Software adds logic to make designs testable pg 59 Electronica to stress SMT and power electronics pg 112 DSP-chip directory pg 171 Real-time programming series-Part 3

Special Report:
 A/D converters capture the video world

Get a handle on power supply design.

T Universal-Input PWM Controller from Siliconix. The easy, affordable way to create more efficient designs for low power systems.

The Si9120 PWM controller handles inputs from 50 V to 450 V . That's why it's the first IC ideally suited for 85 - to 265 - Vac input power supplies found in laptops, modems, battery chargers, and other products requiring maximum efficiency.

The easy-to-design-with Si9120 provides internal startup circuitry to allow direct connection to a rectified ac line. And it lowers part count, raises reliability, and improves noise immunity.

All for 93ф.*

Parameter	Si9120	$\mathbf{3 8 4 4 / 5}$
Start-up Circuit Power Dissipation	0.004 W	1.400 W
Supply Current	1.5 mA	17.0 mA
Reference Accuracy	$\pm 2.0 \%$	$\pm 3.2 \%$
Current Limit Delay Time	150 ns	300 ns

Design more efficiency into your low power systems! Ask for our Si9120 Design Kit. Call our toll-free hotline now! 1-800-554-5565, ext. 954.

ITSiliconix

If you're designing for bus systems, you should know these names. VIC, VAC, and $A C L$ are IC building blocks that can drive your system to maximum performance levels.

The VIC068 brings real plug-andplay compatibility to the VME world. It's a complete VMEbus Interface Controller on a single chip. Developed with a consortium of VMEbus International Trade Association (VITA) member firms, it's fast becoming the standard for VME developers, worldwide.

Since it's a single-chip solution, the VIC068 gives VME designers more board space for other features. And, it guarantees compatibility for boards from different suppliers.

The VACO68 is a VMEbus Address Controller, designed as a complementary chip to the VIC. It provides address counters and the necessary hand-shaking signals for block transfers. It also provides memory address decoding and, like the VIC chip, is highly programmable. The VAC068 truly raises the level of integration for high-performance systems.

VTC Incorporated
Hard-Driving Bus Solutions."

The VIC-VAC architecture provides a complete master interface, with unrestricted memory access to and from the VMEbus. Both chips are packaged in a 144 -pin plastic or ceramic PGA.

The VIC and VAC chips drive the bus directly, using the patented output drivers from VTC's ACL (Advanced CMOS Logic) family. Our ACL parts both FCT and ACT - have up to 64 mA drive, making them ideal for any high-performance bus system. And, with significantly less ground bounce than competitive products, our FCT gives you better system performance.

VIC, VAC, and ACL are available in commercial and military versions.

And, these three names are just the beginning. There's more to come in the "total VTC bus solution." So, get on board! And start driving your system to the maximum.

IN U.S.A., CALL 1-800-VTC-GMOS
(612-851-5200/Fax 612-851-5199/Telex 857113)
France: 01-42042925
Italy: 02-61290521
Netherlands: 20-5495969
Spain: 01-5344000
Sweden: 08-979020
U.K.: 0732-741841
W. Germany: 8071-2722

Circle No. 2

dc to 2000 MHz amplifier series

SPECIFICATIONS

MODEL	FREQ. MHz	GAIN, dB				- MAX PWR. dBm	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	PRICE Ea.	Qty.
		$\begin{gathered} 100 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 1000 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2000 \\ & \mathrm{MHz} \end{aligned}$	Min. (note)				
MAR-1	DC-1000	18.5	15.5	-	13.0	0	5.0	0.99	100)
MAR-2	DC-2000	13	12.5	11	8.5	+3	6.5	1.50	(25)
MAR-3	DC-2000	13	12.5	10.5	8.0	+8口	6.0	1.70	(25)
MAR-4	DC-1000	8.2	8.0	-	7.0	+11	7.0	1.90	(25)
MAR-6	DC-2000	20	16	11	9	0	2.8	1.29	(25)
MAR-7	DC-2000	13.5	12.5	10.5	8.5	+3	50	1.90	(25)
MAR-8	DC-1000	33	23	-	19	+10	3.5	2.20	(25)

NOTE: Minimum gain at highest trequency point and over full temperature range

- 1dB Gain Compression
- +4 dBm 1 to 2 GHz

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers

Unbelievable, until nowtiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.,plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11 dBm output, noise figure as low as 2.8 dB , and up to DC-2000MHz bandwidth.
MAR-8, Input / Output Impedance is not 50 ohms, see data sheet Stable for source/load impedance VSWR less than 3:1
Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each. t
Size Tolerance Temperature Value

(mils)	Merance	Temperature Characteristic	Value
80×50	5%	NPO	$10,22,47,68,100,220,470,680,1000 \mathrm{pf}$
80×50	10%	X7R	$2200,4700,6800,10,000 \mathrm{pf}$
120×60	10%	X7R	$.022, .047, .068,1,4$

\dagger Minimum Order 50 per Value - Designers kit, kcap-1,50 pieces of - Designers kit, kcap-1,50 pieces
each capacitor value, only $\$ 99.95$

incrediel

SPDT switch dc to 5 GHz with built-in driver

Truly incredible ... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3-sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS YSW-2-50DR

Insertion loss, typ (dB) Isolation, typ(dB)* 1 dB compression, typ
(dBm@in port)
RF input, max dBm (no damage) VSWR (on), typ
Video breakthrough
to RF, typ (mV p-p)
Rise/Fall time, typ (nsec)

$\mathrm{dc}-$	$500-$	$2000-$
500 MHz	2000 MHz	5000 MHz
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
	1.4	
	30	\square

*typ isolation at 5 MHz is 80 dB and decreases
5 dB / octave from $5-1000 \mathrm{MHz}$

On the cover: Today's video A / D converters are cheap, accessible, and offer greater performance levels than ever before. See the Special Report on pg 150. (Photo courtesy Analog Devices Inc; photography by Bryce Flynn)

SPECIAL REPORT

Video A/D converters

Choosing and incorporating a video A/D converter requires as much knowledge about video signals and digital video systems as it does about the converter itself. These video systems dictate the strict linearity requirements that converters must meet.
-Anne Watson Swager, Regional Editor

DESIGN FEATURES

EDN's DSP-chip directory

DSP μ Ps continue to become faster, cheaper, and more abundant. The recent availability of high-quality software tools eases debugging and maintaining your software today. And soon, parallel processing will let you achieve supercomputer performance.-David Shear, Contributing Editor

EEPROMs enhance microcontroller-based system performance

The ability to update either the program memory or the data memory in an EEPROM can increase the performance of microcontroller-based systems, ease system-reconfiguration tasks, and improve overall flexibility.-Richard Orlando, Xicor Inc

Real-time programming-Part 3

To design a real-time application, you must prepare a requirements model for your system and then transform it into an implementation model. Part 3 of this series explains how to create verbal and graphical requirements models that formulate system behavior as clearly, completely, and correctly as possible.-David L Ripps, Industrial Programming Inc

Continued on page 7

[^0]

STAKPAC $^{\text {ma }}$	MINI STAKPAC $^{\text {m/ }}$	
1200 Watts	Power	600 Watts
$110 / 220 \mathrm{VAC}$	Input	$110 / 220 \mathrm{VAC}$
Up to 8	Outputs	Up to 5
3.2 " $\times 5.5 " \times 11.5$	Dimensions	1.9 " $\times 5.5 " \times 12^{\prime \prime}$
Fan-Cooled	Cooling	Twin Fans

Each StakPAC output is factory configured utilizing Vicor's robotically manufactured power converters...VI-200 series modules. Consider the advantages of a StakPAC customized for your system needs with automized power modules:
USER DEFINABLE OUTPUTS - The use of proven standard catalog modules offers the features of a custom without the associated risk or investment.
STANDARD MODELS-Many preconfigured standards available.
QUICK DELIVERY-Typical delivery 1 week or less for custom or standard evaluation units. COMPACTNESS-Low profile packages provide up to 6 watts/cubic inch, twice the industry norm.
UL, CSA, TUV SAFETY AGENCY APPROVALAll StakPAC configurations are approved, standard or custom.
EMI-FCC/VDE Level A, conducted.
StakPACs are designed and built by Westcor Corporation, Los Gatos, CA, a Vicor subsidiary. StakPACs are sold world-wide through Vicor Corporation, Andover, MA.

STAKPAC STANDARDS 1200 WATT MODELS

Model	Output Voltage (VDC) and Maximum Current (amperes) per Channel				
	\#1	\#2	\#3	\# 4	\#5
Single Output					
SP1-1801	2 (18240	Total output power may not exceed 1200^{*} watts for any model, single or multiple output. Lower power StakPAC models and many other configurations are available. *Standard models supply 1100 watts; high-powered version 1200 watts. Please contact the factory.			
SP1-1802	5 (1240				
SP1-1603	12@100				
SP1-1604	15@80				
SP1-1605	24 © 50				
SP1-1606	28 @ 42				
SP1-1607	48 © 25				
Dual Output Please contact the factory.					
SP2-1801	2 (120 120	5013 120			
SP2-1802	5 (120 120	5 (1)120			
SP2-1803	5 (120 120	12 @ 66			
SP2-1804	12 © 66	12 @ 66			
SP2-1805	15@53	15 @ 53			
Triple Output					
SP3-1801	5 @ 180	12 @ 16	12 @ 16		
SP3-1802	5 [8150	12@33	12@16		
SP3-1803	5 @ 180	15 © 13	15 © 13		
SP3-1804	5 (1)150	15026	15 © 13		
Quad Output					
SP4-1801	5 @ 150	12 @ 16	12 © 16	5 (4)30	
SP4-1802	5 @ 150	15 @ 13	15@13	5 (1)30	
SP4-1803	5 © 150	12 © 16	12 © 16	2408	
SP4-1804	5 © 150	15 @13	15013	2408	
Five Output					
SP5-1801	5 (4.120	12 @ 16	12 @ 16	5 ©30	24 (13) 8
SP5-1802	5©120	15 (1) 13	15 © 13	5 (430	2408
Seven Output					
SP7-1801	$\begin{gathered} 5 @ 60 \\ \# 6 \end{gathered}$	$\begin{gathered} 12 @ 16 \\ \# 7 \end{gathered}$	12 © 16	24 © 8	24@ 8
	5.2 (2) 28	2@30			

For ordering information call Vicor Express at 1-800-735-6200 or (508) 470-2900 at ext. 265.

For technical information contact Westcor at (408) 395-7050 or FAX (408) 395-1518 or call Vicor.

MINI STAKPAC STANDARDS 600 WATT MODELS

Model	Output Voltage (VDC) and Maximum Current (amperes) per Channel				
	\#1	\#2	\#3	\#4	\#5
Single Output					
ST1-1401	2 (120 120	Total output power may not exceed 600 watts for any model, single or multiple output. Lower power Mini StakPAC models and many other configurations are available. Please contact the factory.			
ST1-1402	5(1)120				
ST1-1301	12 © 50				
ST1-1302	15 (40)				
ST1-1303	24 (4)25				
ST1-1304	28 @ 21				
ST1-1305	48@13				
Dual Output					
ST2-1401	2 @ 60	5 © 60			
ST2-1402	5 @ 60	$5 @ 60$			
ST2-1403	5 (1)60	12 (43			
ST2-1404	12 (133	12 @ 33			
ST2-1405	15 (3) 26	15 (26			
Triple Output					
ST3-1401	5 (4) 60	12 (1) 16	12 @16		
ST3-1402	5060	15 (1) 13	15913		
ST3-1501	5 (1)90	12 @ 8	12 (1)8		
Quad Output					
ST4-1401	5 (3)30	12 (1) 16	12 @16	5 @ 30	
ST4-1402	5 (1)30	15 © 13	15 싸사	5 @ 30	
ST4-1403	5 (4)30	12 @ 16	12 @ 16	24 @ 8	
ST4-1501	5030	15 (1) 13	15 @ 13	24@8	
ST4-1502	5 © 60	12 (1) 16	12 © 8	5 (0) 15	
ST4-1503	5060	15 (a) 13	15 (a) 7	5 (1) 15	
ST4-1504	5 (1) 60	12 (1) 16	12 (1)8	24 (14) 4	
ST4-1505	5 (1)60	15 (1) 13	15 (a) 7	24 (1)4	
Five Output					
ST5-1501	5030	12 (4)16	12 @ 16	5 © 15	24.48
ST5-1502	5 ©30	15 (a) 13	15 @ 13	5@15	24.184

Large-area flat-panel displays have found a home in a variety of computer, medical, and military applications. Manufacturers of the various display types are now vying for control of the market (pg 79).

TECHNOLOGY UPDATES

Test-logic synthesis: Software adds logic 59 to make designs testable

Test-logic synthesis tools may not cause the barrier between design and test to crumble like the Berlin Wall, but at least the software will add some doors and windows to it.-Michael C Markowitz, Associate Editor

Large-area flat-panel displays:
 Diverse technologies vie for dominance

A clear-cut winner has not yet emerged in the race to dominate the market for large-area flat-panel displays. Liquid-crystal types appear to be leading the pack-at least for now.-Dave Pryce, Associate Editor

Optoelectronic devices: Improvements 95 unleash new application areas

The current crop of optoelectronic devices offers better performance and wider operating capabilities than the components that were available even a year ago. As a result, you may now be able to replace your mechanical sensors and transformers with solid-state emitters and detectors.-J D Mosley, Regional Editor

Show preview: Electronica 90
This year's show will stress SMT, ASICs, and power electronics.-Raymond Boult

PRODUCT UPDATES

VMEbus and IBM PC NTDS interface boards 133
Alternating voltage DVM 137
Continued on page 9

[^1]
This is NOT

 THE TIME TO FIND A FAULT IN YOUR DESIGN.

The best time to find problems with a design is in the design cycle. NOT during prototype stage, certainly NOT after delivery to the customer. Simulation lets you predict how a circuit will behave before building expensive prototypes. The OrCAD/VST logic simulator lets you predict it faster, more accurately and for less money.

With time-to-market critical, you need the competitive edge that OrCAD/VST provides. Because it runs on the world's most affordable design platform, OrCAD/VST offers virtually unlimited accessibility. Which means you'll have unparalleled productivity for every engineer in your design team. And, shorter time-to-market.

What's more, with every copy of OrCAD/VST, you'll be getting the extensive technical support of the best-known logic simulator manufacturer. Including free product updates, telephone support and access to our 24 hour BBS.

OrCAD users outnumber the competition by three to one (or approximate ratio). For good reason. We provide high-performance productivity tools and back them with the highest level of technical services and support in the industry.

Call today for your demonstration disk. Then, try OrCAD/VST for 30 days and see if you don't agree. .

Now is the time for simulation and quality, error-free designs.

OrCAD

3175 N.W. Aloclek Drive Hillsboro, OR 97124 USA
(503) 690-9881 • (503) 690-9891 fax

October 11, 1990

DESIGN IDEAS

Hall sensor detects ground faults 235
Calculator performs 2's-complement math 236
Single gate stretches pulses 238
PLD decodes serial protocol 238
HP-15 program needs fewest keystrokes 242
Feedback and amplification 242

EDITORIAL
 49

The combination of a PC and Windows 3.0 makes the smallcomputer market look bright despite today's sluggish electronics market.

NEW PRODUCTS

Integrated Circuits 247
Computers \& Peripherals 255
Test \& Measurement Instruments 261
CAE \& Software Development Tools 269
Components \& Power Supplies 274
DEPARTMENTS
News Breaks 21
Signals \& Noise 37
Readers' Choice 145
Literature 281
Business/Corporate Staff 289
Career Opportunities 290
EDN's International Advertisers Index 297

A Precision Start, Every Time.

Motorola's Low-Skew Clock Drivers for Precision Control and Timing of High Speed RISC and CISC Designs

Record setting performance for high speed processor designs depends on perfect timing, perfect control from start to finish.
If your high speed CISC or RISC processor flies off the blocks at $25 \mathrm{MHz}, 33 \mathrm{MHz}$ or faster, clock signal skew from ordinary clock drivers can result in false starts for devices in close proximity. And, you may also require very exact 50% duty cycle waveforms.

Skew is like lining up starting blocks unevenly-nobody starts at exactly \qquad \vdash skew the same time.

Either way, without precise operation, performance suffers. Worst case? You blow your race to production and the entire design could be disqualified.

A Precision Start

To get all of your board's devices off to a precision start for critical events, Motorola's low-skew clock drivers are setting the target pace.
Offering 200\% to 300% less output skew than ordinary clock drivers, typical delay skews are as low as 0.1 nS in ECL and 0.5 nS for TTL or 0.5 nS for CMOS outputs.
When you design with low-skew clock drivers, you don't need to handicap your high speed circuits with delay chips that compromise power and speed. And you can avoid trial and error tests with other high speed logic devices you had hoped would sooner or later work.
Instead, Motorola's line of low skew clock drivers let you design for optimum speed control from the beginning, with high performance dependability part-topart and tight clock duty cycles.

Programmable Time Delays
For really difficult timing requirements, your design can also incorporate Motorola's Programmable Time Delays. Along with Low Skews, MC10E/100E195 (20 pS steps) or 196 (80 pS steps) ECL input delays provide you with more design options when board layout dictates.

Part \#	Input Levels	Output Skew (nS)	Output/Input Freq. Ratio	Max. Input Freq. (MHz)	Output Levels
F803	TTL.	1	+2	70	TTL
H640	TTL or ECL	0.5	+2 and +4	135	TIL
H641	ECL	0.5	1 x	100	TTL
H642	TTL or ECL	0.5	+2 and +4	135	TIL
H643	ECL	0.5	1 X	100	TTL
E111	ECL	0.1	1 X	1000	ECL
MC88913	TTL	1	+2	110	CMOS
MC88914	TTL	1	+2	110	CMOS
MC88915	TTL	0.5	1X, 2X, and 4X	$70 \mathrm{MHz}^{*}$	cmos

*MC88915 is a PLL Clock Driver, therefore 70 MHz is the maximum output frequency.

CMOS Skews of 0.5-1 nS and Phase-Locked Loop Capability

For multiple synchronous outputs, the MC88913 Clock Driver (skew 1.0 nS) and MC88914 CMOS Clock Driver with Reset (1.0 nS skew) provide high speed, low power hex divide by two capability. The MC88915 LowSkew Phase-Locked Loop Clock Driver locks output frequency and phase into the input reference clock - and can synchronize several boards. It also functions as a frequency multiplier that can double or quadruple the input frequency. Skew is 0.5 nS .

FAST Schottky TTL
 Low-Skew Clock Drivers

For quad D-type flip-flop applications requiring matched propagation delays, the MC74F803 Clock Driver provides 1.0 nS skew.

68030/040 0.5 nS Skew
 ECL/TTL Clock Driver

Motorola's MC10H640 series Clock Drivers generate clock output for 68030/ 040 and are warranted to meet all clock specs required by these microprocessors.

ECL Clock Driver with 9 Differential Outputs

The MC10E111 is a low-skew differential driver designed with clock distribution in mind - nine outputs and .1 nS skew.

Full Microprocessor Support

Motorola's clock drivers support the full 68000 CISC and 88000 RISC MPU lines. They also can drive Intel CISC and RISC MPUs, AMD, SPARC, MIPS, and Clipper MPUs.
Start your drive for the finish
If you want the best in clock drivers for fast processor designs, begin your drive for the finish with a perfect start. Specify Motorola Clock Drivers to win at any pace.
To get off the blocks fast, call toll free for more information: 1-800-521-6274. Or, fill out and return the coupon below.

Even though we've been around the electronics industry for seventy-five years, we still have the same perspective.

Innovation. Ever since we made our first impression on the industry seventy-five years ago, the companies of ITT EMC Worldwide have been designing for the future. That's why you'll continue to find our products in everything from telecommunications to some of today's most advanced satellite technology.

You'll find dedication to innovation in all of the ITT EMC Worldwide companies. ITT Cannon, Schadow, Jeanrenaud, Pomona Electronics, MTI and Sealectro. It is what has made us
industry leaders in a variety of markets, all around the world.

So, when you do business with ITT EMC Worldwide, you have access to all of our diverse industry knowledge and expertise. You also have the assurance that our top engineers are working together with you, from start to finish.

Our philosophy is simple. If we stay ahead, you stay ahead. That's why we're constantly advancing technology, rather than letting technology advance us.

If you'd like more information about our capabilities, drop us a line today. You may know us for all the things we've done. But the best is yet to come.

1851 East Deere Avenue, Post Office Box 35000 Santa Ana, CA 92705.5300
Phone: (714) 261.5300 Fax: (714) 757-8324/8301 Telex: (714) 655358

HOW A STRATEGIC PARTNERSHIP WROTE A NEW CHAPTER ON SYSTEM PERFORMANCE:

DECStation 5000 and tsilocic.

Achieving 24.2 MIPS at 25 MHz was no small task. Even for Digital.

So they designed-in LSI Logic's unique read-write buffer and MIPS-based chipset that optimized the processing power of the LR3000 CPU. And consolidated the readwrite buffer functions of 17 chips into a single chip. Putting far more performance into far less real estate. And making the new DECstation 5000 workstation a

reality. In less than 11 months.
LSI's proprietary LR3220 read-write buffer performs memory write operations at the CPU clock rate, practically eliminating the bottleneck between the CPU and main memory. Boosting the processing power of the DECstation 5000 workstation to the limits of the price performance curve. A novel idea that delivers 120 Mbytes of main memory, dazzling high-end graphics and
the new TURBOchannel I/O interconnect to the desktop, for under \$15,000.

If you'd like to write the next chapter in the workstation wars, call us. We'll help you quickly turn your technology into a best seller.

LSI LOGIC

ACROSS THE BOARD

WHAT GOOD IS A BRAIN

World Headquarters: 3081 Zanker Road, San Jose, CA 95134 Telephone: (408) 456-4500 FAX: (408) 456-4501 Sales Offices: U.S. - Boston: (508) 660-1088 - Dallas: (214) 680-2913 • Los Angeles: (714) 455-2777

WITHOUT A MEMORY?

To hear most people in the computer business talk, you'd think the only valuable part of a system is its microprocessor.

Maybe they haven't lost their minds. But they've certainly forgotten about the hard drive. And the critical data it stores. Data which can't be easily replaced like a microprocessor.

So it's no surprise that many OEMs are reducing their risk of system failure with disk drives from Conner. Using proven technologies, our high performance drives consistently set the standards for form factor, reliability, and innovation.

That's because at Conner, we work closely with our customers to identify their needs sooner, and fill them faster. Providing them the quickest time to market; with exactly the right product. Plus, we're expanding our worldwide manufacturing facilities to meet growing customer demand around the globe.

All of which makes choosing Conner disk drives a low risk decision.

So call Conner today. The results should be quite memorable.

$\begin{array}{llllllllllll}T & H & E & T & H & I & R & D & W & A & V & E\end{array}$

Signetics. Because we offer y

uthe most $80 C 51$ derivatives.

YOU'LL FIND THE SAME STRATEGYAT THE CORE OF OUR 16-AND 32-BIT MICROCONTROLLERS.

To design the perfect features into your application, choose the industry's most complete and feature-rich family of 8-bit 80 C 51 and 84 CXX microcontrollers.

Available in OTP and EPROM versions, you're assured of faster time to market and cost-efficient low-volume runs. And for designs demanding individual program code, our OTP devices offer you the ultimate flexibility.

You'll always have complete development support, too. Because you can choose from a growing list of emulators, programmers and software tools from Philips and third-party vendors including Ashling, Ceibo, Data I/O, Logical Systems, MetaLink,
Needham's, Nohau, Tasking and many more.
Today our microcontrollers are the driving force behind thousands of products. For applications ranging from consumer and automotive to

At the center of our family is a unique cell methodology. Through it you can select devices with a broad range of features. Like versions with an $\mathrm{I}^{2} \mathrm{C}$ or CAN serial bus. Plus models with low voltage/low power, A/D, EEPROM, small packaging, PWM and more. Plus, each device is available as a standard derivative and as a core for customized ASIC designs.

A Sampling Of Our More Than 40 Leading 80C51 Derivatives

Product	OTP	$1^{2} \mathrm{C}$	ROM	RAM	NO SIMILAR PRODUCT OFFERS:
8XC751	\checkmark	\checkmark	2 K	64	24-pin skinny DIP
8XCL410		\checkmark	4K	128	Operation at down to 1.5 volts
8XC851			4K	128	256 bytes EEPROM
8XC552	\checkmark	\checkmark	8K	256	10-bit A/D converter
8XC528	\checkmark	\checkmark	32K	512	512 bytes RAM

You'll also find that we offer a wide variety of embedded memory, ranging from 2 K to 32 K bytes of program memory (ROM, EPROM or OTP). And up to 512 bytes of embedded data memory (RAM). With speeds of up to 30 MHz .
Plus we're applying the same strategy to 16 -bit 68000 -based and 32 -bit SPARC ${ }^{\circledR}$-based microcontrollers. So as needs change, you'll have the building blocks to tailor designs.
communications, aerospace and defense, and computer peripheral products.
For more information, contact your local Philips Components-Signetics sales office. Or call today for your Microcontroller Derivative Brochure and Data Book: (800) 227-1817, ext. 716D.
SPARC is a registered trademark of SPARC International, Inc., based on technology developed by Sun Microsystems, Inc.

SIEMENS

Our New LED Agreement Goes Beyond The Surface.

When it comes to surface-mount (SMT) LED indicators, Hewlett-Packard and Siemens are making a world of difference. Through our extensive co-development efforts, we can offer you standard, multi-sourced SMT LEDs.

By combining our expertise in the optoelectronics field, we've done more than respond to your need for a global standard. Our SMT LEDs are designed to give you performance comparable to through-hole LEDs.
To brighten your design outlook even further, our LED indicators will provide SMT manufacturing process compatibility for ease of placement and soldering. Plus, we'll offer a full range of LED colors, and light intensity that outshines all others.

Best of all, these lamps are from HP and Siemens. So you're assured of our commitment to excellence in service, support and reliability.
For more information, call (408) 725-3524. Or write:

Siemens Components, Inc.
Optoelectronics Division
19000 Homestead Road
Cupertino, CA 95014-0799

Siemens

Practical Solutions by Design.

AUDIO INTERFACE FNCODES, COMPRESSFS DATA IN RFAL TIME

Vigra's (San Diego, CA, (619) 483-1197) MMI-210 VMEbus compact-disk-quality digi-tal-audio board is suitable for applications in professional studios, realistic flight simulators, and sonar signal processors. Firmware on the $\$ 3925$ dual-channel board offers a choice of 4 -bit ADPCM (adaptive differential PCM), 16 -bit linear PCM, 8 -bit μ-law, and 8 -bit A-law data encoding and compression. A 1 M -byte 3-ported memory array stores recorded data for subsequent playback. The board's audio data capacity varies based on the sampling rate and encoding scheme employed. For example, the board requires 960 k bytes of memory to store 10 seconds of sound using 16 -bit PCM encoding sampled at 48 kHz . Meanwhile, a 10 -second recording sampled at 8 kHz using 4 -bit ADPCM requires only 40 k bytes of memory.-Maury Wright

LOW-COST INDUSTRIAL PC LINE OFFTERS MANY I/O FUNCTIONS

The Micro-PC line of board-level computer components from Octagon Systems Corp (Westminster, CO, (303) 430-1500, FAX (303) 426-8126) delivers IBM PC compatibility for industrial systems in a small, low-cost package. PC compatibility allows you to develop and test your application on a PC and then transfer your code directly to the target system without change. The Model 5000 PC control card incorporates an NEC V20 μ P running at 10 MHz ; sockets for a 256 k - or 1M-byte, single-in-line memory module and a lM-bit flash EPROM or static RAM; a BIOS ROM; a watchdog timer; and the 8 -bit PC-bus interface. The Model 5010 PC control card adds two serial ports and a parallel I/O printer port. Without memory chips, the Models 5000 and 5010 cost $\$ 195$ and $\$ 345$, respectively.

The company also offers many accessory I/O cards to support these two controllers. Its $\$ 295$ Model 5400 EGA (enhanced graphics adapter) card provides standard PC video graphics. A $\$ 195$ Model 5800 floppy/hard-disk card adds support for $51 / 4$ - and $3^{1} / 2$-in. floppy-disk drives and hard-disk drives with IDE (integrated drive electronics) interfaces. For industrial applications you can add the \$195 Model 5300 counter/ timer I/O card and the $\$ 195$ Model 5600 digital I/O card with 96 I/O lines. The family also includes the $\$ 395$ Model 5328 motion-control card with a self-contained PID (proportional, integral, derivative) analog control system; the $\$ 345$ Model 5329 mo-tion-control card provides PID control for motor controllers that require pulse-width modulated signals.-Steven H Leibson

VMEBUS CPU STORAGE MODULFS FORM A COMPLETE 80486 SYSTMM

Two VMEbus modules, collectively measuring $6 \times 9 \times 3.2 \mathrm{in}$. (two VMEbus slots), make up a complete IBM PC-compatible 80486-based computer system offering 20MIPS performance. Radisys Corp (Beaverton, OR, (503) 690-1229) offers the EPC-5 (embedded PC) that targets applications as a front-end computer and operator interface for embedded-computer applications. The EPC-5 CPU module includes a choice of a $25-$ or $33-\mathrm{MHz} 80486 \mu \mathrm{P}$. The module also features as much as 16 M bytes of dynamic RAM, two RS-232C ports, a parallel port, a VGA graphics controller, a bat-tery-backed clock, and a speaker. The mass-storage module furnishes a $3^{1 / 2-i n}$. floppydisk drive that can be accessed via the VMEbus front panel, and a slot for a $3^{1 / 2}$-in. hard disk drive. The company expects to ship the EPC-5 in November at a base price of $\$ 7495$; the mass-storage modules start at $\$ 990$.-Maury Wright

NEWS BREAKS

CASE TOOL INTFGRATES DFSIGN, TESTING, AND DOCUMENTATION

The C Development Environment from Interactive Development Environments (San Francisco, CA, (415) 543-0900) integrates three widely used tools: IDE's Software Through Pictures (for structured analysis, design, and code-frame generation); SaberC (for detailed coding, testing, and maintenance); and Framemaker or Interleaf TPS Coreplus (for technical publishing). The three tools share a common object-oriented database and a common window-based user interface. Saber-C provides extensive testing and debugging facilities and an incremental linker that minimizes edit-toexecute times.

You can transfer diagrams, listings, or text that you've created on one tool to one or both of the others via the user-interface windows that link the tools. Currently you have to issue separate compile/link and document-regeneration commands to pick up design or implementation changes, but IDE and the other tool vendors are exploring ways to further automate the propagation of changes from one tool to the others. Prices depend on the host configuration and start at $\$ 5000$ for Software Through Pictures, $\$ 2495$ for Saber-C, $\$ 2500$ for Framemaker, and $\$ 2500$ for Interleaf TPS Coreplus.-Chris Terry

CHIP SET IMPLEMENTS CCITT H. 261 IMAGF COMPRESSION

Computer handling of digitized images requires enormous amounts of bandwidth and memory. The sequence of images that makes up video adds to the computer's burden. A chip set from LSI Logic (Milpitas, CA, (408) 433-8000) helps reduce the burden to a more manageable size by compressing the image data. You compress a video image by reducing the amount of information it contains in two ways. First, you perform a frequency transform on a single image and quantize the spectrum, varying the quantization step-size to be coarser at the less important high frequencies. You then use variable-length coding to reduce the number of bits in the data. You handle subsequent images either the same way or by encoding only their variation from the previous image.

The set includes a discrete cosine transform processor (L64730), a quantization processor (L64740), a variable-length coder/decoder (L64750/51), a motion-estimation processor (L64720), and an interframe processor (L64760). The coder/decoder works in accordance with CCITT H. 261 for video telephony. The chip set, including a BCH codec (L64715) for data transmission, handles data rates to 30 MHz and costs less than $\$ 700$. The chips will be available in sample quantities in December and will be in production in the first quarter of 1991.-Richard A Quinnell

80386-BASED SOFTWARE SIMPLIFIES DATA ACQUISITION

Viewdac software for data acquisition, control, analysis, and display from Keithley Asyst (Rochester, NY, (800) 348-0033) takes full advantage of the capabilities of 80386- and 80486-based PCs. The package needs a well-equipped PC, though-one that has at least 4M bytes of RAM, an 80387 coprocessor, and 1OM bytes of free space on its hard disk, and a display that conforms to IBM's EGA or VGA standards. The package will be priced at $\$ 2495$, but you can get it at the introductory price of $\$ 1995$ until December 31. The graphical user interface supports multiple windows and displays virtual instrument panels, but it makes intelligent use of text. You create applications by selecting functions that appear on menus, so you don't need to know a long list of commands. Bucking an overworked trend, the function descriptions appear in words, and not as a group of unfathomable icons. The software supports

No matter where you're going, or how fast, we have the right PLD.

High Density Family: If you need density up to the level of small gate arrays, coupled with high performance and quick development times,
 our MAX" family fills the bill. You get parts that can replace up to 50 TTL parts, or up to 15 PLDs, with performance to 50 MHz . Very flexible, very well supported.

Functionally Specialized Family: We've created new qu \quad arcs 1 architectures tailored to key functions, to give you maximum performance. For example, for state machine functions, our CY7C361 employs an innovative 'split-plane' architecture to cut feedback loop delay and enable 125 MHz performance.

\& $\quad 200410$Standard Enhanced Family: If you like the 'classics' but want state-of-the-art performance, you'll find plenty of solutions in our Standard Enhanced Family. Consider our CMOS 18G8 Universal PAL at 12 ns. Or our CMOS 22V10 at 15 ns. Or our 20RA10 at 20 ns . Our ECL 16P4 (10E302) at 3 ns . To name a very fast few.

[^2]
more memory than you are ever likely to put in a PC, and the PC's hard disk can act as virtual memory. Hence, the package can create and manipulate very large data sets. Currently supported are analog and digital I/O cards from several firms. Coming in March is support for IEEE-488- and RS-232C-interfaced instruments.
-Dan Strassberg

DSP $\boldsymbol{\mu}$ P BUILDS MULTIPROCESSOR SYSTEMS

Many DSP tasks such as signal filtering, fast Fourier transforms, and image processing are well suited to parallel processing because they parcel easily into smaller subtasks. The TMS320C40 floating-point DSP μ P, to be sampled by Texas Instruments Inc (Dallas, TX, (214) 995-6611 x700) during the second quarter of 1991, incorporates six 8-bit parallel I/O ports that support direct processor-to-processor communications and allow you to employ a variety of multiprocessor system architectures. Six onchip DMA machines service these parallel I/O ports and permit fast, nonintrusive communications among your system's μ Ps while the processor's CPU executes algorithms. The microprocessor's CPU can perform several operations per machine cycle: a floating-point multiplication, a floating-point addition, two data accesses, two register updates, and a zero-overhead branch. With the chip's expected cycle time of 40 nsec , the parallel-execution capability translates into a peak performance of 200M operations/sec and 50M floating-point operations/sec.

The device is compatible with its predecessor's (the TMS320C30) assembly language and adds support for division and square-root operations. The $\mu \mathrm{P}$ also provides conversion capabilities between its internal floating-point format and the standard IEEE floating-point format. When it becomes available next year, samples of the device will cost approximately $\$ 500$. When it reaches volume production in 1992 , the company plans to sell it for less than $\$ 100$ in OEM quantities.-Steven H Leibson

ERASABLE PLDS INCREASE DFHNSITY AND I/O PIN COUNT

The Max family of erasable PLDs from Altera Corp (San Jose, CA, (408) 984-2800) now has two larger-capacity members. The $\$ 150$ (100) EPM5192 offers 192 macrocells, a total gate-equivalent capacity of 7500 gates, in an 84 -pin package. The $\$ 107$ (100) EPM5130 offers 128 macrocells in a 100-pin windowed ceramic quad flatpack. Altera created the parts in response to customer demand for more I/O capability, because designers typically run out of I/O pins before running out of logic in PLD designs. -Richard A Quinnell

INTELLIGENT SCSI IC MOVES 1OM BYTES/SEC

The $\$ 63$ (1000) 53C710 SCSI I/O processor, a second-generation intelligent controller from NCR Corp (Dayton, OH, (800) 334-5454), can move 10M bytes/sec over the SCSI bus in synchronous mode and as many as 90 M bytes/sec over its 32 -bit host-bus interface when operated in a "cache-line burst mode." A slower bus-transfer mode operates at 40M bytes/sec. The device supports both "big-" and "little-endian" computer architectures. If a host CPU discovers that the SCSI controller is consuming too much bus bandwidth, it can kick the device off the bus by asserting the IC's "back-off" pin. The IC incorporates DMA controllers that move data between the SCSI bus and the host bus. These controllers also read control programs from memory on the host bus. The device uses a superset of the Scripts programming language developed for its predecessor, the 53C700. The company has also developed a Scripts compiler, written in C, for developing the controller's application code.
-Steven H Leibson

200 Mbytes/sec and Vme Opening New Real-Time Worlds

At last! An extensible computer architecture that can keep pace with your most demanding applications. The powerful new Heurikon V3F and V4F single-board computers, based on the Motorola 68030 and 68040, feature Corebus, a high performance, scalable board level architecture. With up to a 200 Mbyte sec. path to the processor and memory, Corebus is ideal for innovative embedded applications demanding data transfers faster than the VME backplane can provide, such as high speed data acquisition, digital signal processing, optical fiber communications, and performance co-processing.

Extensive SMT packaging enables even exotic solutions to remain within a single slot. Because Corebus modules work on the V3F and V4F, as well as other Heurikon Corebus products, an initial investment yields a product line that can respond to the economics and performance expectations of the market.

THE WORLD'S LARGEST SELECTION OF POWER SPLITERS/ COMBINERS

$\mathbf{2 ~ K H z}$ to $\mathbf{8} \mathbf{~ C H z}$ rom $\mathbf{\$ 1 0 4 5}$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-theshelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee.
For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or Mini-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide.

Take Advantage Of Board-Level Partner

© 1990 Motorola, Inc. Motorola Computer Group is a member of Motorola's General Systems Sector. VMEexec is a trademark of Motorola, Inc. All other product or brand names mentioned are trademarks or registered trademarks of their respective holders.

AllThat OurVME shipHasTo Offer.

©nce you've seen what Motorola brings to the table, we think you'll agree it's everything you need. Like the most complete line of VME products, services and engineering support available anywhere. Awardwinning quality. Competitive pricing. All from the company that pioneered VME technology, and whose product line ranges from ICs to boards to full systems. And includes everything in between.

You decide exactly what you need from our more than 100 VME products at every level of price and performance. From CPU boards, like our new'040-based MVME165, to memory boards, to communications boards. And the industry's widest assortment of development tools, software resources, and technical support.

A partnership with Motorola not only helps you control costs,
but even more impor-
 tantly, speeds your time to market. Our products include more functionality with a higher level of integration to accelerate your development efforts. And because of Six Sigma quality control you can be assured that our products will work right out of the box. It all adds up to the fact that getting you to market sooner is a promise only a company with the resources of Motorola can make good on.

Every Motorola product includes a built-in migration path, so your future product cycles are
assured. Such as providing a way to upgrade from the 68020 to the 68030 to the 68040 , or from a 68000 CISC board to an 88000 RISC board with a simple re-compile. Wherever
 you're headed,
Motorola is going to be there. And we'll support you during the entire development process. Every board in our product line includes a full suite of board diagnostics available in both a run-time and a source package. This degree of flexibility also extends to our nationwide customer service programs, which run the gamut from total on-
site maintenance to self-maintenance support packages.

For more information, call us today at 1-800-624-8999, ext. 230.

Once you discover the advantages of a partnership with Motorola, you'll see that it's no ordinary board-level decision. It could ensure the future of your company.

At Motorola, Openness Is Standard Procedure

These days, openness has become something of a buzz word, and everybody seems to have a different idea on what is and isn't "open." To us, it's no big mystery. Openness means open architectures, open software, open networking. And open standards like UNIX, as indicated by our role in founding 88open. It means we're open to helping solve problems with your point of view in mind, not just ours. And it's
been that way ever since we helped introduce VME back in 1982.

That's why Motorola is committed to supporting official and de facto industry standards, interoperable computing between multiple vendors, and non-proprie tary open system architectures. It's why we created VMEexec:" ${ }^{\text {m }}$ to facilitate the
interoperability of different real-time software modules within a common UNIX environment. And it's why we support virtually every networking protocol, including XNS, TCP/IP, DECnet,"' MAP/TOP/OSI, SNA, BSC, X. 400 , and X. 25.

This philosophy of openness is the same reason we offer as many VME boards, products and services as we do. It's to our mutual benefit, and after all, isn't that what partnerships are for?

Fujitsu's new low-cost SCSI protocol controller is optimized for PC applications.

Up to now, if you needed a high-performance SCSI protocol controller (SPC) IC for your PC application, you were faced with two options. Neither of which met your needs.

You could use older products that can't keep up with your PC. Or you could use highpriced SPCs that were also high in pin count and cost.

Now, thanks to Fujitsu's MB89352, there's no need to compromise. Because its a low-cost, high-performance SPC that meets the stringent cost and size requirements of PC applications.

Which makes your life a lot easier. Because instead of having to choose between slower products and higher prices, the only choice you have to make is Fujitsu.

And in contrast to other devices with pin counts of 68 to 150 , the MB89352 provides you with a modest pin count of 48 . All of which meets your need for smaller, lighter, more compact systems.

FUJITSU

FUJITSU MICROELECTRONICS, INC.
Integrated Circuits Division
3545 North First Street, San Jose, CA 95134-1804. 1-800/642-7616.
But with a 2.7 Mbyte/sec. transfer rate, it packs all the power and speed your PC application needs. Today and tomorrow.

All in a 48-pin quad plastic surfacemount package no larger than a dime. Or a conventional 48-pin DIP.

But having the right SPC for your PC is only half of what you need to win the race to market. You also need the right development tools.

Which is why Fujitsu provides a complete SCSI host adapter with all the hardware and software you need to convert any $\mathrm{IBM}^{\circledR} \mathrm{PC} / \mathrm{XT}^{\mathrm{TM}}{ }^{\text {In }} \mathrm{AT}^{\circledR}$ or compatible into an MB89352 evaluation system.

Including a real working software driver complete with source code listings. Giving you the edge to win the race to market.

To find out more about Fujitsu's new PC-based SCSI protocol controller, call 1-800-642-7616. We'll show you how to power your PC with a SCSI IC.

HOW TOTURN 040 WITHOUT LOSING A STEP.

FORCE '030

Turning 040 doesn't mean you have to give up the code you lived by when you were 030 . Although that's what some manufacturers expect you to do.

But not FORCE. We guarantee that applications written for our 68030 VME boards will run on our 68040 boards. That's because we've built compatibility into our 030 and 040 address maps and onboard device drivers.

In fact, no one makes it easier to move your software from 030 to 040. The competition can't even come close. Just ask them.

Then ask us. We'll keep you from spending months writing new software drivers. So you can spend your time improving performance and functionality. Or getting to market months ahead of the competition.

What's more, you can start today on your 040 applications. Just develop them on a FORCE 030 board. When you're ready, we'll upgrade you to the highest

Of course, we have all the tools you need to get started. Choose from the broadest range of real-time operating systems and kernels, including PDOS, OS-9, VxWorks, VRTX32 and pSOS + . We even give you VMEPROM, free of charge.

You can also take advantage of XRAY and the entire Microtec family of software tools. Including cross, native and embedded development environments.

Our performance advantage even extends to UNIX. With the industry's top-rated Unisoft UNIX 5.4.

Finally, you get the industry's best-rated documentation, integration support, regional technical staff and a full one-year warranty. Here's your next step: call 1-800-BEST-VME ext. 40 for details on our 030 to 040 upgrade offer. Or fax a request to (408) 374-1146 for an immediate response.

Because turning 040 doesn't have to slow you down. performance 040 board you can buy.

So you can speed up your software without missing a step.

VME at its best.

68040 VME 33 MHz O-Wait-State

Your Vision of High Performance at an Affordable Price is Now Rea!!

With the
OB68K/VME40* you no longer have to compromise on performance or price in your VME embedded control application. We start by giving you a very basic board which includes:

- $25-33 \mathrm{MHz} 68040$.
- (8) 28-pin RAM sockets for up to 256 KB of dual access 0 -wait-state static RAM
(32 KB standard).
- (8) 32 -pin sockets for up to 8 MB of ROM.
- (2) asynch RS232C serial ports.
- (16) lines of parallel I/O.

You can configure it with just the right amount of RAM and ROM you need. And you do not have to sacrifice features. Our Omnimodule ${ }^{\text {Tex }}$ modular I/O connector allows you to implement a wide variety of serial, parallel, SCSI, GPIB, analog, digital and other I/O options - all fitting into one slot. Other features include:

- VTC's VIC068 VME interface chip with arbiter, inter-
rupter, mailbox and more.
- Terminal monitor/ debugger/diagnostic firmware program included.
- 2 year limited warranty.
- Worldwide availability.

All of this gives you a high performance board at a price you can afford with the features you need.

To learn more about our OB68K/VME40 contact our Marketing Manager, Pete Czuchra at 1-800-6385022 or (708) 231-6880 in Illinois.

Our VME and Multibus Product Lines Stretch for Over 124 Miles

That's 854,738 uniquely configured boards to choose from and all from Omnibyte. You can choose from different processor types, RAM sizes, I/O options and other features to put together a board that gives you the features you need. With Omnibyte's quality, selection and 2 year limited warranty, you can count on finding exactly what your looking for.
Here are just a few of the boards we offer:

OB68K/VME20"' VME SINGLE BOARD COMPUTER

- 68020 16.66-33 MHz CPU - (8) 28 -pin RAM sockets for up to 265 KB of dual-access zero-wait-statestatic RAM
- (8) 32 -pin sockets for up to 8 MB of

ROM, (4) sockets may be EEPROM

- (2) RS'232C asynch serial ports
- (16) lines of parallel I/O
- (1) (OMNIMODULE socket for a wide
variety of $1 / \mathrm{O}$ (i.e. 2 serial ports, 20 parallee lines)
- VIC068 VME Interface Controller

OB68K/VSBCI ${ }^{\text {m }}$
 VME SINGLE BOARD COMPUTER

- $6800012.5 \mathrm{MHz} 16 / 32$ bit CPU - 512 KB of dual-access, zero-wait-state DRAM with parity
- (4) 28 -pin ROM sockets
- (3) 16 -bit counterltimers
- (2) Omnimodule ${ }^{\text {wix }} / \mathrm{O}$ sockets for a wide variety of IIO (i.e. 4 serial ports, 40 parallel lines)
- DMA controller (optional)
- VME bus interrupt generator (optional)
- Optional 4 level bus arbiter
- Two year limited warranty

OB68K/VIO ${ }^{\text {w }}$ VME UNIVERSAL I/O BOARD

- (4) Omnimodule I/O sockets for a wide variety of I/O (i.e. 8 serial ports, 80 parallee lines)
- One (1) interrupt per Omnimodule, two (2) optional

OB68K/VSBC20™ VME SINGLE BOARD COMPUTER

- 68020 16-33MHz, CPU
- 1-4 MB of dual-access, zero-wait-state DRAM with parity
- 68882 (optional)
- (2) 32-pin ROM sockets
- (2) RS232C serial ports
- (2) 8 -bit parallel ports
- (1) OMNIMODULE socket for a wide variety of I/O (i.e. 2 serial ports, 20 parallel lines)
- 4 level bus arbiter (optional)

OB68K/VME1 ${ }^{\text {™ }}$ VME SINGLE BOARD COMPUTER

- 12.5 MHz 68000 CPU
- (8) pairs of 28 -pin sockets for RAM or ROM
- (2) RS-232C serial ports
- (2) 8 -bit parallel I/O ports
- System Controller

OB68K/MSBC30™ MULTIBUS I SINGLE BOARD COMPUTER

- 25-33 MHz 68030 CPU
- 4-32 MB dual access, zero-wait-state

DRAM w/parity

- 68882 Math Co-Processor (optional)
- 2 channel DMA controller (optional)
- (2) RS232c synclasync serial ports
- (2) 8 -bit parallel ports
- (1) OMNIMODULE ${ }^{\text {m }}$ socket
- (4) 32-pin ROM sockets

All our different configurations are built to give you the best in quality. And they are backed by our famous 2 year limited warranty. For more information call Pete Czuchra today. He'll help you pick the card you need.

Don't attack free TV and opportunity for HDTV

What a terrible slap in the face! Jon Titus's editorial, "Nix broadcast HDTV" (EDN, April 12, 1990, pg 55) was so shortsighted I almost didn't believe what I was reading.
Does Jon realize what he is promoting? At the very least, the total destruction of the free broadcast system we hold so dear to our hearts in this country. Jon is basically promoting pay TV for everyone by forcing them into transmission media, such as fiber optics or dependence on the Bell System, which certainly would not be free. More and more viewers have become disenfranchised with the advent of cable because of the higher monthly costs these outfits are now charging. Does Jon think it would be any different with fiber-optic TV cable systems?
Jon is actually promoting the auctioning of the spectrum now occupied by TV broadcasters to the highest bidder. We the people have the rights to the spectrum, not the highest bidder. What other rights of ours does Jon propose bidding out? Statements like these are downright scary.

I doubt that Jon attended the recent National Association of Broadcasters convention in Atlanta. If he had, he would have seen the tremendous amount of new transmission technology that's being worked on for HDTV broadcasts. They may yet, with digital transmission and compression techniques, get an HDTV signal within a $6-\mathrm{MHz}$ bandwidth. Time will tell. But even so, Jon states that "there will be little to watch but high-resolution versions of today's vacuous programs." What makes Jon think that programs transmitted into homes via optic fiber or the Bell System will be any less "vacuous"? Let the marketplace decide on programming, but don't take away free TV from the masses.

Why not attack the real reason for this type of programming? The cost-cutting, near-sighted Masters of Business Administration that run the networks and TV stations today are at the root of the programming problems. Don't attack the free TV system itself, and especially don't eliminate the opportunity for free

HDTV broadcasts either. My God, that's un-American!
John Trautschold Palatine, $I L$
(Ed Note: John Trautschold missed the editorial's point. There is nothing free about the commercial broadcast spectrum. We support

Tell us what you think about . . . the metric system

For years, EDN readers have registered their opinions on innumerable topics in letters that we've published in our Signals \& Noise column. Now, we're taking that process one step further with an occasional series of reader surveys. Your response to these surveys will help us do a better job of serving you. Please take a minute or so to check off or jot down your answers.

You can respond to this survey right on this page or on a copy. Send us your response, and any other opinions or questions, by fax-(617) 558-4470-or by mail-EDN Surveys, 275 Washington St, Newton, MA 02158.

I work in:

- the US
\square another country (please name)

My work with measurement units is:
\square all metric
\square mostly metric
\square about half metric, half English
\square mostly English
\square all English
I have to convert product information from English units to metric units: \square daily

- at least once a week
\square at least once a month
\square at least once a year
\square never
I have to convert product information from metric units to English units: \square daily
- at least once a week
\square at least once a month
\square at least once a year
\square never
The lack of English units in a product spec keeps me from buying a product:
\square frequently
\square occasionally
- seldom
\square never
The lack of metric units in a product spec keeps me from buying a product:
\square frequently
\square occasionally
\square seldom
\square never

I think US electronics companies should switch to the metric system: \square immediately

- within 2 years
\square in 2 to 5 years
- more than 5 years from now \square never
About _ \% of my company's business is in the US.
About _ \% of my company's business is outside the US.

If you would welcome a follow-up phone call by an EDN editor, please give your name and phone number. This information will not be shared with anyone else.

Name

Day phone

For non-US readers

The US-based companies I deal withincluding those with local subsidiaries and sales offices-provide products based on:

- the "soft" metric system (mostly metric dimensions)
\square the "hard" metric system (even for screw threads and connectors)
\square both metric and English systems
- the English system only

The US-based companies I deal withincluding those with local subsidiaries and sales offices-use metric units:

- for all their products
\square for most of their products
\square for some of their products
\square for a few of their products
\square for none of their products
stations by buying the products that they advertise, or by making donations. Anyone who thinks that TV and radio channels are free and belong to the people should attempt to get a license to broadcast on one. Today we auction off channels, but we don't put a monetary value on them. Try to compete and get the FCC to give you the license to WCBS's frequencies in New York City.
Yes, fiber-optic communications will be different-there will be more channels and thus more competition. And many of the transmissions will be "free." But no, it's not the Masters of Business Administration who control the drivel on broadcast TV. You do have a say in what you watch. To vote against today's programming, turn off your TV set.)

Omission

Due to an oversight, Orbit Semiconductor was omitted from the Special Report, "Fast-turnaround ASICs" (EDN, September 3, 1990, pg 124). Orbit produces mixed-signal CMOS arrays, standard cells, and fullcustom designs on scheduled multiproject wafer runs. The company can put prototypes in your hands within 20 to 25 working days from sign-off, depending upon the fabrication schedule. Nonrecurring engineering charges for the initial prototype runs start at $\$ 1500$ and provide a dozen tested parts in packages. For more information about Orbit's fast turnaround devices, contact Orbit Semiconductor Inc, Orbit Technical Marketing, 1230 Bordeaux Dr, Sunnyvale, CA 94089. Phone (800) 331-4617; in CA, (408) 744-1800.

Company not mentioned

In Brian Kerridge's article on Ana\log Spice simulation models (EDN, September 3, 1990, pg 79), ERA Technology Ltd was inadvertently omitted. This company is active in
the fields of analog-device modeling and parameter extraction, working from hardware or data sheets, according to clients' specifications. Prices for modeling discrete devices range from $£ 180$ to $£ 500$, depending on device type.
The company offers three analogsimulation model libraries: discrete devices, communications ICs, and power-electronics ICs. The company's expertise covers simulation of switch-mode power supplies and high-power circuits. For example, the company has simulated a 6 -MW power supply operating from an 11kV, 3-phase ac source. Discrete devices, $£ 3000$, communications ICs, £6000, power-electronics ICs, £6000. (Discounts apply when you purchase more than one library.) You can reach ERA Technology Ltd at:
Cleeve Rd, Leatherhead
Surrey KT22 7SA, UK
Phone 0372374151
FAX 0372374496
TLX 264045

Realistic route to avoiding unsolicited calls

In response to Steve Leibson's editorial (EDN, January 4, 1990, pg 43), any solution to the problem of unsolicited junk telephone calls should be cheap, well defined, and enforceable-and most important, should place most of the burden on the originators of junk calls. My solution addresses all these points.
Technology: Establish a nationwide registry of numbers whose holders decline unsolicited calls. Marketers would be required to consult the registry and to avoid calls to listed numbers. They would dial the registry, define the range of telephone numbers, and download all restricted numbers in that range. Local telephone companies would then update the list. The software would be simple, and depending on volume, probably one or two 386-class machines with large hard disks and a bank of modems
could serve the whole continent. By using a 900 number, the registry would force the marketers to pay for the system.
Telephone marketing is normal in business, so you could only allow residential numbers in the registry. We would also need to define who fits the category of telephone mar-keter-for example, someone who makes more than one unsolicited phone call a day.
Enforcement: Plant as few as ten decoy restricted numbers in each of 100 major cities, with caller ID on those numbers. Perhaps someone who knows more about telephony than I do has another suggestion.
Besides being realistic, cheap, and enforceable, this solution places most of the burden on marketers and creates a market for new dialing machines with appropriate memories and logic. Now all we need is the law. A uniform statute adopted by each of the states would be essential.
V Wesley Mansfield III, President TennSoft Inc
Dunlap, TN

IT'S EASY TO HAVE YOUR SAY

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. You can use one of several easy ways to reach us. First, there's always the mail. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCI mail at EDNBOS. Finally, EDN's bulletin-board system is ready for use-and it's free (except for the phone call). You can reach us at (617) 558-4241 and leave a letter in the EDITORS Special Interest Group. You'll need a $2400-\mathrm{bps}$ modem and a communications program that is set for eight data bits, no parity, and one stop bit, or 2400, 8N1 in shorthand.

Introducing Zilogs Smart Access Controller... Z180 intelligence and SCC communications together in one package.

The $\mathrm{Z}_{20181}{ }^{\mathrm{TM}} \mathrm{SAC}^{\text {™ }}$ Controller is the Smart Access
Don't throw away your old software.
The Z80 family continues to be the most popular group of intelligent peripheral controllers on the market. With good performance of the controllers our Superintegration technow product in the family, like the SAC, is base themselves. And since eacb neu'll be able to migrate your existing softuar on the same L80. We don't bave to tell you bow impor intelligent peripheral easily and effectively. fast-growing family of $Z 80$-banding any time soon.
Here's a list of the fas

Controllerm that combines two powerful standards. You get Zilog's industry standard $\mathrm{SCC}^{\mathrm{m}}$ controller for datacom connectivity together with the popular Z180 CMOS controller. And all that utility comes with the user-friendly Z80* code CPU compatible software.
High integration. High performance. Smart communicator.
The Superintegration ${ }^{m}$ SAC Controller packs the popular high performance Z180 architecture into a new cell suitable for many datacom and peripheral control applications. You get the SCC single-channel communication cell with two additional UARTS, a 4×8-bit counter timer (CTC) and onboard 16 -bit $\mathrm{I} / 0$. The SAC Controller runs at 10 MHz and drives fast serial communications at $2.5 \mathrm{Mbits} / \mathrm{sec}$. With the reduced 3 cycles per instruction, the SAC Controller gives you Z80 code performance 25% faster. That makes the SAC Controller the highest performance, low power embedded controller around.
The best cost/performance of any embedded controller out there.
Whatever your application - data communications, modems, FAXs, printers, terminals, industrial controls - the SAC Controller combination gives you the best cost/performance ratio. Everything you need for your system is on the chip. The SAC Controller brings you all the advantages of Zilog's Superintegration technology. Off-theshelf and backed by our solid reputation for quality and reliability.

To find out more about the SAC Controller, or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away.

The IBM RISC System/ Designing on any other workstation

Whatever you're creating, you'll sail into a whole new age with any of the four POWERstations in the RISC System/6000 family. Because POWER (Performance Optimization With Enhanced RISC) processing can give you performance you've probably only dreamed about:

up to four instructions per machine cycle, 42 MIPS and 13 MFLOPS. Suddenly, complex designs don't take eons anymore.

The four RISC System/6000 POWERstations feature a range of graphics processors from grayscale to Supergraphics to satisfy any graphics demand. Great news for Power Seekers working on animation, scientific visualization, medical imaging and engineering solutions like CADAM, ${ }^{m}$ CAEDS ${ }^{m}$ and CATIA. ${ }^{m}$ And for electrical design automation, there's IBM's all new CBDS ${ }^{\text {™ }}$ and an arsenal of over 60 EDA appli-

6000 family. will seem downright primitive.

cations from more than a dozen vendors.
With every POWERstation, you can get an almost unimaginable palette of 16 million colors, which gives you 3 D images so realistic, they fairly leap off the screen, with super sharp resolution of $1,280 \mathrm{xl}, 024$ pixels. And when it's time to call in the heavy artillery, the POWERstation 730 draws nearly one million 3D vectors per second. Like all POWERstations, it can come complete with its own graphics processor, freeing the POWER processor to rapidly create and analyze your designs. All at prices that won't sink anybody's budget.

So if you're tired of paddling upstream with yesterday's performance, call your IBM marketing representative or Business Partner to find out more about the RISC System/6000 family. For literature, call 1800 IBM-6676, ext. 991

Civilization never looked so good.

In fact, the 80C186EB provides the lowest power consumption of any 16-bit integrated microprocessor. Intel achieved this feat in three ways. First, the 80C186EB is designed to run on as little as 3 volts. Next, its power management capabilities allow the processor and peripherals to be placed in various degrees
of power-down. And finally, its fully static design can vary operating frequency from 0 to 16 MHz to efficiently meet specific power consumption and speed requirements.

Simply put, the 80C186EB uses only the current needed-and not a microamp more.

All this translates into longer operating time under battery power for portable

The 80C186 consumes it like there's no power tomorrow.

applications. So some applications that could never be portable before, can be portable now.

And the 80C186 Family doesn't stop with the 80 C 186 EB . Its new modular design allows for quick product proliferations to suit your application-specific needs.

So call Intel at (800) 548-4725. Ask for Literature Packet \#LA59, and we'll send you the

80C186 "Solutions for Success" materials with information on the entire 80C186 Family and development tools. Do it today. Your applications will consume less power tomorrow.

ULTRA•REI'

the world's largest selection 500 Hz to 5 GHz from $\$ 2^{49}$

Over 200 off-the-shelf models, from low-cost rugged industrial to Hi-Rel military/space approved types, with LO power level requirements from -4 dBm to +27 dBm . We offer this wide variety of models, up to 5 GHz , to allow you to select exactly what you need...
pin, surface-mount, TO-8, flatpack, and connector package types, the specific frequency range your design involves, the optimum LO drive level, and a host of special types.
And, exclusively from Mini-Circuits, ULTRA-REL ${ }^{\text {TM }}$ mixers with a five-year guarantee and specification limits held to 4.5 sigma for unprecedented unit-to-unit repeatability.

Choose mixers with low LO drive, low noise, load

finding new ways ... setting higher standards

Mini-Circuits

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156 WE ACCEPT AMERICAN EXPRESS insensitive, quadrature mixer/ modulators, plus a large number of MIL-mixer types tested to MIL-M-28837/A, and TX screened.

For the most comprehensive computer characterization of mixers (isolation, conversion loss, intermod, and VSWR vs frequency), call or write your closest Mini-Circuits' rep or distributor or our office for a free copy of our RF-IF Signal Processing Handbook, Vol. 1/2.

Heres one reason thatover half of all SCSI devices sold are NCR.

We created the market... and we still lead the way.

Here's another.

The NCR 53C700 SCSI I/O Processor... So good, Electronic Design named it the product of the year.

"You can't tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53C700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about 15% of the cost.

As the first SCSI I/O processor on a chip, the 53C700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter. DMA controllers can burst data at speeds of up to $50 \mathrm{Mbytes} /$. This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the
Digital IC's" award went to NCR's $53 \mathrm{C700}$ last year.

And now the NCR 53C710!

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

1-800-334-5454

CIRCLE NO. 79

right across the board

GEC Plessey Semiconductors is one of the world's most

 innovative silicon IC companies. High quality products - combining elegant design and optimum performance provide effective solutions to many tough system design problems.Semi-Custom ~ State-of-the-Art CMOS and Bipolar technologies. Gate array and cell based ASICs for digital, analog and mixed signal solutions.

FPGAs ~ Our remarkable new ERA -
Electrically Reconfigurable Array - helps cut circuit design times for faster to market system solutions.

Digital Signal Processing ~ Single chip, real time DSP devices for image processing, radar and communications.

Memories ~ SNOS combined with CMOS to give high performance, low power, nonvolatile memories guaranteed for ten years.

Personal Communications ~ High performance system solutions in CT2, GSM, Paging and DECT.

Satellite / Cable / TV ~ The best D-MAC solution on the market. The best D2-MAC solution is on the way. CD quality sound. The highest resolution video. Need we say more!

Military ~ Years of experience in supplying key components to major programmes ensures that our devices meet the very highest of specifications.

GEC Plessey Semiconductors' experience with leading edge technologies is inherent in every product we supply. Find out more by getting hold of our latest shortform.

UNITED KINGDOM and SCANDINAVIA Swindon. Tel:(0793) 518510 Fax: (0793) 518582.
UNITED STATES OF AMERICA Scotts Valley. Tel:(408) 4382900 Fax: (408) 4387023. FRANCE and BENELUX Les Ulis Cedex A. Tel:(1) 64462345 Fax:(1) 64460607.
GERMANY Munich. Tel: 089/36 0906-0 Fax: 089/36 0906-55.
ITALY Milan. Tel: (02) 330010 44/55 Fax: (GR3) 316904.
SOUTH EAST ASIA Singapore. Tel: 2919291 Fax: 2916455.

EDITORIAL

Praise the PC and pass the Windows

Jesse H Neal
Editorial Achievement Awards 1987, 1981 (2), 1978 (2), 1977, 1976, 1975
American Society of Business Press Editors Award 1988, 1983, 1981

Those of us who live in New England no longer have to worry about the threat of a recession. Most of us are already in a recession and have been for some time. Local companies report lower earnings and losses, and fire workers. The housing market is a disaster. Massachusetts cannot balance its budget. In my town alone, the FDIC took over two banks. Luckily, there are bright spots in the USA and in specific markets. As I wrote in an earlier editorial (EDN, April 26, 1990, pg 49), telecommunications is a bright spot. Now, small computers is another.
When economic times are tough and interest rates are high, companies put off borrowing and spending large amounts of money on big and medium-sized computers. It's cheaper to upgrade a department's computer power by adding workstations or PCs and their attendant software, and by putting together-or adding to-a department network. I recently saw an 80386 SX -based computer on sale for less than $\$ 1500$. Faced with spending $\$ 50,000$ for a few PCs and a network server or ten times that amount for a minicomputer upgrade, you can guess what most managers will decide. Such decisions spell hard times for mainframe and minicomputer manufacturers.
With the differences between high-performance PCs and workstations blurring, the workstation manufacturers may repeat the mistakes of the minicomputer suppliers. Unless these manufacturers realize their business is supplying "computing power" and not computer hardware, PCs will eat the workstation market.
Although low prices are a compelling reason to shift computer power from a central department to workers' desks, the availability of Microsoft's Windows 3.0 also makes the PC-purchase decision a sound one. In fact, if people are without computers, Windows may be the best reason to buy PCs and start people using them. Few users I know want to be bothered using MS-DOS or UNIX. In fact, they don't even want to know what an operating system is or what it does. Just serve up the database or spreadsheet, please. Windows does it, quickly and easily.

Yes, there are competitors of sorts: Desqview and OS/2, for example. But Desqview will never be as widespread as Windows, and OS/2 has many years to go before it succeeds MS-DOS, if it ever does. For example, today's version of OS/2 is incompatible with some older MS-DOS-based applications. Windows isn't without faults either. It has been reported that the program won't run on all PC clones because of hardware and software incompatibilities. Microsoft's Flight Simulator program used to be run as a test of compatibility. Perhaps Windows will take over that role. In the late ' 70 s , the VisiCalc spreadsheet program fired people's interest in PCs. Now, Windows will keep people interested while it also draws new people and applications to today's powerful-and cheap-PCs. The PC vendors should have some good times ahead.

PRESENTING A SLI PERSPECTIVE ONEP

Think of it. PAL ${ }^{\circ}$ speed and FPGA density in a CMOS EPLD.

The MAX"' EPLD from Altera.
MAX is the first family of programmable logic devices that provides both high speed and high logic density.

Which means MAX can handle just about all your designs. From simple address decoders to complex microprocessor peripherals.

Here's all the proof you need. Logic delays to 15 ns. True clock rates to 100 MHz . Logic densities up to 192 macrocells. In packages from 20-pin

two to four times more logic than the largest PALs. In fact, our EPM5016 offers 200% more logic than a 16 V 8 and 60% more than a 22V10. Plus higher speed and lower total power. All in a 20 -pin part.

[^3]
GHTLY DIFFERENT LD PERFORMANCE.

IN THE ERA OF MegaChip ${ }^{\text {w" }}$ TECHNOLOGIES

YOURDSP:ALLTHERE

There is a big difference. Only Texas Instruments brings it all together for you in DSPs, from software to silicon... and we have 10,000 users to prove our point.

OR JUST ALMOST?

Designers are applying TI's singlechip TMS320 DSPs (digital signal processors) in more systems around the world than any other. In fact, leading manufacturers in most market segments - including telecommunications, computers and computer peripherals, automotive, industrial controls, consumer products, and military systems - use TMS320 DSPs.
These designers choose our DSPs because they know there is a big difference between all there and almost. With TI, they know they are getting the most complete DSP solution in the business - (1) performance, (2) support, and (3) broad choice. These important factors are worth careful consideration as you evaluate DSPs:

1.Am I assured of access devices in the field?
Naturally, performance is a high priority for any DSP-based system. The TMS320 family consistently sets the performance standards for the industry. Among the newest additions are the highest performance fixed- and floating-point single-chip DSP s, both with clearly defined road maps for future performance upgrades. Multiprocessing DSPs offer even higher performance.

$\square \mathrm{Yes}$
$\square \mathrm{No}$ 。Is world-class support in design to market?
Few if any DSP vendors equal the level of support that TI offers.
Industry-standard high-level language optimizing compilers (ANSI C and Ada), HLL debuggers, the SPOX ${ }^{\text {™ }}$ multitasking DSP operating system, and scan-based emulators provide you with a development environment similar to that traditionally enjoyed in general-purpose microprocessor design.
Low-cost evaluation modules allow you to accurately evaluate and benchmark a TMS320 processor for your application.
Such leading-edge tools are only the beginning of our comprehensive support. Other TMS320 support includes:

- A hot line staffed with DSP personnel ready to answer your technical questions
- An on-line bulletin board service
- More than 2,000 pages of application notes and DSP code
- More than 100 third parties and consultants
- Hands-on workshops
- University program with more than 100 universities participating

WHAT'S AHEAD FOR TI's TMS320 FAMILY
Yes No 3. broad enough that I can closely match a DSP to my price/ performance needs?
Our TMS320 family spans five generations - more than 20 members offering a price/performance range from $\$ 4.00$ to 40 MFLOPS. Your choice includes:

- EPROM DSPs that shorten your time to market
- DSPs optimized for specific applications
- Military versions
- Single-chip devices offering 40-MFLOPS performance
- Multiprocessing DSPs
- Low-cost DSP solutions for cost-sensitive applications
- Compatibility to protect your software investment
At TI, we have it all, and we are ready to help you put it all together.
Get your free three-volume TI DSP Applications Library; call 1-800-336-5236, ext. 3528 Or complete and mail the return card and we'll send you our three-volume TMS320 DSP Applications Library. If you prefer, we'll send you our TMS320 product overview and support brochure. We feel sure you will soon be one of the thousands around the world achieving design success with the leadership TMS320 family.

Imagine con without a ge

Mixed-Signal IC Solutions

You're staring that gap right in the face. Unless key components in your modem, laptop PCs, LAN and telecommunications product designs can connect with, and address, the technological needs of tomorrow.

Thankfully, you can close that gap by tapping into the power and experience of Silicon Systems.

Our approach to every solution using Mixed-Signal Integrated Circuits - MSICs ${ }^{\text {un }}$ - is to design and bring to market products with a
built-in migration path to the future. Compatibility forwards and backwards. And a tuned-in sensitivity for the latest industry standards.

In the short run this helps speed your products to your customers. In the long run you'll rest assured that today's innovations won't be making a premature arrival at tomorrow's scrap heap.

Our pin/software compatible K-Series of $1200 \mathrm{bit} / \mathrm{s}$ and $2400 \mathrm{bit} / \mathrm{s}$ single-chip modems, for example, are well-connected to a variety of current and emerging world standards, along with being the lowest power 5 -volt products you can buy.

Our newest thinking on PC/FAX includes a built-in pipeline to

\bullet munications leration gap.

future FAX standards.
And in telephone communications, our latest line interface ideas will continue to flourish in the coming SONET world.

Upgradability isn't something we tack on. It's ingrained in our design culture. A distinct advantage, your advantage, as you gear up to compete successfully in the exploding telecommunications marketplace.

Our point should be clear. Generation gaps are avoidable, not inevitable. To walk our migration path, talk with your nearest Silicon Systems representative or distributor. Or call us for literature package CPD-8. Circle 9 For Product Information Circle 10 For Career Information

Silicon Systems, Inc.,
14351 Myford Road, Tustin, CA 92680
Ph 1-800-624-8999, ext. 151 Fax (714) 669-8814
European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117

THIS DECADE, MAKE A COMMITMENT TO USE ONLY THE BEST.

FOR TEN YEARS INTROL HAS BEEN CREATING THE WORLD'S BEST HIGH-POWERED TOOLS FOR EMBEDDED SYSTEMS PROGRAMMERS. OUR C COMPILERS, MODULA-2 COMPILers, Source level Debuggers, and Macro Assemblers are in use by major CORPORATIONS AND SAVVY INDEPENDENT CONSULTANTS FROM SAN FRANCISCO TO SINGAPORE. WE HAVE DEVELOPED SUPPORT FOR A WIDE RANGE OF PROCESSORS, ON AN EVEN WIDER RANGE OF HOST SYSTEMS. THIS VERSATILITY ALLOWS YOU TO MOVE FROM PROJECT TO PROJECT

WITHOUT LOSING VALUABLE TIME LEARNING NEW TOOLS AND TECHNIQUES. \&e ALL OUR PRODUCTS ARE COVERED BY COURTEOUS AND HIGHLY EFFICIENT TECHNICAL SUPPORT TO ASSIST YOU WITH ANY PROBLEMS YOU MAY ENCOUNTER. ee So, THIS DECADE, MAKE A COMMITMENT - TO INTROL.

Software adds logic to make designs testable

Test-logic synthesis tools may not cause the barrier between design and test to crumble like the Berlin Wall, but at least the software will add some doors and windows to it.

Michael C Markowitz, Associate Editor

Two obstacles have slowed the adoption of design for testability. The first is the perception that adding logic to make a design testable diverts designers' attention from function design and slows product development. The second is test logic's attenuating effect on circuit performance.

Test-logic synthesis can lessen any impact of test-logic design on product development by creating test and function logic. Unfortunately, if you're a talented designer, you'll have to live with somewhat slower circuits; test-logic synthesis tools can only be used to design circuits that are as efficient as those a gate-level designer might build.
The most basic test-logic synthesis tools build scan-testable circuits. In simple terms, scan-test synthesis converts sequential circuits into combinatorial circuits by arranging all storage elements (latches and flipflops) into a shift-register chain.

You load the chain via the scan-in port by clocking data with a dedicated scan clock. Then the data ripples through the circuit's combinatorial logic and you latch it with the system clock. Finally, if you toggle the scan clock, it feeds the output data through the scan-out port so that you can evaluate it.

Partial scan is an approach in which some of the storage elements
aren't part of the scan chain. To achieve high test coverage with partial scan, you still need to convert your sequential logic to combinational logic. To do this, toggle the system clock more than once. The data will ripple through combinatorial and sequential logic to the scan chain. While most scan-synthesis tools can build partial-scan circuits, most automatic test-pattern generation (ATPG) software tools can't generate vectors for sequential designs. As a result, partial-scan circuits are often difficult to test.
The sequential depth of a partial-scan design depends on the number of nonscannable flip-flops between scannable ones. The depth is important because it determines the number of times you need to toggle the system clock to propagate faults through a design.

After scan structures are added to a shifter by Test Compiler (right), fault analysis reveals 99.66% fault coverage. The original shifter is on the left.

TECHNOLOGY UPDATE

Test-logic synthesis

Finding all the faults in your circuit depends on how you load the scan chain. Scan techniques differ in the types of storage elements and clocking schemes they allow (see box, "Choose from eight flavors of scan").

The tools that can add the logic to use scan test include Racal-Redac's SilcSyn Test Synthesis Module, Synopsys' Test Compiler, and Teradyne EDA's Scangen.

- The SilcSyn Test Synthesis Module uses only register transfer scan (RTS) and boundary scan.
- Test Compiler supports level-sensitive-scan design (LSSD), multiplexed-flip-flop scan, and hybrid scan.
- Scangen also supports LSSD, as well as scan path, scan set, and random-access scan.
One caveat: While both Scangen and Test Compiler offer the ability to create partial scan designs, neither Scangen's pattern generator nor Test Compiler can automatically create effective patterns for partial scan implementations.
Building a scan chain requires
four pins. These four pins-Scan In, Scan Out, Clock, and a control sig-nal-constrain the test patterns, causing them to be deep rather than wide. (Random-access scan demands more than four pins; addressing each storage element demands additional I/O for address lines.)

Deep, narrow patterns may create headaches for conventional IC testers whose memories are relatively short and wide. Therefore, if you can spare the pins by employing multiplexing or using spares, you can improve the efficiency of

Choose from eight flavors of scan.

The eight most popular versions of scan are levelsensitive scan design (LSSD), scan path, scan set, random-access scan, multiplexed flip-flop scan, hybrid scan, boundary scan, and register-transfer scan. Each version converts your sequential and combinatorial logic to a strictly combinatorial design. You make the conversion by building a chain of storage elements separated by combinatorial logic.

LSSD is probably the most popular scan technique. There are four primary rules that govern its use. Perhaps the most important rule is that you must connect all latches into a shift-register latch, then connect all shift-register latches into shift registers. In addition, all storage elements must be clocked dc latches. Observing these rules will help you build the scan chains correctly, force the design to be synchronous, and allow you to isolate data in the latches.

Another rule holds that multiple nonoverlapping clocks must control the latches. Data can only move from a latch through combinatorial logic to the next latch if nonoverlapping clocks clock the latches.
These rules eliminate minimum circuit-delay system dependency and ensure that data at the input to a latch is stable while a latch clock is on.

Other scan alternatives are similar to LSSD. Scan path uses dual-clocked, dual-input D types rather than latches. One clock moves system data through the flip-flops; a second clock shifts data through the serially connected test inputs of the D types.

Scan set is a less invasive partial scan implementation that appends a scan-set register to your cir-
cuit. You load the register serially to drive logic values into your design at points where such control is otherwise difficult. Scan set is attractive because it doesn't restrict your selection of storage elements and it reduces circuit design interference. A disadvantage of scan set is that its pattern generation is complex and most of its register logic is only used during testing.

The penalties assessed by random-access scan are increased pin counts and extra logic for address decodes and addressable latches. This approach avoids the need for shift registers by making all latches randomly addressable. Whereas other scan approaches can use as few as four I/O ports, randomaccess scan requires at least six. These six are scan data-in, scan data-out, scan clock, test select, and two serial inputs for the X and Y addresses.

One of the simplest scan approaches is to use a flip-flop with a multiplexer at its input. You can connect flip-flops in a chain and use a test select pin to choose mission mode or test mode.

Hybrid scan builds a scan chain from unique storage elements. These elements are edge triggered in mission mode, like a D-type flip-flop, and level sensitive in test mode, like a latch. These storage elements are about 1.5 times the size of a typical D flip-flop.

Boundary scan uses a scan chain connecting the I/Os of an IC or functional block to provide control and observation of the device under test (DUT). Data enters the periphery through a Test Data In pin, circulates via boundary scan cells around the

TECHNOLOGY UPDATE

your testers by using multiple scan paths.

SilcSyn Test Synthesis Module, Scangen, and Test Compiler all give you a multiple-path option, but only the first two create multiple paths without significant manual intervention. Both of these tools require you to specify which scan chain a functional block's storage elements should belong to before they will create a scan path.

To create multiple paths in Test Compiler, you have to divide the storage elements in your design by
the number of paths you want. Then you either mark elements for inclusion or exclusion from a particular scan chain. You have to repeat this process for each path you want to build. Finally, after creating these independent paths, you have to assemble the paths into a single circuit.

The major difference between Scangen and SilcSyn Test Synthesis Module or Test Compiler is the stage at which they begin to work on a design. Scangen is a testability insertion tool. It inserts scan-test
logic into an existing design. Then, Teradyne EDA's ATPG softwareincluded with Scangen-generates test patterns. The software replaces storage elements with the appropriate elements for the scan method you choose, then connects the scan chain. However, Scangen neither optimizes the design for speed and area nor creates schematics.

Scangen accepts a variety of structural-design input formats, such as EDIF (Electronic Design Interchange Format) 200 ; Mentor; the Tegas, Hilo, and Aida design

DUT, and exits via the Test Data Out pin. In addition to providing a method for testing a chip or a functional block, boundary scan can also test external wiring by applying test stimuli from the boundary scan cells on one chip and capturing the response at the input cells on the chip or chips it's connected to. (For a more detailed look at boundary scan, see Ref 1).

The above scan methods are most effective when you replace all storage elements with their corresponding scan elements. register transfer scan
(RTS), on the other hand, is a partial scan technique. RTS demands that you insert scannable storage elements into global feedback paths so these paths can be broken during testing. Also, nonscannable-element clocks and resets must be inactive during testing. Although they use less chip area than full scan implementations, RTS and other partial scan approaches may present a difficulty, because you have to decide which storage elements you should make scannable.

To decode proper scan-latch addresses, random-access scan requires addressable latches, pins for address lines, and address-decode logic.

TECHNOLOGY UPDATE

Test-logic synthesis

languages; LSI Logic, VLSI Technology, Fujitsu, and Toshiba design languages; and the vendor's Lasar and Vanguard netlist formats.

SileSyn Test Synthesis Module and Test Compiler, on the other hand, are true logic-synthesis tools. Both can work with structural inputs such as EDIF, as well as Mentor, Valid, and LSI Logic design languages. In addition, SilcSyn Test Synthesis Module works with VHDL (VHSIC Hardware Description Language) and its own behavioral language inputs. Test Compiler can use behavioral inputs such as those in Verilog HDL, VHDL, Boolean equations, and state tables. To use some of its input formats, the Test Compiler software requires an optional interface.

You can, if you wish, disable the test-logic synthesis capability. If you create test logic, however, it becomes an integral part of the design and is therefore optimized with the whole circuit. SilcSyn Test Synthesis Module and Test Compiler can create schematics and test patterns for your design as part of their test-synthesis output.

One problem with software-generated schematics is determining

Multiplexer isolation circuitry, added by the Test Assistant, provides observation and control for deeply embedded nodes that might otherwise be untestable.
the correspondence between function and logic. Finding the correspondence is far easier when you design a circuit at the gate level and draw its schematic than if you design a circuit at the behavioral level and let software create the schematic. And when the software
synthesizes logic that isn't in your behavioral description, this correspondence is even more difficult.

To aid you, the synthesis programs retain your naming conventions for storage elements that they replace. In addition, some of the test-control logic that the soft-

Testability tool stays in its cage-for now

All the available test-logic synthesis tools require you to quarterback the selection of the proper test methods for your design. Tiger (Testability Insertion Guidance Expert), the product of a research project at the Microelectronics and Computer Technology Corp (MCC), is a tool to improve the hit-ormiss nature of those selections.

Tiger is knowledge-based software. It performs testability flow analysis, design partitioning, testfunction embedding, strategy evaluation and selection, and test-plan generation on a register-transferlevel structural circuit description.

Using EDIF or VHDL circuit inputs, Tiger evaluates a design against performance, area-overhead,
fault-coverage, and test-time constraints. The software creates a testability report, which summarizes the results and recommends appropriate test strategies. In addition, it outputs modified design description files, which you can send to gate-level design tools.

Tiger's knowledge base includes information about partial scan path, BIST using BILBOs, and other less formal test methods. As with all MCC inventions, Tiger is available only to shareholders. You aren't likely to find it incorporated into any test-logic synthesis tools right away, though, because the current version was written in LISP. A C + + version is in the works and should be available in late 1990.

3.3VTechnology Breaks 5V Speed Barrier

31 Logic Parts 35\% Faster Than FCTA

A New Generation of 3.3 Volt CMOS Center-Pin Power and Ground Products with TTL-Like I/O.

Performance's NEW 3.3V PCTD Logic

 Family, featuring 0.4 micron effective gate lengths (PACE III Technology) and center power and ground packaging, offers a 35\% speed improvement over 5V FCTA, with dramatically lower power dissipation and half the ground bounce."It has been clear for some time that the primary consideration which could limit the use of future generations of CMOS technology in the highest speed applications were issues associated with constraints that have been hangovers from bipolar TTL circuit implementations. If those constraints are not removed, then either performance will be compromised or serious application problems will result. It is easy to see the value of the changes that are needed to take maximum advantage of the attributes of the fine-line CMOS technology in the sub half-micron regime (PACE III). Therefore, we have decided to invest a significant part of our Company's technical and marketing resources to help make the transition from a TTL environment to an optimized CMOS environment. As the 3.3 volt supply, low-lead inductance product line emerges with 0.4 micron PACE III Technology, the uncompromised performance will overcome resistance to change and we will have a 'kinder \& gentler' speed."

Tom Longo

Performance's 3.3 Volt Logic Family

Twenty-five product types are available now with six more available by November, 1990. Included are buffers and latches designed for 5 V to 3.3 V logic-level translation without speed loss. Future superfast products, using center-pin power and ground with a 3.3 V power supply, will include SCRAMs with 64 Kbit to 256 Kbit densities and PACEMIPs RISC processor products such as CPU, FPA and Wrap Functions.

CMOS Logic Performance Trends

Featuring TTL-like I/O, Performance's PCTD logic dramatically outperforms FCTA, BCT and FCTC, even though power dissipation is reduced approximately 40 percent.

P74PCT33373D 3.1ns(WC) Specification

Performance's P74PCT33373D offers a typical propagation delay of 2.4 ns with extremely low noise.

For more information or to order Performance's PCTD Logic, call The Marketing Hotline: (408) 734-9000 or write

TECHNOLOGY UPDATE

Test-logic synthesis

ware adds is easy to identify. However, a significant portion of the other logic, because optimization software has merged it with the function logic, is difficult to pinpoint.

This loss of correspondence between your original design and the synthesized result may be disconcerting at first. Over time, however, two factors will ease your fears.

First, vendors will include con-current-design and design-framework facilities in their software. These facilities allow you to specify an HDL (hardware description language) statement, gate, node, fault, or other descriptor in one file. Then
the software will highlight the corresponding items in related files. Second, as you develop confidence in the software's conversion abilities, you'll have less and less need for these facilities.
Today, however, the synthesis software's ability to identify and remove redundant logic offsets the difficulty of identifying logic. Redundant logic is very difficult to test; therefore, it accounts for most of the untestable faults in designs. Scangen uses a test-design rules checker to identify redundant logic, but since it only adds scan logic, it can't eliminate the redundancy.

Scangen's test-design rules
checker does more than just find redundant faults. It also makes sure that you've connected your scan chain correctly, that your clocking scheme doesn't violate scan requirements, and that your design doesn't use any uncontrolled feedback. Both SileSyn Test Synthesis Module and Test Compiler also identify uncontrolled feedback paths, but none of the three tools can make these paths testable.

Perhaps the biggest difference between SilcSyn Test Synthesis Module and Test Compiler is in their approach to partial scan. Both tools allow you to exclude storage elements from the scan chain. Un-

Company	Product	Table 1-Test-logic synthesis software						Sequential ATPG
		Cost	Availability	Scan Methods	Redundancy id/removal	Other test methods	Automatic test pattern generation (ATPG)	
Dassault Electronique	Frenchip	\$75,000	First quarter 1991	Full and partial boundary scan	Yes/Yes	Built-in logic-block observers (BILBOs) for built-in self test (BIST)	No	No
Racal Redac	SilcSyn Test Synthesis Module	\$45,000 option to \$60,000 SilcSyn ASIC design system	Third quarter 1990	Full and partial registertransfer scan and joint test action group (JTAG) boundary scan	Yes/Yes	None	Yes	Yes
Synopsys	Test Compiler	\$25,000 option to \$35,000 design compiler*	Dec 1990	Full and partial level-sensitive scan (LSSD), multiplexed flip-flop, and hybrid scan	Yes/Yes	None	Yes	No
Teradyne EDA	Aida ATPG Toolkit	\$45,000	Now	Full and partial level-sensitive scan (LSSD), scan path, scan set, and random-access scan	Yes/No	None	Yes	No
VLSI Technology	Test Express	\$35,000	Now	None	No/No	Multiplexer isolation and built-in self test (BIST) using linearfeedback shift registers (LFSRs) for RAMs, ROMs, and multipliers	Yes	No

R3000 RISC SubSystem ${ }^{\text {TM }}$ Modules

The IDT7RS101 and IDT7RS102 SubSystems are available in 12-, 16-, 20and 25 MHz versions. They feature 64 KBytes and 16 KBy tes each of instruction and data cache, respectively, an optional floating-point, and read and write buffers.

CIRCLE NO. 85

TargetSystem ${ }^{\text {TM }}$ Boards

The IDT7RS301 and IDT7RS302 TargetSystem boards are designed for the 7RS101 and 7RS102 RISC SubSystem modules, respectively. They feature 1MByte of SRAM main memory, 256 KBytes of EPROM (including monitor), three programmable counter/timers a dual-port RAM interface, and two RS-232C ports.

Both provide bus extension connectors, and comprise a complete evaluation and development environment for use with low-cost terminals.

Let IDT Help You Evaluate the Winning RISC

If you're evaluating the power of RISC, call us for the IDT7RS382 Evaluation System - a complete R3000-based system for only $\$ 895$!

The IDT7RS382 features the R3000 CPU and R3010 Floating-Point Accelerator, 16 KBytes each of instruction and data cache, 128 KBytes of SRAM main memory, and expansion connectors.

And the RISC evaluation system requires only a CRT terminal and +5 V power supply for operation.

IDT also offers technical support to help you design systems to your exact specifications. For details on the IDT7RS382, as well as IDT's complete RISC family of products, call us, tollfree, at (800) 492-8454.

Integrated
 Device Technology, Inc.

CIRCLE NO. 87

RISC SubSystem, MacStation, IDT/ux, and TargetSystem are trademarks of Integrated Device Technology, Inc.

TECHNOLOGY UPDATE

Test-logic synthesis

fortunately, Test Compiler's pat-tern-generation software can't create high-fault-coverage test patterns for nonscannable sequential logic.

In contrast, SileSyn Test Synthesis Module lets you specify a sequential depth so that the software can try partial scan approaches. A partial-scan test strategy might yield test results as efficient as those of a full-scan strategy on a smaller die. But creating the logic and patterns takes a heavy toll on CPU time.

A different synthesis approach is the basis of Frenchip, a logicsynthesis tool introduced at the 1990 Design Automation Conference by Dassault Electronique. In contrast to the scan approach of other tools, Frenchip uses a selftest technique based on built-in logic-block observers (BILBOs). Like the other true logic-synthesis approaches, Frenchip's finds and removes redundant logic.

A BILBO register (Fig 1) com-
prises a set of latches. These latches operate in four modes, determined by control signals B_{1} and B_{2}. For normal operation as a parallel-input shift register, the control signal is $\mathrm{B}_{1}=\mathrm{B}_{2}=1$.
Setting $B_{1}=B_{2}=0$ puts the BILBO into a scan shift mode in which you feed data through the register from Scan In to Scan Out. Note that the NOR gate inverts the data before the latch stores it. Driving $\mathrm{B}_{1}=1$ while $\mathrm{B}_{2}=0$ initializes the register by resetting to zero.
The final mode, which you access by forcing $B_{1}=0$ while $B_{2}=1$, is the most interesting. In it the BILBO register can act either as a linearfeedback shift register (LFSR) or as a multiple-input shift register (MISR). An LFSR drives your circuit with a pseudorandom pattern; an MISR compresses circuit response into a characteristic signature. The circuit logic can compare this signature against a known reference stored either on or off the chip. You convert the register be-
tween LFSR and MISR via the $\mathrm{Z}_{i} \mathrm{~s}$. When these parallel inputs are all 0 s and you have a nonzero value in the latches (as a seed for the pseudorandom number generator), the BILBO acts as an LFSR.
Frenchip, written in Prolog, uses a rule-based algorithm to synthesize logic either from Teradyne's Label behavioral language or from VHDL. If you instruct the software, it can use existing registers for the BILBOs. In addition to BILBOs, Frenchip also synthesizes bound-ary-scan and Joint Test Action Group (JTAG) compliant test controllers (Ref 1).

Unlike the other tools discussed here, Frenchip doesn't include pat-tern-generation software. This omission isn't a serious handicap, however, because third-party ATPG software is available from many sources, including some of the vendors in this report. Be aware, though, that vendors tune ATPGbearing synthesis tools for the types of patterns the ATPG soft-

Fig 1-A built-in logic-block observer (BILBO) can initialize your logic, function transparently, act as a scan register, or perform pseudorandom number generation and signature compression.

MEGA MEMORY.

SONY HIGH-DENSITY SRAMS				
MODEL	CONFIG.	SPEED (ns)	PACKAGING	$\begin{gathered} \text { DATA } \\ \text { RETENTION } \end{gathered}$
CXK581000P*	$128 \mathrm{~K} \times 8$	100/120	DIP 600 m	L, LL
CXK581000M*	$128 \mathrm{~K} \times 8$	100/120	SOP 525 mil	L, LL
CXK581100TM*	$128 \mathrm{~K} \times 8$	100/120	TSOP	L, LL
CXK581100YM*	$128 \mathrm{~K} \times 8$	100/120	TSOP (reverse)	L, L
CXK581001P	$128 \mathrm{~K} \times 8$	70/85	DIP 600	L
CXK581001M	$128 \mathrm{~K} \times 8$	70/85	SOP 525 mil	L
CXK581020SP	$128 \mathrm{~K} \times 8$	35/45/55	SDIP 400 mil	
CXK581020J	$128 \mathrm{~K} \times 8$	35/4/55	S0J 400 mil	
*Extended temperature range available. $\mathrm{L}=$ Low power. $\mathrm{LL}=$ Low, low power.				

MEGA COMMITMENT.

As you can see, Sony's more
committed than ever to meeting your high-density SRAM needs.
Just consider the enhancements we've made in a few short months: TSOP and TSOP-reverse packaging.Low dataretention current. And extended temperature range.

All based on our unique 0.8 -micron CMOS technology, and available in 32-pin DIP and surface-mount plastic packages.
Then consider our ever-increasing production capabilities. We've just added yet another SRAM facility in Japan. And acquired a large AMD facility in San Antonio, Texas.

So you can really count on us in a crunch.
Need more proof we're serious about your each and every SRAM need?

Call us. We've got more breakthroughs on the way. Well over 100 SRAM products spanning the performance spectrum. And the desire to meet-or exceed - your toughest performance spec.

Sony high-density SRAMS are shipping now, complete with competitive pricing. So call (714) 229-4190 today. Or write Sony Corporation Of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630, Attention: Semiconductor
sales FAX (714) 229-4285 sales. FAX (714) 229-4285.

TECHNOLOGY UPDATE

Test-logic synthesis

ware can generate. Being able to synthesize test logic is no guarantee that your pattern generator can create efficient patterns to test your design.
Test Express from VLSI Technology is another test-logic synthesis tool that relies heavily on BIST (built-in self-test). But although it synthesizes test logic, Test Express isn't a true logic-synthesis tool. It inserts test logic on an existing design, so it doesn't simultaneously optimize test and function logic. As a result, it can't eliminate redundant logic.
Using the company's internal netlist format (which is accessible through EDIF and Mentor-format translators), Test Express includes several function-test-logic compilers. These compilers build LFSRs and MISRs specifically for different function blocks. The software currently contains ROM, RAM, and multiplier BIST compilers.
Although VLSI Technology's cell libraries contain scan cells, such as LSSD latches, multiplexed flipflops, and boundary-scan cells, Test Express doesn't yet synthesize the scan chains. However, the company offers interfaces to third-party tools

Synthesizing test logic and function logic at the same time, as SilcSyn's Test Synthesis Module does, provides testable circuits that are optimized for performance and area.
that do. Test Express does provide access to test points via multiplexer isolation.

Multiplexer isolation is an unstructured technique that provides control and observation of test points-as the name implies-with multiplexers. You select deeply embedded nodes for the test-logic-syn-
thesis tool and it provides multiplexed access. If you put the chip into test mode, it brings these embedded nodes to the design's I/O.
Multiplexer isolation can help you test designs containing uncontrolled feedback paths. These paths are virtually untestable with scan techniques because you can't both con-

For more information . . .

For more information on the test-logic synthesis products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Dassault Electronique
55, qual Marcel Dassault
92214 Saint Cloud, France (331) 49118131
FAX (331) 46025758
Circle No. 700
\section*{Microelectronics and Computer}
Technology Corp
3500 W Balcones Center Dr
Austin, TX 78759
(512) 343-0978
Circle No. 701

```
Teradyne EDA
5155 Old Ironsides Dr
Santa Clara, CA 95054
(408) 980-5200
FAX (408) 748-7761
Circle No. }70
VOTE . . 
Please also use the Information Retrieval
Service card to rate this article (circle
one):
High Interest 509
Medium Interest 510
Low Interest 511
```


The programmable display system: Design applications for land, sea or air.

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numerics and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.

They also simplify operator training as well as control panel design. One Vivisun Series 2000
programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.

Contact us today.

AEROSPACE OPTICS INC.

3201 Sandy Lane, Fort Worth, Texas 76112
(817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 2000 programmable displays. The intelligent communications system.

CIRCLE NO. 35

Synthesizer performance... priced to generate some waves.

The HP 3324A Synthesized Function/Sweep Generator.

The attractive price of this generator is bound to generate some waves. It's much less than you'd expect to pay for a function generator that has 5 ppm frequency accuracy, 9-digit frequency resolution and multiinterval sweep capabilities too.
Put it to work in testing filters
and amplifiers where you need synthesizer accuracy, stability and signal purity. Tap its high linearity and multi-interval sweep features for A / D converter testing and for simulating rotating signals. Simplify the creation of phase-related signals for PLL or navigation-system testing with the new automatic phasecalibration options.
And there's more. Such as the high-stability frequency-reference
option, and a high-voltage output option for making really big waves. Call 1-800-752-0900 today. Ask for Ext. 1598 or mail the reply card and we'll send a brochure and application information.

There is a better way.

to Price Wars

0ur High Rel/Aerospace linear array experience is paying off for companies
 with high-volume, low-cost applications.

Symbol Technologies is a good example. A tiny Raytheon instrumentation amplifier helped them combine both bar code scanner and decoder in a single, lightweight, handheld unit-that's tough enough to take a five foot drop onto concrete,

Symbol also took advantage of our Win-Win program. It let them get to market quickly with a semicustom array, then shift to full custom as sales volumes increased.

Win-Win is fast, flexible, and makes good business sense because it eliminates the risk of getting into a full custom array before you're really ready.

Raytheon is committed to analog technology. From our design kits and engineering support to our fab and plastic assembly facility. We have the experience it takes to help you develop creative, cost effective solutions.

Find out how. Call 1-800 722-7074 for our new analog brochure. Raytheon Company, Semiconductor Division. 350 Ellis St., Mountain View, CA 94039.

CIRCLE NO. 50

SIEMENS

Sound Strategy.

Siemens announces a single-chip echo cancellation U-interface device for ISDNetworks of all sizes. From switching to transmission, a clearly superior solution. Berlin to Iselin.

Siemens has won another sound victory in communications technology by developing the industry's first single-chip solution in CMOS for echo cancellation circuit functions in ISDN. It's a clear example of the innovative thinking which has made Siemens a leader in ISDN technology.
From its single-chip design to its ease of integration, the Siemens PEB 2091 ISDN Echo Cancellation Circuit (IEC-Q) represents a milestone in ISDN realization. This device can double the traffic-handling capability in existing telephone lines, and is ideal for appli-

cations in transmission systems such as digital added main line, pair gain systems and intelligent channel banks
Through its single-chip design and CMOS technology, the advanced PEB 2091 reduces space requirements and software overhead, and has lower power consumption requirements than any other design. And it supports ISDN Oriented Modular (IOM) architecture, the de facto standard for ISDN, which makes installation simple, and enables it to work in tandem with the most advanced ICs available.

Building upon the most comprehensive line of ISDN ICs in the industry, the PEB 2091 sends a clear signal that Siemens is continuing to take
great strides in telecommunications. Siemens was the first company to design a two-chip U-interface trans-
 superior echo cancellation solution with the lowest power consumption requirements
ceiver for the 4B3T block code used in Europe, and developed the first single-chip device for the 2B1Q code established in North America. And the PEB 2091 meets the requirements of the American National Standard for Telecommunication.

Our unsurpassed line of ISDN ICs are complemented by a wide array of microprocessors, microcontrollers, DRAMs, optoelectronic devices, and more. So you can count on Siemens to provide the best solution for all of your IC applications, and telecommunication products which reflect the sound thinking that has made Siemens a leader in ISDN.

For more information on our advanced products, call (800) 456-9229. Or write:

Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514 Ask for literature package M12A006.

mbnem

Siemens Practical Solutions By Design.

If you liked our BUS-61553 Advanced Integrated Mux Hybrid (AIMHY), you'll love our new BUS-61559 Advanced Integrated Mux Hybrid (AIM-HY'ER) with advanced RT features.

TIGHT ON BOARD SPACE? The world's smallest 1553 Bus Controller/ Remote Terminal/Monitor is the BUS-61559. The BUS-61559 reduces the requirements for P.C. board space, layers, traces, and solder joints by integrating dual transceiver/encoder/ decoder, full $\mathrm{BC} / \mathrm{RT} / \mathrm{MT}$ protocol, memory management, 8 K words of RAM, plus address and data buffers in a 1.87×2.10 inch package.
NEED TO MEET MIL-STD-1553B NOTICE 2? No problem. The BUS61559 provides options to separate RT broadcast data and to clear the Service Request Status Word bit following a Transmit Vector Word
mode command.
CONCERNED ABOUT SOFTWARE? The BUS-61559 provides compatibility with the familiar, friendly architecture of the BUS-61553 Series
.PLUS: enhanced RT memory management capabilities, including variable-sized circular buffers for individual subaddresses, additional interrupt conditions, and an interrupt status register.
REQUIRE RT COMMAND ILLEGALIZATION? The BUS-61559 provides an internal, self-testable illegalization scheme. No need for an external PROM or PLD. Illegaliza-

> Visit DDC at the SAE
> Avionic Systems Division (ASD) Meeting \& Exposition Show Orlando, Florida October 29 - November 1, 1990 Booth No. 8
tion is fully programmable based on own address/broadcast, T/ $\overline{\mathbf{R}}$ bit, subaddress, and word count/mode code. Use any subset of the 4096 possibilities.
NEED FOR TIME TAGGING? The BUS-61559 provides an additional Time Tag Register with programmable resolution and several other options.

INPUT POWER? Speak with us, we'll keep your options open.

HIGH-SPEED DATA TRANSFERS? The BUS-61559 interfaces directly to the BUS-63930 High-Speed STANAG 3910 20 MHz protocol chip.
CONCERNED ABOUT MTBF? Full military processing is available (consult factory). All these factors favorably influence the Q factor used in MIL-HDBK-217E reliability predictions.
For additional applications information, contact Mike Glass at 800-DDC1772, $\mathbf{5 4 5}$ (outside N.Y.).

[^4]
Diverse technologies vie for dominance

A clear-cut winner has not yet emerged in the race to dominate the market for large-area flatpanel displays. Liq-uid-crystal types appear to be leading the pack-at least for now.

Dave Pryce, Associate Editor

Flat-panel displays won't soon replace the omnipresent cath-ode-ray tube in traditional TV applications, but they continue to press ever closer to that goal. Indeed, a number of 6 - to $18-\mathrm{in}$. flat-panel displays provide adequate resolution for such tasks. If not for their high cost, these displays would be quite acceptable.

While manufacturers strive to resolve this cost-performance obstacle, largearea flat-panel displays are finding a home in laptop computers, overhead projectors, and medical imaging and military equipment. These applications are less sensitive to mundane cost constraints and place great importance on high resolution. In many cases-notably laptop computers-the light weight and low-power consumption of a flat-panel display are as important as high resolution.

Flat-panel displays that can reproduce high-resolution text and graphics embrace three different technologies: electroluminescent, liquid crystal, and gas plasma. (See box, "The technology behind large-area displays" for a description of these technologies and the different types of displays within each.) Despite the obvious differences in technology and the more subtle differences in performance characteristics, these displays have one thing in common-re-
lentless competition for the lion's share of a rapidly developing market.
There is not yet a consensus on which type will ultimately dominate the market. Historically, each of the display technologies has found wide acceptance in the marketplace, but the one that emerges as the eventual winner in the large-area-display market will have to offer a price/performance package that is acceptable to large-volume users. Although complete dominance is unlikely, liquid-crystal displays (LCDs) and electroluminescent displays appear to be the front runners, with LCDs presently enjoying a slight edge.

LCDs have intrinsic advantages

LCDs are popular because they are thin, lightweight, intrinsically rugged, and-except for backlighting require-ments-they are low-power devices. Recent innovations in LCD technology, such as double supertwist and mono-

Using third-party gray-scale controllers, this 10-in. active-matrix LCD from Hitachi can display as many as 256 colors.

Large-area flat-panel displays

chrome supertwist, have significantly improved the contrast and viewing angle of these displays. These improvements are particularly important for large-area displays used in high-resolution text and graphics applications. Activematrix technology is also improving the performance of LCDs.

Several vendors, including Epson, Seiko, and Toshiba, offer monochrome LCD panels with viewing areas having diagonal measurements in the 8.5 - to $11-\mathrm{in}$. range. Other vendors, notably Hitachi and Sharp, also have color

LCD panels with diagonal measurements of about 10.4 in . Most of these displays feature a VGAstandard resolution of 640×480 pixels, which is suitable for highperformance applications. (See box, "Display standards" for a description of several standards that define pixel resolutions and color capabilities for high-resolution displays.)
LCDs using the older supertwist technology are popular in low-cost applications. Designers of highperformance laptop computers and workstations usually prefer doublesupertwist or monochrome-super-
twist displays because these types provide an almost pure black-andwhite image. Monochrome-supertwist technology replaces the expensive glass layer of the doublesupertwist display with an inexpensive, thin polymer retardation film. Because of lower production costs-and essentially identical per-formance-vendors increasingly use monochrome-supertwist technology instead of double supertwist.

A good example of a mono-chrome-supertwist display is Seiko's $10.9-\mathrm{in}$. G642G, which uses

The technology behind large-area displays

Of the various technologies available for fabricating flat-panel displays, only three are suitable for manufacturing dot-matrix displays that can reproduce sizable amounts of information with high resolution.
These three technologies are electroluminescent, liquid crystal, and gas plasma. Each has distinct attributes and performance characteristics.

Electroluminescent display (ELD): ELDs employ phosphors such as manganese-doped zine sulfide that luminesce when subjected to a high voltage. The typical electroluminescent display consists of a stack of thin-film layers that have been vacuum deposited on a glass substrate. Transparent dielectric layers sandwich the center phosphor layer. Perpendicular row and column electrodes form the two outside layers. ELDs feature a wide viewing angle and exhibit an amber-on-black display with high brightness and high contrast. Because these displays use a light-generating technology, they don't require space- or power-consuming backlights.

The two principal types of ELDs are ac thin-film (ACEL) and de thick-film (DCEL) displays. DCEL panels are essentially resistive devices. ACEL panels, which contain dielectric layers, are essentially capacitive devices. Both types can produce approximately the same levels of brightness, contrast, and resolution. The differences are in claimed cost advantage and expected lifetime. Because of fewer process steps, DCEL panels are potentially less costly to manufacture. Older ACEL displays some-
times showed latent images, but symmetric drive techniques have solved this problem. A lifetime problem once associated with electroluminescent panels, particularly the de variety, has been solved by using new materials and circuit techniques. The lifetime of today's electroluminescent panels is more than 10,000 hours-equal to that of a CRT.

The development of electroluminescent panels is proceeding at a rapid pace, but manufacturers have yet to put a color ELD into commercial production. The major stumbling block to the success of a color ELD has been the development of a blue phosphor of sufficient light intensity. Although the percentage of white luminance required from each of the primary colors is much less for blue than it is for red or green, this paradox remains a problem.

Liquid-crystal display (LCD): In a twisted-nematic LCD, a liquid-crystal mixture is sandwiched between two glass plates that are coated with a polarizer and lined with transparent electrodes. A lowvoltage electric field aligns the nematic molecules (crystals) so that they either transmit or block the polarized light. LCDs are thin, durable, and lightweight. In their simplest form, these displays are also quite inexpensive and consume little power. The main disadvantages of the basic twisted-nematic LCD are low brightness, poor contrast, and reduced performance as display size increases.

Although all LCDs work on the same basic principles, there are a number of variations that greatly
the company's retardation-controlfilm technology to create a "page white" effect. The display has a resolution of 640×480 pixels (dots), a dot size of only $0.30 \times 0.30 \mathrm{~mm}$, and a contrast ratio of $12: 1$. The display also features 16 gray-scale levels, an important feature in graphics applications. The display is less than 0.6 in. thick, weighs 750 g , and dissipates approximately 2 W . Most of this power is used by the fluorescent backlight; the display needs only about 350 mW . In sample quantities, the G642G costs $\$ 500$.

Other displays that use polymer
film to achieve a high-contrast black-on-white image include Toshiba's 9.75-in. TLX-1551-C3M and Epson's 8.8-in. EG9007. Both of these displays have a resolution of 640×480 pixels. The Toshiba panel sells for $\$ 604$ (samples). The Epson panel costs $\$ 285$ (100).

Distinguishing features of Epson's display include a weight of 680 g and a thickness of 0.33 in . The extremely narrow profile of this display results from its flexible pc board, which is both compact and lightweight. With its side-mounted fluorescent backlight, the EG9007
dissipates approximately 3 W . The display's $120-$ nsec response time compares with 300 msec for the typical large-area LCD and 50 msec for active-matrix LCDs.

Active-matrix technology

Many LCDs use monochromesupertwist technology to improve performance; others use an activematrix technology. In active-matrix displays, an active device behind each pixel switches the pixels on and off. Both 2- and 3-terminal active devices can control the pixels (Fig 1). One 2-terminal method uses
improve the performance of the basic twistednematic display (Ref 1). The types commonly used for large-area displays are supertwist, double supertwist, monochrome supertwist, and active matrix. Because many viewers find the blue tinge of most supertwist displays unacceptable, the trend is toward the use of the latter three types.

To produce a high-contrast black-and-white image, double-supertwist LCDs use a color-compensating cell and monochrome-supertwist LCDs use an optical retarder made from a polymer material. These types of LCDs usually require a fluorescent backlight to compensate for transmission losses; other types can get by with a lower-power electroluminescent backlight. Conventional dot-matrix LCDs use a matrix-addressing technique to address the columns in parallel as the rows are addressed sequentially.

The more recent active-matrix displays use thinfilm transistors or diodes to turn each pixel on and off. Featuring a wide viewing angle, high contrast, and a fast response time, active-matrix displays provide an elegant solution to the problems inherent in large, high-resolution LCDs. With the addition of red, green, and blue filters, an active-matrix display is an ideal vehicle for the reproduction of color images. Because of their greater complexity and lower production yields, however, active-matrix LCDs are quite expensive.

Plasma display panel: A plasma display panel con-
tains a gas, usually neon, that glows when subjected to a high voltage. In a dot-matrix display, this voltage is applied between two sets of electrodes, which run perpendicular to each other to form rows and columns. Plasma displays exhibit an orange or redorange color on a black background and have high brightness and a wide viewing angle. Although measurements can indicate otherwise, the human eye perceives this color combination to be lacking in contrast, particularly for graphics applications.

The three basic plasma technologies are dc refresh, ac refresh, and ac memory. The ac-memory display contains dielectric layers that separate the gas from the activating electrodes. The dielectric restricts the electrodes to capacitive coupling with the gas, a condition that lets the gas stay lit for a finite period-usually until another signal turns it off. This action provides an effective "pixel memory," thereby eliminating the need for screen refresh. Both ac- and dc-refresh types require refreshing at least once every $1 / 60$ of a second to prevent observable flicker.

Notes

1. Flat-panel displays use a digital technology that requires a dot-clock signal to tell the host system how fast to read the individual pixel information from the system to the panel. Analog CRT displays do not need this signal.
2. The brightness of a flat-panel display is usually measured in footlamberts (fL) or in candelas per square meter $\left(\mathrm{cd} / \mathrm{m}^{2}\right)$. These terms have the following relationships: $\mathrm{fL}=3.424 \mathrm{~cd} / \mathrm{m}^{2}$ and $\mathrm{cd} / \mathrm{m}^{2}=0.292 \mathrm{fL}$.

TECHNOLOGY UPDATE

Large-area flat-panel displays

diodes with a metal-insulator-metal structure; another uses silicon nitride to provide a nonlinear impedance. The more common 3-terminal method uses amorphous silicon thin-film transistors to activate the pixels.

The $9.5-\mathrm{in}$. G644G from Seiko is a 2-terminal active-matrix display that uses the company's metal-semiinsulator technology. The display features a resolution of 640×480 pixels, a contrast ratio of $12: 1$, and a maximum response time of 50 msec. With a dot size of only $0.242 \times 0.260 \mathrm{~mm}$, the display produces images that are quite sharp. This lightweight (460 g) display costs $\$ 1200$ (samples). A companion device, the 10 -in. G646G, has a 640×400-pixel resolution and costs $\$ 1000$.

Not to be outdone by their monochrome siblings, active-matrix displays are also available in living color. A pair of $10-\mathrm{in}$. panels from Hitachi and Sharp are good examples of state-of-the-art LCD technology. These displays use thin-film transistors in a 3-terminal active matrix.

The TM26D01VC 10.4-in. panel from Hitachi is an 8-color display with an overall size of $8.5 \times$ $11.2 \times 0.6 \mathrm{in}$. Including the backlight, the display is about 0.8 in .

Containing 921,600 pixels, this $10-\mathrm{in}$. color LCD from Sharp Electronics has a VGAcompatible resolution of $640 \times 3 \times 480$ pixels. The display uses an active-matrix technology with a thin-film transistor for each pixel.
deep. It features a resolution of $(640 \times 3) \times 480$ pixels for a total count of 921,600 pixels. The pixels are arranged in vertical stripes of green, red, and blue. Each dot comprises three $0.11-(\mathrm{H}) \times 0.33-\mathrm{mm}(\mathrm{V})$ pixels, for a total dot size of $0.33 \times 0.33 \mathrm{~mm}$.

The display has a response time
of 50 msec and a typical contrast ratio of $20: 1$. Six cold-cathode fluotrescent tubes give the display a brightness of about 24 fL . Later this year, Hitachi will replace these tubes with two hot-cathode fluorescent tubes, which will reduce total power consumption from 17 to 12 W and increase brightness to about 30

Fig 1-Active-matrix LCDs use either 2- or 3-terminal devices to switch pixels on and off. One 2-terminal method (a) uses diodes with a metal-insulator-metal structure. Another 2-terminal method (b) uses silicon nitride to provide a nonlinear impedance. The 3-terminal method (c) uses thin-film transistors in which the drain leads are connected to form column-selecting (Y) terminals and the gate leads are connected to form row-selecting (X) terminals.

VF Technology... The Bright Decision

Futaba, a world leading manufacturer of vacuum fluorescent displays, offers a wide assortment of display tubes in many sizes and formats. Also, Futaba offers display modules with all the electronics required to refresh the display and easily interface with host system.

GRAPHIC DISPLAY

Both front glass phosphor, which provides maximum viewing angle and uniform surface appearance, and conventional back glass phosphor, with optimum brightness and software dimming capabilities, are available. All Futaba graphics modules offer complete drive electronics, bit mapped control with a DC/DC converter. All active components are surface mounted onto a single board.

DOT MATRIX MODULES

Utilizing Futaba's dot matrix displays, a completely intelligent line of "dot modules" is available. Each includes all drive, power supply and microprocessor components surface mounted onto a single board. Surface mounted technology results in higher reliability and allows for a smaller overall package and lower cost. All dot modules require only a 5V DC power source and can accept parallel or serial baud rates.

GRAPHIC DISPLAYS/MODULES

Futaba Display	Futaba Module	Pixels (Row X Char.)	Brightness [FT-L]	Module Dimensions [in.]
GP1005B	GP1005B03	128×64	400	$7.28 \times 3.35 \times 1.77$
GP1010B	GP1010B01	176×16	200	$7.32 \times 2.16 \times 1.70$
GP1009B	GP1009A04	240×64	200	$6.2 \times 2.76 \times 1.57$
GP1006B	GP1006B05	256×64	200	$9.84 \times 3.35 \times 1.77$
GP1002C	GP1002C07	320×240	100^{\star}	$7.10 \times 6.30 \times 1.60$
GP1018A	GP1018A01	400×240	40	$7.10 \times 6.30 \times 1.61$

DOT MATRIX/CHARACTER DISPLAY MODULES

Compact, flat panel graphic displays and modules present clean, sharp images, whether for text or full graphics application.

2×40 character (display)

2×40 character (module)

Pattern flexibility and pleasing appearance are offered by Futaba in dot displays and modules.

Futaba also offers a complete catalog of alphanumeric, segmented displays.
Futaba supports its products with design engineering and system integration assistance. Call or write today.

Large-area flat-panel displays

fL. With third-party gray-scale controllers, the 8-color display can produce as many as 256 colors. The TM26D01VC costs $\$ 3500$ in sample quantities and will have an OEM price of approximately $\$ 2000$. In addition to this $10-\mathrm{in}$. display, Hitachi makes 5 - and $6.3-\mathrm{in}$. color displays.

Another 10.4-in. color display comes from Sharp Electronics. Similar to the Hitachi panel, Sharp's LQ10D01 and LQ10D02 feature a response time of 50 msec and a resolution of $640 \times 3(\mathrm{RGB}) \times$ 480 pixels. The 02 version displays eight colors; the 01 version displays 512 colors. The difference in the number of colors is due to the device's controller chips. These chips are usually included with the panel. They are available from several vendors, including Cirrus Logic (Milpitas, CA), Chips and Technologies (San Jose, CA), and Analog Devices (Norwood, MA).

Like the Hitachi display, the Sharp displays align the $0.11-(\mathrm{W}) \times$ $0.33-\mathrm{mm}(\mathrm{H})$ pixels in a stripe format, rather than the delta (triangle) format. The stripe format employs three horizontal pixels by one verti-
cal pixel for each dot. Compared to the delta format, the rectangularbased stripe format provides a more accurate display of graphics and text-an important factor for highend laptop computers and workstations.
Sharp's LQ displays dissipate about 15 W . The 2 -tube hot-cathodefluorescent backlight dissipates almost 14 W of this total; the drive electronics dissipate the rest. Presently available as engineering samples, the displays cost $\$ 6300$. Production is scheduled for the first quarter of 1991; the vendor estimates production pricing at $\$ 2000$.

ELDs are also in the race

Although the number of LCD vendors and products far surpasses that of electroluminescent displays (ELDs), ELDs are strong contenders in the developing market for large-area flat-panel displays. The two major domestic suppliers of ELDs are Planar Systems and Cherry Electrical Products. The Planar and Cherry electroluminescent panels are similar in performance and general appearance, but

This ac-memory plasma panel, the FPF12000S from Fujitsu, has a 15 -in. diagonal measurement. With a 1024×768-dot resolution, its orange-on-black display is suitable for graphics-intensive applications such as desktop publishing and CAD/CAE/CAM.
they differ substantially in technology. Planar manufactures ac thinfilm (ACEL) panels; Cherry has chosen the dc thick-film (DCEL) approach.

Planar Systems is currently merging with Finlux, a previously competitive European supplier. The company offers a wide range of electroluminescent panels. Perhaps most notable is the 18 -in. EL751214M monochrome display, which contains 880,000 addressable

Display standards

Several standards define the pixel resolution and color capabilities for high-resolution displays:
CGA-Color-graphics adaptor: Specifications include a resolution of 640×200 pixels in the 2 -color graphics mode and 320×200 pixels in the 4 -color graphics mode (from a palette of 16 colors). The 40 -and 80 -column text modes support all 16 colors. EGA-Enhanced-graphics adaptor: Specifications include a resolution of 640×350 pixels with 16 -color capability (from a palette of 64 colors). This standard supports at least nine text and graphics modes with resolutions from 320×200 to 720×350 pixels, including CGA emulation.
Hercules: A monochrome-only standard that provides resolution of 720×348 pixels for both text and graphics. In the text mode, this standard supports
a universally accepted 25 -row $\times 80$-column display. VGA-Video-graphics array: Specifications include a resolution of 640×480 pixels in the 16 -color mode and 320×200 pixels in the 256 -color mode (from a palette of 262,144 colors). This standard supports at least 10 other text and graphics modes with resolutions of 320×200 to 720×400 pixels, including CGA and EGA emulation. VGA has become the de facto minimum standard for high-resolution graphics applications.

Some displays can provide resolutions of 800×600 pixels (Super VGA) or 1024×768 pixels (IBM 8514), but these standards are not always downward compatible with CGA, EGA, and VGA.

"WEVE HAD GREAT SUCCESS WITH CARROLL TOUCH. WHY CHANGE IF IT'S WORKING?"

John Santacroce
Mechanical Engineering E Project Manager Hewlett-Packard Company
"As a diverse international corporation, Hewlett-Packard manufactures everything from computers, measurement and computation equipment, medical equipment, analytical equipment and more. We're known for our high level of test and measurement systems capabilities.
"We recently developed a touch-based automotive test system for a customer and there was no debate over using Carroll Touch in designing this. Our past experience with them has been very successful.
"From my point of view, Carroll Touch has provided good, reliable touch frame assemblies. They also bring a high level of engineering expertise to our team, especially in the materials selection area.

"Carroll Touch people really approach our projects as a team project."

"Working with Carroll Touch people is great because everybody is part of the team - which helps us create a very successful product. Their willingness to go that extra step makes our job much easier.
"In developing a recent functional spec for a touch frame, Carroll Touch engineers worked closely with us in making sure that the assemblies would survive electrostatic discharge.
"We held design reviews of the various approaches and all of our recommendations were considered very sincerely by Carroll Touch. Comments were intelligently relayed back to us and everything we asked for was delivered in the specified time."

For more information on how Carroll Touch can help you create success with your touch technology applications, call 512/244-3500, or simply mail your business card with this coupon to Carroll Touch, P.O. Box 1309, Round Rock, Texas 78680.

Name
Title \qquad

Company Name

Address \qquad
Carroll Touch

The Next Level of Contact
\qquad

TECHNOLOGY UPDATE

Large-area flat-panel displays

This electroluminescent display, the ELF51214M from Planar Systems, features a diagonal measurement of almost 18 in . The monitor has a viewing angle of 160°, weighs less than 15 lbs, and takes up less than $50 \mathrm{in} .^{2}$ of work area.
pixels with a matrix of 1024×864. This display features a viewing angle of 160°, a contrast ratio of greater than $20: 1$, and a pixel brightness of 20 fL . The terminal weighs approximately 15 lbs and dissipates about 60 W of power.
The EL751214M is a complete terminal, which includes the power
supply, interface, and enclosure. The terminal interfaces to IBM PC/ XT and PC/AT, Macintosh II, and Digital Equipment Corp computers. With a selling price of $\$ 6500$ to $\$ 10,000$, this 12×14-in. panel is not for those with shallow pockets.

Cherry Electrical Products takes a different approach to manufactur-
ing its electroluminescent panels. It uses a dc resistive technology rather than the ac capacitive technology used by Planar. Cherry maintains that DCEL panels are not only less expensive to make, but also offer advantages in power efficiency at high-frequency refresh rates. For example, a DCEL panel can accept video data to the display columns at rates as fast as 60 M bps-a frame rate of 240 Hz for a 640×480-pixel display. According to Cherry, this high column-data rate increases luminance and power efficiency and allows gray-scale generation by means of frame-rate modulation.

Cherry offers several DCEL panels in sizes ranging from 4.7 to 9.8 in. and resolutions as high as 640×480 pixels. Its latest device, the 4.7 -in. ELID-D000, has a viewing area of $3.68 \times 2.94 \mathrm{in}$. and a pixel organization of 320 columns by 256 rows. Designed for portable and fixed-base instrumentation applications, this display features a brightness of 25 fL and a contrast ratio of $25: 1$.

Using a 12 V regulated power

For more information . . .

For more information on the flat-panel displays discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Cherry Electrical Products	Fujitsu America Inc	Planar Systems Inc	Sharp Ele	tronics Corp
3600 Sunset Ave	3330 Scott Blvd	1400 N W Compton	Sharp Pla	
Waukegan, IL 60087	Santa Clara, CA 95054	Beaverton, OR 97006	Mahwah,	J 07430
(708) 662-9200	(408) 562-1000	(503) 690-1100	(201) 529-8	
Circle No. 706	Circle No. 709	Circle No. 712	Circle No	
Epson America Inc	Hitachi America Ltd	Seiko Instruments \mathbf{L}	Inc Toshiba	erica Electronic Inc
3415 Kashiwa St	Electron Tube Div	Electronic Componen	Div Electron	bes and Devices Div
Torrance, CA 90505	300 N Martingale Rd	2990 W Lomita Blvd	1 Parkway	N, Suite 500
(213) 534-4500	Schaumburg, IL 60173	Torrance, CA 90505	Deerfield,	L 60015
Circle No. 707	(708) 517-1144	(213) 517-7770	Circle No	
	Circle No. 710	Circle No. 713		
Finlux Inc				
20395 Pacifica Dr	Panasonic Industrial Co	VOTE		
Cupertino, CA 95014	2 Panasonic Way	Please also use th	formation Retrieval Se	vice card
(408) 725-1972	Secaucus, NJ 07094	to rate this article	cle one):	
Circle No. 708	(201) 348-7000 Circle No. 711	High Interest 518	Medium Interest 519	Low Interest 520

- Military Components Diodes JAN TX MIL-T-27 (TF5SO3ZZ) ${ }^{\text {D }}$ Transformers MLC Transorm MIL-C 5536544; MIL-C 390140 capacitors MLL-C 20127E; MML-R-22097 Resistors MLINut Voltage 5-15 VDC 8-24 VDC 18-36 VDC Standard Models and Dual Outputs Low Profile
$1.90^{\prime \prime} \times 1.00^{\prime \prime} \times .3^{\prime \prime}$ Height up to 2.5 Watts - Ambient $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (No heat sink or electrical
derating require derating required) Options Available per MIL-STD-883 Stabilization Bake Hi Temperature Burn-In (160 Hours at Full Power) - 100 Megohm Isolation

PICO manufactures over 800 regulated and isolated DC-DC Converters and AC-DC Power Supplies and over 2500 standard ultra-miniature Transformers and Inductors

Delivery- stock to one week

SEE EEM, , HOMAS REGISTER
 Electronics, Inc. Call Toll Free 800-431-1064 in new york call 914-699-5514

Large-area flat-panel displays

Using a 2-terminal active matrix, this monochrome LCD from Seiko Instruments has a 10-in. diagonal viewing area and a resolution of 640×400 pixels.
source, the display's built-in de/de converter automatically adjusts the voltages so that the panel's brightness will not vary during the first 10,000 hours of normal use. In single quantities, the ELID-D000 costs $\$ 600$; in OEM quantities $(10,000)$, it costs $\$ 215$.
Despite the apparent leadership position enjoyed by LCDs and ELDs in the race for the large-areadisplay market, plasma displays are still strong contenders. Among the earliest of the flat-panel technologies, plasma displays are found in a range of simple to complex applications. They have not taken a back seat to the other technologies in the development of large-area displays capable of handling large amounts of information with high resolution.
Witness the FPF12000S ($\$ 5000$) ac-memory plasma monitor from Fujitsu. With a 15 -in. diagonal measurement and a resolution of 1024×768 pixels, this display suits office-automation and workstation applications. The entire monitor, including circuitry and casing, has a $3.5-\mathrm{in}$. profile and weighs 4 lbs . The monitor case includes a keyboardconnection terminal, a power switch and indicator lamp, and brightness and volume controls.
The monitor has the characteris-
tic neon-orange-on-black display of a plasma panel. Its specifications include a brightness of $5 \mathrm{~cd} / \mathrm{m}^{2}$, a contrast ratio of $20: 1$, and a viewing angle of 160°. The unit consumes approximately 70 W and has a 50,000-hour MTBF rating. Fujitsu offers large-area plasma displays ranging in size from 10 to 18 in . and with resolutions of 640×400 to 1024×816 pixels.

Several other companies also offer plasma displays. Panasonic, for example, makes a 10.5 -in. dc plasma panel with a resolution of 1024×768 pixels. Because of plasma panels' inherent ruggedness, they have found acceptance in industrial and military applications. Plasma panels are widely used in laptop computers and workstations, but they may lose favor in these applications to the more aesthetically pleasing liq-uid-crystal and electroluminescent types.
The final winner in the race for dominance of the flat-panel-display market may enjoy only a narrow victory. Indeed, because of the variety of applications, all three technologies may coexist indefinitely. The one factor that could significantly alter respective market shares is the extent to which color panels become preferable to monochrome. Color LCDs seem to have a clear advantage over the other types. EDN

Reference

1. Pryce, Dave, "Liquid-crystal displays," EDN, October 12, 1989, pg 103.

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

And that's just the beginning.

The applications for LCD's keep growing. And so does Optrex. In fact, today we're the largest supplier of LCDs in the world. Why? Innovative engineering and design support. Exceptional quality. And a nationwide distribution network. The point is, being bigger makes it easier to be more helpful to our customers - in developing new applications and in enhancing the performance of existing products. Our customers like that. You will, too. For more information, call (313) 471-6220, or fax 471-4767 today.

Turning New Ideas Into Reality.

From Missiles

This immersible position sensor fits inside a hydraulic cylinder, using the fluid it resides in as a lubricant while

Drive-by-wire designs for automotive and heavy equipment designs make reliability problems a thing of the past.

Both spring-loaded and magnetically coupled position sensors for truck engine applications must withstand extremes of vibration, temperature and exposure to highway dirt and grime.
$W^{\text {e }}$ point: no matter what the application, Duncan can design a specific-use potentiometric position sensor that fits in. Whether the challenge comes from the physical environment, space limitation,
form or function, you can have whatever you want... just by telling us what you need. Get started now. FAX us your requirements at (714) 557-6420. We'll give shape to your ideas in a hurry.

To Plowshares.

DUNCAN
 ELECTRONICS

A BEI Electronics Company
2865 Fairview Road, Costa Mesa, CA 92626
(714) 545-8261 • FAX (714) 557-6240

Enough

Carrier strips key contacts to tooling, pre-loaded assemblies speed mass termination.

Design freedom speaks for itself. Our mass-terminating AMPMODU MTE connectors stack up neatly, side-to-side or end-to-end. Take your message

Dual-beam contacts are over-stress-p and feature post stops to protect wire on wrap type posts.
anywhere on a 0.100 " grid, with complete modularity. Do it with our dual cantilever beam, anti-overstress protected AMPMODU contacts, known worldwide

said.

row coupling shrouds.
Round out the options with pincontact receptacles for wire-to-wire and panel-mount applications.

We haven't neglected production needs, either. Pre-loaded contact assemblies are keyed to locate accurately in tooling for fast, simple mass termination. And

Selection of
shrouded headers strengthens modular flexibility.
as you'd expect from AMP, tooling is available for hand, semiautomatic and automatic termination, to meet any level of production you need.

Speak out for design freedom. Call 1-800-522-6752 and ask the AMP Information Center for more on modular AMPMODU MTE connectors. AMP Incorporated, Harrisburg, PA 17105-3608.

TECHNOLOGY UPDATE

OPTOELECTRONIC DEVICES

Improvements unleash new application areas

The current crop of optoelectronic devices offer better performance and wider operating capabilities than the components that were available even a year ago. As a result, you may now be able to replace your mechanical sensors and transformers with solidstate emitters and detectors.

J D Mosley, Regional Editor

For as little as forty cents per component, optoelectronic devices can provide electrical isolation between circuits, let machines sense light and objects, and offer an alternative medium to copper wires for transmitting information. Technological advances, such as the use of aluminum gallium arsenide (AlGaAs) in LEDs, now make possible twice the power output of the older-generation gallium arsenide (GaAs) LEDs, in addition to yielding a pronounced improvement in coupling efficiency.

Improvements in packaging technology have produced new plastics that lower the cost of using optical sensors and emitters in harsh environments that previously necessitated expensive metal casings. And, by replacing phototransistors with photodarlingtons in optocouplers, manufacturers can now produce devices that provide circuit isolation from voltage surges as great as 2500 V rms and offer current transfer ratios (CTRs) as high as 1000%.
As a result of these improvements, a new assortment of applications now exists for discrete optoelectronic devices in hightemperature, high-precision, or high-voltage industrial, military, and automotive products. Industrial applications include control systems that sense the location or orientation of objects, safety systems that use a "curtain
of light" to prevent human injury, explo-sion-proof switches, and sensors that determine the flow and level of liquids. The automotive industry uses optoelectronics in solid-state ignitions, tachometers, and load-leveling circuitry.

You'll also find optoelectronic components in such consumer items as television remote controls, smoke alarms, in-trusion-alert security systems, and an ever-increasing variety of electronic toys. Vending machines have optical sensors to count and identify coins. Computer printers use these devices when feeding paper and positioning the print head.

All of these diverse applications that use discrete optoelectronic components rely upon objects either blocking a beam of light between a photoemitter and a photosensor or objects reflecting a light beam from an emitter to a sensor. Photoemitters are semiconductor light sources based on the principle that when

These hermetically sealed optocouplers from Hewlett-Packard operate over the full military temperature range, from -55 to $+125^{\circ} \mathrm{C}$. Select from 8-pin ceramic DIPs or 20-lead ceramic LCCs.

NOW PUT A LITTLE AVANTEK MAGIC IN YOUR SYSTEM

Avantek MagIC ${ }^{\text {w }}$ High Speed ICs Enable Superior System Designs

magle

The new MagIC ${ }^{\text {™ }}$ series of silicon bipolar MSI integrated circuits offer the best performance available from silicon ICs yet. The broadband, high frequency performance of these high-speed silicon ICs make them costeffective alternatives to more expensive GaAs ICs. Avantek MagIC silicon ICs are manufactured with Avantek's proprietary $10-15 \mathrm{GHz} \mathrm{Ft}^{2} 25 \mathrm{GHz} \mathrm{F}_{\text {max }}$ Isosat ${ }^{\text {t' }}$ process for unsurpassed integration and performance at microwave frequencies. Avantek's MagIC series ICs presently consists of four product families: low noise amplifiers, active mixers, variable gain control amplifiers, and prescalers. These low-cost, high-speed silicon ICs are Avantek's magic solutions to your RF, microwave and lightwave system performance and cost problems.

High Performance, High Speed, Low Cost...

The INA-series of two-stage lownoise amplifiers presently consists of three models, offering:

- 3 dB bandwidths to 2.8 GHz

- Gains as high as 32 dB
- Noise figures as low as 1.7 dB
- Prices as low as $\$ 22.00$ each* in hermetic 70 mil surface mount package

The IAM-series of active mixer/ amplifiers presently consists of two models, offering:

- RF and LO frequency range of .05 to 5.0 GHz
- Conversion gain as high as 15 dB
- LO power as low as -10 dBm
- Prices as low as $\$ 16.00$ each* in hermetic 180 mil surface mount package

The IVA-series of variable gain control amplifiers presently consists of two models, offering:

- 3 dB bandwidths to 3.0 GHz
- 30 dB gain control range
- Gains as high as 26 dB
- Prices as low as $\$ 28.50$ each* in hermetic 180 mil surface mount package

The IFD-series low phase noise static prescalers offer:

- Divide-by-4 to 5 GHz
- Low 125 mW Power Consumption
- Prices as low as $\$ 18.50$ each* in hermetic 100 mil surface mount package

MagIC ${ }^{\text {wn }}$ ICs Are Available in Quantity for Volume Applications

Avantek presently produces more than $1,000,000$ MMICs per month. So you can be assured the MagIC high speed ICs you need will be available to support your volume production programs. And, all MagIC silicon ICs are in stock at your local Avantek distributor.

For additional information, or the name and address of your local distributor, contact the regional sales office nearest you.

Regional Sales Offices North America
Eastern: (301) 381-2600
Central: (312) 358-8963
Western: (805) 373-3870
European: (44) 276-685753

*Price for 1000 piece quantities

Magic Solutions in Silicon
QAVANTEK

TECHNOLOGY UPDATE

Optoelectronic devices

you forward bias a pn-junction diode, it emits light. Thus you have a light-emitting diode, or LED. (See Table 1 for a comparison of various light sources.)

Though the color and wavelength of the light that an LED produces depend upon the bandgap energy of the semiconductor material used to manufacture the LED, production devices seldom offer wavelengths shorter than 500 nm . LEDs used in electronic applications typically emit invisible light near the
infrared region so as to closely match the spectral response of silicon photosensors for maximum sig-nal-transfer efficiency.
Silicon-doped GaAs LEDs emit light wavelengths of approximately 935 nm . Adding aluminum during the manufacturing process drops the spectral emission to around 890 nm , which closely matches the peak spectral-response range of a silicon phototransistor. The final result is a 30% improvement in coupling efficiency with AlGaAs LEDs.

Aluminum also reduces the reabsorption and the internal reflection of photons by the LED, resulting in improved surface emission. Furthermore, an AlGaAs LED can produce the same photon output using half the current required by a GaAs LED. This feature makes AlGaAs LEDs suitable for battery-operated applications. And driving the LED with less current will extend its operating life.

Hewlett-Packard Corp uses a transparent substrate AlGaAs proc-

Table 1-Representative manufacturers of LEDs, laser diodes (LD), and infrared emitters (IRED)

Manufacturer	Model	Type	Peak wavelength (nm)	Output power	Price	Features
AND	AND177RAG AND190CRP	$\begin{aligned} & \text { LED } \\ & \text { LED } \end{aligned}$	Red $=660$ Green $=567$ 660	Red $=900 \mathrm{mcd}$ Green $=150 \mathrm{mcd}$ 125 mW	$\begin{aligned} & \$ 0.98(1000) \\ & \$ 2.61(1000) \end{aligned}$	Dual-color LED with common cathode $13,000 \mathrm{mcd}$ at $20 \mathrm{~mA} ; 4$-degree radiation pattern
EG\&G Vactec	VTE 1291	IRED	880	170 mW	\$1.10 (1000)	Stable emission power over extended use
Electrophysics	IRE160	LED	880	100 mW	\$16.25 (1)	
Hamamatsu	$\begin{aligned} & \text { L3302 } \\ & \text { L2376 } \end{aligned}$	$\begin{aligned} & \text { LED } \\ & \text { LD } \end{aligned}$	$\begin{aligned} & 850 \\ & 905 \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mW} \\ & 10 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \$ 275(1) \\ & \$ 137(1) \end{aligned}$	Super luminescent, low coherent noise, optimal for optical gyroscopes High-speed response, high output power, high repetition rate
Harris	F5G1	IRED	880	100 mW	\$0.75 (1000)	GaAlAs device
HEI	107-10	LED	940	75 mW	\$4.15 (1000)	Available with transistor, Darlington amplifier, or Schmitt-trigger outputs
HewlettPackard	HLMP-8150	LED	645	176 mW	\$10 (1000)	TS-AIGaAs technology, brightest LED Lamp available
Hitachi America Ltd	HL6711G	LD	670	5 mW	\$55 (1)	Bright red beam
KCK America	CRS-10	LED	$\begin{aligned} & \text { Red }=630 \\ & \text { Yellow }=585 \\ & \text { Green }=565 \\ & \hline \end{aligned}$	55 to 70 mA	$\begin{aligned} & \$ 90 \text { per } 1000 \\ & (100,000) \end{aligned}$	Surface-mount package (1210 size); bicolor combinations available
Laser Diode	$\begin{array}{\|l\|} \hline \text { SRD1300 } \\ \text { SRD8300 } \end{array}$	$\begin{aligned} & \mathrm{LD} \\ & \mathrm{LD} \end{aligned}$	$\begin{array}{\|l} 1270 \text { to } 1330 \\ 800 \text { to } 850 \end{array}$	$\begin{aligned} & 1 \mathrm{~mW} \\ & 1 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \hline \$ 4000 \text { (1) } \\ & \$ 3000 \text { (1) } \end{aligned}$	High coupled output for fiber-optic gyroscopes Short $50-\mu \mathrm{m}$ coherence length for fiber-optic gyroscopes
Marktech International	MT1018-BL MTE108CL	$\begin{array}{\|l\|} \hline \text { LED } \\ \text { IRED } \end{array}$	$\begin{aligned} & 470 \\ & 890 \end{aligned}$	160 mW 180 mW	$\$ 15(1)$ $\$ 6.40(1)$	Blue LED, silicon carbide die for increased brightness and reliability TTL I/O for digital transmissions, plastic lens cover gives uniform light
Micro Switch	SEP8505	IRED	930	25 mW	\$0.45 (10,000)	Transfer-molded T1 eliminates mold-parting line in optical area
Motorola Semiconductor	$\begin{aligned} & \hline \text { MLED71 } \\ & \text { MLED930 } \end{aligned}$	$\begin{aligned} & \text { IRED } \\ & \text { IRED } \end{aligned}$	$\begin{aligned} & 940 \\ & 900 \end{aligned}$	$\begin{aligned} & 90 \mathrm{~mW} \\ & 250 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \$ 0.34(1000) \\ & \$ 0.78(1000) \end{aligned}$	Molded lens; clear epoxy package GaAs; low 10-mA drive current
Optek Technology	OP224	IRED	890	150 mW	\$1.04 (1000)	Small, hermetic package for high-density mounting
Philips Components	CQL80/D	LED	675	5 mW	\$48 for 5000	Easily visible red light
Siemens Optoelectronics	L(X)K 382	LED	$\begin{aligned} & \hline \text { Red }=635 \\ & \text { Yellow }=586 \\ & \text { Green }=565 \\ & \hline \end{aligned}$	300 mW	$\begin{aligned} & \$ 0.60 \text { to } \$ 0.64 \\ & (5 \mathrm{k}) \end{aligned}$	Also available in orange and deep green; provides diffuse, uniform light
Texas Instruments	TIL23	LED	940	100 mW	\$1.45 (100)	Small-size permits matrix assembly in printed-circuit boards
Three-Five Systems	TEMT880	IRED	880	240 mW	\$0.65 (100)	5 mm plastic package; high power output; silicon phototransistors

TECHNOLOGY UPDATE

Optoelectronic devices

ess to produce LEDs that the company claims are the brightest available. Its HLMP-8150 has a viewing angle of 4°, a typical luminous intensity of 15,000 millicandela (mcd), and a minimum luminous intensity of 8000 med . A comparable GaAs LED is 12 to 15 times less bright, according to HP. Yet not every manufacturer believes that aluminum is a necessary ingredient for LEDs-Motorola has just developed a proprietary GaAs process that the company claims will minimize output-power degradation over time.

Another type of LED is the laser diode. Its physical dimensions and optical properties create a highly directional and nearly monochromatic beam of photons that makes this device well suited for applications involving precise alignment, fiber optics, and interferometry (the measurement of wavelengths, wave velocities, distances, and directions).
To convert the light emissions from any LED into electrical signals, an optoelectronic detector, such as a photodiode, phototransis-
tor, or photodarlington, will absorb the incident photons and produce a proportional current flow. Table 2 lists a representative sample of photoreceptors.

Photodiodes use a reverse-biased pn-junction and produce response times in the submicrosecond range. And as long as a photodiode doesn't exceed its avalanche voltage, it behaves as a constant current generator. Because the spectral response of a photodiode relates to the semiconductor material it is made of and the depth of its pn-junction, a manufacturer can match the sensor to a specific wavelength of light.

Phototransistors give you added sensitivity control by letting you apply a biasing voltage to the transistor's base. However, under low illumination, a phototransistor may exhibit a leakage current at its col-lector-base junction. This leakage is called dark current, and to minimize its effects you must plan your circuit so that nothing will cause the transistor's base-collector junction to become reverse biased. Lowering ambient temperature also re-

Available in five colors, the Super Argus series of LEDs from Siemens emits 10 times as many photons as the manufacturer's standard LED series.
duces dark-current effects.
Photodarlingtons use two cascaded transistors to amplify the sensor's output signal and provide higher gain for low-level light detection. However, because a photodarlington contains two transistors, this device is slower than a similar phototransistor and the effects of dark current will likewise be comparably worse.
When using a photoemitter and a photosensor to detect the presence or position of an object, you can arrange for the item to pass be-

Table 2-Representative manufacturers of photodiodes (PD), phototransistors (PT), and infrared sensors (IS)

Manufacturer	Model	Type	Temperature range ($\left.{ }^{\circ} \mathrm{C}\right)$	Price	Features
EG\&G Vactec	VTH2090	PD	-20 to 60	\$43 (1)	$10 \mathrm{~mm} \times 10 \mathrm{~mm}$ detecting area
Electrophysics	7215	IS	-20 to 50	\$1045 (1)	Imaging viewer makes IR sources visible for alignment and trouble-shooting
Hamamatsu	S1337	PD	-20 to 60	\$30 (1)	UV to IR spectral response, high precision, large active areas
Harris	L14F1	PT	-55 to 150	\$1.50 (1000)	Photodarlington device mounted in T018-type hermetic package
Hitachi America Ltd	HR8101	PD	-40 to 80	\$7.35 (1)	Detects light wavelengths from 600 to 900 nm
Micro Switch	SDP8600	IS	0 to 100	\$0.88 (10,000)	Integral voltage regulator, Schmitt Trigger logic output
Motorola Semiconductor	$\begin{aligned} & \text { MRD701 } \\ & \text { MRD821 } \end{aligned}$	$\begin{aligned} & \hline \text { PT } \\ & \text { PD } \end{aligned}$	$\begin{aligned} & -30 \text { to } 70 \\ & -40 \text { to } 100 \end{aligned}$	$\begin{aligned} & \$ 0.28(1000) \\ & \$ 0.62(1000) \end{aligned}$	Low cost, miniature plastic package Infrared filter rejects visible light
Optek Technology	$\begin{aligned} & \text { OP600A } \\ & \text { OPL800 } \end{aligned}$	$\begin{aligned} & \hline \text { PT } \\ & \text { IS } \end{aligned}$	$\begin{aligned} & -65 \text { to } 125 \\ & -55 \text { to } 110 \end{aligned}$	$\begin{aligned} & \$ 0.87(1000) \\ & \$ 2.14(1000) \end{aligned}$	Can mount on a printed-circuit board Includes a photo diode, linear amplifier, and a Schmitt Trigger on chip
Philips Components	CPF30	PD	-20 to 80	\$55 for 1000	Planar technology
Three-Five Systems	TDET600	PT	-25 to 85	\$0.50 (100)	T1 plastic package, spectral match for GaAs \& GaAIAs emitters

The ADSP-2100.
-The ADSP-2100 computes a 1024-point complex FFT in less than 3 ms with a total memory requirement of less than 4 k bytes. It also computes a 2×22 D convolution in $1.2 \mu \mathrm{~s}$ and executes ADPCM in only $68 \mu \mathrm{~s}$.
-The ADSP-2100 can access two words of external data every cycle.
-The ADSP-2100 supports zerooverhead loops of any length. So our looped code - which is the easiest to write-is also the fastest.

- The ADSP-2100's two dedicated data address generators can autoincrement/decrement by any offset value, and they have automatic circular buffer wraparound.
- The ADSP-2100 Assembler supports the easiest language in the business. So you code a multiplication/accumulation the same way you'd write the original algorithm. For example, the algebraic $R=R+X * Y$ codes as $M R=M R+M X 0 *$ MY0.

The TMS320C25.

- The TMS320C25 takes more than three times as long to compute the same size FFT, while it devours over 47 k bytes of memory. ${ }^{1}$
- The TMS320C25 is limited to one access of external data every two cycles.
-The only zero-overhead loop the TMS320C25 can execute is one instruction repeated no more than 256 times.
- Circular buffers? TheTMS320C25 doesn't support them.
- The TMS320C25 is programmed with 133 mnemonics like SPAC, BGEZ,MACD, XORX, and SBRK. A multiplication/accumulation is coded as MACD $>\mathrm{FF} 03^{*}$ - . While this might not scare the XORX out of you, it's not the easiest thing to debug or maintain.

We're not saying the TMS320C25 is slow.But even if it were twice as efficient as it is now, it'd still be a lot slower at DSP than the ADSP-2100. The fact is, the ADSP-2100 is out in front of the TMS320C25 in performance, readability of code, and development tools.

Just how far out front? Get our free technical booklet and read about it. Or better yet, get an ADSP-2100 sample kit for only $\$ 49.95$ and see for yourself. To request either, call DSP Marketing at 1-617-461-3771.

[^5]
TECHNOLOGY UPDATE

Optoelectronic devices

tween the optoelectronic pair and break a beam of light between them. Intrusion alarms and smoke detectors operate under this principle. Or if the item is highly reflective, such as a gear's polished metal teeth, you can bounce the photon beam off the object. The sensor will only receive a signal when the object is positioned in such a way that it reflects the beam correctly.

Of course, shiny metallic objects aren't the only things that reflect light. You may want to consider using an optoelectronic pair to determine fluid level in a reservoir. By bouncing the emitter's light beam off the surface of the liquid to reflect the beam back to a detector, your circuit can monitor the fluid's dissipation without contaminating the liquid or the sensor.

Another type of optoelectronic device is the optically coupled isolator, commonly referred to as either an optocoupler or an optoisolator (Table 3). This component provides electrically isolated signal transference by permitting an input signal
to energize the device's internal infrared LED and passing the signal via photons to an internal photosensor, which in turn creates an output signal. In this way, optocouplers can protect low-current and lowvoltage logic circuits (or human beings) from high-power lines, such as the 120 V ac found in homes. Or you can use an optocoupler to prevent noise from traveling from one circuit to another, eliminating the need for a common ground when linking the two.

Again, using photodarlingtons instead of phototransistors provides CTRs as high as 1000% and circuit isolation from voltage surges as great as 2500 V rms. Such isolation was previously provided by mechanical devices such as relays and isolation transformers. Mechanical relays generally provide better circuit isolation than optocouplers can offer. However, unlike relays, optocouplers have no moving parts, faster switching speeds, and longer operating life.

The optocoupler's small size, low

You can select from three sensitivity levels when you design with these tiny NPN silicon phototransistors from Optek.
cost, and solid-state construction make it useful in telephone switching equipment, industrial motors, and process-control solenoids. You can also use optocouplers as an interface between different families of digital logic circuits.

For example, an H11K2 coupler in a surface-mountable 6-lead package from Harris Semiconductor costs $\$ 1.13$ (1000) and has a $20-\mu$ sec typ turn-on time and $40-\mu$ sec turn-

Table 3-Representative manufacturers of optocouplers (OC), optical switches (OS), and interrupter/reflector modules (IRM)

Manufacturer	Model	Type	Temperature range (${ }^{\circ} \mathrm{C}$)	Price	Features
C\&K/Unimax	LS	OS	-25 to 65	\$1.75 (500)	External, adjustable slide tab reverses output logic level
EG\&G Vactec	VTR24F1	IRM	-40 to 85	\$3.20 (1000)	Detects diffuse and low-reflectance surfaces
Hamamatsu	S3599	OS	-25 to 60	\$8 (1)	Background rejection of up to 10,000 lux; synchronous detection on IC
Harris	H11K1	OC	-55 to 100	\$1.98 (1000)	Bidirectional dc and ac switching with single-polarity control signal
HEI	105-36	OS	0 to 70	\$22.36 (1000)	Dual Schmitt-trigger output
Hewlett-Packard	HPCL-55XX	OC	-55 to 125	From \$29	Hermetically sealed; dual-channel; ceramic LCC packaging
Marktech International	MTPC26010	OC	0 to 70	\$3.40 (1)	Internal Faraday shield reduces effects of capacitive coupling
Micro Switch	HOA0902	OS	0 to 85	\$4.34 (10,000)	Integrated quadrature logic controls speed and direction of output
Motorola Semiconductor	MC104 MOC70W1	$\begin{aligned} & \text { OC } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & -55 \text { to } 100 \\ & -40 \text { to } 85 \end{aligned}$	$\begin{aligned} & \$ 0.74(1000) \\ & \$ 2.55(1000) \end{aligned}$	$25.3-\mathrm{mA}$ (max) output collector current Dual-channel interrupters sense direction of motion
Optek Technology	HCC240	OC	-55 to 125	\$9.36 (1000)	Surface mountable
Siemens Optoelectronics	6N135	OC	-55 to 100	\$1.04 (1000)	Operates at 1M bps; TTL compatible; 2-MHz bandwidth
Texas Instruments	TIL193	OC	-40 to 85	\$1.87 (100)	Four-channel devices in 8-pin DIP

The ADSP-2101

- The ADSP-2101 builds on the ADSP-2100 architecture, so it's upwardly code compatible.You can quickly port ADSP-2100 code to the ADSP-2101. Or use our C Compiler for a fast start.
- The on-chip memory of the ADSP-2101 integrates 64 k bits of the fastest SRAM available today with an architecture designed for signal processing. This allows the processor to fetch two operands and the next instruction on every cycle for sustained performance.
- The ADSP-2101 has two full duplex serial ports, hardware companding, timer, low-power IDLE instruction, full-speed incircuit emulator, and more.

Andnow withour ADSPP210, there's justno comparison.

We're not saying all other DSP processors are slow and inefficient. But the ADSP-2101 is already enabling hundreds of DSP engineers around the world to create their next generation products. The fact is, our DSP processor family is out in front in performance, readability of source code, and development tools.

Get the facts on the ADSP-2101 by sending in the reply card. Or better yet, call DSP Marketing at 1-617-461-3771 and request a sample today.

Analog Devices, Inc., One Technology Way, P.O. Box 9106 , Norwood, MA 02062-9106. Offices and applications support available worldwide. Austria: (222) $885504-0$; Belgium: (3) 237 1672; Denmark: (42) 845800; France: (1) 4666-25-25; Holland: (1620) 81500; Israel: (52) 911415; Italy: (2) 6140977, (2) 6143484, (2) 6143459; Japan: (3) 263-6826; Korea: (2) 5543301; Sweden: (8) 282740; Switzerland: (22) 7315760 ; United Kingdom: (932) 232222; West Germany: (89) 570050; U.S. and all others: (617) 329-4700.

TECHNOLOGY UPDATE

Optoelectronic devices

off time for rapid switching. The maximum leakage current for this device is 200 nA , but it can carry as much as 150 mA rms ac and has a minimum breakdown voltage specification of 250 V . Voltage isolation peaks at 3535 V for surges and 3180 V under steady-state conditions. The back-to-back photodarlingtons used in this component make it immune to the high levels of commutating $\mathrm{dV} / \mathrm{dt}$ often encountered in the power-line-switching applications it suits. Commutating $\mathrm{dV} / \mathrm{dt}$ is a phenomenon that causes a current spike, which turns a device
on every time you try to turn it off.
Like the advances in semiconductor technology, evolving package styles have also resulted in device improvements. Plastic packages are not only less expensive than metal cans but may also provide functional improvements.

According to Optek, a typical plastic LED has approximately 40% more output power than a comparable metal-encased device. This difference is due in part to the metal case absorbing some of the device's photons and its two-sided glass lens reflecting some photons back into
the device. In contrast, a plastic LED uses its surface as both a casing and a lens, so few photons become trapped within.

In general, plastic optoelectronic devices have larger, more thermally conductive leads than their metal counterparts. Plastic components typically have 0.020×0.020 in. copper-silver leads. Metal devices frequently contain leads that measure $0.017-\mathrm{in}$. in diameter and are composed of a nickel-iron alloy. As a result, plastic-enclosed devices offer a thermal path that is approximately 40% better, producing com-

For more information . . .

For more information on the optoelectronic devices discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Whenit comesto afforrableDSP, no one has itdown like AnalogDerices.

- At 10 MIPS, the ADSP-2105 is the fastest DSP in its price category, and it's even faster than many other DSPs costing a lot more. Plus the price is the same whether you buy 100 or 100,000
-The ADSP-2105 builds on the high performance ADSP-2100 family architec ture, so it's code compatible. You can quickly port ADSP-2100 or ADSP-2101 code to the ADSP-2105. Or use our C Compiler for a fast start.
- Not only is the ADSP-2105 code compatible,
it's also pin compatible with the ADSP-2101. So it provides a complete upgrade path to higher performance.
-The ADSP-2105 packs plenty onto one chip, including 1024 words of program RAM, 512 words of data RAM,full serial port,hardware companding, timer and more.
- It's easy to get the ADSP-2105 up and running with our inexpensive EZ-KIT, a complete software and hardware design package.

IntroducingtheADSP-2105 atonly $\$ 9.90$ each.

Introducing a DSP that could only come from Analog Devices, the ADSP-2105. An exclusive because it combines the high performance of our ADSP-2100 family with an unprecedented price in DSP - just $\$ 9.90$ each. So now you can consider the power of DSP in a host of new applications.

Just how well does the ADSP-2105 combine low price with high performance? Find out for yourself by ordering our EZ-KIT from your local Analog Devices sales office today. Or call DSP Marketing at (617) 461-3771.

D

Optoelectronic devices

parably higher power dissipation ratings.

However, metal cases still maintain an edge over plastic equivalents with respect to operating temperature. Metal parts typically have temperature specifications ranging from -55 to $+150^{\circ} \mathrm{C}$; plastic cases seldom offer specs permitting temperatures in excess of $+100^{\circ} \mathrm{C}$. Yet, new plastics that endure temperatures reaching $130^{\circ} \mathrm{C}$ are emerging and may soon nullify this advantage of metal-cased devices.

Keep track of the players

In addition to all these changes in optoelectronic technology, the industry itself has experienced a great deal of flux. In 1988, Optek Technology bought TRW's optoelectronic division. Optek jumped from $\$ 12.9$ million in total assets to more than $\$ 48$ million, making it one of the industry's leading manufacturers of photoelectronic devices and semiconductor chips.

General Instrument Corp, another major manufacturer of optoelectronics, has changed its name to Quality Technologies. General Electric's Solid State division became a semiconductor sector within Harris Corp. Clairex Electronics of Mount Vernon, NY and Electro Corp of Sarasota, FL are now Senisys in Plano, TX. However, history shows that consolidation and shakeout are part of the normal maturation process within the semiconductor industry. These changes typically result in financially stronger companies that focus on advancing the current state of technology, which may in the end benefit the user.

Article Interest Quotient
 (Circle One)

High 503 Medium 504 Low 505

Packing 5 full watts of reliable power into a space-saving $1.1 \times 2 \times .46^{\prime \prime}$ board-mount case.

Imagine a Board Mounted Power Module (BMPM) this small with a full 5 W output, equaling 4.9 W per cubic inch. Think of the design flexibility and savings in board space. The reduced design time. The lower stocking, service and installation costs.

Designed to help you utilize AT\&T Bell Laboratories' innovative distributed power architecture, our BMPMs incorporate reliability-enhancing product and system features. They operate at an efficiency rate surpassing 80% with ambient temperature tolerances up to $85^{\circ} \mathrm{C}$, reducing heat dissipation and improving reliability.

Leading edge AT\&T design and manufacturing techniques enable our entire line of catalog BMPMs to meet Bellcore standards, backed by a 3 -year warranty.

All 5W to 20W components are pin-forpin compatible with industry standards. Most are available with single and multi-output

components of success.

 voltages and international input ranges.Cut power down to size with AT\&T BMPMs. Call for our catalog of 5W to 150W modules: 1800 372-2447, ext. 591.

If your CAE tools are telling you too little too late, consider this news from Teradyne. Now you can capture and analyze complex ASIC and VLSI board designs with unprecedented accuracy and ease, using our Vanguard ${ }^{\text {TM }}$ schematic entry software and LASAR
 simulator in Teradyne's MultiSim ${ }^{\text {TM }}$ environment. Here are CAE tools that work the

LASAR's accurate worst-case timing analysis means you won't be held up by faulty prototypes.
way you like to work. They'll help you move quickly between schematic and simulation, and let you control simulation interactively. You'll get immediate feedback at every step.

Click on nodes you want to monitor and watch signal activity "live" on the schematic or in the logic analyzer window. By setting breakpoints, you can freeze the action when results aren't what you expect. In no time, you'll know where your design is

CAE for people to see how their

working and where it's not.
Got a glitch? Need to invert a signal? Make cuts or jumps on schematic interconnections. Add or delete components.

You'll see the effects of design changes instantly because we shortcut compilation for the modifications you make most frequently. This means you can try out "what-ifs" with record speed, reducing design-loop time from tens of minutes to tens of seconds.

Best of all, with CAE tools from Teradyne you can be sure that what

[^6]

who can't wait designs work.

you see in design is what you'll get in manufacturing. How so? Because our LASAR system is more accurate than other event-based simulators. LASAR's

operation of gate arrays, high-speed
micros and time-multiplexed buses, including the effects of process variations. You can zero-in on troublespots efficiently, and be confident that The same user interface LASAR-verified and file format on PCs, Suns and VAXs simplifies training and communications when you're mixing platforms. designs will workreliably and repeatably.

If you're in a

Interactive commands execute instantly so it's easy to try out new ideas.
hurry for results, you'll appreciate how easily Teradyne
tools integrate into your current design process. EDIF, VHDL and commercialtool interfaces let you build on existing databases. Then tie all your design and analysis tools running on PCs, Suns ${ }^{\circ}$ or VAXs ${ }^{\text {TM }}$ into one multiwindow design environment using Vanguard's graphical framework.

So don't wait. For more information about how our CAE
tools can work for you, call Daryl Layzer at (617) 482-2700, ext. 2808. Or write

Teradyne, 5155 Old
Ironsides Drive, Santa Clara, CA 95054.

LASAR lets you combine structural, behavioral, cnd hardware modelsfor simulation efficiency with exceptional accuracy.

IERADV过

Mixed-signal ASICs

NR

Face it, a lot of designers have mixed feelings about mixed-signal ASICs.

They know they need a higher level of integration on their silicon. But they also know that mixed-signal ASICs can be a challenge. A big one.
For these designers, NCR meets the challenge.
NCR has digital and analog libraries - characterized over commercial and military temperature ranges with functions ranging to 12 -bit A/Ds and CMOS processes from 1.5 to submicron. With user friendly software tools to put them together.

And, with NCR DesignSim A \& D, a comprehensive Analog/Digital System Simulation Package, you may simulate the individual ASIC or the entire system, at speed!
NCR also provides off-the-shelf kit parts for in-depth system evaluation, and custom designed cells for special requirements.
NCR can deliver a few prototypes or a few hundred thousand parts all manufactured with the same controls and processes that assure you the most reliable products available.
And in addition, NCR has a mixed-signal test environment created specifically to test Analog/Digital ASICs without compromising either domain.

All this has resulted in NCR being ranked \#l in worldwide cellbased mixed-signal ASIC suppliers*.
And that's why designers who know NCR, don't have mixed feelings about mixed-signal ASICs.
Call 1-800-334-5454 for complete information.
*Integrated Circuit Engineering, 1988/1989

Worldwide Sales Headquarters
3130 De La Cruz Boulevard, Suite 209 Santa Clara, California 95054 1-800-334-5454

without mixed feelings

Asia/Pacific Sales Headquarters
2501 Vicwood Plaza
199 Des Voux Road
Central Hong Kong
8528596044

SHOW
PREVIEW

Electronica to stress SMT, ASICs, power electronics

Raymond Boult

For professionals in the fields of electronics components and assemblies, the place to be this fall is the Munich, Germany, Trade Fair Center. That's where the Electronica 90 show will be held on November 6 through 10 . The organizers say the exposition will feature a diverse group of products from manufacturers all over the world. For a preview of products that will be exhibited, turn to pg 118.(You'll also find many more Electronica products detailed in EDN's October 25 issue.)

As was previously the case-this year marks the 13th time that the biennial Electronica trade fair has been held-the exhibition divides the products into three groups: electronic components in Section A, electromechanical components and subsystems in Section B, and equipment for development and quality control in Section C. The chart on pg 114 details where in the Trade Fair Center you can find the products that interest you the most.

What's the gist?

Several major themes will dominate the sessions and conferences at the show, including surfacemount devices (SMDs) and surfacemount technology (SMT); applica-tion-specific integrated circuits
(ASICs); and electromagnetic compatibility (EMC). Surface mount will receive a lot of attention for some pretty obvious reasons. Forecasts from many electronics companies indicate that 50% of all electronics components will be suitable for SMT by the end of next year, making the technology the mounting technique of the ' 90 s . Indeed, it is already firmly entrenched in the computer, telecommunications, and aerospace industries.
Circuit-board-assembly machines with a capacity of placing some 40,000 components per hour are thus something to look out for at Electronica 90. Moreover, the combination of SMT and multilayering can result in an 80% reduction in pc-board surface area, another advantage for miniaturization-conscious users. For SMT's potential to be fully realized, however, corresponding developments must take place in CAD systems to enable quick and easy design of circuit boards. This need is highlighted by the complexity of the latest ICs, the fine-pitch packaged versions of which can have more than 400 leads.

With regard to the future of SMT, the promising "chip-onboard" technique for mounting spe-cial-purpose unpackaged semiconductors makes use of either the
"chip-and-wire" method or "flip chips" with built-in solder globules on the chip surface. Straws in the wind also indicate that new basic materials may soon be developed, which could revolutionize SMT.

As far as ASICs are concerned, Electronica 90 will give novices and experts the chance to update their knowledge of this technology. You will learn how complex projects can be implemented quickly and economically, notably by means of direct laser writing onto the chip instead of using costly masks. Dataquest, a market-research company, expects the European ASIC market to be worth $\$ 1.7$ billion by 1993, double the 1987 figure; the value of ASICs incorporated into terminal devices in Germany alone by 1993 will amount to $\$ 400$ million. ASICs' main technical advantage is, of course, that the complex functions of an entire pe board can be implemented on one compact chip, resulting in reduced transmission lengths and times when compared with discrete-component solutions. An additional advantage is the practical impossibility of economically copying ASICs-a benefit that is highly regarded by small and me-dium-sized companies whose livelihood depends on protecting their system know-how. Electronica 90 will give coverage to a specific type

Munich, Germany-site of Electronica 90.
of ASIC-programmable logic devices (PLDs).

The show will also feature practical solutions to problems involving electromagnetic compatibility (EMC) in microelectronic devices used in the aerospace, military, computer, telecommunications, industrial, medical, and automotive sectors. A British study predicts that the European market for prod-
ucts and services to control electromagnetic interference (EMI) will quadruple within the next 5 years to reach $\$ 800$ million by 1994 . Germany is expected to be the largest consumer (37\%), followed by the UK (31%). These products include filters, suppressors, shielded enclosures, conductive coatings and sealing materials, test and calibration equipment, and special plug
connectors. A variety of products related to EMI and sessions covering EMC will be featured at the trade fair.

Also slated for innumerable exhibitions and detailed coverage at Electronica will be passive components, power electronics, and ana\log ICs. The importance of passive components, including resistors, capacitors, coils, and their associated ferrite cores, is somewhat obscured by the current worldwide emphasis on the development of key active components, such as microprocessors and memory chips. Nevertheless, the passive-component market of about $\$ 20$ billion is increasing at about 3\% per year. Applications are primarily in the industrial (29.2%), telecommunications (20.9%), and consumer and automotive (16.2% each) sectors.

Although it's nonsense to speak of more powerful passive components, the requirements of increased miniaturization and economical positioning methods look set to influence at least the physical form of these devices. For instance, the relatively new insert mount technology, originally developed for the mobile-communications market, allows even higher component densities than SMT. Recent developments include $2.2-\mathrm{mm}$-long cylindrical resistors with a $1.1-\mathrm{mm}$ diame-

SHOW

PREVIEW

ter, which can be mounted and soldered vertically in pc-board holes.
In the field of power electronics, you'll be able to see components and ICs, such as triacs, thyristors, rectifiers, power transistors, and driver circuits. These devices are established in industrial automation and process control, as well as in the automotive and computer industries. Smart-power ICs combine power components with analog and logic functions (several hundred gates), and serve as links between microprocessors and medium-power (10 W to 3 kW) electrical loads, such as lamps, motors, and power packs. These ICs can detect faulty switching, high and low voltages, short circuits, overloads, and overheating and can disconnect modules for safety reasons. Soon-to-be-introduced power modules, with soft-ware-configurable output stages, should increase the flexibility of these essentially application-specific devices.

Digital vs analog

Although the electronics industry as a whole is justifiably preoccupied with digital techniques, analog technology allows recording engineering variables, such as pressure, temperature, voltage, and current, and preparing their values for subsequent digital processing. Electronica 90 will provide visitors with the latest information on analog devices, including A/D converters (ADCs) and D/A converters (DACs), operational amplifiers, comparators, voltage/frequency and frequency/voltage converters, filters, and multiplexers.

Increases in complexity, speed, accuracy, and power efficiency are the trends that govern the development of analog components. The increased complexity of ADCs and DACs, for example, lets you integrate more and more functions, such as automatic self-compensation circuits or sample-and-hold amplifiers, on one chip. Meanwhile, pro-
grammable resolution and gain make the components themselves more user friendly. Furthermore, many DACs now feature first-in/ first-out (FIFO) memories with associated control logic, as well as digital signal processor (DSP) interfaces.

In the case of op amps, the trend toward less complex, more user-
on a variety of topics of interest to electronics professionals. On Tuesday, November 6, you can attend the Installation and Connection Engineering and Inspection Cost Optimization conferences. Scheduled for Wednesday, November 7, are the International Power Electronics Congress, and the Microelectronic Sensors and Product Liability Con-

friendly circuit designs is overshadowed by the need for higher accuracy, which implies better offset and drift characteristics. Nevertheless, analog components cannot escape the trend toward the integration of complex functions onto a single ASIC chip. Indeed, many semiconductor manufacturers already offer analog functions such as library elements and function blocks, which can be designed into complex ICs using an appropriate computerized workstation. A workstation also allows simulation of analog functions before the chip actually goes into production. There is, however, an economic limit to the integration of different technologies on a single chip, ensuring the availability of a range of analog ICs for the foreseeable future.

Along with the vast number of products on display, Electronica 90 will feature a program of sessions
ferences. And on November 8, the Quality Assurance Symposium and the Microsystems Engineering and Electromagnetic Compatibility conferences are scheduled. All conference speeches will be simultaneously translated into English or German, as appropriate.
Chaired by Professor E Schäfer of Aachen University, Germany, the Installation and Connection Engineering conference will focus on problems and solutions related to the further miniaturization of plug connections. Keynote speakers include Paul Gazzara of Thomas and Betts International, UK ("Future developments for grids below 2.54 mm"), Harald Jürschik of EPT, Germany ("Aspects of press-fit technology"), and Franz Leitl of S-Team Elektronik GmbH, Germany ("Transmission problems in connection systems of the future").

Dr Hans Otto Haller, of EVP

It wasn't easy. But we did it. Made the long-time best-selling IBM ${ }^{\circledR}$ PC-based interactive CAE tool even better.

Take modeling power. We've significantly expanded math expression capabilities to permit comprehensive analog behavioral modeling. And, beyond Gummel Poon BJT and Level 3 MOS, you're now ready for nonlinear magnetics modeling. Even MESFET modeling.

Analysis and simulation is faster, too. Because the program's now in "C" and assembly language. That also means more capacity - for simulating even larger circuits.

As always, count on fast circuit creation, thanks to window-based operation and a schematic editor. Rapid, right-fromschematics analysis - AC, DC, fourier and transient - via SPICE-like routines. The ability to combine digital/analog circuit simulations using integrated switch

Transient analysis

Schematic editor

Monte Carlo analysis
models and parameterized macros. And stepped component values that streamline multiple-plot generation.

And don't forget MICRO-CAP III's extended routine list-from impedance, Nyquist diagrams and BH plots to Monte Carlo for statistical analysis of production yield. The algebraic formula parsers for plotting virtually any function. The support for Hercules, CGA, MCGA, EGA and VGA displays. Output for plotters and laser printers.

Cost? Still only $\$ 1495$. Evaluation versions still only $\$ 150$. Brochure and demo disk still free for the asking. Call or write for yours today. And see how easily you can get ideas up and flying.

Byctum

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387

SHOW

PREVIEW

GmbH, Germany, will chair the Inspection Cost Optimization conference. The conference will feature speakers such as Perkin-Elmer's Klaus Kerle, Rohde \& Schwarz's Klaus Kundinger, and Siemens' Helmut Heiber, all from Electronica 90 host country Germany. Topics covered include utilization of CAD data for production and test, automated fixture manufacturing, reduction of time-consuming adjustments by combination testing, test depth increased by using cluster test, test cost consideration of digital simulation, and test cost optimization in manufacturing.

A truly international line-up

The second day of the Electronica 90 related-events program will feature the 5th International Power Electronics Congress. The Congress is divided into four sessions. Chaired by Mutsuo Nakaoka (Japan), Session 1 will cover integrated power semiconductors. A keynote speaker, Craig Varga of Siliconix Inc (USA), will present the simplified design of low-power universal input power supplies. That discussion will be accompanied by an overview of the automotive applications of intelligent power switches, presented by Ulrich Haase and Thomas Storck of Philips Components, Hamburg.
Session 2 will delve into power switching transistors. One of the highlights of Session 2 will be the presentation of "New IGBT (insulated gate bipolar transistor) modules with improved power loss in high-frequency PWM mode," by a group from Fuji Electric Co (Japan). That discussion will be followed by a European view of IGBTs in the presentation entitled "IGBT or bipolar transistor-facts on the application," by engineers from Siemens (Germany).

During Session 3 on thyristors, rectifier diodes, and capacitors, the spotlight will fall on newly "deregu-
lated" Eastern Europe. Harry Conrad of Dresden Technical University (Germany) along with G Toomsoo and others from the Soviet Union's Tallinn Research Institute will cover fast GaAs diodes for power electronics. Not to be outdone, B Passerini of International Rectifier Corp (Italy) is scheduled

Three sessions on quality assurance will discuss the topic from the manufacturer and customer point of view.

to tell Congress attendees about new development trends with fast power rectifiers. To close Session 3, W Schnabel, of the Germanybased Siemens Matsushita Components Corp, will give the low-down on aluminum electrolytic capacitors for power electronics.

Finally, new circuit concepts and line distortions will be focal points for a futuristic Session 4. Hong Zhang and Brian Mullhall from the UK's Surrey University will cover reversible rectifiers and integrated control of induction machines. Richard Probst of Germany's Spitzenberger \& Spies GmbH will close a very full day with a presentation on the simulation of line distortions.

Committing to quality

The Quality Assurance Symposium on Thursday, November 8the third and final day of the re-lated-events program-is a 3 -session affair, organized by the official German Quality Control and Electronic Components trade associations and Electronica 90 organizers. The first session will include H Schwerdtner of Texas Instruments Deutschland covering contractual quality assurance from the semiconductor manufacturer, and R Lünstedt of Hans Kolbe \& Co detailing reliability requirements from the customer's point of view.

Speeches during the Symposium's second session will cover supplier auditing as a means of quality assurance (by D Swann, Alcatel ITS, Switzerland), and quality agreements-key to a new dimension of supplier/customer relations (by H Sarembe and J Bachhuber, Siemens, Germany). The final session will feature presentations on future trends in incoming inspection, by H-J Seitz of Digital Equipment, Munich; incoming goods inspection of passive components within the scope of quality agreements, by G Süssbrich of Roederstein; and information flow within a company and its influence on logistics quality, by H-U Rasche of Philips, Germany.
Also on the third day will be a conference on microsystems engineering that will cover intelligent sensor systems and installation and connection engineering. The electromagnetic-compatibility conference will go over commercial EMC regulations for Europe 92 and electronics in vehicles: requirements, procedures, and measuring techniques.
As for products on display at Electronica 90, Europe's "big three" electronics manufacturersSiemens (Germany), SGS-Thomson (France-Italy), and Philips (The Netherlands)-will be present in force. These companies will exhibit many different products, including a new 16M-bit dynamic RAM and a new high-speed serial communications controller. Turn to pg 118 for a review of these and other products.

Raymond Boult is an independent journalist based in Paris, France.

Article Interest Quotient (Circle One)

High 515 Medium 516 Low 517

GLOBAL LAB" Data Acquisition software with "Hands-Off" control for the DT2831 Series.

Put down that screwdriver! GLOBAL LAB" Data Acquisition software fully supports the DT2831 Series "Hands-Off" design, so setup, installation, calibration, and maintenance are 100% mouse/menu-driven.

Once you've installed your DT2831 Series board, you can forget it. With GLOBAL LAB,'" all DT2831 operating parameters are controlled via software menus. No manual adjustments-no jumpers, no pots, no hassles! You get greater reliability, improved productivity.

In addition to supporting "Hands-Off" control, GLOBAL LAB" provides numerous data acquisition, signal processing, and display functions. For advanced signal processing, ask us about GLOBAL LAB"'s add-on STATPACK"' Signal Processing Module.
Call today for a GLOBAL LAB"' demo package.Useit with a DT2831 Series board, and we think you'll agree nothing comes close to "Hands-Off" data acquisition.
Call (508) 481-3700
In Canada (800) 268-0427
 \title{
"Stop!'Hands Off!
 \title{
"Stop!'Hands Off!
 We've got an easier, more accurate way to calibrate and configure data acquisition boards."
 -Fred Molinari, President
}

DATA TRANSLATION

[^7]International Sales Offices: Australia (2) 699-8300; Belgium (2) 466-8199; Brazil $11240 \cdot 0598$; Canada (416) 625-1907; China (1) 868.721×4017; Denmark 42 274511; Finland (0) 3511800 ; France (1) 69077802; Greece (1) $361-4300$; Hong Kong (5) 448963; India (22) $23 \cdot 1040$; Israel 52.545685 ; Italy (2) 82470.1; Japan (3) 502.5550 , (3) 5379.1971 , (3) 355-1111; Korea (2) 718.9521; Netherlands (70) 399.6360; Norway (2) 5312 50; Poland (22) 580701 ; Portugal (1) 545313 ; South Africa (12) 803.7680; Spain (1) $555 \cdot 8112$; Sweden (8) 7617820 ; Switzerland (1) $723-1410$; Taiwan (2) 3039836

Electronica 90 Products

Communications Controller With Buffer Management
The MK5021Q single-channel HDLC serial communications controller (SCC) can operate with data rates as high as 7 M bps. It performs buffer management internally to reduce the load on the host processor. The data buffer is based on independent transmit and receive circular buffers. The user can determine which portion of a 16 M -byte address range the SCC's circular buffers will occupy. Buffers can be concatenated for long messages, and a programmable byte-swap feature ensures compatibility with most 8 and 16 -bit microprocessors.

On-chip testing facilities include four loopback configurations and a self-test program for nearly all the device's major blocks. The MK5021Q has the same footprint and host-processor interface as the company's other controllers, and
thus allows a common design approach for all data-communications requirements. $\$ 24.50$ (1000).
SGS-Thomson Microelectronics, 20041 Agrate Brianza, Via C Olivetti 2, Italy. Phone 39396555597. Booth No 24 C14. Circle No. 716

Laser Module

The LSC3300 laser is a fiber-optic light source that operates in the $1280-$ to $1300-\mathrm{nm}$ band. The device is suitable for telecommunications, LAN, fiber-optic-sensor, and instrumentation applications, for ex-
ample, where extreme temperatures are not a factor. The internal semiconductor lasers are based on InGaAsP buried heterostructure technology. Typical output is 200 $\mu \mathrm{W}$ and modulation capability is 1 G bps max. The device includes a photodiode for monitoring the laser output. In a 14 -pin plastic package, £195 (500).

BT\&D Technologies, Whitehouse Rd, Ipswich IP1 5PB, UK. Phone 44473 42250. Booth No. 24 B17A.

Circle No. 717

Isolated Dual Transmitter/ Receiver Interface Circuit

The NM232DD electrically isolated dual transmitter/receiver interfaces data-terminal equipment with datacommunications equipment. The device includes two data-receive and two data-transmit channels, each of which is TTL/CMOS com-

The only chip we can't program.

With Digelec programmers you can program devices of all major semiconductor manufacturers. Consider four additional reasons to choose Digelec:
Choose Digelec for friendliness - Digelec programmers are easy to operate and lightweight. Choose Digelec for cost-effectiveness - Compare features and price. You won't find any better. Choose Digelec for up-to-date design capabilities - Regular software updates
 support latest device technologies.
Choose Digelec for your application -
We've got the model you need. Universal or dedicated Memory/Logic programmer for R \& D, Gang/Set orln-Circuit for production, and PC-based for budgetary applications.
Got a chip you need to program? Call (818)701-9677 in California or toll-free 1-800-367-8750. We'll respond immediately.
USA: Digelec Inc., 20144 Plummer St., Chatsworth, CA. 91311 Fax: (818)701-5040
W. Germany: Digelec GmbH, Brudermühlstrasse 42, 8000 Munich 70Tel: (089)776-098 Fax: (089)725-9164

digelec 1
 Supports Vêvery chip

SBE ...At the Core of WAN Interface Solutions

The SBE VCOM-4 Multiprotocol Communications Controller . . . today's bigh-performance, cost effective WAN interface. For price-performance in a single VMEbus communications controller, nothing equals the new SBE VCOM-4.

This exclusive SBE card features four full-duplex, independently programmable serial channels. Yet, it takes up only one VMEbus slot and provides twice the throughput of conventional boards. A complete implementation of X. 25 is available ported to the VCOM-4, which speeds your product to market.

The result: an unmatched WAN interface for VME-based hosts, front-end processors, and data/ voice networking systems, including: Two channels at T1 speeds. - All four channels can operate with sustained throughput at speeds up to 768 Kbps , interfacing to fractional T1 services or 56/64 Kbps lines. - Each communications channel can be independently configured to support HDLC, SDLC, Bisync, Async.

Turn to SBE and the VCOM-4 for the core of your VMEbus WAN product design application. For fast action, contact SBE, Inc., 2400 Bisso Lane, Concord, CA 94520, or call 1-800-347-COMM.
See Us At Buscon East Booth \#419
CIRCLE NO. 63

Electronica 90 Products

patible at the logic connections and EIA-232-D and CCITT V. 28 compatible at the interface boundary.
A single 5 V supply powers all functions on either side of the isolation boundary; no external components are needed. A low-power shutdown mode and high impedance state for receiver inputs are pin con-
trolled. The isolation voltage level is 1500 V rms for 1 sec . The operating temperature range is 0 to $70^{\circ} \mathrm{C}$. In a 24 -pin DIP, £24 (500).

Newport Components Ltd, Tanners Dr, Blakelands North, Milton Keynes, MK14 5NA, UK. Phone 44 908 615232. FAX 617545. Booth No. 1 A05.

Circle No. 718

16M-Bit Dynamic RAM

Samples of this company's longawaited 16 M -bit dynamic RAM will be on display at Electronica. The $144-\mathrm{mm}^{2}$ silicon chip integrates more than 33 million components; it is fabricated using $0.6-\mu \mathrm{m}$ CMOS technology. The chip is currently entering pilot production under reference number HYB 511610-60/80.

Siemens AG, Postfach 1012 12, D-8000 Munich 1, Germany. Phone 4989 2340. FAX 2342824. Booth No. 2 E07 and 23 A4.

Circle No. 719

300-Baud Modem

The S3531 is a single-chip CMOS device for stand-alone use or for direct design into data-terminal equipment. The device furnishes full-duplex operation using Bell 103 or CCITT V. 21 protocols; it also has a built-in RS-232C serial interface. The modem features transmit and receive filtering; answer/originate mode selection; and digital and analog loopback test modes. Applications include office automation, laptop computers, and alarm systems. 6 DM $(500,000)$.

Austria Mikro System International GmbH, Schloss Premstätten, A-8141 Unterpremstätten, Austria. Phone 43313636 66-0. Booth No. 19 A12. Circle No. 720

Design Data Library For Rad-Tolerant Arrays

MBRT (MHS MB Series Radiation Tolerant) is a new computerized de-sign-data library for a family of dou-ble-metal CMOS gate arrays with very low power consumption for ra-diation-tolerant applications. The MBRT library, which is supported by SDS and HILO tools on VAX or Sun hardware, covers a range of cells that can operate under harmful radiation. The n and p transistors on which the cells are based have an effective length of $1.5 \mu \mathrm{~m}$. Operational frequencies can reach 35 MHz at 100 k rads.

WHY MORE COMPANIES ARE PLUGGING US INTO THEIR DESIGNS.

Today the Rayovac 844 computer clock battery is specified by 23 system architects worldwide. Its proven reliability safeguards the configuration file memory in 286/386/486 personal computer products, especially in power-down situations.

Maintaining voltage is just one way the Rayovac 844 delivers superior reliability. It also offers long life, a 3-5 year span, plus safety no

Power Transition Reliability		
Power On	Power Off	

The 844 ensures IC voltage above the critical 3.0V level maintaining clock stability and configuration file memory.
lithium battery can match.
The 844 is compatible with industry standard chip
sets: Chips \& Technology; VLSI Technology; Western Digital; Zymos and Intel. And it's made in the U.S.A., with on-time delivery available around the world.

So plug added reliability and service into your design. Specify a Rayovac 844. Call Rayovac's Technical Sales \& Marketing Department for complete information and battery specifications at 608-275-4694.

Over 190 PICO standard Power Inductors meet Noise, Spike and Power Filter Applications in Power Supplies, DC-DC Converters and Switching Regulators. These units cover the inductance values from 20 millihenry to 10 microhenry with DC currents to 23 Amps .

- Minimum possible size
- Meets MIL-T-27E (TF5S04ZZ)
- Special high frequency core material to insure low losses
- All units have split windings
- Large selection of sizes available

UNITS CAN BE SUPPLE CONTACT
MILITARY STANDARDS. COR APPROPRIATE FACTORY FOR APPROPRIATE PART NUMBERS (THROUGH MIL-T-27/356-63).
THRO

PICO also manufactures over 800 standard DC-DC Converters and Power Supplies and over 2500 Miniature Transformers.

Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514

Electronica 90

Using MBRT cells, you can design circuits that operate at doses of 100 k rads max and dose rates of 100 rads/hour. The circuits are built on an epitaxial substrate, which avoids problems caused by heavy ion bombardment.

The characteristics of each MBRT library cell now take into account radiation effects, in addition to effects due to manufacturing, output load, temperature, and supply voltage. Indeed, cells now have their own radiation parameters, which depend on the cumulative dose, meaning that propagation times are automatically computed and product behavior is evaluated according to the radiation dose the circuit receives (up to 100 k rads).

Matra MHS, 3, avenue du Centre, BP 309, 78054 St-QuentinYvelines Cedex, France. Phone 33 1306070 00. Booth No. 19 C07.

Circle No. 721

N-channel MOSFET

A MOSFET's on-resistance normally rises considerably as its voltage rating increases. The ZVNL110A N-channel MOSFET manages to combine a 100 V drainsource voltage with an on-resistance of only 0.5Ω. Moreover, the device's threshold voltage is 1.5 V ; peak current rating is 6 A . At ambient temperatures of $25^{\circ} \mathrm{C}$ or lower, the MOSFET's continuous current rating is 320 mA max, and its zero drain current voltage is $10 \mu \mathrm{~A}$ max.

It turns on in <15 nsec and off in <25 nsec for a 1 A drain current. Input capacitance is 75 pF ; rise and fall times are both $<14 \mathrm{nsec}$. The $2.5 \times 4.8-\mathrm{mm}$ device can dissipate 0.7 W within the -55 to $+150^{\circ} \mathrm{C}$ operating range. $20 \mathrm{p}(100)$.

Zetex Semiconductors, Fields New Rd, Chadderton, Oldham, OL9 8NP, UK. Phone 4461627 4963. Booth No. 24 A24.

Circle No. 722

ANCOT's SCSI instruments are powerful, easier to use, and cost less. Proven in use worldwide, Ancot's portable equipment travels from bench to field and back again without ever slowing down. They are time and labor saving instruments, for design, manufacturing, repairing, and inspection applications.

Call today for product data sheets, demo disc, or to make arrangements for a free evaluation unit in your facility.

마[15] 363-0667

fax: (415) 363-0735

Redwood City, California

B t

 BROOKTRE＝S

 I M A C E

 I M A C E
 TECHNOLOGIES

Cイッルrich

Capture it Changeit

Capture an image, manipulate it, transmit it, display it-and do it all with Brooktree's Image Technologies. They'll give your system a visual edge in competitive markets.

In fact, Image Technologies can be the key differentiator in today's look-a-like world. At Brooktree, we're dedicated to creating the highly integrated devices designers need to set their systems apart with exciting imaging and graphics capabilities.
IMAGEACGUISITION Image Acquisition starts with our Bt251 Gray-Scale or Bt253 Color Image Digitizer chips. They're the easy, economical way to add image capture to your system, with flexible architectures and standard MPU interfaces.

And they link up to our new Bt261 30 MHz Line Lock Controller. It will change the way you bring video images into your system. It's flexible and fully programmable.

Program it to strip horizontal and vertical sync information from any incoming video signal it encounters. Program its sync noise gating to cope with noisy signals and to enable locking to horizontal sync.

In fact, you won't find a more flexible solution to the timing control section of your design. Or a better way to assure your Image Acquisition system is programmed for success.

IMAGEMANIPULATION

 Once you capture an image, change it.That's easy with our Bt281 real-time Color Space Converter/ Color Corrector chip. It's programmable and lets you convert from any color space to any other, including YIQ, YUV, RGB and Y, R-Y, B-Y, while capturing or displaying the image.

So now you can optimize the color space of your frame buffer for image processing independent of the video signal you're digitizing and the CRT's RGB needs. The Bt281 handles everything.

Since the Bt281 has programmable matrix coefficients and input look-up RAMs you can also use it for gamma correction, color correction or other image restoration techniques.

And if you think that's hot, you should see the Image Manipulation chips we'll be introducing this winter. Here's a hint: It will scale new heights.

IMAGETRANSMISSION

How can you send your image from here to there? Digitally? In real time?

Enter two more pieces of Brooktree's Image Technologies story: The Bt291 and Bt294 VideoNet ${ }^{\text {™ }}$ point-to-point Video Interfaces.

SendiqiT

Simply put, the Bt291 and Bt294 let you ship and receive live color digital video using an 8 -bit interface.

Which means you can replace about a square foot of board real estate with two highly integrated devices. And take the rest of the week off.

The two devices have, respectively, input or output look-up table RAMs to simplify the interface to the frame buffer and to add or remove gamma correction and scale signal levels.

So if you're working with CCIR601, SMPTE RP125, EBU 3246-E or other digital video standards, we've done our parts. You take it from here.

IMAGEPRESENTATION

When it comes to display technology, our true colors really shine. We invented RAMDACs. We understand the special needs of graphics systems designers. And we've never stopped innovating.

A perfect example is our Bt473, designed specifically for VGA true-color graphics. It has three 256×8 color look-up tables with 8 -bit video D/A converters to support 24-bit true-color operation. And it can also support 8-bit pseudo-color, 8-bit true-color and 15bit true-color operations. That makes it a perfect match for the Bt253 supporting the same formats.

Now our new TrueVu ${ }^{\text {TM }}$ RAMDAC, the Bt463 is what's hot for designers of next-generation workstations eager to add windows capability, and delighted to do virtually everything with a single device. The Bt463 is the first monolithic true-color RAMDAC. That means it supports multiple display modes-both True Color and Pseudo Colorsimultaneously. And with multiple windows, you get multiple colormaps, avoiding conflicts. Bt463 supports multiple plane depth, too, so a window can be 24, 16, 12 or 8 planes deep. And for a little frosting on the cake, it's flexible and easy to design in.

Dive into Image Technologies with
Brooktree. We've got the growing family of
highly integrated chips you need to handle graphics and imaging requirements in leading edge systems. Check these specs to see how easy we make it to capture,
manipulate, transmit and display really neat
visual stuff. Or call 1-800-VIDEO IC for com-

Bi208: 8-Bit Flash A/D Converter, 18 MSPS, External Zero and Clamp Control, On-Chip Voltage Reference, Overflow Output, No Video Amplifier Required, 28-Pin PLCC or 24-Pin DIP Package.

Bt251: 8-Bit Single Channel Image Digitizer, 18 MSPS, 4:1 Multiplexed Video Inputs, 256X8 Look-up Table RAM, MPU Adjustable Gain and Offset, Sync Detection, No Video Amplifier Required, 44-Pin PLCC Package.

Bt253: 8-Bit Triple Channel Image Digitizer, 18 MSPS, 2:1 Multiplexed Video Inputs, Output Format Logic, MPU Adjustable Gain and Offset, Sync Detection, No Video Amplifier Required, 84-Pin PLCC Package.

Bt261: HSYNC Line Lock Controller, 30 MHz Pixel Clock Generation, MPU Programmable Video Timing, Programmable Noise Gating, Generate HSYNC, Recovers VSYNC and FIELD, External VCO or High Speed Crystal Oscillator Clock Generation, 28-Pin PLCC Package.

M A N I P U L A T I O N
Bt281: Color Space Converter, Three 256X8 Input Look-up Table, Programmable Matrix Coefficients, Optional Input Interpolation/Output Decimation, Standard MPU Interface, 36 MHz , 84-Pin Package.

B1291: RGB to CCIR 601/SMPTE RP125 Encoder, RGB Input Look-up Tables, RGB to YCrCb Conversion, Flexible Digital Filtering of YCrCb, 16-Bit YCrCb I/O Bus, Ancillary Input Port, Handles Video Timing Control, 100-Pin PLCC Package.

Bt294: YCrCb to CCIR 601/SMPTE RP125 Decoder, Handles Video Timing Recovery, Ancillary Output Port, Error Checking, 16-Bit YCrCb I/O Bus, YCrCb to RGB Output Look-up Tables, 100-Pin PLCC Package.

R R E S E N T A T I O N Bt463: TrueVu RAMDAC, 4:1, 2:1 MUX's, Switch on a Pixel Basis Between True Color and Pseudo Color of Multiple Plane Depths with Multiple Colormaps, Two 8 Plane Overlay Cursors, Variable Palette Size, Reconfigurable Pixel Port, Advanced Diagnostics including JTAG Port, 170, 135 and 110 MHz Operation, 169-Pin PGA.

B1473: True-Color RAMDAC VGA Compatible, Compatible with Bt253
Output Formats-24-Bit, 15-Bit and 8-Bit True-Color, 6/8-Bit Pseudo-Color, Programmable Setup (0 or 7.5 IRE), Internal/External Voltage Reference, RS-343A/RS-170 Compatible Outputs, 80, 66, 50 and 35 MHz Operation, 68-Pin PLCC Package.

To ensure life, liberty and the pursuit of happiness in your office, we'd like to propose a system that's guaranteed to work. The Lanier copier system. Lanier copiers are guaranteed to be up and running 98% of the time. You geta loaner for the times it's not.

Power tools

KEPCO DIGITAL POWER CONTROLLERS

Choose your tools carefully for the work at hand. Choose a single unit ATE power supply and drive it with an SN digital analog interface to translate GPIB commands to useful voltage and current or choose a multiple-unit TMAMAT system and drive up to 27 independent voltages and currents from a single GPIB address with full status monitoring and read back of actual values.
Kepco's power tools are carefully calibrated to provide you with just the right combination for the work you need to do.

ac power

\square Talk-listen, GPIB
$\square 12$ bit control, $0-125 \mathrm{~V}$ ac $47-2000 \mathrm{~Hz}$ ac power
$\square 1 \mathrm{KVA}$ to 18 KVA
\square Expandable to 90KVA RGB/BOP

dc, unipolar power

\square Listen only, GPIB
$\square 12$ bit control, $0-6 \mathrm{~V}$ to $0-325 \mathrm{~V}$, unipolar dc
\square Power: $50 \mathrm{~W}, 100 \mathrm{~W}, 250 \mathrm{~W}$, 500W, 1000W
\square Control one, four or eight units, analog drive SN/ATE

dc, bipolar power

\square Listen only, GPIB
$\square 12$ bit control $\pm 20 \mathrm{~V}$
to $\pm 200 \mathrm{~V}$ bipolar dc
$\square 100 \mathrm{~W}, 200 \mathrm{~W}, 400 \mathrm{~W}$
\square Single unit, self-contained BIT/BOP
dc, unipolar power
\square Listen, talk-verify, GPIB
$\square 12$ bit control, 0-6V to $0-325 \mathrm{~V}$ unipolar dc
\square Power: $50 \mathrm{~W}, 100 \mathrm{~W}, 250 \mathrm{~W}$, 500W, 1000W
\square Control one to sixteen units, analog drive
TLD/ATE

dc (selectable polarity) power

\square Talk-listen, GPIB, full read back of both voltage and current
$\square 12$ bit control, $0-6 \mathrm{~V}$ to $0-150 \mathrm{~V}$ Unipolar dc with polarity selection
\square Power: 360W, 720W, 1080W
\square 1-27 unit control, digital (bit-bus) drive
TMA/MAT

Be Brilliant At In Productio

7:05 am: Breakfast
Suddenly, between bites, the answer to that new system design jumps right into your brain. But how to make it work in silicon? Use an Actel field programmable gate array!

> 8:50 am :Design
> You warm up the design program on your 386 and put in the final touches. Then a quick rule check and 25 MHz system simulation with the Action Logic System software.

11:00 am :Place \& Route You watch the system place and route all 1700 gates (out of 2000 available) in under 40 minutes. 100% automatically! A final timing check. Then think of something to do until lunch.

12:00 pm:Lunch

Remember lunch? Normal people actually stop working and have a nice meal - right in the middle of the day! With Actel's logic solution, this could become a habit.

Actel Field Programmable Gate Array Systems.

They're a feast for your imagination.

Actel's ACT ${ }^{m 1} 1$ arrays bring you a completely new approach to logic integration. Not just another brand of EPLD, PAL ${ }^{\text {® }}$ or LCA ${ }^{m}$ chips. But true, high density, desktop configurable, channeled gate arrays.

They're the core of the Action Logic System, Actel's comprehensive design and production solution for creating

Actel FPGA Product Family	1010A	1020A
Equivalent Gates	Gate Array	1200
2000		
User I/O	3000	6000
System Clock (MHz)	57	69
Availability	$20-40$	$20-40$
Technology (micron)	NOW	NOW

your own ASICs. Right at your desk. On a 386 PC or workstation. With familiar design tools like Viewlogic,'" OrCAD,', and Mentor.'

And do it in hours instead of weeks. Even between meals.

How? With features like
85% gate utilization. Guaranteed. Plus 100% automatic placement and routing. Guaranteed. So you finish fast, and never get stuck doing the most

Breakfast And n By Dinner.

1:15pm:Program You load the Activator ${ }^{\text {mw }}$ programming module with a 2000-gate ACT 1020 chip and hit "configure." Take a very quick coffee break while your design becomes a reality.

1:25pm:Test
You do a complete, real-time performance check, with built-in test circuits that provide 100% observability of all on-chip functions. Without generating any test vectors.

4:00 pm:Production
Your pride and joy is designed, created, tested, and off to the boys in Production. And you're finished way ahead of schedule! Better think of something to do until 5:00.

6:00 pm: Dinner
Remember dinner? Normal people actually go home and eat with their families. On your way, start thinking about how Actel's logic solution can help you be brilliant tomorrow.
tedious part of the job by hand.
Design verification is quick and easy with our Actionprobe ${ }^{m \mathrm{~m}}$ diagnostic tools, for 100% observability of internal logic signals. Guaranteed. So you don't have to give up testability for convenience.

In fact, the only thing you'll give up is the NRE you pay with full masked arrays. You can get started with an entry level Action Logic System for under $\$ 5000$. Guaranteed.

And Actel FPGAs are even 883 mil-spec compliant.

You can be brilliant right now
with 1200 - and 2000-gate devices, and a whole new family of 8000-, 4000 - and 2500 -gate parts are on the way. Call 1-800-227-1817, ext 60 today for a free demo disk and full details about the Action Logic System.

It could make your whole day.

[^8]
Searching for super-reliable capacitors?

Peak performance under extreme conditions.

NEC's SVH-Series chip tantalum capacitors scale new heights of performance and reliability for automotive and other tough applications.

Our SVH capacitors offer a failure rate of just 0.5% per 1,000 hours. If obstacles like excessive heat and humidity seem insurmountable, don't worry. SVH caps withstand 1,000 temperature cycles from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Their humidity resistance is $85^{\circ} \mathrm{C}, 85 \%$ RH for 1,000 hours.

We offer 29 types with ratings from
0.1 to $33 \mu \mathrm{~F}$, and from 10 to 35 V DC.

A top-quality team of chip tantalum caps.

Reliable NEC caps also come in a wide array of device types.
Our diversified lineup includes:
R-Series
$\square 96$ types.
$\square 0.01$ to $68 \mu \mathrm{~F} ; 4$ to 35 V DC.
R-Series Extended-Capacitance
$\square 58$ types.Up to $15 \mu \mathrm{~F}$ rating for A case (1.6 x
$3.2 \times 1.6 \mathrm{~mm})$.
$\square 0.1$ to $100 \mu \mathrm{~F} ; 2.5$ to 35 V DC.

SVE-Series

\square Built-in fuse; 21 types.
$\square 1.0$ to $33 \mu \mathrm{~F} ; 10$ to 50 V DC.
\square R-Series compatible.

Reward yourself with reliability.

NEC produces 2 billion tantalum caps per year-more than anyone else in the industry. Our path-breaking R\&D effort covers everything from improving materials to enhancing design and production processes.
That's why we lead the industry with high-performance tantalum capacitors such as the ultra-reliable SVH-Series.

For fast answers, call us at:

USA Tel:1-800-632-3531. TWX:910-379-6985. W. Germany Tel:0211-650302. Telex:8589960. The Netherlands Tel:040-445-845. Telex:51923.

VMEbus and IBM PC NTDS interface boards emulate MIL-STD-1397B host or peripherals

The Hawke (VMEbus) and Eagle II (IBM PC/AT bus) NTDS (Navy Tactical Data Systems) interface boards allow you to emulate expensive host computers or peripherals with personal computers and workstations. The boards comply with the NTDS communications standards specified in MIL-STD-1397B. Built-in test features handle diagnostics on the boards. Both boards
include software that you can use for interactive operations and software interfaces to high-level languages such as C.

NTDS computers and peripherals suitable for use in military missioncritical applications regularly cost a million dollars or more. The Hawke and Eagle II products emulate such systems, thus targeting applications in the hardware and software

The NTDS emulation capability of the Hawke and Eagle boards allows users to develop, test, and maintain million-dollar, mission-critical military systems, using personal computers and workstations.
development, test, debug, and maintenance of NTDS products. The boards can act as passive monitors of NTDS communications and can actively participate in such communications.

The Eagle II and II + products for IBM PC/AT and compatible computers offer compatibility with MIL-STD-1397B type B and C communications. Type B (also referred to as NTDS Fast) specifies binary voltage levels of 0 V for a logical 1 and -3 V for a logical 0 , as well as 250 k -word/sec data transfers on a single parallel cable. Similar type C (called ANEW) communications use 0 V as a logical 1 and 3.5 V as a logical 0. The Eagle boards can communicate over distances of 200 ft using differential transceivers in 16 - and 32 -bit modes.
Two independent 32 -bit-wide data channels allow the Eagle boards to perform full-duplex communications. The $\$ 4050$ Eagle II board includes $1 \mathrm{k} \times 32$-bit FIFO buffers for both channels. Add $\$ 500$ for the $2 \mathrm{k} \times 32$-bit buffers on the Eagle II + . The boards can run at a 1 M -word/sec data rate. As many as 32 boards fit in a single system.

MS-DOS-based software included with the boards allows you to interactively setup operations such as setting a board to bus monitor mode. A set of software drivers, including source code, comes with the boards; you can use the drivers with C and other languages.
The VMEbus Hawke board family includes models that support type A / B communications and type B/C communications. Type A communications (also called NTDS Slow) employ binary voltage levels of 0 V for a logical 1 and -15 V for a logical 0 , and perform parallel

CIRCLE NO. 42

6 watts/cubic inch
 M SERIES
 MODUFLEX SWITCHERS

- Highest power density in the industry!
- Custom switchers from stock modules
- No engineering charge
- 2 week delivery
- TUV, UL, CSA approval
- Current mode
- Mosfet design
- All outputs regulated and floating

Call 1-800-523-2332

400-750 watts output

See Us At Electronica Booth \#24B-050
P.O. BOX 1369 国 290 WISSAHICKON AVENUE, NORTH WALES, PA 19454 IN PA: 215/699-9261 FAX: 215/699-2310
EUROPE: Delaire • Co. Dublin, Ireland Tel: (01) 851411 Prefixes: from U.K. (0001) Int'I: +353 (1)

UPDATE

data transfers on a single cable at 41,667 words/sec.

The Hawke boards include two channels for full-duplex operation, and dual 256 k -byte video RAM buffers dedicated to FIFO operations. The 3 -ported, video-RAM buffer design allows the onboard processor or processors elsewhere in a VMEbus system access to the buffer memory during operation. The boards can perform 8-, 16-, 24-, and 32 -bit NTDS data transfers.

You can order the Hawke boards in $6 U($ or $9 U$ VMEbus sizes. Each model in the Hawke family costs $\$ 5000$. The boards include a 68020 $\mu \mathrm{P}$ and include full VMEbus slot-1 master capability and a 7-level interrupt handler. The boards can also operate in VMEbus slave mode, and you can use them in popular workstations such as those from Sun Microsystems that use the VMEbus. You can program the boards for 8-, 16-, or 32-bit VMEbus data transfers.

The boards include sockets for as much as 1 M byte of ROM or EPROM available to the user. In addition, a system ROM holds a monitor program that you can use to interactively control board operation. An onboard RS-232C port provides the interface for the monitor, including an assembler/disassembler. You can use the boards' battery-backed static RAM to store configuration parameters. Switches, LED indicators, and a hexadecimal display on the front panel of the boards aid in operation and diagnostics.

You get a Unix operating-system I/O driver standard with the Hawke boards. The products also include source code that you can use in Ada, C, and Pascal programs to control the boards.-Maury Wright
Sabtech Industries, 5411 E La Palma Ave, Anaheim, CA 92807. Phone (714) 970-5311. FAX (714) 970-5377.

Circle No. 731

Put LabWindows to Your Itest

PRODUCT UPDATE

Alternating voltage DVM calibrates top-end ac calibration instruments

In a calibration hierarchy, the 4920's accuracy positions it between National Standards authorities, such as National Institute of Standards and Technology (NIST, Gaithersburg, MD) and top-end ac calibration instruments.

Used as a conventional DVM, optimal total-measurement uncertainty is $\pm 38 \mathrm{ppm}$ for inputs of 0.9 to 11 V , and for input frequencies of 40 Hz to 30 kHz . If you make a measurement at a precalibrated spot in this frequency range, then measurement uncertainty improves to $\pm 28 \mathrm{ppm}$. These accuracies hold for one year and $\pm 5^{\circ} \mathrm{C}$ ambient change from the calibration point of the DVM itself. Generally, the DVM displays $7^{1 / 2}$-digit resolution
on ranges from 300 mV to 1 kV , and for input frequencies of 1 Hz to 1.25 MHz .
For increased accuracy, you can select an ac/dc transfer mode of operation, which reduces total measurement uncertainty to $\pm 14 \mathrm{ppm}$ (NIST's uncertainty contribution to this number is $\pm 7 \mathrm{ppm}$). In this mode, the DVM sequentially reads your unknown ac signal and a certified de source. The DVM's solidstate rms detector is a dc-coupled design, which responds similarly to dc or ac inputs. In this mode, equal DVM errors exist in the instrument's signal path for both the ac and dc measurement. These errors cancel out, and the DVM displays the part-per-million difference be-
tween the unknown ac input and your dc reference. This transfer mode yields valid measurements when ac and de inputs are within 1% of each other, between -30 and $+10 \%$ of nominal range, and when ac frequency is 40 Hz to 30 kHz .

The 4920 exhibits several advantages over other calibration instruments that rely upon traditional thermal techniques. Portability and convenience are primary advances. Also important is the DVM's settling time of <2.5 sec to meet full accuracy specification for frequencies exceeding 100 Hz . Additionally, operation is programmable using an IEEE-488.2 interface.

Recalibration of the DVM itself is totally electronic. In order to

You can use the 4920 alternating voltage DVM to simplify the awesome task of recalibrating premium ac calibration instruments.

UPDATE

SIEMENS

Ferrites:
 New Shapes! New Materials!

Siemens new ferrite shapes and materials expand your design horizons like never before.
Low Profile: With heights from .315" to $0.5^{\prime \prime}$, Siemens EFD (Economical Flat Design) cores deliver thruput power from 20 to 140 watts at frequencies from 100 KHz to 1 MHz .
New Materials: Siemens N87 material offers a 20\% reduction in power loss for greater thruput power and higher frequency of operation in the 300 to 500 KHz range. Siemens N49 material delivers a 40% reduction in power loss, allowing higher temperatures and greater thruput power for power supplies operating in MHz designs.
Call 1-800-888-7729 for our latest literature pack. Siemens Components Inc. Special Products Division 186 Wood Avenue S. Iselin, NJ 08830
Siemens...
for the latest in ferrite technology.

DID YOU KNOW?

Half of all EDN's articles are staff-written.

withstand the rigors of transportation, the instrument has no internal trimmers. Each range requires three calibration sources: 1 kHz at nominal range, 1 kHz at 30% of nominal, and 1 MHz at nominal (except $100 \mathrm{~V} / 1 \mathrm{kV}$ ranges). Generally, only national standards authorities such as NIST possess sources of sufficient accuracy for recalibration of the 4920 . Even if your laboratory has the necessary sources, maintaining accuracy at this level is expensive. NIST currently demands around $\$ 800$ per certified calibration point at these levels of accuracy.

In addition to the three calibration points per range for broadband calibration, you can calibrate spot voltage/frequency points. In operation, measurements derived from spot calibrations show an increase in accuracy of 10 ppm for frequencies from 10 Hz to 30 kHz . You can choose display readings with respect to broadband or spot calibrations. Alternatively, the DVM will switch automatically if the input comes within $\pm 2 \%$ of the spot-calibrated frequency, and within 50 and 110% of spot-calibrated amplitude.

The model 4920 M AV digital voltmeter is a military version of the 4920 that was designed under contract to the US Navy's Metrology Engineering Center at Corona, CA. This model extends measurement capability to 20 MHz with total uncertainties to 0.2%. The Navy will deploy this model to calibrate top-end calibration instruments and replace their thermal transfers.

The 4920 costs $\$ 9995$. For optional ranges down to 1 mV , add $\$ 1495$. The 4920 M sells for \$11,995.-Brian Kerridge

Datron Instruments, Hurricane Way, Norwich NR6 6JB, UK. Phone (603) 404824. FAX (603) 483670.

Circle No. 730

The difficult approach.

Supplier A

Supplier E
Supplier B

Your
Design
Solutions

Supplier D
Supplier C

Oki's Problem-Solving Resources Point the Way

With the Oki approach, you don't have to search in different directions for design solutions. Because we provide the breadth of problem-solving resources you need for IC, ASIC, board, and even complete system solutions. We call our approach "Transforming Technology into Customer Solutions." And it works.

We begin by fully understanding your unique problem. Then, together, we explore Oki's wide-ranging resources in technology, product, design, manufacturing, R\&D, and support. We mix and match the options - looking for the combination that best transforms your problem into a cost-effective, value-added solution. And we support you every step of the way.

So you can take the difficult approach and work with multiple suppliers. Or you can take the Oki approach and work with multiple resources like these:

Technologies

Customer

Products

Leading-Edge Technologies:

- Process: TTL, ECL, CMOS, BiCMOS, GaAs
- Packaging: SIMM, COG, COB, flip-chip, TAB, multi-chip module

Product Breadth:

$256 \mathrm{~K}, 1 \mathrm{Mb}, 4 \mathrm{Mb}$ DRAMs, SIMMs • $1.0 \mu \mathrm{~m}$ and $0.8 \mu \mathrm{~m}$ Sea-of-Gates, Standard Cells, Gate Arrays, full custom • 4-bit to 32-bit MCUs

- Speech synthesis/recognition • VF/LCD drivers• DSPs • PCB

Design Assistance:

- 24-hour, state-of-the-art design centers
- Industry-standard tools - Comprehensive design support • Extensive cell libraries

High-Volume Global Manufacturing:

- U.S. • Puerto Rico
- Europe • Asia

Manufacturing

Across-the-Board R\&D

 Commitment:- Technology • Products • Packaging
- Manufacturing • Design tools

Companywide Quality Support:

- Partnership attitude • Local warehousing
- JIT programs • Rapid response

Ready for the easier approach to design solutions? Call Oki today.

Solutions

Designing in National's one-chip motor driver could be the smartest move you'll make.

UNSURPASSED INTEGRATION.

Power. Protection. Control. These critical elementsessential to all motor-driving applications-are also inherent in the most highly integrated Smartpower ${ }^{\text {min }}$ device available today, the LMD18200.

Our one-chip solution with on-chip intelligence eliminates multiple discrete parts, saving you valuable board space.

The control logic of the LMD 18200 connects both sides of the H -Bridge. Which eliminates crossover problems and makes it easy to use. Plus, its rugged design and process makes it extremely reliable. The device operates at supply voltages from +12 V to +55 V with continuous output of 3 A . Or peak to 6A.

BORNE OUT OF A STRATEGIC PARTNERSHIP.

The LMD18200 is the brainchild of National Semiconductor and International Rectifier (IR). A jointly developed product made

possible through distinct, leadingedge process technologies. CMOS and bipolar from National. And DMOS with HEXSense ${ }^{\text {m }}$-for virtually lossless current sensing-from IR. An optimized process mix that results in a high-

FAIL-SAFE PROTECTION.

Not only does the LMD18200 know when to start, it knows when to quit. Specially equipped with a two-stage thermal warning system, it transmits a distress flag to the host system at $145^{\circ} \mathrm{C}$, allowing you enough time to take any corrective action.

And if the temperature reaches $170^{\circ} \mathrm{C}$, the device automatically shuts down. A fail-safe feature that eliminates damage to your equipment.

What's more, the LMD18200's on-chip defense system provides overcurrent protection, which prevents damage both to the device and the motor in case a shorted load causes the motor to draw excessive current.

PLAY IT SMART.

For your LMD18200 design information kit, call or write us today. But make the move now. Before your competition wises up.

1-800-NAT-SEMI, Ext. 18
National Semiconductor Corp. P.O. Box 7643

Mt. Prospect, IL 60056-7643
(C) 1990 National Semiconductor Corporation HEXSense is a trademark of International Rectifier. Smartpower is a trademark of Nartron.

READERS' CHOICE

Of all the new products covered in EDN's June 21, 1990, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, use EDN's Express Request service, or refer to the indicated pages in our June 21,1990 , issue.

Dual Serial/Parallel Board

The DSDP-100 communications adapter provides an IBM PC/AT or compatible with additional ports that allow you to interface network file servers with multiple printers, plotters, and other serial and parallel devices. Each serial port uses a 16450 UART, which supports rates as high as 56 k baud. Each parallel port allows bidirectional data transfer (pg 294).
Qua Tech Inc. Circle No. 465 ELF-50D handheld meter registers the strength of magnetic fields generated by ac power lines and equipment connected to them. The unit, which includes a $3^{1 ⁄ 2}$-digit LCD and a low-battery indicator, operates for approximately 50 hours from a 9 V alkaline battery (pg 312).
Walker Scientific Inc.
Circle No. 464

Programmable Reference $\boldsymbol{\nabla}$
The LT1431 is a precision adjustable-reference and amplifier combination with a $100-\mathrm{mA}$ currentsink capability. On-chip divider resistors let you configure the reference as a 5 V shunt regulator with a 1% initial tolerance. By adding two external resistors, you can set the output voltage to any value between 2.5 and 36 V . The unit is available in an 8 -pin SO surface-mount package or an 8-pin miniature DIP that provide access to numerous internal functions (pg 306).
Linear Technology. Corp.
Circle No. 466

Running on any IBMcompatible PC, Fourier Perspective III software graphically outputs results of common DSP functions. The software can operate on data sets as large as 65,520 points loaded from disk or captured at runtime from an A/D converter board. The software can perform sin-gle-dimension and inverse FFTs. Its signalsmoothing features consist of moving-average filtering and median-window filtering (pg 146). Alligator Technologies. Circle No. 467

Silicon Accelerometer

The Model 3140 siliconbased accelerometer offers full-scale measurement ranges of ± 2 to $\pm 100 \mathrm{~g}$. The device's output is compensated to eliminate errors due to temperature. Its fullscale output is $\pm 2 \mathrm{~V}$ about a 2.5 V offset level. Built-in features include signal-conditioning circuitry and a regulator, which allows the unit to operate from an unreguated power supply (pg 286).
IC Sensors.
Circle No. 468

Whydoyouthink theycome with racingstripes?

Ladies and gentlemen, start your engines.
Because our new 80 and 40 Mb Caviar" family of intelligent drives is going to give you the kind of system speed you've always wanted.

As you can see on the chart, no one can match our data throughput.

Data Transfer in Kilobytes Per Second*

CAVIAR 280 w/CACHE FLOW	
COMPETITOR X	962
COMPETITOR Y	814
COMPETITOR Z	773

What's more, according to our incredibly conservative attorneys' interpretation of the benchmark data, the 80 Mb drive benchmarked an average access time of less than 18 milliseconds. And according to our engineers'
interpretation, our attorneys are, indeed, incredibly conservative.

So what's the secret behind these highperformance, low-profile, 1 -inch, 80 and 40 Megabyte AT compatible intelligent drives?

Some say it's our unique CacheFlow" caching feature. A new generation design which constantly evaluates the way data is being retrieved from the drive and adapts to the optimum caching method. So disk seeking operations and latency delays are minimized. And throughput is increased.

Others say it's our unique InterArchitec-ture-the way we design and manufacture all our own chips, boards and drives to work together-that accounts for the speed.

Whatever the reason, the result is dramatically enhanced system performance.

So what are you waiting for?
For more information, call us at 1-800-4 INFO WD.

If it were easy, anyone could do it.

WESTERN DIGITAL
SEMICONDUCTORS • STORAGE • IMAGING • COMMUNICATIONS

There were no serious injuries.

Not long ago, an HP salesman turned a routine product demonstration into a crash course in reliability.
Our District Manager in Switzerland, Ueli Nussbaumer, had just given a demonstration of an HP spectrum analyzer. He set the analyzer down beside his car, intending to pack it last.

Well, there was a lot to pack. And when Ueli backed the car out, an ear-splitting screech of ripping metal made him hit the brakes. The analyzer!

It was trapped under the car. Ueli jacked up the car, yanked out the analyzer, and ran back to his customer's office to test its vital signs. The spectrum analyzer worked perfectly. The customer was incredulous.

Stories like this underscore why HP rates highest for reliability among engineering managers. And we're still not satisfied. In fact, in 1979 we started our Total Quality Control program to increase quality ten-fold in 10 years. A goal we'll reach this year.
It just goes to show that when design and manufacturing productivity are at stake, there is no reliable substitute for HP. Because you never know what you might run into.

There is a better way.
HEWLETT
PACKARD

Video A/D

Choosing and incorporating a video A/D converter requires as much knowledge about video signals and digital video systems as it does about the converter itself. These video systems dictate the strict linearity requirements that converters must meet.

Compared to just a few years ago, converters for video applications have become incredibly cheapoften around or even under $\$ 10$-and accessible. In addition, manufacturers have overcome many of the performance limitations of early flash-converter designs. Joe Alig, an analog designer of postproduction broadcast equipment at Digital F/X (Mountain View, CA), says, "Most converters have gotten so good that I just apply them."

For its part in this ad-

Anne Watson Swager, Regional Editor
vance in video-converter design, TRW LSI Products received an unlikely distinction last year-a television Emmy award. Since the company introduced its TDC1048-the standard 8 -bit, 20Msample/sec converter-many other companies have joined in with second sources, improved drop-in replacements, and proprietary products of their own. Complete video ADCs in hybrid form and multiple ADCs in single packages are also available.

Most manufacturers and users of ADCs agree that once you've established your video-capture system's configuration, finding an ADC and incorporating it are fairly straightforward tasks. Even so, don't think you can take any converter's performance specs for granted. Data sheets often conceal per-
formance aspects that you can only truly evaluate when using the device in your system. Though the list is slowly growing, the number of manufacturers who specify their converters over the full op-erating-temperature and power-supply ranges is few. TRW is one company that does specify all of its converters under worst-case conditions. Datel also includes minimum and maximum specs over all conditions for its newer products.

Other potential problems with ADCs simply don't appear on data sheets. For example, few ADC data sheets quantify how much noise-known as clock kickback - the converter will introduce into the analog part of your system. An exception is Micro Power Systems' MP8780, which has a typical clock kickback pulse of $10 \mathrm{pA} / \mathrm{sec}$. Ultimately, you will have to test the converter in your own system. Rusty Woodbury, a designer at IEV Visual Information Processing (Salt Lake City, UT) says he bats around 250-about one out of four of the ADCs he evaluates actually meets his design criteria.

The need to test converters isn't a new concept to experienced ADC users. If you're familiar with basic A / D converter specs and with the flash architecture upon which most video converters operate (see box, "Flash architectures split in half'), you'll be able to easily comb the data sheets of the converters in Table 1 (pg 152). If you're new to video designs, however, evaluating and testing a few of the esoteric video specs

Converters

is

Video A/D converters transform
real-world analog signals into digitized images. (Photo courtesy TRW LSI Products Inc)
such as differential gain and differential phase require a basic knowledge of video signal processing (see box, "A glossary of video terminology").

Defining the word "video" isn't exactly straightforward. Video can loosely refer to any higher-speed converter with sampling rates above 1 M sample/sec. A tighter definition recognizes converters as video devices if they can digitize TV video information. These converters usually have sampling rates between 10 M and 75 M samples/sec. The more narrow definition excludes converters with high sampling rates (above 100 M samples/ sec) that are used in radar imaging systems and those with lower sampling rates (below 10M samples/sec) that also perform imaging functions.

One confusing aspect of video sys-

Some video converters also include a number of auxiliary video-processing functions. Datel's ADC-228 includes a wideband analog input buffer, a precision voltage reference, temperature-compensation circuitry, and a 3-state output buffer.
tems and signals is the various forms they can take. "Normal" video signals-anything but highdefinition TV-can take two different forms: composite and component. Composite video is the standard signal transmitted from broadcast stations to your TV's BNC connector. It conforms to the same monochrome standard-RS-170developed in the 1940s and later modified to handle color information. Variations of the standard exist according to geography. NTSC is the US standard, PAL is the standard in most of Europe, and SECAM is used in France and the USSR.

A composite video signal comprises defined intervals for line synchronization, a blanking interval, a color reference or burst signal, and an active video area (Fig 1). Sync pulses enable a receiver to lock to

Flash architectures split in half

The most familiar high-speed ADC architecture is the flash architecture. Flash converters contain $2^{\mathrm{N}}-1$ comparators, all of which are driven by the same input and, with the help of some decoding logic, convert the input to a digital output in one clock cycle. An 8 -bit converter requires 255 comparators - a lot of die real estate - so the pure flash architecture isn't practical for resolutions of higher than 8 bits. The numerous comparators also consume a large amount of power.

To deal with these limitations, various modifications to the flash architecture exist in some of Table 1's products-especially in those with sampling rates close to 10 MHz . Half-flash, 2-step flash, and subranging are several names that refer to a particular modified architecture, and more unique architectures will continue to appear. At this year's International Solid State Circuit Conference, many companies presented converter designs that had novel multistep architectures.

The basic 2-step approach comprises a coarse and
then a fine conversion. The converter applies the result of the coarse conversion to a D / A converter and then subtracts the analog value from the input. The converter then applies the result of this subtraction to a second A/D converter to achieve the final result. For an 8 -bit converter, the digital output of the coarse conversion represents the four most significant bits, and the digital output of the fine conversion represents the four least significant bits.

The advantages of this architecture include small size-two 4 -bit comparators require half as many comparators as an 8 -bit converter-and lower power consumption. The smaller die size translates directly to lower cost. Because of the multistep nature of the subranging conversion approach, these converters must have front-end S / H amplifiers. Most, but not all, manufacturers design these front-end S / H amps into their converters. A limitation of the architecture is speed. ADCs that sample at 100 MHz still require the full flash architecture.
the correct portion of the transmitted picture. The receiver then uses the black level to properly dc-bias the transmitted, ac-coupled signal. The blanking interval enables the CRT beam to cross the screen without producing unwanted images.

The active area of a video signal consists of luminance information and, if it's a color signal, chrominance information. The dc level of the active signal area carries the luminance (brightness) signal, which includes all the pictorial information and detail. Chromi-nance-both saturation and hue of color-is embedded into the luminance in the form of a $3.58-\mathrm{MHz}$ subcarrier signal. The phase relationship between this signal and the color-burst signal determines the

Fig 1—The composite color signal packs a lot of signal content into a 4-MHz bandwidth. The signal includes sync and dc level information that positions the beam on the CRT and helps determine a reference black level. The active video area contains both brightness and color in the form of a dc level and a $3.58-\mathrm{MHz}$ subcarrier signal, respectively.

A glossary of video terminology

Chrominance signal-The $3.58-\mathrm{MHz}$ subcarrier sidebands added to a monochrome TV signal to convey color information. The phase and amplitude components of the chrominance signal represent hue and saturation, respectively.
Composite color signal-The color-picture signal plus all blanking and synchronizing signals. It includes luminance and chrominance signals, verticaland horizontal-sync pulses, vertical- and horizontalbanking pulses, and the color-burst signal.
Differential gain-The change in output amplitude of a small high-frequency sine wave at two stated levels of a low-frequency signal on which this subcarrier is superimposed.
Differential phase-The difference in output phase of a small, high-frequency, sine-wave signal at the two stated levels of a low-frequency signal on which it is superimposed.
Luminance signal-The portion of the color TV signal that carries the brightness information. It is part of the composite color signal and is made up of 0.30 red, 0.59 green, and 0.11 blue. It can produce a complete monochromatic picture. Also called the Y signal in its component form.

NTSC signal-A $3.58-\mathrm{MHz}$ signal, the phase of which is varied with the instantaneous hue of the televised color, and the amplitude of which is varied with the instantaneous saturation of the color, as specified by the National Television System Committee. Used in the US and Japan.
PAL-Abbreviation for phase alternation line. It pertains to a color-TV system in which the subcarrier derived from the color burst is inverted in phase from one line to the next to minimize hue errors that may occur in color transmission. It consists of 652 lines per frame and 50 fields per second. Used primarily in Europe.
RGB-Red, green, and blue.
RS-170-TV standard for encoding monochrome video.
SECAM-Abbreviation for sequential couleur a'memorie (sequential with memory). It is a colorTV system with 625 lines per frame and 50 fields per second developed by France and the USSR and used in some countries that don't use NTSC or PAL systems.
YUV-In addition to RGB, a way of breaking chrominance and luminance into component form.

In component video processing, the system separates the timing from the chrominance and luminance signals prior to the A / D conversion.

color or the hue, and the amplitude of the subcarrier determines the saturation of the color.

All these signals mixed and transmitted together can lead to adverse interaction and distortion. The fact that luminance and chrominance information are spectrally inter-leaved-the luminance bandwidth is 4 MHz and the color signal is 3.58 MHz -leads to difficulties in separating the two. But the most adverse effects of the luminancechrominance subcarrier combination are errors that manifest themselves as differential gain and phase. Because amplitude and phase carry color information, the viewer will see a color change if the signal-path circuitry causes any modulation of these quantities in the subcarrier or its sidebands. Thus, distortion-free processing of a color TV signal demands, most importantly, that the amplitude and phase of the chrominance signal not be affected by the luminance function. These demands translate to linearity requirements for video ADCs.

Component processing

The other form "normal video" takes is component video. Most digital processing takes place at the component level, and some systems benefit from breaking down the composite signal-separating the timing, chrominance, and luminance signals-prior to the A / D conversion.

The standard that applies directly to component video processing is CCIR601, commonly known as D1 in the United States. This standard designates sampling rates for the various international systems. For PAL and SECAM, it specifies a sampling clock rate of

An ADC and DAC combination links two ends of the video-processing chain. Samsung's KSV3110 contains the equivalent of the KSV3208 8-bit A/D converter along with a D/A converter of either 7, 8, 9, or 10 bits. Both chips have an amplifier, clamping, and voltage-reference circuits.
13.5 MHz, which corresponds to 720 active picture elements per line. For NTSC systems, the D1 standard proposes a $14.4-\mathrm{MHz}$ clock rate, or four times the color information's $3.58-\mathrm{MHz}$ frequency. Two types of component signals exist: RGB (red, green, and blue) and YUV. The Y in YUV is the luminance information, and the U and V are defined color combinations of red/yellow and red/blue, respectively.

Plenty of examples of both composite and component processing exist, according to Ken Rockwell, an applications engineer at TRW. Some digital video systems' sole purpose is to get a composite signal from one place to the next. Microwave links often transmit digitized composite signals. TV stations with more state-of-the-art equipment
use component video signals for the same purpose. Frame-grabber boards for PCs also tend to preseparate the composite signals and work solely with component signals.

The most important ADC specs differ slightly depending on whether you're handling composite or component data. Systems that digitize component video have more analog components on the front end to strip the sync pulses and to extract and recombine the chrominance and luminance. These analog components are susceptible to noise produced by the ADC's sampling clock. Thus, depending on your design and layout, ADCs that digitize component video may have more stringent noise requirements. Alternatively, systems that digitize the complete composite signal and
perform the color decoding and sync separation digitally may have less stringent ADC noise requirements.
However, ADCs that digitize component video don't have to meet certain other specs. Differential gain and phase specifications lose significance for component signals because color information is no longer in the form of a subcarrier. Signal-to-noise ratio, or its equivalent effective number of bits, is probably the most important spec for an ADC that processes component signals.

Linearity is crucial for composite video applications because a converter's linearity is tightly coupled to its differential gain and phase. Poor linearity specs will result in poor differential gain and phase specs. Traditionally, 1% and 1° of differential gain and phase were acceptable levels for high-quality, broadcast-type video systems. The converters and the amplifiers that drove them had to have lower specs to meet this requirement.

Now, many video amps designed to drive converters have much tighter specs. According to Analog Devices, its customers are demanding more stringent differential gain and phase measurements. The company says that op amps that handle

[^9]video signals should have gain and phase specs of 0.01% and 0.01° to meet overall system specs of 0.1% and 0.1°.
Analog Devices is also providing more information to its customers on how to test for differential gain and phase (Ref 1). Not all manufacturers of so-called video converters provide complete differential gain and phase specifications. Although the test setup is fairly straightforward, some manufacturers say the test is quite difficult to perform on ADCs. Also, differential gain and phase tests aren't absolute measurements; you must interpret the results visually.

Gain and phase levels are difficult to evaluate on paper because they don't necessarily add linearly. The measurements resemble harmonic distortion in that various parts of your circuit in series can cancel each other. For example, you get something for nothing if the differential gain and phase of your amplifier happen to cancel the differential gain and phase of your ADC. Unfortunately, the behavior of all these elements is unpredictable and requires bench measurements.

Conversion is just the first step

Though different specs are important for different types of processing, basic specs such as sampling rate and resolution must be met in all applications. The most common sampling rate for video designs is 20 M samples/sec. A resolution of 8 bits is also standard for video systems. A number of available converters have resolutions of 6 bits, which users say is acceptable for lower-performance systems. However, as 8 -bit converter prices come down, manufacturers say there is less demand for 6 -bit devices.

For processing RS-170 monochrome signals, Analog Devices' AD9502 hybrid IC includes an amplifier, a sync detector and separator, a pixel-clock oscillator, and an 8-bit flash ADC.

Some higher-performance broadcast systems use 10 -bit converters, such as TRW's TDC1020. These devices aren't plentiful, but more should be appearing soon. Analog Devices announced the 9020/9060 last year, and Datel has plans to announce both 10 - and 12 -bit, 20 MHz subranging ADCs later this year. Sony and Texas Instruments will also announce new video converters in January.
Adding more ADC resolution might benefit some systems, but the increased amount of digital memory required to store the additional bits seems to keep the standard video-ADC resolution at 8 bits. There are ways to get the most out of your ADC's resolution. The resolution of the active-video information increases by almost 30% if the converter doesn't also have to deal with the levels necessary to digitize the sync signals. Thus, you can strip out or simply ignore the horizontal and vertical sync pulses. Some devices in Table 1 have provisions to do this. For example, Micro Power Systems' converters have selectable input ranges. Also, you can program the fourth pin of Plessey Semiconductors' SP94308 for different dc offsets on the input video.

Video A/D converters

Outside of sampling rate, resolution, linearity, and S / N ratio, few specifications are as important for video converters. Manufacturers of flash ADCs have been able to reduce their newest flash converters' input capacitances to levels that
buffer amplifiers can more easily drive. And if power dissipation is a crucial issue, some of Table 1's CMOS converters consume as little as 35 mA .

In addition to meeting the basic video specifications, many ADCs
have video-specific features. Micro Power Systems' converters let you set the input voltage range within the converter's 0 to 5 V power-supply range. Philips' TDA8708 and 8709 contain amplifiers with input clamp circuits and external gain control.

Manufacturers of video A/D converters

For more information on video A/D converters such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Analog Devices Inc	Fujitsu Microelectronics Inc	Motorola Inc	Siemens Components Inc
Box 9106	3545 N First St	2100 E Elliot Rd	2191 Laurelwood Rd
Norwood, MA 02062	San Jose, CA 95134	Tempe, AZ 85284	Santa Clara, CA 95054
(800) 262-5643	(800) 642-7616	(602) 897-3615	(408) 980-4547
FAX (617) 937-1011	FAX (408) 943-1348	Circle No. 662	FAX (408) 980-4599
Circle No. 650	Circle No. 656		Circle No. 668
		National Semiconductor Corp	
Analog Solutions	Harris Semiconductor	2900 Semiconductor Dr	Sipex Corp
85 W Tasman Dr	Box 883	Santa Clara, CA 95052	6 Fortune Dr
San Jose, CA 95134	Melbourne, FL 32908	(408) 721-2273	Billerica, MA 01821
(408) 433-1900	(800) 442-7747, ext 1073	FAX (408) 733-5724	(508) 663-9691
FAX (408) 433-9308	FAX (407) 724-3433	Circle No. 663	FAX (508) 670-9001
Circle No. 651	Circle No. 657		Circle No. 669
		NEC Electronics Inc	
Brooktree Corp	Hitachi America Ltd	401 Ellis St	Sony Corp
9950 Barnes Canyon Rd	2000 Sierra Point Pkwy	Mountain View, CA 94039	10833 Valley View St
San Diego, CA 92121	Brisbane, CA 94005	(415) 965-6620	Cypress, CA 90630
(800) 843-3642	(415) 244-7288	TWX 910-379-6985	(714) 229-4197
FAX (619) 452-1249	FAX (415) 583-4207	Circle No. 664	FAX (714) 229-4271
Circle No. 652	Circle No. 658		Circle No. 670
		Philips Components-Signetics	
Burr-Brown Corp	ILC Data Device Corp	811 E Arques Ave	Teledyne Components
Box 11400	105 Wilbur Pl	Sunnyvale, CA 94088	40 Allied Dr
Tueson, AZ 85734	Bohemia, NY 11716	(408) 991-2000	Dedham, MA 02026
(602) 746-1111	(516) 567-5600	FAX (408) 991-2069	(617) 329-1600, ext 4407
Circle No. 653	FAX (516) 567-7358	Circle No. 665	FAX (617) 326-6313
Comlinear Corp		Plessey Semiconductors Corp	
4800 Wheaton Dr	Micro Networks Co	1500 Green Hills Rd	Texas Instruments
Fort Collins, CO 80525	324 Clark St	Scotts Valley, CA 95066	Box 809066
(303) 226-0500	Worcester, MA 01606	(408) 438-2900	Dallas, TX 75380
Circle No. 654	(508) 852-5400	FAX (408) 438-7023	(800) 232-3200, ext 700
	FAX (508) 852-8456	Circle No. 666	Circle No. 672
Datel Inc	Circle No. 660		
11 Cabot Blvd		Samsung Semiconductor	TRW LSI Products Inc
Mansfield, MA 02048	Micro Power Systems	3725 N First St	Box 2472
(508) 339-3000	3100 Alfred St	San Jose, CA 95134	La Jolla, CA 92038
FAX (508) 339-6356	Santa Clara, CA 95054	(800) 669-5400, ext 7229	(619) 457-1000
Circle No. 655	(408) 727-5350	FAX (408) 954-7873	FAX (619) 455-6314
	FAX (408) 562-3605	Circle No. 667	Circle No. 673

VOTE . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 506 Medium Interest 507 Low Interest 508

POWER SOLUTIONS

 THAT MAKE

The AD9020/9060 are among the first converters to offer 10 bits of resolution coupled with high speed-a 75 M -sample/sec sampling rate. Most video systems require only 8 bits, but some professional video systems require 10. (Courtesy Analog Devices)

Devices with two or three ADCs per package are available. Sipex's SP1072 is Table 1's only dual ADC. A device with three ADCs, such as Brooktree's Bt253, lets you digitize YUV and RGB signals simultaneously. Siemens has plans to announce a similar 3-ADC part by the end of the year. Combining functions from both ends of the processing chain, Samsung's KSV3110 incorporates an ADC with a DAC. "Complete" converters, such as Datel's ADC-228, Sipex's SP1070, and TRW's TDC1068, combine video ADCs with an input buffer, references, and output registers. Add enough features, and you have a complete video digitizer such as Analog Devices' hybrid RS-170 AD9502 video digitizer for monochromatic signals.

The available analog-design expertise, the complexity of your sys-
tem, and your anticipated volume of systems primarily determine whether you should design from scratch or buy a system-type chip. Although stand-alone ADCs are quite cheap and plentiful, integrating an IC with various other circuit blocks-sync detectors and color decoders-requires low-noise layout and design techniques. Keeping digitally generated noise away from the analog input circuits is a puzzle for any sampling-system designer.

All-in-one ICs offer board-space and design-time savings, but they, too, have limitations. Joe Alig doesn't like too many bells and whistles. "You may not want to use what the chip designers have done-it may impair performance." The chip designer may not have designed sensitive parts of the cir-cuit-such as the separation of the luminance from the chrominance
signal-in the way that's best for your system.

In addition to composite and component, high-definition TV is yet another form of video. HDTV has received much press lately, but US standards won't be firmly established until approximately 1993. Depending on the final standard, requirements of various HDTVrelated components will vary. It does appear, though, that 10 -bit converters and sampling rates much higher than those of today's standard video signals will be necessary.

A few manufacturers have introduced converters with 10 bits of resolution and sampling rates around 75 M samples/sec. Although these new parts are stabs in the HDTV dark, you can expect more such parts to appear. Those designers looking for ADCs with high resolution and high speed will definitely benefit from ADC manufacturers' anticipation of increasing HDTV applications.

Table starts on pg 160

References

1. Analogue Dialogue, Volume 24, Number 2, 1990, Analog Devices Inc.
2. "IEEE standard for performance measurements of A / D and D / A converters for PCM television video circuit," IEEE Std747-1984, IEEE, New York, NY.

Article Interest Quotient
 (Circle One)

High 506 Medium 507 Low 508

Eliminate Oscillation

OP-160 High-Speed Op Amp - New from PMI

PMI's new OP-160 gets your high-speed circuit designs working right the first time.

Unlike other high-speed op amps, the OP-160 is easy to use and can drive over 1000 pF without oscillating.
The OP-160 has a very fast slew rate of $1300 \mathrm{~V} / \mu \mathrm{s}$ and a unity-gain bandwidth of 90 Mhz to meet the demands of your high-speed applications. Settling time is only 75 ns to 8 bits, 125 ns to 12 bits. All of this performance requires only 6.5 mA
of supply current for cool, reliable operation in space-saving 8 -pin DIP and SO-8 packages.

Theirs $\left(C_{L}=100 \mathrm{pF}\right)$

Ours $\left(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$

And, the OP-160 is affordablepricing starts at $\$ 4.50$ (100 pc .). Plus, it's available in the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) and full military temperature ranges.
To receive your free data package on PMI's easy-touse OP-160, including full SPICE model and applications, call us at 800-843-1515 or FAX us at (408) 727-1550.
Or, circle the reader service number below.
If you require a dual high-speed amplifier, ask for PMI's OP-260.

Precision Monolithics

A Division of Analog Devices
1500 Space Park Drive
Santa Clara, California 95054-3434

Table 1-Representative video A/D converters (continued)

Manufacturer	Part n	Resolution (bits)	Maximum sampling rate (M samples/sec)	Differential linearity	Integral linearity	Differential phase	Differential gain	S/N ratio
Analog Devices	AD9020/9060	10	60/75 min	1 LSB max	1.25 LSB max	0.5° typ	1\% typ	$\begin{gathered} 53 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\mathrm{in}}=10.3 \mathrm{MHz}\right) \end{gathered}$
	AD9048	8	$\begin{aligned} & 35 \mathrm{~min} \\ & 38 \text { typ } \end{aligned}$	1⁄2 LSB max	1/2 LSB max	1^{1} max	2\% max	$\begin{gathered} 44 \mathrm{~dB} \text { typ } \\ \left(F_{\text {in }}=1.248 \mathrm{MHz}\right) \end{gathered}$
	AD9502	8	NA	± 2 LSB max	$\pm 1 \%$ FS typ	NS	NS	NS
Analog Solutions	ZAD1030/1025	10	30/25	± 1 LSB max	± 1 LSB max	NS	NS	$\begin{gathered} 45 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\mathrm{in}}=15 \mathrm{MHz}\right) \end{gathered}$
Brooktree	Bt208	8	18 max	± 1 LSB max	± 1 LSB max	1° typ	2\% typ	$\begin{gathered} 41 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\text {in }}=5.75 \mathrm{MHz}\right) \end{gathered}$
	Bt251	8	18 max	± 1 LSB max	± 1 LSB max	1° typ	2\% typ	$\begin{gathered} 41 \mathrm{~dB} \text { typ } \\ \left(F_{\text {in }}=5.75 \mathrm{MHz}\right) \end{gathered}$
	Bt253	8	18 max	± 1 LSB max	± 1 LSB max	$1{ }^{\circ}$ typ	2\% typ	$\begin{gathered} 41 \mathrm{~dB} \text { typ } \\ \left(F_{\text {in }}=5.75 \mathrm{MHz}\right) \end{gathered}$
Burr-Brown	ADC603	12	10 max	3/4 LSB	1 LSB max	NS	NS	$\begin{gathered} 68.2 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\text {in }}=5 \mathrm{MHz}\right) \end{gathered}$
	ADC620	12	20 max	1/2 LSB typ	3/4 LSB typ	NS	NS	$\begin{gathered} 65 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\text {in }}=9.9 \mathrm{MHz}\right) \end{gathered}$
Comlinear	CLC920	10	20 min	0.1\% FSR max	0.2\% FSR max	0.5° max	1\% max	$\begin{gathered} 59 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\text {in }}=1 \mathrm{MHz}\right) \end{gathered}$
Datel	ADS-130	12	10 min	± 1 LSB max	± 1 LSB max	NS	NS	$\begin{gathered} 69 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\text {in }}=5 \mathrm{MHz}\right) \end{gathered}$
	ADC-207	7	$\begin{aligned} & 20 \mathrm{~min} \\ & 35 \text { typ } \end{aligned}$	$\pm{ }^{1 / 2}$ LSB max	± 1 LSB max	$1.5{ }^{\circ}$ typ	3\% typ	NS
	ADC-208	8	20 typ 15 min	± 1 LSB max	$\pm 1 / 2$ LSB max	$1.1{ }^{\circ}$ typ	2\% typ	NS
	ADC-228	8	$\begin{aligned} & 25 \text { typ } \\ & 20 \mathrm{~min} \end{aligned}$	$\pm 1 / 2$ LSB max	± 112 LSB max	1^{1} typ	2\% typ	$\begin{gathered} 55 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\mathrm{in}}=5 \mathrm{MHz}\right) \end{gathered}$
	ADC-304	8	20 min	$\pm{ }^{1 / 2}$ LSB max	± 112 LSB max	$0.5{ }^{\circ} \mathrm{max}$	1.5\% max	NS
Fujitsu Microelectronics	MB40576	6	$\begin{aligned} & 20 \mathrm{~min} \\ & 30 \text { typ } \end{aligned}$	NS	$\pm 0.8 \%$ max	NS	NS	NS
	MB40578	8	$\begin{aligned} & 20 \mathrm{~min} \\ & 30 \text { typ } \end{aligned}$	NS	$\pm 0.2 \%$ max	NS	NS	NS
Harris Semiconductor	CA3306	6	15 min	± 0.25 LSB max	± 0.25 LSB typ	NS	NS	NS
	CA3318	8	15 min	± 1 LSB max	± 1.5 LSB max	1° typ	2\% typ	NS
Hitachi	HA19211BP/ HA19212P	8	$\begin{aligned} & 30 \text { typ } \\ & 20 \mathrm{~min} \end{aligned}$	± 0.5 LSB typ	2 LSB typ	$0.5{ }^{\circ}$ typ	1\% typ	NS
	HA19213NT	7	30 typ	± 0.5 LSB typ	1 LSB typ	$0.5{ }^{\circ} \mathrm{typ}$	1\% typ	NS
	HA19214NT	10	20 typ 15 min	± 0.8 LSB typ	± 2.5 LSB typ	$0.5{ }^{\circ}$ typ	1\% typ	NS
ILC Data Device Corp	ADC-00110	12	10 min	± 1 LSB max	± 1 LSB max	NS	NS	$\begin{gathered} 68.5 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\mathrm{in}}=5 \mathrm{MHz}\right) \end{gathered}$

[^10]| Input-voltage range (V) | Power dissipation (W) | Power supply (V) | Packages | Price
 (100s) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ± 1.75 | 2.8 | $\pm 5 / 5,-5.2$ | 68-pin leaded ceramic, ceramic LCC | \$165/\$185 | Very fast TTL and ECL 10-bit converters. Modified flash architecture uses only 128 comparators. |
| 0 to -2.1 | 0.55 | 5, -5.2 | 28-pin DIP, 28-pin plastic leaded chip carrier, ceramic LCC | \$20 | Second source to industry standard 1048 with wider input bandwidth (70 MHz) and lower input capacitance (16 pF). Output is TTL compatible. Full flash architecture. |
| $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ | 1.75 | ± 15 or $\pm 12,5$ | 40-pin hybrid metal | \$289 | Complete video digitizer of RS-170, NTSC, or PAL camera signals. Includes video amplifier, S/H amplifier, sync detector/seperator, pixel-clock recovery, and dc restoration. |
| $\begin{gathered} 1 V_{p-p} \\ \text { or } 2 V_{p-p} \end{gathered}$ | 13.9 | $\pm 15,5,-5.2$ | 5×7-in. pc board | \$1973 | Digitally corrected, subranging architecture. Includes track and hold, timing, references, and latched outputs. |
| 0 to 1 | 0.5 typ | 5 | 24-pin DIP | \$10 | External zero and clamp control allows ac-coupled signals to be dc restored during each blanking interval. |
| 0 to 1 | 0.75 typ | 5 | 44-pin plastic leaded chip carrier | \$39 | Integrates 4:1 analog multiplexer look-up table RAM, and sync detector. Digitizes RS-170 signals. |
| 0 to 1 | 1 typ | 5 | 84-pin plastic leaded chip carrier | \$52 | Integrates three ADCs, analog multiplexer and sync detector Digitizes RGB and YUV signals. |
| ± 1.25 | 6.1 typ | $\pm 15,5,-5.2$ | 46-pin hybrid DIP | \$590 to \$941 | 2-step subranging ADC with S/H amp and reference. |
| ± 1 | 7 typ | $\pm 15,5,-5.2$ | 46-pin hybrid DIP | \$2399 | Harmonic distortion and 2-tone imtermodulation distortion equals -70 dBc . Analog input bandwidth equals 100 MHz typ. 2-step subranging architecture includes S/H amp and reference. |
| ± 2 | 3.65 typ | ± 5 | 64-pin DIP | \$99.50 | Full flash architecture. Fully 883 -compliant version also available. |
| ± 1.25 | $\begin{aligned} & 4.2 \max \\ & 3.8 \text { typ } \end{aligned}$ | $\pm 15, \pm 5$ | 40-pin TDIP** | \$439 | 2-step subranging ADC. Includes S/H amp, timing circuits, and error correction. |
| 0 to 5 | $\begin{aligned} & 0.385 \max \\ & 0.25 \text { typ } \end{aligned}$ | 5 | $\begin{aligned} & \text { 18-pin DIP, } \\ & \text { 24-pin LCC } \end{aligned}$ | \$30 | Full flash architecture. Low-power CMOS. $16-\mathrm{MHz},-3-\mathrm{dB}$ bandwidth. |
| 0 to 5 | $\begin{gathered} 0.745 \max \\ 0.66 \text { typ } \end{gathered}$ | 5 | 24-pin DDIP* or LCC | \$50 | Same architecture as ADC-207 with additional comparators. |
| 0 to 5 | $\begin{aligned} & 1.6 \max \\ & 1.4 \text { typ } \end{aligned}$ | $\pm 15,5$ | 28-pin DDIP | \$185 | Includes an input buffer, buffered reference taps. Vendor trims and compensates device over the temperature range. |
| 0 to 5 | $\begin{aligned} & 0.44 \text { max } \\ & 0.36 \text { typ } \end{aligned}$ | 5 or ± 5 | 28-pin DDIP | \$15 | $8-\mathrm{MHz},-3-\mathrm{dB}$ input bandwidth. With single-supply operation, input range is 3 to 5 V .0 to -2 V range obtainable with dual supplies. Full flash architecture. |
| 4 to 5 | 0.27 typ | 5 | 16-pin DIP, 16-pin flatpack | \$3.20 | Full flash architecture. |
| 3 to 5 | 0.48 typ | 5 | $22-\mathrm{pin}$ DIP | \$7.89 | Full flash architecture. |
| 1 to 5 | 0.07 typ | 3 to 8 | 18-pin DIP, 20 -pin SOIC | \$7.30 | Full flash architecture, low-power CMOS. Includes overflow bit. |
| 0 to 7 | 0.15 typ | 4 to 8 | 24-pin DIP | \$31 | Full flash architecture, low-power CMOS. |
| $2 V_{p-p}$ | 0.25 typ | 5 | 28-pin DIP, 44-pin quad flatpack, 30-pin shrink DIP | \$7.95 | Full flash architecture. |
| $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ | 0.2 typ | 5 | 30-pin shrink DIP, 28-pin quad flatpack | \$5.95 | Full flash architecture. |
| $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ | 0.9 typ | ± 5 | 42-pin shrink DIP | \$99 | Half flash architecture with on-chip track/hold amplifier. TTL, ECL, or other threshold-compatible clock. |
| ± 2.5 or ± 1 | 8 | $\pm 15,5,-5.2$ | 46-pin plug in | \$975 | Half flash architecture with internal track/hold circuitry. |

Table continued

Table 1-Representative video A/D converters (continued)

Manufacturer	Part n	Resolution (bits)	Maximum sampling rate (M samples/sec)	Differential linearity	Integral linearity	Differential phase	Differential gain	S/N ratio
Micro Networks	MN5820	8	20 min	± 1.2 LSB typ	± 0.4 LSB	NS	NS	$\begin{gathered} 46 \mathrm{~dB} \min \\ \left(\mathrm{~F}_{\mathrm{in}}=2.5 \mathrm{MHz}\right) \end{gathered}$
	MN5901	8	100 min	± 0.6 LSB	± 0.5 LSB	NS	NS	$\begin{gathered} 42 \mathrm{~dB} \min ^{\left(\mathrm{F}_{\mathrm{in}}=1 \mathrm{MHz}\right)} \end{gathered}$
	MN5903	6	70 min	± 0.5 LSB max	± 0.875 max	NS	NS	$\begin{gathered} 35 \mathrm{~dB} \text { min } \\ \left(\mathrm{F}_{\text {in }}=10 \mathrm{MHz}\right) \end{gathered}$
Micro Power Systems	MP7684A	8	20 max	$\pm \pm 1 / 2$ LSB max	± 1 LSB max	1° typ	2\% typ	$\begin{gathered} 46 \mathrm{~dB} \\ \left(\mathrm{~F}_{\mathrm{in}}=4 \mathrm{MHz}\right) \end{gathered}$
	MP7686	6	30 typ 35 max	$\pm^{1 / 2}$ LSB max	$\pm{ }^{1 / 2}$ LSB max	$1{ }^{\circ}$ typ	2\% typ	$\begin{gathered} 36 \mathrm{~dB} \mathrm{~min}^{\left(F_{\text {in }}=5 \mathrm{MHz}\right)} \end{gathered}$
	MP8780	8	20 max	1/2 LSB typ at 14.4 MHz	$\begin{aligned} & 1 \text { LSB typ } \\ & \text { at } 14.4 \mathrm{MHz} \end{aligned}$	1° typ	2\% typ	$\begin{gathered} 46 \mathrm{typ} \\ \left(F_{\text {in }}=2.4 \mathrm{MHz}\right) \\ \hline \end{gathered}$
Motorola	MC10319	8	25 max	± 1 LSB max	$\begin{aligned} & \pm^{1 / 4} \text { LSB typ } \\ & \pm 1 \text { LSB max } \end{aligned}$	1^{10} typ	1\% typ	NS
	MC10321	7	25 max	± 1 LSB max	$\pm^{1 / 4}$ LSB typ ± 1 LSB max	2° typ	2\% typ	NS
National Semiconductor	ADC0881	8	20 max	0.2\% FS max	0.2\% FS max	$\begin{aligned} & 0.5^{\circ} \mathrm{typ} \\ & 1^{\circ} \mathrm{max} \end{aligned}$	1% typ 2% max	$\begin{gathered} 45 \mathrm{~dB} \min \\ \left(\mathrm{~F}_{\text {in }}=1.248 \mathrm{MHz}\right) \end{gathered}$
	ADC0882	8	20 max	0.2\% FS max	0.2\% FS max	$\begin{aligned} & 0.3^{\circ} \text { typ } \\ & 1^{\circ} \max \end{aligned}$	0.7% typ 2\% max	$\begin{gathered} 45 \mathrm{~dB} \\ \left(\mathrm{~F}_{\text {in }}=1.248 \mathrm{MHz}\right) \end{gathered}$
NEC Electronics	μ PC659	8	20 max	± 0.5 LSB max	± 1.5 LSB max	$\begin{aligned} & 0.8^{\circ} \text { typ } \\ & 3^{\circ} \max \end{aligned}$	1.5\% typ 3\% max	NS
Philips ComponentsSignetics	TDA8703	8	40 min	± 0.25 LSB typ	± 0.4 LSB typ	0.8° typ	0.6\% typ	7.1 effective bits $\left(F_{\text {in }}=4.43 \mathrm{MHz}\right)$
	TDA8708/09	8	30 min	± 0.3 LSB typ	± 0.5 LSB typ	2° typ	2\% typ	$\begin{gathered} 60 \mathrm{~dB} \text { min } \\ \left(F_{\text {in }}=5 \mathrm{MHz}\right) \end{gathered}$
	TDA8713	8	30 min	$\begin{aligned} & \pm 0.25 \text { LSB typ } \\ & \pm 0.5 \text { LSB max } \end{aligned}$	$\begin{aligned} & \pm 0.4 \text { LSB typ } \\ & \pm 1 \text { LSB max } \end{aligned}$	$\begin{gathered} 0.8^{\circ} \text { typ } \\ 1.5^{\circ} \max \end{gathered}$	0.6\% typ 2\% max	7.1 effective bits typ $\left(F_{\text {in }}=4.43 \mathrm{MHz}\right)$
	TDA8715	8	50 min	$\begin{gathered} \pm 0.25 \text { LSB typ } \\ \pm 0.25 \text { LSB } \text { max } \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.4 \text { LSB typ } \\ \pm 0.75 \text { LSB max } \\ \hline \end{gathered}$	$\begin{gathered} 0.4^{\circ} \text { typ } \\ 1.5^{\circ} \text { max } \end{gathered}$	0.3\% typ 2\% max	7.2 effective bits typ $\left(F_{\text {in }}=4.43 \mathrm{MHz}\right)$
Plessey Semiconductors	SP94308	8	20 min	$\pm{ }^{3 / 4}$ LSB typ	± 1 LSB max	1^{10} typ	1.5\% max	NS
	SP973T8	8	30 min	$\pm{ }^{1 / 2}$ LSB max	± 1 LSB max	1° max	1\% max	NS
Samsung Semiconductor	KAD0206	6	20 max	$\pm 0.8 \%$ max	$\pm 0.8 \%$ max	2° max	2\% max	NS
	KSV3110	8	20 min	$\pm 0.2 \%$ typ	$\pm 0.8 \%$ typ	2° max	3\% max	$\begin{gathered} 42 \mathrm{~dB} \\ \left(F_{\text {in }}=1.02 \mathrm{MHz}\right) \end{gathered}$
	KSV3208	8	20 min	$\pm 0.2 \%$ typ	$\pm 0.8 \%$ typ	2° max	2\% max	$\begin{gathered} 40 \mathrm{~dB} \min ^{4} \\ \left(\mathrm{~F}_{\text {in }}=1 \mathrm{MHz}\right) \end{gathered}$
Siemens Components	SDA 5200	6	50 min	$\pm{ }^{1 / 4}$ LSB max	$\pm{ }^{1 / 2}$ LSB max	NS	NS	NS
	SDA 8010	8	100 min	± 0.5 LSB max	± 0.6 LSB max	NS	NS	$\begin{gathered} 43 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\mathrm{in}}=30 \mathrm{MHz}\right) \end{gathered}$
Sipex	SP1070	8	30 max 25 min	$\pm 3 / 4$ LSB max	± 1 LSB max	$1{ }^{10}$ typ	1\% typ	$\begin{gathered} 44 \mathrm{~dB} \mathrm{~min} \\ \left(F_{\text {in }}=2.234 \mathrm{MHz}\right) \end{gathered}$
	SP1072	8	25 max	± 1 LSB max	± 1 LSB max	$1{ }^{\circ}$ typ	1\% typ	$\begin{gathered} 40 \mathrm{~dB} \min ^{\left(F_{\text {in }}=1.1 \mathrm{MHz}\right)} \end{gathered}$
	SP1078	8	60 max	$\pm 3 / 4$ LSB max	± 1 LSB max	NS	NS	$\begin{gathered} 45 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\text {in }}=2.234 \mathrm{MHz}\right) \end{gathered}$

Notes: Specifications cover commercial temperature ranges.
NA=not applicable *DDIP=double-wide DIP \quad FSR=full scale range
NS $=$ not specified **TDIP=triple-wide DIP

Input-voltage range (V)	Power dissipation (W)	Power supply (V)	Packages	$\begin{aligned} & \text { Price } \\ & \text { (100s) } \end{aligned}$	Comments
$\begin{gathered} 0 \text { to } 1 ; 0 \text { to } \\ -1, \pm 1 \end{gathered}$	0.858	5, -5.2	24-pin DDIP	\$144	Includes full flash converter, reference, amplifiers, buffer, and input termination resistor. Competes with THC 1068.
± 1	1.43	5, -4.5	24-pin DDIP	\$70	Second source for Siemens SDA 8010.
± 1	0.65	5, -5.2	16-pin DIP	\$39	Full flash architecture. Second source for AD9000.
1.2 to $5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.055 typ	4 to 6	$\begin{aligned} & \text { 28-pin DIP, } \\ & 28 \text {-pin SOIC } \end{aligned}$	\$13	Full flash CMOS architecture. Programmable input range.
1 to $5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.035 max	4 to 6	$\begin{aligned} & \text { 18-pin DIP, } \\ & \text { 18-pin SOIC } \end{aligned}$	\$6.61	Full flash CMOS architecture. Programmable input range.
1.2 to $5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.05 typ	5	$\begin{aligned} & \text { 24-pin DIP, } \\ & \text { 24-pin SOIC } \end{aligned}$	\$8.90	Full flash CMOS architecture. Programmable input range.
1 to $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.618 typ	± 5	$\begin{aligned} & \text { 24-pin DIP, } \\ & \text { 24-pin SOIC } \end{aligned}$	\$19	Wide tolerance on -5 supply. Full flash architecture.
-2.1 to 2.1	$\begin{gathered} 0.459 \text { typ } \\ 0.668 \text { max } \end{gathered}$	± 5	$\begin{aligned} & \text { 20-pin DIP, } \\ & \text { 20-pin SOIC } \end{aligned}$	\$7	Wide tolerance on -5 supply. Full flash architecture.
3 to 5 0 to -2	0.6 0.7	5 ± 5	28-pin DIP, 28-lead plastic leaded chip carrier 28-pin DIP, 28-lead plastic leaded chip carrier	$\begin{gathered} \$ 10 \\ \$ 8.50 \\ \\ \$ 14 \\ \$ 12.75 \end{gathered}$	Result of cross-licensing agreement with TRW LSI Products. Direct replacement for TDC1058. Full flash architecture. Result of cross-licensing agreement with TRW LSI Products. Direct replacement for TDC1038. Full flash architecture.
$1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	0.395 typ	5	24-pin SOIC	\$12.10	2-step flash architecture. Includes clamping, S/H, and reference-generating circuits.
1	0.3	5	$\begin{aligned} & \text { 24-pin DIP, } \\ & \text { 24-pin SOIC } \end{aligned}$	\$8.16	Folding and interpolating architecture.
1	0.36	5	$\begin{gathered} \text { 28-pin DIP, } \\ 28 \text {-pin SOIC } \end{gathered}$	\$18.93	Includes 1-out-of-3 input selector, video amplifier with clamp and external gain control. TDA8709 is for chrominance inputs in S/VHS applications.
1	$\begin{gathered} 0.29 \text { typ } \\ 0.415 \max \end{gathered}$	5	$\begin{aligned} & \text { 24-pin DIP, } \\ & \text { 24-pin SOIC } \end{aligned}$	\$24	All digital inputs and outputs are TTL compatible.
1	$\begin{gathered} 0.325 \text { typ } \\ 0.425 \text { max } \end{gathered}$	5	24-pin DIP	\$80	All digital inputs and outputs are ECL compatible.
$1 \mathrm{~V}_{p-p}$	0.75 typ	± 5	28-pin DIP	\$9.68	$6-\mathrm{MHz}$ min analog bandwidth. Buffer and amplifier with an internal gain of 2 .
$2 V_{p-p}$	0.55 typ	5	18-pin DIP	\$12.61	$70-\mathrm{MHz}, 3-\mathrm{dB}$ typical bandwidth. Internal bandgap reference.
2.6 to 5	0.4 typ	5	32-pin SOIC	\$8	Three different internal clamping functions. Internal 3.7 and 2.7V references.
0 to 2	0.55	± 5	40-pin DIP	\$27 to \$35	Combines 8 -bit A/D converter with a 7 -, 8-, 9 -, or 10 -bit D/A converter.
0 to $\mathrm{V}_{\text {ref }}$	0.88 typ	± 5	28-pin DIP	\$22	Includes reference, preamplifier, and input clamping circuit. Essentially the 8 -bit converter section of the KSV3110.
-3 to 2	0.55 typ	5, -5.2	16-pin DIP	\$50.16	Full flash architecture. ECL compatible.
± 1	1.3 typ	$5,-4.5$	24-pin DIP	\$100.68	Full flash architecture. ECL compatible. Wide large-signal bandwidth.
$\begin{aligned} & 0.741,1,1.25 \\ & \text { or } 2.5 \end{aligned}$	0.965 typ	5, -5.2	28-pin DIP	\$190	Includes input amplifier, full-scale-range amplifier, 2.5 V reference. Input amplifier is dc stabilized to overcome dc drift and warm-up problems. Pin-selectable RS170/RS343 gains.
± 6 max	2.6 typ	$\pm 12, \pm 5$	42-pin DDIP	\$580	Dual flash ADCs with separate input buffer and limiter for each channel.
$\begin{aligned} & 0 \text { to } 1, \pm 0.5, \\ & 0 \text { to }-1 \end{aligned}$	0.561 typ	5, -5.2	24-pin DIP	\$167	Hybrid package includes input amplifier and 2.5 V reference.

Table 1-Representative video A/D converters (continued)

Manufacturer	Part n	Resolution (bits)	Maximum sampling rate (M samples/sec)	Differential linearity	Integral linearity	Differential phase	Differential gain	S/N ratio
Sony	CXA1016P/K CXA1056P/K	8	30 min 50 min	$\pm{ }^{1 / 2}$ LSB max	$\pm{ }^{1 / 2}$ LSB max	$0.5{ }^{\circ} \mathrm{max}$	1.5\% max	NS
	CXA1296P	8	20 min	$\pm{ }^{1 / 2}$ LSB max	$\pm 1 / 2$ LSB max	$0.5{ }^{\circ} \mathrm{max}$	1.5\% max	$\begin{gathered} 45 \mathrm{~dB} \\ \left(\mathrm{~F}_{\mathrm{in}}=5 \mathrm{MHz}\right) \end{gathered}$
	CXD1175AP/AM	8	35 typ	$\pm{ }^{1 / 2}$ LSB	+1.5/-1.0	$0.7^{\circ} \mathrm{typ}$	1\% typ	$\begin{gathered} 41 \mathrm{~dB} \\ \left(\mathrm{~F}_{\text {in }}=5 \mathrm{MHz}\right) \end{gathered}$
	$\begin{array}{r} \text { CX20220A-1 } \\ \text { A-2 } \end{array}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	20 min	$\begin{aligned} & \pm 1 \text { LSB max } \\ & \pm 1 \text { LSB max } \end{aligned}$	$\begin{aligned} & \pm 1 \text { LSB max } \\ & \pm 1 / 2 \text { LSB } \max \end{aligned}$	$\begin{aligned} & 0.3^{\circ} \text { typ } \\ & 0.5^{\circ} \text { typ } \end{aligned}$	0.7\% typ 1\% typ	NS
Teledyne Components	4194	10	30 max	10-bitmonotonic at 30 MHz	0.05\% FSR \dagger typ	NS	NS	NS
TRW LSI Products	TDC1020	10	$\begin{aligned} & 20 \text { min } \\ & 25 \text { typ } \end{aligned}$	$\begin{aligned} & 1 / 2 \text { LSB typ } \\ & 11 \text { SB max } \end{aligned}$	$\begin{aligned} & 1 / 2 \text { LSB typ } \\ & 1 \text { LSB max } \end{aligned}$	0.5° typ	1\% max	$\begin{gathered} 55 \mathrm{~dB} \text { typ } \\ \left(\mathrm{F}_{\mathrm{in}}=5 \mathrm{MHz}\right) \end{gathered}$
	TDC1038	8	20 min	½ LSB max	1/2 LSB max	0.3° typ 1° max	$\begin{aligned} & \text { 0.7\% typ } \\ & 2 \% \max \end{aligned}$	$\begin{gathered} 45 \mathrm{~dB} \min \\ \left(\mathrm{~F}_{\text {in }}=1.248 \mathrm{MHz}\right) \end{gathered}$
	TDC1048	8	20 min	1⁄2 LSB max	1/2 LSB max	1° max	2\% max	$\begin{gathered} 45 \mathrm{~dB} \min \\ \left(\mathrm{~F}_{\mathrm{in}}=1.248 \mathrm{MHz}\right) \end{gathered}$
	TDC1049	9	30 min	½ LSB max	1⁄2 LSB max	0.5° max	1\% max	$\begin{gathered} 48 \mathrm{~dB} \min \\ \left(\mathrm{~F}_{\mathrm{in}}=1.25 \mathrm{MHz}\right) \end{gathered}$
	TDC1058	8	20 min	11/2 LSB max	1/2 LSB max	$\begin{aligned} & 0.5^{\circ} \text { typ } \\ & 1^{\circ} \text { max } \end{aligned}$	1\% typ 2\% max	$\begin{gathered} 45 \mathrm{~dB} \min \\ \left(\mathrm{~F}_{\text {in }}=1.248 \mathrm{MHz}\right) \end{gathered}$
	TDC1068	8	25 min	1/2 LSB max	1/2 LSB max	1° max	2\% max	$\begin{gathered} 40 \mathrm{~dB} \min \\ \left(F_{\text {in }}=2.438 \mathrm{MHz}\right) \end{gathered}$

Notes: Specifications cover commercial temperature ranges.
NA =not applicable *DDIP=double-wide DIP \dagger FSR=full scale range NS=not specified **TDIP=triple-wide DIP

The KEL 8900 Series Lower Profile-Higher Density

KEY 8900 SPECIFICATIONS

*Low Profiles - 7, 8, 9, 10 and 12 mm stacked heights

* 8 Sizes per profile - 20, 30, 40, 50, 60, 80, 100 \& 120 positions
* "Snap-in" mating
* Sufficient Normal Forces -150 grams
* Guide pins for self-alignment
* Insulator protects contact from damage
* Temperature resistant (PPS insulator)

All eight pin counts of the 8900 Series are available in five mated profiles.

KEL Connectors, Inc. is a subsidiary of KEL Corporation. CONNECT WITH
 KEL CONNECTORS, INC.
1250 Oakmead Parkway, Suite 105 Sunnyvale, CA 94086 408-720-9044; Fax 408-720-1989 KEL Corporation (Japan): Telephone 0423-74-5802; Fax 0423-74-5888 European Office (W. Germany): Telephone 0211-359960; Fax 0211-359810

Input-voltage range (V)	Power dissipation (W)	Power supply (V)	Packages	Price (100s)	Comments
0 to -2	$\begin{aligned} & 0.42 \text { typ } \\ & 0.55 \text { typ } \end{aligned}$	-5.2	$\begin{aligned} & \text { 28-pin DIP } \\ & \text { 44-pin LCC } \end{aligned}$	$\begin{gathered} \$ 24.90 / \$ 49 \\ \$ 46 / \$ 69 \end{gathered}$	$30-$ and $50-\mathrm{MHz}$ input bandwidths. Full flash architecture.
0 to -2	0.4 typ	5 or ± 5	28-pin DIP	\$15.90	Full flash conversion technique. Pin replaceable with TDC1048.
1.8 to $5 \mathrm{~V}_{p-p}$	0.09 typ	5	$\begin{aligned} & \text { 24-pin DIPI } \\ & \text { 24-pin SOIC } \end{aligned}$	$\begin{gathered} \$ 17.20 / \\ \$ 18 \end{gathered}$	Half flash conversion technique. Low-power CMOS.
0 to -2	0.36 typ	-5	28-pin DIP	$\begin{gathered} \$ 100 \\ \$ 49.50 \end{gathered}$	Subranging architecture, requires external S / H amplifier. Digital inputs and outputs are ECL compatible.
2.048	14 typ	$\pm 15, \pm 5$	5×6-in. pc board	\$2050	Operates in single-shot mode with single pulse convert command. Dual 6-bit flash architecture. Internal T/H amplifier.
+2 to -2	5 typ	5, -5.2	64-pin DIP, 68-pin pingrid array	\$98	Full flash architecture. Selectable output formats. Available in complete system in THC1070.
0 to -2	0.7 typ	5, -5.2	28-pin DIP, 28-lead plastic leaded chip carrier	\$12.75	Drop-in replacement for TDC1048 with lower power and selectable output formats.
0 to -2	$0.95 \text { typ }$ $1.95 \max$	5, -5.2	28-pin DIP, chip carrier	\$23	Industry-standard video ADC since 1983. Selectable output formats.
0 to -2	3.5 typ	-5.2	64-pin DIP, 68-contact chip carrier, 68-pin pin-grid array	\$94	Only 9-bit ADC available. Also internal to TDC1069.
3 to 5	0.575 typ	5	28-pin DIP, 28-lead plastic leaded chip carrier	\$8.50	Next generation of TDC1048 with single supply and low cost. $60-\mathrm{MHz}$ input bandwidth.
$1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	1.6 typ	5, -5.2	24-pin DIP	\$73	Complete ADC system with input buffer, 3-state output register, and reference.

391 Balsam Avenue, Sunnyvale, CA 94086 TEL: (408) 773-1042 FAX: (408) 738-3451

They hear how it provides HDLC/ SDLC framing for implementing MNP $5^{\text {min }}, \mathrm{X} .25$, LAPM and V. 42 protocols, while offering unprecedented programming flexibility for custom and country-specific applications.

"And then we met the rest of the family."

A Rockwell technical advisor explains that it's the only chip set with Quad capability that meets CCITT V. 22 bis, V. 22 A/B, V. 21 and V. 23 requirements, as well as Bell 212A and 103 standards. He adds that the RC2324SME offers capabilities optimized for Europe, including MNP $5^{m \times 1}$ and $V .25$ bis.

In no time, the Laptop project is ready for production. To management, the results-as well as the engineers responsible-couldn't look better.

Call the leader in modem technology. Rockwell is solutions.

Rockwell International
where science gets down to business

THINLINES.

Line widths to 0.65 microns.

Our new state-of-the-art
plant can mass-produce ULSI chips with line widths to 0.65 microns-and we can do high volume production runs on short notice. We handle ICs such as

SRAMs, ROMs, and PC chip sets for PCs, workstations, disk drives, and telecommunications applications.

FAT MARGINS.

Priced for your bottom line.

And we do all this at very, very attractive prices. In fact, leading manufacturers around the world buy millions of chips from us every month.

If you'd like to start enjoying the benefits of thinner lines and fatter margins, call us today:

408-727-9589.

"For Your OWN Unified DSP Solution, Get a Copy of Spectrum's Latest Catalog."

The smartest solution to digital signal processing (DSP) is to call Spectrum today. With our full line of system boards, processor boards, analog peripherals, even development and application tools, you'll be implementing leading-edge DSP systems in relatively no time.

For your free copy of our Catalog and "Einstein" Poster, write or call Spectrum Signal Processing at: 460 Totten Pond Road, Waltham, MA 02154 1-800-323-1842 or (617) 890-3400 (Eastern Office) or 301-3700 Gilmore Way, Burnaby, B.C. V5G 4M1 1-800-663-8986 or (604) 438-7266 (Western Office) It's a smart move.

Making DSP Technology Easy to Use

EDN'S DSP-CHIP DIRECTORY

> DSP μ Ps continue to become faster, cheaper, and more abundant. The recent availability of high-quality software tools eases debugging and maintaining your software today. And soon, parallel processing will let you achieve supercomputer performance.

David Shear, Contributing Editor

After years of being specialized curiosities, digital-signal-processor chips (DSP $\mu \mathrm{Ps}$) are finding their way into high-volume applications such as high-speed modems and digital cellular telephones. Every day, designers develop new applications for DSP chips. Adaptive servo controllers, speech-recognition systems, image systems, refrigerators, and robots are just some of the products that use them. Automobiles are beginning to use DSP chips for engine control, active suspension systems, and noise cancellation.

Paralleling the $\mu \mathrm{P}$ market

Close parallels exist between the history of the $\mu \mathrm{P}$ and that of the DSP chip. At first, there were many μ Ps looking for problems to solve. After that, the market split into small low-cost microcontrollers and highend $\mu \mathrm{Ps}$.

The DSP-chip market has split in a similar fashion into high-volume, low-cost, 16 -bit fixed-point chips and low-volume, high-end, parallel-processing floatingpoint chips. In the $\mu \mathrm{P}$ market, there was a shakeout, leaving only a few vendors. The DSP market is beginning to follow this path. Fujitsu is one of the most recent manufacturers to drop out of the DSP market. In fact, the DSP market is maturing to the point where the high-volume applications are defining the design of the chips.

Many applications now require DSP chips. Telecommunications equipment, high-speed modems, automo-bile-engine controllers, digital cellular telephones, and even refrigerators. In Japan, cramped living quarters sometimes force people to sleep close to the kitchen and, thus, the refrigerator. A DSP chip helps reduce the noise of the refrigerator's compressor via active noise cancellation.

When floating-point DSP μ Ps first came out, many people thought that designers would mostly use them when they were too lazy to use fixed-point chips or
had insufficient time to create a fixed-point design. Using a fixed-point DSP chip is always more difficult than using a floating-point DSP chip because the programmer must contend with scaling.

Designers ended up using the floating-point DSP chips for high performance-especially in applications that required the power of parallel processing. Although some applications use a single floating-point DSP chip, single-chip designs often aren't fast enough. Multiple floating-point DSP μ Ps are used in many highend applications such as graphics and imaging systems.

In fact, a growing market exists for high-speed float-ing-point DSP μ Ps with architectures that suit them for parallel processing, but few such chips exist. Texas Instruments' C30 floating-point DSP chip has some interchip communications capabilities. Motorola's 96002 has two expansion buses on the chip for nearly glueless connection of multiple DSP μ Ps in a linear array.

Texas Instruments' specifically designed the C40 floating-point DSP $\mu \mathrm{P}$ for parallel processing. The idea for the chip came about when Ray Simar, principal architect of TI's C30 family, observed that few applications used only a single C30. His coworkers also found few such applications. The C40 resulted from their observations. This floating-point DSP chip is an example of things to come. It performs 32 -bit floating-point operations in 40 nsec, has 1332 -bit internal buses, and two complete 32 -bit external buses. What really sets the C40 apart from other DSP μ Ps is a 6-channel DMA controller and six 32 -bit communications ports that connect directly to other C40s without external logic. These 13M-byte/sec communications ports let you configure the C40 into large arrays without external logic.

You'll see more external buses

As DSP μ Ps get faster, you must transfer data into and out of them faster. If you can't get data transferred in and out of a fast DSP chip, you won't be able to

A growing market exists for high-speed floating-point DSP $\mu P s$ with architectures that suit them for parallel processing, but few such chips exist.
realize the performance the chip has to offer. It is critical that the data-transfer speed be fast enough to keep the DSP working instead of waiting.
Dual buses will become more prevalent. With dual buses you can access two external memories at the same time. Motorola's 96002 and TI's C40 have two complete 32 -bit external buses. Motorola's first float-ing-point DSP chips were the 96001 and the 96002 . The 96001 was very much like a floating-point version of the 56001 fixed-point DSP chip but with a single external bus. The dual-bus 96002 excited a larger market than the now moth-balled 96001 .
The format of floating-point numbers has been somewhat controversial. Motorola and Zoran say that it is essential for a chip's format to comply with the IEEE754 floating-point standard. AT\&T, NEC Electronics, Oki Semiconductor, and Texas Instruments agree that the format inside the DSP is not important. AT\&T and TI have single cycle instructions to convert to and from the IEEE-754 format for those applications that require IEEE compliance.

Today's high-end is tomorrow's necessity

Multiple floating-point DSP μ Ps will not always be used only in high-end applications. A few years ago, a single 16 -bit fixed-point DSP $\mu \mathrm{P}$ would have been too expensive to be used in a desktop PC. These DSP $\mu \mathrm{Ps}$ are now less than $\$ 5$ and have invaded desktop PCs in the form of modems and other specialized products. Parallel processing with multiple floating-point DSP μ Ps will follow this same path. In a few years, PC applications will require the performance these devices provide and by then floating-point DSP chips will be cheap enough to fill the need.
Fixed-point DSP μ Ps are far from dead. Just like microcomputers, they will always be in demand for such applications as telecommunications equipment, modems, and toys. Sixteen-bit fixed-point devices have such a high volume potential that Motorola-long a proponent of the 24 -bit word length-will soon introduce a 16 -bit DSP- μ P family.
Manufacturers are keeping the older 16 -bit fixedpoint DSP μ Ps alive by surrounding the original DSP$\mu \mathrm{P}$ core with a variety of peripheral and memory op-
tions. Even analog-to-digital and digital-to-analog converters (ADC/DAC) are being integrated on these DSP chips. Analog Devices, AT\&T, and Oki all have an ADC/DAC on these DSP chips.
'The 16 -bit ADC/DAC on Analog Devices' ADSP21msp50 is specified in the data sheet to have a $65-\mathrm{dB} \mathrm{S} / \mathrm{N}$ ratio. This spec seems disappointing because 16 -bit ADCs can often approach a $96-\mathrm{dB}$ S/N ratio. However, the $65-\mathrm{dB}$ S/N ratio is not a limitation of the technology. Analog Devices says that it has specified 65 dB because that is the requirement of the highvolume telecommunications application the device was designed for. The company expects to see a S / N ratio of about $96-\mathrm{dB}$ when it fully characterizes the part.
The 24 -bit fixed-point DSP $\mu \mathrm{Ps}$ are well suited to the digital audio market. In fact, that may be the only market for them-at least Texas Instruments thinks so. The company has a 24 -bit fixed-point device, the TMS57000, that is not available to the general public. They sell it on a custom basis and feel they know all of the potential customers in the digital audio market so they haven't bothered to release it.

Consider the support tools

You aren't just buying silicon when you select a DSP chip-you also have to consider the chip's support tools. Almost all DSP μ Ps have an assembler and a simulator. Some have C compilers and source-level debuggers. All have some sort of hardware support, and many DSP chips have in-circuit-emulation circuitry.
The C compilers aren't yet intended for the DSP section of the code. They are intended for the code

Index to DSP μ Ps included in this directory			
Supplier	Device	Type	Page
Analog Devices	2100 family	16-bit fixed point	174
AT\&T	DSP16/16A/16C DSP32C	16-bit fixed point 32-floating point	$\begin{array}{l\|} \hline 175 \\ 188 \end{array}$
Motorola	$\begin{aligned} & \hline \text { DSP56001 } \\ & \text { DSP96002 } \end{aligned}$	24-bit fixed point 32-floating point	$\begin{aligned} & 176 \\ & 193 \end{aligned}$
NEC Electronics	μ PD77C25 μ PD77220 μ PD77230/240	16-bit fixed point 24-bit fixed point 32-floating point	$\begin{aligned} & 179 \\ & 180 \\ & 194 \\ & \hline \end{aligned}$
Oki Semiconductor	MSM699210/215	32-floating point	197
SGS-Thomson	ST18 family	16-bit fixed point	183
Texas Instruments	TSM320C1X TSM320C2X/5X TSM320C3X TSM320C40	16-bit fixed point 16-bit fixed point 32-floating point 32-floating point	$\begin{aligned} & 184 \\ & 188 \\ & 198 \\ & 201 \end{aligned}$
Zoran	ZR34325	32-floating point	202

that describes control and management tasks-code that may be large in size but is rarely run. You still program the repetitive DSP tasks in assembly language. Some C compilers attempt to optimize the resulting code. The degree of optimization is not yet sufficient to allow a program to be completely written in C.

Some companies are attempting to make C more efficient for DSP applications. Analog Devices is proposing some extensions to C. Called DSP/C, this version of C would make C a vector language instead of a scalar language, as it is now. However, advances in high-level languages will not significantly affect the way you program DSP μ Ps within the next year.

Source-level debuggers are now available

Source-level debuggers are bringing DSP-chip software debugging out of the dark ages. Now you can watch your program run instead of watching the DSP chip execute instructions. Some of the source-level debuggers show you both the high-level-language source code and the assembly-language instructions that correspond to it.

Designing an in-circuit-emulation probe that can run at the high speed of the newest DSP chips is difficult. The most advanced DSP μ Ps have moved much of the in-circuit-emulation circuitry on the chip. Motorola's

96002 and TI's C30 have a serial port that provides access to in-circuit-emulation functions. TI has taken this approach further by including an analysis module that you can access via a JTAG interface on its C40. This feature lets you string many C40s together and effectively have a parallel-processing in-circuit emulator because events in one C40 can control other C40s. For example, you can have a breakpoint in one C40 halt other C40s.

The next major step in the evolution of electronics is making systems that can see, talk, and listen; comprehend this information; and then act accordingly in real time. The required computing power for such systems is enormous. An array of DSP μ Ps operating in parallel is well suited to these tasks. Furthermore, you can easily partition many DSP algorithms into parallel processes, which will make programming these complex systems manageable. As prices continue to drop, look for more DSP μ Ps to take on parallel-processing applications and eventually change the way you design systems.

Article Interest Quotient (Circle One)

High 494 Medium 495 Low 496

Key to abbreviations used in block diagrams

AB-combined program and data
address bus
ACC-accumulator
ADC/DAC-analog to digital and
digital to analog converter
ADDR GEN-address generator
ALU-arithmetic logic unit
BIT MANIP-bit manipula-
tion
BS-barrel shifter
CDB-control data bus
CM-cache memory
CPUB-CPU bus
DAB-data address bus
DB-combined program and
data bus
DDB-data data bus
DM-memory for data only

AB-combined program and data aress bus

ADC/DAC-analog to digital and digital to analog converter
ADDR GEN-address generator
ALU-arithmetic logic unit
BIT MANIP-bit manipulation
BS-barrel shifter
CDB-control data bus
CM-cache memory
CPUB-CPU bus
-data address bus
dB combined program and
DDB-data data bus
DM-memory for data only

DMAAB-DMA address bus
DMADB-DMA data bus
DMAC-direct memory access controller
FX-fixed-point
FP-floating-point
GDB-global data bus
HOST INTER—host interface
IDB-instruction data bus
INT-external interrupt
MAC-multiplier accumulator
MULT-multiplier
PAB-program address bus
PDB_program data bus
P/DM-memory for program and data
PIO-parallel I/O
PM-memory for program only

PPCP-parallel processor communications port
PRAB-peripheral address bus
PRDB-peripheral data bus
REG-register
REGB—register bus
SIO-serial I/O
TIM-timer
XAB external address bus
XDB-external data bus
XDAB-external data address bus
XDDB-external data data bus
XIOAB - external I/O address bus
XIODB-external I/O data bus
XPAB-external program address bus
XPDB-external program
data bus

16-BIT FIXED-POINT CMOS DSP $\mu \mathrm{P}$

AVAILABILITY: The ADSP2100, -2101, and -2102 are in production now. The 2105 and 2111 are sampling now. The 21 msp 50 is scheduled to begin sampling this month.

COST: The 2100 costs $\$ 49$; the 2101, $\$ 43$; the 2102, $\$ 49$; the 2105, \$9.90; the 2111, \$56; and the $21 \mathrm{msp50}$, $\$ 70$ (1000).

Analog Devices Inc
1 Technology Way
Norwood, MA 02062
(617) 461-3074

Circle No. 674

SECOND SOURCE: None.

DESCRIPTION: The ADSP2100 family offers a wide variety of options, ranging from the 2100 without any on-chip memory to the 21 msp 50 with program and data RAM and peripherals, including an analog-to-digital and digital-to-analog converter, on
chip. The data memory has a 16 -bit width, but the program memory has a 24 -bit word width to control the parallel operations. A 32 -bit floating-point version, the 21000 , is in the works and will be based on the architecture of the 2100 family.

FEATURES: 62.5-, 80-, and 100-nsec cycle-time versions. Separate on-chip program and data buses. On-chip memory: The 2100 has no on-chip memory. The 2101 has a $2 k \times 24$-bit program RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2102 has a $2 \mathrm{k} \times 24$-bit program ROM or RAM and a $1 \mathrm{k} \times 16$-bit data RAM. The 2105 has a $1 \mathrm{k} \times 24$-bit program RAM and a 512×16-bit data RAM. The 2111 and 21 msp 50 have a $2 \mathrm{k} \times 24$-bit program RAM and a $1 \mathrm{k} \times 16$-bit data RAM.
Separate program and data buses brought off the chip only on the 2100 .
The 2101, 2105, 2111, and 21 msp 50 combine program and data buses off the chip.
Off-chip memory capacity: The 2100 has $32 \mathrm{k} \times 24$-bit program and $16 \mathrm{k} \times 16$-bit data memory capacities. All others have $16 \mathrm{k} \times 24$-bit program and $16 \mathrm{k} \times 16$-bit data memory capacities. Boot memory controller loads program from external byte-wide EPROM.
On-chip peripherals: The 2100 has no on-chip peripherals. The 2101 and 2102 have two serial I/O ports; the 2105 has one serial I/O port. The 2111 has two serial I/O ports and a parallel I/O port. The 21 msp 50 has two serial I/O ports, a parallel I/O port, and a 16 -bit ADC/DAC.
Multiplier/accumulator accepts 16 -bit fixed-point input and creates 32 -bit fixed-point results within a 40 -bit accumulator. 16 -bit ALU. 32-bit bidirectional barrel shifter. 40 -bit accumulator.

Multiplier/accumulator, ALU, and shifter are separate blocks connected by the 16 -bit R-bus and the data bus.
Zero-overhead looping.
Only the 2100 has a 16×24-bit on-chip cache.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Two address generators.
No on-chip DMA. Serial port has auto buffer, which transparently transfers data to and from memory.
16-level hardware stack. Status stack limits interrupts to four levels of nesting on the 2100, seven levels on the others.
Four external interrupts on the 2100; three external interrupts on others.
The 2100 has only hardware wait states. Others have only soft-ware-programmable wait states.
No on-chip emulation port.
Only the 21 msp 50 has power-down mode to CMOS standby levels. The 2101, 2105, and 2111 have an idle mode, which lowers power until an interrupt is detected.
Packaging: 2100, 100 -pin plastic quad flatpack and 100-pin PGA. 2101, 68-pin PGA and 68-pin PLCC. 2102, 68-pin PGA and 68pin PLCC. 2105, 68-pin PLCC. 2111, 100-pin plastic quad flatpack and 100 -pin PGA. 21msp50, 100- and 132-pin plastic quad flatpacks.

In-circuit emulator. Low-cost in-circuit emulator board. Demo board.
Third-party support: Contact Analog Devices for a list of thirdparty vendors.

C compiler. Simulator.
Macroassembler/linker.
Application libraries.
Upcoming DSP/C will enhance C for DSP applications.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The DSP16 and -16A are in production. The DSP16C is sampling, production is scheduled for the end of 1990.

COST: The DSP16 costs $\$ 9.60$; the DSP16A costs $\$ 16.70$ $(10,000)$.

AT\&T Microelectronics
Dept 52AL300240
555 Union Blvd
Allentown, PA 18103
(800) 372-2447;
in Canada, (800) 553-2448
Circle No. 675
SECOND SOURCE: None.

DESCRIPTION: The members of the DSP16 family have long been the fastest fixed-point DSP chips. The DSP16A has a $25-$ nsec cycle time. The DSP16A and DSP16C also have the largest on-chip program memory at $12 \mathrm{k} \times 16$ bits. Many applications that would require external ROMs with other DSP chips
can fit within the DSP16 family's on-chip memory. The DSP16C has an analog-to-digital and a digital-to-analog converter on chip. The DSP16C also has a 4-pin JTAG interface, which assists in testing tightly packed boards. A 3.3 V version of the DSP16A is available.

FEATURES: 25-, $33-, 55-$, and $75-$ nsec cycle-time versions. The DSP16C has 38.5 - and 76.9 -nsec cycle-time versions. Separate on-chip program and data buses.
On-chip memory: The DSP16 has a $2 \mathrm{k} \times 16$-bit program ROM and a 512×16-bit data RAM. The DSP16A and -16 C have a $12 \mathrm{k} \times 16$-bit program ROM and a $2 \mathrm{k} \times 16$-bit data RAM.
The program ROM on the DSP16 can be replaced with as much as 64 k words of external memory.
The program ROM on the DSP16A and -16C can be replaced or augmented with as much as 64 k words of external memory. No direct off-chip data memory expansion.
Parallel and serial I/O port.
The DSP16C has an on-chip CODEC.
The multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 36 -bit accumulator.
32-bit ALU.

HARDWARE

SUPPORT

Development system with in-circuit emulation.
Evaluation board that plugs into a PC.

No barrel shifter.
Two 36-bit accumulators.
Zero-overhead cache looping as many as 127 times.
15 -word instruction cache.
Immediate, register-indirect, and circular addressing modes.
No on-chip DMA.
Single-level hardware stack is software expandable into main memory.
One external interrupt.
No wait states.
No on-chip emulation port.
The DSP16A and -16C have power-down mode.
Packaging: DSP16 and -16A, 84 -pin PLCC or 133 -pin PGA. DSP16C, 100-pin plastic quad flatpack.

HARDWARE	
Sevelopment system with in-circuit emulation.	Assembler/linker.
Evaluation board that plugs into a PC.	Simulator. Application library.
Third-party support includes filter-design packages. Contact	

24-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.

COST: $\$ 56$.

SECOND SOURCE: None.

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030

Circle No. 676

DESCRIPTION: The 56001 provides a 24 -bit data word and two 56 -bit accumulators. This extended precision lets the chip process 16 -bit data more easily than the 16 -bit machines can. A 24 -bit word width eases scaling, and the 56 -bit accumulators
prevent overflow. The 24-bit data width suits digital audio applications. The manufacturer will soon introduce a 16 -bit version with an architecture similar to that of the 56001 .

FEATURES: 74- and 97-nsec cycle-time versions.
Three address buses and four data buses.
Separate address buses for program ROM and the two data RAMs.
Separate data buses for program ROM, the two data RAMs, and global data.
On-chip memory includes a 512×24-bit program RAM, a 32×24-bit boot ROM, dual 256×24-bit data RAMs, and dual 256×24-bit data ROMs.
ROM-based version (56000) available.
Three separate memory spaces (X, Y, and P). Each can address $64 \mathrm{k} \times 24$-bit locations.
Asynchronous 8 -bit serial I/O port.
Synchronous 8 - to 24 -bit serial interface.
Parallel port can interface with a host $\mu \mathrm{P}$.
Multiplier accepts 24 -bit data and returns 48 -bit results to 56 -bit accumulator.

ALU performs arithmetic operations on 56 -bit data and logical operations on 24 -bit data.
No barrel shifter.
Two 56-bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversed addressing modes.
Two address generators.
No DMA support.
System stack is 15 levels deep but can be read by program to extend stack into main memory
Two external vectored interrupts.
Hardware and software-programmable wait states.
No on-chip emulation.
Low-power mode.
Packaged in a 132 -pin ceramic quad flatpack or 88 -pin PGA.

Application development system includes in-circuit emulator. Contact Motorola for a list of third-party vendors.

C compiler.

Macro cross assembler.
Linker/librarian.
Simulator.
Code translator from TMS320C10 to 56001.
Third-party support includes filter-design software.

NEW.
 Open frame, "N" Range switch mode power supplies from Farnell Advance.

The Farnell "N" Range of open frame, 50 to 500 -watt, switch mode power supplies offers electronic designers a wide choice of single and multiple output units, featuring technically superior designs and the highest standards of production quality. Refer to the listing of available standard models and contact Farnell Advance, 32111 Aurora Rd., Solon, OH 44139 for specifications. PHONE: (216) 349-0755. FAX: (216) 349-0142.

Output Power	Output 1	Output 2	Output 3	Output 4	Output 5	Package Options	Dimensions including covers	Model No.
50 watts	+5V6A	+12V 1A	+24V 1A	-5V 1A	-12V 1A	2,3	*a	N50R110
multi output	+5V 6A	$+15 \mathrm{~V} 1 \mathrm{~A}$	+24V1A	-5V 1A	-15V 1A	2,3	*a	N50R201
55 watts single output	5 V 11 A	-	-	-	-	1,3,4	b	NS055005
	12V 4.6A	-	-	-	-	1,3,4	b	NS055012
	15V 3.7A	-	-	-	-	1,3,4	b	NS055015
	24V 2.3A	-	-	-	-	1,3,4	b	NS055024
	30 V 1.8 A	-	-	-	-	1,3,4	b	NS055030
	48V 1.15A	-	-	-	-	1,3,4	b	NS055048
	56 V 1 A	-	-	-	-	1,3,4	b	NS055056
55 watts multi output	100 V 0.55 A	-	-	-	-	1,3,4	b	NS055100
	+5V 3.5A	+12V 3A(S)	-12V 1A(S) $\ddagger \ddagger$	-	-	1,3,4	b	NA055P300
	+5V 3.5A	+12V 3A(S)	+24V1A(S) $\ddagger \ddagger$	-	-	1,3,4	b	NA055P301
	+5V 3.5A	+15V 3A(S)	-15V 1A(S) $\ddagger \ddagger$	-	-	1,3,4	b	NA055P302
	+5V6A	+12V 3A(S)	F12V 2A(S)	F24V 1A(S)	-	1,3,4	c	NA055P400
	+5V6A	+12V 3A(S)	F12V 2A(S)	F5V 1A(S)	-	1,3,4	c	NA055P401
	+5V6A	+15V 3A(S)	F15V 2A(S)	F24V 1A(S)	-	1,3,4	c	NA055P403
	+5V 6A	+12V 3A(S)	F12V 1A	F12V 1A	-	1,3,4	c	NA055P413
75 watts single output	5V 15A	-	-	-	-	1,3,4	*d	NS075005
	12V 6.25A	-	-	-	-	1,3,4	*d	NS075012
	15 V 5 A	-	-	-	-	1,3,4	*d	NS075015
	24V 3.2A	-	-	-	-	1,3,4	*d	NS075024
	30 V 2.5 A	-	-	-	-	1,3,4	*d	NS075030
	48V 1.6A	-	-	-	-	1,3,4	*d	NS075048
75 watts multi output	56 V 1.4 A	-	-	-	-	1,3,4	*d	NS075056
	+5V 8A	+12V 3A(S)	F12V 2A(S)	-	-	1,3,4	e	NA075P300
	+5V8A	+12V 3A(S)	F12V 2A(S)	F24V 1A	-	1,3,4	e	NA075P400
	+5V 8A	+12V 3A(S)	F12V 2A(S)	F5V 1A	-	1,3,4	e	NA075P401
	+5V 8A	+12V 3A(S)	+12V 2A(S) \ddagger	-12V 0.5A \ddagger	-	1,3,4	e	NA075P402
	+5V 8A	+15V 3A(S)	F15V 2A(S)	F24V 1A	-	1,3,4	e	NA075P403
	+5V8A	+12V 3A(S)	-12V 1A \ddagger	$-5 \mathrm{~V} 1 \mathrm{~A} \ddagger$	-	1,3,4	e	NA075P414
90 watts multi output	+5V 10A	+12V 5A	-12V 2A	-5V 1A	+24V 1A	2,3	* \ddagger	N90R109
	+5V 10A	+15V 5A	-15V 2A	-5V 1A	$+24 \mathrm{~V} 1 \mathrm{~A}$	2,3	* \dagger	N90R132

FARNELL ADVANCE OPEN-FRAME SWITCH MODE POWER SUPPLIES

Output Power	Output 1	Output 2	Output 3	Output 4	Output 5	Package Options	Dimensions including covers	Model No.
110 watts single output	5 V 22 A or 30A(FC)	-	-	-	-	2,3,4	*g	NS110005
	12 V 9.2 A or12.5A(FC)	-	-	-	-	2,3,4	*g	NS110012
	15 V 7.5 A or10A(FC)	-	-	-	-	2,3,4	*g	NS110015
	24 V 4.6 A or 6.25A(FC)	-	-	-	-	2,3,4	*g	NS110024
	30 V 3.7 A or 5A(FC)	-	-	-	-	2,3,4	*g	NS110030
	48 V 2.3 A or 3A(FC)	-	-	-	-	2,3,4	*g	NS110048
	56 V 2 A or 2.6A(FC)	-	-	-	-	2,3,4	*g	NS110056
110 watts multi output	+5V 12A	+12V 6A(S)	-12V 3A(S) $\ddagger \ddagger$	-	-	2,3,4	h	NA110P300
	+5V 12A	+15V 6A(S)	-15V 3A(S) $\ddagger \ddagger$	-	-	2,3,4	h	NA110P302
	+5V 10A	+12V 1.5A(S) $\ddagger \ddagger$	+12V 3.5A(S)	-12V 0.7A(S) $\ddagger \ddagger$	-	2,3,4	h	NQ110P400
	+5V 12A	+12V 5A(S)	-12V 2A(S) $\ddagger \ddagger$	-	+24V 2A(S) \ddagger	2,3,4	*i	NA110P400
	+5V 12A	+12V 5A(S)	-12V 2A(S) $\ddagger \ddagger$	-5V1Ał¥	-	2,3,4	*i	NA110P401
	+5 V 12A	+12V 5A(S)	+12V 3A(S) $\ddagger \ddagger$	-	-12V 2A(S) \ddagger	2,3,4	*i	NA110P402
	+5 V 12A	+15V 5A(S)	-15V 2A(S) $\ddagger \ddagger$	-	+24V 2A(S) \ddagger	2,3,4	*	NA110P403
	+5V 12A	+12V 5A(S)	-12V 2A(S) $\ddagger \ddagger$	-5V 1Ałł	+24V 2A(S) \ddagger	2,3,4	*	NA110P500
	+5V 12A	+12V 5A(S)	-12V 2A(S) $\ddagger \ddagger$	-5V 1A $\ddagger \ddagger$	+12V 2A(S) \ddagger	2,3,4	*	NA110P501
	+5V 12A	+15V 5A(S)	-15V 2A(S) $\ddagger \ddagger$	-5V 1Ał才	+24V 2A(S) \ddagger	2,3,4	*i	NA110P503
140 watts single output	5 V 28 A	-	-	-	-	2,3,4	*g	NS140005
	12 V 12 A	-	-	-	-	2,3,4	* g	NS140012
	15 V 10 A	-	-	-	-	2,3,4	*g	NS140015
	24 V 6 A	-	-	-	-	2,3,4	*g	NS140024
	30V 5A	-	-	-	-	2,3,4	*g	NS140030
	48 V 3 A	-	-	-	-	2,3,4	*g	NS140048
	56 V 2.5A	-	-	-	-	2,3,4	*g	NS140056
140 watts multi output	+5V 17A	+12V 7A(Q)	F12V 3A(Q)	-	-	2,3,4	*	NA140P300
	+5V 17A	+12V 5A(Q)	F12V 3A(Q)	F24V 3A(Q)	-	2,3,4	*	NA140P400
	+5V 17A	+12V 5A(Q)	F12V 3A(Q)	-	F5V 1.5A	2,3,4	*	NA140P401
	+5V 17A	+12V 5A(Q)	F12V 3A(Q)	F12V 1.5A	-	2,3,4		NA140P402
	+5V 17A	+12V 5A(Q)	F12V 3A(Q)	F24V 3A(Q)	F5V 1A	2,3,4	*	NA140P500
	+5V 17A	+12V 5A(Q)	F12V 3A(Q)	F12V 1.5A	F5V 1A	2,3,4	* ${ }^{\text {j }}$	NA140P501
	+5V 17A	+15V 5A(Q)	F15V 3A(Q)	F24V 3A(Q)	F5V 1A	2,3,4	*	NA140P503
180 watts multi output and 48 volt D.C. input	+5V 20A	+12V 5A(S)	-12V 5A(S)	+24V 2A(S)	-5V 1A(S)	2,3,4	*k	ND180P500
	+5V 25A	+15V 1A	-15V 1A	-	-	2,3,4	*k	ND180P810
200 watts multi output	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	-	-	2,3,4	*	NA200P300
	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	F24V 3A(Q)	-	2,3,4	*	NA200P400
	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	-	F5V 1A	2,3,4	*	NA200P401
	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	F12V 1.5A	-	2,3,4	*	NA200P402
	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	F24V 3A(Q)	F5V 1A	2,3,4	*	NA200P500
	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	F12V 5A(Q)	F5V 1A	2,3,4	*	NA200P501
	+5V 30A	+12V 7A(Q)	F12V 5A(Q)	F12V 5A(Q)	F5V 5A(Q)	2,3,4	*	NA200P502
	+5V 30A	+15V 7A(Q)	F15V 5A(Q)	F24V 3A(Q)	F5V 1A	2,3,4	*	NA200P503
	F5V 30A	F12V 5A	F12V 5A	-	-	2,3,4	*	NA200R300
	F5V 30A	F12V 5A	F24V 3A	-	-	2,3,4	*	NA200R301
	F5V 30A	F15V 4.5A	F15V 4.5A	-	-	2,3,4	*	NA200R303
	F5V 30A	F24V 3A	F24V 3A	-	-	2,3,4	*	NA200R304
240 watts single output	5 V 48 A	-	-	-	-	2,3,4	*m	NS240005
	12V 20A	-	-	-	-	2,3,4	*m	NS240012
	15 V 16 A	-	-	-	-	2,3,4	*m	NS240015
	24 V 10 A	-	-	-	-	2,3,4	*m	NS240024
	30 V 8 A	-	-	-	-	2,3,4	*m	NS240030
	48 V 5A	-	-	-	-	2,3,4	*m	NS240048
	56V 4.5A	-	-	-	-	2,3,4	*m	NS240056
300 watts multi output (FC)	+5V 40A	+12V 5A	-12V 5A	+24V 5A	-5V 1A	2,3,4	* n	N300R113U
	+5V 40A	+15V 5A	-15V 5A	+24V 5A	-5V 1A	2,3,4	* n	N300R135U
	F5V 40A	F12-24V 6A(8Apk)	F12-16V 6A(8Apk)	F12-16V 6A(8Apk)	F5-15V 4A(5Apk)	2,3,4	*0	NF300R500
	F5V 40A	F12-16V 6A(8Apk)	F48-56V 5A	F12-16V 6A(8Apk)	F5-15V 4A(5Apk)	2,3,4	*0	NF300R505
300 watts multi +5 V 40 A output and $48+5 \mathrm{~V} 40 \mathrm{~A}$ volt D.C. input (FC)		+12V 5 A	-12V 5A	+24V 5A	-5V 1A	2,3,4	*n	ND300R801
		+12V 5A	-12V 5A	-50V 5A	-5V 1A	2,3,4	*n	ND300R505
500 watts F5V 60A multi output (FC) F5V 60A		F12-24V 6A(8Apk)	$\begin{aligned} & \text { F12-16V 10A } \\ & \text { (12Apk) } \end{aligned}$	F12-16V 6A(8Apk)	F5-15V 4A(5Apk)	2,3,4,5	* $0+$	NF500R500
		F12-16V 6A(8Apk)	F48-56V 5A	F12-16V 6A(8Apk)	F5-15V 4A(5Apk)	2,3,4,5	*0+	NF500R505

CODES
$(S)=$ Semi regulated (otherwise output is fully regulated)
See specification sheets for further detail
$(Q)=$ Quasi regulated (otherwise output is fully regulated)
See specification sheets for further detail
F = Output is supplied floating
$\ddagger \ddagger=$ Can be supplied in opposite polarity to special order.
\ddagger = Floating or in opposite polarity to special order.

* = Localized areas may exceed these dimensions (eg terminal cover). Consult full outline drawings.
(FC) $=$ Forced air Cooling at 1 meter/sec is required
$1=$ PCB only.
$2=$ Mounted on L chassis.
3 = Fully cased (add suffix ' M ' to end of model number).
4 = Customized enclosure to special order.
$5=$ Fully cased with integral fan.

DIMENSIONS (in inches)
ENGTH WIDTH HEIGHT

ENGTH	WIDTH	HEIGHT	Unless noted by "(FC)", power ratings are with
a 7.19	4.32	2.00	Uniess noted by (FC), power ratings are with
b 6.50	4.15	2.13	on cooling. Forced Cooling will
c 7.19	4.41	2.13	output capacity by 25% on the average.
d 7.19	4.41	2.41	
e 7.98	4.72	2.41	AD/ ${ }^{\text {NT }}$
f 10.53	4.63	2.36	A
g 8.30	4.53	2.36	$P O W E R$
8.28	4.53	2.36	

Advance Power Supplies, Inc.
32111 Aurora Road
Solon, Ohio 44139
PHONE (216) 349-0755.
FAX: (216) 349-0142.

16-BIT FIXED-POINT DSP μ P

AVAILABILITY: The 77C25 is available now. A 28 -pin PLCC version is scheduled for 1991.

COST: The 77C25 costs approximately $\$ 10(5000)$; the 77P25 costs $\$ 45$ (1000); the 77P25C costs $\$ 12$ (1000).

SECOND SOURCE: Oki Semiconductor (Sunnyvale, CA) also makes the 7720 .

DESCRIPTION: The 77C25 is an upgrade of the 7720, which was one of the first successful DSP chips. The basic architecture is out of date and its memory can't be expanded off chip. The

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(415) 965-6046

Circle No. 677

FEATURES: 122-nsec cycle time.
Single address bus only for program memory.
Pointers address data memory.
Single data bus for both program and data.
On-chip memory: The 77 C 25 has a $2 \mathrm{k} \times 24$-bit program ROM, a 256×16-bit data RAM, and a $1 \mathrm{k} \times 16$-bit data ROM. The 77 P25 has the same memory as the 77 C 25 but replaces ROM with EPROM.
No external memory expansion.
One 8-bit serial I/O port.
Parallel I/O port.
Multiplier accepts 16 -bit fixed-point data and produces 31 -bit fixed-point results within two 16 -bit accumulators. 16 -bit ALU.
manufacturer says there is still interest in new 77C25 designs because of the chip's low cost. The 77P25 is an EPROM version of the 77C25. The 77P25C is a one-time-programmable version.

Two 16-bit accumulators.
No zero-overhead looping.
No address generators.
No on-chip DMA.
4-level stack stores the program counter during subroutines and interrupts and is not expandable.
Single external interrupt.
No wait states.
No on-chip emulation port.
No low-power mode.
Packaged in 28-pin DIP, 44-pin PLCC, and 32-pin SOP. 28-pin PLCC coming in 1991.

Evaluation kit for application development also functions as incircuit emulator.

Assembler/linker.

Third-party simulator available at end of 1990.

24-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The 122 -nsec version is available now. The 100 -nsec version is only available in the PGA package. Other packages will be available by the end of 1990 .

COST: $\$ 30$ (1000).

NEC Electronics
401 Ellis St
Mountain View, CA 94039
(415) 965-6046

Circle No. 678

SECOND SOURCE: None.

DESCRIPTION: The 77220 is a scaled-down version of the 32 -bit floating-point 77230 . The chip size and pin count are reduced by using 24 -bit data and removing the floating-point exponent hardware. The 24 -bit word width suits the digital audio market. The instruction set is a subset of the 77230 and is
source-code compatible with the floating-point device. The vendor says the 77220's architecture is optimized for adaptive filter applications. The 77P220 EPROM version is for prototyping and low-volume applications.

FEATURES: 100 - and 122 -nsec cycle-time versions.
Separate on-chip program and data buses.
On-chip memory includes a $2 \mathrm{k} \times 32$-bit program ROM, dual 256×24-bit data RAMs, and a $1 \mathrm{k} \times 24$-bit data ROM.
Off-chip memory can be expanded to $8 \mathrm{k} \times 32$-bit program memory and $8 \mathrm{k} \times 24$-bit data memory.
One serial I/O port.
Parallel I / O port can be used as host $\mu \mathrm{P}$ interface.
Multiplier accepts 24 -bit fixed-point data and creates 47 -bit fixed-point results within a 47-bit accumulator.
47-bit ALU.
47-bit bidirectional barrel shifter.

Eight 47-bit accumulators.
Zero-overhead looping.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Three address generators.
No on-chip DMA.
Hardware stack is eight levels deep and is not expandable.
Two external interrupts.
No supported wait states.
No on-chip emulation port.
No low-power mode.
Packaged in a 68 -pin PGA or 68 -pin PLCC.

Assembler/linker.
Simulator.
NOW HOLMBERG FLIES MORE CONNECTIONS DAIIY FROM MORE CITIES

With HOLMBERG ${ }^{\text {min }}$ under their wing, Thomas \& Betts commands the largest selection of connectors found anywhere. That's good news for those who travel with Marshall. Because we fly the entire Thomas \& Betts fleet, with value added, from over 40 cities every day. And always non-stop.

Marshall

[^11]
TOKIN TROUNCES EMI

It's the hottest game going: an all-star lineup of the finest EMC devices in the league devices that get you through the current season, and many seasons to come.

Engineering improvements in digital and communications equipment require super-high speed switching for power supplies and everhigher frequencies for system clocks and picture carriers. To deal with this, EMI regula-

tions are getting stricter and EMC countermeasures are growing increasingly complex.

For TOKIN, however, it's all just part of the game. Indeed, we supply the world's leading electronics
manufacturers-and countless smaller makerswith a wide range of grandslam EMC products every day. In fact, there's a good chance some of the equipment you're using right now boasts TOKIN devices.

So for performance that truly excels, check the EMC rankings.

Then give us a call and let us know your needs.

Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan Phone: 03-402-6166 Fax: 03-497-9756 Telex: 02422695 TOKIN J

Tokin America Inc.

155 Nicholson Lane, San Jose, California 95134, U.S.A
Phone: 408-432-8020 Fax: 408-434-0375
Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090 , U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804

Tokin Electronics (H.K.) Ltd.
Room 806 Austin Tower, 22-26A, Austin Avenue,
Tsimshatsui, Kowloon, Hong Kong
Phone: 367-9157 Fax: 739-5950
Taiwan Liaison Office
7/F-2, No.200, Sec.3, Hsin-Yi Road, Taipei
Phone: (02) 7059310~1 Fax: (02) 7015650
Sitigapore Liaison Office
140 Cecil Street, No. 13-01 PIL
Phone: (65) 2237076 Fax: (65) 2236093
Tokin Europe GmbH
Knorrstr. 142, 8000 München 45, Germany
Phone: 089-311 1066 Fax: 089-311 3584

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: The ST18930 costs $\$ 15$; the ST18931 costs $\$ 80$; the ST18940 costs \$35; the ST18941 costs \$95 (5000).

SGS-Thomson Microelectronics
1000 E Bell Rd
Phoenix, AZ 85022
(602) 867-6340

Circle No. 679

SECOND SOURCE: None.

DESCRIPTION: The ST18 family consists of four devices. The ST18930 and - 31 are CMOS versions of the NMOS original with a few enhancements and twice the speed. The CMOS ST18940 and -41 offer further enhancements in their arithmetic capabilities, addressing modes, and I/O functions. All family
members can operate on complex and double-precision data. The ST18930 and -40 are ROM versions. The ST18931 and -41 are ROMless versions and have external EPROMs for program storage during software development. The devices are used in modems and in other DSP applications.

FEATURES: The ST18930 and -31 have 80-nsec cycle times.
The ST18940 and -41 have 100-nsec cycle times.
Two address buses and four data buses on chip.
On-chip memory: The ST18930 has a $3 \mathrm{k} \times 32$-bit program ROM, a 192×16-bit data RAM, a 128×16-bit data RAM, and a 512×16-bit data ROM. The ST18931 has the same memory as the ST18930 but without ROM. The ST18940 has a $3 \mathrm{k} \times 32$-bit program ROM, two 256×16-bit data RAMs, and a 512×16-bit data ROM. The ST18941 is a ROMless version of the ST18940 and has two 256×16 - and one 128×16-bit data RAMs.
$64 \mathrm{k} \times 32$-bit external program memory can only be accessed by the ROMless versions.
$4 k \times 16$-bit external data memory space.
Only the ST18940 and -41 have both a serial I/O port and a parallel I/O port.
Multiplier accepts 16 -bit fixed-point data and returns 32 -bit fixedpoint results to a 32 -bit accumulator.
In complex mode, the multiplier multiplies two complex numbers in two cycles.

16-bit ALU.
16 -bit bidirectional barrel shifter.
Four 32-bit accumulators.
No zero-overhead looping.
Immediate, direct, indirect, and circular addressing modes.
Three address generators on the ST18930 and -31 and four on the ST18940 and -41.
The ST18940 and -41 have on-chip DMA.
8 -level hardware stack for interrupts and subroutines. Can be expanded into main memory with software.
Three external interrupts on the ST18930 and -31 and five on the ST18940 and -41.
Hardware and software-programmable wait states.
No on-chip emulation port.
Low-power mode.
Packaging: ST18930, 48-pin DIP and 52-pin PLCC. ST18931, 121-pin PGA. ST18940, 84-pin PLCC. ST18941, 144-pin PGA.

Abstract

Hardware development system provides in-circuit emulation of as many as three DSP chips in real time. Stand-alone emulator board connects to an IBM PC. EPROM module. A ROMless version with EPROMs on a small board that plugs into a ROM-version socket.

C compiler.

Macroassembler/linker.
Simulator.

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The C10, C15, C17, E14, E15, and E17 are available now. The C16 is sampling now. Production is scheduled for the first half of 1991. The C14, P14, P15, and P17 will be available in 1991.

COST: C10 (14 MHz), \$6; C10 (20 MHz), \$8; C10 (25 MHz), \$9; C14, \$14; E14, \$45; P14, \$22; C15 (20 MHz), \$9; C15 (25 MHz), \$11; E15 (20 MHz), \$35; E15 (25 MHz), \$45; P15, \$20; C16, \$10; E17, \$38; P17, \$20 (1000).

SECOND SOURCE: Microchip Technology (Chandler, AZ) second sources the C10, C14, and E14. No second source for other parts.

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 232-3200, ext 700

Circle No. 680

DESCRIPTION: This first generation of the vendor's DSP family was introduced in 1982. Although this family is difficult to use and slower than similar devices, the chips' cost-which has fallen to $\$ 3$ in high volume-and the large body of associated software and expertise will keep this family going for some
time. Newer family members have additional memory and peripheral options. EPROM (TMS320E1X) and one-time-programmable (TMS320P1X) versions are also available. 3.3 V versions of the C1X family will soon be available.

FEATURES: 114-, $160-, 200$-, and $280-\mathrm{nsec}$ cycle-time versions. Separate on-chip program and data buses.
On-chip memory: The C10 has a $1.5 \mathrm{k} \times 16$-bit program ROM and a 144×16-bit data RAM. The C14, C15, and C17 have a $4 \mathrm{k} \times 16$-bit program ROM and a 256×16-bit data RAM. The E14, E15, and E17 have a $4 k \times 16$-bit program EPROM and a 256×16-bit data RAM. The C16 has an $8 k \times 16$-bit program ROM and a 256×16-bit data RAM. P1X versions are one-time programmable.
Program and data buses are combined off chip.
$4 \mathrm{k} \times 16$-bit total external memory except the C16, which has
$64 \mathrm{k} \times 16$-bit external memory, and the C17, which has no external memory.
On-chip peripherals: The C10, C15, and C16 have parallel I/O. The C14 has serial and parallel I/O. The C17 has two serial I/O ports, parallel I/O, and a compander.

Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 32 -bit accumulator.
32-bit ALU.
16-bit left barrel shifter.
Single 32-bit accumulator.
No zero-overhead looping.
No DMA.
4-level hardware stack except the C16, which has an 8 -level hardware stack.
Single external interrupt.
No wait states.
No on-chip emulation.
No low-power mode.
Packaging: C10, 40-pin DIP or 44 -pin PLCC. C14, 40-pin DIP or 44 -pin PLCC. C15, 40 -pin DIP or 44 -pin PLCC. C16, 64 -pin quad flatpack. C17, 40-pin DIP or 44 -pin PLCC.

In-circuit emulator.

Evaluation module.
Many third-party support tools. Contact manufacturer for a list of third-party vendors.

Assembler/linker.
Simulator
Application library.
Many third-party support tools.

HSPICE: From Concept to Creation

The competition is tough in today's marketplace. Innovative companies need to bring their products to market just as the demand ripens. HSPICE is the optimizing circuit simulator which brings concepts to reality.
Why HSPICE?
HSPICE is proven in the marketplace. Engineers have depended on HSPICE for over ten years to provide the circuit simulation solution they demand.

HSPICE addresses all electronic industry segments, including mixed signal ASICs, custom IC design, PCB/backplane design, cell characterization, RF and microwave designs, and discrete power applications. No matter what your speciality, HSPICE provides the answers.

HSPICE is continually enhanced and improved to stay ahead of your creative processes. When your design is ready to be simulated, HSPICE will be there with the tools you need for accurate results. Transmission lines and submicron MOS models are already part of HSPICE. So is the built-in optimizer.

The HSPICE Instrumentation Interface, ATEM, along with a custom MetaTestchip ${ }^{\text {TM }}$ automates HSPICE model creation. Meta-Software also maintains a semiconductor measurements lab for research and development efforts and user model generation. Meta-Software compares results to the silicon itself, not to other simulators. You don't get a comparable answer, you get the right answer.
Engineers designing analog and mixed signal circuits turn to Meta-Software's HSPICE for their simulation solution. Yesterday, today and tomorrow -were there to give you the competitive advantage.

THE CIRCUIT DESIGN ADVANTAGE!

1300 White Oaks Road - Campbell, CA 95008 Phone (408) 371-5100 - Toll Free (800) 346-5953 FAX (408) 371-5638 - Telex 910-350-4928

With this Ethernet chip set, your competitors will swear you took a shortcut.

The shortest route to market begins with our three-chip set - the EtherStar ${ }^{\text {™ }}$ controller, encoder/decoder, and transceiver - from Fujitsu's Advanced Products Division.

We've engineered this Ethernet set to offer you unparalleled ease of design. With our expert design support and optional manufacturing kit, you have everything you need to get new products out in record time.

EtherStar's unique buffer manager automatically controls buffer memory access and allocation, making application software easier to develop. And EtherStar handles many functions usually performed by the software driver in hardware-boosting system performance. No wonder official *Novell certification tests performed by independent consultants show that products based on our chip set have higher data-transfer rates.

Unlike some of our competitors, we can supply you with complete system solutions, including interface chips for standard bus architectures. And we don't compete with you by selling boards.

As Fujitsu's American arm,
we're in close touch with
 your marketplace and what you need to excel NOVELLIABS
AUTHORIZED
TESTEDAND
APPROVED
NeWVare Compatible there. So call us at 1-800-866-8608. Learn about the family of high-performance Ethernet solutions from Fujitsu's Advanced Products Division.

And take the shortest, smartest pathway to Ethernet success.

EUTITSU

Delivering the Creative Advantage

[^12]FUJITSU MICROELECTRONICS, INC.,Advanced Products Division, 50 Rio Robles, San Jose, CA 95134-1806. EtherStar is a trademark of Fujitsu Microelectronics, Inc. © 1990 Fujitsu Microelectronics, Inc

16-BIT FIXED-POINT CMOS DSP μ P

AVAILABILITY: The C25, C26, and E25 are available now. The C50 and C51 are sampling now and will be in production in 1991.

COST: C25 (33 MHz), \$17; C25 (40 MHz), \$18; C25 (50 MHz), \$24; E25, \$55; C26, \$24; C50, \$130; C51, \$40 (1000).

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 232-3200, ext 700

Circle No. 681

SECOND SOURCE: None.

DESCRIPTION: These chips make up the second generation of the vendor's DSP family. They offer higher performance than the first-generation chips and are easier to use. For many applications, the C25's price has fallen to a point where the chip is replacing the

C1X. The C5X parts are enhancements to the C25. They use the same basic core architecture as the C25 but have double the performance level, additional on-chip peripherals, and expanded memory. An EPROM version of the C25, the E25, is also available.

FEATURES:The C2X chips come in $78-$ - 98 -, and $125-\mathrm{nsec}$ cycle-time versions. The C5X chips come in 35 - and $50-\mathrm{nsec}$ cycle-time versions.
On-chip memory: The C25 has a $4 \mathrm{k} \times 16$-bit program ROM and a 544×16-bit data RAM. The C26 has a $1.5 \mathrm{k} \times 16$-bit program RAM with boot ROM to load programs from external memory and a 544×16-bit data RAM. The C50 has a $2 \mathrm{k} \times 16$-bit program ROM, a $9 k \times 16$-bit program/data RAM, and a 1056×16-bit dualaccess RAM. The C51 has an $8 \mathrm{k} \times 16$-bit program ROM, a $1 \mathrm{k} \times$ 16 -bit program/data RAM, and a 1056×16-bit dual-access RAM. Program and data memory are combined off chip.
The C2X and C5X can address $64 \mathrm{k} \times 16$-bit program and $64 \mathrm{k} \times 16$-bit data memory.
The C25 and C26 have one serial port each. The C5X has two serial ports.
Multiplier accepts 16 -bit fixed-point data and creates 32 -bit fixed-point results within a 32 -bit accumulator.
32-bit ALU.
The C5X has a separate 16 -bit parallel logic unit for manipulating bits without affecting the contents of the accumulator.

16-bit left barrel shifter.
Single 32-bit accumulator.
Next-instruction-repeat looping. Only the C5X has zero-overhead block looping.
Immediate, direct, indirect, and bit-reversal addressing modes. C5X also has circular addressing.
No DMA.
8-level expandable hardware stack.
C5X has a 1-level-deep shadow RAM, which stores some registers.
C 2 X has three external interrupts; C5X has five.
Hardware wait states. C5X also has software-programmable wait states.
The C5X has an on-chip emulation port.
The C2X is source-code compatible with the C5X.
The C5X has a JTAG interface.
The C25 and C26 have an idle mode. The C50 has a power-down mode.
Packaging: C25 and C26, 68-pin PGA or PLCC. C50, 132-pin quad flatpack.

Both the C2X and C5X have an in-circuit emulator.
Both also have a software-development board for the IBM PC.
Many third-party support tools. Contact manufacturer for a list of third-party vendors.

C compiler for both C25 and C5X.
Source-level debugger for C5X.
Assembler/linker.
Simulator.
Application library.
Many third-party support tools.

DSP32C

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Now.
COST: $\$ 70(1000)$.
SECOND SOURCE: None

AT\&T Microelectronics
Dept 52AL300240
555 Union Blvd
Allentown, PA 18103
(800) 372-2447;
in Canada, (800) 553-2448
Circle No. 682

DESCRIPTION: The DSP32C has one of the simplest architectures of the 32-bit floating-point DSP chips. It uses a single 4M-word linear memory space instead of the separate program and data memory common in other DSP chips. The single address bus and single data bus can be accessed as
many as four times per cycle. Each internal memory can be accessed as many as two times per cycle. Although the architecture looks simple, the DSP32C can read an instruction, read two data values, and write a previous result in a single cycle. Data is addressable as 8 -, 16-, or 32 -bit words.

FEATURES: 80 - and 100-nsec cycle-time versions.
Single address and data buses. Each can be accessed as many as four times per cycle to imitate separate buses.
Three on-chip 512×32-bit RAMs.
Optional ROM-based DSP32C replaces one RAM with a $4 k \times 32$ bit ROM.
Can address as much as $4 \mathrm{M} \times 32$ bits of external memory.
All memory is a general resource; both program and data can exist anywhere.
Data addressable as 8 -, 16 -, or 32 -bit words.
On-chip serial and parallel I/O.
The serial $1 / O$ is a double-buffered port that allows concurrent input and output of $8-, 16-, 24$-, or 32 -bit data widths.
Has an 8 - or 16 -bit parallel $1 / O$ port that an external $\mu \mathrm{P}$ can control.
Proprietary 32-bit floating-point format.
Single-cycle conversion to/from nonstandard DSP32 floatingpoint format from/to IEEE-754 floating-point format. Multiplier accepts 32 -bit floating-point data and creates 45 -bit floating-point results.

Separate floating-point adder accepts 40 -bit floating-point data and creates 40 -bit floating-point results.
Fixed-point ALU accepts 16 - or 24 -bit data.
Does not have a barrel shifter.
Four 40-bit accumulators.
Zero-overhead looping. As many as 2048 repeats of a block with a maximum size of 32 words.
Immediate, memory-direct, register-direct, register-indirect, and bit-reversal addressing modes.
DMA can be used with both the serial I/O and the parallel I/O. No hardware stack.
1-level-deep shadow RAM of some registers.
Two external interrupts.
Hardware wait states.
No on-chip emulation port.
No low-power mode.
Packaged in a 164-pin plastic quad flatpack, 133-pin PGA, or 68 -pin PLCC ($\mu \mathrm{C}$ version, no external memory).

HARDWARE

In-circuit emulator.
IBM PC-based development board.
VMEbus-based development board.
Many third-party support tools, including the HP64773 in-circuit emulator from Hewlett-Packard. Contact AT\&T for a list of thirdparty vendors.

Optimizing C compiler
Assembler/linker.
State simulator.
Many third-party support tools.

All indications are Dialight.

Call it a problem that could have lead to considerable expense. The customer thought he'd have to add several steps to his assembly process. Instead he called Dialight.

As the leader with over half a century of experience in every type of indicator light, for Dialight solving problems is standard operating procedure. Applying our engineering expertise in optoelectronics and utilizing state of the art CAD equipment, we rapidly proceeded to custom design the ideal solution - a totally integrated, remote LED indicator. Not only did it fit the unit perfectly, but it also saved the expense and effort of cumbersome wiring, soldering, and testing. Plus it added the reliability of a push-on connector for easy assembly. All while being low cost. And, thanks to our extensive in-house tool fabrication
and molding facilities, we delivered it virtually overnight

Saving costs while solving problems is something we've long done with our panel mount and circuit board LEDs. Over the years customers have asked us to pair, gang, piggyback, right angle mount, recess, bicolor, tricolor, slant, standoff, snap-mount, bin, do whatever you can imagine to them and we haven't been stumped yet!

So, the next time you think there's a remote chance of finding the right solution to an indicator design issue, remember that no one has more solutions than Dialight.

DIAUIGHTcorporation

"I'll bet Toshiba's new 172,000-gate array could handl

AREA SALES OFFICES: CENTRAL AREA, Toshiba America Electronic Components, Inc., (708) 945-1500; EASTERN AREA, Toshiba America Electronic Components, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America Electronic Components, Inc., (408) 737-9844; SOUTHWESTERN REGION, Toshiba America Electronic Components, Inc. (714) 259-0368; SOUTH CENTRAL REGION, TOshiba America Electronic Components, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America Electronic Components, Inc., (404) 368 -0203; MAJOR ACCOUNT OFFICE, FISHKILL, NEW YORK, Toshiba America Electronic Components, Inc., (914) 896-6500; MAJOR ACCOUNT OFFICE, BOCA RATON, FLORIDA, Toshiba America Electronic Components, Inc., (305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, Montgomery Marketing, Inc., (205) 830-0498; ARIZONA, Summit Sales, (602) 998-4850; ARKANSAS, MIL-Reps, (214) 644-6731; CALIFORNIA (Northern) Elrepco, Inc.. (415) 962-0660; CALIFORNIA (L.A. \& Orange County) Bager Electronics, Inc., (818) 712-0011, (714) 957-3367, (San Diego County) Bager Electronics, Inc., (619) 632-8816; COLORADO, Straube Associates Mountain States, Inc., (303) 426-0890; DELAWARE, Nexus Technology, (215) 675-9600; DISTRICT OF COLUMBIA, D. G.R., Inc., (301) 583-1360; FLORIDA, Sales Engineering Concepts. (407) 682-4800, (305) 426-4601; GEORGIA, Montgomery Marketing, Inc., (404) 447-6124; IDAHO, Components West, (509) 922-2412; ILLINOIS, Carlson Electronic Sales, (708) 956-8240, R.W. Kunz, (314) 966-4977; INDIANA, S.T.B. And Associates, (317) 844-9227; IOWA, Carlson Electronics, (319) 378-1450; KANSAS, D.L.E. Electronics, (316) 744-1229; KENTUCKY, S.T.B. And Associates, (502) 499-6404; LOUISIANA, MIL-Reps, (713) 444-2557; MARYLAND, D.G.R., Inc., (301) 583-1360;
 And to our proven Sea of Gates non-channeled architecture.

The TC140G Series is upwardly compatible from the TC120G. It is supported by a compatible library of over 500 cells. Plus compatible CAD tools like our VLCAD System.

The combination of high density and high speed make the TC140G Series especially well-suited to high performance applications. Applications like mainframe CPUs,

TOSHIBA		
THE POWER IN GATE ARRAYS		
SERIES	TC120G	TC140G
GATES	37,932 to	2,300 to
	129,042	172,000
GATE LENGTH	1.0μ	1.0μ
GATE SPEED	0.4 ns	0.4 ns
PART NUMBERS	5	14
AVAILABILITY	NOW	NOW
All Si-gate double layer metal.		

But even if you don't need all those gates, you can still benefit from the TC140G's high performance. The Series is available in 14 master array sizes ranging from 2000 gates on up to 172,000 . One is sure to be right for your ASIC application.

Now there are five Toshiba design centers around the United States to help you. For technical literature call 1-800-888-0848 ext. 517 today. Service is our key component.

In Touch with Tomorrow 10S-1 1 -

"...You are cleared to flight level five zero."

There's no margin for error in air traffic control. At any moment, a controller may have to make an accurate, split-second decision. For this you need support equipment that is reliable and easy to use.

That's why the U.K.'s CAA chose IEE's PEP ${ }^{T M}$ touch-sensitive interactive display modules. They're easy-to-read and make it simple for an operator to choose menu items quickly and accurately-by touch.
Of course, the CAA isn't alone in choosing PEP. You'll find

these operator-friendly modules in air traffic control systems around the world. Not to mention less exotic locations, like factory floors, alarm panels, and POS terminals.

Even if lives don't depend on what you're designing, chances are IEE can help you choose the right display.

Call or write today and tell us about your project. We offer a wide variety of display technologies; PEP is just one of the answers we can give you.

Industrial Electronic Engineers, Inc. Industrial Products Division 7740 Lemona Avenue
Van Nuys, CA 91405
Tel. (818) 787-0311, ext. 418
Fax (818) 901-9046

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Sampling. Production scheduled for this month.
COST: The $96002(27 \mathrm{MHz})$ costs $\$ 650$; the 96002 (33 MHz) costs $\$ 750$.

SECOND SOURCE: None.

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030
Circle No. 683

DESCRIPTION: The 96002 is an architectural superset of the fixed-point 56001. The 96002 continues Motorola's emphasis on precision. Full 32 -bit integers are multiplied to a nontruncated 64 -bit product. 32 -bit floating-point numbers are multiplied to 44 -bit products. The 32 -bit floating-point device conforms to
the IEEE-754 floating-point standard. The dual 32-bit external buses support glueless multi-96002 systems. The external buses can access external memory and peripherals or communicate with a host $\mu \mathrm{P}$. The 96 -bit accumulators will support future double-precision parts.

FEATURES: 60- and 74-nsec cycle-time versions. 50 -nsec cycle-time version scheduled for 1991.
Three 32-bit address buses and five 32-bit data buses on chip. Separate address buses for program and the two on-chip RAMs. Separate data buses for program, the two on-chip RAMs, global data, and DMA.
On-chip memory includes a $1 \mathrm{k} \times 32$-bit program RAM, a 64×32 bit boot ROM, dual 512×32-bit data RAMs, and dual 512×32-bit data ROMs.
On-chip boot ROM loads program from external byte-wide EPROM.
Two complete 32-bit external expansion ports for memory and I / O.
Three separate memory spaces (X, Y, and P). Each can address 4G words.
Each memory space is divided into eight 0.5 G -word areas. Each can be programmed to either the A or B expansion ports.
Two host interfaces allow interface to $\mu \mathrm{P}$ or other 96002s. No other on-chip peripherals.
IEEE-754 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and returns 44 -bit results. Multiplier accepts 32 -bit integer data and returns 64 -bit results.
32-bit bidirectional barrel shifter.
Ten 96 -bit or thirty 32 -bit register-based accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversal addressing modes.
Two address ALUs.
DMA is supported. Uses its own internal bus and doesn't cyclesteal. Can use all of the addressing modes, including bit-reversal, with the DMA controller.
The stack is 15 levels deep and can be expanded into main memory.
Three external vectored interrupts.
Hardware and software-programmable wait states.
Serial debug port for in-circuit debugging.
Low-power mode.
Packaged in a 223 -pin PGA. 256 -pin ceramic quad flatpack available in 1991.

HARDWARE

Hardware evaluation system includes in-circuit emulator.
Some third-party hardware products are available. Contact Motorola for a list of third-party vendors.

Optimizing C compiler.
Assembler/linker.
Simulator.
Application library.
Third-party support includes optimizing C compiler, block-level diagraming language, filter-design software, and real-time operating system (SPOX).

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: The 77230 is available now. The 77240 is sampling now, and production is scheduled to begin in January 1991.

COST: The 77230 costs $\$ 74$; the 77240 costs $\$ 90$ (1000).

SECOND SOURCE: None.

DESCRIPTION: The 77230 and 77240 are 32 -bit CMOS float-ing-point DSP chips. The 77P230 is an EPROM version of the ROM part for prototyping and small production runs. The 77240 is an enhanced version of the 77230 . It has more on-chip RAM

NEC Electronics

401 Ellis St
Mountain View, CA 94039
Phone (415) 965-6046
Circle No. 684
and can be expanded to 64 k -word program memory and 16 M -word data memory. The architecture suits adaptive filter applications.

FEATURES: 77230 has $150-$ nsec cycle time.
77240 has 90 -nsec cycle time.
Separate on-chip program and data buses.
On-chip memory: The 77230 has a $2 k \times 32$-bit program ROM, dual 256×32-bit data RAMs, and a $1 \mathrm{k} \times 32$-bit data ROM. The 77240 has a $2 \mathrm{k} \times 32$-bit program ROM, dual 512×32-bit data RAMs, and a $1 \mathrm{k} \times 32$-bit data ROM.
External memory expansion: The 77230 can address $8 \mathrm{k} \times 32$-bit program memory and $8 \mathrm{k} \times 32$-bit data memory. The 77240 can address $64 \mathrm{k} \times 32$-bit program memory and $16 \mathrm{M} \times 32$-bit data memory.
The 77230 has serial and parallel I/O. The 77240 has no on-chip peripherals.
Proprietary 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and creates 45 -bit floating-point results.
Multiplier accepts 24 -bit fixed-point data and creates 47 -bit fixed-point results.

47-bit ALU.
47-bit bidirectional barrel shifter.
Eight 55 -bit register-based accumulators.
Zero-overhead looping.
Direct, indirect, immediate, circular, and bit-reversal addressing modes.
Two address ALUs on the 77230. Three address ALUs on the 77240.

No on-chip DMA.
The stack is eight levels deep and is not expandable.
Two external interrupts.
No wait states.
No on-chip emulation port.
No low-power mode.
Packaging: 77230, 68 -pin PGA. 77240,132 -pin PGA.

Evaluation kit, which includes an in-circuit emulator.
Evaluation board.

Assembler/linker and simulator.
C compiler scheduled for 1991.

Like Computers, Telephone Exchange Systems are getting smaller.

And simpler. And cooler. And more cost-effective. And much quicker to design.

Talk to Ericsson and cut months off your system design time.
Plug into our world-class expertise and obtain better, simpler, more cost-effective solutions. Use our latest devices and do away with hybrids, transformers and those rows of discrete devices needing expensive assembly time.
Here's just a little of what we have to offer to the system designer:

1. Design Partnership, to develop new components for your line-card circuits, exactly right for you.
2. Off-the-shelf advanced products for exchange and system functions, so you don't have to waste time on re-invention.
3. World-wide knowledge of European, American, Far East and Developing Country requirements, so that your next design can be versatile and easily adjustable for different markets. 4. High-quality production, testing and just-intime delivery of SLICs, SLACs, CLICs, Protection Networks, PCM-repeaters etc. Send for our latest short-form product guide.
[^13]Ericsson Telephone System Products.

* Customised or Semi-standard CLICs; just add relays and protection to give complete line function.
* PBL 3755. Regenerative PCM repeater for 2.048 or 1.544 MBits/s PCM Lines.
* PBR 5110/11/12. Protection Resistors, a new range to suit most markets.
* PBL 3762/64/65. High performance SLICs for PBX and DLC systems, with 70 dB typical longitudinal balance. * PBL 3796/98/99. Central Office SLICs with 70 dB longtl. bal. plus on-chip switch-mode voltage regulator.
$*-40$ to $+85^{\circ} \mathrm{C}$ versions available.

ERICSSON

Ericsson Components Inc.
403 International Pkwy
Richardson, TX 75085-3904
Telephone (214) 669-9900
Telefax (214) 680-1059

22-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Now.

COST: The 699210 costs $\$ 40$; the 699215 costs $\$ 40(10,000)$.

SECOND SOURCE: None.

DESCRIPTION: This family operates on 22-bit floating-point data. The chip was designed for applications that need more resolution than 16 -bit fixed-point DSP chips offer but do not need the capabilities of 32 -bit floating-point devices. The vendor is keeping this family's older architecture alive by surrounding

Oki Semiconductor
785 N Mary Ave
Sunnyvale, CA 94086
(408) 720-1900

Circle No. 685
the proven DSP core with peripherals to create specialized chips. For example, the recently introduced MSM6994 is a specialized device for modems that combines the family's DSP core with various peripherals.

FEATURES: 100- and 125 -nsec cycle-time versions. Separate on-chip program and data buses. $2 \mathrm{k} \times 32$-bit program ROM and two 256×22-bit data RAMs. External program and data memory can each be expanded to 64 k words.
The instruction word is 32 bits wide, so external program memory also needs to be 32 bits wide.
Dual-access RAMs. Can read two values and write a third in one cycle.
8/16/22-bit parallel interface.
The 699215 has a serial I/O port.
Proprietary 22-bit floating-point format has 16 -bit mantissa and 6-bit exponent.
Multiplier accepts 22-bit floating-point data and returns 22-bit floating-point result. 16-bit fixed-point data results in 31-bit fixedpoint result.
ALU performs 22-bit floating-point arithmetic, 16 -bit fixed-point arithmetic, and 22 -bit logical operations.

15-bit bidirectional barrel shifter.
Two 22-bit accumulators.
Zero-overhead looping.
2-loop hardware counters, 12 and 4 bits, allow dual-loop function.
Double-precision operation possible on 16-bit integers.
No on-chip cache.
Immediate, direct, and indirect addressing modes.
Single address ALU.
No on-chip DMA.
Hardware stack is eight levels deep and is not expandable.
Three external interrupts.
No wait states.
No on-chip emulation port.
Low-power mode
Packaged in an 84-pin PLCC or 100-pin flatpack.

ADC/DAC board and DSP board plug into an IBM PC/AT. In-circuit emulation board.
Stand-alone board to exercise code.

Macroassembler/linker.
Simulator.
Application library.
OSL compiler, a C-like high-level language.

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: The C30 and C30-27 are available now. The C31 will begin sampling in 1991.
 COST: C30, \$130; C30-27, \$100; C31, \$85 (1000).
 SECOND SOURCE: None.

DESCRIPTION: This device is the floating-point member of the vendor's TMS320 family. It was the first sub-100-nsec 32 -bit floating-point CMOS DSP. It is not code compatible with the fixed-point chips. The C30 is available in a slower, lower-cost version called the C30-27. The C31 is object-code compatible

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 232-3200, ext 700

Circle No. 686
with the C30 and C30-27 but has only one serial port, one parallel port, and one timer. This feature reduction reduces the chip size and pin count, which allows TI to offer a floating-point DSP for $\$ 35$ in high volume.

FEATURES: 60- and 75 -nsec cycle-time versions.
Four 24-bit address buses and three 32-bit data buses.
Two 32-bit and two 40-bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allows two accesses per cycle.
Any of the separate memories can be used for program or data.
Two on-chip $1 \mathrm{k} \times 32$-bit RAMs and an on-chip $4 \mathrm{k} \times 32$-bit ROM.
24-bit external memory-address bus provides $16 \mathrm{M} \times 32$-bit total address space.
13-bit external-I/O address bus provides $8 \mathrm{k} \times 32$-bit I/O ports, which are mapped into the 16 M -byte address space.
Two 8-, 16-, 24-, and 32 -bit serial I/O ports. Two 32 -bit timers. Proprietary 32-bit floating-point format.
Multiplier accepts 32 -bit floating-point data and returns 40 -bit floating-point result. 24 -bit integers result in 32 -bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data.

Parallel multiplier and ALU operations in a single cycle.
32-bit bidirectional barrel shifter.
Eight 40-bit register-based accumulators.
Single-instruction and zero-overhead block looping.
64×32-bit instruction cache.
Cache can be disabled when not needed and frozen to keep an often used portion of code available in the cache.
Register, direct, indirect, immediate, relative, circular, and bitreversed addressing modes. Two address ALUs.
DMA controller allows concurrent I/O and CPU operation. Hardware stack is maintained in main memory.
Four external vectored interrupts.
Hardware and software-programmable wait states.
Serial debug port can provide in-circuit emulation.
No low-power mode.
Packaging: C30, 180-pin PGA. C30-27, 180-pin PGA. C31, 132pin quad flatpack.

HARDWARE

Full-speed in-circuit emulator.
Software development system plugs into an IBM PC to give PC in-circuit emulation capability.
Evaluation module plugs into an IBM PC.
Significant third-party support. Contact manufacturer for a list of third-party vendors. Hewlett-Packard has a version of the HP64700 in-circuit emulator for the C30.

Optimizing ANSI C compiler. Source-level debugger.
Assembler/linker. Simulator.
Application library.
Third-party support includes real-time multitasking operating system (SPOX), Ada compiler, filter-design packages, and blocklevel diagraming language.

IIIDR Power Per Fubir Font! HIGH POWER DC SWITCHERS WITH IEEE-488 PROGRAMMABILITY FROM

- Highest power per cubic inch for wide range, rack mount, CV/CC power supplies in the industry ..
$1.0 \mathrm{~kW}-2.0 \mathrm{~W}$ per cu in - 506 cu in 2.5 kW - 2.3 W per cu in - 1071 cu in 5.0 kW - 3.1 W per cu in - 1606 cu in

650 microsecond transient response timeBuilt-in OVP \& Thermal Protection
Soft StartTrue Zero Voltage \& Current Adjustability

- 5 Year Warranty

Granted. The EMS Series of high power switch mode DC power supplies offer a significant size and weight advantage. But, just as important, with E / M you don't sacrifice high efficiency or precise regulation. And, E/M gives you experience that dates back to 1969 when we introduced our first switching power supply. Since then E / M has invested over one million dollars in the engineering and development of several product lines of switchers. E/M known and respected world-wide.

For more information or literature, call Toll Free 1-800-631-4298 or write: Electronic Measurements, Inc., 405 Essex Road, Neptune, NJ 07753 (In NJ, HI, AL and Canada, call 201-922-9300.)

We Believe The World Is Flat...

or soon will be.

The world is turning to flat panel displays. And Yamaha LSI is there - with the only complete line of single-chip and boardlevel graphic controllers in the industry. We're the controlling force behind most of the world's portable computer displays. So, if there's a flat panel display in your future, there are many good reasons to turn to Yamaha LSI.

Whether you need CGA, EGA or VGA, our advanced controllers support all leading flat panel display technologies, plus CRTs.
They can even control the newest color displays.
Our patented techniques automatically convert color software to gray scale on LCDs and to hatching patterns on EL and plasma displays. Our newest controllers correct aspect ratio problems, so circles look like circles
instead of ovals.

Our single-chip solutions are ideal for all new designs, especially laptops and portable devices. With four chips to choose from, you can have the distinct level of control and resolution you need.

Our Display Master ${ }^{\circledR}$ family of auto-initializing IBM compatible board-level controllers is ideal if you need a ready-made solution. These boards are compatible with EL, Plasma, LCD and CRT technologies and support nearly all manufacturers' displays.

Single-Chip
VGA, EGA, CGA, MDA
EGA, CGA, MDA
CGA, MDA, Hercules
CGA, MDA

Board-Level

Display Master VGA	YDM6448
Display Master EGA	YDM6435
Display Master	YDM6420

(Optional integrated -24V power supply for LCDs

And, they're available in a wide range of resolutions. Just plug the card into your PC, set DIP switches and go. No additional hardware or software modification is needed.

We've been building this family of controllers for over six years.

Call 1-800-543-7457. Do it today.

YAMAHALSI

Yamaha Corporation of America
Systems Technology Division
981 Ridder Park Drive, San Jose, California 95131 Telefax: (408) 437-8791 Telephone: (408) 437-3133

Yamaha Corporation Japan Electronic Systems Division 203 Matsunokijima, Toyooka-mura, Iwata-gun, Shizuoka-ken, 438-01 Japan
Telefax: 81-539-62-5054
Telephone: 81-539-62-4918

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Samples will be available the 2nd quarter 1991.

COST: Samples will cost approximately $\$ 500$.
SECOND SOURCE: None.

Texas Instruments Inc
Semiconductor Group, SC-9026
Box 809066
Dallas, TX 75380
(800) 232-3200, ext 700

Circle No. 687

DESCRIPTION: This device was designed for applications that require multiple DSP chips. It is upward compatible with the C30 but adds six 32 -bit FIFO-buffered communication ports, two complete 32-bit external buses, an analysis module that supports multiprocessor debugging via a JTAG interface, and
a 4G-word address space. The chip also features single-cycle conversion to/from the IEEE floating-point standard and a cycle time of 40 nsec . Each communication port can transfer data to/from another C40 at 13M byte/sec without any external logic. The on-chip DMA has been expanded to six channels

FEATURES: 40-nsec cycle time.
Four 32-bit address buses and three 32-bit data buses.
Two 32 -bit and two 40-bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allow two accesses per cycle.
Any of the separate memories can be used for program or data.
Two on-chip $1 \mathrm{k} \times 32$-bit RAMs and a $4 \mathrm{k} \times 32$-bit ROM.
Dual 32-bit external buses. Each has a 31-bit address, so the 4 G -word memory is equally divided between the two buses.
Six independent 32 -bit communication ports for glueless communications between C40s. Separate 8×32-bit FIFOs for input and output buffering.
No on-chip serial ports. Two 32-bit timers.
Proprietary 32 -bit floating-point format.
Single-cycle conversion from/to the IEEE-754 32-bit format.
Multiplier accepts 32 -bit floating-point data and returns 40 -bit floating-point data. 24-bit integers result in 32 -bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data.
Parallel multiplier and ALU operations in a single cycle.

32-bit bidirectional barrel shifter.
Twelve 40-bit register-based accumulators.
Single-instruction and zero-overhead block looping.
128×32-bit instruction cache.
Cache can be disabled when not needed and frozen to keep an often used portion of code available in the cache.
Register, direct, indirect, immediate, relative, circular, and bitreversed addressing modes. Two address ALUs.
6 -channel DMA controller for concurrent I/O and CPU operation. Transmitting DMA can control the operation of the receiving DMA, so setup for DMA transfer will not affect CPU.
Hardware stack maintained in main memory.
Four external vectored interrupts.
Hardware and software-programmable wait states.
JTAG-based debug port controls the analysis module, which functions as an in-circuit emulator. Multiple C40s can be debugged via JTAG interface.
No low-power mode.
Packaged in a $325-$ pin ceramic PGA.

- HARDWARE

SUPPORT

Development system includes in-circuit emulation via JTAG interface.
4-processor host-independent evaluation board.

Optimizing ANSI C compiler with parallel-processing runtime support.
Source-level debugger. Assembler/linker. Simulator.
Application library.
Third-party support includes a real-time operating system (SPOX) with drivers for parallel processing.

32-BIT FLOATING-POINT CMOS DSP μ P

AVAILABILITY: Now.

COST: The 34325 (25 MHz) costs \$137; the 34325 (20 MHz) costs $\$ 124(10,000)$.

Zoran Corp
4401 Great America Pkwy
Santa Clara, CA 95054
(408) 986-1314

Circle No. 688

SECOND SOURCE: Harris Semiconductor (Melbourne, FL).

DESCRIPTION: The ZR34325 is a vector-signal processor, which is a DSP chip that operates on complex data and large blocks of data with single high-level instructions. The instruction set includes a single instruction to calculate an FFT, FIR filter, IIR filter, and other complex functions. The highly specialized
architecture is optimized to perform these functions quickly. The architecture also eases programming because the programmer doesn't have to write code for complex DSP functions. The 32-bit floating-point data conforms to the IEEE-754 standard.

FEATURES: 80- and 100-nsec cycle-time versions.
Single address and data bus.
Vector instructions generally take longer to execute than to fetch, so little speed penalty is incurred with this simple bus architecture.
High-level instructions, such as those to calculate FFTs and FIR and IIR filters, simplify programming.
256×32-bit coefficient dual-port ROM and 128×32-bit dual-port RAM on chip.
No on-chip program memory.
Internal memory can be directly accessed by external device.
$16 \mathrm{M} \times 32$-bit memory space.
No on-chip peripherals.
IEEE-754 32-bit floating-point format.
Multiplier accepts 32-bit floating-point data and creates 44-bit results.
Three ALUs: two floating point and one integer. 32-bit floating-
point data can be added to 32 bits with one ALU and to 44 bits with the other.
24-bit bidirectional barrel shifter.
Two 32-bit accumulators.
No zero-overhead looping.
Direct, indirect, register, immediate, circular, and bit-reversed addressing modes.
Address generators for internal RAM and ROM.
On-chip DMA.
Slave mode opens chip to external access.
Hardware stack maintained in main memory.
Single external interrupt.
Hardware wait states.
No on-chip emulation port.
No low-power mode.
Packaged in an 84-pin PGA.

HARDWARE

SUPPORT

Hardware-development-system board for IBM PCs.
VMEbus-based product for development. Does not include incircuit emulation.
Third-party hardware becoming available.

Assembler/linker.
Application library.
Simulator.

MICE-V-486. 33 MHz Emulation. Real features. Real-time.

Without real-time emulation you never know how your product will perform until it has to fly. Traditional in-circuit emulators slow your target to collect, display or reprogram trace. Or even stop emulation (or your target) to load complex triggers. When your emulator can't show you what's actually happening you risk missing a bug that will sneak from your prototype to the finished product.

MICE-V-486 lets you see it all.
Real-time emulation to 33 MHz .

- Complex, sequential triggers,
loaded without slowing the emulator or target.
- Access to the fully qualified trace buffer
during full-speed emulation.
T High level language debug.
Probe kits for 386, SX, 376 and 286 support.
Most in-circuit emulators require partially or completely functional hardware to operate correctly. MICE-V-486 has a unique Isolation Mode ${ }^{T M}$, requiring only a working clock signal. Logic analyzer taps are conveniently located to give you access to critical timing information. MICE- V 486 provides absolutely the fastest method for debugging non-functional 486 -based hardware.

Microtek also has real-time emulators and source-level debuggers for 68000, $-020,-030$ and 80 C 186 .

So, stop wasting development time because your emulator isn't real-time. Call us, and get your product to market fast.

MICROTEK

The Leader In Development Systems Technology. ${ }^{\text {mM }}$

MICROTEK INTERNATIONAL, INC. - Development Systems Division 3300 N. W. 211th Terrace, Hillsboro, OR 97124 • (503) 645-7333 • Fax (503) 629-8460

[^14]

HOW A STRATEGIC PARTNERSHIP WORKED A SMALL WONDER:

SPARCstation 1 AND LSI LOGIC.

Think of it as a solar system, in silicon.
In fact, it's the CPU board for SPARCstation 1. Created in under 240 days, through a unique partnership between LSI Logic and Sun Microsystems.
This totally integrated, RISC-based system, consisting of an L64801 SPARC microprocessor and 7 ASICs from LSI Logic, packs the power of SPARCstation 1 into an $8.5^{\prime \prime} \times 11^{\prime \prime}$ single board system.
We helped make it all possible by providing Sun with our microprocessor tools and technologies. And our unique ASIC design methodology enabled Sun to simulate the entire system in software. Before committing to silicon.
RISC and ASIC, together. A powerful new concept that can help you scare the daylights out of your competition.

LSILOGIC
ACROSS THE BOARD

You Can Only Go to a

Oki's New $0.8 \mu \mathrm{~m}$ ASICs

If your ASIC vendor's $1.0 \mu \mathrm{~m}$ product is at the end of its shrink, your anxieties are justified. When they'll get to the higher speeds and densities you need for next-generation products is a good question.

Oki's there now. Our new family of true $0.8 \mu \mathrm{~m}$ drawn sea-of-gates offers the migration path you need to $0.6 \mu \mathrm{~m}$, $0.5 \mu \mathrm{~m}$, and beyond. With 200 ps to 400 ps gate delays and 500 MHz flip-flops, these new CMOS 5-Volt SOGs provide the highspeed performance your systems require now-and in the future. Manufactured on a proven, high-volume production line, they also provide the guaranteed quality and reliability your systems demand.

Choose from a range of products -4 K to 92 K usable
gates - and JEDEC metric packages, including QFP and PGA. Our automatic test vector generation (ATVG) capability using scan macros allows you to achieve greater than 95% fault coverage. And it's easy to design with Oki ASICs. We support many popular industry-standard platforms and offer industrystandard in-house tools such as Verilog ${ }^{\circledR}$ and Explorer Rene. ${ }^{\text {TM }}$

Start easing your ASIC anxieties today. Call 1-800-654-6994 and schedule a consultation. We'll analyze your ASIC needs and provide the complete design support you need for today's high-density systems - and for those even higher performance systems you've thought about, but couldn't design. Now you can - with Oki.

Shrink for So Long

MSM10S01XX	4 K	100	68,84	60 to 100	88 to 108
MSM10S03XX	12 K	160	68,84	80 to 144	88 to 132
MSM10S05XX	22K	208	120 to 208	108 to 208	
MSM10S09XX	36 K	272	144 to 272^{*}	108 to 256	
MSM10S11XX	47 K	304	144 to 304^{*}	132 to 301	
MSM10S18XX	72 K	384	144 to 304^{*}	208 to 340	
MSM10S23XX 92 K	424	144 to 304^{*}	240 to 340		

OKI
Semiconductor
785 North Mary Avenue
Sunnyvale, CA 94086-2909
Telephone 1-800-654-6994
Verilog is a registered trademark of Cadence Design Systems, Inc. Explorer Rene is a trademark of Mentor Graphics Corporation.

Other products are under development
${ }^{2}$ Up to 100% utilization increase with 3 -layer metal, memory, and other regular blocks
JEDEC metric packages

OUR MEMORY CAN GET

ELECTROSTATIC DISCHARGE

Unlike typical modules, Samsung memory
modules-including those using our
4-meg DRAMo-are thoroughly tested for all the important characteristico. And although the people who do this are nice, kind folks-well, when it comes to quality control they can get testy. To guarantee specs on electrostatic Jischarge, for instance, they test to assure each pin will withstand a minimum of 2000 volts.

FLAMMABILITY
On flammability, our module people take great pains to assure that our producto meet standards. As a result, we guarantee that every Samsung memory module meets or exceeds the 94V-O Underwriters Laboratory flame classification.

LEAKAGE

Even in the cra of the 4-meg DRAM, there's still such a thing as a module with leaky pins. Many manufacturers just don't inspect for leakage. You guessed it, our team does comprehensive tests. All pins on all modules are 100% tested to the data sheet leakage specification.

MODULE PEOPLE A BIT TESTY.

EEPROMs enhance microcontroller-based system performance

The ability to update either the program memory or the data memory in an EEPROM can increase the performance of microcontroller-based systems, ease sys-tem-reconfiguration tasks, and improve overall system flexibility.

Richard Orlando, Xicor Inc

Many systems comprise a single-chip microcontroller $(\mu \mathrm{C})$ and an external program memory-typically an EPROM. Today, the availability of 64 k -bit EEPROMs makes them a viable replacement for EPROMs. EEPROMs' advantages are many. An EEPROM allows you to update system software without removing the memory device. This feature can be beneficial when you have to change the software at different stages of the manufacturing cycle or after the system is in the field. The EEPROM can accommodate self-modifying software, which will allow the system to tailor itself to the environment even if the environment changes. You can also use the EEPROM as a nonvolatile data-storage device for system parameters.

The task of integrating an EEPROM into a singlechip $\mu \mathrm{C}$-based system is not trivial. This article will give an overview of the general design requirements for using EEPROMs in these types of systems. The discussion will cover some specific solutions to the problems encountered when implementing designs us-
ing the two predominant $\mu \mathrm{C}$ architectures, the Von Neumann and the Harvard.

Modern EEPROMs have several unique properties that you must take into consideration when doing any type of circuit design. The first of these properties is data integrity during power up and power down.

You can write to today's EEPROMs as easily as you can write to a RAM. However, if circuitry external to the EEPROM inadvertently generates the proper signals for a write operation (Chip Enable Low, Output Enable High, and Write Enable Low), problems can occur. Whenever the EEPROM recognizes these signals, it will initiate an inadvertent write cycle. Because this write operation is accidental, the data and address information are meaningless, and you wind up overwriting meaningful EEPROM data.

The fact that many single-chip $\mu \mathrm{Cs}$ do not behave well during power up and power down compounds the inadvertent write problem. Holding the $\mu \mathrm{C}$'s Reset input low does not always guarantee the output states. All of the newest EEPROMs feature some kind of V_{CC} sensor that disables the chip when the supply voltage drops below a specified point, but even this scheme does not provide sufficient protection. To avoid the inadvertent write problem, you must add external circuitry to the EEPROM-a fix that general EEPROM literature covers in detail.
The software-data-protection feature found in the newest generation of EEPROMs provides an excellent solution to the inadvertent write problem. It allows the chip to initiate a write cycle only after a 3 -step software sequence enables it. Because the chip powers

Many single-chip $\mu C s$ do not behave well during power up and power down.

up in the disabled mode and disables itself after each write operation, you need no external hardware to protect the EEPROM during power up and power down. The chip can perform a write operation only when it is actually being given a valid write-enable command sequence followed by a valid write cycle.

An EEPROM characteristic that is even more troublesome than the inadvertent write characteristic is the manner in which the chip responds during the relatively long internal write cycle. The EEPROM's writing cycle is an actual byte or page-programming sequence, so the chip enters a read-disabled mode during the programming interval. Attempts to access data from the chip during the write cycle will most assuredly not yield the proper data until the write cycle is complete. If a single-chip $\mu \mathrm{C}$, or any processor for that matter, tries to read an opcode out of the same EEPROM to which it is currently writing, the result can be disastrous. Even processors that use Hex FF as a restart opcode will continue trying to restart until the EEPROM finishes writing. Then, however, the current status of the system is lost during reinitialization.

You can solve the disabled-read problem by using two EEPROMs for program storage. But make sure that each EEPROM contains a copy of the EEPROM write routine, which allows the processor to execute code out of one device while concurrently updating the other. Of course, this solution does increase your system's parts count.

Your system design must provide an area that allows you to execute code while you are writing to the EEPROM. System implementation will vary with the characteristics of the $\mu \mathrm{C}$ family you use. The Von Neumann and the Harvard methods are the two main $\mu \mathrm{C}$ architectures in vogue today, and each must be handled differently when it comes to adding external circuitry.

Simplifying the access operation

Uniform address space is the main characteristic of the Von Neumann architecture. The processor accesses a single address space, which contains both program storage and data storage. I/O devices are also mapped into certain locations. Although certain addresses are reserved for such things as internal RAM or ROM, the address space itself is uniform. The processor can read and write to program-storage locations as well as execute instructions from data memory. Motorola uses this single-chip architecture in its 68XX family.

Fig 1a shows a typical 3-chip system based on a

Fig 1-The classical approach to providing memory capability for a μ C employs an EPROM (a). You only need 7 bytes of memory to store a simple write-and-wait routine (b) for the 6801. To replace the EPROM with an EEPROM (c), you need to add power-up/powerdown protection and develop a write enable signal.
$6801 \mu \mathrm{C}$, an EPROM, and a demultiplexer, which separates the multiplexed address and data bus ($\mathrm{A} / \mathrm{D}_{0}$ to $\mathrm{A} / \mathrm{D}_{7}$). Before replacing the EPROM with an EEPROM, you'll have to install the additional, external power-up and power-down protection circuitry and make provisions for a temporary memory space for instructions that the processor can execute during the write cycle. This memory space need not be large; it only has to hold the actual write-operation instructions and have a wait routine to hold up the processor until the EEPROM completes the write operation. The software is quite compact if you implement this design with second-generation EEPROMs (X2816C, X2864B, and X28256), which feature DATA polling or a toggle bit.

By using the $\overline{\text { DATA }}$ polling, you'll only need 7 bytes of memory to execute the software subroutine shown in Fig 1b. Because the 6801 has 128 bytes of internal RAM, you can load the program segment into RAM and follow with a branch to this subroutine when you need to perform a write operation, which yields the design shown in Fig 1c. The EEPROM implementation requires the addition of only the power-up/power-down protection circuitry and the Write Enable signal.

If the application uses all the internal RAM, you'll have to add a small external RAM or PROM to hold the subroutine. A 1 k -bit PROM will be sufficient because you only need 7 bytes of storage capability (Fig 2). If the application requires a large amount of program storage, you can use two EEPROMs and load the write routine into each device. The main update program will determine which EEPROM will receive the byte to be modified; it jumps to the appropriate subroutine in the other EEPROM. You can use this technique to update either program bytes in the EEPROM or operational parameters.

The Von Neumann architecture is well suited for these types of applications because of its compatibility with the applications' requirements, specifically, the existence of the signals required for writing into the program address space. If the application allows you to use the internal RAM, you should write the 7 bytes of code into the RAM from the EEPROM before doing anything else. Because the EEPROM write-and-wait routine is position independent, you can also dynamically determine the routine's position in RAM based upon the location and size of the stack and other dynamic data structures in use.
Whether you use some or all of your system RAM, you must take care to either disable all interrupts or make sure to locate the interrupt-handling routine so
that it can be easily accessed during the write cycle. This can be a tricky task in the case of the NonMaskable Interrupt (NMI) on the 6801 because addresses FFFC_{16} and FFFD_{16} must always be available during the write routine in case an interrupt occurs during the write cycle. To solve this problem, point the interrupt vector to a temporary subroutine, which first determines if the EEPROM is involved in a write cycle. If it is, the interrupt-handling routine waits until the write cycle finishes and then jumps to the actual interrupt-handling procedure stored in EEPROM. The toggle-bit feature of EEPROMs is valuable here because the data that you wrote into the EEPROM may no longer be in the accumulator.
The toggle bit works as follows. During repeated read cycles to the chip, $\mathrm{I} / \mathrm{O}_{6}$ will toggle between 1 and 0 on each consecutive read cycle if the chip is performing an internal write cycle. The pseudo interrupt-handling routine shown in Fig 3 will determine if a write operation is in progress and wait until the write cycle ends before jumping to the real interrupt service procedure. Since the code shown is re-entrant, there should be no problem with multiple interrupts during the EEPROM write cycle as long as the stack does not

Fig 2-If you need some additional memory to hold the write-andwait routine for the 6801, you can use a small external PROM.

The Harvard architecture differs from the Von Neumann architecture in the area of address space.

Fig 3-To avoid interrupt problems in the EEPROM, this pseudo interrupt-handling routine will determine if a write cycle is in progress and wait until the cycle is complete before jumping to the real interrupt service procedure.
overflow. If there's a chance that too many interrupts might occur during the $10-\mathrm{msec}$ write cycle, it might be advisable to use the toggle-bit signal as a maskable interrupt and simply mask it during the EEPROM's write cycle.

Keeping things in their own space

The Harvard architecture differs from the Von Neumann in the area of address space. The Harvard concept employs a separate address space for program memory and data memory. Zilog uses this concept in its Z8 family, and Intel uses the architecture in its 8048 and 8051.

With an EPROM providing the external program storage, you can implement the Harvard architecture as you do the Von Neumann. Fig 4a shows a 3 -chip system using the 8051 and an external EPROM for program storage. If you use an EEPROM, you'll have to add additional circuitry to develop the write signal. You can do this by putting the PSEN and Write Enable outputs from the 8051 through an AND gate. This scheme double-maps the EEPROM's address space into both the data address map and the program address map.

In the Harvard architecture, the 8051 cannot execute code stored in the internal ROM. As a result, you must add an external memory to provide temporary storage for the EEPROM's write-and-wait routine. You can use a small RAM, again double-mapped into
the program and data address spaces, or a small PROM. The small write routine for the 8051 helps minimize the size needs of the external memory. Fig 4 c shows the write-and-wait routine for the 8051 .

Fig 4b shows the actual hardware implementation of an 8051/EEPROM system. The additional cir-cuitry-an AND gate for the Write Enable derivation, the power-up/power-down protection circuitry, and the small external memory to hold the above write-andwait routine-serves to convert the EPROM-based design into a EEPROM-based design. If the external memory is a RAM, you should copy the write-and-wait routine from the EEPROM to the RAM when you initialize the system and before you make any attempt to write to the EEPROM.

In the case of the 8051 , it's possible to disable all interrupts by setting the EA to 0 prior to jumping to the EPROM's write-and-wait routine. If you need in-terrupt-processing capability during the EEPROM write interval, take care to ensure that the extra memory resides at the top of the address map (starting at address 0000) because you must locate the interrupt vectors at the lowest addresses in program memory in the 8051.

In older Harvard-architecture $\mu \mathrm{Cs}$ such as the 8048 , you can use essentially the same EEPROM-based system design as you did for the 8051. The only difference is that the write-and-wait routine is slightly longer for 8048-type devices because the high-order addresses must be set up on an I/O port prior to executing the write operation. Fig 4d shows a sample subroutine, which you can use to implement the write-and-wait operation for the 8048 .

EDN

Author's biography

Richard Orlando is director of marketing at Xicor Inc (Milpitas, CA). In this position, he is responsible for strategic and product planning. Richard holds a BSEE degree in computer systems engineering from the University of Massachusetts/Amherst and is a member of ACM, IEEE Computer Society, Eta Kappa Nu, and Tau Beta Pi. Rich-
 ard's leisure activities include programming and music.

Article Interest Quotient (Circle One)
High 491 Medium 492 Low 493

	INSTRUCTION		NUMBER OF BYTES	
WRITE-AND-WAIT:	MOVX	@DPRT,A	;WRITE BYTE TO EEPROM	1
TEST:	MOVX	A,@DPTR	;READ DATA	1
	MOV	R1,A	;STORE TEMPORARY	2
	MOVX	A,@DPTR	;READ DATA	1
	CJNE	A,R1,TEST	;IF EQUAL CYCLE	
			COMPLETE	3
	RET		RETURN TO MAIN	1
TOTAL BYTES 9				

(c)

(b)

	INSTRUCTION		NUMBER OF BYTES	
WRITE-AND-WAIT:	XCH	A, R2	;SWAP MSB OF ADDRESS	1
	OUTL	P2,A	;OUTPUT MSB OF ADDRESS	1
	XCH	A, R2	;SWAP DATA BACK	1
	MOVX	@RO,A	;WRITE BYTE TO EEPROM	1
TEST:	MOVX	A,@RO	;READ DATA	1
	XCH	A, R2	;SWAP TO R2	1
	MOVX	A,@RO	:READ DATA	1
	XRL	A,R2	;COMPARE DATA	1
	JNZ	TEST	;WAIT IF NOT EQUAL	2
	RETR		;RETURN TO MAIN	1
TOTAL BYTES 10				

(d)

Fig 4-An EPROM can provide external storage capability for a Harvard-type μC like the 8051 (a). However, you can increase system performance by going with an EEPROM (b). The additional EPROM can hold the write-and-wait routines shown in \boldsymbol{c} and \boldsymbol{d} for the 8051 and 8048 controllers, respectively.

for lower NRE?

ake it Tiny.

Here's How To Develop Analog/Digital ASICs In Less Time, For Less Money.

Now, for an absolutely tiny price, you can partition complex mixed mode ASICs and separately design and verify the critical segments through fabrication. Cost of fab will no longer stop you from a divide and conquer methodology. Use Tiny Chips and go a step at a time. Tiny Chips, available on Foresight multiproject wafer runs, reduce NRE costs and help you move confidently from prototypes into production.

Twelve packaged parts are available at a cost of just $\$ 1,500$. And Foresight runs are regularly scheduled, so development can be pipelined; some segments can be in design, some in fab, while others in test and debug... all at the same time.

Foresight runs support larger die sizes for characterization of completed designs prior to production.

As you might expect from the only foundry to guarantee quick turnaround, Tiny Chips are available in a mere 20-25 working days from CMOS runs supporting:
$1.2,1.5$ and 2.0 micron feature sizes
2.0 micron buried channel CCDs
a 40 pin Tiny Chip pad frame supplied by Orbit
the DoD 2/1.2 micron CMOSN standard cell library with RAM and ROM generators
Getting started is easy as getting design rules and process information in our newly published Foresight User Manual.

If you are trying to build complex ASICs, without building up time and cost, Orbit's new Tiny Chip service may be the biggest news yet. To get more information in a hurry, contact Technical Marketing, Orbit Semiconductor, 1230 Bordeaux Drive, Sunnyvale, CA. Or call (408) 744-1800 or (800) 331-4617. In CA (800) 647-0222. FAX (408) 747-1263.

What others promise, we guarantee.

Imagine

Pure.

Imagine

Small.

Imagine
Silica.

GELTECH INTRODUCES SOL-GEL TECHNOLOGY TO STIR YOUR IMAGINATION...

\triangle For Semiconductor use, our ultra-pure (free of alpha contaminants), spherical powders can be made in submicron sizes as well as larger which makes them ideal for passive coatings. We also produce silica, silicate, and ceramic sols that are excellent for active coatings. And, the pure silica porous glass is a perfect substrate which allows doping of metals, such as selenium or antimonium for specific uses.
Δ For Optical Recorders/Readers with lenses in sizes and shapes never before possible. We can produce any combination of plano, convex or concave surfaces, aspherical, fresnel, meniscus, prisms, rods, and cones in sizes as small as 1.5 mm . In addition, these lenses have a broad transmission range of $.170-3.4 \mu \mathrm{~m}$.
\triangle For Optical Waveguides utilizing porous glass with laserwitten pathways to conduct light according to your particular application.
\triangle For Micro-optic Arrays with porous glass designed to direct light sources in a series or pattern of directions.

CIRCLE NO. 147

GELTECH, Inc., introduces a revolutionary manufacturing process known as sol-gel technology. Sol-gel is a form of ultra-structure processing, where very small colloidal particles are first formed in solution. In sufficient concentration, these minute particles link together into chains, then into 3-D networks. We pour the solution into molds to yield a superior finished product at a much lower cost.The results are lenses and porous glass, molded to exact dimensions without the need for grinding. In the case of our porous glass, you even get to specify the pore sizes ranging from 25 to $50 \AA$ in diameter.

If your design solution calls for powders, consider our pure silica product in sub-micron and micron-sized spherical powders. Or, our silica/silicate coatings for semiconduc-tors-or, your specific electronic application. Tailor-made solutions for your applications.

Just imagine the possibilities.

Call GELTECH's Product Information Center today at (904) 462-2358, or write us at Two Innovation Drive, Alachua, Florida, 32615 , for more information on our family of solgel products. Who knows, you may just imagine electronic applications for a whole new generation!

Pure Solutions for

A SUPER MODEL OF TECHNOLOGY UM82C380 Series

80386 High-End AT (HEAT) Chip Set

Flexibility was one of the important design considerations UMC built into its HEAT PC/80386 chip set. With just four basic circuits plus one additional chip (all supplied by UMC) Page mode, Intel Cache (25/33 MHz) and Austek Cache (25 MHz) modes can be configured.

FEATURES:

1. Highly integrated $25 / 33 \mathrm{MHz} 32$-bit 80386 AT chip set
2. Four 120 pin flat packs and one 84 PLCC package.
3. Supports $256 \mathrm{~K} / 1 \mathrm{M}$ SIMM DRAM modules.
4. Baby AT board can be fit up to 8 M
byte on-board memory (to 12 M on regular board).
5. Shadow RAM for system BIOS
6. Supports math coprocessor 80387 , 80287 interface, Weltek 3167 Applications.
7. Easy to use with AMI/PHOENIX/AWARD /QUADTEL BIOS.

UNITED MICROELECTRONICS CORPORATION

EUROPE HEADQUARTERS:
UNITED MICROELECTRONICS (EUROPE) B.V. TEL:020-970-766 FAX:020-977-826 TLX:11677 UMC NL

AUSTRIA	DENMARK	GERMANY		FINLAND	HOLLAND	SPAIN	SWEDEN	UNITED KINGDOM
Leitgeb, kg	AEG-DANSK AKTIESELSKAB	DISCOMP ELEKTRONIK GmbH	MANHATTAN SKYune Gmbi	YIEISELEKTRONIIKKA OY	EUINCOM ELEKTRONISCHE	VENCO EIECTRONICA S.A.	IOPCOMP ELEKTRONIK	MANHATTAN SKYUINE LTD
TEL: 222.715-3251	TEL. 45-42-64.8522	FAX 49.711 .704061	TEL: 49-6128-23044	TEL. 358-0.452-1255	COMPONENTEN	TEL: 34.3-330.9751	TEL: 46.8.757-4171	TEL 44-628-75851
TLX. 47.48191 DIEIA	HIX 33122 ElAEG DK	TEL: 49.711 .702640	TIX. 4182704 MSKI D	TIX: 123212 YLEOY SF	TEL. 31-5990.14830	TIX: 98266 VNCE E	TIX 812.5008 COMEKA S	TLX: 847898 MANSKY
FAX: 222.712 .5218	FAX - 45-42.64.8449		FAX 49.6128 .21478	FAX 358.0.428.932	TLX: 53378 EUN NL FAX: 31.5990-20360	FAX 343.421 .9377	FAX 46.8-752.9265	FAX : 44.628 .782 .812
BELGIUM.	FRANCE	Endrich bauelement e	SCHUKAT ELECTRONIC	IRELAND		SWITZERLAND	ITALY	METL
INELCO BELGIUM SA/NV	ASIA MOS	VERTRIEBS GmbH	TEL. 49-2173-39660	NEL TRONIC LTD	ALCOM ELECTRONICS BV	ICCM ELECTRONICS AG	ESCO ITALIANA S.P.A.	
TEL: 32-2-216-0160	TEL: 47601255	TEL. 49.7452 .2868	TLX 8515732 SELE D	TEL 353.1-501845	TEL. 010-4519533	TEL: $41.432 \cdot 3434$	TEL. 39.2.240.9241	FAX 44.844-278746
TLX 64475 INEICO B	TLX OMT 613890 F	TLX. 765946 ENDRID	FAX: 49-2173-396681	TLX: 93556-NELTEI	FAX 010.4586482	TLX 822101 ICM CH	TIX 322383 ESCOM I	$\text { TLX } 827150$
FAX 32-2.216-4608	FAX 33.147601582	FAX: 49.7452 .1470		FAX. 353-1.552789		FAX 41.1-432-1070	FAX 39.2 .240 .9255	

Developing real-time requirements

Abstract

To design a real-time application, you must prepare a requirements model for your system and then transform it into an implementation model. Part 3 of this series explains how to create verbal and graphical requirements models that formulate system behavior as clearly, completely, and correctly as possible.

David L Ripps, Industrial Programming Inc

Developing a real-time application-or any other computer program-consists of translating a set of notions of what the system should do into a set of program modules that implement those notions. The translation normally proceeds in stages. In the early stages, vague notions of system behavior evolve into a formal statement of the specific system requirements. These requirements are often formulated as abstract models of the desired system behavior.

Ideally, the requirements model should express pure behavior. It should neither reflect the way the model is to be implemented nor bias the implementation in any way. Nevertheless, it would be senseless to include any requirements that cannot be met with any available means of implementation.

The requirements model can have a variety of formats, each aimed at clarifying some aspect of the system behavior. For example, some emphasize the flow and transformation of data, while others high-

[^15]

PROGRAMMING PART 3
light the internal transitions caused by the arrival of inputs. Often several different formats jointly constitute the overall requirements model. As a minimum, the requirements model must show:

- The inputs to the system, differentiating continuously available inputs from transient ones.
- The various items of data that must be stored.
- The internal states that the system can attain.
- The actions that must be taken when the system is in a given state and a certain input arrives. Actions include changes in stored data, generation of outputs, and change of internal state.
The goal of the requirements model is to formulate system behavior as clearly, completely, and correctly as possible. "Clearly" means that there is no doubt as to what the system will do when it is presented with a given time profile of inputs. "Completely" means that all possible combinations of inputs have been considered. "Correctly" means that those who understand the purpose for which the application is being built agree that the actions are appropriate.

With such goals, the language used to express the inputs, stored data, internal states, and outputs is normally drawn from the problem arena and makes sense to people conversant with that field. Thus, the requirements for a telephone switch use the vocabulary of telephony. For problems arising from ordinary life, ordinary English is the language of choice.

Developing a verbal requirements model

As a way to illustrate the stepwise evolution of a requirements model, consider how to control access to a single-lane bridge that is shared by both lanes of
a dual-lane road (Ref 1). Lights RB and LB control access to the bridge from the left-bound and rightbound directions, respectively. Traffic flow is light so that most of the time the bridge is in its initial (empty) state. In that state both lights are red (Fig 1).

Start by writing the rules governing the system in purely verbal form:
1.1 If the bridge is not in use and a right-bound car approaches (as detected by sensor 1), then set the number of right-bound cars between sensors to 1 , mark the bridge in use by right-bound traffic, and turn light RB green.
1.2 If the bridge is in use by right-bound traffic and a right-bound car approaches, then increase the number of right-bound cars between sensors by 1 .
1.3 If the bridge is in use by right-bound traffic and a left-bound car approaches, then increase the number of left-bound cars between sensors by 1 but take no further action. (Light LB remains red.)
1.4 If the bridge is in use by right-bound traffic and a right-bound car leaves the bridge (as detected by sensor 2) and the number of right-bound cars between sensors is not 1 , then decrement the number of rightbound cars between sensors by 1 .
1.5 If the bridge is in use by right-bound traffic and a right-bound car leaves the bridge and the number of right-bound cars between sensors is 1 , then turn light RB red, set the number of right-bound cars between sensors to 0 , and mark the bridge not in use. If at that point the number of left-bound cars between sensors is not 0 , then mark the bridge in use by left-bound traffic and turn light LB green, as in the next rule.
1.6 If the bridge is not in use and a left-bound car approaches (as detected by sensor 3), then set the number of left-bound cars between sensors to 1 , mark the bridge in use by left-bound traffic, and turn light LB green.
1.7 If the bridge is in use by left-bound traffic and a left-bound car approaches, then increase the number of left-bound cars between sensors by 1 .
1.8 If the bridge is in use by left-bound traffic and a right-bound car approaches, then increase the number of right-bound cars between sensors by 1 but take no further action. (Light RB remains red.)
1.9 If the bridge is in use by left-bound traffic and a left-bound car leaves the bridge (as detected by sensor 4) and the number of left-bound cars between sensors is not 1 , then decrement the number of left-bound cars between sensors by 1 .
1.10 If the bridge is in use by left-bound traffic and a left-bound car leaves the bridge and the number of left-bound cars between sensors is 1 , then turn light LB red, set the number of left-bound cars between sensors to 0 , and mark the bridge not in use. If at that point the number of left-bound cars between sensors is not 0 , then mark the bridge in use by rightbound traffic and turn light RB green, as in the first rule.
One way to test a behavioral model for a real-time application is to ask whether the model provides the proper response when two or more asynchronous inputs are presented simultaneously. In this case, suppose the bridge is not in use and both a right-bound car and a left-bound car approach at exactly the same time. Both rules 1.1 and 1.6 should be applied, and their actions conflict. Each calls for marking the status of the bridge in a different way. Worse, each sends a car onto the bridge in opposing directions. Thus, this first attempt at a behavioral model fails because of the essential real-time nature of the problem. You can readily correct the model by requiring exclusive access to the bridge before the status or any other data is altered:
2.1 If the bridge is idle or in use for left-bound traffic and a right-bound car approaches (as detected by sensor 1), then set the number of right-bound cars between sensors to 1 and request exclusive access to the bridge. When exclusive access is granted, mark the bridge in use by right-bound traffic and turn light RB green.
2.2 If the bridge is in use by right-bound traffic or right-bound traffic is waiting for exclusive access to the bridge and a right-bound car approaches, then increase the number of right-bound cars between sensors by 1 .
2.3 If the bridge is in use by right-bound traffic and a right-bound car leaves the bridge (as detected by sen-

Fig 1-Access to a 1-lane bridge on a 2 -lane road illustrates the application of a hypothetical traffic-control system that works in real time.
sor 2) and the number of right-bound cars between sensors is not 1 , then decrement the number of rightbound cars between sensors by 1 .
2.4 If the bridge is in use by right-bound traffic and a right-bound car leaves the bridge and the number of right-bound cars between sensors is 1 , then turn light RB red, set the number of right-bound cars between sensors to 0 , mark the bridge not in use by right-bound traffic, and release exclusive access to the bridge.
2.5 If the bridge is idle or in use for right-bound traffic and a left-bound car approaches (as detected by sensor 3), then set the number of left-bound cars between sensors to 1 and request exclusive access to the bridge. When exclusive access is granted, mark the bridge in use by left-bound traffic and turn light LB green.
2.6 If the bridge is in use by left-bound traffic or leftbound traffic is waiting for exclusive access to the bridge and a left-bound car approaches, then increase the number of left-bound cars between sensors by 1 .
2.7 If the bridge is in use by left-bound traffic and a left-bound car leaves the bridge (as detected by sensor 4) and the number of left-bound cars between sensors is not 1 , then decrement the number of left-bound cars between sensors by 1 .
2.8 If the bridge is in use by left-bound traffic and a left-bound car leaves the bridge and the number of left-bound cars between sensors is 1 , then turn light LB red, set the number of left-bound cars between sensors to 0 , mark the bridge not in use by left-bound traffic, and release exclusive access to the bridge.

Note that it is no longer necessary to repeat the actions of rule 2.5 within rule 2.4 as was done in version 1 of this example (ie, "If at that point, the number of

Fig 2-A graphical representation of control transformations recasts verbal descriptions into a more compact pictorial form that is easier to comprehend. Activities indicated in the diagram shown here refer to traffic control on the 1-lane bridge of Fig 1.
left-bound cars between sensors is not 0 , then . . ., as in the next rule"). Those actions will automatically occur when exclusive access to the bridge is released and the other side is waiting for similar access.

You can make the model more precise by separating that information, which is to be stored as data from that which simply encodes an internal state. In particular, bridge status ("not in use for right-bound traffic," "not in use for left-bound traffic," etc.) just designates the internal state; it is not a stored variable. Thus, replace "If the bridge is in use by right-bound traffic" with "If in right-bound state Traffic Idle" and replace "mark the bridge in use by right-bound traffic" with "enter right-bound state Traffic Active."

In contrast, the number of left-bound cars between sensors must be stored and becomes the integer variable LB Cars. Similarly, "gain access to bridge" becomes "request semaphore variable Access to Bridge." Semaphores will be described in detail in Part 9 of this series. For now, it suffices to say that semaphores are variables that may be "free" or may be assigned to one requester or another. However, a given semaphore is never assigned to more than one requester at a time.

Fig 3-State-transition diagrams contain details that are hidden in controltransformation diagrams. This state diagram illustrates control of Fig 2's traffic light RB.

Thus, semaphores are used to achieve mutual exclusion.

To complete this demonstration of the evolution of a verbal requirements model, recast the verbal rules into a third and final version:

> The verbal expression of a behavioral model can be laborious to prepare and difficult to comprehend.
3.1 If in right-bound state Traffic Idle and a rightbound car approaches the bridge (as detected by sensor 1), then set RB Cars to 1 , request Access to Bridge, and enter right-bound state Wait for Exclusive Access to Bridge. When exclusive access is granted, enter right-bound state Traffic Active and turn light RB green.
3.2 If in right-bound state Traffic Active or Wait for Exclusive Access to Bridge and a right-bound car approaches the bridge, then increase RB Cars by 1.
3.3 If in right-bound state Traffic Active and a rightbound car leaves the bridge (as detected by sensor 2) and RB Cars is not 1 , then decrement RB Cars by 1 . 3.4 If in right-bound state Traffic Active and a rightbound car leaves the bridge and RB Cars is 1 , then turn light RB red, set RB Cars to 0 , release Access to Bridge, and enter right-bound state Traffic Idle. 3.5 If in left-bound state Traffic Idle and a left-bound car approaches the bridge (as detected by sensor 3), then set LB Cars to 1, request Access to Bridge, and enter left-bound state Wait for Exclusive Access to Bridge. When exclusive access is granted, enter leftbound state Traffic Active and turn light LB green.
3.6 If in left-bound state Traffic Active or Wait for Exclusive Access to Bridge and a left-bound car approaches the bridge, then increase LB Cars by 1.
3.7 If in left-bound state Traffic Active and a left-bound car leaves the bridge (as detected by sensor 4) and LB Cars is not 1 , then decrement LB Cars by 1 .
3.8 If in left-bound state Traffic Active and a left-bound car leaves the bridge and LB Cars is 1 , then turn light LB red, set LB Cars to 0, release Access to Bridge, and enter left-bound state Traffic Idle.

The graphical requirements model

As the previous sample suggests, the verbal expression of a behavioral model can be laborious to prepare and difficult to comprehend. Verbal rules also put a
subtle bias into the implementation. For example, if the bridge is idle in both directions and cars approach from both sides simultaneously, the ordering of the statements suggests that you apply rule 3.1 before applying rule 3.5.

These deficiencies have led to the development of various graphical methods to show the behavior of realtime systems. The 3 -volume set, Structured Development for Real-Time Systems, describes a series of techniques that you can apply manually to prepare a comprehensive set of graphical requirements models (Ref 1). (Several companies currently offer alternative methods that employ a graphics workstation in place of paper and pencil. For a general review of computeraided software engineering tools for real-time systems, see Ref 2.)

A full description of the graphical techniques is beyond the scope of this series. Nevertheless, you can get the flavor of the methods by recasting the verbal description into the "transformation schema" of Ward and Mellor (Fig 2). The supporting state-transition diagrams appear in Figs 3 and 4.

In essence, each graphical method consists of a library of pictorial symbols that represent certain basic elements of the model. For the transformation schema (Fig 2), dashed, rounded enclosures represent a transformation on transient binary information (events).

Fig 4-Details of traffic light LB appear in this state diagram.

We're the Driving Force Behind Millions of VF Displays

If your car or the car next to you on the freeway has VF displays, chances are they're Oki-driven. Because Oki supplies one-third of the nation's VF drivers.

We offer the widest range of standard devices - static, duplex, and multiplex. Our custom VLSI capabilities allow features such as on-board analog and digital dimming, keyboard scanning, and much more.

We provide U.S.-based design support. A decade of automotive experience. And incredible reliability - less than 25 FITs* in normal operation.

Call 1-800-233-4OKI for Oki's VF Driver Data Book and see why we're a leading resource for VF driver technology.

Semiconductor
Transforming technology into customer solutions
*Number of failures per million within 1,000 bours of operation.

Lines entering the enclosure are input events; lines leaving the enclosure are output events. Rectangular areas show stored data; dashed lines delimit the area when binary data is stored; solid lines delimit the area when the data is not binary.

The premise of the requirements model is that it be independent of the means of implementation.

For the state-transition diagram that shows the details of the transformations (Figs 3 and 4), rectangular enclosures represent states. An arrow between states is a transition engendered by the event listed above the horizontal line next to the arrow. Actions taken during the transition are shown below the horizontal line.

The graphical methods permit the behavior model to be developed by elaborating successively greater levels of detail. You get a hint of this by hiding the details of the control transformation within the separate state-transition diagram. In more complex (and more typical) real-time applications, several layers of transformations would be needed to show the entire behavioral model.

Implementing the requirements model

The problem of designing a real-time application consists of first preparing a requirements model and then
transforming it into an implementation model. The premise of the requirements model is that it be independent of the means of implementation. (When the single-lane "bridge" is a temporary road blockage, the requirements are often implemented by people, unaided by computers.) When the system is to be realized through a computer, the requirements model must pass through the next stage of transformation to become an implementation model. Methods of implementing a real-time application, once the specifications are in hand, is the main thrust of this series of articles.

The next part of this series will discuss the first hurdle: How to partition the overall requirements model into separate concurrent tasks. Subsequent parts will deal with techniques for coordinating these tasks, for communicating between them, and for providing other centralized services.

EDN

References

1. Ward, Paul and Stephen Mellor, "Structured Development for Real-Time Systems," Prentice-Hall, 1985, Vol 1, Section 7.9.
2. Falk, H, "CASE Tools Emerge to Handle Real-time Systems," Computer Design, Vol 27, No 1, January 1, 1988.

Article Interest Quotient (Circle One) High 497 Medium 498 Low 499

Companion disk offer

All of the C examples in this series, plus applications of your own, can be run on a personal computer with a set of demonstration disks available from Industrial Programming Inc. The disks contain a full version of MTOS-UX for an IBM PC/AT or compatible. An application program is edited, compiled, linked, and loaded under MS-DOS. The MTOS-UX then takes over the hardware to
execute the program in real time. At any time, you can enter an alt/dlt command from the console to return control to MS-DOS.

The demonstrator requires an AT with a least 512 k bytes of RAM and a hard disk with 2 M bytes available for MTOS libraries and scratch storage. Program preparation requires the Microsoft C compiler/linker, version 5.0 or later. Microsoft tools are not
included with the MTOS-UX demonstrator.

The demonstration version has all of the features and facilities of standard MTOS-UX. However, there is a limit of six of each type (six tasks, six mailboxes, six semaphores, and so forth). The disk set costs $\$ 25$; unlimited versions are also available. For more details, call the IPI sales department at (800) 365-6867.
cool-under-fire (2)

AT\&T's 50 to 150 Watt Board Mounted Power Modules: Engineered to take the heat... for virtually 100% system up-time.
Our UL*-recognized modules not only withstand 0° to $90^{\circ} \mathrm{C}$ temperatures, they bring Bell Labs' design innovation and AT\&T quality to your distributed power architecture. This provides leading-edge power features that help you reduce design time, and manufacturing and servicing costs, while enhancing reliability.

Component needs are cut by including filtering and control functions within the package. They include an EMI filter to meet FCC requirements (Class A) by controlling both radiated and conducted EMI.

Modules are hot-plugable in parallel configuration and can be replaced or serviced while the system is up and runningwith no loss of power or data.

AT\&T power modules also allow parallel redundancy, so you need only one extra module to back up the system. All 50, 100 and 150 The watt modules measure $4.8 \times 2.5 \times .5^{\prime \prime}$ and are available in a variety of outputs.

Save space and prevent downtime with AT\&T's power modules. Call today for our complete catalog of AT\&T 5 W to 150 W devices: 1800 372-2447, ext. 590.

Born

Better Prepared for Any Game.

286

Industrial Computer

As you face the changing demands of today's industrial environments, Qualogy's 286, 12.5 MHz industrial computers will keep you prepared for any game. Our 286 system comes in a rugged rackmount chassis including:

10-slot passive backplane 200-Watt switching power supply Positive airflow cooling MM DRAM, 2 serial/1 parallel port Hard disk, 1.2M floppy, 1:1 controller EGA card, 101 keyboard, DOS 3.3

The $286,12.5 \mathrm{MHz}$ system comes with a 20Mole drive, for only:

386 Industrial Computer

When you need both super speed and ruggedness, Qualogy's $386,20 \mathrm{MHz}$ industrial computers give you the winning edge in the game of your choice. Our 386 system comes in a rugged rackmount chassis including:

10-slot passive backplane
200-Watt switching power supply Positive airflow cooling 121 DRAM, 2 serial/1 parallel port Hard disk, 1.2M floppy, 1:1 controller EGA card, 101 keyboard, DOS 3.3

The $386,20 \mathrm{MHz}$ system comes with a 40 Mbyte drive, for only:

Industrial PC/AT computers and peripherals.

Thenewperformance

 standard

 standard}

SNA-6:

The ultimate instrument for applications in systems manufacturing.

SNA-6: 50 Hz to 3.2 GHz

Designed for applications from the audio to the microwave range, the dualfunction SNA-6 handles spectrum analysis from 50 Hz to 3.2 GHz . The instrument's excellent dynamic range and accuracy permit analysis of densely spaced line spectra. The narrowest analyzer filter (3 Hz bandwidth) allows detection of extremely low amplitude a. c. line interference superimposed on a 3 GHz carrier. This is just one benefit of the low-noise synthesizer oscillator. The SNA-6 also sets new standards in scalar network analysis. The 0.1 Hz resolution synthesizer can be tuned across the entire frequency range without skips or phase hits. The same synthesizer also provides the signal for the tracking generator. When testing active two-port networks, the gain/attenuation vs. frequency can be determined from +30 to -140 dBm and 100 kHz to 3.2 GHz with excellent precision.

You can use our bar code reader or your PC with our software for remote control applications on the IEEE 488/IEC 625 bus.
You will also be impressed by the versatile evaluation functions and hardcopy capabilities of the SNA-6.
For more information about the state-of-the-art SNA-6 from Wandel \& Goltermann, please fill out and send in the coupon below.

USA: Wandel \& Goltermann, Inc., 1030 Swabia Court, R.T. P., NC 27709, Tel. (919) 941-5730, Telex II: 810-621-0002, Fax (919)941-5751.
Canada: Wandel \& Goltermann Inc., 21 Rolark Drive, Scarborough, Ontario M1R3B1, Tel. (416) 291-7121. Worldwide: Wandel \& Goltermann, VMW, Postfach 1262, D-7412 Eningen, Tel. + (49) 7121-86-0, TIx. 729833, Fax + (49) 7121-88404.

CIRCLE NO. 152

ALMAC

BRILL
CARTEN CHELSEA

HALLMARK

Hamiltongunet

NEWARK ELECTRONICS

}
 \section*{"IT'S YOUR
 \section*{"IT'S YOUR CHOICE"} CHOICE"}

Hall sensor detects ground faults

V Lakshminarayanan
Centre for Development of Telematics, Bangalore, India

The ground-fault circuit in Fig 1 is economical and does not electrically contact the conductor it is monitoring. The circuit uses the UGN-3503T Sprague Halleffect sensor, which senses relatively small changes in a magnetic field.

In operation, the sensor's linear output capacitively couples to an op amp. A Schmitt trigger makes the op amp's output logic compatible. When the circuit detects no leakage current, the transistor Q_{1} is on (if the D flip-flop is reset) and the optocoupler's transistor is off. Consequently, transistor Q_{2} is also off, and it supplies no gate drive to the triac.

In the event of a ground fault, the Hall-effect sensor will detect the current's magnetic field and develop an output voltage. The op amp amplifies this voltage, strobing the Schmitt trigger. The Schmitt trigger sets the D flip-flop, turning Q_{1} off and the optocoupler's transistor on. The optocoupler turns on Q_{2}, triggering the triac. The triac energizes the "shunt-trip" coil of a circuit breaker (an internal, optional solenoid that trips the breaker), killing power.

Fig 2 shows how to mount the Hall-effect sensor in the air gap of a mild-steel flux collector. The collector is a bar of steel formed into a horseshoe shape. You can add isolation transformers to prevent any faults in this fault-detecting circuit from disturbing the protected circuit. (EDN BBS DI \#892)

EDN
To Vote For This Design, Circle No. 746

Fig 2-A simple mild-steel strap collects flux for the Hall-effect sensor.

Fig 1-This ground-fault-detection circuit amplifies and squares up the output of a Hall-effect sensor. When the circuit detects a ground fault, it energizes the "shunt-trip" coil of a breaker.

Calculator performs 2's-complement math

Peter Kielbasiewicz

Hewlett-Packard Medical, Böblingen, Germany

The calculator programs in Listing 1 make up for the Hewlett-Packard HP-28 calculator's lack of 2'scomplement binary-conversion routines. The first program negates a number in 2 's-complement form. The
second program converts numbers from real to binary and binary to real. The currently defined binary-word size determines the positive and negative ranges for binary numbers. (EDN BBS DI \#896)

EDN

To Vote For This Design, Circle No. 747

Listing 1—HP-28 binary-arithmetic routines

```
BNEG
<< -> a 
        END
    >>
>>
```

; negate a number with
; respect to 2 's complement
; store entered number into local varible
; if number begins with '\#'
THEN a NOT $1+$; then make 2^{2} 's complement
ELSE a NEG ;else simply negate

up to 35 dB 10 to 1000 MHz ${ }_{\text {ory }}$ \$5995

TOAT-R512 Accuracy		TOAT-124		TOAT-3610		TOAT-51020	
		Accuracy		Accuracy		Accuracy	
(dB)	$(+/-\mathrm{dB})$	(dB)	$(+/-d B)$	(dB)	$(+/-d B)$	(dB)	$(+/-d B)$
0.5	0.12	1.0	0.2	3.0	0.3	5.0	0.3
1.0	0.2	2.0	0.2	6.0	0.3	10.0	0.3
1.5	0.32	3.0	0.4	9.0	0.6	15.0	0.6
2.0	0.2	4.0	0.3	10.0	0.3	20.0	0.4
2.5	0.32	5.0	0.5	13.0	0.6	25.0	0.7
3.0	0.4	6.0	0.5	16.0	0.6	30.0	0.7
3.5	0.52	7.0	0.7	19.0	0.9	35.0	1.0

finding new ways

DESIGN IDEAS

Single gate stretches pulses

Mark Krasnov
Keystone Controls, Houston, TX

Adding a capacitor and a diode to an open-collector, noninverting gate produces a simple one-shot (Fig 1). In operation, when a negative-going pulse comes to the cathode of D_{1}, the capacitor C_{1} discharges and the input of gate IC_{1} goes low. Consequently, IC_{1} 's output goes low, drawing current through LED D_{2}. Capacitor C_{1} provides a positive feedback, maintaining IC_{1} 's low input until C_{1} charges up through resistor R_{1}.

The stretched pulse is approximately equal to the input pulse's duration plus the $R_{1} C_{1}$ time constant. The actual output-pulse width can vary from the calculated value depending on the gate's logic-threshold levels. A pullup resistor $\left(R_{2}\right)$ will keep the gate's input high while waiting for an input pulse.
(EDN BBS DI \#895)
To Vote For This Design, Circle No. 748

Fig 1-A handtul of inexpensive components transforms a noninverting gate into a simple pulse stretcher.

PLD decodes serial protocol

Richard Andelfinger

Photometrics Ltd, Tucson, AZ
Programming a synchronous, finite-state machine (FSM) into a Cypress Cy7C330 PLD achieves two goals for a serial-protocol decoder: eliminating a potentially
unstable analog one-shot and allowing for variations in the protocol.

The serial protocol comes in over a single data line paced by a single clock line. The clock line carries bursts of between 12 and 16 positive-going edges (depending on protocol variations) separated by a gap (Fig

Fig 1-This simple, serial protocol consists of 12 to 16 data bits separated by a gap.

You don't need a forklift, a strong back, and a keen sense of balance to put an entire microwave lab on your desk.

All you need is CAE design software from EEsof.

Our tools realistically simulate just about every piece of equipment in the lab-right there in your very own office. From devices to circuits to subsystems

You'll be able to create better products with more functions and higher yields. Explore new concepts. Work on projects that wouldn't even be pos-
sible if you relied solely on the lab.
And you'll do it fast. From idea to finished prototype in days or weeks instead of months or years.

EEsof's business is software.
We've been the leader in microwave software tools since 1984 when our first product, Touchstone®, freed you from mainframe, timeshared computing and let you design with a desktop workstation.

Today, our family of products, integrated through ACADEMY ${ }^{\text {ma }}$ into
one microwave design framework, reduces manufacturing costs, increases yields, and slashes adjustment, testing, and design time.

Call EEsof at 1-800-624-8999, ext. 155 or FAX us at 1-818-9917109. We'll send you all the facts on our microwave CAE design tools.

That way the only things stacked up on your desk will be letters of praise from all of your customers.

عEлоf

DESIGN IDEAS

1). The gap divides the serial stream into words. The decoder has to allow for variable clock polarity, variable bit times, variable gap times, and the possibility of discarding the first bit of each word.

Internally, the PLD contains a programmable counter and a state machine. The programmable counter functions as a digital one-shot, detecting the interword gaps. Six of the PLD's pins constitute an input port to the PLD's programmable counter and internal logic. A $25-\mathrm{MHz}$ system clock strobes the counter and the input-data clock resets it. Preset with the proper count, the counter will time out only during an interword gap.

The PLD's internal state machine (Fig 2) decodes the incoming data stream and drives external logic to capture the serial data stream, perform serial-toparallel conversion, and clear the external logic's registers when appropriate.

The program for the PLD, which is too long to print here, is available on the EDN Bulletin Board System. See the end of this section for instructions on how to use the BBS. (EDN BBS DI \#894)

To Vote For This Design, Circle No. 749

Fig 2-A portion of a PLD configured as a state machine decodes the incoming serial bit stream. Another portion of the PLD, configured as a gap-detecting timer, arms the state machine after timing out. A control-word bit, HD5, determines whether or not the state machine will discard the first bit of each word.

"We designed-in heavyweight performance with lightweight Toshiba ST-ICDs."

"Why Toshiba?"
"For the outstanding readability and wide viewing angles of their ST-LCD panels."
"With a full line to choose from?"
"Everything from mid- and large-size supertwist displays, to large-size, bigh-resolution (640×480) monochrome supertwist (M-ST) displays."

Toshiba ST-LCDs combine optimum readability with the size, weight and performance specifications designers and OEMs need most for lightweight, low-power, portable applications.

Take the TLX-1641-G3B for example. This CGA-compatible (640×400), EL backlit, B-ST display is thinner (only 10.5 mm thick) and lighter than standard supertwist displays. Or the TLX-1551A-C3M. A singlelayer VGA compatible (640×480), CCFL backlit M-ST display that's about 25\% lighter and 10% thinner than double-layer supertwist displays. And Toshiba has a full line of mid-size supertwist, EL backlit, graphic displays with built-in controller, character generator, ROM and RAM, all designed for easy interfacing to the CPU.

part mumbeh	$\begin{gathered} \text { NO. } \\ \text { OFDOTS } \end{gathered}$	outune DIMENSION ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	APPROX. WEIGHT	$\begin{aligned} & \text { DISPLAY } \\ & \text { MODE } \end{aligned}$	вACKLIGHT
TLX-1641-G38	640×400	$256 \times 146 \times 10.5$	4009	B.ST	EL
TLX-1551A-C3M	640×480	$276 \times 182 \times 20.5$	7009	M-ST	CCFL
TLX-1342-63B	640×200	$275 \times 126 \times 14$	4509	B-ST	EL
TLX-711A-E0	240×64	$180 \times 65 \times 12$	150 g	W-ST	EL
TLX - $1013=0$	160×128	$129 \times 104.5 \times 14$	1509	W-ST	EL
TLX-1391-E0	128×128	$84.4 \times 100 \times 14$	105s	W-ST	EL

Toshiba LCDs are ideal for a wide range of lightweight, compact designsfrom laptop computers and word processors, to portable medical and industrial terminals - and built with the quality and reliability Toshiba products are known for world-wide.

To receive more information about Toshiba's ST-LCDs, call 1-800-888-0848, ext. 517 , now. And see how much better your next project will look. Service is our key component.

In Touch with Tomorrow TOSHIBA

CIRCLE NO. 155

15 DAY TURNAROUND ON LASER TOOLED PROTOTYPES

PNT...PROTOTYPES WITH NO TOOLING

- Laser tooling allows you to inexpensively make changes before you tool. You save tooling costs.
- High quality, high volume production facilities. Up to $\$ 1000$ rebate on first production order.
- Special programs: HEATSEAL for harsh environments. Ask about the new "Smart Switch".

CALL FOR YOUR FREE BROCHURE: 1-800-347-4572

5300 Edina Industrial Blvd., Minneapolis, MN 55435 Toll Free: 1-800-347-4572 • Tel: (612) 835-2322 • Fax: (612) 835-4156

CIRCLE NO. 47

C-EPRIVETS

Stimpson C-E ${ }^{\circ}$ Rivets are designed for today's most common light to medium riveting applications. Made from sheet metal, they're available in brass or steel, along with a selection of enamelled colors and plated finishes to suit your design specifications.
Send for our latest rivet brochure which illustrates our full line of $\mathrm{C}-\mathrm{E}^{\circ}$ Rivets and precision-built automatic riveting machines.

(1) Stimpson:
 g00 SYLVAN AVE., BAYPORT, NY 11705-1097

 (516) 472-2000 • FAX (516) 472-2425 • TX-IIT-497-2370
DESIGN IDEAS

HP-15 program needs fewest keystrokes

Jon Vicklund
Ball Aerospace Corp, Boulder, CO

The program in Listing 1 takes advantage of a Hew-lett-Packard RPN calculator's stack operators to calculate the parallel resistance of two resistors using a minimum number of keystrokes.
(EDN BBS DI \#893)
EDN

To Vote For This Design, Circle No. 750

Listing 1-Minimal-keystroke parallel-resistance calculation for HP-15 calculator

R_{1}	$; \mathrm{R}_{1}$ value
$<$ ENTER $>$ <ENTER $>$	$;$ press enter twice
R_{2}	$; \mathrm{R}_{2}$ value
$<$ ENTER $>$	$;$ enter
$\mathrm{R} \downarrow$	$;$ roll down
+	$;$ add
$\mathrm{X} \leftrightarrows \mathrm{Y}$; interchange X, Y
\div	; divide Y by X
\div	; divide Y by X

DISPLAY = REQ

FEEDBACK AND AMPLIFICATION

Errata

The resistor R_{2} in Greg Schafer's June 7, 1990 Design Idea "Cascaded video amps have high gain" should be 9965Ω, not 99.65Ω as written on page 138.
Tarlton Fleming
Maxim Integrated Products
120 San Gabriel Dr
Sunnyvale, CA 94086
(408) 737-7600

New DRIW Emhancemements Solve WMEbvs Intereftre Problems...

The new DR11W-A from VMIC is an enhanced version of our standard DR11W VMEbus interface which has been a standard product for over 5 years.

Our DR11W interface family is the most mature DR11W compatible product line in the VMEbus industry with hundreds of installations throughout the world.This installed base means that VMIC customers are assured a trouble free systems integration effort. This lowers your risk and virtually guarantees a highly reliable and maintenance free operation. This fact alone solves a big problem. Now look at the high performance features of VMIC's new and enhanced DR11W-A that will solve the rest of your problems:
-Two Year Warranty • 24 Hour Customer Service Hotline • 32-Bit Addressing • 32-Bit VMEbus Data Transfers • Watchdog Timers Prevent Transfer Lock- out on VMEbus and Cables • Byte \& Word Swapping • Provides
Data Loopback Tests Through Cable on Single Board • Provides Interface from VMEbus to DEC, Concurrent/Masscomp, Prime, Sun Micro- systems, Alliant, Data General, Harris Night Hawk, IBM PC/AT, Motorola Delta Series, Silicon Graphics, and other VMEbus-based host processors • Provides Interface with High Resolution Graphic Terminals such as Raster Technologies, Megatek, Chromatics and others.

Now Available for Immediate Shipment and Backed by a 100\% Satisfaction Guarantee. Call Our TOLL-FREE Hotline Today!

- Front Panel Fail LED • Supports Off-Line Built-In-Test Plus Single Board Loopback Testing (with Test Cable) • Meets VMEbus Spec. C. 1 - Compatible Address Pipelining - Fully Programmable Operation (Includes Selection of $16 / 32$ Bit Transfer, Burst Mode, etc.) • Fully Programmable Interrupt Levels and Vectors •Software Compatible with VMIC's DR11W and DR11W-485 Boards - Two VMIVME-DR11W-As form VMEbus-to-VMEbus Link • Unix System V. 3 Driver available •CALL NOW TOLL-FREE:

1-800-322-3616

VME MICROSYSTEMS INTERNATONAL CORPORATION
12090 South Memorial Parkway Huntsville, Alabama 35803-3308 (205)880-0444 FAX(205)882-0859

VMIC products are internationally represented by Distributors through out the world. Call or FAX VMIC for complete information.

Design Entry Blank

\$100 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone \qquad
Company
Division (if any)
Street
City _ State

Country
Zip
Design Title \qquad
Home Address \qquad

Abstract

Social Security Number (Must accompany all Design Ideas submitted by US authors) Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program. Signed

Date

ISSUE WINNER

The winning Design Idea for the June 21, 1990, issue is entitled "Resulator has common hot lead," submitted by Leonard Sheiman of Maxim Integrated Products (Palo Alto, CA).

Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional $\$ 100$ and become eligible for the annual $\$ 1500$ Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

EDN's bulletin board is on line

EDN's computer bulletin board system (BBS), (617) $558-4241(2400,8, \mathrm{~N}, 1)$, has a Design Idea Special Interest Group. Where applicable, you'll find computerized material that you can download, such as program listings, circuit diagrams, and pc-board layouts, posted on the bulletin board. We also want to hear from you. Please use our bulletin board to ask questions, make comments, and propose alternative solutions.

To use the BBS, first call up and log onto the system. To get to the Design Idea Special Interest Group, first select "s", the SIGs option. Next select the "s" newSIG option and ask for a list of SIGs by entering a "?". Enter the "/DI_SIG" name. Then select the "r" readbulletin and "s" scan-bulletin options. You should now be able to scan the titles of available Design Ideas (DIs), optionally read an attached explanatory message, and optionally download an attached file. Note that the BBS assigns its own number to each message. You will find our DI number, along with a portion of the DI's headline, when you scan the list of bulletins. You can optionally use our DI number, or any portion of a DI's headline, to search for a particular Idea. To leave the DI editors a message, first get to the /DI_SIG, and then select the " w " write-message option.
Charles H Small and Anne Watson Swager Design Idea Editors

Single op amp also does the job

In the Design Idea "Current sink widens VCO's frequency range," which appeared on pg 174 of the May 24, 1990, issue of EDN, the author uses an external current source to extend the VCO's range. As an extension of his idea, you can exploit the internal MOS, current-source transistor to do the job of his external transistor Q1. In this case, you need only an additional op amp to achieve almost the same linearizing effect.
Dr Rainer Lackmann, Dr Ing
Fraunhofer Institute
Finkenstr $6 l$
Duisburg, West Germany
(02031) 37830

500uA RS485 is here

60x Less Power.

Linear introduces the industry's first CMOS/Schottky low power RS485 transceiverthe LTC485. This rugged new part meets the RS485 interface standard and is pin compatible (DIP and SOIC) with the industry standard 75176 bipolar devicebut the LTC485 consumes 60 times less power. With an innovative new technology that combines CMOS transistors and Schottky diodes, Linear's new LTC485 withstands drive voltages above and below the power supply rails without latch up. Its supply current is 300 microam-

LTC485 differential driver output.

C LECHNOLOGY

peres typical and 500 microamperes maximum. The LTC485 driver output skew is a very low 5 nS . During power up and power down, the outputs remain glitch free. The LTC485 is available in 8 lead DIP and SOIC packages. Commercial, industrial and military temperature grades are available. Pricing in 100-up quantity in plastic DIP is $\$ 1.35$ and samples are available now. For a free sample and a datasheet contact: Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035.
Or call 800-637-5545.

INTERNATIONALLY APPROVED CIRCUIT BREAKERS

When you're designing your product for global markets, take steps to protect it right. Choose Airpax. We build in the quality, performance and reliability you demand as well as the required international certification that will assist you in marketing your product anywhere in the world. From initial design through final shipment we can help you every step of the way.

$$
\begin{aligned}
& \text { Step-by-step help } \\
& \text { on three continents. }
\end{aligned}
$$

Engineers at our design/manufacturing centers in Belgium, Japan and the U.S. will assist in your design requirements by recommending the correct magnetic circuit breaker. When you're ready to manufacture,
we're strategically located to provide on-time/just-in-time delivery anywhere.
50 milliamps to 100 Amps , 1 to 6 poles and more.

Consider your choices: SNAPAK ${ }^{\circledR}$ in rocker, toggle, paddle, baton, push-pull or push-to-reset styles; IEL, DIN rail mount in single or multi-handle;

Wherever You Design Your Product, Were With You Every Step Of The Way.

UL, VDE, CSA, TUV and SEV approvals.

For any international marketer, it can be a maze of acronyms out there. Not for Airpax, because ours is the broadest line of magnetic circuit breakers fully accepted for international applications in marine, instrumentation, medical systems, appliances, power supplies, information processing systems, industrial controls, HVAC equipment and other devices that demand reliable circuit protection.

Quad Track-And-Hold IC

- Includes on-chip hold capacitors
- Acquisition time is $7 \mu \mathrm{sec}$

The SMP-04 monolithic, quad track-and-hold (T/H) amplifier features on-chip hold capacitors. Each of the four T/H circuits has its own input, output, and TTL-compatible control line. The device features 12 -bit linearity, a typical acquisition time of $7 \mu \mathrm{sec}$, and a droop rate of 1 $\mathrm{mV} / \mathrm{sec}$. Buffered outputs can drive capacitive loads of more than 500 pF . The SMP-04 can operate from a single supply of 5 to 15 V or from dual ± 3 to $\pm 7 \mathrm{~V}$ supplies. Package options include 16 -pin plastic DIPs, SO packages, and ceramic DIPs. Industrial version, $\$ 3.90$; MIL-STD883 version, $\$ 15.95$ (100).

Precision Monolithics Inc, Box 58020, Santa Clara, CA 95052. Phone (408) 727-9222. FAX (408) 727-1550.

Circle No. 351

4-Channel Sampling ADC

- Simultaneously samples all channels
- Provides 34-मsec conversion

The AD7874, which simplifies the design of multichannel systems and minimizes channel-to-channel errors, contains four (matched) track-and-hold amplifiers, a multiplexer, a clock, a 3 V reference, and a 12 -bit ADC. To preserve phase relationships, the device simultaneously captures four signals, converting all four within $34 \mu \mathrm{sec}$. At the AD7874's throughput of 29 k samples/sec, the converter has a S / N ratio of $71 \mathrm{~dB} \min$ and an aperture-
delay deviation of 40 nsec max. Maximum spurious noise, intermodulation distortion, and total harmonic distortion are each -80 dB. Other specifications include ± 1 LSB maximum differential nonlinearity, ± 5 LSBs full-scale and bipolar zero error, and $80-\mathrm{dB}$ channel isolation. The AD7874 is available in three temperature/performance grades. Package options include 28pin DIPs and SOICs. From $\$ 28$ (100).

Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (508) 937-1428.

Circle No. 352

20-Bit Audio ADC

- Dynamic range is 108 dB
- Nonlinearity is ± 0.2 LSB

Using an oversampling, noise-shaping architecture, the ADC-20048 digitizes signals from dc to 20 kHz . The noise-shaping circuitry ensures smooth code transitions throughout the entire input-signal range, resulting in a typical differential nonlinearity of only ± 0.2 LSB. The 20 bit converter samples analog signals at a $128 \times$ oversampling rate and uses digital filtering to eliminate the need for sample/hold amplifiers and antialiasing filters. Output data rates of 44.1 kHz or 48 kHz , and input ranges of $\pm 3 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ are pin-selectable. The ADC20048 includes the AFE-20048 front end and the D20C10 decimator filter. The critical analog circuitry is assembled on a double-sided pc board inside the $2 \times 3 \times 0.4-\mathrm{in}$. encapsulated front-end module. The decimator filter is a custom CMOS chip packaged in a 48 -pin DIP. Complete ADC-20048, $\$ 199$ (100). Delivery, four to six weeks ARO.
UltraAnalog Inc, 47747 Warm Springs Blvd, Fremont, CA 94539. Phone (415) 657-2227. FAX (415) 657-4225.

Circle No. 353

Dual Comparator

- Useful as an ATE pin receiver
- Propagation delay is 5 nsec max The CMP100 dual comparator combines high speed with a $\pm 12 \mathrm{~V}$ com-mon-mode input range. Useful as a pin receiver in automatic test equipment (ATE) applications, the device features typical and maximum propagation delays of 3.6 and 5.0 nsec, respectively. Dual outputs, which are latchable and 10 K ECL compatible, let you use the device as a sampling comparator. You can obtain a single-output window function by combining both outputs with an ECL NOR gate. The comparator can drive a 50Ω load connected to the -2 V ECL reference level. The CMP100 is specified for the industrial temperature range and operates from $\pm 5 \mathrm{~V}$ supplies. Package options include 16-pin DIPs and 16lead plastic SOICs. $\$ 23.20$ (100).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 7461111. FAX (602) 889-1510. TWX 910-952-1111.

Circle No. 354

Front-End Processor

- Includes transmit/receive functions
- Has 300- to 9600-baud capability When combined with a generalpurpose DSP, the MSM6994 FEP (front-end processor) provides 300to 9600 -baud modem capabilities. The FEP supports eight standards, including V.32. Included on chip are A / D and D / A converters and a digi-

tal filter. A guard-tone generator eliminates the glue logic normally needed to switch between different standards. Also included is a programmable attenuator and a core DSP, which provides band-limiting filtering, carrier detection, and automatic gain control with callprogress tone detection. The A/D and D/A converters use a $2.592-\mathrm{MHz}$ oversampling deltasigma technique, which provides 80 dB of dynamic range and 13 -bit accuracy. The FEP contains interfaces for both DSP and analog
transmit/receive data, and for line network control. The MSM6994, which operates from a 5 V supply, is available in 64 -pin miniature DIPs, 64 -pin flatpacks, and 68 -pin plastic leaded chip carriers. $\$ 23.50$ $(10,000)$. Delivery, six to eight weeks ARO.

Oki Semiconductor, 785 N Mary Ave, Sunnyvale, CA 94086. Phone (408) 720-1900. FAX (408) 720-1918.

Circle No. 355

Smart-Access Controller

- Combines an 8-bit μP with serial controller
- Includes two 8-bit parallel ports
Called the Smart Access Controller (SAC), the Z80181 combines one channel of the Z8530 serial communications controller (SCC) with the Z180 8-bit μ P. The SAC also contains two 8-bit parallel ports for I/O
intensive applications and a Z84C30 4×8-bit counter/timer. The singlechannel SCC supports all common asynchronous and synchronous protocols including Monosync, Bisync, synchronous-data link control, and high-level-data link control. The Z80181 contains all functions of the Z180 including an advanced Z80-code-compatible CPU with extra instructions, two 16 -bit timers, and two UARTs with baud-rate generators. An on-chip memory-management unit expands the address space to 1 M byte. Two DMA controllers provide high-speed data transfers between memory and I/O. The SAC operates at 10 MHz and has a data-transfer rate of 2.5 M bps. The Z80181 comes in a 100 -pin quad flatpack. $\$ 22$ (1000).

Zilog, 210 Hacienda Ave, Campbell, CA 95008. Phone (408) $370-8000$. FAX (408) 370-8056.

Circle No. 356

Never Worry About Input Voltage Again
The SRW-65 Series from Integrated Power Designs delivers 65 W in a $6^{\prime \prime} \times 4 " \times 1.125^{\prime \prime}$ package. The power supply accepts any input voltage within the range of 85 to 264 V AC without any modifications.

The New SRW Series Features

- Less than 1\% P-P Ripple \& Noise on All Outputs
- 0° to 50° Convection Cooled Operating Temp.

100\% Burn-In with Power Cycling

- Snap-Lock or Screw-Down I/O Connectors
- Submitted for Testing to UL1950, CSA 22.2 No. 234-M, and EN 60950 (TUV)
- Level "B" Input Filter Over-Voltage Protection
- One-Year Warranty $75-80 \%$ Efficiency
$\square 21$ Standard Models 20 mS Hold-Up Time
Reserve Your Evaluation Unit or get additional information on our many standard, ready-toship AC-DC and open frame DC-DC power supplies. For standard, modified, and custom capabilities, call (609) 896-2122.

QUADS:	Output 1	Output 2	Output 3	Output 4
SRW-65-4001	+5V@5.0A	-5V@3.0A	+12V@2.0A	-12V@2.0A
SRW-65-4002	+5V@5.0A	+12V@1.0A	+12V@2.0A	-12V@2.0A
SRW-65-4003	+5V@5.0A	+24V@1.0A	+12V@2.0A	-12V@2.0A
SRW-65-4004	+5V@5.0A	-5V@3.0A	+15V@2.0A	-15V@2.0A
SRW-65-4005	+5V@5.0A	+24V@1.0A	+12V@2.0A	-5V@2.0A
SRW-65-4006	+5V@5.0A	+24V@1.0A	+15V@2.0A	-15V@2.0A
TRIPLES:				
SRW-65-3001	+5V@5.0A		+12V@3.0A	-12V@1.0A
SRW-65-3002	+5V@7.0A		+12V@2.0A	-12V@2.0A
SRW-65-3003	+5V@7.0A		+15V@2.0A	-15V@2.0A
SRW-65-3004	+5V@5.0A	-5V@4.0A	+12V@2.0A	
SRW-65-3005	+5V@5.0A	-5V@4.0A	+24V@1.0A	
DUALS:				
SRW-65-2001	+5V@7.0A			-5V@5.0A
SRW-65-2002	+5V@7.0A		+12V@3.0A	
SRW-65-2003	+12V@3.0A			-12V@2.5A
SRW-65-2004	+15V@2.5A			-15V@2.0A
SRW-65-2005	+5V@7.0A		+24V@1.5A	
SINGLES:				
SRW-65-1001 +5V@10.0A				
SRW-65-1002	+12V@5.4A	Other output combinations available, please consult factory.		
SRW-65-1003	+15V@4.3A			
SRW-65-1004	+24V@2.7A			

We're here to help you meet your power challenges.

9C Princess Road Lawrenceville, NJ 08648 Tel: (609) 896-2122 Fax: (609) 895-1738

Programmable FIR Filter

- Contains 1616×12-bit MACs
- Provides 16 to 128 stages of filtering
The PDSP16256 is a programmable, FIR filter. Targeted for use in highperformance digital receivers, the device contains 1616×12-bit multi-plier-accumulators that can be cy-
cled to provide 16 to 128 stages of digital filtering at sample rates from 2.5 to 20 MHz . You can configure the IC either as one long filter or as two half-filters. The cascadable device permits filters of any length, limited only by accumulator overflow. A decimate-by-two option doubles the number of taps avail-

OTTO Precision Switches

Producing complete or special switch packages is our specialty. When you select OTTO as your switch supplier, you not only get quality design and manufacturing, you also get our full service value added capability. We are able to take your requirements from concept, through prototyping, field testing, and on to final
complete product assembly. Most required operations such as plastics molding, stamping and assembly are on campus right here, under our constant control. We consistently demonstrate considerable overall program savings. You will find your project will proceed faster when you place all the responsibility with us.

See Us At Wescon Booth 2366

Call or Fax for our new 44 page Catalog today.

2 E. Main St. • Carpentersville, IL 60110 • Tel: 708/428-7171 • Fax: 708/428-1956
able and halves the output data rate for a given sample rate. Downloaded from a host CPU or a bytewide EPROM, the PDSP16256 can store as many as 128 coefficients internally. A single EPROM can provide coefficients for a cascade of 16 devices, without additional support. The device is available in a 144-pin pin-grid array or a 172 -pin quad flatpack. \$395 (1000).

Plessey Semiconductor Corp, 1500 Green Hills Rd, Scotts Valley, CA 95066. Phone (408) 438-2900. FAX (408) 438-7023. TLX 4940840.

Circle No. 357

Video Amplifier

- Has a -3-dB bandwidth of 200 MHz
- Output drive capability is 70 mA Designed for video distribution and line-driving applications, the EL2070 amplifier is an improved replacement for the CLC410 from Comlinear Corp. The amplifier features a $-3-\mathrm{dB}$ bandwidth of 200 MHz and a flat $0.1-\mathrm{dB}$ bandwidth of more than 30 MHz . The device, which operates from $\pm 5 \mathrm{~V}$ supplies, has an output drive capability of 70 mA . Other specifications include differential gain linearity of 0.02%, differential phase linearity of 0.01°, and a settling time of 12 nsec to 0.05%. A disable pin allows multiplexing between multiple EL2070s to form selectable gain stages, selectable filters, or a routing switch. In an 8-pin DIP, $\$ 7.70$ (100).

Elantec Inc, 1996 Tarob Ct, Milpitas, CA 95035. Phone (408) 9451323. Circle No. 358

Zilog's integrated universal serial communication controller (Z16C31") combines two 32-bit full duplex DMA channels with a powerful single-channel USC cell. And that means efficient bus access, sophisticated buffer management, higher throughput, a greatly reduced CPU workload, and considerably lower cost for complex data communications applications.

Fast, multi-protocol operation.
Zilog's USC cell gives you $10 \mathrm{Mbits} /$ sec speed for multi-protocol operation. It also gives you 32-byte RX and TX FIFOs for improved latency and up to 32 -byte block moves. There's a Time Slot Assigner for multiplexing in ISDN/TI applications, a flexible 16-bit bus interface - multiplexed or non-multiplexed - for easy CPU interconnect, and a daisy-chain interrupt structure for simpler interrupt handling. And, best of all, the USC can reduce the CPU workload as much as 60%.
Integrated buffer management.
The IUSC's two 32-bit DMA channels provide for 32-bit addresses and 16 -bit data word transfers . . . and they allow full duplex operation at $10 \mathrm{Mbits} / \mathrm{sec}$. The two simple DMA modes, normal and buffered, mean your design can be tailored to common buffer management schemes. The two chained DMA modes, array chained and link array chained, reduce CPU overhead in advanced buffer management schemes. The daisy-chain DMA priority structure makes it easy to design multiple IUSC systems.
Versatility and reliability.
The IUSC's flexible, multi-protocol design lets you adapt your system to a variety of networks as interconnect standards evolve. The IUSC supports ten protocols and eight data encoding formats, including asynchronous, bit and byte synchronous, HDLC, isochronous, Ethernet and MIL-STD 1553B. And it all comes to you off the shelf, backed by Zilog's proven quality and reliability. To find out more about the IUSC or any of Zilog's growing family of Superintegration" ${ }^{\text {nu }}$ products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

You can do business in Japan without shelling out a fortune.

For many companies, the biggest barrier to new markets has been the cost of business trips. Restaurants can be expensive, and even the smallest accommodations may carry oversized bills. Yet those willing to be a little adventurous will find that traveling comfortably in Japan doesn't require packing a suitcase full of yen.

Hop on the bus.

A $\$ 20$ bus ride from Narita Airport may not strike you as a bargain, but compared to a $\$ 150$ taxi, it is. The buses marked "Airport Limousine" stop at all the major hotels in Tokyo.

Sleep cheap.

Business hotels are a fairly new phenomenon. Catering primarily to

Japanese businessmen, they're clean, functional, and conveniently located. Although vending machines replace amenities like room service, at $\$ 40$ to $\$ 50 \mathrm{a}$ night these hotels are a sound investment. Two major chains are the Tokyu Inn (tel. 03/406-0109) and the Washington (tel. 03/434-5211).

Food for naught.

It should come as no surprise that you'll save money eating where the locals eat. Good and reasonably priced restaurants can be found in department stores and the basements of office buildings. At lunch, ask for teishoku. It means special of the day, and includes rice, miso soup, salad, meat or fish, and dessert-all for around five dollars. Ramenya and
sobaya (noodle shops) are perfect places for a quick and tasty meal.

Northwest notes.

Since your time is money too, we make it as quick and easy as possible for you to get to Japan, by offering daily nonstops from the most U.S. cities. So you can count on arriving when you want, rested and ready to do business. And we give you something else no other U.S. airline can: the knowledge, understanding and insight that comes from over 40 years of helping people do business in Asia. For international reservations, call your travel agent or Northwest at 1-800-447-4747. To find out more about doing business in Asia, call 1-800-553-2215, ext. 183.

[^16]Tough enough to meet full MIL-specs, capable of operating over a wide -55° to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplifier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in .) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 1000 MHz , NF as low as 2.8 dB , and power output as high as +15 dBm . Prices start at only $\$ 13.95$, inc/uding screening, thermal shock $-55^{\circ} \mathrm{C}$ to +100 C , fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.
Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc
supply voltage and you are ready to go.

	RANGE (MHz)	$\underset{d B}{\text { GAIN }}$		max OUT/PWR \dagger	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	DC PWR 12 V .	$\begin{aligned} & \text { PRICE } \\ & \$ \text { ea. } \end{aligned}$
MODEL	t_{L} to f_{u}	min	flatnesst†	dBm	(typ)	mA	(10-24)
MAN-1	$0.5-500$	28 19	$\begin{aligned} & 1.0 \\ & 15 \end{aligned}$	8	$\begin{aligned} & 4.5 \\ & 6 \end{aligned}$	$\begin{aligned} & 60 \\ & { }_{85} \end{aligned}$	13.95 1595 15
MAN-1LN	0.5-500	28	1.0	8	2.8	60	15.95
MAN-1HLN	10-500	10	0.8	15	3.7	70	15.95
*MAN-1AD	5.500	16	0.5	6	7.2	85	24.95
t+Midband $10 \mathrm{f}_{\mathrm{L}}$ to $\mathrm{f}_{\mathrm{U} / 2}, \pm 0.5 \mathrm{~dB} \quad \mathrm{ldB}$ Gain Compression Max input power (no damage) +15 dBm ; VSWR in/out 1.8:1 max.							

breakthrough.
finding new ways ...
setting higher standards

Tough, rugged boards that handle shock, vibration, heat, cold and the budget squeeze

MATRIX VMEbus Rugged Series loves harsh environments. Designed to operate from -40° to $+85^{\circ} \mathrm{C}$, the Rugged Series surpassed these temperature specs and sustained continuous operation during a series of severe environmental tests.* At off-the-shelf prices, these boards are tough to beat.

Rugged 32-bit processors, memory boards, and a variety of specialty I/O boards make harsh environments manageable. Available in extended

[^17]
temperature and/or rugged versions, these products provide all the power and flexibility VMEbus can offer. And at a fraction of the cost of full Mil-spec products.

Call today for more information about our Rugged products. For less extreme applications, ask about our full line of VMEbus Industrial Quality systems, boards and enclosures. Telephone: 1-919-231-8000. FAX: 1-919-231-8001.

MATRIX CORPORATION

COMPUTERS \& PERIPHERALS

Single-Board Computers

- Use either an 80386 or $80486 \mu P$
- Fit in one VMEbus slot

The 386 SBC and the 486 SBC selfcontained single-board computers employ an 80386 and an $80486 \mu \mathrm{P}$, respectively. The 9 U -size boards fit into a single VMEbus backplane slot. The boards are compatible with an IBM PC/AT computer running MS-DOS. They also run AT\&T's Unix System V. 4 operating system. By using one of the boards as a coprocessor, the card can run MS-DOS applications while the mother board runs Unix applications. The computers are available with $4 \mathrm{M}, 8 \mathrm{M}$, or 16 M bytes of RAM and 32 k bytes of cache memory with zero-wait-state operation at both 25 MHz and 33 MHz . Both come with two RS-232C ports (COM 1 and COM 2), six RS-422 ports, one parallel printer port (LPT1), an Intel 82077 floppy-disk interface, a keyboard interface, and a time-of-day clock with battery. The boards also have an enhanced BIOS, which supports an onboard SEEQ 8005 Ethernet LAN controller, an onboard VGA graphics controller with 1024×768 pixels, and an onboard NCR 53C700 SCSI hard-disk interface with high-speed bus transfers. From $\$ 7500$. Delivery, 60 days ARO.

Dynatech Computer Systems, Box 7400, Mountain View, CA 94039. Phone (415) 964-7400. FAX (415) 969-3359. Circle No. 359

Bar-Code Scanner

- Provides keyboard emulation for IBM PS/2, PC/XT, and PC/ATs
- Self-contained device doesn't require external decoder box
The Keywand bar-code scanner emulates the keyboard for IBM's PS/2, PC/XT, and PC/AT computers. The scanner combines a $\mu \mathrm{P}$, bar-code decoding software, an optical program, a nonvolatile mem-

ory, a contact scanner, and a keyboard interface in a standard-size industrial handheld wand. Because all of its electronics are encased in a compact polycarbonate wand, the scanner doesn't require an external decoder box. The scanner has a sapphire tip that resists wear and is capable of reading through plastic laminates. You can program the scanner to read from a series of menu labels, which permit various decoding options and interface protocols. Once the scanner is programmed, the configuration is secure in its nonvolatile memory. The scanner recognizes all of the popular bar-code symbologies. $\$ 370$.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 360

PS/2 Coprocessor Board

- Delivers 5 VAX MIPS and 3.1M flops
- An MC68020 μ P brings its features to the PS/2 computer
The micro785+ is a coprocessor board for IBM's PS/ 2 computer. It uses a Motorola MC68020 $\mu \mathrm{P}$, which brings floating-point performance and a linear address space to the PS/2. PC-DOS performs all file operations. In addition, the board features 5 VAX MIPS (based on Dhrystones) and 3.1M flops (Whetstones/sec); a memory bank, which uses multibank and interleave technology; $1 \mathrm{M}, 2 \mathrm{M}$, or 4 M
bytes of RAM; Silicon Valley Software compilers for C and Fortran languages; and a dual-ported 16kbyte memory architecture that gives programs running on the $\mathrm{PS} / 2$ direct access to the MC68020's memory space. As many as four boards can operate simultaneously in a single PS/2 computer. $\$ 2795$.

Yarc Systems Corp, 27489 W Agoura Rd, Agoura Hills, CA 91301. Phone (818) 889-4388.

Circle No. 361

VMEbus Accelerator Board

- Uses four FC-110 digital fuzzy processors
- Fuzzy decision making can run in parallel on any μP
The Fuzzy VME Accelerator Board can interpret vague and imprecise information and determine a solution to a problem with incomplete data. The card permits fuzzy decision making on VMEbus systems. The board can be configured with one to four of the company's FC-110 digital fuzzy processors. The processor has a reduced-instruction-set computer architecture that can deliver 10 MIPS. The board comes with the company's CASE tool kit: TILShell for knowledge-base development, a compiler that converts the graphical languages to machine code, and an FC-110 assembler and linker. Board with four FC-110 processors, $\$ 4500$.

Togai InfraLogic Inc, 30 Corporate Park, Suite 107, Irvine, CA 92714. Phone (714) 975-8522. FAX (714) 975-8524. Circle No. 362

Single-Board Computers

- Contain either dynamic RAM or static RAM as main memory
- Space is reserved for modules that turn boards into I/O servers The CVME960 and CVME961 are single-board computers for the

VMEbus. Both 6U boards use an 80960 CA reduced-instruction-set computer $\mu \mathrm{P}$, which features a 1 k byte on-chip instruction cache, a 1 k byte on-chip data RAM, and four 59M-byte/sec DMA channels. The CVME960 couples a $25-\mathrm{MHz} \mu \mathrm{P}$ to a memory system with $35-\mathrm{nsec}$ static RAM (SRAM). The SRAM is dual-ported to the $\mu \mathrm{P}$ and the VMEbus. The CVME961 contains either $1 \mathrm{M}, 2 \mathrm{M}, 4 \mathrm{M}$, or 8 M bytes of dynamic RAM (DRAM), which is also dual ported to the host bus. Both boards use VTC's Vic068 VMEbus interface controller, which provides a complete master or slave interface on the bus. The boards also feature two asynchronous serial ports, a real-time clock with battery back-up, and 1 M byte of EPROM. In addition, both boards reserve a $12.7-\mathrm{in} .{ }^{2}$ area for a Squall module. This I/O module plugs directly into the board. CVME960
with $25-\mathrm{MHz} \mu \mathrm{P}$ and 1 M byte of static RAM, $\$ 3995$. CVME 961 with $16-\mathrm{MHz} \mu \mathrm{P}$ and 1 M bytes of dynamic RAM, \$1995 (100).

Cyclone Microsystems, 25 Science Park, New Haven, CT 06511. Phone (203) 786-5536.

Circle No. 363

Color Workstation

- Delivers 15.8 MIPS and includes a 107M-byte disk drive
- Has a 16-in. monitor and two Sbus expansion slots
The SPARCstation IPC is a color desktop workstation. The reduced-instruction-set computer-based workstation delivers 15.8 MIPS and 1.7 M flops. The station comes with a 207 M -byte hard-disk drive as well as a $3^{1 / 2}$-in. floppy-disk drive. It also comes with a $16-\mathrm{in}$. color monitor and two Sbus expansion slots. The station has 8 M to 24 M bytes of
memory that's expandable in 1 M or 4 M single in-line memory modules (SIMMs). The unit has audio inputs and outputs similar to other SPARCstations, and it has an Ethernet port as well as two serial ports. It is the first unit to conform to the SPARC Compliance Definition 1.0, which assures end users of compatibility among SPARC chips and systems. $\$ 9995$ with the 207M-byte hard-disk drive; diskless version, $\$ 8995$.
Sun Microsystems Inc, 2550 Garcia Ave, Mountain View, CA 94043. Phone (415) 960-1300. FAX (415) 969-9131. Circle No. 364

Microcontroller Module

- Uses an $8031 \mu \mathrm{C}$ and provides space for $8 k$ bytes of RAM
- User has access to address, data, and control bus of the 8031
The Control R II is a stand-alone

Block Diagram Editor windows showing hierarchy of V.32bis modem

NOW SAVE HUNDREDS OF HOURS IN DSPAND COMMUNICATIONS DESIGNTIME.

microcontroller module that employs an 8 -bit $8031 \mu \mathrm{C}$. In addition to the μ C's 128 bytes of internal RAM, the board has sockets for 8 k bytes of static RAM. The user has access to the address, data, and control bus of the 8031 via expansion headers. Onboard jumpers allow the use of processors with ROMed languages such as 8052 -Basic. Other features include 8 k or 16 k bytes of EPROM; an $11.0592-\mathrm{MHz}$ crystal
for generating baud rates; 14- or 16bit parallel input and output; and a socket and capacitors for an optional Max 232 serial I/O connection. The board measures $3^{1 / 2} \times 4^{1 / 2}$ in. and operates from $5 \mathrm{~V} . \$ 64.95$ without static RAM.

Sintec Co, Box 410, Frenchtown, NJ 08825. Phone (800) 526-5960; in NJ, (908) 996-3891.

Circle No. 365

Serial Communications Controller

- Uses an MC68302 controller on 3U Eurocard
- Contains $512 k$-byte data buffer and $2 M$ bits of EPROM
The GESICC-3 is a serial communications controller board for the G-64/G-96 bus. It uses a Motorola MC68302 serial communications controller (SCC) chip, 512 k bytes of data-buffer memory, and 2 M bits of

EPROM for program storage. You can use the 3 U Eurocard with any 80286-based system running MSDOS or any 68000-, 68010-, or 68030-based system that runs the OS-9 real-time operating system. Six of the DMA channels on the SCC are dedicated to three communications controllers, which enable synchronous or asynchronous HDLC (high-level-data link control) or SDLC (synchronous-data link control) on each port. A seventh DMA channel provides data transfers to and from the host. The board also has a serial TTL output that you can convert to RS-232C, RS422 , or RS-485 outputs using the company's GESINT-X converters. The board comes with firmware that supports asynchronous data transfers. $\$ 995$.
Gespac Inc, 50 W Hoover Ave, Mesa, AZ 85210. Phone (602) 9625559.

Circle No. 366

NOT TO MENTION YOUR SANITY.

Because the Signal ProcessingWorkSystem" automatically converts designs into error-free simulation code, you spend your time designing systems, not debugging programs.

For example, working with SPW ${ }^{\text {m }}$ the design, simulation and analysis of the V.32bis modem shown here took one-fifth the time of conventional development techniques with hand coding. Plus SPW's full documentation allows quick and easy design enhancement.

SPW is the only complete, graphical software for all phases of DSP and communications product design, simulation and implementation. And now with its expanded Communications Library of more than 200 function blocks, SPW's range of design capabilities is broader than ever.

Arrange for a video demonstration of SPW by calling 415-574-5800.
See how much it can do for your designs. And your sanity.

AT\&T's new 41 Series of differential quad line drivers/receivers and dual transceivers reach $400 \mathrm{Mb} / \mathrm{s}$ with substantially reduced EMI.
Our new datacom ICs do more than offer one of the industry's highest data rates and shortest propagation delays.

Their unique design can take you to $400 \mathrm{Mb} / \mathrm{s}$ on common twisted pair-at low EMI levels. This makes them an affordable alternative to fiber, when fiber's other benefits aren't needed.

In system use, they decrease EMI levels up to 30 db compared with standard 26 LS TTL ICs. This sharply reduces cabinet design costs. And they meet ESDI standards, making them ideal for disk drive applications.

41 Series devices are pin-for-pin compatible with 26LS ICs-so they're easy to use. They help reduce board complexity and cost via on-chip termination and line-impedance-matching resistors. And they come in space-efficient, surface-mount SOJ and SOIC packages as well as

The standard DIPs.

Not exactly what you need? Create
your own custom version quickly and easily by using our standard cell library.

Call 1800 372-2447 for our databook on 41 Series components, in stock today at Hamilton/Avnet and Schweber.

ATBT The right choice.
(1990 AT8T
O The Wall Disney Company

Designed to take on THE WORLD'S TOUGHEST ASSIGNMENTS.

Mallory designs and manufactures a broad line

WET SLUG TANTALUMS

Style	Mil Spec (or description)	Mallory Type
CLR-79	M39006/22	TLT
CLR-81	M39006/25	TXT
CLR-65	M39006/09	TLX
CLR-69	M39006/21	TXX
CLR-10/14/17	Mil-C-39006/18/19/20	XT
CRL-01/02	Mil-C-83500/01	W13
Module	Mil-C-83500	W14
		(Mil Drwg. 89022)
	Silver Tubular	MTPH
	All Tantalum Module	TMX

of high-reliability, wet tantalum capacitors to meet your specific design needs.

The CLR-79 and CLR-81 hermetically sealed, all tantalum wet slug capacitors meet MIL-39006 requirements with low DC leakage, low ESR, high ripple current ratings and 3 volts reverse voltage capability. These high and extended range capacitors maintain quality approval up to failure levels R (CLR79) and P (CLR-81). For your next assignment, go with the leader. Contact your local authorized Mallory distributor or Mallory today. Mallory Capacitor.
Stronger Than Ever.

Mallory Capacitor Company 4760 Kentucky Avenue
P 0 Box 1284
Indianapolis Indiana 46206
Telephone 3178563731

MALIORY

A 68040 for data, a 68020 for I/O... for real real-time performance on a single VME board.

Radstone's 68-41 Freeflow+ multiple microprocessor board with truly independent microprocessors for data and I/O gives you next generation VME performance...Now!

- 68040 with 16 Mbytes of dual-ported memory for maximum data throughput via concurrent, uninterrupted microprocessor operation up to 40 MHz
- 68020 with 4 Mbytes of dual-ported memory controlling extensive high performance on-board I/O facilities-all operating independently
- Multiple independent external buses-VME, VSB \& APEX
- Multiple independent local buses-processor and I/O
- High performance DMAs
- Intelligent, high performance Ethernet and SCSI/SCSI-2
- ...and much, much more.

Radstone's Freeflow+ architecture takes VME to new performance levels. And now it's available with 040 processing punch. It's the very latest in Radstone's long line of leading edge commercial real-time VME board level products.

TEST \& MEASUREMENT INSTRUMENTS

$\mu \mathrm{V}$ Eraser For EPROMs Mounted On Circuit Boards

- Accommodates boards to $12 \times 16 \mathrm{in}$.
- Erases EPROMs in $5^{1 / 2}$ minutes The Model PC-2200A Spectroline $\mu \mathrm{V}$ erasing cabinet works with pc boards as large as $12 \times 16 \mathrm{in}$. Used in combination with an in-circuit programmer, the device allows you to solder $\mu \mathrm{V}$-erasable, programmable devices into your board and reprogram them without removing them from the board. The unit maintains an irradiance of 18,500 $\mu \mathrm{W} / \mathrm{cm}^{2}$ at a wavelength of 254 nm over a $16 \times 9^{1 / 4}-\mathrm{in}$. area. This intensity is adequate to erase EPROMs in $5^{1 / 2}$ minutes, though the unit permits you to set erasure times as long as 1 hour. An indicator shows you when the internal grid lamps are on. An interlock keeps the unit from operating when you open the drawer that accommodates the pc board whose devices you wish to erase. Internal fans maintain a constant temperature in the drawer. A bell signals the end of an erasure operation. \$2645.

Spectronics Corp, 956 Brush Hollow Rd, Westbury, NY 11590. Phone (516) 333-4840. FAX (516) 333-4859.

Circle No. 378

IEEE-488 Interface Kit For Sun-3

- Lets you SCSI port to control 14 instruments
- Includes $64 k$-byte buffer

The GPIB-Sun3-S kit provides the hardware and software you need to control as many as 14 IEEE-488 in-
struments from a Sun-3 workstation's SCSI port. This arrangement allows low-end workstations that can't accommodate plug-in cards to act as instrument controllers. The bus-controller unit, which has its own 8 -bit microcontroller, contains a 64 k -byte RAM buffer and mounts outside the workstation. The soft-

ware consists of a set of high- and low-level functions that you install in the operating system as a Unix driver. The driver has true multitasking capabilities that permit multiple IEEE-488 programs, all using the same bus controller, to run concurrently. $\$ 1420$.
National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone (800) 433-3488; (512) 794-0100. FAX (512) 794-8411.

Circle No. 379

$440-\mathrm{MHz}$ Wattmeter And Antenna Tuner

- Wattmeter has 30 and 300 W ranges
- Measures $8 \times 2.5 \times 3 \mathrm{in}$.

The MFJ-924 $440-\mathrm{MHz}$ antenna tuner with built-in standing-wave ratio meter/wattmeter measures $8 \times 2.5 \times 3 \mathrm{in}$. and handles 200 W . The wattmeter has 30 and 300 W ranges. The unit has SO-239 input and output connectors as well as a wing-nut post for ground. $\$ 69.95$.

MFJ Enterprises Inc, Box 494, Mississippi State, MS 39762. Phone (800) 647-1800; in MS, (601) 3235869. FAX (601) 323-6551.

Circle No. 380

IEEE-488 Interfaces For ISA And MCA Buses

- Each controls 14 devices
- Transfer data at 300 k bytes/sec The PCI-803W and PCI-804W are IEEE-488 interfaces for the ISA and Micro Channel Architecture (MCA) buses. Both units can control 14 devices, support DMA, and transfer data at 300 k bytes $/ \mathrm{sec}$. The interfaces operate as talkers or listeners, perform parallel or serial polling, and support service requests from devices on the bus. When you order the units as part of interface kits, the vendor includes driver software. The software supports popular languages and is compatible with application programs such as Labtech Notebook, Asyst, and DADisp. Kit for ISA bus, $\$ 395$; for MCA bus, $\$ 495$.

Burr-Brown/Intelligent Instrumentation, 1141 W Grant Rd, MS 131, Tucson, AZ 85705. Phone (602) 623-9801. FAX (602) 623-8965.

Circle No. 381

Isolated Analog Input Card For IBM PC Bus

- Isolation is 1500 V between inputs and from inputs to bus
- Accepts four $10-\mathrm{kHz}$ signals

The MSI-4000 isolated analog- input card plugs into the IBM PC bus. It has four signal inputs; each is protected by a surge suppressor and can withstand 1500 V to any of the other inputs or to ground. The board's A/D converter resolves 12 bits and handles signals with a 10 -
kHz bandwidth. Jumpers select input ranges of 0 to $0.1 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-5$ to $5 \mathrm{~V},-10$ to $10 \mathrm{~V}, 0$ to 20 mA , and 4 to 20 mA . Each channel also has an isolated $20-\mathrm{mA}$ supply for exciting 2 -wire transducers such as resistance-temperature detectors. Switches set the board's bus addresses and interrupt requests. $\$ 380$ (100).
Microcomputer Systems Inc, 1814 Ryder Dr, Baton Rouge, LA 70808. Phone (504) 769-2154.

Circle No. 382

VXIbus Prototyping Tool

- Includes C-size prototyping board
- Features $1 / 3$-length card with interface circuits
The VXI-5500 is a C-size prototyping card for the VXIbus. The interface occupies about one-third of the board area; the remainder of the

board accommodates circuits of your own design. The VXI-5523 contains the same bus interface but is one-third the length of a standard C-size VXIbus card. A board of your own design can plug onto the end of the VXI-5523. The vendor also supplies a hardware kit that includes a metal enclosure that you can place around any C-size board for shielding and emission control. The enclosure also contains slots for cooling. The kit includes conductive gaskets, bushings, and connector
skirts. The vendor offers assistance in layout of VXI boards to facilitate a rapid transition from prototype to volume production. VXI-5500, $\$ 975$; VXI-5523, $\$ 700$; hardware kit, $\$ 200$.

ICS Electronics Corp, 2185 Old Oakland Rd, San Jose, CA 95131. Phone (408) 432-9009. FAX (408) 943-1745.

Circle No. 383

Programmers For PLDs, $\mu \mathrm{Cs}$, EPROMs, EEPROMs

- One programmer supports all PLDs
- Another programs EPROMs and EEPROMs to $4 M$ bits
The Logic is a universal programmer for all PLDs. The Empro, which incorporates many of the features of the vendor's Unipro universal programmer, can program microcontrollers, EPROMs, and EEPROMs to 4 M bits. Both units

MULTIMEC switches with plastic foil overlay. Key travel 1 mm! The optimum solution to requirements for tactile feel in demanding applications. Plastic foil overlay matching your requirements. Deadfronted areas concealed until illuminated. Individually illuminated switches. Illuminated keypads.
Tempest - RFI shielding optional.
Ask for the new MULTIMEC catalogue today.

mec
Industriparken 23 , P.O. Box 26 DK-2750 Ballerup, Denmark TEL: 42973366 TELEFAX: 44681514
TELEX: 9125649 danmec
ELECTRONICA - Hall 16, Stand F 34

2000 is a Personal Computer based Printed Circuit board design system with many advanced features capable of outperforming most Work-station-based CAD systems-at a fraction of the cost.
As the most productive PC based board CAD system available today, PADS-2000 can handle complex designs including: double sided surface mount boards, mixed technology boards, high speed designs and layouts exceeding 2000 IC's.
PADS-2000 design functionality includes:

- Over 11,000 parts/32,000 connections - 1 micron Resolution - True T-Routing capability Intelligent Copper Pour feature leaving isolated tracks and pads 0.1° parts/pads rotation - Extensive Macro capability - Digital, Analog and Critical Circuit autorouters - On-line and Batch Design Rule Checking - Instant track/segment length measurement - Complete Forward/Backward ECO capability - Uses 32 bit/386 native code for increased speed and functionality - Easy-to-learn and Easy-to-use

Call today for a demonstration at your local authorized CAD Software Dealer.
Ask about our affordable Leasing Plan.
Inside MA: (508) 486-8929 Outside MA:
(800) 255-7814

CAD

SIEMENS

Total surge voltage protection from one source.

Siemens is the reliable single source when it comes to protection of valuable systems and personnel from dangerous transients. Our comprehensive line of quality transient protectors react quickly to prevent component damage, malfunctions, breakdowns, and even harm to personnel.
With our high-quality SIOVs and SVPs, you can divert menacing spikes to keep essential electronic equipment running smoothly-even under the most severe operating conditions. Siemens offers uncompromised quality and unequalled selection.

SIOV (Metal Oxide Varistors)

3 series available-discs, blocks \& SMD: Disc: 5 thru 20 mm sizes \cdot from $11-1000 \mathrm{~V}$ range \cdot special series of 130 \& 150 volt discs with reduced clamping voltages • available on tape \& reel and with crimped leads • "auto" type (for severe automotive conditions) - UL and CSA recognition, 130 V and higher. Block: 32 thru 80 mm sizes • from $75-1100 \mathrm{~V}$ range $\cdot \mathrm{B} 80$ with current handling capability to 100 kA , energy rating to 15,000 Joules! SMD: 4 thru 300 V range $\cdot 4$ small, low profile packages - IEC standard dimensions \cdot blister pack on reelstandard.

SVP (Surge Voltage Protectors)

3 series available: "button," communication, and sub-miniature.
"Button" Types: 75 V thru 9 kV range • 2 electrode types for general applications • available on tape and reel. Communication Types: Designed to meet telecommunications industry standards available in 2 electrode and 3 electrode versions.
Sub-miniature Types (M5 Series):
Space-saving size

- low capacitance
- suitable for dataline protection.

So why chance component damage, breakdowns, and harm to personnel? Minimize risk with our broad line of competitively-priced transient protec-tors-available now from ADVACOM, ADVENT, ALLIED, CAPSTONE, HALLMARK, and MARSHALL. Or call Siemens direct at 1-800-222-2203.

SCl-1002A

CIRCLE NO. 121

\qquad

HOW WE MASTERED THE PGA SOCKET.

Product	Avg. Insertion/Extraction Force	Contact Type
Preci-Dip	135 grams per pin	6 finger, coined
Brand A	141 grams per pin	6 finger, notched
Brand B	158 grams per pin	4 finger, stamped
Brand C	196 grams per pin	4 finger, machined
Brand D	206 grams per pin	4 finger, eyelet
Brand E	273 grams per pin	6 finger, stamped

n the PGA socket tour, hacking up a delicate PGA package is a major hazard. To make the cut, you need a socket contact with a soft, - gentle touch. That's why Uumm the leading pros prefer antur our6-finger "coined"

Gang insertion tests made with real life $.018^{\prime \prime}$ diameter blunt pins.
every Preci-Dip PGA socket is made using precision machined pins with closed bottoms.

We carry hundreds of standard PGA footprints, from 5×5 to 21×21, with solder tails, wraposts, for surface mount, or on disposable carriers for very low profile.

Having a problem with sockets that are subpar? Then write, or call (516) 922-6000 for our free catalog, plus a sample you can sink your chips into.

I'm teed off with broken chips. Rush me a catalog and sample.

require an IBM PC-compatible computer. The Empro includes software called Lops (library operating programmer system). Software for both units combines a commandline interface with windowing and pull-down menus. Both programmers carry the same price tag: $\$ 395$.
Xeltek, 764 San Aleso Ave, Sunnyvale, CA 94086. Phone (800) 541-1975; in CA, (408) 727-6995. FAX (408) 727-6996.

Circle No. 384

2-Channel, $250-\mathrm{kHz}$ PC-Based FFT Analyzer

- Takes 1 to 500,000 samples/sec
- Averages two to 1024 spectra on each channel
The R310 2-channel, real-time FFT spectrum analyzer is an IBM PCbased instrument that simultaneously samples both its channels as often as 500,000 times each second. It uses a hardware DSP engine to compute spectra in real time, and simultaneously displays the data in the frequency and time domains. Each channel has a 32 k -word data buffer. The unit can average from two to 1024 spectra. Gain is programmable from 10 mV to $50 \mathrm{~V} /$ div. The software displays both voltage and frequency on linear or logarithmic scales. Among the software features is automatic saving of spectra to disk. $\$ 1995$.

Rapid Systems Inc, 433 N 34th St, Seattle, WA 98103. Phone (206) 547-8311. TLX 265017.

Circle No. 385

Microstrip Test Station

- Operates from dc to 26.5 GHz
- Fits under wire bonders and on rackmount tablets
The MTF26 microstrip test station permits accurate probing of microwave and millimeter-wave integrated circuits, discrete components, and hybrid assemblies operating from de to 26.5 GHz . The unit
handles devices as small as 0.12 in . square and as large as 4 in . square. The vendor claims that errors in measurements made with the unit are two orders of magnitude lower than errors in measurements made using earlier handlers. Repeatability is better than -46 dB . The unit fits under wire bonders and on
rackmount tablets. Optional calibration standards ensure accuracy from 750 MHz to $26.5 \mathrm{GHz} . \$ 12,500$; calibration kit, $\$ 2500$; monocular optics, $\$ 2695$.

Cascade Microtech Inc, Box 1589, Beaverton, OR 97075. Phone (503) 626-8245. FAX (503) 626-6023.

Circle No. 386

Programmable Anti-Alias Fillters for Critical A/D Prefiltering

848P8E Series are Elliptic lowpass filters providing extremely sharp roll-off for A/D prefiltering. Features:

- 8 pole, 6 zero elliptic lowpass filters
- Digitally programmable corner frequency
- Shape factor of 1.77 at 80 db
- 8 bit (256:1) tuning ratio
- Internally latched control lines to store frequency selection data
- Ideal for single or multi-channel applications
- Plug in, ready to use, fully finished filter modules
- Five frequency ranges to 51.2 kHz

Other Filter Products Available:

- Linear phase - Programmable
- Fixed frequency • Instrumentation
- Custom designs

For more information about how Frequency Devices can meet your most critical filtering requirements, call our applications engineers at (617) 374-0761.

FREDUEMCY DEVICES"

25 Locust Street
Haverhill, MA 01830
(617) 374-0761

Because you're thinking fast...

you need responsive suppliers as well as fast parts. Comlinear is tuned in. With high quality, high-speed products. Assistance from R\&D-level applications engineers to help develop your ideas quicker. Off-the-shelf MIL-STD-883 compliant monolithics and hybrids. Quality product documentation with guaranteed specs so you don't waste time. In your business, time is everything. Count on us for the speed you need.

Now, high-speed AGC

 is easier than ABC .Until now, AGC amplifiers were only partial solutions to high-speed automatic gain control. You also had to find a high-performance op amp, numerous passive components and the board space to mount them all.

Now all you need is the new CLC520 AGC+Amp, $\pm 5 \mathrm{~V}$ and two resistors. That's it.

You get a total high-speed AGC solution-with voltage-controlled gain and voltage output-in a single device. Plus outstanding performance: 160 MHz signal-channel and 100 MHz gain-control bandwidth. And unexpected flexibility ... one resistor sets maximum gain between 2 X and 100 X , and the gain-control input gives you a 40 dB range.

So don't settle for a partial AGC solution. Call about the CLC520 AGC+Amp and learn the ABCs of high-speed AGC.

[^18]

2 GIGS-A-CHANNEL!

Now get real-time sampling at up to 2 gigasamples/second using 8-bit ADCs on each channel. The 7200 is the digital oscilloscope with an analog personality simply easy to use. Display your data in seconds instead of hours via instant autosetups and built-in help.

Add real-time waveform math, over 50 pulse parameters and a statistics package...all standard. You can analyze data with the insight of an expert. An MS-DOS floppy drive makes mass data storage a snap!

Of course, standard GPIB, RS-232-C and parallel interfaces let you communicate anyway you want.

Why wait? The 7200 is the only digital scope that gives you all the answers. And you already know how to use it. Call (800) 553-2769 to try one on your bench.

LeCroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, NY 10977. (914) 578-6072 direct, (914) 578-5985 FAX.

Only the 7200 samples at:

$2 \mathrm{GS} / \mathrm{sec}$ on 2 ch . for transients
$1 \mathrm{GS} / \mathrm{sec}$ on 4 ch . for transients

- 20 GS/sec on 4 ch. repetitive

been among the most sought after in the industry. With their high capacity and sterling performance features, it's no wonder we've been hard-pressed to fill all the orders. Fortunately, that's now changed.

These $5.25^{\prime \prime}$ half- and full-height drives are ready for immediate delivery in capacities ranging from 43 to 1200 megabytes in a variety of ST412, SCSI, ESDI and AT interfaces. Our unique Zone Bit Recording, used in most models, and low-mass actuator give Wren drives high data transfer rates and average seek times as low as 10.7 msec . These specifications make the Wren family the ideal choice for thousands of high-performance applications.

Like the artist who spends years perfecting his craft, Seagate has spent the past decade mastering the fine art of disc drives. To become further enlightened about Wren and our other disc storage solutions, contact your authorized Seagate distributor, or call Seagate directly: 800-468-DISC, or 408-438-6550.

dfe Seagate

NEW PRODUCTS

CAE \& SOFTWARE DEVELOPMENT TOOLS

ASIC Design Tool

- Analyzes power consumption, skew, and critical paths
- Runs on the vendor's simulation accelerator
Advanced ASIC Designer is a set of software tools that runs on the vendor's Mach and XP simulation accelerators. Powersim takes into account the switching activity and capacitance of all nodes, the operating voltage, and the constant leakage current. It then computes the instantaneous energy consumption at each time point for the whole circuit or any subcircuit. Pinskew determines your design's sensitivity to variations in the timing of input and output signals. By moving each signal independently forward and backward in time, the program can detect timing sensitivities that other test procedures could miss. Critical Pathfinder operates dynamically, using the circuit description and actual test vectors. The program provides data that helps you determine where delays occur and speed up a circuit. $\$ 60,000$.

Zycad Corp, 1380 Willow Rd, Menlo Park, CA 94025. Phone (415) 688-7400. FAX (415) 688-7550.

Circle No. 387

Data-Protection Software

- Automatically writes to two identical hard-disk drives
- Notifies you if either disk fails

The Immunity software data-protection package runs under PC/MSDOS 3.2 or higher on IBM PCs, PS/ 2 s , and compatibles. The program requires that the computer be equipped with two identical hard disks; it can work with most standard disk controllers and coding schemes such as MFM, RLL, ESDI, and SCSI. The software intercepts all disk-write operations and writes the data in duplicate to the same physical sectors on both
drives. If the primary drive fails, the program notifies you and automatically switches over to the secondary drive (or vice versa). Read operations are performed by whichever drive has its heads closer to the required data; the decreased seek time more than compensates for the extra time needed for writing to the second disk. The program sends all details of disk errors to an error \log and includes diskrepair utilities to aid in troubleshooting and resynchronizing the disks after an error. Immunity version 2.41 uses only 5 k bytes of main memory and is compatible with a number of DOS-based LAN operating systems. $\$ 345$.

Unitrol Data Protection Systems Inc, 815 Hornby St, Suite 604, Vancouver, BC V6Z 2E6, Canada. Phone (604) 681-3611. FAX (604) 687-0814.

Circle No. 388

VHDL Compiler For IBM PCs And Compatibles

- Can implement VHDL descriptions as PLDs or gate arrays
- Provides automatic state reduction and assignment Hint is a preprocessor for the vendor's LOG/iC design tools. It accepts a subset of the VHDL-1076 (VHSIC hardware description language) standard, allowing you to describe finite state machines (FSMs) as well as sequential and combinatorial logic. The preprocessor translates your descriptions into

Data I/O®'s new ABEL ${ }^{\text {rw }}$-4 Design Software propels FPGA and PLD design support into a new level of power and ease.

Its advanced new features like SmartPart ${ }^{\text {tm }}$ intelligent device selection, multilevel simulation, and a device-independent hardware description language (ABEL-HDL ${ }^{\text {TM }}$) help you create more efficient designs in less time. Even today's most complex devices are easy to master with ABEL-4.

You simply won't find a more powerful design tool at such a low price. ABEL-4 versions start at just \$895.*
30-Day Money-Back Guarantee. We'll even guarantee your complete satisfaction with ABEL-4 in 30 days, or your money back. It's your opportunity to put the power of ABEL-4 to work for you-RISK FREE!

So call Data I/O to order. BUT HURRY - this offer expires December 15, 1990.

The Personal Silicon Experts

FOR MILITARY POWER

THINK

MII-STD-VICOR

Tol a s s Mtheny power systems are Thzing Vicods new MI Series of component tever Dapy bonverters. Built tough. But telngye Available in two modile s. $2.20^{41} \mathrm{~L} \times 2.4^{\prime \prime} \mathrm{W} \times 0.5^{\prime \prime} \mathrm{H}$ and $4 \mathrm{~A}^{\mathrm{m}} \mathrm{m} \times 2.4^{\prime \prime} \mathrm{W} \times 0.5^{\prime \prime} \mathrm{H}$.

10W to 100W outputs. Four Mil standard input ranges. MIL-STD-810 gualited Compatible with SEM ForWht and dishomew systems. Military Standard Powe, trom Vicor. For complete details call or FAX today.

23 Frontage Rd., Andover, MA 01810 TEL: 508-470-2900 FAX: 508-475-6715

CAE \& SOFTWARE DEVELOPMENT TOOLS

a format that is acceptable to the LOG/iC PLD or gate-array compilers. You can also use a mixture of VHDL and LOG/iC's FSM syntax. Hint automatically eliminates redundant states and assigns codes to those that remain after the reduction. Once Hint has successfully completed compilation of the VHDL descriptions, you can further process the results with the LOG/iC compilers. They perform logic reduction and create either output files containing programming and test data for PLDs or a net list for gate arrays. Hint runs on IBM PC/ATs, PS/2s, and compatibles; your computer must run DOS 2.0 or later and have at least 400 k bytes of memory available to Hint. $\$ 2380$.

Isdata Inc, 800 Airport Rd, Monterey, CA 93940. Phone (408) 3737359. FAX (408) 373-3622.

Circle No. 389

Ethernet Network Analyzer For Macintosh

- Works with most Ethernet controller cards
- Can be activated at any Macintosh node on a network Etherpeek is a software package that runs on any Macintosh II or $\mathrm{SE} / 30$ computer and helps you analyze the performance of an Ethernet network. The Macintosh must run System 6.0 or a later version. The program captures every packet that is transmitted on the network, regardless of address. It can display bar graphs to show the level of activity of each node, and you can scale the graphs to provide meaningful comparisons. To make recognition easier, you can replace protocol types and physical addresses with logical net and node numbers or with symbolic names. You can start and stop capture when a specified network event occurs, or filter the data to capture only packets that meet criteria you specify. Every packet is timestamped with
a resolution of 1 msec . And, you can display the timestamps as an absolute 24 -hour time of day, as a relative time since the last packet was received, or as a relative time since the beginning of your session. You can also generate diagnostic traffic on the network, specifying the contents of the packet to be sent, the number of times to send it, and the interval between transmissions. You can transport the program on floppy disk and run it from any Macintosh node on the network. $\$ 475$.

Avant Garde Group, 2540 Camino Diablo, Suite 202, Walnut Creek, CA 94596. Phone (415) 9377900. FAX (415) 937-2479.

Circle No. 390

Filter-Design Software

- Handles all standard transfer functions
- Editor lets you fine-tune your design
Advanced Filter Designer is a software package that runs on Macintosh computers, IBM PC/ATs, PS/ 2 s , and compatibles. The algorithms apply classical approximations to your filter specification; you can synthesize Butterworth, Chebyshev, inverse Chebyshev, and elliptic (Cauer) transfer functions for lowpass, highpass, bandpass, and bandstop filters. You can also synthesize arbitrary transfer functions and delay-equalization filters. A built-in editor lets you insert, delete, and reorder filter stages and modify coefficient values to finetune a design. The program allows the design of both active-RC and switched biquad filter structures; the program can scale or resize the components to center the values in the preferred ranges. You can define arbitrary functions by specifying minimum and maximum trans-fer-function limits at a number of frequencies. The program then creates the final transfer function with numerical-optimization (nonlinear

No matter what schematic editor you now use, Data I/O®'s new FutureNet ${ }^{\circledR}$-5 Schematic Designer Software will give you more power and better resultsin less time.
To prove it, we'll knock \$100 off the already-low \$895 price when you trade in your current schematic editor* for FutureNet-5.
NEW FutureNet-5, just \$895**. FutureNet-5 will knock your socks off with an enhanced design environment, dialog boxes, symbol browser and other advanced features. It's the most powerful schematic capture software, at the lowest price ever.

We'll even guarantee your satisfaction within 30 days, or your money back.
So call Data I/O today. BUT HURRY - this offer expires December 15, 1990.

$1-800-247-5700$

*Users of previous DASH ${ }^{\text {tw }}$ or FutureNet versions from Data I/O may upgrade to FutureNet-5 for only $\$ 595$.
**Price valid in U.S.A. only.

The Personal Silicon Experts
DATA I/O

End the connector compromise...

1. 1-700 LOW INSERTION FORCE CONTACTS
 2. QUALIFIED TO D55302
 in PC-board connections.

3. SIGNAL TO 500 AMP POWER CONTACT RATINGS

Only Hypertronics ends the compromise in printed circuit board connectors for electronic equipment. . . by replacing unreliable connections, and their field service problems, with Low Insertion Force (LIF) high-cycle reliability. Discrete Hypertac ${ }^{\circledR}$ contacts and multipin connectors eliminate the need for expensive and spaceconsuming jacking and camming mechanisms.

The unique wiping action of each Hypertronics connector maintains electrical continuity under extremes of shock and vibration (tested to 2 nanoseconds) with insertion forces as low as $1 / 20$ oz.

Now you can have it all. . in signal/power connections requiring up to 700 contacts. End the connector compromise by calling 1-800-225-9228, toll free.

KA Series: 17-490 Contacts with D55302-Listed Qualified Models.

KG Series: 22-90 Position Board Stacking for . 240 or . 480 Heights Between Boards.

N Series: 70-700 Position Connectors with Ratings to 9 Amps.

Y Series: 3-500 Amp Discrete Pins and Mating Sockets.

HYPERTAC®: Inserting pin into hyperboloid sleeve.
 HYPERTRONICS CORPORATION
"New Horizons in Connectors"
programming) techniques. To run the program, the PC or compatible must have at least 512 k bytes of memory, a math coprocessor, and an EGA or VGA color-graphics card. PC version, $\$ 1800$; Macintosh version, $\$ 2700$.
MicroSim Corp, 20 Fairbanks, Irvine, CA 92718. Phone (714) 7703022. FAX (714) 455-0554.

Circle No. 391

C Cross-Compiler For $\mathbf{i} 960$ RISC Processors

- Comes with instruction scheduler and a driver
- Generates COFF symbolic debug tables
The Archelon C cross-development package runs on Sun 3 workstations or 16- or 32 -bit IBM PCs and compatibles. It generates code for Intel's i960 family of 32 -bit RISC (re-duced-instruction-set computer) processors. The package consists of an optimizing ANSI C compiler, an ANSI C runtime library, an instruction scheduler, and a driver program. The optimizing compiler is compatible with Intel's 960 C compiler; optimizations include global common-subexpression elimination, automatic generation of leaf functions, automatic binding of variables to registers, constant folding, branch prediction, tail-recursion elimination, and peephole optimization. The output of the compiler is an assembly-code file and COFF (common object-file format) sym-bolic-debug tables. The instruction scheduler uses resource-usage and data-dependency information to minimize pipeline stalls. It can operate with either hand- or compilergenerated code. The driver program automates the generation of executable programs; it works in conjunction with Intel's ASM960 and LNK960 for assembly and linking. A single command allows you to initiate all compilation, assembly, and linking operations. 16 -bit MSDOS version, $\$ 750$; 32-bit MS-DOS
version, which requires an 80386/ 486-based host, $\$ 1250$; Sun-3 version, $\$ 1500$.
Archelon Inc, 460 Forestlawn Rd, Waterloo, Ontario N2K 2J6, Canada. Phone (519) 746-7925.

Circle No. 392

Action-Diagram Editor For PCs And Compatibles

- Graphics editor lets you build CASE action diagrams
- Text editor converts action diagrams to C or Pascal source code Stage \# 1 is a tool for structured (top-down) software analysis and design. It lets you define the software structure from the topmost overview down to the lowest level of pseudocode. The graphics editor allows you to insert both single-pass and loop-structure bracket lines with automatic indentation according to the nesting level. It also lets
you place both exit arrows and next-iteration arrows. When your design structure is complete, a textediting mode lets you enter the corresponding source code; a blockshift command helps you maintain the indentation structure in the source code. The output can go to any printer that generates the full ASCII character set; however, diagrams will look better if you use a printer that has the IBM graphics character set. To run the program, a PC or compatible must have at least 256 k bytes of memory (the vendor recommends 640 k bytes). The package includes several utility programs, diagram templates, and examples. $\$ 189$; orders placed before November 1, 1990, $\$ 159$.

Mt St Helens Software, Box 3319, Pasco, WA 99302. Phone (509) 547-2582.

Circle No. 393

NEW PRODUCTS

LCD Panel Meters

- Feature 0.5-in.-high display
- Draw a maximum of 100 mA

The Lascar Series DPM-125/116 $3^{1 / 2}$-digit digital panel meters feature a $0.5-\mathrm{in}$. LCD readout; Model 116 also features true digital hold. Both meters measure $1.89 \times 0.94 \times$ 0.26 in . and will mount into a SIP socket or on a panel using a snap-in bezel furnished with all units. The meters are accurate to $0.1 \% \pm 1$ count and operate over a 0 to $50^{\circ} \mathrm{C}$ range. Standard features include auto zero, auto polarity, $200-\mathrm{mV}$ full-scale deflection, and 100 mA max current consumption. The displays also feature a low-battery indicator. On-card solder pads are readily accessible to make in-field decimal-point and operating-mode selection quick and convenient. $\$ 35.90$.

Martel Electronics, Box 897, Windham, NH 03087. Phone (603) 893-0886. FAX (603) 898-6820.

Circle No. 367

Laboratory Power Supplies

- Output 30 kV
- Feature user-selectable outputs

The Alpha III line of precision laboratory supplies includes the 3507 , which outputs 5 kV ; the 3707 , which has a $15-\mathrm{kV}$ output; and the 3807 , which outputs 30 kV . Maximum output currents are 10,3 , and 1.5 mA , respectively; respective maximum ripple figures are $0.5,1.5$, and 3 V . The front panel includes meters
for current and voltage status as well as a Local or Remote switch that provides output control and allows you to select the protection mode. The series provides two protection modes: One is limited with automatic crossover between adjustable voltage and current limit, and the other is limited with adjustable voltage and current trip levels. An optional facility allows you to control the supplies with a computer through an RS-232C interface. Positive or negative outputs are user selectable. Load and line regulation equal 0.002 and 0.001%, respectively. From $\$ 2672$.

International Power Sources Inc, 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 881-7434. FAX (508) 879-8669.

Circle No. 368

Screw-Machine Sockets

- Available on removable film carrier
- Come in DIP, SIP, and PGA configurations
Aimed at low-profile, high-density applications, these IC sockets come affixed to a film carrier which is removed after the soldering operation. The devices are available in DIP, SIP, and pin-grid-array configurations. The sockets and carriers withstand temperatures ranging from -259 to $+400^{\circ} \mathrm{C}-$ a range that's compatible with all soldering techniques. The free-standing

Aromat Distributors
Contact Our Nearest Authorized Stocking Distributor For Fast Delivery

Newark Electronics

 J. C. Internationa Acacia/Deanco, Inc. Bell Industries
all locations 205-837-9300 602-966-7800 602-968-0893 619-565-4365 619-565-4365 415-623-7500 714-895-7801 916-652-0414 213-515-1800 619-268-1277 818-706-2608 213-826-6778
213-452-1229 415-835-1500 818-998-3111 213-924-765 714-540-4165 408-435-7477 800-547-6655 303-232-2882 303-424-1985 303-694-944 203-265-3134 203-265-2498 407-339-0078 407-834-9090 305-428-8877 813-536-0445 404-662-0923
$800-277-5916$ 800-277-5916 708-640-1910 708-640-1910 708-595-7575 219-423-3422 317-875-8200 $317-299-5487$
$317-291-7110$ 913-362-4248 301-995-1950 301-921-0660 617-449-5000 508-947-4262 617-821-1500 508-474-8880 313-971-9093 616-531-9300 612-721-1628 612-571-7766 314-426-3150 704-377-5413 919-742-5961 704-527-8188 919-544-5400 704-394-6195 603-624-0105 603-893-8313 201-233-0044 201-337-1000
$800-526-5376$ 505-292-2700 516-752-9303 516-273-5500 716-546-5373 718-523-3456 516-593-2121 714-699-2224 716-328-3230 513-435-8660 513-435-86960 614-299-4161 513-439-4711 918-254-8606 503-646-3377 503-635-6500 503-292-8682 814-476-7774 215-293-9000 215-674-4000 401-725-7400 803-779-5332 803-297-1437 615-477-2131 615-481-3393 214-690-0466 214-239-0271 512-837-5555 713-462-1666
214-233-0020 214-233-0020
512-837-8971 512-837-8971
214-234-3060 214-234-3060
$713-240-4000$ 512-883-5103 801-255-9611 703-342-4444 206-885-9963 414-547-8879 414-241-4321

Advanced technology
AROMAT

If you use small, economical power relays...

replace them with Aromat JS or JW. Aromat, the acknowledged leader in relay technology, now leads the way in price and delivery as well.

If you want one, we'll give it to you FREE!

Write to us at: Aromat Corporation, 629 Central Avenue, New Providence, NJ 07974, Attn: Marketing Department. Mention your application and relay type required and enclose your business card. We'll get a free sample to you fast.

If you want many, we'll deliver FAST!

Just call your Aromat authorized distributor. Between him and our San Jose manufacturing facility, we can ship fast!

Member of Matsushita Group

For further information, contact your nearest Aromat sales office or authorized distributor.

New Providence, NJ Tel: (908) 464-3550
Marlboro, MA
Tel: (508) 481-1995
Orlando, FL
Tel: (407) 855-1075

Elk Grove Village, IL Tel: (708) 593-8535
Richardson, TX
Tel: (214) 235-0415
San Jose, CA
Tel: (408) 433-0466

Garden Grove, CA
Tel: (714) 895-7707
Aromat Canada Inc.
Mississauga, Ontario
Tel: (416) 624-3777

Advanced technology

AROMAT
socket terminals enhance visualinspection procedures, ease flux removal, and improve heat dissipation. The sockets have a $0.031-\mathrm{in}$. above-board profile. Male pins that mate with the sockets are also available to satisfy modular board-toboard interconnection needs. These pins are available in a choice of tin or gold platings. $\$ 0.035$ to $\$ 0.07 /$ line for sockets; $\$ 0.04$ to $\$ 0.07$ and $\$ 0.055$ to $\$ 0.07 /$ line for tin- and gold-plated male pins, respectively. Delivery, six weeks ARO.

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752.

Circle No. 369

Solid-State Relays

- Handle 6A loads
- Feature 4000 V rms input-tooutput isolation
Measuring only $0.37 \times 1.7 \times 1.0 \mathrm{in}$., OACM-UJ solid-state relays are UL recognized, CSA certified, and meet VDE requirements. Switching capacity of the units' spst NO output switch is rated for 6A at 12 to 280 V ac. The units operate with 3 to 15 V dc inputs. A dV/dt snubber network across the output limits the rise of voltage transients and guards against false triggering. The relays are available in randomvoltage and zero-voltage turn-on versions; both versions provide 4000 V rms isolation between the optically coupled input and output. $\$ 5.94$ (500). Delivery, stock to six weeks ARO.

Potter \& Brumfield Inc, 200 S Richland Creek Dr, Princeton, IN 47671. Phone (812) 386-2194.

Circle No. 370

Hall-Effect Keyboard

- Features a sealed design
- Is IBM compatible

The 101SD sealed, 101-station, PCcompatible Hall-effect keyboard is designed to handle industrial environments. The unit is formatted with the standard IBM 101 en-
hanced-key layout and is IBM/PC, PC/XT, PC/AT, and PS/2 software compatible. The keyboard features a single sealing-boot sheet design. The enclosure is designed with an ABS thermoplastic base and an aluminum top panel. With a 6° surface-to-operator angle, the keyboard is designed to fit into a standard 1-
drawer, 2 -unit 19 -in. industrial rack configuration. The keyboard is also available with no enclosure. Mechanical keyswitch life equals 20×10^{6} operations. $\$ 450.45$.

Honeywell Inc, Keyboard Div, 4171 N Mesa St, El Paso, TX 79902. Phone (915) 543-5503.

Circle No. 371

EL Lamps from ELtech:

The
 Light.

Electroluminescent (EL) lamps from ELtech offer benefits that just can't be matched by LEDs, incandescents, cold cathodes or even other EL lamps. More and more display engineers are choosing them as The Right Light for applications such as backlighting LEDs, keypads, membrane switches, automotive instrument panels \& coach lamps, NVIS displays and 7788E panels. Here's why:

- The Bright Light-Brighter than competitive EL lamps.
- The Low Power Light-0.6 to 1.5 mA per sq. in. @ nominal voltage \& frequency.
- The Cool Light-No heat to eliminate!
- The Versatile Light-From simple to complex geometries, you spec it
=trah
and we'll build it, in Foil or Plastic!
- The Thin Light-0.013"-thin plastic lamps (ideal for membrane switches) \& $0.023^{\prime \prime}$-thin foil lamps (nominal).
- The Repeatable Light-Minimal dimensional variation order-toorder.
- The Consistent Light-Brightness and color uniformity better than $\pm 10 \%$.
- The Tough Light-ELtech lamps meet the toughest environmental specs in the industry.
Whatever your application, ELtech will help you get your lighting right. For a free lamp sample, send your business card or call, and specify plastic or foil. (215) 441-0404. Or fax us at (215) 441-8299.

The enlightened approach to electroluminescent lighting

181 Gibraltar Road Horsham, PA 19044

All-Star Performers

Dynamic FET Op Amps Give Designers More Speed, Fewer Errors. Our new OPA627 and OPA637 op amps minimize speed vs precision trade-offs for a very broad range of instrumentation, data acquisition, and audio applications. No other amps on the market come close to matching the all-around AC and DC performance of these uncompromising new devices:

* Ultra-low noise: $4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}(10 \mathrm{kHz})$
* Fast settling to 0.01\%: 550ns (OPA627), 450ns (OPA637)
* Low Vos: $100 \mu \mathrm{~V}$ max
* Low drift: $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
* Low THD+N: 0.0005\%

OPA627, $(G=+1,1 \mathrm{kHz})$

* Low la: 5pA max
* GBW: 16 MHz (OPA627), 80 MHz (OPA637)
* Supplies: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
* Output: 45 mA at $\pm 10 \mathrm{~V}$
\star From \$7.50*
Complementary Bipolar Difet ${ }^{\circledR}$ Design
These new, monolithic op amps are fabricated on our high speed,
dielectrically-isolated, complementary bipolar process and laser trimmed for exceptional accuracy, stability, and dynamic performance. OPA627 is unitygain stable, and OPA637 is stable in gains of five and above. They are available in 8 -pin plastic DIPs and metal TO-99 packages and in industrial and military specified temp ranges. (Available Q1'90 in SOIC and die.) Contact your local Bur-Brown sales office for data sheets and free samples, or call 1-800-548-6132 for immediate assistance.

Burr-Brown Corp. P.O. Box 11400 Tucson, AZ 85734
Difet ${ }^{\circ}$ - Burr-Brown Corp. *U.S. OEM prices, in 100 s .

Memory-Card Connector

- Has 5000-cycle life
- Contacts are rated for 0.5 A

The ICM-B connector is specifically designed for 60 -circuit memory cards that have two rows of contacts spaced on $0.050-\mathrm{in}$. centers. The unit has contacts that feature an independent split-beam construction to ensure 5000 mating cycles. The connector assembly includes a receptacle that's installed on the memory card and a mating header for the equipment interface. The connector contacts are copper alloy with overall nickel plating over selective gold plating. Straight tails are provided to surface-mount the receptacle to the memory card's internal pe board. The press-fit design of the contact system prevents any solder from flowing into the contact area during the surfacemount assembly operation. $\$ 0.05 /$ mated position (OEM qty). Delivery, eight to 10 weeks ARO.

JST Corp, 1200 Business Center Dr, Suite 400, Mount Prospect, IL 60056. Phone (800) 292-4243; in IL, (708) 803-3300. FAX (708) 803-4918.

Circle No. 372

Decoupled IC Sockets

- Available with 0.300 and 0.600-in. pin spacings
- Offer a choice of terminations

CIC Series screw-machined IC sockets come with a decoupling capacitor located between the power and ground contacts. Three capacitor sizes are stocked for quick deliv-ery- $0.001,0.01$, and $0.1 \mu F$. Other sizes are available as specials. The sockets are available with lead counts of 12 through 24 pins located
on $0.300-\mathrm{in}$. row spacings and 24 through 40 pins located on $0.600-\mathrm{in}$. row spacings. Capacitor leads are electrically connected to the leads by a clip mechanism that provides a gas-tight connection and positive mechanical retention. Soldered connections are available on many socket models. The choice of socket
tails includes terminations for through-hole wave soldering assembly and square tails for wire wrapping. From $\$ 0.138$ to $\$ 0.191 /$ contact position (100).

Samtec Inc, Box 1147, New Albany, IN 47151. Phone (812) 9446733. FAX (812) 948-5047.

Circle No. 373

- up to 4 filters of total 32:n orders
- pass band accuracy of $+/-0,05 \mathrm{~dB}$
- offset under 10 mV
- fast design with Micronas MASFIL program
- full custom SC-filters also available

Advanced Pressure Sensors

Sensym's 142/163 Series

Free Handbook

Features Include:

- Guaranteed precision over temperature: $\pm 1 \%$ Max $\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+63^{\circ} \mathrm{C}\right)$!
- High level calibrated output:
$1.0 \mathrm{~V} \pm 50 \mathrm{mV}$ offset
$5.0 \mathrm{~V} \pm 50 \mathrm{mV}$ span
… Linearity: <0.75\% FSO Max
These precision transducers are priced starting at $\$ 40$ eal 100^{\prime} s. Stock delivery.

Available parts:
163SC01D48 $\begin{aligned} \ldots & -20 \text { to } \\ & +120 \mathrm{cmH}_{2} \mathrm{O}\end{aligned}$
142SC series
0 to 1 psi up to 0 to 150 psi

SOLID STATE SENSORS

Sensym's new 1990 Sensor Handbook gives complete product specifications plus over 200 pages of application notes and ideas.

Call or fax us today for your free Sensor Handbook.

How To Design For Reduced EMI

Design and Layout of a Video Graphics System for Reduced EMI explains electromagnetic compatibility and how to reduce radiated emissions and EMI in the design of high-speed video graphics. The note describes how to incorporate a video RAM D/A converter into a PC or a plug-in board with minimum noise pollution. The note's four sections deal with International EMI regulatory bodies, system noise identification, personalcomputer board layout and design, and practical examples of an IBM VGA-compatible board design and its associated FCC testing.

Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021.

Circle No. 374

Listings Of Standard Memory Products

This 1990 short-form catalog contains complete listings of the vendor's standard memory products. Tables include part numbers, features, speeds, current consumption, available package types, and scheduled availability of samples and production volumes. Covering both commercial and military products, the tables present 1 M -bit monolithic dynamic RAMs, monolithic static RAMs, power-consumption levels, and "chip enable" configura-
tions. A separate table lists the Standardized Military Drawing numbers of the nine memory devices that the vendor manufactures under approval of the Defense Electronics Supply Center.

Electronic Designs Inc, 42 South St, Hopkinton, MA 01748.

Circle No. 375

Guide To Semiconductor Products

This 26-pg booklet discusses standard linear products, bipolar PROMs, low-power ECL gate arrays, linear semicustom and custom arrays, and small-signal transistors. The book also contains a complete standard linear cross-reference guide, qualified-product lists, sur-face-mount-device drawings, and packaging information.

Raytheon Co, Semiconductor Div, 350 Ellis St, Mountain View, CA 94043. Circle No. 376

Handbook Of Synchro Conversion Products

This comprehensive handbook covers subjects such as Fundamentals; Theories of Operation for Various Types of S/D and D/S converters; Measuring and Computing Performance Parameters, and Typical Applications and Interface Considerations. Designed as a practical tutorial and reference source, the handbook examines not only the vendor's approach to synchro conversion but also other generally accepted techniques. The section on product information is divided according to function; it offers data sheets for hybrid and discrete components, transformers, computer I/O cards, test instruments, and special-function products. A selection of application notes that supplement the handbook is also available.

ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716.

Circle No. 377

System Solutions For Data Acquisition

Onboard Intelligence for IBM PC/XT/AT/386

Microstar's Data Acquisition Processor ${ }^{\text {TM }}$ (DAP ${ }^{T M}$) manages the entire data acquisition and control interface inside a PC. Onboard intelligence in the DAP speeds development and increases performance.

The DAP can be configured easily into a number of instruments, including:

- Spectrum Analyzer
- Instrument Controller
- Transient Recorder
- Digital Signal Processor
- Datalogger

DAPview ${ }^{\text {TM }}$ software provides interactive control for data acquisition:

- real time graphics
- disk logging
- pull-down menus
- on-line HELP
- on-line error handling

Call for FREE Demo Diskette
(206) 881-4286

DAP Features:

- On board microprocessor: up to 16 MHz with 512 K DRAM
- DAP $2400^{\text {TM }}$ with onboard digital signal processor: 20 MHz for 10 MIPS ; up to 96K fast SRAM
- Buffers and processes input data
- More than 100 commands without programming
- Compatible with DAPview, C, Pascal, BASIC, FORTRAN, Lotus 1-2-3, ASYST, ILS, LabWindows
- C language custom commands
- Acquires analog and digital inputs to 235,000 samples/ second
- Updates analog or digital outputs to 250,000 values/second

Microstar
Laboratories ${ }^{\text {mw }}$
2863 152nd Ave. N.E., Redmond, WA 98052 Fax (206) 881-5494

Our Latest Enciosure Gofs In A Whole New Direction.

Your imagination needn't ever again be limited by an enclosure. Introducing the new Hoffman Designline"'2 D-20 electronic enclosure with both rack and panel mounting.

The new panel mounting capability is just the first of many ways we've improved the D-20.

An economical doublewide version is now available. Multiple D-20s can be securely joined to form a single unit. Access can be made from all sides. And we've even incorporated a new disconnect capability. This unparalleled degree of flexibility makes virtually every square inch within the cabinet usable space. The D-20 achieves all this flexibility while providing you with the superior NEMA 12 protection you expect from Hoffman. receive it, circle the number below To help you discover how or write us at 900 Ehlen Drive, the $D-20$ can give you increased flexibility and protection,we've created a free brochure. To

EPROM/MICRO PROGRAMMER FRIENDLY S/W, UPGRADABLE H/W

- Industrial Quality • 1-2-3 Style S/W
- Fast PC Interface via Standard Parallel Port
- Field Upgradable From One Model To Another
- IC Manufacturers Approved - Made in USA

PLEASE CALL 1-800-627-2456 FAX
(408) 736-2503
(FU - Field Upgradable)

	24, 28-pin EPROMs	32-pin EPROMs	40-pin EPROMs	$8744,42,48,49$ $8751,52,53, \ldots$
PILOT-145 $\mathbf{\$ 9 9 5}$	YES	YES	YES	YES
PILOT-144 $\$ 795$	YES	YES	YES	FU
PILOT-143 $\$ 595$	YES	YES	FU	FU
PILOT-142 $\$ 495$	YES	FU	FU	FU

ADVIN SYSTEMS INC.
1050-L East Duane Avenue - Sunnyvale, CA 94086
CIRCLE NO 331
There is a Difference. Lifetime Free Updates

EP-1140

A programmer is not just another programmer. That is why BP Microsystems is commited to bringing our customers the highest quality programmers at an affordable price. This commitment is evident in our EP-1140 E/EPROM programmer supporting thousands
of 24.28 . 32 -and 40 pin devices. A 22 -pin of $24,28,32$ and 40 pin devices. A 32 -pin model, EP-1132, is available also for $\$ 695$. And, all of our programmers include future chip support at no charge and an unconditional money back guarantee.

BP Microsrstems
1-800-225-2102
CIRCLE NO 334
Wave Form
$20 \mathrm{MHz}-32 \mathrm{~K}$ \$1290

The WSB-100 Wave Form Synthesizer Board from Quatech has the best set of numbers in the market. With speed to 20 MHz and a 32 K memory at $\$ 1290$, it's making waves in more ways than one. The WSB-100 is also a star performer as a digital pulse/word generator with the optional digital module. Call for our free
PC Interface Handbook 1-800-553-1170
T EUATECH 662 Woif Ledges Parkway
Akron. OH 44311 CIRCLE NO 337

4MEG VIDEO Model 10
Flexible Image Processor and Application Accelerator For The PC/AT

- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPs Programmable Accelerator
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCIR input/output
- Variable timing for nonstandard formats
- Genlock to external timing sources
- Analog or digital inputs
- Software programmable timing/resolution

310 Anthony Trail, Northbrook, IL 60062
708-498-4002
FAX: 708-498-4321
CIRCLE NO 332

Data I/O Programming Tools

50\% OFF

280 Set Programmer plus PROMlink PC File Management Software just \$995*.

- Set/gang programming with the 8 -socket 280 - Supports E/EEPROM up to 512 K
- Easy PC control with PROMlink ${ }^{\text {™ }}$ software
- FREE one-year Data I/O warranty
*U.S. list price only
**Offer expires 11 15/90

Call now for a FREE 15-
多 REE $15-$
day trial with no obligation to purchase,** and receive a FREE tutorial on programming today's device technologies. 1-800-247-5700

DATA I/O
 United States Software Corporation 14215 NW Science Park Drive Portland, Oregon 97229

CIRCLE NO 333

Chassis Trak ${ }^{\text {® }}$ Bottom Mount Slides

- Combine heavy load bearing with ease of extension
- Ideal where heavy equipment must be moved for routine service or access
- Can be modified for 2-way travel
- Capacities to 1500 lbs. per slide

General Devices Company, Inc., P.O. Box 39100 1410 S. Post Rd., Indianapolis, IN 46239-9632 (317) 897-7009, FAX: 317-898-2917

Synchronous Communication Boards for AT

Quatech synchronous/ asynchronous serial boards for PC-AT and compatibles support RS-232, RS-422, and RS-485 communication.

Call for our free
PC Interface Handbook: 1-800-553-1170

T CUATECH

662 Wolf Ledges Parkway Akron, OH 44311

PC-AT and PC are registered trademarks of IBM Corp.

RS-422/RS-485 Boards for AT, Micro Channel

RS-422/RS-485 asynchronous serial communication boards from Quatech available in 1 to 4 ports for PC-AT and compatibles and 1 to 4 ports for PS/2 Micro Channel.

Call for our free
PC Interface Handbook:
1-800-553-1170

T- CUATECH

662 Wolf Ledges Parkway Akron, OH 44311

PC-AT, Micro Channel, and PS/2 are trademarks or registered trademarks of IBM Corp.

PAL/PROM Programmer Adapters

- Any EPROM programmer designed for DIPs can be converted to accept LCC, PLCC, and SOIC sockets in seconds! - To program, just insert an Adapt-A-Socket ${ }^{\text {M }}$ between the programmer's DIP socket and the circuit to be programmed. - Designed to fit all types of EPROM programmers, including Data I/0 120/121A, Stag, Logical Devices, etc. - Quick turnaround on custom engineering services, if needed. For a free catalog, contact:

Emulation Technology, Inc
2368-B Walsh Ave. Santa Clara, CA 95051 Phone: 408-982-0660 FAX:408-982-0664

CIRCLE NO 340

New AFDPLUS
Advanced Active Filter Design Software

- Fully Interactive
- On Screen Design
\& Evaluation
On Screen Editin
- Menu Driven
- Automated Installation
- Schematic Display \& Print
- Integrated AFDSIM
introductory price $\$ 850.00$ (price effective through $01 / 31 / 90$)
Call for your FREE DEMO DISK (303)-499-7566 or to order AFDPLUS send check or purchase order to

RLM Research

P. O. Box 3630

Boulder CO 80307-3630

DS-51 μ P DEVELOPMENT SYSTEM
DB-51 μ P DEVELOPMENT BOARD
MP-51 μ C AND EPROM PROGRAMMER

CEIBO

IN-CIRCUIT EMULATORS AND BOARDS Supporting: 8031/2, BoC31/2, $80 \mathrm{C} 51 / 2 / 3 / 8,80 \mathrm{C} 51 \mathrm{FA}$, BoC51FB, BOC51FC

μ C, EPROM AND PLD PROGRAMMERS

Vist us at ELECTRONICA 90 - Hall 20 oc Stand C31 - MUNICH
 USA:
 ${ }^{\text {ISRAEL }}$ MEAKAZMM BUILDING

LELINGAON MA Oin7
TE: 972 -52.55387 FLAA 46120
CIRCLE NO 341

Handhook of
 Analog Circuit Design

Dennis Feucht
[An] important and impressive book." JOSEPH J. CARR
Take the "black magic" out of analog circuit design and analysis. This is a compendium of analog circuits (such as amplifiers, filters, ramp and sweep generators, peak detectors, voltage to frequency converters, and many others) and techniques for their analysis. Digital and software engineers will find this book a valuable tutorial on analog electronics theory and practice. It will also be an essential reference and "working tool" for analog engineers.
September 1990, 686 pp ., $\$ 125.00$
ISBN: 0-12-254240-1

Call Toll Free 1-800-321-5068

Academic Press
Book Marketing Dept. \#35100
1250 Sixth Ave., San Diego, CA 92101
CIRCLE NO 344

CIRCLE NO 346

LOW COST INTERFACE CARDS FOR PC/XT/AT

RS-485/422 Card [PC485] \$95/125

- Serial Async. Communication up to to 4,000ft; 2 or 4 wires; NS16450 UART;
- COM1-4; Max. Baud Rate 56 KB . High speed version (256KB) - $\$ 165$.
 IEEE-488 Card [PC488A] $\$ 145$ - Includes Dos Device Driver and sample Communication program in BASIC. - Adititonal sample programs in C, Pascal \& Assembly . $\$ 50$. - Compatible with most IEEE-488 Software packages for IBM-PC.
- /O Addresses and Control registers compatible with NI's GPIB-PCIIA. IEEE-488 Card [PC488C]
WEE- 488 Card [PC488C
$\$ 445$
- Additional librarier for C, Pascal, PORTRAN, Assembly available - $\$ 50$ (all)
 - $\begin{aligned} & \text { points, real time bus data capture (} 4 \mathrm{~K} \text { buffer), instant screen toggling. } \\ & \text { Complete Controller / Talker / Listener capability. Based on NEC- } 7210 \text {. }\end{aligned}$ - Complete Controller / / Talker / Listener capability. Based on NEC-7210.
- Compatible with NI's GPIB-PCII card.
(TMS-9914 based card - $\$ 345$). Stepper Motor Card [PCL738] \$395 - Capable of independent and simultaneous control of up to 3 stepper motors.
- Programmable speed from 33 PPS to 3410 PPS; Built-in acceleration control. - Programmate specd rom 33 PS to 3410 PPS; Built-in acceleration contu - Step Position Read-back; Opto-isolated outputs, Crystal based timing.
Pulse/Direction or CW/CCW pulse output. Includes 8 bit digital I/O port.
. MC/VISA/AMEX

Call today for datasheets.
 CIRCLE NO 347

CUT PGA NOISE
Micro/Q (R) 3000 capacitors reduce noise associated with PGA and PLCC devices. Designed to be mounted under the device, take no extra board space. Can be used under MPUs, Gate Arrays, and ASICs. Choose from Z5V, X7R, and P3J dielectrics. Available in both thru-hole and surface mount versions. Several sizes available to fit all devices.

Rogers Corp.
2400 South Roosevelt St., Tempe, AZ 85282
(602) 967-0624

CIRCLE NO 342

EvERSWIICH

When there is no alternative

* Solid State switch, no moving parts (Based on piezoelectric effect).
\star High stability in hard environmental conditions
\star Over 30,000,000 operations.
\star Custom made products.
\star All EVERSWITCH products are patent protected

Makash - Advanced Piezo Technology Kibbutz Kerem Shalom, D.N. Hanegev 80460, Israel. Tel: $972-57-85333,85300$, Fax: $972-57-85153$, t|x: 5479 mksi

CIRCLE NO 345

NEW NEW NEW NEW NEW \square Telecom Design:

 MF (R1) or MFC (R2)
TRANSCEIVER

M-986
transmits and reeceives CCITT R1 or
R2 forward and backward multifrequency signals. For trunk adapters, test equipment, and other applications.

- Single or dual channel versions available
- Versions for North American (R1) or Intermational (R2) toll signals
- Binary or 2 of 6 input/output format
- Complete microprocessor interface
- 40 pin IC, 5 volt power, crystal time base

For more info call: 1-800-426-3926

LELIUNE
 Phone: 206-827-9626 Fax: 206-827-6050

CIRCLE NO 348

ELECTRONIC ENGINEERS CALL FOR YOUR FREE MAC \& MSDOS CATALOG

- AC/DC circuit analysis - Logic simulation
- Active \& passive filter - Root locus analysis
design \& analysis - Microstrip design
- Engineering graphics - Thermal analysis
- Signal processing
- Statistics/ More

Engineering

To order call toll free 1-800-229-0283 2023 Chicago Ave., Ste. B-13, Riverside, CA 92507 CIRCLE NO 349

8051 Emulator - $\$ 1250$
d^{2} ICE is a low cost, Full Speed, real time 8051 Emulator.. Powerful user interface for Hi-level multi-window source code debugging. Uses IBM-PC COM1/2. No Slots! Portable, fits in shirt pocket. Assembler and test bed included.

Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 • Fax: (415) 726-3003

CIRCLE NO 752

X. 25	SDLC
QLLC	HDLC
ADCCP	PAD

- C source code
- ROM-able
- Full porting provided
- No OS required

GCOM, Inc.
41 E. University
Champaign IL 61820
(217) 352-4266

Specialists in Computer Communications FAX 217-352-2215

CIRCLE NO 755

SOLUTIONS

IRONWOOD Electronics offers a comprehensive line of devices for your interconnect needs. We have hundreds of prototyping adaptors and sockets for PGA, QFP, PLCC, LCC, PGA, ZIP, and many more packages. Our line of clips for probing all different sizes of the different packages also number in the hundreds. We also do custom designs quickly and inexpensively including SMT components and tight spacing and supply the highest quality solutions. Call us for your interconnect needs.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616 CIRCLE NO 350

RFIIABIIITY

 and Malitalinability pREDICTION AND FMECA ANAIISIS SOFTWAREHundreds have used this leading computer-aided engineering software since 1982.
Powertronic Systems offers software to predict Reliability and Maintainability and for Failure Modes Effects and Criticality Analysis. Hundreds of users have selected from PSI's large, versatile and integrated software family for military and industrial equipment and for both electrical and mechanical systems. And, these programs are either interactive or can be input from batch modes from existing CAE or database programs
Programs implement MIL-STD-1629; MIL-HDBK-217 including E Notice 1; and MIL-HDBK-472.

Pawertranic Systems, Inc.

0. B0x 29109 New Orleans

CIRCLE NO 751

FREE SAMPLE

8PDT "BYTE WIDE" SWITCH HIGH DENSITY .050" PINOUT SNAP ACTION GOLD CONTACTS

Circle reader service number for free sample and complete information about Annulus High Density Switches.

ANNULUS
Annulus Technical Industries, Inc 1296 Osprey Drive P. P. Box 7407 Ancaster, Ontario, Canada L9G 4G4
HIGH DENSITY SWITCHES Tel (416) 648-8100 FAX 648-8102
CIRCLE NO 753

CIRCLE NO 756

SOFTWARE

 MAXI/PC DEMO DISKMAXI/PC int grated software
includes schematic capture, layout, autorouting, and outputs. 30 day, money back guarantee
For your free demo disk and brochure, call today or circle the reader service number.
1-508-692-4900
PCB CAD SOFTWARE

RACAL RACAL-REDAC

238 Littleton Road, P.O. Box 365
Westford, MA 01886-9984

CIRCLE NO 754

Protel Autotrax " $\sqrt{\text { II||||| }}$

Best PCB design solution for mixed Digital, Analog, and SMT boards Our NEW and POWERFUL Protel Autotrax ${ }^{\text {T" }}$ is a fully integrated PCB layout system with automatic component placement and autorouting in a single working environment. Its latest features will definitely push the price/performance of mixed technology PCB designs to the highest level, boost your design productivity, and deliver your products to the marketplace faster than your competitors. - Integrated automatic component placement and autorouting - On-the-fly library components creation
$45^{\circ}, 90^{\circ}$ and curve tracks routing

- Powerful user-definable Macros - Intelligent Pad to Pad autorouting Automatic power/ground relief for SMD pads - Automatic Copper Pour leaves clearance for tracks \& pads From schematic design, manual and automatic PCB design, Rip-up and Retry autorouting, to Gerber viewing and editing, we offer free tech and EMS support, 24 -hour BBS and 30 -day money back guarantee and our prices start at $\$ 395$.
Free Evaluation Package
Toll Free: 800-544-4186
Protel Tecbnology, Inc.
50 Airport Parkway, San Jose, CA 95110
Tel: 408-437-7771 Fax: 408-437-4913
CIRCLE NO 757

SAVE SPACE WITH Q/PAC® ${ }^{\text {COMPONENTS }}$

- Provide built-in capacitance
- Eliminate decoupling capacitance
- Gain 4-layer board quietness with 2-layer economy
- Vertical or horizontal mounting

Send for Rogers Q/PAC ${ }^{\text {® }}$ Application Bulletin.
Rogers Corp., 2400 S. Roosevelt St. Tempe, AZ 85282 602/967-0624

CIRCLE NO 758

UNIPRO,

the PC/XT/AT/386 based universal programmer/ tester programs PROMs, EPROMs, EEPROMs, up to 4 MB and 32 -bit wide, PALs, PLDs, GALs, EPLDs, PEELs, and Micro Controllers. JEDEC file compatibility and Test Vector verification allow the use of most popular PLD compilers. The unit also tests TTL CMOS Logic ICs and Dynamic/Static RAMs. 40-pin Gold ZIF socket, built-in protection for short circuit and over current, high speed parallel interface to the PC, and menu-driven software are included at $\$ 585$.
 764 San Aleso Ave Sunnyvale, CA 94086 TEL (408) 727-6995

CIRCLE NO 761

Create a DISKLESS PC

 IT'S EASY..IT's SIMPLE THERE's Nothing to it!!!PROMDISKItm III
IBM PC DISK EMULATOR CARD

* On-Board BIOS ROM *IBM PC/XT/AT Compatible * Mix EPROMs, EEROMs, SRAMs
* Emulates up to 1.024 Mbyte Drive
* Occupies 32 K PC address space * Supports popular Byte-Wide chips
* Includes PROMDISKtm III Software

For Information Call or Write:
MICRO COMPUTER SPECIALISTS, INC. 810-208 Los Vallecitos San Marcos, CA 92069 (619) 744-8087

CIRCLE NO 764

CIRCLE NO 759

McCAD ${ }^{\circ}$ EDS \#1 Integrated Macintosh ECAD System

Schematic Capture Analog/Digital Simulation PCB Layout Editors Advanced Autorouting Translators Call for FREE DEMO DISKS VAMP Inc. 6753 Selma Ave. Los Angeles, CA 90028 (1-213) 466-5533
*MacWEEK 1990 User Survey \& CAD Showdown 3 Results
CIRCLE NO 762

PROMICE emulates 8 bit ROMs from 2716-27080, or 16 bit ROMs 27 C 1024 or 27 C 2048 . (Inquire about emulating other ROMs. Non JEDEC ROM require custom cable.) Sophisticated LoadICE Host Software downloads, uploads and edits ROM contents, supports MS DOS, UNIX, MAC \& VMS. Software sources are included. - Bi-directional Serial link, autobaud to 57.6 KB -loads 1 Mbit in 25 secs. Bi-direc tional Parallel port (option)-loads 1 Mbit in 4 sec . Emulate up to 2 ROMs per unit, daisy-chain up to 256 ROMs from one port! New! Analysis Interface ${ }^{\text {TW }}$ (option) implements a ROM-based UART for sophisticated debugging.

\section*{Grammar Enguine
 \square
 161 Cherry Street | San Carlos |
| :--- |
| Caliornia 94070 |}

RS232 EE/EPROM, MICRO \& MEMORY CARD PROGRAMMER \$345/495 - Programs EE/EProms, Flash Eproms, ZPRams, Intel Micros, Memory Cards. - Stand-Alone Mode for EE/EProms and Memory Card Duplication / Verify

- All $24 / 28 / 32$ pin EE/EProms to 8 MBits (upgradeable to 32 Megabits) - All $2428 / 32$ pin EE/EProms to 8 MBits (upgradeable to 32 Megabits). - Accepts dedicated modeles: Memory Card Programming Module (Seiko,
Fujitsu) $-\$ 145$, Eraser/Timer Module - $\$ 50$, Gang Module (4 sockets) $-\$ 145$. Fuitsu) - $\$ 145$, Eraser/Timer Module - $\$ 50$, Gang Module (4 sockets)- $\$ 145$.
Simultaneously duplicates up to 5 devices in stand-alone mode (with Gang). - Can be operated with any computer containing an RS-232 serial port. - User friendly Menu-Driven Interface Program for IIM-PC or Macintosh.
- Full 1 year warranty. Customer support via voice line, fax or dedicated BBS INTELLIGENT ROM EMULATOR \$395
- Emulates 2716 through 27512 EProms with a single unit. Access time 120 ns . - User friendly software. Command set includes: Load (data), Write(data), Resel((arget sysem), - Address Compare with Halt output, Address Snapshot, Trigger input. - Fast data loading via parallel printer port (64k bytes in less than 10 sec - Cascadable up to 8 units. Includes target cable with Trigger/Reset/Halt clip MC/ VISA/AMEX Call today for datasheets! | | B\&C MICROSYSTEMS INC. |
| :---: | :---: |
| 750 N. Pastoria Ave, Sunnyvale, CA 94086 USA | | 0 N. Pastoria Aye, Sunnyvale, CA 94086 USA

EL:(408)730-5511 FAX: $(408) 730-5521$

CIRCLE NO 760

CIRCLE NO 765 FLOATINE POINT libraries for embedded applications Based on the IEEE 754 standard, FPAC (32 bit) and DPAC (64 bit) libraries are mature, well documented, and fully tested. The libraries are fully ROMable and include the following:

- Basic Operations - ASCll Conversion - Square Root - Integer Conversion - Trigonometric - Logarithmic

U S Software supports most Intel, Motorola, Zilog and Hitachi micros, including 80X86, 80386, 680X0, 80960, 8051, 8096, 68HC11, Z80 6809 and 6301.

For additional information, please contact

US SOFTWARE
United States Software Corporation 14215 NW Science Park Drive Portland, Oregon 97229
800-356-7097
503-641-8446
503-644-2413 (FAX)

CIRCLE NO 763

'488 CONTROL FOR YOUR MACINTOSH II

- Control any instrument in minutes.
- Supports BASIC, Pascal, C and Hypertalk. - HyperCard utilities included.
- Software library. Risk free guarantee.

Capital Equipment Corp. Burlington, MA. 01803
Informative catalog 800-234-4232
Applications help (617) 273-1818
CIRCLE NO 766

LCD WINDOWS CONTROLLER

The CY325 supports LCDs up to 128×240 pixels (16×40 char) with easy-to-use high-level commands and Parallel or Serial interface to host computer. The 256 built-in windows (or make your own) support window-relative text, graphics, plotting, bargraphs, waveforms, scroll/wrap/clip, etc. Read from an A/D and Write into Window! Separate text and graphic planes can be written or erased in any window. Eight pins support a variety of functions (soft-keys, waveforms) or can be used for GP I/O. Icons or special fonts can be user defined. Giant character mode, etc. Save months of design time with the CY325. $\$ 75$ CMOS $\$ 20 / 1000$ s.

Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 • Fax: (415) 726-3003 CIRCLE NO 767

Analog Circuit Simulation Completely Integrated CAE from \$95
 From Schematic
Entry through Spice Simulation to Post Processing IsSpice \$95, the complete Spice program, runs on all PC's.

IsSpice/ $386 \$ 386$, The fastest PC based Spice program available. Has virtually no circuit size limitations.

SpiceNer \$295, a schematic editor for any Spice simulator. Generates a complete SPICE netlist.
linuScope $\$ 250$, a graphics post processor that performs all the functions of a digital oscilloscope.
PreSpice $\$ 200$, extensive model libraries, Monte Cario analysis, and parameter sweeping.

Please Write or Call

P.O. Box 6607 (213) $833-0710$ San Pedro, CA 30 Day Money 90734-6607 Back Guarante日

CIRCLE NO 770

SCHEMA III

 MOST POWER OF ANY PC SCHEMATIC CAPTURE PACKAGEUnlimited hierarchies, ASCII input, 7000+ unique parts, library customization, user defined manager, color selections, online HELP, many netlist formats, TIFF, AutoCAD block, \& PostScript outputs and much more! ONLY\$495

1-800-553-9119
Free 800 Support
30 Day Guarantee

FAX:(214)783-9072 BBS\# (214)231-1350
CIRCLE NO 773

Interactive/Real-Time

Analog Circuit Simulation ECA-2 Electronic Circuit Analysis offers the best MonteCarlo and Worst-Case analyses with the capability to concurrently plot random samples or Min/Max/Nominal values.

- AC, DC, Transient, Fourier, and Temperature Analysis \bullet Inter active or batch modes \bullet Full nonlinear simulator \bullet Sine, Pulse PWL, SFFM, and Exponential generators ${ }^{\circ}$ IBM PC/Mac/SUN - Multiple plots • On-line real time graphics - 2 to 50 times faster than SPICE - Over 500 nodes * Advanced componen parameters \cdot Component Sweeping • Full editing, built-in or external - Detailed 525 page manual

Call for FREE DEMO!

Tatum Labs, Inc.
3917 Research Park Dr. B-1, Ann Arbor, MI 48108 313-663-8810

CIRCLE NO 768

SUPPRESS NOISE, POWER HIGH DENSITY BOARDS

MAGNA/PAC (TM) components combine power distribution and capacitance for dense boards. Mount MAGNA/PAC(TM) between rows of ICs to save space.

- Effective decoupling ZIP arrays
- Capacitance up to $3.0 \mu \mathrm{~F}$ per linear in.
- Reduce noise over a wide frequency range
- Equalize voltage on dense boards

Rogers Corp., 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624

CIRCLE NO 771

I.A.B., Industrial Applications Builder

 Powerful SW tool kit helps you build IBM PC-based data acquisition and control systems for process and machine applications. You get screen builders, scaling, conditioning, alarms, timing tables, statistics, and more. Flexible, debugged and reliable. Low cost. Available in source code. No royalties. Request free catalog. EXOR, P.O. Box 548, West Chester OH 45069, USA. Fax: 513-874-3684 Phone: 513-874-4665

Electronic R\&D CIRCLE NO 774

MacABEL

PLD Design on the Apple Macintosh
Data I/O's industry-standard ABEL PLD design package is now available on the Macintosh, exclusively from Capilano Computing Use Boolean and integer equations, state machines and truth tables to describe your design - Communicates directly with any serial PLD AMD, ATMEL, CYPRESS, GOULD, HARRIS, ICT, INTEL, LATTICE, NATIONAL, RICOH, SAMSUNG, SGS, SIGNETICS, SSS, TI, VTI and others - Interactive "in-circuit" schematic entry and simulation when used with DesignWorks

Call (604) 669-6343 today for your free demo kit!

Capilano Computing

FAX (604) 669-9531
CIRCLE NO 769
 CIRCLE NO 772

Little Giant

C Programmable Controller
This shirt pocket sized computer interfaces directly to the outside world Use it to control anything. Instantly programmable using your PC with Dynamic

C. ROM and bat-
tery backed RAM to 1024 k bytes. 8 Channel, 10 12 bit, A/D with conditioning. High voltage and current drivers. Battery backed time and date clock. Watchdog and power fail. 4 serial channels 24 parallel I/O lines. Timers. Integral power supply. Terminations for field wiring. Expansion connec tor. Plastic or metal field packaging available. OEM versions from $\$ 199.00$.

Z-World Engineering

 1340 Covell Blvd., Davis, CA 95616(916) 753-3722

Fax: (916) 753-5141
See us at Wescon -90 Booth \#458
CIRCLE NO 775

BUSINESS/CORPORATE STAFF

Peter DColey

Newton. MA 02158-1630
(617) 558-4673; Telex: 940573

Ora Dunbar, Assistant/Sales Coordinator
Mark J Holdreith
Associate Publisher
Newion, $402158-1630$
(617) 558 -4454

Deborah Virtue
Business Director
Newton. MA $02158-1630$
(617) 558-4779

new england

Chris Platt, Regional Manager
Clint Baker, Regional Manager
199 Wells Ave
Newton, MA 02159
(617) $964-3730$

STAMFORD 06904
George Isbell, Regional Manager
George Isbell, Regionar Manag
8 Stamford Forum, Box 10277
${ }_{(203)}$ (238-2580
NEW YORK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th St
(212) 463-6419

PHILADELPHIA AREA

Steve Farkas, Regional Manager
487 Devon Park Dr, Suite 206
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA

Greg Anastos, Regional Manager
Jack Johnson, Regional Manager
1350 E Touhy Ave Box 5080
Des Plaines, IL 60018
(708) 635-8800

DENVER 80206

John Huff, Regional Manager
44 Cook St
(303) 388-4511

DALLAS 75243

Don Ward, Regional Manager
Al Schmidt, Regional Manager
(214) 644-3683 or (214) 644-6529

SAN JOSE 95128

Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064

Charles J Stillman, Jr, Regional Manage
12233 W Olympic Blvd
(213) 826-5818

ORANGE COUNTY/SAN DIEGO
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone, Regional Manager
1750 SW Skyline Blvd, Box 6
(503) 297-4305

UNITED KINGDOM/BENELUX

Jan Dawson Associates	Tracey Lehane
44 Brynmaer Rd	Martin Sutcliffe
London SW11 4EW UK	27Paul St
Tel: 44-71-4986441	London EC2A 4JU UK
Fax:44-71-4986442	Tel: 44-71-628 7030

Fax:44-71-4986442

SCANDINAVIA

Stuart Smith
27 PaulSt
London EC2A 4JU UK
Tel: 44-71-628-7030; Fax: 44-71-628-5984
FRANCE/ITALY/SPAIN

Laura Whiteman
14 Rue des Parisiens
92600 Asnieres sur Seine France
Tel: 331-47900507
Fax: 331-47900643
Alessandro Coari
Via Favale 21/2 Santa Margherita Ligure
16038 Genova, Italy
Tel: 185286304
Fax: 185286304

GERMANY/AUSTRIA/SWITZERLAND/BAVARIA

Wolfgang Richter
Sudring 53
D-7240 Horb 1 A/N
Test Germany
Fax:49-7451-1794

ISRAEL

Asa Talbar
Talbar Media
Box 22917
Tel Aviv 61228, Israel
Tel: 0222 8083 ; Fax: 9722-247-403

FAREAST

Jack Kompan, Asian Director of Marketing
Canners Asia Ltd
22nd fl, Lo Yong Court Commercial Bldg
Wanchai, Hong Kong
Tel: 852-572-2037; Fax: 852-838-5912

HONG KONG

Adonis Mak
Cahners Asia Ltd
22nd fl, Lo Yong Court Commercial BIdg
212-220 Lockhart Rd
Wanchai, Hong Kong
Tel: 852-572-2037; Fax: 852-838-5912

JAPAN

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
Suite 003 , Sun Palace Shinjuku
Tokyo 160, Japan
Tel:03-366-8301.
ax: 8133-668-302
Telex: J2322609 DYNACO

KOREA

Jeong-Gwon Seo
Doo Bee International Ltd
Center Bldg
1-11, Jeong-dong
Choong-ku, Seoul, Korea
Tel: 02-776-2096; Fax: 02-755-9860
Telex: K27117DOOBEES
SINGAPORE/MALAYSIA/INDONESIA/THAILAND/
THE PHILIPPINES/AUSTRALIA/NEW ZEALAND
Hoo Siew Sai
Ad. South Bridge Lidd
Peter Cheong
95, South Bridge Rd
09-13 South Bridge Centre
Singapore 0105
Fax: 65-532-4027
10 Andrea St
Highbury 5089
Adelaide, South Australia
Tel: 61-8-396-0588

TAIWAN

Acteam International Marketing Corp
Box 82153
Taipei, Taiwan ROC
Tel: 886-2-7114833; Fax: 886-2-7415110
Telex: 29809

PRODUCT MART

Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) $463-6415$

INFO CARDS

Heather MCEIkenny
Newton, MA 02158-1630
(617) 558-4282

CAREER OPPORTUNITIES/CAREER NEWS

Roberta Renard, National Sales Manager
Janet O Penn, Eastern Sales Manager
103 Eisenhower Pkwy
Roseland, NJ 07068
(201) 228-8602 or (201) 228-8610

Fax: (201) 228-4622
Nancy Olbers, Western Sales Manager
238 Highland St
ortsmouth, NH 03801
(603) 436-7565; Fax: (603) 436-8647

Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
201) 228-8608

Wendy A Casella, Eleanor I O'Hara, James P Joyce Advertising/Contracts Coordinators (617) 964-3030

William Platt, Senior Vice President

Reed Publishing USA
Cahners Magazine Div
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Senior Vice President/General Manager,
Boston Div

Circulation: Denver, CO: (303) 388-451
Eric Schmierer, Group Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018. Phone (708) 635-8800

High performance at a lower price: The hyper-
stone E1 32-bit μ P for
embedded systems. 25

MIPS with standard

DRAMs. Short design
time, low hardware
costs. Second source.
Your alternative: The
hyperstone E1 32-bit μP for better products.
electronica
6.-10.N 25 CO6

Powerful instructions of variable length 16, 32, 48 bits. Instruction cache, busand DRAM-controller, parity logic onchip. 25 MIPS maximum at 25 MHz .

Separate 32 -bit address and data bus.
16 global registers, 16 local registers
per call frame, overlapping for efficient
parameter passing. 144 PGA. 85,000
transistors.
Available tools:
Assembler, C Compiler,
Source-Level Debugger,
Evaluation Board.
lectronics cmbH

Thomson Consumer Electronics, manufacturer of RCA and GE brand consumer electronics products, is redefining the future of home entertainment. The Indianapolis advanced development facility is part of a global network of R\&D centers located throughout Europe, Asia and The United States. The development of new generations of television technologies, including HighDefinition Television, has created opportunities for innovative Electrical Engineers to join us in our efforts to bring exciting new products from concept to reality. Current opportunities are available in:

- VIDEO SIGNAL PROCESSING Digital, Analog, Digital Logic Design and IC Design

- DEFLECTION DEVELOPMENT

- MICROCOMPUTER DEVELOPMENT

Software/Hardware

- AUDIO DESIGN

Circuit Development and Acoustics

- CAD/CAE

Your qualifications for these positions must include a strong academic background including a B.S. or advanced degree and demonstrated competence in one of the above areas.
Thomson offers excellent salaries and benefits, plus exceptional opportunity for professional growth and recognition with a global leader in consumer electronics.

Please send your resume, in confidence, to: Dave Lovell, Professional Relations, M.S. 27-134E, Thomson Consumer Electronics, P.O. Box 1976, Indianapolis, IN 46206-1976, or FAX your resume to us at (317) 231-4203. An Equal Opportunity Employer.

CAREER OPPORTUNITIES

1990 Recruitment Editorial Calendar

Issue	Issue Date	Ad Deadline	Editorial Emphasis
Magazine Edition	Nov. 8	Oct. 18	Signal Processing, Computer-Aided Engineering, Computers \& Peripherals, Software, Wescon Show Issue
News Edition	Nov. 15	Oct. 26	Displays, Defense, Special Supplement: Interconnect
Magazine Edition	Nov. 22	Nov. 1	17th Annual Microprocessor Directory, ICs \& Semiconductors, Test \& Measurement, Workstations
News Edition	Nov. 29	Nov. 8	ICs/Communication Controllers/ Microprocessors, DSP, Regional Profile: Illinois, Minnesota \& Michigan
Magazine Edition	Dec. 6	Nov. 15	Product Showcase-Volume I: Software, ICs \& Semiconductors, Packaging \& Interconnect, Power Sources
News Edition	Dec. 13	Nov. 21	Power Supplies, Computers, Special Supplement: Salary Survey, Regional Profile: Florida
Magazine Edition	Dec. 20	Nov. 29	Product Showcase-Volume II: Test \& Measurement, CAE Systems, Computers \& Peripherals, Components

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

ENGINEERING PROFESSIONALS FAST FORWARD

Your career and join the dynamic, growing engineering team at DIGITAL F/X. We are THE leading supplier in the integrated, digital/video post-production industry. From our desktop workstation, "Video F/X", to the high end "Composium" full post production suite, our team is changing the way people communicate. Let us help you make the change.

SENIOR ANALOG ENGINEER

The responsibility is for new and existing product design from conception to completion. This includes product specification, design of analog features, scheduling outside services, contractors, vendors, etc. . . and setting deliverables. Focus will be on board design for cost reduction, new functionality, mass production and testability. Technical responsibilities will involve circuit analysis and design, NTSC/PAL encoder/decoder design, broadcast quality video and system functional specification. Additional technical focus is in NTSC/PAL encoder analog gate array specification, NTSC/PAL switchable Sync Pulse Generator (SPG) and analog video mixer/keyer.
The requirements are for $10+$ years analog circuit design (Broadcast quality video). Analog experience should include NTSC/PAL encoder/decoder design, Phase locked loop knowledge, Amplifiers/Buffers, etc. Digital circuit design knowledge should include Digital control of analog functionality, A/D and D/A converters, etc. Familiarity with CAD schematic entry and circuit analysis tools is also required. Mailstop 1A
For immediate consideration, please call (415)961-2800, FAX your resume to (415)961-6990, or send resume to: Human Resources, Digital F/X, Inc., 755 Ravendale Drive, Mountain View, CA 94043. We are an equal opportunity employer. Principals only, please.

Honeywell: OPENING THE DOOR TO AVIONICS TECHNOLOGY OF THE 90s.

Honeywell in Phoenix offers a variety of career opportunities in our Commercial Flight Systems Group. Our continuing growth has created the following positions:
Systems Design Engineer - In this area, you will be involved in guidance and control systems analysis and hardware/ software design trade-offs. Specification designs, including guidance, navigation and control algorithm development, as well as systems integration and installation, flight test and customer liaison activity, are a part of these positions.

System Software Development This area involves development of flight software for advanced guidance and control systems for aircraft using modular and structured programming techniques. You will be involved with algorithms and development of real-time programs in both assembly (8086 family Z8002, 68000) and high order languages such as Pascal, "C," Ada and PLM/86, with subsequent hardware integration.

Electronics Engineering - These positions involve the development of new processor/bus architectures and specifications
to support fault tolerant/redundant airborne applications.

Display Systems - These positions offer systems, software and hardware opportunities with CRT/LCD display technology. You should be familiar with digital hardware design and/or real-time programming. Systems functions include overall system definition, design and customer interaction.

To qualify for the positions listed above, you should have a BSEE or a BSCS degree and at least three years of experience.

Quality Engineering - To qualify for this position, you should have a BS degree in an engineering curriculum. A minimum of two to five years of experience in quality engineering/assurance, reliability and/or product engineering is required. You should have computer applications experience. Customer interface experience is preferred.

Additional opportunities are available

 in:- CRT/LCD Display Technology
- Avionics Systems Simulation
- CAE Engineering (Apollo Mentor Systems)
- Artificial Intelligence
- VAX Systems Administration
- Fiber Optic Pressure Sensors
- EMI/HERF
- Software Tools Development

Make a career move. Honeywell offers you a competitive salary and benefits package. All new employees are required to successfully complete a drug screening test. Send your resume and salary history, in confidence, to Honeywell, Commercial Flight Systems Group, Professional Employment (EDN-E845), P.O. Box 21111, M/S I-17C, Phoenix, AZ 85036.

Honeywell

HELPING YOUCONTROL YOUR WORLD

SPACE \& COMMUNICATIONS GROUP

From the beginning of satellite communications technology in the late 1950's, Hughes Aircraft Company's Space \& Communications Group has been at the heart of progress. Today, we're continuing on as a world leader in new space communications-discovering what no one of yesterday thought possible. We're currently offering opportunities to join our remarkable engineering team.

HIGH FREQUENCY ELECTRONICS IN THE DESIGN \& DEVELOPMENT OF

SATELLITE PAYLOADS-Openings available for:

- Microwave Integrated Circuits Design Engineers
- Monolithic Integrated Circuit Design Engineer
- Millimeter Wave Circuit Design Engineers
- RF Circuits Design Engineers
- Analog/Digital Circuit Design Engineers
- Phase-Lock Loop Circuit Design Engineers
- Digital Signal Processing Engineers
- Developmental Packaging Assembly Designer/MW
- MW/PWB Packaging Mechanical Engineer

COMMUNICATIONS HARDWARE DESIGN ENGINEER-You must be experienced with circuit design and analysis of communications electronics that meet complex modulation/demodulation requirements. This includes architecture studies, trade-off analysis and requirements development, noise figure assessment, gain distributions, worst case margins and linearity requirements. Advanced estimation skills of synthesizer spur performance, switching speeds and electronics performance in the presence of interference also required. Experience with frequency, synthesizer, modulators/demodulators, transmitters and receivers highly desired. Advanced designs for synthesizers and modulators, the ability to integrate analog, digital, RF and microwave circuits into functional requirements, and application experience of A/D and DSP for receiver design also desired.
MSEE or BSEE preferred for all the above engineering positions.
MTS MECHANICAL ENGINEER-You will perform mechanical design and developments of Flight RF Subsystem Payloads. Knowledge of RF units, waveguide, coax and subsystem packaging highly desired. Experience in Computer Vision or CADAM preferred. A BSME and a minimum of 1-2 years experience preferred.
MICROWAVE/MONOLITHIC MICROWAVE INTEGRATED CIRCUIT MIC/NMIC HARDWARE DESIGN ENGINEERS-You must be able to design MIC or NMIC circuits, including FET amplifiers, switches, mixers, multipliers, filters and other RF components ranging from UHF to millimeter wave frequency. Knowledge of TOUCHSTONE, FILSYN and VALID design/layout tools preferred.
MICROWAVE/MILLIMETER WAVE ENGINEERS-You must have experience with: microwave and millimeter wave satellite communications hardware design and test; subsystem design and analysis; module and unit design and analysis; flight production through subsystem integration and test; microwave and millimeter wave measurement test equipment, techniques and procedures; high accuracy scalar and vector measurement setups, power measurements, and in time and frequency domains. High reliability hardware design and practice for space/radiation environments, hands-on hardware tune and test experience, and knowledge of data and modulation/ demodulation formats preferred. Subsystem experience should include design to meet payload link margins, including noise figure, gain, linearity and jamming scenarios. Hardware design experience should include both active and passive circuits in planar, coaxial and waveguide transmission mediums, advanced solid state devices, HEMT transistor technology, IMPATT diodes and GaAs devices. BSEE required.
Hughes Aircraft Company offers an attractive salary and an outstanding benefits package, including tax-deferred savings; medical, dental and vision care coverage, plus paid time off between Christmas and New Year's.
For immediate consideration, please send your resume, to: Hughes Aircraft Company, Space \& Communications Group, S40/T370, Dept. NDE-104, P.O. Box 92919, Los Angeles, CA 90009. Proof of U.S. citizenship may be required. Equal Opportunity Employer.

you're going?

When your career is locked into a single technology, you don't have many options. At LSI Logic, we give you more choices. Because we're not just leaders in ASIC products. We also dominate the market in RISC microprocessors. And our family of digital signal processing (DSP) chips is growing every day. Which means a whole new world of possibilities for your future.

We offer a whole world of options in another way: Your participation in advancing technology on a global scale. See, we've established operations in 14 countries around the world, and maintain open lines of communication with our foreign design centers. So you can see your ideas shape products internationally. Where do you think you're going? If you're smart, straight to LSI Logic.

DSP PRODUCTS

Product Marketing Engineer
Product Line Manager
Design Engineer/DSP
Senior Design Engineer/Graphics

MICROPROCESSOR PRODUCTS

Reliability Supervising Engineer

SPARC

Applications Engineer
Customer Marketing
Product Engineer
Design Engineer
Design Engineer/Logic
Design Engineer/Architecture
Product Marketing Engineer
Sales Development Engineer
Product Line Manager
VALUE ADDED DESIGN
Product Marketing Engineer II
Design EngineerII/Board/Systems

MIPS

Applications Manager
MEMORY
Mask Designer I
Design Engineer
INTEGRATION TECHNOLOGY/ SUBSYSTEM DEVELOPMENT
Product Engineering Manager

ASIC PRODUCTS

Senior CAD Engineer
CAD Engineer
Product Applications Engineer/Design Tools Test Engineers

(Refer to Job \#EDN/BK41)

MIS

Senior Programmer Analysts (IMS/DBMS, VSAM, COBOL)
Senior Programmer Analysts (NOMAD)
(Refer to Job \#EDN/CLF41)

FAX YOUR RESUME TODAY! 408-433-6825 INDICATING APPROPRIATE JOB NUMBER

By identifying the most favorable benefits and investment programs, we're able to provide a well-rounded employment package that includes medical/dental/life insurance, vision care, a $401(\mathrm{k})$ plan, stock purchase plan, and tuition reimbursement. If unable to fax, please mail your resume, indicating appropriate Job Number, to Professional Staffing, LSI Logic Corporation, 1551 McCarthy Blvd., Milpitas, CA 95035. An equal opportunity employer. Principals only, please.

IGNORE THE BOUNDARIES

We're looking for one-of-a-kind Engineers.

01001010019
yol00010 01001110
oooy

One-of-a-kind technologies require the expertise and knowledge of one-of-akind engineers. VideoCipher Division, a leader in communications in San Diego and the world's largest supplier of encryption systems for satellite distribution, understands this.

Right now we're looking for exceptional engineering professionals like you to join us. You'll have the most advanced tools available at your fingertips to create new technologies, something you'd expect from a fast growing company with over $\$ 220$ million in annual sales. What we're offering you is a one-of-akind opportunity to work with our team of highly-respected engineers. You'll have the opportunity to work on our proprietary systems such as DigiCipher,'m the only all digital compression technology precertified by the FCC for HDTV broadcast in the U.S., as well as progressive access control security systems for delivery of entertainment programming.

Put your talents to work in one of the following engineering departments:

DIGITAL DESIGN	ANALOG DESIGN
MANUFACTURING	VLSI
SYSTEMS	RELIABILITY
	HARDWARE/TESTING

> MECHANICAL
> FIRMWARE
> FCC COMPLIANCE

Enjoy an excellent salary and benefits package, which includes relocation, as well as the opportunity to live in and enjoy beautiful San Diego. If you are a one-of-a-kind engineer looking for projects you won't find anywhere else, please send your resume or letter of interest to: Human Resource Department EDN-1, 6262 Lusk Blvd., San Diego, CA 92121. Equal opportunity employer.

VideoCipher Division
 ENERAL INSTRUMENT

1010111101001001000011001001010110100101010111010001001011101111101000100101101001111101000100101116 IIIOIOOIOOOIOIOIIIOIOIIIIOIOOIOOIOOOOIIOOIIOIOOIIOIOOIOIOOIOOOIIOIOOIOIOOIOOIOIOOIIOIOOIOIOOIC IOIOIOOIOIOIOOIOIIOOIOIIOIOIOOIOIIOIOOIOOIOOIOIOIOIOOIOIOIOOIIOIOOIOIOOIOOIOIOIOIIIOIOOIOIOOIOC

EE

CELLULAR
Nationwide openings for engineers, \& technicians with exp. in cellular, paging or mobil communications.

PROPAGATION STUDIES PSTN INTERCONNECT RF SYSTEMS CELLULAR BASESITES
 SITE MANAGERS DIGITAL RADIO DESIGN SITE OPTIMIZATION POWER EQUIP. INSTALLATION

Fees/expenses are Company paid \& relo pkgs. are available. For further details/inquiries call/send resume.

TOM MANNI

AES SEARCH DIVISION
73 MAIN, WOODBRIDGE, NEW JERSEY 07095 800-545-4519

Fax (201) 750-3646

Can You Make The Obscure Suddenly Obvious?

> Once something is finally figured out, it's crystal clear to most everybody.

But until then, it takes someone with a real genius to be the first to see the "obvious." To take things that are theoretical or obscure then make them real and practical and important.

That's the rare kind of Electrical Engineer we have at TRW's Electronic Systems Group. And the kind we want more of for our Digital Development Laboratory, where we design and develop analog/digital signal and data processing technology for spacecraft payload applications.

Frequency Synthesizer Development

If you have solid experience in synthesizer techniques, digital control and analysis, talk to us about a position (design or management) in development of phased locked loop frequency synthesizers for spacecraft and technology applications.

Demodulator Development

Positions require at least 5 years' experience in spacecraft digital demodulators. Techniques apply to BPSK, FSK, QSPK, and higher order modulation formats.

Signal Processing

We want to talk with EE's who have at least 5 years' experience in such areas as FFT 's, digital filters and special processors. Spacecraft electronics experience is highly desirable.

High Speed Digital Circuit

 DesignParticipate in the research and development of high speed digital hardware for space applications. Activities include: design and test of custom LSI, gate-arrays, hybrid and high speed digital slices. Familiarity with bi-polar transistor technologies plus BSEE and 3 years minimum experience desired.

Computer Architects

This Digital Designer has at least 3 years' experience in computer architecture (1750A, fault tolerant processing) and ideally also has spacecraft electronics experience.

VLSI CMOS Circuit Design Engineer

You will be responsible for RADHard CMOS custom and ASIC IC's using state-of-the-art hardware and software. Chips utilize gate array, standard cell, megacell and silicon compiler libraries, with functions from SSI to LSI complexity. You'll also design, layout, characterize and verify custom and ASIC chips.
Requires BSEE/MSEE or equivalent plus at least 4 years' experience. Knowledge of CMOS technologies, GDT and VTI software, SUN workstations, and C programming language desirable.

Analog Systems Design

In our Advanced Analog Systems Dept., you will design A/D converter and analog processing systems, help develop flight unit/slice hardware and/or custom ADD converter LSI, as well as provide technical and project management support You need a BSEE and at least 6 years' experience. AD converter LSI chip design or analog flight H / W experience is desired.

Once you learn more about the wonderfully obscure things we're working on, your choice will be suddenly obvious. You must work at TRW. What's more, our comprehensive compensation package includes amenities that are among the best in the industry. So please send your resume to: TRW ESG, Dept. 1090EDN, R6/1047, One Space Park, Redondo Beach, CA 90278. Equal Opportunity Employer. U.S. Citizenship may be required. Principals only, please.

Many call.Only the best are chosen.

Abstract

This ad is for managerial talent seeking high-tech opportunities that only start-ups can offer. (Start-ups that also happen to be located where the climate is kind, greenways are great and ocean beaches and mountain resorts are just a short drive away.)

Find your calling at Ericsson GE Mobile Communications in North Carolina. A joint venture between L.M. Ericsson of Sweden and GE, Ericsson GE is providing unlimited challenging opportunities at our Research and Development Center for digital cellular technology-a new state-of-the-art facility in Research Triangle Park, N.C.

At Ericsson GE, you can put your exceptional creative talents to work - you're at the hub of high tech-knowledgeable ${ }^{\text {sM }}$ breakthroughs. And you can also enjoy the advantages of living in one of the country's most beautiful, exciting and affordable areas.

Challenge yourself. Call on your experience for these immediately available opportunities:

Director/Manager-Applied Research For Cellular Phone Systems

Applicants should have 10 or more years of advanced research and development experience in communications and signal processing with an established reputation as an outstanding researcher in the field of Cellular Phone Technology. A doctorate (or equivalent experience) in EE , physics or
related field is desirable. The successful candidate will direct the applied research effort of Ericsson GE's new North Carolina facility with initial key responsibility to staff the organization with outstanding applied researchers.

Manager-Cellular Phone Specifications

Applicants should have 8 or more years of experience in defining specifications for cellular phone systems and related products. A B.S. in EE with an advanced degree is highly desirable. The successful candidate will supervise, inspire and direct the effort in coordinating and integrating the appropriate specifications into the efforts of the design and development teams. The candidate must be articulate with excellent writing and negotiating skills, capable of providing technological insight both externally and internally.

We offer competitive salaries with an exceptional benefits package. If you're interested in any of these opportunities, send your resume, with salary history, to:

> Ernie Leskovec, Ericsson GE Mobile Communications, Inc. P.O. Box 13969, One Triangle Drive, Mail Drop NDE, Research Triangle Park, NC 27709 .

Discrete phone calls can be made directly to Ernie Leskovec at
(919) 549-7529 or 7530.

Principals only-please, no agency referrals.

EDN's INTERNATIONAL ADVERTISERS INDEX

How many design options will you find with our KK connector system?

The possibilities are endless.

Here's a connector system that's as broad as your imagination. The Molex family of KK ${ }^{\circledR}$ connectors includes 15 basic units. You can combine these in an almost endless number of reliable, cost-efficient board-board and wireboard system designs. Look at the possibilities:

Specify KK connectors with . 100" or . $156^{\prime \prime}$ center spacing...top, side or bottom pin entry PC board connectors...tin, gold, or surprisingly low cost selective gold plating...crimp, solder tail or insulation displacement terminations.

KK connectors give you still another choice: standard KK dual cantilever or unique Trifurcon ${ }^{\text {® }}$ terminals with 3 contact points for highest reliability in tough operating conditions.
See how much flexibility, reliability - and economy - you can get for your connector dollar. Ask your Molex representative for more information on the incredible KK connector system.

Bringing People \& Technology Together, Worldwide ${ }^{\text {T }}$

[^19] Far East North Headquarters: Tokyo, Japan, Tel: 81-427-21-5539 • Far East South Headquarters: Jurong Town, Singapore, Tel: 65-660-8555

Exotic Customs at UDS

The special requirements of data communications OEMs have resulted in some pretty exotic custom modem cards from UDS.

Funny form factors are routine fare for our custom designers. Nooks, crannies and odd card configurations are no problem, given sufficient square inches of real estate. UDS engineers have even designed a complete 2400 bps modem that's the size of a credit card.

Non-standard modem functions are another specialty of the house. For example, UDS engineers have already designed and delivered a hand-held RF modem operating at 9600 bps !

For a generous sampling of UDS' custom design capabilities, ask for the new, free OEM modem brochure.

UDS has successfully handled more than 3,000 custom OEM modem design assignments - and we can handle yours. To begin an exotic custom, contact UDS, 5000 Bradford Drive, Huntsville, AL 35805-1993. Phone 205/430-8000; FAX: 205/430-8926.

(4) motorola

The Best You Can Buy For Your Products And Premises

Since 1976, Belden has worked with some of the largest companies in the world to help them integrate fiber optic technology into their product designs, premise communications and data transmission networks.

Today, you can use Belden ${ }^{\otimes}$ fiber optic cable as backbone highways for multiple LANs; direct connections to workstations, mainframes and supercomputers; and as ideal interconnects for real-time response and graphic intensive systems.

All Belden ${ }^{\otimes}$ fiber optic cables meet Fiber Distributed Data Interface (FDDI) standard specifications for high speed transmissions...the only fiber network standard to progress to industry-wide product development and in-stock availability.

Belden ${ }^{\circledR}$ networking cables for FDDI include loose and tight buffered cables for outdoor and indoor applications. All indoor premise cables are NEC rated. Connectorized assemblies are also available.

These are the basic fiber optic products in our catalog, but if you have an unusual application or requirement, you can once again count on Belden. Our new 69,000 square foot Belden Engineering Center can help you develop products and systems that meet whatever design requirements you might have.

This state-of-the-art facility is dedicated to keeping our OEM customers on the leading edge of technology, with product sample development, test and analysis, process and equipment testing and de-
velopment, and compound materials testing and development.

So if you've been concerned about who's going to help you meet your company's future needs for fiber optic products and technology, stop worrying and give us a call. At Belden the future is now.

For more information and a free copy of our new Fiber Optic Catalog, call:

1-800-BELDEN-4

Belden Wire and Cable
P.O. Box 1980

Richmond, IN 47375

[^0]: EDN ${ }^{*}$ (ISSN 0012-7515) is published 50 times a year (biweekly with 2 additional issues a month, except for February DN Sopter, which issues and and September, which have 3 additional issues and July and December which have 1 additional issue) by Cahners Mublishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Senior Vice President/General Manager, Boston Division; Jerry D Neth, Senior Vice President/Publishing Operations; JJ Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. corrections to EDN ${ }^{\circ}$, PO Box 173377 , Denver, CO $80217-3377$. EDN ${ }^{\circledR}$ copyright 1990 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$109.95/year; Canada/Mexico, \$135/year; Europe air mail, \$165/year; all other nations, \$165/year for surface mail and \$250/year for air mail. Single copies are available for $\$ 10$. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental
 Engineering \square Manufacturing \square Entertainment \square Home Furnishings \square and Interior Design Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^2]: ©1990 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: (408)943-2666, Telex 821032 CYPRESS SNJUD, TWX 910-997-0753. Trademarks: MAX - Altera Corporation.

[^3]: MAX and MAX + PLUS are trademarks of Altera Corporation. PAL is a registered trademark of Advanced Micro Devices

[^4]: HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, N.Y. 11716, (516) 567-5600, TLX-310-685-2203, FAX: (516) 567-7358

 WEST COAST (CA.): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988; WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767
 WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
 NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
 UNITED KINGDOM: 44 (635)-40158, FAX: 44 (635) 32264; JAPAN: (3) 814 7688, FAX: (3) 8147689
 FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762
 WEST GERMANY: 49 (8191) 3105, FAX: 49 (8191) 47433; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181

[^5]: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106; Headquarters: (617) 329-4700; California: (714) 641-9391,(619) 268-4621,(408) 559-2037;
 Colorado: (719) 590-9952; Maryland: (301) 992-1994; Ohio: (614) 764-8795; Pennsylvania: (215) 643-7790; Texas: (214) 231-5094; Washington: (206) 575-6344; Austria: (222) 885504-0;
 Belgium: (3) 237 1672; Denmark: (2) 845800; France (1) 4666-25-25; Holland: (1620) 81500; Israel: (052) 911415; Italy: (2) 6883831, (2) 6883832, (2) 6883833; Japan: (3) 263-6826;
 Sweden: (8) 282740;Switzerland: (22) 315760 ;United Kingdom: (932) 232222; West Germany: (89) 570050 . 'EDN,"EDN's DSP Benchmarks," September 29,1988.

[^6]: MultiSim and Vanguard are trademarks of Teradyne, Inc. VAX is a trademark of Digital Equipment Corporation. Sun is a registered trademark of Sun Microsystems, Inc.

[^7]: World Headquarters: Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752-1192 USA, (508) 481-3700, Fax (508) 481-8620, Tix 951646
 United Kingdom Headquarters: Data Translation Ltd., The Mulberry Business Park, Wokingham, Berkshire RG11 2QJ, U.K., (734) 793838, Fax (734) 776670 , Tlx 94011914
 West Germany Headquarters: Data Translation GmbH, Stuttgarter Strasse 66, 7120 Bietigheim-Bissengen, West Germany 7142-54025, Fax $7142 \cdot 64042$

[^8]: c) 1990 Actel Corporation, 955 E. Arques Ave, Sunnyvale, CA 94086. ACT, Action Logic, Activator, and marks or registered trademarks of their respective holders.

[^9]: The converter is just one, but central, step in the processing of video signals for later digital manipulation. (Courtesy Micro Power Systems)

[^10]: Notes: Specifications cover commercial temperature ranges.
 NA=not applicable *DDIP=double-wide DIP †FSR=full scale range
 NS=not specified **TDIP=triple-wide DIP

[^11]:

[^12]: -Novell certification applies to the EtherStar LAN adapter which incorporates the Fujitsu chip set.

[^13]: ALABAMA (205) 880-8050. ARIZONA (602) 991.6300. CALIFORNIA (408) 253.1960, (619) 292.1771, (714) 8914621.
 IOWA (319) 354-8894. MICIIGAN (313) 6430506. MIN NESOTA (612) 786-7641. NEVADA (916) 268-1737
 NEW JERSEY (201) 525-8000 (609) 983.5300 NEW YORK (516) 929.5756. (716) 586-0777. (518) 383-2239 N. CAROLINA (919) $847-8800$. OHIO (513) 272.0580 . PENNSYIVANIA (412) 487-1246. S. CAROLINA (803) 2334637. TEXAS (214) 553:1200, (512) 8348374 , (713) 370-8177. WASHINGTON (206) 882 0962, (206) 2544572. WISCONSIN (414) 781-1730. ERICSSON COMPONENTS, INC. (214) 669.9900.

[^14]: ASIA OFFICE - Taiwan - MICROTEK INTERNATIONAL 886-2-723-5577/Japan - CORE Digital 81-3-7955171 EUROPE OFFICE - Germany - ALLMOS 49-89-8570000/France - M.T.E. 33-1-39618228/U.K. - ARS Microsystems 44-276-685006

[^15]: From the book, An Implementation Guide to Real-time Programming, by David L Ripps, © 1989. Excerpted by permission of Prentice-Hall Inc, Englewood Cliffs, NJ.

[^16]: (c) 1990 Northwest Airlines, Inc.

[^17]: *Test results for the MATRIX Rugged Series show boards withstood 105 g's of shock for 6 ms and 10 g 's of vibration at the first natural resonant frequency.

[^18]: 4800 Wheaton Drive
 Fort Collins, CO 80525
 (303) 226-0500

 1-800-776-0500 (USA)

[^19]: Corporate Headquarters: 2222 Wellington Ct., Lisle, IL 60532 U.S.A., Tel: (708) 969-4550 • European Headquarters: Munich, West Germany, Tel: 49-89-413092-0

