

Portable PCs tackle instrumentation tasks
Cross-debuggers
Designers' Guide to bridge circuits-Part 1
pg 161
Real-time programming series—Part 4
pg 193

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Choose from a wide selection of

 ROMs, EPROMs, EEPROMs and PROMS.Talk about fond memories. With Fujitsu's full line of CMOS and bipolar non-volatile memories, you've got a choice that includes ROMs, EPROMs, EEPROMs and PROMs. Plus all the packaging options you can think of. Now that's worth remembering.

Take our low-power CMOS ROMs, for example. You get densities up to 16Mbits. Plus we're also developing a very high -density 32Mbit device.

But density alone isn't enough. Which is why our ROMs also come in both standard and high-speed veirsions as fast as 150 ns . With blazingly fast 100 ns devices just around the corner.

When it comes to EPROMs, we've got the broadest selection in the industry. With densities ranging from 64 K to 4Mbits. And speeds up to 150 ns.

But the future is always faster. Which is why our 1Mbit device will soon operate at speeds of 55 ns and 100 ns .

What's more, our 1Mbit and 4Mbit devices are available in x 8 and x 16 configurations for your most advanced applications.
 reliability. Which makes Fujitsu the one supplier to always keep in mind.

We've utilized thin-oxide and CMOS technologies in our entire EEPROM product line to provide you with the highest quality and reliability.

Just take a look at the numbers. A failure rate of less than $.0004 \%$ per 1000 hours. And erase/write cycles of 10,000 minimum and over 100,000 typical. That's reliability.

As for PROMs, it's no secret that Fujitsu devices range from 256 bits to 128 K . But now our PROMs are even better. Because our unique new BiCMOS technology increases speed and densities and lowers power consumption.

Both the 128 K device, which clocks in at 35 ns , and our soon-to-be-announced 256 K device, which will run at 25 ns, are the fastest PROMs on the market in these densities.

All in all, when it comes to non-volatile memories, only Fujitsu gives you the choice. If you'd like to know more, call 1-800-642-7616. And take a stroll down memory lane.

Introducing
 the complete line of non-volatile memories from Fujitsu.

Take a walk down
 memory lane.

v

A NEW G-mat 386SX INDUSTRIAL COMPUTER

COMPACT

An industrial computer small enough to fit in the palm of your hand makes big sense for space-conscious applications.

InDUSTRIAL

An STD/STD $32^{\text {TM }}$ format designed for harsh environments, with options for multiprocessing, networking and industrial $1 / 0$.

Free Brochure

FAX $805 \cdot 541 \cdot 5088$
Telephone 805.541-0488
© Copyright 1990 by Zlatech Corporation. All rights reserved.
Circle No. 1

Embedded AT

The CAT computer pictured above includes the following features:

- 386SX CPU with 4 Mbyte Memory
- 40 Mbyte Hard Disk Drive
- 1.4 Mbyte Floppy Disk Drive
- Solid State Disks
- VGA/Keyboard Interface
- Industrial BIOS
- 100\% AT- and STD-compatible
- DOS-, OS/2- and UNIX-compatible
$=\|$ anden conforantion

Maximum IEEE-488.2 Performance... and the Foundation for the Future

- FIFO Buffers
- Last-Byte Handling
- Byte/Word Packing
- 1 Mbytes/sec Rates

- 100\% IEEE-488.2
- NEC μ PD7210 Compatible
- TI 9914A Compatible
- 20 MHz Clock Input

The AT-GPIB

Custom Chips - Bringing state-of-the-art technology to you is why we've been the leader in the IEEE-488 (GPIB) market for over 14 years. Our latest AT-GPIB board for the PC/AT computer combines the functionality of our new IEEE-488.2 controller chip, the NAT4882 ${ }^{\text {TM }}$, and the performance enhancements of our Turbo488 ${ }^{\text {M }}$ ASIC to provide 100% IEEE-488.2 compatibility, $1 \mathrm{Mbytes} / \mathrm{sec}$ read and write data rates, and significantly reduced software overhead.

Enhanced Software - The performance and functionality of our Ni-488 sottware has made it the de facto industry standard. The new NI-488.2 is compatible with NI-488 when using either HewlettPackard commands or high-level functions with popular compiled languages. A complete 488.2 controller command set, dynamic configuration, and compatibility with extended memory are but a few of the enhancements.

IEEE-488.2 and SCPI - IEEE-488.2 is the foundation of the new Standard Commands for Programmable Instrumentation (SCPI) and of the new generation of GPIB test systems. The NAT4882, AT-GPIB, and our enhanced N $\mathrm{N}-488.2$ software are the tools of the 90's. But the NAT4882 is also completely compatible with both the NEC μ PD7210 and TI 9914A chips of the 80 's.

A Sound Investment - You can still run your existing NI-488 programs yet automatically take advantage of the NAT4882, Turbo488, and the streamlined $\mathrm{NI}-488.2$ driver. The state-of-the-art technology of the AT-GPIB with its maximum specified data rates for both reads and writes and its complete 488.2 compatibility ensures that your GPIB investment will not be obsolete because of the new instrumentation standards.

Take advantage of these technologies and standards to make your IEEE-488 control problems a thing of the past.
Nihon National Instruments K.K. (Japan) (3) 788-1922 • National Instruments of France (1) 4865-3370 National Instruments of Italy (2) 4830-1892 • National Instruments United Kingdom (06) 355-23-545

Get a handle on power supply design.

 PWM Controller from Siliconix. The easy, affordable way to create more efficient designs for low power systems.The Si9120 PWM controller handles inputs from 50 V to 450 V . That's why it's the first IC ideally suited for 85 - to 265 - Vac input power supplies found in laptops, modems, battery chargers, and other products requiring maximum efficiency.

The easy-to-design-with Si9120 provides internal startup circuitry to allow direct connection to a rectified ac line. And it lowers part count, raises reliability, and improves noise immunity.

All for $93 \not \subset$.

Parameter	$\mathbf{S i 9 1 2 0}$	$\mathbf{3 8 4 4 / 5}$
Start-up Circuit Power Dissipation	0.004 W	1.400 W
Supply Current	1.5 mA	17.0 mA
Reference Accuracy	$\pm 2.0 \%$	$\pm 3.2 \%$
Current Limit Delay Time	150 ns	300 ns

Design more efficiency into your low power systems! Ask for our Si9120 Design Kit. Call our toll-free hotline now! 1-800-554-5565, ext. 954.

2201 Laurelwood Road, Santa Clara, CA 95054

Our new function generator has all the bells and whistles.

In fact, it has any kind of waveform you can imagine. Because the Model 95 combines a high performance function generator with a powerful arbitrary generator.

As a function generator, Model 95 produces remarkably pure square waves, triangles and sines, from 1 mHz to 20 MHz with synthesized accuracy up to 0.001%. It has
the power to output $15 \mathrm{Vp}-\mathrm{p}$ into 50Ω, and includes sweep, pulse and modulation modes plus four user-selectable output impedances. There's even an internal trigger generator for trigger, gate and burst.

If you'd rather be arbitrary, Model 95 gives you up to 128 k of waveform memory to work with, and a sample rate of 20 MHz . Four different editing
modes help you produce even the most complicated wave shapes quickly and accurately, while analog and digital filters allow you to create the purest output possible.

For information about all the other bells and whistles you'll find on the Model 95, call Wavetek San Diego, Toll Free at 1-800-874-4835 today.

On the cover: When it comes to purchasing digital storage oscilloscopes, you don't have to sacrifice performance for price. But to get the right low-cost DSO for your application, you should carefully consider each instrument's features. See the Special Report on pg 144. (Photo courtesy Tektronix Inc)

TEST \& MEASUREMENT SPECIAL ISSUE

 SPECIAL REPORT
Low-cost digital storage oscilloscopes

Low-cost DSOs show steady improvements in bandwidth, sample rate, and measurement features. Products vary widely, so you'll have to shop carefully to get the features you need.-Doug Conner, Regional Editor

DESIGN FEATURES

Designers' guide to bridge circuits—Part 161

Bridge circuits are among the most elemental and powerful electrical tools. They are used in measurement, switching, oscillator, and transducer applications. This guide will help you choose the most appropriate circuit for your application. Part 1 of this 2-part series discusses de and pulsed methods for bridge-circuit signal conditioning. Part 2 will discuss ac signal-conditioning methods.-Jim Williams, Linear Technology Corp

Boost instrument-amp CMR with common-mode-driven supplies

Instrumentation amplifiers are finding increasing application in today's complex systems. Minor modifications can yield significantly better performance by improving common-mode rejection. In addition, these changes may let you use low drift amplifiers. $-R$ Mark Stitt, Burr-Brown Corp

Real-time programming-Part 4

In constructing a requirements model, you should strive to make it independent of the specific methods that might be employed to achieve the requirements. Once you come to design an implementation model, however, you want to reveal the methods so that they can be analyzed and ultimately coded. The remainder of this series is concerned with implementation. This part of the series is devoted to the central issue of the implementation model: tasking.-David L Ripps, Industrial Programming Inc

$$
\text { Continued on page } 7
$$

[^0]```
FLபKKE.
\begin{tabular}{|c|c|c|}
\hline FLUKE 73 & FLUKE 75 & FLUKE 77 \\
\hline \$79* & \$119* & \$159** \\
\hline Analog/Digital display & Analog/Digital display & Analog/Digital display \\
\hline Volts, ohms, 10A (fused), diode test & Volts, ohms, 10A \& mA (both fused), & Volts, ohms, 10A \& mA (both fused), \\
\hline \(0.7 \%\) basic dc accuracy & \(\frac{\text { diode lest }}{0.5 \% \text { basic dc }}\) & diode lest \\
\hline 2000 + hour & accuracy & accuracy \\
\hline battery life & Audible continuity & Touch Hold \({ }^{\text {® }}\) \\
\hline 3 -year warranty & Autorangeirange hold & Audible continuity \\
\hline & \[
2000+\text { hour }
\] & Autorangeirange hold \\
\hline & battery life & \[
2000+\text { hour }
\]
battery life \\
\hline & & Multipurpose holster \\
\hline & & 3 3-year warranty \\
\hline
\end{tabular}

\section*{-Suggested U.S. list price}

You can now combine the maturity of the PC-based instrumention field with the convenience of portability to work beyond the confines of the lab (pg 59).

\section*{EDN magazine now offers} Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how
to use this free service.

Expressı॥ Request

\section*{TECHNOLOGY UPDATES}

Portable PCs tackle instrumentation tasks
Now that PCs have moved beyond the office to the lab, portable PCs are entering the next instrumentation frontier: the real world. -Richard A Quinnell, Regional Editor

\section*{HLL cross-debuggers:}

\section*{Cross-debuggers verify high-level programs}

Cross-debuggers are so much better than they used to be that now you can thoroughly test-not just debug-each element of your program at every stage of its development.-Charles \(H\) Small, Senior Editor
Brawny amps stretch small-signal limits 95
Op amps that operate at voltages beyond the traditional \(\pm 15 \mathrm{~V}\)supply span, and that supply \(>100-\mathrm{mA}\) load current, eliminate theneed for buffers and boosters.-Bill Travis, Contributing Editor
Electronica 90 Products 107
EDITORS' CHOICE
C + + software development tool 129
PRODUCT UPDATES
Low-cost industrial PC family 130
Dual-channel VMEbus, audio-interface board 134
VMEbus-compatible CPU 136
Rugged, nonvolatile data card 139Continued on page 9

\footnotetext{
Cahners Publishing Company, A Division of Reed Publishing USA \(\square\) Specialized Business Magazines for Building \& Construction \(\square\) Research \(\square\) Technology \(\square\) Electronics \(\square\) Computing \(\square\) Printing \(\square\) Publishing \(\square\) Health Care \(\square\) Foodservice \(\square\) Packaging \(\square\) Environmental Engineering \(\square\) Manufacturing \(\square\) Entertainment \(\square\) Home Furnishings \(\square\) and Interior Design. Specialized Consumer Magazines for Child Care \(\square\) Boating \(\square\) and Wedding Planning.
}

\section*{IURNAFEW Dothir 180Acogt}

(!!!!!!!!!!!!!!!!!!!!!!!i!!

> SPARC Embedded RISC. 18 MIPS.

Embedded control challenge of the 90s:
Applications are increasingly burdened with the overhead of friendliness. Even so, users expect everything to happen immediately, if not sooner.

As a result, applications with embedded microprocessors need more computing power than ever. Our CY7C611 SPARC RISC controller gives you the power to create, at a price that fits your application.

It performs. At 25 MHz , our CY7611 delivers 18 sustained MIPS.

It handles interrupts brilliantly. Asynchronous and synchronous traps let you jump to trap routines with 200 ns worst case response. 16 prioritized interrupt levels let you tailor your application. You get 13632-bit registers that you can divide into register banks for fast context switching.

It has hooks. Connect our CY7C602 concurrent floating point unit for 5 MFLOPS. Use our CY7C157 Cache SRAM for a zero wait state memory system.
*1-(800) 387-7599 in Canada. (32) 2-672-2220 in Europe. ©1990 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0753. Trademarks: SPARC-Sun Microsystems, Inc.

Use our CY7C289 512K PROM for glueless, virtually waitless program storage.

It is extendable. You get a large address space, and support for multitasking and multiprocessing.

It is affordable. We're talking a few dollars per MIPS.
And it is SPARC. You can choose from a multitude of SPARC platforms to operate as native development platforms. You work with the world's most popular RISC architecture. You can expect faster evolutions, to keep your design current well after it is designed.

The whole story - from data sheet to User's Guide is yours for a fast, free phone call.

Free SPARC RISC User's Guide. Hotline: 1-800-952-6300** Ask for Dept. C4K.

\section*{Test yourfastestprototypeASICsfor}

\section*{Finally, a 400 MHz IC} Evaluation System.
Before you send those fast ASIC designs off to production, make sure they'll handle the stress of real-world operating conditions.
Now, that's possible-even for GaAs, ECL, and BiCMOS devices-with the new 400 MHz , HP 82000 IC Evaluation System. It's a testing breakthrough . . .

a 400 MHz vector rate on all channels and up to 512 pin capacity. Finally, you can verify and characterize complex prototype ASICs to their limits. Which means you'll send fast ICs to production with the confidence that they won't return for time-consuming and expensive redesign.

You can even go a step further. Its high-throughput software lets you efficiently test small

batch production runs, too.
And because all the systems in the HP 82000 family are modular, you can expand from 50,100 , or 200 MHz to 400 MHz as your needs change. This protects your original investment.
So call 1-800-752-0900* today. Ask for Ext. 1615 and we'll send the details on giving those fast ASICs a real-world test. Before you pass them on to production.

There is a better way.

\section*{Design With Analog Work You Wont Have To Manufac}

\section*{\(G_{0}\) ahead, explain it.}

Tell them how small variations in component tolerances, process parameters and operating temperatures can cause an analog design to fail in manufacturing. Or worse yet, in the field. Even though it worked in the lab or in SPICE.

That's a problem Valid can help you avoid. As the leading supplier of analog EDA systems, we understand how downstream factors can sabotage your analog circuits.

That's why our Analog Workbench II provides the most complete selection of in-process analysis tools. So you
 can dramatically improve the quality, reliability and manufacturability of your analog ASICs or boards.

Choose from sophisticated tools like parametric, worst case and sensitivity analysis to identify critical design dependencies. Advanced statistical analysis to predict and optimize manufacturing yields. And Smoke Alarm \({ }^{\text {mw }}\) stress analysis to ensure that components stay within safe operating limits.
All analyses support DC as well as AC and transient measurements. And with Valid's unique Distributed Network Processing option, you can automatically partition compute-intensive runs across a network of workstations. Providing desktop performance of 100 MIPS or more, to give you more time to refine your design.

Analog Workbench II delivers all this capability in an integrated, easy-to-use environment that ASIC Technology \& News calls "a designer's dream."* With smooth inter-tool communication, underlying framework support and familiar lab-like operation.

Best of all, Analog Workbench II supports a complete front-to-back analog design process. Including systemlevel function blocks for top-down design. The world's largest analog component libraries. And tight integration with IC or PCB physical design tools.

It's all part of Valid's Process Integration Architecture, the industry's most practical and comprehensive approach to concurrent engineering.

For more information, call 1-800-48-VALID today. We'll take the excuses out of your next analog design.

\section*{ALID}

The Best Tools, The Best Process.

\section*{C}

\section*{prague}

for your tantalum capacitors.
your Sprague sales representative or distributor. For our TA-100 tantalum capacitor catalog, write: Technical Literature Service, Sprague Electric Co., P.O. Box 9102, Mansfield, MA Q2048-9102.

In the U.S. call 1-800-SPR-0800. In Europe:

Sprague Electric (U.K.) Ltd. Tel. 293-51-7878
Sprague France S.A.R.L
Tel. (1) 45-47-6600
CIRCLE NO. 209

Sprague Benelux, Belgium Tel. 55-21-5322
Sprague Elektronik GMBH,
W. Germany

Tel. 069-609-0050
(\%)SPRAGUE

\section*{A MILLION TRANSISTORS ON A UNTIL YOU CONTEMPLATE AN}

\section*{MICROPROCESSOR IS IMPRESSIVE, SRAM WITH SIX TIMES AS MANY.}

The recently introduced Samsung 1-meg SRAMs have a transistor count of 6.6 million.

In a day and age when makers of advanced microprocessors take understandable pride in the 1 million transistors on their chips, we think it's forgivable for us to be proud of the vastly greater number on these SRAMs.

They're among the most difficult of all semiconductors to produce, and only a few manufacturers can make them.

We offer the 1-meg slow SRAM in several speeds, several power ratings, and several package types. We're currently developing the part in the revolutionary TSOP packaging.

All those things-plus forthcoming high-density fast and ultra-fast SRAMs, plus additional slow parts for main store and buffer applications-give you an
idea of Samsung's commitment to this demanding technology.

Besides the 1-meg slow SRAM, in the main-store and buffer areas we'll sample next year a l-meg fast static RAM family, and go into production with a 1-meg pseudo-SRAM.

THE SAMSUNG I-MEG SRAM
Speeds: \(70^{\circ}, 85,100,120 \mathrm{~ns}\).
Package types: TSOP \({ }^{\circ}\), DIP, SOIC.
Power ratings: Low-low \({ }^{\circ}\), low, standard.
Organization: 128K x 8.
For information on the 1-meg SRAM or our 1-meg pseudo-static, write today to SRAM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134. Or call 1-800-669-5400, or 408-954-7229.

After all, the best way to contemplate the 6.6 million transistors on the part, is to get your hands on one.
- Available 1991. © Samoung Semiconductor, Inc., 1990.

CIRCLE NO. 210

\section*{FOR 75 YEARS WE'VE BEL IEVED OUALITY BEGINS RIGHT IN YOUR OWN BACKYARD.}

Zero defects. Statistical process control. Total quality management.

When James Cannon founded Cannon Electric in a shed behind his house in 1915, these terms didn't exist.

But the foundations for a solid business did. Because long before built-in quality became the talk of the industry, Cannon was designing quality into all of our connectors.

That commitment to innovative design, dependable products and unsurpassed customer service has paid off. Seventy-five years later, ITT Cannon has become an international supplier of electronic components, with manufacturing operations throughout North America, Europe and Asia, backed by employees dedicated to leading the industry we founded. You see, instead of just paying lip service to quality, we've invested millions of dollars guaranteeing the reliability of our products and service.

On the drawing board, our computeraided designs create innovative, costefficient solutions. On the factory floor, our precision manufacturing equipment employs statistical process controls. And in the testing lab, sophisticated techniques allow advanced material development and environmental performance evaluation.

The result? From commercial avionics and automotive electronics, to computer and medical equipment, our customers get first time, every time performance. From our components. And our people.

So if you expect more than ever from your suppliers, talk to the company that's ready to serve your needs.

ITT Cannon. We discovered the value of quality 75 years ago-right in our own backyard.

1851 East Deere Avenue, Post Office Box 35000
Santa Ana, CA 92705-5300
Phone: (714) 261.5300 Fax: (714) 757-8324/8301 Telex: (714) 655358
CIRCLE NO. 211

\author{
ITMTCannon \\ Discoverour strengths.
}

\section*{NEWS BREAKS}

\section*{600V IGBTs IMPROVE SWITCHING EFFICIFNCY BY 50\%}

International Rectifier (El Segundo, CA, (213) 772-2000) now offers its Ultrafast 600 V IGBT (insulated gate bipolar transistor) product line. These power transistors feature a 3 V saturation voltage spec, and offer a \(50 \%\) improvement in switching efficiency over existing IGBTs. IGBTs have a voltage-sensitive gate input (such as MOSFETs have) to what is essentially a bipolar transistor. This family of products offers continuous collector current specs ranging from 13A (IRGBCROU) to 55A (IRGPC50U) at \(\$ 4.65\) to \(\$ 22.09\) (1000). The family also includes 23 and 40A parts. Data sheets list an \(\mathrm{E}_{\mathrm{TS}}\) spec, which defines total switching energy loss at a specific current. The IRGBCLOU \(\mathrm{E}_{\mathrm{TS}}\) is 0.5 mJ and the IRGPC50U \(\mathrm{E}_{\mathrm{TS}}\) is 2.8 mJ at half rated current.-Maury Wright

\section*{MAC FAMILY TREE BEARS NEW FRUIT; PRICES CUT TO THE CORE}

Price has been a barrier for many potential users of Macintosh computers from Apple Computer (Cupertino, CA, (408) 996-1010). The introduction of three low-cost Macs is lowering that barrier, as are price reductions of \(\$ 1500\) and \(\$ 1000\) for the Mac IIcx and Mac SE, respectively.

The Mac Classic includes a SCSI port, the Apple Desktop Bus with keyboard and mouse, two serial ports, and a sound port. It costs \(\$ 999\) with lM bytes of memory, or \(\$ 1499\) with 2M bytes of memory and a 40M-byte hard-disk drive. The Mac LC offers color capability. It can use Apple's 12 -in. monochrome or RGB monitors without additional hardware. It can expand its color and grayscale palettes by adding a memory card. A Mac LC with 2M bytes of memory and a 40M-byte hard-disk drive costs \(\$ 2499\) and will be available in January 1991. The Mac IIsi includes a floatingpoint processor and one expansion card modeled after either Nubus or the 030 bus. It costs \(\$ 3769\) with 2M bytes of memory and a 40 M -byte hard disk.
-Richard A Quinnell

\section*{IN-CIRCUIT FMULATOR SERVICES TELECOMM PROCESSOR}

Long a supporter of Hitachi's 64180 processor family, Softaid Inc (Columbia, MD, (301) 964-8455) has introduced an in-circuit emulator for the 64180S, a telecomm version of the \(\mu\) P. The 64180S UEM-Series emulator can trigger on 131,072 breakpoints and allows you to define complex trigger conditions with as many as five levels. It can display trace data from its 4 k -word trace buffer in C, PL/M, or assembly language. A logic-analyzer mode captures trace data on each clock cycle instead of each machine cycle. The emulator also incorporates a real-time performance analyzer with 256 variable-width bins so you can root out those laggard chunks of code that always seem to gum up the works. With 128k bytes of emulation RAM, the emulator costs \(\$ 5495\). Larger memory options are available.-Steven H Leibson

\section*{FED DETECTION SYSTEMS FOLLOW YOUR PRODUCT}

An electrostatic discharge (ESD) detection system that mounts permanently or temporarily on circuit boards, assemblies, containers, or PCs is available from Zero Corp (Burbank, CA, (818) 846-4191). The unit has a l-in \({ }^{2}\) footprint. When it detects an ESD event, it latches on and changes the color of your LCD display. The unit remains latched until you reset it. Current beta test units have sensitivities of 500 to 800 V , and the manufacturer plans to expand the sensitivity range to 300 to 5000 V . Beta test units cost less than \(\$ 150\) each in small quantities.-Doug Conner

\section*{NEWS BREAKS}

\section*{NICd BATHTERIES MORE POWFRFUL THAN COMPETING PRODUCTS}

The growing popularity of portable equipment continues to force battery vendors to pack ever higher storage capacity in standard cell shapes. Gates Energy Products Inc (Gainesville, FL, (904) 462-3911) claims that several members in its Ultramax family of NiCd cells up the ante in rechargeable batteries by storing 50 to \(70 \%\) more charge than existing products. The AA-, Cs-, CsC-, and C-size batteries store 800, 2000,2300 , and 2800 mAhr , respectively. Two more family members, the \(4 / 5 \mathrm{Af}\) and D cells, match the highest capacities available for those two sizes: 1000 and 5000 mAhr, respectively. All cells in the line charge in 3 to 5 hours and accept a l-hour fast charge. The batteries cost \(\$ 1.25\) to \(\$ 6(250,000)\), depending on the cell size.
-Steven H Leibson

\section*{CONFERENGE SHOWCASES EASE OF TEST DEVELOPMENT}

Though much new hardware was introduced at the International Test Conference in Washington, DC, last month, many attendees thought that the stars of the show were the workstation-based test-development software packages shown by several automatic-test-equipment firms. Teradyne (Boston, MA, (617) 482-2700) has enhanced the Image software that runs on its A500 series of linear and mixed-signal device testers. LTX (Westwood, MA, (617) 461-1000) introduced a package called Envision, and Schlumberger (San Jose, CA, (408) 437-5129) announced software called ASAP. ASAP runs on the company's ITS 9000 family of sequencer-per-pin logic test systems, including the Typhoon, which the company is developing jointly with Motorola. Though there are significant differences among the packages, all of them let engineers develop IC test protocols by linking standardized tests from a library. The engineers can then customize the tests by clicking on a test icon to open a window that contains a form, for example. The form has blanks where engineers specify test conditions and limits. According to Bruce Webster, an applications engineering manager at Teradyne, semiconductor test engineers and ATE system developers have dreamed about such simplified test-development techniques for years. Only since the availability of workstations with high-resolution graphics and copious memory has the approach been practical.

On the hardware front, several companies were talking about integrated pinelectronics chips. Brooktree (San Diego, CA, (619) 452-7580) announced the Bt698 load/driver/dual-comparator for \(100-\mathrm{MHz}\) logic testing. The \(\$ 130\) (100) IC is fabricated with a complementary-bipolar process. It performs the functions of multichip hybrid circuits and discrete-component assemblies in less space, with less heat dissipation, with higher reliability, and at lower cost. Credence (Fremont, CA, (415) 657-7400) plans to sell its CMOS V-chip only as part of its test systems. Thanks to the chip, the firm's entire SC212 \(256-\mathrm{pin} 50-\mathrm{MHz}\) (pattern)/ \(100-\mathrm{MHz}\) (clock) VLSI tester is no larger than competitors' test heads. The system will sell for approximately \(\$ 2000\) per pin-roughly one-fourth the price of many VLSI testers. Shipments will start in the first quarter of 1991.-Dan Strassberg

\section*{STD BUS COMPUTER SUPPORTS MULTIPLE BUS-MASTER OPERATIONS}

You can use the ZT8901 from Ziatech (San Luis Obsipo, CA, (805) 541-0488) as a single-board computer in a standard STD-80 bus or for multiple bus-master operations using up to six additional ZT8901s on the STD 32-bus. The computer is based on the NEC V53 \(\mu\) P operating at 16 MHz . The processor is code compatible with 80286 s and offers up to \(20 \%\) higher throughput at the same clock rate. The board

\section*{40 MHz}

\section*{New PACEMIIPS Components - Less Space, Lower Cost}

\section*{First Again from the Production Leader in MIPS Architecture}

\section*{Now design your single-board RISC computer with three NEW Performance components: CPU/FPA R3400, PACEWRAP", \& BiCameral SCRAM.}

PACEMIPS' R3400
CPU/FPA in a CPU Socket
- \(40 / 33 / 25 \mathrm{MHz}\) operation
- Only 1.2 clock cycles/instruction
- Up to 33 MIPS and 11.6 MFLOPS
- 172 lead flat pack/144-pin PGA
- Full R3000A/R3010A functionality

\section*{PACEWRAP R3100}
- Replaces four R3020s and up to 24 other chips
- Eight-word-deep Write Buffer - with readback
- Programmable Read Buffer - to 32 words and matches refill
- Parity generation - allows use of main memory without parity
- Bus snooping support

BiCameral SCRAM Logic Diagram

BICAMERAL SCRAM
- Dual \(8 \mathrm{~K} \times 15\) or dual \(8 \mathrm{~K} \times 16\) high-speed SCRAMs
- Instruction and data cache on one chip
- On-Chip address latches
- Four BiCameral SCRAMs replace 16 8K x8 SRAMs \& 4 latches
- Available for up to 40 MHz CPU operation in early 1991

For more information or to order, call or write Performance Semiconductor, the Leading Volume and Speed Supplier of MIPS RISC components.
610 E. Weddell Drive, Sunnyvale, Ca 94089 Telephone: (408) 734-9000
supports up to 1 M bytes of onboard memory and has 48 digital I/O lines arranged as six 8 -bit ports with \(12-\mathrm{mA}\) current-sinking capability. The board also has two RS-232C/485 ports and a math-coprocessor socket.

When the computer is used in multiple bus-master applications, it requires an arbiter board, the ZT89CT39, to coordinate bus control. Any computer board can become the bus master and access STD-32 bus memory and I/O in a fixed or rotating memory scheme. Unlike the STD-80 bus, the STD-32 bus has signal lines defined for bus-master request, master acknowledge, and bus lock to support complete control of multiple bus-master operations. Multiple bus-master operations on the STD-80 bus require nonstandard signal assignments causing incompatibility with other STD-80 products. STD DOS, a ROM-based DOS that allows programmers familiar with PC DOS to develop applications quickly, supports the computer. Other software support includes STD ROM, for ROM-based non-DOS applications, STD LADDER, and VRTX 32 for real-time operations. Single boards are \$975.-Doug Conner

\section*{1-CHIP FAX MODEM ACFIEVES 14.4k-BPS OPERATION}

The \(\$ 60(10,000)\) R144EFX 1-chip fax modem from Rockwell International's Digital Communication Div (Newport Beach, CA, (714) 833-4600) achieves 14.4 k -bps transmissions over the public switched telephone network. The device is pin compatible with the company's 9600 -bps modem, thus simplifying hardware upgrades and fallback modes. This makes the IC compatible with existing Group 3 fax machines. -Steven H Leibson

\section*{VARIABLE-GAIN AMPLIFIER COMBINES LINEARITY AND LOW NOISE}

The NE5209 wideband variable-gain amplifier from Philips Components-Signetics (Sunnyvale, CA, (408) 991-4544) has a typical \(3-\mathrm{dB} 850-\mathrm{MHz}\) bandwidth, and can amplify signals by a few decibels out to 1.5 GHz . The amplifier's gain and attenuation adjustment is linear over the part's dynamic range, which is at least 60 dB at 200 MHz . The amplifier's noise increases by 0.6 dB for each 1 dB in gain. Previous devices had a l-dB noise increase with each decibel increase in gain. The amplifier includes internal compensation and doesn't need external networks to tune for a particular operating frequency. You control the amplifier's gain with a single 0 to 1 V dc voltage. The amplifier runs on 5 V and consumes 400 mA . Commercial temperaturerange devices (\(\$ 14.24\) (100)) and extended temperature-range versions (\$17.08 (100)) are available.-Anne Watson Swager

\section*{TWO NEW VERSIONS ADDED TO INSTRUMENTATION SOFTWARE}

National Instruments (Austin, TX, (512) 794-0100) has beefed up its softwareinstrumentation products for both the IBM PC and Apple Macintosh. The \(\$ 995\) Virtual Instrument Developer Toolkit for the company's \(\$ 695\) Labwindows package provides C-language extensions that add predefined user-interface objects to a programmer's repertoire. These objects include controls (pushbuttons, rocker and thumbwheel switches, and text-entry windows) and readouts (digital numeric displays, simulated LEDs, and waveform displays) that simulate the controls and readouts you generally find on real instrument front panels.

For its existing Apple Macintosh product, the company has introduced a \(\$ 495\) runtime version of its \(\$ 1995\) Labview 2 package. The package will run systems

\section*{NEWS BREAKS}
developed with Labview 2 but will not allow a user to edit the system's definition. The Labview 2 Run-Time System substantially reduces the cost of distributing multiple copies of systems developed with Labview 2.-Steven H Leibson

\section*{CPU BOARD HOSTS STACK-ORIENTED, 12-MHZ, 16-BIT \(\boldsymbol{\mu} \mathbf{P}\)}

The SC/FOX VMEbus CPU board from Silicon Composers (Palo Alto, CA, (415) 3228763) uses an 8- or \(12-\mathrm{MHz}\) RTX-2000 \(\mu\) P from Harris. The stack-oriented processor executes most instructions in a single clock cycle, including \(16 \times 16\)-bit multiplies. The board offers VMEbus slot-one master capability, and can operate in VMSbus slave mode as well. Other features include one parallel, one SCSI, and two RS-232C ports; 128k bytes of dual-ported static RAM and 32 k to 512 k bytes of single-ported static RAM; and 64k bytes of EPROM. The company includes its Forth development language in EPROM and software that supports Forth language development on a PC. A board with an \(8-\mathrm{MHz} \mu \mathrm{P}\) and 32k bytes of memory is available now for \(\$ 3695\).
-Maury Wright

\section*{FPGA COMPILER DELIVERS 20\% BFTTER GATE UTILIZATION}

Claiming a \(20 \%\) improvement in gate utilization from its updated FPGA compiler, Plus Logic (San Jose, CA, (408) 293-7587) has upgraded claimed gate equivalencies for its existing FPGAs. The software package responsible for this progress, Plustran 2.0, compiles schematics generated by several third-party schematic-drafting packages and behavioral descriptions written in several PLD description languages into gate layouts for the company's programmable parts. This latest version of the compiler costs less than \(\$ 2800\) and runs on high-end IBM PCs and Sun workstations. -Steven H Leibson

\section*{ACTIVITY-SCHEDULING PROGRAM ORGANIZES PROJFCTS}

If complex engineering projects require you to keep track of multiple meetings, tasks, and phone calls, you may be able to simplify and organize your work by using ACT 2.0 from Contact Software International (Carrollton, TX, (214) 418-1866). This \(\$ 395\) program includes an activity calendar, word processor, spell checker, alarm, telephone database, autodialer, calculator, and query capability. Its drop-down menus let you customize 29 data fields, generate form letters and expense reports, manage lists, access reference libraries, and conduct key-word or criteria searches. It maintains a data log for each person you contact and uses alarms to help you stay on schedule.-J D Mosley

\section*{YET ANOTHER ELEGTRONIC CAD VENDOR JOINS THE PLD CAUSE}

Chalk up another win for logic-compiler vendor Minc Inc (Colorado Springs, CO). Valid Logic Systems (San Jose, CA, (408) 432-9400) has integrated Minc's PLD and PGA design packages into its Logic Workbench tool kit. The tools, called SystemPLD and SystemPGA, allow you to insert fully defined PLDs and PGAs into your schematics so that you can perform thorough system simulations on your entire design. You can use schematics, behavioral descriptions, waveforms, state-machine descriptions, truth tables, and Boolean equations to define the programmable parts, and you can combine several methods within the same schematic. SystemPLD costs \(\$ 13,500\) and SystemPGA, which incorporates SystemPLD, costs \(\$ 19,500\). -Steven H Leibson

\title{
2 grams of ceramic and 18 inches of wire can't make you more competitive.
}

There's only one real reason to specify Dale \({ }^{\circledR}\) wirewound resistors: We'll work harder turning something common into something uncommonly valuable. Up front, that means saving you selection time by producing every standard shape and size in the book. Plus, we give you immediate access to design assistance and a wide range of proven special products.

It means factory and distributor stocking programs that can be quickly fine-tuned to your Just-InTime delivery programs.

And, it means making reliability

\section*{Dale Can.}

the least of your worries with wellestablished Statistical Process Control and Quality Assurance systems to give you ship-to-stock capability.

Dale wirewound resistors.

They're not commodities - they're the power you need to help make your products more competitive. Contact your Dale Representative or Distributor, or phone: 402-563-6506. Dale Electronics, Inc., 1122 23rd Street, Columbus, NE 68601-3647.

\title{
RFTRANS \\ Over 50 off-the-shelf models...
}

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific frequency range?... Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series. Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types.
Available for immediate delivery with one-year guarantee.
Call or write for 68-page catalog or see our catalog in EEM, or Microwaves Product Data Directory.
*units are not QPL listed
finding new ways setting higher standards
case styles
T, TH, case W \(38 \times 65\) bent lead version, KK81 bent lead version TMO, case A \(11+\) case B 13 FT, FTB, case H 16 NEW'TC SURFACE MOUNT MODE' S from 1 MHz to 1500 MHz

NSN GUIDE
MCL NO. NSN
FTB1-1-75 5950-01-132-8034 FTB1-6 5950-01-225-8773 T1-1 5950-10-128-3745 1-1T 5950-01-153-0668 T2-1 5950-01-106-1218 T3-1T 5950-01-153-0298 T4-1 5950-01-024-7626 T9-1 5950-01-105-8153 T16-1 5950-01-094-7439 TMO1-1 5950-01-178-2612

\section*{MCL NO. NSN}

TMO2-1 TMO2.5-6 TMO2.5-6T TMO3-1T TMO4-1 TMO4-2 TMO4-6 TMO5-1T TMO9-1 TMO16-1

5950-01-183-6414 5950-01-215-4038 5950-01-215-8697 5950-01-168-7512 5950-01-067-1012 5950-01-091-3553 5950-01-132-8102 5950-01-183-0779 5950-01-141-0174 5950-01-138-4593

T, TH, TT bent lead version style X 65

\title{
Signetics. Because com isn't just a product
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{COMPUTING} \\
\hline APPLICATION & PRODUCT & APPLICATION & PRODUCT & APPLICATION & PRODUCT \\
\hline Workstations & \begin{tabular}{l}
- Advanced BiCMOS Logic (ABT) \\
- High-Speed ASICs \\
- Futurebus + Chip Set \\
- High Speed PAL \({ }^{\text {© }}\)-type Devices \\
- High Performance MCUs
\end{tabular} & Desk Top Video
Personal Computers & \begin{tabular}{l}
- Video Data Converters \\
- Digital Color Decoders \\
- High Density ASICs/PLDs \\
- DRAM Controllers \\
- OTP EPROMs \\
- FLASH Memory
\end{tabular} & Peripheral Products & \begin{tabular}{l}
- 8-bit 80C51-based MCUs \\
- Zero Power PLDs \\
- Programmable \\
Sequencers \\
- 3-State ECL Transceivers
\end{tabular} \\
\hline
\end{tabular}

\section*{puting performance of your engine.}

\section*{WITHOUT THE RIGHT SELECTION OF ICs, YOUR CPU COULD BE DEAD IN ITS TRACKS.}

Today, everyone is using the same processors.
So, to separate your computer design from the rest, you need to get the full potential out of your processor. Full potential that's only possible through high-performance supporting subsystems.

To give you this performance we're offering a full range of ICs for major subsystem applications. Together they help you get the most from your processor, so your designs perform like never before.
For example, our bus interface logic devices are the industry's fastest. With our proven BiCMOS process - known as QUBiC - our ABT logic family is nearly twice as fast as the highest performing Bipolar ICs. This means you get the speed to keep pace with today's 16 - and 32 -bit systems, as well as tomorrow's emerging performance standards.

We also offer you a complete family of advanced PLDs. Including a full range of \(\mathrm{PAL}^{\circledR}\)-type devices with speeds from 4 ns to 7.5 ns . As well as our innovative programmable logic arrays (PLA), programmable logic sequencers (PLS) and programmable macro logic (PML).

When you need microcontrollers, we offer the industry's most complete selection. Including devices from 8 - to 32 -bits and in OTP, EPROM, ROM and ROMless versions. Features include \(\mathrm{I}^{2} \mathrm{C}\) serial bus, low voltage/low power, \(A / D\), extended memory and more. All for EDP peripheral applications ranging from keyboards, disk drives and printers, to terminals and mouse devices.

And for desktop video applications, we've applied our expertise in digital video signal processing to offer you an 8 -bit digital multistandard TV decoder subsystem, complete with data conversion and clock companion chips.
So when you need subsystem performance that lets your high-speed processors move at top speed, choose Philips ComponentsSignetics. For more information or our Computing Brochure, contact us today: 800-227-1817, ext. 713D.
PAL is a trademark of AMD/MMI

As processor speed increases, and total cycle time decreases, the percentage of time spent performing interface functions becomes more significant.

If If your CAE tools are telling you too little too late, consider this news from Teradyne. Now you can capture and analyze complex ASIC and VLSI board designs with unprecedented accuracy and ease, using our Vanguard \({ }^{\text {T }}\) schematic entry software and LASAR
 simulator in Teradyne's MultiSim \({ }^{\text {TM }}\) environment. Here are CAE tools that work the

LASAR's accurate worst-case timing analysis means you won't be held up by faulty prototypes. way you like to work. They'll help you move quickly between schematic and simulation, and let you control simulation interactively. You'll get immediate feedback at every step.

Click on nodes you want to monitor and watch signal activity "live" on the schematic or in the logic analyzer window. By setting breakpoints, you can freeze the action when results aren't what you expect. In no time, you'll know where your design is

\section*{CAE for people to see how their}
working and where it's not.
Got a glitch? Need to invert a signal? Make cuts or jumps on schematic interconnections. Add or delete components.

If you find a problem, fix it and see the results in seconds, because we eliminate compilation for most common design changes.

You'll see the effects of design changes instantly because we shortcut compilation for the modifications you make most frequently. This means you can try out "what-ifs" with record speed, reducing design-loop time from tens of minutes to tens of seconds.

Best of all, with CAE tools from Teradyne you can be sure that what

\section*{who can't wait designs work.}
you see in design is what you'll get in manufacturing. How so? Because our LASAR system is more accurate than other event-based simulators. LASAR's

operation of gate arrays, high-speed
micros and time-multiplexed buses, including the effects of process variations. You can zero-in on troublespots efficiently, and be confident that
Thesame user interface LASAR-verified and file format on PCs, Suns and VAXs simplifies training and communications when you're mixing platforms.
designs will workreliably and repeatably.

If you're in a

Interactive
commands execute
instantly so it's easy to try out new ideas.
hurry for results, you'll appreciate how easily Teradyne tools integrate into your current design process. EDIF, VHDL and commercialtool interfaces let you build on existing databases. Then tie all your design and analysis tools running on PCs, Suns \({ }^{\circ}\) or VAX \({ }^{\text {TM }}\) into one multiwindow design environment using Vanguard's graphical framework.
So don't wait. For more information about how our CAE tools can work for you, call Daryl Layzer at (617) 482-2700, ext. 2808. Or write Teradyne, 5155 Old Ironsides Drive, Santa Clara, CA 95054.

LASAR lets you combine structural, behavioral, and hardware models for simulation efficiency with exceptional accuracy.

\section*{IERADN道}

\section*{The technical advantages of our ST1144 family are patently clear.}

Seagate's patented technology and advanced features make our ST1144 family the drives of choice for high-powered 286/386/486 desktop machines.

Our ST1102A and ST1144A offer guaranteed formatted capacities of 89 and 124 MB , respectively, a 19 msec average access time, and an embedded AT inter-
face for easy integration to the host.
When you compare the price and performance of the ST1144 family to other drives in the same category, our advantages become patently clear.

For full product specifications, call Seagate directly at \(800-468\)-DISC, or 408-438-6550.

The first name in disc drives.

\section*{Competition needed to improve education}

I agree with many of Jon Titus's suggested remedies for improving education (EDN, June 7, 1990, pg 41). My own feeling is that there is too little competition in education. This situation is partly due to unionization of teachers and partly due to lack of choice among schools. It is also due to parents who are occupied with things other than the mental education of their childrenas opposed to their physical participation in competitive sports. After all, how much does a top scientist earn compared with a sports hero?

The fact that competition among schools is important is borne out by the fact that while the US falls behind the Japanese in public education, the US does better in higher education where schools are more competitive. I support the Educational Choice Initiative here in Oregon, which, if voted in, would allow parents to direct school funds to schools of their choice.
George Sayer, RE
Hillsboro, OR

\section*{Flexible and changing pattern needed in education}

At first I read Jon Titus's editorial "Education is everyone's business" (EDN, June 7, 1990, pg 41) with pleasure, [thinking] "We are not the only ones with the problem." Then I realized that this comfort was misplaced. The fact that you in the US have the same concerns that we have in Great Britain could result in neither of us getting our retirement funds.

Although the answers to this problem are manifold, they can be broken down into some simple solutions. One aspect is pinpointed by your "risk taking." Our young people have an absolute need to learn to handle risk in relatively safe situations, but adventure of this nature is so often squashed at the source. Is it a fear among our teachers of
the students becoming better than they are? We must develop riskcontrol skills.
Another area is the duty of parents to take ownership in the risk situation in which they have put their children. The risk that the children will be illiterate cannot be owned solely by the teacher. The
parents are involved and must actively take their place in the process. Providing a home and money is not enough.

Teachers must move from their prepared and static content to a flexible and changing pattern so they do not use "the same questions year after year." Subject matter

\section*{Tell us what you think about . . . test and measurement}

Unlike some specialized publications that cover only test and measurement, EDN balances its T\&M coverage with that of other topics. By responding to the following questions, you can help ensure that our test and measurement articles will better suit your needs.
What sort of information about test and measurement do you want in EDN? Please rank in order of importance, with 1 being most important:
- Application articles on how to use the instruments you already have to the best advantage
_-Surveys of available products that include industry trends and productevaluation information
__Short writeups on recently introduced individual products
_ Hands-on reviews of products
_ Other (Please specify.)
Please indicate the types of test and measurement equipment you use and that you would like to see covered in EDN articles.
\begin{tabular}{|l|l|}
\hline Use & \begin{tabular}{c}
Want \\
Articles
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

Oscilloscopes
Signal sources
Below 300 kHz
300 kHz to 30 MHz
Above 30 MHz
Arbitrary waveform generators
Impedance-measuring instruments (for example, network analyzers)
Spectrum analyzers
Frequency-measuring instruments (for example, counters and timers)
Programmable power sources
Voltmeters/multimeters
Logic analyzers
In-circuit emulators and \(\boldsymbol{\mu} \mathrm{P}\) development systems
Data-acquisition systems, chart recorders, data loggers
PC-based instruments
VXIbus-based instruments
Instrument-control software
Software that manipulates and displays acquired data
Automatic test equipment (ATE)
Other types of instruments and instrumentation software (please list)

If you would welcome a follow-up phone call by an EDN editor, please give your name and phone number. This information will not be shared with anyone else.

\section*{Name \\ Daytime phone}

Send this form or a copy, and any other opinions or questions, by fax to (617) 558-4470 or by mail to EDN Surveys, 275 Washington St, Newton, MA 02158.
must be made to live in today's world and compete with the ease of television-viewing.

Finally, the students must have the right signals to encourage them. Learning involves competition, and some students will do better than others. Competition is part of life and will continue to be so. What we have to do is ensure there are no losers.

The push in education cannot be single-directional, just "grass roots," but it must be continual from all concerned.
From someone still learning at 48.
Mike Grunberg
Chelmsford, Essex, CM1 5LN, UK

\section*{Tribute to Irwin Feerst}

I have never met Irwin Feerst. Yet, as I read of his incapacitation in Frances Feerst's letter (EDN, June 21, 1990, pg 47), I feel a profound sense of loss, as if he were a close personal friend.

I've read Irwin's CCEE Newsletters for many years, always with ambivalent feelings. I disagreed with him as often as I agreed. I voted for him for several IEEE offices but feared that he might win. I sent him donations but was offended by his jingoism. I supported his attacks on the IEEE establishment but was repulsed by his personal attacks on the leadership. I supported his (our) cause but wished for a gentler messiah.

Of one thing there is no doubt. Irwin has always been solidly on the side of the working engineer. I know that I speak for many of us when I say: Thank you, Irwin. You were our friend and supporter. Your efforts have helped us to stand a little bit straighter and to shed a little of our wimpish image. In time, just maybe, we can finish the job and gain the rewards that our contributions earn us. If so, your efforts will not have been in vain. Meanwhile, your work on our behalf will be sorely missed.

I know I speak for all engineers when I wish Mr Feerst a long, comfortable, and productive life. May God be gracious to him as he struggles with his crippling disease.
Fred D Campbell, PE
Nipomo, CA

\section*{(Ed Note: Unfortunately, Irwin Feerst died in late August, before we could print this letter. See News Breaks in the September 17, 1990, issue for his obituary.)}

\section*{Problems encountered in 50 years of engineering}

Jon Titus's editorial, "No shortage of engineers" (EDN, July 5, 1990, pg 39), should be required reading for every educator and top engineering manager.

I have been in engineering for more than 50 years (my latest patent was just issued), and am still producing-when my "leaders" permit it. It seems that the engineers who can produce, do, and those who can't, go into some area of management. Then they pass off the paperwork that they don't like to the engineers, creating the "shortage."

I wish that were the only problem. Some of our ill-informed engineering managers who decided how most US TV sets should be designed decided that the \(4.5-\mathrm{MHz}\) video bandwidth set by the FCC on a sound technical basis wasn't needed-that about 2.5 MHz was enough, thus creating out-of-focus pictures. (The small number of manufacturers who tried to live up to FCC specs were forced out of business because of modestly increased costs.)

We've also had a problem in the RF input stages of TVs that radio amateurs (hams) have taken the rap for. A coupled (inductive) circuit having one coil tuned, and the second untuned, can be overcoupled, with the result that strong neighborhood signals can corrupt lowchannel pictures. Critical coupling
occurs when the coupling coefficient is the reciprocal of the square root of the "Q" of the tuned circuit. This problem is severely aggravated with input circuits using bipolar transistors. The problem is significantly less with FETs and tubes, but it still can be serious.

IEEE leadership is to a large extent responsible for these conditions, as the publish-or-perish syndrome kills too many creative papers, and the bottom-line syndrome kills our competitiveness. Can't, or won't, anyone do something about it? The creativity resides in individuals, and innovation can only occur there. Does EDN comprehend that in their new program?
Keats A Pullen Jr
Kingsville, MD

\section*{Correction}

In the listing of Innovation Finalists (EDN, September 3, 1990, pg 56), the phone number for Applied Microsystems is incorrect. The correct number is (206) 882-2000.

\section*{IT'S EASY TO HAVE YOUR SAY}

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. You can use one of several easy ways to reach us. First, there's always the mail. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCl mail at EDNBOS. Finally, EDN's bulletin-board system is ready for use-and it's free (except for the phone call). You can reach us at (617) \(558-4241\) and leave a letter in the EDITORS Special Interest Group. You'll need a 2400-bps or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or 2400, 8N1 in shorthand.

Custom Switchers from Stock Modules Highest Power Density... 6 Watts/Cu. In.!
- © 따
- 1 to 7 outputs
- 400 to 750 watts
- 2 weeks delivery
- No engineering charge

Call Toll Free 1-800-523-2332 In PA: 215/699-9261

\section*{DESCRIPTION}

Moduflex switchers form a comprehensive line of open frame power supplies assembled from standard "off the shelf" modules. These subunits and assembly hardware are pre-approved by safety agencies so that certifications can automatically apply to custom models. Additional advantages include a delivery cycle of two weeks or less and the elimination of engineering costs.

The M Series offers the highest power density available in the industry, delivering 6 watts per cubic inch at an ambient temperature of \(50^{\circ} \mathrm{C}\). The design features "State of the Art" topology, a meticulous thermal structure and the use of high efficiency circuits and components to attain the desired power density.

The modular system concept reduces manufacturing to simple submodules, capable of high volume production with a superior quality level.

M Series are available in power ratings from 400 to 750 watts with only a slight size increase. This power versatility permits system expansion without the need for extra power supply space.

\section*{FEATURES}

No engineering charge.
2 week delivery.
TUV, UL, CSA.
6 watts per cubic inch.
400-750 watts output.
120 kilohertz MOSFET design.
Current mode control.
All outputs:
Adjustable
Fully regulated
Floating
Overload and short circuit proof Overvoltage protected
Standard features include:
System inhibit
Load proportional DC fan output
Options include:
Auto ranger for continuous input operation
Power fail monitor
Independent pilot bias
Cover
Fan cover
Active surge limit
Power factor/UPS prep

\section*{MODEL SELECTION}

Input modules are available in ratings of 400,500,600, and 750 watts with corresponding code letters A through D. See Power Codes chart opposite.

Output modules are available in four types J, K, M and \(N\) in nominal power outputs of \(75,150,500\), and 750 watts respectively. Type M or main output modules are variable power rated depending upon the power level of the input module. This is reflected in the rating table opposite which shows the corresponding multiplier applicable to the output current ratings of the M module as a function of the power rating of the input module.
For example, when used with a 750 watt input module, the \(M\) type will produce a nominal 600 watts of output. The ratings of output modules are given in the table of output types. Ratings in shaded areas are stocked for fast delivery.

\section*{HOW TO ORDER}

To form the proper model number defining a custom requirement, start with the letter M to designate the series, then choose the desired configuration of output modules and list the configuration code. Insert the power code letter for the power level desired and follow with the output code numbers for each specific output desired. Enter a dash and from the option table insert the sum of the option codes corresponding to the desired options. See example below:

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Input \\
Module \\
Power \\
Codes
\end{tabular}} \\
\hline A & 400 W \\
\hline B & 500 W \\
\hline C & 600 W \\
\hline D & 750 W \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Output \\
Module \\
Types
\end{tabular}} \\
\hline J & \(1 / 2\) Height \\
\hline K & Full Height \\
\hline N & Main \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Output Modules } \\
\hline \multicolumn{2}{|c|}{ Output } & \multicolumn{4}{c|}{ Type } \\
\hline Code & Voltage & \begin{tabular}{c}
J \\
Amps
\end{tabular} & \begin{tabular}{c}
K \\
Amps
\end{tabular} & \begin{tabular}{c}
M \\
Amps
\end{tabular} & \begin{tabular}{c}
\(\mathbf{N}\) \\
Amps
\end{tabular} \\
\hline 0 & 2 VDC & N/A & 20 & 100 & 150 \\
\hline 1 & 3.3 VDC & N/A & 20 & 100 & 150 \\
\hline 2 & 5 VDC & 10 & 20 & 100 & 150 \\
\hline 3 & 12 VDC & 6 & 12 & 42 & 62 \\
\hline 4 & 15 VDC & 5 & 10 & 33 & 50 \\
\hline 5 & 18 VDC & 4 & 8 & 28 & 42 \\
\hline 6 & 24 VDC & 3 & 6 & 21 & 31 \\
\hline 7 & 28 VDC & 2.5 & 5 & 18 & 27 \\
\hline 8 & 36 VDC & 2 & 4 & 14 & 21 \\
\hline 9 & 48 VDC & 1.5 & 3 & 10 & 16 \\
\hline\(\times\) & N/T & N/T & N/T & N/T & N/T \\
\hline N/T Non Tabulated & \multicolumn{4}{c|}{ N/A Not Available } \\
\hline
\end{tabular}

For multiple output modules of a given type, voltages are arranged in ascending order by magnitude in the same sense as the output number sequence. Shaded ratings are standard, others available on special order. Non tabulated intermediate voltages have current ratings equal to straight line interpolation between the current ratings of the voltages that bracket it.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ M Type Main Module Ratings } \\
\hline \begin{tabular}{c}
Power \\
Rating
\end{tabular} & \begin{tabular}{c}
Current \\
Multiplier
\end{tabular} \\
\hline 400 W & 0.60 \\
\hline 500 W & 0.80 \\
\hline 600 W & 1.00 \\
\hline 750 W & 1.20 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Options } \\
\hline Option Code & \multicolumn{1}{c|}{ Function } \\
\hline 01 & Power Fail Monitor \\
\hline 02 & Auto Ranger \\
\hline 04 & Pilot Bias \\
\hline 08 & Active Surge Limit \\
\hline 16 & UPS/PF Prep \\
\hline 32 & Cover \\
\hline 64 & Fan Cover \\
\hline
\end{tabular}

Options 02, 04, 08 mutually exclusive.

The boxes above are diagramatic representations of the power supplies as viewed from the output end. The two digit numbers above the boxes are the configuration codes.

\section*{M SERIES DIMENSIONS}

\section*{INPUT}

90-132 VAC or 180-264 VAC, \(47-440 \mathrm{~Hz}\). Strappable.

\section*{INPUT SURGE}

Less than 68 Amps peak from cold start.

\section*{HOLDUP TIME}

20 milliseconds from loss of nominal AC power.

\section*{OUTPUTS}

See model selection table.

\section*{ADJUSTABILITY}
\(\pm 5 \%\) trim adjustment.

\section*{OUTPUT POLARITY}

All outputs are floating from chassis and each other and can be referenced to each other or ground as required.

\section*{LINE REGULATION}

Less than \(\pm 0.1 \%\) or \(\pm 5 \mathrm{mV}\) for input changes from nominal to min. or max. rated values.

\section*{LOAD REGULATION}
\(\pm 0.2 \%\) or \(\pm 10 \mathrm{mV}\) for load changes from \(50 \%\) to \(0 \%\) or \(100 \%\) of max. rated values.

\section*{MINIMUM LOAD}

Main output requires a \(10 \%\) minimum load for full output from auxiliaries.

\section*{REMOTE SENSING}

On all outputs except type J modules.

\section*{RIPPLE \& NOISE}
\(1 \%\) or 100 mV pk-pk, 20 MHz bandwidth.

\section*{OPERATING TEMPERATURE}
\(0-70^{\circ} \mathrm{C}\). Derate \(2.5 \% /{ }^{\circ} \mathrm{C}\) above \(50^{\circ} \mathrm{C}\).

\section*{COOLING}

A min. of 10 LFS cooling air directed over the units for full rating. Two test locations on chassis rated for max. temperature of \(90^{\circ} \mathrm{C}\).

\section*{TEMPERATURE COEFFICIENT}

\section*{\(\pm 0.02 \% /{ }^{\circ} \mathrm{C}\).}

\section*{EFFICIENCY}
\(80 \%\) typical.

\section*{SAFETY}

Units meet UL 1950, CSA 22.2 No. 220, CSA bulletin 1402C,
IEC 950, VDE 0804, VDE 0806, VDE 0805 (proposed). Certifications in process.

\section*{DIELECTRIC WITHSTAND}

3750 VRMS input to ground.
3750 VRMS input to output.
700 VDC output to ground.

\section*{SPACING}

8 mm primary to secondary.
4 mm to grounded circuits.

\section*{LEAKAGE CURRENT}
0.75 mA at 115 VAC 60 Hz . input.

\section*{EMISSIONS}

Units meet FCC 20780 Part 15 Class A and VDE 0871/6.78 Class A for conducted emissions. Compliance with Class B limits by use of additional external filter.

\section*{DYNAMIC RESPONSE}

Peak transient less than \(\pm 2 \%\) or \(\pm 200 \mathrm{mV}\) for step load change from \(75 \%\) to \(50 \%\) or \(100 \%\) max. ratings.

\section*{RECOVERY TIME}

Recovery within \(1 \%\).
M and N modules - 200 microseconds.
J and K modules - 500 microseconds.

\section*{AC UNDERVOLTAGE}

Protects against damage for undervoltage operation.

\section*{OVERVOLTAGE PROTECTION}

Standard on all outputs.

\section*{REVERSE VOLTAGE PROTECTION}

All outputs are protected up to load ratings.

\section*{OVERLOAD \& SHORT CIRCUIT}

Outputs protected by duty cycle current foldback circuit with automatic recovery. Auxiliaries have additional backup fuse protection.

\section*{THERMAL SHUTDOWN}

Circuit cuts off supply in case of local over temperature. Units reset automatically when temperature returns to normal.

\section*{SOFT START}

Units have soft start feature to protect critical components.

\section*{FAN OUTPUT}

Nominal 12 VDC @ 12 watts maximum.

\section*{INHIBIT}

TTL compatible system inhibit provided.

\section*{SHOCK}

MIL-STD 810-D Method 516.3, Procedure III.

\section*{VIBRATION}

MIL-STD 810-D Method 514.3, Category 1, Procedure I.

\section*{MECHANICAL}

400 W/500 W \(-2.5^{\prime \prime} \mathrm{H} \times 5.05^{\prime \prime} \mathrm{W} \times 9.00^{\prime \prime} \mathrm{L}\).
600 W/750 W \(-2.5^{\prime \prime} \mathrm{H} \times 5.20^{\prime \prime} \mathrm{W} \times 9.63^{\prime \prime} \mathrm{L}\).

\section*{POWER FAIL MONITOR}

Optional circuit provides isolated TTL and VME compatible power fail signal providing 4 milliseconds warning before main output drops by \(5 \%\) after an input failure.

\section*{AUTO RANGER}

Optional circuit provides automatic operation at specified input ranges without strapping.

\section*{PILOT BIAS}

Optional circuit provides SELV output of 5 volts at 75 milliamps independent of the main power converter. Output isolation compliant to safety specifications referenced above.

\section*{ACTIVE SURGE LIMIT}

Limits input surge to less than 18 Amps, and provides rapid reset.

\section*{COVER}

Optional flat cover recommended when customer supplied fan cooling is directed through the length of the unit.

\section*{FAN COVER}

Optional cover with brushless DC fan which provides the required air flow for full rating of Moduflex power supplies.
UPS
Accessory battery backup system provides uninterruptible service in case of brownout or blackout of utility power. Requires nominal 48 VDC lead acid or Gel cell. Unit has 3 state charger to keep battery fully charged. Will support up to 1000 watts output.

\section*{POWER FACTOR CORRECTOR}

Accessory active converter produces power factor of 0.99 for up to 2000 watts output at high input range, or 1000 watts at low input range. Provides automatic auto ranging.

\footnotetext{
Int'I. Units: Delaire • Sallynoggin Road, Dun Laoghaire, Co. Dublin, Ireland. Tel: (01) 851411 Prefixes - from U.K. - (0001)-Int'l. + 353-(1) Fax: (01) 840267 Delinc • Padre Mier y Dr. Mina, Reynosa, Tamps., Mexico 08866. Tel.: (892) 38723 Prefix - from USA - (01152) Fax (892) 38776
}

\section*{THE SHEER POWER OF}

\section*{AFFINITY}

If you've always felt something important was missing when it came to proving the effectiveness of advertising, this ad speaks powerfully to you. The Affinity Index is a revolutionary new guide to media buying that goes beyond circulation numbers, and beyond reader preference studies. Now for the first time, The Affinity Index measures the relationship between reader and publication. It measures how a reader's feeling for a particular magazine influences the response to your ad in that magazine. At last, prove how your ad affects readers within a magazine's editorial environment. And where your ad stimulates your customers' greatest interest. Whe Affinity Index, using techniques created by Simmons Market Research Bureau, Inc. in a two year project sponsored by Cahners Publishing Company, is reliable, usable, and available now. For details and a complete brochure contact: Cahners Publishing Company, 275 Washington Street, Newton, MA 02158. Phone: 617-558-4425.

Nothing
measures up to the power of Affinity.
CAHNERS PUBLISHING COMPANY

A Division of Reed Publishing USA

\section*{For Designs That Demand a Lot of Memory,}

When it comes to PCs, workstations, printers, and other computer-related products, end-users want smaller systems, maximum memory storage, and minimum power consumption. And they want it now. Which creates several problems for you. How do you reduce system size and power consumption yet increase memory capacity? And be first to market with your product? Oki offers some flexible solutions.

To begin with, our pin-for-pin compatible 4-Megs provide 4X the memory storage of a \(1-\mathrm{Meg}\) -without increasing space. Plus our 4-Megs have the lowest power consumption of any 4-Meg, making them ideal for laptops and other memoryintensive, power-hungry
systems. Choose from a variety of packages too: DIP, SOJ, ZIPand, later in 1990, an ultrathin TSOP, for even more spacesaving advantages.

For higher density applications, select from Oki's pack-age-efficient family of SIMMs: \(4-\mathrm{Megx} 8 \mathrm{~s}, 4-\mathrm{Megx} 9 \mathrm{~s}\), and 1-Megx36s. Or we'll work with you to design a custom SIMM that meets your unique specifications. All our 4-Megs and SIMMs are available now, so we're ready to help accelerate your design time and your product's time-to-market.

Call Oki today for qualification samples. See why so many companies are demanding Oki's low-power, space-saving 4 -Megs and SIMMs - and getting their leading-edge computer products to market so quickly.

\section*{Demand Oki 4-Megs and SIMMs}

CA Irvine 714/752-1843, Tarzana 818/774-9091, San Jose 408/244-9666 FL Boca Raton 407/394-6099
GA Norcross 404/448-7111 IL. Rolling Meadows 708/870-1400 MA Stoneham 617/279-0293 MI Livonia 313/464-7200 NC Morrisville 919/469-2395 NY Poughkeepsie 914/473-8044 PA Horsham 215/674-9511 TX Richardson 214/690-6868

\title{
Here's one reason thatover half of all SCSI devices sold are NCR.
}

We created the market... and we still lead the way.

\section*{Here's another.}

\section*{The NCR 53C700 SCSI I/O Processor...}

So good, Electronic Design named it the product of the year.
"You can't tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53C700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about \(15 \%\) of the cost.

As the first SCSI I/O processor on a chip, the 53 C 700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter. DMA controllers can burst data at speeds of up to \(50 \mathrm{Mbytes} / \mathrm{s}\). This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the
Digital IC's" award went to NCR's 53 C 700 last year.

\section*{And now the NCR 53C710!}

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

CIRCLE NO. 76

\section*{New! PC-Based MDA}

- Shorts/Opens
- Resistors
- Capacitors
- Semiconductors

The CheckSum Model TR-2 Manufacturing Defects Analyzer (MDA) allows you to test assemblies for opens, shorts, and missing, incorrect or misclocked components. The innovative software includes self-learn, interactive or off-line programming, graphical test-point analysis, test-time operator adjustments, full reporting, optional SPC package, and much more.

Core systems, using your PC and fixturing, with 100 test-points and software are \(\$ 1,595\). Complete systems with PC, software, 300 test-points (expandable to 800) and bed-of-nails fixture are available for under \(\$ 9,000\).

\section*{8416 134th St NE Arlington, WA 98223 206-653-4861 \\ CHECKSUMP}

\section*{CIRCLE NO. 15}

\section*{CALENDAR}

Optcon '90, Boston, MA. International Society for Optical Engineering, Box 10, Bellingham, WA 98227. (206) 676-3290. FAX (206) 647-1445. November 4 to 9.

Structured Analysis \& Design (seminar), Atlanta, GA. Visible Systems Corp, 950 Winter St, Waltham, MA 02154. (617) 8902273. FAX (617) 890-8909. November 5 to 7 .

Software Project Management Tools \& Techniques (short course), San Francisco, CA. Learning Tree International, Box 45974, Los Angeles, CA 90045. (800) 421-8166; in Canada, (800) 267-1824; in CA, (213) 417-9700. FAX (213) 645-4762. November 6 to 9 .

17th Annual Computer Security Conference and National Computer Security Exhibition, Atlanta, GA. Computer Security Institute, 500 Howard St, San Francisco, CA 94105. (415) 397-1881. FAX (415) 995-2487. November 12 to 14 .

Wescon/90, Anaheim, CA. Wescon/ 90, 8110 Airport Blvd, Los Angeles, CA 90045. (213) 215-3967. FAX (213) 641-5117. November 13 to 15.

Figaro + Hands-On Training (short course), Bethesda, MD. Template Graphics Software Inc, 3510 Dunhill St, San Diego, CA. (619) 457-5359. FAX (619) 452-2547. November 13 to 16 .

Total Quality Management (short course), Irvine, CA. University of California-Irvine Extension, Box 6050, Irvine, CA 92716. (714) 8567774. FAX (714) 725-2090. November 13 to 16 .

Communications Turkey '90, Istanbul, Turkey. Kallman Associates, 5 Maple Court, Ridgewood, NJ 07450. (201) 652-7070. FAX (201) 652-3898. November 14 to 18.

\title{
MEGA MEMORY.
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{SONY HIGH-DENSITY SRAMS} \\
\hline MODEL & CONFIG. & SPEED (ns) & PACKAGING & DATA
RETENTION \\
\hline CXK581000P* & \(128 \mathrm{~K} \times 8\) & 100/120 & DIP 600 mil & L, LL \\
\hline CXK581000M* & \(128 \mathrm{~K} \times 8\) & 100/120 & SOP 525 mil & L, LL \\
\hline CXK581100TM* & \(128 \mathrm{~K} \times 8\) & 100/120 & TSOP & L, LL \\
\hline CXK581100YM* & \(128 \mathrm{~K} \times 8\) & 100/120 & TSOP (reverse) & L, LL \\
\hline CXK581001P & \(128 \mathrm{~K} \times 8\) & 70/85 & DIP 600 mil & L \\
\hline CXK581001M & \(128 \mathrm{~K} \times 8\) & 70/85 & SOP 525 mil & L \\
\hline CXK581020SP & \(128 \mathrm{~K} \times 8\) & 35/45/55 & SDIP 400 mil & \\
\hline CXK581020J & \(128 \mathrm{~K} \times 8\) & 35/45/55 & SOJ 400 mil & \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{ll}* \text { Extended temperature range available. } & \mathrm{L}=\text { Low power. } \\ \mathrm{LL}=\text { Low, low power. }\end{array}\)} \\
\hline
\end{tabular}

\section*{MEGA COMMITMENT.}

As you can see, Sony's more committed than ever to meeting your high-density SRAM needs. Just consider the enhancements we've made in a few short months: TSOP and TSOP-reverse packaging.Low data retention current. And extended temperature range.

All based on our unique 0.8 -micron CMOS technology, and available in 32-pin DIP and surface-mount plastic packages.
Then consider our ever-increasing production capabilities. We've just added yet another SRAM facility in Japan. And acquired a large AMD facility in San Antonio, Texas.

So you can really count on us in a crunch.
Need more proof we're serious about your each and every SRAM need?

Call us. We've got more breakthroughs on the way. Well over 100 SRAM products spanning the performance spectrum. And the desire to meet-or exceed - your toughest performance spec.

Sony high-density SRAMS are shipping now, complete with competitive pricing. So call (714) 229-4190 today. Or write Sony Corporation Of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630,
Attention: Semiconductor
sales. FAX (714) 229-4285.

\title{
HICH BETA dABLINGTON LOW COST DESIGN
}
 Design Layout
- Faster Switching
- (BETA) Performance
- Best SOA

A continuing investment for the advanced products of tomorrow.
Call THE POWER LINE at 1-800-451-1415.

Joint Venture Corporation of Westinghouse, General Electric, and Mitsubishi Electric Hillis Street, Youngwood, PA 15697 FAX 412-925-4393

CIRCLE NO. 17
DID YOU KNOW?

\section*{EDN serves} electronic engineers and engineering managers in more than 100 countries worldwide.

EDN

\section*{CALENDAR}

Converting, Expanding \& Upgrading IBM \& PS2 (short course), Indianapolis, IN. Center for Advanced Professional Development, 1820 E Garry St, Suite 110, Santa Ana, CA 92705. (714) 261-0240. November 27 to 28 .

Technology 2000, Washington, DC. Technology Utilization Foundation, 41 E 42 nd St, New York, NY 10017. (212) 490-3999. November 27 to 28 .

Semiconductor Silicon (short course), Davos, Switzerland. Tina Persson, CEI-Europe/Elsevier, Box 910, S-612 01 Finspong, Sweden. 46(0)122-17570. FAX 46(0)12214347. December 3 to 7 .

Concurrent Engineering Seminar, San Diego, CA. Logical Solutions Technology Inc, 96 Shereen Pl , Suite 101, Campbell, CA 95008. (408) 374-3650. FAX (408) 374-3657. December 4 to 5 .

Fourth International Workshop on Computer-Aided Software Engineering, Irvine, CA. Center for the Study of Data Processing, Washington University, 1 Brookings Dr, Campus Box 1141, St Louis, MO 63130. December 5 to 8.

Applications of Unix Utilities (short course), Seattle, WA. Specialized Systems Consultants Inc, Box 55549, Seattle, WA 98155. (206) 527-3385. FAX (206) 527-2806. January 15.

ATE \& Instrumentation West, Anaheim, CA. Miller Freeman Expositions, 1050 Commonwealth Ave, Boston, MA 02215. (800) 2237126; in MA, (617) 232-3976. January 15 to 17 .

Winter 1991 UNIX Technical Conference, Dallas, TX. Usenix Association, 22672 Lambert St, Suite 613, El Toro, CA 92630. (714) 5888649. FAX (714) 588-9706. January 21 to 25 .

\title{
A revealing look at the difference in high density PCB connector systems.
}

The X-ray of our XD/P \({ }^{\text {TM }}\) high density PCB connector emphasizes that what's inside a connector makes the difference - in performance, reliability, and installed cost.

To help you make the best choice in PCB connector systems, we offer a close look at our XD/ \(\mathrm{P}^{\text {TM }}\) connector line, with up to 684 positions. Feature for feature, we invite comparison.

\section*{Made straight to mate straight}
- Stress-free molding eliminates warping in large connectors.
- . \(114^{\prime \prime}\) nominal engagement length of pin and socket ensures reliable mating.
A perfect fit for any board
- FLEX-FIT \({ }^{\text {TM }}\) compliant pin fits board thicknesses of \(.062^{\prime \prime}\) to .125 " for high density multi-layer PCB designs.
- FLEX-FIT \({ }^{\text {M }}\) dual compliant pin design allows front or rear removal and replacement.

\section*{Easier board-to-board insertion}
- Unique contact geometry reduces per contact insertion force to
1.5 oz . (avg.), but maintains high normal force of 75 g . (avg.).

\section*{Multiple contact and hardware options}
- The \(\mathrm{XD} / \mathrm{P}^{\text {TM }}\) connector line includes plating, signal, and hardware options to satisfy virtually any requirement.

\section*{The company behind the product}

A close look at our company will reveal our strong financial position, our commitment to the future, and our ability to support you worldwide. Write for our Annual Report - it's like an X-ray of our company.
To take a close look at our comprehensive \(\mathrm{XD} / \mathrm{P}^{\mathrm{TM}}\) connector line, and for the location of our nearest stocking distributor, call 1-800-344-4744.
Thomas \& Betts Corporation, Electronics Division, 1001 Frontier Road, Bridgewater, NJ 08807, 201-685-1600

\section*{Thomas\&Betts}

\title{
de to \(3 \mathrm{GHz}=\$ 1745\) lowpass, highpass,
bandpass, narrowband IF
}
- less than 1dB insertion loss - greater than 40dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount • over 100 off-the-shelf models • immediate delivery
low pass dc to 1200 MHz

\title{
ASSURED MIGRATION TO 16-BIT ARCHITECTURE. THE TRUE TEST OFA DESIGN THAT FLIES.
}

Moving up from 8 to 16-bit? With Motorola's new 68HC16, there's no need to venture to parts unknown, where your architecture and software base become extinct.

Now you can rise to power with the world's only 16-bit microcontroller that features full upward source code compatibility with Motorola's huge 8 -bit portfolio.

\section*{IF YOU'RE HEADED FOR HIGH PERFORMANCE, YOU'RE ON THE RIGHT PATH.}

The 68HC16 not only makes upward migration easier than ever. It also sends 16 -bit performance soaring into a whole new realm. This incredible device averages over eight times faster than the fastest member of our HC11 Family. And its powerful controloriented DSP instructions push the limits of 16-bit performance.

\section*{OUR 68HC16 TAKES YOU IN THE RIGHT DIRECTION. \\ With our 68HC16 Family's modular design, your flight to the future is fast. And}
efficient. The HC16 can use any intermodule bus peripheral from our rapidly expanding 68300 Family. So the 68HC16 Family can grow quickly to meet your needs. And when you're ready to take the next step up, you can apply your HC16 knowledge directly toward your 32-bit migration.
The 68 HC 16 . Yet another addition to the ever-expanding families of Motorola microcontrollers that make one thing very clear.

For well-planned migration to high performance, travel with the leader. Motorola.

To receive a Technical Product Preview for the 68 HC 16, plus more news to come on our high performance migration path, please complete and return this coupon to:
Motorola, Inc.
P.O. Box 1466

Austin, Texas 78767
EDN10/25/90
I Name
Company
Title
Address
City
State \(\qquad\) Zip p Phone

\begin{tabular}{|c|c|c|}
\hline STAKPAC \(^{\text {mM }}\) & \multicolumn{2}{|c|}{ MINI STAKPAC \(^{\text {™ }}\)} \\
\hline 1200 Watts & Power & 600 Watts \\
\hline \(110 / 220 \mathrm{VAC}\) & Input & \(110 / 220 \mathrm{VAC}\) \\
\hline Up to 8 & Outputs & Up to 5 \\
\hline 3.2 " \(\times 5.5\) " \(\times 11.5\) & Dimensions & \(1.9^{\prime \prime} \times 5.5\) " \(\times 12^{\prime \prime}\) \\
\hline Fan-Cooled & Cooling & Twin Fans \\
\hline
\end{tabular}

Each StakPAC output is factory configured utilizing Vicor's robotically manufactured power converters...VI-200 series modules. Consider the advantages of a StakPAC customized for your system needs with automized power modules: USER DEFINABLE OUTPUTS - The use of proven standard catalog modules offers the features of a custom without the associated risk or investment.
STANDARD MODELS-Many preconfigured standards available
QUICK DELIVERY-Typical delivery 1 week or less for custom or standard evaluation units. COMPACTNESS - Low profile packages provide up to 6 watts/cubic inch, twice the industry norm.
UL, CSA, TUV SAFETY AGENCY APPROVALAll StakPAC configurations are approved, standard or custom.
EMI-FCC/VDE Level A, conducted.
StakPACs are designed and built by Westcor Corporation, Los Gatos, CA, a Vicor subsidiary. StakPACs are sold world-wide through Vicor Corporation, Andover, MA.

RoboPower
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{STAKPAC STANDARDS 1200 WATT MODELS} & \multicolumn{6}{|c|}{MINI STAKPAC STANDARDS 600 WATT MODELS} \\
\hline Model & \multicolumn{5}{|l|}{Output Voltage (VDC) and Maximum Current (amperes) per Channel} & Model & \multicolumn{5}{|l|}{Output Voltage (VDC) and Maximum Current (amperes) per Channel} \\
\hline & \#1 & \#2 & *3 & \#4 & & & \#1 & \#2 & \#3 & \#4 & \# \\
\hline \multicolumn{6}{|l|}{Single Output} & \multicolumn{6}{|l|}{Single Output} \\
\hline SP1-1801 & 2 @ 240 & \multicolumn{4}{|r|}{Total output power may not exceed} & ST1-1401 & 2 (1) 120 & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{Total output power may not exceed 600 watts for any model, single}} \\
\hline SP1-1802 & 5 @ 240 & \multicolumn{4}{|r|}{\(1200^{*}\) watts for any model, single} & ST1-1402 & 5 (1) 120 & & & & \\
\hline SP1-1603 & 12 @ 100 & \multicolumn{4}{|r|}{or multiple output. Lower power} & ST1-1301 & 12@50 & \multicolumn{4}{|r|}{or multiple output. Lower power} \\
\hline SP1-1604 & 15 @ 80 & \multicolumn{4}{|r|}{StakPAC models and many other} & ST1-1302 & 15 @ 40 & \multicolumn{4}{|r|}{Mini StakPAC models and many other} \\
\hline SP1-1605 & 24 @ 50 & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{configurations are available.
*Standard models supply 1100 watts;}} & ST1-1303 & 24 @ 25 & \multicolumn{4}{|r|}{\begin{tabular}{l}
configurations are available. \\
Please contact the factory.
\end{tabular}} \\
\hline SP1-1606 & 28 (1)42 & & & & & ST1-1304 & 28 @ 21 & \multicolumn{4}{|l|}{} \\
\hline SP1-1607 & 48@ 25 & \multicolumn{4}{|r|}{*Standard models supply 1100 watts; high-powered version 1200 watts.} & ST1-1305 & 48 @13 & & & & \\
\hline Dual Outp & & \multicolumn{4}{|r|}{Please contact the factory.} & \multicolumn{6}{|l|}{Dual Output} \\
\hline SP2-1801 & 2 © 120 & 5 © 120 & & & & ST2-1401 & 2 @ 60 & 5 (1)60 & & & \\
\hline SP2-1802 & 5 @ 120 & 5 @ 120 & & & & ST2-1402 & 5060 & 5 (3) 60 & & & \\
\hline SP2-1803 & 5 @ 120 & 12 (1)66 & & & & ST2-1403 & 5 © 60 & 12 @ 33 & & & \\
\hline SP2-1804 & 12 © 66 & 12 (1)66 & & & & ST2-1404 & 12@33 & 12 @ 33 & & & \\
\hline SP2-1805 & 15@53 & 15 (0) 53 & & & & ST2-1405 & 15 @ 26 & 15 @ 26 & & & \\
\hline \multicolumn{6}{|l|}{Triple Output} & \multicolumn{6}{|l|}{Triple Output} \\
\hline SP3-1801 & 5 (a) 180 & 12 © 16 & 12 © 16 & & & ST3-1401 & 5060 & 12 (4) 16 & 12916 & & \\
\hline SP3-1802 & 5 @150 & 12 (1)33 & 12 © 16 & & & ST3-1402 & 5060 & 15 © 13 & 15 (1) 13 & & \\
\hline SP3-1803 & 5 (180 & 15 (1) 13 & 15 @ 13 & & & ST3-1501 & 5090 & 12 (1)8 & 12 (1)8 & & \\
\hline SP3-1804 & \(5 @ 150\) & 15 @ 26 & 15 @ 13 & & & \multicolumn{6}{|l|}{Quad Output} \\
\hline \multicolumn{6}{|l|}{Quad Output} & ST4-1401 & 5 ③0 & 12 (1) 16 & 12 © 16 & 5 @ 30 & \\
\hline SP4-1801 & 5 @ 150 & 12 © 16 & 12 @ 16 & 5 @ 30 & & ST4-1402 & 5 ©30 & 15 © 13 & 15 (1) 13 & 5 (4)30 & \\
\hline SP4-1802 & 5 © 150 & 15 (1) 13 & 15 @ 13 & 5 @ 30 & & ST4-1403 & 5 ©30 & 12 © 16 & 12 (1) 16 & 24 (10) 8 & \\
\hline SP4-1803 & 5@150 & 12 (6) 16 & 12 © 16 & 24 (4)8 & & ST4-1501 & 5 ¢30 & 15 (13 13 & 15 (1) 13 & 24 (18) & \\
\hline SP4-1804 & 5 (190 & 15013 & 15 @ 13 & 24@8 & & ST4-1502 & 5 ©60 & 12 © 16 & 12 © 8 & 5 (46) 15 & \\
\hline Five Outpu & & & & & & ST4-1503 & 5 @ 60 & 15 (1) 13 & 1597 & 5 (3) 15 & \\
\hline SP5-1801 & 5 (120 & 12 © 16 & 12 @ 16 & \(5 @ 30\) & 24 © 8 & ST4-1504 & 5 @ 60 & 12 (1)16 & 12 @ 8 & 24 (1)4 & \\
\hline SP5-1802 & 5 (13120 & 15 (1) 13 & 15 (8)13 & 5@30 & 24 (3) 8 & STT-1505 & 5 @ 60 & 15 (13 & 15@7 & 24 (104 & \\
\hline \multicolumn{6}{|l|}{Seven Output} & \multicolumn{6}{|l|}{Five Output} \\
\hline SP7-1801 & 5 (1) 60 & 12 @ 16 & 12 @ 16 & 24 @ 8 & 24@8 & ST5-1501 & 5030 & 12 (2) 16 & 12 (1) 16 & 5015 & 24@4 \\
\hline & \#6 & \#7 & & & & ST5-1502 & 5 ©30 & 15 © 13 & 15(1) 13 & 5015 & 24@4 \\
\hline & 5.2 © 28 & 2030 & & & & & & & & & \\
\hline
\end{tabular}

For ordering information call Vicor Express at \(1-800-735-6200\) or (508) 470-2900 at ext. 265.

For technical information contact Westcor at (408) 395-7050 or FAX (408) 395-1518 or call Vicor.

Yus VICCR
Common Stock Traded on NASDAQ under "VICR"

\section*{WESTCOR CORPORATION}

485-100 Alberto Way
Los Gatos, CA 95032
VICOR CORPORATION
23 Frontage Road
Andover, MA 01810

\section*{Goodbye, TTL}

My early logic circuits used both RTL and DTL integrated circuitsfamilies of devices that today are forgotten. Designing with RTL and DTL ICs wasn't difficult, but there was little variety from which to choose. As a result, complex designs grew rapidly. It was a pleasure to move on to the 7400 family of TTL devices, and its cornucopia of logic building blocks, in 1970. If you needed a specialized function, more than likely you could find one in the 7400 family.

It's sad to see the demise of such a rich family of devices, but the end is at hand. For example, most computer circuit boards today are teeming with PLDs, which replace literally hundreds of discrete logic chips. Although programmable logic has been available for many years, we've reached the point at which PLDs and field-programmable gate arrays (FPGAs) are economical substitutes for most logic functions. It just doesn't pay to use discrete TTL ICs unless you need a very special function.

I remember discovering "programmable logic" in a roundabout way. One of my colleagues started using fuse-programmable ROMs as programmable decoders on microprocessor boards. The PROM wasn't what we think of today as a true programmable logic device. However, one PROM IC took the place of several TTL devices. It gave us the flexibility to change our memory and I/O-port arrangements. It also gave us the space we needed to fit the computer on a given board. By today's standards, that application sounds crude and trite, but it solved a problem. We also used a PROM and a few external components to build a small state machine-or picoprocessor, as we called it. That crude form of programmable logic-and later true PLDsfound places in our designs.

Today's designers can choose from such a broad range of PLDs and FPGAs that few of them will need as many individual TTL chips as we did 15 years ago. Sure, there will always be a need for a few extra gates or special driver ICs, but today's logic designs rely heavily on programmable devices. These designs simply follow the trend toward putting more functions in a chip and letting the users select or program the functions they want.

In a way, it's sad to see the death of massive breadboards crammed with 7400 -series ICs. Those prototypes let us put scope and logicanalyzer probes on circuits that are virtually inaccessible in today's PLDs and FPGAs. We could almost always find a spare gate, flip flop, or inverter on the board to patch in as needed during debugging. We also kept a wire-wrapping gun handy. In retrospect, though, it wasn't easy. Nor was it enjoyable. Tracing my way through a maze of red, blue, yellow, and white 30-gauge wire was no fun-particularly when the schematic wasn't up to date with the circuit revisions. Faced with the prospect of using TTL devices, I'll take PLDs and FPGAs. Today's design, development, and testing tools make digital engineering a lot less work. And, those same tools give today's engineer much more time for creativity than we had 15 years ago. Long live programmable logic.

By the way, does anyone know what a 74LS261 is? I found one over the weekend in my collection of odds-and-ends chips. No fair looking it up.
Editorial Achievement Awards
1987, 1981 (2), 1978 (2),
1977, 1976, 1975
American Society of
Business Press Editors Award
1988, 1983, 1981

\section*{FLபKE}

Why not now?
Introducing the new Philips PM 3580 family of logic analyzers from Fluke: the first instrument architecture to give you state and timing together on each channelwith a single probe.

Connect the probe to your board for state and you're automatically hooked up for timing. Or vice versa.

This means no more dual probinga pain anytime and the source of loading problems-and no reconfiguration between state and timing. Which makes
\begin{tabular}{|c|c|c|c|}
\hline A basic comparison: Record all state and timing data on an 8 -bit microprocessor with multiplexed bus 8 -bits for address, 3 control signals and a clock. & HP \(1654 B\) & Tek PRISMMPM & Philips PM 3580/30 \\
\hline Probing: Channels used One connection & \[
\begin{aligned}
& 48^{1} \\
& \text { No }
\end{aligned}
\] & \[
\begin{aligned}
& 48^{2} \\
& \mathrm{No}
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& \text { Yes }
\end{aligned}
\] \\
\hline Setups & Two & Two + & One \\
\hline Interfaces to learn & Two & Two + & One \\
\hline integrated state \& timing triggering & No, only one arming condition & No, only indirect 4-bit Teklink & Yes, 8 levels \\
\hline State \& timing data per pin & No & No & Yes \\
\hline Price & \$6700 & \$8600 & \$4250 \\
\hline Footnotes: 1,8 channels lost to de-multiplexing & \multicolumn{3}{|l|}{1) 8 channels lost tode-multiplexing 2) De-multiplexing requires double probing and only nine high-speed channels on basic unit} \\
\hline
\end{tabular}
these analyzers simple to learn and use.

Plus, the pop-up menus and keyboard shortcuts guide you quickly through setup and data analysis. No matter if you use it every day or once a year.

What's more, capturing an elusive bug has never been easier with eight unrestricted trigger levels that let you select from state and

\section*{Why not sooner?}
timing trigger conditions on each level.
But being simple doesn't mean simplistic. Basic performance of the PM 3580 family ranges from 32 to 96 channels, each with 50 MHz state and up to 200 MHz timing, plus 3 nanosecond glitch capture and 2 K of memory per channel. For 8-, 16and 32-bit processors.

And you get all this for nearly half the cost of comparable analyzers.

We'd like to send you a video. Or show you how to make state and timing measurements at your workplace-
in 30 minutes or less.
We'll even bring the stopwatch so you can time us. And you can keep it to time the competition.

So call us today at 1-800-44-FLUKE. Ask for extension 720.

Because sooner is better.

FAST ANSWERS.
FடபKE

> Pot Cores E Cores ICoreses U Cores Toroid Cores Square Cores EC Cores ETD Cores EP Cores

EIn ferrites and advanced ceramic materials, nobody offers you more choices than Philips Components Discrete Products Division. And nobody works harder to deliver them faster. Wherever you're working - in power, telecommunications, test and instrumentation, EMI suppression or lighting - we offer the compositions, shapes and sizes to match your needs. We supply standard cores, shielding beads, chokes and rods. And specialty products: ferrite recording heads and materials, solid state laser and nonlinear crystalline materials and HIP services.

We're positioned to serve you better. With

computer-controlled fast-changeover elevator kilns that make us more responsive to customer demands. With a technically knowledgeable sales force. With the only ferrite-stocked regional distribution centers - capable of shipping prototype samples within 24 hours and production quantities fast. With on-going capital investment and cost-cutting programs such as SPC and MRPII. Behind it all are vast Philips Components resources. And a continuing commitment to global research which this year is leading to introduction of a low-profile ferrite line and a new PQ Series tailored to the power market.

\section*{Philips Components}

\section*{And Most Important... Our Service Corps.}

So when you're ready to move your design ahead with more compact components at higher frequencies, depend on Philips Components. For applications and engineering assistance, and OEM customer service, contact:
Factory
5083 Kings Highway • Saugerties, NY 12477 Tel: 914/246-2811• Fax: 914/246-0486
Philips Components Ferrite Distribution Centers
EAST
129 Morgan Drive • Norwood, MA 02062
Tel: 1-800-343-1370 •Tel: 617/769-6884 •Fax: 617/769-1638

CENTRAL
2255-4 Lois Drive • Rolling Meadows, IL 60008
Tel: 1-800-241-7667 • Tel: 708/806-6610
Fax: 708/806-6166
WEST
8589 Canoga Avenue •Canoga Park, CA 91304
Tel: 1-800-367-8083 • Tel: 1-800-842-7711 (CA Only) Tel: 818/998-7311• Fax: 818/998-8438
\(\begin{array}{lr}\text { Philips Components } & \text { 1-800-447-3762 } \\ \text { Discrete Products Division } \\ 2001 \text { W. Blue Heron Boulevard } & \text { (For Catalog) }\end{array}\)
P.O. Box 10330

Riviera Beach, FL 33404
More Products. More Solutions.

\title{
If you're not interested in second best results...
}

\section*{Sophia \\ systems.}

Universal microprocessor/ microcontroller emulation systems.

Just a sampling of popular devices covered.

Intel Microprocessors
\begin{tabular}{ll}
\hline \begin{tabular}{c}
\(8086 / 88 /\) \\
\(\mathrm{C} 86 / \mathrm{C} 88\)
\end{tabular} & 10 MHz \\
\hline \(80186 / 188 /\) \\
\(\mathrm{C} 186 / \mathrm{Cl} 88\) & 16 MHz \\
\hline 80286 & 16 MHz \\
\hline 80386 & 25 MHz \\
\hline \(80386 \mathrm{SX} / 376\) & 16 MHz \\
\hline NEC Microprocessors \\
\hline \(\mathrm{V} 20 / 30\) & 10 MHz \\
\hline \(\mathrm{V} 40 / 50\) & 10 MHz \\
\hline V 25 & 16 MHz \\
\hline V 33 & 16 MHz \\
\hline V 60 & 16 MHz \\
\hline
\end{tabular}

Why use anything but a firstclass emulator? When it comes time to prove your design, the tools should be up to the task. And, that's what Sophia emulation systems are about.

Our SA98 is PC based and works with virtually all of the leading ' C ' compilers, source level debuggers, and assemblers.

Bus-direct interfacing means code loads fast, and commands execute now. You'll have time to get the most out of your design.

Sophia Systems and
2450 EI Camino Real
Suite 212
Palo Alto, CA 94306
Tel: 415493-6700
Fax: \(415493-4648\)

Sophia Computer Systems, Ltd.
Alpha House
London Road, Bracknell Berkshire RG12 2TJ England Tel: 0344-862404
Fax: 0344-861374

The SA98 has trace and break points that set new standards in emulation debug. They are precise, powerful and easy to use.

Our SA98 is truly universal. From 8- to 32-bits, it can emulate hundreds of processors and controllers.

Call today for complete information on the SA98 and how to obtain a risk-free system evaluation. You'll be glad you did.

Sophia Systems Co., Ltd. Shinjuku NS Bldg. 8F 2-4-1 Nishishinjuku Shinjuku-ku, Tokyo 163, Japan Tel: (03) 348-7000 Fax: (03) 348-2446

\title{
Portable PCs tackle instrumentation tasks
}

Personal computers have already moved beyond the office to enter the laboratory as intelligent instruments. Now, portable PCs are entering the next instrumentation frontier: the real world.

Richard A Quinnell, Regional Editor

In the decade since the IBM PC's introduction, personal computerbased instrumentation has grown from a novelty to a mature industry offering a range of hardware and software tools. At the same time, portable PCs have become powerful enough to rival their desk-bound cousins. With care, you can combine the two technologies to work in, and beyond, the laboratory.

Portable PCs offer a number of advantages over desktop models in instrumentation tasks. They are typically smaller, occupying less of your already crowded lab bench. They are also lighter and more easily moved from bench to bench or to a field site.

Because they are weaned from the wall outlet, battery-powered portable PCs offer additional advantages. They are immune to the power glitches and line noise found in generator-driven or heavy-industrial sites. They cannot create the power-cord ground loops often found in test setups. And in medical applications, battery-powered units are safer than desktop PCs; with only de power they present no patient-shock hazards.

The light weight of some portable PCs may also be advantageous in a field application. One hang-glider company, for example, uses a laptop PC to measure wing stress during test flights. Not even a long extension cord could help a desktop unit perform that task.

To obtain the benefits

As rugged as it looks, this metal-cased PC from Grid Systems has two full-size expansion slots, allowing you to make it into an instrument you can take nearly anywhere.
of portability in your PC-based instrumentation, you have three choices: you can buy a portable PC and add plugin cards, buy a system already assembled, or use portable instruments having a PC link. Unless you have only occasional use for portable instrumentation, however, that first choice may not be your best.
It seems simple enough to buy a portable PC and add plug-in cards, but it's not. You'll have to choose carefully to work around the PC's limitations. You must consider the PC's expandability, its available power, and its display and memory characteristics. You must also match the plug-in card's size and power requirements to the PC's expansion capability.
Most portable PCs have some form of expansion capability, but many use proprietary bus and card designs in order to meet packaging limitations. Unless you intend to design your own plugins, you'll have to go with PCs that offer industry-standard plug-in slots. Table 1

\section*{Is your equipment meeting conducted EMI standards?}

If you're designing electronic equipment you'll probably need an EMI filter. Why not choose the best? Schaffner EMI filters and power entry modules meet or exceed the quality and safety requirements of the entire world including the rigorous Swiss Quality Standard SN-029100 and IEC 950.
Schaffner will make your job easier:
- Automated assembly ensures consistent filter performance from unit 1 to 10,000 . Once we are designed in you can go on to your next project.
- UL, CSA, VDE, approvals are at real world \(40^{\circ} \mathrm{C}\) rating.
- Our material selection complements your
design; seamless non-corroding German Silver cans, enhanced reliability through the use of thermally conductive epoxy encapsulant, and selfhealing metallized paper capacitors for longer life.
- We support you with a network of local representatives and distributors who will supply technical support and those all-important engineering samples.
- Schaffner is a worldwide corporation. Our financial strength ensures design-in support today and long term viability for your production designs. We'll be here in 1992 when a common European market will require ISO 9000 quality and local content.

For off-the-shelf or custom design, call your Schaffner representative or Schaffner directly.

Worldwide leader in electromagnetic compatibility
- RFI Suppression Filters • EMC Test Equipment • Schwarzbeck EMI/RFI Test Equipment • Test and Application Services
SCHAFFNER

Schaffner EMC, Inc., 825 Lehigh Ave., Union, NJ 07083 • 1-800-367-5566 • (908) 851-0644 • Fax (908) 467-1330 Circle 7 Call Me I'm Interested Rep and distributor network throughout US and Canada

\section*{TECHNOLOGY UPDATE}

\section*{Portable PC instruments}
gives a sampling of portable PCs with standard card slots.

Mere possession of a standard expansion slot, however, does not guarantee that a portable PC will accept whatever plug-in card you may wish to use. You must consider the PC's power capability. The PC may have a scaled-down power supply, imposing limits on the amount of current you may draw to run your plug-in card. Exceeding those limitations can seriously damage the supply.

Battery-powered PCs have additional limitations. The PC's battery capacity may not be sufficient to drive a power-hungry plug-in device for a useful amount of time. Further, a battery-powered system may not provide the -12 V normally available on a PC's expansion slot.

After expandability and power, the next consideration when choosing a portable PC for instrumentation is the PC's display type. Many portable PC displays are simply monochromatic LCDs with \(600 \times\) 200 -pixel resolution. All are limited in size to \(<12 \mathrm{in}\). Such display limitations may prevent you from taking full advantage of instrumenta-

Omnilab II is a good name for this multipurpose system from Orion Instruments. It is a logic analyzer, digital oscilloscope, and waveform generator combined with a PC.
tion software's graphical capabilities. (Many portable PCs have video ports for driving external, higher-resolution color monitors, but carrying around a CRT probably defeats your purpose for using a portable PC in the first place.)

Finally, consider the speed of the computer, its memory capacity, and
its disk data-transfer rate. These three factors will determine how much data you can collect and how fast. The computer's CPU speed determines how fast it can acquire and display data; the disk speed and memory size determine its maximum recording capacity at a given sample rate. Most data-acquisition

Table 1-Portable PCs with standard expansion slots
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Company & Model no. & Plug-in slots & RAM memory standard/maximum (M bytes) & Hard-disk capacity standard/optional (M bytes) & Display & Starting price & Battery capacity \\
\hline Chaplet Systems & LA-30A & 1 AT, \(1 / 2\) size \(1 \mathrm{XT}, 1 / 2\) size & 1/5 & 20/40 & \begin{tabular}{l}
\(640 \times 400\) \\
backlit LCD \\
four levels of gray
\end{tabular} & \$1999 & AC powered \\
\hline Datavue & Snap 1+1 & \(1 \mathrm{XT}, 1 / 2\) size & 640k1.6 & 20 & \[
\begin{aligned}
& 640 \times 200 \\
& \text { backlit LCD }
\end{aligned}
\] & \$3695 & AC powered \\
\hline Grid Systems & Gridcase 1535 & \[
\begin{aligned}
& 1 \mathrm{AT} \\
& 1 \mathrm{XT}
\end{aligned}
\] & 1/8 & 40/100 & \[
\begin{aligned}
& 640 \times 400 \\
& \text { backlit LCD }
\end{aligned}
\] & \$5525 & 2.4 Ahr \\
\hline Micro Express & Lyte-Byte 3400 & 1 AT, \(1 / 2\) size & 1/5 & 40/100 & \begin{tabular}{l}
\(640 \times 400\) \\
gas plasma \\
four levels of gray
\end{tabular} & \$2295 & AC powered \\
\hline Toppcs International & LT3400 & 1 AT, \(1 / 2\) size & 1/5 & 40/200 & \begin{tabular}{l}
\[
640 \times 400
\] \\
gas plasma four levels of gray
\end{tabular} & \$3000 & AC powered 1.5 Ahr optional battery \\
\hline
\end{tabular}

\title{
TECHNOLOGY UPDATE
}

\section*{Portable PC instruments}
boards can acquire information much faster than the PC can store such information.

\section*{Portable PCs for instrumentation}

As discouraging as these considerations seem, there are portable PCs that will handle engineering instrumentation applications. Bitwise Designs, for example, offers an entire line of ac-powered portable PCs for engineers, called the VP series. Each member of the series features two full-size AT-bus-compatible expansion slots, a 200 W power supply, and a gas-plasma monochrome VGA display with color mapped to 16 shades of gray. The top-of-theline unit, the 433/VP, features a 33 MHz 80486 CPU, 4 M bytes of RAM, and a 200 M -byte, \(16-\mathrm{msec}\) hard-disk drive. Prices range from \(\$ 2695\) for a \(12-\mathrm{MHz} 80286\) version to \(\$ 11,995\) for the \(433 / \mathrm{VP}\).
If you need a battery-powered unit, you can use the Gridcase 1535 EXP from Grid Systems. This unit uses a \(12.5-\mathrm{MHz} 80386 \mathrm{CPU}\) and has a \(640 \times 400\)-pixel backlit LCD display. It costs \(\$ 5525\).
The Gridcase 1535 accepts two plug-in cards: a full-size AT-buscompatible card and a full-size XT-bus-compatible card. To power the plug-in cards, the unit's battery will supply 3.5 A at \(5 \mathrm{~V}, 0.75 \mathrm{~A}\) at +12 V , and 0.5 A at -12 V . The battery's capacity is 2.4 Ahr .
Finding a PC is only half of the problem; you must still find a plugin card to match your PC. Literally hundreds of plug-in boards exist that will turn your PC into any type of instrument you desire (Ref 1), but few have been designed with portable PCs in mind. Many dataacquisition boards require -12 V , which is often unavailable on portable PCs. Further, most portable PCs will only accept half-size cards.

One of the rare breed of plug-in boards designed to account for a

Designed with portable PCs in mind, the DT2814 data-acquisition board from Data Translation requires minimal space and power. The board generates its own -12 V power because many portable PCs don't.
portable PC's limitations is the DT2814 data-acquisition board from Data Translation (\$345). The DT2814 provides 16 single-ended data channels and digitizes to 12 bits with a sample rate as great as 40 kHz . The board occupies a halfcard standard XT expansion slot, and it draws \(<138 \mathrm{~mA}\) at 5 V and \(<50 \mathrm{~mA}\) at +12 V . It uses a charge pump to generate its own -12 V .

\section*{Integrated PC systems}

If the business of selecting a portable PC and plug-in device is more of a hassle than a help, you may choose to purchase an integrated system. These systems have the advantage of using plug-in cards that are matched to their computer. The system designers have addressed power and size constraints for you, as well as factors such as heat, electrical noise, and providing software.

Several such systems are available, depending on the type of environment you expect to encounter. Elexor's TD-4000, for example, is a relatively low-cost (\(<\$ 2000\)) system for average environments. The TD-4000 is a modified Toshiba T1000 battery-powered laptop computer. It provides both analog and
digital I/O ports, a 720k-byte floppy-disk drive, and 512 k bytes of RAM. The system comes with MS-DOS in ROM and Elexor's dataacquisition and display software, MACS, on disk.
The system's analog input port provides 16 single-ended or eight differential data channels, samples as fast as 10 kHz , and provides 12 bits of resolution. Faster and more precise converters are available as options, as is a 2 -channel 12 -bit D/A output port. The digital port provides eight bidirectional and two timer/counter I/O lines.

The Techstation, from Onsite Instruments, handles more rugged conditions. The battery-powered system, including the 40 M -byte hard-disk drive, will operate continuously under vibrations as great as 5 G . Its cost is also more rugged; prices start at \(\$ 17,750\) for a basic system.

Onsite starts with a Gridcase 1535, then adds its own expansion box with memory, antialiasing filters, and an 80186-based dataacquisition card. The card's CPU handles all of the data conversion and storage, leaving the computer's CPU to handle display functions

\section*{Prism. Four instruments in one logic analyzer: For laster, time-correlated results.}

State analyzer. Timing analyzer. Emulator. DSO. Getting the complete picture is easier than you think.

The 4-in-1 Prism 3000 Series is unlike any other logic analyzer. From one keyboard and display, it can do the work of multiple instruments. It can time-correlate data acquired by one Prism module to data acquired by all other modules, via revealing split-screen displays.

Combine the triggering and channel resources of a logic analyzer with emulator-like ability to change registers, patch memory, and step through your code. View both signal timing and signal integrity at the same time with the integrated DSO.

For twice the power and convenience afforded by separate instruments, at half the cost, contact your Tek sales engineer. Or call 1-800-426-2200 for the complete multipurpose Prism story.

\section*{Portable PC instruments}
and perform FFTs for spectral analysis. The result is data acquisition on 16 channels at a sustained 100,000 samples/sec with bursts as great as 250,000 samples/sec.

If your interests are more digital than analog, you may choose the Orion Instruments Omnilab II. It offers a 48 - or 96 -channel logic analyzer, 24-bit digital output generator, \(100-\mathrm{MHz}\) digital sampling oscilloscope (DSO), arbitrary waveform generator, and frequency counter in an ac-powered portable PC. Prices start at \(\$ 12,800\).

Because the Omnilab's instruments are integrated into a single package, you can combine their functions. For example, you can capture an analog waveform with the DSO, edit it with the PC, then play it back through the waveform generator as a test stimulus. You can also trigger the logic analyzer with analog signals and get timealigned digital and analog displays.

You may need the portability and ease-of-use available with an integrated system, yet require more ca-
pability than you can fit into a PC chassis. In that case, you can use a portable instrument that links to a PC for control, display, and data storage. Such instruments use either an interface card that plugs into the PC's expansion slot or an RS-232C link to the PC.

For simple data acquisition, you could use the Tektronix Model 222 handheld digital oscilloscope. The \(\$ 2350\) unit features an RS-232C link to a PC, allowing you to transfer stored waveforms and setup files between the two. If you use the CAT200 software package from National Instruments (\$350), your PC can become an extension of the oscilloscope, allowing you to control the instrument and view data, using the PC display to duplicate the oscilloscope's front panel. Any portable PC running MS-DOS and having a serial port and EGA-resolution graphics capability can run CAT200.

For more elaborate data acquisition, you can use an instrumentation front end that you configure
with plug-in cards. For example, the Helios series from Fluke runs from 12 or 24 V de power and can handle as many as 1000 data channels at speeds as great as 1000 channels/sec. You control the unit through an RS-232C or RS-422 link, using Fluke's CIM-PAC software or National Instruments' Labtech Notebook. A base unit costs \(\$ 2500\), with plug-in cards ranging from \(\$ 100\) to \(\$ 1200\).

Keithley's Metrabyte/DAC division also offers a flexible dataacquisition and control unit, the Model 500P, for portable applications. The unit connects to your PC through a half-size expansion card and provides an analog measurement module with slots for nine other modules. You can obtain ana-log-input and -output, digital-input and -output, power-control, and mo-tion-control modules for the system.

The Model 500P uses a de/dc converter to power its modules. The unit will also power your portable PC , providing 2.5 A at \(12 \mathrm{~V} \pm 2 \%\). You can choose a 9.5 to 18 V version

Add sensor, will travel should be the motto of these PC-based systems. The TD-4000 (a) from Elexor Associates and the Techstation (b) from Onsite Instruments are complete analog data-acquisition and processing stations, including software.

\section*{Are you missing the big picture in digital oscilloscopes?}

Nicolet 430E: 256 K Memory/Channel, 12 bits vertical resolution.

\section*{There's more of everything with the Nicolet 400 Series.}

Any way you look at it, competitors just can't touch the Nicolet 400 Series when you consider memory and vertical resolution.

The closest major competitor's per-channel memory is four times less. Vertical resolution-four times less again. And when memory and vertical resolution are combined, the nearest offering is 80 times less! Clearly no match.*

Now add other 400 Series advantages like the choice of two or four channels, with 64 K to 256 K memory in each. Single ended or differential inputs. A \(31 / 2^{\prime \prime}\) or \(51 / 4^{\prime \prime}\) floppy drive. One to \(200 \mathrm{MS} / \mathrm{s}\) digitizing rates. The unique 44 MB removable hard disk or 40 MB internal disk. Plus dual timebase, choice of 8 or 12 bit digitizing resolution (separate or combined); built in MS-DOS drive; LEARN mode for automated test sequences; FFT and averaging.

More individual features, more combined memory and vertical resolution, more of everything. Get the picture?

Call today about the Nicolet 400
*Based upon known specifications as of \(7 / 90\).

\section*{Don＇t Compromise！}
＇486 Portable Computer with Workstation Performance and PC－Based Logic Analyzer with Unmatched Features

－33 MHz 80486－based VGA Portable －Runs MS－DOS，Unix，OS／2 －Handles CAD／CAM like no mere PC can！ -3 full length slots for PC－based instruments or any other ISA cards
－Fits under an airline seat．
－Up to 16 Meg RAM， 200 Meg Hard Disk
－The Fastest Portable in the World！
A Full Line of 286，386，and 486 Portables， Workstations，and Networks．

\section*{Capture．．．}

GENERAL CIRCUITBUG

and other＂bugs＂with the versatility of the Logic Analysis System
－4K to 64K Memory Depth
－16 level triggering
－40 to 320 channels
－Software under Microsof Windows
－Programmable Disassembler
supports any processor，even custom

701 River Street
Troy，NY 12180
（800）367－5906
（518）274－0755
FAX（518）274－0764

\section*{TECHNOLOGY UPDATE}

\section*{Portable PC instruments}
drawing 10 A or an 18 to 36 V ver－ sion drawing 5 A ，at prices starting from \(\$ 1850\) ．The device comes with Keithley＇s KDAC500／I software for programming the instrument in Ba － sic．You can also use National In－ struments＇Labtech Notebook soft－ ware to control the instrument．
The many options you have dem－ onstrate that portable PCs are vi－ able instruments，despite their limi－ tations．And those limits are chang－ ing．The next generation of portable PCs，for example，is likely to offer full－color VGA displays，removing the display limitation．Ultimately， only size and power capacity will
limit what you can add to and do with a portable PC．That，and your imagination．

コロツ

\section*{Reference}

1．Novellino，John，＂PC－based instru－ ments grow in number and power，＂ Electronic Design－Edge，December 1988，pg 7.

\section*{Article Interest Quotient \\ （Circle One）}

High 515 Medium 516 Low 517

\section*{For more information ．．．}

For more information on the portable PCs and instruments discussed in this article，circle the appropriate numbers on the Information Retrieval Service card or use EDN＇s Express Request service．When you contact any of the following manufacturers directly，please let them know you saw their products in EDN．

Bitwise Designs Inc
701 River St
Troy，NY 12180
（518）274－0755
FAX（518）274－0764
Circle No． 660

Chaplet Systems USA Inc
252 N Wolfe Rd
Sunnyvale，CA 94086
（408）732－7950
FAX（408）732－6050
Circle No． 661

Data Translation
100 Locke Dr
Marlboro，MA 01752
（508）481－3700
FAX（508）481－8620
Circle No． 662

Datavue
1 Mecca Way
Norcross，GA 30093
（404）564－5555
Circle No． 663

Elexor Associates Inc
Box 246
Morris Plains，NJ 07950
（201）299－1615
Circle No． 664
\begin{tabular}{ll}
Grid Systems Corp & Onsite Instruments Inc \\
47211 Lakeview Blvd & 855 Maude Ave \＃2 \\
Fremont，CA 94538 & Mountain View，CA 94043 \\
（415）656－4700 & （415）964－9800 \\
Circle No．665 & FAX（415）964－9808 \\
& Circle No．670 \\
& \\
John Fluke Mfg Co Inc & \\
Box 9090 & Orion Instruments Inc \\
Everett，WA 98206 & 190 Independence Dr \\
（800）443－5853； & Menlo Park，CA 94025 \\
in WA，（206）346－6100 & （800）729－7700； \\
Circle No．666 & in CA，（415）361－8883 \\
& FAX（415）327－9881 \\
Keithley／Metrabyte／DAC & Circle No．671 \\
440 Myles Standish Blvd & \\
Taunton，MA 02780 & \\
（508）880－3000 & Tektronix Inc \\
Circle No．667 & Box 19638 \\
& Portland，OR 97219 \\
Micro Express & （800）426－2200； \\
in OR，（503）690－3900 \\
1801 Carnegie Ave & Circle No．672 \\
Santa Ana，CA 92705 & \\
（714）852－1400 & Toppcs International Inc \\
FAX（714）852－1225 & 950 N Elm St \\
Circle No．668 & Orange，CA 92667 \\
& （714）744－4581 \\
National Instruments & FAX（714）744－2753 \\
6504 Bridge Point Pkwy & \\
Austin，TX 78730 & \\
（512）338－9119 & \\
FAX（512）794－5569 & \\
Circle No．669 &
\end{tabular}

\section*{The Perfect Waveform Synthesizer for an Imperfect World}

Analogic 2020 Series: Unsurpassed Speed and Accuracy for Real World Signals

For Applications Assistance: Analogic Corporation, 8 Centennial Drive, Peabody, MA 01960, 1-800-343-8333 in U.S.A. In Mass. call (508) 977-3000 Telex: 681-7180, FAX: (508) 532-6097

In a world full of glitches, spikes, noise, aberrations and distortion, waveform synthesis must be flexible enough to emulate nature itself. With unprecedented speed, accuracy, and memory depths, Analogic's 2020, 2040, and 2045 Polynomial Waveform Generators readily simulate the complex waveforms demanded in today's test environments. The Data Precision waveform generators feature:
World's fastest waveform generation- \(800 \mathrm{MS} / \mathrm{s}\) data rate at 8 -bit resolution
- Very high resolution - up to 12 bits at \(100 \mathrm{MS} / \mathrm{s}\)

E Up to 512 K points output waveform memory
- Math or remote data entry
- One-key generation of standard functions (sine, square and triangle with variable symmetry, etc.)
- Non-volatile equation library
- Full programmability for ATE via IEEE or RS232
- MATE/CIIL compatibility
- Full dynamic range independent of amplitude
- Phased-lock loop capability for up to eight 2020s
- DPCOM \({ }^{\mathrm{TM}}\) PC software utilities support

Don't wait for the unexpected to occur. With Data Precision waveform generators, create it, design out unpredictable responses and thereby increase reliability. Applications include disk drive, video (including HDTV), sonar, radar, telecommunications, EMI, EMP, component testing, acoustics, bio-acoustics, vibration testing and much more.

For proven real world waveform synthesis performance, make the perfect choice: Analogic's Data Precision products.

ANALOGC.
The World Resource
for Precision Signal Technology

\title{
BEFORE YOU CHOOSE P BETTER CHECK
}

Things aren't always what they seem.

Some people would have you believe FPGAs are faster and denser than MAX \({ }^{\text {ww }}\) EPLDs.

Funny how they never mention in-system performance, though. When they talk about speed, they quote 100 MHz flip-flop toggle rates. When they talk about density, they recite raw gate counts.

Which could make your high-performance design highly disappointing.

But if you want to do more than just spin your wheels, consider MAX. It's the first family of
 to provide both high speed and high logic density where it counts. At the system level.

Which means MAX can handle just about all your logic needs. In fact, a single 64-macrocell EPM5064

\title{
ROGRAMMABLE LOGIC, UNDERTHE HOOD.
}

can integrate anything from simple system glue logic right up to complex graphics coprocessors and LAN and memory controllers. Or take the 68-pin MAX EPM5128. It's up to 50\% faster and 100\% denser than comparable FPGAs, thanks to its high-performance architecture and superior logic routability. But don't take our word for it-just take a look at the competition's benchmarks.

Best of all, MAX gives you this unbeatable performance in record time. With powerful, easy-to-use MAX+PLUS \({ }^{w}\) software, design compile times are measured in minutes. Not hours or days.

So if you're looking to redefine system performance, talk to the folks who invented the EPLD. Call Altera today at (408) 984-2800.

We'll make sure you've got plenty of horses under the hood.

2610 Orchard Pkwy., San Jose, CA 95134-2020
Tel. (408) 984-2800 Fax. (408) 248-6924

\title{
IN THE ERA OF MegaChip" TECHNOLOGIES APPLYING TI's BiCMOS
}

\title{
With more than 50 BiCMOS logic functions from Texas Instruments, you can beat tough bus-interface design challenges. Our free SamplePacs will show you how.
}

Specially designed for use in businterface applications, our growing BiCMOS logic family can make the difference in getting data on and off the bus faster. These advanced functions that combine the best of bipolar and CMOS

\section*{DIFFERENCE}

In fact, your system power savings can amount to more than \(25 \%\), and you should experience reduced switching noise as well. Yet you can maximize system speed. Switching speeds are comparable to advanced bipolar devices and provide the high drive current required for today's industrystandard buses (\(48 / 64 \mathrm{~mA}\) commercial, 24/48 mA military).

Gaining even greater performance If you need even lower power and higher speeds, our submicron Advanced BiCMOS (ABT) family is the choice for you. Planned devices include 8-, 9-, and 10-bit buffers/drivers, transceivers, latches, registers, and registered and latched transceivers. Our broad BiCMOS family also includes unique functions that can help you more quickly meet the design challenges involved with incident wave switching, driving MOS memories, and system testability.

\section*{Assuring incident wave switching} Wider word widths and additional cards on backplanes are requiring higher drive currents to assure incident wave switching.
Our BiCMOS family delivers. With our low-impedance line drivers, you
get more "instantaneous" current even when impedances are as low as 25 ohms. You minimize transition "flat" spots that can degrade speed or cause oscillation at the receiving devices.

Used in place of standard octals, SCOPE devices allow specific circuitry within an assembled module, board, or system to be isolated for verification and debugging without manual probing. Currently, our BiCMOS family includes an octal buffer, transceiver, D-type latch, and D-type flip-flop.
TI's SCOPE products are the first to conform to the Joint Test Action Group (JTAG) specifications adopted by the IEEE 1149.1 Test Standards Committee.

Get your free SamplePac and sample our BiCMOS difference; call 1-800-336-5236, ext. 3008 You can take your choice of our BiCMOS SamplePacs containing a free BiCMOS device, our latest advanced logic brochure, plus appropriate product data. Just call the number given above, or use the return card to let us know which SamplePac you need to begin applying TI's BiCMOS difference.

CIRCLE NO. 104

\section*{Building in testability with SCOPE}

It is becoming more difficult to accurately test today's highly integrated boards and systems, but TI's BiCMOS family contains your solution: SCOPE \({ }^{\text {TM }}\) (System Controllability and Observability Partitioning Environment) octals.

Remember when. . .
There were no lights in Wrigley Field?
Eight megabytes of RAM was only \(\$ 320,000\) ?

\section*{Take a stroll with NEC}

\footnotetext{
Australia Tel:03-267-6355. Telex:38343. France Tel:1-3946-9617. Telex:699499. Germany Tel:0211-650302. Telex:8589960
Hong Kong Tel:755-9008. Telex:54561. Italy Tel:02-6709108. Telex:315355. Korea Tel:02-551-0450. Fax:02-551-0451
The Netherlands Tel:040-445-845. Telex:51923. Singapore Tel:4819881. Telex:39726. Sweden Tel:08-753-6020. Telex:13839 Taiwan Tel:02-719-2377. Telex:22372. UK Tel:0908-691133. Telex:826791. USA Tel:1-800-632-3531. TWX:910-379-6985.
}

\section*{down Memory Lane.}

1893 Grover Cleveland sworn in as president. William Wrigley, Jr. introduces Juicy Fruit and Spearmint gum at 5 ¢ a pack, its price for the next 78 years.
1916 Wrigley buys Chicago Cubs.
1971 Wrigley's son Philip grudgingly increases price of gum to 7 c a pack.
1975 Chewing gum is 15 c a pack. Eight megabytes of RAM is \(\$ 320,000\). 1 K DRAMs are \(\$ 5\).

1985 NEC introduces made-in-America 256K DRAMs.

1988 Lights go on in Wrigley Field (8/8/88). NEC 1-megabyte SIMMs retail for \(\$ 400\). Chewing gum is a quarter.
1989 NEC ships 4-megabit DRAMs in high volume.

1990 NEC 1-megabyte memory modules (SIMMs) begin the year at less than \(\$ 100\). George Bush throws out first ball. NEC samples \(60-\) nanosecond 4 -megabit DRAMs in 300 -mil SOJ packages.
1993 U.S. president sworn in. NEC ships 16-megabit DRAMs from its Roseville, California, submicron line. Cubs win World Series.

If the price of chewing gum had dropped as fast as memory prices, you could buy 667 packs for a quarter.
For the latest information on NEC SIMMs and 4-megabit DRAMs in 300-mil SOJ packages, remember to call NEC.

\section*{THE NO COMPROMISE 22VIO}

Programmable logic always has been a give-and-take affair. If you wanted speed, the price was power-lots of it. And, if you tried to cut power, you lost the speed. It seems you could have either one or the other-but not both. NOW YOU CAN HAVE THE BEST OF BOTH WORLDS.

Announcing the AT22V10-15 - the no compromise 22V10.

Talk about fast. A blazing 15 nanoseconds. That's fast enough for those advanced 32-bit systems you're designing today for tomorrow's machines.

And it's cool. When you plug in the AT22V10 you won't even think it's on. It typically draws a stingy 55 milliamps
and never asks for more than 90 milliamps.
So, if you're tired of having to compromise. Don't. Call Atmel, the home of the no compromise 22 V 10 . If you're not sure yet that we make the best CMOS 22 V 10 in the whole world drop us a note on your company's letterhead, and we'll send you one. Or in the U.S. call us at 1-800-292-8635.

\section*{TECHNOLOGY UPDATE}

\section*{HLL CROSS-DEBUGGERS}

\title{
Cross-debuggers verify high-level programs
}

Cross-debuggers are so much better than they used to be that you need to rethink the way you use them. Now, you can thoroughly testnot just debugeach element of your program at every stage of its development.

\author{
Charles H Small,
}

Senior Editor

Debugging used to mean doing little more than first sprinkling your code with PRINT statements and then spending endless hours sin-gle-stepping through it. Code debugged this way met, at best, a minimal standard for programs: It would stumble along without crashing.
A collection of incremental improvements to cross-debuggers for high-level languages (HLLs) adds up to software tools that transcend mere debugging. Now you can perform the software equivalent of "corner testing." That is, as you construct each element of your program, you can wring it out thoroughly. The result should be bulletproof, efficient code.

Hardware engineers have long followed cor-ner-testing practices. Their corner testing proceeds in stages corresponding to the stages of bottom-up implementation; beginning with components, progressing to subassemblies, and finishing with final-systems tests, using only the highest and lowest values of certain important parameters (hence the name corner testing). For example, hardware engineers check responses for all combinations of extreme values for inputsignal levels, power-sup-

Because its tools have to interoperate over a complete range of hardware and software cross-development tools, Intel's compilers' cross-reference file format, OMF, has become a de facto standard for debuggers' inputs.

AN APPLICATIONS EXAMPLE. While the following example is for aircraft, it could apply to any air, land, sea or space system.

SEQUENCE ONE: The four-pushbutton display reads "ENGINE START," "BATTERY OK," "FUEL OK," OXYGEN OK." The operator selects "ENGINE START." 2 SEQUENCETWO: The fourpushbutton display now changes to read "ENGINE OK," "HYDRLC OK," "POWER OK," "CHECK LIST." The operator selects "CHECK LIST."
SEQUENCE THREE: The fourpushbutton display now reads "CHECK ICE," "CHECK FLAPS," "CHECK BRAKE," "SYSTEM OK." In this manner, the designer can program in as many sequences as required.

\section*{Design flexibility: The programmable display system.}

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numerics and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.

They also simplify operator training as well as control panel design. One Vivisun Series 2000
programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.

Contact us today.

\section*{AEROSPACE OPTICS INC.}

3201 Sandy Lane, Fort Worth, Texas 76112
(817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 2000
programmable displays. The intelligent communications system.

PTUER Ol: SSTEM
MERU

\section*{TECHNOLOGY UPDATE}

\section*{HLL Cross-Debuggers}
ous entities by their symbolic names. They now automate what used to require considerable operator intervention. The simplest example of such a powerful feature is the "watchpoint."

A watchpoint is a combination of a breakpoint followed by a formatted dump of a selected data entitya register variable, a memory variable, an array, or a structure. The watchpoint lets you shift your attention from the program's execution to its effects.

With watchpoints, you can employ the normal troubleshooting mindset, identifying anomalous results and working back to their causes. Simply single-stepping your program or running it to breakpoints forces you to identify the cause first.

Note that even the simplest debuggers allow you to break and then examine memory. The key to the watchpoint's utility is that it combines, in one command, what formerly were a tedious string of commands.

Other key features of the newer cross-debuggers are the ability to capture and edit a string of commands (a "session") and the ability to invoke a prerecorded file of commands ("batch mode"). Operating in batch mode, the debugger's scope enlarges beyond on-line testing to encompass automated testing. The simplest example of automated software testing is "babysitting," or letting a program run for extended periods until the debugger detects a fault.

Offering a subset of in-circuit-emulator features, Applied Microsystem's CodeTAP provides a fast, nonintrusive link between a debugger and a target system.

Another important feature is the ability to redirect I/O, because without it, running subroutines and subprograms in isolation would be difficult. With this feature, you can force your program to take unusual branches, enhancing code-coverage testing and branch-flow analysis. You can even test around missing hardware. For example, Intermetrics's SXDB 5.0 (\(\$ 2400\)) combines the company's XDB debugger with an IBM PC hardware-simulation board bearing an Intel 80X86 or Motorola \(68 \mathrm{XXX} \mu \mathrm{P}\). You can use it to try out your software if your target system isn't available.
When you crunch up sets of these
and other useful debugger commands into one custom command, you are, in effect, creating custom test suites. The more easily the cross-debugger allows you to construct such suites, the more likely you are to test your software thoroughly.

\section*{Command languages tend to C}

Cross-debuggers vary in the command languages they provide to allow you to construct these elaborate command strings. The trend is toward using the same command constructs as the C programming language. Writing a debugging session is therefore virtually the same as

\section*{How to become a "power user"}

With a cross-debugger, you can pass through the lower stages of computer-user evolution and achieve the status of a "power user." At the first stage of computer-user evolution, you poke around using the debugger's menus. After mastering all the menus,
you begin zipping around using commands or a mouse. Finally, you ascend to power-user status when you begin combining commands into strings of your own devising.

\section*{TECHNOLOGY UPDATE}

\section*{HLL Cross-Debuggers}
writing a small C program. So, be careful about claims that a debugger interfaces to languages other than C. The debugger may work with a non-C compiler if the compiler outputs a standard crossreference file, such as an Intel OMF cross-reference file. But the debugger's command language will probably still be C.

Some cross-debuggers can also link intimately with powerful debugging hardware such as ROM emulators, in-circuit emulators, and logic analyzers. Such tools offer both nonintrusive, real-time performance and the promise of penetrating below the resolution of highlevel statements to the machinelanguage level.

Cross-debuggers have seen upgrades at each of their three ports (Fig 1): the interface between the host system and the target system; the interface between the compiler and the debugger; and the interface between the software engineer and the debugger.

\section*{Target interface}

As Table 1 shows, you have four choices for linking a host-resident cross-debugger to your target system. Each link has six important characteristics:
- How much command and control it can exert over your target system

Fig 1-Debuggers have seen recent improvements at all three of their interfaces: compiler, human, and target-system.
-Which software events it can capture in real-time vs those it must evaluate after halting the code under test
- How much it interferes with the target system's operation
- How many target-system resources it usurps
- How fast it communicates
\(\bullet\) How much it costs.
The tool you select to debug your code depends heavily on the class of bug you are looking for. For ex-
ample, you could exorcise most logical bugs (which are in your program's command flow and data structures) right on your host computer using a software simulator. Runtime problems (which pop up when you first try to bind your software to the target hardware), on the other hand, obviously require a cross-debugger. Real-time problems (which bedevil you as you try to make your hardware/software system respond properly to hard-

\section*{The Aries Chip Set \\ designerș call it the eliminator.}

The ARIES Chip Set does away with many significant design headaches, that's why. It collapses virtually all disk drive electronic functions onto just 4 chips, so you can accomplish your hard disk drive design in less space. And get your finished product to the market a lot sooner.

Packed inside ARIES are the 32R4610 Read/Write Ampliflier, the 32P4620 Pulse Detector/Data Separator, the 32H4631 Servo and Motor Speed

Controller, and the 32C4650 Combo AT Controller.

ARIES appreciates your ongoing need for shrinking footprints and high 24-Mbit/s performance. Plus it equips you with low-power +5 volt only operation.

In other words, the ARIES Chip Set is a revolutionary idea that just might help you eliminate your competition. For more on ARIES, contact your nearest Silicon Systems
representative. Or call us for literature package SPD-2.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680 Ph 1-800-624-8999, ext. 151 Fax (714) 669-8814 European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117

\section*{TECHNOLOGY UPDATE}

\section*{HLL Cross-Debuggers}
ware interrupts) mandate the highest power, least-intrusive hardware link to your target system. Table 2 shows Applied Microsystem's estimated breakdown, normalized over 100 bugs, for the time spent debugging these three classes of software problems.

Generally speaking, the lowestcost link between the debugger and the target is a serial line and a tar-get-resident, debugging-monitor ROM. Such a link is also the slowest has the least command and control over your-target system, usurps the most target-system resources, and can capture the fewest software events in real time.

The monitor functions by substituting a software-trap instruction for instructions in your program. Thus, unlike hardware-based links, the only software event a monitor can recognize is an instruction fetch from RAM.

But even this link has seen substantial improvements. Cross-debugger and monitor-ROM vendors have worked together to modify ex-

Note: Normalized over 100 bugs.
isting monitors, or have developed their own. Older monitors toiled with simple ASCII terminals. Consequently, their serial-communications streams were verbose and slow. Their command languages suited human operators. The new monitors use terse, binary communications and have command languages that suit computerized debugging operations. For example, Microtec Research's monitor for its Xray debugger optionally uses the Kermit protocol for communications. Concurrent Sciences quotes data-transfer rates of 200 k bytes/ minute for binary files using its Soft-Scope debugger.

Modern windowing interfaces, such as this one for Intermetrics's RMSCB 5.0, can correlate your source program to software elements in the target system such as assembly code, stack contents, and data structures.

Monitor makers have added more powerful routines for chores such as filling memory or performing checksums. For example, Xray does checksums on memory at halts to see if the program has run away and overwritten illegal memory locations. The result is that the monitors now execute complicated operations without a constant stream of chatter between the target and host systems.

\section*{Emulators evolve}

Monitor vendors aren't the only ones modifying their products to suit cross-debuggers. Some emulator manufacturers are changing their emulator's event-capture hardware so that their instruments match up better to cross-debuggers. For example, Pentica System's Mime-600 emulators for Motorola 68XX single-chip \(\mu \mathrm{Ps}\) incorporate two changes over earlier models.

First, the capture hardware breaks execution before executing an instruction that has a breakpoint set on it. Previous emulators broke after executing such instructions. The newer emulators now stop execution right at the beginning of a string of machine-level instructions that correspond to a HLL statement, rather than partially executing the string. The old behavior was acceptable for assembly-level debugging; the new behavior suits HLL debugging better.

Pentica has also shifted from word-recognizer hardware to "shadowbits" for recognizing software events. Earlier emulators depended on a limited number of digital comparators, or word recognizers, to signal the occurrence of a software event. The newer instruments have an extra bit, or bits, appended to each byte of emulation memory. These extra bits serve as qualifiers that the emulator's hardware can set, before execution, and then test,

\section*{New Direciions for An/IDT BISC Technology Seminar}

\section*{Seminar Outline}
\(8: 30 \mathrm{a} . \mathrm{m}\). - \(1: 00 \mathrm{p} . \mathrm{m}\)., lunch included
I. RISC Technology and Application Trends
- Workstations and embedded applications
II. Performance Analysis
- SPEC \({ }^{\text {TM }}\) benchmarks
- Embedded processor comparisons: 960 and 29 K
III. R3000 Architectural Overview
- CPU and floating-point
IV. New Directions for the MIPS Architecture
- IDT RISController \({ }^{\text {TM }}\) family:
- R3001
- R3051 \({ }^{\mathrm{TM}} / 52^{\mathrm{TM}}\) and supporting chip set
- IDT RISCore \({ }^{\text {TM }}\)
- Next-generation MIPS R4000
V. Applications Examples
- Workstations
- Embedded processing
- Multiprocessing
VI. Time-to-Market Strategies
- Evaluation and prototype boards
- Development platforms
- RISC modules
VII. IDT Future Roadmap

\section*{Get the Facts}

IDT's "New Directions for MIPS RISC" seminar provides information on the latest developments in RISC technology, from low-cost 32-bit RISC controllers for embedded systems to the next generation R4000 for single and multiprocessing machines.
This seminar is a must for engineering professionals involved in selecting a microprocessor platform for:
- Embedded controllers
- Workstations
- Multiprocessing
- Military systems
- Software development.

Learn how the R3000 family beats Intel's 960 and AMD's 29 K families for cost-effective controller designs. Make an informed decision about RISC for your next-generation design-join us at the RISC seminar and discover how to make your next system a winner!
Seminars are subject to limited seating, so call the Seminar Hotline in the appropriate city to reserve your place.

Alabama
Huntsville
(407) 773-3412

Arizona
Phoenix
(602) 860-2702

California
Encino
(818) 981-4438

Irvine
(714) 727-4438

Santa Clara
(408) 492-8350

San Diego
(619) 565-8797

Colorado
Denver
(303) 799-3435

Florida
Orlando
(407) 773-3412

Illinois
Chicago
(708) 390-9696

October 31

October 23

November 7
November 6
October 30
November 7
November 8

October 25

November 1
\begin{tabular}{|c|c|}
\hline Maryland Baltimore (301) 858-5423 & October 30 \\
\hline Massachusetts Boston (508) 898-9266 & \begin{tabular}{l}
October 31 \\
November 6
\end{tabular} \\
\hline Minnesota Minneapolis (612) 932-2920 & October 31 \\
\hline New Jersey Fairfield (516) 536-4242 & October 30 \\
\hline New York Rochester (716) 777-4040 & November 1 \\
\hline \begin{tabular}{l}
Oregon \\
Portland \\
(503) 620-1931
\end{tabular} & October 24 \\
\hline Pennsylvania Philadelphia (609) 596-8668 & November 7 \\
\hline
\end{tabular}

\section*{TECHNOLOGY UPDATE}

\section*{HLL Cross-Debuggers}
during execution, to recognize software events.

A complex HLL debugging session can soon exceed the limited resources of a word-recognizer-based emulator. The shadow-memory scheme lets the cross-debugger preset a breakpoint, or other software events, on every emulation-memory location, not just in RAM.

In-circuit emulators provide the highest resolution, least-intrusive link between your debugger and target system. In the past, the best cross-debuggers could do to provide an interface to an in-circuit emulator was to pop out of the debugger's normal human interface into a virtual terminal for the in-circuit emulator's native control language. In other words, the debugger and the emulator didn't really communicate.

Many debuggers now integrate selected in-circuit emulators' eventrecognition and breakpoint circuitry directly into the debuggers' arsenal. One debugger, Emulogic's Slice, can handle any in-circuit emulator. It can also decompile the trace of the program's execution captured by an emulator, correlating the captured trace with your

Teamed with an IBM PC, cross-debuggers like Concurrent Science's Soft-Scope allow software engineers to "corner test" each element of their code as they write it.

HLL program in an interleaved display.

Applied Microsystem's Codetap 386 for Intel \(80386 \mu\) Ps has a subset of the features of an in-circuit emulator. The instrument lacks the emulation memory and trace buffer that hardware engineers need. But it retains an emulator's nonintrusive target-system link, replacing the target \(\mu \mathrm{P}\) with a probe. The instrument costs approximately one-fifth the price of an 80386 incircuit emulator.

ROM emulators, such as the

Orion Instruments' 8620 (\(\$ 6280\)) or the Embedded Support Tools' ROMport (\$1095) (which interfaces to Intermetrics's XBD cross-debugger), offer a relatively low-cost way to link your cross-debugger to your target system without using the target system's serial port. ROM emulators provide some of the features of an in-circuit emulator. But, unlike in-circuit emulators, ROM emulators require a target-resident monitor program.

\section*{Compiler-interface arcane}

The interface between a compiler and a debugger is the most arcane of the three interfaces. Compilers are far more complex than just simple macro expanders. Good compilers perform many operations that obscure any one-to-one correspondence between your HLL file and the compiled code in your target system. They recognize certain combinations of HLL code, generating compressed and rearranged assembly code. Compilers add hidden overhead routines to access variables, structures, and the stack. They use covert filing systems and nomenclature to keep track of objects you've defined. Optimizing

\section*{Kernel debuggers embrace Ethernet}

Real-time-kernel vendors, unlike cross-debugger vendors, have adopted Ethernet as a target-system link. The cross-debugger vendors see Ethernet drivers as large and intrusive.

Wind River Systems-first-and Ready Sys-tems-lately-have introduced sophisticated debuggers for their real-time kernels. While a conventional applications programmer doing host development would find the notion of an operating-system debugger absurd, real-time programmers need the same visibility and control over their real-time operating systems as they do over the code in their real-time tasks.

The latest real-time-kernel debuggers benefit
from improved kernels and cleaner organization. First, kernel vendors added debugging kernel calls to their kernels. Next, they put the debugger up as a task running under the kernel's scheduler. Finally, they gave the debugger task an Ethernet connection, or "socket."
With the new debuggers, you can send debugging commands to the debugger task. The debugger task, in turn, uses kernel calls to obtain visibility of the real-time system's state as well as control of the kernel and individual tasks. Look for kernel vendors to integrate HLL debuggers so that you can use one debugger for both the real-time kernel and the code in your real-time tasks.

\title{
Final Analysis'. A High-Speed Digital Board Tester for Less than \(\$ 37,000\). Complete.
}

Save both time and money with this modular test system which includes text editor, assembler, linker, test program formatter, 386 system controller, and a 96 pin digital test module.
You can use it for circuit verification as well as production test and service applications.
KIK's powerful "English" test language lets you create your own libraries, then modify or update them when necessary.

Easy-to-use pull-down menus.

Features:
- Hi-speed I/O - 96 bi-directional bit programmable and hardware maskable pins, expandable to over 1000 pins. 32 K RAM per pin.
- 50 MHz clock, 25 MHz data rate.
- 80386 controller.
- Mouse control of all test functions.
- VXI-based - assures future expandability. Never obsolete. Mix other vendor's instruments as needed.
- GPIB interface standard. Full talk/ listen capability.
- Additional test modules are now available.
KIK's Final Analysis will let you spend your time testing designs, not designing tests. It's the Final Word in automatic testing.

Call for demo. 213-371-4662 Or toll-free 800-545-8784.

Kikusui International Corporation 19601 Mariner Avenue
Torrance, CA 90503
Fax 213-542-4943

\section*{TECHNOLOGY UPDATE}

\section*{HLL Cross-Debuggers}
compilers rearrange your code's execution order, move variables into registers, and cut useless instructions out.
A good compiler presents a formidable challenge to a debugger that wants to correlate the actual program running on your target system with your HLL file. But establishing that correspondence is one of the most important features of recent debuggers.

The compiler must do its part; the most powerful symbolic debugger cannot make up for incomplete documentation from the compiler. The compiler must supply extensive documentation of all its tricks, particularly optimizations, to the debugger. The debugger must be perfectly aware of all of a compiler's customary habits. Not all compilers supply debuggers with enough cross-reference information.

Happily, some debugger and compiler vendors have spent long hours hammering out details to improve communications. You can expect that eventually all debuggers will be able to handle optimized code. Right now, many debugger vendors advise you to debug only code compiled with the compiler's optimization switch turned off.

In the past, cross-debuggers would only work with compilers from vendors who designed their compilers to interface with debugging hardware. Intel, for example, offers its own complete suite of development tools, from compilers to in-circuit emulators. Intel's compilers and their comprehensive OMF cross-reference files set the standard for the debugger industry. Now, many compilers produce comprehensive debugging-information files set to standards such as Intel's OMF, Microsoft's Codeview, and ANSI COFF.

Intel, in particular, has responded to suggestions from debug-

You can invoke commands for a windowing debugger, such as Microtec Research's Xray, by using a mouse more quickly than you could with older command-line interfaces.
ger makers. For example, Concurrent Sciences requested better information so that its Soft-Scope debugger could traverse chains of indirection (pointers to pointers to pointers . . .). Intel's latest version of OMF provides such details.
However, the existence of different versions of Intel's OMF should warn you to examine closely any claims that a debugger is "OMF compatible." Take your cue from such past claims as, "Centronics compatible," "RS-232C compatible," or "IBM PC compatible." Emulogic claims that Slice can work with any compiler; but other debuggers are more choosy.

\section*{Human interface}

Had low-cost, integrated programming environments such as Turbo Pascal or Quick C not come along, cross-debugger makers would probably not have adopted the latest fashion in human interfaces. But, having basked in the
luxury of an editor, compiler, and debugger all operating together under a slick windowing interface, software engineers now demandand are getting-similar features from cross-debuggers.

In fact, Z-World, a maker of Z80 development tools, offers a crossprogramming environment for the IBM PC that functions exactly like native-programming environments such as Turbo C or Quick C. The key to Z-World's environment is a clever use of its ICEPROM (\$790) ROM emulator. The company's compiler compiles your program directly into the ROM emulator over a parallel link. The environment's debugger uses the same link for communications and control.

Right now, your chances of getting a compiler, debugger, and tar-get-system interface (be it debugging monitor, ROM emulator, or incircuit emulator) vary widely, depending on which host computer, compiler, debugger, link, and tar-

\section*{UpTo 600 Watts Per Inch}

Our expanding family of compact, configurable, power systems combine the flexibility of a custom supply with the availability of standard catalog products ... in low profile, compact packages that let you pack the most power into the least amount of space. And they meet the specialized input voltage, noise and transient requirements of major worldwide markets. Think of them as a universal solution for most of your system power requirements . . . AC or DC input . . . in computer, telecom or vehicular applications . . . up to 600 Watts.
FlatPAC \({ }^{\text {TM }}\) is the industry benchmark for power density in off-line applications. And now, ComPAC \({ }^{\text {TM }}\) sets the standard for DC input supplies . . . in a package less than one inch tall! Both offer unprecedented flexibility in configuration along with instant availability . . . in a fraction of the space required by conventional switchers. Just define your requirements . . . we utilize our high frequency, high power-density converters to quickly configure a FlatPAC or ComPAC specific to your needs.

You benefit from the proven field performance, high efficiency and inherently high reliability of our component-level power converters, without sacrificing any of the features you need: off-line inputs for worldwide application; nominal DC inputs from 24 to 300 VDC; surge limiting; safety agency recognition; EMI/RFI to FCCNDE, British Telecom, Bellcore or MIL-STD-461; totally isolated and trimmable outputs; AC OK and DC OK status signals . . . and more.
You don't have to choose between costly and risky custom development or bulky catalog supplies. Call us to discuss FlatPAC and ComPAC . . . the new standards that make customs obsolete.

Does your power supply measure up?
Call vicor excrater for a free ruler
at 1-800-735-6200 or 508-470-2900 at ext. 265

Component Solutions For Your Power System 23 Frontage Road, Andover, MA 01810

\footnotetext{
Common Stock Traded on NASDAQ under "VICR
}

\section*{TECHNOLOGY UPDATE}

\section*{The Reasons For Using Ceramic PWBs In High \\ Performance Military Applications Could Fill ABook.}

\section*{(Call 1-800-237-4357 And It's Yours Free.)}

Call DuPont now and ask for our free Ceramic Printed Wiring Board Handbook for Military Applications.

\section*{DuPont Electronics}

\author{
Share the power of our resources.
}

\section*{HLL Cross-Debuggers}
get processor you choose.
Providing a comprehensive, correlated list of host computers, compilers, debuggers, links, and target processors is a daunting task that is well beyond the scope of this article. To make matters worse, the situation changes daily. If a combination that suits your application isn't available now, the clear trend is that you will have it soon.

\section*{Immediate concerns}

Someday, such advanced soft-ware-engineering techniques as CASE (computer-aided software engineering) or object-oriented programming (OOP) may revolutionize the way you write your programs. Right now, however, you ought to think about getting a good debug-
ger to make the program you're working on run.

EDN

\section*{References}
1. Riezenman, Mike, "Integration issues cloud decision on best place to procure source-level debugging capability," Personal Engineering \& Instrumentation News, July 1990, pg 30.
2. Duntemann, Jeff, "Rising to the WAR on Bugs," PC Techniques, August/September 1990, pg 20.

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

\section*{For more information . . .}

For more information on the debugging aids discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.
\begin{tabular}{|c|c|c|}
\hline Applied Microsystems Co & Intel Co & Pentica Systems Inc \\
\hline Box 97002 & 3065 Bowers Ave & 1 Kendall Square, Bldg 200 \\
\hline Redmond, WA 98073 & Santa Clara, CA 95051 & Cambridge, MA 02139 \\
\hline (206) 882-2000 & (408) 765-8080 & (617) 577-1101 \\
\hline (800) 426-3925 & (800) 548-4725 & FAX (617) 494-9162 \\
\hline FAX (206) 883-3049 & FAX (408) 765-5063 & Circle No. 714 \\
\hline TLX 185196 & Circle No. 710 & \\
\hline Circle No. 706 & & \\
\hline & & \({ }_{4}^{\text {Ready Sy }}\) Stetrero Ave \\
\hline Concurrent Sciences Inc & 733 Concord Ave & Sunnyvale, CA 94086 \\
\hline Box 9666 & Cambridge, MA 02138 & (408) 736-3400 \\
\hline Moscow, ID 83843 & (617) 661-0072 & Circle No. 715 \\
\hline (208) \(882-0445\) & FAX (617) 868-2843 & \\
\hline FAX (208) 882-9774 & Circle No. 711 & \\
\hline Circle No. 707 & & Wind River Systems Inc 1351 Ocean Ave \\
\hline & Microtec Research Inc & Emeryville, CA 94608 \\
\hline Embedded Support Tools Corp & 2350 Mission College Blvd & (415) 428-2623 \\
\hline 10 Elmwood St & Santa Clara, CA 95054 & Circle No. 716 \\
\hline Canton, MA 02021 & (408) \(980-1300\) & \\
\hline (617) 828-5588 & (800) 950-5554 & \\
\hline FAX (617) 828-7941 & FAX (408) 982-8266 & Z-World Pl \({ }^{\text {Z }}\) \\
\hline Circle No. 708 & Circle No. 712 & 1340 Covell Blvd, Ste 101 \\
\hline & & \begin{tabular}{l}
Davis, CA 95616 \\
(916) 753-3722
\end{tabular} \\
\hline Emulogic & Orion Instruments Inc & FAX (916) 753-5141 \\
\hline Box 2200 & 702 Marshall St & Germany iSYSTEM 08131/1687 \\
\hline Salem, NH 03079 (603) 893-1111 & Redwood City, CA 94063 (415) 361-8883 & Circle No. 717 \\
\hline Circle No. 709 & (800) 729-7700 & \\
\hline & FAX (415) 361-8970 & \\
\hline & Circle No. 713 & \\
\hline
\end{tabular}

Just over a year ago, we introduced CAPS \({ }^{\text {TM }}\) - the PCbased system that revolutionized the integrated circuit search and selection process. Engineers loved it!

Today, CAPS gives you vital information on more than 500,000 parts from over 425 manufacturers worldwide. Plus, you get hundreds of thousands of digitally-stored images of complete manufacturers' datasheets. All delivered on CD-ROM discs and updated every month!

To make it easy, CAPS includes everything you need and runs on standard hardware like \(\mathrm{IBM}^{\circledR} \mathrm{PC} / \mathrm{AT}^{\mathrm{TM}}\)-style PCs, PC networks, and Sun- \(3^{\text {TM }}\) workstations.

So, if you're looking for ICs and semiconductors, take a look at CAPS. We've got the best names in the business.

Find out more! For a free brochure, call 800-245-6696 today!

Cahners Technical Information Service 275 Washington Street
Newton, MA 02158-1630
Telephone: 617-558-4960
Facsimile: 617-630-2168
Telex: 940573
800-245-6696

\footnotetext{
CAPS is a trademark of Reed Publishing (USA) Inc. IBM is a registered trademark and AT is a trademark of
}

Look for ads from these IC and semiconductor manufacturers in this issue:

Accel Tech.
Altera Corporation
Analog Devices
Atmel
ATmel Netwo
AT\&T Network Systems
Burr Brown
Cirrus Logic.
Comlinear Corporation
Cypress Semi
Datel Inc.
Fujitsu Microelectronics
Germanium Power
Harris Corporation
Integrated Device Tech Int'I Rectifier
Linear Technology
Matra Harris Sem
Micro Networks
Microlinear
Microlinear
Motorola/Semi
Motorola/Semi
National Semi
National Sem
NCR/Micro
NEC Electronics
OKI Semi
Performance Semi
Philips Discreet
Precision Monolithics
Samsung Semi
Siemens Components
Signetics
Siliconix
Silicon Systems
Sony Comp.
Sony Comp
Stag Micro.......
Texas Instruments 70-73, 155-158
Toshiba America
Zilog

\section*{"Did you know that new 1Mb Video RAMs increase throughput}

Toshiba semiconductor products are available from a distributor near you. You can reach the distributor of your choice by calling one of the central numbers: Active Electronics, 1-800-388-8731; Cronin Electronics, Inc., 1-800-5CRONIN; General Components, Inc., 1-800-524-1463; Goold Electronics, 1-800-323-6639; Itt Multicomponents Corp., 1-800-387-3687; Merit Electronics, Inc., 1-408-434-0800;

\section*{by over 100\%?"}

\section*{"1Mb Video RAM?"}

\section*{"Yeab. With the fancy new Flash Write, Block Write and Split Transfer functions to improve performance."}
"Not bad"

\section*{"And greater density for high resolution color graphics."}

\section*{"Come on. We need something we can use today." "Toshiba's got'em. In quantity."}

First the good news. Toshiba, the leader in 1Mb DRAMs, introduces a new high density 1 Mb Video RAM for today's high resolution color graphic applications.

Now the great news. It's available in volume production, giving you access to the quantities you need. Today. With capabilities that'll take you into tomorrow.

Toshiba's high density, 256K x 4bit and 128K x 8bit Video RAM supports next generation video board.or graphic terminal applications by allowing you
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{ORGANIZATION} & \multicolumn{4}{|c|}{SPECIAL FEATURES} & \multicolumn{2}{|l|}{PACKAGE} \\
\hline & X4 & X8 & Fast Page Mode & \#
咅
空 & \[
\begin{aligned}
& \text { y } \\
& \text { y } \\
& \frac{y}{y} \\
& \frac{5}{m}
\end{aligned}
\] & & SOJ & ZIP \\
\hline TC524256A & X & & X & & & & X & X \\
\hline TC524258A & X & & X & X & X & X & X & X \\
\hline TC528126A & & X & X & & & & X & \\
\hline TC528128A & & X & X & X & X & X & X & \\
\hline
\end{tabular} to store, manipulate and transmit more information than ever before.

A multi-port feature combining RAM and SAM gives you easy and fast access to data. Bit Masking is achieved through the Write Per Bit feature.
With this feature, selected planes of data can be modified using just a Write cycle instead of a Read-Modify-Write cycle.

Use the Block Write feature to write four times faster and simplify high speed window clear/fill. Use the Flash Write feature to accomplish high speed clear of selected planes without using the SAM register.

To speed things along even more, RAM read/write cycle times have been improved through fast page mode. A split SAM register
\begin{tabular}{|l|c|c|}
\hline TC524256A/8A \& TC528126A/8A & -10 & -12 \\
\hline RAS ACCESS TIME (MAX) & 100 NS & 120 NS \\
\hline COLUMN ADDRESS ACCESS TIME (MAX) & 30 NS & 35 NS \\
\hline FAST PAGE MODE CYCLE TIME (MIN) & 60 NS & 70 NS \\
\hline SERIAL ACCESS TIME (MAX) & 25 NS & 35 NS \\
\hline SERIAL CYCLE TIME (MIN) & 30 NS & 40 NS \\
\hline
\end{tabular} provides the best method to simplify SAM to RAM and RAM to SAM transfer timing in the system.

Want more good news? Toshiba's service is every bit as good as their new Video RAM. With the people and the design specification information you need to get the job done. Call for your complete data sheet today. (1-800-888-0848 ext. 517).

\section*{In Touch with Tomorrow - 0 - -1 TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.}
© 1989 Toshiba America, Inc.

\section*{How tostayahead}

Start with our high-performance standard products.Then add unique functional or performance capabilities with our semi-standard options.To get the ICs you want. And the competitive advantage you need. Quickly. Easily. With minimal risk.

Want power factor correction?

Don't just
meet the standard.
Beat the standard.
With single-chip standard products that offer power factor correction of .99, in either boost or flyback (buck-boost) configurations. They're the first ICs designed to reduce harmonic currents to help you meet both existing and proposed regulations for switch mode power supplies. And help you reduce
your customer's power distribution problems.

Or how about our complete family of high-frequency PWM controllers.

They offer you a wide range of highfrequency, highperformance single chip solutions for state-of-the-art switching power supplies with operating frequencies up to 1 MHz . With advanced Micro Linear's features like improved and Power Factor Control IC's provide highly- fault protection. integrated solutions for a broad range of switching power supplies. Added synchronization
\begin{tabular}{|l|l|}
\hline Product Category & Features \\
\hline \begin{tabular}{l}
Power Factor \\
Control
\end{tabular} & \begin{tabular}{l}
High Efficiency Flyback or \\
Boost
\end{tabular} \\
PWM Controllers & \begin{tabular}{l}
1 MHz , Additional Fault \\
Protection, Synchronization
\end{tabular} \\
Resonant Control & ZVS and ZCS to 3 MHz \\
Motor Control & \begin{tabular}{l}
BLDC Sensorless \\
Commutation
\end{tabular} \\
\hline
\end{tabular}

\section*{of the powercurve.}
capability. Even stability improvements. Looking for new techniques in motion control?

Now you have some unique design options. With our new ML4410 sensorless motor controller, the first controller designed to automatically commutate brushless DC motors without the need for Hall-effect sensors. So you can eliminate the inherent alignment, torque ripple and flutter problems previously encountered with Hall-effect commutation. And design smaller, lower cost, higher reliability motors for any continuous speed application.

\section*{Semi-standard options.}

Since these standard products are based on our FB3480, FB3490 and FB3631 tile arrays, they can all be easily

The ML4410 selsorless
motor controller can control any wye or delta wound 3-phase brushless DC motor:

Type TN Lab Grade
New Low TC Precision Resistors

1 K to 1 Meg , Tolerance to \(\pm 0.01 \%\) Low TC to 5 ppm/ \({ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
- Non-Inductive Design
- Tolerance of \(\pm 0.01 \%, \pm 0.025 \%, \pm 0.05 \%\), \(\pm 0.1 \%, \pm 0.25 \%, \pm 0.50 \%\) or \(\pm 1 \%\)
- Low TC of 5,10 or \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0\) to \(70^{\circ} \mathrm{C}\)
- Space Efficient Radial-Lead Design

Type TK Low TC Precision Radial-Lead Film Resistors

Low TC to \(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
- Non-Inductive Design
- Resistance Range 1 Kohm to 10 Meg
- TC of 5,10 or \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-55\) to \(125^{\circ} \mathrm{C}\)
- Tolerance of \(\pm 1 \%\) (available to \(\pm 0.05 \%\))
- Space Efficient Radial-Lead Design

For Type TK data, circle number 122

Type MK Precision Power Radial-Lead Film Resistors

0.50 Watt (CK05), 0.75 Watt (CK06)
- Non-Inductive Design
- Resistance Range \(1 \Omega\) to 100 Meg
- TC as low as \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-15^{\circ} \mathrm{C}\) to \(105^{\circ} \mathrm{C}\)
- Tolerance of \(\pm 1 \%\) (available to \(\pm 0.1 \%\))
- Space Efficient Radial-Lead Design

For Type MK data, circle number 123

\title{
Brawny amps stretch small-signal limits
}

Op amps that operate at voltages beyond the traditional \(\pm 15 \mathrm{~V}\) supply span, and that supply \(>100\) mA load current, eliminate the need for buffers and boosters.

\author{
Bill Travis, \\ Contributing Editor
}

If your application needs an amplifier that delivers more voltage than the traditional \(\pm 15 \mathrm{~V}\) swing, or more current than the classical \(\pm 100-\mathrm{mA}\) limit of small-signal op amps, you could add an output booster or a unity-gain buffer to an ordinary op amp. However, you'll save on circuitboard real estate, and often on cost, if you instead select one of the many available high-voltage or high-current op amps.

Many applications-for example, cable driving-demand a hefty current-drive capability. For instance, a \(\pm 10 \mathrm{~V}\) signal in a \(50 \Omega\) cable entails \(\pm 200-\mathrm{mA}\) drive current. On the other end of the spectrum, such devices as piezoelectric transducers don't require much current but do need voltage-drive levels far beyond \(\pm 15 \mathrm{~V}\). Finally, some systems such as magnetic-resonance imagers and vibration tables need both very high voltages and enormous currents.

Some recently introduced \(\pm 15 \mathrm{~V}\) devices cross the \(\pm 100\) mA threshold. Comlinear Corp's CLC207-which, like all the company's amplifiers, uses a current-feedback architecture (Ref 1)-delivers \(\pm 150 \mathrm{~mA}\) to

Pulse-width modulation beats the heat in Copley Controls' 232 amplifier. Its class-D operation and bridge-configured 232 amplifier. Its class-D operation and bridge-configured
output stage allow the unit to deliver to a load \(\pm 400 \mathrm{~A}\) peak at \(\pm 160 \mathrm{~V}\). its load. The \(\$ 56\) (100) hybrid
op amp is notable for its speed: The -3 dB bandwidth is 170 MHz , slew rate is \(2400 \mathrm{~V} / \mu \mathrm{sec}\), and output settles to within a \(\pm 0.1 \%\) error band in 22 nsec .

Though two other new devices from Comlinear are designed as output amplifiers, or drivers, they do classify as op amps of the current-feedback type be-
cause they offer differential inputs and resistor-settable, user-definable gains. The CLC560 and CLC561 offer peak output currents to \(\pm 250 \mathrm{~mA}\), and respective bandwidths of 120 and 150 MHz . A unique feature of these amplifiers is that the feedback-network resistors set both the gain and the output impedance. The latter aspect can be
valuable because it allows you to match the output to the load impedance without sacrificing half the output swing, as happens in the classical op-amp configuration with a series matching resistor. Both devices cost \$99 (100).
Two new series of monolithic op amps from National Semiconductor push the

\section*{WANTED \\ }

\section*{Power Supplies for Europe. Must Meet IEC 555-2.}

Pioneer Magnetics has been shipping them to OEMs worldwide for more than two years! For applications that include computer mainframes, desktops, peripherals, process control, telecom and ATE.
They feature built-in \(>.99\) active Power Factor Correction and include less than \(5 \%\) harmonic current content. They meet proposed IEC 555-2, all applicable international safety and EMC standards, and they're available from 250 to 2000 watts, in
single or multiple outputs. What's more, before any Pioneer supply is shipped, it's \(100 \%\) tested with a 48 -hour burn-in your assurance of high reliability and trouble-free service.

So why take a chance on having your products shut out of Europe after 1992, and possibly domestically, too? And why run the risk of stretched-out deliveries?

Reward yourself with power supplies that carry worldwide approval. Call Pioneer Magnetics at 800-233-1745.

\section*{TECHNOLOGY UPDATE}

\section*{High-voltage/high-current op amps}
output-current capability further. Model LM6313 supplies \(\pm 300 \mathrm{~mA}\) peak, \(\pm 220 \mathrm{~mA}\) continuous. The amplifier, which is housed in a 16 pin DIP, furnishes a \(250 \mathrm{~V} / \mu \mathrm{sec}\) slew rate, a \(35-\mathrm{MHz}\) gain-bandwidth product, and a 200 -nsec settling time to within \(\pm 0.1 \%\). Underlining the device's suitability for driving \(50 \Omega\) and \(75 \Omega\) video lines, its data sheet specifies typical dif-ferential-gain and -phase figures of \(0.1 \%\) and \(0.1^{\circ}\), respectively. The op amp costs \(\$ 3.50\) (100).

High output currents are also available from National Semiconductor's LM759 and LM77000. These monolithic devices deliver guaranteed peak output currents of \(\pm 325\) and \(\pm 250 \mathrm{~mA}\), respectively. The LM759 (\(\$ 2.15\) to \(\$ 2.67\) (100)) comes in a TO-8-style metal can or in a single-in-line plastic package with a heat-sink tab; the LM77000 is available only in the latter package. National claims the devices' internal short-circuit-current limiting and thermal-overload protection make them virtually indestructible. The LM77000CP costs \(\$ 1.07\) (100).

If you're designing a system that needs several amperes of drive current, you face the choice of configuring your own amplifier or designing in one of several available power op amps. Often, your choice will hinge on economic factors, one of them being the expensive, TO-3type metal package used for many power op amps. For these units, the obvious way to get the cost down is to develop plastic packaging.

That's the solution Burr-Brown Corp adopted for its OPA541 power op amp. This device works from power supplies to \(\pm 40 \mathrm{~V}\) and delivers output currents to \(\pm 10 \mathrm{~A}\) peak. Priced from \(\$ 18.05\) (100) in a TO-3 metal package, the monolithic device delivers true op-amp perform-ance-its open-loop gain is 90 dB

Current-feedback architecture takes the credit for the high speed of Comlinear's CLC207 op amp. The \(\pm 15 \mathrm{~V}\) device delivers \(\pm 150 \mathrm{~mA}\) to its load and slews at \(2400 \mathrm{~V} / \mu \mathrm{sec}\).
min , and offset voltage is \(\pm 1 \mathrm{mV}\) max. FET inputs keep the input bias currents to 50 pA max.
Putting the OPA541 in an 11-pin, single-in-line plastic package cuts the price to \(\$ 9.95\) (100), but some spec compromises accompany the plastic-packaged devices. For example, the maximum offset-voltage spec rises from \(\pm 1\) to \(\pm 10 \mathrm{mV}\), the maximum permissible power-supply span drops from 80 to 70 V , and the only temperature-range option is -25 to \(+85^{\circ} \mathrm{C}\) vs the -55 to \(+125^{\circ} \mathrm{C}\) available with the metalcan devices.
Burr-Brown also offers a dual version, designated the OPA2541. The \(\$ 28.95\) (100) device comes in a TO-3-type metal package. A dual op amp from Apex Microtechnology Corp offers pin compatibility with the OPA2541. Apex's \(\$ 21.25\) (100) PA25 also comes in a TO-3-type metal can. In some spec areas, the device offers performance improvements compared to the OPA2541. For example, its permissible com-
mon-mode input-voltage range is within 2 V of the positive supply and 0.3 V of the negative rail vs 6 V for both supplies with the OPA2541.

Other improvements include enhanced output-voltage swing-to within 3 V of each supply at 2.5 A output vs 4.5 V at 2 A for the OPA2541. The PA25's class-AB output stage cuts crossover-induced harmonic distortion to \(0.02 \%\) at \(100-\) mW output vs approximately \(0.15 \%\). Finally, the PA25 incorporates both an internal current limit and automatic thermal shutdown. The OPA2541 offers current limiting only.

Some compromises in performance go along with the PA25's cited improvements. For example, the best-grade model's offset voltage is 4 mV max vs 1 mV . Input bias current is 250 nA max vs 50 pA , and the open-loop gain is \(80 \mathrm{~dB} \min\) vs 90 dB . Two other de compromises attend the PA25. Its maximum power-supply span is 40 V vs the OPA2541's 70 V , and the de junc-

\section*{TECHNOLOGY UPDATE}

\section*{High-voltage/high-current op amps}
tion-to-case thermal resistance with both amplifiers operating is 3.4 vs \(1.2^{\circ} \mathrm{C} / \mathrm{W}\). Finally, the device is slower-its slew rate is \(0.5 \mathrm{vs} 6 \mathrm{~V} /\) \(\mu \mathrm{sec}\), and its typical gain-bandwidth product is 600 kHz vs the OPA2541's 1.6 MHz .

\section*{High-voltage swingers}

Some applications-for example, driving CRT displays-demand both wide voltage swings and high speed. A hybrid op-amp family from MS Kennedy Corp meets these requirements. The MSK600/610/650 Series offers slew rates to \(5000 \mathrm{~V} /\) \(\mu \mathrm{sec}\), peak currents to 250 mA , and output-voltage swings to 150 V p-p.

The \(\$ 195\) MSK600 uses \(\pm 80 \mathrm{~V}\) supplies on separate terminals to its output stage to deliver \(\pm 70 \mathrm{~V}\) min output swing. Its output slews at \(3000 \mathrm{~V} / \mu \mathrm{sec} \mathrm{min}\), and settles to within \(\pm 0.1 \%\) in \(1 \mu \mathrm{sec}\) typ. Designed for positive output swings, the \(\$ 195\) MSK610 delivers 110 V min to a load. Its slew rate is \(4000 \mathrm{~V} /\) \(\mu \mathrm{sec}\) min. Finally, the \(\$ 150\) MSK650 uses \(\pm 35 \mathrm{~V}\) supplies to deliver \(\pm 30 \mathrm{~V} \min\) to a load. This device slews at \(2000 \mathrm{~V} / \mu \mathrm{sec}\) min and settles to within \(\pm 0.1 \%\) in 350 nsec typ.

The PA89 from Apex Microtech-
nology uses \(\pm 600 \mathrm{~V}\) max supplies to furnish over 1100 V output swing to a load; the company claims this is the highest voltage op amp in the world. It comes in a square, hermetically sealed package that takes up less than \(3 \mathrm{in}^{2}{ }^{2}\) of board space. The power bandwidth is typically 5 kHz . The enormous output-voltage capability doesn't entail any sacrifices in de precision. Input bias
current and offset voltage for the best-grade devices are 10 pA max and 0.5 mV max, respectively. The PA89 costs \(\$ 310.50\) (100).
In configuring linear amplifiers, the transition from watts to kilowatts often entails costly and bulky water-cooling schemes. Pulse-width modulation (PWM), also called class-D operation, offers a way to provide power amplification in the

Claimed by its manufacturer to be the highest voltage op amp available, the PA89 from Apex Microtechnology delivers an 1100 V output swing to its load. Along with high output voltage, the device offers precision dc specs.

\section*{For more information}

For more information on the high-current and -voltage op amps discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.
\begin{tabular}{|c|c|c|c|}
\hline Apex Microtechnology Corp & Comlinear Corp & MS Kennedy Corp & National Semiconductor Corp \\
\hline 5980 N Shannon Rd & 4800 Wheaton Dr & 8170 Thompson Rd & 2900 Semiconductor Dr \\
\hline Tucson, AZ 85741 & Fort Collins, CO 80525 & Clay, NY 13041 & Santa Clara, CA 95052 \\
\hline (800) 421-1865 & (303) 226-0500 & (315) 699-9201 & (408) 721-5000 \\
\hline FAX (602) 888-3329 & FAX (303) 226-0564 & FAX (315) 699-8023 & Circle No. 705 \\
\hline Circle No. 700 & Circle No. 702 & Circle No. 704 & \\
\hline Burr-Brown Corp & Copley Controls Corp & VOTE & \\
\hline Box 11400 & 375 Elliot St & & \\
\hline Tucson, AZ 85734 & Newton, MA 02164 & Please also use the & Retrieval Service card to rate \\
\hline (602) 746-1111 & (617) 965-2410 & this article (circle & \\
\hline FAX (602) 889-1510
Circle No. 701 & FAX (617) 965-7315 Circle No. 703 & High Interest 500 & Interest 501 Low Interest 502 \\
\hline
\end{tabular}

\title{
The Complete Electronic Design Solution.
}

Tango is the pacesetter in affordable, PCbased electronic design. It offers the quality and performance engineering professionals demand, and the easiest-to-use interface available on any platform, at any price.

Tango's powerful lineup. Build your personal CAE/CAD workstation with Tango's start-to-finish design tools. Tango-Schematic, \({ }^{\text {TM }}\) just \(\$ 495\), includes over \(8,000 \mathrm{SEDCO}^{\mathrm{TM}}\) parts, the largest library on the PC. Experience Tango-PLD's powerful top-down approach to logic design for only \$495. Add interactive logic simulation for up to 40,000 gates with Susie. \({ }^{\text {TM }}\)

Starting at just \$595, our popular PCB layout tools have designed tens of thousands of boards. There's Tango-PCB PLUS, \({ }^{\text {TM }}\) for complex designs and Tango-PCB, \({ }^{\mathrm{TM}}\) a comprehensive, yet economical program for less demanding requirements. Tango designers have three fast and efficient autorouting options: the high-performance Tango-Route; \({ }^{\text {TM }}\) multi-grid, multilayer Tango-Route PLUS; \({ }^{\mathrm{TM}}\) and Superoute, \({ }^{\text {TM }}\) the industry-leading rip-up and re-try, \(100 \%\) completion autorouter. Finally, there's the SMT Plus Library \({ }^{\text {TM }}\) supplying proven land patterns for sophisticated SMT designs.

\section*{Tango extras at no extra charge.}

Your investment in Tango software includes clear, concise documentation; responsive technical support, free by phone or fax; first year of updates free, with affordable annual renewals; our 24-hour Tango BBS; directories of service bureaus and design consultants; a quarterly newsletter; and our moneyback guarantee. Give us a call to discuss your design requirements. You'll find our customer service is as friendly as our software.

\section*{Helping good ideas become great products.}

\section*{- All units meet MIL-T-27E}

Military designation is TF5R21ZZ for Transformers, TF5R20ZZ for Inductors
- Power of 125 Milliwatts at 1 KHz (Series 70000) (.310"W \(\times .310^{\prime \prime} \mathrm{H} \times .310^{\prime \prime} \mathrm{D}\)) Max. distortion 5\%
- Power of 400 Milliwatts at 1 KHz (Series 71000) (.385"W \(\times .385^{\prime \prime} \mathrm{H} \times .385^{\prime \prime} \mathrm{D}\)) Max. distortion 5\%

\section*{- Frequency Response \(\pm 3 \mathrm{~dB}, 400 \mathrm{~Hz}-250 \mathrm{KHz}\) at 1.0} Milliwatt
- Dielectric Strength All units tested at 200VRMS
- Insulation Resistance

Greater than 10,000 Megohms at 300VDC

\section*{- Operating Temperature}
\(-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\)
(all units can be supplied to class \(S\) requirements, \(+130^{\circ} \mathrm{C}\))
- Terminals

Conductor is copper clad steel,
tinned 100\%.
Electroplated per MIL-T-10727A and ASTM CCS B452.
- Thermal Shock

25 cycles, method 107D, MIL-STD202E, test condition A-1

PICO manufactures complete lines of Transformers, Inductors and DC-DC Converters

Electronics.Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 in new york call 914-699-5514

\section*{High-voltage/high-current op amps}

Designed for output-driver applications, the CLC560 and CLC561 from Comlinear allow you to set both gain and output impedance by judicious choice of the feedback network. Because the impedance-matching maneuver entails no series resistor, the full output-voltage swing is available to the load.
kilowatt range without the need for such elaborate cooling systems.

A giant, PWM-based amplifier from Copley Controls Corp offers output-voltage ratings to \(\pm 160 \mathrm{~V}\) at \(\pm 230 \mathrm{~A}\) continuous (\(\pm 400 \mathrm{~A}\) peak) output. Model 232 delivers a stream of width-modulated output pulses at 81 kHz to lowpass filters that remove the \(81-\mathrm{kHz}\) component and its harmonics. Two power-MOSFET half-bridges constitute the \(81-\mathrm{kHz}\) output stages; the load connects to the outputs in a differential (bridge) configuration.

Employing power MOSFETs in the 232 allows the use of the \(81-\mathrm{kHz}\) switching frequency. Thanks to its high switching rate, the amplifier's \(3-\mathrm{dB}\) bandwidth is 5 kHz . Master/ slave connections allow you to connect as many as 20 units in parallel to increase power capacity. For example, a 20 -unit ensemble delivers 1800 A at 110 V rms for 0.2 MW ; \(\pm 5000 \mathrm{~A}\) peak at \(\pm 160 \mathrm{~V}\) translates to 0.8 MW peak power. The unit doesn't come cheap- \(\$ 7500\). However, you must consider the development time and costs to design and
produce such a behemoth in-house.
This cost-study factor figures in all the amplifiers mentioned here. In looking at some of the prices, you might draw the conclusion that you can roll your own for much lower costs. But be careful-you must take into account many factors in a cost analysis. Some of the factors (for example, parts cost) might seem obvious, but others are more subtle. The cost of pc-board real estate, the design and implementation of an efficient heat-removal system, and current-limiting and thermalshutdown schemes are only a few considerations that can lead to unpleasant surprises in the final cost of an amplifier system.

EDN

\section*{Reference}
1. Travis, Bill, "Current feedback revs up op amps," EDN, September 3, 1990 , pg 107.

Article Interest Quotient
(Circle One)
High 500 Medium 501 Low 502

\section*{Like you, Woody Newman will go to} any length to become a better designer. This time he went into another dimension.

\title{
Woody Newman has vanished into to get a better look at his designs.
}

\section*{the Modulation Domain}

Recently, a design engineer named Woody Newman was working against a deadline when he found himself in a familiar predicament: To get the performance he wanted from his design, he needed a better understanding of his prototype.
Like many modern designers, Woody knew the information he needed would be revealed if he could just see the dynamic behavior of frequency agile signals, study the transient response of phase-locked loops, or understand potential sources of jitter. But conventional measurement techniques simply couldn't give him the right perspective.
Where could he get a view like that? In his search for the answer, Woody found the Modulation Domain. A place unknown to most engineers, where changes in frequency, phase or timing can be measured with respect to time.
There, he saw things he had never seen before. Like characterization of frequency agile signals in secure communications and advanced radar systems. Quantification of jitter in high-performance disk drives and digital communications systems. And single-shot analysis of step response in phase-locked loops and VCOs. It was just what he was looking for.
Join Woody in his search to become a better designer. Call your local sales office or circle the reader service number for more information on the Modulation Domain and what you can expect to find there.
There is a better way.

CIRCLE NO. 115

the leaders in the medical, military and instrumentation markets have been doing for 25 years, and what the leaders in
consumer electronics have been doing for several years now. Call Analog Devices.
These companies call us because we offer a complete line of high-performance linear, digital signal processing

\title{
eetyour mixed-signal
olume youre dealing in.
}

better performance in their products.

And as a global operation, we're able to respond
to calls from any corner of the earth. In fact,international
sales account for half of our \(\$ 450\) million in revenues. And
three of the top five Japanese electronics companies rely on us for their mixed-signal needs.

So call 1-800-262-5643 and request a free copy of our recent white paper on Mixed-Signal Technology. Or speak to
big or small your mixed-signal needs are, we're in the best position to help.

\title{
Designing in National's one-chip motor driver could be the smartest move you'll make.
}

UNSURPASSED INTEGRATION.
Power. Protection. Control. These critical elementsessential to all motor-driving applications-are also inherent in the most highly integrated Smartpower \({ }^{m}\) device available today, the LMD18200.

Our one-chip solution with on-chip intelligence eliminates multiple discrete parts, saving you valuable board space.

The control logic of the LMD18200 connects both sides of the H -Bridge. Which eliminates crossover problems and makes it easy to use. Plus, its rugged design and process makes it extremely reliable. The device operates at supply voltages from +12 V to +55 V with continuous output of 3 A . Or peak to 6A.

BORNE OUT OF A STRATEGIC PARTNERSHIP.

The LMD18200 is the brainchild of National Semiconductor and International Rectifier (IR). A jointly developed product made

possible through distinct, leadingedge process technologies. CMOS and bipolar from National. And DMOS with HEXSense \({ }^{m}\) - for virtually lossless current sensing-from IR. An optimized process mix that results in a high-

\section*{FAIL-SAFE PROTECTION.}

Not only does the LMD18200 know when to start, it knows when to quit. Specially equipped with a two-stage thermal warning system, it transmits a distress flag to the host system at \(145^{\circ} \mathrm{C}\), allowing you enough time to take any corrective action.

And if the temperature reaches \(170^{\circ} \mathrm{C}\), the device automatically shuts down. A fail-safe feature that eliminates damage to your equipment.

What's more, the LMD18200's on-chip defense system provides overcurrent protection, which prevents damage both to the device and the motor in case a shorted load causes the motor to draw excessive current.

\section*{PLAY IT SMART.}

For your LMD18200 design information kit, call or write us today. But make the move now. Before your competition wises up.

1-800-NAT-SEMI, Ext. 18
National Semiconductor Corp. P.O. Box 7643

Mt. Prospect, IL 60056-7643
© 1990 National Semiconductor Corporation HEXSense is a trademark of International Rectifier. Smartpower is a trademark of Nartron.

\section*{Electronica 90 Products}

Electronica 90: What you'll see . . . See pg 112 in EDN's October 11 issue for a complete look at the technology topics that will be covered in depth at the Electronica 90 trade fair in Munich, Germany, on November 6 through 10. For a preview of the vast number of products that will be displayed at the show, see the descriptions below.

Calibration-Accuracy Alternating-Voltage DVM
Model 4920 alternating-voltage digital voltmeter calibrates top-end calibration instruments. Voltage ranges extend from 300 mV to 1 kV , and frequencies range from 1 Hz to 1.25 MHz . The meter has \(7^{1 / 2-}\) digit resolution. Total measurement uncertainty for signals in the range of 0.9 to 11 V and 40 Hz to 30 kHz is \(\pm 28 \mathrm{ppm}\) (1 year, \(\pm 5^{\circ} \mathrm{C}\) ambient). An ac/dc transfer mode improves uncertainty to \(\pm 14 \mathrm{ppm}\). The meter provides simultaneous readout of voltage and frequency. Extra ranges down to 1 mV are optional. Settling time is \(<2.5\) sec for frequencies greater than 100 Hz . Model 4920M has an extended frequency range with an uncertainty of \(0.2 \%\) at 20 MHz . Both models interface via IEEE-488.2. Model 4920, \(\$ 9995\); millivolt option, \(\$ 1495\).

Datron Instruments Ltd, Hurricane Way, Norwich NR6 6JB, UK. Phone (603) 404824. FAX (603) 483670. Hall 20, stand A24.

Circle No. 804

\section*{32-Bit Microprocessor}

The Hyperstone is a \(25-\mathrm{MHz}\) microprocessor with separate 32 -bit data and address buses. Registers include 18 global and 64 local, which can reconfigure to a stack of variable frame lengths of 2 to 16 regis-
ters. The majority of instructions are single cycle and operate on 16bit data. Multiply and divide instructions require multicycle operation. Using dynamic RAMs with 40nsec page-mode cycle times sustains a 25 -MIPS burst rate without external memory caches. Benchmarks yield 38,000 Dhrystones/sec. Support includes an emulator that links to your PC by RS-232C, and an MSDOS cross-assembler and debugger. Introductory price is \(\$ 150\) (1000).

Hyperstone Electronics GmbH, Robert-Bosch-Strasse 11, 7750 Konstanz, West Germany. Phone (7531) 67789. FAX (7531) 51725. Hall 25, stand C06.

Circle No. 805

\section*{Logic Analyzers}

The PM 3580 and PM 3585 logic analyzers allow simultaneous acquisition of state and timing data on 96 channels using one probe per channel. The analyzers record 50 MHz state and \(200-\mathrm{MHz}\) timing data into 2 k of memory per channel. Probe loading is 7 pF per channel.

It has 8 -level state triggering. Timing resolution is 5 nsec, and glitch capture operates to 3 nsec. Outputs include a parallel printer port, an RS-232C port, and a video
driver for a VGA monitor. The 32channel PM 3580 records 32 channels of \(50-\mathrm{MHz}\) state and 32 channels of \(100-\mathrm{MHz}\) timing data into a 1 k -deep memory. \(\$ 4250\). The PM 3585 records 96 channels of \(50-\mathrm{MHz}\) state and 96 channels of \(200-\mathrm{MHz}\) timing data into 2 k of memory. \$10,950.

Philips Industrial \& Electroacoustic Systems, Box 218, 5600 Eindhoven, The Netherlands. Phone (40) 784959. FAX (40) 788256. Hall 24, stand B4.

Circle No. 806
John Fluke Mfg Inc, Box 9090, Everett, WA 98206. Phone (206) 347-6100. FAX (206) 356-5116.

Circle No. 807

\section*{CMOS Communications Chip Set}

The DBS 800 family of chips suits the audio and auxiliary stages of mobile radio communications equipment. The family comprises the FX802 codec, three audio processors (FX803/FX805/FX806), and the FX809 modem. All chips have a 5 -line serial interface that links to an external microcontroller. This interface transfers commands and data throughout the system at a clock rate of up to 500 kHz . The FX806 audio processor handles routing, gain control, and filtering of all audio signals from receiver and microphone inputs, and to transmitter and speaker outputs. This processor links directly to the FX803 codec, which digitizes or reconstitutes analog audio signals. The codec embodies a dynamic RAM (DRAM) controller, which stores digitized data in a separate 4M-byte DRAM.

\title{
HOW MORE COMPANIES ARE ADDING LIFE TO THEIR DESIGNS.
}

Rayovac Lifex \({ }^{\text {TM }}\) Coin Cells and Lifex \(\mathrm{FB}^{\text {™ }}\) Batteries have the highest reliability ratings in the industry. That's why major electronics manufacturers worldwide already specify Lifex in their product designs.

Rayovac reliability is especially valuable for critical memory applications, such as encryption codes, cash values, or control parameters.

In bigh-temperature sustained storage, Lifex continues strong long after others fade away.

The Lifex FB offers extended temperature tolerance -operating comfortably in
a range of \(-40^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). And our products are made in the U.S.A., with on-time delivery available around the world.

So add longer life to your design. Specify a Rayovac Lifex Coin Cell or Lifex FB Battery in your design. Call Rayovac's Technical Sales \& Marketing Department for complete information and battery specifications at 608-275-4694.

\section*{Electronica 90 Products}

The FX803 provides in-band tone signaling and DTMF encoding. The FX805 deals with out-band signals for squelch control, using continu-ous-tone or digitally encoded techniques. The FX809 modem chip operates in half-duplex mode at 1200 baud. A development system, consisting of a chip set and microcontroller mounted on three pc boards, lets you evaluate and design using these chips. The system includes support software and an RS-232C interface for linking to an IBM PC or compatible. FX806 £4.22 \((10,000)\). Other processors, from \(£ 6\) to £9. Samples of FX802 and FX806 available now; others due second quarter of 1990.

Consumer Microcircuits Ltd, 1 Wheaton Rd, Witham CM8 3TD, UK. Phone (376) 513833. FAX (376) 518247. Hall 25, stand A04.

Circle No. 808

\section*{DSP PC Plug-In Card}

The DSP96002 is a DSP system board based on a Motorola 96002, which plugs in to your IBM PC or compatible. In addition to interfacing with the PC bus, the board provides two other fast interfaces from ports A and B of the 96002 . Port A connects via a 16 -bit, \(150-\) nsec cy-cle-time, parallel link to other proprietary boards for interfacing digital audio and multiple-channel ADCs and DACs. Port B feeds to a parallel 32 -bit interface, which links up to four similar boards. Arbitration logic allows any one of the four to be bus master on a sequential basis. The two ports equally split 320 k bytes of 32 -bit static RAM. You can expand this memory capacity to 1088 k words.

Dual analog inputs feed sigmadelta ADCs, which sample at up to 100 kHz or 400 kHz , with a linearity of 16 or 12 bits, respectively. Processed data passes to twin 16-bit DACs, producing two channels of analog output. Optional in-line fourth-order Butterworth filters al-

low partial signal reconstitution. Additional onboard logic and support software exercises the 96002's on-chip emulation facility for debugging work. Other backup consists of Intermetrics' 96002 C compiler, assembler, and high-level debugging tools. Support also includes an interface library to allow your Microsoft programs to control the board. £3495. Showing on Motorola's booth.
Loughborough Sound Images Ltd, The Technology Centre, Epinal Way, Loughborough LE11 0QE, UK. Phone (509) 231843. FAX (509) 262433. Hall 18, stand D08. Circle No. 809

ISDN U Interface Transceiver Chip
The MTC-2071 chip enables full duplex digital data transmission via standard twisted-pair telephone cable (U interface), using \(4 \mathrm{~B} / 3 \mathrm{~T}\) line code. The chip employs an internal DSP adaptive filter for echo cancellation and equalization. You can use the chip in ISDN networks on subscriber loops up to 4.2 km and 8.2
km , with \(0.4-\) and \(0.6-\mathrm{mm}\)-diameter cable, respectively. Maximum dissipation is 250 mW , and the package is a 28 -pin plastic leaded chip carrier. \(\$ 25.50(10,000)\).

Mietec Alcatel, Raketstraat 62, B-1130 Brussels, Belgium. Phone (10) 322 7281811. FAX (10) 322 2427552. Hall 19, stand B07.

Circle No. 810

\section*{PC-Board Press-Fit Connectors}

The Har-press range of connectors uses press-fit terminations for straight and angled entry to a pc board. A variety of models exists, based on a \(0.1-\mathrm{in}\). pin spacing, in up to three rows of 16 or 32 pins. Standard current rating per pin is 2 A , although a 4 A version is available in limited sizes with pin spacings of \(0.20 \times 0.15 \mathrm{in}\). Connectors conform to DIN 41612. Fully goldplated wrap posts are optional. A 64-pin connector with gold-plated, male, angled terminations, DM 3.65 (1000).

Harting Elektronik GmbH, Postfach 1140, D-4992, Espelkamp, Germany. Phone (5772) 470. FAX (5772) 47461. Hall 2, stand C05.

Circle No. 811

\section*{VMEbus CPU Card With Plug-In I/O}

The SYS68K/CPU-40 is a 68040based VMEbus CPU card that accepts daughter boards for memory or other functions. Daughter boards let you add SCSI, Ethernet, floppy-
disk, or VME-subsystem-bus interfaces. The base card provides four serial configurable RS-232C, RS242 , or RS- 485 channels, an 8 -bit parallel I/O channel, a real-time clock, and one 8- and two 24 -bit timers. Standard memory includes up to 1 M byte of 32 -bit-wide, 200 -nsec EPROM; 128k bytes of batterybacked static RAM; and boot EPROM. The memory daughter board holds either a 16M-byte dynamic RAM or a 4M-byte static RAM. DM 7995.

Force Computers GmbH, Prof-Messerschmitt-Strasse 1, D-8014 Neubiberg, Munchen, Germany. Phone (89) 608140. FAX (89) 6097793. Hall 19, stand A11.

Circle No. 812

CMOS Telephone Chip Set
A chip set for an analog telephone includes the AS2501 line adapter, AS2562B melody generator, and AS2575 feature dialer. The line adapter develops stabilized power sources from the telephone line supply, while preserving line impedance for transmission. The melody generator performs tone-ringer functions. An internal sequencer produces 10 melodies from three basic frequencies. A serial interface loads an 8 -bit register, which selects melodies, as well as 10 volume settings and 10 repetition rates. The feature dialer allows you to select operating modes, such as lastnumber redial, direct dial, and storage of twenty 20 -digit numbers, from the telephone keypad. This chip interfaces to EEPROM and drives the serial interface for the
melody generator. Set of three chips, DM \(9(500,000)\).
Austria Mikro Systeme International GmbH, Schloss Premstätten, A-8141 Unterpremstätten, Austria. Phone (3136) 36660. FAX (3136) 2501 3650. Hall 19, stand A12.

Circle No. 813

\section*{Erasable Programmable Logic Device}

The GAL16V8S-20EB1 electrically erasable programmable logic device emulates many \(20-\mathrm{pin}\) PLDs. The device has a maximum propagation delay of 20 nsec and requires a maximum supply current of 27 mA . Operation offers preload and power-on reset of all registers. Guaranteed specifications include \(100 \%\) programming yield and a minimum data-retention period of 20 years. On-chip ESD protection functions to \(3 \mathrm{kV} . \$ 2.70\) (1000); 25nsec version, \(\$ 2.50\) (1000).
SGS-Thomson Microelectronics, Ltd, Via C Olivetti, 20041 Agrate, Brianza, Italy. Phone (39) 39 6035597. Hall 24, stand B12.

Circle No. 814

\section*{Double-Diode Module}

The BYT230PI family of diode pairs has repetitive peak reverse voltages to 1 kV . Each diode has an average maximum current rating of 30A, which develops a forward drop of 1.8 V when the junction temperature is \(100^{\circ} \mathrm{C}\). Reverse recovery time is \(<100\) nsec with a switch-off rate of \(50 \mathrm{~A} / \mu \mathrm{sec}\) when operating at 1A. The module attaches directly to your heat sink; breakdown volt-
age is 2.5 kV rms . Measuring \(1 \times 1.5\) in., the solderable screw and pushon connector versions are 0.5 and 0.8 in . high, respectively. Gld 11 (1000).

Philips Components, Box 218, 5600 MD Eindhoven, The Netherlands. Phone (40) 724324. FAX (40) 724825. Hall 11, stand B16.

Circle No. 815

\section*{Computing DMM}

The 8047 AT consists of a \(7^{1 / 2}\)-digit multifunction digital voltmeter combined with a \(12-\mathrm{MHz} \mathrm{IBM} \mathrm{PC/}\) AT-compatible computer. The unit has a \(210 \times 130-\mathrm{mm}\) black-and-white LCD; you control it by making window selections using cursor keys. DC voltage input ranges from 100 mV to 1 kV . Accuracy at 10 V is 9 ppm for 1 year at \(23^{\circ} \mathrm{C}, \pm 5^{\circ} \mathrm{C}\).

The meter reads rms alternating voltages ranging to 700 V and at frequencies of 20 Hz to 1 MHz . At 1 to \(100 \mathrm{~V}, 40 \mathrm{~Hz}\) to 1 kHz , rms accuracy is 340 ppm . The device also measures resistance, alternating and direct current, and temperature using a platinum resistance sensor. The computer section houses a 1 M -byte RAM and a \(3^{1 / 2}\)-in. 1.44M-byte floppy-disk drive. A scanning option provides twenty 4 pole inputs. The relay inputs scan at 5 Hz and accept signals to 125 V pk and 3A pk. DM 17,560 ; scanner option, DM 19,520.

Prema Prazisionselektronik GmbH, Robert-Koch-Strasse 10, D-6500 Mainz 42, Germany. Phone (6131) 50620. FAX (6131) 506222. Hall 25, stand A10.

Circle No. 816

\section*{SIEMENS}

\section*{Well Received.}

Siemens, with the most comprehensive ISDN IC family in the world, has created a technology which is fast becoming a telecommunication standard.

Our ISDN Oriented Modular Architecture (IOM-2) incor- (SICOFI) poration of data, speech and picture sources, and offers the adaptability to meet your application-specific requirements, including chip-sets optimized for the requirements
of terminals, network terminators and switching applications.
We provide a wide array of products supported by our IOM technology. From the T1/CEPT Advanced CMOS Frame Aligner, with a flexible microprocessor interface
 which meets North American and European standards, to CMOS Microcontrollers and Gate Arrays.

Siemens also offers cost-effective solutions for analog interface, including single and dual channel Digital Signal Processing Codec Filters. Designed with DSP architectures for maximum programmability.
And Siemens invented a unique, all-CMOS monolithic ISDN Echo Cancellation Circuit, the first single chip solution for the standardized

U-interface. With the power to double the traffic-handling capability of any existing telephone line.
It took the leader in the ISDN industry to develop the most advanced telecommunication devices in the world. Monolithic designs which reduce cost, lower power consumption, and supply you with solutions which are well received, worldwide.
For details, call (800) 456-9229, or write Siemens Components, Inc. 2191 Laurelwood Road Santa Clara, CA 95054-1514. Ask for literature package M12A003.

\section*{Siemens}

Practical Solutions by Design.

\section*{Electronica 90 Products}

\section*{16-bit ADC With Track And Hold}

The AD 1382 is a 16 -bit, \(500-\mathrm{kHz}\) sampling ADC in a 48 -pin ceramic DIP. Analog input range is \(\pm 5\) or \(\pm 10 \mathrm{~V}\) into a \(2.5-\mathrm{k} \Omega\) input impedance. Differential nonlinearity is 0.6 ppm , and input noise is \(6 \mu \mathrm{~V}\) rms. The chip requires a \(10-\mathrm{MHz}\) TTL clock and supplies of \(\pm 5 \mathrm{~V}\) at 165 mA and \(\pm 15 \mathrm{~V}\) at 77 mA . DM 1300 .

Analog Devices Inc, 831 Woburn St, Wilmington, MA 01887. Phone (617) 935-5191. FAX (617) 9329159. Hall 19, stand A16.

Circle No. 817

\section*{32-Bit DSP For ASICs}

The ST18932 is a DSP for ASIC integration with a library of stan-dard-cell components. The processor operates on real or complex numbers using a 32 -bit ALU, which can perform 26 million complex mul-

tiplications/sec. In a cycle time of 77 nsec, the device can read two operands, multiply and store, set three address pointers, and handle an I/O operation. The circuit has an operational power dissipation of 350 mW and a standby dissipation of 0.5 mW . The processor is compatible with the CB12000 library of standard cells. Development support includes an assembler/linker, C compiler, VHDL model, and real-time
emulator. ASICs that embody this processor cost \(\$ 20(10,000)\).

SGS-Thomson Microelectronics, ZI de Rousset-BP2, 13106 Rousset Cedex, France. Phone (4225) 8800. FAX (4229) 0068. Hall 24, stand B12.

Circle No. 818

\section*{Mixed Analog And Digital ASICs}

The PDM system enables you to design, capture, evaluate, and verify mixed-signal ASICs before committing to silicon. The system consists of a reconfigurable logic module, an analog design tablet, an analog component kit, and software. An IBM PC/AT or workstation is necessary to control the system. The circuit is designed by using analog and digital macros from the software library. PDM mapping software configures the logic module and assigns interface channels to the analog tab-

\title{
Make your big ideas smaller, lighter and brighter.
}

DURACELL XL \({ }^{[1}\) DL123A Lithium Batteries give you the power to think small, improve performance and portability.

> Today's emphasis on smaller, lighter, more powerful portable devices requires a bright idea in battery technology. It's here.

Size for size, the DL123A delivers more combined power and energy than other consumer replaceable batteries. In fact, for high current applications, this compact 3-volt lithium battery delivers up to four times more energy than a 1.5 -volt \(A A\) size battery - even more at low temperatures.

\section*{Electronica 90 Products}
let. After inserting analog components into the tablet, a complete hardware model exists to enable testing and development of the design. To study complete system operation, input transducers and output actuators can be wired to the tablet. The software library currently contains 50 characterized analog macros, which also exist in the component kit. Plessey delivers prototype ASICs four weeks following receipt of your design on floppy disk or cartridge. \(£ 15,000\).

Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wiltshire SN2 2QW, UK. Phone (793) 518000. FAX (61) 688 7898. Hall 25, stand B08. Circle No. 819

\section*{Waterproof Connector}

The Buccaneer range of cable connectors provides chassis/panel, inline, bulkhead, and low-profile

mountings. Pin counts of \(2,3,4,6\), 7 , and 9 and coaxial BNC inserts are optional. The connectors accept cables from 5 to 9 mm in diameter, and offer dust and moisture protection to IEC 529 specification. Maximum current rating is 10 A at 250 V . In-line 3 -way versions have NATO stock numbers. Three-way in-line plug/socket, £8.23 (25).

A F Bulgin + Co PLC, Bypass Rd, Barking, Essex IG11 0AZ, UK. Phone (01 594) 5588. FAX (01 591) 6913. Hall 7, stand A5.

Circle No. 820

\section*{Photomultiplier Power Supply}

The Model 3479 N miniature dc/dc converter produces an output that's programmable from 50 V to 1.7 kV (1 mA). Input supply is either 12 or 24 V at a maximum input current of 220 mA . The supply achieves an input and load regulation of \(0.05 \%\) and an output ripple of 75 mV . The package has flange fixings, and it measures \(95.2 \times 40.2 \times 25.0 \mathrm{~mm}\). £144.

Astec High Voltage, Astec House, Genesis Business Park, Albert Dr, Woking GU21 5RW, UK. Phone (483) 756066. FAX (483) 757223. Hall 24, stand B6.

Circle No. 821

\section*{Miniature DC/DC Converter}

The NMF series of dc/dc voltage converters produces single outputs of \(5,9,12,12.75\), or 15 V from an

DURACELL XL Lithium Batteries are engineered for single or multicell applications. They're made in the USA and distributed worldwide under the brand name consumers prefer most, DURACELL.
Find out what Duracell's latest high power technology can do for your bright ideas. Write or call for our updated DL123A Performance Portfolio. Or if you have an immediate need, contact our OEM battery engineers today.

DURACELL INC.

\section*{DURACELL INC. \\ New Products and} Technology Division OEM Sales and Marketing Berkshire Industrial Park Bethel, CT 06801 Toll-free: 1-800-422-9001 ext. 426 Facsimile: 203-791-3273
(c) 1989, Duracell Inc

Most people start out on the road to testing with a clear idea about where it is they want to end up. Their target destination is high-quality, precise and reliable testing, on time, within budget.

Far too often, for various reasons, people who need good testing make a costly mistake. They start to take shortcuts. This usually ends up leading them to a heap of trouble instead of a job well done.

All this can be prevented if you call on AT\&T Testing Services for all your testing needs. We have the most comprehensive range of testing services including Mechanical, Analytical Instrumentation/Chemical, Environmental, Product, Electrical and Electronic, Instrument Calibration and Certification, Acoustic and Telecommunications. Best of all we can be counted on for meeting your test requirements while staying well within
your testing timetables and budget parameters.

So, to keep from winding up at the bottom of some valley for dissatisfied test customers, call AT\&T Testing Services today. 1800 521-3399 or (201) 851-3333 or write to: AT\&T, Quality Management and Engineering, Attn: Product Manager, Testing Services, 650 Liberty Ave., Union NJ 07083-8107.

\section*{"Don't worry. I know a shortcut."}

\section*{Electronica 90 Products}
input of 5 or 12 V . The converters deliver 500 mW in a \(70^{\circ} \mathrm{C}\) ambient temperature without heat sinks and at an efficiency of \(50 \%\). Input-tooutput isolation voltage is 500 V dc. Load regulation is \(1.5 \%\) max for a 10 to \(100 \%\) full-load variation. The device comes in a single-in-line package for pc-board mounting and measures \(19.5 \times 6.0 \times 10.0 \mathrm{~mm}\) high. A control pin enables output voltages to drop to approximately 1.2 V , specifically for flash-EPROM applications. \(£ 5.50\) (100).
Newport Components Ltd, Tanners Dr, Blakelands N, Milton Keynes, MK14 5NA, UK. Phone (908) 615232. FAX (908) 617545. Hall 1, stand A05. Circle No. 822

\section*{Surface-Mount Transistors}

Transistors FMMT449 (npn) and FMMT549 (pnp) offer a continuous \(\mathrm{I}_{\mathrm{C}}\) rating of 1 A in a surface-mount

SOT23 package. Both types feature a \(\mathrm{V}_{\text {CESAT }}\) of 0.3 V typ at \(1 \mathrm{~A} \mathrm{I}_{\mathrm{C}}\). \(\mathrm{H}_{\mathrm{FE}}\) is a minimum of 40 at the peak \(\mathrm{I}_{\mathrm{C}}\) rating of 2 A , and increases to 100 at \(0.5 \mathrm{~A} \mathrm{I}_{\mathrm{C}}\). At a \(25^{\circ} \mathrm{C}\) ambient temperature and mounted on a \(0.6-\mathrm{mm}\) substrate of \(80 \mathrm{~mm}^{2}\), the transistors can dissipate 425 mW . £0.14 (100).

Zetex PLC, Fields New Rd, Chadderton, Oldham, OL9 8NP, UK. Phone (61) 6275105. FAX (61) 6275467. Hall 24, stand A24.

Circle No. 823

\section*{Miniature SAW Filter}

The Y6960M SAW filter fits in a 5 -pin single-in-line package. It has a \(10-\mathrm{MHz}\) bandwidth designed for a \(118-\mathrm{MHz}\) center frequency. Insertion loss is 30 dB , with a passband ripple of 0.4 dB . Group delay ripple is typically \(\pm 20 \mathrm{nsec}\), and the filter suppresses any trailing signals at center frequency by 47 dB . DM 8.80 (1000).

Siemens AG, Postfach 801709, D-8000 Munchen 80, Germany. Phone (89) 4144 8083. FAX (89) 4144 8082. Hall 23, stand A4.

Circle No. 824

\section*{Nickel-Hydride Rechargeable Cell}

The VNH range of rechargeable cells comprises three models in sizes C, SC, and AA. For the same size, these nickel-hydride batteries possess \(50 \%\) greater capacity than Ni-

\section*{When it comes to scopes, some companies talk a good line.}
 why Tek builds some 20 analog scopes and 24 DSO's. From 10 MHz to 40 GHz . From handhelds to lab scopes. From dependable basics to the advanced signal analysis of the DSA. Want a line with real substance? Call your Tek rep or 1-800-426-2200 for less talk and more Tek.

One company measures up.

- \(10,000 \mathrm{~V} / \mu \mathrm{S}\) Slew Rate
- 1 Amp Output (1.5 A Pulse)
- \(\pm 5\) to \(\pm 15\) Supply
- 70 MHz Full Power Bandwidth
- Up To 15 Watts Dissipation

\section*{Amplifiers} WAOT

TRANSIMPEDANCE AMPLFIER
- \(4,000 \mathrm{~V} / \mathrm{\mu s}\) Slew Rate
- 400 mAmp Output
- \(\pm 12\) to \(\pm 15\) Supply
- 40 MHz Full Power Bandwidth
- Up To 10 Watts Dissipation

\section*{APPLICATIONS}

LASER DIODE DRIVERS
SONAR TRANSDUCER DRIVERS PIN DRIVER

To Place An Order Call 602-742-8601

For Applications Assistance Call 1-800-421-1865

dedicated to excellence
APEX MICROTECHNOLOGY CORPORATION

LASER DIODE DRIVERS VIDEO AMPLIFIERS WAVEFORM GENERATIORS

Cd alternatives. A complete recharge is possible in 1 hour, and continuous charging is possible at \(10 \%\) of the Ahr capacity rating. The cells discharge at 5 times the Ahr capacity rating and survive 1000 charge/discharge cycles. Samples of the VNH1.0, AA-size, 1.0-Ahr version, DM 5. Available first quarter of 1991 .

Varta Batterie AG, Am Leineufer 51, D-3000 Hannover 21, Germany. Phone (0511) 79031. FAX (0511) 790 3622. Hall 21, stand A07. Circle No. 825

\section*{Heat-Sink Wirewound Resistors}

The HS range of heat-sinkmounted, wirewound resistors has values from 0.005 to \(62 \mathrm{k} \Omega\). Maximum power rating in the range is 75 W in \(25^{\circ} \mathrm{C}\) ambient without additional heat sinking. This rating in-

creases to 300 W with additional heat sinking. You can specify inductive or noninductive windings and resistance tolerance from 1 to \(10 \%\). Terminations cater to solder, threaded, or fast-on connections. 300W type, DM 84 (100).
Arcol UK Ltd, Threemilestone Industrial Estate, Truro, Cornwall TR4 9LG, UK. Phone (872) 77431. FAX (872) 222002. Hall 24, stand B21.

Circle No. 826

\section*{50W AC/DC And DC/DC Power Supply}

The M series consists of six power supplies that produce a single, dual, or triple output of 48 V dc from an ac or dc voltage input. The input voltage range extends from 7 to 372 V dc or 90 to 264 V ac at line frequency. All models maintain a 50 W power rating and operate at 85\% efficiency in ambient temperatures of -40 to \(+71^{\circ} \mathrm{C}\). You can choose a model with variable output from 0 to \(110 \%\) of nominal. \(£ 200\) (10).

Melcher AG, Ackerstrasse 56, Postfach 248, CH-8610 Uster, Switzerland. Phone (1944) 8111. FAX (1940) 9858. Hall 12, stand A06.

Circle No. 827

\section*{Universal Programmer}

The AP-III programs single EPROMs, EEPROMs, bipolar PROMs, microcontrollers, PLDs,

\section*{When it comes to DSOs, some companies aim towards banner specs.}

\section*{One company begins with them.}

It's the difference between face value and real value: do you build for appearances? Or for solid fidelity, effective analysis, and long-lived adaptability? Tek doesn't take shortcuts that shortchange you later. Want a scope that does the optimum, not the minimum? Call your Tek sales engineer or 1-800-426-2200: the deeper you probe, the more you'll appreciate Tek.

One company measures up.

\section*{One of the world's biggest battery suppliers is now on the way to Jupiter.}

Varta batteries are on board the missile "Galileo" that will enter Jupiter's atmosphere in 1995. During the 6 -year mission, two special 70 V lithium batteries ensure the precise data collection functions of a particle sensor. Varta - supplying the energy to take science into new dimensions. In the same reliable way as in trail-blazing electrotechnical and electronic projects all over the world.

Varta - that's 14,000 employees, a turnover of some DM 2 billion, and factories, subsidiaries and licensees on all 5 continents. The clear No. 1 in Europe - and worldwide in the leading class of battery manufacturers. Varta has one of the most comprehensive
programmes of different electro-chemical energy storage systems; backed up with high-tech innovations for new products, such as superbly over-charge-proof NC button cells, especially fast charging NC cylindrical or 10-year lithium batteries with the highest capacities available.

Varta has the energy potential for today's and tomorrow's markets. But why not speak to our earthbound Varta consultants and find out more?

Varta: The world's largest battery only manufacturer.

\section*{Electronica 90 Products}
electrically programmable logic devices, and generic array logic devices. You can operate the program from a front-panel keyboard or remotely via a 115 k -baud RS-232C link to an IBM PC or compatible. Standard internal RAM capacity is 1 M bits, but it is upgradable to 4 M bits. Optional extenders allow you to program multiple devices. The programmer includes support software and a lifetime update service for new devices. DM 5498.
Owen Electronic GmbH, Ringstrasse 11, D-6798 Kusel, Germany. Phone (6381) 5085. FAX (6381) 8584. Hall 20, stand A19.

Circle No. 828

\section*{Single-Board XT Computer}

The SBC-XT is a single-board computer with IBM PC/XT compatibility. It employs an 8088 processor and can accommodate a matching

coprocessor. Memory capacity extends to 640 k bytes. The board contains controllers for hard and floppy-disk drives, and supports CGA graphics. The board includes two RS-232C interfaces, one parallel port, and provisions for IBM PC bus and iSBX expansion. Additional items include a battery-backed
clock and watchdog timer. A 5 V at 800 mA power supply is required. The board measures \(5.75 \times 7.75 \times\) 0.85 in. \(£ 550\) (10).

Nevin Developments Ltd, 48 Charlton Rd, Andover, Hampshire SP10 3JL, UK. Phone (264) 332122. FAX (264) 332125. Hall 24, stand B13A. Circle No. 829

\section*{Fiber Transceiver}

The DLX2040 is an optical-fiber transceiver for interfacing ECL signals to and from the \(1300-\mathrm{nm}\) band at 170 M bps. A maximum output power of \(28 \mu \mathrm{~W}\) provides \(5-\mathrm{km}\) transmission distance. The unit typically consumes 120 mA from a 5 V source. A duplex FDDI Media Interface Connector accepts your fiber terminations. The enclosure measures \(2.91 \times 1.18 \times 0.47 \mathrm{in}\)., and links to your pe board by a pair of

\section*{When it comes to DSOs, some companies duck the tough questions.}

\section*{One company spells them out.}

12 Tough Questions looks beyond banner specs to critical issues most DSO vendors don't want you to ask. Acquisition, glitch detection, update rate, triggering - Tek's sales engineers welcome the kind of questions that get to the facts of performance. Want a scope that has nothing to hide? Contact your Tek sales engineer, or call 1-800-426-2200 for a copy of 12 Tough Questions, free.

One company measures up.

\title{
SHKT作促
}

\section*{Is it limiting your system performance?}

Trying to analyze the adverse effect of jitter and isolate the failure using Random Sampling has been a problem. International Test Instruments (ITI) offers you the solution Continuous Time Ordered Measurements using the Digital Timing Analyzer (DTA).

The DTA measures and stores up to 524,000 continuous intervals at data rates up to 20 MHz . It can store these individual measurement values in the order they occurred at resolutions as fine as 50 ps . Interval deviations exceeding the accepted boundaries can be isolated and the events surrounding the interval can be easily analyzed.

Find out how the DTA and

its application software** can help you pinpoint the problem area, determine the proper compensation and reduce the jitter that limits your system performance. For a no-obligation demonstration or to receive more information, call:

INTERNATIONAL TEST INSTRUMENTS, INC.

15550-B ROCKFIELD,
SUITE 100,
IRVINE, CALIFORNIA 92718.
1-800-2525-ITI
FAX: (714) 770-5706
It's About Time.

\section*{Electronica 90 Products}

16-pin dual-in-line connections. £305 (100).

British Telecom and Dupont Technologies Ltd, Whitehouse Rd, Ipswich, Suffolk IP1 5PB, UK. Phone (473) 42250. FAX (473) 240490. Hall 24, stand B17A.

Circle No. 830

\section*{Zero-Insertion-Force PGA Test Socket}

The ZIF PGA family includes 10 sockets for test and burn-in of programmable gate arrays. Pin grid sizes range from \(12 \times 12\) to \(21 \times 21\). Cam action forces each normally closed contact to open to receive the component. This design prevents dependency on plastic for contact force when the component is in place. To accommodate burn-in temperatures of -65 to \(+200^{\circ} \mathrm{C}\), contacts are made of nickel-boron plated alloy. You can choose a left-

or right-action handle and sockets with or without fixing lugs. \(15 \times 15\) version, \(\$ 34.50\) (100).

Aries Electronics (Europe), Unit 3 Furtho Court, Towcester Rd, Old Stratford, Milton Keynes MK19 6AQ, UK. Phone (908) 260007. FAX (908) 260008. Hall 16, stand F9.

Circle No. 831

\section*{Embedded VXI Computers}

The VXIpc-386/1 \(20-\mathrm{MHz}\), IBM PC/ AT compatible occupies a singlewidth C-size slot in your VXI rack. The module contains a 20 M - or 40 M -
byte hard disk and up to 8 M bytes of RAM. The computer drives a VGA monitor, two RS-232C serial ports, and a parallel port. The unit houses an IEEE-488.2-compatible interface and a controller for an external floppy-disk drive. The VXIpc-386/2 is a 2-slot version with an integral 1.44 M -byte floppy-disk drive and a \(40 \mathrm{M}-, 80 \mathrm{M}\)-, or 210 M byte hard disk. Support software for both models includes a VXI revision 1.3 resource manager, a VXI interactive control program, a driver function library, and IEEE488.2 control programs. Either model with 1 M-byte RAM and a 40 M -byte hard disk, \(\$ 9000\).

National Instruments, 6504 Bridge Point Parkway, Austin, TX 78730. Phone (512) 794-0100. FAX (512) 794-8411. Hall 19, stand F12.

\section*{When it comes to DSOs, some companies let you stare at a video.}

\section*{One company lets you compare for yourself.}

Sitting through a video demo is like sightseeing with blinders on. So 18,000 engineers have already asked for Tek's free Scope Evaluation Kit, with test board and manual to help you compare scopes and draw your own conclusions. Ready to blow the lid off canned demos? Get face-to-face with your Tek sales engineer, or call 1-800-426-2200 to qualify for the Scope Evaluation Kit.

One company measures up.

\section*{WHAT GOOD IS A BRAIN}
\(\qquad\)
World Headquarters: 3081 Zanker Road, San Jose, CA 95134 Telephone: (408) 456-4500 FAX: (408) 456-4501 Sales Offices: U.S. - Boston: (508) 660-1088 • Dallas: (214) 680-2913 - Los Angeles: (714) 455-2777

\section*{WITHOUTA MEMORY?}

To hear most people in the computer business talk, you'd think the only valuable part of a system is its microprocessor.

Maybe they haven't lost their minds. But they've certainly forgotten about the hard drive. And the critical data it stores. Data which can't be easily replaced like a microprocessor.

So it's no surprise that many OEMs are reducing their risk of system failure with disk drives from Conner. Using proven technologies, our high performance drives consistently set the standards for form factor, reliability, and innovation.

That's because at Conner, we work closely with our customers to identify their needs sooner, and fill them faster. Providing them the quickest time to market; with exactly the right product. Plus, we're expanding our worldwide manufacturing facilities to meet growing customer demand around the globe.

All of which makes choosing Conner disk drives a low risk decision.

So call Conner today. The results should be quite memorable.

\footnotetext{
San Jose: (408) 456-4500 Europe-Ivrea: (39) 125-631715 • London: (44) 249-444-049 • Munich: (49) 89-129-8061 - Paris: (33) 1-47-474108 Asia-Singapore: (65) 2845366•Taipei: (886) 2-718-9193 - Tokyo: (81) 3-485-8901
}

\title{
for lower NRE?
}

\section*{ake it \\ Tiny.}

Here's How To Develop Analog/Digital ASICs In Less Time, For Less Money.

Now, for an absolutely tiny price, you can partition complex mixed mode ASICs and separately design and verify the critical segments through fabrication. Cost of fab will no longer stop you from a divide and conquer methodology. Use Tiny Chips and go a step at a time. Tiny Chips, available on Foresight multiproject wafer runs, reduce NRE costs and help you move confidently from prototypes into production.

Twelve packaged parts are available at a cost of just \(\$ 1,500\). And Foresight runs are regularly scheduled, so development can be pipelined; some segments can be in design, some in fab, while others in test and debug... all at the same time.

Foresight runs support larger die sizes for characterization of completed designs prior to production.

As you might expect from the only foundry to guarantee quick turnaround, Tiny Chips are available in a mere 20-25 working days from CMOS runs supporting:
\(1.2,1.5\) and 2.0 micron feature sizes
2.0 micron buried channel CCDs
a 40 pin Tiny Chip pad frame supplied by Orbit
the DoD 2/1.2 micron CMOSN standard cell library with RAM and ROM generators
Getting started is easy as getting design rules and process information in our newly published Foresight User Manual.

If you are trying to build complex ASICs, without building up time and cost, Orbit's new Tiny Chip service may be the biggest news yet. To get more information in a hurry, contact Technical Marketing, Orbit Semiconductor, 1230 Bordeaux Drive, Sunnyvale, CA. Or call (408) 744-1800 or (800) 331-4617. In CA (800) 647-0222. FAX (408) 747-1263.

What others promise, we guarantee.

\title{
With this Ethernet chip set, your competitors will swear you took a shortcut.
}

The shortest route to market begins with our three-chip set - the EtherStar" controller, encoder/decoder, and transceiver - from Fujitsu's Advanced Products Division.

We've engineered this Ethernet set to offer you unparalleled ease of design. With our expert design support and optional manufacturing kit, you have everything you need to get new products out in record time.

EtherStar's unique buffer manager automatically controls buffer memory access and allocation, making application software easier to develop. And EtherStar handles many functions usually performed by the software driver in hardware-boosting system performance. No wonder official \({ }^{*}\) Novell certification tests performed by independent consultants show that products based on our chip set have higher data-transfer rates.

Unlike some of our competitors, we can supply you with complete system solutions, including interface chips for standard bus architectures. And we don't compete with you by selling boards.

As Fujitsu's American arm, we're in close touch with
 your marketplace and what you need to excel AOVELL LABS TESTEDAND APPROVED Newhre Comporible there. So call us at 1-800-866-8608. Learn about the family of high-performance Ethernet solutions from Fujitsu's Advanced Products Division.

And take the shortest, smartest pathway to Ethernet success.

\section*{FUJITSU}

Delivering the Creative Advantage.

\title{
Integrated tool set makes software development in \(\mathrm{C}++\) easier
}

Objectworks \(\backslash \mathrm{C}++\) Release 2 is an integrated tool set for object-oriented programming (OOP) that helps you develop software in \(\mathrm{C}++\) language. The key component is an object-oriented database shared by all of the tools; this database provides a win-dow-oriented user interface that links the tools to give you four different views of your program.

The inheritance browser draws class-inheritance trees and supports multiple inheritance. The call-relationship browser draws caller/callee relationships among functions. The program-structure browser draws the program-structure tree to the level of granularity at which classes, functions, and global variables are defined. The error browser lists errors that the compiler has detected and for each error places you in the appropriate file at the statement that caused the error.

Code is reusable only if it is findable. These browsers find all instances of a specified class and show you the associated \(\mathrm{C}++\) code. Thus, you can quickly identify classes whose behavior meets some or all of the requirements of another application.

For debugging, the process inspector gives you five subviews of the program that help you debug the code and correct errors. Because module-dependencies are stored in the object-oriented database, any changes that you make to a class or function automatically propagate themselves to all affected modules when you recompile.

To improve the portability of

The inheritance browser draws class inheritance trees and supports multiple inheritance. This is one of four browsers in Objectworks \(\backslash C++\) that gives you diverse graphical views of your design.
your programs, Objectworks \(\backslash \mathrm{C}++\) includes the latest version of the AT\&T C ++ compiler (currently release 2.1); you can therefore develop and test your software on the Sun-3 or SPARCstation host, and then transport the source code to any target system whose \(\mathrm{C}++\) compiler is \(100 \%\) compatible with the AT\&T 2.1 compiler.

However, you don't have to use the AT\&T compiler; you can use the development system in conjunction with third-party compilers, source-code-control systems, profilers, and debuggers. To increase the consistency and portability of your programs, the vendor offers the optional ObjectKit\C ++ , a class li-
brary that includes AT\&T's standard library and standard library extension, as well as translations of selected Smalltalk class libraries and an X-Windows graphical user interface called Interviews. Objectworks \(\backslash C++\) costs \(\$ 3000\), and the optional ObjectKit\C ++ costs \$500.-Chris Terry

ParcPlace Systems, 1550 Plymouth St, Mountain View, CA 94043. Phone (415) 691-6700. FAX (415) 691-6715.

Circle No. 730

\title{
Low-cost industrial PC family draws little power and fits in a small space
}

System designers often adapt PC components for embedded-system needs. However, mother boards designed for desktop applications don't generally have industrial op-erating-temperature ratings. And their layout presumes the spacious accommodations of a computer cabinet rather than the close confines of industrial enclosures. PC compatibility allows you to develop and test your application on a PC, and then transfer your code directly to your target system without change.

The Micro-PC line of board-level computer components delivers IBM PC compatibility with small size, low cost, and low-power operation to designers of industrial systems. Two CPU cards form the core of this industrial PC family. The Model 5000 PC control card incorporates an NEC V20 \(\mu\) P running at 10 MHz ; sockets for a 256 k - or 1 M byte single-inline memory module and a 1M-bit flash EPROM or static RAM; a BIOS ROM; a watchdog timer; and the 8-bit IBM PC bus interface.

The Model 5010 PC control card adds two serial ports and a parallel I/O printer port. Without memory chips, the Models 5000 and 5010 cost \(\$ 195\) and \(\$ 345\), respectively. For \(\$ 75\), you can add instant-on capability by plugging in a special BIOS ROM that includes DOS. In quantities of 1000 , the cost of the controller cards drops to \(\$ 99\) and \(\$ 189\), respectively. Using 1 M bytes of RAM, the boards draw less than 230 mA on the 5 V power supply. The Model 5010 also requires 20 mA from a 12 V power supply for the serial ports.

In addition, the company offers a large number of accessory I/O cards to support these two controllers. For example, the \(\$ 295\) Model

5400 EGA card provides standard PC video graphics. The \(\$ 195\) Model 5800 floppy- and hard-disk cards add support for \(5^{1 / 4}\) - and \(3^{1 / 2}\)-in. floppy-disk drives and hard-disk drives with IDE (integrated-driveelectronics) interfaces.

For industrial applications, you can obtain several more exotic I/O cards. The \(\$ 195\) Model 5300 counter/timer I/O card has six 16 -bit timer/counters (three with optically isolated inputs); two programmable timebase generators with frequency ranges of 122 Hz to 4 MHz and 0.0005 to 2 MHz , respectively; and eight general-purpose digital I/O lines. The \(\$ 195\) Model 5600 digital I/O card provides 96 I/O lines and can drive as many as four Opto module racks. The racks accept optically isolated control modules originally developed by Opto 22 (Huntington Beach, CA).

The Micro-PC family also includes some rather specialized members. For example, the \(\$ 395\) Model 5328 motion-control card provides the system with a self-contained PID (proportional, integral,
derivative) analog control system. The card accepts signals from a quadrature encoder, processes that position information using 16 -bit coefficients, and generates the appropriate analog feedback signal to drive a motor controller. It does all this without help from the CPU once the coefficients are provided. You can add a second control channel to the card for \(\$ 150\).

Similarly, the \(\$ 345\) Model 5329 motion-control card provides PID control for motor controllers that require pulse-width modulated signals. The 2 -channel version of that card costs \(\$ 150\) more than the 1 channel version. The line also includes relay cards, analog I/O cards, a RAM- or ROM-disk card, and a serial I/O card.

Although it uses the standard 8bit PC bus, the entire Micro-PC card line uses a proprietary form factor. Micro-PC cards will plug into PCs (using a standard PC end plate) so you can use them during development on a desktop machine, but commodity expansion cards marketed for desktop PCs will not

The 4-slot card cage and power supply of the Micro-PC require less space than an IBM \(\underline{P C / A T ' s ~ p o w e r ~ s u p p l y . ~}\)

\title{
The Standard for Circuit Simulation Has Expanded
}

Advanced Filter Designer Bode Plot

\section*{Advanced Filter Designer: New Front End Design Tool}

The PSpice family of products includes both the Circuit Analysis and Circuit Synthesis packages. The Circuit Analysis package contains our PSpice circuit simulator and its options, and the Circuit Synthesis package contains our filter synthesis products, Advanced Filter Designer and Standard Filter Designer.
Advanced Filter Designer is an interactive design aid giving you the ability to design and analyze active filters. Features include a menu-driven interface, hard copy report summaries and plots, cascading multiple designs, and interfaces to PSpice and SWITCAP.
Advanced Filter Designer uses a well established methodology in applying classical approximations to your filter specification. Available filter types include low pass, high pass, band pass, and band reject, all of which may be synthesized by Butterworth, Chebyshev, Inverse Chebyshev, and Elliptic (Cauer) functions. There is also the capability to synthesize arbitrary fransfer functions and delay equalization filters.
A full editing capability allows you to insert, delete, and reorder stages, and modify coefficient values. These editing features allow a filter expert to fine tune a design, or quickly make a small modification to an existing design.
Advanced Filter Designer supports both active RC and switched-capacitor biquad filter structures. The components may be scaled or resized to center the values in preferred ranges.
Both Bode and pole-zero plots are available. Normally, you can determine the acceptability of your design by the inspection of its Bode plot. The Advanced Filter Designer plots gain, phase, and delay vs. frequency. For sampled data designs, you can plot your choice of the \(s\) - or \(z\)-domain transfer function. Pole-zero plots allow you to inspect the roots of the transfer function in either the \(s\)-domain or \(z\)-domain.
Filter Designer works with our PSpice circuit simulation package. PSpice and its options form an integrated package for the analysis of electronic and electrical circuits.
Each copy of our Circuit Analysis and Circuit Synthesis programs comes with our extensive product support. Our technical staff has over 150 years of experience in CAD/CAE, and our software is supported by the engineers who wrote it.
For further information about our Circuit Analysis or Circuit Synthesis packages, please call us at (714) 7703022 or toll free (800) 245-3022.

20 Fairbanks•Irvine, CA 92718 USA • FAX (714) 455-0554

\section*{The DP100 is...}
- A full function portable 5 1/2-digit DMM
- An instrument with basic accuracy of \(\pm 0.003 \%\)
- A True RMS Reading Instrument
- A Frequency Counter measuring to 25 MHz
- An RTD Temperature Meter
- Rugged - for Field Use
- Backed by a full two-year warranty
Analogic Corporation
8 Centennial Drive
Peabody, MA 01960
1-800-343-8333 in U.S.A.,
In Mass. call (508) 977-3000
Telex: 681-7180
FAX: (508) 532-6097

\section*{UPDATE}
fit in a Micro-PC's card cage. MicroPC cards measure \(4.9 \times 4.2 \mathrm{in}\). (excluding the edge connector).
The company uses this strategy for several reasons. First, the standard card-mounting technique employed by the original PC isn't really up to the shock and vibration requirements of industrial applications. So the company developed a different mounting method that uses a nonstandard end plate and two mounting screws. This scheme provides a more solid mechanical arrangement.
Second, the large number of PC bus boards on the market hinder a company's effort; one company really can't provide support for every board that plugs into the bus. Rather than provide support for a cut-rate I/O card of unknown quality, the company uses a nonstandard form factor and physically excludes such boards from Micro-PC systems. Further, most Micro-PC boards operate over a -20 to \(+70^{\circ} \mathrm{C}\) temperature range, and commodity PC boards do not. Building a mixed system could compromise the Micro-PC's reliability.
To accommodate the cards' special form factor, the company offers card cages with backplanes and power supplies. The 3 -, 4 -, and 8 slot cages cost \(\$ 45, \$ 75\), and \(\$ 105\), respectively. Power modules that draw power from several ac and dc sources range from \(\$ 135\) to \(\$ 235\). The power modules all feature MTBF ratings of at least 120,000 hours. The company also offers a variety of cables, keypads, alphanumeric displays, and terminal blocks for the various Micro-PC cards to ease system assembly.
-Steven H Leibson
Octagon Systems Corp, 6510 W 91st Ave, Westminster, CO 80030. Phone (303) 430-1500. FAX (303) 426-8126.

Circle No. 734

With more uses and features than most other hand-held multimeters, the DM27xi. and DM25xL really pack a punch; especially when you've got to troubleshoot or analyze a variety of components and circuits.

Standard functions include capacitance measurement to \(20 \mu \mathrm{f}\), logic probe to 20 MHz , transistor tester and resistance ranges to \(2000 \mathrm{M} \Omega\). The DM27xL further adds 20 MHz frequency counting capability with selectable
trigger sensitivity, plus an LED tester. Both meters feature an enhanced display, including a large, easy-to-read LCD, a full set of function annunciators and a battery-saving Auto Power Off.

Grab a DM25xi for just \(\$ 109.95\), or a DM27xi. for just \(\$ 129.95\) (suggested retail price) at your local Beckman Industrial distributor. After using one, you won't be able to function without it.

\title{
Dual-channel VMEbus, audio-interface board encodes and compresses data in real time
}

The two compact-disk-quality digital audio channels on the MMI-210 VMEbus board suit applications in professional studios, realistic flight simulators, and sonar signal processors. Firmware on the board includes a number of data-compression and encoding algorithms that the board can execute in real time. The board has 4 W power amplifiers on each channel, as well as a digital I/O interface compatible with workstations from Next Inc (Palo Alto, CA).
The MMI-210 incorporates a Motorola \(56001 \mathrm{DSP} \mu \mathrm{P}\) for each output channel. The \(27-\mathrm{MHz}\) processors each have access to private \(32 \mathrm{k} \times 24\)-bit arrays of program memory and private \(32 \mathrm{k} \times 24\)-bit arrays of data memory. The board also has a socket for a 128 k -byte EPROM. A 1M-byte RAM memory array stores sound data. The multiported design allows access to the memory array from both DSP chips and the VMEbus interface.

The board implements a 32 -bit slave interface to the VMEbus and also supports 8 - and 16 -bit, and nonaligned transfers. A VMEbus host can communicate directly with either DSP \(\mu\) P via a dedicated host port. The host passes data to the processors via the 1 M -byte memory array. During VMEbus read and write transfers, the board latches data to minimize VMEbus cycle time. The board also provides a VMEbus interrupter.

The DSP ICs combined with a 16 bit Delta-Sigma A/D converter and a 16 -bit D/A converter on each channel provide the compact-diskquality digital recording and playback of sound. The channels sample at a maximum \(100-\mathrm{kHz}\) rate, and you can program the sample rate
to a value as low as 8 kHz . The programmable sample rate allows you to make tradeoffs of sound quality and storage requirements.
The board features a dynamic range of 96 dB and a bandwidth of 20 Hz to \(45.5 \%\) of the sampling frequency. You can program the output level from 0 to -72 dB . The board accepts 2 V p-p input signals and outputs a 2 V p-p signal of 4 W into \(8 \Omega\).

Firmware on the board offers a choice of 4 -bit ADPCM (adaptive differential PCM), 16-bit linear PCM, 8 -bit \(\mu\)-law, and 8 -bit A-law data encoding and compression. The audio-data capacity the board offers varies according to the sampling rate and encoding scheme you use. For example, the board requires 960 k bytes of memory to
store 10 sec of sound, using 16 -bit PCM encoding sampled at 48 kHz . On the other hand, a 10 -sec recording sampled at 8 kHz , using 4-bit ADPCM requires only 40 k bytes of memory.

Users who want to develop proprietary algorithms for audio or general-purpose DSP applications can disable the onboard firmware and download code to the DSP \(\mu\) Ps.

The board costs \(\$ 3925\), and samples are available. You can use the board with Microware's (Des Moines, IA) Rave multimedia user interface for the OS/9 real-time operating system.-Maury Wright

Vigra Inc, 4901 Morena Blvd, Bldg 502, San Diego, CA 92117. Phone (619) 483-1197. FAX (619) 483-7531.

Circle No. 732

ADPCM, PCM, \(\mu\)-law, and A-law data-encoding choices, and a programmable sampling rate allow users of the MMI-210 VMEbus audio board to trade off audio-data capacity and sound quality.

\section*{The INTEGRATED USC. More buffer management. More system efficiency. Less cost.}

Zilog's integrated universal serial communication controller (Z16C31"') combines two 32-bit full duplex DMA channels with a powerful single-channel USC cell. And that means efficient bus access, sophisticated buffer management, higher throughput, a greatly reduced CPU workload, and considerably lower cost for complex data communications applications.

Fast, multi-protocol operation.
Zilog's USC cell gives you \(10 \mathrm{Mbits} /\) sec speed for multi-protocol operation. It also gives you 32-byte RX and TX FIFOs for improved latency and up to 32-byte block moves. There's a Time Slot Assigner for multiplexing in ISDN/TI applications, a flexible 16-bit bus interface - multiplexed or non-multiplexed - for easy CPU interconnect, and a daisy-chain interrupt structure for simpler interrupt handling. And, best of all, the USC can reduce the CPU workload as much as \(60 \%\).
Integrated buffer management.
The IUSC's two 32-bit DMA channels provide for 32-bit addresses and 16 -bit data word transfers . . . and they allow full duplex operation at \(10 \mathrm{Mbits} / \mathrm{sec}\). The two simple DMA modes, normal and buffered, mean your design can be tailored to common buffer management schemes. The two chained DMA modes, array chained and link array chained, reduce CPU overhead in advanced buffer management schemes. The daisy-chain DMA priority structure makes it easy to design multiple IUSC systems.
Versatility and reliability.
The IUSC's flexible, multi-protocol design lets you adapt your system to a variety of networks as interconnect standards evolve. The IUSC supports ten protocols and eight data encoding formats, including asynchronous, bit and byte synchronous, HDLC, isochronous, Ethernet and MIL-STD 1553B. And it all comes to you off the shelf, backed by Zilog's proven quality and reliability. To find out more about the IUSC or any of Zilog's growing family of Superintegration \({ }^{\text {w" }}\) products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

\title{
VMEbus-compatible CPU and storage modules implement a complete 80486-based system
}

Two VMEbus modules, collectively measuring \(6 \times 9 \times 3.2\) in. (two VMEbus slots), make up a complete IBMcompatible 80486-based computer system offering 20-MIPS performance. The EPC-5 embedded PC includes a CPU module and a massstorage module; it targets applications as a front-end computer and operator interface for embeddedcomputer applications. The modules also provide the EXMbus for local expansion and for expansion and multiprocessing on the VMEbus.

The EPC-5 CPU module offers a choice of a 25 - or a \(33-\mathrm{MHz} 80486\) \(\mu \mathrm{P}\). The module also provides as much as 16 M bytes of dynamic RAM, two RS-232C ports, a parallel port, a VGA graphics controller, a battery-backed clock, and a speaker. The CPU contains Award Software's 486 BIOS. An 8-layer pe board, five custom gate arrays, and 4M-bit RAM chips enabled the company to fit the complete mother board into the VMEbus form factor.
The mass-storage module includes a \(3^{1 / 2}\)-in. floppy-disk drive that's accessible from the VMEbus front panel, and a slot for a \(31 / 2\)-in. hard disk. You can specify a hard disk with capacity ranging from 40 M to 100 M bytes. Furthermore, you can use the EXMbus for additional expansion requirements. The company offers Ethernet, solidstate disk, floppy-disk, SCSI, IEEE-488, modem, RS-232C, and RS-422 expansion modules. Two EXMbus expansion slots fit within the CPU module form factor.

The VMEbus interface supports master and slave modes and can operate with an 8 -, 16 -, or 32 -bit data bus. The board can generate and receive all seven VMEbus inter-
rupts and includes full VMEbus slot-1 capability. The CPU board also provides byte-swapping circuitry to perform little-endian (Intel) to big-endian (Motorola) data conversions.

The device runs industry-standard operating systems such as MSDOS, OS/2, and Unix. In addition, the system can run a number of real-time operating systems including VRTX-PC from Ready Systems and OS-9000 from Microware. Industrial application software available for the board includes Wonderware's Intouch, Iconic's Genesis, and Labtech's Labtech Control.

The company also offers its EPConnect software with the EPC-5 system. The software provides system-development and runtime packages that simplify the development of MS-DOS(including Microsoft Windows), OS/2-, and Unix-based systems.

The company expects to ship the EPC-5 in November at a base price of \(\$ 7495\). Mass-storage modules start at \(\$ 990\), and the base price for EXMbus modules is \(\$ 370\). The EPC-5000 sys-tem-development kit costs \(\$ 11,510\) and
includes the CPU module, a massstorage module with a 100 M -byte disk drive, MS-DOS, Windows 3.0, EPConnect, a keyboard, a mouse, and a data-migration facility.
-Maury Wright
Radisys Corp, 19545 NW Von Neumann Dr, Beaverton, OR 97006. Phone (503) 690-1229. FAX (503) 690-1228.

Circle No. 733

\section*{Synthesizer performance... priced to generate some waves.}

The HP 3324A Synthesized Function/Sweep Generator.
The attractive price of this generator is bound to generate some waves. It's much less than you'd expect to pay for a function generator that has 5 ppm frequency accuracy, 9 -digit frequency resolution and multiinterval sweep capabilities too.
Put it to work in testing filters EDN October 25, \(1990^{*}\)
and amplifiers where you need synthesizer accuracy, stability and signal purity. Tap its high linearity and multi-interval sweep features for \(\mathrm{A} / \mathrm{D}\) converter testing and for simulating rotating signals. Simplify the creation of phase-related signals for PLL or navigation-system testing with the new automatic phasecalibration options.
And there's more. Such as the high-stability frequency-reference
option, and a high-voltage output option for making really big waves. Call 1-800-752-0900 today. Ask for Ext. 1598 or mail the reply card and we'll send a brochure and application information.

There is a better way.

\section*{Because you're thinking fast...}
you need responsive suppliers as well as fast parts. Comlinear is tuned in. With high quality, high-speed products. Assistance from R\&D-level applications engineers to help develop your ideas quicker. Off-the-shelf MIL-STD-883 compliant monolithics and hybrids. Quality product documentation with guaranteed specs so you don't waste time. In your business, time is everything. Count on us for the speed you need.

\section*{Now, high-speed AGC} is easier than ABC .

Until now, AGC amplifiers were only partial solutions to high-speed automatic gain control. You also had to find a high-performance op amp, numerous passive components and the board space to mount them all.

Now all you need is the new CLC520 AGC+Amp, \(\pm 5 \mathrm{~V}\) and two resistors. That's it.

You get a total high-speed AGC solution-with voltage-controlled gain and voltage output-in a single device. Plus outstanding performance: 160 MHz signal-channel and 100 MHz gain-control bandwidth. And unexpected flexibility ... one resistor sets maximum gain between 2 X and 100X, and the gain-control input gives you a 40 dB range.

So don't settle for a partial AGC solution. Call about the CLC520 AGC \(+A m p\) and learn the ABCs of high-speed AGC.

\section*{Op amps settle to 14 bits in 32ns max.}

Extremely fast settling to \(0.0025 \%\) and low 1.6 mV max. offset make the CLC402 and CLC502 op amps ideal for high-accuracy A/D and D/A converters. Or in designs demanding high stability at low gain. Now you have extra design margins.

CIRCLE NO. 30

\section*{Low distortion for fast, wide-dynamic-range designs.}

The 170 MHz CLC207 and 270 MHz CLC232 deliver ultra-low distortion. For high gain, choose the CLC207 with \(-80 /-85 \mathrm{dBc} 2 \mathrm{nd} / 3\) rd harmonics (\(2 \mathrm{~V}_{\mathrm{p} \text {-p }}, 20 \mathrm{MHz}, 200\) ohms). And for low gain, the CLC232 with -69 dBc harmonics (100 ohms). CIRCLE No. 31

Modular amplifiers... ready to go.

For bench or system use, this family of dc-coupled modular amplifiers gives you complete amplifier solutions. Including PMT amps, cable drivers, post-amps, very-lowdistortion amps, or amps with gain and I/O impedances that you can select. CIRCLE NO. 32

\title{
Rugged, nonvolatile data card features alloy contacts
}

A data card that tolerates harsh environments and lasts 5 to 10 times longer than similar products now expands your options for controlling users' access to critical equipment or data. The 5 -pin, credit-card-sized \(3.37 \times 2.125-\mathrm{in}\). DS6300 CyberCard includes a unique 64 -bit electronic serial number and at least 1 k bits of static RAM. You can also order a 4M-bit DS6400EV CyberCard or a smaller, key-sized \(2.375 \times 1.12\)-in. 64-bit ROM DS6200 CyberKey. Ultrasonic welding makes these devices impervious to contaminants.

Electronic data keys are often characterized by such mechanical weaknesses as easily bent pins, high insertion-force requirements, and rapidly worn-away, gold-plated contact surfaces. The Cyber series uses contacts made of a solid-metal alloy that is more durable than gold. Each contact is 6000 mils thick and withstands 50,000 insertion/extraction cycles-a figure that's 5 to 10 times higher than the specifications of competing products.

In addition, the card requires 1.5 lbs of insertion force, whereas other cards need 18 lbs of force. To enhance reliability, the receptacles for the Cyber series provide 250 g of retention force per connector, as opposed to the 45 g used by competitors' products.

To increase the MTBF, this card has five pins rather than the 68 connectors often used by competing data
cards. The reduced pin count was made possible by its serial-transfer scheme and 1 M -bps transfer rate. Internal cyclic-redundancy-check circuitry monitors and validates the serial data transmissions to detect any connection problems.
The Cyber series uses an internal converter to control data access via the device's clock, data, and reset signals. An extended ground pin protects data integrity by ensuring that every insertion first provides a path to ground, thereby discharging any static electricity before the signal and power pins make contact.
Prices range from \(\$ 3.50\) for a 64 bit CyberKey to \(\$ 250\) (100) for a 4M-bit CyberCard EV. Flushmounted or recessed receptacles for the Cyber series range from \(\$ 3.90\) to \(\$ 4.50\) (100).—J D Mosley
Dallas Semiconductor, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0448.

Circle No. 731

Providing 10 years of nonvolatile static-RAM stonage for as much as 4M bits of data, CyberCard withstands harsh environments and provides a connector life of 50,000 insertionlextraction cycles.

\section*{A40 component can stop what nature throws at you.}

Every so often, nature throws your system a surge. And whether it's lightning, static or a simple crossed line, it can destroy the most expensive system with a single blow.

About \(40{ }^{4}\) is all it takes to protect your design from this cruel fate. Thanks to the full line of surge suppression devices from Harris.

Catch A Surge.
Whether you're designing consumer products or aerospace systems, high-rel military or industrial controls,
Harris has a surge suppression solution for you. Because if one of our varistors isn't right for the job, one of our Surgector"' devices will be.

\section*{All the Right MOVs.}

Harris offers the broadest line of \(\mathrm{MOV}_{\mathrm{s}}\) in the industry. From 5 V to 3500 V . Up to 70,000 peak amps. And up to 10,000 joules.

They're widely used for incoming AC protection and clamping circuits. And they're available in a wide range of packaging-axial leaded, radial leaded, leadless surface mount, high-energy modules and connector-pin configurations.

\section*{Inventor of Surgector.}

Surgector devices
combine a thyristor and a zener into one reliable cost-effective device. At low voltages the Surgector device is off. But the
instant its clamping voltage is exceeded, the Surgector turns on. Within nanoseconds, the surge is shunted safely to ground, protecting your circuit from sure destruction.

Because Surgector devices respond so quickly and can shunt lots of energy away from the circuit, they're

perfect for protecting expensive components from all kinds of transients. Lightning strikes, load changes, switching transients,
commutation spikes, line crosses-all the things nature throws your system's way.

\section*{We'll Help You Choose.}

Which technology is right for you? Just give us a call at 1-800-4-HARRIS, Ext. 1452 (in Canada, 1-800-344-2444, Ext. 1452). Or call your local Harris sales office or distributor.

What your vision of the future demands. Today.
HARRIS \(\quad\) RCA \(\quad\) GE INTERSIL

Digital storage oscilloscopes (DSOs) that cost less than \(\$ 8000\) are plentiful and incorporate many of the features of their high-priced siblings. If \(\$ 8000\) doesn't seem to be low cost, don't be dismayed. You'll find many products in the \(\$ 2000\) to \(\$ 4000\) range. And don't assume low cost means low performance. The DSOs in Table 1 have bandwidths of at least 50 MHz , and several have bandwidths that range from 300 to 500 MHz .

When comparing DSOs among themselves or with similarly priced analog scopes, you should understand the available features. These features vary considerably from scope to scope. Look around until you find the DSO or analog oscilloscope that has the feature combination you need for your application.

The most basic function of a DSO

1, some DSOs filter the input and use nonlinear waveform reconstruction techniques to push this bandwidth limit higher.

For example, Hewlett-Packard states that the single-shot bandwidth of its HP 54502 is 100 MHz with a maximum sample rate of 400 M samples/sec. A lowpass filter limits signals going into the DSO's converter to 100 MHz for single-shot acquisitions. The \(100-\mathrm{MHz}\) bandwidth limit in conjunction with the 400 M -samples/sec sampling rate is below the Nyquist limit and, therefore, prevents aliasing.

Not all DSOs automatically guard against aliasing at the maximum sample rate. Some have selectable band-width-limit filters, and others require you to limit a signal's bandwidth before the signal goes into the DSO.

Another important consideration

\section*{LOW-COST DIGITAL STORAGE OSCILLOSCOPES}

> Low-cost DSOs show steady improvements in bandwidth, sample rate, and measurement features. Products vary widely, so you'll have to shop carefully to get the features you need.

\author{
Doug Conner, Regional Editor
}
is acquiring and storing waveforms. If you need to acquire a signal that only happens once or is very infrequent, a DSO's single-shot, or realtime, performance will be your primary concern.

A DSO's maximum sample rate determines the bandwidth of a signal you can reasonably expect to acquire in the single-shot mode. The rule of thumb is that the DSO's sample rate should be at least 10 times the bandwidth of the signal you want to acquire. Of course, the sin-gle-shot bandwidth must not exceed the bandwidth of the DSO's input amplifiers. Although this rule of thumb holds for the DSOs in Table
for single-shot acquisitions is the number of digitizers. DSOs with one digitizer can only sample at their maximum rate on one channel. If you need to use two channels, the maximum sample rate divides in half.
If the event you are trying to acquire happens only once or is very infrequent, you need to be certain you acquire all the information you need. Some DSOs have long memories to make sure you don't miss any information. You should be aware of several factors when considering DSOs with long-recordlength memories.
DSOs with long record lengths can't always capture maximumlength records at the maximum sample rate. Sometimes you can

\footnotetext{
DSOs that cost less than \(\$ 8000\) and have bandwidths greater than \(\mathbf{5 0} \mathbf{~ M H z}\) have broken the price/performance barrier. (Photo courtesy Hewlett-Packard Co)
}

\title{
The rule of thumb for digitizing single-shot waveforms is to sample at a rate at least 10 times the bandwidth of the signal.
}
use the maximum record length only at slower sweep speeds, and sometimes the DSO must divide the memory when you want to record more than one channel.
For example, the LeCroy 9410 has two 10,000 -point records, one for each of its two channels, no restrictions. The Panasonic VP-5710A offers a 64 k -point record length on one channel. If you're using all four channels of the VP-5710A, you're down to a record length of 16 k points per channel-still the longest record length of the DSOs in Table 1. A third example is Philips's PM3323, which has a record length of 4 k points per channel at low sampling rates. When sampling at 500 M samples/sec (the fastest sampling speed of the DSOs in Table 1), the scope limits you to 512 points per channel.

One benefit of long-record-length memories you might overlook is that you can operate the DSO at its maximum sample rate when you slow down the timebase. Front-end filters that prevent aliasing when sampling at the maximum sample rate become ineffective if the sample rate is reduced. A DSO with a 500 -point record length will let you record as much as five microseconds of data at 100 M samples/sec before you need to reduce the sampling rate. A 10,000 -point record length lets you record 100 microseconds of data before you need to reduce the sampling rate.

\section*{Don't lose narrow pulses}

Regardless of the record length, acquiring short pulses when a DSO is operating in single-shot mode can be problematic because a short pulse can fall between samples. You're probably sensitive to the possibility of missing a pulse shorter than the time between samples at the maximum sample rate, but you have

The \(\mathbf{1 0 0 - M H z}, \mathbf{2 5 0 M}-\) sample/sec PM 3375 is one of seven low-cost DSOs offered by Philips. This model performs nine automatic measurements in addition to cursor measurements.

Extensive automatic-measurement features, a memory-card massstorage system, and a \(\mathbf{4 0 0 0} \times \mathbf{4 0 0 0}\)-pixel display are key features of the LeCroy 9410 DSO. The \(150-\mathrm{MHz}\) unit provides \(\mathbf{2 \%}\) vertical accuracy and a 150 M -sample/sec digitizing rate.
to remember that a relatively long microsecond pulse can go unseen on a low timebase setting. Many DSOs will miss a \(1-\mu \mathrm{sec}\) pulse at a timebase of \(1 \mathrm{msec} / \mathrm{div}\).
A long-record-length memory helps you acquire short pulses by extending the period of time you can record without reducing the sample rate. At some timebase settings, however, the DSO will have to reduce the sample rate to fit the full time period into memory. When the DSO reduces its sampling rate, several strategies can help you avoid missing a short pulse.

Some DSOs have a glitch-capture mode to detect peaks between samples. Another way to make sure you aren't missing short pulses is to trigger on them. Glitch triggering is a type of time-qualified triggering. It lets you look for pulses that are shorter or longer than a set limit or that fall between two time limits.

\section*{Triggering to get the data you need}

DSOs' timebases and delayed-trigger functions vary considerably. Delayed sweep and dual timebases are common on many analog scopes, and you'll find them on some DSOs, too. If a DSO is missing these features, that doesn't necessarily mean you can't perform the same or similar functions. DSOs often compensate for the lack of dual timebases by having long delayed trigger capability. Some offer delay by event, a feature that lets the DSO count events to line you up with a desired event.

A long-delay capability is often called post-trigger delay or just trigger delay. Most DSOs have some type of post-trigger delay. Some delays can be as long

\title{
Low-cost digital storage oscilloscopes
}
as several seconds or thousands of divisions, depending on how the manufacturer specifies it. A long delay lets you see an event that happens long after the trigger with high resolution.

A long delay doesn't necessarily mean you get two timebases and can look at a temporally expanded image on one trace. However, you can often accomplish that goal in a different way. Some DSOs provide a magnified window that lets you expand one trace 10 or \(20 \times\) for a limited dual-timebase capability.

Most DSOs let you look at pretrigger data. Typically, you can put the trigger point anywhere from the left side of the display to the right side. If you put the trigger point on the right side, you get 10 divisions of pretrigger information. Hewlett-Packard's DSOs and some DSOs from Philips let you view more pretrigger data.

\section*{Resolution: Buyer beware}

If you've got a DSO with a sample rate adequate to acquire a single-shot waveform and sufficient memory to capture the event, then consider whether you have sufficient voltage resolution for your application. Almost all of the A/D converters on low-cost DSOs have 8 -bit resolutions.

The resolution of the converter only tells you part of the story because it does not take into account noise and nonlinearity in the front-end of the DSO. These sources of nonlinearity include the input amplifiers, sample-and-hold methods, and the converter itself. The effective-bits measurement (Ref 1) probably gives the most accurate measure of DSO resolution vs signal bandwidth. That data is not available from most manufacturers and, therefore, is not included in Table 1. Until manufacturers agree on a meaningful measure of resolution-or users demand one-the effective resolution of most DSOs will remain a mystery.

If you're trying to capture a repetitive signal, you can get relief from low resolution by using averaging. Not all DSOs offer averaging, but those that do let you reduce noise by averaging signals acquired from multiple triggers. In fact, the whole playing field changes when you use averaging to look at repetitive signals. Sampling-rate and resolution requirements are not as stringent. That's why DSOs like the HP 54503A can offer a \(500-\mathrm{MHz}\) bandwidth yet sample at a maximum rate of only 20 M samples/sec.

The secret of acquiring high-bandwidth waveforms at low sampling rates is repetitive, or equivalent-time, sampling. Note in Table 1 that not all DSOs offer
repetitive sampling. If a DSO doesn't offer repetitive sampling, then the bandwidth of the DSO portion of the scope (some of these DSOs have conventional analog oscilloscope capability) will be limited to the singleshot bandwidth.

Repetitive sampling is a method of using data acquired after each trigger to build up the complete waveform (Fig 1). This sampling method enables a DSO to acquire a waveform whose bandwidth is not restricted by the sample rate. The DSO's sample rate does, however, determine how fast the scope will acquire a reasonably complete image of the waveform. For example, the HP 54503A has a sample rate of 20M samples/sec. When operating at a timebase of \(5 \mathrm{nsec} /\) div, the DSO will acquire one point every time it triggers. Philips's PM3323 sampling at 500M samples/sec will acquire 25 points every time it triggers.

Using repetitive sampling at fast sweep speeds may mean a DSO is acquiring on the average only a fraction of a point each time it triggers. At these sweep speeds,

Fig 1-Repetitive sampling builds a composite waveform from data points taken from multiple waveforms. With random repetitive sampling, the form of repetitive sampling typically used by low-cost DSOs, the DSO can acquire data before the trigger because data is continually written into memory.

\section*{Repetitive sampling lets a DSO acquire a waveform whose bandwidth is not restricted by the sample rate.}
the trigger-rearm dead time and display-update time both affect how quickly you can get a display of the waveform.
In fact, update rates are one area in which DSOs and conventional analog oscilloscopes differ notice-
ably. When a DSO operates in repetitive sampling mode, you get much finer timing resolution than you do in single-shot acquisition mode. However, you may notice some delay in acquiring and displaying a signal. However, analog scopes can be difficult to use on

\section*{Table 1-Representative low-cost DSOs}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Manufacturer & Product & Price & & & Maximum sample rate (M-samples/sec) & & & & & Dual timebases & \[
\begin{aligned}
& \text { 읗 } \\
& \text { 흉 } \\
& \frac{0}{6} \\
& \hline
\end{aligned}
\] & Display data points & & \\
\hline Gould Electronics & \[
\begin{aligned}
& 450 \\
& 4072
\end{aligned}
\] & \[
\begin{aligned}
& \$ 4450 \\
& \$ 7245
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 50 \\
100 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 100 \\
400 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\stackrel{r}{r}
\] & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{gathered}
501 \\
1 \mathrm{k}
\end{gathered}
\] & - & \(\stackrel{\sim}{2}\) & \(\stackrel{\sim}{r}\) & \(\stackrel{\nu}{v}\) & - \\
\hline Hewlett-Packard Co. & \begin{tabular}{l}
HP54501A \\
HP54502A \\
HP54503A \\
HP54504A
\end{tabular} & \[
\begin{aligned}
& \$ 3465 \\
& \$ 6450 \\
& \$ 5450 \\
& \$ 6450
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 2 \\
& 4 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 100 \\
400 \\
500 \\
400 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 10 \\
400 \\
20 \\
200 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& r \\
& r \\
& r
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8 \\
& 6 \\
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 501 \\
& 501 \\
& 501 \\
& 501
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& r \\
& r \\
& r
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \bar{r} \\
& \bar{r}
\end{aligned}
\] \\
\hline Hitachi Denshi America Ltd & \begin{tabular}{l}
VC-6024 \\
VC-6025 \\
VC-6045 \\
VC-6075 \\
VC-6145 \\
VC-6175 \\
VC-6275
\end{tabular} & \begin{tabular}{l}
\$2295 \\
\$2595 \\
\$3395 \\
\$4195 \\
\$5295 \\
\(\$ 4695\) \\
\(\$ 4995\)
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 4 \\
& 4 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 50 \\
50 \\
100 \\
100 \\
100 \\
100 \\
100
\end{array}
\] & \[
\begin{array}{|c|}
\hline 20 \\
20 \\
40 \\
50 \\
100 \\
100 \\
200 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] & 1000 to 2000 1000 to 2000 1000 to 4000 1000 to 4000 1000 to 4000 2000 to 4000 2000 to 4000 & \[
\begin{aligned}
& - \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& r \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline Kikusui International & \[
\begin{aligned}
& \text { COM-7101A } \\
& \text { COM-7201A }
\end{aligned}
\] & \[
\begin{aligned}
& \$ 4495 \\
& \$ 6695
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 100 \\
200
\end{array}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & r & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1 \mathrm{k} \\
& 1 \mathrm{k}
\end{aligned}
\] & r & - & - & - & \(\stackrel{2}{2}\) \\
\hline Leader Instruments Corp & 3060D & \$4495 & 2 & 60 & 40 & 1 & - & 8 & 2k & \(\checkmark\) & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline LeCroy Corp & 9410 & \$6990 & 2 & 150 & 100 & 2 & \(\checkmark\) & 8 & 10,000 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline Panasonic Factory Automation & \[
\begin{aligned}
& \text { VP-5710A } \\
& \text { VP-5720A }
\end{aligned}
\] & \[
\begin{aligned}
& \$ 3995 \\
& \$ 5990
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 100 \\
50 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 20 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\underline{-}
\] & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{gathered}
16 \mathrm{k} \text { to } 64 \mathrm{k} \\
8 \mathrm{k}
\end{gathered}
\] & \[
r
\] & \(\stackrel{\nu}{\nu}\) & \[
\stackrel{r}{2}
\] & \(\stackrel{\sim}{2}\) & r \\
\hline Philips Test and Measurement & \begin{tabular}{l}
PM3320A \\
PM3323 \\
PM3335 \\
PM3350A \\
PM3355 \\
PM3365A \\
PM3375
\end{tabular} & \begin{tabular}{l}
\(\$ 6990\) \\
\(\$ 7750\) \\
\(\$ 2350\) \\
\$3590 \\
\$4490 \\
\(\$ 4490\) \\
\$5390
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 200 \\
300 \\
60 \\
60 \\
60 \\
100 \\
100 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 250 \\
500 \\
20 \\
100 \\
250 \\
100 \\
250 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& r \\
& r \\
& - \\
& - \\
& - \\
& r \\
& r
\end{aligned}
\] & \[
\begin{gathered}
10 \\
10 \\
8 \\
8 \\
8 \\
8 \\
8
\end{gathered}
\] & 512 to \(4 k\) 512 to 4 k 4 k to 8 k 512 to \(4 k\) 512 to 4 k 512 to 4 k 512 to 4 k & \[
\begin{aligned}
& r \\
& r \\
& 2 \\
& r \\
& r \\
& r
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { Z } \\
& \text { - } \\
& \text { - } \\
& \text { - }
\end{aligned}
\] \\
\hline Tektronix Inc & \[
\begin{aligned}
& 2211 \\
& 2221 \mathrm{~A} \\
& 2224 \\
& 2232 \\
& 2431 \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \$ 2695 \\
& \$ 3995 \\
& \$ 4495 \\
& \$ 5495 \\
& \$ 7250
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 50 \\
100 \\
60 \\
100 \\
300 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 20 \\
100 \\
100 \\
100 \\
250 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \overline{-} \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] & 4 k \(2 k\) to 4 k \(2 k\) to \(4 k\) 2 k to 4 k 1k & & \[
\begin{aligned}
& - \\
& r \\
& r \\
& r
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& z \\
& z \\
& z
\end{aligned}
\] & \[
\begin{aligned}
& -2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \bar{r} \\
& \frac{r}{2}
\end{aligned}
\] \\
\hline
\end{tabular}

Notes: * Each RAM card holds 15 waveforms.
\(\dagger 1000\) setups per memory card
1. \(L=\) Limited
2. \(\mathrm{O}=\) Option
3. 512 k words per memory card

\section*{Low-cost digital storage oscilloscopes}
low-repetition-rate signals because the display is too dim to see clearly. Analog scope users often have to use hoods to see low-repetition-rate signals or extremely fast signals. DSOs don't have display brightness problems.

Despite the fact that update rate is an inherent DSO feature, few DSO manufacturers provide information on it. The problem isn't just that DSO manufacturers want to downplay a negative aspect of DSOs. The update rate often depends on many factors including timebase, voltage-attenuator setting, and processing methods, such as averages and automatic measurements, that might be happening simultaneously. Because no standards exist for specifying the update rate, most manufacturers ignore it. Getting a feel for the update rate and whether you consider it acceptable is one reason you should try a DSO before buying it. You just can't get all the information you need from the data sheets.

\section*{Cursor measurements are a start}

One of the most attractive features of DSOswhether they're operating in single-shot mode or repetitive sampling mode-is their ability to make measurements. Every DSO in Table 1 has cursors for making timing and voltage measurements. Cursor measurements are a useful feature because they let you make measurements faster and usually more accurately than counting divisions on the display. Cursor measurements aren't unique to DSOs. Many low-cost analog scopes also provide them.
For example, the 2100 R from Leader is a 3 -channel, \(100-\mathrm{MHz}\) analog oscilloscope that offers delayed sweep, cursor measurements, and timebase autoranging for \(\$ 2195\). The cursor measurements are \(\pm 3 \%\) accurate. You can find analog scopes with similar capabilities from most of the manufacturers in Table 1 as well as from other companies. Higher-performance analog oscilloscopes, such as Tektronix's \(\$ 5550400-\mathrm{MHz} 2465 \mathrm{~B}\), offer pushbutton waveform measurements on repetitive signals for such parameters as rise time, fall time, pulse width, frequency, and voltage.
Some products are beginning to blur the distinction between standard analog oscilloscopes and DSOs. Tektronix recently announced the \(100-\mathrm{MHz}\)-bandwidth 2252 , an analog oscilloscope that is part digital-it has cursors, a digital voltmeter, a \(200-\mathrm{MHz}\) counter/timer, and automatic setup. The oscilloscope can digitize repetitive signals with 12 -bit vertical resolution and has a 500 -point record length. It can provide hardcopy output to a printer through a Centronics interface and is fully programmable over an IEEE-488 interface. The \(\$ 3495\) oscilloscope does not, however, offer single-shot acquisition.
Automatic measurements, unlike cursor measure-

\section*{Low-cost digital storage oscilloscopes}
ments, are more common among DSOs than among analog oscilloscopes. They are much faster and more repeatable than cursor measurements, and they are independent of the user. But many low-cost DSOs don't make automatic measurements. Some DSOs make so few automatic measurements, such as only frequency and peak-to-peak voltage, that the value of these measurements is limited.

In addition to peak-to-peak voltage and frequency, automatic measurements often include pulse width, period, rise time, and fall time. Some DSOs can average multiple measurements. Others can give you additional measurement statistics such as minimum and maximum value for repetitive measurements.
Automatic measurements can be a big plus on any oscilloscope if you often make quantitative measurements or if you want to use the DSO in an automated test application. The automatic-measurement features each manufacturer puts into its DSOs varies. Gould, Hewlett-Packard, LeCroy, Philips, and Tektronix put considerable automatic measurements into some or all their models. Manufacturer's data sheets can help you figure out which automatic measurements a DSO can make.

Another measurement concern is whether a DSO can make measurements on stored-as opposed to live-waveforms. Making measurements on stored waveforms is important both when examining a stored single-shot waveform and when you have saved a repetitive waveform and wish to make additional measurements at a later time.

The \(\mathbf{2 5 0 M}\)-sample/sec, \(\mathbf{3 0 0}-\mathrm{MHz}\)-bandwidth \(\mathbf{2 4 3 1 L}\) from Tektronix provides 21 automatic measurements plus cursor measurements.

With a 64k-point record length on one channel, the 20 M sample/sec, 100-MHz VP-5710A from Panasonic can record long events. Two- or 4 -channel operation results in proportionately shorter record lengths.

DSOs also vary in the way they display information. First, the size and quality of the displays varies. LeCroy's 9410 has an impressive \(4000 \times 4000\)-pixel display. Scopes with less spectacular displays can do a fine job, but you should note that DSOs often display more information than analog oscilloscopes do. In addition to standard waveform, timebase, vertical-attenuator, and cursor readouts, DSOs sometimes display menus and other information that use up screen area.

DSOs typically display waveform data using one of three formats, although all three may be available on a given DSO. The most straightforward format is showing the data points as they are acquired. The pointsonly display is sometimes awkward to work with because the rising and falling edges of pulses may have few or no points, which makes pulses difficult to see.

The second display format avoids the invisible-edge problem by using linear interpolation to fill in the line between data points. Linear interpolation makes the rising and falling edges of pulses visible. This display format also lets you see when you are starting to push the time resolution of the DSO in single-shot mode. The linear segments between points have pronounced angular junctions when your sample rate is too low for the signal bandwidth.

In an attempt to clean up the angular display you get with linear interpolation, some DSOs use nonlinear interpolation to reconstruct a curve through the data points. Some manufacturers also use nonlinear interpolation to push the single-shot bandwidth of the DSO. If single-shot performance is important in your applica-

\section*{TAIYO YUDEN}

\section*{for tomorrow's Hybrid
nology}

\section*{High Reliability at Competitive Prices}

Smaller! More reliable! Designed to spec or off-the-shelf!... These are the elements that Taiyo Yuden has offered its customers for over 50 years.
Taiyo Yuden's U.S. based engineering staff and international manufacturing support creates circuit designs which offers thick film technology for tighter tolerances... longer life... and circuit-to-circuit uniformity. For our customers that means no fuss... no testing... no wasted assembly... no need to carry large inventories for big dollar savings!
Let Taiyo Yuden's engineers help evaluate your needs, and recommend hybrid circuit designs that meet your performance specifications and maximize your production. For more details... write, call or fax Taiyo Yuden's nearest sales office.

Ceramic, Standard \& Multilayer

TAIYO YUDEN U.S.A., Inc.

\section*{U.S.A. SALES HFADCUARTERS}

714 West Algonquin Road
Arlington Heights, IL 60005-4493
Tel: 1-708-364-6104
Fax: 1.708-870-7828
GORPORATE HEADCUARTERS
TAIYO YUDEN CO., LTD.
16-20, Ueno 6-chome, Taito-Ku
Tokyo, Japan, Postal Code 110
Tel: Tokyo 837-6547
Fax: Tokyo 835-4752

WEST COAST SALBS
1770 La Costa Meadows Drive Sañ Marcos, CA 92069-5185
Tel: 1-619-744-7331
Fax: 1-619-744-1673

EAST COAST SALES
5 Militia Drive, Suite 105 Lexington, MA 02173-4706
Tel: 1-617-863-8994
Fax: 1-617-863-8996

\section*{EUROPEAN SALES OFFICE}

TAIYO YUDEN (DEUTSCHLAND) GMBH
Obermaierstr. 10
D-8500 Nürnberg 10, Deutschland
Tel: 0911-3508-0
Fax: 0911-3508460

\section*{Low-cost digital storage oscilloscopes}
tion and you want to push the bandwidth beyond one tenth the sample rate, you may want to use a DSO that offers nonlinear interpolation. You'll want to check out the scope on some test waveforms to get an idea of what kinds of signals you can acquire at the higher bandwidths and how repeatable the reconstruction is.

\section*{Seeing a waveform change over time}

Some DSOs let you see how a waveform changes over time. In envelope mode, the display shows the limits of the waveform over time. At each horizontal time position, the DSO stores the maximum and minimum voltage values and displays them as an envelope.

A feature called persistence also lets you see how a waveform varies over time. Instead of storing only the minimum and maximum values, the DSO stores all horizontal and vertical values in persistence mode. The DSO displays the data points for the set persistence time and then erases them. If you choose infinite persistence, all points stay visible until you clear the screen.

Infinite persistence can show some conditions the envelope mode can't, such as eye patterns. You can acquire infrequent events by leaving the DSO running in either mode. For example, a pulse that is occasionally longer or shorter than average will show up in either mode.

\section*{Features that affect ease of use}

Ease of use is often a concern for new DSO users. The features that make a DSO easy to use-or notdepend on what you're familiar with. Most scope users are familiar with analog oscilloscopes, so many manufacturers of low-cost DSOs have made the controls mimic those of an analog scope.

An optional internal plotter is available on some of Gould's DSOs, such as the \(\mathbf{4 5 0}\). The \(50-\mathrm{MHz}, 100 \mathrm{M}\)-sample/sec DSO weighs 14 lbs and can operate from ac power or a portable battery pack.

Dedicated controls for timebase, voltage attenuation, and delays make changing DSO settings quick and easy. Adjusting controls through the menu system takes longer. Unlike most analog oscilloscopes, you don't necessarily have to adjust all DSO controls manually.

About half the scopes in Table 1 feature automatic setup. Using automatic setup, you can get a timebase, voltage range, and trigger level acceptable enough to get an image on screen. You may have to adjust the delay or other parameters to get exactly the information you're looking for, but automatic setup will help you get close quickly.

Another alternative to manually adjusting front-

Trading off sampling rate for vertical resoIution, both of these DSOs are priced at \(\mathbf{\$ 6 4 5 0}\). Hewlett-Packard's HP 54502A has 6bit resolution and samples at a maximum rate of 400 M samples \(/ \mathrm{sec}\). The 8 -bit HP 54504A samples at a maximum rate of 200 M samples/ sec. Both DSOs offer a \(\mathbf{4 0 0 - M H z}\) bandwidth for repetitive waveforms.

\section*{MIL-STD-1772 Certified \& Qualified}

Other data conversion companies give you lots of reasons to choose their \(\mathrm{T} / \mathrm{H}\) amplifiers.

All we need is one. Micro Networks offers

more T/Hs than any other supplier. So no
matter how many projects you're working
on, we can satisfy any design criteria from
speed to resolution. In one phone call. If
that sounds like reason enough to choose
Micro Networks' T/H amplifiers are
Micro Networks, call us at (508) 852-5400.
Or return the coupon.

\section*{MICRO NETWORKS}

324 Clark St., Worcester, MA 01606
Phone: (508) 852-5400 Fax: (508) 853-8296

\section*{Precisely The Answer.}
ideal for applications in data acquisition and conversion including medical imaging, video processing, radar, ATE

\section*{Low-cost digital storage oscilloscopes}
panel settings is using setup memories. You can save setups you use often in setup memories on some DSOs and use them to immediately set specific front-panel configurations.

\section*{Differences in computer control}

Setup memories are also useful if you will be using a DSO remotely through a computer interface. Table 1 shows whether IEEE-488 connections or RS-232C interfaces are available on a given DSO. Some scopes include one or both of these interfaces as standard, some scopes offer them as options, and a few DSOs aren't available with any computer interface. You can also use these interfaces to connect a DSO to printers or plotters for hardcopy output.
Not all DSOs with computer interfaces support com-puter-controlled operations. For example, some interfaces only let you transfer data to or from the DSOthey don't let you control the front panel and operate the DSO remotely. Furthermore, data-transfer rates vary considerably among the different interfaces. LeCroy's fastest interface has a 380 k -bps transfer rate.

One final question you might ask when looking at low-cost DSOs is what do you get by going to higherpriced DSOs. The typical features you pay for in higher-priced DSOs are higher sample rates, higher

Both analog and digital operation are available on the 200-MHz 7201A from Kikusui. The 4-channel DSO also includes an IEEE-488 interface.
bandwidths, and higher resolution. On higher-priced DSOs, you'll also find that the automated measurements available on a few of the low-cost DSOs are virtually standard. Of course, you could also say that some DSOs with those high-performance features already have low prices.

EDN

\section*{Reference}
1. Conner, Doug, "Cut through the confusion surrounding high-performance DSOs," EDN, December 21, 1989, pg 78.

\author{
Article Interest Quotient (Circle One) \\ High 491 Medium 492 Low 493
}

\section*{Manufacturers of low-cost DSOs}

For more information on low-cost DSOs such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

\author{
Gould Electronics \\ 8333 Rockside Rd \\ Valley View, OH 44125 \\ (216) 328-7000 \\ FAX (216) 328-7400 \\ Circle No. 650 \\ Hewlett-Packard Co \\ 19310 Pruneridge Ave \\ Cupertino, CA 95014 \\ (800) 752-0900 \\ Circle No. 651 \\ Hitachi Denshi America Ltd \\ 150 Crossways Park Dr Woodbury, NY 11797 (516) 921-7200 \\ FAX (516) 921-0993 \\ Circle No. 652 \\ Kikusui International
19601 Mariner Ave
Torrance, CA 90503
(213) 371-4462
FAX (213) 542-4943
Circle No. 653

Leader Instruments Corp
380 Oser Ave
Hauppauge, NY 11788
(800) 645-5104;
in NY, (516) 231-6900
FAX (516) 231-5295
Circle No. 654

LeCroy Corp
700 Chestnut Ridge Rd
Chestnut Ridge, NY 10977
(914) 425-2000
FAX (914) 425-8967
Circle No. 655
}

Panasonic Factory Automation 9401 W Grand Ave
Franklin Park, IL 60131
(708) 452-2410

FAX (708) 452-2575
Circle No. 656

Philips Test and Measurement
Building HKF
5600 MD Eindhoven,
The Netherlands
Phone local office
Circle No. 657
In North America contact:
John Fluke Mfg Co
Box C9090
Everett, WA 98206
(800) 443-5853

FAX (206) 356-5116
Circle No. 658

\section*{Tektronix Inc} Box 1700
Beaverton, OR 97075
(800) 835-9433, ext 170

TWX 910-467-8708
Circle No. 659

\section*{TEXAS INSTRUMENTS}

A PERSPECTIVE ON DESIGN ISSUES:
Creating systems with an analog edge

IN THE ERA OF
\(A\) Cencincle

\title{
Advanced Linear can help you raise system performance levels.
}

\section*{A leadership family of analog circuits from Texas Instruments is helping designers meet difficult design challenges.}
 he evidence is strong. Throughout the design community, systems using the new breed of Advanced Linear functions from Texas Instruments are achieving the keener performance edges that can spell marketplace success.

TI's new analog devices are enabling design engineers to link digital brains to analog worlds more effectively and efficiently than ever before. Some offer new standards of accuracy or speed while others are highly integrated devices combining analog and digital functions on a single chip. The result is superior system performance and design flexibility.

These Advanced Linear functions are the result of leadership process technologies that we at TI firmly believe are the key to the advanced analog devices your future applications will demand.

\section*{Intelligent power for automobiles}

Designers in the automotive industry face a tough challenge: Handle high reverse voltages and achieve rapid load turnoff while providing fault protection, detection, and reporting and efficient load management. To provide the needed intelligent power devices, we developed one of our newest process technologies, Multi-EPI Bipolar. It is unique because it can combine rugged power transistors with intelligent control functions.

The resulting circuits are now providing reliable, cost-efficient control of solenoids and valves in such automotive applications as antiskid braking systems, electronic transmission controls, and active suspension systems.

Other industry segments are also benefiting from TI's Advanced Linear process technologies. Here are a few of the winning designs to which we have helped add an analog edge:

\section*{Toledo Scale}

Challenge: Improve the accuracy of point-of-purchase scales by eliminating drift over time and temperature.
Solution: The TI TLC2654
Chopper op amp. Our Advanced LinCMOS \({ }^{\text {ti }}\) process makes possible chopping frequencies as high as 10 kHz , reducing noise to the lowest in the industry.

\section*{Pulsecom}

Challenge: Develop a linecard capable of driving low-impedance loads with greater precision. Solution: Our TLE206X family of JFET-input, low-power, precision operational amplifiers. These devices offer outstanding output drive capability, low power consumption, excellent dc precision, and wide bandwidth. Fabricated in our Excalibur process, they remain stable over time and temperature.

\section*{Leitch Video}

Challenge: Design a compact, costefficient direct broadcast satellite TV descrambler for consumer use. Solution: TI's TLC5602 8-bit Video DAC. Our LinEPIC \({ }^{\prime \prime}\) process combines one-micron CMOS with precision analog to satisfy the demands of the application for video speeds and lowpower operation.

\section*{U.S. Robotics}

Challenge: Build a modem for highspeed data transmission between computers; allow flexible operation and minimize data errors. Solution: Our TLC32040 Analog Interface Circuit (AIC). A product of our Advanced LinCMOS process, the AIC combines programmable filtering, equalization, and 14 -bit \(\mathrm{A} / \mathrm{D}\) and \(\mathrm{D} / \mathrm{A}\) converters with such digital functions as control circuitry, program registers, and a DSP interface.

\section*{Xerox}

Challenge: Cut component count and cost of copier systems while boosting reliability.
Solution: Our TPIC2406, a topperformance peripheral driver in a standard DIP package that is capable of driving heavy loads. It is fabricated using our Power BIDFET" process which permits greater circuit density and incorporates CMOS technology for low total power dissipation.

\section*{Mr. Coffee}

Challenge: Design an intelligent coffee maker that brews faster, maintains optimum temperature, shuts off automatically, and has a built-in cleaning cycle.
Solution: Our LinASIC \({ }^{\text {m/ }} /\) LinBiCMOS \({ }^{\text {""' }}\) capability permits us to combine both analog and digital library cells with custom analog cells. This results in cost-efficient integration of temperature monitoring, timing, and high-current outputs on a single control chip.

All of these examples point to one conclusion: Tl's Advanced Linear functions are adding an analog edge to many system designs. They are contributing significantly to the enhanced system performance that marks a market winner.

0

WORLDWIDE MERCHANT IC MARKET

1988 (\$39.0 B)

\section*{Helping you implement your designs in a changing world.}

An increasing share of the total analog market is being captured by mixed-signal devices. As they gain more widespread acceptance, they are driving the expansion of the overall analog market (see above).
Changes such as this are the order of the day in the IC marketplace. Texas Instruments continues to provide not only the high-performance circuits you need but also the depth of experience, support, and service fundamental to successful completion of your designs.

\section*{Experience: \\ Building on three decades in ICs}

We at TI can successfully meet your requirements for mixed-signal devices because we have acquired the necessary knowledge from 30 years of experience in developing both analog and digital functions. We have also drawn upon our digital ASIC strengths in developing our LinASIC capabilities.

\section*{Support:}

Speeding our chips to you
The faster we move new products through our design cycles, the faster you can get through yours.

We employ a wide variety of designautomation tools and sophisticated software to speed our development process.

\section*{Service:}

\section*{Providing a surety of supply}

However advanced our circuits may be, they are of little value if they are inaccessible to you. TI operates on the principle of global coverage, local service. We manufacture semiconductors in 13 countries and operate support centers in 22 . We have product and applications specialists, designers, and technicians around the world. They are linked by one of the world's largest privately owned communications networks so that we can bring you our best - circuits and support - from wherever they may be to wherever you are.

\section*{Keeping our}

\section*{communications open}

The relationship between you as customer and us as vendor is vital: You are our chief source for firsthand information that can help guide us in developing the circuits you will need for your future designs. We at TI welcome your comments and your suggestions.

\section*{TI's Leadership Analog} Processing Technologies

LinBiCMOS - Combines Advanced LinCMOS, digital ASIC CMOS, and up to \(30-\mathrm{V}\) bipolar technologies to allow the integration of digital and analog standard cells and handcrafted analog components on a monolithic chip.

LinEPIC - One-micron CMOS double-level metal, doublelevel polysilicon technology, which adds highly integrated, high-speed analog devices to the high-performance digital EPIC process.

Advanced LinCMOS - An N -well, silicon-gate, double-level polysilicon process featuring improved resistor and capacitor structures and having three-micron minimum feature sizes.

Power BIDFET - Merges standard linear bipolar, CMOS, and DMOS processes and allows integration of digital control circuitry and high-power outputs on one chip. Primarily used for circuits handling more than 100 V at currents up to 10 A .

Multi-EPI Bipolar - A very cost-effective technology that utilizes multiple epitaxial layers instead of multiple diffusion steps to reduce mask steps by more than \(40 \%\).
Used to produce intelligent power devices that can handle loads as high as 20 A and voltages in excess of 100 V .

Excalibur - A true, single-level poly, single-level metal, junctionisolated, complementary bipolar process developed for high-speed, high-precision analog circuits providing the most stable op amp performance available today.

If you would like a more detailed explanation of our Advanced Linear process technologies, please call 1-800-336-5236, ext. 3423. Ask for a copy of our Advanced Linear Circuits brochure.
\({ }^{\text {TM }}\) Trademark of Texas Instruments Incorporated © 1990 Tl

08-0082

\section*{E}

\section*{The Only tape recorder SENSITIVE ENOUGH TO CAPTURE THIS}

The Honeywell Model RSR 512 (Rotary Storage Recor \({ }_{\nearrow \alpha} e^{\text {) }}\)) makes common sense as well as technical sense. \(\square\) Its excellent dynamic range, reliable performance and \(c_{0}\) plete package of special features make it hard to beat. Its surprisingly modest price tag makes it hard to \(\mathrm{r}_{\mathrm{S}_{s}} i_{s t}\). And the Honeywell name makes it easy to place confidence in. \(\square\) A precision voltage recorder, the RSp 512 offers a 70 dB SNR/dynamic range - a full order of magnitude improvement over today's FM data recor \(d_{e}\) ss. \(\square\) To accomplish this feat, Honeywell has combined the characteristics of FM recording with the added acce uracy of digital recording. The digital technology incorporated into the RSR 512 provides both analog and \(\mathrm{d}_{i_{\rho}}\) ital output, better recording fidelity, and fast, easy data transfer to computers. \(\square\) Honeywell chose proven, high. quality industrial/broadcast transport technology along with the worldwide standard low-cost \(1 / 2^{\prime \prime}\) T-120 videocasse tue medium for the RSR 512 . More than 30 years of design experience in data path electronics have enabled us to \(\alpha\) evelop an advanced digital servosystem using the latest microprocessor controller. \(\square\) Unlike longitudinal record; \(\mathfrak{\sim}\), the digital helical recording technique used does not restrict all channels to the same frequency response at \({\underset{a}{a}}^{\text {given tape speed. } \square \text { With the programmable bandwidth }}\) of the RSR 512, each channel can be selected for a ban \(\boldsymbol{\alpha}_{4}\), dth appropriate to the input data, from dc to 80 kHz in 13 binary steps. \(\square\) In addition, the RSR 512 offers a \(512: 1 \mathrm{~s} p_{e}\) ed range in ten binary steps. When you apply this speed range to the videocassette format, the recording time \(c_{\text {a }}\) ary from 50 minutes to over 426 hours, depending on the number of channels used and the bandwidths sele \({ }_{C}\) red. \(\square\) TheRSR 512 is available in 8-, 16-, 24-and 32 -channel configurations. More channels can be added by using \(a_{\alpha}{ }_{\sim}\) optional auxiliary housing. \(\square\) When you attach a modest price tag to such features, \(p_{\mathrm{e}}\) £ormance and reliability, the Honeywell Model RSR 512 displays an unmatched sensit \(; \downarrow\) i \(k y\) to value. \(\square\) For more details, contact Darrell Petersen at Honeywell Inc., Test Instr \(u_{\text {m }}^{\text {m }}\) ent \(^{\text {nts Division, P.O. Box 5227, }}\) Denver, Colorado 80217-5227. (303) 773-4835. Asia Pac; fic (852-5) 8298298. Canada (613) 224-3822. Europe 32 (02) 728-24-79. Japan (81)-з , へ77-5141.

Honeywell

Introducing the second international language. Rockell and Marshall present the RC2324AC. The first quad modem to embrace V. 42 bis, the new worldwide standard. For modem lovers only.

\section*{bridge circuits Part 1}

\title{
Good bridge-circuit design satisfies gain and balance criteria
}

\begin{abstract}
Bridge circuits are among the most elemental and powerful electrical tools. They are used in measurement, switching, oscillator, and transducer applications. This guide will help you choose the most appropriate circuit for your application. Part 1 of this 2-part series discusses dc and pulsed methods for bridge-circuit signal conditioning. Part 2 will discuss ac signalconditioning methods.
\end{abstract}

\section*{Jim Williams, Linear Technology Corp}

Bridge circuits are the electrical analog of the mechanical beam balance as well as the predecessor of all electrical differential techniques. The basic resistor bridge (Fig 1) is usually credited to Charles Wheatstone, although S H Christie-who demonstrated this circuit in 1833almost certainly preceded him. Wheatstone apparently had a better public relations agency, namely himself.

In the resistor bridge, if all resistor values are equal, the differential voltage is zero. The excitation voltage does not alter this relationship because it effects both sides of the bridge equally. When the bridge is unbal-
anced, the excitation's magnitude sets the output sensitivity. With a single variable resistor, the bridge's output is nonlinear. Two variable arms (such as \(\mathrm{R}_{\mathrm{C}}\) and \(\mathrm{R}_{\mathrm{B}}\)) also produce a nonlinear output, although the sensitivity doubles. Linear outputs are made possible by complementary resistance swings in one or both sides of the bridge.

The Wheatstone bridge has attracted a great deal of attention. Designers have applied an almost uncountable number of tricks and techniques to enhance the linearity, sensitivity, and stability of the basic configuration. Transducer manufacturers are especially expert at adapting the bridge to their needs (see box, "Strain-gauge bridges"). Carefully matching the transducer's mechanical characteristics to the bridge's electrical response can provide a trimmed, calibrated output. Similarly, circuit designers have altered performance by adding amplifiers to the bridge, excitation source, or both.

A primary concern with bridge circuits is accurately determining the differential output voltage. In bridges operating at the null point, the absolute scale factor of the readout device is normally less important than its sensitivity and zero-point stability. Bridge amplifiers extract the bridge's differential

Designers have given a great deal of attention to the Wheatstone bridge. A variety of tricks and techniques enhance its basic linearity, sensitivity, and stability.
output from its common-mode level. An amplifier's ability to reject a common-mode signal is critical. A typical strain-gauge transducer operating from a 10 V source produces only 30 mV of signal riding on 5 V of common-mode level. A 12 -bit resolution of this signal has an LSB of only \(7.3 \mu \mathrm{~V}\), which is almost 120 dB below the common-mode signal. Other significant error terms include offset voltage (including its shift with temperature and time), bias current, and gain stability.

Instrumentation amplifiers make good bridge amplifiers. These devices are usually the first choice for bridge measurement, and their performance is adequate for most applications. In general, instrumentation amplifiers feature fully differential inputs and internally determined stable gain. The absence of a feedback network results in inputs that are essentially passive, and no significant bridge loading occurs. Table 1 lists performance data for some specific instrumentation amplifiers. Table 2 summarizes some options for dc-bridge signal

Fig 1-Usually credited to Charles Wheatstone, the basic resistor bridge is widely used in measurement applications.
conditioning by presenting various approaches and their pertinent characteristics. The constraints, freedoms, and performance requirements of the particular application define the best approach.

\section*{DC bridge-circuit applications}

Fig 2 shows a typical bridge application and details signal conditioning for a \(350 \Omega\) transducer bridge. The specified strain-gauge pressure transducer produces a 3 mV output for each volt of bridge excitation. The LT1021 reference, buffered by \(\mathrm{IC}_{1 \mathrm{~A}}\) and \(\mathrm{IC}_{2}\), drives the

Table 1-Instrumentation-amplifier performance data
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & LTC1100 & LT1101 & LT1102 & LTC1043 (Using LTC1050 amplifier) \\
\hline Offset & \(10 \mu \mathrm{~V}\) & \(160 \mu \mathrm{~V}\) & \(500 \mu \mathrm{~V}\) & \(0.5 \mu \mathrm{~V}\) \\
\hline Offset drift & \(100 \mathrm{nV} /{ }^{\circ} \mathrm{C}\) & \(2{ }_{\mu \mathrm{V} /{ }^{\circ} \mathrm{C}}\) & \(2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) & \(50 \mathrm{nV} /{ }^{\circ} \mathrm{C}\) \\
\hline Bias current & 50 pA & 8 nA & 50 pA & 10 pA \\
\hline Noise (0.1 to 10 Hz) & \(2 \mu \mathrm{~V}\) p-p & \(0.9 \mu \mathrm{~V}\) & \(2.8 \mu \mathrm{~V}\) & \(1.6 \mu \mathrm{~A}\) \\
\hline Gain & 100 & 10,100 & 10,100 & Resistor programmable \\
\hline Gain error & 0.03\% & 0.03\% & 0.05\% & Resistor limited, 0.001\% possible \\
\hline Gain drift & \(4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & Resistor limited, \(<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) possible \\
\hline Gain nonlinearity & 8 ppm & 8 ppm & 10 ppm & Resistor limited, 1 ppm possible \\
\hline CMRR & 104 dB & 100 dB & 100 dB & 160 dB \\
\hline Power supply & Single or dual, 16 V max & Single or dual, 44 V max & Dual, 44V max & Single, dual 18V max \\
\hline Supply current & 2.2 mA & \(105 \mu \mathrm{~A}\) & 5 mA & 2 mA \\
\hline Slew rate & \(1.5 \mathrm{~V} / \mu \mathrm{sec}\) & \(0.07 \mathrm{~V} / \mu \mathrm{s}\) & \(25 \mathrm{~V} / \mu \mathrm{s}\) & \(1 \mathrm{mV} / \mathrm{ms}\) \\
\hline Bandwidth & 8 kHz & 33 kHz & 220 kHz & 10 Hz \\
\hline
\end{tabular}
bridge. This potential also supplies the circuit's ratio output, permitting ratiometric operation of a monitoring \(\mathrm{A} / \mathrm{D}\) converter. Instrumentation amplifier \(\mathrm{IC}_{3}\) extracts the bridge's differential output at a gain of \(100 ; \mathrm{IC}_{1 \mathrm{~B}}\) supplies additional trimmed gain.

You can adjust this configuration for a precise 10 V output at full-scale pressure. The trimming adjustment at the bridge sets the zero-pressure scale point. The RC combination at the input of \(\mathrm{IC}_{1 \mathrm{~B}}\) filters noise and determines the system's lowpass cutoff frequency. Noise may originate as residual RF line pickup or transducer responses to pressure variations. In cases where noise is relatively high, you may want to filter ahead of \(\mathrm{IC}_{3}\), thereby preventing any possible signal infidelity caused by nonlinear \(\mathrm{IC}_{3}\) operation. Saturation, slew-rate components, and rectification effects can produce such undesirable outputs.

When filtering ahead of the circuit's gain blocks, remember to allow for the effects of bias-currentinduced errors caused by the filter's series resistance. This resistance can be a significant consideration because large-value capacitors, particularly electrolytic types, are not practical. If bias-current-induced errors rise to appreciable levels, you may need FET or MOS input amplifiers.
To trim this circuit, apply zero pressure to the transducer and adjust the \(10-\mathrm{k} \Omega\) potentiometer until the output just comes off 0 V . Next, apply full-scale pressure and trim the \(1-\mathrm{k} \Omega\) adjustment. Repeat this procedure until both points are fixed.

Fig 3 shows a way to reduce errors caused by the bridge's com-mon-mode output voltage. \(\mathrm{IC}_{1}\) biases \(Q_{1}\) to provide a servo action that forces the bridge's left mid-

\section*{Strain-gauge bridges}

In 1856, Lord Kelvin discovered that applying strain to a wire shifted its resistance. This effect is repeatable and is the basis for electrical-output strain measurement. Early devices were wires suspended between two insulated points. The mechanically measured force biased the wire, thus changing its resistance. Modern devices utilize foil-based designs (Fig Aa) in which the conductive material is deposited on an insulated carrier. Physically, these designs take many forms and allow a variety of applications. The gauges are usually configured in a bridge circuit and mounted on a beam, thus forming a transducer.

A useful transducer must be trimmed to a zero reference point, adjusted for gain, and compensated for temperature sensitivity. Fig Ab shows a typical arrangement. Trimming adjustments set the zero point and the gain. The gain trims include modulus gauges to compensate for the temperature sensitivity of the beam material. Arranging these trims and completing the mechanical assembly involves a fair amount of artistry and is best left to specialists.

Semiconductor-based strain-gauge transducers utilize resistive shift in semiconducting materials. These monolithic devices are smaller in size and considerably less expensive than manually assembled foil-based strain gauges and have more than 10 times the sensitivity. However, semiconductor-
based transducers are more sensitive to temperature and other effects and suit less demanding applications. Although a semiconductor-based transducer's impedance levels are about 10 times higher than foil-based designs, the devices have electrically similar bridge configurations.

Fig Ac shows the construction of a semiconductorbased device that uses a piezoresistive effect to provide strain-gauge action. The diaphragm is anisotropically etched from a silicon substrate. The piezoresistive element is a single, 4 -terminal strain gauge. It is located at the midpoint of the edge of the square diaphragm at an angle of \(45^{\circ}\). This orientation maximizes the device's sensitivity to shear stress.

Excitation current passes longitudinally through the resistor (pins 1 and 3), and the pressure that stresses the diaphragm is applied at a right angle to the current flow. The stress establishes a transverse electric field in the resistor. Pins 2 and 4, which are the taps located at the midpoint of the resistor, sense this field as an output voltage. In a sense, the single-element, shear-stress strain gauge is the mechanical analog of a Hall-effect device.

The piezoresistive pressure transducer presents several advantages over the Wheatstone bridge configuration: improved linearity and a more consistent offset.

Fig A-Modern strain gauges utilize foil-based designs (a); a simplified schematic shows trimming adjustments to set the zero point and the gain (b). This semiconductor-based device (c) uses a piezoresistive effect to provide strain-gauge action.
point to zero under all operating conditions. The \(350 \Omega\) resistor ensures that \(\mathrm{IC}_{1}\) will find a stable operating point with 10 V of drive delivered to the bridge. This arrangement lets \(\mathrm{IC}_{2}\) take a singleended measurement, thus eliminating all common-mode-voltage errors. The approach works well and is often a good choice for highprecision work. The amplifiers in this example, which are CMOS chopper-stabilized units, essentially eliminate offset drift with time and temperature. Compared with an in-strumentation-amplifier bridge circuit, this circuit is more complex and requires a negative supply.

Fig 4 is similar to Fig 3, except that it uses low-noise bipolar amplifiers. This circuit trades slightly higher dc offset drift for lower noise and is a good candidate for stable resolution of small, slowly varying signals.

Fig 5 employs chopper-stabilized \(\mathrm{IC}_{1}\) to reduce Fig 4's already small offset error. \(\mathrm{IC}_{1}\) measures the dc error at \(\mathrm{IC}_{2}\) 's inputs and biases \(\mathrm{IC}_{1}\) 's offset pins to force the offset to a few microvolts. The offset-pin biasing at \(\mathrm{IC}_{2}\) is such that \(\mathrm{IC}_{1}\) will always be able to find the servo point. The \(0.01-\mu \mathrm{F}\) capacitor rolls off the gain of \(\mathrm{IC}_{1}\) at low frequencies; \(\mathrm{IC}_{2}\) handles high-frequency signals. Returning \(\mathrm{IC}_{2}\) 's feedback string to the bridge's midpoint eliminates \(\mathrm{IC}_{4}\) 's offset contribution. Without this connection, \(\mathrm{IC}_{4}\) would require its own offset-correction loop. Although complex, this circuit achieves a drift of less than 0.05 \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\), less than \(1 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) noise, and a CMRR exceeding 160 dB .

These common-mode suppression circuits require a negative power supply. Often, such circuits must function in systems where only a positive rail is available. Fig 6

Fig 2-This typical bridge application uses an instrumentation amplifier, a voltage reference, and buffer amplifiers to provide signal conditioning for a \(350 \Omega\) transducer.

Fig 3-Servo controlling the bridge drive reduces errors caused by the bridge's commonmode output voltage.

Fig 4-Using low-noise bipolar amplifiers, this circuit trades de offset drift for lower noise and is a good candidate for resolving small, slowly varying signals.

\section*{Table 2-Bridge signal-conditioning methods}
\begin{tabular}{|c|c|c|}
\hline Configuration & Advantages & Disadvantages \\
\hline & Best general choice. Simple, straightforward. CMRR typically \(>110 \mathrm{~dB}\), drift \(0.05-2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), gain accuracy \(0.03 \%\), gain drift \(4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), noise \(10 \mathrm{nV} \sqrt{\mathrm{Hz}-1.5 ~} \mu \mathrm{~V}\) for chopper stabilized types. Direct ratiometric output. & CMRR, drift, and gain stability may not be adequate in highest precision applications. May require second stage to trim gain. \\
\hline & CMRR \(>120 \mathrm{~dB}\), drift \(0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\). Gain accuracy \(0.001 \%\) possible. Gain drift 1 ppm with appropriate resistors. Noise \(10 \mathrm{nV} \sqrt{\mathrm{Hz}}-1.5 \mu \mathrm{~V}\) for chopper stabilized types. Direct ratiometric output. Simple gain trim. Flying capacitor commutation provides lowpass filtering. Good choice for very high performance-monolithic versions (LTC1043) available. & Multipackage-moderately complex. Limited bandwidth. Requires feedback resistors to set gain. \\
\hline & CMRR \(>160 \mathrm{~dB}\), drift 0.05-0.25 \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\), gain accuracy \(0.001 \%\) possible, gain drift \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), with appropriate resistors plus floating supply error, simple gain trim, noise \(1 \mathrm{nV} \sqrt{\mathrm{Hz}}\) possible. & Requires floating supply. No direct ratiometric output. Floating supply drift is a gain term. Requires feedback resistors to set gain. \\
\hline & CMRR \(>140 \mathrm{~dB}\), drift \(0.05-0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), gain accuracy \(0.001 \%\) possible, gain drift \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), with appropriate resistors plus floating supply error, simple gain trim, noise \(1 \mathrm{nV} \sqrt{\mathrm{Hz}}\) possible. & No direct ratiometric output. Zener supply is a gain and offset term error generator. Requires feedback resistors to set gain. Low-impedance bridges require substantial current from shunt regulator or circuitry that simulates it. Usually poor choice if precision is required. \\
\hline & CMRR \(>160 \mathrm{~dB}\), drift \(0.05-0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), gain accuracy \(0.001 \%\) possible, gain drift \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) with appropriate resistors, simple gain trim, ratiometric output, noise \(1 \mathrm{nV} \sqrt{\mathrm{Hz}}\) possible. & Requires precision analog-level shift, usually with isolation amplifier. Requires feedback resistors to set gain. \\
\hline & CMRR \(\approx 120-140 \mathrm{~dB}\), drift \(0.05-0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), gain accuracy \(0.001 \%\) possible, gain drift \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) with appropriate resistors, simple gain trim, direct ratiometric output, noise \(1 \mathrm{nV} \sqrt{\mathrm{Hz}}\) possible. & Requires tracking supplies. Assumes high degree of bridge symmetry to achieve best CMRR. Requires feedback resistors to set gain. \\
\hline & CMRR 160 dB , drift \(0.05-0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), gain accuracy \(0.001 \%\) possible, gain drift \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), simple gain trim, direct ratiometric output, noise \(1 \mathrm{nV} \sqrt{\mathrm{Hz}}\) possible. & Practical realization requires two amplifiers plus various discrete components. Negative supply necessary. \\
\hline
\end{tabular}

Bridge-output amplifiers can extract the bridge's differential output from its com-mon-mode level.
shows one way to achieve this goal. \(\mathrm{IC}_{1}\) biases the LT1054 positive-tonegative converter. The LTC1054's output pulls the bridge's output negative, which causes \(\mathrm{IC}_{1}\) 's input to balance at 0 V . This local loop lets a single-ended amplifier \(\left(\mathrm{IC}_{2}\right)\) extract the bridge's output signal. The \(10-\mathrm{k} \Omega, 1-\mu \mathrm{F}\) RC network filters noise, and \(\mathrm{IC}_{2}\) 's gain provides the desired output scale factor. Circuit biasing permits 8 V to appear across the bridge, which requires the 100 -mA-capable LT1054 to sink about 24 mA . You can use the ratio output to reference a monitoring \(\mathrm{A} / \mathrm{D}\) converter.

\section*{Switched-capacitor amplifier}

Switched-capacitor methods are another way to provide signal conditioning for bridge outputs. Fig 7 uses such a method in a highprecision scale application. This circuit for weighing human subjects resolves 0.01 lb at 300 lbs full scale. The strain-gauge-based transducer platform is excited at 10 V by the LT1021 reference, \(\mathrm{IC}_{1}\), and \(\mathrm{IC}_{2}\). The LTC1043 switched-capacitor block combines with \(\mathrm{IC}_{3}\) to form a differential-input, chopper-stabilized amplifier. The LTC1043 alternately connects the \(1-\mu \mathrm{F}\) capacitor between the output of the straingauge bridge and the input to \(\mathrm{IC}_{3}\). A second \(1-\mu \mathrm{F}\) capacitor stores the LTC1043 output, maintaining \(\mathrm{IC}_{3}\) 's input at dc. The LTC1043's low charge injection maintains a differ-ential-to-single-ended transfer accuracy of about 1 ppm at de and low frequencies. The \(0.01-\mu \mathrm{F}\) capacitor sets the commutation rate to approximately \(400 \mathrm{~Hz} . \mathrm{IC}_{3}\) 's scaled gain provides 3.0000 V for a 300.00 lb full-scale output.

The extremely high resolution of this scale requires filtering to produce useful results. Even slight

Fig 5-This chopper-stabilized bridge amplifier features low noise, common-mode suppression, and a small offset error.

Fig 6-Using a positive-to-negative converter, this high-output bridge circuit operates from a single 5 V supply.
body movement acting on the scale's platform can cause significant noise in \(\mathrm{IC}_{3}\) 's output. This fact is dramatically apparent in Fig 8's tracings. The total force on the platform is equal to gravity pulling on the body (the weight) plus any additional accelerations within or acting
upon the body. Trace B of Fig 8 shows that each time the heart pumps, the acceleration of the blood moving in the arteries shows up as weight. To prove this theory, the subject gets off the scale and runs in place for 15 seconds. When the subject returns to the platform, the

Fig 7-Using switched-capacitor techniques, this weight-scale circuit can resolve 0.01 lb at 300 lbs full scale.

Fig 8-These tracings show the effects of a subject on the weight-scale platform of Fig 7. Trace B shows the subject at rest; trace A shows the effects after the subject has exercised.
heart should be working harder. Trace A confirms this prediction. The exercise causes the heart to work harder, forcing greater acceleration per stroke.

Another source of noise is body motion. As the body moves around, its mass doesn't change but the platform picks up the instantaneous accelerations and reads them as weight shifts. These fluctuations might seem to make a \(0.01-\mathrm{lb}\) measurement meaningless, but filtering
the noise yields a time-averaged value. A simple RC lowpass filter will do the job, but it requires excessively long settling times to filter noise fundamentals in the 1 Hz region. Another approach works much better.
In \(\operatorname{Fig} 7, \mathrm{IC}_{4}, \mathrm{IC}_{5}\), and their associated components form a filter that switches its time constant from short to long when the output approaches the final value. With no weight on the platform, \(\mathrm{IC}_{3}\) 's output
is zero. \(\mathrm{IC}_{4}\) 's output is also zero, \(\mathrm{IC}_{5 \mathrm{~B}}\) 's output is indeterminate, and \(\mathrm{IC}_{5 \mathrm{~A}}\) 's output is low. The MOSFET optocoupler's LED turns on, putting the RC filter into a short-timeconstant mode. When someone gets on the scale, \(\mathrm{IC}_{3}\) 's output rises rapidly. \(\mathrm{IC}_{5 \mathrm{~A}}\) goes high, but \(\mathrm{IC}_{5 \mathrm{~B}}\) trips low, which keeps the RC filter in its short-time-constant mode. The \(2-\mu \mathrm{F}\) capacitor charges rapidly, and \(\mathrm{IC}_{4}\) quickly settles to a final value plus or minus body motion and

> Instrumentation amplifiers, which bave fully differential inputs and internally determined stable gain, often make good bridge amplifiers.
heartbeat noise. \(\mathrm{IC}_{5 \mathrm{~B}}\) 's negative input sees \(1 \%\) attenuation from \(\mathrm{IC}_{3}\); its positive input does not. This condition causes \(\mathrm{IC}_{5 \mathrm{~B}}\) to switch high when \(\mathrm{IC}_{4}\) 's output arrives within \(1 \%\) of its final value. The optocoupler goes off, and the filter switches into a long-time-constant mode, thus eliminating noise in \(\mathrm{IC}_{4}\) 's output. The \(39-\mathrm{k} \Omega\) resistor prevents overshoot, ensuring monotonic outputs from \(\mathrm{IC}_{4}\).

When the subject steps off the scale, \(\mathrm{IC}_{3}\) quickly returns to zero, and \(\mathrm{IC}_{5 \mathrm{~A}}\) immediately goes low, turning on the optocoupler. This action quickly discharges the \(2-\mu \mathrm{F}\) capacitor, which rapidly returns \(\mathrm{IC}_{4}\) 's output to zero. The bias string at \(\mathrm{IC}_{5 \mathrm{~A}}\) 's input maintains the scale in the short-time-constant mode for weights less than 0.50 lb . This condition permits the circuit to respond rapidly when small objects (or persons) are on the platform. To trim this circuit, adjust the zero potentiometer for a 0 V output with no weight on the platform. Next, set the gain adjustment for a 3.0000 V output for a \(300.00-\mathrm{lb}\) platform weight. Repeat this procedure until both points are fixed.

Another example of using optical techniques to enhance performance is the circuit in Fig 9. This switched-capacitor-based instrumentation amplifier can handle transducer signal conditioning where high common-mode voltages exist. The circuit features low offset and drift because of the LTC1150 chopper-stabilized op amp (\(\mathrm{IC}_{1}\)). The design also incorporates a switched-capacitor front end to achieve some specifications not available in a conventional instrumentation amplifier.

The common-mode rejection ratio at dc for the front end exceeds 160 dB . The amplifier operates over a

Fig 9-This optically coupled switched-capacitor instrumentation amplifier provides a floating input and features a 200 V common-mode range.

Fig 10-Using platinum RTDs in a bridge configuration, this circuit can measure temperatures over a range of 0 to \(400^{\circ} \mathrm{C}\).
\(\pm 200 \mathrm{~V}\) common-mode range; gain accuracy and stability are limited only by external resistors. Chop-per-stabilized \(\mathrm{IC}_{1}\) sets the offset drift at \(0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\). The high com-mon-mode voltage capability of the
design enables it to withstand transient and fault conditions often present in industrial environments.

The bridge's output feeds two LED-driven, optically coupled MOSFET switches, \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\),
which are in series with two similar switches, \(\mathrm{S}_{3}\) and \(\mathrm{S}_{4}\). CMOS logic functions, clocked from \(\mathrm{IC}_{1}\) 's internal oscillator, generate nonoverlapping clock outputs that drive the LEDs. When the acquire pulse is high, \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\) are on, and \(\mathrm{C}_{2}\) acquires the differential voltage at the bridge's output. During this interval, \(S_{3}\) and \(S_{4}\) are off. When the acquire pulse falls, \(S_{1}\) and \(S_{2}\) begin to go off. After a delay to allow \(\mathrm{S}_{1}\) and \(S_{2}\) to fully open, the read pulse goes high, turning on \(\mathrm{S}_{3}\) and \(\mathrm{S}_{4}\).

Capacitor \(\mathrm{C}_{1}\) acts as a groundreferred voltage source, which \(\mathrm{IC}_{1}\) reads. \(\mathrm{C}_{2}\) lets \(\mathrm{IC}_{1}\) 's input retain \(\mathrm{C}_{1}\) 's value when the circuit returns to the acquire mode. \(\mathrm{IC}_{1}\) provides the circuit's output; its gain is set in normal fashion by feedback resistors. The \(0.33-\mu \mathrm{F}\) feedback capacitor sets the rolloff. The differential-to-single-ended transition that the switches and capacitors perform prevents \(\mathrm{IC}_{1}\) from ever seeing the input's common-mode signal. The breakdown specification of the optically driven MOSFET switch enables the circuit to operate at com-mon-mode levels of \(\pm 200 \mathrm{~V}\). In addition, the optical drive to the MOSFETs eliminates the chargeinjection problems common to FET switched-capacitor networks.

Platinum resistance temperature detectors (RTDs) are frequently used in bridge configurations for temperature measurement. Fig 10's circuit is highly accurate and features a ground-referred RTD. The ground connection is highly desirable for reducing noise. A current source drives the bridge's RTD leg; the opposing bridge branch is voltage biased. The current drive lets the voltage across the RTD vary directly with the device's tempera-ture-induced resistance shift. The difference between this potential

Fig 11-Combined with a microprocessor, this circuit uses digital correction to achieve a precise, linear output from the platinum RTD bridge.
and the potential of the opposing bridge leg is the bridge's output.
\(\mathrm{IC}_{1 \mathrm{~A}}\) and instrumentation amplifier \(\mathrm{IC}_{2}\) form a voltage-controlled current source. \(\mathrm{IC}_{1 \mathrm{~A}}\), biased by the LT1009 voltage reference, drives current through the \(88.7 \Omega\) resistor and the RTD. \(\mathrm{IC}_{2}\) senses voltage differentially across the \(88.7 \Omega\) resistor and closes a loop back to \(\mathrm{IC}_{1 \mathrm{~A}}\). The \(2-\mathrm{k} \Omega, 0.1-\mu \mathrm{F}\) combination sets the amplifier rolloff for this stable configuration. Because \(\mathrm{IC}_{1 \mathrm{~A}}\) 's loop forces a fixed voltage across the \(88.7 \Omega\) resistor, the current through \(\mathrm{R}_{\mathrm{P}}\) is constant. \(\mathrm{IC}_{1}\) 's operating point is primarily fixed by the 2.5 V LT1009 reference.

The constant current through the RTD forces the voltage across it to vary with the RTD's resistance, which has a nearly linear positive temperature coefficient. The degree of nonlinearity could cause an error of several degrees over the circuit's 0 to \(400^{\circ} \mathrm{C}\) operating range. The bridge's output feeds instrumentation amplifier \(\mathrm{IC}_{3}\), which provides differential gain while cor-
recting nonlinearity. The correction is implemented by feeding a portion of \(\mathrm{IC}_{3}\) 's output back to \(\mathrm{IC}_{1}\) 's input via the \(10-\) and \(250-\mathrm{k} \Omega\) divider. This correction causes the current through \(\mathrm{R}_{\mathrm{P}}\) to slightly shift with the resistor's operating point, which compensates sensor nonlinearity to within \(\pm 0.05^{\circ} \mathrm{C} . \mathrm{IC}_{1 \mathrm{~B}}\) provides additional scaled gain and furnishes the circuit output.

To calibrate this circuit, substitute a precision decade box, such as the General Radio (Lincoln, NE) 1432 K , for \(\mathrm{R}_{\mathrm{p}}\). Set the box to the \(0^{\circ} \mathrm{C}\) value (\(100.00 \Omega\)) and adjust the offset trim for a 0.00 V output. Next, set the box for a \(140^{\circ} \mathrm{C}\) value (\(154.26 \Omega\)) and adjust the gain trim for a 3.500 V output reading. Finally, set the box to \(400.00^{\circ} \mathrm{C}\) (249.0 \(\Omega\)) and trim the linearity adjustment for a 10.000 V output. Repeat this sequence until all three points are fixed. Total error over the entire range will be within \(\pm 0.05^{\circ} \mathrm{C}\). The resistance values in parentheses are for a nominal \(100.00 \Omega\left(0^{\circ} \mathrm{C}\right)\) sensor. You can use

Chopper-stabilized CMOS amplifiers can belp eliminate offset drift with time and temperature.
sensors that deviate from this nominal value by factoring in the deviation from \(100.00 \Omega\). This deviation, which the manufacturer specifies for each individual sensor, is an offset term caused by winding tolerances during RTD fabrication. The gain slope of the platinum is primarily fixed by the purity of the material and has a very small error term.

\section*{Digitally corrected RTD bridge}

The previous example relies on analog techniques to achieve a precise, linear output from the platinum RTD bridge. The circuit in Fig 11 uses digital corrections to obtain similar results. A microprocessor corrects any residual RTD nonlinearities as well as the bridge's inherent nonlinear output.

The LT1097 drives the bridge with 5 V . Instrumentation amplifier \(\mathrm{IC}_{1}\) extracts the bridge's differential output. \(\mathrm{IC}_{1}\) 's output is fed to the LTC1290 12-bit A/D converter via gain-scaling stage \(\mathrm{IC}_{2}\). The \(\mathrm{A} / \mathrm{D}\) converter's raw output codes reflect the bridge's nonlinear output vs temperature. The processor corrects the converter's output and produces linearized, calibrated output data. RTD and resistor tolerances mandate zero-and full-scale trims, but no linearity correction is necessary. \(\mathrm{IC}_{2}\) 's analog output is available for feedback-control applications. Guy M Hoover developed the complete software code for the 68 HC 05 processor; you can get the code from Linear Technology at no cost.

\section*{Thermistor bridge}

Another temperature-measuring bridge, Fig 12, uses a thermistor as a sensor. The LT1034 excites the bridge. The \(3.2-\mathrm{k} \Omega\) and \(6250 \Omega\) resistors are supplied with the thermistor sensor. The network's overall

Fig 12-This temperature-measuring bridge uses a thermistor as a sensor to provide a linear output.

Fig 13-Using a semiconductor-based transducer, this low-power circuit has a bridge current less than \(700 \mu \mathrm{~A}\).
response is linearly related to the thermistor's sensed temperature. The network forms one leg of a bridge, and the resistors make up the opposing leg. Trimming this opposing leg sets the bridge output to zero at \(0^{\circ} \mathrm{C}\). Instrumentation amplifier \(\mathrm{IC}_{1}\) provides gain, and \(\mathrm{IC}_{2}\) provides additional trimmed gain to supply a calibrated output. You calibrate the circuit as you would
the platinum RTD circuit but with the linearity trim deleted.

In many cases, you'll want to operate a bridge circuit at low power. The most obvious way to minimize power consumption is by restricting the drive to the bridge. However, many bridge-based transducers are low-impedance devices, which complicates the design. Although similar to Fig 2, the Fig 13 circuit re-
duces the bridge current to less than \(700 \mu \mathrm{~A}\) by using a semicon-ductor-based bridge transducer. The input resistance of these devices is significantly higher than that of resistance-based bridges. This higher input resistance minimizes current drain and power dissipation. Semiconductor-based pressure transducers are less expensive than bonded strain-gauge types, but they have reduced accuracy and stability.
Fig 14 was derived directly from the Fig 6 circuit and illustrates a simple way of reducing power without sacrificing the bridge's output signal level. The technique applies when continuous output is not a requirement. This circuit can sit in the quiescent state for long periods with relatively brief on times. A typical application would be obtaining remote weight information for storage tanks where weekly readings are sufficient. Quiescent current is about \(150 \mu \mathrm{~A}\) with an onstate current of 50 mA typ.
With \(Q_{1}\) 's base unbiased, all circuitry is off except the LT1054 plus-to-minus voltage converter, which draws \(150 \mu \mathrm{~A}\) of quiescent current. When Q1's base is pulled low, its collector supplies power to \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2} . \mathrm{IC}_{1}\) 's output then goes high, turning on the LT1054. The LT1054's output (pin 5) heads toward -5 V , and \(\mathrm{Q}_{2}\) comes on, which permits the bridge current to flow. To balance its inputs, \(\mathrm{IC}_{1}\) servo controls the LT1054 to force the bridge's midpoint to 0 V . The bridge ends up with approximately 8 V across it, requiring the \(100-\mathrm{mA}-\) capable LT1054 to sink about 24 mA . The \(0.02-\mu \mathrm{F}\) capacitor stabilizes the loop. The \(\mathrm{IC}_{1}\)-LT1054 loop's negative output sets the bridge's common-mode voltage to zero, allowing \(\mathrm{IC}_{2}\) to take a single-

Fig 14-Applicable where a continuous output is not required, this low-power circuit conserves bridge power by turning it off when not needed. Quiescent current is typically \(150 \mu \mathrm{~A}\).

Fig 15-This strain-gauge bridge signal conditioner uses strobed-power techniques to reduce power consumption. At a clock rate of 2 Hz , the circuit's on time is restricted to \(250 \mu \mathrm{sec}\), which limits the average current drain to about \(200 \mu \mathrm{~A}\).
ended measurement. The outputtrim adjustment scales the circuit for \(3-\mathrm{mV} / \mathrm{V}\) strain-bridge transducers, and the \(100-\mathrm{k} \Omega, 0.1-\mu \mathrm{F}\) combination provides noise filtering.

Fig 15, an obvious extension of Fig 14, automates the strobing into
a clocked sequence. Circuit on time is restricted to \(250 \mu \mathrm{sec}\) at a clock rate of approximately 2 Hz . This restriction limits the average current drain to approximately 200 \(\mu \mathrm{A}\). Oscillator \(\mathrm{IC}_{1 \mathrm{~A}}\) produces the \(250-\mu \mathrm{sec}\) clock pulse every 500

Switched-capacitor instrumentation amplifiers can provide effective signal conditioning where high common-mode voltages exist.
msec. A filtered version of this pulse feeds \(Q_{1}\), whose emitter provides a slew-limited bridge drive. \(\mathrm{IC}_{1 \mathrm{~A}}\) 's output also triggers a delayed pulse produced by the 74C221's one-shot output. The timing is such that the pulse occurs well after the \(\mathrm{IC}_{1 \mathrm{~B}}-\mathrm{IC}_{2}\) bridgeamplifier output settles. A monitoring A/D converter, triggered by this pulse, can acquire \(\mathrm{IC}_{1 \mathrm{~B}}\) 's output.

The slew-limited bridge drive prevents the strain-gauge bridge from seeing a fast rise pulse, which could cause long-term transducer degradation. To calibrate this circuit, trim the zero and gain controls for appropriate outputs.

Fig 16 extends the sampling approach to include a continuous output. The circuit accomplishes this end with an additional sample-andhold stage at its output. \(Q_{2}\) is off when the sample command is low. Under these conditions, only \(\mathrm{IC}_{2}\) and the LTC201 receive power, and the current drain is less than \(60 \mu \mathrm{~A}\). When the sample command pulses high, \(\mathrm{Q}_{2}\) 's collector goes high, providing power to all other circuit elements. The \(10 \Omega, 1-\mu \mathrm{F} \mathrm{RC}\) combination at the input of the LT1021 prevents the strain-gauge bridge from seeing a fast-rise pulse, which could cause long-term transducer degradation. The LT1021-5 reference's output drives the strain-gauge bridge, and instrumentation amplifier \(\mathrm{IC}_{1}\) provides gain for the bridge's output signal. Simultaneously, \(\mathrm{S}_{1}\) 's switch-control input ramps toward \(\mathrm{Q}_{2}\) 's collector. At approximately half \(\mathrm{Q}_{2}\) 's collector voltage, \(\mathrm{S}_{1}\) turns on, and \(\mathrm{C}_{1}\) stores \(\mathrm{IC}_{1}\) 's output.
When the sample command drops low, \(\mathrm{Q}_{2}\) 's collector falls, the bridge and its associated circuitry shut down, and \(\mathrm{S}_{1}\) goes off. \(\mathrm{C}_{1}\) 's stored value appears at gain-scaled \(\mathrm{IC}_{2}\) 's

Fig 16-This pulse-excited bridge-signal conditioner uses a sample-and-hold circuit to provide a dc output.
output. The RC delay at \(\mathrm{S}_{1}\) 's control input ensures glitch-free operation by preventing \(\mathrm{C}_{1}\) from updating until \(\mathrm{IC}_{1}\) has settled. During the 1msec sampling phase, the supply current approaches 20 mA ; a \(10-\mathrm{Hz}\) sampling rate cuts the effective drain to less than \(250 \mu \mathrm{~A}\). Slower sampling rates will further reduce drain, but \(\mathrm{C}_{1}\) 's droop rate (about 1 \(\mathrm{mV} / 100 \mathrm{msec}\)) sets an accuracy constraint. The \(10-\mathrm{Hz}\) rate provides adequate bandwidth for most transducers. The gain trim lets you calibrate \(3-\mathrm{mV} / \mathrm{V}\) slope-factor transducers. You should rescale this trim for other transducer types. This circuit's effective current drain is about \(250 \mu \mathrm{~A}\), and \(\mathrm{IC}_{2}\) 's output is accurate enough for 12 -bit systems.

Remember that this circuit is a sampled system. Although the output is continuous, information is collected at a \(10-\mathrm{Hz}\) rate. You should keep the Nyquist limit in mind
when interpreting results.
Fig 17 is a special case of a con-tinuous-output sampled-bridge drive. The circuit is intended for applications requiring extremely high-resolution outputs from a bridge transducer. This circuit puts 100 V across a \(10 \mathrm{~V}, 350 \Omega\) straingauge bridge for short periods of time. The high pulsed-voltage drive proportionally increases the bridge output without forcing excessive dissipation. In fact, although this circuit is not intended to reduce power, the average bridge current is far below the normal 29 mA obtained with 10 V de excitation.
The key to the high resolution obtainable with this circuit is combining the \(10 \times\) higher bridge gain (300 mV full scale vs the normal 30 mV) with a chopper-stabilized amplifier in the sample-and-hold output stage.
When oscillator \(\mathrm{IC}_{1 \mathrm{~A}}\) 's output is high, \(\mathrm{Q}_{6}\) turns on, and \(\mathrm{IC}_{2}\) 's negative input is pulled above ground.

\title{
New 5MHz Sampling A/D Converter Tops 83dB Spurious-Free Dynamic Range
}

\section*{Sets Dynamic Performance Standards}

ADC604 is our new, complete 12 -bit, 5 MHz sampling A/D converter. It offers designers unmatched dynamic range for spectrum analysis and digital receiver applications requiring high sampling speed. Its excellent linearity results in near 14-bit distortion performance.

\section*{Key}

\section*{Specifications}
- 83dB SFDR
- 68.6 dB SNR
- -83 dBc THD
- -83 dBc IMD
- 12-bit Resolution
- DC - 5MHz Sampling Rate
- \(\pm 1.25 \mathrm{~V}\) Input Range
- \(\pm 0.4\) LSB DLE

Speed, High Performance Products
We offer a full line of linear products designed for high speed, high resolution applications. These include current-and voltage-feedback op amps, 12- to 16-bit ADCs and DACs, sample/hold amps, PC-based ADC design and test systems,
and a selection of demonstration boards to aid in product evaluation. Our new High Speed Linear Products brochure describes our line and contains valuable test and applications tips. Ask your Burr-Brown representative for a free copy, or call 1-800-548-6132 for immediate assistance.
Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734 USA

Figure 1

BURR-BROWN®

Fig 17-A special case of sampled drive, this circuit puts 100 V across a \(10 \mathrm{~V}, 350 \Omega\) strain-gauge bridge for short periods of time. The circuit is intended for applications requiring high-resolution outputs from a bridge transducer.
\(\mathrm{IC}_{2}\) 's output goes negative, which turns on \(Q_{1} . Q_{1}\) 's collector then goes low, robbing \(\mathrm{Q}_{3}\) 's base drive and cutting it off. Simultaneously, \(\mathrm{IC}_{3}\) enforces its loop by biasing \(Q_{2}\) into conduction, which turns on \(Q_{4}\). Under these conditions, the voltage across the bridge is essentially zero.

When \(\mathrm{IC}_{1 \mathrm{~A}}\) 's output is low, RC-filter-driven \(Q_{6}\) responds by cutting off slowly. Now, only the current through the \(3.6-\mathrm{k} \Omega\) resistor affects \(\mathrm{IC}_{2}\) 's negative input. The input begins to head negative, causing \(\mathrm{IC}_{2}\) 's output to rise. \(Q_{1}\) comes out of saturation, and \(\mathrm{Q}_{3}\) 's emitter voltage rises. Initially, this action is rapid, but feedback to \(\mathrm{IC}_{2}\) 's negative input closes a control loop, and a \(1000-\mathrm{pF}\) capacitor restricts the rise time. The \(72-\mathrm{k} \Omega\) resistor sets \(\mathrm{IC}_{2}\) 's gain at 20 with respect to the LT1004 2.5 V reference, and \(\mathrm{Q}_{3}\) 's emitter servo controls to 50 V .
\(\mathrm{IC}_{3}\) responds to the bridge's biasing by moving its output in the negative direction. \(\mathrm{Q}_{2}\) tends toward cutoff, increasing \(Q_{4}\) 's conduction. \(\mathrm{IC}_{3}\) biases its loop to maintain the bridge midpoint at zero. To bias its loop, \(\mathrm{IC}_{3}\) must produce a complementary output to \(\mathrm{IC}_{2}\) 's loop. \(\mathrm{IC}_{3}\) 's
loop rolloff is considerably faster than \(\mathrm{IC}_{2}\) 's, ensuring that it will faithfully track \(\mathrm{IC}_{2}\) 's loop action. Similarly, \(\mathrm{IC}_{3}\) 's loop is slaved to \(\mathrm{IC}_{2}\) 's loop output and produces no other outputs. Under these conditions, the bridge sees 100 V for the 1-msec duration of the clock pulse.
\(\mathrm{IC}_{1 \mathrm{~A}}\) 's clock output also triggers the 74 C 221 one-shot circuit. This circuit delivers a delayed pulse to \(Q_{5}\), which turns on and charges the \(1-\mu \mathrm{F}\) capacitor to the bridge's output voltage. With \(\mathrm{IC}_{3}\) forcing the bridge's left-side midpoint to zero, \(Q_{5}\), the \(1-\mu \mathrm{F}\) capacitor, and \(\mathrm{IC}_{4}\) see a single-ended, low-voltage signal. The complementary, controlled rise times of the control loops prevent high-transient common-mode voltages.
\(\mathrm{IC}_{4}\), which has gain, provides the circuit output. The 74C221's pulse width ends during the bridge's on time, thus preserving the integrity of the sampled data. When oscillator \(\mathrm{IC}_{1}\) goes high, the control loops remove the bridge's drive, returning the circuit to quiescence. The \(1-\mu \mathrm{F}\) capacitor maintains \(\mathrm{IC}_{4}\) 's output at dc. \(\mathrm{IC}_{1 \mathrm{~A}}\) 's \(1-\mathrm{Hz}\) clock rate is adequate to prevent a deleterious
charge droop on the \(1-\mu \mathrm{F}\) capacitor, but slow enough to limit the bridge's power dissipation. The controlled rise and fall times across the bridge prevent possible long-term transducer degradation by eliminating high \(\Delta V \backslash T\)-induced effects.
When using this circuit, remember that it is a sampled system. Although the output is continuous, information is collected at a \(1-\mathrm{Hz}\) rate. The Nyquist limit applies and must be taken into account when interpreting results.

EDN

\section*{Author's biography}

Jim Williams, staff scientist at Linear Technology Corp (Milpitas, CA), specializes in analog-circuit and instrumentation design. He has served in similar capacities at National Semiconductor, Arthur D Little, and the Instrumentation Development Lab at the Massachusetts Institute of Technology. A former student of psychology at Wayne State University (Detroit, MI), Jim enjoys art, collecting antique scientific instruments, and restoring old Tektronix oscilloscopes.

Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514

\title{
Introducing an all-Tek communications test system featuring bit error rate testing and waveshape analysis. FDDI and SONET test capability. Margin and mask testing. Plus direct jitter, noise and eye diagram measurements like you've never seen before.
}

Metral is the next generation interconnect system that's meeting today's need for greater density, modularity, flexibility, and functionality.

And that's just the beginning.
Metral cuts costs by shortening the design cycle.

It reduces risk by being flexible enough to allow for design changes.

And Metral is universal enough to use in electronic packaging designs from modems to mainframes.

With all these advantages, it's no wonder Metral was selected by IEEE as the interconnection standard for Futurebus+.

\section*{Over 2 Times The Density of Din.}

Metral, based on the metric global standard, gives you more than twice the density of DIN.

One of the smartest features of Metral is that it's designed with today's-and tomor-row's-high density requirements in mind.

Metral connectors are based on a 2.0 millimeter grid (an excellent balance

of density, cost and durability), and provide up to 456 signal positions on a double Eurocard. Which means, in the same amount of space, Metral packs more than twice the position density of Din 41612.

\section*{With This Much} Modularity, You Can't Lose.

Because of its uniform module design, METRAL is remarkably adaptable. This allows you to design the connectors around the board, instead of designing the board around the connectors.

Based on a \(4 \times 6\) position building block, Metral offers configurations of \(24,48,96\) and 192 contact positions. And the connectors are stackable end-toend without position loss. You can

Affordable, cost-effective density like that makes Metral indispensable if you want the most value possible from available real estate.

To put it another way, the more functions you pack on a board, the more you need Metral.
use the same footprint for signal and power modules. If you don't need a module, the space saved on the board can be used for something else.

Metral also has keying and coding features for mistake-proof assembly.

Metral offers stackable end-to-end configurations of 24, 48, 96 and 192 contactswithout position loss.

\title{
Du Pont Metral: Interconnection System.
}

\section*{The Universal Standard.}

Thanks to its "building block" approach, Metral affords designers limitless creativity by standardizing the configuration of the connectors. That means you can standardize across your entire product linewhether data processing, telecommunications or instrumentation.

What's more, since Metral connectors can be qualified as a system, you can reduce approval time.

And with metric standardization on the way, designing with Metral makes even more sense. Because Metral already meets the metric global standard.

Metral is available in signal, power, coax, IDC, round cable, and male and female versions. With surface female versions. With surface
mount and other board-toboard connectors on the way.
 METRAL is multifunctional enough to allow you to expand as your needs-or the needs of the market-change.

In fact, Metral is the first connector system that lets you design daughter cards for through-hole or surface
mount without redesigning the backpanel system.

Metral is available in signal, power, coax, IDC, round cable and male and female solder-to-board versions. And shielded cable connectors, surface mount, fiber optic, press-fit and high speed board-toboard connectors are on the way.

\section*{Make The Move To Metral.}

The first step is to call 1-800-237-4357. We'll send you more information about the one connector system that can meet your needs today-and tomorrow-for more density, modularity and flexibility. Metral.

\section*{DuPont Electronics}

Share the power of our resources.

CIRCLE NO. 70

\section*{Power tools}

\section*{KEPCO TEST/BENCHTOP POWER SUPPLIES}

The correct tool makes any job easier. Kepco's Power Supplies for workbench, for burn-in, and float-charging batteries are just some of the tools at your disposal.

For your workbench choose a multi-out array that you configure for the application by plugging-in modules with adjustable outputs. You can combine one, two or three modules in convenient bench-top housings or put six of them together in a rack. Other experimentalist power includes a nice selection of 100W single output instruments (MSK), a triple output logic-analog model (MPS), and burn-in/float chargers (TBC) that range from 300 to 3000 Watts in all the popular voltages.

Custom power assemblies allow you to create your own toolkit with just the selection of voltage and power to fit your need.

Other power tools from Kepco include: ac power to 18 KVA , precision programmable dc for test applications, high voltage models and four-quadrant bipolar power. For these, and our broad selection of switching power models, including \(d\)-c to \(d\)-c converters, please ask for one of the three catalogs illustrated below.

Kepco's complete line of 728 models of power supplies is described in 3 new 1990 catalogs. Choose your tool. Call/fax/write Dept. LXT-12, Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA (718) 461-7000 • Fax (718) 767-1102 • Easylink (TWX) • 710-582-2631

\section*{Plug-in power}
\(\square 20\) Watt modules, either voltage stabilizers (series PCX-MAT) or current stabilizers (series CC).
\(\square\) Sized to plug-in six abreast in a \(19^{\prime \prime}\) rack or in bench-top housings for 1,2 or 3 units.
\(\square\) Mix or match.
\(\square\) Select from six voltage ranges up to 100 V . Kepco Group PCX-MAT and CC Power Supplies

\section*{100 Watts of precision benchtop power.}
\(\square\) LCD meters to set the level accurately, a preview feature to check your setting before applying power to your load.
\(\square\) Linear design for low-noise high stability.
\(\square\) Ten-turn controls for good resolution.
\(\square\) Five models offer outputs up to 125 Volts.
Kepco Group MSK Power Supplies

\section*{Battery/float-chargers.}
\(\square\) For telecommunications: maintain \(12 \mathrm{~V}, 24 \mathrm{~V}\) and 48 V batteries, built-in equalize timer.
\(\square\) For burn-in: power up to 3000 Watts, current limited, over-voltage protected. Two output settings, remotely selectable for margining.
Kepco Group TBC Float Chargers/Power Supplies

\section*{Kepco Custom System}

\section*{Power Assemblies}

We will stuff a \(19^{\prime \prime}\) rack (\(5^{1 / 4}\) or \(7^{\prime \prime}\)) full of switchers to your requirement. With modules from 3 Watts to 3000 Watts, in a wide selection of voltage ranges, we can accommodate most needs.
\(\square\) LCD output meters.
\(\square\) Test points.
\(\square\) Pilots, trimmers, circuit breakers. Convenient \(1 / 8\) rack panel format allows multiple control and monitoring.
Kepco Power Assemblies.

\title{
Dense SRAMs aren't fast, and fast SRAMs aren't dense. . . Unless they're from Inova.
}

\section*{25ns Fast!}

Our 1-megabit monolithic 128 Kx 8 SRAMs clock in at 25 and 35 ns. Very fast. They're ideal for microprocessor applications where fast access times are a must to avoid wait states: workstations, supercomputers, image processing, telecommunications switches, and radar/sonar systems. Packages include DIPs, CSOJs, and flatpacks for commercial/industrial/military applications.
1-megabit SRAMs on time Inova was first to ship 1-megabit monolithic SRAMs, and we've been shipping them since 1988. We've established a reputation for on-time delivery - even during the memory crunch of 1988 and '89. Like our delivery, our high-speed, high-density monolithic devices are getting faster all the time. Inova has devices with access times ranging from 100 ns to 25 ns in stock now.

1989-90
1993-94
Inova lets you upgrade to the next generation of density without waiting for the next generation of process technology.

Call for a free copy of our new SRAM databook: 408-980-0730

Military monolithic SRAMs
Inova makes the only monolithic 1-megabit SRAM specified on DESC drawing \#596289598. Both our 1-megabit and 256 K devices are DESC listed. Inova \(64 \mathrm{Kx16}\) devices are listed on DESC drawing \# 5962-90858. All our military grade devices are MIL-STD883C compliant.
The first and only 64 Kx 16 monolithic SRAM
This year Inova introduced the industry's first 64 Kx 16 monolithic 1-megabit SRAM. At 45ns, these devices complement our family of 45 ns \(128 \mathrm{~K} x 8\) SRAMs. They feature our proven 4 transistor cell CMOS process with high-speed access and low active and standby power characteristics. And they're listed on DESC drawing \#5962-90858.

\section*{Inova...}
for your high-speed, high-density SRAM solutions

inovamicrolectronics corporation 2220 Martin Ave. Santa Clara, CA 95050

\section*{\(\mathrm{M}_{\text {Easuritement }}^{\text {TEsT }}\)}

\title{
Boost instrument-amp CMR with common-mode-driven supplies
}

\begin{abstract}
Instrumentation amplifiers are finding increasing application in today's complex systems. Minor modifications can yield significantly better performance by improving common-mode rejection. In addition, these changes may let you use low drift amplifiers.
\end{abstract}

\section*{R Mark Stitt, Burr-Brown Corp}

Modern systems are placing ever greater demands on instrumentation amplifiers. When standard instrumentation amplifiers can't deliver the performance you require, consider using enhanced versions. Operating the input amplifiers of a classical 3 -op-amp instrumentation amplifier from common-mode-driven subregulated power supplies will dramatically improve their performance.

Instrumentation amplifiers amplify low-level differential signals while rejecting unwanted common-mode signals. Common-mode rejection (CMR) is an important feature of instrumentation op amps. CMR in ac is especially important because common-mode signals are inevitably dynamic-ranging from the 60 Hz of power-line interference to the hundreds of kilohertz of switching-power-supply noise. By using common-mode-driven subregulated supplies, you can improve
an instrumentation amplifier's ac and dc CMR. You'll also get improved ac and dc power-supply-noise rejection as an added bonus.
When you need high gain, input-offset-voltage drift is critical. In some applications, chopper-stabilized op amps provide the best solution because of their low input-offset-voltage drift. Unfortunately, because many chopper-stabilized op amps use low-voltage CMOS processes, you can't operate them on standard \(\pm 15 \mathrm{~V}\) power supplies. On the other hand, you can operate them from common-mode-driven, subregulated \(\pm 5 \mathrm{~V}\) supplies without restriction in \(\pm 15 \mathrm{~V}\) systems.
To understand the technique for maximizing rejection, first consider the 3 -op-amp instrumentation amplifier (Fig 1). The design comprises an input-gain stage driving a difference amplifier. The difference amplifier consists of op amp \(\mathrm{IC}_{3}\) and ratio-matched resistors \(\mathrm{R}_{1}\) through \(R_{4}\). If the resistor ratio \(R_{2} / R_{1}\) exactly matches \(R_{4} / R_{3}\), the difference amplifier will boost differential signals by a gain of \(R_{2} / R_{1}\) while rejecting common-mode signals. Resistor mismatch will almost certainly limit the difference amplifier's CMR if \(\mathrm{IC}_{3}\) is a highperformance op amp. If the input-stage gain is 1 , a unity-gain difference amplifier will require a \(0.01 \%\) resistor match for CMR of 86 dB .

\section*{Add gain ahead of the difference amp}

There are significant drawbacks in using a single-opamp push-pull-to-single-ended converter with gain (difference amplifier) to amplify small signals superim-

Because most chopper-stabilized op amps are built with low-voltage CMOS processes, you can't operate them on \(\pm 15 \mathrm{~V}\) supplies.

Fig 1-A 3-op-amp instrumentation amplifier boosts differential signals by a gain of \(R_{2} / R_{1}\), if \(R_{2} / R_{1}\) matches \(R_{4} / R_{3}\).
posed on common-mode voltages. First of all, any imbalance in the source resistance will alter the resistor match and degrade the CMR. To avoid this problem, many instrumentation amplifiers precede the difference amplifier with a differential-input, differentialoutput gain stage consisting of two amplifiers (\(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\) of Fig 1) and three resistors. The gain of this stage is \(1+2 \cdot R_{F B} / R_{G}\), and the instrumentation amplifier's overall gain is \(\left(1+2 \cdot R_{F B} / R_{G}\right) \cdot R_{2} \cdot R_{1}\).

The CMRR is the ratio of differential gain to com-mon-mode gain. Using buffer amplifiers to add gain ahead of a difference amplifier increases an instrumentation amplifier's CMR (if the buffer amplifiers' CMR is better than that of the difference amplifier). That's why instrumentation amplifier data sheets usually specify one CMR at gain = 1 and a much higher CMR at higher gains.

Most high-performance op amps have better CMR than difference amplifiers do. However, be careful when selecting an input op amp. High-grade versions of the venerable 741 op amp have a minimum dc CMR of 80 dB , and the popular LM324 has a minimum dc CMR of only 70 dB . High-performance bipolar-input op amps have the best CMR. The OPA177, for example, has a minimum dc CMR of 130 dB . FET-input op amps usually don't offer quite as much CMR performance. For example, the Burr-Brown OPA627 FET-
input op amp has a minimum dc CMR of only 106 dB .
Driving the input op amp's power-supply from subregulated power supplies referenced to the instru-mentation-amplifier common-mode-input voltage improves the dc CMR of a standard instrumentation amplifier. The device mismatch and thermal feedback that occur as an op amp's inputs change limit its CMR. (Similar effects also limit the amplifier's power-supply rejection ratio.) Varying the power supply to track the common-mode input signal inhibits changes and reduces errors, which can degrade CMR.

The input amplifier's ac response limits the instrumentation amplifier's ac CMR. The outputs of the input amplifiers in the instrumentation amplifier follow the common-mode input signal. As the frequency of the common-mode signal increases, the input op amp's loop gain diminishes, which causes differential gain errors to increase and CMR to fall off.

For large common-mode signals, the input op amp's slew rate can limit the function of the instrumentation amplifier. The instrumentation amplifier will fail to function completely when the maximum rate of change of the common-mode signal exceeds the op amp's slewrate limit. For a sine wave, where the maximum rate of change occurs at the zero crossing, the derivation of the slew-rate limit is
\[
\begin{gathered}
\mathrm{V}=\mathrm{V}_{\mathrm{P}} \cdot \sin (2 \pi \mathrm{ft}), \\
\mathrm{dV} / \mathrm{dt}=2 \pi \mathrm{f} \cdot \mathrm{~V}_{\mathrm{P}} \cdot \cos (2 \pi \mathrm{ft}), \\
\text { At } \mathrm{t}=0, \\
\mathrm{dV} / \mathrm{dt}=2 \pi \mathrm{f} \mathrm{~V}_{\mathrm{P}}, \text { therefore the } \\
\text { slew-rate limit }=2 \pi \mathrm{f}_{\mathrm{MAX}} \mathrm{~V}_{\mathrm{P}},
\end{gathered}
\]
where
\[
\begin{aligned}
& \mathrm{V} \text { = common-mode voltage vs time }(\mathrm{t}), \\
& \mathrm{V}_{\mathrm{P}}=\text { peak common-mode voltage, } \\
& \text { slew-rate limit = maximum } \mathrm{dV} / \mathrm{dt}
\end{aligned}
\]
and \(f_{\text {MAX }}=\) maximum common-mode frequency at amplitude \(V_{P}\) beyond which a standard instrumentation amplifier will fail to function due to the slew-rate limit of the input op amp.

Driving the power supply of the input op amps from

Fig 2-A common-mode voltage buffer connected to a resistor divider network drives the subregulated supplies that power the enhanced instrumentation amplifier.

common-mode-referenced subregulated supplies improves ac CMR as well as dc CMR. Because neither the amplifier's inputs nor output change relative to the subregulated power-supply rails-at least in the ideal case-nothing within the amplifier moves in response to the common-mode signal. No current flows in the phase-compensation capacitors, which disables the slew-rate-limiting phase compensation for commonmode response.

Fig 2 shows a complete circuit for an enhanced instrumentation amplifier. As you can see, this enhanced instrumentation amplifier contains the 3 -op-amp instrumentation amplifier from Fig 1 plus a buffered com-mon-mode voltage generator and \(\pm 5 \mathrm{~V}\) subregulated power supplies.
The 3-op-amp instrumentation amplifier in Fig 2 uses an INA106 gain-of-10 difference amplifier, which contains a precision op amp and ratio-matched resistors \(\left(R_{1}\right.\) through \(R_{4}\)) pretrimmed for \(100-\mathrm{dB} \min\) CMR. Because the INA106 already contains ratio-matched resistors, you don't have to match critical resistors to build a precision instrumentation amplifier.

The resistor divider network (\(\mathrm{R}_{5}\) and \(\mathrm{R}_{6}\)) creates the
common-mode signal that drives the subregulated supplies. The instrumentation-amplifier inputs drive the network through unity-gain-connected op \(\mathrm{amps} \mathrm{IC}_{4}\) and \(\mathrm{IC}_{5}\). These buffer amplifiers preserve the instrumentation amplifier's high input impedance. Some applications don't require such impedance. In those applications, the impedance of the \(R_{5}, R_{6}\) network may be connected directly to the instrumentation-amplifier inputs. Fig 3 shows a circuit without buffer amplifiers \(\mathrm{IC}_{4}\) and \(\mathrm{IC}_{5}\). The signal at the \(\mathrm{R}_{5}, \mathrm{R}_{6}\) connection of the resistor divider is the common-mode or average voltage of the two instrumentation-amplifier inputs.
The negative subregulator consists of \(\mathrm{IC}_{6}, \mathrm{R}_{7}, \mathrm{C}_{1}\), and a \(100-\mu \mathrm{A}\) current source. Since no current flows in the op-amp input, \(100 \mu \mathrm{~A}\) flows through the \(50-\mathrm{k} \Omega\) resistor, \(\mathrm{R}_{7}\), forcing a -5 V drop from the op-amp input to its output. The op amp forces the negative input to be at the same potential as the positive input. The result is a -5 V floating-voltage reference relative to the op-amp noninverting-input terminal. The positive subregulator is the same as the negative subregulation except for the current-source connection's polarity.

The circuit in Fig 3 only connects the positive and

> An input op amps' slew rate can limit the ability of an instrumentation amplifier to produce large, common-mode signals.

Fig 3-If you don't need high input impedance, removing the common-mode voltage buffers will still provide better commonmode rejection than standard instrumentation amplifiers and do it at a lower cost.
negative subregulators' outputs to the power supplies of the input op amps (\(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\)). All other op amps are connected to \(\pm 15 \mathrm{~V}\) power supplies.

The subregulated-supply voltage limits the commonmode input range of the enhanced instrumentation amplifier. The outputs of the subregulator amplifiers (\(\mathrm{IC}_{6}\) and \(\mathrm{IC}_{7}\)) must swing the common-mode voltage as well as the subregulator voltage. The larger the subregulator voltage, the smaller the common-mode input range. A subregulator voltage of \(\pm 5 \mathrm{~V}\) is low enough to give good input common-mode range and high enough to allow full performance from almost any op amp. The reduced power-supply voltages lower power dissipation in the input op amps. They also improve the instru-
mentation amplifier's performance by reducing thermally induced low-frequency noise.

In all semiconductor packages, thermocouples exist at dissimilar conductor interfaces. Matched-seal metal, side-brazed ceramic, cerdip, and many plastic packages use Kovar leads. Thermocouples exist between the lead plating and the Kovar. Thermocouples also exist between the leads and the solder connections to the printed circuit.
If thermal gradients are properly matched at the amplifier inputs, the thermocouple errors will cancel one another out. In practice, mismatches occur. Even under laboratory conditions, a mismatch may produce several tenths of a microvolt-well above low-noise-
amplifier levels. In the output of a high-gain amplifier, errors appear as low-frequency noise or short-term in-put-offset errors.

In signal op amps, package leads conduct away much of the heat. The resulting thermal difference between the package and the printed circuit can be a major source of error. Operating the op amp on \(\pm 5 \mathrm{~V}\) supplies instead of \(\pm 15 \mathrm{~V}\) supplies decreases quiescent power dissipation and its associated temperature rise by at least \(300 \%\). This decrease also provides a commensurate reduction in thermally induced errors.

The common-mode input range of an enhanced instrumentation amplifier is equal to that of most inte-grated-circuit instrumentation amplifiers. Because an enhanced instrumentation amplifier uses a gain-of-10 difference amplifier rather than a unity-gain difference amplifier, input amplifiers don't limit a difference amplifier's common-mode range. The common-mode input range of both an enhanced instrumentation amplifier and a standard instrumentation amplifier is \(\pm 7 \mathrm{~V}\). With a 10 V output, the common-mode input of a standard instrumentation amplifier is only \(\pm 7 \mathrm{~V}\), not \(\pm 10 \mathrm{~V}\) as is commonly believed.

An input amplifier's output swing limits the commonmode swing of a standard instrumentation amplifier. The output swing of subregulator amplifiers limits the common-mode range of an enhanced instrumentation amplifier.

Standard instrumentation amplifiers use unity-gain difference amplifiers for practical reasons. Since standard instrumentation amplifiers are general-purpose devices, they must be adjustable to unity gain. Because maintaining the resistor ratio necessary for good differ-ence-amplifier CMR is difficult, standard instrumentation amplifiers usually contain a fixed unity-gain difference amplifier. Gain adjustment is made with the input amplifiers, where matching is not critical for good CMR. Also, the more gain placed ahead of the difference amplifier, the better the instrumentation amplifier's CMR.

To investigate the limits on the instrumentation amps' input common-mode range, assume the op amps' inputs can all swing to within 3 V of their power-supply rails (\(\pm 12 \mathrm{~V}\) when operating on \(\pm 15 \mathrm{~V}\) power supplies). In a standard instrumentation amplifier with a unitygain difference amplifier, the input amplifiers must provide a differential 10 V output to produce a 10 V difference amplifier output. If the input amplifiers have equal gains, each must deliver one-half of the 10 V differential signal. With a common-mode input of 7 V , an

Fig 4-With a gain of \(1000 \mathrm{~V} / \mathrm{V}\), an enhanced instrumentation amplifier offers common-mode rejection of better than 120 dB at frequencies below 8 kHz .
input amplifier must deliver 7 V common mode plus 5 V differential mode in order to bring it up to its 12 V -swing limit.
The enhanced instrumentation amplifier also has a \(\pm 7 \mathrm{~V}\) common-mode input limit. Its subregulators are set at \(\pm 5 \mathrm{~V}\) from the input common-mode signal. With a 7 V common-mode input, a subregulator's output will be at its 12 V -swing limit.

In an enhanced instrumentation amplifier using a gain-of-10 difference amplifier, the buffer amplifiers must provide a differential output of only 1 V to produce a 10 V instrumentation-amplifier output. If the input amplifiers have equal gains, each must deliver one-half of the 1 V differential signal. With a common-mode input of 7 V , one input amplifier must deliver 7 V common mode plus 0.5 V differential for a total output of 7.5 V . Obviously, producing the 7.5 V is no problem since the \(\mathrm{V}_{\mathrm{S}}\) is 12 V (5 V subregulated plus 7 V common mode).

Fig 4 offers a performance comparison between a standard instrumentation amplifier and an enhancedinstrumentation amplifier. In Fig 2, \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\) are OPA177 amplifiers; \(\mathrm{IC}_{3}\) is an INA106 gain-of-10 difference amplifier; and \(\mathrm{IC}_{4}\) to \(\mathrm{IC}_{7}\) is an OPA404 quad op amp in the enhanced circuit. This instrumentation amplifier's overall gain is set at \(1000 \mathrm{~V} / \mathrm{V}\). The OPA177 is an improved version of the industry-standard OP-07. It offers \(10-\mu \mathrm{V}\) max \(\mathrm{V}_{\text {os }}\) and \(0.1-\mu \mathrm{V} /{ }^{\circ} \mathrm{C} \max \mathrm{V}_{\text {os }} / \mathrm{dT}\). The OPA404 provides high speed and low bias current.

The FET inputs of the OPA404 don't add loading at the inputs of the instrumentation amplifier. Their speed is higher than the OPA177's, yielding an improvement in CMR vs frequency. An HP4194A gainphase analyzer with an input signal to the instrumentation amplifier of 9 dBm made the CMR plots. The

\section*{An input amplifier's output swing limits the common-mode swing of a standard instrumentation amplifier.}

Fig 5-These scope photos show a dramatic difference in common-mode response between standard (a) and enhanced instrumentation (b) amplifiers with chopper-stabilized op amps. In both photos, the sine wave is the common-mode input-a 2-kHz, 5 V p-p signal; the other trace is the instrumentation-amp output with a differential gain of 1000 . Without common-mode drive (a), noise limits the usable CMR to \(56 d B\) with the common-mode input shown. With common-mode drive to the input op-amp power supplies (b), noise performance improves so much that the CMR appears essentially infinite under these test conditions. (The CMR actually measures about 82 dB .)
enhanced plot shows a dramatic CMR vs frequency boost. At 2 kHz , for example, the CMR of the standard instrumentation amplifier is about 80 dB . At 2 kHz , the CMR of the enhanced instrumentation amplifier is more than 120 dB -an improvement of more than two orders of magnitude.

The scope photos of Fig 5 show similar instrumentation amplifiers using LTC1050 chopper-stabilized op amps for \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\). When \(\mathrm{V}_{\text {oS }} / \mathrm{dT}\) is critical, chopperstabilized op amps may be the best choice because they offer \(5-\mu \mathrm{V}\) maximum \(\mathrm{V}_{\text {os }}\) over temperature. With a \(\pm 2.5 \mathrm{~V}, 2-\mathrm{kHz}\) input signal, chopper noise limits CMR to about 56 dB . The enhanced circuit improves the usable CMR to about 82 dB with the common-mode input shown in Fig 5b.

A difference amplifier will limit CMR performance in enhanced instrumentation amplifiers. The more gain you add ahead of a difference amplifier, the better the potential for improvement. For example, with a gain of \(100 \mathrm{~V} / \mathrm{V}\) ahead of the difference amplifier, an improvement in CMR of as much as 40 dB is possible. The actual performance boost depends on impedance matching and parasitics in the devices you select.

\section*{How fast are your amplifiers?}

Of course, the way CMR varies with frequency depends on the dynamic performance of all the amplifiers in the circuit. Improvement in dynamic CMR will be most dramatic when the speed of the amplifiers \(\mathrm{IC}_{4}\)
to \(\mathrm{IC}_{7}\) is much higher than the speed of \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\). You can easily implement high-voltage instrumentation amplifiers using the enhanced instrumentationamplifier configuration. Use standard-precision signallevel op amps for the input amplifiers and less critical op amps for the high-voltage chores. For example, use OPA445 op amps for \(\mathrm{IC}_{6}, \mathrm{IC}_{7}\), and \(\mathrm{IC}_{3}\) (the difference amplifier). To boost the voltage rating of the current sources in the subregulated supplies, place two REF200 current-source sections in series. If you use \(1 \%\) resistors for difference resistors \(R_{1}\) to \(R_{4}\), you may need a potentiometer to adjust CMR. The resulting instrumentation amplifier will provide outstanding performance on power supplies up to \(\pm 45 \mathrm{~V}\).

EDN

\section*{Author's biography}
\(R\) Mark Stitt received his BSME from the University of Arizona and joined Burr-Brown Corp (Tucson, AZ) in 1969. He has been an analog design manager since 1980, working on instrumentation amplifiers, operational amplifiers, and voltage references. Mark has 14 US and numerous foreign patents.

Article Interest Quotient (Circle One) High 488 Medium 489 Low 490

\section*{HPandApollo proudly announce the birth of five new workstations.}

\section*{Asyou'd expect, compatibility runs in}

Documentation

Graphic information system

Advanced 3D graphics

Mechanical computer-

\section*{the family.}

tion system

aided engineering

Presentation spreadsheet

CASE configuration management

Mechanical CAD and manufacturing

Electronic design automation

You're ready for more powerful workstations. But you want them at a reasonable price. And you don't want to sacrifice your software investment to get them.
Hewlett-Packard has a better way.
The new Hewlett-Packard Apollo 9000 Series 400 workstations. Based on the latest Motorola technology, they give you astonishingly fast performance at a very low price. As well as the capability to handle over 3200 applications, the
broadest and best set of applications available.
At the entry level, there's the very powerful 400 dl with 12 MIPS for under \(\$ 5,000\) * The 425 t with 20 MIPS and 3.5 MFLOPS is priced under \(\$ 9,000\) * And, there's the affordable 433s, with 26 MIPS and 4.5 MFLOPS for under \(\$ 16,000\) *

Our new VRX graphics options offer you excellent performance for 2D graphics with X Windows. Or add the unparalleled power of our advanced 3D graphics for the best rendering technology in the industry.

The affordable, compatible new generation of Hewlett-Packard Apollo workstations. Just the kind of innovation you'd expect from HP Apollo. For more information, call 1-800-752-0900, Ext. 1531.

\section*{There is a better way.}

\section*{HEWLETT PACKARD}

\footnotetext{
*U.S. list price.
© 1990 Hewlett-Packard Company CPWG002
}

\title{
Eliminate Oscillation
}

\section*{OP-160 High-Speed Op Amp - New from PMI}

PMI's new OP-160 gets your high-speed circuit designs working right the first time.
Unlike other high-speed op amps, the OP-160 is easy to use and can drive over 1000 pF without oscillating.
The OP-160 has a very fast slew rate of \(1300 \mathrm{~V} / \mu \mathrm{s}\) and a unity-gain bandwidth of 90 Mhz to meet the demands of your high-speed applications. Settling time is only 75 ns to 8 bits, 125 ns to 12 bits. All of this performance requires only 6.5 mA
of supply current for cool, reliable operation in space-saving 8-pin DIP and SO-8 packages.

Theirs \(\left(C_{L}=100 \mathrm{pF}\right)\)

Ours (\(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\))

And, the OP-160 is affordablepricing starts at \(\$ 4.50\) (100 pc .).
Plus, it's available in the extended industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(+85^{\circ} \mathrm{C}\)) and full military temperature ranges.
To receive your free data package on PMI's easy-touse OP-160, including full SPICE model and applications, call us at 800-843-1515 or FAX us at (408) 727-1550.
Or, circle the reader service number below.
If you require a dual high-speed amplifier, ask for PMI's OP-260.

\section*{Precision Monolithics}

A Division of Analog Devices

\title{
Understanding the complexity of tasking in real time
}

\begin{abstract}
In constructing a requirements model, you should strive to make it independent of the specific methods that might be employed to achieve the requirements. Once you come to design an implementation model, however, you want to reveal the methods so that they can be analyzed and ultimately coded. The remainder of this series of articles is concerned with implementation. This part of the series is devoted to the central issue of the implementation model: tasking.
\end{abstract}

\section*{David L Ripps, Industrial Programming Inc}

Tasking is the distribution of the functional requirements (as contained in the requirements model) among concurrently executing programs (the tasks). The problem of tasking in real-time work is akin to structural organization (distribution of functions to subprograms) in traditional programming. Many of the same concerns and principles apply in both cases. Nevertheless, real-time tasks run concurrently and can be started, suspended, and terminated individually. This imposes even stronger design restraints than would be necessary for a singly threaded traditional program.

In real-time work, the problem of tasking is more than just the assignment of the application's functions to various concurrent tasks. You also have to select the method by which the task will be activated and receive its inputs, as well as the function the task will perform once it is active.

Despite the importance of proper tasking, there are

\footnotetext{
From the book, An Implementation Guide to Real-time Programming, by David L Ripps, © 1989. Excerpted by permission of Prentice-Hall Inc, Englewood Cliffs, NJ.
}
only a few general rules that can be set down to guide the newcomer. Fig 1 gives eight rules. (This list is an expanded version of a six-rule set (Ref 1).) The rules are almost too obvious to be called basic principles. But any more specific rules would have to be hopelessly complex, if they could be expressed at all.

\section*{Use tasking to aid development and maintenance}

The first rule warns the designer not to complicate a task by including several separate and functionally independent components. The memory overhead for each task is the size of an internal task-control block (about 300 to 400 bytes for MTOS-UX) plus the size of the task stack. While this overhead is significantly more than that for just another subprogram, the designer should not be afraid to create a separate task if it clarifies the overall logic of the application.

Separating main functions into different tasks is especially important because changes in specifications inevitably become necessary. Ideally, the alterations generated by a single change in the functional specifications should not extend beyond a single task.

By the same reasoning, it is preferable that closely related functions and functions that deal with the same inputs, data, or outputs be kept in the same task. Closely related functions are those that have operations that must be logically consistent; that is, a change in one is likely to lead to a change in the other.

Unfortunately, in embedded, realtime applications, all functions are somewhat intertwined since they share interrelated goals and common data. Judgment with respect to the particular application dictates what are distinct main functions (that should be in separate tasks) and what are closely related aspects of the same function (that should be in a single task). This category of rules is amply covered
in numerous books on principles of good structured programming (Refs 2, 3, 4, and 5).

\section*{Take advantage of concurrency}

The next rule is unique to real-time work. Most often a task will specify that the operating system is to block the task until a requested service is completed. (If a

task needs input from a peripheral it usually cannot proceed until the input is available.) Thus, if we have Task TkAB designed as shown in Fig 2, the processor cannot even begin to get input B until it has finished with \(\mathbf{A}\). There is no problem if another task can keep the processor busy until \(\mathbf{A}\) comes in. But if there is no such task work to do, the processor must be idle. In that case, if the processing of \(\mathbf{B}\) does not depend upon \(\mathbf{A}\), a more productive organization would be that depicted in Fig 3. Now you are utilizing the benefits of task concurrency.

\section*{Respect differences in functional attributes}

The final category of rules provides the strongest constraints on tasking within a real-time application.

Every major function has three attributes that determine how it is to be implemented in terms of tasks. These are its method of activation, its level of urgency, and its time scale. The rules state that functions which do not have the same attributes should not be housed in the same task.

As a simple example, suppose that there were just one task for all emergency processing in a certain application. Suppose further that this task had already been started by a safety violation when a power failure occurs. Since the task is busy, it cannot be restarted immediately to respond to the power failure, even though power failure has the highest level of urgency. Unless you complicate the processing of safety violations by frequent checks for power failure, the system may shut down before the power failure interrupt is ever serviced.

To better appreciate these rules, you must understand the four basic ways in which a task can become active. The first could be called periodic self-activation. A task PdSA is started initially. (The details of the initial start are not relevant.) PdSA performs its part
of the application. When that function is complete, it issues an OS service call to terminate it with restart after a given interval (say, 15 msec) based on its last start time. Thus, PdSA takes the form of Fig 4.
MTOS-UX computes the time at which the task should be restarted as the sum of the last start time plus the given interval. If it is already at or past the restart time, the task begins immediately. Otherwise, the task is suspended until the computed time arrives. In either case, the task restarts back at its entry point, ready to begin a new cycle.
A. Obey the rules of structured design to help make the application easy to design, implement, test, and maintain:
1. Each main (functionally distinct) activity should be assigned to at least one separate task.
2. Closely related functions should be kept in the same task. "Closely related" means that they perform operations that must be logically consistent; that is, a change in one is likely to engender a change in the other. However, in cases where it is desired to perform the same function but other considerations dictate separate tasks, the desired consistency can be achieved by using common subprograms or even common task code.
3. It is preferable that functions that deal with the same inputs, data, or outputs be kept in the same task.
B. Try to keep the processor (or processors) always busy with productive work:
4. Try to isolate as a separate task any subfunctions that frequently encounter significant delays such as wait for peripheral I/O to be completed, pause to allow mechanical or electrical events to occur, and wait for information produced within another functional component.
C. Functions that have different attributes must be assigned to different tasks:
5. Functions that are initiated or coordinated by different means must be assigned to separate tasks.
6. It is preferable that functions that are initiated or coordinated by the same means must be assigned to the same task.
7. Functions that have significantly different levels of urgency must be assigned to separate tasks.
8. Functions that proceed at different time scales must be assigned to separate tasks.

Fig 1-Rules for real-time tasking serve as a general guideline. More specific rules would be hopelessly complex.

PdSA is a periodically active task, with 15 msec as its period. (Assume that PdSA runs at sufficiently high priority to complete its execution within the given interval.) It is self-activated; its own request to terminate carries with it the order for its next restart. Because PdSA starts itself, it does not receive any information when it begins. As you will see shortly, a task that is started at the request of another task may receive parameters, in a way analogous to a simple subprogram call.

An input scanning task (INPS) is usually periodic. Typically, it runs with a short interval (5 to 20 msec) and very high priority (200 to 250). It scans external inputs that are mapped into memory bits or are read from hardware ports. When it finds a change, INPS reports the change to other tasks by means to be described shortly. This arrangement allows INPS to complete the scan cycle quickly, leaving it to the other tasks to process the changes more slowly and with lower priority.

Another use for periodic tasks is for summary reporting. Now, a typical period is 1 hour to 1 day, and the priority is often rather low. (Commonly, all you need is sufficient priority to complete the processing before the time for the next cycle.) Such a task would produce a summary report and output it to a printer or to

Fig 2-Always try to keep the processor busy with productive work. In this example of serial processing of real-time inputs, the processor can't get input B until it has finished with A. If there is no other task to keep the processor busy until A comes in, then the processor will be idle. If the processing of B doesn't depend on A , the scheme shown here is wasteful.

Fig 3-Parallel processing of real-time inputs improves on Fig 2's serial approach. In this example, in which the processing of B doesn't depend on A, the processor can get B without waiting for A .
another computer. Input for such tasks is usually already in memory or is obtained from records left on a disk.
The scanning and reporting functions would have to be in separate tasks: by Rule 7 because they have different priorities and by Rule 8 because they have different time scales. If there were two different summaries produced, one output every 30 minutes and the other every hour, the designer would have a choice. On the one hand, two tasks may be the simpler and clearer arrangement (Rule 1). Furthermore, if there is appreciable peripheral input or output, Rule 4 would also favor two tasks so that one could proceed while the other waits for I/O. On the other hand, if both reports use similar data or similar algorithms, Rule 2 implies that both be produced in one 30 -minute task, with a counter to skip alternate periods for the hour report.

The description of the scanning task mentioned that it passes change-of-input information on to other tasks. One possibility is for INPS to have the OS start that other task. The MTOS-UX start service is the second method of task activation. It permits the requesting

Fig 4-Periodic self-activation is one way a task can become active. When the task completes its function, it issues a call to the operating system to terminate itself and to restart itself after a given interval, in this case 15 msec .
task to select a particular task to start (the "target," TskT), to pass parameters to TskT, to set the priority at which TskT begins to run, and to queue the start request automatically if TskT happens to be still running, among other options.

In embedded, realtime applications, all functions are somewhat intertwined.

It is quite common for fast, high-priority input-capture or preprocessing tasks to start other tasks that complete the processing at lower priority. Task INPS would normally select the target and its priority based on the type of input (Fig 5). For the start request to be honored immediately, the target task must be currently Dormant. Otherwise, the request is queued internally to be completed when the target terminates without timed restart; that is, via exit.

With start, activation involves the full restart of the target from its entry point. There is an alternate class of activations that do considerably less. To employ this class, TskT must be organized as a cyclic task, but not a periodic one (Fig 6). In this form, TskT never terminates. Instead, after a possibly empty initialization section, it enters an endless loop. It waits for input, using any of several mechanisms such as wait for any length message at a mailbox, wait for a 4 -byte or 6 -byte message at a message buffer, or wait for 1 to 16 bits of coordination data at an event-flag group. (Which mechanism to use is the subject of several subsequent parts of this series. At this point, our interest is only in the tasking, which transcends the details of the wait facility. To be concrete, we will employ a message buffer.)

If TskT reaches the wait before the message, the OS blocks it until the message arrives. If the message gets there first, it is queued awaiting the task. If need be, the message queue can be very long. Fig 7 gives the corresponding form for INPS. In the alternate formulation, activation means start the next cycle rather than start the whole task. That is a minor detail.

Of the two task couplings, message activation is faster than full start. Thus, for a scan-type task, the message is preferable.

There are also many cases in which start is the method of choice. Scan is special; it starts other tasks, but does not wait to coordinate with them. Suppose, however, that an application function is being proc-
essed by a certain task (TskO). At some point, the work is to be continued by one or more other tasks, say, for reasons of structural clarity (Rule 1) or improved CPU utilization (Rule 4). Often, TskO must know when these concurrent sections are completed. As Part 5 will show, start has the option of coordinating with the termination of the target task. Furthermore, it is easy to have TskO start several tasks, continue on, and later request that it be blocked until all those tasks have finished. It is not so easy to arrange this with messages alone. Thus, when coordination with the end of a subfunction is needed, start can have advantages over other tasking arrangements.

This discussion has still not exhausted the methods of activating a task available under MTOS-UX. This operating system contains a set of internal programs, known as drivers, that perform peripheral I/O. They service task-level requests for peripheral I/O. Drivers can also handle unsolicited input, such as text that is typed at a console without a corresponding read request having been given.

A common response to unrequested input is to activate a task to process it. Debuggers and command-line interpreters are often started in this way. Normally, the driver selects which task to start (if any) based on the first character of the unrequested text.

\section*{A simple tasking example}

You can illustrate the rudiments of task design by working out the tasking for the shared-bridge control system discussed in Part 3 of this series.

Assume that the four car-present sensors are

Fig 5-This typical input-scanning task is periodic. It runs every 15 msec , and it starts another task to process any change-of-input information.
mapped into a 4 -bit register. On some computers the register value would be input by reading a "port"; on other computers the same value would be obtained by reading a certain location in memory. In each case, a bit value of 1 means that a car is over the sensor, while a 0 means that no car is present. You also know that typically when a car passes over a sensor, the bit is on for 100 to 300 msec . However, the beginning and end of the on period is somewhat ragged so that smoothing is needed to prevent counting a noise spike as a car.

A good way to handle noisy data input is to have a cyclic scanning task that reads the status bit for each sensor, performs data smoothing, and presents the other tasks with a consistent view of the sensor inputs. Note that the input scanning function is assigned to a separate task since it is the only function that deals

Fig 6-A cyclic task never terminates. In this example, it simply waits for input-in this case a message in a buffer-from another task. Use of this cyclic task contrasts with the approach taken in Fig 5, in which an input-processing task gets restarted with each new input.

Fig 7-This message-based formulation of an input task passes a message regarding changed inputs to the processing task of Fig 6.
directly with the raw sensor inputs (Rule 3). It is also the only function that must act periodically (Rule 6). However, the sampling time scale for each sensor is the same, and it is preferable to synchronize all changes of sensor data. Applying Rules 2, 3, and 6, there will be only one scanning task ('SCAN') that runs, say, every 20 msec .

You now have to decide whether there will be one or two tasks to perform the main control functions. On the one hand, if you consider control of the leftbound and right-bound traffic as closely related functions, they should be kept in the same task (Rule 2). On the other hand, if you consider the control of each side as functionally distinct activities, by Rule 1 they should be in separate tasks. The requirements model strongly suggests separating each direction; this example will follow that suggestion. Consequently, tasks \(\mathbf{C} _\)LB and \(\mathbf{C} _\)RB will control left-bound and rightbound traffic, respectively. You can make sure that the two control algorithms are kept consistent by calling common subprograms from the two separate tasks.

The two control tasks will compete for the right to send cars over the bridge. The competition will involve gaining exclusive access to the bridge, as represented by the semaphore ACCS. While either task is waiting for the semaphore, it cannot be restarted to maintain its corresponding Cars tally. However, you can easily assign maintenance of the Cars tallies to task SCAN.

The value of the Cars tallies will change asynchronously with respect to any actions that tasks C_LB and C_RB may be taking. Hence, the control tasks must be careful how they use the information within the tally for its direction. Fortunately, what a control task is really interested in is not the value of the tally per se, but in the binary information: Is the tally zero or nonzero? For example, C \(_\)RB must become active when LB_Cars becomes nonzero (that is, when the first left-bound car approaches the bridge). Later, C_LB needs to wait until LB_Cars becomes zero again

Fig 8-Tasking and coordination are at the heart of controller applications. This example shows tasks that control left-bound and right-bound traffic on a l-lane bridge. Event-flag group 'STAT' keeps a tally of cars. Semaphore 'ACCS'-which only one task at a time can "own"-grants task access to the bridge.
(signifying that the last left-bound car has cleared the bridge). As a result, you can hide the actual tallies within task SCAN and employ only the binary zero/ nonzero information for coordination.

MTOS provides an easy mechanism to have a task

> A common response to unrequested input is to activate a task to process it.

wait until a binary bit is set: the event-flag group. You can create an event-flag group (STAT) within which you assign two bits for each direction. SCAN sets one bit when the corresponding tally is zero and the other when the tally is nonzero. (The event-flag wait function only waits until flags are set; there is no wait until reset. This restriction is easily overcome with dual bits.)

Fig 8 pictures the overall tasking and coordination mechanisms for the shared-bridge control application. Fig 9 shows a more detailed implementation model for the LB control task. (The corresponding RB task would

Fig 9-This implementation model shows details of a task that controls leftbound traffic on a 1-lane bridge. The details are hidden in Fig 8, which shows only overall tasking and coordination.
use bits 2 and 3 of STAT.) The implementation model for the SCAN task is outlined in Fig 10. To complete the tasking, there would normally be an initialization task (INIT) whose only function is to create all the support objects for the application (ACCS, STAT, C_LB, and C_RB), start the other tasks, and then terminate itself (Fig 11).

\section*{More tasking examples}

Available literature on the subject of tasking has not been generous in supplying examples of the steps that lead to a design model for real-time applications. An exception is a detailed description of the design of a robot controller presented by H Gomma (Ref 6). In this example, Gomma employs his "Design Approach for Real-Time Systems" (DARTS).
DARTS starts with a requirements model formu-

Fig 10-Details of the scanning task that appears only as a block in Fig 8, are shown in this implementation model.
lated as a data-flow diagram. The diagram shows data stores (repositories) connected through transformations that carry out the functions of the system. The transformations must be analyzed to determine which of them may run concurrently and which must be run sequentially. Gomma gives six rules to help guide the analysis. Gomma's rules are not identical to those given in Fig 1. Nevertheless, they seem to arise from similar experiences and are generally alternate statements of equivalent concepts.

In summary, tasking includes both the distribution of the functions specified in the requirements model among concurrent programs (tasks) and the selection of the coordination mechanisms among the tasks. Tasking is the central issue in the design of a real-time application.
There are eight heuristic rules that can guide the functional distribution (Fig 1). These rules have been employed to outline a design model for the sharedbridge example from Part 3 of this series. A pictorial representation of the resulting design hides the details of the required OS services until they can be described in subsequent parts.

This part of the series has introduced some of the factors that a designer must consider in planning the tasking of a real-time application. A full appreciation of the options available requires much more knowledge of the facilities provided by the OS. The remainder of the series is concerned with these issues.

EDN

\section*{References}
1. Ripps, David L, "Help a Real-Time Multitasking OS by Carefully Defining Each Task," Electronic Design, June 21, 1979.
2. DeMarco, T, Structured Analysis and System Specification, New York: Yourdon Press, 1978.
3. Parnas, D L, "On the Criteria to Be Used in Decompos-

Fig 11-The initialization task creates all the elements of Fig 8's overall tasking and coordination and then terminates itself.
ing Systems into Modules," CACM, December 1972.
4. Page-Jones, M, The Practical Guide to Structured Systems Design, 2nd ed, New York: Yourdon Press, 1988.
5. Yourdon, E and L Constantine, Structured Design, Englewood Cliffs, NJ: Prentice Hall, 1979.
6. Gomma, H, "A Software Design Method for Real-Time Systems," CACM, September 1984.

\section*{Companion disk offer}

All of the C examples in this series, plus applications of your own, can be run on a PC with a set of demonstration disks available from Industrial Programming Inc. The disks contain a full version of MTOS-UX for an IBM PC/AT or compatible. An application program is edited, compiled, linked, and loaded under MSDOS. The MTOS-UX then takes over the hardware to execute the
program in real time. At any time, you can enter an alt/dlt command from the console to return control to MS-DOS.
The demonstrator requires an AT with at least 512 k bytes of RAM and a hard disk with 2 M bytes available for MTOS libraries and scratch storage. Program preparation requires the Microsoft C compiler/linker, version 5.0 or later. Microsoft tools are not
included with the MTOS-UX demonstrator.
The demonstrator version has all of the features and facilities of standard MTOS-UX. However, there is a limit of six of each type (six tasks, six mailboxes, six semaphores, and so forth). The disk set costs \(\$ 25\); unlimited versions are also available. For more details, call the IPI sales department at (800) 365-6867.

\section*{A true leader}

dilaitial DECseacion 5000/200

The UNIX based DECstation \({ }^{\text {TM }} 5000\) Workstation

\section*{leads by example.}

\section*{Example \#1: Performance}

No matter how you measure it, Digital's DECstation 5000 workstation leads all others in performance. Whether it's raw CPU performance, 2D or 3D graphics speed, or price/performance, the DECstation 5000 workstation comes out ahead. In fact, for overall performance, nothing else is close. And we've got the numbers to prove it.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l}
PERFORMANCE \\
COMPARISON \\
CHART (1)
\end{tabular} & \begin{tabular}{c}
SUN \\
SPARCstation 1+
\end{tabular} & \begin{tabular}{c}
IBM \\
\(320 / 520\)
\end{tabular} & \begin{tabular}{c}
DECstation \\
5000 cx
\end{tabular} \\
\hline \begin{tabular}{l}
Graphics \& \\
Windowing (2)
\end{tabular} & 0.24 & 0.71 & 1.59 \\
\hline Integer & \(1.04(3)\) & 1.34 & 1.61 \\
\hline \begin{tabular}{l}
Floating \\
Point
\end{tabular} & \(1.10(3)\) & 2.6 & 1.7 \\
\hline \begin{tabular}{l}
Overall \\
Performance
\end{tabular} & 0.65 & 1.35 & 1.63 \\
\hline
\end{tabular}
(1) All data normalized to DECstation 3100 . Comparable configurations tested. Geometric mean used to combine results. Performance will vary depending on applications and environment. (2) Graphics and
windowing data measured using X11pert benchmark. CPU Integer and Floating Point performance measured from running SPEC V1.0 workload. (3) SPEC performance estimate based on SUN \(4 / 330\) resuls measured from running SPEC VI. Inc.

UNIX based applications, including the industry's most popular MCAD and EDA applications. Example \#3: PowerFrame \({ }^{\text {TM }}\) for Design Integration. With Digital's PowerFrame design framework, you can easily integrate the DECstation 5000 workstation with your existing UNIX based EDA and MCAD systems. PowerFrame is the most widely used framework for heterogeneous design management. And, of course, as the leader in integrated multi-vendor
networked computing, you can count on Digital for full service and support. We can help you design, implement and maintain an engineering computing strategy that capitalizes on today's technol-

ogy, while keeping your options open for the future.

For your copy of benchmark test results and a list of available applications, call 1-800-343-4040, ext. 970. These are filled with examples of what you expect from
a leader.

Digital

\author{
has it now.
}

\section*{Example \#2:}

\section*{UNIX based Applications}

When you run with the leader, you know you're in good company. The DECstation 5000 workstation runs more than 1,500

EZ-Pro \({ }^{T M} 1.5\) price performance leader for 8-bit in-circuit emulation.

Power in selection-System support for more processors than any other manufacturer in the world. Power in product range to match your needs-from economical basic configurations to fully featured systems.

Power in performance-Completely integrated capabilities include options such as versatile trace, performance analysis, EPROM programming, C source level debugging, over 100 personality modules with a common universal platform for different processors, C cross compilers, cross assemblers and more.

Power without compromise-All invented here. Supported here. And available to rent or purchase now.

\section*{Free Demo Disk!}

See how easily you can use these sophisticated development tools. Our marketing department will ship your demo disk today. Please Call:

\section*{(714) 731-1661} onaicen auhomakon

\section*{DESIGN IDEAS}

\section*{EDITED BY CHARLES H SMALL \& ANNE WATSON SWAGER}

\section*{Commutating amp multiplies precisely}

\section*{Moshe Gerstenhaber and Frank J Ciarlone Analog Devices, Wilmington, MA}

By using a pulse-width-height modulation technique, the circuit in Fig 1 implements a \(0.015 \%\)-accurate multiplier. The circuit's output equals \(\mathrm{V}_{\mathrm{X}} \mathrm{V}_{\mathrm{Y}} / 10\). An AD581 voltage reference, an AD630 commutating amplifier, and an integrator comprising an AD707 op amp, 2000pF capacitor, and \(150-\mathrm{k} \Omega\) resistor first generate a precision triangle wave. For a given state of the AD630's output- \(+\mathrm{V}_{\mathrm{REF}}\) at \(\mathrm{TP}_{1}\), for example-the integrator ramps until its output reaches -11 V . Then, \(\mathrm{TP}_{1}\) changes state and the integrator begins ramping toward +11 V . The triangle wave's period is 4.4 RC or 1.32 msec , where R and C are the values of the integrator components.

The circuit uses a second AD630 driven by the variable \(\mathrm{V}_{\mathrm{X}}\) to compare the triangle waveform at \(\mathrm{TP}_{2}\) to the signal at \(\mathrm{V}_{\mathrm{Y}}\). The duty cycle, \(\mathrm{T}_{1}+\mathrm{T}_{2}\), at the output
of this second commutating amplifier is as follows:
\[
\begin{gathered}
\mathrm{T}_{1}=2 \mathrm{RC}\left(11-\mathrm{V}_{\mathrm{Y}}\right) / 10, \text { and } \\
\mathrm{T}_{2}=2 \mathrm{RC}\left(11+\mathrm{V}_{\mathrm{Y}}\right) / 10 .
\end{gathered}
\]

During \(\mathrm{T}_{1}\), the voltage at \(\mathrm{TP}_{4}\) equals \(-1.1 \mathrm{~V}_{\mathrm{x}}\). During the remaining period, \(\mathrm{T}_{2}\), the pulse height will equal \(+1.1 \mathrm{~V}_{\mathrm{X}} . \mathrm{V}_{\text {out }}\) is the average, obtained by lowpass filtering, of this \(T_{1}\) and \(T_{2}\) combined waveform and equals
\[
\mathrm{V}_{0}=\frac{-1.1 \mathrm{~V}_{\mathrm{X}} \mathrm{~T}_{1}+1.1 \mathrm{~V}_{\mathrm{X}} \mathrm{~T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{2}}=\frac{\mathrm{V}_{\mathrm{X}} \mathrm{~V}_{\mathrm{Y}}}{10}
\]

You can use a higher bandwidth filter and a higher carrier frequency to build a faster multiplier.
(EDN BBS /DI_SIG \#900)
EDN

To Vote For This Design, Circle No. 746

Fig 1-Two commutating amplifiers join a reference, an integrator, and a 4-pole filter to implement a \(0.015 \%\)-accurate multiplier.

\section*{RAM test program prevents crashes}

\author{
Christopher M Petersen \\ Applied Biometrics Inc, Eden Prairie, MN
}

Most embedded systems must perform power-on self tests to ensure their integrity. Testing the RAM is a significant part of this procedure. One major difficulty with the RAM test is that the same RAM under test is used simultaneously by the system. A crash can occur if the program or stack tries to use a location that is currently under test. Writing a C program to adequately test RAM while not using the stack or any memory for variable storage is virtually impossible.
A solution is to use a routine (Listing 1) that doesn't use the stack, holds all working variables in registers,
and restores the RAM to its original state after the test. You can call the 8088 assembly language program from C to test a 64 k block of RAM located anywhere in memory. You must shut off all interrupts before beginning the test. Listing 1's programming concept is also valid for use with any high-level language using a CPU that has a number of general-purpose registers.
(Ed Note: To download Listing 1 directly, use the EDN Bulletin Board System.)
(EDN BBS /DI_SIG \#897) EDN

\section*{Listing 1-RAM Test Program}
. MODEL SMALL
. CODE
The following procedure performs a test of memory.
; Calling format from \(C\) is:
; int ramtest(unsigned int segment, unsigned int offset_start,
unsigned int offset_stop);
; Return codes: 0-no error, 1-error occurred
; Notes:
; o The first memory location is used to detect addressing problems.
- The last memory location tested is offset stop - 1 .
- This routine is limited to testing one \(64 \overline{\mathrm{k}}\) segment at a time. Use
multiple calls to test larger memory arrays.
- All interrupts must be turned off before running this procedure.
o offset_stop - offset_start must be greater than 1.
;
; Register usage:
; ds Segment of memory to be tested
; bx Current location of test
; \(d x\) Ending location of test
; ax Used to move and compare data
; ch Save data under test for later restoration
; cl Save first byte (used for detection of addressing errors)
; di Starting location of test
; bp Pointer to stack
;
```

                    PROC - ; Program begins here
                            push di ; Save registers used by module
                            push bp
                    push cx
                    push ds
                    push dx
                    mov bp,sp ; Get stack pointer
                    mov ax,[bp+12] ; Get segment off of stack
                    mov ds,ax ; Set segment register
    ```

\section*{DESIGN IDEAS}

\section*{Listing 1-RAM Test Program (continued)}

\section*{DESIGN IDEAS}

\section*{Three ICs produce pure sine waves}

\section*{Bruce Saldinger \\ Maxim Integrated Products, Sunnyvale, CA}

A TTL counter, an 8-channel analog multiplexer, and a fourth-order lowpass filter can generate 1 - to \(25-\mathrm{kHz}\) sine waves with a THD better than -80 dB (Fig 1). The circuit cascades the two second-order, continuoustime Sallen-Key filters within \(\mathrm{IC}_{3}\) to implement the fourth-order lowpass filter. Two resistive dividers connected from ground to \(\mathrm{V}_{\mathrm{DD}}\) and ground to \(\mathrm{V}_{\mathrm{SS}}\) provide bipolar dc inputs to the multiplexer.
To operate the circuit, you first must choose the filter's cutoff frequency, \(\mathrm{f}_{\mathrm{C}}\), by tying \(\mathrm{IC}_{3}\) 's \(\mathrm{D}_{0}\) through \(\mathrm{D}_{6}\) inputs to 5 V or ground. The cutoff frequency can be at 128 possible levels between 1 and 25 kHz depending on those seven digital input levels. Because Fig 1 ties \(\mathrm{D}_{0}\) through \(\mathrm{D}_{6}\) to ground, \(\mathrm{f}_{\mathrm{C}}\) equals 1 kHz . The \(100-\mathrm{kHz}\) potentiometer adjusts the output level anywhere from 1.5 V below \(\mathrm{V}_{\mathrm{DD}}\) to 1.5 V above \(\mathrm{V}_{\mathrm{SS}}\).

The clock input frequency must be eight times higher than the filter's \(\mathrm{f}_{\mathrm{C}}\). The multiplexer then produces an eight-times oversampled staircase approximation of a sine wave. Eight-times oversampling greatly simplifies the smoothing requirements of the lowpass filter by
pushing the first significant harmonic out to seven times the fundamental. All higher-order harmonics are removed by \(\mathrm{IC}_{3}\), which includes an uncommitted amplifier for setting the output level.

Fig 2's scope photo illustrates the effect of filtering

Fig 1-The output of Fig 1's multiplexer (trace A) emerges from the lowpass, continuous-time filter as a clean sine wave (trace \(B\)).

Fig 2-This circuit produces a pure, \(-80-\mathbf{d B}\) THD sine wave with a frequency equal to the \(f_{C}\) of \(I C_{3}\) 's filter.

Truly incredible... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only \(\$ 19.95\). So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a \(-55^{\circ}\) to \(+85^{\circ} \mathrm{C}\) span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR
Insertion loss, typ (dB)
Isolation, \(\operatorname{typ}(\mathrm{dB})^{\star}\)
1 dB compression, typ (dBm @ in port)
RF input, max dBm
(no damage)
VSWR (on), typ
Video breakthrough
to RF, typ (mV p-p) Rise/Fall time, typ (nsec)
\begin{tabular}{lll}
dc- & \(500-\) & \(2000-\) \\
500 MHz & 2000 MHz & 5000 MHz \\
0.9 & 1.3 & 1.4 \\
50 & 40 & 28 \\
20 & 20 & 24 \\
22 & 22 & 26 \\
& 1.4 & \\
\hline & 30 & \\
& 3.0 & \\
\hline
\end{tabular}
\(\star\) typ isolation at 5 MHz is 80 dB and decreases
\(5 \mathrm{~dB} /\) octave from \(5-1000 \mathrm{MHz}\)

\section*{DESIGN IDEAS}
a \(1-\mathrm{kHz}\) output from the multiplexer. The frequency domain offers another view of the filter's operation. Smaller harmonics in the multiplexer's output spectrum (Fig 3a) caused by inaccuracies in the voltage dividers are insignificant with respect to the largeramplitude harmonics associated with the staircase ap-
proximation. In the filtered output (Fig 3b), all harmonics are lost in the noise floor of the spectrum analyzer. (EDN BBS /DI_SIG \#898)

EDN

To Vote For This Design, Circle No. 748

Fig 3-The circuit's approximation process generates large harmonics in the multiplexer's output spectrum (a), which the filter attenuates to below the spectrum analyzer's noise floor (b).

You don't need a forklift, a strong back, and a keen sense of balance to put an entire microwave lab on your desk.

All you need is CAE design software from EEsof.

Our tools realistically simulate just about every piece of equipment in the lab-right there in your very own office. From devices to circuits to subsystems.

You'll be able to create better products with more functions and higher yields. Explore new concepts. Work on projects that wouldn't even be pos-
sible if you relied solely on the lab.
And you'll do it fast. From idea to finished prototype in days or weeks instead of months or years.

EEsof's business is software.
We've been the leader in microwave software tools since 1984 when our first product, Touchstone®, freed you from mainframe, timeshared computing and let you design with a desktop workstation.

Today, our family of products, integrated through ACADEMY \({ }^{\text {mo }}\) into
one microwave design framework, reduces manufacturing costs, increases yields, and slashes adjustment, testing, and design time.

Call EEsof at 1-800-624-8999, ext. 155 or FAX us at 1-818-9917109. We'll send you all the facts on our microwave CAE design tools.

That way the only things stacked up on your desk will be letters of praise from all of your customers.

EEתof

\section*{Models exhibit saturation and hysteresis}

\author{
Donald B Herbert \\ Consultant, Lomita, CA
}

Many commercial versions of Spice2 include nonlinear transformer models, but Berkeley Spice has no such provision. You can build nonlinear-transformer models for use with Berkeley Spice using other built-in elements. Fig 1 and Fig 2 model 2- and 3-winding transformers that feature both saturation and hysteresis. Each of these transformers uses a basic core model (Fig 3). You must supply the models with four parameters: turns ratio, core-loss conductance, magnetizing inductance, and saturation current. All four parameter values are programmed external to the transformer model in the polynomial-controlled-sources feature in Spice2.

Fig 1 and Fig 2 show common equivalent circuits and their accompanying Spice2 listings for 2- and 3-
winding ideal linear transformers, respectively. The secondary voltages developed by the E voltagecontrolled voltage sources are related to the primary voltages by the product of the turns ratio. Likewise, the primary currents developed by the F currentcontrolled current sources are related to the secondary by the product of the turns ratio. You specify your particular turns ratio with an externally applied voltage which is typically constant.

These Spice models implement the voltage-controlled turns ratio by using product terms in the polynomial expressions for the controlled E and F sources. For example, the 2-dimensional polynomial P4 controls source ES in the secondary of the 2 -winding transformer model. ES is a function of two voltage variables. The model defines the P4 coefficient term as the only nonzero term in the polynomial expression. This term forms the product \(\mathrm{V}(5) \cdot \mathrm{V}(1,2)\). The node voltage \(\mathrm{V}(5)\)

Fig 1—The voltage at node 5 controls the turns ratio of this 2-winding transformer equivalent circuit (a) and Spice model (b).

is the turns ratio by definition and \(\mathrm{V}(1,2)\) is the voltage across the primary. Fig 1's listing sets P4 to unity.

Similarly, the current in the primary's currentcontrolled current source, FP, is the product \(1 \mathrm{MEG} \cdot \mathrm{I}(\mathrm{VSENS}) \cdot \mathrm{I}(\mathrm{VS})\) where P4 is 1MEG. The independent sources, VS and VSENS, sense current and consequently have voltage values of zero. Because the current in VSENS is V(5)/1MEG, the current product is equal to \(\mathrm{V}(5) \cdot \mathrm{I}(\mathrm{VS})\), which is the product of the turns-ratio voltage times the secondary current. In Fig 2's 3-winding model, FP forms the sum of the two turns-ratio secondary-current products by the use of a 3-dimensional polynomial function.

Both Fig 1 and Fig 2 use a subcircuit model for a saturating core with hysteresis. Fig 3's core model
uses an integrator comprising G6 in parallel with C6 to develop an equivalent magnetizing inductance (LM) equal to \(\mathrm{C} 6 \cdot \mathrm{RL} / \mathrm{V}(3)\). The model defines the \(\mathrm{C} 6 \cdot \mathrm{RL}\) product as unity. Therefore, \(\mathrm{LM}=1 / \mathrm{V}(3) . \mathrm{V}(3)\) is an externally applied dc voltage. Current-controlled current source FLM implements the magnetizing current \(\mathrm{I}(\mathrm{VLM})\) in the transformer primary winding. \(\mathrm{V}(6)\) is the integral of the primary voltage that develops across the magnetizing inductance, and \(\mathrm{V}(6) / \mathrm{RL}\) is the magnetizing current.

The diode-limiter circuit models the core's saturation. The core saturates when \(\mathrm{V}(6)\) is less than \(-1000 \cdot \mathrm{~V}(5)\) or greater than \(1000 \cdot \mathrm{~V}(5) . \mathrm{V}(5)\) is an externally applied voltage equal to the specified or measured core saturation current in milliamperes. When
(a)

* NODES: PRI + PRI - SEC1 + SEC1 - SEC2 + SEC2 - V=RATIO 1/LM GL ILSAT
* NODES: PRI + PRI - SEC1 + SEC1 - SEC2 + SEC2 - V=RATIO 1/LM GL ILSAT
* TRANSFORMER MODEL WITH 3 WINDINGS - A PRIMARY AND TWO
* TRANSFORMER MODEL WITH 3 WINDINGS - A PRIMARY AND TWO
* SECONDARY WINDINGS. (ADD WINDING RESISTANCE, LEAKAGE INDUCTANCE,
* SECONDARY WINDINGS. (ADD WINDING RESISTANCE, LEAKAGE INDUCTANCE,
* ETC. EXTERNALLY.) THE TURNS RATIO FROM THE PRIMARY TO EACH
* ETC. EXTERNALLY.) THE TURNS RATIO FROM THE PRIMARY TO EACH
* SECONDARY IS DETERMINED BY THE VOLTAGE APPLIED TO NODE }8
* SECONDARY IS DETERMINED BY THE VOLTAGE APPLIED TO NODE }8
* E.G., WHEN NODE 8 IS AT FOUR VOLTS, EACH SECONDARY WINDING HAS
* E.G., WHEN NODE 8 IS AT FOUR VOLTS, EACH SECONDARY WINDING HAS
* FOUR TIMES AS MANY TURNS AS THE PRIMARY.)
* FOUR TIMES AS MANY TURNS AS THE PRIMARY.)
* A CORE MODEL IS CONNECTED FROM THE PRI + NODE TO PRI- NODE
* A CORE MODEL IS CONNECTED FROM THE PRI + NODE TO PRI- NODE
* TO INCLUDE NONLINEAR INDUCTANCE WITH SATURATION AND HYSTERESIS.
* TO INCLUDE NONLINEAR INDUCTANCE WITH SATURATION AND HYSTERESIS.
* V(13) IS EQUAL TO THE RECIPROCAL OF THE MAGNETIZING INDUCTANCE
* V(13) IS EQUAL TO THE RECIPROCAL OF THE MAGNETIZING INDUCTANCE
* (1/H), V(14) IS THE CORE LOSS CONDUCTANCE IN MHOS, AND V(15) IS
* (1/H), V(14) IS THE CORE LOSS CONDUCTANCE IN MHOS, AND V(15) IS
* THE CORE SATURATION CURRENT IN MA.
* THE CORE SATURATION CURRENT IN MA.
FP 1 2 POLY(3) VS1 VS2 VSENS 0.0 0.0 0.0 0.0 0.0 0.0 1MEG 0.0 1MEG
FP 1 2 POLY(3) VS1 VS2 VSENS 0.0 0.0 0.0 0.0 0.0 0.0 1MEG 0.0 1MEG
R 8 9 1MEG
R 8 9 1MEG
VSENS 90
VSENS 90
VS1 11 3
VS1 11 3
VS2 12 5
VS2 12 5
ES1 11 4 POLY(2) 1 2 2 8 0
ES1 11 4 POLY(2) 1 2 2 8 0
ES2 12 6 POLY(2) 1 2 8 0 0.0 0.0 0.0 0.0 1.0
ES2 12 6 POLY(2) 1 2 8 0 0.0 0.0 0.0 0.0 1.0
* REFERENCE TO THE NONLINEAR CORE SUBCIRCUIT MODEL
* REFERENCE TO THE NONLINEAR CORE SUBCIRCUIT MODEL
XCORE 1. 2 13 14 15 CORE
XCORE 1. 2 13 14 15 CORE
(b)

Fig 2-The Spice2 model and listing of this 3-winding transformer and the model in Fig 1 use 2-dimensional polynomials to implement the voltage-controlled turns ratio.

(Otherwise known as how to clean up in multimedia.)

Finally there's a processor that's fast enough for the next generation of multimedia computers. Introducing the 96002 Media Engine" from Motorola. With a peak performance of 200 million operations per second (MOPS) at 40 MHz , the 96002 has no equal. It includes a high performance IEEE floating point engine. And more importantly, four independent function units and dual ports for
extremely high parallelism. Which means it can handle image processing or graphics and stereo audio simultaneously.

And instantaneously.
To learn more, call 512-891-3230. With 200 MOPS you'll clean up faster than anybody.

\section*{DESIGN IDEAS}
the core saturates, the magnetizing inductance reduces to approximately LM/1000. The transconductance source GCLOSS models the core-loss conductance. This source's current I(GCLOSS) equals \(\mathrm{V}(1,2) \cdot \mathrm{V}(4)\). Because the voltage at nodes 1 and 2 is the same, GCLOSS equals V(4), also an externally dc voltage. Core-loss conductance determines the hysteresis of the core, and is typically a function of the frequency of operation.

The primary function of the three \(1000-\mathrm{M} \Omega\) resistors R3, R6, and R45 is to satisfy Spice's requirement for a minimum of two elements connected to each node and a dc path to ground for every node. The parallel
combination of R6 and C6 forms a first-order lag circuit with a corner at \(1 \mathrm{mrads} / \mathrm{sec}\). However, the parallel combination of G6, C6, and R6 looks like an integrator at frequencies of 10 MHz and higher. Because of R6's high value, it has minimal effect on the response of the integrator and provides for good de and transient solution convergence.
An example of the use of these model is a full-wave rectifier circuit (Fig 4). (EDN BBS /DI_SIG \#901)

To Vote For This Design, Circle No. 749

Fig 3-This saturating-core equivalent circuit (a) and model (b) include components that simulate core-loss conductance, magnetizing inductance, and current saturation using externally supplied dc voltages.

\section*{DESIGN IDEAS}
(a)

```

    FULL-WAVE RECTIFIER CIRCUIT EXAMPLE
    * SINUSOIDAL INPUT WITH AN AMPLITUDE OF }100\mathrm{ VOLTS-PEAK AT 2OKHZ
    VIN 1 O SIN ( (0 100 20K 0 0)
    RS 1 7 1600
    D1 8 2 DD
    D2 9 2 DD
    RL 2 0 10K
    XFORMER 7
    * SET TURNS-RATIO=0.25
    VRATIO 3 0 DC 0.25
    * SET RECIPROCAL MAGNETIZING INDUCTANCE TO 40 (LM=0.025H)
    VLM 4 0 40
    * SET CORE-LOSS CONDUCTANCE TO 0.2MMHOS
    VGL 5
    * SET CORE SATURATION CURRENT TO 20MA
    VSAT 6 0 20
    .MODEL DD D
    .TRAN 0.5US 100US 0.0 0.5US
    .PRINT TR V(8) V(9) V(7) V(2)
    (b) * INCLUDE CORE AND THREE-WINDING TRANSFORMER MODELS HERE

```

Fig 4-Nonlinear core and transformer models are useful for modelling this full-wave rectifier circuit (a) and Spice code (b).

\section*{PROM state machine adds outputs and states}

\author{
James C Vandiver \\ Vandiver Electronics, Huntsville, AL
}

The familiar PROM state machine in Fig 1, although inexpensive and easy to reprogram during development, has its restrictions. The circuit has only 8 bits to distribute between both outputs and state feedback lines. Generation of the data table for programming this circuit can also be tricky because output and nextstate data must be contained in the same bytes.
By adding another latch and a flip-flop, Fig 2's circuit makes better use of the PROM address space by using
both phases of the clock. This 2 -phase state machine has eight outputs and allows for 256 possible states. Note that the size of the PROM limits the number of state transitions allowed in the table. Programming Fig 2's circuit is also easier because of the separation of the state and output data into odd and even bytes.
The flip-flop generates a 2 -phase clock for alternately latching state and output bytes. The circuit stores these state and output bytes in odd and even addresses, respectively. The flip-flop's Q output controls the least-significant address bit, \(\mathrm{S}_{0}\), to select either state or output data for latching. Address bits \(S_{1}\)

\section*{DESIGN IDEAS}
through \(\mathrm{S}_{8}\) are used for state feedback, and the higher address bits are used for inputs. As the input bits change, the machine addresses different parts of its state transition table, changing state and outputs as programmed with each 2 -phase clock cycle. The input bits are synchronized with the state-latch clock so that the PROM address lines are stable while the circuit accesses a new state or output byte.

Many variations of this circuit are possible. You can expand the number of outputs by generating a 4-phase clock and adding two more latches. Or you can replace the PROM with an appropriately controlled and buffered RAM or EEPROM to provide for quicker changes
to the state-transition and output tables. Almost any assembler can generate the state and output tables for this state machine if you first use the "define byte" or "define word" assembler directives and type the table in with an editor. The assembler can then use this text file to generate a hex or binary file for loading into the state machine PROM. The most important point to remember when setting up the state table is to fill unused bytes with the default values you need to allow proper start-up of the machine.
(EDN BBS /DI_SIG \#899)
コDN

To Vote For This Design, Circle No. 750

Fig 1-This simple state machine is limited to 8 bits for both output and state-feedback lines.

Fig 2-By adding a latch and a flip flop, this 2-phase state machine uses both clock edges to make better use of the PROM address space.

\section*{ALMAC}

BRILL
CARTEN CHELSEA
ERC

\section*{ELECTRONIC SUPPLY}

HALL-MARK
Hamiltonbunet

\section*{HARPER}
NEWARK
ELECTRONICS
ohm/electronics
Eyioneer

\begin{tabular}{|c|c|}
\hline Schweber & LEX \\
Lex Electronics & \(\overline{\text { skevict }}\) \\
\hline
\end{tabular}
tif
Bourns Surface Mount Trimmer Design Kit Available From These Distributors

COPYRIGHT © 1990, BOURNS, INC. 7/90

\title{
"IT'S \\ YOUR CHOICE"
}

Which surface mount trimmer is right for your job?
To be sure, you need working samples. Complete specifications. Application details. So Bourns Trimpot makes it easy with its new Surface Mount Trimmer Design Kit.

Everything you need to prototype and test is in one place. Pick from over 200 surface mount trimmers in the most popular sizes, styles and resistance values. Check the specs. Verify the soldering process. All with one convenient kit . . . the industry's first.
Order your kit today from your Bourns distributor. It's the right choice.

\section*{DESIGN IDEAS}

\section*{Simple supply powers large LCDs}

\author{
Don Sherman \\ Maxim Integrated Products, San Jose, CA
}

Laptop computers often use large-screen LCDs, which require a variable and a negative supply to ensure maximum contrast. The circuit in Fig 1 operates from the system's positive battery supply and generates a digitally variable negative voltage to drive the display.

Fig 1's switching regulator creates a negative voltage from the battery supply. The microprocessor data bus drives a 4 -bit DAC, which in turn varies the actual regulator output from -6.5 to -11.5 V . This arrangement allows a staircase of 16 possible voltages between these limits. The circuit implements the DAC by using the rail-to-rail output-drive capability of a 74 HC -series CMOS gate. A resistor divider network formed by the \(240-\mathrm{k} \Omega\) resistor connected to the -V filter capacitor and the resistors referenced to the 5 V supply control the MAX635 regulator. When the voltage at the \(\mathrm{V}_{\mathrm{FB}}\) pin is greater than ground, the switching regulator
turns on and stores energy in the inductor. The inductor then dumps this energy into the -V filter capacitor. When the voltage at \(V_{F B}\) is less than ground, the regulator skips a cycle. The MAX635 regulates the voltage at the junction of the resistor divider to 0 V . Thus, any resistor that the DAC connects to ground (logic 0) will not contribute any current to the ladder. Only the resistors that are at 5 V (logic 1) will be part of the voltage-divider equation.
The entire switching-regulator supply draws less than \(150 \mu \mathrm{~A}\). You can place the circuit in an even lower power mode by interrupting the ground pin. The highcurrent path is from the battery input through the internal power P-MOS FET to the external inductor. Disconnecting the ground connection simply disables the gate drive to the FET and turns off the internal oscillator. (EDN BBS /DI_SIG \#881)

EDN

To Vote For This Design, Circle No. 803

Fig 1-Using a resistor-ladder DAC and a voltage regulator IC, this circuit uses the system's positive battery supply to generate a digitally variable negative voltage.

2ioidsomputerbased Printed Circuit Printed Circuit board design system with many advanced features capable of outperforming most Workstation-based CAD systems-ata fraction of the cost.

As the most productive PC based board CAD system available today, PADS-2000 can handle even the most complex designs including: double sided surface mount boards, mixed technology boards, high speed designs and layouts exceeding 2000 IC's.

PADS-2000 design functionality includes:
- Over 11,000 parts/32,000 connections
- 1 micron Resolution
- True T-Routing capability
- Intelligent Copper Pour feature leaving isolated tracks and pads
- \(0.1^{\circ}\) parts/pads rotation
- Extensive Macro capability
- Digital, Analog and Critical Circuit autorouters

- On-line and Batch Design Rule Checking
- Instant track/segment length measurement
- Complete Forward/Backward ECO capability
- Uses 32 bit/386 native code for increased speed and functionality
- Easy-to-learn and Easy-touse
See Us at WESCON, Booth \#334

Call today for a demonstration at your local authorized CAD Software Dealer, or for a NOCOST Evaluation Package.

Ask about our affordable Leasing Plan.

Call Today
Inside MA:
(508) 486-8929

Outside MA:
(800) 255-7814

(A)
Software, Inc.
119 Russell Street
Littleton, MA 01460

\section*{FEEDBACK AND AMPLIFICATION}

\section*{EDN's bulletin board is on line}

EDN's computer bulletin board system, (617) 558-4241 (\(2400,8, \mathrm{~N}, 1\)), has a Design Idea Special Interest Group. Where applicable, you'll find computerized material that you can download, such as program listings, circuit diagrams, and pc-board layouts, posted on the bulletin board. We also want to hear from you. Please use our bulletin board to ask questions, make comments, and propose alternative solutions.

To use the BBS, first call up and log onto the system. To get to the Design Idea Special Interest Group, first select "s", the SIGs option. Next select the "s" newSIG option and ask for a list of SIGs by entering a "?". Enter the "/DI_SIG" name. Then select the "r" readbulletin and "s" scan-bulletin options. You should now be able to scan the titles of available Design Ideas (DIs), optionally read an attached explanatory message, and optionally download an attached file. Note that the BBS assigns its own number to each message. You will find our DI number, along with a portion of the DI's headline, when you scan the list of bulletins. You can optionally use our DI number, or any portion of a DI's headline, to search for a particular Idea. To leave the DI editors a message, first get to the /DI_SIG, and then select the " \(w\) " write-message option. If you plan to submit a software design idea, please put it on our BBS or send us an ASCII version of your program on disk. We'll load it on the bulletin board for other readers to download.
Charles H Small and Anne Watson Swager
Design Idea Editors

\section*{Errata}

I apologize for two errors in my Design Idea "Passive network is totally resistive" in the August 2, 1990, issue of EDN. On pg 135, the equation for \(L\) should be as follows:
\[
\mathrm{L}=\mathrm{R} / \Omega_{0}=\mathrm{R} / 2 \pi \mathrm{~F}_{0} .
\]

The equation for C should be as follows:
\[
\mathrm{C}=1 / \Omega_{0} \mathrm{R}=1 / 2 \pi \mathrm{~F}_{0} \mathrm{R} .
\]

Prayson Pate
BNR
Box 13478
Research Triangle Park, NC 27709
(919) 991-8258

\section*{Software spawns slip-ups}

The Design Idea, "C routine sets bit groups" (EDN, May 10, 1990, pg 160), contains two errors. The first error is that the routine cannot handle the special case of start_byte equaling stop_byte. Secondly, the loop following the comment "Set the intermediate results" sets one too many words. The index \(i\) should begin at start_byte +1 instead of start_byte. Listing 1 corrects these errors.
Edward L Calvin
Calvin Associates
10682 S Hastings Dr
Villa Park, CA 92667
(714) 532-1083

FAX (714) 532-4115

\section*{F/V converter picks up errors}

My Design Idea, "F/V converter has variable slope" (EDN, March 15, 1990, pg 182), contains many errors. My figure was exchanged with the figure from Mr J Handy's idea. The figure's caption is wrong; it calls my circuit a V/F converter when it is an F/V converter. The components in the figure are not labeled \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\), and C. And in the circuit diagram I sent you, the resistor from the collector of the first transistors is not connected to \(\mathrm{V}_{\mathrm{C}}\). In this situation, I have a very small chance of being the issue winner.
Cezary Rudnicki
Pereca 13/19-718
00-849 Warszawa
Poland
(Ed Note: We apologize for swapping your figure with that of another Design Idea and reversing the F and V. I suspect that most of our readers spotted the mistakes immediately and had little trouble resolving them. We do not label components in figures unless we refer to the components in the text. Our published figure matches your initial submission exactly. We did change your European-style \(U_{R E G}\) to our style, \(V_{C}\) (control voltage). Perhaps you are confusing \(V_{C}\) with \(V_{C C}\). Given the monetary situation in Poland today, we certainly hope that you had the chance of winning that your circuit merited.)

\section*{DESIGN IDEAS}

\section*{FEEDBACK AND AMPLIFICATION}

\section*{Listing 1-Bit-setting C routine}
```

set_bits_in_array(start_number,stop_number,a_ptr)
int start_number;
int stop_number;
char *a_ptr;
/* set bits in an array of bytes */
/* The array is referenced by the pointer a_ptr and is indexed from 0 up.
Bit O in the first byte is the rightmost bit, and bit }7\mathrm{ is the leftmost
bit in the byte */
{
char start_byte; /* O relative */
char stop_\overline{byte; /* 0 relative */}
char start_bit; /* 0 relative */
char stop_bit; /* 0 relative */
char start_mask; /* 0 relative */
char stop_mask; /* 0 relative */
int i;
/* -------------------------------------------------------------------*/
/* Get the byte numbers by dividing by 8 */
/* --------------------------------------------------------------------*/
start_byte = start_number >> 3;
stop_byte = stop_number >> 3;
/* -------------------------------------------------------------------*/
/* get the start and stop bit numbers */
/* ---------------------------------------------------------------------*/
start_bit = start_number % 8;
stop_bit = stop_number % 8;
/* -----------------------------------------------------------------*/
/* generate masks for the start and stop bytes */
/* ------------------------------------------------------------------*/
start_mask = Oxff << start_bit;
stop_mask = Oxff >> (7 - stop_bit);
/* --------------------------------------------------------------------*/
/* Special case when only one byte has to be modified */
/* --------------------------------------------------------------------*/
if ( start_byte == stap_byte )
{
*(a_ptr + start_byte) i= start_mask \& stop_mask;
return;
}
/* ----------------------------------------------------------------------
/* Set the intermediate bits */
/* -------------------------------------------------------------------*/
for ( i = start_byte + 1; i< stop_byte; i++)
*(a_ptr + i)= Oxff;
*(a_ptr + start_byte) i= start_mask;
*(a_ptr + stop_byte) i= stop_mask;
}

```

\section*{FEEDBACK AND AMPLIFICATION}

\section*{VCO internalizes linearization}

On pg 174 in the May 24, 1990, issue of EDN, Antonio Tagliavini's "Current sink widens VCO's frequency range" uses an external current source to get a wider VCO-frequency range. As an extension of his idea, I suggest using the chip's internal MOS current-source transistor to do the job of his external transistor, \(Q_{1}\). Now, you need only the op amp as an additional external element to get almost the same linearizing effect (Fig 1).
Rainer Lackmann
Frauhofer Institut
Finkenstrasse 6141 Duisburg
West Germany

Fig 1-Using the HC4046's internal transistor (a) instead of an external component achieves the linearization in \(\boldsymbol{b}\).

\section*{Author refutes assertions}

In reply to Joseph M Lopez's letter (EDN, June 21, 1990, pg 274) about my Design Idea, "PLD adds flexibility to motor controller" (EDN, March 1, 1990, pg 177), I would like to clarify the following points:
1. My Design Idea's Table 1 gives information about the motor's phases, which are on at any instant for wave drive, two-phase drive, and hybrid drive. In the table, H indicates logic high and L indicates logic low. An H in the columns A through H of the table indicates which phase is on.
2. Lopez asserts that my controller allows rotation in one direction only. Not true! Column P of Table 1 indicates the rotation of direction, with an L signifying clockwise and an H counterclockwise. Note that P is an input term in the PLD equations in Table 2.
3. Lopez further asserts that my Table 1 does not show "actual states and next states." True enough, but such state information is in Table 2.
4. Though several stepper-motor controller chips are available from various manufacturers such as Lopez's Sprague as well as Ericsson, Philips, and more, these chips are not as flexible as PLD-based designs that can generate any type of drive sequence simply by programming the PLD. I had considered the three, standard drive-sequence examples of wave drive, 2 phase drive, and hybrid drive to illustrate the PLDbased design approach-though many other drive sequences are possible with my circuit. In fact, the two key points of my Design Idea are using a PLD for programmable drive sequences and eliminating discrete power transistors and free-wheel diodes by using the XR-2013.
\(V\) Lakshminarayanan, Technical Staff Member
Centre for Development of Telematics
SNEHA Complex, 71/1 Miller Rd
Bangalore-560 052, India
Phone 91-812-27890

\section*{Resistor slips decimal points}

The value given for \(R_{2}\) in Greg Schaffer's "Cascaded video amps have high gain" (EDN, June 7, 1990, pg 136) is off by two orders of magnitude: it should be \(965 \Omega\) not \(99.65 \Omega\).

\section*{One of the precise hand-held instruments that didn't need one of our cable assemblies.}

Annie never missed. Well, almost never. As long as she was ahead of second best, the room for error was there.

Not so in the critical engineering of micro-miniature cable and connector solutions at Precision Interconnect. Tolerances are getting tighter, desired sizes smaller, and development time shorter.

Working with exact electrical requirements, plus challenging mechanical parameters,
we design and produce extremely reliable, long flex-life cable, with conductors terminated to standard connectors or active devices, and with protective flexstrain reliefs. These complete interconnect systems, usually using 30 AWG and smaller conductors, provide the critical link in hand-held applications on test and measurement equipment and medical diagnostic devices.

\section*{Design Entry Blank}
\$100 Cash Award for all entries selected by editors. An additional \$100 Cash Award for the winning design of each issue, determined by vote of readers. Additional \(\$ 1500\) Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \(\qquad\) Phone

Company \(\qquad\)
Division (if any)
Street \(\qquad\)
City \(\qquad\) State
Country
Zip
Design Title \(\qquad\)
Home Address \(\qquad\)

\begin{abstract}
Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a \(51 / 4-\mathrm{in}\). IBM PC disk.
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
Date
\end{abstract}

\section*{ISSUE WINNER}

The winning Design Idea for the July 19, 1990, issue is entitled "MOSFET and oscillator compose relay," submitted by Andy Fewster of Siliconix Ltd (Newbury, UK).

The winning Design Idea for the August 2, 1990, issue is entitled "Passive network is totally resistive," submitted by Prayson Pate of BNR (Research Triangle Park, NC).

\section*{FEEDBACK AND AMPLIFICATION}

\section*{High-voltage amp needs more parts}

The circuit in "High-voltage amp drives transducers" (EDN, April 12, 1990, pg 183), requires two additional zener diodes and resistors for proper operation. The accompanying partial schematic illustrates their placement from gate to source of the high-voltage transistors. A 1 N 758 A should be connected between the source and gate of \(Q_{2}\) and \(Q_{4}\) with the cathode of each diode connected to the gate of the FET. Also, a \(10-\mathrm{k} \Omega\) resistor should be inserted between the cathode of each added diode and the cathode of \(\mathrm{D}_{4}\) and \(\mathrm{D}_{6}\), respectively. In addition, Scott Ellington should have been identified as co-author.
Don Michalski
Associate Director
Scott Ellington
Serior Design Engineer
Space Astronomy Laboratory
University of Wisconsin
1150 University Ave
Madison, WI 53706
(Ed Note: Although the authors submitted a revised schematic, EDN erred and reproduced their original schematic. Even though both authors had their names on the Design Idea writeup that they submitted, only one author completed and signed an entry blank. To get credit and be paid for a Design Idea, all authors must complete and sign an entry blank.)

EDN

\section*{DESIGN NOTE}

Number 40 in a series from Linear Technology Corporation

\section*{Designing with a New Family of Instrumentation Amplifiers Jim Williams}

A new family of IC instrumentation amplifiers achieves performance and cost advantages over other alternatives. Conceptually, an instrumentation amplifier is simple. Figure 1 shows that the device has passive, fully differential inputs, a single ended output and internally set gain. Additionally, the output is delivered with respect to the reference pin, which is usually grounded. Maintaining high performance with these features is difficult, accounting for the cost-performance disadvantages previously associated with instrumentation amplifiers.

Figure 2 summarizes specifications for the amplifier family. The LTC1100 has the extremely low offset, drift, and bias current associated with chopper stabilization techniques. The LT1101 requires only \(105 \mu \mathrm{~A}\) of supply current while retaining excellent DC characteristics. The FET input

\(\rightarrow\) NO FEEDBACK RESISTORS USED \(\rightarrow\) GAIN FIXED INTERNALLY (TYP 10 OR 100) OR SOMETIMES RESISTOR PROGRAMMABLE \(\rightarrow\) BALANCED, PASSIVE INPUTS \(\rightarrow\) OUTPUT DELIVERED WITH RESPECT TO OUTPUT REFERENCE PIN

Figure 1. Conceptual Instrumentation Amplifier
\begin{tabular}{l|l|l|l}
\hline \multicolumn{1}{c|}{ PARAMETER } & \begin{tabular}{c}
CHOPPER \\
STABILLZED \\
LTC1100
\end{tabular} & \begin{tabular}{l}
MICROPOWER \\
LT1101
\end{tabular} & \begin{tabular}{c}
HIGHSPEED \\
LT1102
\end{tabular} \\
\hline Offset & \(10 \mu \mathrm{~V}\) & \(160 \mu \mathrm{~V}\) & \(500 \mu \mathrm{~V}\) \\
Offset Drift & \(100 \mathrm{nV} /{ }^{\circ} \mathrm{C}\) & \(2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) & \(2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
Bias Current & 50 pA & 8 nA & 50 pA \\
Noise (0.1Hz-10Hz) & \(2 \mu \mathrm{Vp}-\mathrm{p}\) & \(0.9 \mu \mathrm{~V}\) & \(2.8 \mu \mathrm{~V}\) \\
Gain & 100 & 10,100 & 10,100 \\
Gain Error & \(0.03 \%\) & \(0.03 \%\) & \(0.05 \%\) \\
Gain Drift & \(4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
Gain Non-Linearity & 8 ppm & 8 ppm & 10 ppm \\
CMRR & 104 dB & 100 dB & 100 dB \\
Power Supply & Single or Dual, & Single or Dual, & Dual, \\
& 16 V Max & 44 V Max & 44 V Max \\
Supply Current & 2.2 mA & \(105 \mu \mathrm{~A}\) & 5 mA \\
Slew Rate & \(1.5 \mathrm{~V} / \mu \mathrm{S}\) & \(0.07 \mathrm{~V} / \mu \mathrm{s}\) & \(25 \mathrm{~V} / \mu \mathrm{s}\) \\
Bandwidth & 8 kHz & 33 kHz & 220 kHz \\
\hline
\end{tabular}

Figure 2. Comparison of The New IC Instrumentation Amplifiers

LT1102 features high speed while maintaining precision. Gain error and drift are extremely low for all units, and the single supply capability of the LTC1100 and LT1101 is noteworthy.

The classic application for these devices is bridge measurement. Accuracy requires low drift, high common mode rejection and gain stability. Figure 3 shows a typical arrangement with the table listing performance features for different bridge transducers and amplifiers.

Bridge measurement is not the only use for these devices. They are also useful as general purpose circuit components, in similar fashion to the ubiquitous op amp. Figure 4 shows a voltage controlled current source with load and control voltage referred to ground. This simple, powerful circuit produces output current in strict accordance with the sign and magnitude of the control voltage. The circuit's accuracy and stability are almost entirely dependent upon resistor R. A1, biased by \(\mathrm{V}_{\mathrm{IN}}\), drives current through R (in this case \(10 \Omega\)) and the load. A2, sensing differentially across R, closes a loop back to A1. The load current is constant because A1's loop forces a fixed voltage across R. The \(10 \mathrm{k}-0.5 \mu \mathrm{~F}\) combination sets rolloff, and the configuration is stable. Figure 5 shows dynamic response. Trace A is

\begin{tabular}{l|c|c|l}
\hline \multicolumn{1}{c|}{\begin{tabular}{c}
BRIDGE \\
TRANSDUCER
\end{tabular}} & AMPLIFIER & V \(_{\text {BIAS }}\) & \multicolumn{1}{c}{ COMMENTS } \\
\hline \begin{tabular}{l}
350 Strain Gage \\
(BLH \#DHF - 350)
\end{tabular} & LTC1100 & 10 V & \begin{tabular}{l}
Highest Accuracy, \\
30mA Supply Current
\end{tabular} \\
\hline \begin{tabular}{l}
\(1800 \Omega\) Semiconductor \\
(Motorola MPX2200AP)
\end{tabular} & LT1101 & 1.2 V & \begin{tabular}{l}
Lower Accuracy \& Cost. \\
< 800 AA Supply Current
\end{tabular} \\
\hline
\end{tabular}

Figure 3. Characteristics of Some Bridge TransducerAmplifierCombinations

Figure 4. Voltage Programmable Current Source is Simple and Precise

Figure 5. Dynamic Response of the Current Source

Figure 6. Linearized Platinum RTD Bridge. Feedback to Bridge from A3 Linearizes the Circuit
the voltage control input while trace B is the output current. Response is clean, with no slew residue or aberrations.

A final circuit, Figure 6, combines the current source and a platinum RTD bridge to form a complete high accuracy thermometer. A1A and A2 will be recognized as a form of Figure 4's current source. The ground referred RTD sits in a bridge composed of the current drive and the LT1009 biased resistor string. The current drive allows the voltage across the RTD to vary directly with its temperature induced resistance shift. The difference between this potential and that of the opposing bridge leg forms the bridge output. The RTD's constant current drive forces the voltage across it to vary with its resistance, which has a nearly linear positive temperature coefficient. The non-linearity could cause several degrees of error over the circuit's \(0^{\circ} \mathrm{C}\) \(400^{\circ} \mathrm{C}\) operating range. The bridges output is fed to instru-
mentation amplifier A3, which provides differential gain while simultaneously supplying non-linearity correction. The correction is implemented by feeding a portion of A3's output back to A1's input via the \(10 \mathrm{k}-250 \mathrm{k}\) divider. This causes the current supplied to Rp to slightly shift with its operating point, compensating sensor non-linearity to within \(\pm 0.05^{\circ} \mathrm{C}\). A 1 B , providing additional scaled gain, furnishes the circuit output. To calibrate this circuit, follow the procedure given in Figure 6.
Details of these and other instrumentation amplifier circuits may be found in LTC Application Note 43, "Bridge Circuits - Marrying Gain and Balance."

For literature on our Instrumentation Amplifiers, call (800) 637-5545. For applications help, call (408) 432-1900, Ext. 456

\section*{16-bit PC/AT Data Acquisition from Analogic!}

LSDAS-16 Brings
New Price/ Performance Levels to PC Instrumentation

For Applications Assistance, call or write David Wilson, Analogic Corporation, 360 Audubon Road, Wakefield, MA 01880 Telephone: (800) 446-8936, Telex: 466069, Fax: (617) 245-1274

The new LSDAS-16 from Analogic sets new price/ performance standards for 16 -bit multifunction data acquisition plug-in boards for the IBM PC/AT \({ }^{\mathrm{TM}}\) and compatibles, including:
- 16-bit \(50 \mathrm{kHz} \mathrm{A/D} \mathrm{converter}\)
- 16 analog inputs
- Shielded for less than 1 LSB of noise in the PC
- Programmable input modes and ranges
- Full analog triggering
- Dual deglitched DACs
- 32K-sample DAC RAM
- High speed DMA
- Menu-driven setup and data acquisition utilities
- C, Basic, FORTRAN, and Pascal libraries
- Third party support for Snapshot Storage Scope \({ }^{\mathrm{TM}}\), DADiSP \({ }^{\mathrm{TM}}\), and LabTech Notebook \({ }^{\mathrm{TM}}\)
- Expansion multiplexers for up to 256 analog inputs
- Prices starting at \(\$ 1,395\) in unit quantities, with volume discounts available.

For applications from spectroscopy and chromatography to digital audio and speech analysis, step up to Analogic, the world leader in precision data conversion technology for more than 20 years.

\section*{A 1983 concept that's still an innovation Ericsson component power}

If you've only just discovered the economy, reliability and flexibility of component power, don't worry. Even some power supply manufacturers think it's new!

In fact, component power concept - using very efficient, high frequency DCIDC converters as complete power 'components' for distributed power architecture - was introduced by Ericsson way back in 1983. And EriPower \({ }^{\text {TM }}\) modules

have since been
The PKA \& PKC, DC/DC converters are produced on fully automated lines to
guarantee consistently high quality and reliability proven in thousands of applications worldwide.

The first product, the PKA 25

The PKC In-Card,
15-18 Watt DC/DC
converters provide
ultra low profile
to 40 Watt converter, set the standard and is still the market leader by far. Using hybrid construction and 300 kHz switching it's the world's smallest
converter to offer full power operation at \(85^{\circ} \mathrm{C}\). And with ceramic capacitors for filtering and effective thermal management design, it has a demonstrated MTBF of over 200 years! This same concept applies to the 15 and 18 Watt PKC.

With a footprint smaller than a credit card, these sub-miniature converters offer the unique option of In-Card low profile mounting. The mechanical design allows the center of the module to rest in a slot in the PCB, giving a maximum height of just 8.5 mm . The PKA and PKC can be easily paralleled for higher power applications and they make ideal components for \(\mathrm{n}+1\) parallel redundancy applications.

If your product demands innovative power supplies, yet needs the security of well proven solutions from a reliable source, call Ericsson. And let our technology lead help maintain yours.

\footnotetext{
Sweden
Australia
France
Hong Kong
Italy
Norway
\(\begin{array}{ll}\text { Norway } & \text { Ericsson Components A/S, Oslo, Tel: (O2) } 650190 \text { Fax: (O2) } 644138 \\ \text { United States } & \text { Ericsson Components Inc, Richardson, TX, Tel: (214) } 4808300 \text { Fax: (214) } 6801059\end{array}\) United States Ericsson Components Inc, Richardson, TX, Tel: (214) 4808300 Fax: (214) 680
West Germany Ericsson Components GmbH, Engen, Tel: (07733) 50010 Fax: (07733) 5927

Ericsson Components AB, Stockholm, Tel: (08) 7217059 Fax: (08) 7217001 Ericsson Components Pty Led, Victoria, Tel: (O3) 4801211 Fax: (03) 4843645 Ericsson Composants SA, Gyancourt, Tel: (O1) 30640900 Fax: (O1) 30641146 Ericsson Components AB, Wanchai, Tel: (O5) 756640 Fax: (05) 8345369 Ericsson Components AB, Coventry, Tel: (0203) 553647 Fax: (0203) 225830 Ericsson Components Srl, Milano, Tel: (02) 55181597 Fax: (02) 545973
}
 26 laundard
 sible to ed that conced a com.
compor a minin powes it peen
cally attricienthich standard the

 ing one orn bornnames the thishas orpply for within uhed serice
 Testiun win the -the The cucls. unit in Rughitsninulue
 at lhe iotenlion ton- able decsign whonvereerestremely

\section*{ature} Lech Walesa Lech Wales
wins Nobel Wins Nobel
peace prize
cof 15 promin orm. fold, to incrance. It have remick. Cup, he joininernce produchile at ease reliabisitity ben pos. iand team.

\section*{}
 nuffature ar at with simal will be is

 Wivs year to Peace Prize has inward moverneter of the watera, ous gome The award he Pollish Solidarit) but the Notole has been allacked os Forion was Crommituce political ers'righe extend aprod by wisteries Wighes in foland uphold wesa moncyesa plan tond . Nold hork worth that accom donate the ment focal agniround floocs the mirn SMEPrytarural project to 2merain horses-Drizain's bess-knolyus? he latest verby winnt-known race The horse disar kidnappergar of Februat treland diseared froms promisuary. The at the be from its harnmed to return suapperinning fion ransod on paymen sherpers have French rament or a \&2 un - Dis ar island's deposed has huge urcops forminuighad has stepuge areass continue to oc.
colonyped in to helphad. Frranco Troops and helicolp her former governmeinforce the belelave boen end a long running aly strugelegucred
told to
Czom inm Up

\section*{}
ss than six an abomocrats, back
on becn ax- is well aw of of 16 back in pow \(+\cdots\)
ameasa His political the un, Herr Kohler
s. Social immetlife. unpredictabil. allianion, after aly

growing is seeng popularity of the

\section*{}

Alustralia warnings

\section*{EPSON}

THE CRYSTALMASTER \({ }^{\text {m }}\) leads new crystal oscillator technologies into the 90's with...
the most cost effective hi-temp SMD crystals and oscillators and low cost plastic thru-hole crystal oscillators.

EPSON SURFACE MOUNT CRYSTALS AND OSCILLATORS

Epson has pioneered the first truly heat resistant crystal for use in its surface mount crystals and crystal oscillators. Capable of withstanding \(260^{\circ} \mathrm{C}\) for 20 seconds...far above the demands of standard IR and vapor phase reflow processing systems...these laborsaving high-temp SMD crystals have become the accepted standard for surface mount crystal and oscillator components.

MODEL SG-615 OSCILLATOR
Frequency: \(\quad 1.5\) to 66.7 MHz
Symmetry: \(\quad 45 / 55\) (TYP)
Rise/Fall Time: \(\quad 5 \mathrm{nsec}\) (TYP)
Tristate: Available
Compatible
Technology: CMOS and TTL
Op. Temp. Range: \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\(\qquad\)
MODEL MA 505/506 CRYSTAL
Frequency: 4.00 to 66.7 MHz MODEL MC-405 CRYSTAL Frequency: 32.768 KHz

\section*{EPSON}

Component Sales Department Telephone 213/373-9511 - FAX 213/378-9575

\section*{EPSON THRU-HOLE OSCILLATORS}

REPLACE METAL CAN OSCILLATORS

Epson has introduced the first plastic low cost, high performance autoinsertable thru-hole crystal oscillator. Its unique hermetically sealed crystal, embedded in a plastic package, gives the same EMI protection and higher performance than metal can oscillators... at a much lower cost. And, the auto-insertion feature reduces manufacturing costs associated with hand inserting metal cans...into standard fullsize or half-size hole patterns.
\begin{tabular}{lll}
& Frequency: & 1.5 to 66.7 MHz \\
MODEL SG-51/SG-531 & Symmetry: & \(45 / 55\) (TYP) \\
OSCILLATOR & Rise/Fall Time: & 5 nsec (TYP) \\
& Tristate: & Available \\
& Compatible Technology: & CMOS and TTL
\end{tabular}

\section*{EPSON}

Component Sales Department Telephone 213/373-9511 • FAX 213/378-9575

\section*{NEW PRODUCTS}

\section*{COMPONENTS \& POWER SUPPLIES}

\section*{Temperature Indicator}
- Handles nine sensor types
- Measures to \(3325^{\circ} \mathrm{F}\)

Model 500 T temperature indicator has a multichannel feature, which allows the unit to measure as many as six inputs. A miniature rotary switch allows you to select between inputs. The indicator handles nine sensor types-seven thermocouples and two resistance-temperature de-tectors-which you can select with a switch mounted behind the front panel. The unit features a 0.1 to \(1^{\circ}\) automatic resolution capability. The meter has a \(0.55-\mathrm{in}\).-high LED display and measures from -346 to \(+3325^{\circ} \mathrm{F}\). The indicator also measures in either degrees F or C . A Form C 0.5 A relay output is available for connecting external lamps, buzzers, or on/off control elements.

The relay terminals, positioned at the rear of the instrument, provide hookup for NO or NC operation. \(\$ 398\).

Beckman Industrial Corp, 3883 Ruffin Rd, San Diego, CA 92123. Phone (619) 495-3200. FAX (619) 268-0172.

Circle No. 408

\section*{Fiber-Optic Converter}
- Accommodates RS-422
- Handles 2.5-MHz data rates

The Model 270 will communicate \(2.5-\mathrm{MHz}\) full-duplex data rates over a distance of 2 km . The converter operates at an \(850-\mathrm{nm}\) wavelength and features a \(10-\mathrm{dB}\) optical power budget. The electrical interface to the RS-422 port is fully differential for transmit and receive. The fiberoptic ports employ ST connectors, and the RS-422 port is compatible with an Electrovert/Phoenix-type 8112 connector. The unit is optimized for \(62.5 / 125 \mu \mathrm{~m}\) fiber cable, but it will accommodate other cable
sizes. A small wall-mounted transformer, which produces 9 V ac , supplies power to the adapter. \(\$ 152\).

Telebyte Technology Inc, 270 Pulaski Rd, Greenlawn, NY 11740. Phone (516) 423-3232. FAX (516) 385-8184.

Circle No. 409

\section*{Photoelectric Controls}
- Feature a variety of scanning techniques

\section*{- Scan to 10 m}

FE7D Series photoelectric controls are available in through-, polarized-retroreflective-, and diffuse-scan versions. Respective maximum scan distances in clean air equal 10 , 3 , and 0.7 m . The controls operate with supply voltages of 10.8 to 264 V dc or 21.6 to 264 V ac. They have a spst relay output rated for 1 A at 250 V ac or 30 V dc. At full output, they are rated for 350,000 operations. Each control is self-contained. The retroreflective- and dif-fuse-scan versions have a pulsedLED emitter, phototransistor re-
ceiver, and amplifier in one package. Through-scan models have separate packages for the emitter and receiver/amplifier. The units are housed in \(45 \times 45 \times 20-\mathrm{mm}\) ABS plastic housings, which comply with IP66 sealing standards and operate over a range of -20 to \(+60^{\circ} \mathrm{C}\). \(\$ 80\) for diffuse and polarized-retroreflective models; \(\$ 112\) for throughscan units.
Micro Switch, 11 W Spring St, Freeport, IL 61032. Phone (815) 235-6600.

Circle No. 410

\section*{High-Density Sockets}
- Feature 0.025-in. contact spacings
- Available in 100- and 132-pin versions
Micro-Pitch plastic quad flatpack (PQFP) sockets feature \(0.025-\mathrm{in}\). contact spacing and a \(0.375-\mathrm{in}\). mounted profile. Available in \(100-\) and 132 -pin versions, the sockets consist of a housing and a plastic cover. The PQFP easily inserts into
the cover, which contains protective slots for aligning and separating IC leads. Visual and mechanical polarization features properly orient the cover and housing during mating. Spring latches in each corner secure the cover to the housing. The tin-plated socket contacts exert a 200 g normal force. The sockets'
solder legs are arranged on a \(0.075 \times 0.100-\) in. 3 -row grid to ease trace routing. The high-temperature housing materials withstand the rigors of reflow, vapor phase, and infrared soldering. The sealed bottom prevents flux and solder from entering the contact area, and standoffs prevent flux buildup be-

\section*{We wrote the book on CMOS non-volatility}

CMOS Random Access Memories and Clocks shouldn't go down when the power does. Catalyst Research \(\mu\) PowerCell \({ }^{\text {mM }}\) batteries are the best choice to make sure they don't. And we wrote the book on how to use them.
\(\mu\) PowerCell batteries are the best choice because they have a 20 year life without recharging. More than the life of your product. Other Lithium battery chemistries such as Thionyl Chloride have about half the useful life at the same capacity as the \(\mu\) PowerCell. Nickel Cadmium batteries require recharge and have a useful life less than \(1 / 4\) that of \(\mu\) PowerCells.
\(\mu\) PowerCell batteries come in a round or square package for through-hole or surface mount, with capacity from 8 mAHr to 1000 mAHr . Their proprietary Lithium-Iodine chemistry has been proven for years powering cardiac pacemakers and there are over a million \(\mu\) PowerCells in use for CMOS backup and clock operation.

Call us at 301-356-2400 for product details and your free copy of "The Book."
\({ }^{\mathrm{m}} \mu\) PowerCell is a trademark of Catalyst Research.

See Us at WESCON, Booth \#1378 and Electronica, Booth \#11C 17, Hall 11
tween the socket base and the pc board. \(\$ 8.62\) and \(\$ 10.35\) (1000) for the \(100-\) and 132 -pin versions, respectively. Delivery, four to six weeks ARO.

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752.

Circle No. 411

\section*{Digital Meters}
- Have a 2.25-in.-high display
- Provide current or voltage outputs
PI700/PI800 process and voltage indicators provide a \(4-1 / 2\) digit LED display which features 2.25 -in.-high characters. The 700 and 800 devices are configured for current (0 - to 20 \(\mathrm{mA}, 4\) - to \(20-\mathrm{mA}\),) and voltage (0 to \(10 \mathrm{~V}, 1\) to 5 V) loop operation. You can adjust the zero-offset and fullscale settings of both models over a wide range-the 0 - to \(20-\mathrm{mA}\) current loop input is adjustable from 300 to 19,999 counts. Options include excitation outputs adjustable from 1.3 to 24 V de at 30 mA , and 1 mA /count analog output. Both models feature sealed, black ABS, surface-mountable cases and have a 2 -year warranty. \(\$ 595\).

Electro-Numerics Inc, 1811 Reynolds St, Irvine, CA 92714. Phone (714) 250-1501. FAX (714) 250-0958.

Circle No. 412

\section*{EMI Filter}
- Meets MIL-STD-461
- Attenuates 40 dB

The FMB-461 filter reduces the reflected input ripple of more than 30 of the manufacturers' dc/dc converters, bringing them within the noise limits of MIL-STD-461B's CEO3 standard. The unit attenuates 40 dB

\section*{Position-Sensitive/ Ranging Components}

Hamamatsu offers a variety of auto-focus and position detectors especially designed for proximity switching, displacement sensing and optical distance measurements. They are smaller, faster, require less power and feature more stable performance than comparable types.
Applications include auto-focus cameras, computer disc drives, linear motion detection in industrial equipment, beverage dispensers, robotic controls and automated car wash equipment.

\section*{CIRCLE NO. 137}

\section*{Hamamatsu Photocouplers}

Don't miss our newest catalog. It covers the complete line of Hamamatsu photocouplers including CdS Cell, Photo IC and Phototransistor output types. Also included are photointerrupters and photoreflectors. Many can be used in surface-mount applica-
 tions for non-mechanical position sensing and high voltage isolation of circuits. Applications include color video signal interface for TV, high speed IIO computer interface, line receiver interface, electronic motor control and switching regulators.
CIRCLE NO. 138

\section*{Hamamatsu CdS Photoconductive Cells}

This catalog is a must for every electronics designer. Hamamatsu CdS cells are available in plastic-coated, metal-case and glassbulb type assemblies for a wide variety of applications. Applications include exposure meters, light dimmers, musical equipment, flame monitors, street light controls and many others.
CIRCLE NO. 139

\section*{Hamamatsu Photodiodes}

Did you know that Hamamatsu offers a complete line of photodiodes? From UV to IR, GaAsP, SI, PIN, APD and GaP, they're all here in our latest catalog. Send for it today.
Applications include high speed light sensors, CAT scanners, X-ray monitors, illuminance meters, light absorption meters, light-to-logarith mic voltage conversion circuits and more.

\(\qquad\)

\section*{P2288 and P2613 Pyroelectric Detectors}

These competitively priced devices feature a large sensitive area and offer optimal spectral response in the near IR. Built-in impedance converting circuitry makes them easy to design into equipment.
Applications include intrusion and fire detectors, industrial robots and other electronic sensing devices.

\section*{Hamamatsu UVtron R2868 Flame Sensor}

The UVtron flame sensor can detect the ultraviolet radiation of a match from distances greater than 15 feet. Quick detection, wide directivity and compact design make it easy to integrate the R2868 into your products.

Applications include flame detectors for industrial, automotive and petroleum plant environments; also in horse or livestock stables.
CIRCLE NO. 141

CIRCLE NO. 142

\section*{PCM ENCODER EE 220}

INPUTS:
64 Analog inputs with individual selection of gain, single ended or differential, unipolar or bipolar. 56 Bit Digital Paraliel and 17 Word Serial inputs. Selectable commutation rates for all inputs. Expandable to \(>30000\) inputs. Support of Slave Encoders.

\section*{FORMAT:}

Bit frequencies to 5 MHz from an internal synthesizer. Word length: 8-16 Bit. The maximum PCM Format size is 2048 Words per Frame and 256 Frames, total max. 32768 Words. Up to 8 totally different Formats in one PROM. Compatible to IRIG std. 106.

\section*{PROGRAMMING:}

All Format structure and Signal select information are located in one user programmable PROM. The PROM contents are designed with the EIDEL software EE200 Format Generator running on a PC. The Encoder EEPROM is loaded through an RS 232 link.

EIDEL of America, Box 683, Midlothian, VA 23113, USA. Tel: 804744 8186. Fax: 8047442961.
Eidsvoll Electronics AS Box 38, N-2081 Eidsvoll, Norway Tel: +476964230 . Fax: +476962048

\section*{CIRCLE NO. 34}

Robotics, Industrial Drives, Railways, U.P.S., Welding Machines COUNT on LEM MODULES

REKCO INC. U.S. Representative N114 W19225 Clinton Drive Germantown, WI 53022

\section*{PC/AT BUS PRE-PROCESSOR FOR THE HP1650 LOGIC ANALYZER}
- Provides a complete interface between the HP 1650 Series Logic Analyzer and the PC/AT BUS.
- Quick and easy access to all address, data, and control lines.

- State and timing analysis.
- Logic analyzer configurations supplied on diskette.
- Can be used as an extender card.

2121 W. CRESCENT AVENUE ANAHEIM, CALIF. 92801
(714) 635-0550 FAX (714) 535-3458

CIRCLE NO. 35

MULTIMEC switches with plastic foil overlay. Key travel 1 mm ! The optimum solution to requirements for tactile feel in demanding applications. Plastic foil overlay matching your requirements. Deadfronted areas concealed until illuminated. Individually illuminated switches. Illuminated keypads. Tempest - RFI shielding optional.

Ask for the new MULTIMEC catalogue today.

mec
Industriparken 23,
P.O. Box 26

DK-2750 Ballerup, Denmark
TEL: 42973366
TELEFAX: 44681514
TELEX: 9125649 danmec
ELECTRONICA - Hall 16, Stand F 34
of reflected input-ripple current over the \(100-\mathrm{kHz}\) to \(50-\mathrm{MHz}\) range. It can handle de/dc converters with as much as 70 watts of output power over a 16 to 40 V range. The 5A filter can be used with one 70 W converter or can filter several lowerpower units. A thick-film hybrid device, the filter is housed in a \(1.1 \times 2.1 \times 0.5-\mathrm{in}\). sealed metal case and comes with an optional flange mounting for high shock and vibration applications. The part operates from -55 to \(+105^{\circ} \mathrm{C}\). Full environmental screening is an option. From \$148 (100).

Interpoint Corp, Box 97005, Redmond, WA 98073. Phone (206) 882-3100. FAX (206) 882-1990.

Circle No. 413

\section*{Intelligent Display}
- Provides multilanguage character possibilities
- Has a 160-nsec access time

The PDSP211X 8-digit LED display has a 256 -character ROM which contains characters for Spanish, German, French, Italian, and Scandinavian languages plus Japanese Katakana characters. The unit also displays numbers and scientific symbols. The displays are available in red, yellow, green, high-efficiency green, and high-efficiency red. You can stack the units end to end with no gaps between the characters of adjacent displays. Access and clear times equal 160 nsec and \(2 \mu \mathrm{sec}\), respectively. The units are readable from 8 ft and have a \(\pm 55^{\circ}\) viewing angle. The displays are designed to interface with \(\mu \mathrm{Ps}\) and are fully TTL compatible. A built-in lamp test provides a positive indication of proper LED functioning. Housed in a 28 -pin plastic DIP, the units operate over a -40 to \(+85^{\circ} \mathrm{C}\) range. \(\$ 21.50\) to \(\$ 25\) \((10,000)\), depending on color.

Siemens Components Inc, 19000 Homestead Rd, Cupertino, CA 95014. Phone (408) 247-3526.

Circle No. 414

\section*{Split-Bobbin Transformers}
- Meet UL standards
- Eliminate the need for electrostatic shielding
RL-2250 Series split-bobbin transformers meet UL, CSA, VDE, and IEC specifications. The units use a nonconcentric dual bobbin which reduces interwinding capacitance and
eliminates the need for electrostatic shielding. Balanced windings eliminate primary circulating currents. The line consists of 40 standard units which cover a range of 2.5 to \(56 \mathrm{~V} / \mathrm{A}\). All units are hipot tested at 4000 V rms and are manufactured to Class B \(130^{\circ} \mathrm{C}\) insulation specifications. Slots in the bobbin flanges

eliminate lead crossovers, which eliminate the need for insulating pads when mounting the units to a pc board. From \(\$ 2.25\) (1000). Delivery, stock to eight weeks.

Renco Electronics Inc, 60 Jefryn Blvd E, Deer Park, NY 11729. Phone (516) 586-5566. FAX (516) 586-5562. Circle No. 415

\section*{DC/DC Converters}
- Come in 1- and 3-output versions
- Have an \(80 \%\) efficiency

K2200 single- and triple-output
dc/dc converters have a 25 W power rating. The 1 -output models offer 5,12 , or 15 V outputs while the \(3-\) output units offer 5 and \(\pm 12\) or \(\pm 15 \mathrm{~V}\). Input levels equal 20 to 60 V or 36 to 72 V . All models are shortcircuit and overvoltage protected. Line and load regulation equals \(\pm 1 \%\) for the main output and \(\pm 5 \%\) for auxiliary outputs. Ripple and noise measure \(1 \%\) and \(2 \%\) max, respectively, and input-to-output isolation equals 500 V dc. All models switch at 200 kHz , have an \(80 \%\) typ efficiency, and operate over a -20 to \(+70^{\circ} \mathrm{C}\) range with no derating. The converters are housed in a \(3 \times 3 \times 0.7-\mathrm{in}\). metal package, that features six-sided shielding. \(\$ 92\) for single-output models; \(\$ 110\) for tri-ple-output versions.

Intronics Inc, 150 Dan Rd, Canton, MA 02021. Phone (617) 8284992. FAX (617) 828-5050.

Circle No. 416

\section*{Murata Erie Components. A Perfect Fit For Power Supplies.}

Around the world and in thousands of high voltage and miniaturized power supply designs, Murata Erie electronic components are proving to be the perfect match in meeting todays most critical production and performance requirements.

From ceramic disc and high voltage capacitors to trimming potentiometers and high voltage resistors. From EMI/ RFI filters and NTC thermistors to focus controls and a myriad of SMD devices including chip monolithic capacitors. Murata Erie has your power supply solution available today, off-the-shelf. And, approvals include UL, CSA, VDE, SEV, SEMKO, BS and more.

It's this type of commitment that has forged a solid reputation with those who design and build power supplies. And it's why you'll find Murata Erie's components the preferred choice for even the most sensitive medical, industrial, commercial and military electronics systems.

For technical information write to Murata Erie North America, 2200 Lake Park Drive, Smyrna, Georgia 30080 or call 404-436-1300. To order literature call 1-800-831-9172.

\section*{The Ultimate 386 Debugger:}

Terminate difficult debug problems fast. And do it remotely. From your Ethernet-based workstation you're now in total control with the new 386 SmartProbe \({ }^{\text {Tm }}\) from CADRE.

Think of it. Your favorite Sun \({ }^{T m}\) or VAX \({ }^{m m}\) software development environment now controls your 386 hardware environment. Develop programs on your Sun or VAX. Download via Ethernet to the 386 SmartProbe. Execute in real-time and start eliminating problems fast. And the best part is, you control the entire process without ever leaving your desk.

You'll call the 386 SmartProbe the ultimate 386 development tool because we've included all of
the high performance features you need for rapid hardware/software integration and test.

386 SmartProbe includes comprehensive hardware and software breakpoints, source-level debug capability for C and ADA , \({ }^{\circledR}\), sophisticated single stepping facilities and, of course, full-speed transparent emulation to 25 MHz . It even supports the development of protected mode programs.

So get the ultimate 386 debugger. The one designed to work with your favorite tool: your workstation. Call 1-800-283-5933 for more information about 386 SmartProbe and other CADRE Unified CASE products.
full international safety agency approvals, dual-input voltage ranges, and overload protection. An optional power-fail circuit provides a user-accessible signal upon loss of ac input. The supply is housed on a \(2.5 \times 5 \times 10.5-\mathrm{in}\). L-bracket and is available with an optional cover. \$207 (100).

Astec America Inc, 401 Jones Rd, Oceanside, CA 92054. Phone (619) 439-4280. FAX (619) 439-4243.

Circle No. 417

\section*{Electronic Thermostats}
- Have a \(\pm 1^{\circ} \mathrm{C}\) accuracy
- Operate to \(85^{\circ} \mathrm{C}\)

The TP Series solid-state, boardmountable temperature switches are electronic thermostats that will trip at either one or two specified temperatures with \(\pm 1^{\circ} \mathrm{C}\) accuracy. The unit comes in a \(0.48 \times 1.2-\mathrm{in}\). single in-line package and operates over a -20 to \(+85^{\circ} \mathrm{C}\) range. They can be mounted perpendicular or parallel to the cooling air stream. The switches feature hysteresisfree operation and are available in normally open or normally closed versions for 5 to 24 V operation. Switch output is compatible with TTL, CMOS, and other logic families. The units are built into headers that have a \(0.1-\mathrm{in}\). pin spacing, allowing you to mount them into a connector. From \(\$ 4.95(10,000)\).

Cambridge Aeroflo Inc, 900 Mount Laurel Circle, Shirley, MA 01464. Phone (508) 425-2346. FAX (508) 425-2338. Circle No. 418

\section*{Slot-Bypass Boards}
- Act as RFI shields
- Designed for VXIbus systems

The Slot-Bypass boards are made
of an aluminum construction and are designed to fill an open or spare slot in a VXIbus system. They also act as an RFI shield when installed between boards. Jumpers are provided in the P1-connector position to daisy-chain the BUSGRANT and IACK signals. A front panel is provided to create a finished appear-
ance. Each board includes an air baffle on each side to maintain efficient air flow. The boards are available in all VXIbus-specified sizes. From \(\$ 34\).

Dawn VME Products, 47073 Warm Springs Blvd, Fremont, GA 94539. Phone (415) 657-4444. FAX (415) 657-3274. Circle No. 419

\section*{If You Have To}

\section*{Cramer Has The Answer}

For almost 70 years Cramer Application Engineers have worked with customers to provide cost-effective solutions to tough timing and motion problems. The Cramer line of timers, elapsed time indicators, \(A C\) and \(D C\) gearmotors assure you of getting the right standard or custom product for your application.
To acquaint you with the Cramer quality line, we'll be happy to work with you to develop the right design for your application. On your company letterhead, tell us your requirements. If you are in a hurry, call us Toll Free or FAX us your facts.

\section*{CRAMER \({ }_{\text {comam }}\)}

The Time and Motion Experts
139 Mill Rock Road East, Old Saybrook, CT 06475-1261
Phone: 203-388-3574 (InCT) 800-247-6784 (Outside CT) - FAX: 203-388-9831

\section*{Keylocks Offer Top Quality}

Standard Grigsby's family of keylock switches features high performance, a variety of design options and competitive pricing.
P.C. or solder lug terminations are available. Terminals are gold-plated over silver-plated brass. Users may specify a variety of security levels and circuits. Anti-static versions offer protection to 20 KVDC. Stops are fixed with indexing angles of \(36^{\circ}, 45^{\circ}\) and \(90^{\circ}\). Life is rated at 25,000 cycles.
The SG Series KL keylocks are priced at \(\$ 10.00\) in lots of 250 pieces, with delivery in 8 to 10 weeks. Standard Grigsby, Inc., (708) 556-4200.

\title{
Specify THE Standard In Optical Switching... Standard Grigsby!
}

\section*{Quality Is Standard At Standard Grigsby...}
- Vibration-resistant interlock design
- Reliable LED optical switching source
- Long life
- Low power consumption

\section*{Customer Satisfaction Is Standard, Too!}
- Binary, gray, or custom codes
- High res, 128-152 position option
- Ribbon cable or connectors
- \(16,24,32,64\) positions
- P.C. lugs and right angle mounts available
- Priced at under \$20 in lots of 100

Raise your switching standards! Call us today for our complete Optical Encoder product catalog. 708/556-4200

88 N. Dugan Road/P.O. Box 890, Sugar Grove, IL 60554-0890 708/556-4200

FAX 708/556-4216

Membrane Switching Offers Many User Options. Sugar Grove, IL-Membrane switches from Standard Grigsby Inc. provide many design options for use in a variety of applications including: test instrumentation, point-of-sale equipment, medical electronics and weight measurement.
Users may select flexible or PC board construction, \(x\) - \(y\) matrix or common bus, and flat or tactile feel. PC board construction can incorporate LED's, diodes, displays, IC sockets resistors and capacitors. ESD, EMI, and RFI shielding is available. Terminations may be gold or tin plated.
Overlay colors may be matched to PMS or Federal standards, or to color chips as supplied by the customer. Full key or ridge-only embossing is offered.
Prototype kits are available. Contact factory for specific design, pricing and delivery information. Standard Grigsby, Inc., Aero Park, 88 N. Dugan Rd., Sugar Grove, IL \(60554-\) 0890. 708/556-4200 FAX 708/556-4216.

Compact, Reliable MMP/REL
Just .865 " square, the MMP/REL rotary switch from Standard Grigsby, Inc. offers standard code (hexidecimal, BCD, gray) and custom code options.
Insert molded contacts ensure proper registration and precise performance. Gold contact inlays are optional. Extemal terminals are solder plated (except on die cut edges). Enclosed, high temp.-resistant design makes the switch ideal for wave soldering. Electronwelded PC terminations permit easy PC board insertion. Dual and triple shafts are available to match the application. Applications: mobile radio, avionics, machine control, agriculture, military, office products, and more.
The switches are \(\$ 5.00\) ea. in lots of 500 pieces. Delivery is 6 to 8 weeks. Standard Grigsby, Inc., 708/556-4200

\section*{We've got the guts, you get the glory.}

Your product shouldn't be a testing ground for inferior suppliers.

Today's sophisticated systems demand maximum compatibility and reliability. Your reputation depends on it.

DTK offers clearly superior 80386, 80286 and 8088 -based Bare Bone \({ }^{\text {TM }}\) systems with FCC, UL, CSA and TUV certification. Plus a wide line of motherboards that are fully compatible with \(\mathrm{AT}^{T M}, \mathrm{XT}^{T M}\) and Micro Channel \({ }^{T M}\) bus architectures.

They're all built to deliver the performance and reliability you need, even in rigorous manufacturing environments. We'll deliver them when you need them from our state-of-the-art 270,000 square foot manufacturing facility.

More Guts. Choose from a dozen Bare Bone systems designed to fit most of your needs. Or select from an extensive line of motherboards, including a 33 MHz ' 386 with cache memory.

We can custom manufacture to your specifications, too. And we'll work hard to bring your projects in on time, and on budget.

Better Quality. Our substantial R \& D capabilities and stringent QC procedures mean you can depend on us for the most reliable, highest performance products available today. And tomorrow.

Our inspection conforms with MIL-STD-105D, and our boards enjoy an overall reliability rate greater than \(98 \%\).

So why take chances? We've got all the guts you need at prices that are hard to beat. Go for the glory.

Call or write DTK COMPUTER, Inc., 15711 E. Valley Blvd., City of Industry, CA 91744.

> Tel: (818) \(333-7533\)
> Fax: (818) \(333-5429\)
> Ask for OEM sales.

\footnotetext{
DTK is a registered trademark and Bare Bone is a trademark of Datatech Enterprises Co., Ltd. Intel 386 is a trademark of Intel Corporation. AT, XT and Micro Channel are trademarks of IBM Corporation.
}

\section*{The power-user's guide to the new HP48SX.}

Serial interface to PCor Mac.

Two-way infrared I/O.

Over 2100 built-in functions. with calculus.

Automatic unit management.

\section*{NEW PRODUCTS}

\section*{CAE \& SOFTWARE DEVELOPMENT TOOLS}

\section*{Ada Cross-Compiler For 88000 RISC Systems}
- Runs on VAX/VMS host computers
- Performs extensive in-lining and code optimization
The Telegen2 Ada cross-development package runs on VAX/VMS host computers and generates code for target systems that are based on the Motorola 88000 RISC (re-duced-instruction-set computer) processor. The package consists of the optimizing cross-compiler, a library manager, a source-level debugger, an Ada profiler, and a global optimizer. Tools include a cross-referencer, a source-dependency lister, a source formatter, and a compilation-order tool. The compiler performs more in-lining and code optimization than other mod-

els. It also uses a multithreaded runtime support package that provides deterministic interrupt-handling behavior, which allows you to accurately predict if your application will respond to critical events within a specified period of time.

From \(\$ 12,600\) to \(\$ 102,000\), depending on the host configuration and the options you select.

Telesoft, 5959 Cornerstone Ct W, San Diego, CA 92121. Phone (619) 457-2700. FAX (619) 452-1334.

Circle No. 420

\section*{Cross-Development Tool Set} For R3000 RISC Processors
- Runs on IBM PCs and compatibles
- Includes a floating-point library and a debug monitor
This tool set lets you write, assemble, and debug software for the vendor's R3000 RISC (reduced-instruc-tion-set computer) processors and R3001 microcontrollers. The tool set consists of the IDT7RS357 cross-assembler, the IDT7RS361 PROM monitor, and the IDT7RS355 floating-point library. The cross-assembler runs on any IBM PC or compatible under MS-DOS or SCO Xenix, and it produces object code that you can download to the target system for execution and debugging. The debug PROM monitor resides in the target system and not only provides extensive diagnostic facilities, but also allows sourcelevel debugging from the PC host. The floating-point library provides math routines that you can link to your assembly-language programs,
thereby eliminating the need for a math coprocessor. Cross-assembler, \(\$ 249.50\); debug monitor (binary), \(\$ 995\), (source code) \(\$ 4950\); floatingpoint library, \(\$ 1295\).

Integrated Device Technology Inc, Box 58015, Santa Clara, CA 95052. Phone (408) 727-6116. FAX (408) 988-3029. Circle No. 421

\section*{Memory-Extension System For DOS}
- Applications can use available space above 640 k bytes
- Accommodates Windows 3.0 device drivers
ExtenDOS is a general-purpose memory-extension system that is compatible with Windows 3.0. It allows application programs to request additional memory space in the region between the 640 k -byte top of main memory and the \(1024 \mathrm{k}-\) byte upper limit. The available memory in that region is managed by DOS, and you don't need a special applications programming in-
terface (API) to access it. Using the vendor's Moveup program, you can run the HIMEM.SYS driver required by Windows in ExtenDOS memory; mouse drivers, network drivers, and other resident programs can also run in the extended memory. ExtenDOS works with all processors of the Intel family. Products featuring ExtenDOS, from \(\$ 200\).

Dakota Research Corp, Box 40, Rapid City, SD 57709. Phone (605) 394-8900.

Circle No. 422

\section*{Graphics Application Development Tool}
- Works with a variety of DOS extenders
- Library contains more than 200 graphics subroutines
Halo Professional is a developer's tool kit that lets you write large and sophisticated graphics application programs. It works with DOS extenders such as Rational Systems D0S16M and Phar Lap. These ex-
tenders allow application programs to use more than 640 k bytes of memory. Halo Professional allows you to write application programs that run in protected mode and real mode. It lets you create bit-mapped cursors that improve cursor visibility and look. Your programs can simultaneously display graphics on multiple devices. You can use the tool in conjunction with many popular Basic, C, Pascal, and Fortran compilers. Halo Professional runs on \(80286 / 386\)-based IBM PCs and compatibles that have a 1.2 M -byte floppy-disk drive, a hard-disk drive, and 640 k bytes of main memory. It supports dot-matrix, laser, ink-jet, and thermal printers, as well as a variety of display devices, scanners, and pen plotters. \(\$ 595\).

Media Cybernetics Inc, 8484 Georgia Ave, Silver Spring, MD 20910. Phone (301) 495-3305. FAX (301) 495-5964.

Circle No. 423

\section*{Spice Model Library Of RF Transistors}
- Usable with any Spice-compatible simulator
- Accounts for all package parasitics
The RF Device Model Library includes models of 36 foreign and domestic bipolar transistors and JFETs. You can use these models with any Spice-compatible simulator running on any computer. The models use a subcircuit approach that takes into account all package parasitics and matches the published S-parameter magnitude and phase data at all frequencies up to 5 GHz . The package includes several test circuits and schematics that allow you to plot a transistor's S-parameters from Spice simulations. These models are more accurate than those which try to fit device behavior to the standard Gum-mel-Poon model; the only other ac-
curate models of RF transistors are encrypted, proprietary, and very expensive. The models are available on \(5^{1 / 4}-\mathrm{in}\). or \(3^{1} / 2-\mathrm{in}\). diskettes, in IBM PC ASCII format or Macintosh Text format. \$99.

Intusoft, Box 6607, San Pedro, CA 90734. Phone (213) 649-9099. FAX (213) 649-4503.

Circle No. 424

\section*{C Library Includes Window Management}
- Allows you to paint windows with shadows
- Provides drivers and graphic interface routines for mice
The Superfunctions C library furnishes C programmers with a variety of complex services for DOSbased computer systems. The ex-panded-memory interface lets your application sense the presence of expanded memory and use all of the

Fast turnaround on U.S. made DIPs and coated/ molded SIPs. • Unlimited schematics combining resistors, inductors, capacitors and diodes. - Complete capabilities from design through production. - Lead lengths up to \(0.290^{\prime \prime}\). Special performance ranges, plus production and testing to M83401 levels.

Call or Fax your requirements to:
TECHNO DIVISION
DALE ELECTRONICS, INC.
. . a VISHAY Company
7803 Lemona Ave. • Van Nuys, CA 91405-1139
Phone (818) 781-1642 • FAX (818) 781-8647

That's why Behiman created the H-Series Uninterruptible Power Supply. The H-Series is designed to handle critical loads which are more demanding than everyday computer room requirements. This unique product safeguards your entire system, not just the computer, eliminating catastrophic power losses and line disturbances. No other rack-mount UPS combines so many features. You get the smallest-lightest package available, high reliability and the technical characteristics necessary for today's critical applications and tomorrow's unknown requirements.
\[
\begin{array}{lll}
\text { - Critical Industrial } & \text { - Mobile } & \text { - Process Control } \\
\text { - Testing Continuity } & \text { - Broadcast } & \text { - Remote Sites } \\
\text { - Communications } & \text { Robotics } & \text { - Automation }
\end{array}
\]

When you need AC Power, think Behlman. Call or write today for more information.

2021 Sperry Avenue, \#18 Ventura, California 93003
Phone (805) 642-0660 FAX (805) 642-0790

\section*{TO. 5 helay technologr}

\section*{The CMOS Compatible Centigrids \({ }^{*}\)}
- Driven directly from CMOS logic
- No amplification or buffering needed
- Fewer components/connections = greater reliability
- Both latching \& non-latching versions available

That's right. These little relays are truly CMOS compatible. You can drive them directly with CMOS level signals. No outside amplification at all. An integral power FET driver gives you all the amplification you need. A large Zener diode protects the FET gate input. And all this plus a DPDT relay and coil suppression diode are packed into a tiny Centigrid can.

You can see the advantages up

front. Fewer components and connections mean increased reliability. Simpler board layout, too. Add to that the rugged construction and proven contact reliability that have made Centigrid a byword in the industry, and you have a sure winner. One that's QPL approved to MIL-R-28776/7 and 8. One thing more. One version of this little beauty is also a Maglatch. A
short pulse of power sets the relay, and it stays that way until it is reset.

No holding power is required. That makes it ideal for applications where power is at a premium. The versatile CMOS compatible Centigrid. It is available in general purpose (116C) sensitive (136C) and Maglatch (122C). Call or write for complete information.

\author{
* TELEDYNE RELAYS \\ Innovations In Switching Technology
}

\footnotetext{
Teledyne Relays, 12525 Daphne Ave., Hawthorne, California 90250 • (213) 777-0077/European Headquarters: W. Germany: Abraham Lincoln
Strasse 38-42, 6200 Wiesbaden/Belgium: 181 Chaussee de la Hulpe, 1170 Brussels/U.K.: The Harlequin Centre, Southall Lane, Southall, Middlesex, UB2 5NH/ Japan: Taikoh No. 3 Building, 2-10-7 Shibuya, Shibuya-Ku, Tokyo 150/France: 85-87 Rue Anatole-France, 92300 Levallois-Perret.
}

\section*{A POWERFUL STATEMENT}

Full Line of \(D C / D C\) Converters and \(A C / D C\) Power Supplies
- Narrow and Wide Range Inputs from 4 to 400 VDC
- AC Inputs from 90 to 270 VAC
- Switching and Linear Designs
- Encapsulated
- Outputs from 2 to 3000 VDC
- Outputs: Single, Dual or Triple; Isolated or Non-Isolated; Regulated or Unregulated - Low Profile, PC Board Mountable

Since 1960: a Power in the Industry
800-321-WALL
or 603-778-2300
Wall Industries, Inc.
5 Watson Brook Rd. • Exeter. NH 03833

\section*{EXCELLENCE IN 8-BIT EMULATION:}

THE MIME-600 IN-CIRCUIT EMULATOR C source-level debugging

68HC11 Family 6801/3 Family
64180 6809
6301/3 Family
Z80
Serious Professional Service 100\% Real Time Fully Symbolic Memory Management
Unlimited, highly flexible breakpoints 8 K deep real-time trace with time stamping

One Kendall Square, Building 200, Cambridge, MA 02139 Phone: (617) 577-1101 Fax: (617) 494-9162

features specified by the Lotus/ Intel/Microsoft Expanded Memory Standard (LIM EMS) 4.0. The library also supports version 3.2 of the LIM EMS. New window-management functions let you paint windows with shadows, scroll text within the windows, and use many different attributes of color and intensity. In addition to Turbo C 2.0 , Turbo C++, Lattice C, Quick C, and Microsoft C 6.0 , the library now supports the Watcom C, Zortech C + + , and Topspeed C compilers. Superfunctions can now take advantage of the Microsoft C fast-call convention; this strategy lets you pass some parameters by way of the CPU's registers, instead of pushing them onto and popping them off the stack-a far slower procedure. The mouse interface offers a complete set of functions to interface your applications to Microsoft-compatible mouse drivers, including mouse detection, cursor setup and maintenance, position detection, click detection, and mouse-status detection. \(\$ 299\); upgrade price for purchasers of the earlier version, \(\$ 45\).

Greenleaf Software Inc, 16479 Dallas Pkwy, Suite 570, Dallas, TX 75248. Phone (800) 523-9830. FAX (214) 248-7830. Circle No. 425

\section*{Updated ReliabilityPrediction Software}
- Conforms to the provisions of Notice 1 of MIL-HDBK-217E
- Uses new data to improve reliability prediction
The vendor has revised three reli-ability-analysis software packages (Reap, Reapmate, and Reap Basic) to conform to the provisions of Notice 1 of the DoD MIL-HDBK217E. This Notice provides new data that permits more accurate prediction of the failure rates of ICs, optoelectronic components, and semiconductors. The Reap software provides sensitivity tests for temperature, quality, and environment; it also includes an expand-
able, menu-driven component library. You can link the Reap programs with the vendor's thermalanalysis software to improve the accuracy of the reliability predictions. The programs run on IBM PCs and compatibles and on engineering workstations that run under VMS and Unix. From \(\$ 995\) for single-
user PC versions; from \(\$ 10,000\) for workstation versions. Current users can upgrade to the new version for one-third the cost of each full license.

Systems Effectiveness Associates Inc, 20 Vernon St, Norwood, MA 02062. Phone (617) 762-9252.

Circle No. 426

- up to 4 filters of total 32:n orders
- pass band accuracy of \(+/-0,05 \mathrm{~dB}\) - offset under 10 mV
- fast design with Micronas MASFIL program
- full custom SC-filters also available

CIRCLE NO. 46

\section*{Object-Oriented Software Development System}
- Supports Microsoft Windows release 3.0
- Provides improved memory management
Kappa PC version 1.1 is a highperformance development system for object-oriented application programs that run on IBM PCs and compatibles under Microsoft Windows 3.0. This interactive system incorporates facilities for objectoriented programming, rule-based reasoning, and active graphics. Because of the software's improved memory management, applications with as many as 5000 objects can run in less than 2 M bytes of memory. Working with the Windows DDE (dynamic data exchange) feature, Kappa PC can exchange data with other Windows applications such as Excel and Toolbook. The system also includes links to spread-
sheets, database applications, and ASCII files that do not support DDE. You can write your applications in ANSI C or in the proprietary Kappa Application Language (KAL). Registered users of version 1.0 can upgrade to version 1.1 for \(\$ 165\). For first-time purchasers, a complete 1.1 development system costs \(\$ 3500\); a runtime license for each application you develop with Kappa costs \(\$ 450\).

IntelliCorp, 1975 El Camino Real W, Mountain View, CA 94040. Phone (415) 965-5500.

Circle No. 427

\section*{Digital-Logic Simulator For The Macintosh}
- Simulates multi-input gates and 3-state gates
- Handles J-K, D, and T flip-flops and ideal delay lines
Navlogic is a digital-logic simulator

\section*{Quality ROM Tools}

Genesis Microsystems has been a producer of quality 8086 -family ROM development tools since 1982.
Our GeneLink linker/locator links OBJ files from Microsoft-C, MASM, and other languages to fully-located ABS and HEX files. CodeView debugging information is completely converted to standard Intel format for emulators and ROM debuggers. GeneLink is by far the fastest and most integrated ROM linker available, performing all operations with a single, integrated tool.
Our GeneScope/Target PROM source-level target debugger gives you the same advanced, windowed debugging capabilities as we supply to premium emulator manufacturers for their own high-end products, but at the lower costs of a PROM-based monitor.
For more information call Genesis Microsystems Corp. at (707) 5425000. Or write 146-D Wikiup Dr., Santa Rosa, CA 95403.

\section*{There IS a Surprise in Every Box!}

Yes indeed. You'll be pleasantly surprised at the extent of service and support behind your copy of OrCAD/PCB II. That's one reason why OrCAD users vastly outnumber the competitions.' It goes beyond the superiority of our products, even beyond their ready accessibility. It is, quite simply, a proven commitment to provide high-performance productivity tools and back them up with the highest level of technical service and support in the industry.

At OrCAD, we offer more major new product releases, more product updates and more technical support. That's because, unlike the competition, we listen to our customers and respond with continuing product improvements. Improvements that will help you keep pace with advancing technology.

OrCAD/PCB II . . . the only real surprise is how much more you get for the price.

The ultimate enclosure with sleek, sophisticated styling, computer-aided, high-tech design and functionality and Bud's legendary built-in quality.

The new Jaguar Cabinet offers the contoured elegance of a modern classic in perfect harmony with advanced engineering and inspired technical innovation. Beneath the graceful curves of its removable top cover, you'll discover a rugged steel frame engineered to be incredibly strong and stable. The sophisticated, functional design provides a precise environment for today's, and tomorrow's, high-tech equipment.

Utilizing Bud's standard option packages and our engineer-assisted custom capabilities, we can create a unique Jaguar Cabinet to meet your specific technical requirements.

Bud East, Inc
4605 East 355 th Strect
P. O. Box 431

Willoughby, Ohio 44094 (216) 946-3200 FAX: 216-951-4015

Bud Industries. Inc.

Bud West, Inc.
7733 West Olive Avenue
PO. Box 1029
Peoria, Arizona 85345-0350
(602) \(979-0300\) FAX: 602-878-5371

\section*{NEW}
 Guaranteed to Knock Your Socks Off!

Data I/O \({ }^{\text {® }}\) 's new ABEL \(^{\text {™ }}\)-4 Design Software propels FPGA and PLD design support into a new level of power and ease.

Its advanced new features like SmartPart \({ }^{\text {TM }}\) intelligent device selection, multilevel simulation, and a device-independent hardware description language (ABEL-HDL \({ }^{\text {™ }}\)) help you create more efficient designs in less time. Even today's most complex devices are easy to master with ABEL-4.
You simply won't find a more powerful design tool at such a low price. ABEL-4 versions start at just \$895.*
30-Day Money-Back Guarantee. We'll even guarantee your complete satisfaction with ABEL-4 in 30 days, or your money back. It's your opportunity to put the power of ABEL-4 to work for you-RISK FREE!

So call Data I/O to order. BUT HURRY - this offer expires December 15, 1990.

\section*{1-800-247-5700}

The Personal Silicon Experts
DATA I/O
Corporation
*Price valid in U.S.A. only.

\section*{CAE \& SOFTWARE}
for the Macintosh II computer. The program can simulate both standard and 3 -state gates; there is no limit on the number of inputs. In addition, the program can simulate J-K, D, and T flip-flops and ideal delay lines. You can specify the variables to be plotted; a separate program performs the plotting. For a large number of time intervals, the program divides the plot into several incremental windows, each having as many as six variables. You can save the incremental windows as Macintosh PICT files, and then print them. \(\$ 199\).
Kask Labs, 1207 E Secretariat Dr, Tempe, AZ 85284. Phone (602) 831-1420.

Circle No. 428

\section*{Auxiliary Tools For OrCAD CAE Products}
- Shell provides master menu for running all OrCAD programs
- Translator converts third-party netlists to OrCAD format
Or-Tools 2.5 is a set of utility programs that complement OrCAD CAE products, making these products easier to use and providing additional functions. Or-Shell lets you select and run any OrCAD program from a single menu; it uses no additional memory because it resides on disk and reloads itself only when the application you have selected completes its operations and returns control to the OS. Netcon is a netlist translator that converts netlists created by EEDesigner, Futurenet, Tango, Case, Telesis, or PADS-PCB into the OrCAD-PCB format. This program also creates the time stamps used by OrCAD SDT and OrCAD PCB. Other tools can make stuff files from a parts list; edit and modify Gerber files; update old schematics; compare and merge SDT libraries; and automate many other time-consuming and tedious tasks. \(\$ 99\).
Hughes Computer Services, 2401 NE Cornell Rd, Suite 155, Hillsboro, OR 97124. Phone (503) 648-7150.

Circle No. 429

2 TO 8 POSITION

BIFURCATED SLIDE CONTACTS

SAME SIZE AS AN I.C.

REMOVABLE TAPE SEAL

PREVENTS CONTAMINATION

\footnotetext{
FOR A FREE SAMPLE
CALL 312-8:83-7245 AMERICAN RESEARCH \& ENGINEERING
1500 EXECUTIVE DR. ELGIN IL 60123
}

\section*{}

(c) David Madison 1988

\section*{...Everytime.}

Competition has never been tougher. In an environment where teamwork is vital and dependability, quality, and service are a must . . . the PMI division and Analog Devices will be there.
When you need an analog IC supplier who is organized, focused, and dedicated to serve the military and aerospace marketplace - a partner who understands your special processing, documentation, and coordination needs . . . PMI and Analog Devices will be there.

Whether your products go into space, air, land, or sea,

\section*{PMI and Analog Devices \\ A Winning Combination} for Class S

PMI Mil/Aero Products is chartered to be the center of business for Class SIC products for the entire company. PMI's assembly and test expertise combined with a dedicated focus on servicing military and aerospace accounts allows us to bring more Analog Devices products to the Class S marketplace than ever before.

ANALOG DEVICES

\section*{Precision Monolithics}

A Division of Analog Devices
1500 Space Park Drive
Santa Clara, California 95054-3434

PMI has been there as a product and technology leader for over twenty years. And now, we'll be there with outstanding Analog Devices products as well.
The more you know about us, the more you'll understand how we are leaving the competition behind.
For more information on what we can do for you, write us or circle the reader service number below.
In a hurry? Call us at 800-843-1515 or FAX us at (408) 727-1550.

PMI and Analog Devices.
We'll be there . . . everytime.

CIRCLE NO. 222

YOU can get a lot more time out of the office when you use the new SUSE-Concurrent Designer" 6.0 . SUSIE-CD is the fast, efficient way to simulate and verify breadboard designs and skip the time-consuming prototype stage. Powerful and productive SUSIE-CD is the concurrent design and simulation tool optimized for PLD and PGA use.

Design problems can't be overlooked. With SUSIE-CD, every pin of every IC chip is watched and reported on during each clock cycle. Timing violations, bus conflicts, etc. are automatically reported on.

Easy to learn and use.

Save time by skipping the breadboard stage.
- Mouse-driven, pop-up menus.
- No software knowledge required.
\begin{tabular}{|c|c|}
\hline 1 & COMPUTER.............386/486 \\
\hline 2 & ADDRESSING 32-BIT DIRECT \\
\hline 3 & LOGIC SIMULATION \(165-\) STATE \\
\hline 4 & PARTS LIBRARYVHDL \\
\hline 5 & DESIGN SIZE. 200K + GATES \\
\hline
\end{tabular}

For a free evaluation kit of SUSIE-CD, the effective simulation tool that enhances your performance and gets you out of the office, call us at 1-800-48-SUSIE
For international sales Telephone: (805) 499-6867 Fax: (805) 498-7945

\section*{No Matter What Kind Of Solder Mask Technology You Need, Du Pont Has You Covered.}

No one offers a wider range of proven, quality photoimageable solder mask products than DuPont. More importantly, no one knows more about how solder mask technology can affect your design, fabrication or assembly process.

Our knowledge and experience in solder mask technology is reflected in three different solder masks. That means we can help you match the right technology to your applicationwhether it's conventional through-hole or high-density fine pitch surface mount.

For dry film, count on VACREL \({ }^{\circledR}\) to encapsulate dense circuitry, tent via holes, and permit more electrical functions in less PWB real estate.

In liquid solder mask, VAQS \({ }^{\text {TM }}\) photoimageable liquid provides a thin coating that conforms to PWB topography to
give you excellent encapsulation of circuitry.
Finally, the DuPont VALU \({ }^{\text {TM }}\) system - the newest technology in the industry-combines the cost-efficiencies and thinness of liquids with the design freedom and quality of dry film in one unique liquid/dry film combination.

And of course, all DuPont solder mask products are available worldwide.

So, if you want to work with an objective partner who can offer you a variety of solutions to meet your solder mask needs, remember, no one has you covered like DuPont.

For more information, call 1-800-237-4357. Or write: DuPont Electronics, Room G-51875, P.0. Box 80029, Wilmington, DE 19880-0029.

DuPont Electronics
Share the power of our resources.

\section*{NEW PRODUCTS}

\section*{COMPUTERS \& PERIPHERALS}

\section*{VGA Video-Matrix Switch}
- You can connect eight VGA computers to four VGA displays
- Remote unit located as far as 1000 ft away controls switch
The SM-8X4-15V VGA video-matrix switch has eight inputs and four outputs. It allows eight IBM VGAcompatible computers to be connected to four VGA display devices. A remote-control unit, called the SM-RMT-8X4, can control the switch from as far as 1000 feet away. The remote-control unit has 32 backlit and touch-activated switches for selecting the VGA source. You can connect each VGA source independently to any or all of the four VGA display devices. The remote-control unit connects to the matrix switch via a 5 -pin DIN connector. The matrix switch is housed in a plastic case that measures \(8.5 \times 11.5 \times 12 \mathrm{in}\). The SM-8X415 V switch operates from 110 or 220 V ac and comes with eight 6 - ft cables. \(\$ 2450\). The SM-RMT-8X4 remote-control unit is housed in a plastic case that measures \(8 \times 2.7 \times\) 5 in . and comes with a \(25-\mathrm{ft}\) cable. \(\$ 525\).

Network Technologies Inc, 19145 Elizabeth St, Aurora, OH 44202. Phone (800) 742-8324; in OH, (216) 543-1646. FAX (216) 5435423.

Circle No. 430

\section*{80486 Workstation}
- IBM PC, PC/XT, and PC/AT compatible
- Has \(4 M\) bytes of RAM and \(40 M\) or 100 M bytes of disk storage
The DRS Model 75 workstation uses a \(25-\mathrm{MHz} 80486 \mu \mathrm{P}\). The system is IBM PC, PC/XT, and PC/AT compatible and runs on the MSDOS 3.3, MS-DOS 4.01, and OS/2 operating systems. It contains 4 M bytes of RAM that's expandable to 16 M bytes and either 40 M or 100 M bytes of storage on a \(3^{1} / 2\)-in. hard-
disk drive. An additional 40 M or 100 M bytes for a hard-disk drive is available as an option. The system has one half-length and two fulllength AT expansion slots. It has an RS-232C port and supports the TCP/IP protocol for Ethernet communications. The unit comes with an IBM VGA-compatible card; a monochrome or color VGA display monitor is optional. When equipped with the company's PCPower terminal emulation or PowerWindows software and linked to the com-
pany's Officepower network, the system can access Unix productivity tools such as electronic mail and document conversion. 40M-byte system, \(\$ 6900\); 100M-byte system, \(\$ 7500\).

International Computers Ltd Inc, Box 19593, Irvine, CA 92713. Phone (714) 458-7282. FAX (714) 458-6257.

Circle No. 431

\section*{EISA Prototyping Board}
- Uses universal pattern on
0.1-in. grid of pads
- Operates from \(\pm 5 \mathrm{~V}\) to \(\pm 12 \mathrm{~V}\)

The EISA Pad-Per-Hole prototyping board for the EISA bus combines easy soldering with flexibility. It uses a universal pattern of holes on \(0.1-\mathrm{in}\). grid spacing with individual pads for each hole. The card operates from \(\pm 5 \mathrm{~V}\) to \(\pm 12 \mathrm{~V}\), and has ground buses, which are easily accessible on the entire board
surface. Some board features include \(50 \Omega\) characteristic impedance levels throughout, copper-plated through holes, solder-coated hole-and-pad surfaces, FR4 base material, surface-marked pin designations, and nickel/gold-plated contact fingers. The 4 -layer board measures \(4.5 \times 13.125 \times 0.062 \mathrm{in}\). The board comes with mounting hardware, instructions, and layout sheet. \(\$ 169.05\).
Vector Electronic Co, 12460 Gladstone Ave, Sylmar, CA 91342. Phone (818) 365-9661.

Circle No. 432

\section*{21-In. Color Monitor}
- Has resolution from \(1024 \times 768\) to \(1600 \times 1280\) pixels
- Accepts ECL digital- or analog-input signals
The C21LMAX 21-in. color monitor is compatible with the Artist XJS

Graphics Controller board from Artist Graphics. The noninterlaced monitor has three display resolu-tions- \(1024 \times 768,1280 \times 1024\), or \(1600 \times 1200\) pixels. Some features include horizontal-scan rates from 48 to 96 kHz ; vertical-scan rates from 60 to \(80 \mathrm{~Hz} ; 40 \mathrm{fLs}\) of brightness; dot pitch of 0.31 mm ; video bandwidth of 200 MHz ; and both digital- and analog-input ports. The unit automatically adjusts to hori-zontal- and vertical-scan rates. User controls include front-panel brightness and contrast controls; side-panel power and degauss controls; and rear-panel height, verti-cal-position, width, and horizontalposition controls. The unit measures \(19 \times 19.5 \times 19 \mathrm{in}\). It weighs 60 lbs without tilt-swivel base. \(\$ 3895\).

Image Systems Corp, 11543 KTel Dr, Hopkins, MN 55343. Phone (612) 935-1171. FAX (612) 935-1386.

Circle No. 433

Free InstantCAM"' software trial!

\section*{CAD to ready-to-stuff board in hours instead of days.}

BoardMaker \({ }^{\text {TV }}\) prototyping machines shorten delivery schedules, give more time to test, and slash costs dramatically.
BoardMaker \({ }^{\text {™ }}\) prototyping machines turn out prototype circuit boards in-house by milling and drilling prototype boards as soon as each design change is finished-so the turnaround time for each iteration can be reduced to days from one or two weeks.

No waiting saves your mind.
Efficiency increases when you can keep working on a job instead
of trying to remember all it entailed-days after sending out for a board.

\section*{Deliver faster.}

Or better.
Eliminate the wait for the fab house at each design stage and you gain time to meet tight deadlines. Do more work. Or do additional testing.

\section*{Save fab house expenditures.}

A BoardMaker eliminates the hefty straight-time and over time sums your company spends at the fab house A

BoardMaker pays for itself after delivering about two dozen boards.

\section*{Engineers like working} with InstantCAM.
New InstantCAM utilizes an intuitive graphics-based interface so operators zip through board CAD data editing and board conversion with ease. Uses either mouse-activated menus or easy- to-remember single-stroke key commands.

\section*{Reads and writes all} popular PCB formats. InstantCAM reads and writes

Gerber, HPGL, Quest, Emma and Excellon to produce ready-tostuff SMT, single- and doublesided, analog, and digital boards from your CAD files It also preprocesses files for plotting on virtually any plotting device.
 software trial!
You get our complete full. feature software. Included are all necessary CAD post-processing tools from editing through photoplotting.

\section*{Free! Video and/or}

\section*{literature.}

Phone, fax, or write:
\(\square\) VHS cassette plus literature.
\(\square\) Literature only.
Instant Board Circuits
20A Pamaron Way
Novato, CA 94949 415-883-1717, Fax: 415-883-2626

instant Board Circuits

CALL TOLL FREE
1-800-645-2074
FOR INFORMATION ON
Summit \({ }_{\bullet}\) POWER SUPPLIES FROM BASLER'S ELECTRONIC PRODUCT GROUP

\section*{VALUE ADDED!!}

Enclosures, harnesses, auxiliary assemblies to customer specs.

Box 269, Route \(143 \cdot\) Highland, IL 62249 • 618-654-2341 • Fax: 618-654-2351

\section*{80386 Portable Computer}
- Runs at 33 MHz and has VGA gas-plasma display
- Has \(32 k\)-byte cache RAM and \(4 M\) bytes of system RAM
The Regal II/33 portable IBM PCcompatible computer uses a \(33-\mathrm{MHz}\) \(80386 \mu \mathrm{P}\). The \(20-\mathrm{lb}\) unit has an IBM VGA-compatible gas-plasma
display with \(640 \times 480\) pixels and 16 shades of gray. Other features include 4 M bytes of RAM, a 40 M -byte hard disk, as well as a 1.44 M -byte, \(3^{1} / 2\)-in. floppy-disk drive, and an external 1.2 M -byte, \(5^{1 / 4}\)-in. floppy-disk drive. In addition, you can expand the 4 M -byte RAM to 8 M bytes, using an expansion card. The unit also

\section*{RELIABLE CONTROLS FOR REAL MACHINES}

8/16-BIT STD BUS 16 MHz 80 C 186 CPU \(\square\) 256K EPROM - TWO SERIAL PORTS
 - 256K BATTERY BACKED RAM - roun panalle ports - BATTERY BACKED CLOCK

Cubit Model 8650 CPU Board

> Most machines are slow compared to modern electronics, but demand high reliability. STD Bus uses proven technology to design reliability in to your machine control. Simplicity combines with the
longest track record of any industrial bus to give you computer controls that you can use with confidence. Please call or fax us for our full STD Bus catalog.

340 Pioneer Way, Mountain View, CA 94041 Phone: 415-962-8237 Fax: 415-965-9355
includes a 32 k -byte cache RAM, that is expandable to 64 k bytes, and a detachable keyboard with a full complement of 102 keys. The display driver can run an external \(800 \times 600\) color VGA monitor. The computer has two full-sized expansion slots and measures \(16 \times 9 \times 7.5\) in. A 15 -month warranty covers parts and labor, and the computer comes with a 30-day money-back guarantee. \(\$ 3899\); model with an EGA display, \(\$ 3599\).

Micro Express, 1801 Carnegie Ave, Santa Ana, CA 92705. Phone (800) 642-7621; in CA, (714) 8521400. FAX (714) 852-1225.

Circle No. 434

\section*{I/O Coprocessor Board}
- Utilizes \(10-M H z ~ V 40 \mu P\) in IBM PC expansion slot
- Host communication takes place through \(1 k\)-byte RAM
The 6P21 I/O coprocessor board serves as an expansion slot in the IBM PC bus. The \(4.2 \times 5.5-\mathrm{in}\). card is a slave processor for I/O and realtime control applications. Host communication takes place through a 1 k -byte dual-ported RAM. The board utilizes a \(10-\mathrm{MHz}\) V40 \(\mu \mathrm{P}\). When multiple boards co-exist on a single host, each board requires 2 k bytes of memory space for communication and one host interrupt line. The board doesn't occupy any host I/O space or host DMA space. The board's BIOS provides DOS emulation, thus allowing the host to download programs through the dual-ported RAM. Because the board runs all DOS function calls,

\section*{Crystal Clear LCD Modules}
世4
माणीए

Hantronix, Inc. has for immediate delivery, a large variety of high-resolution LCD modules. Our wide selection of formats include:
\begin{tabular}{lllllll}
\hline \(1 \times 8\) & \(1 \times 16\) & \(1 \times 20\) & \(1 \times 24\) & \(1 \times 32\) & \(1 \times 40\) & \(1 \times 80\) \\
& \(2 \times 16\) & \(2 \times 20\) & \(2 \times 24\) & \(2 \times 32\) & \(2 \times 40\) & \\
& \(4 \times 16\) & \(4 \times 20\) & & & \(4 \times 40\)
\end{tabular}

Also available are:
- Super Twist Models - Positive or Negative Types E/L or LED Backlight - Wide Viewing Angles Extended Operating Temperatures \(\left(-20^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)\)
Various Character Heights

Custom Models
Graphic Modules
For more information on our high-quality and moderately priced LCD modules, call or write:

HANTRONIX, INC.
250 Santa Ana Court
Sunnyvale, CA 94086
Tel: (408) \(736-3191 \cdot\) Telex: \(880165 \cdot\) Fax: (408) 749-0477

CIRCLE NO. 53

Wickmann offers you some refreshing news and a lot of established items which have already been well proven in practise. For decades we have been one of the leading companies in research, development and production of miniature and sub-miniature fuses, fuseholders and surge arresters, with internationally accepted approvals. Come to the Wickmann stand and inform yourself about the news. We are looking forward to your visit.

Wickmann-Werke GmbH
Postbox 2520 . D-5810 Witten 6-Tel. 02302/6620 Fax 02302/6622 19

CIRCLE NO. 54

\section*{TANTALUM CHIP CAPACITORS FOR SURFACE-MOUNT DEVICES}

\begin{abstract}
High performance at a lower price: The hyperstone E1 32-bit \(\mu\) P for embedded systems. 25 MIPS with standard
\end{abstract} DRAMs. Short design time, low hardware costs. Second source. Your alternative: The hyperstone E1 32-bit \(\mu\) P for better products.

Powerful instructions of variable length
- 16, 32, 48 bits. Instruction cache, busand DRAM-controller, parity logic onchip. 25 MIPS maximum at 25 MHz . Separate 32-bit address and data bus. 16 global registers, 16 local registers per call frame, overlapping for efficient parameter passing. 144 PGA. 85,000 transistors.

Available tools:
Assembler, C Compiler, Source-Level Debugger, Evaluation Board.
it runs on code compiled for standard languages. Local memory and I/O resources include 8 k to 512 k bytes of RAM, an RS-232C port, 24 digital I/O lines, six 16 -bit timer counters, a 4-channel 8-bit A/D converter sampling at 400 kHz , and two 8-bit analog-output channels. \(\$ 335\).

Mesa Electronics, 1329-D 61st St, Emeryville, CA 94608. Phone (415) 547-0837. FAX (415) 547-4738. Circle No. 435

\section*{DSP Board}
- Utilizes \(40-\mathrm{MHz}\) TMS320C25 DSP chip for ISA bus
- ADC samples eight channels at 300 KHz with 12-bit resolution
The Model 250 DSP board for a 16bit ISA bus utilizes a \(40-\mathrm{MHz}\) TMS320C25 DSP chip. It can also accommodate the faster TMS320C25-50, the EPROM-based

TMS320E25, and the TMS320C26. The board provides both analog and digital I/O channels. An A/D converter samples eight single-ended channels at a maximum of 300 kHz with 12 -bit resolution. The board provides two analog-output channels, as well as a serial interface for the DSP chip. The board can have as much as 64 k words of zero waitstate programmable RAM and 128 k words of one wait-state data RAM. The data RAM is simultaneously available to the host and DSP chip through the use of an onboard memory controller. The host-to-data RAM transfer speed can be as high as 3 M bytes \(/ \mathrm{sec}\). The board comes with an assembler and a debugger and programs for FFTs, signal and
spectrum display, digital filtering, recording and playing back to and from disk, and waveform editing. Model 250 , with \(40-\mathrm{MHz}\) TMS329C25, 4 k words of program RAM, and 32 k words of data RAM, \$1095.
Dalanco Spry, 89 Westland Ave, Rochester, NY 14618. Phone (716) 473-3610.

Circle No. 436

\section*{Ink-Jet Printer}
- Provides \(300 \times 300\) dpi for paper sizes to \(11 \times 17 \mathrm{in}\).
- Has 64 ink-jet nozzles and prints at 2 pages/minute in draft mode The EPI-4000 ink-jet printer provides \(300 \times 300\)-dpi resolution on paper sizes as large as \(11 \times 17 \mathrm{in}\). The printer utilizes 64 ink-jet nozzles arranged in a \(16 \times 4\) staggered pattern. It prints bidirectionally with maximum speed depending on the font and quantity of data. It prints as fast as 2 pages/minute in draft mode. The printer is compatible with software written for the HP LaserJet Series II and Epson FX and LQ models. The print controller uses a \(10-\mathrm{MHz} 68000 \mu \mathrm{P}\) and 512 k bytes of RAM with an optional 2Mbyte memory board. The printer can print on letter, legal, executive, A4, ledger B, \#6, and \#10 paper sizes, and DL envelopes. It has an automatic feed for single sheets and envelopes, and an optional push tractor is available for continuous paper and labels. \(\$ 1999\).
Epson America Inc, 23530 Hawthorne Blvd, Torrance, CA 90505. Phone (213) 539-9140, ext 4438.

Circle No. 437

\section*{REMEMBER WHEN SQuare Waves Were Square?}

\section*{N \\ Typical Digital Waveform, circa 1990 Clock rate \(>100 \mathrm{MHz}\) Rise/Fall Time \(<0.5\) nsec. Equivalent microwave signal \(>1 \mathrm{GHz}\) \\ THAT WAS THEN. THIS IS NOW.}

If you're designing today's high speed digital ICs, circuits or systems, you're probably looking at clocks of 100 MHz or faster, with signal components exceeding 1 GHz . At these speeds, digital signals assume the characteristics and problems of microwaves.

Welcome to the future.
At Cascade Microtech we offer high speed T\&M solutions based on measurement technologies bred and proven in microwaves, and now available for today's digital world.

Our high frequency microprobing equipment and computer-aided test software will let you accurately characterize circuits, devices, packages, and even boards. At their full operating speeds. So you can quickly eliminate timing skew, degraded signal edges, ground bounce, and other high speed problems.

\section*{Free Booklet}

To introduce you to high frequency microprobing, and help you create products that perform better and more reliably, we've prepared a comprehensive booklet, "High Speed Digital Microprobing: Principles and Applications."

For your free copy, use the reader service card, write, or call Jerry Schappacher at (503) 626-8245.

\section*{CASCADE MICROTECH \({ }^{\circledR}\)}

14255 SW Brigadoon Ct.
Beaverton, Oregon 97005

Introduction of LinCMOS Technology

\section*{Marshall boasts a fine lineage.}

At Marshall, we have a history of making history in linear technology. Like supporting each new generation from Texas Instruments. Now our line includes TI's family of Advanced Linear components. With higher performance, higher levels of integration and merging of analog and digital signals. So whether your applications are mainframes and modems or terminals and test equipment, Marshall stocks the TI Linear and Advanced Linear parts you need. After all, we've been doing it for generations.

\footnotetext{

 TEXAS

}

DADiSP - interactive graphics and data analysis software for scientists and engineers. DADiSP 2.0 delivers unprecedented power, through easy-to-use menus. Choose from hundreds of analysis functions and graphic views from tables to 3-D. Simultaneously display multiple windows, each with different data or analyses, for unlimited perspective on your toughest data analysis problems.
Build your own analysis worksheets build and display an entire signal processing chain, without programming. And DADiSP's powerful graphic spreadsheet automatically recalculates and updates the entire chain if you change your data or a processing step.
Do serious signal processing...the way you always pictured it! FFTs, digital filter design, convolutions, waterfall plots, and more - all at the press of a key.

Let your instruments do the talking - use DADiSP488 to bring data from your instruments directly into a DADiSP window for immediate viewing and analysis.

Flexible, expandable, customizable - annotate your graphs and send them to printers, plotters, or publishing packages. Create your own macros, automate routine tasks, and run any program written in any language from within DADiSP. DADiSP even lets you build your own menus.
A proven standard - already used by thousands of engineers and scientists worldwide, in a whole range of applications like medical research, chemistry, vibration analysis, communications, manufacturing quality control, test \& measurement, and more. DADiSP supports the IBM PC and PS/2, SUN, DEC VAX, HP 9000 and Concurrent families of personal computers and workstations.
CALL TODAY: 800-424-3131
IN MA: 617-577-1133
Ask for our Evaluation Disk. For more information, write to DSP Development Corporation, One Kendall Square, Cambridge, MA 02139, or FAX: 617-577-8211.

Development
Corporation

\section*{16-Bit Resolution, 3 Channels plus Noise, and a Whiole Lot More.}

\section*{That's Pragmatic!}

\section*{The Pragmatic 2201A High-Definition Arbitrary Waveform Generator."}

The power and flexibility of the 2201A enables you to generate an unlimited array of practical waveforms. You'll be more than ready to meet the demands of today's challenging applications. To fully appreciate the 2201A's unique set of features, you must see a demonstration.

For your personal demo, or for more information on the Pragmatic 2201A High-Definition Arbitrary Waveform Generator, contact Pragmatic Instruments, Inc., 7313 Carroll Road, San Diego, CA 92121-2319. Telephone (619) 271-6770, or call TOLL FREE: (800) PRAGMATIC (800) 772-4628. FAX: (619) 271-9567.

\section*{NEW PRODUCTS}

\section*{TEST \& MEASUREMENT INSTRUMENTS}

\section*{100-MHz-Bandwidth Digital/Analog Scopes}
- Have \(100-\mathrm{MHz}\) bandwidth as DSO for repetitive signals
- Have 25-MHz single-shot bandwidth
The \(6 \times 65\) and \(6 \times 75\) families of 2 channel digital/analog oscilloscopes each include three members. Of these, all have an analog bandwidth of 100 MHz and, as DSOs, resolve 8 bits and store records 4 k bytes long. All units have a single ADC. The fastest units take 200 M samples/sec. The \(100-\mathrm{MHz}\) bandwidth is obtainable when you use the scopes as conventional analog units or when you sample repetitive waveforms in DSO mode. When capturing transients in real time in the DSO mode, the units that take 100 M and 200 M samples/sec have \(25-\mathrm{MHz}\) bandwidth; those that take 50 M samples/sec have a \(12.5-\mathrm{MHz}\) bandwidth. Units in the \(6 \times 75\) series

can read and write data on credit-card-sized RAM modules. Each module stores 15 waveforms. The connector that accommodates the RAM modules also lets you connect the scopes to a personal computer
equipped with an appropriate interface. \(\$ 3995\) to \(\$ 4495\).

Hitachi Denshi America Ltd, 150 Crossways Park Dr, Woodbury, NY 11797. Phone (516) 921-7200.

Circle No. 438

\section*{10M-Sample/Sec \\ Transient Recorder}
- Includes eight flash ADCs
- Has 32k bytes of battery-backed RAM for each channel
The 2028 transient recorder houses eight channels in a single module. Each channel includes a \(5-\mathrm{MHz}-\) bandwidth \(\mathrm{S} / \mathrm{H}\) amplifier, a 10 M sample/sec flash converter, an 8-bit flash \(\mathrm{A} / \mathrm{D}\) converter, and 32 k bytes of high-speed battery-backed RAM. The ADCs maintain dynamic accuracy of 7.2 effective bits to 1 MHz and 6.8 effective bits to 5 MHz . Data for all channels is sampled simultaneously under control of an internal programmable clock or an external source. The internal generator can synchronize additional tran-sient-recorder modules. Batterybacked RAM stores all control settings. You can set the amount of memory needed, and use as little as 256 bytes. A programmable at-
tenuator divides the input by 2,5 , or 10. You can program offsets to \(\pm 1 / 2\) of full scale, and you can connect the input for an impedance of either \(50 \Omega\) or \(2.5 \mathrm{k} \Omega . \$ 4900\).

DSP Technology Inc, 48500 Kato Rd, Fremont, CA 94538. Phone (415) 657-7555. FAX (415) 657-7576.

Circle No. 439

\section*{Time-To-Voltage Converter}
- Measures pulse widths, periods, and signal-signal delays
- Lets you display measured parameter on a scope
The TVC 501 instantaneous time-interval-to-voltage converter produces an output voltage proportional to an input pulse width, period, or signal-to-signal delay. The unit, which is housed in a modular enclosure from the vendor's TM 500 series, works with any oscilloscope to show you how the measured

quantity varies as a function of time. When you set the scope's sensitivity to \(100 \mathrm{mV} /\) div, seven ranges cover \(1 \mu \mathrm{sec} / \mathrm{div}\) to \(1 \mathrm{sec} /\) div. To

To be the best UNIVERSAL PROGRAMMER, you've got to set some pretty high standards.
Stag's Systems 3000 gives you standard features found in no other Universal Programmer.

\section*{Single Programming Station} The System 3000 is designed to program PROMS, PLD's and Microcomputers in every known technology. The technology includes NMOS, CMOS, ECL, Fuse Link, AIM, DEAP and Isoplanar-Z. Surface mount devices can be programmed on an optional SMD chip-station.

Users can easily install the innovative 'Smart' Card to update new Device Support Libraries in seconds.

\section*{Built-In CRT}

The System 3000 incorporates its own CRT display and keyboard allowing it to be used as a powerful stand-alone programmer. On-screen menus and prompts allow device selection and all system operation functions to be easily executed.
The System 3000 also gives you fullscreen editing of both memory and logic data including test vectors. Light pen operation and custom Z-packs for life cycle testing and other specialized functions set the System 3000 apart from any other Universal Programmer.

\section*{Interface Flexibility}

Four separate user interface ports, including two RS232C's, an IEEE 488 and a Handler Port, give the System 3000 unrivaled flexibility for communicating with peripheral equipment.

Stag Microsystems Inc. 1600 Wyatt Drive, Santa Clara, CA 95054 Tel: (408) 988-1118 FAX\#: (408) 988-1232

Stag Microsystems Inc.
3 Northern Boulevard, Amherst, NH 03031 Tel: (603) 673-4380 FAX\#: (603) 673-1915 CIRCLE NO. 228

\section*{Stand-Alone or Computer Operation}

All stand-alone functions are operational under remote control using either a mainframe or a personal computer.

\section*{Instant Update Using a Memory Card}

A unique feature of the System 3000 is that all device libraries and programming algorithms are contained on a Memory Card that can be changed instantly by the user as new devices become available. Data access is considerably faster than floppy disk-based systems.

\section*{Approved by Chip}

\section*{Manufacturers}

Semiconductor manufacturers' approval of our programming algorithms assures the user of the highest yield and device reliability.
Call us today for more information or a demonstration and find out how easy
observe small variations in large time intervals, the module lets you enter offsets as large as 30,000 div. \(\$ 2500\); required TM 500 mainframe, from \(\$ 395\).
Tektronix Inc, Box 19638, Portland, OR 97219. Phone (800) 4262200.

Circle No. 440

\section*{Static In-Circuit Tester For Digital PC Boards}
- Functionally tests devices with as many as 40 pins
- Library includes most TTL ICs

The BoardMaster 4000 is a static in-circuit tester for digital pc boards. The unit functionally tests and diagnoses faults in ICs with as many as 40 pins soldered to a board. You make connections to the IC under test with a clip on the end of a cable. The tester accommodates both DIP and surface-mount devices. To isolate the IC under test,

the tester back-drives the outputs of the surrounding devices. The tester can also check ICs not mounted on boards and can compare a board under test with a known-good board. The unit's library of device tests includes those for most TTL ICs. You can set logic
one and zero levels yourself, however. The tester includes a CRT that displays the menu-driven interface and also has RS-232C and Centronics ports and a \(31 / 2-\mathrm{in}\). floppy-disk drive that reads and writes in a proprietary format. \$13,500.
United Electronic Industries, 10 Dexter Ave, Watertown, MA 02172. Phone (617) 924-1155. FAX (617) 924-1441. Circle No. 441

ABI Electronics Ltd, Mason Way, Platts Common Industrial Park, Barnsley, South Yorkshire S74 9TG, UK. Phone (0226) 350145. FAX (0226) 350483.

Circle No. 442

\section*{ICE And Development Tool For AT\&T DSP16A}
- Plugs into IBM PC/AT bus
- Accepts plug-on Codec board The Right Tool consists of an IBM

\title{
Over 150 EMC shielding gaskets to choose from, to give you freedom of design. Off the shelf.
}

\section*{Performance that reads like a designer's wish list.}

Outstanding thermal and electrical conductivity, for shielding effectiveness over the widest frequency range: \(>110 \mathrm{~dB}\) at 10 GHz plane wave, and \(>46 \mathrm{~dB}\) at 14 kHz magnetic. Excellent corrosion resistance, and easily plated to match any host metal if necessary. Low compression force requirements: from 5 to \(20 \mathrm{lbs} /\) linear foot to establish surface contact and provide adequate shielding. Finger gasket's compression range up to \(90 \%\) of free height. Ideal for either shear or compression applications. Light weight. Superb fatigue strength.

Easily mounted with adhesive backing, (Sticky Fingers® Series shown at left), as well as with clip-on's and push rivets (not shown).
How can we help fill your wish list?
Call or write for full information and service. Or ask for our free brochure.

Latin America, Middile East, eacept Israel: Beekman Laboratories, Inc., 914-472-6600; Portugal: Componenta Lda. 351-1-3621284; Sweden: LTG Marketing AB, 46-8-7039380; Finland: Euroshield OY, 358-38-50631; Norway: Feiring Electronikk A-S, 47-2-649070; France: Phytronic, 33-1-69-03-21-06; UK: Ramp Electronics, 44-703-260161; Canada: A.C.Simmonds \& Sons, Ltd., 416-839-8041; Switzeriand, Austria, Leechtenstetn: KAB AG, 41-1-7342000; Italy: Sirces SRL, 57404962; Israei: Grand Central, Ltd., 972-52-576533; West Germany: Microscan GMBH, 49-89-964841; Netherlands, Belglum, Lusembourg: ACAL Auriema/Bodamer, 40-816565; Bodamer BVBA 32-2-452-3990; South Africa Connecta C.C., 27-11-4632240; Spain: Amitron Pasivos, S.A., 34-1-241-5402; 34-3-4907494; Turkey, Greece: Oakdale Industrial Electronics Corp. 516-737-8013.

PC plug-in card that itself accepts plug-on boards, a plug-on in-circuit emulator (ICE) for the AT\&T DSP16A, and the tool vendor's Emul6 software. An optional plugon board contains an AT\&T T7525 linear, 16-bit Codec (coder/decoder), which, among other things, performs \(\mathrm{A} / \mathrm{D}\) and \(\mathrm{D} / \mathrm{A}\) conversion.

The ICE plug-on card connects via a 30 -in. ribbon cable to the 84 contact socket on your target system; this system normally accepts the DSP chip in its plastic leaded chip carrier. The ICE supports DSP16A operation with a 33-nsec instruction cycle. The software's windowed display shows disassem-

\section*{MODULAR CONNECTIONS} For Guaranteed Signal Integrity

\section*{The 90 Series Modular Interface Solution}

VPC's 90 Series Modular Interface Systems provide the high quality connections that you demand in connector applications. Our systems provide precise, repeatable signal integrity for Digital, Analog, Power and Microwave signals.

Available with \(6,10,25\) and 50 module positions, VPC's 90 Series Systems provide the versatility to select a connector configuration which best meets your requirements.

Whatever your application, VPC supplies complete integrated connector solutions.

Virginia Panel Corporation
1400 New Hope Road • Waynesboro, VA 22980 (703) 949-8376 • FAX (703) 942-2856
bled code, all the DSP's registers, breakpoint locations, and the contents of internal RAM and external scratchpad RAM. The only performance penalty is the insertion of a single Go-To instruction at the start of your interrupt handler. \(\$ 2800\); Codec plug-on card, \(\$ 250\).

TJ Consultants Inc, Box 198, Lake Hopatcong, NJ 07849. Phone (201) 663-3501. Circle No. 443

\section*{Universal Device \\ Programmer Series}
- Identifies IC vendor and part number automatically
- Has programmable pin driver on every pin
The T-10 series of universal device programmers handles EPROMs, EEPROMs, bipolar PROMs, and PLDs. You use the programmer with an MS-DOS-based PC; the attachment is via an I/O card that plugs into a half-length slot. The programmer can detect the vendor and type of the device to be programmed. It automatically chooses the fastest algorithm for programming the part. Each pin has its own pin driver circuit, and the vendor supports new devices by distributing disks containing updates to the device library. The \(9.8 \times 5.6 \times 1.2\) in. unit weighs less than 2 lb . Equipped to program DIP-packaged devices, \(\$ 999\); devices in DIPs, and in LCC and surface-mount packages, \(\$ 1599\).

Sunrise Electronics Inc, 524 S Vermont Ave, Glendora, CA 91740. Phone (818) 914-1926. FAX (818) 914-1583.

Circle No. 444

The FVC series can detect and locate sources of radiated and conducted interferences.
MODEL FVC-777
FVC-777
\begin{tabular}{rr}
\(100 \mathrm{KHz} \sim 500 \mathrm{KHz}\) & \(30 \mathrm{MHz} \sim 88 \mathrm{MHz}\) \\
\(500 \mathrm{KHz} \sim 3 \mathrm{MHz}\) & \(88 \mathrm{MHz} \sim 216 \mathrm{MHz}\) \\
\(3 \mathrm{MHz} \sim 10 \mathrm{MHz}\) & \(216 \mathrm{MHz} \sim 470 \mathrm{MHz}\) \\
\(10 \mathrm{MHz} \sim 30 \mathrm{MHz}\) & \(470 \mathrm{MHz} \sim 1000 \mathrm{MHz}\)
\end{tabular}
※Simultaneous 8 SPECTRA measurement

MODEL FVC-777

\section*{Noise simulators help find perils in power-line defects}

Designers can use testers to build in safeguards against disturbances from power sources before your sensitive equipment is delivered to customer.

IMPULSE NOISE SIMULATOR MODEL INS-410

VOLTAGE DIP SIMULATOR MODEL VDS-210B

\section*{VMEbus Timing Analyzer}
- Performs timing analysis on 103 channels at 100 MHz
- Supports VME and VME64 buses
The TIM100 103-channel, \(100-\mathrm{MHz}\) timing analyzer plugs onto the vendor's VBT-321 VMEbus analyzer. The bus analyzer is a module that
plugs into the VMEbus and, using an RS-232C ASCII terminal as a display device, performs state analysis on 95 channels. The timing analyzer's memory can store 16 k frames of data. In each frame, 99 of 103 bits are VME signals. To display the timing diagrams generated by the timing analyzer, you must

use a terminal that has at least minimal graphics capabilities-for example, a VT100 or a personal computer emulating a VT100. \(\$ 3550\).

Vmetro Inc, 2500 Wilcrest, Suite 550, Houston, TX 77042. Phone (713) 266-6430. FAX (713) 266-6919.

Circle No. 445
Vmetro A/S, Sognsveien 75, N0855 Oslo 8, Norway. Phone (47-2) 3946 90. FAX (47-2) 183938.

Circle No. 446

\section*{Self-Calibrating D/A Card For Macintosh II \\ - Has eight 12-bit channels}
- Accepts data at

500,000 words/sec
The M2-AO is a self-calibrating, analog-output and digital I/O card for the Macintosh II series. The card has eight 12 -bit analog outputs and 16 digital channels, each of which can act as an input or an output. The board has no calibration adjustments; it calibrates itself by comparing its outputs to onboard, factory-calibrated references. Each analog channel has a switch-selectable output range of 0 to 10 V , 0 to \(5 \mathrm{~V}, \pm 5 \mathrm{~V}\), or 4 to 20 mA . In the voltage mode, the outputs source or sink 15 mA . In the current mode, output voltage compliance is 2.6 to 50 V . The vendor includes its QuickLog software as well as a driver for attachment to high-levellanguage programs. \(\$ 1195\).

Strawberry Tree Inc, 160 S Wolfe Rd, Sunnyvale, CA 94086. Phone (408) 736-8800. FAX (408) 736-1041.

Circle No. 447

\title{
IDI Packaged LEDs bring your design to light.
}

When it comes to designing in LEDs, you're concerned with more than performance specifications. You're also responsible for packaging considerations ...compatibility ...time and money. So are we.

IDI is your source for all kinds of indicator solutions. From a simple LED or lens to a ready-to-mount packaged LED assembly, IDI means competitive costs and fast supply. Select from our in-stock inventory with thousands of indicators and assemblies, or explore the possibilities of our custom-engineered packages.

\section*{IDI turns ideas into innovative solutions.}

No one knows how to bring your needs to light better
 than IDI. We have years of experience and know-how in designing indicator lights. For special needs,
our engineers will work closely to design and manufacture the best product possible at the lowest cost.

\section*{Turn to the source.}

From the smallest in-stock order to the most complex custom application, IDI is the home of indicator solutions. Write or call us direct and we'll send you the latest copy of "IDI" - The Source Data Book. It's packed with the largest selection of indicators . . . standard variations . . . moneysaving packages...customizing services and much more.
Only from IDI. Taking you from design to solution-fast. Call for your free IDI Data Book today!

\section*{VME/VXIbus}

\section*{Data-Acquisition Module}
- Makes 400,000 16-bit conversions/sec
- Has eight differential inputs

The DVX 2503 is an 8 -channel dataacquisition board for the VME and VXI buses. It contains a differential amplifier that provides a commonmode rejection of 100 dB at 60 Hz
and allows software control of gain. The 16 -bit A/D converter makes 400,000 conversions/sec. The board, which in VXI parlance is B size and in VME terms is 6 U size, also includes a 1000 -word FIFO buffer. The buffer ensures continuous data collection despite gaps in data transfer caused by latencies of the controlling processor and the DMA

You can start your debugging with this FREE demo simulator. You can load up to 512 bytes of code, assembler, C, or PL/M and do full debugging/simulation in assembly and source level. A great way to get started for FREE. Fantastic for schools! Just call and we'll send it!

\section*{Full Simulator}

The full-blown simulator is an extension of the DEMO. You can load up to 64 K of code and use 64 K of XDATA space. You can program an "external environment" to interact with your code to simulate your target system. The emulator is the hardware extension of the simulator!

The 24 MHz real-time emulator has been the industry standard for years. With its complex breakpoint logic and advanced trace, nobody can beat it for performance. Plug-in or RS-232 configuration. All 8051 derivatives are supported!

\section*{noHau}

\section*{CORPORATION}

51 E. Campbell Avenue, Campbell, CA 95008
(408) 866-1820 • FAX (408) 378-7869

\footnotetext{
Australia (02) 654 1873, Austria (0222) 387638 , Benelux +31 1858-16133, Canada (514) 689-5889, Denmark (42) 6511 11, Finland 90-452 1255, France (01)-69 412801 , Great Britain 0962-73 3140 Israel (03) 4848 32, Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portuga (01) 8150 454, Sweden, Norway (040) 9224 25, Singapore (065) 284-6077, Spain (93) 2172340 Switzerland (01) 74041 05, Taiwan (02) 7640215, Thailand (02) 281-9596, West Germany 08131-1687.
}

\title{
All the features of HPBASIC, and more.
}

\begin{tabular}{|c|l|c|}
\hline HTBasic & \multicolumn{1}{|c|}{ BASIC FEATURES: } & HP BASIC \\
\hline YES & IEEE-488 GPIB (HP-IB), RS-232 Instrument Control & YES \\
\hline YES & Integrated Environment: Mouse, Editor, Debugger, Calculator & YES \\
\hline YES & Supports 16 Megabytes of Memory (breaks DOS 640K barrier) & YES \\
\hline YES & Engineering Math: Matrix Math, Complex Numbers & YES \\
\hline YES & High Level Graphics: Screen, Plotter, Printer & YES \\
\hline YES & Structured Programming with Independent Subprograms & YES \\
\hline YES & Runs on Industry Standard Personal Computers & NO* \\
\hline YES & Industry Standard Graphic Printer Support: Epson, IBM, lasers, etc. & N0 \\
\hline YES & Industry Standard Network Support: Novell, IBM, Microsoft, NFS, etc. & N0 \\
\hline YES & Industry Standard IEEE-488 Support: National Instruments, IOtech, etc. & NO \\
\hline YES & Exchange data files with Industry Standard PC applications & N0* \\
\hline YES & No-charge Telephone Technical Support & N0 \\
\hline YES & Instant on-line HELP system & NO \\
\hline
\end{tabular}

A Costly Situation. Every engineer needs the power and features of a "Rocky Mountain" BASIC workstation, but not everyone can have one. They simply cost too much. Fewer workstations, less productivity. The Best Way. TransEra HTBasic software provides the only way for serious technical computer users to turn their PC into a workstation without having to add costly hardware. Powerful workstations for everyone means greater productivity. Extraordinary Versatility. In addition, TransEra HTBasic works with the Industry Standard Personal Computer hardware, software, and networks. It even allows you to easily exchange data between your favorite DOS programs and the files you create in the BASIC workstation environment. All at a fraction of the cost of other solutions.

More compatibility. More versatility More possibilities.

Less expense. Less hassle.
To find out more, call 1-801-224-6550.

Engineering Excellence for 15 Years \({ }^{\mathrm{TM}}\)

\title{
\(\frac{1}{4 \overline{0}}\) \\ Test \\ Drive \\ Your Motorola MC68040 with the Champion K11040 clock
}

...and satisfy yourself as to how well it stacks up against all contenders. Cooperatively designed in at the MC68040's inception, our K11040 Clock Driver features:
- 40 to 70 MHz
- 60 pF Load Capability

- \(47.5 / 52.5 \%\) Min/Max Symmetry
- Rise Time 1.7 ns , Fall Time 1.6 ns
- Tri-State Operation Available
- TTL Compatible, CMOS Version Available
- Production Samples Have Been Shipping For More Than A Year

Call for full details and for sample availability.

有 K11040 and Champion are trademarks of Champion Technologies, Inc. Motorola and MC68040 are trademarks of Motorola Inc. © 1990 by Champion Technologies, Inc.

\section*{2553 N. Edgington Street}

Franklin Park, IL 60131 U.S.A.
Phone: 708/451-1000 FAX: 708/451-7585
can also operate in the background while the PC performs foreground tasks unrelated to instrument control. A 512 k -byte FIFO memory prevents data loss. \(\$ 995\).

National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone (800) 433-3488. FAX (512) 794-8411.

Circle No. 449

\section*{Smart}

\section*{Data-Acquisition Card}
- Has ten 12-bit analog

I/O channels
- Saves logged data in as much as \(512 k\) bytes of RAM
The SBS-2300H is a data-acquisition and control card with onboard intelligence. It has ten 12-bit analog I/O channels, 48 digital I/O lines, a keypad port, two serial ports, and EPROM and EEPROM programmers. The unit runs automatically when you apply power; a built-in debugger displays variables during program execution. Onboard ROM contains CamBasic, a multitasking language that supports 32 background tasks including nine counters and eight timers. An audio output and two PWM outputs are software programmable. The board operates in a stand-alone mode, consuming 600 mW . It can accommodate 512 k bytes of RAM for logging data. A peripheral port lets you add more functions. \(\$ 595\).

Octagon Systems Corp, 6510 W 91st Ave, Westminster, CO 80030. Phone (303) 430-1500. FAX (303) 426-8126.

Circle No. 450

ANCOT's SCSI instruments are powerful, easier to use, and cost less. Proven in use worldwide, Ancot's portable equipment travels from bench to field and back again without ever slowing down. They are time and labor saving instruments, for design, manufacturing, repairing, and inspection applications.

Call today for product data sheets, demo disc, or to make arrangements for a free evaluation unit in your facility.

\section*{울 [415] 363-0667}
fax: (415) 363-0735

Redwood City, California

CIRCLE NO. 63

\title{
 Winl ilt wirit fief horimul.
}

metal enclosures great can also be found in our polymer composites.

Our complete line of composite enclosures provides virtually every level of protection to handle even the most stressing environment.

The handsome, streamlined design can elegantly incorporate our innovative options-from molded latches to see-through covers

Our 15 basic styles, matching JIC and NEMA sizes, provide sizing and performance to meet all of your enclosure needs.

And of course, all our composite enclosures are supported by the widest and most experienced service and distribution network in the business.

Now every enclosure you need, whether it be metal or composite, can come from the leader in enclosures-Hoffman.

For a free brochure on our complete line of composite enclosures, write Hoffman Engineering, 900 Ehlen Drive, Anoka, MN 55303, or call (612) 421-2240.

A Pentair Company

\title{
UXART The Wait Is Over Now there's a serial I/O chip designed for UNIX.
}

For years, dumb UARTs have been the standard datacom solution. Now there's something better for today's multi-user, multi-protocol datacom environment. Our single-chip solution gives you multiple channels, and replaces up to 10 chips with higher performance levels.

Cirrus Logic introduces the UXART- the first and only UART with specific features to simplify and speed up serial I/O efficiency by a factor of ten or more. So your UNIX \({ }^{\circledR}\) system can support more users, with better response time - and less waiting.

The CL-CD1400 UXART \({ }^{\text {m }}\) gives you 4 fully independent datacom channels, each capable of operation at 64 kbps . Each channel has two 12 byte FIFOs; one for transmit and one for receive. Separate vectored interrupts allow quick entry to the correct service routine.

A number of features reduce the load on the host system. Automatic expansion of Newline to CRNL, plus other CR and NL options. User-definable flow control characters for automatic flow control.

All five types of UNIXspecified parity and error handling.

For high line count, cost-effective applications, there's the CL-CD180. It offers performance gains similar to the CL-CD1400, plus the advantage of 8 channels in a single 84-pin package.

The CL-CD2400 adds synchronous capability. It offers 4 independent, multi-protocol channels, plus an on-chip DMA controller for fast, efficient I/O.

For all your multi-protocol, multi-user datacom needs, the Cirrus Logic family of intelligent, highperformance data communications controllers gives you superior throughput in less space - with less waiting.

Don't wait. Call Cirrus Logic today for more information on our intelligent datacom chips.

\section*{For free product information,}
call 1-800-952-6300. Ask for dept. LD 21

An on-chip
10MIPS RISC-based processor handles transmit and receive functions, buffer management, flow control, and all special character processing. 84-pin FFOS reduce host interrupts to give you more efficient interupt handling. The result: faster system throughput, lower host overhead, and less waiting.

\section*{NEW PRODUCTS}

\section*{INTEGRATED CIRCUITS}

\section*{16-Bit A/D Converter}
- Self calibrating
- Digitizes at a \(50-\mathrm{kHz}\) rate The MN6400 self-calibrating, 16-bit A/D converter can digitize analog input signals at a \(50-\mathrm{kHz}\) rate. Powering the device initiates the calibration feature, which ensures that all performance specifications are met. The device is a complete \(\mathrm{A} / \mathrm{D}\) converter, and it includes an inherent \(\mathrm{T} / \mathrm{H}\) function, an analog input buffer, a reference, a clock, control logic circuitry, and a parallel-data bus driver. Analog input ranges are 0 to \(5 \mathrm{~V}, 0\) to \(10 \mathrm{~V}, \pm 5 \mathrm{~V}\), and \(\pm 10 \mathrm{~V}\), with digital control over unipolar and bipolar operation. The device, which operates from \(\pm 15\) and 5 V supplies, consumes 750 mW . Pack-

aged in a double-wide, side-brazed DIP, the MN6400 is available in four performance grades and three levels of reliability screening. Prices range from \(\$ 175.00\) to \(\$ 293.25(100)\).

Delivery, 8 to 12 weeks ARO.
Micro Networks, 324 Clark St, Worcester, MA 01606. Phone (508) 852-5400. FAX (508) 853-8296.

Circle No. 402

\section*{Logarithmic Amplifier}
- Operates from 100 to 600 MHz
- Has 70-dB voltage gain

Designed for use at radio frequencies in the \(100-\) to \(600-\mathrm{MHz}\) range, the SL3522 logarithmic amplifier delivers a dynamic range of 70 dB . The monolithic chip contains seven logging stages and a video summing and buffer amplifier. On-chip decoupling reduces the possibility of instability due to the high gain of the device. Additional features include a differential RF input, limited RF output, and a buffered 2 V video output. The IC also has provisions for external adjustment of gain and offset. Specified for operation over the -55 to \(+125^{\circ} \mathrm{C}\) military temperature range, the SL3522 comes
in a 28 -pin miniature ceramic package and costs \(\$ 925\) (100).

Plessey Semiconductors Corp, 1500 Green Hills Rd, Scotts Valley, CA 95066. Phone (408) 438-2900. FAX (408) 438-7023.

Circle No. 403

\section*{Fast Microcontrollers}
- Operate at 24 MHz
- Available in two versions

Featuring \(24-\mathrm{MHz}\) speed, the 80 C 51 contains \(4 \mathrm{k} \times 8\) bits of ROM; the 80 C 31 does not include any ROM. The devices, which have an internal instruction time of 500 nsec, can perform an \(8 \times 8\) multiply in \(2 \mu \mathrm{sec}\). The microcontrollers offer two software-selectable, powersaving operating modes. In the idle mode, the CPU is frozen while allowing the RAM, timers, serial port, and interrupt system to operate. In the power-down mode, RAM contents are saved while the oscillator is frozen, allowing all other functions to remain inoperative. The devices have a five-source two-priority interrupt structure,
oscillator and clock circuits, a serial I/O port, \(32 \mathrm{I} / \mathrm{O}\) lines, and two 16 -bit counter/timers. Package options include 40-pin DIP, 44-pin PLCC, and 44-pin quad flatpack. In plastic DIP, the SC80C51 costs \(\$ 3.46\); the SC80C31 costs \(\$ 3.02(10,000)\).

Philips Components-Signetics Co, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2000.

Circle No. 404

\section*{Fast High-Density ROMs}
- Access times are 110 nsec
- Have 4M-bit density

Featuring access times of 110 nsec , the 4M-bit IMP23416 and IMP23408 can feed data into microprocessors without relying on wait states. The 23416 holds 256 k 16-bit words of data, which is equivalent to approximately 700 encyclopedia pages. Data are read from the device 16 bits at a time for direct compatibility with 16 -bit \(\mu \mathrm{Ps}\). The 23408 holds 512 k 8 -bit bytes of data, which makes it compatible with 8 bit microcontrollers. Both versions operate at 25 mA from a single 5 V

\title{
Take a look at the newest star in F.W. Bell's 9000 Series Gaussmeter galaxy
} model 9640 Here's the gaussmeter that rounds out the new F.W. Bell 9000 Series line of Gaussmeters. This precision instrument features 1000X expansion (with zero center analog meter readout); resolution to 0.002 G on the 100 gauss range; incremental measurements up to 30 kG ; precalibrated probes; 110 Vac or battery operation.
Request full technical data on the Model 9640 ...as well as on the menu-driven three-channel Model 9900, Models 9500 and 9200 , and the Model 4048 Hand-held Gaussmeters...all F.W. Bell state-of-the-art precision magnetic instruments

\section*{FW \\ }

6120 Hanging Moss Rd.
Orlando, FL 32807
Phone: 407-678-6900 Fax: 407-677-5765

9000
GAUSSMETERS

CIRCLE NO. 64

\section*{The only chip we can't program.}

With Digelec programmers you can program devices of all major semiconductor manufacturers. Consider four additional reasons to choose Digelec:
Choose Digelec for friendliness - Digelec programmers are easy to operate and lightweight. Choose Digelec for cost-effectiveness - Compare features and price. You won't find any better. Choose Digelec for up-to-date design capabilities - Regular software updates
 support latest device technologies.
Choose Digelec for your application -
We've got the model you need. Universal or dedicated Memory/Logic programmer for R \& D, Gang/Set orln-Circuit for production, and PC-based for budgetary applications.
Got a chip you need to program? Call (818)701-9677 in California or toll-free 1-800-367-8750. We'll respond immediately.

USA: Digelec Inc., 20144 Plummer St., Chatsworth, CA. 91311 Fax: (818)701-5040
W. Germany: Digelec GmbH, Brudermühlstrasse 42, 8000 Munich 70 Tel: (089)776-098 Fax: (089)725-9164

\section*{digelec Supports Vevery chip}
supply. In standby mode, the ROMs draw only \(100 \mu \mathrm{~A}\). Package options include 28-, 32-, and 40-pin DIPs; 32- and 44-lead PLCCs; and 44-lead quad flatpacks. In plastic DIPs, \(\$ 8.10\) (5000).

International Microelectronic Products Inc, 70 E Daggett Dr, San Jose, CA 95134. Phone (408) 434-1397.

Circle No. 405

\section*{4-Bit Microcontrollers}
- Operate to 6 MHz
- Contain 12 k or 16 k bytes of masked ROM
The TMP47CXXXX series of 4-bit microcontrollers contains 12 k or 16 k bytes of masked ROM and a 768nibble RAM, and have minimum instruction times of \(1.3 \mu \mathrm{sec}\) at 6 MHz and \(244 \mu \mathrm{sec}\) at 32 kHz . The TMP47C1260 and C1660 also contain an 8 -bit A/D converter, a remotecontrol signal with preprocessing capability, and LED direct-drive capability. The TMP47C1270 and TMP47C1670 contain a 28 -bit display controller, 4-LED direct-drive capability, a 14 -bit PWM output, and a remote-control signal with preprocessing capability. All four devices are available in 64 -pin DIPs and quad flatpacks. Production pricing is less than \(\$ 5(50,000)\). Delivery, 10 weeks ARO.

Toshiba America Electronic Components Inc, 9775 Toledo Way, Irvine, CA 92718. Phone (714) 455-2000, or contact regional office.

Circle No. 406

\section*{Low-Power CMOS Comparators}
- Replace bipolar devices
- Offer faster response times

Designed to replace traditional bipolar parts such as the LM393 and LM339, the pin-compatible TS372 (dual) and TS374 (quad) comparators offer reduced power consumption and faster response times. Typically, the TS374 quad comparator has an input bias current of 1
\(\qquad\)
pA , compared with \(25,000 \mathrm{pA}\) for the LM339. The per-comparator supply current is reduced from 200 \(\mu \mathrm{A}\) to \(135 \mu \mathrm{~A}\). Measured with the standard \(100-\mathrm{mV}\) input step with 5 mV overdrive, the TS374's typical response time is 600 nsec , compared with 1300 nsec for the bipolar device. The comparators are available
in commercial, industrial, and military temperature ranges. The TS372 and TS374, from \$0.61 and \(\$ 0.76\) (1000), respectively.

SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6200.

Circle No. 407

\title{
Make your phone a ringing success with NEC photocouplers.
}

High performance photocouplers improve isolation, reduce component count.

Our application-specific photocouplers are designed to raise the performance of telephone sets. We offer six series, each optimized for a specific circuit. All help you reduce component count and achieve ideal isolation between 'line' and 'control' circuits.

Our AC-input series are designed for bell-receiving circuits. We have three high-Vceo series for dial-pulse generation circuits; and a high-input-current series for line supervisory circuits.

Package options include leadforming types for surface mount-
ing. They come in embossed tape carriers.

For higher performance and higher market share, put a couple of quality products together: our
photocouplers and your telephone set. Ring us today for details.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Series & Input & Output & IF (mA) & CTR (\%) & Vceo & Package \\
\hline \multicolumn{7}{|c|}{Bell-receiving circuits} \\
\hline \[
\begin{array}{r}
\text { PS2505 } \\
2705
\end{array}
\] & \[
\begin{aligned}
& A C \\
& A C
\end{aligned}
\] & Transistor Transistor & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 80 \text { to } 400 \\
& 50 \text { to } 300
\end{aligned}
\] & \[
80
\] & \begin{tabular}{l}
4-pin DIP/SMD \\
4 -pin SOP
\end{tabular} \\
\hline \multicolumn{7}{|c|}{Dial-pulse generation circuits} \\
\hline 2532 & DC & Darlington Transistor & 80 & 1500 to 6500 & 300 & 4-pin DIP/SMD \\
\hline 2533 & DC & Darlington Transistor & 80 & 1500 to 6500 & 350 & 4-pin DIP/SMD \\
\hline 263X & DC & Darlington Transistor & 80 & 1000 to 15000 & 300 & 6-pin DIP/SMD \\
\hline \multicolumn{7}{|c|}{Line supervisory circuits} \\
\hline 262X & DC/AC & Transistor & 150 & 20 to 50 & 80 & 6-pin DIP/SMD \\
\hline
\end{tabular}

\section*{For fast answers, call us at:}

\section*{Pamphlet On Keyboards}

A brochure discusses RT-101 Right Touch keyboards for IBM PC, PC/ AT , and \(\mathrm{PS} / 2\) systems. The \(8-\mathrm{pg}\) publication provides functional diagrams, engineering data, specifications, features, and 4 -color photos of each model.
NMB Technologies Inc, 9730 Independence Ave, Chatsworth, CA 91311.

Circle No. 396

\section*{Brochure On Real-Time And Storage Scopes}

A 10-pg brochure describes and illustrates five models of the Hitachi series of real-time and storage oscilloscopes. The fully illustrated pamphlet covers functions and benefits as well as specifications of the series.
RAG Electronics Inc, 21418 Parthenia St, Canoga Park, CA 91304.

Circle No. 397

\section*{Volume Advocates Loyalty To DOS}

The 410-pg book, Staying With DOS, targets PC users who need better performance from DOS but may not want to invest the time and expense to get a new operating system. Fourteen chapters cover the features of new operating systems and how DOS can be manipu-
lated to provide more memory and speed, better graphics features, multitasking, and networking. Checklists help users assess needs, and Appendix A presents buying information. \(\$ 22.95\).

Ventana Press, Box 2468, Chapel Hill, NC 27515.

INQUIRE DIRECT

\section*{Folder Spotlights \\ Circuit Analyzer}

A 4-color, 4-pg brochure presents the Dynalab 1024 circuit analyzer. The illustrated publication discusses complex circuit testing with detailed error reporting, optimized test performance, and software for an accurate test program. It also lists performance features and specifications.

Dynalab Inc, 555 Lancaster Ave, Reynoldsburg, OH 43068.

Circle No. 398

\section*{Aid To Designing Customer-Specific Products}

When you're called upon to computerize data-acquisition systems, Computer-Based Data Acquisition Systems: Design Techniques can help guide you through the design process. The volume contains analytical techniques for creating a functional design. Included in this second edition are sections on measurement error, error as a fundamental design criterion, sampled data systems, error models and budgets, sampling fundamentals, and functional design. \(\$ 49.95\); members, \(\$ 40\).

Instrument Society of America, Box 12277, Research Triangle Park, NC \(27709 . \quad\) Circle No. 399

\section*{Catalog Lists RF And Microwave Components}

This catalog of RF and microwave components incorporates information about Ultramin miniature filters and commercial-grade and tun-
able filters. Also included are programmable, fixed, and step attenuators; detectors; matching pads; and de blocks. Other listings cover formulas, graphs, packaging outlines, and environmental capabilities.

Wavetek RF Products Inc, 5808 Churchman Bypass, Indianapolis, IN 46203.

Circle No. 400

\section*{Source Book Of IBM PC-Compatible Products}

The fourth annual edition of the \(I n\) dustrial Computer Source-Book/ Supplement covers industrial computer systems and data-acquisition, industrial-control, and communications products for the IBM PC, PC/ XT, PC/AT, and compatible computers. The supplement lists more than 500 products in its 96 pages. It has been expanded to include 20 -, 15 -, and 10 -slot rack and tabletop chassis; \(20-, 15\)-, and 10 -slot chassis with a built-in keyboard drawer; and 20 -, 15 -, and 10 -slot floor-mount units. Other additions include 386SX and 386 CPU cards, 19-in. rack accessories, and A/D and communications boards.

Industrial Compúter Source, 4837 Mercury St, San Diego, CA 92111.

Circle No. 401

\section*{"This is no Snow Job", says Oliver Germanium.}
"Germanium Rectifiers really are more efficient.
"With low \(\mathrm{V}_{\mathrm{F}}\), low Thermal Impedance and low Thermal Resistance, Germanium Rectifiers waste very little energy generating heat, so you don't have to waste money and equipment cooling them.
"What's more, Germanium's performance is much less temperature-dependent than is Silicon's.
"For instance, with a junction temperature of \(40^{\circ} \mathrm{C}\), a 100 A rectifier from GPD has a \(30 \%\) lower \(\mathrm{V}_{\mathrm{F}}\) than the equivalent Silicon 100A device.
"And at \(100^{\circ} \mathrm{C}\) they still maintain this advantage.
"The world's leading super-computer maker uses Germanium why don't you?
"May we send our new Cool Rectifier Catalog, hot from the press?"

\section*{GPD \\ Rectifiers}

Germanium Power Devices Corporation, PO Box 3065, SVS, Andover MA 01810 USA Telephone 508475 5982. Telex 947150 . Fax 5084701512.

\title{
It's back, and it's better than ever
}

High-Performance Computer Architecture, 2nd Ed, by Harold S Stone. \(459 \mathrm{pgs} ; \$ 53.25\). AddisonWesley, Reading, MA, 1990.

Occasionally a book is published that is immediately embraced by both the professional and academic communities. A book that can successfully assimilate voluminous amounts of often cryptic information and present it to the reader in an easily digestible form. High-Performance Computer Architecture by Harold S Stone is such a book. Now it's back, and it's even better.
The second edition of this highly acclaimed text has seven chapters: Introduction, Memory-System Design, Pipeline Design Techniques, Characteristics of Numerical Applications, Vector Computers, Multiprocessors, and Multiprocessor Algorithms. Each chapter stands on its own; you need not read the first chapter to understand the second, and so on. High-Performance Computer Architecture includes 132 illustrations, a bibliography with 146 entries, and a combination index/ glossary. Throughout the book, Stone includes pseudocode and equations to clarify the topics. And starting with Chapter 2, you can find numerous exercises at the end of each chapter.

The first chapter sets the tone of the book with a discussion of the factors that today's computer architect must consider to produce designs that work well and compete in the market. Some of these factors include algorithms, cost/performance, intended workload, architectural assists, and parallel architecture. Computer architects must evaluate their designs thoroughly. Stone declares, "The key to learning about computer architecture is learning how to evaluate architecture in the context of the technology available." He believes that
". . . methodology, not conclusions, . . . needs to be taught."

This philosophy is supported in the text. At the end of the first chapter, Stone expands on the original definition of computer architecture, "to include the design of a computer system from its instruction set and structure down to functional modules," provided by Amdahl et al in the IBM Journal of Research and Development. Stone covers implementation issues in the text that expand the scope of this narrow definition.

Chapter 2, Memory-System Design, covers both cache and virtual memory. This is one of the more thorough discussions of cache-memory design I've seen. As established in the first chapter, Stone's emphasis is on design methodology and the analysis of the design. The primary difference between the first and the second edition in this chapter is Stone's extended treatment of cache-analysis and cache-performance modeling.

In the section on cache analysis, Stone elaborates on the problems associated with utilizing instruction trace-driven cache-evaluation techniques. He presents the cache in-itialization-transient phenomenon and a variety of techniques for dealing with the initialization transient. Stone has also introduced new material to this section that further illustrates the problem of attempting to evaluate cache performance with short instruction traces.

The cache-modeling section is new to this edition. In it, Stone introduces a model developed by Dominique Thiébaut in "On the Fractal Dimension of Computer Programs and its Application to the Prediction of the Cache Miss Ratio." In Thiébaut's model, the performance of a fully associative cache can be predicted after only a 1 -pass analysis of the program trace has been performed to extract the parameters necessary for entry into the model.

The next chapter, Pipeline Design Techniques, discusses the principles of pipeline design and includes coverage of reduced-instruc-tion-set computers (RISCs). Stone ventures deeper into RISC in this edition by discussing it in terms of pipelining. He contrasts and compares RISC to complex-instructionset computers (CISCs), illustrating how the goals of a RISC-type architecture can be realized by synergistically combining complex instructions with proper pipeline techniques.
Stone presents the remaining four chapters with equal finesse. The professional or student seeking a text on advanced topics in highperformance computer architecture will do well to select this one. Unlike some textbooks I've seen, Stone's book lends itself very nicely to being used as a stand-alone reference. The material it covers is logically presented, well written, and well explained.-Richard W Miller

Richard Miller received a BS in computer science from Chaminade University (Honolulu, HI). He is a Macintosh consultant.

\section*{WHAT'S COMING IN EDN}

\section*{EDN Magazine's November 8,} 1990, issue will feature a staffwritten Special Report on DSP development software. We'll conclude the designer's guide to bridge circuits and continue the real-time programming series with Part 5. In addition to the regular issue, you'll receive our special Wescon show guide. And look for our semiannual product showcase in the December issues.

\section*{8 BIT CMOS MICPOCONTROLLERS}

80C51 industry standards.
5. 3/5 week QUICK ROM prototyping service.

4 0 to 30 MHz : fastest available on the market.

Low voltage, protected ROM and secret tag options.

Large quantity delivery in just 4/6 weeks.

PDIL, PLCC, Flatpack, ceramic packages.

Microcontrollers, fast and ultra-fast SRAMs (up to 256 K), ASIC,
foundry... isn't it time you found out what makes us Europe's expert in submicron CMOS technology?
 THE EXPERT IN SUBMICRON CMOS TECHNOLOGY Tel.: (1) 408-748.93 62
MATRA MHS, 2895 Northwestern Parkway, Santa Clara, CA 95051 U.S.A.

\title{
WORLDCASS POWER SUPPLIES
}

\title{
Standards, customs, switchers, linears, medicals - Condor has them all!
}
> "V" Series switchers -agency-approved with high peak power for starting loads.

International Linears ULICSA/TUV approved.
 - AC input: \(90-132 / 180-264\) VAC, \(47-63 \mathrm{~Hz}\) • Fully protected adjustable current limit, built-in OVP and reverse voltage protection - High peak current disk drive outputs and closely regulated 3-terminal outputs • Pass vibration and shock per MIL-STD 810D - Full load burn-in; 2-year warranty

\section*{INTERNATIONAL LINEARS:}
- 75 models, 9 power levels, 3 to 288 watts - AC input: \(100 / 120 / 220 / 230 / 240\) VAC, \(47-63 \mathrm{~Hz}\) • OVP on all 5 V outputs - Meets EMI per FCC/VDE B (most units) - Hermetically sealed power transistors - MTBF 200,000 + hours per Mil Hndbk 217D • 2-hour burn-in with cycling; 3-year warranty
"PAC" SERIES: - 17 models, 4 power levels, 85 to 185 watts • Up to 5 outputs • AC input: \(90-132 / 180-264\) VAC, \(47-63 \mathrm{~Hz}\) • Fully protected: "PAC" Series - factory-set current limit, built-in OVP and reverse voltage protection disk drive outputs and closely regulated 3 -terminal outputs - Pass vibration and shock per MIL-STD 810D
- Full load burn-in; 2-year warranty

SDS/SDM MODELS: • 20 single- and 29 multiple-output models, 5 power levels, 45 to 200 watts • AC input: \(90-132\) VAC/ 180-264 VAC, \(47-63 \mathrm{~Hz}\) • Fully protected: adjustable current limit,
built-in OVP and reverse voltage protection
- Powerfail signal and logic inhibit on 140 - and 200 -watt levels • High peak current disk drive outputs and closely regulated 3 -terminal outputs - Pass vibration and shock per MIL-STD 810D • Full load burn-in; 2-year warranty

MEDICAL SWITCHERS: • 16 models, 5 power levels, 30 to 110 watts
- Up to 5 outputs • AC input: \(90-132\) VAC/ \(180-264\) VAC, \(47-63 \mathrm{~Hz}\) - Proprietary low leakage/high attenuation EMI filter - Less than \(30 \mu \mathrm{~A}\) leakage current • meets stringent FCC and VDE 0871 Class B EMI specs - 24 -hour full-load burn-in; 2-year warranty and linears - medICAL LINEARS: 38 models, 3 power levels, 5 to 92 watts \(\bullet\) AC input: designed to meet UL 544/IEC 601/CSA 22.2 No. 125.

\section*{Send for our free catalog!}
 \(110 / 120 / 220 / 240\) VAC, \(47-63 \mathrm{~Hz} \cdot\) OVP on all 5 V outputs • Meets EMI per FCC/VDE B • Hermetically sealed power transistors and IC's - MTBF 200,000 + hours per Mil Handbook 217D • 8-hour burn-in with cycling; 3 -year warranty

2311 Statham Parkway, Oxnard, CA 93030 • (805) 486-4565 • TWX: 910-333-0681•FAX: (805) 487-8911•CALL TOLL-FREE: 1-800-235-5929 (outside CA)

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

\section*{ADTANITCH}

\section*{144-Bit Digital I/0 Card}

PCL-722
\$295
- 144 lines of TTL compatible digital I/0
- Hysterisis input and high capacity output
(24 mA sink, source 15 mA)
- Emulates 8255 PPI (Mode 0) for easy programming
- Read back function to monitor output status
- I/0 ports compatible with OPT022 module racks
- Interrupt handling capability

408-293-6786
1340 Tully Rd., \#314, San Jose, CA 95122 FAX 408-293-4697

\section*{CIRCLE NO 331}

\section*{8051 IN-CIRCUIT EMULATOR}

Real-time and transparent Development System Serially linked to PC's and compatibles
64 Kbyte Internal Data and 64 Kbyte Internal Code Memory
Symbolic Debugger, On-line Assembler and
Disassembler
C and PLM support with source and code windows AVAILABLE: 32 K -DEEP TRACE \(\$ 800\), EPROM PROGRAMMER \(\$ 250\)

CEIBO
CIRCLE NO 334

Weber T11 Circuit Breaker for Equipment
The T11 Series is a line of small, single pole push to reset thermal overload protectors. The trip mechanism is of a superior latch type. All T11 units are positively trip free. The contacts will open and will remain open during an overload. A variety of mounting styles are available, central mount, snap in, PCB horizontal mount and vertical mount. Swiss precision with UL, CSA, VDE and other worldwide approvals. Current Vdc and 240 Vac . For additional information and evaluation samples contact:

INMARK CORPORATION
4 Byington Place, Norwalk, CT 06850
Telephone: 203-866-8474, Fax: 203-866-0918
- Selectable interrupt input channel
- Up to 6.8 MHz input frequency
 Megabit EPROMS with one control card.
- Downloads 1-Megabit programs in less than 10 seconds
- Allows examination and modification of individual bytes or blocks.
 6809 and 6301.

\section*{ADTANIICH \\ \\ 10 Channel Counter/ Timer Card \\ PCL-830}
\$295
- 10 independent 16 bit up/down counters
- Powerful AMD 9513 counter/timer chips offering one shot, event count, frequency divider functions
- On board 4 MHz crystal time base
- 16 bit TTL compatible digital I/0 lines
- Software driver and demo program included

408-293-6786
1340 Tully Rd., \#314, San Jose, CA 95122 FAX 408-293-4697
CIRCLE NO 332
ROMETT

\section*{EPROM} EMULATION SYSTEM
- Emulates up to 8 1- Accepts Intel Hex Motorola S-Record, and
- Software available for IBM PC and Macintosh systems.

Call or fax today for

Base 27256 EPROM System \(\$ 395.00\) Other configurations available.

Incredible Technologies, Inc.
709 West Algonquin 709 West Algonquin Road
Arlington Heights, Illinois 60005 (708) 437-2433 Fax (708) 437-2473 Visa, MasterCard, and American Express accepted.

\author{
CIRCLE NO 335
}

\section*{Elegant, concise, fast \& standardized FLOATINE POINT} libraries for embedded applications

Based on the IEEE 754 standard, FPAC (32 bit) and DPAC (64 bit) libraries are mature, well documented, and fully tested. The libraries are fully ROMable and include the following:
- Basic Operations - ASCll Conversion
- Square Root - Integer Conversion
- Trigonometric - Logarithmic

U S Software supports most Intel, Motorola Zilog and Hitachi micros, including 80X86 80386, 680X0, 80960, 8051, 8096, 68HC11, Z80,

For additional information, please contact

\section*{U 5 SOFTWARE}

United States Software Corporation 14215 NW Science Park Drive Portiand, Oregon 97229
800-356-7097
503-641-8446
503-644-2413 (FAX)

\section*{ADVANIECH \\ }

All-in-One 80286-12 CPU Card
PCA-6125
- 12 MHz 80286 microprocessor
- Socket for 80287 math coprocessor
- AMI BIOS assures compatibility
- Memory configuration: \(512 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} \& 4 \mathrm{M}\)
- Built-in interface for 2 IDE H/D and 2 F/D
- On-board: 1 parallel/2 serial ports
- VLSI CMOS for low power consumption

408-293-6786
1340 Tully Rd., \#314, San Jose, CA 95122 FAX 408-293-4697
CIRCLE NO 333

- 60 dB display dynamic range
- 40dB spurious rejection
- 60 uv sensit, \(\pm 2 \mathrm{~dB}\) flatness
- \(1 \mathrm{KVDC}, 1 \mathrm{v} @ 100 \mathrm{MHz}\) max input as isolated by 10 pF
- \(\pm 7 \%\) hor frequency linearity

\section*{\(\rightarrow 107\) SPECTRUM PROBE \\ converts your scope into a 100 MHz spectrum analyzer \\ \(\$ 249\) dealers wanted}

30 Day refund VISA/MC
Specifications \& app. ideas
Smith Design
1324 Harris
Dresher, PA 19025 (215) 643-6340
CIRCLE NO 336

CIRCLE NO 338

\section*{IEEE 488 \\ Easiest to use, GUARANTEED!}
- IBM PC, PS/2, Macintosh, HP, Sun, DEC - IEEE device drivers for DOS, UNIX, Lotus 1-2-3, VMS, XENIX \& Macintosh - Menu or icon-driven acquisition software - IEEE analyzers, expanders, extenders, buffers Analog I/O, digital I/O, RS-232, RS-422, SCSI, modem \& Centronics converters to IEEE 488
Free Catalog \& Demo Disks

Otech • 25971 Cannon Rd. - Cleveland, OH 44146
CIRCLE NO 340
IC
PROMPT DELIVERY!!! SAME DAY SHIPPING (USUALLY)
QUANTITY ONE PFICES SHOWN for OCT. 7,199
 TSIDE OKLAHOMA: NO SALES TAX

DYNAMIC RAM
4M Board for hp LJ's w/2MB \(\$ 172.00\) SIMM 2M IBM PS/2 Model \(70 \quad 180.00\) SIMM \(\quad 1\) M \(\times 9 \quad 80 \mathrm{~ns} \quad 58.00\) \(\begin{array}{llrl}\text { SIMM } & 256 \mathrm{Kx9} & 100 \mathrm{~ns} & 20.00 \\ \text { 1Mbit } & 1 \mathrm{M} \times 1 & 60 \mathrm{~ns} & 11.50\end{array}\) \(\begin{array}{lll}1 \mathrm{M} \times 1 & 60 \mathrm{~ns} & 11.50 \\ 1 \mathrm{M} \times 1 & 80 \mathrm{~ns} & 5\end{array}\) \begin{tabular}{lllll}
1 Mibit & \(1 \mathrm{M} \times 1\) & 80 ns & 5.99 & \\
41256 & \(256 \mathrm{Kx} \times 1\) & 80 ns & 2.90 & \\
\hline 41256 & \(25 \mathrm{~K} \times 1\) &
\end{tabular} \(41256 \quad 256 \mathrm{~K} \times 1 \quad 100 \mathrm{~ns} \quad 210\) \(41256 \quad 256 \mathrm{~K} \times 1120 \mathrm{~ns} \quad 1.95\) हैं 41264* \(27 C 1000\) EPROM \(128 \mathrm{~K} \times 8200 \mathrm{~ns} \$ 15.00\) \(27512 \quad-64 \mathrm{Kx} \times 8 \quad 200 \mathrm{~ns}\) \begin{tabular}{lrrr}
27256 & \(32 \mathrm{Kx8}\) & 200 ns & 5.40 \\
\(\mathbf{2 7 1 2 8}\) & 16K88 & 250 ns & 3.75 \\
\(62256 \mathrm{P}-10\) & SATIC RAM & \\
\hline 62 Kx & 100 ns & \(\$ 6.50\)
\end{tabular} \(\begin{array}{lrrr}6264 \mathrm{P}-12 & 8 \mathrm{Kx} \times 8 & 120 \mathrm{~ns} & 4.25\end{array}\)
 OPEN 6 DAYS, 7:30 AM-10 PM: SHIP VIA FED-EX ON SAT. \begin{tabular}{l|l|}
SAT DEL ON \\
FEDEX ORDERS
\end{tabular} RECEVED BY: MICROPROCESS
24.000 S. Peora
 ORS UNLIMITED. INC
\((918) 267-4961\) \begin{tabular}{l}
RTM R1, \\
COO AVALLABL \\
\hline
\end{tabular}

CIRCLE NO 343

\section*{C for the 8051} Compare:

Benchmark Results-Sample program:
Eratosthenes Sieve Program from BYTE (1/83), expanded with I/O and interrupt handling.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c}{\(\begin{array}{c}\text { FRANKLIN } \\
\text { SOFTWARE } \\
\text { C-51 v2.1 }\end{array}\)}
\end{tabular} \(\left.\begin{array}{c}\text { MCC51 } \\
\text { v1.2 }\end{array} \quad \begin{array}{c}\text { Archimedes } \\
\text { ICC51 } \\
\text { v2.20A }\end{array}\right]\)

Call now for your free DEMO disk.

\section*{FRANKLIN}

888 Saratoga Ave. \#2 • San Jose, CA 95129 (408) 296-8051 • FAX (408) 296-8061

MAGNETICS TURNS COUNTER AND RATIOMETER COMBINED INTO ONE INSTRUMENT
easy to operate
tests all magnetics - not just toroids application blocks provide turnkey system
60 perm cores yield \(\pm 0.3 \%\) test error
reference coil allows tests on segment wound coils
test 20 windings and 3,000 turns
open coils, out of phase windings alerted
calculate effective magnetic coupling

106 Billings St., Sharon, MA 02067 Tel: (617) 784-5606, Fax: (617) 784-3562 CIRCLE NO 341

\section*{Z280-Z80-64180-8085}

Advanced Relocating Macro Cross Assembler
- Includes linker, librarian, and crossreference utility
- Generates full source-level debugging information
- Automatically bank switches program greater than 64 K using MMU
- Linker allows code placement at both physical \& logical addresses
- Outputs binary, Intel Hex and Extended Intel Hex files
Compatible with M80, SLR, 2500AD, and Avocet Assemblers
- Built-in MAKE facility supports depen-
dency file checks
- FREE demo disk available
- Compatible C-Compilers available soon

If you're ready for a fast, full-featured, affordable product, give us a call. You'll be pleasantly surprised.

CIRCLE NO 344

\section*{Filters for A/D Converters}

Frequency Devices digitally programmable and fixed frequency anti-alias filters represent the latest in linear active filter technology. These analog filters combine stability, low distortion, wide dynamic range, and tight gain/ phase matching with the flexibility of digital tuning that is required in today's data acquisition systems. There is also a wide choice of filter types including Butterworth, Bessel, Elliptic and Linear Phase.

Frequency Devices 508-374-0761

MIL-SPEC \({ }^{\circ}\) COMMERCIAL•VME•DSP
A Classic Solution for Today's Challenges

9000 m Series Electronic Module
- MC68020 \& DSP56001 Processors
- VMEbus Master/Slave
- Modular Analog Subsystem
-64 16-Bit A/D Inputs - 50Khz Sampling
- 4 12-Bit D/A Outputs
- Full ADA \& DOD-STD-2167A Support

\section*{Cadillac Gage TBXIRON}

Control Systems Marketing • P.O. Box 1027 Warren, MI \(48090 \cdot 313 / 777-7100 \cdot\) Fax: 313/776-9731 CIRCLE NO 342

Handhook of Quality Integrated Circuit Manufacturing

\section*{Robert Zorich}

Here is a comprehensive, practical guide to the entire wafer fabrication process from A to Z . Written by a practicing process engineer, this book provides a thorough introduction to the complex field of IC manufacturing, including wafer area layout and design, yield optimization, just-in-time management systems, statistical quality control, fabrication equipment and its setup, and cleanroom techniques.

September 1990, c. 584 pp., \$89.95 (tentative) ISBN: 0-12-781870-7

\section*{Call Toll Free 1-800-321-5068}

Academic Press
Book Marketing Dept. \#34100 1250 Sixth Ave., San Diego, CA 92101

CIRCLE NO 345

dV * Timing Diagram
dt Accelerator
The Digital Designer's Spreadsheet!
- Create timing diagrams in minutes
- Get effective tradeoffs on memory, wait
states and logic speeds
- Analyze worst-case uncertainty
- Display available time between edges
- Create timing documentation quickly and easily

CALL Doctor Design for your FREE DEMO 619-457-4545
5415 Oberlin Drive, San Diego, CA 92121

Free Catalog of digital I/O and ANALOG Input Interfaces for the IBM-PC,XT,AT and compatibles. Control relays, motors, lights, measure temperature and voltage. Sample programs and I/O circuits are included in catalog. John Bell Engineering, Inc. 400 Oxford Way, Belmont, CA 94002
(415) 592-8411

CIRCLE NO 349

New from
VETRA CONVERT between PC KEYBOARD \(\leftrightarrow\) RS-232
VIP-331 Smart Pipe \({ }^{\text {TM }}\) - Converts RS-232 to standard PC keyboard input.
VIP-335 Smart Splice \({ }^{\text {TM }}\) - Accepts both RS-232 and a keyboard as inputs to PC's keyboard input.
VIP-341 Reverse Pipe \({ }^{\text {TM }}-\) Converts PC keyboard output to RS-232.
VIP-345 Reverse Splice \({ }^{\text {TM }}\) - Feeds a PC keyboard's output to both a PC and an RS-232.
VIP-411 Smart Ae \({ }^{\text {TM }}\) - Encodes discrete or matrix switches to RS-232.

For detailed information, please contact
VETRA
SYSTEMS CORPORATION
1670 Old Country Rd., Plainview. NY 11803 Tel (516) 454-6469 • FAX (516) 454-1648

CIRCLE NO 752

Schematic Capture for the Macintosh

\section*{DESIGNWORKS}

Schematic features Menu-driven, mouse-controlled operations • cut/copy/paste between circuits • right-angle rubberbanding. Digital simulation 13 -state, event-driven simulation - logic analyzer-style timing window \(\bullet\) PLD support. Libraries Fully-simulated 7400, 4000, 10 K series, PLDs, PROMs and RAMs, non-simulated analog and discrete components - User-definable, simulated custom symbols. Interfaces Formats for Douglas CAD/CAM, Cadnetix, Calay, Orcad, Tango, Racal Redac, Spice. • user-definable printers, dotmatrix printers, HP, Houston, Roland pen plotters. Requirements Macintosh Plus, SE, II, IIx, Ilcx, or Ilci.

CALL (604) 669-6343 FOR YOUR
FREE DEMO DISK TODAY.
CAPILANO COMPUTING SYSTEMS LTD.
CIRCLE NO 755

*New windows 3.0 compatible software.
48 Chnnls @ \(25 \mathrm{MHz} \times 4 \mathrm{~K}\) word deep
- 16 Trigger words/16 level Trigger Sequence
- Storage and recall of traces/setups to disk
- Disassemblers available for: \(68000,8088,8086\), 6801, 6811, Z80, 8085, 6502, 6809, 6303, 8031 NCI 6438 UNIVERSITY DRIVE, HUNTSVILLE, AL 35806 (205) 837-6667

CIRCLE NO 350

\section*{ENCODER}

The "Smart-Wye"
Allows switches and keypads to drive PC keyboard input.

- 44 // Lines - Floating Point Math - Multitasking 68HC11 - 64K ROM, 128 K RAM - Resident Debugger

All the software you need for data acquisition, control, and instrumentation: high level FORTH language, assembler, debugging tools, multitasker, and extensive matrix math library including FFT and equation solution - all on the board.

Low power I/O-rich hardware: 8 AD, 24 digital and 8 timer-controlled V/O lines, 2 serial links, 128 K battery-backed RAM, only \(300 \mathrm{~mW}, 3^{\prime \prime} \times 4^{\prime \prime}\)

The QED Board: OEM versions from \(\$ 495\) (100s).
Mosaic Industries Inc. 415/790-1255 5437 Central Ave. Suite 1. Newark, CA 94560

CIRCLE NO 754

SAVE SPACE WITH Q/PAC® \({ }^{\circ}\) COMPONENTS
- Provide built-in capacitance
- Eliminate decoupling capacitance
- Gain 4-layer board quietness with 2-layer economy
- Vertical or horizontal mounting

\section*{Send for Rogers Q/PAC \({ }^{\circledR}\) Application Bulletin.}

Rogers Corp., 2400 S. Roosevelt St. Tempe, AZ 85282 602/967-0624

CIRCLE NO 758
100 MHz Waveform Digitizer

DS-51 \(\mu\) P DEVELOPMENT SYSTEM
DB-51 \(\mu\) P DEVELOPMENT BOARD
DB-51 \(\mu\) P DEVELOPMENT BOARD
MP-51 \(\mu\) C AND EPROM PROGRAMMER
CEIBO nut NEW?

IN-CIRCUIT EMULATORS AND BOARDS Supporting: \(8031 / 2,80 C 31 / 2,80 C 51 / 2 / 3 / 8,80 C 51 F A, 80 C 51 \mathrm{FB}, 80051 \mathrm{FC}\),
 \({ }^{6} 6 \mathrm{C} 410\) and others.
\(\mu \mathrm{C}\), EPROM AND PLD PROGRAMMERS Programming the most popular devices: 2716 to 27512 NMOS and CMOS, 8751 H,
\(8751 \mathrm{BH}, 87 \mathrm{C} 51,87 \mathrm{C} 52,87 \mathrm{C} 51 \mathrm{FA}, 87 \mathrm{C} 51 \mathrm{FB}, 87 \mathrm{C} 51 \mathrm{FC}, 87 \mathrm{C} 51 \mathrm{~GB}, 8744\), \({ }^{87 C 75}, 87451,87550,87 \mathrm{C} 528,87 \mathrm{C} 652,87 \mathrm{C} 654,87 \mathrm{C} 751,87 \mathrm{C} 752,87 \mathrm{C} 851\), \({ }^{7} \mathrm{C} 257\), 68C257 and others.
 CIRCLE NO 759

\section*{STR \(\$ 8100\)}

The fastest \(A / D\) boards for your data acquisition needs.
- transient rates of 25,32 , and 100 MHz at 8 bits E time equivalent sampling rates up to 800 MHz
- bus interface allows 1.5 MHz throughput rates
- many trigger modes; 64 K memory per channel
- XT, AT \& 386 compatible; prices from \(\$ 1750\)
- free drivers and digital oscilloscope software
- perfect for radar, ultrasound, ATE, robotics

\section*{SONOTEK}

8700 Morrissette Drive, Springfield, Virginia 22152 703-440-0222 ETelex 910-250-5257 = Fax 703-440-9512

CIRCLE NO 761

8051 Emulator - \$1250
\(\mathrm{d}^{2} \mathrm{ICE}\) is a low cost, Full Speed, real time 8051 Emulator.. Powerful user interface for Hi -level multi-window source code debugging. Uses IBM-PC COM1/2. No Slots! Portable, fits in shirt pocket. Assembler and test bed included.

Cybernetic Micro Systems PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 \(\bullet\) Fax: (415) 726-3003

CIRCLE NO 764

OMNILAB PROGRAMMABLE TEST STATIONS FOR MIXED ANALOG \& DIGITAL CIRCUITRY
- Graphical interface for easy test set-up. Simple automatic test sequence generation. Trigger on intermittent fault conditions first time, every time. © Capture compare, playback analog and digital signals. OMNILAB E-SERIES FEATURES:
- \(100 \mathrm{MHz}, 204 \mathrm{MS} / \mathrm{s}\) DSO ■ Logić Analyzer to 96 channels 24-bit Digital Output Generator Arbitrary Analog Waveform Generator 500 MHz Frequency Counter

\section*{ or 415/327/8800 \\ INSTRUMENTS}

180 Independence Dr., Menlo Park, CA 94025 CIRCLE NO 762

EPROM PROGRAMMER

- Quick pulse pgms. eight 1 Mbit EPROMs in 40 sec .
- Stand-alone or PC-driven •1 Megabit of DRA
\(\bullet\) RS-232, parallel in \& out ports \(\quad\) Made in U.S.A.
- Binary, Intel hex, \& Motorola S formats - A9 Identifier
- 100 user-definable macros
- 2 year warranty
- Information, call (916) 924-8037
- Single pgmr. \$550

NEEDHAM'S ELECTRONICS
4539 Orange Grove Ave. - Sacramento, CA 95841
\(\square(M-F, 8-5 P S T) \longrightarrow\)
CIRCLE NO 765

CIRCLE NO 760

\section*{PC Communications Coprocessors}

Our communications coprocessors offload serial and parallel communications tasks from PC's used in dedicated applications. RS232 and RS485 style communications. Easily programmed using C. A memory mapped interface to the host PC allows high speed data transfer and simple buffer schemes. From 64 k to 512 k of memory local to the coprocessor but accessible from the host PC. Used in many industrial and business systems to dramatically improve performance compared to standard PC serial port implementations.

Z-World Engineering
1340 Covell Blvd., Davis, CA 95616
(916) 753-3722

Fax: (916) 753-5141
See us at Wescon Booth \#458 CIRCLE NO 763

\section*{TOTAL RECALL}

Fairchild's new MIL-STD-1553 Data Logger/Processor (DL/P) with our DBMC captures and processes unlimited quantities of 1553 bus traffic with full error and timing information in an IBM PC/AT compatible environment.

\section*{}

Marketing: (301) 428-6629 - Telefax: (301) 428-6885 20301 Century Boulevard - Germantown, MD 20874-1182 CIRCLE NO 766

\section*{HAND HELD TERMINAL *\$199.}

- 80 character display
- 30 or 45 keys
- RS 232 or RS 422
- Low power
- ST-32 Compatible
- Standard or custom overlay
- Single 5V or 8-12V supply - 15 Programmable function keys
- Simple menu set-up
- 300-9600 baud - 7 or 8 data bits - Even, odd, mark, space \(-71 / 2^{\prime \prime} \times 4^{\prime \prime} \times .9^{\prime \prime}\) - 8 ounces

Internal Batteries and Built in Charger - Optional TWO TECHNOLOGIES, ING. 405 Caredean Drive, Horsham, PA 19044 215-441-5305
* SINGLE PIECE DEM OR VAR PRICE

CIRCLE NO 767

PC DATA ACQUISTION MADE EASY. AND AFFORDABL E WITH PROTOKEY'

JUST \$395 INCLUDES
HARD WARE AND SOFTWARE
The New PROTOKEY'M ADC-128 from Global Specialties \({ }^{8}\) is a full service ADD Acquisition Card at a fraction of the cost of competitive cards. The ADC-128 allows up to 8 channels of input, incorporates a 12 bit
dual slope A/D Converter, has software selectable gain of 1,10 , or 100 and selectable conversion rates of 7 Hz or 30 Hz . The user friendly software is Menu Driven with Pop-Up Windows, On-Line Help commands, and allows exporting of data to ASCII Format to most database programs. Hardware and software is affordable at only \(\$ 395\) complete.

For engineering specs. and detailscall today at: GLOBAL 1-800-572-1028 SPECIALTIES

CIRCLE NO 770

\section*{ELECTRONIC DESIGN SERVICES}
- Initial concept through prototype and production
- Design of advanced digital and analog electronics - Approved programmable gate array design center
- Real - time embedded software - DSP code
- 7,000 square foot facility with fully equipped labs - 12 year track record of successful product designs - Designs are warranted Defect Free Forever

PROTOTYPING ADAPTORS

BY THE HUNDREDS
Our line of prototyping adaptors for VLSI devices in cluding PGA, PLCC, LCC, ZIP, DIP and Quad Flat PAk is the most extensive available in the industry. These devices allow easy prototyping of these difficult to handle devices. Pins and sockets used are gold plated and of the highest quality. Parts are available in soldertail or with 3 level wirewrap pins. All types of wirewrap panels are covered. Ask about our custom design services for unique solutions in packaging.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO 768

20 MHz 286 CPU CARD - \$595
- 2 Serial/1 Parallel Ports
- Up to 4 Meg DRAM: 0/1 WS
- Low Power 6-layer PCB
- Award BIOS - Norton SI 21.1
- Optional 287 Co-Processor
- Small Size (XT-Form Factor)
- User Replaceable Battery
- Made in USA
- \$595 qty 10 w/OK

295 Airport Road TEMPUSTECH, INC. Naples, FL 33942 1-800-634-0701

CIRCLE NO 771

\section*{Er \(\sqrt{\square}{ }^{(3)}\) CIRCUIT}

7400 N. Croname Rd., Chicago, IL 60648
Phone: (708) 647-8303 Fax: (708) 647-7494
CIRCLE NO 774

QUAD FLATPAK

\section*{PROTOTYPING}

IRONWOOD offers a complete line of prototyping adaptors for QUAD FLATPAK devices for all sizes of EIAJ and JEDEC QFP's. The line includes surface mount adaptors for highest reliability or socketed adaptors for convenience. Parts sizes go from 60 to 208 pins and include all EIAJ pin spacings. Parts are constructed with gold plated soldertail or wirewrap pins and high quality sockets for highest reliability. Most wirewrap and PGA patterns available.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO 769

\section*{UNIVERSAL PROGRAMMER}

\section*{PAL \\ GAL \\ EPROM EEPROM \\ PROM \\ 87C51...}

874x...
Ens PALs 4 Meg EPROMs 26V12 \& 22V10 Gals FREE software updates on BBS
GANG PROGRAMMER
- 4 32pin Sockets (8 Socket option) - 2716-27010 EPROMs
\$215
Call - (201) 994-6669

\(\square\)
Link Computer Graphics, Inc.
4 Sparrow Dr., Livingston, NJ 07039 FAX:994-0730
CIRCLE NO 772
IBM COMPATIBLE RS232/488
\(31 / 2 \times 51 / 4^{\prime \prime}\) FLOPPY DATA STORAGE \& TRANSFER SYSTEM

Information Transfer to/from 'Non IBM Compatible Systems tolfrom IBM \& Compatibles: (Over RS-232 or 488 interface).
- Reads \& Writes MS DOS Disks
- RS-232/488 I/O
- Rugged Portable Package/battery option
- MS DOS Driver for "'Plug \& Run'" RS-232

External Operation
- Baud Rate 110 to 38.4 K Baud
- 360K/720K RAM Cartridge Option
- Price \(\$ 795\) in Singles-0EM Qtys. \(\$ 350\).

28 other systems with storage from 100 K to 42 megabytes.
DPT
ANALOG \& DIGITAL PERIPHERALS,
251 South Mulberry St. Troy Ohio 45373
251 South Mulberry St., Troy. Ohio 45373 P.O. Box 499 FAX 513/339-0070
CIRCLE NO 775

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

\section*{Wave Form 20 MHz -32K \$1290}

The WSB-100 Wave Form Synthesizer Board from Quatech has the best set of numbers in the market. With speed to 20 MHz and a 32 K memory at \(\$ 1290\), it's making waves in more ways than one. The WSB-100 is also a star performer as a digital pulse/word generator with the optional digital module.

> Call for our free

PC Interface Handbook 1-800-553-1170
T CUATECH
662 Wolf Ledges Parkway
Akron, OH 44311
IRCIE NO 785

\section*{UNIPRO,}
the PC/XT/AT/386 based universal programmer/ tester programs PROMs, EPROMs, EEPROMs, up to 4 MB and 32 -bit wide, PALs, PLDs, GALs, EPLDs, PEELs, and Micro Controllers. JEDEC file compatibility and Test Vector verification allow the use of most popular PLD compilers. The unit also tests TTL/ CMOS Logic ICs and Dynamic/Static RAMs. 40-pin Gold ZIF socket, built-in protection for short circuit and over current, high speed parallel interface to the PC, and menu-driven software are included at \(\$ 585\).

764 San Aleso Ave Sunnyvale, CA 94086 TEL (408) 727-6995 FAX (408) 727-6996

4MEG VIDEO Model 10
Flexible Image Processor and Application Accelerator For The PC/AT
- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPs Programmable Accelerator
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCIR input/output
- Variable timing for nonstandard formats
- Genlock to external timing sources
- Analog or digital inputs
- Software programmable timing/resolution

FAX: 708-498-4321

310 Anthony Trail, Northbrook, IL 60062 708-498-4002

\section*{RS-422/RS-485 Boards for AT, Micro Channel}

RS-422/RS-485 asynchronous serial communication boards from Quatech available in 1 to 4 ports for PC-AT and compatibles and 1 to 4 ports for PS/2 Micro Channel. Call for our free
PC Interface Handbook: 1-800-553-1170 Akron, OH 44311

PC-AT, Micro Channel, and PS/2 are trademarks or registered trademarks of IBM Corp. CIRCLE NO 786

PC-BASED LOGIC ANALYZER

- 32 Channels, Timing plus state
- Fifteen internal sample rates
- Dual-level sequential triggering
- Sixteen triggering channels
- Event counter (all or transitions)
- Software selectable Event settings

External clock with qualifier
- TTL, ECL and variable thresholds
- \(50 \mathrm{MHz}, 4 \mathrm{~K}\) bits/channel
- Low prices

Aimtek Corporation
1720 S. Orange Ave., Suite 304A (407) 425-6246 Fax (407) 425-6276 CIRCLE NO 789

There is a Difference. Lifetime Free Updates

PLD-1100 \$798

A programmer is not just another programmer. That is why BP Microsystems is commited to bringing our customers the highest quality programmers at an affordable price. The PLD-1100 Logic Programmer supports virtually every 20 and 24 -pin logic device currently available. And, all of our programmers include free updates to support future chips as they become available and an unconditional money back guarantee

\section*{Synchronous Communication Boards for AT}

Quatech synchronous/ asynchronous serial boards for PC-AT and compatibles support RS-232, RS-422, and RS-485 communication.

Call for our free
PC Interface Handbook:
1-800-553-1170

\section*{T] CUATECH}

662 Wolf Ledges Parkway
Akron, OH 44311
PC-AT and PC are registered trademarks of IBM Corp.

CIRCLE NO 787
FREE SAMPLE

8PDT "BYTE WIDE" SWITCH HIGH DENSITY .050" PINOUT SNAP ACTION GOLD CONTACTS
Circle reader service number for free sample and complete information about Annulus High Density Switches.

\section*{CIRCLE NO 790}
\begin{tabular}{lll}
\hline & & \\
\hline
\end{tabular}

1-800-225-2102
(713) 461-9430

\section*{AT BUS DESIGN \\ At last, here is the timing book for the XT and AT Bus. Detailed text, tables and diagrams tell you what each signal line is for, what it does and when it does P996 Specification for the ISA (AT) Bus. In addition, the 8 and 16 bit parts of the EISA Bus are included. AT Bus Design, by Ed Solari, has over 200 pages, with more than 100 figures and tables. Handy 7" \(\times\) " 9 " format, soff cover, \(\$ 69.95\). \\ FREE Wellinclude a free copy of the pocketand Foster witheach AT Bus Design hook if you tell us where you saw this ad. Of course, this \(\$ 9.95\) value is also available by itself. Or buy five or more for only \$5.00 each. \\ \\ \(\overline{800-462-1042}\) \\ Annabooks \\ 12145 Alta Carmel Ct., Suite 250 \\ Money}

See us at Wescon Booth \#379

\section*{CIRCLE NO 794}

PLASMADOT: Dot matrix for graphics as well as text!
Cherry announces PLASMADOT, \({ }^{\text {TM }}\) a bright new dot matrix gas plasma display. Designed for highvolume OEM applications ranging from management equipment to information centers High-brightness pixels and contrast; round, square or rectangular pixel shapes. Full-field dot matrix display ideal for graphics as well as text. Write or call Cherry for details today!

\section*{ \\ The Cherry Corporation}

Cherry Electrical Products
3600 Sunset Avenue, Waukegan, IL 60087
Phone: 708/360-3500 • Facsimile: 708/360-3566

CIRCLE NO 797

\section*{SIMPLIFY BOARD LAYOUT}

MICRO/Q 1000 ceramic decoupling capacitors share board mounting holes with IC pins to simplify board design. Now add more active devices with increased density in the same space, or design the same package on a smaller board. Rogers Corp. 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624

\section*{Design:}

\section*{Industry-standard} language for PLDs

With new ABEL-PLD at just \$895*.
- 150 PLD architectures supported (over 4000 devices).
- Uses ABEL \({ }^{\text {TV }}\) Hardware Description
Language (AHDL).
- Intelligent synthesis
and optimization.
- Upgradable to fullfeatured ABEL.

Call for your FREE ABEL-PLD demonstration diskette. 1-800-247-5700
*U.S. list price only.
DATA I/O

CIRCLE NO 795

Schematic and PCB Software
Create and revise schematics and PCBs quickly and simply with HiWIRE-Plus \({ }^{\text {® }}\) and your IBM PC. Use symbols from HiWIRE-Plus's extensive library, modify them, or create your own quickly and painlessiy. Netlist, bill-of-materiais, and design-checking utilities are included. HiWIRE-Plus is \(\$ 895\) and comes with a thirty-day money-back guarantee. Wintek Corp.
1801 South St., Lafayette, IN 47904 (800) 742-6809 or (317) 742-8428

CIRCLE NO 798

EasyEmulator Pods \& Adapters - Plug your PLCC and LCC packages into your PC board in minutes, with these easy-to-use adapters.
- Emulator/logic analyzer users: Adapt-a-Pod \({ }^{\text {T }}\) converts one package type to another (LCC, PLCC, PGA, and DIPS). - Emulator pods and adapters are available in all standard pin counts, with ribbon or ribbon cable headers. - Custom engineering services and do-it-yourself emulator pod converters. Free catalog.

Emulation Technology, Inc.
2368-B Walsh Ave. Santa Clara, CA 95051
 CIRCLE NO. 801

\section*{Program:}

\section*{16L8, 20V8, 22V10. \\ \(27 \mathrm{C020}\), and 450}
other CMOS devices
PLDs and memories with the low-cost 212.
- Memory cards for easy updates.
- Extensive editing capabilities.
- Compatible with

JEDEC standard programming files

Call for your FREE 15-day trial AND ABEL-PLD demon stration diskette. 1-800-247-5700

\section*{CIRCLE NO 796}

Analog Circuit Simulation Completely Integrated CAE from \$95
 From Schematic Entry through SPICE Simulation to Post Processing IsSpice \$95, the complete SPICE program
IsSpice/386 \$386, The fastest PC based Spice program available. Has virtually no circuit size limitations.

SpiceNer \$295, a schematic editor for any Spice simulator. Generates a complete Spice netlist.
linuScope \(\$ 250\), a graphics post processor that performs all the functions of a digital oscilloscope.

PreSpice \(\$ 200\), extensive model libraries, Monte Carlo analysis, and parameter sweeping.

> Please Write or Call P.O. Box 6607 (213) 833-0710

intusofSan Pedro, CA 30 Day Money 90734-6607 Back Guarantee

CIRCLE NO 799

\section*{LOW COST}

Data Aquisition Cards for
PC/XT/AT

\section*{12 Bit A/D \& D/A [PCL711S]}
\(\$ 295\)

\section*{- ND converter 8 single ended channels: Usees ADS57 devic: Converion tion}

12 Bit A/D \& D/A [PCL812] \$395
- AD convererer 1 Singile ended inputs Uues ADS74, Conversion imelesess

Fast 12 Bit A/D/A [PCL718] \$795
- AD converter: 16 single ended or 8 differential channels; 12 bits resolut
Programmable scan rate; Built-in Interrupt and DMA control circuitry.

Conversion speed 60,000 smpls/sec (standard), 100,000 smpls sm sec (optrional)

- D/A converter: 2 channels; Resolution: 12 bits; Settling time: 5 seec; +5 V . - Software: Utility software for R ASASIC \& QuickBASII included. Sample prgm. Supported by LabDAs, ASSYST, LABTECH, UnkeScope.
6 Channel 12 bit D/A [PCL726] \(\$ 495\)
 MC/VISA/AMEX Call today for datasheets
 CIRCLE NO. 802

It's the hottest game going: an all-star lineup of the finest EMC devices in the leaguedevices that get you through the current season, and many seasons to come.

Engineering improvements in digital and communications equipment require super-high speed switching for power supplies and everhigher frequencies for system clocks and picture carriers. To deal with this, EMI regula-

tions are getting stricter and EMC countermeasures are growing increasingly complex.

For TOKIN, however, it's all just part of the game. Indeed, we supply the world's leading electronics

manufacturers-and countless smaller makerswith a wide range of grandslam EMC products every day. In fact, there's a good chance some of the equipment you're using right now boasts TOKIN devices.

So for performance that truly excels, check the EMC rankings.

Then give us a call and let us know your needs.

\section*{Tokin America Inc.}

155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375
Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090 , U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804
Tokin Electronics (H.K.) Ltd.
Room 806 Austin Tower, 22-26A, Austin Avenue,
Tsimshatsui, Kowloon, Hong Kong
Phone: 367-9157 Fax: 739-5950
Taiwan Liaison Office
7/F-2, No.200, Sec.3, Hsin-Yi Road, Taipei
Phone: (02) 7059310~1 Fax: (02) 7015650
Sirigapore Liaison Office
140 Cecil Street, No. 13-01 PIL
Phone: (65) 2237076 Fax: (65) 2236093

\section*{Tokin Europe GmbH}

Knorrstr. 142, 8000 München 45, Germany
You can reach our agents by phone: Denmark (03) 63 3830; France (1) 45-34-7535; Italy (0331) 67-8058; Spain 729-1155; Switzerland (01) 830-3161

\title{
nat 20 The serious business of computer games
}

\section*{Designers of computer games are expert programmers, successful managers, and still kids at heart.}

\author{
Jay Fraser, Associate Editor
}

In the early 1980s Richard Ditton worked for IBM at the John F Kennedy Space Center in Florida designing launch-system software for the space shuttle program. On one especially hot and humid summer's day he decided to wear his tennis shoes to work. His supervisor suggested he take them off and put on regular shoes. Ditton ignored the suggestion. This lack of response would eventually lead to a new career for him.
"They kept giving me head-reshaping sessions, trying to get my tennis shoes off me," says Ditton. "That went on for three months. It took them quite a while, but they finally told me not to come back unless I took my tennis shoes off." He never went back.

Ditton and his wife Elaine moved to Chicago, where he went to work for a toy manufacturer doing what he had always wanted to do-designing computer games. A short time later Elaine joined the same firm as a games designer. In 1985 they quit and formed their own company, Incredible Technologies Inc. In the last five years the Dittons have
published dozens of home and arcade games, and last year their company earned \(\$ 4\) million.

After leaving the University of California at Berkeley, Paul Grace worked as a programmer for a local bank. He quickly grew tired of it. Electronic Arts, an entertainment-software publisher,

was located in nearby San Mateo. Grace had always been interested in computer games, so one day he simply drove down to the company to see if there were any positions available. Even though he had to take a substantial cut in pay, he went to work for Electronic Arts as a software tester. Today he is an associate

Richard and Elaine Ditton work with a game tree, a planning tool that indicates the difficulty of development tasks at various phases of game design.
producer specializing in military simulations. He selects and supervises teams that develop new home-computer games.

While attending a conference in Las Vegas, NV, Sid Meier and his friend Bill Stealey, both of whom then worked for General Instruments Corp, passed some time by playing an aerial combat game in an arcade. Stealey, a former jet pilot, complained about the poor quality of the game. Meier, who programmed minicomputers, said he could design a better game in one week flat. Stealey replied that if Meier designed it, he'd sell it.

Paul Grace (far right) and two colleagues talk with General Chuck Yeager (far left) about his "Advanced Flight Trainer" simulation.

It took Meier two months to design the game, but Stealey kept his word and the game became a best seller. In 1982 Meier and Stealey left General Instruments and founded their own company, MicroProse Software Inc. Since then Meier has created 10 computer games and more than 2 million copies of them have been sold worldwide.

These people share more than a distaste for conventional jobs. All their lives they have been fascinated by games. When they were children they
played simple board games. Today they play sophisticated computer strategy games. Their work is simply an extension of their lifelong love. As Elaine Ditton says, "Programming is a game. Almost more of a game than the games we actually design."
Computer games are big business. Dozens of companies put out hundreds of titles that sell millions of copies. The price of a single game can be as much as \(\$ 100\). The Software Publishers Association estimates that in North America last year sales of entertainment software (not including arcade games and Nintendo-style cartridge games) exceeded \(\$ 288\) million.
The origin of modern computer games can be traced to the Massachusetts Institute of Technology (Cambridge, MA). In 1962, a young programmer there named Steve Russell designed a game he called "Spacewar!" to run on a DEC PDP-1 that sometimes sat idle in his lab. Although primitive by today's standards, "Spacewar!" used joysticks and fire buttons to enable players to blast each other's spaceships to bits.
Russell let people make copies of his game free, and it soon spread to college campuses across the country. At the University of Utah, an engineering student named Nolan Bushnell came up with the idea of a coin-operated video game that could be put in arcades and barrooms just like pinball machines. In 1972 he and a partner put up \(\$ 250\) each and founded Atari to produce a game Bushnell had invented called "Pong." The game was a smash, and Bushnell and his partner became multimillionaires.
The success of "Pong" lured thousands of programmers to try their hands at creating computer games. Attempting to cash in quickly on the growing boom, companies rushed out games that were poorly designed and too much alike. Arcades and stores were soon crowded with low-quality products, and customers grew disenchanted. In 1983 the computer-games market suffered an

\section*{On orders of up to 1000 connectors.}

With Samtec "Super Service" we'll ship up to 1000 of just about everything in our catalog in just 5 days. This includes all machined strip, DIP and PGA interconnects, all . \(025^{\prime \prime}\) square post headers and sockets, all board stackers, all low profile interconnects, all . 050 " centerline micro interconnects... virtually everything in over 100 pages of interconnect solutions. The only excluded items are cable assemblies and other custom interconnects.

For common connectors shipped from stock, in two days guaranteed, or nearly anything else shipped two days guaranteed, or nearly anything else shipped
in five, experience Samtec Sudden Service today. Call your local stocking Samtec distributor, or

듬ㅁ믈

\section*{SUPER} SERVICE

1000
CONNECTORS SHIPPED IN 5 DAYS

\section*{1-800-SAMTEC-9}

Until 7:00 pm EST
enormous crash. Atari alone lost more than \(\$ 500\) million that year.

The market for home games revived more quickly than the arcade-game market because of improvements in computer hardware. New, more powerful microcomputers were introduced with greatly enhanced graphics, color, and sound capabilities. The new games designed for them were much more sophisticated and complex than the games of the 1970s.

More detailed simulations were devised that gave the player a better feel of piloting an airplane or driving a Grand Prix race car. Sound effects were also upgraded. For example, in sports games players could now hear the crack of the

Sid Meier, whose computer games have sold more than 2 million copies worldwide.
bat or the crunch of a tackle. Network games were introduced that enabled dozens of people to play against each other. Adventure games became more cinematic, with large casts of characters and intricate plots.

Sales of computer games began to pick up in the mid-1980s, but the day of the individual programmer who could create a game all by himself and get rich overnight was gone forever.
"No one person can program and do the art and the sound to the level that the customer expects now," says Richard Ditton. "How many free-lance, full-
length motion pictures are there today? In the early days of motion pictures there were a lot. All you needed was a camera. Throw some actors in front of it, and you could make a movie. If you wanted to make a motion picture now, you'd have to have a director, producer, sound people, lighting people, and many others."

Elaine Ditton adds, "We started out small, with just the two of us. Then there were three of us. But in the last five years we've grown to 50 people because that's what it takes to get a couple of games out there a year and be competitive."

Incredible Technologies, Electronic Arts, and MicroProse have somewhat different methods for developing a game, but every game starts with an idea, and there's no shortage of them. Entertainment-software companies receive thousands of proposals for games every year. Some are just brief letters. Some are elaborate programs on floppy disks. Most are unusable. Unsolicited proposals tend to be too specialized, or to repeat a game that's already available, or to be just plain bizarre. People have suggested games based on train wrecks or all-out nuclear war.
"There are lots of ideas, good and bad, floating around," says Sid Meier, "but it's the execution of the idea that really differentiates a good product from a mediocre product. We don't get ideas that make us say, 'This is it! We've got to do this one because it's such an incredible idea. Stop the presses and start this project!'"

Nevertheless, lightning does strike. Occasionally a proposal will be accepted by a publisher and developed into a game.
"A man in St. Louis named John Ratcliff came up with an algorithm for displaying a contour map at a fairly high frame rate on a PC and sent it to us," says Paul Grace. "He had no contacts or anything. He just said, 'Here's this contour-mapping program I wrote. What do you think?'

\section*{TELECOM DC/DC CONVERTERS}

\section*{VICOR PROVIDES THE POWER FOR TELECOM APPLICATIONS}

From remote sites in Alaska and desert sites in Egypt to central offices in Oklahoma, agency approved Vicor converters have consistently demonstrated the ability to meet rigorous demands (Bellcore or British telecom) at competitive prices.

For immediate delivery of converters or for additional information call vicor expreser today at 1-800-735-6200

"It was too slow for a flight simulator, but I thought that a nuclear-submarine game would be fun. There was a book out at that time about submarine warfare that was really enjoyable reading, and I wanted to do something like that. I got in touch with Ratcliff and told him what we wanted to do. He said that sounded great, so we brought him out and began working on it."

There's no secret to doing the programming for a computer game. It's simply a matter of grinding out the work. John Ratcliff wrote approximately 120,000 lines of code for his submarine game, which took him, working on it in his spare time, about 20 months to write. The game was named ' 688 Attack Sub,' and it has been a steady seller since its introduction.

\section*{The Software Publishers Association estimates that in North America last year sales of entertainment software exceeded \$288 million.}

Developing a game is also a process of trial and error, as Richard Ditton explains. "I look pretty comatose when I'm working on an idea. I have my feet up on my desk and I'm usually staring at the ceiling. People wonder if I'm asleep most of the day. What I'm doing is taking the idea and formulating it into a program. When I have it all worked out, I turn around and start typing away at the keyboard, implementing it. Then I play it and see that it's really bad and throw out major chunks of it. Then I start staring at the ceiling again."

Sid Meier also starts out with a prototype program and proceeds from there. "It's sort of a process of evolving toward the final product-adding more graphics, adding sound, refining the game play, adding more screens, options, difficulty levels. Sometimes all the elements advance in parallel. Sometimes you need to branch off and work on one in isolation until it's finished, then go back to the others."

Paul Grace stresses the importance of teamwork in creating entertainment software. "In ' 688 Attack Sub,' while we were putting in the hypertext interface we were building screens. As the graphic artist would complete a screen we would code it, make sure the interface fit the screen properly, then continue on to the next screen. The graphic artist is involved from the time we get the go-ahead to start work on the project."

After the software is written and debugged, perhaps the most important phase of the development takes place. The game is adjusted and refined and polished until it has just the right feel.
"Once you program something it's not done," says Elaine Ditton. "It has to be tweaked. A good arcade game or a good home game has a feel to it that can only be obtained by playing it over and over and making it exactly as you like it. That's something that comes from more than just technical knowledge."

Paul Grace calls the process play-balancing. "After we're done, we start play-balancing the game. We have our testers play it, to make sure you can win the things you're supposed to win, and that the things that are supposed to be hard to win are very hard. That's play-balancing. That's crafting. That's what makes a good game a great game."
"We used to have a joke around here that you know when to stop when the computer's full," says Sid Meier. "In those days we were working on Commodore 64s and Ataris and other machines like that with limited amounts of memory. These days you get to a point of diminishing returns and that's when you stop. You get a feeling from playing the game that it's done."

\section*{Preview of coming attractions}

The people who create computer games are very optimistic about the future of their industry, partially because significant improvements in hardware are just around the corner. CD-ROM drives and CDI (compact-disk interac-

Now you can get LeCroy Digital Oscilloscope performance for the price of an ordinary oscilloscope. At just \$6,990, the new Model 9410 offers you unrivaled measurement capabilities. Waveforms are digitized with high signal fidelity into 10 K acquisition memories and presented on the sharpest display of any oscilloscope (the above picture speaks for
 itself). One can zoom in on fine details, expand signals, and use the 9410's digital cursors to get the ultimate in precision.

The Model 9410 doesn't stop there. It also includes LeCroy's SMART trigger that detects buried glitches, timing violations, and logic states (you'll be prepared for the most elusive signals). Internal signal processing calculates time, voltage and frequency parameters in fractions of a second.

Analysis And all the data can be transferred directly to printers, plotters or PC's

Glitch Option

Price being equal, wouldn't you rather have a LeCroy?

Innovators in Instrumentation

\section*{LCD Proto Kit}

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock@ \(\$ 75 /\) singles, \(\$ 20 / 1000\) s (Surface mount also avail in qty.)
CyberneticMicroSystems
Box 3000 - San Gregorio CA 94074 Tel: 415-726-3000 • Fax: 415-726-3003
anomeco, mocractue syotem
tive), a multimedia, interactive system for the simultaneous presentation of video, audio, and text, will soon be widely available. These inventions promise huge amounts of storage for images and sound. Some industry observers predict that home computers will soon have the video and audio quality of television.

Significant improvements in hardware are just around the corner-CD-ROM drives and CDI (compact-disk interactive) will soon be widely available.
"One of the appeals of this industry is that we know hardware is going to keep improving," says Sid Meier. "The technology of movies does advance, but it's not going to be twice as good five years from now as it is today. The technology of making music or making television is not going to take the kind of major steps that we think are going to be taken in our industry over the next few years."
The business of computer games has other appeals as well. "You get a lot of satisfaction when you see people playing your games, having a good time enjoying what you've created," says Richard Ditton.
"The amount of creativity and freedom you have is a real satisfaction of doing this kind of work," says Sid Meier. "You have an idea, you create it, you mold it, you watch it grow, you finish it, and you produce it. There's a lot of satisfaction in seeing a project through from beginning to end. It's not like doing something you don't want to do. It's only partly a job."

EDN

Article Interest Quotient
(Circle One)
High 509 Medium 510 Low 511

Our reputation precedes us! From 5 subsidiaries and 35 distributors in more than 40 countries worldwide, thousands of customers purchased more in 1989 than ever before. And they were able to choose new products from an everexpanding array of plotters, penless plotters, digitizers, recorders and supplies.
The Graphtec reputation is one of building products that work well and last a long time. We earned that reputation the hard way, by delivering over 40 years of the best innovation, support, and after-sales service in the industry.

To see what we mean, look no further than our MC5500 Digital Multicorder, the world's smallest 12 -channel pen recorder. This powerful instrument combines compact size and 12 recording channels with a wide array of intelligent functions and accessories.
Features include a bright digital display, 32 Kbyte memory card (256 Kbyte optional), 5 different printed logging/report modes, auto bias recording, zone recording, and even a GP-IB interface for control by a host computer.
Technology that matches the reputation... Graphtec.

\(\square\) E/V ERPPMEC
GRAPHTEC CORPORATION Mita 43rd Mori Bldg., 13-16, Mita 3-chome, Minato-ku, Tokyo 108, Japan Tel: (03) 453-0511 Fax:(03) 453-7187

\section*{CAREER OPPORTUNITIES}

1990 Recruitment Editorial Calendar
\begin{tabular}{llll}
Issue & \(\begin{array}{c}\text { Issue } \\
\text { Date }\end{array}\) & \multicolumn{1}{c}{\(\begin{array}{c}\text { Ad } \\
\text { Deadline }\end{array}\)} & \multicolumn{1}{c}{ Editorial Emphasis }
\end{tabular}\(]\)\begin{tabular}{llll}
News \\
Edition
\end{tabular} Nov. 15 \begin{tabular}{llll}
Oct. 26 & \begin{tabular}{l}
Displays, Defense, Special \\
Supplement: Interconnect
\end{tabular} \\
\hline \begin{tabular}{l}
Magazine \\
Edition
\end{tabular} & Nov. 22 & Nov. 1 & \begin{tabular}{l}
17th Annual Microprocessor Directory, \\
ICs \& Semiconductors, Test \& \\
Measurement, Workstations
\end{tabular} \\
\hline \begin{tabular}{llll}
News \\
Edition
\end{tabular} & Nov. 29 & Nov. 8 & \begin{tabular}{l}
ICs/Communication Controllers/ \\
Microprocessors, DSP, Regional \\
Profile: Illinois, Minnesota \& \\
Michigan
\end{tabular} \\
\hline \begin{tabular}{llll}
Magazine \\
Edition
\end{tabular} & Dec. 6 & Nov. 15 & \begin{tabular}{l}
Product Showcase-Volume I: Soft- \\
ware, ICs \& Semiconductors, Pack- \\
aging \& Interconnect, Power
\end{tabular} \\
\hline Sources
\end{tabular}

\section*{Call today for information on Recruitment Advertising:}

East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602 Electrical Engineering or a related discipline and 5 years experience developing software, with a major portion being in the development of compilers or related tools. We are especially looking for experience with optimization techniques and code generation. Good written and verbal skills required. Must be able to work closely and effectively with other team members.

\section*{PRINCIPAL INVESTIGATORS}

We require an MS or PhD in Computer Science with 5-15 years experience in the development of compilers. Significant experience with compiler generation tools and optimization techniques for high-performance systems necessary. Principal investigators will lead small dedicated research teams and interact with chip designers, system architects and external research organizations to define and prototype the next generation of compiler architectures. Good written and verbal skills required. Must have experience leading advanced software development groups and demonstrated leadership in compiler technology.

We offer a competitive salary, a comprehensive benefits package and excellent opportunities for professional growth. For immediate consideration, please send your resume to: Motorola, Inc. Corporate Staffing, Dept. TG9028, 1303 E. Algonquin Road, Schaumburg, IL 60196.

MOTOROLA INC.

\section*{WE DON/T JUST MAKE COMPUTERS, WE MAKE HEADLINES!}

In just six years, Dell has
jumped to the top of the PC industry. Our high performance systems are hot and direct our growth-oriented philosophy. At Dell, the work is significant and requires technical superior individuals with strong initiative.

\section*{PERFORMANCE ANALYST}

In this senior-level position, you will model, measure and analyze the performance of personal computer hardware and software architectures. To succeed, you must have a BS/MS in EE, CS or Math, plus experience in computer performance analysis, measurement and/or modeling. Broad knowledge of computer architectures is essential.

\section*{BIOS ENGINEER}

Responsible for the development and integration of BIOS code for 80X86-based personal computer systems. Position requires a BS degree in an appropriate science with 2-4 years of firmware development experience in a PC, or PC-based system environment.

\section*{NETWORK VALIDATION ENGINEER}

Design, develop and implement cost effective method for testing and trouble shooting. Design test fixtures and equipment test procedures for new products. LAN expertise knowledge of IEEE, ISD/DSI, connectivity expertise, \(80286,80386,80486\), Assembly language, C, DOS, OS 2/400. Indepth understanding of network operating systems and drivers as they apply to PC/AT/ architectures.

\section*{LOGIC DESIGN ENGINEER}

Responsible for the design of high performance, 80X86-based motherboards for desktop and portable personal computer systems.

\footnotetext{
Dell is an Equal Opportunity Employer. M/F/V/H.
}

Position requires a BSEE and 3-5 years of applicable logic design experience working with advanced bus and computer architectures.

\section*{BUS INTERFACE ADAPTER BOARD DESIGN ENGINEER}

Responsible for the design of logic for EISA and ISA bus interface adapter boards for personal computer systems. Position requires a BSEE and 3-5 years of applicable computer system and bus adapter board design experience, especially with SCSI, graphics, networking, DMA and bus master techniques.

\section*{SYSTEMS ENGINEER}

Responsible for resolving hardware and firmware design changes in our 80286,80386 , and 80486 product families. Resolving compatibility issues for third party users both hardware and software. 2 plus years applicable experience in the design of complex systems in microprocessor based systems with knowledge of 80286,80386 and 80486 .
Based in Austin, Texas the opportunities are challenging, the cost of living is low and the quality of life is high. If you are ready to imagine where we will be six years from now and you want to help direct that growth, mail or fax your cover letter and resume today: 512/343-3330, Dell Computer Corporation, Professional Employment, Department EDN102590, 9505 Arboretum Boulevard, Austin, Texas 78759.

\section*{One Company's \\ \\ Can Give Your Career A New View}

GE Aerospace Military \& Data Systems Operations states its mission simply. Be the premier contractor for sophisticated command, control and information systems. We're making our vision a reality through results-proven professionals like you.
Combine your expertise with our resources and you'll discover how we reach solutions that no one else can on time, on budget and right on target. At the same time, you'll enjoy a level of involvement in national programs that few companies can match. You'll work in an environment that's constantly retooling for the future. And you'll thrive with the opportunities for professional development and advancement that GE offers, including an in-house, accredited Master's degree program.
We continually seek experienced, degreed systems and software professionals for opportunities in Valley Forge, PA, a thriving suburb of Philadelphia, and metropolitan Washington, DC.

\section*{Systems Engineers \& Analysts}

Command \& Control
- \(\mathrm{C}^{2}\) operations conceptualization and development
- Top-level systems design and requirements definition
- Segment design

Systems Engineers \& Analysts
Resource Management
- Operations research
- Man-machine interfaces
- Software lifecycle

Al Information Systems Analysts
- Image understanding
- Object-oriented technology
- Sun, Symbolics and VAX environments
- ART, CLIP, KEE, Lisp and C++ languages

\section*{Data Systems Engineers}
- Orange and Red Book Standards
- Network security
- Accreditation of trusted systems
- DoD 50200.28 criteria

Software Engineers/Software Analysts
- Software development for vast information processing systems and applications
- Hands-on experience with SUN/UNIX, VAXVMS, IBM MVS/XA, C, Ada, Fortran, Pascal
Computer Security Specialists
- Development of trusted systems, software, databases, operating systems or communications
- 2+ years in a computer security role, ideally in an IBM mainframe environment

Communications Systems Engineers
- Systems architecture, requirements analysis and definition, and the design and development of RF analog or digital communications systems
- 3+ years experience with satellite or ground systems

\section*{Telephony Engineer}
- Design, installation and integration of telecommunications systems
- 3+ years experience with digital transmission of data-voice-video, voice-data encryption, digital coding
Wang VS Systems Analysts
- Applications and utilities support to Wang VS users
- Hands-on knowledge of Wang VS system utilities, VS procedure language, 20/20 spreadsheet design and development
- 3+ years Wang analytical support experience
Wang VS Systems Administrators
- User support and overall resource management for information centers with multiple Wang VS systems
- LANWAN operations experience
- BSCS or 3 years experience in systems administration

\section*{Application Programmers}
- Software development for strategic business systems
-3+ years experience with IBM and Macintosh, DB2 and IDMS

\section*{Systems Programmers}
- Applications development and maintenance, installation of systems products
- Hands-on experience with large mainframe and system internals plus MVS/XA, CICS, VTAM, VM, SMP/E, ACF2, TMS, JES2, ASM2, VMP/HPO

\section*{Relational Database Specialists}
- Transform user requirements into relational models
- Hands-on experience with DB2, IDMS/ADSO, Adabas/Natural, M204, Oracle, Ingres, and Sybase.
U.S. citizenship and military or civilian experience in a sensitive classified environment is preferred for most positions.
The vision to make new ideas happen is a hallmark of M\&DSO. Now make it the mark of your career. If you are interested in Valley Forge, please send your resume to: GE Aerospace Military \& Data Systems Operations, Dept. BJ25, P.O. Box 8048, Philadelphia, PA 19101. Washington candidates should send resumes to: Dept. BJ25, 8080 Grainger Court, Springfield, VA 22153. An equal opportunity employer.

GE Aerospace
Military \& Data Systems Operations

\title{
Why the best in the business call Compaq home.
}
 Nestled in a shady pine forest, Compaq's beautiful 1,000-acre campus inspires freedom, innovation and personal satisfaction.

W\(T\) hen all the elements fall into place, and the right people are free to perform at their absolute best, the result is always successful.
At Compaq, our common sense approach to business has helped make us a world leader in advanced personal computers. But it's our commitment to people, our relentless dedication to building a quality work environment, that's the heart of our success. At Compaq, our people find an environment where they're encouraged to put their greatest abilities to the test-pushing the limits of technology, and finding practical solutions to the needs of today's PC user. An environment that encourages teamwork, yet recognizes individual achievement, where every voice is heard, and where the quality of the product is simply a reflection of the quality of the individual.
Why do the best call Compaq home? Because Compaq brings out the best in its people. Currently, we're looking for talented professionals who welcome challenge and want to play a part in the next generation of high-performance PCs. If you'd like a chance to do your best work, now's your best opportunity.

\section*{Product Engineers}

Take design concepts and develop them into outstanding Compaq products in this high-volume manufacturing position. You will be responsible for monitoring, evaluating and recommending solutions for current and future personal business computers and peripherals, as well as coordinating engineering projects and issues with other areas of Compaq. Excellent written and verbal communication skills are essential as you will be communicating with many different groups within Compaq.
Positions are available for Product Engineers with experience in one or more of the following areas:
- Knowledge of disk interface systems (ESDI) or mass storage systems.
- 386/486 based PC architecture or related experience.
- Experience with telecommunications products.
- Mechanical product engineering.

\section*{Statistical Process Control}

Put your expertise to the test supporting the training, administration and implementation of SPC techniques to be used in the manufacturing process. The ability
to recommend equipment and tools needed for all SPC applications to ensure the systems are providing critical information for continued process improvement is required.
Qualify with a BS in Engineering or Mathematics and a minimum of three years' experience in a fast-paced manufacturing environment with at least two years' experience in the development and implementation of statistical process control. Familiarity with SMT and/or Thru-hole, PCA manufacturing and quality techniques are preferred. Excellent oral/written communication skills and presentation skills are required.

\section*{Test Engineers}

Develop and design in-house tests and test equipment to use for performing hardware and software tests on PC related products.

Qualify with a BSEE and a minimum of two years' related test development experience. Knowledge of communications related boards is a plus. Additional positions are available for:
- GenRad/TERADYNE Test Engineers
- Systems Test Engineers

\section*{Diagnostic Systems Engineers}

An exciting opportunity exists for an engineer to develop user diagnostics and software utilities that will be used as aides for innovative new products in the PC and peripheral markets.
We also have openings for engineers to develop and maintain manufacturing diagnostics that provide immediate solutions for system performance problems. A BSEE, BSCS and knowledge of microprocessors is required.

\section*{Component Reliability Engineer}

Develop component test programs to perform engineering evaluations of state-of-the-art VLSI or memory testers. Knowledge of PCs would be a plus. Qualify with a BSEE and a minimum of three years' related test experience.

\section*{Reliability Engineer}

Start with the ability to perform specific new research and tests in quality areas directly related to electrostatic discharge.
Qualify with a BSEE, an additional degree in ME or MS preferred, and experience in electrostatic discharge technology and RF:

Join the Compaq team and you'll play a part in the next generation of high-performance PC technology, including advanced systems, desklops, portables and laptops.

\section*{A home for career growth.}

A career at Compaq offers the opportunity to be part of a remarkable team of professionals, complete with exciting new challenges at the forefront of PC technology. You'll be free to do your best work. And our beautiful corporate campus, nestled in the heart of a shady pine forest, offers a unique refreshing workplace.
Compaq offers competitive salaries, comprehensive benefits and an unequaled work environment. If you're interested in one of these opportunities, simply submit your resume, stating the position you wish to be considered for, to:
Compaq Computer Corporation,
Dept. EDN1025-BM,
P.O. Box 692000 ,

Houston, Texas 77269-2000.
Compaq is an affirmative action employer, m/fhk.
CDMPAZ

\section*{PRODUCT MANAGER}

\section*{Night Vision Goggles}

SRL, a medium sized applied R\&D company located on a 30 acre research campus near Dayton, Ohio, has an immediate opening for a Product Manager to lead a night vision goggle development program. Responsibilities include defining the hardware requirements and coordinating the production and product support activities. Requires a BSME or equivalent and 5 years of project management experience in an optical assembly environment. We provide an attractive salary and benefit package along with a challenging technical work environment. Reply in confidence to SRL, Dept. 46.

\section*{5Rl}

\section*{SYSTEMS RESEARCH \\ EOE/MFHV \\ LABORATORIES, INC. CALSPAN \\ \\ 2800 Indian Ripple Road Dayton, OH 45440-3696}

\section*{If You're Looking For a Job, You've Come to The Right Place.}

> EDN CAREER OPPORTUNITIES

\section*{CONFIDENCE.}

Seagate has every reason to be confident as the '90's begin.

Our passionate work ethic inspires confidence. By minimizing restrictions and red tape, you're empowered to do your very best work. And it's permitted the company to move forward and innovate like never before. With memory storage technology for everything from laptops to minicomputers and mainframes. From 20 Mbytes to 2.5 Gbytes. And it's a commitment that's backed by generous R\&D spending.
Today, there's an excitement at Seagate that shows in the work. And in our people. That's why we're confident you'll be interested in one of the following immediate opportunities.

\section*{DESIGN ENGINEER - HEADS \& MEDIA}

BSEE plus three years' experience in rigid disc, magnetics, and/or analog design. Responsible for the evaluation, qualification, and specification of heads and media for rigid disc applications.

\section*{HEADS MEDIA TECHNOLOGY MANAGER}

BSEE or related field plus five years accumulated experience in the development, application, and/or integration of magnetic recording heads and media in disc drives. Experience as a project engineer or lead engineer preferred.

\section*{ELECTRICAL ENGINEER - PWA DESIGN,}

MANUFACTURING
BSEE and a minimum three years of directly related design experience.
- Analog LSI Design Engineer
- Read/Write Engineer
- Microprocessor Systems Engineer
- FCC Compatibility Design and Test Engineer
- Brushless DC Motor Control Circuit Design Engineer

\section*{MECHANICAL DESIGN ENGINEER}

BSME plus three years related experience.
Structural and vibration analysis, and machine design.

\section*{RELIABILITY ENGINEER}

BSEE or a related degree and a minimum of three years of disc drive test and component level failure analysis experience.

\section*{APPLICATION ENGINEER}

BSEE/EET and a minimum three years of experience. Provide technical expertise for application of rigid disc products to OEM customers, sales, and technical support organizations. Requires disc drive or other electronic applications and digital circuits experience.
Seagate offers excellent salaries, comprehensive benefits, exciting work in a highly professional work place, and the quality yet affordable lifestyle of Oklahoma City.
To arrange an interview, please send your résumé in confidence to Seagate, P.O. Box 12313, Oklahoma City, OK 73157, Attn: Professional Staffing, Dept. EDN-10.25. We're an equal opportunity employer.

\title{
EDN's INTERNATIONAL ADVERTISERS INDEX
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Abbott Transistor \\
Laboratories Inc 21
\end{tabular}} \\
\hline Academic Press & \\
\hline CCEL Technolog & \\
\hline Acon Advanced Connects & \\
\hline Adda Corp & 88 \\
\hline ADPI & \\
\hline AEG M & \\
\hline erospace Optics & \\
\hline Afinity & \\
\hline mtek & \\
\hline Arpax C & \\
\hline dec & \\
\hline era Cor & \\
\hline American Adva & \\
\hline American Aut & \\
\hline \multicolumn{2}{|l|}{erican Research and} \\
\hline & \\
\hline & \\
\hline Analog Devices In & \\
\hline ogic Cor & \\
\hline ot Corp & \\
\hline book & \\
\hline lus T & \\
\hline 崖ex Microtechnology Corp & \\
\hline \multicolumn{2}{|l|}{Ashling Microsystems Ltd**} \\
\hline Atmel Inc & \\
\hline \multicolumn{2}{|l|}{T\&T Te} \\
\hline Augat & \\
\hline \multicolumn{2}{|l|}{Avanti Circu} \\
\hline ASF* & \\
\hline \multicolumn{2}{|l|}{Basler Electric 257} \\
\hline Bayer & \\
\hline \multicolumn{2}{|l|}{B\&C Microsystems 293, 295} \\
\hline Beckman Industrial C & \\
\hline \multicolumn{2}{|l|}{Behlman Electronics} \\
\hline Beneon Cor & \\
\hline \multicolumn{2}{|l|}{Bitwise Designs} \\
\hline Bourns Trimp & \\
\hline \multicolumn{2}{|l|}{BP Microsystems} \\
\hline Bruel \& Kjaer Inst & \\
\hline \multicolumn{2}{|l|}{Bud Industries*} \\
\hline Burr-Brown Corp & \\
\hline \multicolumn{2}{|l|}{Bytek Corp 27} \\
\hline Caddock Electronics Inc & \\
\hline \multicolumn{2}{|l|}{Cadillac Gage 289} \\
\hline Cadisys & \\
\hline \multicolumn{2}{|l|}{Cadre Saratoga Div 23} \\
\hline AD Software Inc* & \\
\hline \multicolumn{2}{|l|}{ahners CAPS} \\
\hline Cambridge Products Corp & \\
\hline \multicolumn{2}{|l|}{Capilano Computer Systems Inc . . 290} \\
\hline \multicolumn{2}{|l|}{Capital Equipment Corp} \\
\hline aprilion Enterprise Co** & \\
\hline \multicolumn{2}{|l|}{Cascade Microtechnologies.} \\
\hline Catalyst Research & \\
\hline \multicolumn{2}{|l|}{Ceibo Ltd 288, 291} \\
\hline Champion Tech & \\
\hline \multicolumn{2}{|l|}{Checksum.} \\
\hline Cirris Logic & \\
\hline \multicolumn{2}{|l|}{C\&J Micronics 290} \\
\hline \multicolumn{2}{|l|}{Comlinear Corp 138, 139} \\
\hline Condor & \\
\hline \multicolumn{2}{|l|}{Connor Peripherals 124-125} \\
\hline Cramer & \\
\hline \multicolumn{2}{|l|}{Cubit/Proteus Industries Inc 258} \\
\hline \multicolumn{2}{|l|}{Cybernetic Micro Systems 291, 30} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cypress Semiconductor \(8, ~\)
Dale Electronics Inc 244}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

48-49, 207314
Modern Metal \& Electronics** 192G
Mosiac Industries Inc 290
Motorola Semiconductor
Products Inc
50-51, 213
Motor One Electronics** 88K
Murata Erie America Inc* 237
National Instruments 2
National Semiconductor Corp 106
NCl 290
NCR Microelectronics Div 42-43
NEC Corp 280
NEC Electronics 74-75
Needham Electronics 291
Nicolet Instrument Corp 65
Nohau Corp 272, 287
Noise Laboratory Co 269
OKI Semiconductor 40-41
Orbit Semiconductor 126-127
OrCAD Systems Corp 249
Orion Instruments 291
Pactec Corp 246
Pactronix Industrial** 88 K
Pentica Systems 246
Performance Semiconductor Corp ... 21
Philips Discrete Products Div* 56-57
Philips T\&M** 62
Pico 100, 248
Pioneer 96
Powerex Europe** 111
Powerex Inc 46
Pragmatic Instruments 264
Precision Interconnect 223

\section*{Sampling A/Ds}

\section*{There's only one complete source.}

No matter what your requirement, you will find the answer in DATEL's broad line of Sampling Analog-to-Digital Converters.

\section*{Fast becoming \\ the industry standard}

Characterized through Nyquist operation, these converters offer superior Signal-to-Noise ratios and harmonic distortion specifications.

Bottom line, compare these converters with any competitive units, and you'll see there is no reason to look anywhere else.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Model & Bits & Throughput (MHz) & Linearity (LSB) & Power (Watts) & Case \\
\hline ADS-111 & 12 & 0.500 & \(\pm 1 / 2\) & 1.3 & 24-PIN \\
\hline ADS-193 & 12 & 1.0 & \(\pm 1 / 2\) & 1.3 & 40-PIN \\
\hline ADS-112 & 12 & 1.0 & \(\pm 1 / 2\) & 1.3 & 24-PIN \\
\hline ADS-117 & 12 & 2.0 & \(\pm 3 / 4\) & 1.4 & 24-PIN \\
\hline ADS-132 & 12 & 2.0 & \(\pm 1 / 2\) & 2.9 & 32-PIN \\
\hline ADS-118 & 12 & 5.0 & \(\pm 3 / 4\) & 2.3 & 24-PIN \\
\hline ADS-131 & 12 & 5.0 & \(\pm 3 / 4\) & 3.8 & 40-PIN \\
\hline ADS-130 & 12 & 10.0 & \(\pm 3 / 4\) & 4.0 & 40-PIN \\
\hline ADS-924 & 14 & 0.300 & \(\pm 1\) & 1.3 & 24-PIN \\
\hline ADS-928 & 14 & 0.500 & \(\pm 1 / 2\) & 2.9 & 32-PIN \\
\hline ADS-941 & 14 & 1.0 & \(\pm 3 / 4\) & 3.1 & 32-PIN \\
\hline ADS-942 & 14 & 2.0 & \(\pm 3 / 4\) & 3.2 & 32-PIN \\
\hline ADS-976 & 16 & 0.200 & \(\pm 2\) & 0.9 & 32-PIN \\
\hline ADS-930 & 16 & 0.500 & \(\pm 11 / 2\) & 1.8 & 40-PIN \\
\hline
\end{tabular}
 Sampling A/Ds can improve your circuit's performance call or write DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048.

\section*{Let DATEL convert you.} Call now 800-233-2765

INNOVATION AND EXCELLENCE IN PRECISION DATA ACQUISITION DATEL Inc., 11 Cabot Boulevard, Mansfield, MA 02048 (508) 339-3000 See Us At ELECTRONICA, Hall 18, Stand 18B02

\section*{EDN's INTERNATIONAL ADVERTISERS INDEX}

Precision Monolithics Inc
Presco
Pulizzi Engineering
Qua Tech Inc
Rayovac
Rifa \(\mathrm{Inc}^{* *}\)
Rogers Corp
SAAB**
Samsung Semiconductor
Samtec Inc
Schaffner EMC Inc
Seagate Technology
Siemens*
Siemens AG**
Signetics Corp
Signum Systems
Silicon Systems
Siliconix Inc
Smith Design
Softools
Songtech
Sonotek.
Sony Component Products
Sophia Systems Inc
Sprague Electric Co
Stag Microsystems Inc
Standard Grigsby Inc
Sumitome Metal Mining**
Sunonwealth Electric Machine Industry Co Ltd**

iyo Yuden (USA) Inc 15
TEAC Corp** 192P
175-176Tektronix Inc
way Engineering*\({ }^{2}\)
eltone Corp 29
Texas 30-31Thomas and Betts Corp47Tokin Corp296
Topzeal Ameris90-91292
Unat Techola 88
Universal Line Company Ltd**288, 294
Valid Logic Systems Inc -13
Velotec
Vicor , 301268
Wall Industries246
Wavetek 3
Welland Industrial** 88 N
Westcor 52
Wickmann Werke 259
Winpoint Electronics** 880
Wintek Corp 295
Xeltek 294
Ziatech Corp 1
Zilog Inc 135
Z-World 291
Recruitment Advertising 306-310
Compaq Computer CorporationDell Computer CorporationGE Military \& Data Systems OperationsSeagate Technology
*Advertiser in US edition**Advertiser in International edition
This index is provided as an additional service. The publisherdoes not assume any liability for errors or omissions.

Electronica is the world's largest trade fair for electronic components and assemblies. Here state-0f-the-art technology is on display, and developments, trends, methods and solutions are showcased in a comprehensive, precise, clear and up-to-the-minute style. Accompanying events at a glance
Congresses and lectures on the following subjects will take place during electronica 90:
- AVT - Layout and connector techniques
- PKO - Cost optimizing in testing
- Micro-electronic sensors
- 5th international power electronics conterence
- PHA - Product liability
- MST - Mierosystems engineering
- ENV - Electromagnetic compatibility
- DCQ/ZVEI Symposium: quality assurance agreements for assemblies

Information:
Gerald G. Kallman Associates,
5 Maple Court, Ridgewood, NJ 07450,
Tel. (201) 652-7070, Ttax (201) 652-3898. electronica 90

\section*{10 to 3000MHz from \({ }^{53995}\)}

Now, high-speed, high-isolation switches with built-in drivers, tough enough to pass stringent MIL-STD-202 tests. There's no longer any need to hassle with the complexities of designing a TTL driver interface and then adding yet another component to your subsystem... it's already included in a rugged, low-cost, compact assembly.

Available in the popular hermetically-sealed TO-8 package or a small EMI-shielded metal connectorized case, these tiny PIN-diode reflective switches, complete with driver, can operate over a 10 to 3000 MHz span with a fast \(2 \mu\) sec switching speed.
Despite their small size, these units offer isolation as high as \(40 \mathrm{~dB}(\) typ \()\), insertion loss of only \(1.1 \mathrm{~dB}(\) typ \()\), and a 1 dB compression point of +27 dBm over most of the frequency range. All models are TTL-compatible and operate from a dc supply voltage of 4.5 to 5.5 V with 1.8 mA quiescent current.

Switch to Mini-Circuits for highest quality innovative products ... and leave the driving to us.

\section*{finding new ways}
setting higher standards

\section*{\(\square\) Mini-Circuits}

PO. Box 350166 , Brooklyn. New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156 WE ACCEPT AMERICAN EXPRESS

\title{
Can your Bipolar do this? Can your IGBT do this?
}

Turn-off characteristics of a single-ended forward converter
with 300 Vdc input. International Rectifiers IRGBC30U
switches 12A at 50 kHz . Easily. (Actual unretouched photo.)

\section*{We didn't think so.}

\section*{Introducing the UltraFast IGBT. A quantum leap in power transistors!}

...only from

\section*{International \(I \geqslant R\) Rectifier}

\title{
Out-of-this-world performance at a down-to-earth price.
}

The new 2900 Programming System brings the cost of high-performance programming down to earth. Buy only the device libraries you need today and expand capability when you need it with simple software updates.

The 2900 supports virtually every programmable logic and memory
device on the marketeven surfacemount packages. Its innovative technology makes programming faster, easier, and more affordable than ever before. And with Data I/O®’s industry-standard design and testing software, you can create a
complete PLD development solution. For more than 15 years, Data I/O has set the standard in device programming. Call today to learn how the 2900 is setting a new standard for both price and performance.

Call today for a
FREE tutorial.
1-800-247-5700```

[^0]: EDN* (ISSN 0012-7515) is published 49 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President Frank Sibley, Senior Vice President/General Manager, Boston Division; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN 。, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\star}$ copyright 1990 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$109.95/year; Canada/Mexico, \$135/year; Europe air mail, $\$ 165 /$ year; all other nations, $\$ 165 /$ year for surface mail and $\$ 250 /$ year for air mail. Single copies are available for \$10. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

