

The units have a 0.213 -in.-high profile and are constructed of high-temperature-tolerant plastic. They feature a $0.025-$ to $0.03-\mathrm{in}$. standoff that facilitates board cleaning. The units are available with $6,8,10$, or 12 positions and are end-to-end and side-to-side stackable. The units are compatible with robotic placement systems. $\$ 0.05$ to $\$ 0.08 /$ contact position.

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752.

Circle No. 374

Subminiature Connectors

- Offer 78-position capacity
- Available in plug and receptacle versions
These high-density D subminiature connectors are available in boardand cable-mount versions. The board-mount units are available in
$15-$ - 26-, 44-, and 62-position receptacles and 78-position plug and receptacle designs. The cable mount line includes a 15 -position receptacle, a 62 -pin plug, and 78 -pin plug and receptacle designs. All units feature $30-\mu \mathrm{in}$. gold plating on the contact area. All female contacts are protected by a closed-funnel entry design, which eliminates stubbing during mating. Board-mount units include a lock feature that reduces connector-assembly time. The connectors have a metal front shell and are available with female screw locks or threaded inserts. The connectors come in 15 - to 78 position board-mount receptacles. $\$ 1.41$ to $\$ 6.40(10,000)$. Delivery, six to eight weeks ARO.

ITT Cannon, Components Div, 1851 Deere Ave, Santa Ana, CA 92705. Phone (714) 261-5300.

Circle No. 375

DURACELL XL Lithium Batteries are engineered for single or multicell applications. They're made in the USA and distributed worldwide under the brand name consumers prefer most, DURACELL.
Find out what Duracell's latest high power technology can do for your bright ideas. Write or call for our updated DL123A Performance Portfolio. Or if you have an immediate need, contact our OEM battery engineers today.

DURACELL INC.

DURACELL INC.

New Products and Technology Division OEM Sales and Marketing Berkshire Industrial Park Bethel, CT 06801 Toll-free: 1-800-422-9001 ext. 426 Facsimile: 203-791-3273
(c) 1989, Duracell Inc.

Here's where the barricades start to come down in the mixed signal revolution.

North American Locations \& Dates

Cedar Rapids, IA	Saddlebrook, NJ
March 18	April 2
Cleveland, OH	Westchester, NY
March 19	April 3
Pittsburgh, PA	Smithtown, NY
March 20	April 4
Atlanta, GA	Cromwell, CT
March 25	April 5
Clearwater, FL	Santa Clara,CA
March 26	April 8
Orlando,FL	Costa Mesa, CA
March 27	April 9
Huntsville,AL	Los Angeles, CA
March 28	April 10

Waltham, MA April 1

Woodland Hills, CA April 11
San Diego, CA
April 12
McLean, VA
May 6
Baltimore, MD
May 7
Cherry Hill, NJ
May 8
Fort Washington, PA
May 9
Raleigh, NC
May 10

Toronto, Canada	Bloomington, MN
May 13	May 22
Santa Clara, CA	Houston, TX
May 14	May 23
Pleasanton, CA	Dallas, TX
May 15	May 24
Bellevue, WA	Phoenix, AZ
May 16	May 28
Beaverton, OR	Denver, CO
May 17	May 29
Woburn, MA	Arlington Heights, IL
May 20	May 30
Montreal, Canada	Rochester, NY
May 21	May 31

Also at 24 locations in Europe and the Far East.
With the revolution in mixed signal technology, digital designers now need to know about analog. And the analog guys can no longer turn their backs on digital.

Mixed signal technology is the only way to smash the barriers to higher levels of system integration, better performance, and faster time to market. And it accomplishes these difficult tasks by combining both signals on a single chip.

Which is why designers from both camps should attend our Mixed Signal Design Seminar. A comprehensive full-day tutorial that covers everything from digital signal processing and sampled data systems to sigma delta converters, techniques for building a better board, and much more.

The mixed signal revolution has started, so make sure nothing stops you from attending this seminar. To reserve your space, return the coupon. For more information or to charge your
ticket, call (617) 937-1430 or (800) 262-5643.

ANALOG DEVICES

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

\$249.TERMINAL

Featuring -Standard RS-232 Serial Asynchronous ASCl| Conmunications 24 Key Membrane Keyboard with embossed graph Ten key numeric array plus 8 programmable function keys Optional RS 422 multidrop protocol mode
Keyboard selectable SET. UP (eatures - baud Keyboard selectable SET UP teatures - baud rates. parity, etc
Size $\left(5.6255^{W} W \times 6.99^{\prime D} \times 1.75^{\circ} \mathrm{H}\right)$. Weight 1.25 lbs . 5×7 Dot Matrix font with undertine cursor CDMPUTERTJISE

CIRCLE NO. 334

LCD WINDOWS CONTROLLER
The CY325 supports LCDs up to 128×240 pixels (16×40 char) with easy-to-use high-level commands and Parallel or Serial interface to host computer. The 256 built-in windows (or make your own) support window-relative text, graphics, plotting, bargraphs, waveforms, scroll/wrap/clip, etc. Read from an A/D and Write into Window! Separate text and graphic planes can be written or erased in any window. Eight pins support a variety of functions (soft-keys, waveforms) or can be used for GP I/O. Icons or special fonts can be user defined. Giant character mode, etc. Save months of design time with the CY325. $\$ 75$ CMOS $\$ 20 / 1000$ s.

Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 • Fax: (415) 726-3003 CIRCLE NO. 337

200 MHz Logic Analyzer

PAL
GAL
EPROM EEPROM PROM
87C51..
 874x

5ns PALs 4 Meg EPROMs

 26V12 \& 22V10 Gals FREE software updates on BBS
GANG PROGRAMMER

-4 32pin Sockets (8 Socket option) $\$ 215$
$-2716-27010$ EPROMs
Call - (201) 994-6669
Link Computer Graphics, Inc.
4 Sparrow Dr., Livingston, NJ 07039 FAX:994-0730
CIRCLE NO. 335
Interactive/Real-Time

Analog Circuit Simulation

ECA-2 Electronic Circuit Analysis offers: - AC, DC Transient, Fourier, and Temperature Analysis with Nominal, MonteCarlo and/or Worst-Case component values - Interactive or batch modes • Full nonlinear simulation - Sine, Pulse, PWL SFFM, and Exponential PWL, SFM, and Exponentia generators \cdot IBM PC/Mac \bullet Multiple plots On-line real time graphics - 2 to 50 times faster than SPICE - Over 500 nodes - Advanced component parameters - Component optimization sweeping • Full editing, built-in or external - New detailed 424 page manual

Call for FREE DEMO!

Tatum Labs, Inc.
3917 Research Park Dr. B-1, Ann Arbor, MI 48108 313-663-8810

16 MHz 80C186/C187

R.L.C.'s large selection of 8 and 16-Bit STD Bus Single Board Computers offer an Intel 80C186/ 188 CPU and 80C187/8087 Numeric Co-
Processor at true bus speeds up to 16 MHz . On-

board functions
include MEMORY, SERIAL PORTS, REAL TIME CLOCK, TIMERS, DMA, INTERRUPT CONTROLLER, and BATTERY BACK-UP, WATCHDOG TIMER and much more R.L.C. also offers 16-Bit support cards, card cages and complete software support using the award winning TUR-BO-DEBUGGER. For more information and technical assistance please call Robert Coomer.

R.L.C. Enterprises

(805) 466-9717

4800 Templeton Road Atascadero, CA 93422
CIRCLE NO. 333

Facts about
ICs and Semiconductors at Your Fingertips
Cahners CAPS is the newest component search and selection tool for electronic design engineers:

- PC-driven, CD-ROM-based
- Includes unabridged manufacturers' datasheets
- Represents more than 450 manufacturers worldwide

Call toll-free: 1-800-245-6696
 275 Washington Street Newton, MA 02158-1630 Telephone: 617-558-4960 Facsimile: 617-630-2168
Product Selection

CIRCLE NO. 336

PILOT-U40 is our second generation 40 -pin universa programmer, following our very successful and popular Sailor-PAL line of programmers. Programs PALs, GALs, PEELs, PROMs, E/EPROMs, micros, MACH, etc. 2428 - and 32 -pin versions also available. Industrial quality Starting from $\$ 1,095$. SATISFACTION GUARANTEED

PLCC LoClip - PLCC Probe

NEWPRODUCT

The PLCC-LoClipXX line from Ironwood is a new product line allowing probing of surface mount PLCC's at a fraction of size of other clips. The U and L ver. have right angle leads (cable connect or probing). Device heights of $0.75^{\prime \prime}, 0.57^{\prime \prime}$, and $0.45^{\prime \prime}$ for S, U, and L boards respectively enable probing of boards in backpanels. Interdevice spacing of 0.10 " allowed. PLCC's from 24 to 84 pins supported. Kits of 10 with different sizes/carrying case available at substantial discount

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431-7025

REIIABIIITY

AND MAINTAINABIIITY PREDICTION AND FMECA ANAIYSSS SOFTWARE
Hundreds have used this leading computer-aided engineering software since 1982.
Powertronic Systems offers software to predict Reliability and Maintainability and for Failure Modes Effects and Criticality Analysis. Hundreds of users have selected from PSI's large, versatile and integrated software family for military and industrial equipment and for both electrical and mechanical systems. And, data inputs to these programs may be interactive or batch mode from other CAE or database programs.
Programs implement MIL-STD-1629; MIL-HDBK-217 including E Notice 1; and MIL-HDBK-472

PSI

Powertronic Systems, Inc.
P.O. Box 29109 New Orleans 70189

CIRCLE NO. 343

FREE \& EASY

Try SCHEMA III for free, and see how easy schematic capture can be. SCHEMA III performs more functions at the drawing sheet level and is compatible with workstation formats. Call Omation for your FREE demo disk today!

1-800-553-9119

FREE 26 Page CATALOG with all styles and designs of matching instrument knobs illustrated. Fax us your specs-we will

CIRCLE NO. 341

SAVE SPACE WITH Q/PAC® COMPONENTS

- Provide built-in capacitance
- Eliminate decoupling capacitance
- Gain 4-layer board quietness with 2-layer economy
- Vertical or horizontal mounting

Send for Rogers Q/PAC ${ }^{\circledR}$ Application Bulletin.

Rogers Corp., 2400 S. Roosevelt St. Tempe, AZ 85282 602/967-0624 CIRCLE NO. 344

LEMO'S NEW CIRCULAR CONNECTOR CATALOG

LEMO's new circular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or
 including signal, coaxial, triaxial, high voltage, fiber optic and fluidic/pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum or stainless steel.

P.O. Box 11488, Santa Rosa, CA 95406 Phone (800) 444-LEMO, Fax 707/578-0869

CIRCLE NO. 342

CIRCLE NO. 345

"Tango-PCB PLUS is the most intuitive

 CAD program I've ever used.""The Tango-PCB PLUS circuit board design tool is light and simple. Its Windows ${ }^{\text {TM }}$-like interface is very easy to use. Tango does what I want it to do in the logical way it ought to be
 CIRCLE NO. 347

Tango's feature-rich circuit board layout and autoroute packages offer high performance and ease of use. Their affordable prices include great documentation and tech support and a money-back
guarantee.

See for yourself. Call today to order your free $\mathrm{PCB} /$ Route evaluation package.
800 488-0680
619554-1000 • FAX: 619 554-1019
ACCEL Technologies, Inc.
6825 Flanders Drive • San Diego, CA • 92121 • USA
6825 Flanders Drive - San Diego, CA
Contact us for the representative nearest you

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information
(212) 463-6415

CIRCLE NO. 758

Elegant, concise, fast \& standardized FLOATING POINT libraries for embedded applications

 Based on the IEEE 754 standard, FPAC (32 bit) and DPAC (64 bit) libraries are mature, well documented, and fully tested. The libraries are fully ROMable and include the following:- Basic Operations - ASCll Conversion
- Square Root - Integer Conversion
- Trigonometric - Logarithmic

U S Software supports most Intel, Motorola, Zilog and Hitachi micros, including 80×86, 80386, $680 \times 0,80960,8051,8096,68$ HC11, Z80, 6809 and 6301.
For additional information, please contact:

リ 5 SロFTMMARE

United States Software Corporation 14215 NW Science Park Drive Portland, Oregon 97229
800-356-7097
503-641-8446
503-644-2413 (FAX)

CIRCLE NO. 761

Wave Form 20MHz-32K \$1290

The WSB-100 Wave Form Synthesizer Board from Quatech has the best set of numbers in the market. With speed to 20 MHz and a 32 K memory at $\$ 1290$, it's making waves in more ways than one. The WSB-100 is also a star performer as a digital pulse/word generator with the optional digital module. Call for our free
PC Interface Handbook
1-800-553-1170

T EUATECH

662 Wolf Ledges Parkway
CIRCLE NO. 764

DEVELOPERS' TOOLS

The Total Solution Programmer
The best-selling Programmer since 1985

TUP-300
Universal Programmer \& Tester (PC based) from \$595-

40-Pin ZIF socket can be expanded up to 68 Pin for
or PLCC chips.

- Programs 20 to 68 Pin PLD PAL, CPAL, IFL, GAL, PEEL, EPLD, EEPLD), EPROM (up to 16 Mbit), EEPROM, Serial PROM, Special PROM, Bipolar PROM \& MPU
(8741/42/48/49, 8051/51FA, FB, FC/521/541/252/751/752/552/451, 8796/97, 68705, 286E11/21, TMS7742, TMS77C82, 8755A
- Tests TTL (74/54), CMOS (40:45), SRAM, DRAM, SIP DRAM and SIM DRAM.
- Full screen edit, HEX to OBJ, 2-way or 4 -way Binary File Splitter and Shutller, 6 MPU Dis assemblers.
- 34 various adapters 14 sockets, ROM-RAM, PLCC, ...)) from $\$ 95$. - Other high quality programmer cards at low cost available from $\$ 119$. UV Eraser (UV-32) for 32 pcs at $\$ 95$--
Call us today for complete product line
E 1 year warranty, 30 days money back guarantee
- 1 year free sottware updates and Customer Suppor

TRIBAL MICROSYSTEMS
Tel: 1415$) 623-8859$ Fax: $(415) 623-9925$ Tel: 1415$) 623-8859$ Fax: 1415$) 623-9925$
44388 S . Grimmer Blvd. Fremont CA 94538 CIRCLE NO. 759

Attn: HP Logic Analyzer Users - PQFP, PLCC, PGA, and DIP pre-processor interfaces for 1650 and 16500 Series HP logic analyzers.

- Available for Intel, Motorola, Mips, Zilog, and IDT microprocessors.
- Plugs between the analyzer and the target CPU socket or surface mount pads.
- Inverse assembler and configuration files included. Call for a free catalog.

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone:408-982-0660 FAX:408-982-0664

CIRCLE NO. 762

RS-422/RS-485 Boards for AT, Micro Channel

RS-422/RS-485 asynchronous serial communication boards from Quatech available in 1 to 4 ports for PC-AT and compatibles and 1 to 4 ports for PS/2 Micro Channel. Call for our free
PC Interface Handbook: 1-800-553-1170

T GUATECH

662 Wolf Ledges Parkway Akron, OH 44311

PC-AT, Micro Channel, and PS/2 are trademarks or registered trademarks of IBM Corp.

EPROM EMULATION SYSTEM

- Emulates up to 8 4-Megabit EPROMS with one control card.
- Accepts Intel Hex, Motorola S-Record - Downloads 2-Megabit programs in less than
23 seconds.
- Allows you to examine and modify individual bytes or blocks. and Binary files. - Software available for IBM PC and compatibles and Macintosh systems. - Base 27256 EPROM System \$395.00 Other configurations available

ORDER TODAY-IT'S EASY

CALL OR FAX FOR MORE INFORMATION

Incredible Technologies, Inc.
(708) 437-2433
(708) $437-2473$ Fax

VISA now accepted.
CIRCLE NO. 760

Little Giant ${ }^{\text {m }}$

C Programmable Controller
This shirt pocket sized computer interfaces directly to the outside world. Use it to control anything. Instantly programmable using your PC with Dynamic C. ROM and battery backed RAM to 1024 k bytes. 8 Channel, 10 / 12 bit, A/D with conditioning. High voltage and current drivers. Battery backed time and date clock. Watchdog and power fail. 4 serial channels. 24 parallel I/O lines. Timers. Integral power supply. Terminations for field wiring. Expansion connector. Plastic or metal field packaging available. OEM versions from $\$ 199.00$

Z-World Engineering 1340 Covell Blva., Davis, CA 95616
(916) 753-3722

Fax: (916) 753-5141
CIRCLE NO. 763

MacABEL
LD Design on the Apple Macintosh!
Data I/O's industry-standard ABEL PLD design package is now available on the Macintosh, exclusively from Capilano Computing! Use Boolean and integer equations, state machines and truth tables programmer - Best device support in the industry, including ALTERA AMD, ATMEL, CYPRESS, GOULD, HARRIS, ICT, INTEL, LATTICE. NATIONAL, RICOH, SAMSUNG, SGS, SIGNETICS, SSS, TI, VTI and others - Interactive "in-circuit" schematic entry and simulation when used with DesignWorks

Call (604) 669-6343 today for your free demo kit!
Capilano Computing

CIRCLE NO. 766

Even with our sophisticated technology, people play the leading role in DSC's success. Part of these accomplishments include the development of one of the first software programmable cross connect systems, and one of the largest Signal Transfer Points (STP) for use within the long distance and local exchange networks. These are just a few of the many complex systems our employees have created.
Today, we are developing the next generation of cross connect and enhancing our existing platforms. We are committed to taking on the challenges this age of communications has created.

SONET Software Engineers

These positions require BSCS or equivalent and $3-5$ years' programming experience with "C" in a UNIX environment (Apollo Workstations). Experience with 68XXX processors and a telephony background are advantageous. Opportunities exist for involvement in the entire life cycle of software development including new designs, coding and testing. Additional positions are available for software and integration test engineers.

SONET Hardware Engineers

You will design, debug and test complex digital logic printed circuit boards. Requires a BSEE and knowledge of worst case timing analysis, microprocessor and programmable logic design experience. Telecommunications, DS3 or SONET experience a plus; 2-5 years' experience required.
Electro-optic design engineers for OC-12 and OC-48 SONET optical interface development. Requires device, clock and data recovery circuitry expertise. Minimum of 2-5 years' development experience required.

Sr. IC Design Engineers

Convert system requirements into ASIC specifications, create system and logic designs using advanced CAE tools, perform verification simulations, generate test programs, and certify prototypes. Experience with MENTOR GRAPHICS CAE tools highly desired. Requires BSEE and 5-8 years' experience in system application of ASIC's logic/test design, test/stimulus languages and fault simulation.

DSC Communications Corporation is located in the Dallas suburb of Plano, Texas. This sprawling community enjoys a mild climate, offers an excellent public school system and features quick access to an abundance of cultural and recreational activities. For immediate consideration, please send your resume with salary history, indicating the position of interest to: DSC Communications Corporation, ATT: HR Technology/ EDN, 1000 Coit Rd., MS 110, Plano, TX 75075. Principals Only.

CAREER OPPORTUNITIES

1991 Recruitment Editorial Calendar

| | $\begin{array}{c}\text { Issue } \\ \text { Date }\end{array}$ | $\begin{array}{c}\text { Ad } \\ \text { Deadline }\end{array}$ | Editorial Emphasis |
| :--- | :--- | :--- | :--- |$]$| Issue | ICs \& Semiconductors/ | | |
| :--- | :--- | :--- | :--- |
| Magazine | Mar. 28 | Mar. 7 | ICs
 Microprocessors, Software \bullet CAE
 Computer Boards, Electro
 Edition |
| | | | Preview Issue |
| Optical Interconnects, Automotive
 Electronics**, Electro Show Issue | | | |

Call today for information on
Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Situated between the shores of Daytona Beach and metropolitan Orlando, talented professionals set the pace at Sparton Defense Electronics, a Fortune 900 company involved in the design and high volume manufacture of expendable submarine tracking devices.

The following opportunities are currently open to qualified design engineering personnel for exploration:

- BSEE's (no EET degrees) with 2 to 4 years current experience in board level audio/voice frequency ($0-20 \mathrm{kHz}$) analog product design for a high volume manufacturer. Background must include microprocessor programming (i.e., 6800/assembly) and exposure to SMT (surface mount technology). U.S. citizenship required for clearance.
- BSEE's (no EET degrees) with 5 years current RF (UHF/VHF) experience specifically in a.m. receivers and multichannel synthesized f.m. transmitters. Small stowable antenna design is highly desirable. U.S. citizenship required for clearance
- BSME's (no MET degrees) with 2 to 5 years current experience in the design of injection molded plastic, die cast metal, and stamped metal parts for a high volume/low cost manufacturer. Solid experience in finite element analysis (FEA) and knowledge of design for assembly (DFA) concepts is highly preferable. Tooling vendor interface and production floor support backgrounds are necessary. U.S. citizenship is required for clearance.

As a team member of Sparton Defense Electronics, expect a stimulating, career-building technical challenge, a high quality lifestyle with a low cost of living, no state income tax, proximity to exciting Florida attractions, and a fine compensation package that rewards your skill, knowledge, imagination, and performance. Relocation package is available. For prompt, confidential consideration, please present your credentials with salary expectations to:

SPARTON

DEFENSE ELECTRONICS
ATTN: Mr. John S. Gould, Employment Manager 5612 Johnson Lake Road • DeLeon Springs, Florida 32130 NO AGENCIES PLEASE/NO PHONE CALLS PLEASE/EEO-M/F/H/V

INTERPHASE CORPORATION is seeking individuals to participate in the development of RISC - based FDDI VMEbus products. Position leads to project-level management of boardlevel and standalone FDDI products as well as opportunities in an existing well-established Ethernet product development organization. Familiarity with UNIX as a target environment (system level) with five years design experience required.

FIRMWARE/HARDWARE DESIGN

- Logic design using state-of-the-art CAD/CAE equipment.
- High-speed memory system design using VRAM.
- RISC microprocessor design experience desired
- VMEbus architecture desired.
- Clanguage programming experience required.
- BSEE or equivalent required. Emphasis on high-speed microprocessor development

SOFTWARE DESIGN

- UNIX, Kernal I/O, TCP/IP or other protocol experience on super-microcomputer or minicomputer required.
- Minimum one year writing UNIX device drivers.
- C language programming experience required.
- RISC microprocessor desired; (M68000 required)
- BSCS or equivalent required. Emphasis on design of high-performance software interface.

Interphase Corporation offers competitive compensation and complete benefits, including a tax-deferred savings plan (401 K), educational assistance, employee paid group insurance and much more.
For immediate consideration, use the coupon below and/or send your resume to: INTERPHASE CORPORATION

HUMAN RESOURCES DEPT. 13800 Senlac
Dallas, Texas 75234
FAX \# $214 / 919-9200-A T T N:$ HUMAN RESOURCES DEPT.
Interphase Corporation is an equal opportunity employer.

Name \qquad
Address \qquad
\qquad
Telephone (Home) \qquad (Business) \qquad
Position/s of Interest \qquad
Previous Design Experience \qquad

Leadership for the 90 's.

Codex is the world's leading independent supplier of complete networking solutions. We provide all the elements for distributed data and voice networks, from a broad line of communications products to a full range of services, including systems integration. As a wholly owned subsidiary of Motorola, Inc., a worldwide communications and electronics leader known for its proven commitment to quality, we have one fundamental objective: Total Customer Satisfaction.
We are building upon our expertise to provide advanced private networking solutions for the 1990's. Areas of activity include systems architecture and design of integrated switching nodes, software architecture, design and implementation of real-time distributed multiprocessor networking products, ISDN call processing and frame relaying, system and networking software.
If your career is at a crossroad and you're seeking a renewed challenge and spirit of growth, we invite your inquiry. Our unique Advanced Sourcing concept allows you to investigate opportunities as they arise and when you feel the time is right, to take advantage of that opportunity.
We are currently seeking qualified candidates for the following positions to be located at our corporate headquarters in Mansfield and Canton, MA:

Software Development Engineers

Positions are at all levels, from $2+$ years' experience and up. If you possess a BSEE or BSCS (MSEE or MSCS preferred) with experience in one or more of the following areas, we invite your inquiry.

- ISDN signalling technology
- IBM SNA or X. 25 protocols
- Communication protocol software
- Loading, initialization, configuration and fault management software for networking nodes
- Directory services and call processing software
- Network design algorithms
- Network management software development
- IBM/PC applications software under MS Windows
- Database definition and/or Database tool development
- LAN interconnect bridges and routers
- Fast packet switching technology
- T1 technology and services
- Performance tuning/systems programming on VAX, Apollo, and/or Sun
- Software tools development/installation on VAX, Apollo, and/or Sun
- Shell and utility programming in UNIX ${ }^{\text {TM }}$, Ultrix, and/or VMS

Preference will be given to those candidates with significant experience programming in "C", MC68000 Assembly, and/or Object-Oriented Languages for Real-Time Embedded Systems Software applications.

Software Q/A Engineers

Business Process Q/A Engineers Product Management Engineers Product Marketing Engineers

In addition to the positions listed above, we have a need for the following experienced professionals to work at various field locations throughout the U.S.

Applications Engineers
 Product Support Engineers Sales Representatives

Codex offers an excellent environment conducive to professional growth, competitive salaries and a comprehensive benefits package including profit sharing, 401 K and a generous pension plan. Our Advanced Sourcing concept allows you to add your resume to our database now and be reviewed against current and future openings based on your goals and requirements.
Qualified candidates, please send your resume to the Advanced Sourcing Group, Codex Corporation, Dept. EDN301, 20 Cabot Boulevard, MS M4-70, Mansfield, MA 02048. An Equal Opportunity Employer.

(M) MOTOROLA

UNIX is a registered trademark of AT\&T Bell Laboratories.

Telecommunications Professionals
 Seiscor Technologies, Inc. is a manufacturer of telephone transmission equipment and a subsidiary of Raytheon, a Fortune 500 company.

Software Engineers

Qualified candidates should possess a B.S. in Computer Science or Electrical Engineering, development and test with emphasis on micro-processor, real time software and telephone transmission products using C language and X .25 protocol.
Sr. Analog Design Engineer
Requires a B.S.E.E. with experience in designing Line Cards for Digital Loop Carrier. Knowledge of Bell LSSGRs, TR-57 and TR303 is a must. SLIC, ASIC, and SMT background is desirable. SONET Engineers
Hardware/Engineer with a B.S. degree experience in design of fiber optic based transmission and subscriber loop products. Requires thorough knowledge of North American and International Standards for T1, DS1, DS3, and SONET.
Systems Engineer with B.S. degree and ten years experience in transmission telephony. Most recent experience should be fiber optic Add/Drop Multiplexors, and Terminating Multiplexors. Familiarity with TA-253 requirements is required.

Call Personnel at 1-800-331-4048 or send Resumé to :
Seiscor Technologies, Inc.
PO Box 470580
Tulsa, OK 74147-0580

An Equal Opportunity Employer, Affirmative Action Employer, M/F/V/H

> Seiscor Technologies
> A Raytheon Company

$$
\begin{aligned}
& \text { Your } \\
& \text { Future } \\
& \text { Starts } \\
& \text { Here }
\end{aligned}
$$

If You're Looking For a Job, You've Come to The Right Place.

EDN CAREER OPPORTUNITIES

Join The Company That Accelerates The Industry

When you join Allen-Bradley, you join a world leader in industrial automation controls and factory information systems. We're developing tomorrow's technology today that keeps our customers in the forefront of their industries.

At Allen-Bradley, you'll have the opportunity to apply your skills to challenges as varied as our global customers. From the automotive and packaged goods to manufacturing and steel industries, we have the variety and technology you need to be challenged both personally and professionally.

If you're an experienced engineer with the desire to be in the forefront of technology, join us in one of the following areas:

- Commercial Engineering/Technical Marketing
- Technical Support
- Quality Engineering
- Systems Engineering

In return for your contributions, we'll provide you with a competitive salary; comprehensive benefits; generous relocation assistance; and the opportunity to appreciate not only where you work, but where your work is put into use. For additional information or for immediate consideration, please forward your resume in confidence to: Human Resources; Dept. EDN31; Allen-Bradley; 747 Alpha Drive; Highland Heights, Ohio 44143. An Equal Opportunity Employer, M/F/H/V.

ALLEN-BRADLEY
A ROCKWELL INTERNATIGNAL COMPANY
It's not only where you work, but where your work is.

Everything You Ever Wanted In UNIX. And Less. ${ }^{\text {999.95." }}$

OK. We know it's hard to believe. So just consider this. Coherent ${ }^{\text {m }}$ is a virtual clone of UNIX. But it was developed independently by Mark Williams Company. Which means we don't pay hundreds of dollars per copy in licensing fees.

What's more, Coherent embodies the original tenet of UNIX: small is beautiful. This simple fact leads to a whole host of both cost and performance advantages for Coherent. So read on, because there's a lot more to Coherent than its price.

SMALLER, FASTER...BETTER.

Everybody appreciates a good deal. But what is it that makes small so great?

For one thing, Coherent gives you UNIX capabilities on a machine you can actually afford. Requiring only 10 megabytes of disk space, Coherent can reside with DOS. So you can keep all your DOS applications and move up to Coherent. You can also have it running faster, learn it faster and get faster overall performance. All because Coherent is small. Sounds beautiful, doesn't it?

But small wouldn't be so great if it didn't do the job it was meant to do.

$\begin{gathered} \text { LESS } \\ \text { IS MORE! } \end{gathered}$	Coherent For the IBM-PC/AT and compatible 286 or 386 based machines.	Santa Cruz Operation's XENIX 286, Version 2.3.2
No. of Manuals	1	8
No. of Disks	4	21
Kernel Size	64 K	198K
Install Time	$20-30 \mathrm{~min}$.	3-4 hours
Suggested Disk Space	10 meg	30 meg
Min. Memory Required	d 640 K	1-2 meg
Performance*	38.7 sec	100.3 sec
Price	\$99.95	\$1495.00

[^10]
EVERYTHING UNIX WAS MEANT TO DO.

Like the original UNIX, Coherent is a powerful multi-user, multi-tasking development system. With a complete UNIX-compatible kernel which makes a vast world of UNIX software available including over a gigabyte of public domain software.

Coherent also comes with Lex and Yacc, a complete C compiler and a full set of nearly 200 UNIX commands including text processing, program development, administrative and maintenance commands plus UUCP.

CRITICS AGREE: IT'S

AN INCREDIBLE VALUE!
"Mark Williams Co. seems to have mastered the art of illusion; Coherent comes so fully qualified as a UNIX clone, you find yourself thinking 'I can't believe it's not UNIX.' "
-Sean Fulton, UNIX Today!, November 26, 1990
"...(Coherent) may be the best thing that has happened to UNIX yet."
-William Zachmann, PC Week, November 5, 1990
"If you want to come as close as you can to real UNIX for a low price, COHERENT can't be beat."
-Warren Keuffel, Computer Language Magazine, November 1990
"If you want a UNIX-like development and learning system for less than \$100...I don't see how you can go wrong with Coherent."
-David Fiedler, BYTE Magazine, November 1990

EXPERIENCE, SUPPORT

 AND A 60-DAY MONEY BACK GUARANTEE.Wondering how something as good as Coherent could come from

NEW COHERENT RELEASE 3.1

 NOW WTTH...-elvis: vi editor clone
-SCSI (Adaptec AHA 154x series and more on the way.) and ESDI support
-UUCP Bulletin Board System
-RAM disk support
-And much, much more!

OVER 10,000 SATISFIED USERS!

nowhere? Well it didn't. It came from Mark Williams Company, people who've developed C compilers for DEC, Intel, Wang and thousands of professional programmers.

We make all this experience available to users through complete technical support via telephone. And from the original system developers, too!

Yes, we know \$99.95 may still be hard to believe. But we've made it fool-proof to find out for yourself. With a 60 -day money-back no-hassles guarantee.

You have to be more than just a little curious about Coherent by now. So why not just do it? Pick up that phone and order today.

You'll be on your way to having everything you ever wanted in UNIX. And for a lot less than you ever expected.

1-800-MARK WMS

(1-800-627-5967 or 1-708-291-6700)
FAX: 1-708-291-6750
60-DAY MONEY BACK GUARANTEE!

Mark Williams
Company
60 Revere Drive
Northbrook, IL 60062
*Plus shipping and handling. Coherent is a trademark of Mark Williams Company. UNIX is a trademark of AT\&T. XENIX is a trademark of Microsoft.

Triple Port DRAMs

Of Design Freedom

A New Wortimeora

super computer networks, satellite communication links or full-motion video frame buffers, you will be worlds ahead in speed and simplicity.

Enjoy your design freedom and stay on the leading edge by calling Micron at 208-368-3900.

Micron. Working to improve your memory.

Part \#	Organization	Speed	Package	Availability**
MT43C4257	$256 \mathrm{~K} \times 4$ DRAM	80,100,120	40 -Pin SOJ	Samp: Now
	512×4 SAMs	25,30,35		Prod: Mar 91
MT43C4258*	$256 \mathrm{~K} \times 4$ DRAM	80,100,120	40-Pin SOJ	Samp: Now
	512×4 SAMs	25,30,35		Prod: Mar 91
MT43C8128	$128 \mathrm{~K} \times 8 \text { DRAM }$	$80,100,120$	52.Pin PLCC	Samp: Now
	256×8 SAMs	$25,30,35$		Prod: 2Q91
MT43C8129*	$128 \mathrm{~K} \times 8$ DRAM	80,100,120	52-Pin PLCC	Samp: Now
	256×8 SAMs	25,30,35		Prod: 2Q91

*Provides SAM stop address input * Call for military availability

Inductive Components for ISDN

Success through new materials

Do you need signal transformers for S_{0}-interfaces or common mode chokes for RFI suppression, maybe for applications in consumer terminal equipment or terminal adaptors or for network terminal devices or extension equipment? Contact us immediately if you intend to be more successful than your competitors. Using our ISDN purpose developed core materials as a basis we offer:
a reduction in volume up to 50\% achieved through new high permeability core materials

- considerably improved assembly and cost-effectivity achieved through module design
- components meeting technical specifications as, e.g. in CCITT, FTZ, BABT and CNET
high insertion losses in the frequency range specified
Forward your individual requirements right away. You won't have to wait long for our solution.

VACUUMSCHMELZE GMBH

186 Wood Avenue South • Iselin, N.J. 08830 完 (201) 494-3530 [Fax (201) 3213029 Tx] 4900006431
Grüner Weg 37, D-6450 Hanau . 露 (**49) 6181/38-0. Fax (**49) 6181/38-2645. Tx 4184863 vac d

ISDN from A to Z

The ISDN Sourcebook. 607 pgs ; \$225. Information Gatekeepers Inc, Boston, MA, 1990.

The Basics Book of ISDN. 48 pgs; Free. Codex Corp, Mansfield, MA, 1990.

ISDN Design: A Practical Approach, by Steve Hardwick. 152 pgs; \$34.95. Academic Press, San Diego, CA, 1989.

The ISDN Sourcebook contains plenty of information for both ISDN aficionados and neophytes. Starting from an explanation of what the Integrated Services Digital Network is, the 607 -page soft-cover book progresses through a brief description of the international, US governmental, and US nongovernmental organizations involved in specifying or implementing ISDN.

The guide contains a bibliography covering ISDN literature from 1982 to 1988. Also included in the bibliography are references to Bellcore publications; a listing of company, professional-society, and tradejournal special issues on ISDN; and a directory of publications that focus on ISDN.

Another chapter provides insight into the current worldwide status of ISDN. Two chapters enumerate the US companies that implement ISDN and provide a list of mostly US suppliers of ISDN equipment, software, and services. The book also contains a section devoted to ISDN applications. A telecommunications calendar lists events from 1990 to 1998 . Not surprisingly, the calendar is heavily weighted toward the present and lists no events for 1995 to 1997. The final $23-\mathrm{pg}$ chapter is a somewhat self-serving description of the numerous ISDN publications of the book's publisher, Information Gatekeepers.

The book concludes with 17 appendices, which include information ranging from a description of US
and foreign tariffs and services to user-forum and study-group recommendations. Unfortunately, many of the pages in the appendix are photocopies and, occasionally, are of too poor quality to be of much use.

One item missing from The ISDN Sourcebook is a comprehensive glossary. Although short, partial glossaries are included in some of the appendices, the book doesn't contain a thorough dictionary of terms. Otherwise, the publication is a useful, detailed guide to most anything you'd ever want to know about the Integrated Services Digital Network.

The Basics Book of ISDN, which the Codex Corp publishes and distributes free of charge, is a short, light approach to ISDN. The short book-or long pamphlet-explains how you can assess your communications needs and how ISDN might fit into your plans. With the exception of one chapter that discusses ISDN products and equipment, you can even read the text without an ISDN glossary.

Although ISDN texts tend toward the incomprehensible, some clear, understandable design books do exist. One such text is ISDN Design: A Practical Approach, by Steve Hardwick. The book is tailored for managers who evaluate the ISDN marketplace. It starts with a mostly acronym-free introduction to ISDN and progresses to cover standards, ISDN terminals, exchanges, and software. With the current emphasis on design for testability, the chapter on testing ISDN systems is timely. The conclusion looks at a company's decision to build ISDN products. This source comes up short, though, in its optimism for the ISDN marketplace. Although ISDN has been the technology of the future for several years now, the book ignores the arguments for and against ISDN's ultimate success.

-Michael C Markowitz

CIRCLE NO. 14

Get five times faster throughput from NEC K-Series ${ }^{\text {N }}$ microcomputers.

As a developer of real-time control systems, you know that designing in a faster CPU is not enough. You also need intelligent I/O management for the best possible system throughput.

NEC's K-Series ${ }^{\text {tw }}$ microcomputers are perfect for real-time control designs requiring multitasking, such as automotive control, ISDN and computer peripheral controllers.

Peripheral Management Unit ${ }^{\text {W }}$

The K-Series' unique architecture includes a revolutionary Peripheral Management Unit ${ }^{\text {w" }}$ macro service for nonstop instruction execution while processing up to 16 I/O requests at the same time. By designing in the K-Series microcomputer, you can improve your system throughput by as much as 5 X .

The K-Series 8 -bit and 16 -bit microcomputers give you a realtime output port; an advanced counter/timer system; a highspeed, high-resolution A/D converter; and many other onchip intelligent peripherals.

Not since the invention of the hourglass has anyone come up with a more ingenious way to speed up silicon.

For fast answers, call us at:

Australia Tel:03-267-6355. Telex:38343. France Tel:1-3067-5800. Telex:699499.
France Tel:1-3067-5800. Telex:699499.
Germany Tel:0211-650302. Telex:8589960. Hong Kong Tel:755-9008. Telex:54561. Hong Kong Tel:755-9008. Telex:54561.
Ireland Tel:1-6794200. Telex:90847. Italy Tel:02-6709108. Telex:315355. Korea Tel:02-551-0450. Fax:02-551-0451. The Netherlands Tel:040-445-845. Telex:51923. Singapore Tel:4819881. Telex:39726. Spain Tel:1-419-4150. Telex:41316. Sweden Tel:08-753-6020. Telex:13839. Taiwan Tel:02-719-2377. Telex:22372. Taiwan Tel:02-719-2377. Telex:2237.
UK Tel:0908-691133. Telex:826791. USA Tel:1-800-632-3531. Fax:1-800-729-9288.

The K-Series provides you a worry-free upgrade path from the 8-bit K2 microcontroller family to the 16 -bit K3 devices. And your future designs will exploit the power of the light-ning-fast $125-$ ns K6, with realtime operating system in
microcode, and complete K3 software compatibility.

To learn more about the K-Series microcomputers with up to 1 K bytes of on-board RAM, 32 K bytes of ROM/EPROM, and Peripheral Management Unit coprocessing power, call now.

EDN's INTERNATIONAL ADVERTISERS INDEX

Recruitment Advertising 174-178
Allen-Bradley
Codex Corp
DSC Communications
Interphase Corp
Smarton Electronics
*Advertiser in US edition
**Advertiser in International edition

[^11] does not assume any liability for errors or omissions.

```
- New Series AV-
5 6 \text { Standard Models}
-100 VDC to 1000 VDC
    Output
```

- Ultra-miniature Size Weight: 4 Grams 0.1 Cubic Inch Volume
- Standard Input Voltages 5, 12, 24 and 28 Volts DC
- Operating Temperature Standard: $-25^{\circ} \mathrm{C}$ to +70 C Optional: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- MIL-STD-883 Screening Available

- Isolated: Input to Output

 up to 1500 VDCPICO also manufactures over 800 regulated and isolated DC-DC Converters and AC-DC Power Supplies and over 2500 standard ultra-miniature Transformers and Inductors.

453 N. MacQuesten Pkwy. Mt. Vernon, N. Y. 10552 Call Toll Free 800-431-1064
in New york call 914-699-5514

With our SL" connector system, design flexibility and cost savings are yours.

Automatically.

You'll find Molex SL connectors in some of the world's leading-and most dependablemakes of electrical and electronic equipment. Of course, reliability is a big reason for this preference.

But the versatility and lower applied cost that SL provides are critical factors, too, especially in systems with several interconnections.

Modular, stackable, and lower in profile, SL connectors give you virtually unlimited flexibility when you're designing wire-to-wire, wire-to-board, and ribbon cable systems.
The single-piece IDT connectors feature, preassembled terminals in the housings, and interconnects with locking shrouded headers. In short, they're ideal for high-speed, highefficiency automated assembly.
Ask your Molex representative about SL connectors, and learn how they can multiply design options and automate assembly.

Bringing People \& Technology Together, Worldwide ${ }^{\text {"M }}$

Exotic Customs at UDS

The special requirements of data communications OEMs have resulted in some pretty exotic custom modem cards from UDS.

Funny form factors are routine fare for our custom designers. Nooks, crannies and odd card configurations are no problem, given sufficient square inches of real estate. UDS engineers have even designed a complete 2400 bps modem that's the size of a credit card.

Non-standard modem functions are another specialty of the house. For example, UDS engineers have already designed and delivered a hand-held RF modem operating at 9600 bps !

For a generous sampling of UDS'custom design capabilities, ask for the new, free OEM modem brochure.

UDS has successfully handled more than 3,000 custom OEM modem design assignments - and we can handle yours. To begin an exotic custom, contact UDS, 5000 Bradford Drive, Huntsville, AL 35805-1993. Phone 205/430-8000; FAX: 205/430-8926.

FIPE

(A) MOTOROLA

NEW DUAL BOBBIN DESIGN TRANSFORMERS.

ONE-4-ALL ${ }^{\text {™ }}$ TRANSFORMERS FEATURE HIGH ISOLATION FOR TRIPLE OUTPUT REGULATED POWER SUPPLIES IN MICROPROCESSOR APPLICATIONS.

Once again, Signal "The American Original" comes through with a complete line of $50 / 60 \mathrm{~Hz}$ transformers for tripleoutput regulated supplies. These new "one-4-all" ${ }^{\text {rM }}$ transformers feature the same dual high-temperature bobbin construction and insulating shroud originally developed for the company's very successful International Series. Because they have high isolation and reduced interwinding capacitance characteristics, and require no electrostatic shield, the transformers are an ideal low noise alternative to multioutput switchers. They satisfy UL 506 requirements, and CSA safety and performance standards.

Offered in PC and chassis mount versions, the "one-4-all" has dual complementary outputs (± 15 VDC and $\pm 12 \mathrm{VDC}$) and additional isolated single output for +5 VDC with incircuit performance specs.
Signal transformers are available through Signal's PRONTO 24-Hour Off-the-Shelf shipment program. For additional technical data, contact Signal Transformer,

500 Bayview Avenue,
Inwood, N.Y. 11696.

BUY DIRECT

(516) 239-5777

Fax: (516) 239-7208.

PART NUMBER PRIMARY 50/60 Hz	DC OUTPUT		VA	PRICE
115/230V	Regulator 1	Regulator 2		
A41-25-512	5V@1.25A	$\pm 12 \mathrm{~V}$ @ 150MA	25	16.25
A41-25-515	5V@1.25A	$\pm 15 \mathrm{~V}$ @ 130MA	25	16.25
A41-43-512	5V@2A	$\pm 12 \mathrm{~V} @ 300 \mathrm{MA}$	43	20.75
A41-43-515	5V@2A	$\pm 15 \mathrm{~V}$ @ 250MA	43	20.25
A41-80-512	5V@3.5A	$\pm 12 \mathrm{~V}$ @ 600MA	80	28.50
A41-80-515	5V@3.5A	$\pm 15 \mathrm{~V}$ @ 500MA	80	28.50

PART MUMBER PRIMARY 50/60 Hz	DC OUTPUT		VA	PRICE
115/230V	Regulator 1	Regulator 2		
14A-20-512	5V @ 750MA	$\pm 12 \mathrm{~V}$ @ 200MA	20	15.00
14A-20-515		$\pm 15 \mathrm{~V}$ @ 175MA	20	15.00
14A-30-512	5V@1.25A	$\pm 12 \mathrm{~V}$ @ 250MA	30	17.75
14A-30-515	5V@1.25A	$\pm 15 \mathrm{~V}$ @ 200MA	30	17.25
14A-56-512	5V@3A	$\pm 12 \mathrm{~V}$ @ 300MA	56	21.00
14A-56-515	5V@3A	土 15V @ 250MA	56	21.00

Dimensions							Terminals	ment. Style	Mty.		mtg. Screw	Lbs.
VA	1	W	H	A	B	C			ML	MW		
25	213/16	11/6	25/16	2	11/8	5/18	3/16(.187)	C	23/6	-	\#6	1.25
43	31/8	21/16	211/16	$21 / 6$	11/8	5/16	3/16(.187)	c	213/16	-	\#6	1.6
80	$21 / 2$	23/6	3	-	13/8	5/16	3/16(.187)	8	2	$23 / 16$	\# 6	2.8

Dimensions								Pin Dimensions	Mty.			Mtg. Screw		Lbs.
VA	1	W	H	A	B	C	0		1	N	P	Sizs	Quantity	
20.0	21/4	11/3	15/8	. 400	. 400	1.460	. 200	0.03880	11/2	-	-	\#4	2	0.90
30.0	25/8	23/16	17/16	. 550	. 275	1.680	. 275	0.04550	-	13/4	23/16	\#6	4	1.15
56.0	3	$21 / 2$	13/16	. 600	. 300	1.900	. 300	0.04550	-	2	21/2	\#6	4	1.70

[^0]: EDN ${ }^{5}$ (ISSN 0012-7515) is published 48 times a year (biweekly with 2 additional issues a month, except for February which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President Frank Sibley, Senior Vice President/General Manager, Boston Division; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\circ}$, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{*}$ copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$109.95/year; Canada/Mexico, \$135/year; Europe air mail, \$165/year; all other nations, \$165/year for surface mail and \$250/year for air mail. Single copies are available for $\$ 10$. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Home Furnishings \square and Interior Design. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^2]: Pioneering Solutions for Embedded Control

[^3]: PCO Inc
 20200 Sunburst St
 Chatsworth, CA 91311
 (818) 700-1233

 Circle No. 724

 Siemens
 Fiber Optic Components
 3846-A First Ave
 Evansville, IN 47710
 (800) 827-3334

 Circle No. 725

[^4]: O 1991 Conner Peripherals, Inc

[^5]: From the book, An Implementation Guide to Real-time Programming, by David L Ripps, ISBN, 0-13-451873-X, © 1989. Excerpted by permission of Prentice-Hall Inc, Englewood Cliffs, NJ.

[^6]: short int curval;
 short int mask;
 long int access;
 long int stabuf;
 /*local copy of EFG*/
 /*AND mask for EFG*
 /*zero-length message for access to EFG^{*} /
 ${ }^{*}$ status of service call*/
 $/^{*}$ make length of access message $0^{*} /$
 do
 revmbx (MB1, \&access, \&stabuf,WAIFIN); /*gain access to EFG*/
 curval = values; $\quad /^{*}$ capture value*/
 sndmbx (MB1,\&access,0L,\&stabuf,CTUNOC); /*release access*/
 \}
 while ((curval \& mask) != mask);

[^7]: Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional $\$ 100$ and become eligible for the annual $\$ 1500$ Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

[^8]: ©1991 Cirrus Logic, Inc., 3100 West Warren Avenue, Fremont, CA 94538 (415)623-8300; Japan: 462-76-0601; Singapore: 65-3532122; Taiwan: 2-718-4533; West Germany: 81-52-2030/6203

[^9]: Australia (02) 654 1873, Austria (0222) 387638 , Benelux +31 1858-16133, Canada (514) 689-5889, Denmark (42) 6581 11, Finland $90-452$ 1255, France (01)-69 4128 01, Great Britain $0962-733140$, Hungary 01-137 2182, Israel (03) 4848 32, Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portugal (01) 8150 454, Sweden, Norway (040) 9224 25, Singapore (065) 284-6077, Spain (93) 217 2340, Switzerland (01) 7404105 , Taiwan (02) 7640215, Thailand (02) 281-9596, West Germany 08131-25083, Yugoslavia 061-57 1949

[^10]: *Byte Execl benchmark, 1000 iterations on 20 MHZ 386. Hardware requirements: 1.2 meg $51 / 4^{\prime \prime}$ or 1.4 meg $31 / 2^{\prime \prime}$ floppy, and hard disk. Does not run on Microchannel machines.

[^11]: This index is provided as an additional service. The publishe

