

Digitize analog signals using simple procedures
Motor modeling eases control-system design Fiber-optic transmitter and receiver modules

Smart-power ICs expand application horizons

Unclutter your1553 data bus.

Now you can have a more reliable MIL-STD 1553 data bus system that uses less real estate. All on our monolithic, dual-redundant UT1553B RTI.

Fully proven in military and aerospace products of United Technologies Corporation, UTMC's RTI is ready for your system. It features the low power consumption of CMOS technology and is the standard LAN used for military systems requiring a serial bus with low EMI/RFI susceptibility and high data
integrity. Of course, the UT1553B RTI is screened to selected tests in MIL-STD 883C.

This RTI reduces host overhead with an automatic DMA and address generation and can be used in a transparent dual-port RAM configuration. It interfaces with data bus transceivers, system memories, and 8 - or 16 -bit CPUs. Various 84-pin package options available. If your 1553 data bus needs are getting lost in a maze of hybrids, call UTMC. We'll unclutter things.

Product Marketing United Technologies Microelectronics Center 1575 Garden of the Gods Road Colorado Springs, Colorado 80907
1-800-MIL UTMC

UNITED
TECHNOLOGIES
MICROELECTRONICS
CENTER

2 grams of ceramic and 18 inches of wire can't make you more competitive.

There's only one real reason to specify Dale ${ }^{\circledR}$ wirewound resistors: We'll work harder turning something common into something uncommonly valuable. Up front that means saving you selection time by producing every standard shape and size in the book. Plus, we give you immediate access to design assistance and a wide range of proven special products.

It means factory and distributor stocking programs that can be quickly fine-tuned to your Just-InTime delivery programs.

And, it means making reliability

Dale"Can.

the least of your worries with wellestablished Statistical Process Control and Quality Assurance systems to give you ship-to-stock capability.

Dale wirewound resistors.

They're not commodities - they're the power you need to help make your products more competitive. Contact your Dale representative or distributor, or phone: 402-564-3131 Dale Electronics, Inc., 2064 12th Avenue, Columbus, NE 68601.

DALE.

Dale Makes Your Basics Better

Circle No. 1

You have the advantage with Prem

Your opening move is critical . . .
It can lock you into a winning or losing game. Prem maintains a large inventory of PC Power Transformers. We ship standard prototypes almost immediately. You do not have to pay high middlemen prices to get fast delivery.

CSA and UL at no extra charge . . .

While our opponents may be charging extra for CSA Certification and UL Recognition, you won't be paying more with PREM on your side. Our entire line of PC Power Transformers is CSA Certified and UL Recognized at no additional cost to you.

More play options . . .

Prem gives you maximum flexibility . . . we'll modify any of our standard components to suit your requirements. Or, our experienced engineers will design a custom component specifically for your application.
You can plan your strategy . . .
You do not have to take your entire order immediately. We'll schedule deliveries as far as 12 months from your order date.

Checkmate!

By the way, our prices are lower. We invite you to compare them with any of our competitors. When you receive our latest catalog, you'll have a cross reference to Microtran, Signal, Stancor and Triad part numbers!

Why not give yourself the PREM advantage?

Send for our NEW CATALOG today!

PREM
MAGNETICS, INCORPORATED
3521 North Chapel Hill Road McHenry, Illinois 60050
Tel. 815-385-2700
TWX 910-642-3763
FAX (815) 385-8578
Where quality really counts!

For immediate technical data, you can find us in Volume A of 1987/88 EEM. Or call us.

dc to 3GHz

- less than 1dB insertion loss over entire passband
- greater than 40 dB stopband rejection
- 5 section, 30 dB per octave roll-off
- VSWR less than 1.7 (typ)
- over 100 models, immediate delivery
- meets MIL-STD-202
finding new ways
setting higher standards

\square Mini-Circuits
 P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500

 Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156- rugged hermetically sealed package ($0.4 \times 0.8 \times 0.4 \mathrm{in}$.)
- BNC, Type N, SMA available

LOW PASS	Model	*LP-	10.7	21.4	30	50	70	100	150	200	300	450	550	600	750	850	1000
Min. Pass Band	MHz) DC		10.7	22	32	48	60	98	140	190	270	400	520	580	700	780	900
Max, 20dB St	Frequenc		19	32	47	70	90	147	210	290	410	580	750	840	1000	1100	1340

Prices (ea.): $\mathrm{P} \$ 9.95$ (6-49), $\mathrm{B} \$ 24.95(1-49), \mathrm{N} \$ 27.95(1-49), \mathrm{S} \$ 26.95(1-49)$

HIGH PASS	Model	*HP-	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$
	start, max.	41	90	133	185	225	290	395	500	600	700	780	910	1000	
Pass Band (MHz)	end, min.	200	400	600	800	1200	1200	1600	1600	1600	1800	2000	2100	2200	
Min. 20dB Stop Frequency (MHz)	26	55	95	116	150	190	290	365	460	520	570	660	720		

Prices (ea.): P \$12.95 (6-49), B \$27.95 (1-49), N \$30.95 (1-49), S \$29.95 (1-49)
*Prefix P for pins, B for BNC, N for Type N, S for SMA example: PLP-10.7

Amplifier Arsenal

$50 \mathrm{KHz}-2000 \mathrm{MHz}$, Low Noise 100 mW output Gain Controlled from $\$ 69.95$

Our ZFL-2000 miniature wideband amplifier hit a bulls-eye when we introduced it last year. Now we've added more models to offer you a competitive edge in the continuing battle for systems improvement.

The ZFL-2000, flat from 10 to 2000 MHz , delivers +17 dBm output and is priced at only $\$ 219$.

Need more output? Our ZFL-1000H, flat from 10 to 1000 MHz , delivers +20 dBm output.

Is low noise a critical factor: Our ZFL-500LN and 1000LN boast a 2.9 dB NF.

Variable gain important? Our ZFL-1000G, flat from 10 to 1000 MHz , delivers +3 dBm output with 30 dB gain control while maintaining constant input/output impedance.

Searching for a high-quality, low-cost amplifier? Our ZFL-500 flat from 50 KHz to 500 MHz , delivers +10 dBm output for the unbelievable low price of only $\$ 69.95$. Need to go higher in frequency? Consider the ZFL-750, from 0.2 to 750 MHz , for only $\$ 74.95$. Or the $\$ 79.95$ ZFL-1000, spanning 0.1 to 1000 MHz .

One week delivery ...one year guarantee.

SPECIFICATIONS

MODEL	$\begin{gathered} \text { FREQUENCY } \\ \mathrm{MHz} \end{gathered}$	GAIN, dB (min.)	MAX. POWER OUTPUT dBm(typ)	NF ${ }_{\text {dB(typ) }}$	PRICE Ea.	\$ Qty.
ZFL-500	0.05-500	20	+9	5.3	69.95	1-24
ZFL-500LN	0.1-500	24	+5	2.9	79.95	1-24
ZFL-750	0.2-750	18	+9	6.0	74.95	1-24
ZFL-1000	0.1-1000	17	+9	6.0	79.95	1-24
ZFL-1000G*	10-1000	17	+3	12.0	199.00	1-9
ZFL-1000H	10-1000	28	+20	5.0	219.00	1-9
ZFL-1000LN	0.1-1000	20	+3	2.9	89.95	1-24
ZFL-1000VH	10-1000	20	+25	4.5	229	1.9
ZFL-2000	10-2000	20	$+17^{\star \star}$	7.0	219.00	1-9

[^0]Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

On the cover: Recent introductions in the smart-power-IC area are giving designers alternatives to discrete solutions in many applications. See pg 112. (Photo courtesy Motorola)

DESIGN FEATURES

Special Report: Smart-power ICs

Although largely hidden in custom applications in the past, smart-power ICs are now becoming available as standard products that satisfy a variety of applications, and semicustom ICs suit designs where custom ver-
sions are cost prohibitive. Whether semicustom or standard, available devices depend greatly on the IC process technology.-Dave Pryce, Associate Editor

Decade 90: The future of system design-Part 3

Chips, boards, and systems of the 1990s will be far more sophisticated than those of today. Engineers who adopt a design-for-test (DFT) philosophy will create easily testable, more-reliable products that cost less to manufacture and operate. Without DFT methods, the cost of testers, fixtures, and test programs will soar.-Steven H Leibson, Regional Editor

Digitize analog functions using simple procedures 153

A digital implementation of a traditionally analog function yields both technical and economic advantages. If you've had trouble converting analog functions to a form that a $\mu \mathrm{P}$ can handle, you'll be glad to learn of some simple procedures for converting from the frequency domain to the time domain.-George Ellis, Industrial Drives

Motor modeling simplifies design of control systems

Electric motors are electromechanical systems, but you can model them as purely electrical networks of familiar components. These models enable you to accurately predict the performance of feedback control systems that use motors.-Claudio de Sa e Silva, Unitrode Corp

Simple techniques help you conquer op-amp instability

Of all the problems that plague the op-amp user, the least understood and most vexing is an op amp's tendency to oscillate under certain conditions. The greater the op amp's bandwidth, the more acute the problem. Fortunately, you can use some simple techniques to quell these spurious oscillations.-Barry L Siegel, Elantec Inc

Continued on page 7

[^1]

A NEW WORLD OF HIGH POWER FLEXIBILITY

Westcor's PowerCage ${ }^{T M}$ and PowerCards ${ }^{T M}$ comprise a modular power supply system of galactic power (7200 watts max.), flexibility (36 outputs max.) and efficiency (80\% typ.). More like an expandable computer mainframe in design and concept than a standard high power supply, the PowerCage offers space-age alternatives to users of outdated $5 \times 8 \times 11$ inch box switchers.

Measuring 19x10.5x11.25 inches deep the PowerCage fits into a standard NEMA rack and powers 18 slots for single or dual output PowerCards or dummy cards. PowerCage backplanes provide connections for easy configuration by the user.

Low profile (. $8^{\prime \prime}$) PowerCards supply single outputs from 2 to 75 VDC at up to 400 watts (outputs from 2 to 5 VDC limited to 60 amperes). Dual output cards source two isolated outputs each at half of the above ratings. Single output cards can be paralleled with current sharing to provide kilowatts via simple backplane configuration.

The nucleus of each PowerCage system is Westcor's patented 1 MHz , high power density, high reliability converter. Consider these benefits and features: 208 VAC 3 phase input; remote/local sense on all outputs; TTL power good signal and status LED's; designed to meet UL, CSA and VDE safety requirements; TTL inhibit; over-temperature, over-current, over-voltage protection; "hot" card insertion; full power at $50^{\circ} \mathrm{C}$.

Future options include: DC input; IEEE-488 programmability; fault tolerant operation and battery backup. To discover a new world of high power flexibility, please contact us.

WESTCOR CORPORATION • 485-100 Alberto Way • Los Gatos, CA 95032 • (408) 395-7050 • FAX (408) 395-1518•TWX 910-240-2108.

Fiber-optic transmitters and receivers accommodate a spectrum of data rates that extends from de into the gigabit-per-second range (pg 57).

EDN magazine

 now offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.
Expressilı Request

TECHNOLOGY UPDATE

Fiber-optic transmitters and receivers
enhance data-link performance

KEEPING AMERICA COMPETITIVE

Off-the-shelf fiber-optic transmitter and receiver modules provide designers with a cost-effective way to significantly improve data-link transmission performance.-Tom Ormond, Senior Editor

lM-bit video RAMs offer speed for high-resolution graphics displays

Deciding what type of RAM to use for your graphics-display memory used to be simple: A low-resolution graphics system, with its correspondingly low bandwidth and price, dictated that you use lowcost dynamic RAMs, while a high-resolution, higher-cost system could justify choosing the more-expensive dual-ported video RAMs. - Margery S Conner, Regional Editor

PRODUCT UPDATE

LAN analyzer 93
Single-chip, 64-bit floating-point processor 96
Unix conversion utility 100
Floating-point, array-processor boards 102
IEEE-488 interface for MAC 104
DESIGN IDEAS
Serial-data system uses 4 -wire distribution 195
Power-fail circuit gives prompt response 197
Voltage limiter restrains fast op amps 198
Adapt a 68020 emulator to the $68030 \mu \mathrm{P}$ 200
PLD generates sequence for PROMs 204
Continued on page 9

[^2]

automatic schematic.

FUTUREDESIGNER: DRAW LESS. DESIGN

MORE. Introducing FutureDesigner ${ }^{\text {TM }}$ the only advanced design entry workstation that lets you describe your circuit in compact, high-level terms and create more complex designs faster. FutureDesigner's flexible, new techniques encourage creativity and experimentation, helping you produce innovative products quickly and more accurately.

MULTIPLE DESIGN ENTRY MODES FOR SPEED AND FLEXIBILITY. Describe

 your circuit with any combination of structural and behavioral representations. Use schematics to enter the structural portions of the design, such as data paths in a memory array. For portions easier to describe behaviorally, like sequencers or decoders, simply enter equations, truth tables or state diagrams using on-screen input forms.
ADVANCED DESIGN VERIFICATION HELPS YOU GET IT RIGHT THE FIRST

TIME. For the behavioral portions of your design, use FutureDesigner as a "what if" tool to try different design approaches. Immediately verify that your circuit works as you intended. For the structural portions, design check tools detect and help you correct connectivity and other common design errors. Together these features significantly shorten the design iteration cycle.

LOGIC SYNTHESIS CONVERTS YOUR EQUATIONS INTO SCHEMATICS. Once

 you've entered equations, state diagrams or truth tables, FutureDesigner's logic synthesizer eliminates redundant circuitry and optimizes your design for size/speed trade-offs. FutureDesigner is the only design entry workstation that will then automatically produce the correct schematics and integrate them with the total structural design.
MORE CHOICES IN TECHNOLOGIES, VENDORS AND SYSTEMS. Future-

Designer is technology independent. Choose the most convenient mix of TTL, PLDs, gate arrays or other ASICs from a wide range of semiconductor manufacturers. You can easily migrate from one technology to another without redesign.

FutureDesigner output is an industry standard, widely accepted by engineering service bureaus and semiconductor vendors. You'll also have access to both FutureNet ${ }^{\circledR}$ and other CAD systems for simulation and PCB layout.

Call us today and learn how a FutureDesigner workstation gives you the flexibility and accuracy to design innovative products faster.

1-800-247-5700
 Dept. 113

[^3]```
 VP/Publisher
 F Warren Dickson
VP/Associate Publisher/Editorial Director
 Roy Forsberg
 Editor
 Jonathan Titus
 Managing Editor
 John S Haystead
 Assistant Managing Editor
 Joan Morrow
 Special Projects
 Gary Legg
 Home Office Editorial Staff
 275 Washington St, Newton, MA 02158
 (617) 964-3030
 Tom Ormond, Senior Editor
 Deborah Asbrand, Associate Editor
 Joanne Clay, Associate Editor
 Tarlton Fleming, Associate Editor
 John A Gallant, Associate Editor
 Clare Mansfield, Associate Editor
 Dave Pryce, Associate Editor
 Cynthia B Rettig, Associate Editor
 Charles Small,}\mathrm{ Associate Editor
 Dan Strassberg, Associate Editor
 Chris Terry, Associate Editor
 Ron Gilbert, Staff Editor
 Valerie Lauzon, Staff Editor
 Helen McElwee, Staff Editor
Steven Paul, Senior Production Editor
 Editorial Field Offices
 Margery S Conner, Regional Editor
 Los Osos, CA: (805) 528-0833
 Doug Conner, Regional Editor
 Los Osos, CA: (805) 528-0865
 Bob Cushman, Special Features Editor
 Port Washington, NY: (516) 944-6524
 Steven H Leibson, Regional Editor
 Boulder, CO: (303) 494-2233
 J D Mosley, Regional Editor
 Arlington, TX: (817) 465-4961
 Richard A Quinnell, Regional Editor
 San Jose, CA: (408) 296-0868
 David Shear, Regional Editor
 San Jose, CA: (408) 997-5452
 Maury Wright, Regional Editor
 San Diego, CA: (619) 748-6785
 Peter Harold, European Editor
 0603-630782
 (St Francis House, Queens Rd,
 Norwich, Norfolk NR1 3PN, UK)
 Contributing Editors
 Robert Pease, Bob Peterson
 Don Powers, Bill Travis
 Editorial Services
 Kathy Leonard, Office Manager
 Loretta Curcio, Nancy Weiland,
 Sharon Gildea
 Art Staff
 Kathleen Ruhl, Art Director
 Ken Racicot, Assistant Art Director
 Chin-Soo Chung, Graphic Designer
 Cathy Filipski, Graphic Designer
 Production/Manufacturing Staff
William Tomaselli, Production Supervisor
 Donna Pono, Production Manager
 Andrew A Jantz, Production Assistant
 Linda Lepordo, Production Assistant
 Diane Malone, Composition
 Graphics Director
 Norman Graf
 VP/Production/Manufacturing
 Wayne Hulitzky
Director of Production/Manufacturing
 John R Sanders
 Director of Research
 Deborah Virtue
 Marketing Communications
 Janice Molinari, Manager
Jennifer Ware, Communications Manager
 Anne Foley, Promotion Assistant
```


## EDITORIAL

Technical articles can be amusing if you read between the lines.

## NEW PRODUCTS

Integrated Circuits ..... 212
Components \& Power Supplies ..... 221
Computers \& Peripherals ..... 228
CAE \& Software Development Tools ..... 235
Test \& Measurement Instruments ..... 238
PROFESSIONAL ISSUES ..... 251
Stress management preserves mental and physical health.-DeborahAsbrand, Associate Editor
LOOKING AHEAD263

Expert systems will enter US business market via DBMSs . . Relay market to gross $\$ 1.5 \mathrm{~B}$ by 1991.

## DEPARTMENTS

News Breaks ..... 21
News Breaks International ..... 24
Signals \& Noise ..... 32
Calendar ..... 42
Literature ..... 247
Business/Corporate Staff ..... 249
Career Opportunities ..... 255
Advertisers Index ..... 262

#  ofotsinaioniselvo MLITARY USEFORTI" AMERICAN GENERAL, 1908 



#  <br> <br> DESIGN ENGINEER, 1988 

 <br> <br> DESIGN ENGINEER, 1988}


Over the centuries, people have looked at the latest in technology with a bit of skepticism. The Transputer from INMOS is no exception.

When we first introduced the Transputer, designers were indeed intrigued. They were impressed with our T800-a 32-bit floating point microprocessor with an average speed of 10 MIPS and the ability to sustain 1.5 MFLOPS or 4.0 million single precision whetstones. "Incredible," designers said. "But it's more than we can use."

Not true. The fact is as a stand-alone processor, the 1800 gives you benefits you can use every day. It runs programs even faster than Intel's combined 80386 and 80387 or Motorold's combined 68020 and 68881 . Plus, it requires significantly less memory to hold compiled code.

And, by increasing the number of Transputers, you can increase system performance proportionally
with no limit to the number of Transputers that can operate concurrently. Like linking seven T800's together to give you the processing power of a mighty Cray 15 supercomputer.

Oryou could use ten IBM add-in cards from INMOS carrying ten T800's each, to enable your desktop PC to deliver 150 MFLOPS. That's like having the power of $15011 / 780$ VAX machines right at your fingertips.

So take another look at the Transputer. It's not just a dream for the future, it's a high-performance product for today. And it's a technology that is already taking off.

TRANSPUTER
Oinmos

[^4]
## SUNWORSHI GOLDENOP

 <br> \title{
PPERSGETA <br> \title{
PPERSGETA PORTUNITY.
}


## ALID

# Marconi introduces the only keypad made to give extreme reliability. Under extreme conditions. 



## What do you need to build on a rough application concept?



## AT\&T. The comp



# onents of success. 



Whether you're building a visionary home-or a breakthrough product or system-getting from concept to completion demands more than bricks and mortar, or metal and silicon.
There are other components that can make a critical difference in meeting your market window on time, and on budget.
We call them the components of successready for immediate delivery from AT\&T.
The component of commitment: here today, here tomorrow.
AT\&T is in the components business to stay. We have formed a separate unit, AT\&T Microelectronics, to bring our more than 100 years of electronic components experience to the marketplace. And, we have the capital, people, and technical savvy to meet our commitment to the future.
The component of innovation: AT\&T Bell Labs. Count on Bell Laboratories to help make your 'blue-sky' designs a reality. With everything from DSPs and optical data links, to custom designed products such as ASICs, multilayer boards, and power supplies. And throughout planning and manufacturing, count on AT\&T to keep your product up to the minute with the latest Bell Labs advances.
The component of quality.
Through our Integrated Quality System, Bell Labs engineers work with our quality professionals to meet customer-defined criteria. At AT\&T quality is
our history-and our future.
The component of management involvement. AT\&T Microelectronics gives you total support, right up to its president, Bill Warwick. If our solutions aren't on the money, call him at 1201 771-2900.

## The component

 of quick response.With 12 plants and an extensive network of design centers and sales offices worldwide, AT\&T is ready to meet your volume demand for components. Ready with everything you need to get ideas off the ground and in the market-successfully.
To learn why AT\&T is more than ever the right choice, just give us a call.

DIAL1800372-2447

## AT\&T Microelectronics Major Product Lines: ASICs <br> Digital Signal Processors <br> Communication ICs <br> 32-bit Microprocessors and Peripherals Solid State Relays Multilayer Circuit Boards HICs <br> Optical Data Links Fiber Optic Components Power Products <br> Transformers and Inductors Wound Film Capacitors

C 1987 AT\&T

## Your next destination:



# The future belongs to computers and peripherals built with RCA Advanced CMOS Logic (ACL). 

The pressure is on to make your systems smaller, faster, cheaper.

Some of your competitors are doing just that by incorporating ACL into their new designs. If you want to stay on the fast track, you can't afford not to consider ACL for your new designs.

## The computer of the future.

Imagine a computer with power dissipation so low you could eliminate all cooling systems. Or design a sealed system to prevent dust problems.

And get dramatically improved reliability, thanks to the far lower heat generated. As well as far smaller system size.

You'd also be able to use it in a far wider operating temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ). Even in high-noise environments.

## FAST* speed, CMOS benefits.

Advanced CMOS Logic gives you high speed (less than 3ns propagation delay with our AC00 NAND gate) and 24 mA output drive current.

But unlike FAST, it gives you a whole new world of design opportunity for computers, peripherals, telecommunications and other speed-intensive applications.

ACL dissipates less than $1 / 8$ Watt while switching, compared to $1 / 2$ Watt for a FAST IC (octal transceiver operating at 5 MHz ). And quiescent power savings are even more dramatic: ACL idles at a small fraction of the power of a FAST IC.

In addition, ACL offers balanced propagation delay, superior input characteristics, improved output source current, low ground bounce and a wider operating supply voltage range.

## Latch-up and ESD protection, too.

Latch-up concern is virtually eliminated, because ACL uses a thin epitaxial layer which effectively shorts the parasitic PNP transistor responsible for SCR latch-up.

And a dual diode input/output circuit provides ESD protection in excess of 2 KV .

## A broad and growing product line.

Our line already includes over 100 of the most popular types (SSI, MSI and LSI). More are coming soon. And many are available in High-Rel versions.

## All this at FAST prices.

Our ACL line is priced comparably to FAST. So you get better performance at no extra cost. Why wait, when your competition is very likely designing its first generation of ACL products right now?

Get into the passing lane, with RCA ACL from the CMOS leader: GE Solid State. Free test evaluation kits are available for qualified users. Kits must be requested on your company letterhead. Write: GE Solid State, Box 2900, Somerville, NJ 08876.

For more information, call toll-free 800-443-7364, extension 24. Or contact your local (EE Solid State sales office or distributor.

[^5]In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm (08) 793-9500.

[^6]

# This meter has what you need mostSuperb accuracy and proven reliability 

The Fluke 8840A is your best choice for accuracy, readahility and overall performance in a $51 / 2$ digit multimeter.
The Fluke 8840A is the world's best selling $51 / 2$ digit DMM. For good reason. Basic dc accuracy is $0.005 \%$ at one year. Basic ac accuracy at one year is $0.16 \%$, and one year basic resistance accuracy is $0.013 \%$. With users discovering their 8840A's typically exceeding these specs at each oneyear calibration cycle.


The specs are even better for the 8842A. It offers $0.003 \%$ basic dc accuracy and
0.08\% basic ac accuracy at one year. Resolution is 100 nV on dc readings, and 100 $\mu \Omega$ resolution on resistance readings. Plus a two year calibration cycle and warranty.
Nothing in its class can match the 8840 Series for field-proven reliability: 60,000 hours MTBF for the 8842A, and nearly 70,000 hours for the 8840A.
And nothing can match the 8840 Series for ease of operation. The vacuum fluorescent display is the most readable you've ever seen. True-RMS ac and IEEE-488 interface options let you configure the unit the way you need, so you aren't stuck with features you don't want.
An adjustable tilt-stand for bench use is standard. But rack mounting is quick and trouble free. Closed-case calibration reduces maintenance time. And throughput can be set for $2.5,20$, or 100 readings per second, making the 8840A the fastest in its class.

Put the world's most popular $51 / 2$ digit multimeters to work for you today. For your nearest distributor call 1-800-44-FLUKE, ext. 33.

John Fluke Mig. Co. Inc., P.O. Box C9090,
M/S 250 C , Everett, WA 98206. U.S.:
206-356-5400 CANADA: 416-890-7600
OTHER COUNTRIES: 206-356-5500
© Copyright 1988 John Fluke Mitg. Co., Inc. All rights reserved. Ad No. 1271-F8842

## FROM THE WORLD LEADER

 IN DIGITAL MULTIMETERS
## FLUKE 8840A

$0.005 \%$ basic dc accuracy ( 1 Yr .) $0.16 \%$ basic ac accuracy ( 1 Yr .) $0.013 \%$ basic ohms accuracy ( 1 Yr .) Resolution to $1 \mu \mathrm{~V}, 10 \mu \mathrm{~A}, 1 \mathrm{~m} \Omega$ One year warranty FLUKE 8842A $0.003 \%$ basic dc accuracy ( $1 \mathrm{Y}_{\mathrm{L}}$ ) $0.08 \%$ basic ac accuracy ( 1 Yr .) $0.008 \%$ basic ohms accuracy ( 1 Yr .) Two year warranty 8840A-05K IEEE-488 option \$170 \$8942 8840A-09K AC True-RMS option\$205 8842A-09K AC True-RMS option\$270

# NEWS BREAKS 

EDITED BY JOANNE CLAY

## STANDARD-CELL LIBRARY SUPPORTS 2-GHz TOGGLE RATES

You can design LSI circuits requiring as many as 6000 equivalent gates and $2-\mathrm{GHz}$ toggle rates by using TriQuint Semiconductor's (Beaverton, OR, (503) 641-4227) QLSI standard-cell library. Parts designed using the GaAs-based QLSI standard-cell library will support higher toggle rates and consume less power than do equivalent designs that use silicon-based ECL. A variety of I/O cells allows you to use this library to develop ICs that can interface directly to ECL, TTL, and CMOS logic families. The standard-cell library makes more efficient use of die area than gate arrays do. The efficient use of die area helps keep your production costs down. The nonrecurring engineering (NRE) cost for a QLSI standard-cell IC starts at $\$ 60,000$, including design manuals and workstation software. Typical turnaround time from receipt of customer input to delivery of the packaged parts is 16 weeks.-Doug Conner

## TAPE-DRIVE VENDORS DISCUSS DIGITAL AUDIO TAPE STANDARD

By invitation from Hewlett-Packard Co (Palo Alto, CA) and Sony Corp (Tokyo, Japan), 26 tape-drive manufacturers met on February 26, 1988, to review a proposed datastorage format for digital audio tape (DAT) that was jointly developed and presented by the two host companies. Although commercial audio DAT decks have yet to penetrate the US market because of high prices and piracy concerns, DAT cartridges promise to make an ideal, compact, low-cost data-storage medium. The HP/Sony format can store more than 1.3 G bytes on a DAT cartridge costing only a few dollars, and it supports a data-transfer rate of 1 M bytes $/ \mathrm{sec}$. Neither Sony nor HP has yet introduced products that employ the proposed storage format.-Steven H Leibson

## TINY TELECOMM MODULE INTEGRATES T1/CEPT STANDARDS

The Tl/CEPT Line Card from Dallas Semiconductor (Dallas, TX, (214) 450-0400) is a CMOS chip set that meets both the Tl (North American) and the CEPT (European) telecommunications standards. Mounted on a circuit board that's about the size of a stick of chewing gum, the four chips that make up the circuit include the DS2187 receiveline interface, DS2180A Tl transceiver or DS2181A CEPT transceiver, DS2175 elastic store, and DS2186 transmit-line interface. Because of the design of this modular board, only minor modifications are needed to convert your telecommunications equipment for access to either the Tl or the CEPT network-so telecommunications equipment built with the board can be offered on the international market.

In the event of a revision in either the Tl or the CEPT standard, the manufacturer can make the board meet the new requirements by replacing a single chip. Accordingly, you can concentrate on the design requirements of your equipment rather than preoccupying yourself with unstable telecommunication standards. You can buy the Tl/CEPT Line Card for $\$ 98$ (5000). The manufacturer also offers application notes and $\$ 100$ designer kits for the chip set.-J D Mosley

## C++ COMPILER RUNS ON IBM PCs AND COMPATIBLE COMPUTERS

Zortech (Arlington, MA) will start shipping its $\$ 99.95 \mathrm{C}++$ compiler for IBM PCs and compatible computers in April. Initially developed by AT\&T Bell Laboratories, the C++ language is a superset of the C language that incorporates a new data type called "classes." Zortech claims that its compiler, which is compatible with the Codeview source debugger from Microsoft (Bellevue, WA), is the first true C++ compiler to be released for DOS-based machines.-Steven H Leibson

## NEWS BREAKS

## MID-SIZE LCD CONTROLLER EASES DISPLAY DEVELOPMENT

Cybernetic Microsystems (San Gregorio, CA, (415) 726-3000) has introduced a windowbased controller for liquid-crystal displays (LCDs). The CY325 LCD Windows Controller provides a high-level interface between your $\mu \mathrm{P}$ or $\mu \mathrm{C}$ and a mid-size LCD module ( $240 \times 64$ pixels or smaller). The window capability lets you easily create sophisticated user interfaces. Once a window is created, you send data to the display; it appears only in the active window. The CY325 provides separately controlled graphics and text planes. Six softkeys interface directly to the controller, which tells the user when it detects a keystroke. It ignores further keystrokes until your software acknowledges the first keystroke. Communication with the controller can take place via a parallel or serial interface, or both. The CY325 is available in a 40-pin DIP and costs \$20 (1000).
-David Shear

## LOW-COST TMS320G25 DSP EMULATOR SPECS 40-MHz DEBUGGING

If you've been waiting for a low-cost in-circuit emulator for the TMS320C25 DSP chip, consider the \$1995 320C25 ICE Pak from Memocom (Carrollton, TX, (214) 4469906 ). This $3.5 \times 5.6-\mathrm{in}$. ${ }^{2}$ unit replaces the target DSP chip in systems under development and lets you perform real-time emulation and debugging at clock speeds reaching 40 MHz . For the basic price, the unit comes with 16 k words of $35-\mathrm{nsec}$ static RAM for zero-wait-state program memory; communication software; and a monitor/debug command set in firmware that includes a disassembler, set and clear break-point capability, single-step trace, display and modification of memory and I/O, and a command to copy external program ROM to the emulation space.
To obtain more program memory, you can buy a $\$ 2495$ version of the ICE Pak that has 64 k words of $35-\mathrm{nsec}$ static RAM. Or, for $\$ 2995$, you can purchase an upgraded version that includes 64 k words of program memory and 512 words of memory for forward or reverse real-time trace. The emulator plugs into any host computer or terminal that has an RS-232C port, and it can communicate as fast as 19.2 k baud.-J D Mosley

## FLOATING-POINT CHIPS WILL EXPAND 56000 DSP FAMILY

By the end of 1988, Motorola (Phoenix, AZ) expects to have prototypes of two 32-bit floating-point chips that will eventually join the 24-bit DSP56001 DSP chip as part of the company's line of digital-signal-processing (DSP) chips. Already designated DSP96001 and DSP96002, the new chips will provide both single-precision and single-extended-precision math operations that are compatible with the IEEE-754 standard. The manufacturer claims that the ICs will be compatible with both object and source code for its DSP56001 chip. Motorola now offers software-development tools that will be directly compatible with floating-point chips-when the chips are available. The ICs will fill two roles: The DSP96001 will suit stand-alone DSP applications, and the DSP96002 will operate as an attached processor for 32-bit $\mu$ Ps.-Jon Titus

## MODEM CHIP SUPPORTS PROCESS-CONTROL DATA PROTOCOL

The 20Cl2 modem IC from NCR Microelectronics Div (Fort Collins, CO, (303) 2269500) implements the highway addressable remote transducer (HART) communications protocol recently introduced by Rosemount Inc (Eden Prairie, MN). The HART protocol is designed for process-control applications; it allows pressure, temperature, and flow transducers to communicate with control-room equipment over twisted-pair wires in either multidrop or point-to-point topology. Sample quantities of the 20C12, which operates at 1200 bps and uses the standard Bell 202 modem modulation technique and frequencies, will be available in April, and production quantities will cost \$9.50 (1000).-Steven H Leibson

## Speed Reading.



Cypress Semiconductor 3901 North First Street, San Jose, CA 95134. Phone (408) 943-2666. Telex 821032 CYPRESS SNJ UD, TWX 910-997-0753. QuickPro is a trademark of Cypress Semiconductor. © 1987 Cypress Semiconductor.

# NEWS BREAKS: International 

## ASIC AGREEMENT PROVIDES E-BEAM PROTOTYPES AND VOLUME SOURCING

Philips Components Div (Eindhoven, The Netherlands, TLX 51573) and European Silicon Structures (ES2) (Bracknell, UK, TLX 847724) have signed an agreement that will provide their customers with a rapid prototyping service and a volume source for ASICs implemented in Philips' $1.5-\mu \mathrm{m}$ double-layer-metal CMOS process. By the end of 1988, the same facilities will be available for designs that use Philips' 1.2- $\mu \mathrm{m}$ CMOS process. Under the agreement, ES2 will provide the prototyping and low-volume production facility by implementing the Philips process rules on the E-beam direct-write equipment installed at ES2's factory in Aix-en-Provence, France. Philips will then provide customers with volume sourcing from its wafer-fabrication plants in Europe, the USA, and the Far East. As part of the agreement, ES2's E-beam technology will also be made available to Philips.-Peter Harold

## FIELD BUS PROVIDES LOW-COST INDUSTRIAL NETWORKING

The Signatrans-ZM50 low-cost industrial network from Funke \&e Huster GmbH (Essen, West Germany, TLX 857637) allows you to transfer data among I/O modules on a simple 2 -wire field bus or on telephone lines. You can connect as many as 256 intelligent stations, each supporting several I/O modules, to the network. All of these stations have equal priority, and they can communicate over the network on a point-to-point or selective-broadcast basis. When the network is in its simplest operating mode, assigning the same address to any input channel and any output channel causes data to be transferred automatically, via the network, between these input and output channels. Alternatively, you can operate the network with a handheld programming unit or with a communications processor that provides control and data logging via a terminal, and also provides a gateway to other systems. A typical station, with modules that provide analog and digital I/O capabilities, costs around DM 2000.-Peter Harold

## SYSTEM LETS YOU LOCATE UNDERGROUND NETWORKS EASILY

The Lora (localization by radio) Beacon developed by Établissements Jousse (Jouy le Potié, France, TLX 780183) is an inexpensive system for marking and locating underground networks. To use the system, you bury markers containing LCR-type passive resonant circuits at selected points on the network. A transmitter/receiver unit tuned to the circuits' resonant frequency can locate the markers. The system thus eliminates the need for searching large-scale structural drawings or for digging. The Lora Beacon, which was originally developed for use with agricultural irrigation and drainage systems, can be used with any kind of underground network. It can also mark boundaries underground.

The marker is a resonant circuit sealed inside a $15-\mathrm{cm}$ (outer diameter), $0.6-\mathrm{mm}$-thick plastic ring. The unit's ultrasonic weld is watertight, and the passive circuit requires no energy source, so the unit will last indefinitely. The transmitter/receiver operates at 40 kHz and is enclosed in a cast-aluminum housing; it's powered by rechargeable dry batteries. The antenna is protected by a molded, fiberglass-reinforced polycarbonate sheath. The entire assembly weighs only 2.1 kg . The markers cost Fr 64 (around $\$ 11.50$ ) (100); the transmitter/receiver is Fr 15,000 (approximately $\$ 2600$ ). Delivery from Paris is additional.-Joanne Clay

## How To Wring Workstation-Level PCB Designs Out Of Your PC.



## P-CAD's new Master Designer turns an ordinary PC into a full-fledged PCB workstation.

When you need to wring every drop of performance out of your next PCB design, you need Master Designer ${ }^{\text {m" }}$ software.
Master Designer provides all the horsepower you'd expect only from workstations priced from $\$ 50 \mathrm{~K}$ up to as much as $\$ 200 \mathrm{~K}$.
With Master Designer you can tackle the really big jobs. Board designs with 500 EICs, 32,000 pins and 2,500 nets are just the beginning. P-CAD's Master Designer routes multiple layers simultaneously cutting the number of vias and unrouted subnets in half. So, you'll wring out cleaner designs and higher completion rates (up to 100\%).

For forward annotation of logic changes and "history independent" back annotation, Master Designer also has an ECO processing option.
If you're interested in wringing every penny out of your PCB design station instead of wringing your hands, ring P-CAD. Let P-CAD show you how to turn a PC into a high-powered workstation.


1290 Parkmoor Ave., San Jose, CA 95126 USA Telex: 371-7199 FAX: 408-279-3752
800-628-8748 CA 800-523-5207 U.S.


The opportunity for automated, low-cost assembly is a key benefit of surface-mount technology, but is often wiped out by the high price of surface-mount components. Now, Mini-Circuits offers a new series of mixers to meet the pricing demands of SMT ... only $\$ 2.49$ in 1,000 quantity ( $\$ 3.75$ ea. in quantity of 10) ... at a cost even lower than most conventionally-packaged mixers.
The SCM-1 spans 1 to 500 MHz with only 6.0 dB conversion loss, 45 dB LO-RF isolation, and 40 dB LO-IF isolation. Housed in a rugged, non-hermetic 0.4 by 0.8 by 0.3 in . high (maximum dimensions) plastic/ceramic package. Spacing between connections is 0.2 in. The mixer is offered with leads (SCM-IL) or without leads (SCM-INL) to meet a wide range of pc board mounting configurations.
Each SCM-1 is built to meet severe environmental stresses including mechanical shock/ vibration as well as temperature shock. The operating and temperature storage range is $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Each SCM-1, designed and built to meet today's demanding reliability requirements, carries Mini-Circuits' exclusive $0.1 \%$ AQL guarantee of no rejects on every order shipped (up to 1,000 pieces).
When you think SMT for low-cost production, think of Mini-Circuits' low-cost SCM mixers.

SPECIFICATIONS
(typical)
FREQ. RANGE (MHz)
LO, RF
IF

SCM-1L SCM-1NL (with leads) (no leads)

CONVERSIONLOSS (dB)

$$
\text { Mid-Band }(10-250 \mathrm{MHz}) \quad 6.3
$$

$$
\text { Total Range }(1-500) \quad 7.5
$$

ISOLATION (dB) (L-R) (L-I)

| Low-Band $(1-10 \mathrm{MHz})$ | 60 | 45 |
| :--- | :--- | :--- |
| Mid-Band $(10-250 \mathrm{MHz})$ | 45 | 40 |

Mid-Band ( $10-250 \mathrm{MHz}$ )
40 High-Band ( $250-500 \mathrm{MHz}$ )

$$
1-500
$$

DC-500

$$
\begin{array}{ll}
\text { PRICE } & \$ 2.49 \text { (1,000 qty) } \\
& \$ 3.75(10-49)
\end{array}
$$

Units are shipped in anti-static plastic "tubes" or "sticks" for automatic insertion.

\$7 95

- Each unit undergoes high-impact shock test
- Unexcelled temperature stability, $002 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
- 2 W max. input power (SMA is 0.5 W )
- ENC, SMA, N and TNC models
- Immediate delivery, one-year guarantee
- $\mathbf{5 0}$ ohms, dB values,
$1,2,3,4,5,6,7,8,9,10,12,15,20,30$, and 40
- 75 ohms dB values, $3,6,10,15,20$ BNC only
- Price (1-49 qty.) CAT (BNC) \$11.95 TAT (TNC) \$12.95 NAT ( N ) $\$ 15.95$ finding new ways .. setting higher standards
$\square$ Mini-Circuits
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500


# "We don't plan to let VME rest on its laurels." 

Shlomo Pri-Tal Manager, VME System
Architecture and Technology

People think Motorola invented VME. Actually, a lot of companies had a hand in developing it. That's one of its main strengths: it's an open architecture, with no patents or copyrights to worry about.

## Building open systems, to open markets.

In the long run, open systems benefit everyone. That's why we've always fought so hard for VME standardization through VITA, IEEE and IEC. Because standards create a very competitive market, where the OEM has literally thousands of VME choices-from Motorola and elsewhere.

## Chipping away at interface standards.

These same standards have enabled Motorola to push bus hardware to higher levels of integration.


## Pushing hard for software standards.

ng hard for software standards.
Through our VMEexec project, Motorola continues to take the initiative in standardization. We want to make sure VME software modules from different vendors work together in a common environment. That includes UNIX, real-time executives, device drivers, network services, and so on. Eventually you'll be able to plug, say, any real-
time kernel you like into a VME board - without on. Eventually you'll be able to plug, say, any real-
time kernel you like into a VME board - without affecting your software investment.

## Putting it all together.

To be successful in today's more complex VME environment, a company has to take a systems approach to everything it does. That means putting together all the elements-chips, boards, software, complete systems-from a single reliable source. Motorola has more advanced technology, more high quality products, more software resources, more technical support and more VME experience. And frankly, I don't know of anyone who's investing more in the future of VME than Motorola. That's what being the leader means.
interface products, for example-the VME and VSB chips. They eliminate a major source of potential design errors for OEMs. So they can focus on applications, rather than bus interface problems.

## Plugging in mainframe performance.

To maximize OEM product life cycles, you need a way to keep on plugging in new technologies, without obsoleting your current products. That's exactly what our 68000 family-within a VME architecture-does for you. Right now we have 020-based boards that are more powerful than the mainframes of 10 years ago. And 030 products that put the power of today's minicomputers on a desktop. lat

(4)

## MOTOROLA

Microcomputer Division
Approaching our technology from your point of view.

CIRCLE NO 186

For reprints of this series, call 1-800-556-1234,Ext. 230; in California, 1-800-441-2345, Ext. 230. Or write: Motorola Microcomputer Division, 2900 South Diablo Way, Tempe, AZ 85282. UNIX is a registered trademark of AT\&T.


## Big Performance. Little Package.

Rib-Cage connectors deliver 100gram normal force in miniature/ microminiature interconnectors.

Du Pont's RIB-CAGE "wesign lets you pack $0.100-\mathrm{in}$. centerline performance into $0.050-\mathrm{in}$. c/l packages.

Our patented angled-rib design creates a contact area large enough to

And the long contact wipe helps assure reliable connections through repeated cycles.

You get inductance, capa-
citance and impedance values that are compatible with faster signal speeds (thanks to the 0.050 in . design), along with high current capa-
produce a normal force of 100 grams, with
remarkably high shock and vibration resistance.


Actual size of 50-position 0.050-in (1.27-mm) vertical surface-mount RIB-CAGE card connector and mating male header.
city and low circuit resistance.

In addition, RIBCAGE connectors let
you increase surface density, since they take up only one-eighth the volume of 0.100 -in. centerline connectors, while delivering profiles as low as 0.18 in. for special applications.

Whether you're working with throughmount or surfacemount technology, single or dual-entry designs, we have a

RIB-CAGE design that can work for you.

Let us show you how to get big performance from a little package. For a free sample kit of RIB-CAGE connectors, just call
1-800-237-4357 (in Pennsylvania, call
1-800-222-2194). Or write: DuPont Company, Room G51117, Wilmington, DE. 19898.

## DuPont Electronics

Share the power of our resources.

Applied Current (Amperes)

- 1 or 2 adjacent pos.

4 adjacent pos

- 40 adjacent pos



## SIGNALS \& NOISE

## Comparison doesn't consider the long run

The editorial "Think big" by Jon Titus (EDN, December 24, 1987, pg 45) showed a lack of research. With regard to Apple's success story, it certainly started with Wozniak and Jobs. But Wozniak bailed out several years ago when Apple was becom-
ing so big so rapidly, and Jobs was forced out a year or two later when it was obvious the direction he wanted to take the company in was contrary to its future success. It is very doubtful that the technical expertise of Wozniak or the entrepreneurship of Jobs could have come close to predicting (or "thinking big"

Our family.
Catalog models available for immediate prototype testing.


Your features.
We customize or tailor to your requirements.


Choose from a wide variety of handheld and panel mount Termiflex models available for immediate delivery.
It's easy to connect one as the prototype operator interface for the microprocessor-based product you're developing.
As your product evolves, Termiflex becomes part of the development family.
Our engineers work closely with you, helping to specify custom features (from special programming to trademark graphics) that will precisely fit your application and give a strong family resemblance to your product line.
Then we'll build, test, and deliver production quantities to meet your schedule. And when your control/display unit goes out into the world
with your looks and your name, Termiflex will be there if service is ever needed. Isn't that what families are all about?

[^7]

Telephone 603-424-3700
Fax 603-424-0330
Telex 595559
enough about) the current state of Apple Computer. Sculley's skillful mid-course corrections are probably the chief reason the company is still on track toward greater success today.
The cheap shot taken at Tandy in this comparison of "thinking big" was completely unwarranted. While Apple's success story reads like a roller-coaster ride, Tandy's is one of executing a very well managed and thought-out long-range plan. Its consistent growth and introduction of new personal-computer products over the past 10 years earned it the front cover of Byte. Its current product line has such breadth and depth that it simply can't be denied that Tandy shares a leadership role in the personal-computer industry.
Michael Tierney
Vallejo, CA
(Ed Note: Mr Tierney missed the point of the editorial. The reference to Tandy and Apple was made to show the differences in their first computers, not their continuing business.-Jon Titus)

## ATE vendor supports design for testability

I'm in hearty agreement with one point made by Jon Turino in his letter (EDN January 21, 1988, pg 32). I, too, believe that too many manufacturers still are not taking design for testability (DFT) seriously.

But in suggesting that my article "Cluster testing overcomes many testability problems" (EDN, October 15,1987 , pg 133) supports this disregard, Mr Turino has apparently missed the point of the article. The article addresses test engineers who have to live in the real worldwhich means they are still given boards with severe testability problems, and told to test them.

It's no good telling those engi-

## 1988 ANALOG APPLCATIONS SEMINAR


neers that they might as well give up until DFT is fully realized. Nor does my discussion of available test solutions for here-and-now testability problems encourage a cavalier attitude towards DFT. Claiming that it does is a bit like saying that helping car-crash victims encourages reckless driving.
My colleagues at Teradyne and I strongly support DFT, and we pay it considerably more than "lip service." In fact, we're actively warning our customers that the day is fast approaching when boards without DFT will be untestable at any price. We're also urging customers to adopt well-thought-out DFT techniques such as scan-path and bound-ary-scan design; these techniques not only make a board observable and controllable, but also open the way to automating large portions of the test-development process.
Our confidence that scan design
will gain rapid acceptance over the next few years, finally, is reflected by Teradyne's recent acquisition of Aida Corp. Aida's product line consists of design tools that specifically address scan and other DFT approaches.

May I also respond to Mr Turino's charge that articles like mine are evidence of some conspiracy on the part of automatic-test-equipment (ATE) vendors to foster a need for million-dollar-plus ATE? That price range is the domain of full-board functional testing, to which my article suggests an alternative: cluster testing. Cluster testing is usable in the context of a primarily in-circuit test approach, and it can typically be implemented with ATE hardware costing half as much as fullboard functional-test equipment.
Steve Caplow
Teradyne Inc
Boston, MA

## Correction

In the technology update "Highperformance DMMs and calibrators bring standards-lab specs to the benchtop" (EDN, February 4, 1988, pg 57 ), the formula given on pg 62 is incorrect. Schlumberger specifies the long-term drift of its DMMs according to the formula:
(ppm of reading) $\cdot \sqrt{\mathrm{T}}$, where T is the time in years.

## YOUR TURN

EDN's Signals and Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Send your letters to the Signals and Noise Editor, 275 Washington St, Newton, MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity.

## Brown Boveri

 Power Semiconductors

The requirements to be met by power semiconductors must keep in step with the breath-taking development of microelectronics. Modern technology, many years of experience with development and production, and a high innovation potential are the prerequisites. A complete range of power semiconductors of the highest quality is proof of our competence in this field. Our comprehensive service offerings - in conjunction with the presence of BBC Brown Boveri worldwide - have established our reputation as a reliable partner.

## Brown Boveri - Power Semiconductors <br> Made in West Germany.

Brown Boveri -

# LOOK WHATETEVEN <br> Yeares 2 MILIONCPUS_AND <br> 16 THoUSAND BoARD AND SYEHEM BUIDERS AREDONG TOTLF WORID'S FRST OPEN SIANDARD BUS... 

## ...THEYRRE MAKING IT STRONGER, POWERFUL, AND MORE POPULAR 1

Multibus I: Today's Most Popular, Best Supported And Easiest To Implement OEM Bus.

Back in 1976 when Intel introduced Multibus I, it was 8 -bits wide and supported the only major microprocessor then in existence, the 8080.

The world loved the open bus concept and jumped on the Multibus bandwagon. Quickly, Multibus I gained a level of acceptance that remains unequaled today.

1976: The debut of Multibus I. Few would have dared to predict the impact it would have on the world.


And, while Multibus I has remained true to its foundation as a solid, dependable standard, it has undergone a carefully controlled evolution that has produced a thoroughly modern architecture. One capable of supporting the newest 32 -bit microprocessors, as well as the first Multibus board ever built, in the same system!

This unmatched compatibility, coupled with the ability to absorb new technology, has made Multibus I today's most popular, most versatile, best supported and easiest to implement OEM bus architecture.

## Foundation Of The Multibus Family.

In 1982, Intel introduced Multibus II, a totally new advanced bus architecture designed not to replace Multibus I, but to open
 up entire new classes of applications impossible with Multibus I, VME or other traditional architectures. Today, Multibus I remains the architecture
of choice
for a myriad of new designs, and provides a smooth, economical upgrade path for existing applications.

Keeping Pace With Technology, Without Compromising Compatibility.

Multibus I has done what no other architecture

## FASTER, MORE THAN EVER BEFORE.

in history has been able to do: successfully absorb more than a decade of rapid technological advancement without compromising compatibility. From one generation of products to the next.

And from one vendor to the next.

In part this is due to the architecture itself, refined over the years by IEEE committees. In part it is due to the series of bus extensions that have helped Multibus I keep pace with the performance of newer buses.

But, mostly, Multibus I's success can be attributed to more than 240 manufacturers who have added their ingenuity to develop over

## 2,000 different

Multibus I products to solve a wider range of applications than any other bus. Period.

## What's New On Multibus I Today?

Today's Multibus I is loaded with exciting new products incorporating the latest VLSI and specialized technologies. You can use it to solve new applications efficiently and economically. And breathe new life into existing Multibus I applications.

Without expensive redesigns. And, without abandoning the comfort and security of the bus that's supported more success stories than we can even count.
The Best Is Yet
To Come.

Recent months have seen many important new Multibus I hardware and software products. For the full story, circle the reader service number or contact the Multibus Manufacturers Group.

Each of the companies on the back of this ad will send you complete technical data

Multibus I provides 84 sq. in. of board space, large enough for high functionality, yet small enough to be economical in low density designs. The LBX and SBX bus extensions add low-cost memory expansion and I/O customization.
on their latest offerings. Plus timely announcements of future new products.
And, to keep your Multibus I library organized, we'll send you this convenient, indexed bookshelf binder absolutely free.

So don't delay. Find out what's new on Multibus I. And discover why the most successful commercial bus architecture in history is stronger, faster, more powerful, and more popular than ever! CIRCLE NO. 98


## WFREHREFORYOUS

The companies listed below would like you to know that Multibus I is alive and well and prospering. Multibus I offers the broadest product family. Plus scores of new products incorporating the very latest technology.

Whether you're developing new applications or upgrading existing ones, these industry leading companies offer a wide range of Multibus I products to give you the competi-

|  | P.O. Box 1037 <br> Attleboro, MA 02703 <br> Contact: Dept. X2403 <br> (617) 222-2202 <br> FAX (617) 226-5257 |  | - | - - |  | - | - | 245 West Roosevelt Road West Chicago, IL 60185 Contact: Peter A. Czuchra (800) 638-5022 In IL: (312) 231-6880 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1602 Newton Drive Champaign, IL 61821 Contact: Mike Heins (800) 482-0315 FAX (217) 359-6904 | - | - | -吅 |  |  |  | 2400C Bisso Lane <br> Concord, CA 94520 <br> Contact: Sales Admin. <br> (415) 680-7722 <br> TWX 910-366-2116 | $S B E_{, N C}$ <br> MICAOCOMPUTER BOARDS ANO SYSTEMS |
|  | 6790 Flanders Drive <br> San Diego, CA 92121 <br> Contact: Frank Hom <br> (800) 854-7086 <br> In CA: (800) 772-7086 |  |  |  | - | - |  | 3445 Fletcher Avenue El Monte, CA 91731 Contact: Mike Burton (800) 227-0557 FAX (818) 444-3953 |  |
|  | Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051 (800) 548-4725 | - |  | - | - |  | - | 339 N. Bernardo Avenue Mountain View, CA 94043 Contact: Jerry Tennant (415) 964-5700 Telex 184160 | Scientific Micro Systems |
| INTERPHASE corporation | 2925 Merrell Road <br> Dallas, TX 75229 <br> Contact: Sales Admin. <br> (214) 350-9000 <br> FAX (214) 350-1433 |  |  | - ${ }_{-}$- |  |  |  | 53 Third Avenue Burlington, MA 01803 Contact: Kindra Alaimo (617) 272-8140 FAX (617) 273-5392 | Kyylogics |
| FC MICROBAR | 785 Lucerne Drive Sunnyvale, CA 94086 Contact: Bill Burton (408) 720-9300 <br> FAX (408) 773-9475 | - | - | - | - | - | - | 6700 Sierra Lane Dublin, CA 94568 <br> (415) 828-3000 <br> Telex 910-389-4009 <br> FAX (415) 828-1574 | Products by Solution |
|  | 10 Mupac Drive Brockton, MA 02401 Contact: Steve Cobb (617) 588-6110 FAX (617) 588-0498 |  |  |  |  |  |  | Use this convenient product refer locate the companies that offer the products you need. <br> CIRCLE NO. 98 | nce guide to quickly types of Multibus I |

The Multibus Manufacturers Group, or MMG, is dedicated to the proposition that everyone benefits from strong, open standards. Membership is open to hardware and software manufacturers, application integrators, end users and even students.

To learn more about what the MMG can do for you, contact Dan Fink, MMG executive director.
tive edge. Today. And long into the future.
For your free Multibus I Data Book plus future new product announcements, just return the reade service card. Or for faster response, call the MMG or one of the participating companies listed below.

Discover the many new reasons Multibus I is today's most popular, most versatile, best supported and easiest to implement OEM bus.

245 West Roosevelt Road West Chicago, IL 60185 (800) 638-5022

2400C Bisso Lane
Concord, CA 94520
(415) 680-7722

3445 Fletcher Avenue
El Monte, CA 91731
(800) 227-0557
(818) 4
N. Bernardo Avenue

Mountain View, CA 94043
(415) 964-5700

Scientific Micro Systems

53 Third Avenue
Burlington, MA 01803
Contact: Kindra Alaimo
FAX (617) 273-5392
6700 Sierra Lane
Dublin, CA 94568
Telex 910-389-4009
Products by Solution

Use this convenient product reference guide to quickly locate the companies that offer the types of Multibus I products you need.
CIRCLE NO. 98

## MSK 738 OP-AMP

 fastl... 3500 v/ /us slew accuratel... $25 \mu \mathrm{~V}$ offset quiet.... $15 \mu \mathrm{~V}$ p-p noise They don't get any better than this!


# natiogeliz Tens:man Ciplit indith Wi: HITR  

In a world of extremely high-frequency, ultrafast signal transitions, there are two instruments that thrive: the Tek 7250 Transient Digitizing Oscilloscope and Tek 7912HB Transient Waveform Digitizer.

No other digitizing oscilloscope can automatically capture and record lightning-fast events whether singleshot or low-rep rate that more and more applications - from particle physics and lasers to
semiconductor characterization - regularly encounter.
The 6 GHz Tek 7250 can capture transients of 50 ps rise time at 1 picosecond/point; with 11-bit vertical and 9-bit horizontal resolution. Menu-
driven, with on-board measurements and integral monitor, it is easily the highest performance transient digitizing oscilloscope ever made.

The Tek 7912HB achieves 10 ps/point time resolution, allowing capture of events

| Characteristics | $\mathbf{7 2 5 0}$ | $\mathbf{7 9 1 2 H B}$ |
| :--- | :--- | :--- |
| Analog Bandwidth | 6 GHz | 750 MHz |
| Rise Time | 50 ps | 575 ps |
| Fastest Time/Point | $1 \mathrm{ps} / \mathrm{pt}$. | $10 \mathrm{ps} / \mathrm{pt}$. |
| Max. Points/Second | $1000 \mathrm{GS} / \mathrm{s}$ | $100 \mathrm{GS} / \mathrm{s}$ |
| Vertical Resolution | 11 bits | 9 bits |
| Input Signal Range <br> Vertical | 5 V full scale, <br> 10 divisions | 80 mVto 8 V <br> full scale, 8 div. |
| Input Sensitivity | $500 \mathrm{mV} /$ div. | $10 \mathrm{mV} /$ div. <br> to $1 \mathrm{~V} / \mathrm{div}$. |
| Fully Programmable | Yes | Yes |

with transitions of less than 575 ps. In addition to its 750 MHz analog bandwidth, triggering capabilities and 10 waveform-per-second data transfer rate, the 7912HB offers the plugin module flexibility of a Tek laboratory oscilloscope, such as the new 7A29P programmable amplifier.

For more information on the world of Tek digitizing, call 1-800-835-9433.
Or contact your Tek representative.



## Rink Low Power Consurprios

Think CRYSTAL OSCILLATORS from Statek Corporation. The SQXO surface mountable oscillators are housed in a standard 24 -pin CLCC and are available in a variety of unique packages and types of circuitry over a frequency range of 1 Hz to 32 MHz . The oscillators test to 883 Mil Spec and, whether leaded or surface mountable, are CMOS and TTL compatible...all have long term stability and high shock characteristics. Call for additional information on our SMALL WONDERS!


STATEK CORPORATION 512 N . Main Street
Orange, CA 92668 (714) 639-7810; Telex 678394 Made in the U.S.A.


[^8]
## CALENDAR

Digital Signal Microprocessor and Microcomputer Chips and Development Systems (seminar), Cambridge, MA. Amnon Aliphas, DSP Associates, 18 Peregrine Rd, Newton, MA 02159. (617) 964-3817. April 4 to 6.

Worst-Case Circuit Analysis (seminar), Orlando, FL. Design and Evaluation, 1000 White Horse Rd, Suite 304, Voorhees, NJ 08043. (609) 770-0800. April 4 to 6.

Microcircuit Interconnections and Assembly Methods (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 7.

Association for Information and Image Management (AIIM) Show, Chicago, IL. AIIM, Box 1059, Belmont, CA 94002. (301) 587-8202. April 11 to 14.

Electrostatic Discharge (ESD): Concern or Over-concern? (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 12.

Hybrid Microcircuit Technology (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 18.

American Power Conference, Chicago, IL. Robert Porter, Chicago Institute of Technology, Chicago, IL 60618. (312) 567-3202. April 18 to 20 .

Worst-Case Circuit Analysis (seminar), San Diego, CA. Design and Evaluation, 1000 White Horse Rd, Suite 304, Voorhees, NJ 08043. (609) $770-0800$. April 18 to 20.

4th International Integrated Services Digital Networks Exposition, St Louis, MO. Information Gatekeepers, 214 Harvard Ave, Boston,

Spectrum Software's MICRO-CAP II ${ }^{\circledR}$ is fast, powerful, and feature rich. This fully interactive, advanced electronic circuit analysis program helps engineers speed through analog problems right at their own PCs.
MICRO-CAP II, which is based on our original MICRO-CAP software, is a field-proven, second-generation program. But it's dramatically improved.


Schematic Editor
MICRO-CAP II has faster analysis routines. Better resolution and color. Larger libraries. All add up to a powerful, cost-effective CAE tool for your PC.
The program has a sophisticated integrated schematic editor with a pan capability. Just sketch and analyze. You can step


Transient Analysis
component values, and run worst-case scenarios-all interactively. And a 500 -type* library of standard parts is at your fingertips for added flexiblity.
MICRO-CAP II is available for IBM $^{\circledR}$ PCs and Macintosh." The IBM version is CGA, EGA, and Hercules ${ }^{\circledR}$ compatible and costs only $\$ 895$ complete. An evaluation version is available for $\$ 100$. Call or write today for our free brochure and demo disk. We'd like to tell you more about analog solutions in the fast lane.

[^9]- Transient, AC, DC, and FFT routines
- Op-amp and switch models
- Spec-sheet-to model converter*
- Printer and plotter* hard copy


AC Analysis

## 들트ㄹㅡㅡ르ㄹㅡㅡ르르를

1021 S. Wolfe Road, Dept. E
Sunnyvale, CA 94087
(408) 738-4387

[^10]
## LOW PROFILE/HIGH DENSITY SWITCHING POWER

Case 23
600 Watts
3"x5"x14.25" 80A Main Channel 20A Auxiliary Mag Amp Outputs AC and DC Inputs

600 Watts from up to 7 fully regulated outputs in a package that's sized to fit your OEM requirements. With the standard features and options you are looking for: $\mathrm{N}+1$ redundancy; EMI filtering to FCC 20780 Class A; Main channel pre-load; A ball bearing, brushless DC fan; DC input models. International safety approvals and field strappable ac input voltage to fit anywhere in the world. The Case 23 from
Qualidyne-try it on for size.


THE SWITCHER FIT FOR YOUR NEEDS


Qualidyne Systems, Inc.
3055 Del Sol Boulevard, San Diego, CA 92154 (619) 575-1100 Telex: 709029 FAX: 619 429-1011 (800) 445-0425 In Calif. (800) 237-6885

CIRCLE NO 7


## CALENDAR

MA 02134. (800) 323-1088; in MA, (617) 232-3111. April 18 to 21.

Analog Applications (seminar), Oakland, CA. Precision Monolithics Inc, (800) 843-1515. April 19.

Instrument Society of America/ IEEE Columbus Conference and Exhibit, Columbus, OH. Sol Black, AT\&T Network Systems, Dept 11CB123430, 6200 E Broad St, Columbus, OH 43213. (614) 860-5605. April 19 to 20.

Fiber Optic Communication Systems (short course), Washington, DC. Integrated Computer Systems, 5800 Hannum Ave, Culver City, CA 90231. (800) 421-8166; in CA, (213) 417-8888. April 19 to 22.

IEEE Instrumentation/Measurement Technology Conference (IMtc/88), San Diego, CA. Bob Myers, IMte, 1700 Westwood Blvd, Los Angeles, CA 90024. (213) 4754571. April 19 to 22.

Troubleshooting MicroprocessorBased Equipment and Digital Devices (seminar), Milwaukee, WI. Micro Systems Institute, 73 Institute Rd, Garnett, KS 66032. (800) 247-5239; in KS, (913) 898-4695. April 19 to 22.

Modern Electronic Packaging (seminar), Raleigh, NC. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. April 20 to 22 .

Analog Applications (seminar), Boston, MA. Precision Monolithics Inc, (800) 843-1515. April 21.

Modern Microwave Techniques (short course), Los Angeles, CA. UCLA Extension, 10995 Le Conte Ave, Los Angeles, CA 90024. (213) 825-3344. April 25 to 28.

# IT＇S IN THE CARDS 

Our line of 18 signal switching cards is the widest variety anywhere，so you can configure a system to match your signal types without sacrificing system performance

## SIGNAL INTEGRITY

To get the most from your test system，you must make sure your signals are switched without attenuation，distortion or alteration by the switch－ ing and interconnect Since Keithley has more switching cards than any－ one，you can be assured of signal integrity，no matter what the test Choose from：

| Matrix | Most flexible |
| :--- | :--- |
| Scan／Multiplex | 1,2 ，or 4 pole switching |
| Sensitivity | Currents to 40fA，voltages to 30 nV |
| High Level | Currents to 5 A, voltages to 1000 V |
| Bandwidth | Frequencies to 500 MHz <br> Temperature <br> Thermocouple cards with $<1 \mu \mathrm{~V}$ <br> offset and built－in reference |
| Special Applications | Hall effect，nanovolt switching， <br> Kelvin switching，universal <br> adapter |

Each of these switching capabilities is referenced in our new Switching Handbook

## SYSTEM INTEGRATION

Keithley switches let you customize applications by mixing cards in two or 10 －slot mainframes』 For larger systems，you can connect up to five mainframes and program them at one IEEE－488 addressa
Keithley switching further simplifies system integration with digital I／O， triggers in／out，relay setup memory，inspect mode for determining relay configuration，and morea

## SYSTEM PERFORMANCE

Our products are designed for compatibility，and you＇ll find the proof in easier system integration and smoother performance And in addition to switching，we also supply the full range of programmable measure－ ment and source instrumentation for many test requirements Plus， our Application Engineering De－ partment is always available to help you select the right instru－ ments and configure them for peak system performance
Keithley Instruments Inc．， 28775
Aurora Road，Cleveland，Ohio， 44139』（216）248－0400」

## Call or write the Information Center

 for more on Programmable Switches，Sources，and Measure－ ment instrumentationa Then find out how to receive your free copy of Keithley＇s new Switching Hand－ book with useful information and practical guidelines on getting maximum performance from your test system．

SOURCE • MEASURE • CONNECT

## National <br> Semiconductor

DHRYSTONE BENCH $\begin{aligned} & \text { Drystone } \\ & \text { version } 11\end{aligned}$


## The NS32532: Real-world performance for real-world applications.

At National, we believe that a highperformance 32-bit microprocessor should be worked with, not around.

That's why the NS32532 offers you some of the highest performance specs in the industry.

Yet it's performance you can use. Because the NS32532 was created for realworld designers working on real-world systems to meet real-world needs.

## PERFORMANCE YOU CAN COUNT ON

The NS32532 is capable of delivering 15 MIPS peak performance, 8-10 MIPS sustained, at 30 MHz .

Not "no-ops'" MIPS. Not benchmarking MIPS. Not RISC MIPS. But genuine VAX ${ }^{\circledR}$ 11/780 MIPS.

You're looking at 16,600 Dhrystones per second.

Not to mention high integer performance and high floating-point performance. With a range of FPU solutions that deliver up to 8 million double-precisionWhetstones per second.
Below: NS32532 chip
Left: VME532 evaluation board; NS32532
block diagram; competitive performance
comparison*
*Sources
NS32532-August 1987 PerformanceEvaluationTests
80386 - "The 80386: AHigh-Performance Workstation Microprocessor," Intel Corp., June 1, 1986
68020-SUN $3 / 20$ @ 25 MHz , as published


## The NS32532

- 8-10 MIPS sustained, 15 MIPS peak
- $20-$, 25 -, and $30-\mathrm{MHz}$ devices
- On-chip 1,024-byte 2-way set associative physical data cache
- On-chip 512 -byte direct mapped physical instruction cache
- Hardware cache invalidate for highperformance cache coherency
- On-chip demand-paged memory management including 64 -entry fully associative Translation Lookaside Buffer
- 4-stage instruction pipeline including instruction prefetch and branch prediction
- 2-clock basic READ/WRITE cycle
- 1-clock burst-mode transfers
- Unique bit-manipulation and stringhandling instructions
- Highly symmetrical and orthogonal instruction set producing compact code
- Extremely fast context switch $(3.6 \mu \mathrm{~s})$ and interrupt service $(1.3 \mu \mathrm{~s})$
- Fabricated in $\mathrm{M}^{2} \mathrm{CMOS}$
- 370,000 transistor sites
- SAMPLES AVAILABLE NOW


## SUPER-MINI PERFORMANCE ONA CHIP

The NS32532 achieves its superior performance because it integrates key systems functions on a single piece of silicon.

Only the NS32532 incorporates on-chip data and instruction caches, demand-paged virtual memory management, and a 4stage instruction pipeline. With instruction prefetches and branch prediction. Plus a hardware cache invalidate mechanism that ensures cache coherency.

[^11]
## SCALABLE PERFORMANCE

The NS32532 is one of seven CPUs based on the same 32-bit architecture. With the same orthogonal, highly symmetrical instruction set.

Which means you can migrate your design throughout the entire performance range without having to re-engineer your software at any level. And you can build consistently competitive systems without resorting to some "more innovative" architecture that leaves you and your software investment in the lurch.

## PERFORMANCE THAT'S READY FOR YOU TODAY

We've already begun sampling silicon. We've already ported UNIX ${ }^{\star}$ SystemV. 3 and VRTX. And we've already produced a board-level implementation - a fully integrated, fully populated, plug-and-go VME-compatible native environment. . available now for evaluation. So are nearly 150 other members of the Series $32000^{*}$ family, including coprocessors, peripherals, development tools and optimizing compilers.

To talk about putting our performance into practice in your application, call our Application Engineers toll free: 800/ 538-1866, ext. 532 or 800/672-1811, ext. 532 (within California).

## NCR keeps standards

## Finally, a cure for SCSI overheadaches.

NCR's 53C90 is the only chip that can give you fast, fast, fast relief from overheadaches. and that includes the newest
" A " and " 6250 " versions from the competition. Using combination commands, dedicated sequential logic and dual-ranked registers for command pipelining, the 53 C 90 is magnitudes faster on and off the bus. Plus NCR implements complex bus sequencing in hardware, not time-wasting software.

Here's our benchmarks. But run your own and you'll see the other guys cause overheadaches, we cure them.


A big well-connected family.
Other suppliers can't show you much of a family tree compared to NCR. That's because NCR goes back to the "Mayflower" of SCSI controllers with the 5385 in 1982. The most recent offshoot of that original line is the high-performance 53C90A. Consistent with

How to get zap-resistance, latch-up protection and the blessings of the FCC.
For example, the NCR 5380 and 53C90 families give you ESD protection up to 10,000 volts on the SCSI bus. NCR also provides controlled fall times to reduce the undershoot that could cause other CMOS chips to latch-up. Controlled assertion rates also reduce generated RFI, an important factor in winning FCC approval for the final product.


NCR Microelectronics Division
good family planning the software for the 53C90 is similar to our 5385 and 5386, so you can quickly convert to the 53C90. A single chip host bus adapter ( 53 C 400 ), integrated buffer controller ( 53 C 300 ) and an ASIC supercell fill out our product offering. And you can bet we'll be there when you need SCSI II.

It's time to raise your standards.
In SCSI, it's not so much if you implement the standard, but how. Because our chips have an edge over other chips from other manufacturers, they can help give you and your product an edge in the market. We've shipped more than 3-million 5385 's and 5380's and production quantities of the 53C90. If you don't want to just settle for the standard, call NCR today.

For documentation call our hot line 1-800-334-5454. Or write to, NCR Microelectronics, SCSI Products, 1635 Aeroplaza Drive, Colorado Springs, CO 80916.

For technical assistance, call 800-525-2252, Telex 452457.


## FLEXPAC"CABLE ASSEMBLIES. A COST-EFFECTME, flexible alternaive TO DISCRETE WIRING.

Flat Conductor Flexpac ${ }^{\text {TM }}$ Cable Assemblies offer improved electrical integrity, cable strength, system flexibility and end-use performance.

Ideal for discrete wire replacement and high flex life applications, Flexpac ${ }^{\text {TM }}$ cable connector assemtion options.
assemblies, with improved performance - during design and after the sale. 600 volt cable ratings boost cable application versatility, as do our wide range of female sockets, male headers, card edge connectors and solder pin termina-

Now, in addition to all the other advantages flexible cable offers, add ensured performance and choose from among the broadest selection available Flexpac ${ }^{\text {TM }}$ Cable Connector Assemblies. For complete inforblies incorporate a 6-point contact design for enhanced electrical performance. You get positive cable-to-contact terminations; stronger

## Thomas\&Betts

Electronics Division

[^12]
## EDITORIAL

## Reading can be fun



Reading technical articles can be amusing if you learn how to read between the lines. In the spirit of April Fool's Day, here are comparisons of what authors say and what they actually mean:

## WHAT THEY SAY:

We can show that . . .

It didn't operate as was predicted . . .

A high transient thermal effect . . .

After many experiments, we found a solution. . . .

A typical sample . . .

We ran transient tests . . .

As a first approximation . . .

You can improve this method. . .

Here are the fundamental engineering principles. .

You can solve the equation numerically . . .

It's interesting to compare

## WHAT THEY MEAN:

Well, it's not at all clear to us, but we're shaming you into taking it for granted.

It burst into flames.

We burned our fingers on the 2N3055.

We fiddled with it for a long time and finally got it to work.

The only time it did more or less what we wanted it to.

The fuse blew every time we turned it on.

This value is flagrant guesswork.

Nothing we tried had a hope of working.

We lifted this from another article.

We got eight answers that look vaguely right.

It isn't of the slightest interest, but it fills more space, we'll get paid more, and we can take a shot at Fred's article published in . . .

# Only one vendor delivers all your workstation memory needs 

## - Superior Performance • Lifetime Warranty • 24-hour-a-day Support

## Memory is criticaldon't settle for less.

 Clearpoint's workstation memory consistently outperforms system vendor offerings with:- innovative design - superior reliability
- highest density
- round-theclock support - unconditional lifetime warranty
Backed by state-of-the-art engineering, manufacturing and QA testing, Clearpoint memory makes the most of workstation performance.


The MV2000/16 MB* nearly triples the density offered by DEC. Achieve identical processor and memory performance to the full configuration MicroVAX II -at half the cost!

## MicroVAX IICompatible

The MV2RAM/ 16 MB* places the full system memory capacity on one board. Designed to run cooler and draw less power for maximum board life and reliability, the MV2RAM supports jumperless addressing and parity error checking.


## SUN

Sun $3 / 2 \mathrm{XX}$ and 4/2XX-Compatible


The SNX2RAM/32 MB* delivers the Sun 3/2XX system maximum on a single board. It also offers the enhanced functionality of a micro-processor-managed "on-board hotline" for local and remote diagnostics.
Sun 3/1XX-Compatible The SNXRAM* fits up to 28 MB in just one slot, freeing four slots for peripherals. Using the latest one megabit DRAMs, you get the highest density plus increased reliability.

Sun 3/60-Compatible


The SNX60, comes in 4 MB SIMM sets that upgrade your Sun 3/60 to an expansive 24 MB . Each SIMM is one MB of reliable Clearpoint memory with a 1 megabit DRAM to support parity checking.

## VME

For VMEbus local memory or RAM disks
Offering maximum flexibility, the VMERAM supports 24 and 32 bit addressing and 8,16 and 32 bit data transfers. Compatible with VMEbus Rev.C specs, the VMERAM is available in $16,8,4$ or 2 MBs .

[^13]CLEARPOINT

## EDITORIAL



However, you can't reach the theoretical maximum power output . . .

The gain figure is suboptimal . . .

You'll destroy all the output buffers if you adjust $R_{3}$ when the power is on.

It has no gain and the noise figure is 22 dB .

We haven't optimized the amplifier's efficiency. . . .

Performance is extremely good.

We thank Joe Smith for his comments about our manuscript . . .

It's giving 2 W out for 10 W in and the output transistors are glowing red.

It worked for three hours and then died.

Joe Smith completely rewrote the article at the last minute.

Chris gave us hell for using his dot-matrix printer so often.

Ms Scott finally got the circuit to work.

Well, I must confess a lack of originality. I've reproduced the comments above-with permission-from the December 1987 issue of Radio Communication, the journal of the Radio Society of Great Britain. The idea originated in FM News, the Central Scotland FM Group's newsletter.

That's it until next year, when we look at press releases and ads...
 Editor

## WhoMakes Power And Tough Enough For

COMPUTER

SGS-THOMSON Microelectronics, of course.

In fact, engineers now have a full range of self protecting power devices capable of intelligently interfacing with computers.

No other industrial load driving solutions are simpler or more cost-effective. SGSTHOMSON integrates protection, diagnostic feedback and control functions on a single IC.

Short circuits, overloads, ground and load disconnection are no problem.

Meeting your demanding specs is no problem, either. SGS-THOMSON offers a full range of current ratings and configurations. Plus, you can choose from power packaging, mini-dip or surface mount ICs.

POWER AMPLIFICATION

- From CPU small signals to power currents into the load
- Any input level accepted:

TTL, CMOS, etc.

- Wide supply voltage range


## LOAD CONTROL

- Load condition monitoring
- Resistive and highly inductive loads
- Dynamic stability with all loads


## CPU FEEDBACK

- Output ON or OFF
- Alarm output
- Load conditions (open/ short)


## SAFETY FUNCTIONS

- No indeterminate states upon power on
- Current limitation
- Link disconnect
- Reset functions
- High noise immunity
- Thermal protection
- Overvoltage protection

| DEVICE | VCC max. <br> (in V.) | I max. <br> (in A.) |
| :--- | :---: | :---: |
| TDE1607 | 36 | 0.5 |
| TDE1647 | 50 | 1.0 |
| TDE1737 | 50 | 1.0 |
| TDE1747 | 50 | 1.0 |
| TDE1767 | 50 | 1.2 |
| TDE1767A | 60 | 1.2 |
| TDE1787 | 50 | 1.2 |
| TDE1787A | 60 | 1.2 |
| TDE1798 | 50 | 0.5 |
| TDE3207 | 36 | 0.3 |
| TDE3237 | 36 | 0.3 |
| TDF1778 | 35 | 2.0 |
| TDF1779A | 35 | 2.0 |
| UAF1780 | 35 | $2 \times 2.5$ |

## Driver ICs Smart Industrial Control?

The last word on reliability, Free.
Industrial load driving is a tough job. But somebody has to do it. And nobody does it better than you by designing in reliability with SGS-THOMSON.

Let us help you prove it. Send for free comprehensive lit-
erature that covers the full range of one-chip intelligent
self protecting power drivers.
Find out about the family of products smart and tough enough to protect your design's reputation as well as your interfaces.

Contact: SGS-THOMSON Micro-
electronics, 1000 East Bell Road,
Phoenix, Arizona 85022.
Phone 602/867-6259.


## SICNUMSYSTEMS'SOLUTIONTO 805152 DEVELOPMENT PROBLEMS



- PC-XT/AT hosted over a serial port (up to 19.2 Kbaud)
- WINDOWS - both standard and USER DEFINED
- TRACE BUFFER 2K • 72 bit - INCREMENTALLY FILLABLE
- Complex HARDWARE Breakpoints with Pass Counters
- Full SYMBOLIC debugging
- MACROS and LOGGING
- Supports NMOS and CMOS devices
- Performance Analysis Package (optional)
- Supports most 'C' COMPILERS, ASSEMBLERS and PL/M-51

For more information call (213) 450-6096

## TECHNOLOGY UPDATE

# Fiber-optic transmitters and receivers enhance data-link performance 

Tom Ormond, Senior Editor

Off-the-shelf fiber-optic transmitter and receiver modules provide designers with a cost-effective way to significantly improve data-link transmission performance. Available in matched sets or as individual transmitters or receivers, these modules accommodate a spectrum of data rates that extends from dc into the gigabit-per-second range. They not only improve transmission bit error rates-BER figures of at least $10^{-9}$ are commonplace-but they also extend transmission-distance capabilities into the kilometer range and minimize EMI/RFI problems.

Moreover, these transmitter and receiver modules are user friendly -totally transparent in some cases. Whatever your application, you simply connect the fiber cable, apply appropriate power, and you're ready to transmit and receive data. And this user friendliness applies to short-distance computer-to-peripheral low-data-rate applications as well as long-distance, high-speed transmissions.

A look at some of the transmitter and receiver modules available today will best illustrate the design advantages they offer. The low end of the data-rate spectrum is an appropriate place to start.

## Handling computer interfaces

Eotec, Fibermux, Litton, and Thomas \& Betts all offer products aimed at improving the computer-to-peripheral data-transfer interface. Eotec has developed a multi-ple-protocol Network Link transceiver, the 22-1004, which replaces conventional hard wire in RS-232C, RS-422, and TTL-format


Capable of accommodating transmission distances of 3 km , Hewlett-Packard's HFBR-24X6 receivers process data at $150 M$-bps rates and are available with either SMA- or ST-type connector ports.
asynchronous data links and networks. The Network Link is also compatible with programmable con-
trollers from Allen-Bradley, GE, Gould, Honeywell, Square D, and Westinghouse.

## FLASH CONVERTERS

## 

DATEL's broad range of Flash Converters provide you with tomorrows performance today! Performance features such as wide input bandwidths and low power consumption makes us the high reliability component supplier of choice for both commercial and military applications.

Speed up your designs with DATEL's Flash Converters today.

Call or write for information on all DATEL data conversion products. Call (617) 339-3000.

| FLASH CONVERTERS |  |  |  | SAMPING BOARDS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | BITS <br> OF RESOLUTION | CONVERSION <br> RATE | SAMPLING <br> RATE | MODEL |  |
| ADC-310 | 10 | 20 MHz | 12 MHz | ADC-B310 |  |
| ADC-300 |  | 20 MHz | 16 MHz | ADC-B300 |  |
| ADC-301 |  | 30 MHz | 30 MHz | ADC-B301 |  |
| ADC-302 | 8 | 50 MHz | 50 MHz | ADC-B302 |  |
| ADC-303 |  | 100 MHz | 100 MHz | ADC-B303 |  |
| ADC-304 |  | 20 MHz | 20 MHz | ADC-B304 |  |
| ADC-207 | 7 | 35 MHz | 35 MHz | ADC-B207 |  |

## TECHNOLOGY UPDATE

The 22-1004 has master/slave switches that allow you to totally control the direction of optical and electrical signals in the network. In a data-link application, these switches allow you to select different formats at each end of the link without having to worry about any data conversion. An optional lockout feature permits multiple-point access from the terminal to the processor; an active terminal automatically locks out all other terminals until communication is complete.
The transceiver features a built-in repeater and provides $1200-\mathrm{ft}$ transmission capability when using the company's industrial-grade fiberoptic cables (standard lengths start at 25 ft ). The cost is $\$ 2390$ per data link. Data rates (NRZ) range from de to 1 M baud, and the BER spec is $10^{-9}$. The Network link operates over the range of 0 to $60^{\circ} \mathrm{C}$. The $22-1004$ is totally transparent so you can retrofit existing hard-wire systems without having to change any electrical connections.
The FX family of miniature modules from Fibermux ranges from a transparent DCE port extension to a 10M-bps high-speed asynchronous link. Each of the four products measures only $1.6 \times 0.75 \times 4.5$ (or 5.5 ) inches.
The FX102 accommodates asynchronous 10 M -bps data rates, includes a field-selectable DTE/DCE configuration switch, and offers a choice of RS-232C- or RS-422-type interfaces.
The FX111 is an asynchronous low-speed RS-232C data link that derives its operating power from the DTE host. It offers data rates to 19.2 k bps and a maximum transmis-sion-distance capability of 1 mile. Like the FX102, it includes a builtin DTE/DCE configuration switch.
The FX112 offers synchronous as well as asynchronous RS-232C communications at data rates to 38.4 k bps. You can configure this link to provide an internal clock (with five different settings), to operate from an external clock signal, or to act as
a slave. It also offers a choice of a standard $12-\mathrm{dB}$ system gain or, optionally, 20 dB .
The FX113 completes the family. A true DCE port extender, it allows the DCE to supply both receive and transmit clocks. The FX113 supports synchronous RS-232C data rates to 38.4 k bps, DCE clocking, and two full-duplex control lines.

All four links feature dBJUST, an automatic-gain-control system that automatically adjusts for short cable lengths. Each is also available in a card-only version, which includes four data sets per card (these configurations have a /Q-4 suffix). Prices
missions at data rates to 200 k bps, and the E03671 provides asynchronous/synchronous transmissions at rates to 56 k bps. All units specify a BER of $10^{-9}$. Supply requirements are $\pm 12 \mathrm{~V}$ dc at 200 mA for the EO3672 and EO3675 and 12V dc at 120 mA for the EO3671. The operating range also varies: The E03672 and E03675 operate over 0 to $70^{\circ} \mathrm{C}$; the E03671 operates over 0 to $50^{\circ} \mathrm{C}$.
The transmitters use a microlensed LED source that emits at a nominal wavelength of 840 nm . The typical optical output power varies with the fiber transmission media, ranging from $30 \mu \mathrm{~W}$ for $50-\mu \mathrm{m}$ core


Placing no restrictions on input data format, Honeywell's HFM Series of low-profile transmitter and receiver modules handle dc to $25 M$-bps data rates and feature user-selectable power ratings.
vary from $\$ 150$ (FX111) to $\$ 1350$ (FX111/Q-4 with high-power optics).
Litton offers three RS-232C fiberoptic transceivers that provide fullduplex capability and extend the transmission distance of standard unrepeatered signals to more than 8 km. All units meet MIL-STD-202E requirements for shock and vibration, and they can interface with either DTE or DCE.
The EO3675 and E03672 transceivers provide asynchronous trans-
fiber to $950 \mu \mathrm{~W}$ for $200-\mu \mathrm{m}$ core fiber. The receivers have pin-diode detectors and feature sensitivities of -38 dBm (EO3672 and EO3675) and -45 dBm (E03671). A 25-pin D subminiature connector provides the electrical interface; SMA-compatible connectors, which accommodate 50/125-, 62.5/125-, 85/125-, or 100/ $140-\mu \mathrm{m}$ fiber, provide the optical interface. The EO3671 costs $\$ 999$; the E03672, $\$ 349$; the EO3675, $\$ 399$. All prices are quoted per set for quantities of 100 .

## TECHNOLOGY UPDATE

Thomas \& Betts has just introduced an RS-232C-type fiber-optic data link, the 9481. Designed for computer, terminal, and printer applications, the link accommodates either plastic or glass duplex fiber cable and handles 19.2 k -baud asynchronous data rates.

In addition to transferring data in either direction, the link supports six control/handshake lines over the same cable. It also eliminates RFI/ EMI problems, extends transmission distances to 2 km with $140-\mu \mathrm{m}$ core glass fiber ( 200 m over plastic

As mentioned previously, today's fiber-optic transmitter and receiver modules are capable of doing more than just satisfying low-speed com-puter-to-peripheral link applications. Modules to handle faster data transmissions are readily available.

AMP's 5013XX Optimate line handles data rates ranging from 25 M to 220 M bps. The units operate in the $820-$ and $1300-\mathrm{nm}$ wavelength range and offer either TTL or ECL compatibility. All of the modules feature a receptacle that mates with connectors that accommodate 125-


Available in either through-hole or surface-mount configurations, the Plessey P35-8858 is a 40M-bps transceiver that provides 600 m transmission distance capability in LAN applications.
fiber), and derives its power either directly through the DB25 connector or via an external power supply.

The 9481 is available in both male and female and DTE and DCE configurations and is compatible with AT\&T Technologies ST-type optical connectors. You can readily install the link on site without any modifications to existing RS-232C installations. The link operates over 0 to $70^{\circ} \mathrm{C}$, specs a $10^{-9} \mathrm{BER}$, and requires $\pm 12 \mathrm{~V}$. It is priced at $\$ 36$ (OEM qty) for a plastic-fiber version or $\$ 54$ for a glass-fiber unit.
to $250-\mu \mathrm{m}$ fibers.
The transmitters employ an LED (either AlGaAs or InGaAsP) as the light source. Minimum peak-output power ratings vary with fiber-core size. For the TTL-compatible $25-\mathrm{MHz}$ transmitter (501388), for example, this spec is -20 dBm for a $50-\mu \mathrm{m}$-core fiber with a 0.21 NA (numerical aperture) and -12 dBm for a $100-\mu \mathrm{m}$-core fiber with a 0.3 NA. For the same fibers, the output rating for the ECL-compatible 220MHz transmitter (501344) is -16 to -23 dBm , respectively. Output
spectral widths range from 50 to 100 nm and maximum rise and fall times ( 20 to $80 \%$ points) are 2 to 5 nsec.

The receivers employ either silicon or InGaAs pin diodes as the optical detector. BER specs are either $10^{-9}$ or $10^{-12}$, and minimum input levels range from -30 to -37 dBm . The receivers operate at a 40 to $60 \%$ duty cycle and specify rise and fall times of 1 to 5 nsec max.

All of the units operate over 0 to $70^{\circ} \mathrm{C}$. TTL-compatible transmitters require 5 V supplies, whereas their receiver counterparts operate from $\pm 5 \mathrm{~V}$. The ECL-compatible transmitters and receivers require -5.2 V and $+5 /-5.2 \mathrm{~V}$, respectively. Prices for the Optimate line start at $\$ 200$ / pair.

## Receiver extends capabilities

Hewlett-Packard's HFBR-24X6 receiver family extends the capabilities of the company's $820-\mathrm{nm}$ component line to 150 M bps. Designed for cost-sensitive digital applications, the receivers are well suited for ana$\log$ /video service in applications involving workstation and securitytransaction links.
The receivers contain a pin photodiode, an IC preamplifier, and a lens. Thanks to a dynamic range of 24 dB , the HFBR-24X6 units can accommodate a wide range of link distances-typically 1 m to 3 km at 35 M bps.
You have a choice of either SMA (-2406) or ST (-2416) connector ports. The receivers are fully compatible with the company's HFBR14XX transmitters and are fully specified for use with $62.5 / 125-$, 100 / 140 -, and $50 / 125-\mu \mathrm{m}$ multimode fiber. They cost $\$ 25(1000)$.
Honeywell's HFM Series of data links consists of trilevel transmitters and receivers designed for point-to-point digital-data transmission. All of the modules are housed in metal packages, operate from 5 V , and come with SMA or ADM (AMP Inc) optical connectors.

The line includes two transmitter modules, the HFM2010 and the

## The One Week Analog ASIC.



## The leading technology . . . the best support . . . go!

The leading analog ASIC family: RLA80, RLA120, and RLA160 userconfigurable macrocell arrays. Onchip thin film SiCr resistors and duallayer metal for ease of interconnect routing and maximum array utilization and performance. Wide supply voltage range $- \pm 1 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. And simplified design procedures that take days, not weeks.
$\square$ Configurable macrocells: 8,12 , or 15 gain blocks in any combination as general purpose op amps, open collector output comparators, or as input amplifiers with ground sensing function for single-supply systems. RLA160 has a preconfigured onboard adjustable $\pm 30 \mathrm{ppm}$ voltage reference.
$\square$ Thin-film resistors: on-chip SiCr resistors exhibit $1 \%$ matching and temperature drift characteristics comparable to discrete film resistors. High performance and high values $(1.25 \mathrm{k} \Omega$ to $150 \mathrm{k} \Omega$ ) handle a wide variety of applications.

Design support: The RLA Breadboarding Kit contains complete design and applications documentation, 200x plots, a pre-drilled printed circuit board, and 23 ICs. Friendly RLAModel software includes menudriven user interface program for PSPICE ${ }^{1}$, SPICE $^{2}$ model library for RLA series, documentation files, and full screen editor. Not to mention the attention you get from applications engineers who have 15 years experi-
ence meeting custom and semi-custom requirements.

Call Raytheon for access to RLA program information and details on the RLA Macrocell Array Breadboarding Kit. We promise you a week that will go down in history.

Raytheon Company
Semiconductor Division 350 Ellis Street
Mountain View, CA 94039-7016
(415) 966-7716

PSPICE is a trademark of MicroSim Corporation. ${ }^{2}$ SPICE developed by University of California.

Access to the right technology

Raytheon

## TECHNOLOGY UPDATE

HFM2025. Both contain TTL inputs that drive encoder logic and timing circuits, plus high-current drivers for the manufacturer's Sweet Spot LED. Each transmitter's bipolar Masterslice IC and LED produce an encoded 3-level optical signal that's


Capable of 10M-bps data rates, the FX102 optical link from Fibermux includes a DTE/ DCE configuration switch and offers a choice of RS-232C- or RS-422-type interfaces.
independent of data format. Both units are capable of transmission distances of 2 km .

The HFM2010 and HFM2025 operate at NRZ data rates of dc to 10 M bps and de to 25 M bps, respectively. Working with $100-\mu \mathrm{m}$ core fiber, the HFM2010 outputs 10 to $100 \mu \mathrm{~W}$ min, and the HFM2025 outputs 10 to $50 \mu \mathrm{~W}$ min. The typical peak-output wavelength measures 820 nm , and the optical pulse widths are 50 and 20 nsec (HFM2010 and

HFM2025, respectively).
The line also includes two receivers, both of which have a $24-\mathrm{dB}$ optical-signal range. They also have pin photodiode preamplifiers that drive decoder and timing circuits, plus a TTL output buffer. The HFM1010 has a sensitivity of -31 dBm , and the HFM1025 specifies a sensitivity of -25 dBm , which allows the units to achieve a BER of $10^{-9}$. The receivers have respective optical rise and fall times of 25 and 10 nsec max. All members of the HFM Series are priced at $\$ 120$.

Plessey's P35-8858 is a 40M-bps transceiver module that provides a simple way to achieve 600 m transmission distances in LAN, PBX, or digital-telephone-exchange applications. The unit is available with either a through-hole or surfacemount termination to accommodate a mother board for added flexibility.

The transceiver is optimized to handle Manchester biphase encode/ decode type of signals. The transmit side of the unit consists of a 50M-bps biphase encoder IC that drives an $850-\mathrm{nm}$ LED. The receiver section consists of a large-area photodiode detector, a transimpedance amplifier, and decoder ICs. The optical interface employs a pair of expand-ed-beam optical connectors housed


Operating in the 1200- to 1600-nm wavelength range, BT\&D's RCV 1000 receiver family includes units that accommodate data rates of 800 M bps. Integrated electronics provides ECL-compatible complementary outputs.
in a standard DIN 41612-type cardedge connector.

The P35-8858 operates at an $850-\mathrm{nm}$ nominal optical wavelength. The transmitter generates 28 to 60 $\mu \mathrm{W}(-15.5$ to $-12 \mathrm{dBm})$ through an $85 / 125-\mu \mathrm{m}$ multimode fiber. Trans-


Compatibility with plastic or glass fiber is a key feature of this RS-232C transceiver from Thomas \& Betts. Available in a DTE or DCE configuration, the unit extends transmission distances to 2 km .
mitter rise and fall times range from 4 to 8 nsec , respectively. The receiver provides $10^{-9}$ BER performance for optical input levels of -25.5 to -12 dBm at $25^{\circ} \mathrm{C}$. The transceiver operates from a 5 V supply and has a -5 to $+70^{\circ} \mathrm{C}$ operating range. It starts at $\$ 350$ (100).

All of these transmitter and receiver modules have impressive data-transfer rates, but AT\&T and BT\&D offer modules capable of handling much higher frequencies-1G bps, for example.

## Speed is no problem

AT\&T has recently introduced transmitter and receiver modules designed for high-speed digital applications. Both types of modules operate at $1.3-\mu \mathrm{m}$ nominal optical wavelengths over single-mode fibers.

The Astrotec 1218-type transmitter incorporates a InGaAsP laser, a thermoelectric cooler, and an integral monitoring photodiode. In addition, it includes modulation circuitry and temperature and feedback controls. Standard features include a $50 \Omega$ input impedance, a data-transmission rate (with NRZ format) of 1 G bps, and an average ouput power of -10 to 0


## Kills bugs on site.

 SMARTMOS"' OVP pops in, keeps performance clean.You get them without warning: spikes and surges that bite and tear... transients that eat performance.
But you can protect complex, expensive circuits from ugly bugs that bite.
Drop a SMARTMOS Overvoltage Protection Circuit across the power supply input rails to your PCB.

## A "smart" crowbar.

SMARTMOS OVP's are two terminal devices that provide simple, painless, practical and complete board-level protection (the third lead provides optional external trip/delay). There are no sloppy temperature references to drift away, no wide trip voltage variances, no costly ICs or extra parts.

If the power supply fails the OVP detects the condition and latches its TMOS ${ }^{\text {TM }}$ SCR output device which acts as a low voltage clamp across the output of the supply, removing the danger from the load. You can use the resultant crowbar to blow a fuse, trip a breaker, or force the supply into current limit/ foldback. The MPC2004 series reduces your valuable design time...simply select the voltage and current range you need and plug it in.

## A temperature-sensing watchdog.

Should your board's temperature rise above $85^{\circ} \mathrm{C}$, the OVP crowbars the input until things cool off. Since the device's internal, off-state power dissipation is only milliwatts, its die temperature is essentially that of the case. Mount one in an appropriate place on your board and it will continually monitor the temperature of adjacent components.

## Defend the faithful for under a dollar.

The MPC2004 family is available for 5,12 and 15 V applications for 10 K -and-up pricing at less than a dollar.

## One-on-one design-in help.

Call toll-free 8:00 a.m. to 4:30 p.m.,

M.S.T. Or write Motorola
Semiconductor Products, Inc. P.O. Box 20912, Phoenix, AZ 85036

## Wére


(M) MOTOROLA

## TECHNOLOGY UPDATE

dBm . A number of options allows users to individually specify bit rate and output spectral width (200, 565 , or 880 M bps , and $5,15,20$, or 50 nm , respectively).

The transmitter is housed in a hermetically sealed 14 -pin SIP. It operates over -65 to $+85^{\circ} \mathrm{C}$ and requires a 5 V supply. It sells for $\$ 2500$ to $\$ 4500$, depending on configuration and quantity.

The Astrotec 1306AA, a widebandwidth linear receiver, can operate at speeds to 1.7 G bps. It incorporates a low-capacitance, hermetically sealed APD (avalanche photodiode) followed by a GaAs IC preamplifier. The preamplifier's transimpedance is adjustable to optimize sensitivity and bandwidth parameters.

The receiver's dynamic range spec is greater than 18 dB . At optimum sensitivity, the APD has a gain of 10 . When operating at a $1.7 \mathrm{G}-\mathrm{bps}$ data rate, the 1306AA's sensitivity for a $3 \times 10^{-11} \mathrm{BER}$ equals -32 dBm at $23^{\circ} \mathrm{C}$. This sensitivity is measured at the receiver's connector.

The 1306AA is housed in an EMIshielded, corrosion-resistant package that includes a $20-\mathrm{in}$. long sin-gle-mode fiber pigtail and an AT\&T 2016 A connector. The unit costs
$\$ 2850$ (100) and operates over 0 to $65^{\circ} \mathrm{C}$.

BT\&D Technologies' RCV receiver family includes devices that are either implemented totally in silicon or in a combination of silicon and GaAs to achieve optimal bit-rate choices and sensitivity. Suitable for single-mode or multimode applications in the 1.2 - to $1.6-\mu \mathrm{m}$ wavelength range, the units convert optical information into ECL-


Totally transparent to an existing electrical system, Eotec's Network Link extends RS232C and RS-422 station-to-station transmission distances to 12,000 feet.
compatible signals.
The family includes models that accommodate data rates spanning 50 M to 800 M bps. The basic receiver design features an InGaAs pin photodiode, a transimpedance-type preamplifier, and integrated electronics that provides ECL-compatible complementary outputs, partial clock extraction, and selected analog outputs for performance monitoring. Receiver sensitivities reach -10 dBm . The receivers operate over a -40 to $+85^{\circ} \mathrm{C}$ range and are housed in 28-pin hermetically sealed metal DIPs. Their supply requirements are $\pm 5 \mathrm{~V}$. Prices start at $\$ 350$ (OEM qty).

EDN

## Article Interest Quotient (Circle One)

High 515 Medium 516 Low 517

## For more information . . .

For more information on the fiber-optic transmitter and receiver modules described in this article, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

| AMP Inc | Eotec Corp | Honeywell Inc | Thomas \& Betts Corp |
| :---: | :---: | :---: | :---: |
| Box 3608 | 420 Frontage Rd | Optoelectronics Div | 1001 Frontier Rd |
| Harrisburg, PA 17105 | West Haven, CT 06516 | 830 E Arapaho Rd | Bridgewater, NJ 08807 |
| (717) 564-0100 | (203) 934-7961 | Richardson, TX 75081 | (201) 685-1600 |
| Circle No 700 | Circle No 703 | (214) 234-4271 | Circle No 709 |
|  |  | Circle No 706 |  |
| AT\&T Components and | Fibermux Corp |  |  |
| Electronic Systems | 9428 Eton Ave | Litton Poly-Scientific |  |
| 555 Union Blvd, Dept 50AL203130 | Chatsworth, CA 91311 | Fiberoptic Products |  |
| Allentown, PA 18103 | (818) 709-6000 | 1213 N Main St |  |
| (800) 372-2447 | Circle No 704 | Blacksburg, VA 24060 |  |
| Circle No 701 |  | (703) 552-3012 |  |
|  | Hewlett-Packard Co | Circle No 707 |  |
| BT\&D Technologies | 1820 Embarcadero Rd |  |  |
| Delaware Corporate Ctr | Palo Alto, CA 94303 | Plessey Three-Five Group |  |
| 2 Righter Parkway | Phone local office | 9630 Ridgehaven Ct |  |
| Wilmington, DE 19803 | Circle No 705 | San Diego, CA 92123 |  |
| (302) 479-0300 |  | (619) 571-7724 |  |
| Circle No 702 |  | Circle No 708 |  |

# You'll recognize us by the companies we keep. 

# Allifd flectronich nct 

Aavid
ACS
ADDS
ADI
Admiral Controls
Adtech Power
Advanced Semiconductor
AIM
Akro Mills
Alcoswitch
Alectron
Allied
Alpha
American Beauty
AMP - Special Products
Amperex
Amperite
Ampex
Amphenol
AND
Antex
AP Products
Argos
Arrow Hart
Artisan Electronics
Atlas Sound
A.W. Sperry

Beau Products
B \& K Dynascan
Bogen
Bomar
Bomax
Bourns
Brooks Mfg.
Bud
Bussman
C \& K/Unimax
Cambridge
Capar
Centralab/Mepco
C.H. Ellis

CKE, Inc.
Clarostat
Comair Rotron
Communication Instruments

Condor<br>Coors Components, Inc<br>Corcom/Mallory<br>Cornell-Dubilier<br>Cramer<br>CTS Berne<br>CTS Metal Products<br>Curtis Industries<br>Cutler-Hammer<br>David Clark<br>D.A.T.A. BOOKS<br>Dow Key Microwave<br>Dremel<br>Duracell<br>Dynatech<br>Eagle-Picher<br>Edsyn<br>E.F. Johnson<br>EG \& G Rotron<br>Electroguard/Acme<br>Electronic Protection Devices<br>Electro-Therm<br>EMCO<br>Entrelec<br>Epsco<br>ETI Systems<br>Eveready<br>Fanon Courier<br>Fans S.<br>Flambeau Products<br>Fluke<br>G.C. Electronics<br>General Instrument Lamp Div.<br>Gentron<br>Global Specialties<br>Grayhill/Waldom<br>Greenlee<br>Guardian Electric<br>Hamlin<br>Hammond Manufacturing<br>Harris Semiconductor<br>Harry Davies<br>Harry Davies

H.H. Smith

Howard Industries
Howard W. Sams
Hurst Manufacturing
ICS
IDEC
IEE
Industrial Devices
Industrial Timer
Intermatic
International Components
Corp. (ICC)
Iwatsu
Jonard
Kepro Circuit Systems
Kester
Keystone Carbon
Keystone Electronics
Klein Tools
Knight Electronics
Kulka Smith
Leader
Ledu
Linemaster
Littlefuse
Lumberg
Macromatic
Magnecraft
Mallory
Master Appliance
Maurey Instruments
Mechanical Products
Memcor
Mepco/Centralab
Mercer
Micro Lamps
Molex/Waldom
Motorola
Mueller Electric
Multiflex Seals
NEC Information Systems
Neutrik


## More options for every design. Every mode. Everybody's need for practical solutions.



AMP and OPTIMATE are trademarks of AMP Incorporated

Now AMP makes it easier to design with fiber optics. And to bring fiber optics into practical application. With the broadest selection of single-mode and multimode interconnect products available anywhere.

The newest? Our 2.5 mm threaded or bayonet styles which offer high performance and intermate with current single-mode connectors.

Cable and cable assemblies. Connectors and splices. Active device mounts. Transmitters, receivers and transceivers. And the technology you need - board level to network level-to create and maintain your entire system.

And-as you might expect from AMP - all our interconnect
products and application tooling are designed for simplicity, precision and speed. Just the practical help you need to put bright ideas to work.
Call (717) 780-4400 and ask for the AMP OPTIMATE Information Desk. Or write AMP Incorporated, Harrisburg, PA 17105-3608.

CIRCLE NO 131 $\rightarrow$ - Interconnecting ideas

Transmitters and receivers offer logic level compatibility at data rates from $25 \mathrm{Mb} / \mathrm{s}$ to $220 \mathrm{Mb} / \mathrm{s}$. Available in either short or long wavelengths. Transceiver plugs into a standard RS-232 port for instant fiber optic capability.


Easy-access patch panel systems simplify network implementation with our tunable spring splices or our no-epoxy/nopolish mechanical splice for multi-mode use.

## OKI DSP cmos

## True ん2-bit Floating Point - 100ns cycle



New OKI 699210 - Internal memory doubled


Solid PC-based Development Support - High-level assembler


OKI System Technologies for Customer Solutions


# The OKI DSP 2ん-bit Floating Point flexibility, on a single CMOS chip. 

## + Expanded on-board RAM and ROM + Powerful instruction expansion + High-speed cycle times + Unique application ease.

OKI gives you a big lift in Digital Signal Processing. With the fastest-growing family of CMOS devices and high-level support tools on the market today. Only OKI now offers true floating point CMOS DSP solutions, because we target our system technologies to customer needs.

## The OKI DSP chips.

Now joining our widely-applied 6992 DSP: the new code-compatible OKI 699210, setting new benchmarks in both price and performance. A 1.5 micron CMOS design, the new $\mathbf{2 1 0}$ significantly expands your DSP capabilities-at a significantly lower cost.

We built in twice as much internal memory: $512 \times 2$ 2-bit words of data RAM; $2 \mathrm{~K} \times 32$-bit words of instruction ROM. 210 instructions have been expanded to include a power-down mode, save and recover modes, as well as the ability to inhibit post-normalization. Plus programmable wait states for interfacing with slow memory.

Both single-chip DSPs, 6992 and 210, can be configured for floating point format, fixed data format or logical data format. Both offer 100ns instruction cycle times. And any code written for the 6992 can be run on the 210.


All our device-family innovations are enhanced by OKI's complete family of DSP support tools. These cover every development and programming function involved in any DSP design effort. Quickly, simply and cost-effectively.

Your total development process is PCbased, using OKI's own DSP hardware and software tools. Plus you can assemble in high-level mnemonics, with our Intermediate Language Assembler. Makes programming easier since the pipeline is invisible, while still producing very efficient code.

We've made debugging easier too. With SIM92/210 software for simulation, and the EVA92/210 board for evaluation. To handle emulation, we can supply an ICE for realtime development. Or use our special PC-AT cards. The first is a digital card for ICE-less emulation. The other provides 12-bit ADC-DAC conversion, with programmable sampling rates and antialiasing filter.
It's all here: high-level math processors plus a high-level development process. True DSP solutions, simplified by the industry's most committed system technologies.

## OKI DSP - Set yourself up!

Please send complete DSP technical data package for:
$\square$ OKI 6992-22-bit Floating Point CMOS DSP.
$\square$ OKI 699210 - 22-bit Floating Point CMOS DSP.
$\square$ Call me. I have immediate requirements.
Tel:(_)
Name/Title
Company

## EDN033188

Please clip coupon to business card or letterhead and return to: DSP Customer Service, OKI Semiconductor, 650 N. Mary Avenue, Sunnyvale, CA 94086. (408) 720-1900.

## ©sinx

SS2 SERIES PHOTO SENSORS SMALL IN SIZE - BIG ON PERFORMANCE


COMPACT: Thru-beam is only
$8 \times 12 \times 3 \mathrm{~mm}$ in size. Diffuse reflective is $12 \times 12 \times 3 \mathrm{~mm}$
LONG DETECTING DISTANCE: The modulated infrared light source allows the diffuse reflective type to sense objects at 50 mm max. The thru-beam has a 300 mm max. distance.
SMALL OBJECT DETECTION: Both the thru-beam and diffuse reflective types will detect objects as small as 0.3 mm in size.
VERSATILE CONTROL AMPLIFIERS: 3 types of DC amplifiers with NPN/PNP selectable outputs. Response times of 1 ms or 3 ms . Two types of AC amplifiers with relay contact output. Both types are available with optional 3 mode, selectable time relay.
LOW COST: Sensors are $\$ 40.00$ ea. without the amplifier.
for a catalog contact:


RAMCO ELECTRIC CO.
P.O. BOX 65310, 1207 MAPLE ST. WEST DES MOINES, IOWA 50265 TELEPHONE: (515) 225-6933 FAX: (515) 225-0063

## REPRINTS <br> "Surface-Mount Technology Design <br> 

by Steve Leibson
Now you can order copies of EDN magazine's exclusive hands-on surface-mount design series. This 48 -page, four-color reprint follows the progress of EDN editor Steve Leibson as he designs a 2 Mbyte memory board using surface-mount technology. Leibson takes you from his initial concept through to the finished working product, and includes typical problems you might encounter and objectively reports about both good and bad design decisions made along the way.

Don't miss this exclusive reprint that covers the newest design option that electronic engineers can use for designing innovative products. This latest reprint is yours for only $\$ 7.95$ (UPS) and $\$ 10.95$ (non-USA).

## Mail coupon to:

EDN Reprints, EDN Magazine, Cahners Building, 275 Washington Street, Newton, MA 02158-1630
$\qquad$ copies of A Designer's Guide to Surface-Mount Technology at $\$ 7.95$ (UPS) or $\$ 10.95$ (non-USA)*
Please print clearly This is your mailing label.
Name
Tile $\qquad$
Company
Address
Cily $\qquad$ Sate $\qquad$ Zip $\qquad$
*Check or money order made out to EDN REPRINTS must accompany each order No COD. Mass. residents add $5 \%$ sales tax. EDNo33188


Samsung sets the pace.

## Samsung. Setting the pace.

Samsung is a leading semiconductor company with worldwide resources. In process, design and manufacturing, were setting the pace for the industry.
To date, Samsung has invested more than $\$ 600$ million in the development of new products. By 1989, this will have grown to one billion dollars. Such commitment will place Samsung among the top ten producers in the world by the beginning of the next decade.

Samsung is a leader in the manufacture of products utilizing state-of-the-art CMOS processes. Our 6 -inch wafer fabrication lines in Korea are some of the most advanced in existence, as is our Class I wafer fab facility in San Jose, the heart
of Silicon Valley. Not only are we able to produce such leading edge products as DRAMs, SRAMs, CMOS Programmable Logic and Advanced CMOS Logic, but we produce them in high volume at low cost.

Samsung maintains advanced R\&D facilities in Kiheung and Bucheon, Korea and in San Jose, California. At each of these facilities we have not only created our own advanced designs for current products, but we are at work now on our 4-megabit DRAM and our 1-megabit SRAM designs.

As you read on, one thing will be clear: Samsung is committed to designing, developing and delivering sophisticated products.

Products that set the pace.


## Samsungs new 1Mb DRAMs set today's fast memory pace.

The KM41C100X and KM44C25X series of one-megabit DRAMs in CMOS technology are our latest high-density memory offerings. Fabricated using Samsungs internally developed CMOS technology, they feature line widths as fine as $1 \mu \mathrm{~m}$.

This leading technology enables us to offer a device with very low power consumption and high-speed access times. Our pace setting Samsung tech- DRAMs are designed nology has evolved from 2.5 micron to sub-micron in just four years.


1984-64K
$117 \mu^{2}$ cell size $2.5 \mu \mathrm{~m}$ geometry


1985-256K
$62.5 \mu^{2}$ cell size $1.6 \mu \mathrm{~m}$ geometry

$1987-1 \mathrm{Mb}$
$27 \mu^{2}$ cell size $1.0 \mu \mathrm{~m}$ geometry

1988-
$10.25 \mu^{2}$ cell size $0.8 \mu \mathrm{~m}$ geometry for computing applications from mainframes and minis to high performance graphics stations and work stations, as well as for instruments and telecommunications products.

Our 1Mb DRAMs are manufactured in production volumes at our 6-inch wafer fabrication facility, considered to be one of the most advanced of its kind, using very high-resolution steppers and state-of-theart etching and implantation equipment. Samsung is adding DRAM wafer capacity with a new 6inch facility which will be equipped to manufacture our 4Mb DRAM.

Samsung 1Mb DRAMs are available in a wide variety of options and organizations. We offer a choice

of 256 K x 4 or 1 Mx 1 organizations with features like Fast Page, Nibble and Static Column modes. With the addition of the 1 Mb to the 64 K and 256K, Samsung's dynamic RAMs cover the entire range of densities and organizations.

All are available in plastic DIP, ZIP, and SOJ or PLCC industry standard packages.
Our packaging technology is not limited to components. Samsung SIP and SIMM memory modules for the 256 K and 1Mb DRAMs offer a cost effective method of utilizing surface mount technology to increase board density.

Fill out the coupon on the back page of this insert for data sheets and a reliability report.

In the 1 Mb DRAM,
Samsung's pacesetting CMOS technology provides superior immunity to electrostatic discharge, lower soft error rates and high immunity to latchup.


| Part Type | Organ. | Features | Speeds | Packages | Avail. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| KM41C1000 | $1 \mathrm{M} \times 1$ | Fast Page mode | 100,120 | DIP, ZIP, SOJ | Now |
| KM41C1001 | $1 \mathrm{M} \times 1$ | Nibble mode | 100,120 | DIP. ZIP. SOJ | 20 $88{ }^{*}$ |
| KM41C1002 | $1 \mathrm{M} \times 1$ | Static Column mode | 100,120 | DIP, ZIP, SOJ | 20 88* |
| KM44C256 | $256 \mathrm{~K} \times 4$ | Fast Page mode | 100,120 | DIP. ZIP, SOJ | 2Q 88 |
| KM44C258 | $256 \mathrm{~K} \times 4$ | Static Column mode | 100,120 | DIP. ZIP. SOJ | 20 88 |
| KM41256 | $256 \mathrm{~K} \times 1$ | Page mode | 120,150 | DIP, ZIP. PLCC | Now |
| KM41257 | $256 \times 1$ | Nibble mode | 120,150 | DIP. ZIP. PLCC | Now |
| KM41464 | $64 \mathrm{~K} \times 4$ | Page mode | 120,150 | DIP, ZIP, PLCC | Now |
| KM4164 | $64 \mathrm{~K} \times 1$ | Page mode | 120,150 | DIP | Now |
| KMM48/9256 | $256 \mathrm{~K} \times 8 / 9$ | Page or Nibble modes | 120.150 | SIP module | Now |
| KMM58/9256 | $256 \mathrm{~K} \times 8 / 9$ | Page or Nibble modes | 120,150 | SIMM module | Now |
| KMM48/91000 | $1 \mathrm{M} \times 8 / 9$ | Fast Page mode | 100,120 | SIP module | 2088 |
| KMM58/91000 | $1 \mathrm{M} \times 8 / 9$ | Fast Page mode | 100,120 | SIMM module | 2Q 88 |

Samsung's 6-inch wafer fabrication facility in
Kiheung is one of the most advanced in the world, boasting a Class 10 level clean room. Samsung is now expanding its 6-inch capacity.

8


## Samsung EEPROMs also outpace industry standards.

Advanced Samsung 16K and 64K EEPROMs are now available in production quantities.

Samsungs 64K and 16K EEPROMs Dmeet or surpass all industry standards for performance, reliability and quality. They have standard endurance ratings of 10,000 erase/ write cycles and data retention
ratings of
10 years.

And our
"H" version 64Ks offer a quick 2 millisecond per byte write time, reducing write time by a factor of 5 .

Our new 64K KM28C64 series (available 2nd quarter 1988) is fabri-
cated with our pacesetting floating gate CMOS processing. It features low power dissipation of $100 \mu \mathrm{~A}$ standby and access times of 150ns, 200ns and 250ns. These advanced 8K x 8 EEPROMs also feature a 32-byte page mode to slash write times to 150 microseconds per byte and a 5 -millisecond write cycle. This allows the entire 64 K memory to be written in only 1.3 seconds.

Samsungs EEPROMs excel in such rugged applications as communications, instrumentation, robotics and industrial control. All our EEPROMs meet JEDEC pinout standards.

Fill out the coupon on the back page of this insert for samples, a data sheet, and reliability report.

Circle No. 168

## The fast pace continues with Samsung low power SRAMs.

Samsung's 256K (32Kx 8) KM62256 SRAMs are available with access times of 100ns, 120ns and 150ns, all in low-power versions with standby current of only $4 \mu \mathrm{~A}$ (typical).


Samsung SRAMs are fabricated using $1.2 \mu \mathrm{~m}$ CMOS technology. In 1988, we are ramping up 256 K and 64K SRAM production.

TThe pace of Samsung's technology development in static RAMs is as strong as it is for all our memory products. With the introduction of the KM62256 (32K x 8) SRAM Family, we now offer a wide low power CMOS SRAM line, including our KM6264A industry standard 64K SRAMs.

The KM62256 256K SRAM is fabricated using our internally developed $1.2 \mu \mathrm{~m}$ CMOS technology which meets both high speed and low power requirements. We offer 80ns 64K SRAMs and 100ns 256K SRAMs in high volume. They're
ideal for process control, medical instruments, and hand held devices.

Samsung is ramping up production of both the 256 K and 64 K

| Part Type | KM62256L | KM6264AL |
| :--- | :--- | :--- |
| Organization | $32 \mathrm{~K} \times 8$ | $8 \mathrm{~K} \times 8$ |
| Speeds | $100,120,150 \mathrm{~ns}$ | $80,100,120 \mathrm{~ns}$ |
| Package | 28 DIP | 28 DIP |
| Max Current (standby) | $100 \mu \mathrm{~A}$ | $100 \mu \mathrm{~A}$ |
| Availability | Now | Now |

CMOS SRAMs. Our complete line is available now in industry standard packages and pinouts.

Fill out the coupon on the back page of this insert for a data sheet and reliability report.

# Samsung Advanced AHCT CMOS Logic Family keeps pace with the fastest 16 - and 32-bit microprocessors. 

Available now in production quantities, our Advanced AHCT CMOS Logic Family meets the demands of your 16- and 32-bit designs for high speed, high drive and low power. Samsung has 111 of the most popular standard logic functions available off the shelf now, with samples free for the asking. By mid-year, we will add into your product and move into production now with no waiting.

For power reduction in your existing designs, AHCT offers pin-for-pin, part-for-part replacement for ALS and FAST.' It fits right in and reduces power tenfold. Yet our AHCT doesn't have a premium price. It costs the same as ALS. Fill out the coupon on another 50 part types to the list. This means you can design our part


Samsung's Advanced CMOS Logic is available in both DIP and SOIC packages.

## KS74AHCT PARTS LIST

Circle No. 170


[^14]
## Samsung's KSV3110 combo A/D-D/A and KSV3208 A/D set the pace in flash converters.

KSV3110 Combo A/D-D/A Flash Converter


KSV3208 A/D Flash Converter

The pacesetting technology of our single-chip KSV3110 A/D-D/A data converter provides independent 8 -bit A/D converter functions and 10 -bit R-2R D/A converter functions over an operating range of DC to 20 MHz . With the ease of design you get with the KSV3110's


The impressive linear characteristics of the KSV3110 are shared by our new KSV3208 A/D flash converter. It provides the same features for applications that don't require D/A conversion.

Samsung also offers the support chips to ease the integration of the KSV3110 into video applications. For example:

- KA2606 Sync Separate IC
- KA2153 Chrominance Signal Processor for NTSC systems
- KA2154 Video Chroma Deflection System for NTSC and PAL systems
Fill out the coupon on the back page of this insert for samples and a Flash Converter IC Data Book.

Circle No. 171

*Settling Time


Samsung's high-quality, industry-standard MOSFETs directly replace IR and Motorola ${ }^{\star}$ and are competitively priced.


Samsung's industry-standard power MOSFETs have rapidly gained market acceptance. Independent testing has demonstrated their excellent quality and superior ruggedness (2J at 500V). Each is screened to MIL-STD-750 specifications.
Our MOSFETs directly replace IR and Motorola. They're available in a variety of packages, including leadformed TO-220s, state-of-the-art TO-247 FULL PACK and DPAK.

And Samsung is an established supplier with over 400 part types, in both N and P channel, one of the broadest lines on the market. Our MOSFETs range from 60V to 700V. Plus, we're especially deep in the 500 V to 700 V range. All with competitive pricing.

Fill out the coupon on the back page of this insert for samples, a data book, and a ruggedness application note.

Circle No. 174
lease select below what you would like to receive on each Samsung product and mail this coupon to Product Marketing Department,

| \| DRAMs | $\square$ Data Sheet $\square$ Reliability Report | Part Type |
| :---: | :---: | :---: |
| 1 SRAMs | $\square$ Data Sheet | Part Type |
|  | $\square$ Reliability Report |  |
| \| EEPROMs | $\square$ Samples $\square$ Data Sheet | Part Type |
| \| | $\square$ Reliability Report |  |
| \| ADVANCED | $\square$ Data Book | Part Type |
| I CMOS LOGIC | $\square$ Samples: KS74AHC |  |
| I Flash con- | $\square$ Samples | Part Type |
| VERTERS | $\square$ Data Book |  |
| SOT-23s | $\square$ Samples | Part Type |
|  | Data Book |  |
| \| LINEARICs | $\square$ Samples | Part Type |
|  | $\square$ Data Book |  |
| \| POWER | $\square$ Samples | Part Type |
| MOSFETs | $\square$ Data Book |  |
|  | $\square$ Ruggedness Applic | tion Note |
|  |  |  |


| TO-247 Full Pack |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| TO-3P Package | IRF9220 | IRF9232 |  |  |
| N-Channel Iypes | P-Channel Types | IRF9221 | IRF9233 |  |
| IRFS130 | IRFS443 | IRFP9120 | IRFP9220 | IRF9222 |
| IRF9240 |  |  |  |  |
| IRFS 133 | IRFS450 | IRFP9121 | IRFP9221 | IRF923 | IRF9241

Samsung Semiconductor, Inc., 3725 North First । Street. San Jose, CA 95134-1708.

Please rush to:
Name
Title_
Company
Address
City/State/Zip
Telephone (
Setting the Pace.
SAMSUNG
Semiconductor
3725 North First Street,
San Jose, CA 95134-1708

## Samsungs SOT-23s set the pace for surface mount technology.

Samsung has 100 types of

Samsung has introduced 100 types of SOT-23s with an AOQL of 100 ppm or better-all with competitive pricing. They're ideal for both hybrid and surface mount applications. The entire line is in full production and available from stock. Samsung can deliver SOT-23s in the quantities you need when you need them.

SOT-23 PART TYPES

| MMBR5179 | MMBT5087 | MMBTA55 |
| :--- | :--- | :--- |
| MMBT2222A | MMBT5088 | MMBTA56 |
| MMBT2484 | MMBT5401 | MMBTA63 |
| MMBT2907A | MMBT5550 | MMBTA64 |
| MMBT3904 | MMBT6428 | MMBTA70 |
| MMBT3906 | MMBTA05 | MMBTA92 |
| MMBT4123 | MMBTA06 | MMBTA93 |
| MMBT4124 | MMBTA13 | MMBTH10 |
| MMBT4125 | MMBTA14 | MMBTH17 |
| MMBT4126 | MMBTA20 | MMBTH24 |
| MMBT4401 | MMBTA42 | BCX70G |
| MMBT4403 | MMBTA43 | BCX71G |
| 66 other types also available |  |  |

Samsung now has available a new family of digital transistors, the KSR1000 Series (NPN) and KSR2000 Series (PNP), with 40 part types in each family. They're especially useful for applications where logic circuits are being interfaced with electromechanical systems.

We also offer an extensive line of industry standard TO-92, TO-126, and TO-220 transistors, plus TIPSeries power transistors, small signal transistors, high speed high voltage switching power transistors, Darlington power transistors and 1500V T0-3P transistors.

Fill out the coupon on the back page of this insert for samples and a copy of our new Transistor Data Book.

Circle No. 172

SOT-23 available now.


Function


Samsung's new KSR1000 and KSR2000 Series digital transistors are especially usefiul for applications where logic circuits are being interfaced with electromechanical systems.

## Samsung sets a fast pace in delivering linear ICs.

The quality of Samsung linear ICs has gained them solid market acceptance. We now have over 250 industry-standard ICs available for immediate delivery. And Samsung has invested substantially to ensure that you get the latest technology, with high reliability in high volume at very low cost.

Fill out the coupon on the back page of this insert for samples and a data book.
Voltage Regulators
KA336Z-5 (LM336-5)
KA431CZ
KA431CN (TL431)
LM723CN
LM31)
MC78TXXCT
MC78XXCT
MC78XXACT
MC78LXXACZ
MC78MXXCT
MC79LXXACZ
MC79MXXCT
MC79XXCT
MA78S40CN
KA385Z-1.2 (LM385-1.2)
OP AMPS
KA301ANN
LM741CN
MC1458CN*
MC4558CN*
LM358N*
LM358AN*
LM348N*
LM324N*
LM324AN*
MC3403N*
KS271 (TLC271)
KS272 (TLC272)
KS273 (TLC273)
*Also available in surface-mount package (SOIC).

# 1M-bit video RAMs offer speed for high-resolution graphics displays 

Margery S Conner, Regional Editor

Deciding what type of RAM to use for your graphics-display memory used to be simple: A low-resolution graphics system, with its correspondingly low bandwidth and price, dictated that you use low-cost dynamic RAMs, while a high-resolution, higher-cost system could justify choosing the more-expensive dual-ported video RAMs. Today, however, demand for high-resolution displays is increasing even in the low-cost personal-computer market. To obtain $1024 \times 1000$-pixel resolution and 8 bits of color for your high-resolution display, you'll need to use a video RAM. Fortunately, added features and a lower cost per bit make the most recently developed 1M-bit video RAMs increasingly practical to use.

Although 64 k - and 256 k -bit video RAMs have been available for a few years, their steep price and limited capabilities have kept them from gaining widespread use. The 1M-bit RAMs that will become available this year, however, may rapidly change that situation.

First, although video-RAM prices have historically been well over three times the price of dynamic RAMs, you can expect the newly introduced 1M-bit video RAMs to shrink that price difference. For example, Mitsubishi estimates that the initial price for its M5M442256 will be about three times that of a dynamic RAM, or about $\$ 60$. But within a year the company expects to see the price fall to $\$ 40$ to $\$ 45$. Texas Instruments estimates that the price of a 1M-bit video RAM will drop to less than twice that of a dynamic RAM, making the video


Art A-The TC524257 1M-bit video RAM supports such features as flash write, split-register transfer, and raster ops. The TC524256 is a stripped-down version of the TC524257. Both products are from Toshiba.

RAMs competitive for use in per-sonal-computer displays as well as higher-resolution graphics terminals.

## US regulates RAM prices

However, because these devices include dynamic-RAM arrays, they fall under government pricing re-strictions-devices manufactured in Japan ultimately have their pricing fixed by the US government in accordance with its "fair-market-value" pricing regulations. Incidentally, Texas Instruments' device is manufactured in Japan, as is Mitsubishi's. Samsung's is manufactured in Korea, however, and the fair-market-value pricing regulations don't control the prices of parts manufactured in Korea. At present, Toshiba is the only videoRAM manufacturer that will quote a firm price for its video RAM (the TC524256/7). The company has been shipping parts since November.
Second, these RAMs all support a variety of graphics-intensive features. (Table 1 lists some of the most significant features for the 1M-bit video RAMs that will be available this year.) Matching your application needs to the correct vid-eo-RAM features is the best way to
determine the right device for your application. But be wary of basing your design on a video RAM that has sophisticated but unique features. In the future, as JEDEC standards for video RAMs emerge, you could be limited to using video RAMs from that one manufacturer.

Although spec sheets often refer to video RAMs as dual-port memories, video RAMs are only one example of that memory type. Some cache-memory RAMs, for example, have multiple parallel ports. Video RAMs, however, have one bidirectional parallel port, and at least one serial port, which is often, but not always, bidirectional (Fig 1). A video RAM incorporates a dynamicRAM memory array that feeds a serial shift register, which is also called a serial-access memory, or SAM. This architecture allows a processor to load the dynamic RAM at the same time that the serial shift register feeds the video display.
If, instead of video RAMs, you were to use standard dynamic RAMs for video memory, you'd have to trade off either display quality (because of restricted access to the video memory by the CRT) or drawing speed (because of restricted access by the CPU).

# xcon rases minay  



## Our full military E2PROM line-up gives you one-stop shopping convenience.

Now you can promote your memory-intensive military designs to a higher level of functionality. With Xicor's complete line of military $E^{2} P R O M s$, NOVRAMs and $E^{2}$ potentiometers.

They raise system performance and power economies to a new level. And unlike most memories, Xicor $\mathrm{E}^{2}$ devices can be remotely reprogrammed in the field, via telephone link. In the case of our $E^{2}$ potentiometers, they can automatically tune themselves while in service--kind of like an "electronic screwdriver." Plus our high density E2PROM memories are loaded with features like Page Mode, DATA Polling, Toggle Bit and Software

Volume-manufactured in JEDEC-approved pin-outs, Xicor E² devices come in all the popular packaging configurations, including surface mount. And they're backed by Xicor's on-site technical design support. For more details on JAN, DESC Drawing and 883 C products, call (408) 432-8888 today, or write: Xicor Inc., 851 Buckeye Court, Milpitas, CA 95035.

| $\mathrm{E}^{2} \text { PROM }$ Part No. | Organ. | Page Size <br> (\#Bytes) | $\begin{gathered} \text { Access } \\ \text { Time (ns) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| X2804AM | $512 \times 8$ | N/A | $\begin{aligned} & 300,350, \\ & 450 \end{aligned}$ |
| X2816AM | $2048 \times 8$ | N/A | $\begin{aligned} & 300,350, \\ & 450 \end{aligned}$ |
| X2816BM | $2048 \times 8$ | 16 | 250,300 |
| X2864AM | $8192 \times 8$ | 16 | $\begin{aligned} & 250,300, \\ & 350,450 \end{aligned}$ |
| X2864BM | $8192 \times 8$ | 32 | $\begin{aligned} & 120,150, \\ & 180 \end{aligned}$ |
| X2864HM | $8192 \times 8$ | 32 | 90 |
| X28256M | $32768 \times 8$ | 64 | $\begin{aligned} & 250,300, \\ & 350 \end{aligned}$ |
| X28C256M | $32768 \times 8$ | 64 | $\begin{aligned} & 250,300, \\ & 350 \end{aligned}$ |
| XM28C010M | $131072 \times 8$ | 64 | 250, 300 |
|  |  |  |  |
|  |  |  |  |


| NOVRAM <br> Part No. | Organ. |
| :--- | :---: |
| X2210M | $64 \times 4$ |
| X2212M | $256 \times 4$ |
| X2004M | $512 \times 8$ |
| Serial I/O <br> Part No. | Organ. |
| NOVRAM <br> X2444M | $16 \times 16$ |
| $E^{2}$ PROM <br> X2404M | $512 \times 8$ |
| $E^{2}$ PRRM <br> X24C16M | $2048 \times 8$ |
| $E^{2}$ POTM <br> Part No. | Max. <br> Resis. |
| X9103M | $10 \mathrm{~K} \Omega$ |
| X9503M | $50 \mathrm{~K} \Omega$ |
| X9104M | $100 \mathrm{~K} \Omega$ |

$\mathrm{E}^{2}$ POT'" $^{\text {r }}$ digitally controlled potentiometer is a trademark of Xicor, Inc.

## TECHNOLOGY UPDATE

Video RAMs can have any or all of several optional features, such as write-per-bit, flash-write, split-register transfer, and raster ops (for definitions of these and other videoRAM terms, see box, "A videoRAM glossary," see pg 84 ). Generally, however, the manufacturers will probably divide into two camps: those that take an approach similar to Texas Instruments', and those that use one like Toshiba's. Texas Instruments' TMS44C251 video RAM doesn't perform raster ops, for instance, so it requires a graphics processor that can assume more control over the video data. The company expects customers to use
the TMS44C251 video RAM with its TMS34010 graphics processor. Toshiba's TC524257 video RAM, on the other hand, has no allegiance to any particular processor architecture: It does perform raster ops. (The TC524256, however, doesn't perform raster ops; it's a strippeddown version of the TC524257.) Most of the Japanese manufacturers seem to be producing chips that provide a subset of the Toshiba chip's capabilities.

All of the 1 M-bit video RAMs support some form of a write-perbit feature. This feature is useful in accelerating vector draws: It allows you to access individual bits of a
pixel that are not located contiguously in memory. A standard write-per-bit implementation requires you to reload the write mask for each $\overline{\mathrm{RAS}}$ cycle. Unfortunately, a write-per-bit feature can't be implemented in page-mode operation unless the same write mask is used for each page-mode cycle: The mask is loaded during the falling edge of $\overline{\mathrm{RAS}}$ and can't be changed until the next RAS cycle. (Page-mode addressing means that the RAS signal is latched, while the CAS signal changes.)

You'll also encounter a problem with the write-per-bit feature if your graphics processor has a multi-

TABLE 1-1M-BIT VIDEO RAMs

| MANUFACTURER AND MODEL | RAM-ARRAY ACCESS TIME (nSEC) | SERIAL-PORT CYCLE TIME (nSEC) | RASTER OPS | BLOCK WRITE | FLASH WRITE | $\begin{array}{\|c\|} \hline \text { PERSISTENT } \\ \text { WRITE } \\ \text { PER BIT } \\ \hline \end{array}$ | SPLITREGISTER TRANSFER | PACKAGE (28 PINS) | AVAILABILITY (SAMPLES) | PRICE | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FUJITSU 81C 4251 | 100 OR 120 | 30 OR 40 |  |  |  |  | - | DIP, ZIP | JUNE 1988 |  |  |
| 81 C 4252 | 100 OR 120 | 30 OR 40 | - | - | - |  | - | DIP, ZIP | AUG 1988 | (SAMPLES) |  |
| HITACHI HM534251 | $\begin{aligned} & 100,120, \\ & \text { OR } 150 \end{aligned}$ | $\begin{aligned} & 30,40, \\ & \text { OR } 50 \end{aligned}$ | - |  | - |  |  | SOJ, ZIP | JUNE 1988 | \$40 | $128 \mathrm{k} \times 8$-BIT VERSION WILL BE AVAILABLE IN THE 3RD QTR OF 1988 |
| MITSUBISHI M5M442256 | $\begin{aligned} & 80,100, \\ & \text { OR } 120 \end{aligned}$ | $\begin{aligned} & 30,35, \\ & \text { OR } 40 \end{aligned}$ |  |  | - |  | - | ZIP, SOJ | 2ND QTR 1988 | $\begin{gathered} 3 \times N^{*} \text {; } \\ \text { WILLDROP } \\ \text { TO } 2 \times N \end{gathered}$ |  |
| NEC MPD42274 | 100 OR 120 | 30 OR 40 |  |  | - |  |  | ZIP, DIP, SOJ | JULY 1988 | \$65 (SAMPLES) |  |
| UPD42273 | 100 OR 200 | 30 OR 40 |  |  |  |  |  | ZIP, DIP, SOJ | JULY 1988 | $\begin{array}{\|c\|} \hline \$ 65 \\ \text { (SAMPLES) } \\ \hline \end{array}$ |  |
| OKI SEMICONDUCTOR MSM514251 | 100 OR 120 | 30 OR 40 |  |  |  |  |  | DIP, ZIP | MAY 1988 | $3 \times \mathrm{N}^{*}$; <br> WILLDROP | STATIC COLUMN ACCESS |
| MSM514252 | 100 OR 120 | 30 OR 40 |  |  |  |  |  | DIP, ZIP | MAY 1988 | TO $2 \times \mathrm{N}$ | FAST PAGE |
| SAMSUNG KM42C4256 | 100 OR 120 | 25 OR 35 |  |  |  |  |  | DIP, ZIP, SOJ | DEC 1988 | $1.5 \times \mathrm{N}^{*}$ |  |
| KM42C4257 | 100 OR 120 | 25 OR 35 |  | - | - |  | - | DIP, ZIP, SOJ | APRIL 1989 | $2.0 \times \mathrm{N}^{*}$ |  |
| TEXAS INSTRUMENTS TMS44C251 | $\begin{gathered} 100,120, \\ \text { OR } 150 \end{gathered}$ | $\begin{aligned} & 30,33 \\ & \text { OR } 40 \end{aligned}$ |  | - |  | - | - | SOJ | NOW | $3 \times \mathrm{N}^{*}$ (SAMPLES); $1.7 \times \mathrm{N}^{*}$ (PROD QTY) |  |
| $\begin{aligned} & \text { TOSHIBA } \\ & \text { TC524256 } \end{aligned}$ | 100 OR 120 | 30 OR 40 | - | - |  |  |  | ZIP, SOJ | NOW | $\begin{aligned} & \$ 74.25 \\ & (1000) \end{aligned}$ | $128 \mathrm{k} \times 8$-BIT VERSION AVAILABLE IN THE 2ND QTR OF 1988 |
| TC524257 | 100 OR 120 | 30 OR 40 | - | - | - |  | - | DIP, ZIP, SOJ | NOW | $\begin{aligned} & \$ 79.65 \\ & (1000) \end{aligned}$ |  |

[^15] US GOVERNMENT FAIR-MARKET-VALUE REGULATIONS.

## TECHNOLOGY UPDATE

plexed address and data bus: Mask data information can collide with the $\overline{\text { RAS }}$ address. Texas Instruments' graphics processor uses a multiplexed address and data bus: Its TMS44C251 video RAM circumvents the transient write mask by incorporating a "persistent write mask," a write mask that doesn't need to be rewritten.

Perhaps the most controversial of the video-RAM options is "flash write"-the ability to clear an entire row of video memory in a single memory cycle. You'll find this capability useful for rapidly manipulating entire rows in a plane-changing a background color, for example. However, keep in mind that there are tradeoffs associated
with using flash write. For instance, it appears that the proposed JEDEC standard for video RAMs will allow manufacturers to incorporate either flash write or persistent write in their video RAMS, but not both. Therefore, the manufacturers that implement flash write in their video RAMs do so at the expense of the persistent write mask.


Fig 1-A video RAM contains a dynamic RAM memory array that feeds a serial shift register. This architecture allows a processor to load the parallel array at the same time that the video hardware is being fed by the serial shift register.

Improved Speeds!

## Megabit SRAM Modules



High-speed megabits give you an "unfair" advantage.
For example, the IDT8M824 JEDEC standard 128 Kx 8 is now at 45 ns . The IDT7M624 64Kx16 is 30ns.

Use these fast megabits to design todays leadership products. Thenwhen they become available-use either monolithic megabits or the next generation of fast/dense modules in your next generation of leadership products. Either way, you keep an "unfair" advantage.

All our modules are CMOS and all are fully tested and available now as cost-effective commercial or full MIL-STD-883C compliant.


All of our very high-speed megabit modules undergo constant improvements in speed.

(g) 8M624
(a) $64 \mathrm{~K} \times 16 \quad 8 \mathrm{MP} 624$
(b) $128 \mathrm{~K} \times 8$ 8MP824 SIP
(c) $128 \mathrm{~K} x 8 \quad 8 \mathrm{M} 824$ (C) monolithic pinout
(d) $128 \mathrm{Kx} 8 \quad 8 \mathrm{M} 824(\mathrm{~N})$ monolithic pinout w/SOICs
(e) $128 \mathrm{~K} x 8 \quad 7 \mathrm{M} 824$ memory subsystem
(f) $64 \mathrm{~K} \times 16 \quad 7 \mathrm{M} 624$
(g) $64 \mathrm{~K} \times 16 \quad 8 \mathrm{M} 624$

128 Kx 8 memory subsystem cycles at 20 MHz clock rate.
By including address and decode registers - plus decoding and buffering - on board, the IDT7M824 memory subsystem achieves a clock rate of 20 MHz .

## We also provide complex custom solutions.

If you need complex subsystems or functions you should consider our custom solutions which can provide
memory, microprocessor, logic and DSP functions all on a single, fully tested module. Now you can design the major memory portions of your system using megabyte RAMs, high-speed caches or writable control stores in the form of single components. You may also design using SRAM modules with features such as address latching or buffering and x16 words.

## May we be of assistance?

If you need to design commercial systems with uncompromising performance at the right price, call your local IDT representative or (408) 492-8551 for a copy of our Subsystems Shortform Catalog.

You will receive information about over forty different off-the-shelf modules including: high-speed Static RAMS, dense FIFOs, Writable Control Stores, Synchronous RAMs and Dual Port RAMs.

When cost-effective performance counts

## $\cdots d t$

# Integrated 

 Device TechnologySubsystems Division
3236 Scott Blvd.
Santa Clara, CA 95054-3090
(408) 492-8551

FAX: 408 727-3468

## A video-RAM glossary

BitBlt-A raster op.
Bit-mapped memory-A video memory organized so that each bit is associated with a pixel. In a color system, in which multiple bits represent a pixel, a pixel will have one bit associated with each color plane.
Flash write-The ability to change an entire row of memory in a video RAM array in a single memory cycle. The contents of an on-chip data register determine the nature of the change-for example, clearing the row or changing its color.
Page mode-A mode that gives the CPU fast access to data on the same memory page. Rather than strobing the row and then the column address, the row stays constant while the column adresses change. Virtually all video RAMs support fast page mode, in which the signals retain their relative characteristics, but are asserted at a much higher rate. (Fast page mode is not the same thing as enhanced page mode, which only Texas Instruments' video RAM supports.)
Pixel (picture element)-One point on a bitmapped display comprising one or more bits of data. The bits commonly represent color and intensity.
Raster op-The transfer of a block of memory to another section of memory, while also performing a Boolean function on the source and destination data. One of the most common applications of raster ops is window creation. A raster op is also called a bit-block transfer, or BitBlt.
Refresh methods-Video RAMs support three
types of refresh schemes for their dynamic-RAM arrays: RAS-only refresh cycles; write cycles on the 512 address combinations of $\mathrm{A}_{0.8}$ during an 8 -msec period; and hidden refresh, which uses CAS-before-RAS timing to trigger the on-chip internal refresh timing.
Serial-access memory (SAM)-the serial shift register fed by the RAM array.
Split-register transfer-A feature that divides the serial shift register into two halves: the least significant and the most significant. You can shift out the MSBs while you're loading the LSBs. Without the split register, you'd have only one cycle time- 30 nsec, for example-in which to reload the serial register. With the split register, you have the register cycle time multiplied by half of the number of bits in the register. For a $1024-$ bit serial register, therefore, this time would be $512 \times 30 \mathrm{nsec}=15 \mu \mathrm{sec}$.
Write-per-bit-The write-per-bit feature lets you access individual bits of a pixel that are not located contiguously in memory. This feature is necessary because bit-plane architecture can locate each bit of a pixel on different planes in different parts of memory, which makes altering an individual pixel more complex than altering an individual word. The write-per-bit feature speeds the process by allowing you to mask the bits in a word that are not associated with the pixel in question, so that you can get at the appropriate bit on each plane.

In addition, flash write is not much use in a windowing environment because it requires that the entire row be rewritten, thus preventing you from doing a fast fill or clear operation within a screen. Further, the trend in video memory is for more off-screen memory to be implemented with video RAM: Flash write can destroy off-screen memory because you can't mask locations from a transfer. You can simulate flash writes by using regis-ter-to-memory transfer cycles.

Unlike flash writes, which change the contents of entire lines of display memory, you can use block fills to color in bounded areas. (Many graphics applications consist mainly of colored shapes.) Without block fills, the processor must access
memory one address at a time and change the data or color that's associated with each pixel. Because the same data will appear on the data bus of the same RAMs for several cycles, block fills can speed this boundary-filling process by broadcasting the color data to several memory locations within a single cycle.

Video RAMs that support block fills have on-chip logic that can write a given 4 -bit data pattern to any combination of four adjacent memory addresses, allowing the CPU to write as many as 16 bits to the RAM in a single memory cycle.

Although block write is useful in area fills, you can also use it for clearing the screen. For example, clearing all 512 lines of display mem-
ory with flash write takes $102 \mu$ sec; using block write in page mode and with register-to-memory transfers takes $110 \mu \mathrm{sec}$. If speed is not critical, you can use a block write alone, at 4 msec .

## On-chip raster ops

The Toshiba, Fujitsu, and Hitachi video RAMs support on-chip raster ops. To evaluate the importance of this feature, you'll need to examine your system needs and processor capabilities carefully. The advantage of incorporating raster ops in a video RAM is speed: Hardware raster ops are faster than software raster ops, which the processor performs. As long as the processor doesn't have to look at the video data (in monochrome systems and

## $1 \mathrm{mV}, 1.5 \mathrm{ppm}$ Monolithic Voltage Reference

$\square$ AD588

FEATURES<br>Low Drift - $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$<br>Low Initial Error - $1 \mathbf{m V}$<br>Pin-Programmable Output<br>$+10 \mathrm{~V},+5 \mathrm{~V}, \pm 5 \mathrm{~V}$ Tracking, $-5 \mathrm{~V},-10 \mathrm{~V}$<br>Flexible Output Force and Sense Terminals<br>High Impedance Ground Sense<br>Machine-Insertable DIP Packaging<br>Guaranteed Long-Term Stability - 25ppm/1000 Hours



AD588 Functional Block Diagram

## PRODUCT HIGHLIGHTS

1. The AD588 offers 12 -bit absolute accuracy without any use adjustments. Optional fine-trim connections are provided for applications requiring higher precision. The fine-trimming does not alter the operating conditions of the zener or the buffer amplifiers and thus does not increase the temperature drift.
2. Long-term stability is excellent and the CD and TD versions are $100 \%$ tested and guaranteed for 25 parts-per-million stability in a 1000 -hour period.
3. Output noise of the AD588 is very low - typically $6 \mu \mathrm{~V}$ p-p A pin is provided for additional noise filtering using an external capacitor.
4. A precision $\pm 5 \mathrm{~V}$ tracking mode with Kelvin output connections is available with no external components. Tracking error is less than one millivolt and a fine-trim is available for applications requiring exact symmetry between the +5 V and -5 V outputs.
5. Pin strapping capability allows configuration of a wide variety of outputs: $\pm 5 \mathrm{~V},+5 \mathrm{~V} \&+10 \mathrm{~V},-5 \mathrm{~V} \&-10 \mathrm{~V}$ dual outputs or $+5 \mathrm{~V},-5 \mathrm{~V},+10 \mathrm{~V},-10 \mathrm{~V}$ single outputs.

## FOR THE WORLD'S MOS ACCURATE MONOLTIIC REE ENCE, REFER 10 THS PAG:

If the voltage references you've been using have forced you to choose between low initial error and low drift, we'd like to refer you to our new AD588. With only 1 mV of initial offset and $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of drift over temperature, it offers the best absolute accuracy possible in a monolithic reference. This exclusive combination provides a range of userprogrammable voltage outputs. You can choose from single $+10 \mathrm{~V},+5 \mathrm{~V},-10 \mathrm{~V}$, and -5 V ranges, simultaneous outputs of +10 V and +5 V , or -10 V and -5 V , or even a $\pm 5 \mathrm{~V}$ tracking range.

All of this is available with typical long-term stability of 15 ppm , with selected versions tested for 1,000 hours and certified to be less than 25 ppm . And you can get the AD588 for about half the cost of similar hybrid or in-house designs. Prices start at $\$ 12.75$ in 100 s, to be exact.

For the most accurate reference on the AD588, call Applications Engineering at (617) 935-5565, Ext. 2628 or 2629. Or write to Analog Devices, P.O. Box 9106 , Norwood, MA 02062-9106.


ANALOG
DEVICES

[^16]
## NEW 2400 BPS CCITT V. 22 BIS SINGLE-CHIP MODEM



- One-chip multi-mode modem IC for V. 22 bis / V. 22 / V. 21 and Bell 212A/ 103 applications
- FSK (300 BPS), DPSK (600, 1200 BPS), or QAM (2400 BPS) encoding
- All modem functions included in a single chip
- Integrated DSP for high performance adaptive equalization receive capability
- Fully compatible with SSI K212, K221, and K222 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Single +12 V or +5 V supply
- CMOS technology for low power consumption ( 120 mW @ 5V)
Silicon Systems now offers the industry's most highly integrated modem IC-the SSI K224. It is a single-chip modem IC that provides all the functions needed to construct a V. 22 bis compatible modem, capable of 2400 BPS full-duplex operation over dial-up lines. The SSI K224 offers excellent performance and a high level of functional integration in a single 28 pin DIP. This device meets world-wide standards and supports all modes of operation, allowing both synchronous and asynchronous communication. The SSI K224 is ideal for use in either free-standing or integral system modem products such as lap-tops, P.C's and portable terminals, or wherever full-duplex 2400 BPS data communications over the 2 -wire switched telephone network is desired. The SSI K224 is pin and software compatible with the SSI K212, K221, and SSI K222 single-chip modem IC's, allowing system upgrades with a single component change.
For more information on the SSI K224 and the complete SSI K-Series modem IC family, contact: Silicon Systems, 14351 Myford Road, Tustin, CA 92680. Phone: (714) 731-7110, Ext. 575.


## For more information . . .

For more information on the video RAMs described in this article, contact the manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

Fujitsu Microelectronics Inc
3320 Scott Blvd
Santa Clara, CA 95054
(408) 562-1000

Circle No 710
Hitachi America Ltd
Semiconductor and IC Div
2210 O'Toole Ave
San Jose, CA 95131
(408) 435-8300

Circle No 711
Mitsubishi Electronics America Inc
Semiconductor Div
1050 E Arques Ave
Sunnyvale, CA 94086
(408) 730-5900

Circle No 713
NEC Electronics Inc
401 Ellis St
Mountain View, CA 94039
(415) 960-6000

TWX 910-379-6985
Circle No 714

Oki Semiconductor
650 N Mary Ave
Sunnyvale, CA 94086
(408) 720-1900

Circle No 715
Samsung Semiconductor Inc
3725 N First St
San Jose, CA 95134
(408) 434-5400

Circle No 716
Texas Instruments Inc
Box 809066
Dallas, TX 75380
(800) 232-3200 ext 701

Circle No 717
Toshiba America Inc
2692 Dow Ave
Tustin, CA 92680
(714) 832-6300

Circle No 718
some color systems, it doesn't), hardware video-RAM raster ops are faster than those in software.

The split-register transfer feature also speeds the video RAM's performance. Although the dynamic-RAM memory array operates asynchronously from the serial shift register, you must either synchronize them to load the shift register from the array, or use a scheme such as splitregister transfer.

## Speedy performance

Split-register transfer consists of dividing the register in two, giving you a least significant half and a most significant half. You can shift out the most significant bits while you're loading the least significant bits. Rather than trying to fit those operations into a tight timing window (one memory cycle), the processor only has to have the second half filled by the time the first half shifts out.

Initially, all 1M-bit video RAMs will be configured as $256 \mathrm{k} \times 4$ bits. This size nicely supports video memories for PC and workstation displays. However, if you're design-
ing high-resolution graphics terminals, you'll be more interested in $128 \mathrm{k} \times 8$-bit video RAMs because of the wider data paths inherent in these terminals. Toshiba and Hitachi both plan to introduce $128 \mathrm{k} \times 8$-bit devices (in the second quarter and third quarter of 1988, respectively). Texas Instruments has produced $128 \mathrm{k} \times 8$-bit video RAMs in the laboratory, but for now has decided not to offer them commercially.

EDN

## References

1. Pinkham, Ray, "One megabit video RAM technology and applications," TI Technical Journal, MarchApril, 1987, pg 14.
2. Conner, Margery S, "Graphics engines," EDN, March 4, 1987, pg 112.

## Article Interest Quotient <br> (Circle One)

High 512 Medium 513 Low 514

# "THEE SAID NOONE COULD PUT IT ALL ON ONE CHIP?" 

## Introducing the SSI K224 With Everything You Want in a 2400 BPS Modem— With DSP on Chip.

"When we set out to design the universal modem IC that would meet 300 to 2400 BPS worldwide standards, even some of our best customers were skeptical. We knew existing solutions took a handful of IC's and separate DSP's for V .22 bis operation, requiring a lot of space and power. Our customers said they needed a single IC that would do it all, so it was only natural that we would come up with a chip that would meet their needs.
"Here's what they asked for, and here's what the K224 gives them: V. 22 bis, V.22, V.21, Bell 212A and 103 modes of operation for both synchronous and asynchronous communication; complete tone generation for DTMF, answer and guard tones; call progress tone and handshake pattern detectors; and all the other functions needed to support intelligent modem designs. We integrated all these functions plus the DSP on a single chip - something no one else had attempted.
"So our skeptics were almost right when they said no one could put it all on one chipbecause so far no one else has. Maybe some day someone else will. Meanwhile, give us a call and take advantage of the jump we've got on our competition by getting the jump on yours."

## Call Now! <br> (714) 731-7110, Ext. 575

For more information on the SSI K224, or the complete K-Series family of compatible modem IC's, contact: Silicon Systems, 14351 Myford Road, Tustin, California 92680.


"Where we design to your applications."<br>Circle 101 for Career Information

## DOYOU HAVE WHAT IT TAKES TO MAKE IT Big in Asics?

Not long ago, designing ASICs wasn't even part of your job. Now it's the part everyone's counting on.

That's where Daisy comes in.

Daisy CAE tools are used by more ASIC designers than any other CAE workstations.

Because from schematic creation through post-layout


Simulation accelerator market share. Source: Prime Data, 1985 and 1986 unit shipments.
simulation, Daisy has what it takes to keep ASICs on time and on budget.

For example, our
MegaLOGICIAN ${ }^{T M}$ simulation
accelerator is seamlessly integrated with the schematic, so you can locate and correct design problems interactively. That means faster debugging and more time to improve the quality of your design. Plus no other accelerator is as well supported,
with more than 170 design kits supplied by 70 different vendors. So you can build productivity instead of libraries.

Which may explain why more MegaLOGICIANs are in use today than all other accelerators combined.

Speaking of combining, you
ard
can share a MegaLOGICIAN with a network of our 386based desktop workstations, for a high-powered low cost ASIC design environment.
And that's just the beginning.
With our library of more than 4,500 systemlevel components,
you can include your ASIC in complete "real world" system simulations to ensure that your designs will be ready for production, instead of revision.
All of which makes Daisy todays choice for no-sweat ASIC success.

But what about tomorrow?
Gate counts are on the rise. If your tools run out of steam at 5,000 gates, so could your future.

No problem.
Our ASIC design tools glide through $20,000-$


Our new 80C196 delivers the highest performance and the highest integration of any 16-bit
microcontroller available. While demanding the least power, the least design time, the
least hassle.Which means you can spend more time perfecting the rest of your application.

The 12 MHz 80 C 196 is the latest member of our proven MCS-96 family of embedded controllers. It offers the lowpower requirements of CMOS technology while doubling the performance of the 16-bit 8096 . Which means that it can perform a $16 \times 16$ multiply in 2.3 microseconds. That's faster than any other microcontroller.

Yet you still get all the features of the 8096. And more. Resident on the highly-integrated 80C196 are a 16-bit cpu with an 8/6-bit bus (reconfigurable), 256 bytes of RAM, PWM, 10-bit A/D, two 16bit timer/counters, 40 I/O pins, full duplex serial port, and a high-speed I/O subsystem. And speaking of getting more features in less space, we're working on an EPROM version of the 80C196 for an even easier design path (available Q2 1988).

Our low cost ICE" 196 PC development tool gives you more for less, too. Together with highlevel languages like PL/M and C ,
it delivers the easiest, lowestcost design support you can get. Further support is available from the world's largest network of field applications engineers. Plus customer workshops to get you up to speed fast.


So you see, there's really no easier or more powerful answer to embedded real - time control than Intels 80C196. For complete technical information,call toll-free (800) 548-4725 and ask for Literature Department W398.
Do it now. And relax.
Because were ready to meet your demands.


ICE is a trademark of Intel Corporation. ©1987 Intel Corporation


THE WAIT FOR ABSOLUTE FLEXIBILITY IN HIGH POWER IS OVER

## WAIT UNTIL YOU READ

THIS You can have up to 5 outputs with unlimited flexibility of output voltage and current combinations with acdc electronics' NEW 1600W power supply. That's UNLIMITED combinations! Check the chart below.
DON'T WAIT . . . SEETHE SMALLEST 1600 W PACKAGE acdc electronics has packaged 1600 W into a $5^{\prime \prime} \times 8^{\prime \prime} \times 13^{\prime \prime}$ profile. That makes acdc's JFM Series the SMALLEST 1600W multi output switch mode power supply available. Anywhere!

## THE WAIT FOR <br> INDEPENDENT <br> AUXILIARY OUTPUTS IS

OVER Each JFM auxiliary output is an independent, switch mode power supply which eliminates all cross regulation problems. Additional standard features-never before offered on a high power multi-include: remote sense, margining and inhibit . . . on each auxiliary output.

And, to troubleshoot your system, independent LED's indicate output out-of-tolerance and identify the faulty output.
WAIT NOT Don't wait for the power supply you need. Any output voltage combination listed in the model selection chart will be delivered in two weeks!

## WAIT UNTIL YOU TEST

## THESE SPECIFICATIONS

- Internal EMI Filter meets FCC \& VDE Class A
- All outputs are floating
- No minimum load required on any output
- Single-wire paralleling (main output)
- Current monitor
- 30 Ms holdover storage


## अभगतो

Are you working on a design requiring high power and multiple outputs? With flexibility in output Voltages? Do you need a demo now?
The solution is ready \& waiting for your call. 619 439-4200.


## asic <br> electronics 토․

401 Jones Road, Oceanside, CA 92054.
TEL: 619/757-1880. TLX: 350227. FAX: 619/439-4243

## LAN analyzer diagnoses Ethernet faults before they cause system failures

Because the OSI (Open Systems Interconnection) layer-4 protocols used in IEEE-802.3 (Ethernet) LANs automatically retransmit packets that contain errors, users don't usually notice gradual degradation of network performance until it causes the network to crash. However, by using the NQA network quality analyzer to monitor your network, you can pinpoint and repair network flaws before the network becomes inoperative. The analyzer examines both the physical (layer 1) and data-link (layer 2) characteristics of the LAN. Unlike other physical-layer testers, it can also perform TDR (time domain reflectometer) tests to locate major cable and transceiver defects while the LAN remains in service.

Without disturbing normal traffic on the LAN, the analyzer measures five coaxial-cable signal parameters for each transmitted Ethernet pack-et-that is, jitter, de component, ac component, fall time, and bit rate. By examining the framing information for each packet to determine the source of each packet, the analyzer can correlate these cable measurements with particular network nodes. In addition, the instrument measures the network bias (the voltage on the cable caused by the transceivers' bias currents). Measurements are displayed graphically on the instrument's 9 -in. CRT, along with the appropriate limit values that are specified in the IEEE-802.3 standard. Because these measurements are a good indicator of the network's state of health, periodic testing of the LAN with the analyzer allows you to predict when a network failure is likely to occur.

A special cable implant unit that


By simultaneously performing in-service cable tests and protocol analysis, the NQA network quality analyzer pinpoints Ethernet faults in particular network nodes. The analyzer can also perform in-service TDR tests to locate cable faults.
you can position anywhere in the network allows you to perform TDR measurements. To perform in-service TDR tests, the analyzer drives the Ethernet cable with a bias voltage that causes all network nodes to back off from the network for approximately 0.1 sec . During this time, the analyzer drives a series of pulses to the cable and examines the reflections that occur at discontinuities in the cable's impedance. The results from a large number of pulses are digitally processed to establish the location and magnitude of each reflection. By examining the trace you can identify a variety of cable faults, including short or open circuits and improperly installed transceivers.

The positional accuracy in determining the locations at which reflections occur is $\pm 1.2 \mathrm{~m}$ (excluding variations in the coaxial cable's propagation velocity), and the range
of the TDR measurement is greater than 500 m on both sides of the implant unit. If you have a map of your network, you can annotate the distance axis of the screen display with network node identifiers. Also, because the reflectometer trace is digitized, you can zoom in on a small portion of the trace, store it on disk, or compare it with previously acquired traces.
The analyzer's layer-2 protocolanalysis functions allow you to build up a source/destination matrix of network activity, to monitor individual station characteristics, or to obtain general network statistics-for example, bandwidth utilization, packet density, and collision rate. Although the analyzer examines the layer-2 protocol to determine a packet's source address, destination address, and its cyclical redundancy check, the packet's data isn't decoded. As a result, use of the analyz-

# MIL-STD.1750A SECS 80 MULTIBUS 

## SECS 1750/A BRINGS THEM TOGETHER!!

MIL-STD-1750A Now, the new TITAN/SESCO offers a non-development item (NDI) Single Module Computer (SMC), the SECS 1750/A. This high performance SMC integrates a fully compliant MIL-STD-1750A instruction set/architecture with 64 K words of on-board memory. The SECS 1750/A uses the Performance Semiconductor Pace 1750 CMOS Microprocessor running at 15 MHz and delivers 0.85 MIPS while consuming less than 20 watts of power.

SECS 80 COMPATIBLE The SECS 1750/A is also fully SECS 80 MULTIBUS and SECS 80 LOCALBUS compatible which makes the balance of TITAN/ SESCO's SECS 80 computer product line available to deliver NDI systems solutions to your door. The SECS 80 line includes 1553 interfaces, serial, parallel, analog and peripheral I/O modules, as well as a broad range of chassis and Ada software support.


Call us now and get more information on the SECS 1750/A and the rest of our SECS 80 militarized computer systems, the most comprehensive line of NDI computer products in the world!
(800) 423-5527

20151 Nordhoff St., Chatsworth, CA 91311-6273 (818) 709-7100 • Telex 69-1404

CIRCLE NO 11

## DID YOU KNOW?

 Half of all EDN'sarticles are staff-written.

## UPDATE

er by service engineers won't constitute a breach of network security. If you do want to examine the data, optional protocol decoding and analysis software is available for the unit.

Because the NQA detects degradation of LAN performance before the network crashes, it can use the LAN under test to communicate with other equipment. For example, you could control and interrogate the analyzer from an Ethernet terminal or host computer. To provide distributed network monitoringfor example, on either side of a bridge between two networks-a special measurement pod that the company is developing will contain only the front-end-measurement capabilities of the NQA analyzer. You'll be able to upload the pod's test results via the network into a central NQQA analyzer to evaluate them or log them on disk. The company also intends to provide an ISDN (Integrated Services Digital Network) interface to link the units together.

To simplify the operation, you drive the NQA analyzer via its touch-sensitive screen and soft-key menus. The standard unit has a 360 k -byte floppy disk on which you can store recorded information or test programs. You can optionally install a $40 \mathrm{M}-$ or 100 M -byte hard disk. Operating with a time resolution of 5 minutes, the analyzer's internal RAM can record over 24 hours of data, the floppy disk can record for over 30 days, and the hard disk can record for over a year. A Centronics printer port and graphics command set allow you to download screens to a printer. The NQA analyzer costs approximately \$25,000.-Peter Harold

Logic Replacement Technology Ltd, Arkuright Rd, Reading, Berks RG2 0LU, UK. Phone (0734) 311055. TLX 847395.

Circle No 659

unit still provided a steady .8 amp of
In a Navy test, a Tomahawk cruise missile exploded into a concrete building. When the dust settled, little remained but gravel and fragments of casing.

And the Abbott model C28D0.8 you see here.

Its aluminum baseplate and an adjustment cap were ripped off in the blast. But reconnected on a workbench, the CIRCLE NO 162 DC current - just as it was designed to.

Abbott Transistor Laboratories, Inc. 2721 South La Cienega Blvd., Los Angeles, CA 90034. (213) 936-8185

When reliability is imperative ${ }^{\circledR}$

## Single-chip, 64-bit floating-point processor offers 32-word register file

The WTL 3364 floating-point processor integrates on one chip a 64-bit floating-point multiplier, a 64 -bit floating-point ALU, a divide/ square-root unit, and a 32 -word $\times 64$ bit register file with six ports. This chip can execute as many as 20 M flops, and its architecture gives you much of the flexibility you get with multichip-set, floating-point processors; it also helps you save money and board space.

The 3364 provides single-cycle throughput on all multiplier and ALU operations. In addition, the on-chip register file lets you operate the multiplier and ALU simultaneously, even when using independent operands. To understand how this works, you need to understand how the register file is configured.

The register file has three read ports and three write ports. You can use two of the read ports to supply two of the four operands required for simultaneous and independent use of the ALU and multiplier. The other two operands can come from the external X and Y input ports. You can write results from the ALU and multiplier to the register file simultaneously, using two of the write ports. The third write port allows you to load the register file with external data, and the third read port allows you to store data from the register file externally.

The register file also supports bypassing on loads, on stores, and in register-to-register operations. This bypassing function saves you one cycle of latency in each case. For example, bypassing on loads means that you can load data into the register file and use it as an operand on the same cycle. Bypassing on regis-ter-to-register operations means that you can write the result of an
arithmetic operation into the register file and use this same result as an operand of an immediately following operation-all in the same clock cycle.

The processor has three 32 -bit I/O ports configured as one input port, one output port, and one bidirectional port. You can also use these three ports as a single 64-bit bidirectional port. All three ports can be single or double pumped. Singlepump mode allows you to transfer one 32 -bit data word/clock cycle on each port, and double-pump mode allows you to transfer two 32 -bit data words/clock cycle on each port.

The on-chip divide/square-root
unit can operate in parallel with the multiplier and ALU. During the first clock cycle of the divide/squareroot operation, no other operations can take place. However, once the divide/square-root operation begins executing, the multiplier and ALU perform functions in parallel. For example, during 29 of the 30 clock cycles required for the double-precision IEEE square-root operation, which is one of the more time-consuming operations, the multiplier and ALU can also be executing operations in parallel.

The device conforms completely to the IEEE standard for binary floating-point operations. This


The multiplier and ALU on the WTL 3364 can operate simultaneously, using independent operands from the on-chip register file and the I/O ports.

## IF YOU'RE WASTING TIME LOOKING FOR THE BROADEST LINE OF SMD' PASSIVES,



## INNOVATIVE HEAT SINKS FOR VLSI DEVICE PACKAGES

Increased speeds in high-density VLSI MOS, bipolar, or ECL designs? Excessive case temperatures that threaten reliability? Match device power demands with high-efficiency, omnidirectional heat sinks for high lead count chips packaged in ceramic pin grid arrays and chip carriers.


## 840 Series Heat Sinks for PGAs

- Pedestal base for direct adhesive bonding to pin grid arrays and multichip modules.
- Lowest cost per watt dissipated.
- Omnidirectional design for serial and impingement airflow and natural convection.
- Sink-to-ambient thermal resistances as low as $1.8^{\circ} \mathrm{C} /$ watt (impingement)
- Low pin height for close board-to-board spacing.


## 850 Series Heat Sinks for PGAs

- For direct bonding to pin grid arrays.
- Omnidirectional cooling in serial airflow.
- Dissipates up to 10 watts.


## 830 Series Heat Sinks for Socketed LCCs

- Designed for use with 3M/TEXTOOL JEDEC Type-A 68 -lead sockets for ceramic leadless chip carriers; serving as protective lid and heat sink.
- Lowest cost per watt dissipated.

EG\&G Wakefield Engineering... The Thermal Management Components Supplier. Call our application engineering department today-(617) 245-5900.

## EGsG <br> WAKEFIELD ENGINEERING

60 AUDUBON ROAD, WAKEFIELD, MA 01880 (617) 245-5900 • TWX: 710-348-6713 • FAX: 617-246-0874
standard gives you IEEE representation of floating-point numbers and IEEE exception handling.

Microcoding is a time-consuming task with any floating-point processor, and the WTL 3364 is no exception. This chip does, however, have features that help simplify your microprograming task.

First, the 6-port on-chip register file allows you to use a registerbased programming model rather than a bus-based model. Registerbased programming models are usually simpler and easier to program.
Second, both the source of the operands and destination of the results are specified in the same instruction. The chip automatically delays destination addressing to match the latency of the operation, so you don't have to keep track of the time when a result becomes available.
Third, all operations except divide and square root have a regis-ter-to-register latency of two cycles (in the 2 -cycle latency mode). Whether you use the multiplier or the ALU with floating-point or integer operations, the results all have the same latency; thus, you have one less variable to keep track of when you're microprogramming.

For computer and cost-sensitive applications where high I/O bandwidth is of secondary importance, you can use the WTL 3164. This chip is functionally identical to the WTL 3364 except that the 3164 has one 32 -bit bidirectional I/O port and comes in a 144 -pin PGA package.

The WTL 3364 is mounted in a 168 -pin pin-grid array. Samples of the $100-$ nsec version of the WTL 3364 and the WTL 3164 are now available; volume deliveries are scheduled for July. The WTL 3364 costs $\$ 909$; the WTL 3164 is priced at \$829.-Doug Conner

Weitek Corp, 1060 E Arques Ave, Sunnyvale, CA 94086. Phone (408) 738-8400. TWX 910-339-9545.

Circle No 663

# Unix utility converts 8086 code into executable 68020 code 

You can employ XDOS's binary-to-binary-code-conversion facility to allow programs written for the IBM PC and compatible computers to execute on Unix-based systems. This Unix utility program for 68020based systems includes a binary compiler that performs the code conversion and an environment emulator that emulates the MS-DOS operating-system environment. It permits the end user to simultaneously execute multiple, converted, PC programs in Unix windows.

System designers and OEMs can use XDOS as a bridge between multiuser, multitasking Unix systems and personal-computer software. The utility addresses the needs of end users in scientific-, CAE/CAD-, and business-computing environments, who require the performance potential of Unix-based systems but who must also use such widely employed IBM PC application software packages as WordPerfect and Lotus 1-2-3.

XDOS converts MS-DOS programs without modifying them. The utility performs a 2 -stage conversion. First, the binary compiler performs an instruction-decode and flow-analysis operation and gene-
rates a proprietary, intermediate data format. Then the compiler uses optimizing-compiler techniques to generate executable code for the target system.

After the compiler has performed the conversion, the end user can directly execute the program on the Unix system, because the XDOS utility includes an environment emulator that interfaces the code to the Unix system at run-time. For example, an interface library maps MS-DOS, MS-DOS BIOS, and IBM PC and compatible-computer hardware system calls to the Unix operating system, and also manages calls that require MS-DOS data structures.

Programs converted with XDOS are not affected by the MS-DOS limit on 32 M -byte disk volumes and can therefore use the full Unix disk capacity. The programs can read and write Unix files because the package maps the MS-DOS file environment into Unix. XDOS also provides a Unix utility that reads MS-DOS files.

The XDOS utility provides an alternative to the two principal means currently offered by system vendors for adding MS-DOS compatibility to


The 2-stage binary compiler used in XDOS will allow the software to be ported to many processor environments. Each port to a new processor requires the software designer to develop a front end that performs flow analysis and generates intermediate code.

68020-based Unix systems. Some system vendors offer an add-in coprocessor board that includes an Intel 8086 -family $\mu \mathrm{P}$. Adding a coprocessor, however, limits you to executing MS-DOS programs in a single-tasking mode. Furthermore, the coprocessor requires a copy of MS-DOS, in addition to Unix, to run MS-DOS software.

Other system vendors attempt to achieve MS-DOS compatibility with software that simulates the 8086 instruction set and the MS-DOS environment. Using such software on a 68020-based system, however, typically provides only the performance level of an IBM PC, PC/XT, or compatible computer. In contrast, when programs converted with XDOS execute on 68020 target systems their performance level is comparable to that of source programs executing on 80386-based systems.

The company has certified XDOS for use with most popular MS-DOS business software. The software is currently available for 68020 -based systems. OEMs can license the software on a royalty basis. The suggested end-user pricing ranges from $\$ 425$ to $\$ 2000$, depending on the number of users the Unix system supports.

The company also plans to offer XDOS for systems with non-68020 processors, such as RISC-based Unix systems. To implement XDOS on other processors, the software designer must write a front end to the XDOS compiler that generates the processor's proprietary intermediate code.-Maury Wright

Hunter Systems, 444 Castro St, Mountain View, CA 94041. Phone (415) 965-2400.

Circle No 662


ADC600 is an ultra-high speed, 12bit A/D converter. A two-step subranging conversion technique with digital error correction can digitize signals at rates up to 10 million samples-per-second without sacrificing signal purity. It's an excellent choice for radar, sonar, ultrasound, and image processing applications. You can also use it to make a great front-end for today's advanced DSP designs.

## Complete, Easy-To-Use

ADC600 requires only an external CONVERT command and power supplies to operate. No need for
external parts. And it's reliable, 100\% performance tested, and already adopted for several major military programs.

## Key Specifications



## Ask For A Demonstration

ADC600 is your best ultra-high speed signal processing solution. Find out for yourself. For a free
demonstration and/or complete performance, testing, and applications information, contact your Burr-Brown sales rep or Applications Engineering, 602/7461111. Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734.

## BURR-BROWN



[^17]
# Floating-point, array-processor boards add computation power to PCs 

Based on AT\&T's DSP32 floatingpoint DSP chip, DSP32-PC add-in boards accelerate general-purpose math applications on the IBM PC, PC/AT, and compatible computers. The family of floating-point array processors includes an 8M-flop, IBM PC half-card version and a 25 M -flop, full-card IBM PC, PC/AT version. The PC version performs a 1024 point complex FFT in 14 msec , an FIR filter at 250 nsec/tap, and a $3 \times 3$ matrix multiplication in $7 \mu \mathrm{sec}$; the PC, PC/AT version performs a 1024 point complex FFT in 3.25 msec , an FIR filter at $80 \mathrm{nsec} / \mathrm{tap}$, and a $3 \times 3$ matrix multiplication in $2.2 \mu \mathrm{sec}$.

If you develop computation-intensive applications, such as signal processing, graphics, image processing, scientific computing, CAE, CAD, and CAM, the DSP32-PC floating-point array processor will
let you employ your PC to host your software. The board's analog and digital interfaces also suit it to practical applications, such as process control and speech analysis. For example, the DSP32-PC's modular phone connector lets you record and store speech on a hard disk for analysis and playback, and its 8 -bit codec, which provides D/A and A/D conversion, also features lowpass and bandpass filtering for processing speech signals.

You can purchase software-devel-opment-support tools for the DSP32-PC separately or as a complete development system comprising the array-processor board, an assembler, a window-based emulator, demonstration programs, and a library of optimized assembly-language applications.

The library contains 57 commonly


The 8M-flop array processor for IBM PCs and compatible computers lets software developers use their PCs to host computation- intensive applications, such as graphics, image processing, and speech analysis.
used math routines and a number of signal-processing, image-processing, and graphics routines. Among these are routines for real and complex FFTs, FIR filters, and Hamming window functions, as well as a graphics routine that converts 16-bit color pixels to 5 -bit, grayscale values, and an image-processing routine that performs a histogram equalization algorithm for gray-scale images.

The vendor plans to ship a C compiler for the array-processor board by June. The compiler will let you code the bulk of your applications in C and speed-critical portions of your core algorithms in assembler language. The compiler will come with a math library.

The 25 M -flop IBM PC, PC/AT version, based on the 80 -nsec CNOS DSP32C IC, will include as much as 256 k -bytes of static RAM. The vendor will begin shipping the board when quantities of the IC are available, by the beginning of the fourth quarter.

The 8M-flop, IBM PC version of the DSP32-PC, based on the $250-$ nsec NMOS version of the DSP32 IC, is available now and costs $\$ 695$. It includes 32 k bytes of zero-waitstate static RAM; you can obtain it with 128 k -bytes of static RAM for an additional $\$ 50$. The DSP32-PC's C compiler will cost $\$ 1500$. The development system-the array-processor board, assembler, windowbased emulator, demonstration programs, and applications library -costs \$995. -Maury Wright

Communications Automation \& Control, 2348 Eden Lane, Bethlehem, PA 18018. Phone (215) 8659706.

Circle No 661

## "If you don't see it in our catalog, I can't help you.

You don't have to settle for off-the-shelf technology if it's not exactly what you need. At Emerson \& Cuming, we do whatever it takes to get you the adhesive, coating or encapsulant with the characteristics your application demands.

Our unique open-door R\&D policy allows you to bring your materials right into our labs and work side-by-side with our chemists to find the right solution to your design challenge.

If you simply want to fine tune the performance of a product you're already using, that's even easier. Just talk to your E\&C representative or call our Applications Hot Line. They'll work with our development labs to make the adjustments you need.

So whether you're developing a new process or trying to make an existing process more efficient, we're ready to help. As a part of W.R. Grace \& Co., we offer extensive R\&D capabilities and a commitment to customer service that underlies everything we do - and a product line that includes everything from electrical transformer encapsulants to high purity electronic die attach adhesives.

See for yourself. Call our Applications Hot Line today, toll-free, 1-800-832-4929. In Massachusetts, 617-935-4850. Emerson \& Cuming, Inc. 77 Dragon Court Woburn, MA 01888.

## EMERSON <br> \& CUMING <br> aGRACE company

Making today's products better. Making tomorrow's products possible.

## PRODUCT UPDATE

## IEEE-488 interface for Mac transfers 800k bytes /sec

The MacSCSI 488 interface, which provides transparent data translation for as many as 14 IEEE-488 instruments and peripherals, plugs into the Small Computer Systems Interface (SCSI) port of your Mac Plus, Mac SE, or Mac II computer to facilitate data transfers at 600 k bytes/sec for the Mac Plus and Mac SE, and at 800 k bytes $/ \mathrm{sec}$ for the Mac II. Because the modem-sized MacSCSI 488 is a stand-alone unit, it conserves your Mac's expansion slots and doesn't require disassembly of your computer for installation.
The unit achieves its data-transfer speeds by acting as a pipeline between the host computer and your SCSI instrument, translating protocols via the MacSCSI 488's internal $\mu \mathrm{C}$ during transmission. Other SCSI controllers for the Macintosh computer translate instrumentation data into Forth, thus adding an interpretation step before conversion.
The MacSCSI 488 will not interfere with operation of any external hard-disk drives controlled via your Macintosh's SCSI port. The unit comes with software device drivers


Providing IEEE-488 control for the various Macintosh computers at communication speeds ranging from 600 k to 800 k bytes $/ \mathrm{sec}$, the modem-sized MacSCSI-488 interface lets you connect as many as 14 instruments to your computer.
that let you program it in many popular languages such as Microsoft BASIC 3.0, Turbo Pascal, Lightspeed C, VIP, and Hypercard.

You can write IEEE programs for the MacSCSI 488 using highlevel Hewlett- Packard-style commands, such as ENTER, OUTPUT, CLEAR, and SPOLL (serial poll). The use of such high-level commands makes programs for the MacSCSI 488 shorter and more readable than programs that rely entirely on low-level, bus-transaction commands. But, if you prefer, you can instead program the unit with low-level commands such as UNT (untalk), UNL (unlisten), and MLA (my listen address).

The unit includes a memory resident desk-accessory program that makes IEEE programming a utility of your Macintosh's software system. The desk-accessory software lets you acquire and save data from an IEEE-488 instrument while you running an application program on your host computer. For example, the program will let you set up an experiment and acquire data from an oscilloscope or DMM, and then paste that data into a spreadsheet program.
The MacSCSI 488 sells for $\$ 795$, including language drivers and desk-accessory software.
-J D Mosley
IOtech Inc, 23400 Aurora Rd, Cleveland, OH 44146. Phone (216) 439-4091. TWX 650-282-0864.

Circle No 660

# P\&B circuit breakers provide the quality you need at a price you can afford. <br> <br> Quality and selection <br> <br> Quality and selection <br> Depend on P\&B circuit breakers for the highest standards of quality at an affordable price. Both <br>  

 thermal and magnetic/hydraulic types are offered in a variety of models. Many are UL recognized as supplementary protectors and CSA certified as appliance component protectors.
## Value enhanced designs

We constantly evaluate, upgrade and expand our broad line of circuit breakers to meet your needs. OurW28 fuse replacement, thermal models give you the confidence of established designs and the pricing of current, automated technology. Both standard size and Mini-Mag series magnetic/hydraulic circuit breakers recently have been expanded to provide a broader range of circuit functions.

## Service and application assistance

Should you need assistance in specifying
 or applying P\&B circuit breakers, our sales force of more than 400 sales representatives is well-trained and ready to serve you. P\&B circuit breakers are available off-the-shelf from our nationwide network of authorized distributors.

## Specify P\&B circuit breakers with the utmost confidence

Contact us today to find out more about P\&B circuit breakers. Potter \& Brumfield, A Siemens Company, 200 South Richland Creek Drive, Princeton, Indiana 47671-0001.

Call toll-free 1-800-255-2550 for the P\&B authorized distributor, sales representative or regional sales office serving your area.

## Select the type that's right for your application.

Magnetic/Hydraulic
Mini-Mag breakers available in ratings from 0.25 through 30 amps, single to four pole designs. Standard size breakers; 0.25 through 50 amps, up through six poles. Broad range of trip curves and circuit functions, including dual coil models. Priced for volume applications in computers and office machines.

## Thermal

Single pole push-to-reset, push/pull and toggle styles. Ratings from 0.25 through 60 amps . Variety of mounting and termination options. Consistent quality through automated manufacture.

## Fuse Replacements

Functional replacements for fuse applications add value to your product. These inexpensive thermal units are ideal for power strip, appliance, marine and office machine applications. Approved by many international agencies.

Good Reasons to Get NEC's FREE Gate Array Gateway Kit

## NEC's FREE Design Kit is Your Gate Array Gateway to

1. CMOS, BiCMOS, and ECL technologies.
2. Valid, Sun, Mentor, Daisy, Tektronix/CAE, HP 9000, FutureNet, Calma TEGAS V, and HILO compatibility.
3. A powerful block library with more than 170 macros, including analog, peripheral, and megamacro functions.
4. Cell utilization rates of $95 \%$ over a range of 800 to 45,000 gates.
5. Better than $95 \%$ first-time success with engineering prototypes.
6. The most experienced manufacturing capability.
7. The widest choice of through-hole and surfacemount packages.
8. The most effective way to lower your system costs.
9. Local design support with local FAEs and design centers backed by a satellite network of computers for worldwide communications services.
10. The easiest translation of your ideas into silicon.

## NEC Electronics Inc.

401 Ellis Street, P.O. Box 7241 Mountain View, CA 94039

Valid is a trademark of Valid Logic Systems Inc.
Daisy is a trademark of Daisy Systems Corp.
Tektronix/CAE is a trademark of Tektronix
FutureNet is a registered trademark
of FutureNet, a Data I/O Company
Tegas V is a registered trademark of GenRad Inc.

Our gate arrays are your gateway to higher system performance. Call 1-800-632-3531 to browse through our block library. FREE!
©Copyright 1988 by NEC Electronics Inc.

## TOPROVIDE POWER

 SELECTIVITY YOUMUST PROVIDE TOTAL POWER AVAILABILITY.
## Acme Gives You The Power To Choose

Whether it's switch-mode or linear power supplies, or transformers, Acme's got what it takes to keep power at your fingertips. Standard, modified and custom models offer you the power you need for everything from routine applications to complex design challenges. Products with seventy years of power conversion technology packed into each and every one: switchers from 150W to 3000W; linears from 15 W to 1500 W ; transformers from 50 W to 5 KVA ; and a full line of catalog linear and switch-mode power supplies you know as Standard Power Products. All standard products are available through your Standard Power Distributor.

When it's power you want, go with the natural choice: Acme Electric. We're putting power supplies in a whole new light.


## Expand your

## design vision.

## Enhance your design at any stage with RCA CMOS 6805 micros and SPI peripherals.

Your challenge is to increase system performance and capability while reducing board size.

Not an easy job. But certainly easier when you use our 6805 and 68 HC 05 micros and serial peripheral interface devices.

## Extend your micro's power.

Many microcomputers rely on parallel I/O ports to communicate with peripheral devices. An inefficient method at best.

That all changes with the serial peripheral interface incorporated into our 68HC05 microcomputers.

This three-wire (plus device select) synchronous, fullduplex, serial communication system contains separate lines for input and output data, serial clock and device select. You don't have to sacrifice I/O ports to communicate off-chip: our 68 HC 05 micros can communicate with our own serial peripherals, the serial peripherals of other manufacturers, and even with other microcomputers via only three port lines.


## True design versatility.

The real beauty of the SPI is that it eliminates limitations imposed by microcomputers.

For example, you can easily extend the amount of I/O or memory with SPI RAMs, I/O chips or shift registers. And the modular SPI bus gives you the ability to expand without losing lots of PC-board space. Reduced package sizes and minimized interconnect wiring lead to reduced board size.

And since you don't need complex software to
operate the bus, you save ROM space.
Right now, we can offer you a versatile family of peripheral devices, including 128 -byte and 256 -byte static RAMs, a real-time clock with RAM, an 8-bit programmable I/O port, and a 10 -bit 8 -channel A/D converter. And more parts are coming soon, including a digital pulse-width modulator and a serial bus interface chip for networking microcomputers. These serial peripherals are also compatible with other microcomputer types.

## Powerful family of micros.

We can provide 6805 microprocessors for external memory address, but the heart of our SPI system is the 6805 Series high-speed CMOS microcomputers:

## 68HC05 Microcomputers

| Features | 68HC05C4 | 68HC05C8 | 68HC05D2 | 68HC05D2A |
| :--- | :--- | :--- | :--- | :--- |
| Pins | 40 | 40 | 40 | 28 |
| On-Chip RAM (bytes) | 176 | 176 | 96 | 96 |
| On-Chip User ROM (bytes) | 4160 | 7744 | 2176 | 2176 |
| Bidirectional I/O Lines | 24 | 24 | 28 | 16 |
| Unidirectional I/0 Lines | 7 inputs | 7 inputs | 3 inputs | 3 inputs |
| Timer size (bits) | 16 | 16 | 16 | 16 |
| Prescaler size (bits) | $*$ | $*$ | $*$ | $*$ |
| External timer oscillator | no | no | yes | yes |
| Serial peripheral interface | yes | yes | yes | no |
| Serial communications <br> interface | yes | yes | no | no |
| * prescaler fixed as $\div 4$ |  |  |  |  |

Easy to prototype, too.
If you need another reason to choose our 6805 family, here it is: they're so easy to prototype with our Piggyback! We have the 68EM05C4 and 68EM05D2 Emulators, custom 40-pin packages that contain the C4/C8 or D2 micros with a Piggyback EPROM socket.

When installed with a 27C64 EPROM, these devices together become functionally identical to a CDP68HC05C4, CDP68HC05C8 or CDP68HC05D2.

Two final points: we'll give you fast turnaround, and a wide variety of packages.

For more information, call toll-free 800-443-7364, extension 22. Or contact your local GE Solid State sales office or distributor.
(2)

Although largely hidden in custom applications in
the past, smart-power ICs are now becoming available as standard products that satisfy a variety of applications, and semicustom ICs suit designs where custom versions are cost prohibitive. Whether semicustom or standard, available devices depend greatly on the IC process technology.


Today's smart-power ICs find extensive use in a variety of motor-control applications. (Photo courtesy Sprague Semiconductor)

# Smart-power <br>  

Dave Pryce, Associate Editor

Smart-power ICs are not yet a major factor in replacing the various combinations of logic and power needed by a multitude of applications that currently use discrete power devices and monolithic ICs. However, the trend is definitely in the upward direction. The growing availability of monolithic smartpower ICs is making the devices increasingly attractive as alternatives to discrete solutions. In order to make intelligent decisions about these intelligent ICs, you should be aware of the recent product introductions by several manufacturers that are investing heavily in the smart-power niche. First, though, it might be useful to survey some growth figures that characterize the smart-power market.

Electronic Trend Publications (Saratoga, CA) in a report, "Smart-Power Markets and Applications," estimates that smart-power ICs will represent only $9 \%$ of the total available market in 1988, growing to $33 \%$ by 1995. The most significant projection, however, is the switch from custom to standard products. ETP estimates that custom devices will decline from $70 \%$ of all smart-power ICs in 1988 to $25 \%$ in 1995, while standard products will increase in use from $13 \%$ to $60 \%$. Semicustom power devices will constitute $17 \%$ of smartpower in 1988 and $15 \%$ in 1995.
The significance of these figures is that manufacturers of equipment produced in relatively low volume can now begin to avail themselves of the benefits of smart-
power technology through the use of standard parts. Custom parts are often inexpensive on a piece-part basis, but manufacturers must have large-volume production runs in order to amortize the engineering charges, which are typically in the range of $\$ 50,000$ to $\$ 100,000$. Semicustom ICs will continue to play a limited role for unique circuit requirements in which production volumes are moderate. The lower engineering charges for semicustom circuits (typically in the range of $\$ 10,000$ to $\$ 20,000$ ) do not have as great an impact on unit costs as do those for full-custom circuits. For many manufacturers, however, the increasing availability of a wide range of cost-effective standard parts will be the key to unlocking the door to the use of smart-power ICs.

## Cost effectiveness depends on technology

Cost effectiveness is very much dependent on the IC vendor's available technology. As one marketing manager for a major semiconductor firm put it, "No one needs a $\$ 4$ solution to a $\$ 1.50$ problem." The truth of such statements seems obvious, but it's often overlooked in the attempt to combine several discrete functions that use different processing technologies into a single integrated circuit. Although hybrid ICs generally represent a more expensive approach than monolithic designs, the merging of processing technology is not a major problem with hybrids-it is a relatively simple

Forecasts indicate that custom versions of smart-power ICs will decline in use from 70 to $25 \%$ between 1988 and 1995, while standard products increase 13 to $60 \%$.


This 5-lead TO-220 package is the carrier of choice for a large number of smart-power ICs, including the Siemens BTS412A. The package's metal tab provides a substantial amount of heat-sinking capability, particularly when the tab is attached to additional pc-board copper.
matter to combine individual bipolar, CMOS, and DMOS chips on the same hybrid substrate.

The fabrication of diverse technologies into a single monolithic IC, however, is not a trivial matter. Mergedtechnology chips require complex layout and processing techniques that are difficult to master. In many cases, the number of mask layers alone is a deterrent to economical fabrication. The monolithic-IC manufacturers that successfully manage the complex tasks of merged technology-at high production yields-will be the winners, whether the final product is a custom, semicustom, or standard off-the-shelf device.

An example of the leading-edge technology required in the fabrication of smart-power chips is the Multi-power-BCD (Bipolar-CMOS-DMOS) process (Fig 1) that SGS-Thomson Microelectronics uses for many
monolithic chips. Multipower BCD allows the integration of CMOS, vertical DMOS, lateral DMOS, and bipolar npn and pnp transistors on the same chip. Most smart-power technologies require a drain contact at the bottom of the die (substrate) in the fabrication of vertical DMOS devices. This requirement means you can have only one power device (or several having common drains) on each chip. This type of construction also limits the output DMOS device to low-side switching where the load is between the device and the supply voltage, and the drain of the DMOS device is connected to ground. Other technologies allow the integration of lateral DMOS devices, which you can use as high-side switches or drivers, but these transistors are not usually power devices.

The BCD technology used by SGS-Thomson is different. It allows the integration of multiple, isolated, vertical DMOS power transistors that you can use for any output-stage configuration (Fig 2), including low side, high side, half bridge and full bridge. Motorola Semiconductor's SmartMOS processing technology offers similar capabilities for providing vertical and lateral power devices. Other manufacturers use different approaches to combine bipolar or CMOS logic with bipolar or DMOS output stages. All have their place, depending on the final smart-power application.

No less important than processing technology, packaging techniques are also playing a major role in obtaining maximum performance from smart-power chips. To dissipate the heat generated by the chips, manufacturers commonly use DIPs whose copper lead frames have the four center pins tied together for heat sinking the chip to the pe board. For high-power appli-


Fig 1-Merged-technology chips require complex processing. Multipower-BCD technology from SGS-Thomson combines bipolar linear, CMOS, and DMOS power devices on the same monolithic chip. The bipolar and CMOS devices are rated at 20V; the DMOS devices at 60V.


Fig 2-Versatile processing technologies, such as Multipower BCD from SGS-Thomson and SmartMOS from Motorola, allow the integration of any output-stage configuration: low-side, high-side, halfbridge, and full-bridge topologies.
cations, 5 -lead TO-220 and metal-tabbed, 15 -lead Multiwatt packages provide greater power-dissipation capabilities. Hybrid circuits, of course, come in a variety of package styles and shapes designed to satisfy particular needs. On-going efforts in package development will likely provide further innovative solutions to the problem of heat removal.

## What is smart power?

The term "smart power" is something of a misnomer -it has become a marketing catchword, and its meaning is subject to different interpretations. Some IC manufacturers label their power drivers as smart-power ICs simply because the devices have latched inputs. Some manufacturers of monolithic ICs say that you should not include hybrids in the smart-power category. And, of course, you could argue indefinitely about how much intelligence and power it takes to qualify a device for the smart-power category.

This editor's personal definition includes both monolithic and hybrid ICs, a significant amount of intelligence, and a power-output capability of at least 1 W . The device's power output can be any combination of voltage and current whose product equals 1 W ; the device need not have amperes of output-current capability. Moreover, the device's intelligence must be internal to the device, rather than external. For example, a device that protects itself against short circuits, overloads, high temperatures, and excessive dissipation is certainly "smart."


Fig 3-This power switch has a significant amount of intelligence. The BTS-412A high-side switch from Siemens protects itself against short circuits, overloads, undervoltage, and excessive junction temperatures.

> The term smart power bas become a marketing buzzword. It's defined bere as any circuit that bas significant intelligence and a power capability of at least $1 W$.

One example of a device that fits this internalsmartness category is the BTS-412A from Siemens (Fig 3), an intelligent monolithic power switch in a 5 -lead TO-220 package. Fabricated in a process Siemens calls Smart SipMOS, the device has a high-side switching capability that meets the ground-return requirements of automotive applications. The BTS-412A has a current rating of 12 A and works in a voltage range between 7 and 35 V ; you can use it in both 12 and 24 V applications. The output power switch is connected as a source follower; its gate voltage is kept about 6 V higher than the positive supply voltage by means of an internal charge pump. The gate resistance determines the switching speed of the device. Internal logic circuitry uses low-voltage CMOS; the charge-pump circuitry uses high-voltage CMOS.

The hallmark of the BTS-412A is its many protective features. In the event of a short circuit, the current switches off after approximately $40 \mu \mathrm{sec}$. In the event of an overload condition, the temperature sensor switches the device off when its junction temperature exceeds $150^{\circ} \mathrm{C}$; in the case of an undervoltage condition, the device shuts off immediately. An additional protective function is the action of a 10 V zener diode at the output, which aids in de-energizing inductive loads at switch-off. The device includes a status pin that provides fault information to logic- or microprocessorbased systems. Unlike ICs made by some other processing technologies, Smart SipMOS does not use


A natural application for smart-power ICs, this $35-\mathrm{mm}$ autofocus camera from Canon uses two Motorola MPC1710A motor-control circuits-one to rewind the shutter spring, and one to advance and rewind the film. All circuits in the camera are under the control of Motorola's MC68HC11 microprocessor.


Fig 4-This multipurpose smart switch from Unitrode features a fully protected, 4.5A high-side switch, and four independent, 1A low-side switches. The UC 3720 switch IC provides protection against short circuits and has thermal-shutdown and undervoltage lockout functions.


This intelligent translator/driver chip from Sprague Semiconductor uses the company's BiMOS II process. The top half of the UC5871 contains the chip's CMOS logic, control, and protective circuitry. The bottom half contains the bipolar power circuitry, including a dual full-bridge output stage.
complex junction isolation-only the simple epitaxial base material of a normal SipMOS transistor. The BTS-412A costs $\$ 6.25$ (1000).

Very similar to the BTS-412A is the MPC1510 SmartMOS high-side switch from Motorola. Like the Siemens device, the MPC1510 has a current rating of 12A and comes in a 5 -lead, TO-220-style package. Although the MPC1510 is designed to operate at voltages lower than 18 V , it can withstand 40 V for a maximum of 250 msec , as occurs with a clamped load-dump in automotive ignition systems. The MPC1510's protection features include short-circuit current limiting, thermal shutdown, inductive-load clamping, and a diagnostic status pin. The input of the device accepts commands from CMOS or TTL logic or directly from the output of a microprocessor. The MPC1510 costs $\$ 5.48$ (100).

A third example of high-side drivers is National's LM1951, which also comes in a 5-lead, TO-220 package. Fabricated in a deep-base-pnp bipolar process, the LM1951 operates over a range of 4.5 to 26 V and has a current rating of 1 A . Like the 12 A -rated BTS-412A and MPC1510, the LM1951 has an impressive array of
protection features. These features include short-circuit protection, overvoltage shutdown, thermal shutdown, reverse-voltage protection, and a negative-out-put-voltage clamp. Suitable for high-speed switching to 50 kHz , the LM1951 has a TTL/CMOS-compatible input and an error-flag pin. The device also features a very low quiescent current of $10 \mu \mathrm{~A}$. A lower-cost version, the LM1921, has a higher quiescent current of 1.5 mA and does not have a diagnostic flag. The LM1951 costs $\$ 1.95$; the LM1921 is $\$ 1.25$ (1000).
A multipurpose smart switch is available from Unitrode Integrated Circuits. The UC3720 (Fig 4) contains a fully protected 4.5 A high-side switch and four independent 1A low-side switches. The bipolar IC, which operates in the range of 8 to 40 V , is encapsulated in a 15-lead Multiwatt package and has a power-dissipation capability of 25 W at a case temperature of $75^{\circ} \mathrm{C}$. The UC3720 has an over- and undercurrent fault-indication pin and a load-status pin. Its protection features include undervoltage lockout, instantaneous current limit, hic-cup-mode current limit, and thermal shutdown. The UC3720 costs \$6.20 (100).

The future cost effectiveness of smart-power ICs will depend greatly on processing technology and packaging innovations.

High-side power switches like the BTS-412A, MPC1510, and LM1951/LM1921 are well suited for driving inductive loads such as solenoids and small incandescent lamps that use a common ground. Automotive applications, in particular, offer a wide range of uses for these devices, which have the potential for functioning well in multiplexed systems. In addition to using high-side drivers, automotive applications also use various types of motor-control ICs for power-seat, power-window, and windshield-wiper functions.

## Intelligent motor-control ICs

Another major market for motor-control circuits is computer peripherals. Disk drives, tape drives, and printers consume millions of 2-phase stepper-motor circuits and 3 -phase brushless dc-motor circuits. Although many of these applications use custom ICs designed for special requirements, a number of standard products are also available (Ref 1). Many of these standard products are capable of delivering a considerable amount of power, and some are quite smart.

One example of a motor-control circuit that fits the smart-power category is the L6217 from SGS-Thomson.

The device is fabricated in an advanced, high-density bipolar process that uses integrated-injection logic ( $\mathrm{I}^{2} \mathrm{~L}$ ) for the digital portions of the chip. Although not promoted as a smart-power device, the L6217 contains a considerable amount of intelligence and can deliver several watts of power to its load. Operating from a motor-supply voltage from 8 to 16V, the L6217 (Fig 5) drives both phases of a bipolar stepper motor ( 400 mA max/phase). The IC provides pulse-width-modulation (PWM) control of the phase current. Dual 6-bit D/A converters program the output current of each phase for use in either full-step, half-step, or microstep applications. The latched inputs to the D/A converters and the phase inputs that select the direction of current flow minimize the interface to a microprocessor.

The power section of the L6217 is a dual H-bridge driver that has internal clamp diodes for current recirculation. To maintain the degree of accuracy required for microstepping, the circuit internally senses and compares the motor current to the outputs of the D/A converters. External RC networks program the internal monostable multivibrators to set the motor-current decay time. The L6217 is supplied in a 44 -pin PLCC


Fig 5-Fabricated in a high-density bipolar process, the L6217 from SGS-Thomson drives both phases of a bipolar stepper motor to 400 $m A / p h a s e$. Latched inputs and dual 6-bit D/A converters provide the intelligence for driving motors in full-step, half-step, and microstep applications.


Fig 6-This driver/translator uses BiMOS technology. The UCN5871 from Sprague exploits the company's BiMOS II processing to combine low-power CMOS logic with high-voltage bipolar output stages. The device has an output rating of $45 \mathrm{~V}, 1 \mathrm{~A}$ and has three stepper-motor drive formats; it also features protection against inductive transients and has a thermal-shutdown capability.
that has 11 of the 44 pins reserved for heat sinking the device. The L6217 costs $\$ 4.77$ (1000).

Another example of a smart motor-control circuit that interfaces microprocessors to bipolar stepper motors comes from Sprague Semiconductor. Using BiMOS II technology, the UCN5871 (Fig 6) combines lowpower CMOS logic with two high-current, high-voltage bipolar output stages. The device provides PWM control for 2 -phase bipolar stepper motors. The H-bridge output stages operate from a motor-supply voltage of 10 to 45 V and have a continuous-current rating of $1 \mathrm{~A} /$ phase. The UCN5871 translator/driver can control a maximum of 90 W of power in a 2 -phase circuit.

The CMOS logic section of the UCN5871 provides the sequencing logic, the direction control, the sourceenable control, and a power-on reset function. Three


Fabricated in CMOS/DMOS, this MPD8020 semicustom smartpower array from Micrel contains a multitude of active and passive devices. Included are $16100 \mathrm{~V}, 200-\mathrm{mA}$ vertical DMOS FETs, 16115 V CMOS level shifters, 200 CMOS gates, 12 TTL/CMOS-compatible I/O buffers, and a variety of configurable analog circuits.
stepper-motor drive formats (wave drive, two phase, and half step) are externally available. The logic inputs are compatible with CMOS, PMOS, and NMOS circuits. TTL or LSTTL may require the use of pullup resistors to ensure an input-logic high state.

The high-current bipolar bridges of the UCN5871 include both ground-clamp diodes and flyback diodes for protection against inductive transients. Thermalprotection circuitry disables the outputs if the chip temperature exceeds safe operating limits. Two versions of the device are available. The UCN5871B comes in a 22 -pin plastic DIP that has a copper lead frame and heat-sinkable tabs. The UCN5871EB is supplied in a 44-lead PLCC for surface-mount applications. Device costs are $\$ 3.36$ and $\$ 3.66$ (1000), respectively.

Not all motor-control circuits go into automotive and computer-peripheral applications. The Canon EOS series of $35-\mathrm{mm}$ autofocus cameras, for example, uses two Motorola MPC1710A motor-control ICs-one to rewind the shutter spring and the other to advance and rewind the film. Fabricated in a BiMOS version of Motorola's SmartMOS technology, the MPC1710A incorporates isolated CMOS, bipolar npn transistors, and a lateral DMOS output stage. Motorola chose this particular process for its efficiency at breakdown voltages below 25 V , low on-resistance, simple processing, and overall cost effectiveness. In the Canon camera application, the MPC1710A works with Motorola's MC68HC11 8-bit microprocessor and the SFX10, a custom power FET.

The MPC1710A (Fig 7) is for use in low-voltage, battery-operated motors. The device operates from motor-supply voltages from 2 to 6 V ; its H-bridge

Although expected to decline in use, hybrid circuits will continue to play an important role in high-power applications.
output stage is capable of driving 1A loads continuously and 3 A loads peak. The low on-resistance of the bridge varies from 0.21 to $0.41 \Omega$, depending on whether the bridge is sinking or sourcing current. The MPC1710A has four control modes-forward, reverse, standby, and brake-all under the control of the CMOS logic, which commands the output stage through a level shifter. A separate pin is available for driving an optional power switch to control additional loads. The device includes an undervoltage lockout feature and consumes $1-\mathrm{mA}$ max quiescent current. The MPC-

1710A comes in a 16-pin surface-mount package and costs $\$ 3.47$ (100).

## A different kind of smart power

Designed for impact printheads, solenoids, and motors in which the load inductance varies during operation, the TLP609 from Texas Instruments has some unusual features, along with a significant amount of intelligence. The TLP609 (Fig 8) is a high-current, dual flux-regulating actuator that can switch double-ended loads using currents to 2.5 A at supply voltages from 30


Fig 7-Fabricated by a processing technology called SmartMOS, the MPC1710A motor-control circuit from Motorola operates at a motor-supply voltage from 2 to $6 V$ and can drive $1 A$ loads continuously. The device, which is used in the Canon EOS $35-m m$ camera, combines isolated CMOS, bipolar npn transistors, and a lateral DMOS output stage.

## 5EMIKRDN

## innovation + service



## IN POWER SEMIS, THE SOLUTION IS SEMIKRON.

Innovation + service. At Semikron, we've made these ideals our total commitment.
Right from the start, Semikron was an innovator in power semiconductors. The Semipack $1^{\circledR}$ isolated thyristor/diode module, originated by Semikron, has become a world standard for the power semiconductor industry. It was followed by Semipack 2, Semipack 3, and other modules with greatly increased current handling capacitiesas high as 7000 A. And now, Semistack ${ }^{\circledR}$ thyristor and diode assemblies.

We look for solutions. Designs that reduce the size and cost of the packageor the assembly. Designs that offer more power, greater efficiency-and improved heat dissipation. Cost effective solutions to your problems.

Throughout the design process, reliability is a paramount consideration. And its importance continues with stringent quality control throughout the production process.

Call us. Our engineers are ready to help. No one else has the depth of technical experience. At Semikron, serving you well is the bottom line.

Smart-power ICs come in all forms-custom, semicustom, and standard productsincluding monolithic and hybrid versions.
to 60 V . The device performs the function of flux regulation for two independent channels under the control of standard TTL or CMOS input signals. Flux is proportional to the integral of the inductive-load voltage, which is a function of the total amount of current in the load and its magnetic field. Under flux regulation, the load current will vary to compensate for core saturation, temperature changes, and other variations of load inductance during operation.

Each channel of the device has a separate sink and source output for driving each end of the inductive load. Internal feedback circuitry, consisting of an integrator and a voltage comparator, provides flux regulation via chop-mode operation of the source output. The integrator provides current to the capacitor terminal proportional to the differential voltage between the sink and source output of each channel. The voltage at the capacitor terminal, referred to ground, is proportional to the integral of the source-to-sink load voltage. The
comparator hysteresis controls the charge and discharge voltage excursions at the capacitor terminal, thus controlling the on and off time of the source-output chopper.
The TLP609 also has a number of protective features, including thermal shutdown, short-circuit protection for the sink outputs, internal ESD protection, lowvoltage sensing, and sink-output clamp diodes for in-ductive-transient suppression. You must use external, high-speed clamp diodes for the source outputs. The device comes in a single-in-line power package that has a metal tab for heat-sinking purposes. The TLP609 costs $\$ 5.49$ (100).

## Semicustom also plays a role

Although custom circuits dominate smart-power applications today, and standard products are expected to dominate in the future, a stable, smaller niche exists for semicustom devices. Many manufacturers whose pro-


Fig 8-A dual flux-regulating circuit, the TLP609 from Texas Instruments drives impact printheads, solenoids, and motors in which the load inductance varies during operation. Protective features in the device include thermal shutdown, short-circuit protection for the sink outputs, internal ESD protection, and low-voltage sensing.


## (4) Suppertex inc.

Pushing the leading edge of display technologies, the Supertex family of HVCMOS* drivers permit major breakthroughs in electroluminescent, gas plasma, LCD \& vacuum fluorescent displays. This advanced smart power technology also opens up a wide range of applications in medical ultrasound imaging, robotics, telecommunications, test systems, high performance printers, power supplies, motor controls and solid-state relays.

The Supertex high density HVCMOS drivers, listed below, feature high speed with low power consumption to produce bright, high-resolution images. Investigate HVCMOS . . . a most attractive alternative to cumbersome boards or hybrids.

For more information or custom designs, write or call: Supertex, Inc., 1225 Bordeaux Drive, Sunnyvale, CA 94088; Tel. (408) 744-0100; Telex 6839143 SUPTX and FAX (408) 734-5247.

|  | $220 ~ \& ~ 300 \mathrm{~V}$ | 64 Channel, Serial to Parallel Converters with N-Channel Open Drain Outputs |
| :--- | :--- | :--- | :--- |

Smart-power circuits are currently finding their greatest use in automotive and com-puter-peripheral applications.


Fig 9-A monolithic power IC from a major supplier of smart-power hybrids, General Electric's GS601 is a digitally controlled device for use as a PWM driver of high-voltage MOSFETs. The driver has a maximum rating of 500 V at its high-voltage pins and can supply a peak current of $0.5 A$ to the external power devices. The GS601 includes a number of protection features.
duction volumes can't justify the cost of a custom-circuit development, and who can't find a standard product that suits their needs, are turning to semicustom circuits. One example of the direction that smart-power semicustom circuits are taking is the MPD8020 array from Micrel.

Fabricated in CMOS/DMOS, the MPD8020 smartpower array contains a wide range of active devices that may well satisfy the needs of many designers who have been looking for a solution to problems that demand smart-power ICs. The available devices in the MPD8020 include 16 fully floating $100 \mathrm{~V}, 200-\mathrm{mA}$ vertical DMOS FETs, 16 CMOS level shifters rated at 115V, 200 uncommitted CMOS gates, 12 TTL/CMOS-compatible I/O buffers, a unity-gain analog-output buffer, three configurable op-amp/comparator/Schmitt-trigger cells, a bandgap reference, and an overtemperature sensor.

A single 5 to 15 V supply powers the logic and analog circuitry. The high-voltage sections operate at voltages as high as 100 V . The chip can derive the 15 V analog/ digital supply from one 24,28 , or 100 V supply. For
rail-to-rail switching in push-pull and H-bridge applications, you can also use an internal voltage pump to drive the high-side gates of the DMOS FETs at a level 15 V higher than the 100 V supply voltage. To assist the designer, Micrel makes separate kit parts available in 40-pin DIPs for analog (\$20) and digital (\$15) SSI/MSI functions. Applications for this semicustom smart-power circuit are numerous; they include switching regulators, motor control, relay and solenoid drivers, lamp drivers, and automotive switches. Semicustom ICs like the MPD8020 are expected to play a limited, but nonetheless important, role in the use of smart-power devices.

Although monolithic ICs (standard, custom, and semicustom) are expected to dominate future applications, hybrid ICs and modules dominate present onesparticularly where high-voltage and high-power capabilities are required. General Electric, one of the earliest suppliers of smart-power hybrids, offers a number of standard hybrid modules as well as custom versions for specialized requirements. GE also intends to an-

## SIEMENS



## The discreet alternative to discrete protection.

## Introducing Siemens BTS 412A...the world’s first fully-protected Smart SIPMOS ${ }^{\circledR}$ device.

Now you can be indiscrete with your system protection designs. Because instead of assembling a network of bulky discrete devices, you can plug-in a single integrated solution! It's a revolution in protection.. called the Siemens BTS 412A.

This fully protected, power MOSFET Smart SIPMOS device eliminates the problems of multi-chip solutions. It's big on reliability. Small on space. And quick to alert you of potential problems, thanks to its integrated status feedback intelligence. Best of all, it gives you the comprehensive protection that once required an army of discrete devices. Now that's discreet protection!

Siemens BTS 412A. It's the world's first intelligent, fully-protected Smart SIPMOS device...and it's available now.

For more information, call 1-800-FET-APPS (in California call 1-800-422-FETS). Or contact your nearest
Siemens distributor or local sales office.
Siemens National Distributors: Hall-Mark and Marshall
Siemens Regional Distributors: Advent Electronics, Inc.
Almo Electronics, Insight Electronics, Quality Components, Summit and Western Microtechnology.

## Siemens Regional Sales Offices:

Eastern Region Central Region
Littleton, MA Rosemont, IL
(617) 486-0331 (312) 692-6000

Princeton, NJ Columbus, OH
(609) 987-0083 (614) 433-7500

Norcross, GA Dallas, TX
(404) 449-3981 (214) 620-2294

## Siemens...

Western Region
Orange, CA
(714) 385-1274

Cupertino, CA
(408) 725-3586


## your partner for the future.

(c) 1987 Siemens Components, Inc.

SIPMOS is a registered trademark of Siemens AG

> Automotive applications employ a common ground return, which requires the use of bigh-side drivers that operate between the positive supply and the load.

## Manufacturers of smart-power ICs

For more information on smart-power ICs, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

[^18]1988 Catalog

Test \& Measurement
Instrumentation

> Solutions for Research \& Development, Manufacturing, Calibration and Service.

## Brace your shelf.

The new Fluke catalog is about to hit your desk, carrying the entire Fluke and Philips lineup of test and measurement gear. Twice as many pages, and twice as many T\&M products.

All backed by Fluke's ironclad support. Call your local sales office, or 1-800-44-FLUKE to get a copy. Then brace yourself - and your
 shelf - for the full weight of our global alliance.

INTRODUCINGTHE IDEAI


A leader's work is never done.

No sooner do we invent the Programmable Gate ${ }^{\text {TII }}$ Array and with it a whole new category of logic devices, than we're already outdoing ourselves.

By adding a brand new, more powerful family of Programmable Gate Arrays, the 3000 series.

What's new and different?

They're faster and denser,
with more gates than anybody ever thought a programmable logic device would ever have.

And, are you ready? Cheaper to use than conventional gate arrays.

Which makes them more ideal than ever.

# WCIC DEVCE. AGAN. 

architecture is also responsible for gate counts that range from 1200 in the XC 2064 to 9000 in the XC 3090.

Enough density for just about any logic application you can name.

Plus more flexibility in routing and gate utilization than you'll know what to do with.

## THE ONLI

LOGIC DEVICE YOU MAY EVER NEED.
Like all Xilinx Programmable Gate Arrays, our 3000 series offers the same advantages you've come to know and love:

Gate array density.
User-programmability with unlimited reprogrammability.

No NRE or inventory risk.
$100 \%$ tested parts.
Low cost gate array type design tools.

And a development cycle that fits between paychecks.

Our Programmable Gate Arrays also make it simple to choose a logic device.

They simply make every other logic device obsolete.

With their new architecture, you'll have the speed you need, plus the density to get all your logic on one device.

A device with advantages no other technology can match.

So much less it isn't even funny. At least, not to them.

We can prove it, too.
We've prepared a study that lays out the cost comparison data in detail and, needless to say, wed love to send you a copy. (There's also a nice thick data

Want to see how fast our new 3000 series is? Want to see it again?

Now stop and ask yourself, "Why should I use anything else?"

Good question, isn't it?

## THE PRICE IS RIGHT, TOO.

We've told you about our improved speed.

And our increased density.

But weve saved the best news for last.

Using a Xilinx Programmable Gate Array costs less than using a conventional gate array.
book for those of you who are already true believers.) Just call us toll-free at (800) 255-7778.

In California,(408) 559-7778. Or contact your local Xilinx sales representative or distributor.

The Programmable Gate Array from Xilinx. It's everything you've ever wanted. Again.
E. XIIINX

The Programmable
Gate Array Company ${ }^{\text {m" }}$

[^19]\[

$$
\begin{aligned}
& \text { Who offers you } \\
& \text { the broadest line } \\
& \text { of porver } \\
& \text { semiconductors... } \\
& \text { Darington, } \\
& \text { FBNCD } \\
& \text { MOSEDP' } \\
& \text { SCR/dode } \\
& \text { modules, } \\
& \text { rectifiers and } \\
& \text { thyristors? }
\end{aligned}
$$
\]

## OnlyPOWER=2

Powerex gives you what no one else does. Our one-source convenience and compatibility eliminate multi-source doubt. Our ofi-the-shelf availability means just-in-ime delivery, instead of back-order delays or high inventory costs. We'll provide engineerto-engineer phone conversations for an unbiased view of application needs and aliernoive component solutions. Best of all, POWEREX gives you leading-edge technology, rather than last-generation obsolescence. toke a look.


Culypurliriak offers you such a broad line of advanced power semiconductor modules, including next generation FETMOD and cascade or cascode MOSBIP, rated at 8-300 A, $50-1,000 \mathrm{~V}$ for applications up to 100 kHz .


Quly Fid IIFREX offers you the complete line of GE/RCA low-power triacs and SCRs as part of the broadest line of power semiconductors available.


Qulitimisial offers you more advanced Darlington modules, including Application Specific (ASM ${ }^{\text {i") }}$ ) modules: Single device, Phase-Leg, H-Bridge, Three Phase, Chopper and Common Emitter, $5-600 \mathrm{~A}$, with $\mathrm{V}_{\text {Cev (sus) }}$ from 200 to 1400 V .


Ofly PMEREX can provide a modular solution for all the key power components from logic interface devices, input rectifiers and DC regulating components to the output power stage. POWEREX now offers the world's widest array of input power stage thyristor and diode modules. Ratings of 20-800 A, with $V_{\text {DRM }} V_{\text {RRM }}$ from 400 to 3000 V . Circuit contigurations include Single device, Phase-Leg, Three Phase Bridge and Center Tap in common cathode or common anode configuration.

Recent addifions to the product line are a family of Center Tap fast recovery diodes rated at 20-100 A up to 1200 V , a new compact $150 \mathrm{~A} / 1600$ V Dual thyristor module, and a new $1200 \mathrm{~V} / 300$ A GTO thyristor module.
C.fly Poulse: X , offers you all this. For product literature, call POWEREX at 1-800-451-1415, Ext. 300. (In New York, 315-4579334.) For application assistance, call 412-925-7272, or write POWEREX, Inc., Hillis Street, Youngwood, PA 15697.

# CustomDesigning High is a Specialty. We're the 



## VoltagePower Supplies Specialists!

When it comes to custom HV power supply design, were the specialists. Our staff of qualified design engineers are ready to listen and develop a product to meet your specific requirements. With 16 years experience and a portfolio of over 350 field proven products, we have the know how to support your critical applications. "State-of-the-art" computerized design and test systems allow us to develop HV power supplies to superior performance specifications for the most demanding environments.
When it comes to custom HV power supply manufacturing, were the specialists. Our manufacturing process capability is extensive, right down to automated coil winding and encapsulation systems. Within our large multi-national company, we also manufacture the critical electronic components that are used in our power supplies. This unique capability combined with our extensive manufacturing capacity keeps production lead times where they should be...short.

When it comes to product assurance, were the specialists. Our facility fully complies with all international, commercial and military requirements including comprehensive environmental and life testing.

By manufacturing our own components, we greatly enhance product uniformity-the superior way to achieve product reliability in the most sensitive medical and military electronic systems. Be cost effective and let Murata Erie fill your HV power supply needs.

We turn your ideas into practical reality because were the specialists in High Voltage and Miniaturized Power Supplies for:

## Military

night vision airborne displays ground displays converters

## Industrial

paint sprayers instrumentation multipliers metal detection

Commercial
air cleaners ionizers copiers terminals

Medical image tubes displays analytical equipment

For more information call or write to:

Murata Erie North America
Toronto Operations
6338 Viscount Rd., Mississauga Ontario, Canada, IfV-1H3

Telephone: 416-676-9484
Telex: 06-968013
Fax: 416-673-1952


VHSIC devices, such as this matrix switch from TRW Inc, are among the first ICs to incorporate standard testability circuits.


The future of system design

# Design for testability creates better products at lower cost 

> Chips, boards, and systems of the 1990s will be far more sophisticated than those of today. Engineers who adopt a design-fortest (DFT) philosophy will create easily testable, more-reliable products that cost less to manufacture and operate. Without DFT methods, the cost of testers, fixtures, and test programs will soar.

## Steven H Leibson, Regional Editor

Many design engineers' and managers' attitudes about product testability seem to have frozen during an earlier era in electronics, when a technician could troubleshoot almost any problem in 20 minutes with a scope and a little savvy. For products designed without a design-for-testability (DFT) philosophy, today's most advanced in-circuit ATE testers can do no more than automate the time-honored tradition of sticking a test probe into a failing test node to find the problem. But as electronic systems grow in complexity, this approach grows less and less effective and increasingly costly.

Today's electronic systems are already making test probing impractical because surface-mount technology, VLSI, and other advanced electronic-packaging schemes hide thousands of circuit nodes from the probe
tip. The majority of systems built in the 1990s will certainly present even more difficulty in testing. As electronic-device technology and system design advance, therefore, the traditional attitude toward testing is becoming more and more unrealistic.

In the past, many design engineers ruled out design for testability because they thought it would cost too much, take up too much space, and delay their projects. Project managers pressed by schedule and cost constraints still encourage these attitudes because, for the most part, testing provides feedback about manufacturing quality-information that's important to the manufacturing department but not necessarily to the design lab.

Today, as they have in the past, many design engineers use every available transistor for speed, capacity, or other performance features, leaving no room for testability circuitry. The designs they create, therefore, are often difficult or impossible to test. In the 1990s, however, successful designs will allocate some circuitry for testability, which leads to better product quality and a shorter development cycle.

## Testing provides quality feedback

Testing and DFT methodologies are initially useful to validate a design once it's actually built, but they serve best to provide valuable feedback on the manufacturing process once a product reaches production. "There's no sense in building a product that you can't test and can't build reliably," says Paul Gifford, manager of central systems engineering at Sequent Computers (Beaver-
ton, OR ). Sequent plans to incorporate scan design in its third-generation, multiprocessor computer systems to ensure that the products will be manufactured correctly. Gifford believes that the benefits of the DFT approach far outweigh the extra effort required to design testability into the computers. Further, he says, the performance penalty (if any) for adding DFT is only 5 to 6\%.

Ignorance of DFT methods and the perception that testability is of secondary importance are the last major obstacles that a company must overcome before it can adopt a DFT orientation. When you consider a product's entire life cycle-including manufacturing, testing, and field service-you find that DFT methods actually save time and money in comparison with the traditional approach of "tossing it over the wall and letting the test engineer handle it."

## Today's unknown testing costs

Sadly, many companies don't know what product testing really costs them. Ask a test manager what it costs to test a product and you'll often get a figure derived from the total number of products tested divided by the cost of the entire test operation. That figure gives you an average test cost for all the products run through the testing department, but it doesn't paint a very accurate picture of the true cost for any particular product. In addition, such an estimate of test-department costs generally doesn't include fieldmaintenance and repair costs.

Logical Solutions Technology Inc (a Campbell, CA, testability consulting firm) estimates that the average electronics manufacturer spends between 35 and $45 \%$ of a product's total cost on testing parts, subsystems, and final assemblies. The company says that its customers have saved, on the average, about $\$ 1.5$ million per year by following its DFT recommendations. Note that these figures represent savings for systems built at today's complexities, not for the more complex systems that will be built in the 1990s. Test experts predict that test problems will be much worse for very complex systems unless design engineers add testable-design and DFT methods to their lexicon.

At the 1987 Government Microcircuit Applications Conference (held in Orlando, FL), Mitre Corp (Bedford, MA) reported on a study it performed for the Electronic Systems Div of the US Air Force to determine the impact built-in test (BIT) circuitry would have on equipment maintenance. The study indicated that

BIT would improve both instantaneous and steadystate equipment availability, and that it would improve mission reliability by identifying weak modules before a critical failure occurred. From a field-service viewpoint, BIT reduces the occurrences of "cannot duplicate" (CND) and "retest OK" (RTOK) situations, because BIT circuitry pinpoints failing components.

Intermittent failures cease to be difficult to find and repair in systems that have BIT, because the BIT circuitry can store the identity of the faulty module. In addition, the incorporation of BIT circuitry reduces the mean time to repair (MTTR) by eliminating fruitless CND and RTOK maintenance actions; the BIT circuits immediately indicate the problem source, eliminating the troubleshooting phase of repair.

Mitre's report indicates that a BIT design with a $90 \%$ chance of isolating a problem incurs 10 to $30 \%$ extra design time during a product's development cycle. However, such incremental development costs add very little to the product's overall life-cycle costs (Fig 1a). Considering the time and money required to develop and debug tests and test fixtures, as well as to perform field maintenance and repair, DFT methods ultimately save your company both time and money. According to the Mitre report, although the system-design phase of product development represents only about $15 \%$ of the product's total life-cycle cost, it has a $70 \%$ impact on that product's operation and support costs (Fig 1b).
Testability also translates into product quality during production, because it lets you ship fewer products with undiscovered faults. In the field, products that are designed to be testable can be repaired more quickly, resulting in less down time for the customer. Though Mitre's report specifically applies to military systems, which have longer development and life cycles, the report's conclusions have equal validity for commercial product development, even if the numbers aren't exactly the same.

## Three keys to testability

Because of the overwhelming evidence that DFT is simply part of a good overall design strategy, many companies are actively developing DFT methods. Though these methods differ, they all focus on the three keys to testability: partitioning (to break complex systems into testable blocks), control (to allow a test to stimulate testable blocks), and visibility (to extract the system's response to the test stimuli).

DFT methods take several approaches, which include
divide-and-conquer, several types of serial scanning, and built-in self-test (BIST) or built-in test (BIT) (see box, "DFT methods focus on scan-path testing.") Each of these methods recognizes that you can no longer test increasingly complex systems simply by increasing the number of test probes on an ATE tester. Such an approach has grown prohibitively expensive as system complexities soar. Instead, the current DFT methods focus on adding test circuitry to the product. This extra circuitry allows less-complex test equipment to perform simpler tests with better fault coverage.

A divide-and-conquer test scheme works well in systems that can be divided into easily testable blocks or in blocks that have existing tests. For example, RAM and ROM blocks are relatively simple to test, yet they consume large portions of a system's transistor budget, so testing them is worthwhile. Today's test methods can verify the operation of these structures quite easily when they're isolated from the rest of a system.

In a paper presented at the 1987 Custom Integrated Circuits Conference, National Semiconductor (Sunnyvale, CA) discussed techniques for isolating blocks of circuitry embedded in an IC. If such a block is based on an existing standard part, such as the 82 C 50 asynchronous communications element in National's paper, you can use an existing test to verify that block's operation by employing data multiplexers to bring the block's input and output signals to the chip's leads.
National Semiconductor's paper also compares parallel and serial methods of accessing such isolated blocks. Parallel-access methods allow faster testing, but require more points of contact between the tester and the system. Serial-access methods are slower, but don't require as many test points. Because serial test methods require fewer test probes and less-expensive test equipment, engineers are adopting such techniques more and more frequently.

When engineers at NCR's Microelectronics Div (Fort Collins, CO) developed the PLM (Prolog machine) microprocessor in conjunction with the Computer Science Div of the University of California at Berkeley, they knew that the complexity of the chip would make testing difficult unless they included some on-chip test circuitry. Designed to act as a coprocessor in an engineering workstation, the PLM implements a tagged architecture and five hardware stacks to support the Prolog language environment. The resulting IC, representing a system with a complexity of about 45,000 gates, incorporates eleven 32 -bit data buses, sixty-four


Fig 1-Although DFT methods add to the cost of a product's development phase, the production, operation, and support phases represent the largest portion of the product's total life-cycle cost (a). And although the system-design phase of product development represents only about 15\% of the total product-life-cycle cost, it has a 70\% impact on that product's operation and support costs (b).

## DFT methods focus on scan-path testing

Very simply, testing allows you to determine the quality of a manufactured system. If you want reasonable assurance that a product is without defects, your test must have very good fault coverage. Tests achieve complete coverage by verifying that every node in a circuit operates properly. For today's complex circuits, which have many inaccessible nodes because of integration and packaging, most engineers turn to scan-based DFT methods to provide the required observability.

Scan techniques use a circuit's registers as fences around combinatorial logic (Fig A). These fences divide even complex systems into smaller blocks for easier testing. Organizing all of the registers into one long shift register creates the scan path. Using only two data lines, a scan input, and scan output, a tester can shift a stimulus pattern into the scan path, clock the circuit being tested, and then shift out the response to the stimulus.

Level-sensitive scan design (LSSD), a rigorous DFT methodology, requires that every register in a circuit reside on the scan path. Early LSSD implementations used about $25 \%$ of a circuit's available gates to implement the test circuits, because every flip-flop input required the equivalent of a 2 -input multiplexer. That multiplexer also added an extra delay to the circuitry, slowing the system's maximum speed.

Recent test-circuit designs,


Fig A-A scan path divides the combinatorial portions of a system into easily testable blocks. The blocks are surrounded by a scan path composed of all of the sequential circuits in the system, which are connected to form one or more long shift registers.
however, do not inflict such penalties. According to Fred Bulow, president of Aida Corp (Santa Clara, CA), "Scan-path testing is a wonderful approach if you have to build a reliable product and are concerned with development costs, because test-development costs are nil and fault coverage is $100 \%$." Bulow claims that scan-path test circuits add about 5 to $15 \%$ to the cost of a raw IC, but you more than recover those costs during testing and from reduced field failures. He adds that speed penalties amount to less than $5 \%$.

As a concrete example of scanpath costs, consider the gate arrays from Integrated Logic Systems Inc's (ILSI, Colorado

Springs, CO). The firm adds scan-path logic to its gate arrays by incorporating five extra transistors in each of the arrays' sequential cells. This test circuitry consumes a mere $0.4 \%$ of the total silicon die area and uses about $4.5 \%$ of the total interconnection on the circuit to link the sequential cells into a scan path. The scan path has a negligible effect on the gate array's maximum clock speed.
Though the costs of ILSI's test logic are low, the scheme provides tremendous benefits. For a 1438-gate design, ILSI's automatic test generator (ATG) created a set of test vectors in 13 minutes that provides $99.3 \%$ fault coverage. To produce a test


Fig B-The boundary-scan method lets you test all of the $1 / 0$ buffers and associated circuit-board traces by using serial test techniques.
for the same design without testability circuits, a fault-grading program required almost 14 hours and provided only $85 \%$ fault coverage. Further, for a 2456 -gate design, the ATG required 14 minutes to create a test with $99.88 \%$ fault coverage; for the same circuit without scan-path logic, the fault-grading program required a little more than 57 hours to create a test that yielded $59 \%$ fault coverage.

You can also use a form of scan-path testing called "boundary scan" to check interconnections between ICs. If each IC has a scannable register attached to its input and output buffers, the registers create a scan path surrounding the buffers and the pc-board traces (Fig B). An ATG can create a test with $100 \%$ fault coverage for this simple topology in a very short time. In addition, if the boundary scan registers are part
of the IC's level-sensitive scan path, you can use those bounda-ry-scan registers to test the IC's internal circuitry as well. JTAG's latest testability-bus proposal encompasses both boundary-scan and IC-testing capabilities.

Even if you merely add a scan path to your design, you'll still need a tester to check the circuitry. By adding a little more logic to the scan path, you can build the entire tester into your system. Such built-in self-test (BIST) and built-in test (BIT) circuits allow a system to verify its own operation on an ongoing basis.

Engineers designing BIST circuits usually employ a linearfeedback shift-register configuration (a procedure that's also called "signature analysis") and a pseudorandom test-pattern generator. These items both reduce the number of stimulus and response vectors stored in the self-test circuitry, and decrease the amount of time required for the test. Thus, to add BIST capability to a circuit that has scan logic, you require only the testpattern generator and the signa-ture-analysis feedback registers.

BIST also allows you to test an IC at full speed, a situation that is becoming less and less feasible on testers as clock speeds climb beyond 100 MHz . Because BIST circuits use the same types of transistors that the chip's other circuits use, the tests can easily run at the maximum possible clock rate.


The future of system design

Fig 2-The PLM (Prolog Machine) $\mu P d e-$ veloped jointly by NCR and the University of California at Berkeley incorporates two serial scan paths and extra microcode to aid in testing the chip. Engineers can completely test the microcode ROM (a) with the first scan path (b). The second scan path (c) reads a 16 -bit status register that provides a gross indication of the operability of the chip's data path (e). Microcode test instructions perform a more detailed check of the data-path's integrity and of the operation of the microsequence controller (d).


32 -bit registers, and an 80,000 -bit microcode control store (Fig 2).

NCR's engineers decided that they didn't need to create a fully scannable design (a design in which every flip-flop is in the scan chain), because the PLM's circuits are already very observable and controllable. Instead, they designed two serial scan paths for the PLM chip, providing test access to the control store and to a 16 -bit, data-path status register. Using these scan paths, test engineers can completely check the integrity of the microcode ROM and obtain a gross indication of the data path's operability. The scan paths add less than $5 \%$ to the chip's total area, but they allow a tester to check 70 to $80 \%$ of the $\mu \mathrm{P}$ 's circuitry.

In addition, NCR's engineers incorporated extra microinstructions in the PLM's control store to facilitate detailed testing of the chip's data path. The company uses these microinstructions to check the IC's operation during manufacture. Self-test programs running on the PLM in a system can use them as well to monitor the chip's function while the system is operating.

## So far, test standards have been lacking

Although companies such as NCR are already employing serial test methods to build complex systems, the lack of serial test-bus standards has prevented
many companies from adopting such methods. That situation is changing quickly, however. For example, three VHSIC (very-high-speed IC) Phase II contractors -Honeywell (Minneapolis, MN), IBM (Rye Brook, NY), and TRW (Redondo Beach, CA)-jointly developed the serial TM (test and maintenance) bus as part of the VHSIC Phase II interoperability standards program.

The TM bus consists of four unidirectional lines, including a $6.25-\mathrm{MHz}$ clock, a control line, and two data lines. A master test and maintenance controller uses the synchronous, backplane-level TM bus to check the status of as many as 32 modules in a system, sending data and control bits out on one unidirectional data line and receiving module status back on the second data line. In addition, Honeywell and IBM created an ETM (element test and maintenance) bus to allow an embedded test and maintenance processor to monitor as many as 32 individual devices within a module.

Other serial test standards are starting to appear as well. In 1985, Philips (Eindhoven, the Netherlands) started a test-bus study group that eventually became known as JTAG (the joint test action group), an ad hoc committee with representatives from European and US companies. JTAG hopes to create one serial test standard that IC vendors, board manufacturers, and systems

## Think SAE



Fo 25 years OEMs have selected SAE to manufacture their backplanes, PCBs connectors, and card cages. Now they are using us as their manufacturing partner. We take total responsibility to design, fabricate, test and deliver a complete "engineered assembly." This allows the OEM to concentrate all their time and monies on marketing and developing new products - not on new and expanded manufacturing facilities and personnel.
Here's why our customers think of us for all phases of their OEM products:

- Engineered Assemblies backplane, wire wrap, card cage, connectors, PCBs, wiring, filters, power supplies, fans, mounting hardware, peripherals, and accessories; complete design, fab and test - ready for your functional test.
- Military MIL-28859/28754 backplanes, NAFI headers; PCBs to MIL-P-55110D.
- Commercial VMEbus, VERSAbus, S-100, DEC, STD, Multibus backplanes: PCBs, OPL to 16 layers, UL to 4 mils.
- Assembly and Test components, wiring and system.
- Connectors commercial and military.
- Filters EMI/RFI, emission test lab.
- Magnetic Components transformers, modules and filters.
- Card Cages custom, kits, and accessories.
- Wire Wrap semi and automatic, numerous formats and test.

Call, write or FAX for our "engineered assembly" brochure and your local representative/distributor ...Think SAE!


## Stanford Applied Engineering



The future of system design
efforts towards developing a standard for a boundaryscan test system. JTAG's latest proposal, version 2.0, specifies both a boundary-scan test scheme and a standard test-access port that supports boundary-scan and other serial test methods.

The IEEE has also pursued a serial test standard through its P1149 working group. Jon Turino, co-chair of the working group and president of Logical Solutions Technology Corp, says JTAG's most recent specification has become the first element in the IEEE's serial test standard. That specification, P1149.1/JTAG, is a 4 -wire subset of the full IEEE P1149 test-bus interface. However, the IEEE P1149 working documents incorporate extra levels of test capability. The P1149.2 subset consists of seven wires and supports additional serial interfaces besides the JTAG specification. P1149.3 and P1149.4 specify real-time digital and analog test-bus interfaces, respectively. A full implementation of the IEEE P1149 test bus requires 25 wires. P1149's proposal also includes fixed test protocols so that testgeneration software can automatically create tests for boards and systems that incorporate scan circuitry.

## Standard ICs lack test ports

Standards such as the JTAG and IEEE proposals promise to make DFT methods far more popular with engineers who develop systems based on ASICs, because engineers can include testability circuits in an ASIC definition without having to invent a DFT scheme. However, designers who design systems with standard ICs still face a major obstacle: Chip vendors have not taken a leadership position in offering testable parts.

One reason for this omission, of course, has been the lack of a standard test bus. But another reason, say IC vendors, is that customers have not requested testability features. Without market demand, the chip makers had little reason to add testability features to standard ICs. As standard semiconductor products grow in complexity, however, the same pressures that encourage engineers to use DFT methods for ASICs are forcing the IC vendors to add a variety of testability circuits to their standard parts. Such test circuits make the job of testing the individual ICs much faster and easier. System designers can then employ these on-chip test circuits for board- and system-level tests as well.

For example, Intel (Santa Clara, CA) added substantial testability circuitry to its $80386 \mu \mathrm{P}$. The circuitry

## Standard-test-bus information

If you would like more information about the JTAG testability bus, contact Rod Tulloss, the chair for JTAG's North-American working group: You can reach him at AT\&T, (609) 6396116. To obtain more information about the IEEE's P1149 testability-bus efforts, contact Jon Turino at Logical Systems Technology Inc, (408) 374-3650.
included linear-feedback shift registers and pseudorandom counters for built-in self-testing, plus additional circuits that give the $\mu \mathrm{P}$ direct access to its translation look-aside paging buffer. These test circuits consume approximately $2 \%$ of the total silicon, but exercise $52 \%$ of the chip's 285,000 transistor sites. The company also took the unusual step of documenting the operation of those test circuits in the processor's data sheet so that any designer developing an 80386-based system could make use of the test circuits with a power-up, self-test software routine. Intel claims that several companies designing 80386 -based systems are taking advantage of the $\mu \mathrm{P}$ 's on-chip testability features.

## Convincing management is tough

Pat Gelsinger, the Intel engineer who spearheaded the drive to add testability circuits to the 80386 , says he had a hard time convincing the Intel's management to allocate silicon for those circuits. However, the DFT methodology made a great contribution to the 80386 project: It let Intel both obtain a fully functional device quickly and test production parts quickly. These facts produced a fundamental change in the company's attitude towards DFT methods. You can expect to see more testability circuits in future Intel products, says Gelsinger.

Another chip vendor, Texas Instruments (Dallas, TX), incorporated a complete serial scan path in its TMS320C30 DSP processor. A 4-wire serial test port emerges from the chip's package on four dedicated test pins. The DSP processor contains about 700,000 transistors. It will be available in the third quarter and will be one of the company's first ICs to incorporate testability circuits. Test circuitry uses about $10 \%$ of the chip. Although Texas Instruments perceived only a small

## 12 BIT TIME \& FREQUENCY FOR \$3995!

TIME OR FREQUENCY AT THE PUSH OF A BUTTON.


The R350 is a PC-based 12 -bit, 2-channel, 500 KHz , realtime, FFT spectrum analyzer. Sample 2 channels simultaneously. 32 K data buffers. Autosave spectrums to hard or floppy disk. Two modes of spectrum averaging. Fully differential inputs. Linear or log amplitude scaling. Amplitude and frequency cursor. Display spectrums 5 to 10 times a second. Print, store, retrieve and overlay spectrums. 500 KHz antialiasing filters on each channel, 80 db of dynamic range.


The R350 is a PC-based 12-bit Digital Oscilloscope.
Sample 2 channels simultaneously at 1 MHz .32 K data buffers per channel. EMI protected metal case with power supply. Switchable differential or single ended input impedance. Software-selectable gain ranges allow resolution of $200 \mu \mathrm{v}$ to 500 volts. Full analog and $100 \%$ digital triggering. Trigger adjust potentiometer. Fully differential inputs for signal integrity. Vertical waveform zooming. Autosave. Software drivers for "C", BASIC, and Turbo-Pascal.

At Rapid Systems, 12 bit spectrum analyzers and digital oscilloscopes are no longer separate and distinct instruments, each with its own high cost.

Now you can afford both, in one PC-based instrument: the Rapid Systems R350.

A 12 bit, $1 \mathrm{MHz}, 2$-channel FFT analyzer and digital scope for only $\$ 3995$.


PC-based to make you more productive.
The R350 is PC-based, of course. All Rapid Systems instruments are PC-based: designed, manufactured and tested to be ready to operate, the minute you receive them.

Plug the R350 into a personal computer, slip in the software disk, and you're ready to go to work. Totally turnkey. It's that simple and easy to use.

## Call now for a demonstration.

For your free copy of the new Rapid Systems catalog, to order, arrange a demonstration, or for further information, call or write Rapid Systems, 433 N. 34th St., Seattle, WA 98103. (206) 547-8311, Telex: 265017UR.

## RAPID SYSTEMS

Changing the way we think about instruments.

# Duality you can y rely is $\therefore \& a_{1}$ is is 1 <br>  <br> Functional... Reliable...Economical. Just a few qualities that make STIMPSON Eyelets the leading choice when securing your fastening needs. 

At STIMPSON, we realize that each eyeleting application presents its own problems and requirements. That's why we maintain the largest stock in the world, producing over 3,000 different sizes and styles, each furnished in a variety of metals, finishes and colors.

You can also rely on our Assembly Service Experts to recommend the right combination of eyelets and machinery to meet your design specifications.

Send for your free copy of STIMPSON'S latest Eyelet Catalog, which illustrates over 2,300 standard and specialty eyelets and our full line of precision-built automatic eyeleting machines.


# IStimpson 

900 SYLVAN AVE. BAYPORT, N Y 11705-1097
(516) 472-2000

## 'REAL-TIME’ SOLUTION TO ASIC VERIFICATION

## Tests Full Speed At Up to 50 MHz Across Entire Gycle.

For the first time, you can test your VLSI prototype design at real world operating speeds. Thoroughly and easily. Across the entire cycle. Without compromise.

Topaz is a totally-integrated ASIC verification system that reduces prototype characterization and fault analysis time, while offering these exclusive advantages:

## - Full Data Formatting to $50 \mathbf{M H z}$

 -for quick measurement of setup times and propagation delays.- 256 I/O Channels at Speed, Without Multiplexing-for maximum performance and flexibility.
- Programmable Pattern Generation to $50 \mathbf{M H z}$-for initiation of loops, branching and data control.
ASIC design requires painstaking accuracy. Verifying that design has been neither fast nor easy. The time available to get today's increasinglycomplex ASICs to market continues to contract, and the price of an undetected error can be incredibly costly.

With Topaz, you'll know your design is right, and you'll know it faster. CAE-LINK ${ }^{\text {TM }}$ software permits easy translation of simulator vectors into ready-to-use test vectors. And, our exclusive Meta-Shmoo ${ }^{\text {TM }}$ software allows you to quickly sweep voltages and times at 500ps increments across an entire cycle, without programming.

It acquires data with a minimum of effort; and its ability to do graphic error-bit mapping and multi-level triggering gives it unequalled performance in failure analysis.

Topaz is a cost-effective solution to today's high speed ASIC verification needs, and the even higher speeds you'll require tomorrow. Call for complete details or your personal demonstration.


TECHNOLOGY, INC.
18902 Bardeen, Irvine, CA 92715 Phone: (714) 752-5215
DIAL TOLL FREE 1-800-HILEVEL (In California 1-800-752-5215)

Circle 112 for Demonstration
Circle 151 for Literature Only


The terminals of most mainframe builders are little more than slaves to the host. But Tek's 4200 Series gives you local manipulation, powerful graphics, and the option to use any host you choose.

Only the 4200 Series offers up to 1.5 MB of memory, with the local capabilities that let you use your host most efficiently.

Only the 4200 Series offers dual connection to both IBM and DEC and other ASCII hosts. You can work with up to six databases concurrently.

Only the 4200 Series delivers
interactive true zoom and pan with the other superb graphic and alphanumeric features made famous by Tektronix.

Tek Software and peripheral compatibility is without equal in the graphics industry. The 4200 Series is supported by more than 175 world-class software vendors offering a full range of solutions for MIS, manufacturing and engineering.

To bring your applications to life, you can use the 4200compatible 4690 Family of color printers. Or other popular monochrome and color output

devices.
4200 Series are immediately available from authorized distributors or by contacting your local Tektronix representative. For information:
call 1-800-225-5434. In Oregon, 1-235-7202.


## $4 T$ I shop the specs



## because it's my job. But I buy the product because it's my career."

WHAT YOU SHOULD KNOW ABOUT THE NEW PRODRIVE ${ }^{\text {m }}$ SERIES OF $3 ½$-INCH HARD DISK DRIVES FROM QUANTUM.

The numbers are the easy part. Either a product has them or it doesn't.

But you can't build a system out of specs.
You also need dedicated product-support people who will sit down and help you solve some tough engineering problems and put those specs to work.

Quantum is ready to deliver both.
Our new ProDrive Series of $31 / 2$-inch hard disk drives offers you the broadest range of capacities in the broadest range of interfaces in the industry. 42 and 84 megabyte formatted with embedded SCSI interface right now. And later this year, up to 168 megabytes, in SCSI, ESDI, and AT-Bus. Ten new drives in all.

All with access times of 19 ms or less.
With synchronous data transfers to the SCSI bus of 4 megabytes per second, and asynchronous data transfers of 2 megabytes per second.

With an MTBF of 50,000 hours.
And with DisCache,', Quantum's unique 64 kilobyte data-buffering scheme that can make our 19-ms drive perform like a 12-ms drive-or even faster, depending on your application.

But Quantum also offers you the people who can help you put those numbers to work in your own system. A dedicated team of engineering professionals who understand the particular needs of the systems designer-and can help meet those needs quickly, efficiently, cost-effectively.

The new ProDrive Series. The specs you want. The support you need.
That's what Quantum delivers.

Introducing the ProDrive Series - $31 / 2$-inchformfactor - 42,84, 103, 120, 145, 168 MBs formatted - SCSI, ESDI, AT-Bus - 19 ms or faster average access time - 64 KB buffer with exclusiveDisCache" - 50,000-hour MTBF - 42, 84 MB SCSI evaluation units AVAILABLE NOW - 42,84 MB AT-Bus units available early summer'88

## Quantum

# Burndy introduces the world's most advanced connector for the world's most advanced personal computers. 




COMPUTERBUS ${ }^{\circledR}$ - the new card-edge connector that's setting the standard for 2nd generation PCs.

Developed for one of the world's leading computer companies, it represents state-of-the-art technology from start to finish.

New concepts. New materials. New manufacturing techniques have all been incorporated into this remarkable connector.

The results are outstanding.
It's a high density .050 connector. Which means overall space and weight reduction. Shorter signal paths. And greater design flexibility.

It's cost-effective. Engineered that waywith everything designed for quick, easy installation and robotic handling.

It has unmatched reliability over
repeated card insertion and withdrawal cycles through severe environmental testing. Built for maximum durability, it incorporates state-of-the-art material and design concepts for dimensional stability and predictable performance over time.
It's a shortcut to compatibility. It's already the standard for 2nd generation PC plug-in feature cards. And it's available now. Today. For test and evaluation. Or in quantity for full production runs. Get the complete story. Call or write: Burndy Corporation, Norwalk, CT 06856. (203) 852-8337.


## Timing is everything.



When you are looking for delivery, quality, and performance for your snap-acting, or lighted pushbutton switch applications timing is everything. Backed by a nationwide network of technical sales representatives and full-service distributorsC\&K/Unimax provides a full range of solutions to your switching requirements from custom engineering support through value-added capabilities. All available when you need them!

Our broad line of snap-action switches offers multiple options in actuators, terminal styles, and operating forces with current ratings ranging from low-level to 25A in both electrical and fiber optic packages.

The Lighted Pushbutton Switch line includes a wide range of time-saving features, and attractive options including pre-wirable slide-on contact blocks, oil-tight models, interlock switches, and matching indicators.

Call or send us your specs today, and we'll send you a free engineering sample and literature. (203) 269-8701.

# Digitize analog functions using simple procedures 

> A digital implementation of a traditionally analog function yields both technical and economic advantages. If you've had trouble converting analog functions to a form that a $\mu P$ can bandle, you'll be glad to learn of some simple procedures for converting from the frequency domain to the time domain.

## George Ellis, Industrial Drives

As $\mu \mathrm{Ps}$ become smaller, less expensive, and more powerful, more and more designers are using them to implement signal-processing functions that once were considered exclusively analog in nature. Digital implementations of filters, integrators, compensators, and similar functions yield greater flexibility, lower temperature drift, and much smaller unit-to-unit variation than their analog counterparts, which use op amps. Further, digital versions may also be cheaper, particularly if they are part of a system that already contains many digital components.

Even expert analog designers sometimes find it difficult to change the analog versions' frequency-domain parameters to the time-domain parameters needed by the corresponding digital versions. It's not that difficult, however, if you divide the task into three major stages:

1. Design the function you want in the frequency domain.
2. Convert the parameters from the frequency domain to the sample-data domain.
3. Convert the parameters from the sample-data domain to the time domain.

## First design in the frequency domain

Analog designers generally are familiar with the basic principles of frequency-domain design-the use of root-locus and Bode plots, for example. These principles are based on the Laplace operator $s$, which is sometimes written as "j $\omega$." The normal practice is to write the transfer functions as $\mathrm{H}(\mathrm{s})$. To implement an integration expression, you would replace instances of $1 / \mathrm{s}$ with integrators consisting of op amps and capacitors, and you would use resistors for scaling.

When you want to convert an analog function to the time domain for digital implementation, however, a few restrictions apply. First, you must write the function as a ratio of zeros to poles; and second, the poles and zeros must appear either as real and single elements or as complex conjugate pairs. Because many analog functions inherently impose these restrictions, you'll find that most frequency-domain functions are already in this form.

A familiar example is a single-pole lowpass filter, for which the frequency-domain expression is

$$
\mathrm{H}(\mathrm{~s})=2 \pi \mathrm{f} /(\mathrm{s}+2 \pi \mathrm{f}),
$$

## Designing a digital implementation of a traditionally analog function is easier if you first transform the function from the frequency to the sampled-data domain.

where $f$ is the break frequency. If you set the break at 100 Hz , the filter's expression becomes

$$
\mathrm{H}(\mathrm{~s})=628.3 /(\mathrm{s}+628.3) .
$$

The second stage is to convert the frequency-domain (s-plane) expression to an equivalent sample-data (zplane) expression. The difference between the two planes is that s-plane functions are based on integrations, and z-plane functions are based on time delays. It's convenient to use the z-plane expressions as an intermediate step because they are much closer to the operations of a digital system than are the s-plane expressions, and thus are easier to convert to the final time-domain expressions for which you can write a program.
For each s-plane function, an equivalent z-plane function exists; refer to Table 1 for an abbreviated list of s-plane functions and their z-plane counterparts. Before you can convert the s-plane functions to the $z$ plane, however, you must first select the sample time (cycle time), T, of the system. The value of T is somewhat arbitrary, but as a general guideline, select a value of T such that the sample frequency is at least 10 times the system bandwidth.
The $100-\mathrm{Hz}$ lowpass filter mentioned in step 1 serves as a good example of how to use Table 1. Beginning with the first stage,

$$
\mathrm{H}(\mathrm{~s})=628.3 /(\mathrm{s}+628.3) .
$$

If you select a $1-\mathrm{kHz}$ sample rate, then $\mathrm{T}=0.001$; replacing this value in entry 3 of Table 1 yields

$$
\begin{aligned}
\mathrm{H}(\mathrm{z}) & =\mathrm{z}\left(1-\mathrm{e}^{-0.6283}\right) /\left(\mathrm{z}-\mathrm{e}^{-0.6283}\right) \\
& =0.4665 \mathrm{z} /(\mathrm{z}-0.5335) .
\end{aligned}
$$

If the function is very complex, you can break down the full s-plane function into two or more simpler subfunctions, each of which is represented by one of the s-plane functions in Table 1. The final z-plane function is therefore the product of all the $z$-plane counterparts of the s-plane subfunctions.

In Table 1, the term T, although defined as the sample time of the system, also implies a relationship to dc gain (an integrator is a good example: Doubling the sample rate doubles the final count). The inclusion of gain terms is advantageous because it eliminates the need to adjust the overall gain of your filter at the end of the design process. You'll find that many z-transform tables do not include dc-gain terms, and therefore they differ from Table 1. However, you can use any set of transform tables to obtain subfunctions of a complex s-plane function, provided that you use them correctly and take into account any additional steps (such as gain adjustment) that they may require.

Once you've converted your function to the sample-

TABLE 1-S-PLANE/Z-PLANE COUNTERPARTS

| $\begin{aligned} & \text { ENTRY } \\ & \text { NO } \end{aligned}$ | S-PLANE EXPRESSION |  | Z-PLANE COUNTERPART |
| :---: | :---: | :---: | :---: |
| 1 | INTEGRATOR: 1/s | $\longrightarrow$ | Tz(z-1) |
| 2 | DIFFERENTIATOR: <br> s | $\longleftrightarrow$ | (z-1)/Tz |
| 3 | REAL POLE: a/s + a | $\longrightarrow$ | $z\left(1-e^{-a T}\right) /\left(z-e^{-a T}\right)$ |
| 4 | REAL ZERO: ( $\mathrm{s}+\mathrm{a}$ )/a | $\longrightarrow$ | $\left(z-e^{-a t}\right)\left(z\left(1-e^{-a \mathrm{a}}\right)\right.$ ) |
| 5 | COMPLEX POLES: $\frac{\omega^{2}}{s^{2}+2 \alpha \omega s+\omega^{2}}$ | $\longleftrightarrow$ | $\frac{z^{2}\left(1-2 \times e^{-\alpha \omega T} \times \cos \left(\sqrt{1-\alpha^{2}} \times \omega T\right)+e^{-2 \alpha \omega T}\right)}{z^{2}-2 \times z \times e^{-\alpha \omega T} \cos \left(\sqrt{1-\alpha^{2}} \times \omega T\right)+e^{-2 \alpha \omega T}}$ |
| 6 | $\begin{aligned} & \text { COMPLEX ZEROS: } \\ & \frac{\mathrm{s}^{2}+2 \alpha \omega S+\omega^{2}}{\omega^{2}} \end{aligned}$ |  | $\left.\frac{z^{2}-2 \times z \times e^{-\alpha \omega} T \cos \left(\sqrt{1-\alpha^{2}} \times \omega T\right)+e^{-2 \alpha \omega T}}{z^{2}\left(1-2 \times e^{-\alpha \omega} T\right.} \cos \left(\sqrt{1-\alpha^{2}} \times \omega T\right)+e^{-2 \alpha \omega}\right)$ |

WHERE $\mathrm{a}=1$ TTIME CONSTANT OF POLE
$\alpha=$ DAMPING RATE
e=EXPONENT
T=SAMPLE TIME
$\omega=$ NATURAL FREQUENCY $(2 \pi i)$
data (z-plane) domain, you can then move on to the final design stage of the digital implementation, converting from the sample-data domain to the time domain. In order to do so, it's important that you understand that, because data is normally updated once every cycle, the variables in the system are only "snapshots." Consequently, data is represented either as new or as delayed by some integer number of samples.
Normally you add a subscript to a function to indicate, in shorthand form, the number of delay cycles. For example, $f_{k}$ indicates the most recent value of $f(t)$ (that is, in the current cycle). The expression $f_{k-1}$ indicates the value of $f(t)$ delayed by one sample period (that is, the value of $f(t)$ during the previous cycle).
One of the basic properties of the z plane is that dividing a value by $z$ yields the value you'd obtain after a delay of one sample time. Thus, the goal of this stage is to rewrite the z -plane function, replacing each z with a delay. You can accomplish the conversion to the time domain by performing the following steps:

1. Write the transfer function in the z plane as a function of output to input.
2. Multiply out the equation so that no " z "s appear in any denominator.
3. Divide the terms in the equation by the highest power of $z$ that appears in the equation.
4. Replace the z-plane functions with functions that
represent a delay of one sample period for each negative power of $z$. For example, replace $z^{-2} \times \operatorname{out}(z)$ with out $_{k-2}$.
5 . Move the undelayed output term to the left side of the equation and move all other terms to the right side.

## Use the steps to implement a lowpass filter

Felicitously, the $100-\mathrm{Hz}$ lowpass filter is simple enough to provide a complete demonstration of the entire digital-implementation process:

- stage 1 (write the s-plane function):

$$
\mathrm{H}(\mathrm{~s})=2 \pi \mathrm{f} /(\mathrm{s}+2 \pi \mathrm{f})=628.3 /(\mathrm{s}+628.3)
$$

- stage 2 (convert to z -plane function):

$$
\mathrm{H}(\mathrm{z})=0.4665 \mathrm{z} /(\mathrm{z}-0.5335)
$$

- stage 3 (convert to time domain):
step 1: OUT $(\mathrm{z}) / \mathrm{IN}(\mathrm{z})=0.4665 \mathrm{z} /(\mathrm{z}-0.5335)$
step 2: $\operatorname{OUT}(\mathrm{z}) \times(\mathrm{z}-0.5335)=\mathrm{IN}(\mathrm{z}) \times 0.4665 \mathrm{z}$
step 3: $\operatorname{OUT}(\mathrm{z})-0.5335 \times \operatorname{OUT}(\mathrm{z}) / \mathrm{z}=0.4665 \times \mathrm{IN}(\mathrm{z})$
step 4: $\mathrm{OUT}_{\mathrm{k}}-0.5335 \times \mathrm{OUT}_{\mathrm{k}-1}=0.4665 \times \mathrm{IN}_{\mathrm{k}}$
step 5: OUT $_{k}=0.5335 \times$ OUT $_{k-1}+0.4665 \times \mathrm{IN}_{\mathrm{k}}$.
You can now write a Basic program that simulates the function of a lowpass filter with the characteristics specified in step 5. The program (Listing 1) simulates the action of driving the filter with a $25-\mathrm{Hz}$ sine wave and displays the filter's first 200 outputs. When you run the program, you'll see that the output is attenuated by $3 \%$ of the input and that it lags the input by a delay of 1


## LISTING 1-SIMULATION OF LOWPASS FILTER

```
1 REM 100-HZ SINGLE-POLE LOWPASS FILTER WITH INPUT OF 25 HZ.
4 REM OUT O AND IN O ARE THE MOST RECENT VALUES OF
6 ~ R E M ~ O U T ~ A N D ~ I N . ~
8 REM OUT1 IS OUT DELAYED BY ONE SAMPLE TIME.
10 TIME=0
20 T=0.001
30 OUT1=0
4 0 ~ P R I N T ~ " ~ T I M E ~ I N P U T ~ O U T P U T " '
50 FOR K=1 TO 200
60 TIME=TIME+T
70 INO=SIN(6.283*25*TIME)
OO OUT1 = OUTO
90 OUTO =(0.4665* INO) +(0.5335*OUT1)
```



```
110 NEXT K
1 2 0 \text { END}
```

Each s-plane function bas a $z$-plane counterpart. You can use these functions by breaking down complex functions into separate subfunctions.
to 2 msec , corresponding to phase angles between $10^{\circ}$ and $20^{\circ}$. A lowpass filter driven at $25 \%$ of its break frequency (as this one is) should theoretically provide $3 \%$ attenuation and $14^{\circ}$ of lag-which correlates well with the experimental result.

## You can apply steps to complex functions

You can apply the step-by-step design procedure to transfer functions much more complicated than the lowpass filter in the previous example. For instance, consider an integrator with lead compensation. Assume that the lead zero is set to 10 Hz , the pole is set to 40 Hz , and the dc gain is 0.25 . The integrator is to have a gain of 100 at $1 \mathrm{rad} / \mathrm{sec}$, and the sample time is 0.001 sec. Applying the 3 -stage design procedure to the integrator yields the results of Fig 1.

From these results, you can write a Basic program that simulates the operation of the filter when it receives a $20-\mathrm{Hz}$ input (Listing 2). From the definition of $\mathrm{H}(\mathrm{s})$, the gain of the transfer function is -8 dB at 20 Hz , and the output lags the input by $53.1^{\circ}$. When you run the program, you'll find that if you eliminate (by

$$
\begin{aligned}
& \text { STAGE 1: } \\
& H(s)=\frac{s+62.83}{s+251.3} \times \frac{100}{s} \\
& =\frac{s+62.83}{62.83} \times \frac{251.3}{s+251.3} \times \frac{62.83}{251.3} \times \frac{100}{s} \\
& \text { STAGE 2: } \\
& H(z)=\frac{z-0.9391}{0.0609 z} \times \frac{0.2222 z}{z-0.7778} \times 0.25 \times \frac{100 \times 0.001 z}{z-1} \\
& =0.09122 \times \frac{(z-0.9391) z}{(z-0.7778)(z-1)} \\
& \text { STAGE 3: } \\
& \text { STEP 1: } \frac{\operatorname{OUT}(z)}{\operatorname{IN}(z)}=0.09122 \times \frac{(z-0.9391) z}{(z-0.7778)(z-1)} \\
& \text { STEP 2: OUT }(z) \times\left(z^{2}-1.778 z+0.7778\right)=0.09122 \times \operatorname{IN}(z) \times\left(z^{2}-0.9391 z\right) \\
& \text { STEP 3: OUT }(z) \times\left(1-1.778 / z+0.7778 / z^{2}\right)=0.09122 \times \operatorname{IN}(z) \times(1-0.9391 / z) \\
& \text { STEP 4: OUT }{ }_{k}{ }^{11.7778} \times \text { OUT }_{k-1}+0.7778 \times \text { OUT }_{k-2}=0.09122 \times \text { IN }_{k}-0.08567 \times \text { IN }_{k-1} \\
& \text { STEP 5: } \text { OUT }_{\mathbf{k}}=1.778 \times \text { OUT }_{\mathbf{k}-1}-0.7778 \times \text { OUT }_{\mathbf{k}-2}+0.09122+\mathrm{IN}_{\mathbf{k}}-0.08567 \times \mathrm{IN}_{\mathbf{k}-1}
\end{aligned}
$$

Fig 1-For just about any frequency-domain function you want to digitize, this simple 3-stage design procedure will work. In the first stage, you write the function in its s-plane form. In the second stage, you transform the expression to the sample-data (z-plane) domain. The third stage transforms the expression to the time-domain form that you can implement digitally. The example presented here is a digital implementation of a lead-compensated integrator.

## LISTING 2-SIMULATION OF LEAD-COMPENSATED INTEGRATOR

```
10 REM LEAD-COMPENSATED INTEGRATOR WITH AN INPUT AT 20 HZ.
20 REM OUTO AND INO ARE THE MOST RECENT SAMPLES OF OUT AND IN.
40 REM OUT T AND IN I ARE OUT AND IN DELAYED BY ONE SAMPLE TIME.
6 0 \text { REM OUT } 2 \text { IS OUT DELAYED BY TWO SAMPLE TIMES.}
80 DEFDOUBLE I,O,T
90 DEFINT K
100 TIME=0.0
110 T=0.001
130 IN1=0.0
140 OUT1=0.0
150 OUT2=0.0
160 PRINT " TIME INPUT OUTPUT"
170 FOR K=1 TO 200
180 TIME=TIME+T
190 OUT2=OUT1
200 OUT1=OUTO
210 INI= INO
220 INO=SIN(6.283*20*TIME)
230 OUT0 =(1.778*OUT1) -(0.7778*OUT2) +(0.09122*INO) -(0.08567*IN1)
240 PRINT USING "#,########,########.####",TIME,INO,OUTO
250 NEXT K
260 END
```


## The first good reason in 5 years to buy new 8-bit development tools.



We asked design engineers to describe the ideal 8-bit development system. Then we designed it.

Introducing the EL-800: real-time transparent emulation, the most powerful event system available plus lots of trace memory...all for under $\$ 5000$.

The second good reason.
The EL-800's triggers and breakpoints let you quickly identify complex bugs. Our powerful Advanced Event System controls emulation with a combination of address, data, status, counters and logic fields. And you can specify up to 1 Megabyte of overlay memory.

## But we didn't stop there.

The EL-800 also comes with symbolic debug as well as a quick and easy way to define up to 1 million breakpoints. And it provides closely coupled interfaces to high level debuggers...all for much less than you'd expect to pay for an Applied Microsystems emulator.

What's more, the new modular design makes it easy to add additional capabilities and new processors without switching to a new operating environment or discarding your emulator.

Ask us about our plans to develop a library of options for the EL-800, performance analysis, post processing of real-time trace, and software development tools. And let us show how we can extend support to your particular 8-bit microprocessor or microcontroller.

To find out more, call 1-800-4263925 (in WA, 206-882-2000). Or mail us the coupon below.

Applied Microsystems Corporation, P.O. Box 97002, Redmond, WA 98073-9702
To learn more about the new EL-800 emulator, I'd like to receive:
$\square$ Free literature $\square$ A free demonstration $\square$ A free demo disk
$\square$ Free application note on cross-triggering with 8 - and 16 -bit emulators
$\square$ Free 10 day evaluation
EDN033188
Name $\qquad$
Title
Company $\qquad$
Address $\qquad$
City

## When designing digital filters, you must limit the input signal frequency to avoid the aliasing phenomenon.

subtraction) the dc portion of the gain, the output is $40 \%$ of the input (an attenutation of about 8 dB ), and the output lags the input by 7 msec (equivalent to approximately $50^{\circ}$ at 20 Hz ). These results correlate well with the s-plane design characteristics.

## Limit the input frequency to avoid aliasing

When designing digital filters, you must take care to avoid aliasing effects. Aliasing is the name of a phenomenon that causes input frequencies greater than half the sampling frequency to appear in the output transformed into frequencies less than half the sampling rate. Fig 2 shows the effects of aliasing on a system with a sample rate of 100 Hz . You'll see that all input frequencies greater than 50 Hz (which is half the sampling rate) appear in the output as frequencies between 0 and 50 Hz .

For integral harmonics of the sampling rate, the apparent frequency is 0 . All other frequencies are transformed to the difference between $f$ (the input frequency) and xn , where n is the sampling rate and x is an integer representing the nearest integral harmonic of the sampling rate. Thus, in Fig 2, an input frequency of 230 Hz appears as an apparent output frequency of $230-(2 \times 100)=30 \mathrm{~Hz}$; an input of 270 Hz would appear as $(3 \times 100)-270=30 \mathrm{~Hz}$. Aliasing continues indefinitely as you raise the input frequency.

Thus, to avoid spurious output signals, you must limit the maximum input frequency to a value that is no greater than half the sampling rate of the system. You can achieve this limit by raising the sampling frequency so that aliasing will not begin until a frequency occurs that is higher than that of any expected signal; this is the preferred (and least expensive) method. If it is impractical (or otherwise undesirable) to raise the sampling rate, you can insert an analog lowpass filter in the signal path before the digitizing circuitry.

## Procedure suits many applications

The 3 -stage design procedure presented here is suitable for a wide variety of s-plane functions, including notch filters and PID compensators in servo systems. Not only does it produce more accurate break frequencies than some other popular methods (for example, the bilinear transformation or the w-plane transform), it is also a good deal more straightforward. You can depend on the procedure to produce accurate digital implementations of traditionally analog filters, with minimal complications.
However, in certain circumstances, stage 3 does not


Fig 2-Aliasing is a phenomenon of sampled-data systems and results in spurious output signals. Input frequencies that are greater than half the sampling rate appear in the output as frequencies between 0 and half the sampling rate. To avoid aliasing effects, you must place an upper limit on the input signal frequency.
always produce the optimum result with respect to arithmetic noise, to which integrators are very sensitive. You may, therefore, find it desirable to separate an integrator from other functions and design it for minimum noise.

Likewise, for higher-order functions, you may wish to break up the frequency-domain functions into parallel (not cascaded) subfunctions and implement each part separately, using the 3 -stage design procedure for each subfunction. And finally, if you find that the computing time imposes an undue delay between the instant at which the data is sampled and the instant at which the corresponding output value becomes available, you may want to rewrite the equations in a manner that allows the processor to perform much of the background computation before the data cycle begins.

EDN

## Author's biography

George Ellis is an EE with the Industrial Drives Div of Kollmorgen Corp (Radford, VA), where he designs servomotor controllers. He holds a BSEE and an MSEE from Virginia Polytechnic Institute, and he serves on the IEEE Industrial Automation Society Industrial Drives Committee. In his spare time George enjoys wood-
 working.

Article Interest Quotient (Circle One) High 488 Medium 489 Low 490

# Gould has features you won't find at the ordinary ASIC house. 



## A nose to the grindstone.

What do twenty-one years as an ASIC vendor do for your customers? A lot.

Two decades give you the time you need to develop and manufacture over 6000 successful designs. The time you need to accumulate 900 man-years of engineering experience. The time you need to learn things not found in the textbooks.

That's the kind of experience Gould Semiconductors can put to work for you on every circuit you do.

Gould recognized early how valuable the combination of CMOS processes and CAD/CAE technology would be for our customers. We have been an innovator in both of these areas.


We've also had time to fully develop appli-cation-specific IC techniques that still frustrate other vendors. For instance, Gould is an acknowledged industry leader in analog/digital circuit combinations. Many ASIC producers can't even offer them.

The most important advantage to you, though, is that Gould has probably produced a design similar to yours already. We know the problems to look for and how to avoid them. In many cases, we can
recommend easily incorporated features that add value to your system.

That's what twenty-one years of hard work can do for you.

## Manufacturer of Gould AMI

 Semiconductors.Electronics


# An ear for your problems. 

All ASIC customers want essentially the same things: better system performance, lower system cost, quick development and production cycles. But every ASIC project has a different set of priorities.

Your only guarantee of success is the vendor's sensitivity to your individual needs. For two decades, Gould has
listened and responded with strategies to provide the best system solution. The ASIC Continuum is one such strategy.

The ASIC Continuum provides a design solution effective for any application. There are low-cost E2PLDs for instant prototypes and small volume production applications. Also gate arrays for fast prototyping

## Iow cosi

## GASTER DEIIVERY

## EaSIER DESICNS

## SPECIAL NEEDS

and cost-effectiveness over a broad range of volumes.

More advanced implementations get standard cell or cell-based custom circuits. These are ideal for analog/digital combinations, high-density systems and other circuits requiring special performance characteristics.

We are also meeting your needs with expert-based design aids. Extensive cell
and macro families for PCs and workstations. A full-service design group. And more comprehensive programs to give you the best ASIC solution.

## Manufacturer of Gould AMI Semiconductors.

## ARTIFICIRL INTELLIGENCE • HI HIS ER-LEJEL FUNCTIONS • C COM VILERS - UENDOR FLEKIBI UENDIR FLEKIBILITY - FRTIFII

# An eye on the future. 

The pressure on system designers will continue to be intense. Gould has responded by cutting development spans, increasing functions and performance. And now we're using artificial intelligence (Al) to go even further.

Already Gould Expert Systems ${ }^{\text {m" }}$ tools are adding value for system designers.

Al-based generators and compilers create cells in days instead of weeks. Standard cells. ROMs. RAMs. Even analog cells, like op amps and filters. And these tools are process independent, making our libraries some of the easiest to tailor to your needs.

Going a step further, megacell compilers create large custom functions (bit-slice

## ER-LEUEL FUNCTIONS • COMPILERS • UENDOR FLE PILERS • UENDOR FLEMIBILITY : ARTIFICIRL INTELI HIGHER-LEUEL FUNCTIONS - COMPILERS •UEND INTELLIGENCE • HIGHER-LEUEL FUNCTIONS • COI

$\mu \mathrm{Ps}, \mathrm{DSPs}$, etc.) in half the space of standard cells. And our newest Expert ASIC tool, Circuit Cincher,', finds logic errors missed in simulation, so you get silicon that's right the first time.

A Gould exclusive is Netrans" ${ }^{\text {m }}$ universal netlist translator. This single tool makes Gould a ready alternate source for any ASIC you do. No matter who your primary vendor is. Use any CAD/CAE system and cell library you want: our Netrans translator
will convert your netlist for production at Gould. That's true vendor flexibility.

Come see how Gould's Expert ASIC tools can play a major role in your future.

Manufacturer of Gould AMI Semiconductors.

## 3400 hands to help you succeed.



Gould ASIC professionals are dedicated to giving you the best system solution. And a competitive edge found nowhere else. We invite you to come meet our team. Once you see what we can do for you, you'll choose Gould hands down.
Shouldn't you find out more about us? Just return the Gould business reply card adjacent to this ad. If someone beat you to it, write: Gould Inc., Semiconductor Division, 3800 Homestead Road, Santa Clara, CA 95051, Attn: N. Greene.

If we receive your card or letter by May 31, 1988, you will be entered in a sweepstakes to win one of ten compact disk players.* To get information faster, call 1-800-GOULD 10.

## Manufacturer of Gould AMI Semiconductors.

# Motor modeling simplifies design of control systems 

> Electric motors are electromechanical systems, but you can model them as purely electrical networks of familiar components. These models enable you to accurately predict the performance of feedback control systems that use motors.

## Claudio de Sa e Silva, Unitrode Corp

An electric motor is a device that transforms electric power into mechanical power. In the case of permanent magnet (PM) electric motors, this power transformation works in both directions. Therefore, the electrical impedance depends on the mechanical load, and similarly, the mechanical behavior of the motor depends on conditions at the electrical end.

Because of the motor's dual nature, you can represent it, along with its mechanical load, as a set of familiar electrical components, such as capacitors and resistors. Constructing such models improves your understanding of motors and allows you to accurately predict the response of feedback control systems that use them.

Before getting started, it is important to understand the system of measurement units used in the analysis.

The metric system has undergone a number of
changes in its history, but the latest version is called SI (Systeme International d'Unites). This system has become popular in most of the industrialized world, largely because it is coherent-that is, the product or quotient of two or more units is the unit of the resulting quantity. Certain simplifications result from using SI metric units.

The SI system uses Newtons (N) to measure force and meters (m) to measure distance. Consequently, the units of torque are Nm (Table 1). If a motor shaft rotates at an angular velocity of $\omega_{\mathrm{M}}$ radians per second, with torque $\mathrm{T}_{\mathrm{M}}$, the mechanical power output will be equal to the product of $\mathrm{T}_{\mathrm{M}}$ and $\omega_{M}$, and the units will be watts if $\mathrm{T}_{\mathrm{M}}$ is in Nm .

## In the SI system, $\mathbf{K}_{T}$ equals $\mathrm{K}_{\mathrm{V}}$

Motor manufacturers usually specify a torque constant ( $\mathrm{K}_{\mathrm{T}}$ ) and a voltage constant ( $\mathrm{K}_{\mathrm{V}}$ ) for their motors. These constants have different values when the torque and speed are measured in English units, but their numerical values are equal when you use SI units. This fact becomes obvious when you consider that the total mechanical power must equal the converted electrical power:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{T}_{\mathrm{M}} \omega_{\mathrm{M}} \text { (watts) }  \tag{1}\\
& \mathrm{V}_{\mathrm{A}} / \omega_{\mathrm{M}}=\mathrm{T}_{\mathrm{M}} / \mathrm{I}_{\mathrm{A}}=\mathrm{K}_{\mathrm{TV}}, \tag{2}
\end{align*}
$$

where $\mathrm{V}_{\mathrm{A}}$ is the internally generated armature voltage,

# Because of the motor's dual nature, you can represent it along with its mechanical load as a set of familiar electrical components. 

or back electromotive force (EMF), not the voltage you apply to the motor, and $\mathrm{I}_{\mathrm{A}}$ is the armature current. $\mathrm{T}_{\mathrm{M}}$ is the total torque developed. (See Fig 1 for definition of motor terms.)

## A motor is a transformer

If you do the same thing with the familiar electrical transformer, you get the turns ratio:

$$
\begin{gather*}
\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2} \text { (watts) }  \tag{3}\\
\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{I}_{2} / \mathrm{I}_{1}=\mathrm{N}_{1} / \mathrm{N}_{2} . \tag{4}
\end{gather*}
$$

Thus, the nondimensional turns ratio $\mathrm{N}_{1} / \mathrm{N}_{2}$ is analogous to the dimensional torque (or voltage) constant $\mathrm{K}_{\mathrm{Tv}}$. Furthermore, Eqs 2 and 4 give a clear hint that the angular velocity $\left(\omega_{\mathrm{m}}\right)$ is analogous to voltage, while the torque ( $\mathrm{T}_{\mathrm{M}}$ ) is analogous to current.
The units of $\mathrm{K}_{\mathrm{TV}}$ may be either $\mathrm{Nm} / \mathrm{A}$ or $\mathrm{V} /(\mathrm{rad} / \mathrm{sec})$. Thus, specifying both $\mathrm{K}_{\mathrm{T}}$ and $\mathrm{K}_{\mathrm{V}}$ for a motor is like measuring and specifying both the voltage ratio and the current ratio of a transformer.
There is a clear analogy between $\mathrm{K}_{\mathrm{TV}}$ and a transformer's turns ratio; angular velocity and voltage; and torque and current. Because the motor behaves as a transformer, you might expect to find the square of $\mathrm{K}_{\mathrm{TV}}$ involved in something analogous to impedance transformation.
Suppose you apply a constant current $\mathrm{I}_{\mathrm{A}}$ to the armature of a motor whose load is its own moment of inertia $\mathrm{J}_{\mathrm{M}}\left(\mathrm{Nm} \mathrm{sec}{ }^{2}\right)$. Neglecting mechanical losses,

| TABLE 1-UNITS CONVERSION |  |  |  |
| :---: | :---: | :---: | :---: |
| THESE UNITS | $\left\{\begin{array}{l} x \rightarrow= \\ =\longleftrightarrow \end{array}\right\}$ | $\underset{\text { UNITS }}{\text { SI }}$ | DIMENSION |
| OZ | $2.78 \times 10^{-1}$ | N | MLT ${ }^{-2}$ |
| LB | 4.448 | N | MLT ${ }^{-2}$ |
| IN . | $2.54 \times 10^{-2}$ | m | L |
| FT | $3.048 \times 10^{-1}$ | m | L |
| GF | $9.807 \times 10^{-3}$ | N | MLT ${ }^{-2}$ |
| G CM ${ }^{2}$ | $10^{-7}$ | Nm SEC ${ }^{2}$ | ML ${ }^{2}$ |
| FT LB SEC ${ }^{2}$ | 1.356 | Nm SEC $^{2}$ | ML ${ }^{2}$ |
| OZ IN SEC ${ }^{2}$ | $7.063 \times 10^{-3}$ | Nm SEC ${ }^{2}$ | ML ${ }^{2}$ |
| FT LB | 1.356 | Nm | $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ |
| OZ IN | $7.063 \times 10^{-3}$ | Nm | $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ |
| NOTE: THE DIMENSIONS ARE M (MASS), L (LENGTH), AND T (TIME). THE GRAM (G) IS A UNIT OF MASS, AND THE GRAMFORCE (GF) IS A UNIT OF FORCE. THE POUND (LB) AND THE OUNCE (OZ) ARE INCLUDED AS UNITS OF FORCE ONLY. |  |  |  |



Fig 1-This series RLC circuit is an excellent model of a dc motor loaded with an essentially inertial load. Here, $J$ is the total moment of inertia, including the motor's $J_{M}$.
according to Newton's law for rotating objects,

$$
\mathrm{T}_{\mathrm{M}}=\mathrm{J}_{\mathrm{M}} \boldsymbol{\alpha}_{\mathrm{M}},
$$

where $\alpha_{M}$ is the angular acceleration $d \omega_{M} / \mathrm{dt}$.
Since, from Eq 2, $\mathrm{T}_{\mathrm{M}}=\mathrm{I}_{\mathrm{A}} \mathrm{K}_{\mathrm{Tv}}$,

$$
\mathrm{I}_{\mathrm{A}} \mathrm{~K}_{\mathrm{TV}}=\mathrm{J}_{\mathrm{M}} \mathrm{~d} \omega_{\mathrm{M}} / \mathrm{dt} .
$$

Also from $\mathbf{E q}$ 2,

$$
\omega_{\mathrm{M}}=\mathrm{V}_{\mathrm{A}} / \mathrm{K}_{\mathrm{TV}}
$$

so that

$$
\begin{equation*}
\mathrm{I}_{\mathrm{A}}=\left(\mathrm{J}_{\mathrm{M}} / \mathrm{K}_{\mathrm{TV}}{ }^{2}\right) \times\left(\mathrm{d} \mathrm{~V}_{\mathrm{A}} / \mathrm{dt}\right) . \tag{5}
\end{equation*}
$$

Eq 5 has a familiar form; the quantity $\mathrm{J}_{\mathrm{M}} / \mathrm{K}_{\mathrm{Tv}}{ }^{2}$ is analogous to a capacitor. It follows that the motor "reflects" a moment of inertia $\mathrm{J}_{\mathrm{M}}$ back to the electrical primary as a capacitor of $\mathrm{J}_{\mathrm{M}} / \mathrm{K}_{\mathrm{Tv}}{ }^{2}$ farads.
A neat way to check this result is to equate the energy stored kinetically in $\mathrm{J}_{\mathrm{M}}$ with the electrical energy stored in a capacitor $\mathrm{C}_{\mathrm{m}}$ :

$$
\begin{aligned}
& 1 / 2 C_{M} V_{A}{ }^{2}=1 / 2 J_{M} \omega_{M}{ }^{2} \\
& \mathrm{C}_{\mathrm{M}}=\mathrm{J}_{\mathrm{M}}\left(\omega_{\mathrm{M}} / \mathrm{V}_{\mathrm{A}}\right)^{2} \text {. }
\end{aligned}
$$

Since $\omega_{M} / V_{A}=1 / K_{T v}$,

$$
\begin{equation*}
\mathrm{C}_{\mathrm{M}}=\mathrm{J}_{\mathrm{M}} / \mathrm{K}_{\mathrm{Tv}}{ }^{2} \text { (farads). } \tag{6}
\end{equation*}
$$

Similarly, a torsional spring with spring constant $\mathrm{K}_{\mathrm{S}}$ ( $\mathrm{Nm} / \mathrm{rad}$ ) is reflected as an inductance of $\mathrm{K}_{\mathrm{Tv}}{ }^{2} / \mathrm{K}_{\mathrm{S}}$ hen-
ries. And a viscous damping component B ( $\mathrm{Nm} \mathrm{sec} / \mathrm{rad}$ ) appears as a resistor of $\mathrm{K}_{\mathrm{Tv}}{ }^{2} / \mathrm{B}$ ohms.
Once you can represent the mechanical load by means of electrical elements, you can draw an equivalent circuit of the motor and its mechanical load. The armature has a finite resistance $R_{A}$ and an inductance $L_{A}$, through which the torque-generating current $\mathrm{I}_{\mathrm{A}}$ must flow. You have to include these components; they are too large to ignore. You can represent an inertially loaded motor as shown in Fig 2, where the moment of inertia, J , is the sum of the load's $\mathrm{J}_{\mathrm{L}}$ and the rotor's $\mathrm{J}_{\mathrm{M}}$.

It turns out that, in practice, the moment of inertia that the motor must work against or with (depending on how you look at it) is by far the most important component of the mechanical load. A frictional component also exists, but because it is largely independent of speed, you would represent it electrically as a constant current source, which could not affect the dynamic behavior of the motor. And, since you rarely find a torsional spring load, it makes sense to only concentrate on the inertial aspect of the problem.

## Measuring the components isn't difficult

The measurement of $R_{A}$ and $L_{A}$ is not difficult. $A$ good ohmmeter will get you $R_{A}$, and you can measure the electrical time constant $\tau_{\mathrm{E}}$ to calculate $\mathrm{L}_{\mathrm{A}}$ :

$$
L_{\mathrm{A}}=\tau_{\mathrm{E}} \mathrm{R}_{\mathrm{A}} .
$$

Just make sure that the rotor remains stationary during these measurements.
To determine the value of the capacitor, $\mathrm{C}_{\mathrm{M}}$, you need to measure the shaft speed. If you are measuring the speed of a brushless dc motor, you can use the signal from one of the Hall effect devices as a tachometer. If the Hall frequency is $\mathrm{f}_{\mathrm{H}}$, and the number of rotor poles is P , the angular velocity $\omega_{\mathrm{M}}$ is

$$
\omega_{\mathrm{M}}=4 \pi \mathrm{f}_{\mathrm{H}} / \mathrm{P}(\mathrm{rad} / \mathrm{sec}) .
$$

With motors of other types, you will need a strobe light or some other means (for example, a tachometer) to measure speed.

## Measure the mechanical time constant

A good way to measure $C_{M}$ is through a measurement of the mechanical time constant $\tau_{\mathrm{M}}$. Measure $\tau_{\mathrm{M}}$ by driving the motor with a constant voltage and measuring the time it takes to accelerate from zero speed to $63 \%$ of the highest speed achievable at the voltage used.

To set a safe limit on the starting current during the measurement of $\tau_{\mathrm{M}}$, apply a low voltage, or add a resistor in series with the motor, or both. The setup is shown in Fig 2. Note that the armature resistance $R_{A}$ is already known. You can add resistors $R_{B}$, if needed, to limit the armature current $I_{A}$ to a value that is safe for both driver and motor.

The first step in measuring $\tau_{\mathrm{M}}$ is to apply an armature voltage, which, as mentioned before, will probably be lower than the motor's normal armature voltage. Let the motor run freely and measure $\mathrm{W}_{\text {mAX }}$ and $\mathrm{I}_{\text {mAX }}$, and use these values to calculate the armature voltage $\mathrm{V}_{\mathrm{max}}$ :

$$
\mathrm{V}_{\mathrm{MAX}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{SAT}}-\mathrm{I}_{\mathrm{MAX}}\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) .
$$

Here $\mathrm{V}_{\mathrm{CC}}$ is the supply voltage, $\mathrm{V}_{\mathrm{SAT}}$ is the saturation voltage of the driving circuit, and $\mathrm{I}_{\text {MAX }}$ is the current drawn by the unloaded motor at maximum speed.
Thus, you can calculate the voltage constant $\mathrm{K}_{\mathrm{Tv}}$ :

$$
\mathrm{K}_{\mathrm{TV}}=\mathrm{V}_{\mathrm{MAX}} / \omega_{\mathrm{MAX}}(\mathrm{~V} /(\mathrm{rad} / \mathrm{sec})) .
$$

Probably the best way to measure the frequency of a PM motor's Hall pulses is with an oscilloscope. Set the oscilloscope time scale so that you can easily read the pulse frequency corresponding to an angular velocity of $63 \%$ of $\omega_{\text {max }}$, so that

$$
\omega_{\mathrm{M}}=0.63 \omega_{\mathrm{MAX}} .
$$

By holding and releasing the motor shaft, take several readings of the time $\tau_{\mathrm{M}}$ required to accelerate from zero


Fig 2-You can use this setup to measure $C_{M}=J / K_{T v}$ of a 3-phase brushless de motor with inertial load, $J_{i}$. The motor voltage, $V_{M}=V_{C C}-V_{S A T}$, where $V_{S A T}$ is the output saturation voltage.

The motor "reflects" a moment of inertia, $J_{M}$, back to the electrical primary as a capacitor of $J_{M} / K_{T v^{2}}{ }^{2}$ farads.
to $\omega_{\mathrm{M}}$. Take these readings "on the fly," as the motor accelerates toward the maximum speed $\omega_{\text {max }}$. Having obtained a good value of $\tau_{\mathrm{M}}$, you can now calculate

$$
\mathrm{C}_{\mathrm{M}}=\tau_{\mathrm{M}} /\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) \text { (farads). }
$$

This completes the RLC equivalent circuit. If the value of $\mathrm{J}_{\mathrm{M}}$ is also required, you can calculate it:

$$
\mathrm{J}_{\mathrm{M}}=\mathrm{C}_{\mathrm{M}} \mathrm{~K}_{\mathrm{Tv}}{ }^{2} .
$$

In the circuit of Fig 1, $V_{1}$ is the voltage applied to the motor leads, and $V_{A}$ is the actual armature voltage, or back EMF. This latter voltage is equal to $\omega_{\mathrm{M}} \mathrm{K}_{\mathrm{Tv}}{ }^{2}$. To derive an expression relating the speed to the applied voltage, you can write

$$
\begin{equation*}
\omega_{\mathrm{M}} / \mathrm{V}_{1}=\left(1 / \mathrm{K}_{\mathrm{TV}}\right)\left(\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{1}\right)((\mathrm{rad} / \mathrm{sec}) / \mathrm{V}) \tag{7}
\end{equation*}
$$

If $V_{1}$ is a constant voltage, the speed $\omega_{M}$ will also be constant. That the speed is constant is clear from the circuit of Fig 1, as well as from a knowledge of motors. If, however, $\mathrm{V}_{1}$ varies sinusoidally at some frequency, f , the speed $\omega_{\mathrm{M}}$ will vary similarly, but the amplitude and phase will depend on the frequency f. This fact is very important if you plan to include the motor in a feedback loop, because the motor's contribution to the overall loop gain and phase shift is an important factor in determining stability. The motor's transfer functionthat is, Eq 7 expressed as a function of frequencygives a precise description of how the amplitude and phase behave at different frequencies. To express the transfer function, use the variable $\mathrm{j} \omega$, where $\mathrm{j}=(-1)^{1 / 2}$ and $\omega=2 \pi f$.

$$
\begin{align*}
& \frac{V_{A}(j \omega)}{V_{1}(j \omega)}= \frac{\left(j \omega C_{m}\right)^{-1}}{j \omega^{2} L_{A} C_{M}+j \omega R_{A} C_{M}+1} \\
& \frac{V_{A}(j \omega)}{V_{1}(j \omega)}= \frac{1}{(j \omega)^{2} L_{A} C_{M}+j \omega R_{A} C_{M}+1} \\
& L_{A} C_{M}=1 / \omega_{n}^{2}, \tag{8}
\end{align*}
$$

where $\omega_{n}$ is the natural frequency of the circuit.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}} \mathrm{C}_{\mathrm{M}}=\mathrm{R}_{\mathrm{A}} \mathrm{C}_{\mathrm{M}} \mathrm{~L}_{\mathrm{A}} / \mathrm{L}_{\mathrm{A}}=\mathrm{R}_{\mathrm{A}} / \omega_{\mathrm{n}}{ }^{2} \mathrm{~L}_{\mathrm{A}}=1 / \mathrm{Q} \omega_{\mathrm{n}} . \tag{9}
\end{equation*}
$$

The circuit $Q$ is

$$
\mathrm{Q}=\omega_{\mathrm{n}} \mathrm{~L}_{\mathrm{A}} / \mathrm{R}_{\mathrm{A}} .
$$

Therefore,

$$
\frac{\mathrm{V}_{\mathrm{A}}(\mathrm{j} \omega)}{\mathrm{V}_{1}(\mathrm{j} \omega)}=\frac{1}{\left(\frac{\mathrm{j} \omega}{\omega_{\mathrm{n}}}\right)^{2}+\frac{\mathrm{j} \omega}{\mathrm{Q} \omega_{\mathrm{n}}}+1}
$$

Furthermore, using Eq 7,

$$
\begin{equation*}
\frac{\omega_{\mathrm{M}}(\mathrm{j} \omega)}{\mathrm{V}_{1}(\mathrm{j} \omega)}=\left(\frac{1}{\mathrm{~K}_{\mathrm{TV}}}\right) \cdot \frac{1}{\left(\frac{\mathrm{j} \omega}{\omega_{\mathrm{n}}}\right)^{2}+\frac{\mathrm{j} \omega}{\mathrm{Q} \omega_{\mathrm{n}}}+1} \tag{10}
\end{equation*}
$$

Because you have determined the values of $\mathrm{K}_{\mathrm{Tv}}, \omega_{\mathrm{n}}$, and Q, you can calculate the magnitude and phase angle of Eq 10 for various values of $j \omega$. For a given $\omega=\omega_{1}$, you can evaluate Eq 10 to obtain a complex number $\mathrm{A}_{1}+\mathrm{jB}_{1}$ whose angle is

$$
\mathrm{e}_{1}=\tan ^{-1}\left(\mathrm{~B}_{1} / \mathrm{A}_{1}\right)
$$

and whose magnitude you can express in decibels as follows:

$$
\left.\mathrm{M}_{1}=20 \log _{10}\left(\mathrm{~A}_{1}^{2}+\mathrm{B}_{1}\right)^{2}\right)^{1 / 2}
$$

A plot of these quantities, using a logarithmic frequency scale, is called a Bode plot. It can be a handy tool in understanding how the device will affect the final loop performance.

A small 3-phase brushless dc motor is used in a hard-disk Winchester drive. The motor's characteristics, measured as above, are

- $\mathrm{K}_{\mathrm{TV}}=0.015 \mathrm{Nm} / \mathrm{A}$ or $\mathrm{V} /(\mathrm{rad} / \mathrm{sec})$
- $\mathrm{R}_{\mathrm{A}}=2.5 \Omega$
- $\mathrm{L}_{\mathrm{A}}=0.002 \mathrm{H}$
- $J=0.001 \mathrm{Nm} \mathrm{sec}^{2}$.

The J value was measured with three magnetic disks mounted, and it represents the actual value required for the application. Using Eq 6,

$$
\mathrm{C}_{\mathrm{M}}=\mathrm{J} / \mathrm{K}_{\mathrm{Tv}}{ }^{2}=0.001 /(0.015)^{2}=4.44 \mathrm{f} .
$$

The 4.44 farads may seem like an unusually large value for a capacitor, but it simply reflects the large amount of kinetic energy that the included inertia can store.
From Eq 8,

$$
\begin{aligned}
\omega_{\mathrm{n}} & =\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{A}} \mathrm{C}_{\mathrm{M}}}}=\frac{1}{\sqrt{0.002 \times 4.44}} \\
& =10.61 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

## From Eq 9,

$$
\mathrm{Q}=\omega_{n} \mathrm{~L}_{\mathrm{A}} / \mathrm{R}_{\mathrm{A}}=10.61 \times 0.002 / 2.5=0.0085 .
$$

(The quality factor Q has no units).
The motor transfer function, given in $\mathbf{E q} \mathbf{1 0}$, is

$$
\begin{equation*}
\frac{\omega_{\mathrm{M}}(\mathrm{j} \omega)}{\mathrm{V}_{1}(\mathrm{j} \omega)}=\frac{66.67}{\left(\frac{\mathrm{j} \omega}{10.61}\right)^{2}+\frac{\mathrm{j} \omega}{0.09}+1}(\mathrm{rad} / \mathrm{sec}) / \mathrm{V} . \tag{11}
\end{equation*}
$$

A calculator that is preprogrammed to operate with complex numbers (for example, the HP 28 C or 15 C ) makes the evaluation of this equation an easy task. With the 28C, you can set up a user routine called Bode, as follows:

## $\ll$ DEG DUP ABS LOG 20 X SWAP ARG>>

This routine will convert a complex number $\mathrm{x}+\mathrm{jy}$ into $20 \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}$ at level 2, and arc $\tan (\mathrm{y} / \mathrm{x})$ at level 1. Table 2 shows several such computations of Eq 11.

At $\omega_{0}$, the transfer function evaluates as $66.67(\mathrm{rad} /$ sec)/V. As $\omega$ increases from zero, the gain decreases as shown in the gain column of Table 2. A Bode plot shows the gain relative to the initial, or dc, gain. Therefore, subtract $20 \log _{10}(66.67)=36.4 \mathrm{~dB}$ from each gain value in Table 2 and plot the result. In effect, you are plotting only the function

$$
\begin{equation*}
\mathrm{G}(\mathrm{j} \omega)=\frac{1}{\left(\frac{\mathrm{j} \omega}{10.61}\right)^{2}+\frac{\mathrm{j} \omega}{0.09}+1} \tag{12}
\end{equation*}
$$

Compare Eq 12 with Eq 11. Fig 3 shows the results.
Note that to about $100 \mathrm{rad} / \mathrm{sec}(15.9 \mathrm{~Hz})$, the phase


Fig 3-The Bode plot of the motor described by Eq 11 displays the effect of two widely separated poles.

TABLE 2-CALCULATED VALUES OF EQ II

| $\omega$ <br> (RAD/SEC) | $\omega_{M}(\mathrm{j} \omega)$ <br> $\mathbf{V}_{\mathbf{1}}(\mathrm{j} \omega)$ | GAIN <br> $(\mathrm{dB})$ | PHASE <br> $\left({ }^{\circ}\right)$ |
| :---: | :---: | ---: | ---: |
| 0.01 | $65.9-\mathrm{j} 7.32$ | 36.4 | -6.3 |
| 0.03 | $60-\mathrm{j} 20$ | 36.0 | -18.4 |
| 0.1 | $29.8-\mathrm{j} 33.2$ | 33.0 | -48.0 |
| 0.3 | $5.5-\mathrm{j} 18.4$ | 25.7 | -73.3 |
| 1.0 | $0.53-\mathrm{j} 5.95$ | 15.5 | -84.9 |
| 3.0 | $0.06-\mathrm{j} 2.00$ | 6.0 | -88.4 |
| 10.0 | $0-\mathrm{j} 0.60$ | -4.4 | -89.9 |
| 30.0 | $-4.2 \times 10^{-3}-\mathrm{j} 0.20$ | -14.0 | -91.2 |
| 100 | $-4.7 \times 10^{-3}-\mathrm{j} 0.06$ | -24.5 | -94.5 |
| 300 | $-4.5 \times 10^{-3}-\mathrm{j} 0.02$ | -34.2 | -103.5 |
| 1000 | $-2.9 \times 10^{-3}-\mathrm{j} 3.7 \times 10^{-3}$ | -46.6 | -128.6 |
| 3000 | $-7.1 \times 10^{-3}-\mathrm{j} 3 \times 10^{-4}$ | -62.3 | -157.4 |

lag barely exceeds $90^{\circ}$. The first pole occurs at $\omega=0.09$ $\mathrm{rad} / \mathrm{sec}$, at which point the phase lag is $45^{\circ}$. The second pole, widely separated from the first in this case, occurs at a frequency in excess of $1000 \mathrm{rad} / \mathrm{sec}$, as you can see from the further bend in the phase curve. The gain, which was drooping at a rate of $-20 \mathrm{~dB} /$ decade below $100 \mathrm{rad} / \mathrm{sec}$, now begins to bend toward a steeper droop of $-40 \mathrm{~dB} /$ decade after the second pole is reached. At very high frequencies, the phase lag will reach $180^{\circ}$.

Used in a speed-control feedback loop, this motor will perform well, provided that you take its gain and phase behavior into account. You can account for gain and phase by incorporating the motor transfer function into the overall loop equation, which will also include other components. By performing this analysis, you will not only improve your understanding of a particular motor's behavior, but you will also better understand the differences between motors.

EDN

## Author's biography

Claudio de Sa e Silva is an applications engineer at Unitrode Corp in Manchester, NH. Before joining Unitrode in 1984, he was a project engineer with Allen Bradley Co. Claudio received his BSEE from Columbia University and holds one patent. He has designed UHF receivers, phaselocked loops, and many dc-motor drives. He enjoys books and music in his spare time, and a good laugh at any time.
 any time.

Article Interest Quotient (Circle One)
High 494 Medium 495 Low 496

## A REAL BRAIN FREEZER.



Solving complex test problems is always the name of the game at LTX.

The solution to the semiconductor industry's need for an even faster linear tester is Hi.T: combining the world's highest throughput in programming and production.

The solution to the digital market's need for a highspeed, highly accurate VLSI tester is LTX's Trillium.

And, as the industry moves into more complex mixedsignal devices, we answer with LTX Ninety: an even more sophisticated version of the LTX77-the industry standard.

The LTX Ninety offers the best price performance for


single-insertion testing of today's sophisticated mixed-signal devices. Like every LTX system, the Ninety is ultra fast, accurate and efficient-from program preparation to final test. With its expanded memory and powerful DSP (digital signal processing) software, long complex test programs become routine. And, the list of add-ons goes on and on.

The LTX Ninety. One more powerful reason why we'll continue to be the world's leading supplier of linear and mixed-signal test equipment. If you're facing a stubborn test challenge, chances are we have the solution. And, if you're also stumped by the test above, call your nearest LTX sales office for the answer to that problem,too.

## Need to replace fragile EPROMS in the field?

Carrier unit contains and protects delicate EPROM.

Our OEM customer presented some very difficult specifications to the RN "P/Q TEAM"-as well as to other well known connector firms. They required a device that would allow replacement of delicate EPROMS in the field by non-electronic auto service people. In addition, the device had to withstand the extremes of heat and cold present in an automobile control environment.

Working closely with our customer's engineers who set forth the performance parameters to be met, RN engineers designed, tested and produced the highly reliable EPROM socket/ carrier that competition couldn't build! Economical, reliable repair or modification is now a reality. Another example of the added value that the RN "P/QTEAM" can contribute to the solution of your socket and interconnection problems.


EPROM SOCKET/CARRIER-With the ever-increasing use of electronic controls to enhance auto engine performance, the need for reliable, easy field repair is imperative. This RN 2-piece socket/carrier enables mechanics to remove delicate EPROMS for reprogramming or replacement without harm to the IC itself. Color-coded, durable and protected against static discharge, they are now in use in millions of cars.

CIRCLE NO 114


Protected EPROM goes into (or comes out of) socket, keyed to proper position.


## Latest 68-pin PLCC Socket

Conforming to the latest Jedec specifications, a new Robinson Nugent 68 -pin socket accepts plastic chip carriers. Designated PLCC-68PT, it features: closed bottom to prevent solder wicking, stand-offs for easy cleaning, easy access probing with chip carrier in place, dual polarization indicators as well as \#1 pin locator for positive chip alignment, . 050 " spacing. Write today for specifications.

CIRCLE NO 204
"The RN 'P/Q TEAM' concept brings all of our design, engineering and production skills to bear on your unique socket/connector problems. We work closely with your people to create solutions that are delivered on-time and defect-free. You have my personal guarantee on it."

R. A. Lindenmuth President/CEO


Write or call today for the comprehensive new brochure: "The RN P/Q Team in Action". You'll learn how smart companies are putting the brains, resources and experience of RN engineers to work to solve tough interconnection problems with speed and efficiency.

CIRCLE NO 205

# "ASICs CREATE A SET OF TEST PROBLEMS. WE NEED A WHOLE NEW 

# WHOLE NEW DOESN'T THAT MEAN IEST STRATEGY?" 



## IT SURE DOES.

It's easy to see that the tremendous potential of ASICs has only just begun to be tapped. What's not so evident is the fact that developing these unique ASIC devices carries with it some unprecedented test problems. Problems that traditional test approaches and traditional ATE simply are not equipped to handle.

At ASIX Systems our focus has always been exclusively on ASICs. From the start we recognized the unique ASIC test problems. That's why we took an entirely different approach to solving these problems. For instance, we saw that adapting existing ATE to fit the needs of ASICs didn't make sense. Designing a totally new, focused ASIC test system did. Test programs needed to be automated, developed from the design data base, and simple to change. The test system itself needed to be easy to use, designed for its particular environment, and a cost-effective alternative to the huge, expensive, complicated ATE.

## TEST SOLUTIONS FOR THE WHOLE ASIC COMMUNITY.

Our unique perspective allowed us to understand that the ASIC world is not Design Engineers, Test Engineers and Quality Engineers performing separate functions. It's actually a "community" of specialists whose tasks are intrinsically linked. So we made sure that we could provide another crucial element. Communication. In order to capture the vital time-to-market edge, what ASIC designers and vendors really need is the opportunity to use the same test programs and the same tester. Because when both environments are working from a common frame of reference there can be some real communication about test results. That's a whole new way of looking at ASIC testing. That's the ASIX-1 family of test systems.

## ASIX-I: ASIC TEST SYSTEMS THAT MAKE SENSE.

This isn't the place to tell you everything the ASIX-1 family has to offer. But here are a few things to think about: automatic, menu-guided programming; data base management; ATE architecture and flexibility at an affordable cost; 256 true I/O pins; "zero footprint"; fully integrated PMU; automatic calibration; simple fixturing; no cabling; high MTBF. Enough. You get the point. You really ought to see the ASIX-1 for yourself. And the sooner the better. ASIX Systems Corporation • 47338 Fremont Blvd • Fremont, CA 94538.

## Your ferrites could be in a little better shape.

Ferroxcube can put your business in many small shapes. Or, for that matter, any small shapes.

Now you can get small ferrite cores for the production of custom miniature inductive components in any shape. Our current tooling offers you many standard configurations and sizes of rods, tubes, slugs, sleeves and coil forms. They may be easily adapted to fit many applications.

Bring us your design. For simple parts, extruding is the typical technology. For more complex parts, Ferroxcube offers you injection molding. But whatever the method, we can deliver custom parts in high volume to meet your needs.

Nobody else can match Ferroxcube's combination of quality, batch-to-batch consistency, distribution, experience and technical support.

For immediate help, give us a call. We're ready for your biggest problem. And your smallest shape.

Division of Amperex Electronic Corporation 5083 Kings Highway
Saugerties, NY 12477
914-246-2811 TWX: 510-247-5410
A North American Philips Company
CIRCLE NO 111

# Simple techniques help you conquer op-amp instability 

Of all the problems that plague the op-amp user, the least understood and most vexing is an op amp's tendency to oscillate under certain conditions. The greater the op amp's bandwidth, the more acute the problem. Fortunately, you can use some simple techniques to quell these spurious oscillations.

## Barry L Siegel, Elantec Inc

Operational amplifiers oscillate for many reasons. Both your application circuitry and the internal circuitry of the op amp can contribute to instability. The classical reason for instability is that your circuit's loop gain is greater than one $(0 \mathrm{~dB})$ when the phase shift through the amplifier varies from its low-frequency value by $180^{\circ}$. But other, less-well-understood factors also influence an op amp's stability. Understanding these factors will allow you to avoid oscillations in your op-amp designs.

For example, another cause of op-amp instability is power-supply inductance. A good rule of thumb is that the higher the amplifier's bandwidth, the more sensitive the op amp is to power-supply inductance. The circuit of Fig 1 illustrates the point. As the amplifier
drives its load, the load current generates a voltage across the supply-lead inductance, $\mathrm{L}_{1}$. This voltage is essentially in phase with the input signal. Any stray capacitance between the $\mathrm{V}^{+}$terminal and the amplifier's input will cause oscillation.

Furthermore, the feedback need not be to the input. Stray capacitance between the $\mathrm{V}^{+}$node and an internal


Fig 1-Load current drawn through power-supply lead inductance, $L_{t}$, generates a voltage. Stray capacitance can couple this voltage into the op amp's positive input and cause instability. Also, stray capacitance at the inverting input can form a lowpass filter. $C_{F}$ cancels the filtering action.

The higher its bandwidth, the more sensitive an op amp is to power-supply inductance.
node in the amplifier-the second stage, for examplecan cause unstable performance.

The solution for this problem is to decouple the power-supply leads with capacitors. But, even so, problems still exist. Capacitors can become quite inductive at certain frequencies. An axial-lead CKO5 ceramic capacitor can exhibit 10 nH at frequencies above 10 MHz , and it tends to resonate at $50 \mathrm{MHz} . \mathrm{To}$ avoid this problem, use chip capacitors that have minimal lead inductance. For example, AVX Corp's MLC Series surface-mount capacitors exhibit less than 1.5 nH of series inductance.

Obviously, not all applications lend themselves to surface-mount components. The alternative decoupling scheme in Fig 2 can reduce the ringing on both the power-supply rail and the output, thereby minimizing the chance for oscillation. Because large capacitors can resonate with small parallel capacitors, you need the small series resistors, $\mathrm{R}_{\mathrm{Q}}$, to minimize the Q of the circuit.

## Load capacitance degrades margin

A third oscillation gremlin arises from load capacitance. Degradation in phase margin can induce oscillation. In this instance, the operational amplifier in Fig 1 exhibits an (open loop) output impedance ( $\mathrm{R}_{0}$ ), which, coupled with the load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$, forms a lowpass filter. This filter introduces phase lag at the inverting input. The phase lag is

$$
\phi=\arctan \frac{\mathrm{f}_{\mathrm{U}}}{\mathrm{f}_{\mathrm{C}}},
$$

where

$$
\mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{R}_{0} \mathrm{C}_{\mathrm{L}}}
$$

and $f_{U}$ is the unity-gain crossing frequency.
For example, the Elantec EL2006 typically exhibits a unity-gain frequency of 50 MHz and a phase margin of $35^{\circ}$. The open-loop output impedance is about $20 \Omega$, and, for a load capacitance of 50 pF , the phase lag at the critical unity-gain frequency is $18^{\circ}$. This lag represents half of the op amp's phase margin.

## Emitter followers misbehave

External circuit elements are not the only reason for op-amp instability: The output stage of the op amp can have inherent problems. Most IC op amps use com-


Fig 2-If you can't employ surface-mount chip capacitors in your design, you can use this power-supply decoupling scheme with conventional axial-lead components. Because large capacitors can resonate with small parallel capacitors, you need the small series resistors $\left(R_{Q}\right)$ to minimize the $Q$ of the circuit.
pound emitter followers for their output stages. Emitter followers tend to oscillate into a capacitive load. Fig 3a illustrates the hybrid-pi model of an emitter follower. Fig $3 \mathbf{b}$ is the equivalent circuit modeled from the emitter's perspective.

$$
\begin{align*}
& \mathrm{R}_{1}=\frac{1}{g_{M}}+\frac{r_{b b^{\prime}}+R_{S}}{h_{F E}}, \\
& R_{2}=r_{b b^{\prime}}+R_{S} \\
& L_{1}=\frac{C_{\pi} r_{\pi}\left(r_{b^{\prime}}+R_{S}\right)}{h_{F E}}=\frac{r_{b^{\prime}}+R_{S}}{2 \pi f_{T}} . \tag{1}
\end{align*}
$$

The appearance of the inductor, $\mathrm{L}_{1}$, might at first be puzzling. You can interpret $L_{1}$ as accounting for the transistor's $h_{\text {FE }}$ rolloff of -6 dB per octave. As its $\mathrm{h}_{\mathrm{FE}}$ decreases, the output impedance of the emitter follower increases. This behavior is, after all, that of an inductor.

Given that the output impedance of an emitter follower can appear to be inductive, and given that the load is


Fig 3-Op-amp emitter followers tend to oscillate into capacitive loads. Fig 3 a illustrates the hybrid-pi model of an emitter follower; Fig $3 \boldsymbol{b}$ is the equivalent circuit modeled from the emitter's perspective. $L_{t}$ accounts for the transistor's $h_{F E}$ rolloff.
capacitive, a tuned parallel-resonant circuit is possible; consequently, the follower can oscillate. For example, the EL2006 uses transistors whose nominal $f_{T}$ is 400 MHz , and the emitter-follower stage sees a cumulative source resistance (including $\mathrm{r}_{\mathrm{BB}}$ ) of about $15 \Omega$. Eq 1 predicts a value for $\mathrm{L}_{1}$ of about 6 nH (plus 10 nH for lead and wire-bond inductance). The resonant frequency is

$$
\mathrm{f}=\frac{1}{2 \pi \sqrt{\left(\mathrm{~L}_{1}+\mathrm{L}_{\text {STRAX }}\right)\left(\mathrm{C}_{1}\right)}} .
$$

A $50-\mathrm{pF}$ load yields oscillation in the neighborhood of 180 MHz .

## Input capacitance can induce phase shift

Further, consider the effects of capacitance at the op amp's input. In conjunction with the feedback network, it can form a lowpass filter and induce phase shift (Fig 1). C Cstray at the op amp's inverting input comprises the
input capacitance of the device in parallel with any stray capacitance on the board. The phase lag and corner frequency are

$$
\begin{equation*}
\phi=\arctan \frac{\mathrm{f}_{\mathrm{U}}}{\mathrm{f}_{\mathrm{C}}}, \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{R}_{\text {EQUIV }} \mathrm{C}_{\text {STRAY }}},  \tag{3}\\
& \mathrm{R}_{\text {EQUIV }}=\mathrm{R}_{\mathrm{F}} \| \mathrm{R}_{2} .
\end{align*}
$$

For Fig 1's circuit and the EL2006's unity-gain frequency, the erosion in phase margin consumes virtually all of the device's $32^{\circ}$ of margin. Therefore, for wideband op amps, you must keep $\mathrm{R}_{\text {Equiv }}$ (Eq 3) relatively low. Specifically, for the EL2006, the R $\mathrm{R}_{\text {Equiv }}$ must be below $1 \mathrm{k} \Omega$. Alternatively, you can place a small capacitor in parallel with $\mathrm{R}_{\mathrm{F}}$. The capacitor's value is

$$
\mathrm{C}=\frac{\left(\mathrm{R}_{2}\right)\left(\mathrm{C}_{\text {STRAY }}\right)}{\mathrm{R}_{\mathrm{F}}}
$$

In the real world, this formula predicts a value that overcompensates the loop. An empirical approach employs the old TV repairman's trick of using a "gimmick." A gimmick is two lengths of wire ( 22 or 24 AWG works nicely) cut to about 6 in . and loosely twisted together. The gimmick forms a very small, low-inductance capacitor. You first solder the gimmick in parallel with $\mathrm{R}_{\mathrm{F}}$ ( $\mathrm{C}_{\mathrm{F}}$ in Fig 1) and monitor an oscilloscope for optimum pulse response while incrementally trimming the gimmick. Once you obtain the optimum response, you carefully unsolder the gimmick and measure its value on a capacitance bridge. One word of caution: The required capacitance may change slightly between your breadboard and the final pe board.

## Pole-splitting compensation

No matter how carefully you apply an op amp, you could run afoul of problems arising from the op amp's internal circuitry. One potential problem area is the common technique of pole-splitting compensation. Op-amp designers incorporate pole-splitting compensation for a number of reasons. One obvious reason is that alternate compensation schemes usually require large capacitors, and capacitors take up a lot of space on the IC. However, the primary reason is that, in general, pole-splitting compensation is one of the best ways to

> External circuit elements are not the only reason for op-amp instability-an op amp's output stage can have inherent problems.
compensate for (and preserve the slew rate of) an op amp with multiple poles in its transfer characteristic.

Pole-splitting compensation allows IC designers to take advantage of the Miller effect. Because of the voltage gain of the second stage, a small capacitor achieves unity-gain stability and preserves the op amp's slew rate. Unfortunately, the technique is fraught with danger, particularly when applied in wideband amplifiers.

On the surface, pole splitting is simplicity itself. Fig 4 shows the equivalent circuit of an op amp having a differential-input stage with modest voltage gain, a second stage with large voltage gain, and an output stage designed to furnish current gain to drive the load. In Fig 4, the second and third stage are combined and the differential-input stage is replaced by an equivalent voltage-controlled current source. Furthermore, the second stage is an integrator by virtue of capacitor $\mathrm{C}_{\mathrm{C}}$. The model's unity-gain crossover frequency is

$$
\begin{align*}
& \mathrm{V}_{\text {out }}(\mathbf{s})=\frac{\left(\mathrm{g}_{\mathrm{M}}\right)\left(\mathrm{V}_{\mathrm{IN}}(\mathbf{s})\right)}{\mathbf{s C}_{\mathrm{C}}},  \tag{4}\\
& \mathrm{f}_{\mathrm{U}}=\frac{\mathrm{g}_{\mathrm{M}}}{(2 \pi)\left(\mathrm{C}_{\mathrm{C}}\right)}
\end{align*}
$$

where $\mathrm{g}_{\mathrm{M}}$ is the amp's transconductance and $\mathrm{C}_{\mathrm{C}}$ is the value of the integrating capacitor.

Eq 4 can predict the unity-gain frequency for most amplifiers that use split-pole compensation. Occasionally the equation needs to be modified to suit a given circuit topology.


Fig 4-This circuit is the equivalent of an op amp having a differential-input stage with modest voltage gain, a second stage with large voltage gain, and an output stage designed to furnish current gain to drive the load. The second and third stage are combined, and the differential-input stage is replaced by an equivalent voltagecontrolled current source. The second stage is the heart of the pole-splitting technique, because it's an integrator by virtue of capacitor $\mathrm{C}_{\mathrm{C}}$.


Fig 5-This hybrid-pi equivalent of an op-amp's second stage graphically illustrates why the stage has two poles: One arises from the input's $R C$ elements, and one arises from the output's $R C$ elements.

Eq 4 predicts that Fig 4's circuit will be a wellbehaved, trouble-free amplifier with a response of 20 dB per decade. But the amplifier will be well behaved only if the second stage acts as an integrator. To understand how this compensation scheme can fail, you need to delve into the details of a typical circuit used in the second stage of the op amp. Fig 5 depicts such a circuit and its hybrid-pi equivalent. You can see from the diagram that the second stage has two poles: $P_{1}$ is the result of input resistances and capacitances and $\mathrm{P}_{2}$ is the result of output resistances and capacitances. The poles are:

$$
\mathrm{P}_{1}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}, \mathrm{P}_{2}=\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}},
$$

where

$$
\begin{aligned}
\mathrm{R}_{1}=\mathrm{R}_{\mathrm{S}} \| \mathrm{R}_{\pi}, \mathrm{R}_{2} & =\mathrm{R}_{\text {out }}, \mathrm{C}_{1}=\mathrm{C}_{\pi}, \\
\text { and } \mathrm{C}_{2} & =\mathrm{C}_{\text {out }} .
\end{aligned}
$$



Fig 6-The pole-splitting technique derives its name from the effect that connecting a compensation capacitor $\left(C_{C}\right)$ has on the two poles of Fig 5. The capacitor moves the dominant pole toward the origin while simultaneously moving the other pole further away. The net effect of the split is to disable the nondominant pole, leaving only a single pole in effect.

Analysis of Fig 5, including the effects of $\mathrm{C}_{\mathrm{c}}$, yields the equations

$$
\begin{align*}
P_{1} & =\frac{1}{R_{1}\left(C_{1}+C_{C}\right)+R_{2}\left(C_{2}+C_{C}\right)=g_{M} R_{1} R_{2} C_{C}}  \tag{5}\\
& =\frac{1}{g_{M} R_{1} R_{2} C_{C}}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{P}_{2}=\frac{\left(\mathrm{g}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{C}}\right)}{\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{\mathrm{C}}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)} . \tag{6}
\end{equation*}
$$

Examining Eqs 5 and $\mathbf{6}$ gives you an insight into the circuit's behavior. First, observe that as either $\mathrm{g}_{\mathrm{M}}$ or $\mathrm{C}_{\mathrm{C}}$ increases, the input pole, $\mathrm{P}_{1}$, moves in toward the origin. Second, the nondominant pole, $\mathrm{P}_{2}$, moves away from the origin as a function of $\mathrm{g}_{\mathrm{M}}$ and $\mathrm{C}_{\mathrm{C}}$ (Fig 6). In other words, the poles split apart. $\mathrm{P}_{2}$ 's influence moves above the maximum frequency range of the op amp, leaving $\mathrm{P}_{1}$ behind to create, in effect, an amplifier with a single dominant pole. The stage becomes an integrator, because the secondary pole has been pushed to a very high frequency (or "broadbanded"), where its phase shift is irrelevant.

Inevitably, however, there are other poles in the gain path that the simple model of Fig 5 doesn't account for. Splitting out the nondominant pole enables these additional poles, and they contribute to phase shift through the stage-hence the op amp's instability. In short, the stage is no longer a simple integrator.

Fig 7 illustrates a typical op-amp gain stage. It's a
simplification of both the 741's first stage and the second stage of the ELH0032. Note that two signal paths to the output exist: a direct path through $Q_{4}$, and an indirect path through $Q_{3}$ and the current-mirror transistors $\mathrm{Q}_{16}$ and $\mathrm{Q}_{10}$. The indirect path introduces a delay, and its voltage gain is about half that of the direct path. These factors introduce additional poles.

## Output stage becomes inductive too

Finally, instability can arise from problems in the output stage. The circuit shown in Fig 8 employs typical Class AB biasing of the output stage's emitter followers, and is, in fact, the ELH0032's circuit. It is commonly referred to as a " $2 \phi$ maker" (Eq 6). Assuming that 1 mA flows through $\mathrm{R}_{5}$ and $\mathrm{R}_{6}$, the emitter current of $Q_{7}$ will be about 4 mA . In effect, the circuit forces a voltage equal to $1.9 \times \mathrm{V}_{\mathrm{BE}}$ across the baseemitter junctions of $Q_{11}$ and $Q_{12}$, setting their emitter currents at about 1.3 mA . From a dc point of view, this circuit acts like a battery that's connected from the base of $Q_{11}$ to the base of $Q_{12}$.

The ELH0032's output impedance $\left(\mathrm{R}_{0}\right)$ at dc is about


Fig 7-This typical op-amp gain stage has two signal paths to the output: a direct path through $Q_{S} ;$ and an indirect path through $Q_{s}$ and current-mirror transistors $Q_{16}$ and $Q_{10}$. The indirect path introduces a delay, and its voltage gain is about half that of the direct path. These factors introduce additional poles that corrupt the pole-splitting scheme.

Because an emitter follower's output impedance can be inductive, and its load is capacitive, the follower can oscillate.


Fig 8-The impedance of the biasing network (a) (called a "2ф maker") for output transistors in an op amp's gain stage can cause the stage's output impedance to vary from $16 \Omega$ at dc to 200 or $300 \Omega$ at high frequencies. Increasing the compensation capacitor, $C_{C}$, makes the output stage act inductively (b).
$16 \Omega$. Earlier, Eq 1 illustrated that the inductive characteristics of an emitter follower increased as a function of the source impedance. Unfortunately, the same effect obtains for this gain stage. As the frequency increases, $\mathrm{h}_{\mathrm{FE}}$ decreases, and the impedance in series with the base now blooms to more than 200 or $300 \Omega$. Obviously, that rise in resistance increases $\mathrm{L}_{1}$ (as in Fig 3b), making the device much more prone to oscillate into a capacitive load than it is at low frequencies.

Load capacitance also has an effect on the second stage's phase shift. Envision the effect that increasing the load capacitance would have on the circuit of Fig 5. Clearly, as $\mathrm{C}_{\mathrm{L}}$ increases, $\mathrm{C}_{2}$ increases. Even for an amplifier whose compensation worked ideally, $\mathrm{C}_{2}$ could be large enough to defeat the pole-splitting strategy.

For example, if you split

$$
\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}
$$

out to the vicinity of $f_{\mathrm{U}}$, the additional phase shift that would occur could make the amplifier unstable. What makes this output-capacitance problem particularly troublesome is that the amplifier depends on the output stage to isolate the load from the second stage. This isolation scheme is certainly effective at dc, where the
full $h_{\mathrm{FE}}$ of the emitter followers comes into play. But at higher frequencies, when the isolation is most critical, the output stage doesn't help. As a consequence, $\mathrm{C}_{\mathrm{L}}$ is essentially transferred to the second stage directly, increasing $\mathrm{C}_{2}$ (Fig 5), and jeopardizing the ability of $\mathrm{C}_{\mathrm{C}}$ to broadband the second stage.

Finally, in the simple model of Fig 5, the major effect of making $\mathrm{C}_{\mathrm{C}}$ larger is simply a corresponding decrease in $f_{U}$. In practice, the requirements for unity-gain stability dictate both a minimum and a maximum value for $\mathrm{C}_{\mathrm{C}}$; a real-world designer can't increase $\mathrm{C}_{\mathrm{C}}$ infinitely. To understand these limits intuitively, imagine that $\mathrm{C}_{\mathrm{C}}$ of Fig 5 increases to an arbitrarily large value. At a given frequency, $\mathrm{C}_{\mathrm{C}}$ shorts out transistor $\mathrm{Q}_{1}$, and the stage becomes noninverting. That condition is positive feedback, which is obviously not what your circuit needs.

A very complex oscillation can result when the compensation capacitor is made arbitrarily large and it interacts with the output-stage biasing. Referring to Fig 8a, as $\mathrm{C}_{\mathrm{C}}$ increases, $\mathrm{Q}_{10}$ 's collector-base junction becomes a short as in the case above. At a given high frequency, $\mathrm{Q}_{10}$ can be modeled as an inductor, as shown in Fig 3b. Furthermore, the class-AB bias network also behaves like an inductor. The equivalent circuit of Fig $8 \mathbf{b}$ is the net result. The emitter follower's penchant for


Fig 9-These compensation schemes will produce stable amplifiers under all normal operating conditions.
oscillation increases as a function of source impedance. The net effect of increasing $C_{C}$ is to increase the impedance seen at the bases of $Q_{11}$ and $Q_{12}$. This increase, in turn, makes the amplifier much more prone to oscillate- even into small load capacitances. All of these effects result in gyration of the output stage, and bizarre oscillations are the consequence.

In the case of the ELH0032, oscillations in the $200-\mathrm{MHz}$ region will result for values of $\mathrm{C}_{\mathrm{C}}$ in excess of 20 pF . Further, the device requires two capacitors for unity-gain stability. One is the familiar pole-splitting capacitor. The other compensates for the variable $\mathrm{g}_{\mathrm{m}}$ of the first-stage FETs. If their $\mathrm{g}_{\mathrm{m}}$ becomes 4 or 5 mS , the first stage gain approaches 2 . The second capacitor jettisons the gain at an arbitrarily low frequency, keeping the device unity-gain stable. Ironically, the same capacitor enables the indirect path through the current mirror discussed earlier.
The ELH0032 doesn't exhibit minimal offset voltage and offset-voltage drift partly because of mismatches in the second stage that are not attenuated by the first stage. Also, the devices' laser trimming contributes to the offset-voltage drift. Laser trimming primarily nulls mismatches in the input FETs' pinch-off voltages. Most manufacturers trim one of the input FET's bias resistors, depending on the direction of the offset-voltage skew. This trimming does a fine job of eliminating the offset, but it also mismatches the drain currents of the FETs, which action, in turn, increases the offset drift over temperature.
The ELH0032 develops a feeble $48 \mathrm{~dB}(\mathrm{~min})$ of open-loop gain. Obviously, this low gain precludes applying the device in systems requiring 8 -bit and higher accuracy. In addition, the device exhibits a thermal tail that manifests itself as a larger gain at 1 kHz than at dc.

The EL2006 is pin compatible with the ELH0032 and has an open-loop gain of 86 dB . The compensation schemes recommended for various gain configurations, shown in Fig 9, work every time and are repeatable within the variations of the $g_{M}$ of the device's input FETs. You can predict the device's unity-gain crossing frequency from the equation

$$
\begin{equation*}
\mathrm{f}_{\mathrm{U}}=\frac{\mathrm{g}_{\mathrm{M}}}{4 \pi\left(\mathrm{C}_{\mathrm{A}}+1 \mathrm{pF}\right)}, \tag{7}
\end{equation*}
$$

where $\mathrm{g}_{\mathrm{M}}$ is the transconductance of the input JFETs (4 mS ) and $\mathrm{C}_{\mathrm{A}}$ is the capacitor connected between pin 2


Fig 10-The EL2006 can drive capacitive loads approximately as great as 25 pF without oscillating. However, the output will peak. To eliminate peaking, use this standard trick for isolating the load.
and pin 3 in Figs 9a through 9d.
The 4 in the denominator of $\mathbf{E q} 7$ arises because $\mathrm{C}_{\mathrm{B}}$ (in Fig 9) discards 6 dB of ac gain. Because the EL2006 develops gain in its first stage, you should use $C_{B}$ even for closed-loop gains greater than 10 . On the other hand, reducing the value specified in the figures improves the settling time. Although it's inconvenient to implement, grounding the case (in the T0-8 package) improves the slew rate, settling time, and rise time.

The EL2006 is just as susceptible to power-supply inductance as other wideband amplifiers are. In fact, the op amp relies on having both the positive and the negative rail at ac ground. Therefore, you must make sure that the rails are adequately bypassed. For Fig 2's circuit, it's recommended that you use low-inductance mica or ceramic components for both capacitors. EDN

## References

1. Frederiksen, T M, Intuitive IC $O p A m p s$, National Semiconductor Technology Series, 1984.
2. Gray, P R and R G Meyer, Analog Integrated Circuits, Second Ed, John Wiley \& Sons, 1984.
3. Martin, A G, "Decoupling: 256K DRAMs," Technical Information, AVX Corp.
4. Solomon, J E, "The Monolithic Operational Amplifier: A Tutorial Study," IEEE Journal of Solid State Circuits, Volume SC-9, November 6, 1974.
5. Travis, Bill, "Use sound design rules to improve op-amp performance," EDN, May 12, 1983, pg 151.

## Author's biography

Barry L Siegel is vice president of research and development at Elantec in Milpitas, CA. He has been with Elantec for 4122 years; he previously worked for National Semiconductor. Barry obtained a BSEE from Washington University (St Louis, MO) and an MSEE from the University of Missouri. He holds one patent. In his
 spare time, he enjoys skiing, basketball, and reading.

Article Interest Quotient (Circle One) High 485 Medium 486 Low 487

# POWER MOSFET DRIVERS First, Latest, Always 

Minimize POWER MOSFET switching losses and increase system reliability with Teledyne Semiconductor's CMOS POWER MOSFET DRIVERS. Dual and single drivers with up to 6 AMPS of peak drive current are available in inverting and non-inverting options.

The dual CMOS TSC426 is pin compatible with the bipolar DS0026 and requires only $1 / 5$ the quiescent supply current of the DS0026. Output voltage swing equals the supply, and the TSC426 operates with supply voltages from 5 V to 18 V . The high impedance CMOS driver inputs easily interface directly to standard CMOS or TTL outputs, with no need for external speedup capacitors. The TSC427 is ideal for non-inverting designs and the TSC428 works when non-inverting drive is needed. Space saving surface mount packages are available also.

The new, proprietary TSC429 single MOSFET driver is made to charge hefty MOSFET static and Miller gate capacitance. With a low 2.5 ohm output impedance the TSC429 swings a 2500 pF load 18 V in just 25 nS . Peak drive current is 6 AMPS. CMOS technology limits quiescent supply current to 5 mA maximum.

All devices are made for commercial, industrial and military temperature ranges. SO surface mount packages and MIL-STD-883 devices are available.

Teledyne Semiconductor continues to set the industry standard in CMOS power management integrated circuits. All devices are backed by Teledyne's reputation for quality, service, and support - a reputation earned through 25 years leadership in the semiconductor industry.

Call today for complete application information and data sheets.

## 1-800-888-9966 <br> 415-968-9241

Teledyne Semiconductor 1300 Terra Bella Avenue

FEATURES
Complete 12-Bit D/A Function On-Chip Output Amplifier High Stability Buried Zener Reference Fast 40ns Write Puise
Guaranteed for Operation with $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ Supplies
$0.3^{\prime \prime}$ Skinny DIP Package


AD767 Functional Block Diagram

## PRODUCT HIGHLIGHTS

1. Complete 12 -bit DACPORT ${ }^{\text {TM }}$ :

The AD767 is a complete voltage output DAC with voltage reference and digital latches on a single IC chip.
2. The input latch responds to write pulse widths as short as 40ns assuring direct interface with the industry's fastest microprocessors.
3. The internal buried zener reference is laser trimmed to 1000 volts with a $\pm 1 \%$ maximum error. The reference voltage is also available for external application.
4. The gain setting and bipolar offset resistors are matched to the internal ladder network to guarantee a low gain temperature coefficient and are laser trimmed for minimum full-scale and bipolar offset errors.
5. The precision high-speed current steering switches and on-board high-speed output amplifier settle within 1/2LSB for a 10 V full-scale transition in $3.0 \mu \mathrm{~s}$ when properly compensated.

DACPORT is a trademark of Analog Devices, Inc.

Bringing complete 12 -bit DAC functionality and performance to your designs no longer requires having to
 deal with all the problems associated with external components. Instead, it simply requires specifying our new AD767 or AD7245.
Both the AD767 and AD7245 feature an on-chip stable buried Zener reference, output amplifier and microprocessor interface logic. And these complete
functions come packed into skinny $0.3^{\prime \prime} \mathrm{DIPs}$. All this means you no longer have to deal with error budgets, product characterizations, or space constraints related to external components.

If digital interface speed is what you're after, the AD 767 responds to pulse widths as short as 40 ns , allowing it to be used with today's fastest processors. On the other hand, if low power dissipation is critical to your application, the LC ${ }^{2}$ MOS AD7245 consumes only 65 mW . There's also

## Low Power 12-Bit D/A Converter

 $\square$ AD7245FEATURES
Complete 12-Bit D/A Function On-Chip Output Amplifier High Stability Buried Zener Reference
Low Power ( 65 mW typ)
Single or Dual Supply Operation
$0.3^{\prime}$, Skinny DIP Package
8-Bit Bus Version Available: AD7248

## RODUCT DESCRIPIION

The AD7245 is a complete 12 -bit, voltage-output, digital-to-analog converter with output amplifier and zener voltage reference on a monolithic CMOS chip. No external trims are required to achieve full specified performance for the part.
The part features double-buffered interface logic with a 12 -bit input register and 12 -bit DAC register. The data held in the DAC register determines the analog output of the converter. The input register data is latched on the rising edge of CS and WR and data is transferred to the DAC register under control of $\overline{\mathrm{LDAC}}$. An asynchronous CLR sıgnal on the DAC register allows features such as power-on reset to be implemented. All logic inputs are level triggered and are TTL and CMOS ( 5 V ) level compatible, while the control logic is speed compatible with most microprocessors.
The on-chip 5V buried zener diode provides a low-noise, temperature compensated reference for the DAC. The gain setting resistors allow a number of ranges at the output: 0 to $+5 \mathrm{~V}, 0$ to +10 V when using single supply and -5 V to +5 V when operated with dual supplies The output amplffier is capable of developing +10 V across a $2 \mathrm{k} \Omega$ load.

The AD7245 is fabricated in an all son-mplanted high-speed linear compatuble CMOS (LCㄹ․ ${ }^{2}$ OS) process and is packaged in 1 small, $0.3^{\circ}$ wide, 24 -pin DIP.


AD7245 Functional Block Diagram

## PRODUCT HIGHLIGHTS

1. Complete 12 -bit DACPORT ${ }^{\text {TM }}$

The AD7245 is a complete voltage output 12 -bit DAC on one chip. This single-chip design of the DAC, reference and output amplifier is inherently more reliable than multi-chip designs.
2. Single or Dual Supply Operation:

The voltage-mode configuration of the AD7245 allows operation from a single power supply rail. The part can also be operated from dual supplies to allow a bipolar output range.
3. Low Power Consumption:

CMOS fabrication results in very low power consumption ( 65 mW typical in single supply). This low power allows the part to be packaged in a small $0.3^{7}$ wide 24 -pin DIP.
4. Versatile Interface Logic:

The high speed logic allows direct interfacing to most 16 -bit microprocessors. Additionally, the double buffered interface enables simultaneous update of the AD7245 in multiple DAC systems. The part also features an asynchronous CLR input.

DACROET in a trademart of Aantog Devices, lec.


## FINALY, THE COMPLEE STORY OI COMPLETE 12-BT DACs.


an 8-bit bus version of the AD7245 (the $\mathrm{AD7248}$ ) that loads in two bytes. Whether your need is determined by speed or power dissipation, it doesn't have to be limited by price. Our DACs come complete for as little as $\$ 8.40(1000 \mathrm{~s})$.

To find out how the AD767 and AD7245 can tend to your complete 12-bit DAC needs, call Applications Engineering at (617) 935-5565 Ext. 2628 or 2629 . Or write to AnalogDevices, P.O. Box 9106, Norwood, MA 02062-9106.


ANALOG DEVICES

## The GE/RCA ASICcell library:



# where best-sellers begin. 

# With one of the largest standard cell and gate array libraries, and a first-time success rate of virtually 100\%, GE Solid State has all the tools you need to design leading-edge products. 

Our library of hundreds of verified cells and functions is one of the broadest in the industry.

We have cells with effective gate length as small as $1.5 \mu$ (. $9 \mu$ coming soon). And double-level metal for higher-density chips that handle higher clock speeds.

You can choose from a wide range of Supercells, including core micros, RAMs, analog functions and bit-slice processors. Right now, we're working on new editions, including Advanced CMOS Logic, EPROMs and high-voltage cells. Additionally, we can generate custom cells to meet your requirements.

So you can easily reduce an entire system onto a single ASIC chip, and get the ASIC benefits of smaller power supplies, lower system cost and higher reliability.

## Plus a full library of gate arrays.

If your design calls for gate arrays, you can select from a broad line with up to 13,000 gates. With alternate sourcing on the LSI/Toshiba series.

Our gate arrays have effective gate lengths as small as $1.2 \mu$. And they're compatible with the industry standard.

## Writing made easy.

We've made it easy for you to write your bestselling design.

Our designer-friendly software gets you up to speed in as little as the three days it takes to complete our training course.

And our software supports the major workstations in the industry, including Daisy,' ${ }^{\text {m }}$ Mentor

Graphics, ${ }^{\text {TM }}$ Valid, ${ }^{\text {TM }}$ P-CAD ${ }^{\circledR}$ and FutureNet. ${ }^{\circledR}$
Through the use of Twins, our transparent workstation interface system, you can complete or revise your design at practically any workstation.

We're also in the forefront of silicon compiler technology. So we can offer you the ability to create designs that are heavily BUS-structured, with your ROMs, RAMs, PLAs and ALUs compiled right into the design.

## The best editors in the business.

We know how important accurate performance modeling is to you. That's why we've developed the industry's most advanced simulation and parasitic extraction programs, which make it easy to create designs that work. In fact, our first-time success rate is virtually $100 \%$.

And you can count on our ASICs specialists for technical support from design through production. One other thing you can count on with GE Solid State: there are no hidden charges in addition to your NRE.

## On the best-seller list for years.

We've been the CMOS company since the day we invented the technology. We've produced one best-selling CMOS circuit after another. And built the industry's broadest line of High-Rel CMOS parts, including super radiation-hardened Silicon-on-Sapphire.

With all this behind you, think how easy it could be to design a best-seller.

For more information, call toll-free 800-443-7364, ext. 14. Or contact your local GE Solid State sales office or distributor.

[^20]
# LOOK WHAT YOU PAY. 

## LOOK WHAT YOU CET.

> Single unit prices for KEPCO/TDK SERIES ERX SINGLE
> OUTPUT SWITCHING POWER SUPPLIES

## 240 WATTS <br> s197

Optional cover* CA-18, \$14. $2.76^{\prime \prime} \mathrm{H} \times 12.91^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ $(70 \mathrm{~mm} \times 328 \mathrm{~mm} \times 123 \mathrm{~mm})$ $5.5 \mathrm{lbs}(2.5 \mathrm{Kg})$

## 120 WATTS <br> s142

Optional cover* CA-17, \$13. $2.76^{\prime \prime} \mathrm{H} \times 8.90^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ $(70 \mathrm{~mm} \times 226 \mathrm{~mm} \times 123 \mathrm{~mm})$
$3 \mathrm{lbs}(1.4 \mathrm{Kg})$

## 60 WATTS <br> s83

Optional cover* CA-16, \$12. $2.36^{\prime \prime} \mathrm{H} \times 7.09^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ $(60 \mathrm{~mm} \times 180 \mathrm{~mm} \times 123 \mathrm{~mm})$
$1.5 \mathrm{lbs}(0.7 \mathrm{Kg})$

## 30 WATTS \$54

Optional cover* CA-15, \$11. $2.17^{\prime \prime} \mathrm{H} \times 5.51^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ $(55 \mathrm{~mm} \times 140 \mathrm{~mm} \times 123 \mathrm{~mm})$ $1.5 \mathrm{lbs}(0.7 \mathrm{Kg})$
(Substantial OEM quantity discounts available.)
The optional cover is shipped separately.
For complete specifications and literature, call or write Dept. KNF-12, KEPCO, INC., 131-38 Sanford Ave.,

Flushing, NY 11352 USA (718) 461-7000 • TWX \#710 582-2631 FAX (718) 767-1102


- 5V, 12V, 15V, and $24 V$ models available in all sizes
output of $12 \mathrm{~V}, 15 \mathrm{~V}$, and 24 V models can be adjusted -30 , $+10 \%$ around the nominal; output of 5 V models, $-20 \%,+10 \%$.
- Overvoltage protection
..shuts down the switching oscillator drive and reduces the output to zero when voltage reaches the OVP setting.


## - Rectangular

current limiting
lets you drive non-linear loads without their high initial surge causing the power supply to "lock out." Allows operation in series or parallel.

- Remote error sensing ...compensates for voltage drops up to 0.35 V per wire.
- 68-80\% efficiency
$\ldots 240 \mathrm{~W}$ model operates its FETs at 100 KHz .
- Selectable 115/230V input $\ldots$. $85-132 \mathrm{~V}$ or $170-264 \mathrm{~V}$.) Also operates from $260-340 \mathrm{~V}$ d-c input.
- Built-in EMI filter
.attenuates line-conducted EMI below FCC 20780, Class B.
- Soft start
. limits a-c input surge.
- 8 mm spacing and transformer insulation to meet IEC 380, VDE 0806 approved by TÜV Rheinland. Also listed by UL and certified by CSA
- Optional enclosure
.for EMI shielding, \& protection.
- Quick connect
.Molex input/output connectors (240 Watt model has a barrier strip). Optional cable kits available.

KEPCO
THE POWER SUPPLIER ${ }^{\text {ww }}$

## DESIGN IDEAS

## Serial-data system uses 4 -wire distribution

## James C Smith

NASA, Greenbelt, MD
A common 4 -wire communications bus lets you send 12 -bit serial data to any one of 16 (or fewer) receiving stations (Fig 1). Each 16-bit data packet consists of a 4 -bit address followed by the 12 -bit data word. All stations receive the data packet, but only the selected station generates a strobe that updates that station's data latch.

You must provide the Data, Clock, and Sync signals as shown in the timing diagram. Timing for the Syne signal is critical-to avoid generating false address strobes as previous data shifts through the address decoder $\mathrm{IC}_{3}$, the Sync signal must go low just before the
data packet begins. Then, proper strobe generation requires that it go high at the mid-point of the last (sixteenth) clock pulse.

Data shifts through the serial shift registers $\mathrm{IC}_{1}$ and $\mathrm{IC}_{2}$ on the Clock signal's leading edge. The coincidence of the Clock, Sync, and Address-Select signals allows the NAND gate, $\mathrm{IC}_{8}$, to generate a data strobe for latches $\mathrm{IC}_{5}-\mathrm{IC}_{7}$. Note that $\mathrm{IC}_{4}$ and the thumbwheel switch, $\mathrm{S}_{1}$, let you change the station address; in a simpler, dedicated system, you would connect the desired $\mathrm{IC}_{3}$ output directly to $\mathrm{IC}_{8}$. Remote stations may require the optional optoisolators, $\mathrm{Q}_{1}-\mathrm{Q}_{3}$.

EDN

To Vote For This Design, Circle No 747


Fig 1-This circuit receives a 16-bit serial data word, decodes the 4-bit address and, if appropriate, stores the subsequent 12-bit data word in latches $I_{5}-1 C_{7}$.

acdc electronics now makes it EASY to find 40-220W, multi output power supplies.

| wat ${ }^{\text {a }}$ | MAIN | CH2 | CH3 | CH 4 | MODEL No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | +5V/2.5A | $+12 \mathrm{~V} / 2.0 \mathrm{~A}$ | -12V/0.1A |  | RBT 41 |  |
| 60 | +5V/5.0A | $+12 \mathrm{~V} / 2.5 \mathrm{~A}$ | -12V/0.5A |  | RBT 61 | PCB |
| 70 | $+5 \mathrm{~V} / 6.0 \mathrm{~A}$ | $+12 \mathrm{~V} / 2.5 \mathrm{~A}$ | -12V/0.7A | -5V/0.7A | RBQ 71 | PCB |
| 135 | +5V/15A | +12V/4.0A | -12V/0.7A | -5V/0.7A | RBQ 131 |  |
| 135 | $+5 \mathrm{~V} / 15 \mathrm{~A}$ | +15V/3.2A | -15V/0.7A | -5V/0.7A | RBQ 132 |  |
| 135 | +5V/15A | +12V/3.0A | -12V/0.7A | +24V/1.5A | RBQ 133 |  |
| 135 | +5V/15A | $+15 \mathrm{~V} / 2.4 \mathrm{~A}$ | -15V/0.7A | +24V/1.5A | RBQ 134 |  |
| 175 | +5V/20A | +12 or 15V/4A | -12 or 15V/3A | -5V/1.0A | RBQ 171 | CHANNEL |
| 175 | $+5 \mathrm{~V} / 20 \mathrm{~A}$ | +12 or $15 \mathrm{~V} / 4 \mathrm{~A}$ | -12 or 15V/3A | $+24 \mathrm{~V} / 1.5 \mathrm{~A}$ | RBQ 173 | CHANNEL |
|  |  | +12 or 15V/4A | $-12 \text { or } 15 \mathrm{~V} / 3 \mathrm{~A}$ | $-5 \mathrm{~V} / 1.5 \mathrm{~A}$ |  |  |
| $220$ | $\begin{aligned} & +5 \mathrm{~V} / 25 \mathrm{~A} \end{aligned}$ | +12 or 15V/4A | -12 or 15V/3A | +24V/3.0A | $\text { RBQ } 223$ | U CHANNEL |

## HARD TO BEAT

- UL, CSA, IEC 380/VDE 0806
- Replaceable Internal Fuse
- Full Output to $50^{\circ} \mathrm{C}$
- FCC 20780 \& VDE 0871 Level A
- 115/230 VAC Selectable Input
- Full power convection cooled

HARD TO
SEPARATE VENDORS?
Not after you read this.
TALK TECHNICAL. Get answers to your technical questions. Today. Talk to one of our Technical Sales Engineerslocated near you. Or call a member of our 40-220W Technical Staff. Who else offers such techical service?!
DELIVERY. we have a
National Sales Organization and a nationwide Distribution Network to get your unit in your hands-quickly.

TEST DATA. compure generated test data-furnished with every unit. The power supplies we ship you do work. You know it. We know it. The test data verifies it.

## QUALITY. A nebulous word.

Everyone claims it. acdc electronics proves it with the industry's highest customer acceptance rate for over 30 years.


The 40-220W power supply you need is on the shelf at acdc electronics. Tested. Ready for shipping. Certain to pass qualification. And, priced competitively! Just call acdc electronics for the Sales Engineer in your area. Our number is 619/439-4200. It's that EASY.

401 Jones Road. Oceanside. CA 92054
TEL: 619/757-1880. TLX: 350227. FAX: 619/439-4243

# Power-fail circuit gives prompt response 

## Neal E Pritchard

Emerson Electric Co, Oceanside, CA
Adding power-fail circuitry to a flyback-converter power supply presents a problem. A flyback converter's control circuit is usually located in the input section and referenced to the ac line (Fig 1a). Any circuitry you want to add there must have proper spacing from the chassis and the output section and must include some form of isolation for safety reasons. The additional cost and complexity of this approach is contrary to the intent of using a flyback converter in the first place.

To eliminate the isolation requirement, you can locate the power-fail circuit in the output section, perhaps in the form of an undervoltage detector for $\mathrm{E}_{0}$. Unfortunately, in this configuration, the output capacitor's storage effect delays the alarm by approximately

$$
\frac{\mathrm{dE}_{0}}{\mathrm{dt}}=\frac{\mathrm{I}}{\mathrm{C}_{1}}
$$

To provide an alarm signal 1 msec before an $\mathrm{E}_{0}$ drop of 0.1 V , for example, requires a $\mathrm{C}_{1}$ value of $10 \mathrm{k} \mu \mathrm{F}$ per ampere of load current (I). Such a large capacitance is impractical for most power-supply designs, and therefore the circuit must somehow detect ac-line loss before $\mathrm{E}_{0}$ begins to drop.
Referring to Fig 1b, you can see that the voltage $\mathrm{E}_{\mathrm{S}}$ reflects the $\mathrm{V}_{\text {IN }}$ that occurs while the transistor is conducting:

$$
\mathrm{E}_{\mathrm{S}}=-\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{~N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{P}}}\right)
$$

You can detect a loss of power by monitoring $\mathrm{E}_{\mathrm{S}}$ as shown in Fig 2. By rectifying and filtering $\mathrm{E}_{\mathrm{S}}$, the $\mathrm{D}_{1} / \mathrm{C}_{1}$ network produces a negative voltage proportional to $\mathrm{V}_{\mathrm{IN}} . \mathrm{IC}_{1 \mathrm{~A}}$ compares a fraction of this voltage with a fixed voltage established by the 2.5 V shunt regulator $\mathrm{IC}_{2} . \mathrm{D}_{2}$ and $\mathrm{C}_{2}$ then delay the low-to-high transitions that $\mathrm{IC}_{1 \mathrm{~A}}$ produces, which ensures that the power-fail signal $\left(\mathrm{V}_{\text {OUT }}\right)$ remains low during power-up. The $\mathrm{IC}_{1 \mathrm{~B}}$ comparator's open-collector output then goes high when $\mathrm{C}_{2}$ charges to 2.5 V . (A larger-valued $\mathrm{C}_{2}$ increases the delay, but too large a value will cause a noisy signal transition.)
The power supply's storage time depends on its circuit design, the ac-line voltage, and the load current, but the warning time (defined as the time interval between the power-loss alarm and a $5 \%$ drop in $\mathrm{E}_{0}$ )


Fig 1-This typical flyback converter (a) produces positive pulses which, after filtering, produce the output voltage $E_{0}$. The normally unused negative pulses (b) are proportional to $V_{I N}$.


Fig 2-When connected to the Fig 1 power supply, this circuit senses a loss of $V_{I N}$ by monitoring the voltage $E_{S}$. (A loss of power causes $V_{\text {our }}$ to go low.)
depends primarily on $\mathrm{C}_{1}$. Reducing the value of $\mathrm{C}_{1}$ increases the warning time, but the upper limit must be less than the storage time. Fig 2 provides an approximate 5 -msec warning time and a 10 -msec turn-on delay when operating with a typical 5 V flyback converter.

EDN

To Vote For This Design, Circle No 750

# Voltage limiter restrains fast op amps 

## Joseph L Sousa

Hybrid Systems Inc, Billerica, MA
Although a conventional voltage-limiter network with inverting amplifiers (Fig 1a) works well for op amps that are unity-gain stable, it allows a drop of noise gain in the voltage-limit region, which can cause oscillation in a high-speed op amp. (Noise gain is the reciprocal of voltage attenuation from $V_{\text {out }}$ to the op amp's inverting input.) Some older high-speed op amps (LM108, HA2620) have external-compensation pins that let you limit $\mathrm{V}_{\text {out }}$ without using an external network, but this approach also slows the amplifier.

The limiter circuit of $\mathbf{F i g} \mathbf{1 b}$ minimizes oscillation by increasing noise gain in the voltage-limit region. Circuit


Fig 1-The conventional network for limiting the output-voltage swing of an op amp (a) can allow oscillation in a high-speed op amp. The circuit of b provides almost oscillation-free limiting for fast op amps by maintaining high noise gain in the voltage-limit regions.
operation is fast because the op amp does not require slew-rate-limiting compensation capacitors, nor does it require a resistor from the summing junction to ground, which would permanently increase noise gain. (Note that most fast op amps will oscillate if the noise gain is too low; they are most stable (by design) for high values of noise gain.)

The voltage dividers, $R_{3} / D_{4}$ and $R_{4} / D_{3}$, help produce an increasing noise gain in the voltage-limit regions. Diode $\mathrm{D}_{3}$ begins to turn on, for instance, if $\mathrm{V}_{\text {out }}$ exceeds the positive limit ( 0.4 V ). The resulting current in $\mathrm{D}_{3}$ curbs oscillation by decreasing the diode's dynamic resistance, which increases noise gain for the amplifier. (Overdriving the amplifier will result in higher diode current, producing even higher noise gain in the limit region.) Diode $\mathrm{D}_{4}$ produces a similar clamping effect by turning on as $\mathrm{V}_{\text {OUT }}$ approaches the negative limit $\left(-0.4 \mathrm{~V}-\mathrm{V}_{\text {ZENER }}\right)$. Well-matched diodes produce similar voltages and currents, allowing their dynamic resistances to track one another. When choosing values for $R_{3}$ and $R_{4}$, be sure to account for the op amp's output impedance in series with each resistor ( $30 \Omega$ for an HA2539, for example).

The Fig 1b circuit's lowest noise gain occurs in the valley region (Fig 2), where the $\mathrm{R}_{3} / \mathrm{D}_{4}$ and $\mathrm{R}_{4} / \mathrm{D}_{3}$ dividers have not yet counteracted the noise-gain-reduction effects of diodes $\mathrm{D}_{2}$ and $\mathrm{D}_{1}$. Low-level oscillation (less than 0.5 V p-p) may occur in the valley region ( -40 $\mathrm{mV}>\mathrm{V}_{\text {IN }}>-0.5 \mathrm{~V}$ ), but the high noise gain on either side of the valley marks the boundary of the amplitude of such oscillations.

You can eliminate oscillation by raising the floor of


Fig 2-The higher noise gain of the high-speed-limiter circuit of Fig 1b accounts for its better stability. This circuit can oscillate only for the narrow range of $V_{I N}$ corresponding to the noise-gain valley.

## rugged plug-in amplifiers <br> 0.5 to $1000 \mathrm{MHz}_{\text {tom }} \$ 13_{\text {soruew }}^{95}$

Tough enough to meet full MIL-specs, capable of operating over a wide $-55^{\circ}$ to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplifier series.

The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 500 MHz and 0.5 to 1000 MHz , and NF as low as 2.8 dB .

Prices start at only $\$ 13.95$, including screening, thermal shock $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.

Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc supply voltage and get up to 28 dB gain with +9 dBm output.

The new MAN-amplifier series... another Mini-Circuits' price/performance
breakthrough.

|  | FREQ. <br> RANGE <br> (MHz) | GAIN dB |  | MAX. OUT/PWR $\dagger$ | $\begin{aligned} & \text { NF } \\ & \mathrm{dB} \end{aligned}$ | $\begin{aligned} & \text { DC PWR } \\ & 12 \mathrm{~V} \end{aligned}$ | PRICE <br> \$ ea. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | $\mathrm{f}_{\mathrm{L}}$ tof $\mathrm{f}_{\mathrm{u}}$ | min | flatnesst† | dBm | (typ) | mA | (5-24) |
| MAN-1 | 0.5-500 | 28 | 1.0 | 8 | 4.5 | 60 | 13.95 |
| MAN-2 | 0.5-1000 | 19 | 1.5 | 7 | 6.0 | 85 | 15.95 |
| MAN-1LN | 0.5-500 | 28 | 1.0 | 8 | 2.8 | 60 | 15.95 |
| $\bigcirc$ MAN-1HLN | 10-500 | 10 | 0.8 | 15 | 3.7 | 70 | 15.95 |

$\dagger \dagger$ Midband $10 f_{\mathrm{L}}$ to $\mathrm{f}_{\mathrm{U} / 2} \pm 0.5 \mathrm{~dB} \quad \dagger \mathrm{IdB}$ Gain Compression $\diamond$ Case Height 0.3 In . Max input power (no damage) +15 dBm ; VSWR in/out $1.8: 1$ max.

## DESIGN IDEAS

the noise-gain valley in one of two ways: Either increase the values of $R_{3}$ and $R_{4}$ or, as shown in Fig 3, return $D_{3}$ and $\mathrm{D}_{4}$ to low-level bias voltages instead of to ground. These connections cause $\mathrm{D}_{3}$ and $\mathrm{D}_{4}$ to turn on before $\mathrm{D}_{1}$ and $D_{2}$, which alters the noise-gain curve as shown in Fig 2. (You can also achieve this turn-on sequence by substituting several diodes in parallel for $\mathrm{D}_{3}$ and for $\mathrm{D}_{4}$.)
Resistors $\mathrm{R}_{5}$ and $\mathrm{R}_{6}$ limit the current through $\mathrm{D}_{3}$ and $\mathrm{D}_{4}$ and indirectly limit the current through $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$. The values of the ratios of $R_{3} / R_{5}$ and $R_{4} / R_{6}$, however, should not be less than the amplifier's rated noise gain. Because these resistors limit the diode impedance of $\mathrm{D}_{3}$ or $\mathrm{D}_{4}$ at high current, the circuit produces a voltage transfer of $R_{4} / R_{1}$ (positive limit) and $R_{3} / R_{1}$ (negative limit) in the hard-limit regions. The noise gain in the negative-hard-limit region, for example, is approximately

$$
\frac{\mathrm{V}_{\text {oUT }}}{\mathrm{V}_{\text {INV }}}=\frac{\mathrm{R}_{4}+\mathrm{R}_{\mathrm{D}_{3}}+\mathrm{R}_{6}}{\mathrm{R}_{\mathrm{D}_{3}}+\mathrm{R}_{6}},
$$

where $\mathrm{V}_{\text {INV }}$ is the amplifier's inverting-input voltage ( $\mathrm{R}_{\mathrm{D} 3}$ is the dynamic resistance of $\mathrm{D}_{3}$.) A more-complicated expression describes noise gain below the hardlimit region (as shown by the curves of Fig 2):

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {INV }}}=\left[\frac{R_{1} \|\left(R_{D_{1}}+\left(R_{D_{3}}+R_{6}\right) \| R_{4}\right)}{R_{2}+R_{1} \|\left(R_{D_{1}}+\left(R_{D_{3}}+R_{6}\right) \| R_{4}\right.}\right. \\
& \left.+\frac{\left(R_{D_{3}}+R_{6}\right) \|\left(R_{D_{1}}+R_{1} \| R_{2}\right)}{R_{4}+\left(R_{D_{3}}+R_{6}\right) \|\left(R_{D_{1}}+R_{1} \| R_{2}\right)}\left(\frac{R_{1} \| R_{2}}{R_{D_{1}}+R_{1} \| R_{2}}\right)\right]^{-1} .
\end{aligned}
$$

The dominant pole of some high-speed amplifiers (HA2539 and HA2540) is sensitive to the source impedance you apply at the amplifier inputs. For these, you should add series input resistors according to directions in the data sheet.
The Schottky diodes recommended for this circuit exhibit about 1 pF of capacitance when reverse biased. You may need to cancel this capacitance by connecting


NOTE: $\mathrm{D}_{1}$-D $\mathrm{D}_{4}$ ARE 1 N5712 SCHOTTKY DIODES.

Fig 3-By connecting $D_{3}$ and $D_{4}$ to small bias voltages instead of to ground, you can eliminate oscillation in the noise-gain valley by raising the valley's floor.
approximately 1 pF between the amplifier's summing junction and ground. (1N914 diodes are satisfactory in some applications, but they exhibit about 5 pF when reverse biased.)

To Vote For This Design, Circle No 746

# Adapt a 68020 emulator to the $68030 \mu \mathrm{P}$ 

## Mike Ruhland <br> University of Chicago, Chicago, IL

The Fig 1 adapter circuit lets you use a 68020 in-circuit emulator (ICE) for developing a target system based on the $68030 \mu \mathrm{P}$. You eliminate the cost of a new ICE, of
course, and the retrofit will not damage or modify your existing 68020 ICE. Simply plug the adapter board's 68030 header into the 68030 socket, and plug the 68020 emulator into the adapter's 68020 socket.

Logic on the adapter board supports the 68030's synchronous bus interface, which uses STERM instead


# The highest performance and highest integration, ever. Together on a single 16-bit chip. 

The Z280 ${ }^{\text {m }}$ gives you a more powerful CPU and higher performance peripherals than you've ever seen on a 16 -bit chip. Think of it as a complete microsystem on a chip.
Unmatched performance...

Start with the most powerful 16-bit engine available, add on-board Cache, MMU and Burst Mode memory support - and you'll begin to understand the Z280's power and potential. ...powerful on-board peripherals...

Imagine the savings in cost and board size when you have peripherals like 4 DMA channels that'll give you transfers at 6.6 Mbytes $/ \mathrm{sec}$, and a full-duplex UART.

|  | 2280 ${ }^{\text {TM }}$ | 80186 | 68070 |
| :---: | :---: | :---: | :---: |
| Package | 68-pin PLCC/CMOS | 68-pin LCC/NMOS | 84-pin PLCC/CHMOS |
| Typical Power | 375 mW | 2W | 800 mW (est) |
| Speed | $10-25 \mathrm{MHz}$ | $8-12.5 \mathrm{MHz}$ | 10 MHz |
| Memory Support | $\begin{aligned} & 16 \text { MbPhysical } \\ & \text { Paged } \end{aligned}$ | 1 Mb Physical Segmented | 16 Mb Physical 8 or 128 Segments |
| 16-bit Registers | 12 General | 8 General | 15 Dedicated |
| $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Instruction } \\ \text { Pre-fetch } \end{array} \\ \hline \end{array}$ | 256-Byte Assoc. Cache; Burst Mode | 6-Byte Queue | None |
| Multiprocessor Support | Local or Global | Local only | Local only |
| Wait Logic | Programmable | Programmable | Hardwire |
| DMA | 4 Channels, 6.6 $\mathrm{Mb} / \mathrm{s}$ @ 10 MHz | 2 Channels $2 \mathrm{Mb} / \mathrm{s} @ 8 \mathrm{MHz}$ | 2 Channels, 3.2 $\mathrm{Mb} / \mathrm{s}$ @ 10 MHz |
| Counter/Timers | 316-bit | 316 -bit | 216-bit |
| Serial I/0 | 1Full-DuplexUART | None | 1Full-DuplexUART |
| DRAM Controller | 10-bit Refresh | None | None |
| Price (100) | \$33 | \$43 | \$50 |

## The choice is clear.

$\ldots$ and the glue to tie it all together.
With a DRAM Controller to support up to 1 MBit DRAMs and Programmable Wait State Logic on board - you're really looking at significant glue reduction.
Z280: Truly a microsystem.
The Z280 gives you a lot more performance. In a lot less board space. All off the shelf and backed by Zilog s proven quality and reliability. Plus, it's binary code-compatible with the Z80, and priced to rival 8-bit chips. And all the development support tools you need are available from industry leaders. Contact your local Zilog sales office or your authorized distributor today. Seeing is believing. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008 (408) 370-8000.

## Right product. Right price. Right away. ZILOG SALES OFFICES: CA (408) 370-8120, (714) 432-9971, (818) 707-2160, CO (303) 494-2905, FL (813) 585-2533,

 GA (404) 923-8500, IL (312) 885-8080, MA (617) 273-4222, MN (612) 831-7611, NJ (201) 288-3737, (609) 778-8070, OH (216) 447-1480, TX (214) 231-9090, CANADA Toronto (416) 673-0634, ENGLAND Maidenhead (44) (628) 781227,W. GERMANY Munich (49) (89) $612-6046$, JAPAN Tokyo (81) (3)
$587-0528$, HONG KONG Kowloon (852) (3) $723-8979$. R.O.C.: Taiwan (886) (2) 731-2420, U.S. AND CANADA DISTRIBUTORS: Anthem Electric, Bell Indus., Graham Elec., Hall-Mark Elec., JAN Devices Inc., Lionex Corp., Schweber Elec., Western Microtech., CANADA Future Elec., SEMAD.

EXXON Corporation

## DESIGN IDEAS

of DSACKX as the machine-cycle termination signal NAND gates sample the target system's STERM signal on the CLK signal's rising edge, and flip-flop $\mathrm{IC}_{1 \mathrm{~A}}$ latches the result. The $\mathrm{IC}_{1}$ flip-flops provide stable control signals to the $\mathrm{PAL}, \mathrm{IC}_{7}$, and the data buffers, $\mathrm{IC}_{2}-\mathrm{IC}_{5}$.

These buffers latch data as the $68030 \mu \mathrm{P}$ would, during synchronous read operations. The emulator runs 68020 cycles, however, so the buffers must hold their data until $\overline{\text { DSACKX }}$ informs the emulator that it
can issue the latch strobe. (The target system sees a synchronous cycle of $n$ clock pulses, while the emulator sees an asynchronous cycle of $n+$ clock pulses.) Other control signals to the buffers provide external-bus arbitration, indicate data direction for read and write operations, and command the high-impedance state between bus cycles.

The PAL handles bus arbitration and controls the address and data strobes. As a result, the target system sees the strobes negate as though an actual

## TABLE 1-PAL EQUATIONS




Fig 1-This circuit constitutes an adapter board that lets you develop a $68030 \mu P$ system by using a 68020 in-circuit emulator.

When you're designing ICs,

## The Last Thing You Need is Silicon.

Before you commit your IC design to silicon, you can design your circuit, simulate it, test it, analyze it, and even estimate manufacturing yields with the IC Design Tool Kit from Analog Design Tools. Offered as an addition to the popular Analog Workbench ${ }^{\text {TM }}$ and PC Workbench ${ }^{\text {TM }}$ software, you can use the kit with your own models and simulators, remote computers, and a variety of popular CAE/CAD software and workstations. And the model library, tailored specifically for IC design, includes active and passive components that contain modifiable process-related parameters that are tracked through all of the components on the chip.

If you design ICs, the first thing you need is an advanced CAE tool. See the best in action: call 1-800-ANALOG-4 and ask for a FREE Demo Disk or Video.


1080 East Arques Avenue Sunnyvale, CA 94086 408-737-7300 or 1-800-ANALOG-4

[^21]


CIRCLE NO 126

## DESIGN IDEAS

68030 were running its synchronous bus cycle. The emulator, meanwhile, has not completed its asynchronous cycle and therefore continues to assert its strobe signals for another clock cycle. Table 1 lists the PAL equations. A $15-\mathrm{nsec}$ or faster PAL allows 68030 emulation at clock frequencies exceeding 16 MHz .

Unlike an actual $68030 \mu \mathrm{P}$, the adapter board does not provide a data cache or a burst-mode transfer. It does not support STATUS, $\overline{\text { REFILL, }}$ CIOUT, or CBREQ signals (these always appear high to the target system), nor does it support the MMUDIS, $\overline{\text { CBACK, or }}$
$\overline{\text { CIIN }}$ input signals-these may assume any state without affecting the board's operation.

The target system should provide open-collector drivers for the DSACKX lines. If it doesn't, you can alter the circuit so that $\mathrm{IC}_{6 \mathrm{~A}}$ and $\mathrm{IC}_{6 \mathrm{~B}}$ buffer the target's DSACKX lines (as well as LSTERM) before passing them to the emulator.

EDN

To Vote For This Design, Circle No 748

## PLD generates sequence for PROMs

V Lakshminarayanan<br>Sneha Corp, Bangalore, India

Fig 1's circuit uses an inexpensive PLD ( $\mathrm{IC}_{1}$ ) to control the programming of various Signetics PROMs and
other pin-compatible devices. The circuit generates the signals required for programming sequential memory locations, and it also generates a control signal (TVCC) for switching the $\mathrm{V}_{\mathrm{CC}}$ supply, a chip-enable signal (TCE), and a signal (CO) that drives the PROM's output


Fig 1-Together, this PLD and octal latch form a timing generator for a PROM programmer.

## DESIGN IDEAS



Fig 2-These waveforms are the product of the programming sequences produced by the circuit of Fig 1.

## TABLE 1-TRUTH TABLE

TIMING GENERATOR FOR PROM PROGRAMMING
A4 A3 A2 A1 A0 B4 B3 B2 B1 B0 TVCCP TCE CO

| ;STATE <br> ;AAAAA | NEXT STATE BBBBB | TIMING WAVEFORMS |  |  |  | ;COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TVCCP | TCE | CO | ;\#\# |  |
| LLLLL | LLLLH | H | H | L | ;01 | TAKE VCC TO VCCP ;AND CE TO VIH |
| LLLLH | LLLHL | H | H | H | ;02 | ;AFTER TD DELAY |
|  |  |  |  |  |  | ;APPLY VOPF TO OUTPUT TO BE PROGRAMMED |
| LLLHL | LLLHH | H | L | H | ;03 | ;AFTER TD DELAY TAKE |
|  |  |  |  |  |  | ;CE TO VIL FOR A PERIOD TP |
| LLLHH | LLHLL | H | L | H | ;04 | ; |
| LLHLL | LLHLH | H | L | H | ;05 | ; |
| LLHLH | LLHHL | H | L | H | ;06 | ; |
| LLHHL | LLHHH | H | L | H | ;07 | ; |
| LLHHH | LHLLL | H | L | H | ;08 | ; |
| LHLLL | LHLLH | H | L | H | ;09 | ; |
| LHLLH | LHLHL | H H | $L$ | H H | ;10 | ; |
| LHLHL | LHLHH | H H H | L | H H | ;11 | ; |
| LHLHH LHHLL | LHHLL | H H | L | H H | ;12 | ; |
| LHHLH | LHHHL | H | L | H | ;14 | ; |
| LHHHL | LHHHH | H | L | H | ;15 | , |
| LHHHH | HLLLL | H | L | H | ;16 | ; |
| HLLLL | HLLLH | H | L | H | ;17 | ; |
| HLLLH | HLLHL | H | L | H | ;18 | ; |
| HLLHL | HLLHH | H | L | H | ;19 | ; |
| HLLHH | HLHLL | H | L | H | ;20 | ; |
| HLHLL | HLHLH | H | L | H | ;21 | ; |
| HLHLH | HLHHL | H H | L | H H | ;22 |  |
| HLHHL | HLHHH | H | H | H | ;23 | ;AFTER A PERIOD TP ;RETURN CE TO VIH |
| HLHHH | HHLLL | H | H | L | ;24 | ;AFTER A DELAY OF TD |
|  |  |  |  |  |  | ;REMOVE VOPF FROM THE PROGRAMMED OUTPUT |
| HHLLL | HHLLH | L | L | L | ;25 | ;TAKE VCC TO VCCL \& ;CE TO VIL |
| HHLLH | HHLHL | L | L | L | ;26 | ;LOOP HERE UNTIL ;RESET |

## DESIGN IDEAS

## Design Entry Blank

\$75 Cash Award for all entries selected by editors. An additional $\mathbf{\$ 1 0 0}$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name $\qquad$
Title $\qquad$ Phone $\qquad$
Company
Division (if any) $\qquad$
Street
City $\qquad$ State $\qquad$ Zip $\qquad$
Design Title
Home Address $\qquad$

Social Security Number $\qquad$
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed $\qquad$
Date $\qquad$
Your vote determines this issue's winner. All designs published win $\$ 75$ cash. All issue winners receive an additional $\$ 100$ and become eligible for the annual $\$ 1500$ Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

## ISSUE WINNER

The winning Design Idea for the January 7, 1988, issue is entitled "Circuit vocalizes dialed phone numbers," submitted by V Lakshminarayanan of Sneha Corp (Bangalore, India).

## TABLE 2-PLD EQUATIONS

```
ADD A0 A1 A2 A3 A4
.DAT B0 B1 B2 B3 B4 TVCCP TCE CO
;NEXT STATE GENERATOR
BO = IA4* IAO + A4* IA3* IAO + IA1* IAO ;INCREMENT LSB
B1 = IA4** A1* IAO + IA4* IA1* AO + IA\mp@subsup{1}{}{*}AO + A4** IA3** IA1* A0
 + A4** IA3*A1*IAO ;INCREMENT BIT1
B2 = IA4 *A2*IA1 + IA4 *A2* IAO + A4* IA3 *A2* IA1
 + IA3 * IA2 *A1*AO + A4 */A3 *A2* IAO
 +IA4 *A3 *IA2"A1*AO ;INCREMENT BIT2
B3 = IA4*A3 */A2 + A3* IA2 *IA1 + IA4 *A3 */A1
 +IA4 * A3 *IAO + IA4 * IA3 *A2*A1*AO
 +A4 * IA3 *A2*A1*AO ;INCREMENT BIT3
B4 = IA4 *A3*A2*A1*AO + A4*A3* }\mathbb{A2*}
 + A4* IA3
 ;INCREMENT BIT4
;TIMING WAVEFORMS
```

```
\[
\begin{aligned}
& \text { TVCCP }=\mathbb{A} 4+\text { A4 *IA3 } \text {;TIMING FOR VCC } \\
& T C E=I A 44^{*} \mid A 3 \text { * }\left|A 2^{*}\right| A 1+A 4^{*} \mid A 3 \text { *A2*A1 ;TIMING FOR CE } \\
& C O=\mathbb{A}^{*} \cdot \mathbb{A} 1^{*} A O+\mathbb{A} 44^{*} A 2+\mathbb{A} 4^{*} A 3 \\
& +I A 44^{*} \mid A 3 \text { * } A 1+A 4 \text { * } \mid A 3 \text { * } I A 0+A 4 \text { * } / A 3 \text { * } / A 2 \\
& + \text { A4 * } 1 \text { A3 * } / A 1 \text {;TIMING FOR OUTPUTS }
\end{aligned}
\]
```

pins to the voltage levels that the manufacturer has specified.

Applying a $200-\mathrm{kHz}$ clock signal to the octal D-type flip-flop, $\mathrm{IC}_{2}$, produces a $5-\mu \mathrm{sec}$ pulse-sequence delay ( $t_{\mathrm{D}}$ ), a $100-\mu \mathrm{sec}$ programming interval for TCE ( $\mathrm{t}_{\mathrm{p}}$ ), and a $120-\mu \mathrm{sec}$ interval for applying $\mathrm{V}_{\mathrm{CC}}$ during program$\operatorname{ming}$ ( $\mathrm{t}_{\mathrm{vcCP}}$ ). Fig 2's waveforms are those specified by Signetics. Karnaugh maps enable the derivation of the PLD equations of Table 2 from the truth table of Table 1.

EDN

To Vote For This Design, Circle 749

\section*{Your PrimarySource for Military Hi-Rel Bridges \& Rectifiers. <br> | Axial Leaded Diodes |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Unitrode Part Number | SSDI Replacement | PIV (V) | $\mathrm{I}_{\mathrm{O}}(\mathrm{A})$ | $\mathrm{t}_{\text {r ( (ns) }}$ |
| UES1101 - UES1103 | SPD205 - SPD230 | $50-300$ | 2 | 20 |
| UES1104-UES1106 | SHF1102 - SHF1106 | $200-600$ | 1 | 35 |
| UES1304-UES1306 | SHF1302 - SHF1306 | $200-600$ | 3 | 35 |
| UES1301 - UES1303 | SPD605 - SPD630 | $50-300$ | 6 | 40 |
| UES1001 - UES1003 | SHF1102 - SHF1106 | $200-600$ | 1 | 35 | <br> DO-4 AND DO-5 <br> Unitrode can't deliver the way we can.}


| Unitrode Part Number | SSDI Replacement | PlV (V) | $\mathrm{I}_{\mathrm{o}}(\mathrm{A})$ | $\mathrm{t}_{\text {rr (ns) }}$ |
| :---: | :---: | :---: | :---: | :---: |
| UES704HR - UES706HR | SDR600 - SDR606 | $50-600$ | 15 | 45 |
| 1N5812-1N5816 | 1N5812-1N5816 (QPL) | $50-150$ | 20 | 35 |
| UES804HR - UES806HR | SDR804HR - SDR806HR | $400-1000$ | 50 | 60 |
| UES801-UES803 | SDR803 - SDR807 | $50-250$ | 100 | 60 |
| 1N6304-1N6306 | 1N6304-1N6306 | $50-150$ | 70 | 50 |

Schottky Rectifiers*

| Unitrode Part Number | SSDI Replacement | PIV (V) | $\mathrm{I}_{\mathrm{O}}(\mathrm{A})$ | $\mathrm{t}_{\text {tr (ns) }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1N5817 - 1N5819 | SPD5817 - SPD5819 | $20-40$ | 1 | 3 |
| USD245HR | SPD0801 - SPD1001 | $60-100$ | 1 | 1 |
|  | SPD5823 - SPD5825 | $20-40$ | 5 | 1 |

## Centertaps-Positive, Negative, and Doublers



Youre in a line-down situation. Yoưre committed.

You need delivery. Not only delivery, but quality and performance as well.

We're committed, too.
Committed to the delivery of the devices you need, when you need them.

All of the items listed here, can be processed to TX, TXV and Space Level.

To give you some idea of our experience and capability-we pioneered the first Ultra-Fast diodes and rectifiers in the early 1970's.

What's more, we are consistent suppliers to military defense and space programs, and have been specializing in Standard and
 and bridges for over 20 years.
Delivery? You've got our name on it. For samples and pricing call (213) 921-9660, TWX (910) 583-4807,
 FAX (213) 921-2396.

[^22]

While developing software for the B1-B Bomber radar system, Westinghouse Defense landed on a tough problem - integrating its computer resources. "We needed a complete network that would allow hundreds of software engineers across the country to interact, create, enhance and modify the software," says Ron Clanton, Manager of Software and Information Systems.

The solution was a network from Digital.
Remarks Clanton, "The network is so comprehensive, it extends even to the air in our Flying Software Lab. Giving us real-time, in-flight software testing and development capabilities. The Software Lab alone provides a cost savings of up to $98 \%$ versus traditional in-flight testing in the B1-B Bomber."


## "A networked software engineering environment that helped Westinghouse Defense zero in on ways to cut in-flight test costs by $98 \%$."

"But our savings don't stop there," continues Clanton. "With the VAX" architecture and the VMS" operating environment, engineers both on the ground and in the air can react instantly to each other's modifications." He adds, "That's sharing their knowledge and expertise faster and more productively than they ever thought possible. Which, of course, provides for a better end product."

Clanton sums it up this way, "Our Digital network and The Flying Software Lab allow us to cut software development time and costs across the board. And that's increasing our productivity and ability to compete for similar projects."

To find out how Digital can give you a competitive edge, write: Digital Equipment Corporation, 200 Baker Avenue, West Concord, MA 01742. Or call your local Digital sales office.

# See the all new <br> 1988 

## EDN CARAVAN

Eastern Show Tour

# VTC, INCORPORATED BOURNS, INCORPORATED BURR-BROWN CORPORATION CAROL CABLE COMPANY, INC. MEREL COMPANY, INCORPORATED LOGIC DYNAMICS, INCORPORATED VLSI TECHNOLOGY, INCORPORATED 

CHECK THE ITINERARY FOR THE DATE WE VISIT YOU!


# 1988 EASTERN EDN CARAVAN TRAVELING ELECTRONIC SHOW March 21 to April 22 (Northeastern Edition) 

| DATE | TIME | SITE |
| :---: | :---: | :---: |
| $3 / 21$ <br> Monday | $\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$ | GENERAL ELECTRIC COMPANY Chestnut St., Phildelphia, PA |
| $3 / 21$ <br> Monday | $\begin{aligned} & \text { 12:30-2:30 } \\ & \text { PM } \end{aligned}$ | UNISYS CORPORATION 70 E. Swedesford Rd., Paoli, PA |
| $3 / 21$ <br> Monday | $\begin{aligned} & \text { 3:00-4:30 } \\ & \text { PM } \end{aligned}$ | UNISYS CORPORATION 2476 Swedesford Rd., Paoli, PA |
| $3 / 22$ <br> Tuesday | $\begin{aligned} & \text { 9:00-11:00 } \\ & \text { AM } \end{aligned}$ | UNISYS CORPORATION <br> Township Line \& Union Meeting, Blue Bell, PA |
| $3 / 22$ <br> Tuesday | $\begin{aligned} & \text { 11:30-1:00 } \\ & \text { AM-PM } \end{aligned}$ | KULICKE \& SOFFA INDUSTRIES, INC. 2101 Blair Mill Road, Willow Grove, PA |
| 3/22 <br> Tuesday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | LEEDS \& NORTHRUP <br> Sumneytown Pike, North Wales, PA |
| 3/23 <br> Wednesday | $\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$ | RCA CORPORATION <br> Delaware \& Market St., Camden, NJ |
| $3 / 23$ <br> Wednesday | $\begin{aligned} & 11: 30-1: 30 \\ & \text { AM-PM } \end{aligned}$ | RCA CORPORATION Marne Hwy., Moorestown, NJ |
| $3 / 23$ <br> Wednesday | $\begin{aligned} & \text { 3:00-4:30 } \\ & \text { PM } \end{aligned}$ | DAVID SARNOFF RESEARCH CENTER 201 Washington Road, Princeton, NJ |
| $3 / 24$ <br> Thursday | $\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$ | LOCKHEED ELECTRONICS U.S. Hwy. 22, Plainfield, NJ |
| 3/24 <br> Thursday | $\begin{aligned} & \text { 12:30-2:30 } \\ & \text { PM } \end{aligned}$ | ITT DEFENSE COMMUNICATIONS 492 River Road, Nutley, NJ |
| 3/24 <br> Thursday | $\begin{aligned} & 3: 00-4: 30 \\ & \text { PM } \end{aligned}$ | ITT AVIONICS 390 Washington Ave., Nutley, NJ |
| $3 / 25$ <br> Friday | $\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$ | AT\&T BELL LABS <br> 600 Mountain Ave., Murray Hill, NJ |
| 3/25 <br> Friday | $\begin{aligned} & \text { 12:30-2:00 } \\ & \text { PM } \end{aligned}$ | AT\&T BELL LABS <br> 260 Cherry Hill Rd., Parisppany, NJ |
| $\begin{aligned} & 3 / 25 \\ & \text { Friday } \end{aligned}$ | $\begin{aligned} & \text { 2:30-4:00 } \\ & \text { PM } \end{aligned}$ | AT\&T BELL LABS <br> Whippany Road, Whippany, NJ |
| $3 / 28$ <br> Monday | $\begin{aligned} & \text { 8:30-11:00 } \\ & \text { AM } \end{aligned}$ | SINGER CO., KEARFOTT DIVISION 150 Totowa Rd., Wayne, NJ |
| $3 / 28$ <br> Monday | $\begin{aligned} & \text { 11:30-1:30 } \\ & \text { AM-PM } \end{aligned}$ | SINGER CO., KEARFOTT DIVISION 1150 McBride Ave., Little Falls, NJ |
| 3/28 <br> Monday | $\begin{aligned} & 2: 30-4: 30 \\ & \text { PM } \end{aligned}$ | ALLIED BENDIX CORPORATION Route 46, Teterboro, NJ |
| $3 / 29$ <br> Tuesday | $\begin{aligned} & 8: 30-10: 30 \\ & \text { AM } \end{aligned}$ | EATON CORPORATION, AIL 45 Oser Ave., Hauppauge, NY |
| 3/29 <br> Tuesday | $\begin{aligned} & \text { 11:00-1:00 } \\ & \text { AM-PM } \end{aligned}$ | EATON CORPORATION, AIL Walt Whitman Rd, Melville, NY |
| 3/29 <br> Tuesday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | FAIRCHILD WESTON CORPORATION 300 Robbins Lane, Syosset, NY |
| $3 / 30$ <br> Wednesday | $\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$ | HAZELTINE CORPORATION Cuba Hill Road, Greenlawn, NY |
| $3 / 30$ <br> Wednesday | $\begin{aligned} & \text { 11:30-1:00 } \\ & \text { PM } \end{aligned}$ | NORDEN SYSTEMS 75 Maxess Rd., Melville, NY |
| 3/30 <br> Wednesay | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | GRUMMAN CORPORATION Maxess Rd., Melville, NY |
| 3/31 <br> Thursday | $\begin{aligned} & 8: 00-10: 00 \\ & \text { AM } \end{aligned}$ | GRUMMAN CORPORATION Stewart Ave., Bethpage, NY |
| $3 / 31$ <br> Thursday | $\begin{aligned} & \text { 10:45-12:30 } \\ & \text { AM-PM } \end{aligned}$ | UNISYS CORPORATION Marcus Ave., Great Neck, NY |
| 3/31 <br> Thursday | $\begin{aligned} & \text { 2:00-3:30 } \\ & \text { PM } \end{aligned}$ | LORAL ELECTRONIC SYSTEMS Ridge Hill, Yonkers, NY |
| 4/4 <br> Monday | $\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$ | NORDEN SYSTEMS Norden Place, Norwalk, CT |
| 4/4 <br> Monday | $\begin{aligned} & \text { 11:30-1:00 } \\ & \text { AM-PM } \end{aligned}$ | PERKIN-ELMER CORPORATION 761 Main Ave., Norwalk, CT |
| 4/4 <br> Monday | $\begin{aligned} & \text { 1:30-4:00 } \\ & \text { PM } \end{aligned}$ | PITNEY BOWES, INCORPORATED 380 Main Ave., Norwalk, CT |
| $4 / 5$ <br> Tuesday | $\begin{aligned} & 8: 30-10: 30 \\ & \text { AM } \end{aligned}$ | SIKORSKI AIRCRAFT COMPANY 6900 Main St., Stratford, CT |
| $4 / 5$ <br> Tuesday | $\begin{aligned} & \text { 11:15-12:30 } \\ & \text { AM-PM } \end{aligned}$ | PHILIPS MEDICAL SYSTEMS 710 Bridgeport Ave., Shelton, CT |
| 4/5 <br> Tuesday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | GENERAL DATA COMM INDUSTRIES Straights Tpk-Rt. 63, Middlebury, CT |
| $4 / 6$ <br> Wednesday | $\begin{aligned} & 9: 00-11: 30 \\ & \text { AM } \end{aligned}$ | HAMILTON STANDARD <br> 1690 New Britain Ave., Farmington, CT |


| DATE | TIME | SITE |
| :---: | :---: | :---: |
| $4 / 6$ <br> Wednesday | $\begin{aligned} & 1: 30-4: 00 \\ & \text { PM } \end{aligned}$ | HAMILTON STANDARD <br> Hamilton Road, Windsor Locks, CT |
| $4 / 7$ <br> Thursday | $\begin{aligned} & \text { 10:00-12:30 } \\ & \text { AM-PM } \end{aligned}$ | ALCATEL TRANSCOM, INCORPORATED 1170 E. Main Rd., Portsmouth, RI |
| $4 / 7$ <br> Thursday | $\begin{aligned} & 1: 30-4: 00 \\ & \text { PM } \end{aligned}$ | RAYTHEON COMPANY, SSD 1847 W. Main Rd., Portsmouth, RI |
| 4/8 <br> Friday | $\begin{aligned} & 8: 30-10: 30 \\ & \text { AM } \end{aligned}$ | SIPPICAN CORPORATION <br> 7 Barnabus Rd., Marion, MA |
| 4/8 <br> Friday | $\begin{aligned} & \text { 12:30-2:00 } \\ & \text { PM } \end{aligned}$ | CODEX CORPORATION 20 Cabot Blvd., Mansfield, MA |
| 4/8 <br> Friday | $\begin{aligned} & \text { 2:30-4:00 } \\ & \text { PM } \end{aligned}$ | FOXBORO COMPANY <br> 33 Commercial Ave., Foxboro, MA |
| $4 / 11$ <br> Monday | $\begin{aligned} & 8: 30-11: 00 \\ & \text { AM } \end{aligned}$ | RAYTHEON COMPANY <br> 528 Boston Post Rd., Sudbury, MA |
| $4 / 11$ <br> Monday | $\begin{aligned} & \text { 11:30-1:30 } \\ & \text { AM-PM } \end{aligned}$ | RAYTHEON COMPANY 430 Boston Post Rd., Wayland, MA |
| 4/11 <br> Monday | $\begin{aligned} & \text { 2:30-4:30 } \\ & \text { PM } \end{aligned}$ | MITRE CORPORATION Burlington Rd, Bedford, MA |
| 4/12 <br> Tuesday | $\begin{aligned} & 8: 30-10: 00 \\ & \text { AM } \end{aligned}$ | COMPUGRAPHIC CORPORATION 200 Ballardvale St., Wilmington, MA |
| 4/12 <br> Tuesday | $\begin{aligned} & 10: 30-12: 30 \\ & \text { AM-PM } \end{aligned}$ | GENERAL ELECTRIC COMPANY Bedford St., Burlington, MA |
| 4/12 <br> Tuesday | $\begin{aligned} & \text { 1:30-3:30 } \\ & \text { PM } \end{aligned}$ | HONEYWELL INCORPORATED 300 Concord Pike, Billerica, MA |
| 4/13 <br> Wednesday | $\begin{aligned} & 8: 00-10: 45 \\ & \text { AM } \end{aligned}$ | RAYTHEON COMPANY Hartwell Road, Bedford, MA |
| 4/13 <br> Wednesday | $\begin{aligned} & 11: 30-12: 30 \\ & \text { AM-PM } \end{aligned}$ | APOLLO COMPUTER <br> Elizabeth Dr., Cheimsford, MA |
| 4/13 <br> Wednesday | $\begin{aligned} & \text { 1:30-4:00 } \\ & \text { PM } \end{aligned}$ | AT\&T TECHNOLOGIES, INCORPORATED 1600 Osgood St, N. Andover, MA |
| 4/14 <br> Thursday | $\begin{aligned} & \text { 8:30-10:30 } \\ & \text { AM } \end{aligned}$ | DIGITAL EQUIPMENT CORPORATION Continental Blvd., Merrimack, NH |
| 4/14 <br> Thursday | $\begin{aligned} & 11: 00-12: 30 \\ & \text { AM-PM } \end{aligned}$ | KOLLSMAN INSTRUMENT <br> 220 Daniel Webster Hwy, Merrimack, NH |
| 4/14 Thursday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | WANG LABORATORIES, INCORPORATED One Industrial Ave., Lowell, MA |
| 4/15 <br> Friday | $\begin{aligned} & 8: 30-10: 00 \\ & \text { AM } \end{aligned}$ | DIGITAL EQUIPMENT CORPORATION 295 Foster St., Littleton, MA |
| 4/15 <br> Friday | $\begin{aligned} & 11: 00-1: 00 \\ & \text { AM-PM } \end{aligned}$ | DIGITAL EQUIPMENT CORPORATION 146 Main St., Maynard, MA |
| 4/15 <br> Friday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | DIGITAL EQUIPMENT CORPORATION 200 Forest St., Marlboro, MA |
| 4/18 <br> Monday | $\begin{aligned} & 9: 00-11: 30 \\ & \text { AM } \end{aligned}$ | DATA GENERAL CORPORATION 4400 Computer Dr., Westborough, MA |
| 4/18 Monday | $\begin{aligned} & \text { 1:00-4:00 } \\ & \text { PM } \end{aligned}$ | DIGITAL EQUIPMENT CORPORATION 333 South St, Shrewsbury, MA |
| 4/19 <br> Tuesday | $\begin{aligned} & \text { 8:00-10:30 } \\ & \text { AM } \end{aligned}$ | IBM CORPORATION Neighborhood Rd., Kingston, NY |
| 4/19 <br> Tuesday | $\begin{aligned} & \text { 11:30-1:00 } \\ & \text { AM-PM } \end{aligned}$ | IBM CORPORATION South Rd., Poughkeepsie, NY |
| 4/19 <br> Tuesday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | IBM CORPORATION <br> E Fishkill Rd., Hopewell Jct., NY |
| 4/20 <br> Wednesday | $\begin{aligned} & 9: 00-12: 00 \\ & \text { AM-PM } \end{aligned}$ | IBM CORPORATION Bodle Hill Rd., Owego, NY |
| $4 / 20$ <br> Wednesday | $\begin{aligned} & \text { 1:30-4:00 } \\ & \text { PM } \end{aligned}$ | IBM CORPORATION Glendale Dr., Endicott, NY |
| 4/21 <br> Thursday | $\begin{aligned} & 8: 30-10: 30 \\ & \text { AM } \end{aligned}$ | GENERAL ELECTRIC COMPANY Broad St., Utica, NY |
| $4 / 21$ <br> Thursday | $\begin{aligned} & 11: 00-12: 00 \\ & \text { AM-PM } \end{aligned}$ | GENERAL ELECTRIC COMPANY French Rd., Utica, NY |
| 4/21 <br> Thursday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | GENERAL ELECTRIC COMPANY <br> Farrell Rd., Syracuse, NY |
| 4/22 <br> Friday | $\begin{aligned} & 8: 00-10: 00 \\ & \text { AM } \end{aligned}$ | XEROX CORPORATION 800 Phillips Rd., Webster, NY |
| 4/22 <br> Friday | $\begin{aligned} & 10: 30-1: 00 \\ & \text { AM-PM } \end{aligned}$ | EASTMAN KODAK COMPANY 901 Elmgrove Rd., Rochester, NY |
| 4/22 <br> Friday | $\begin{aligned} & \text { 2:00-4:00 } \\ & \text { PM } \end{aligned}$ | HARRIS RF COMMUNICATIONS 1680 University Ave., Rochester, NY |



## POWER HYBRIDS

- 5A output current
- 0.75 V dropout voltage

The PH20300 family of low dropout regulators are rated at 5 A output current over the full military temperature range and have a maximum dropout voltage of 0.2 V at 2 A output, and 0.75 V at 5 A output. Typical $5 \mathrm{~A} / 5 \mathrm{~V}$ regulators require a 3 V differential between input and output voltages. The PH20300 family
consists of a variable output device and five fixed-output devices ( 5,8 , 10,12 , and 15 V ). The fixed-voltage devices are laser trimmed at the factory and provide $2 \%$ accuracy over the devices' operating temperature range. The hybrids come in 8 -pin TO-3 packages. Depending on type and screening, $\$ 59$ to $\$ 89$ (100).
Micro Networks, 324 Clark St, Worcester, MA 01606. Phone (617) 852-5400.

Circle No 351

## CMOS DSP CHIP

- Lower-speed version of original 20-MHz type
- Lower current than NMOS types The TMS320C10NL-14, a $14-\mathrm{MHz}$ version of the CMOS TMS320C10NL $20-\mathrm{MHz}$ device is pin for pin and object code compatible. It executes 3.5 MIPS and performs a $16 \times 16$-bit multiplication in 280 nsec. The CMOS device has a typical supply current of 25 mA , compared with 180 mA for the NMOS TMS32010NL-14. The device comes in a 40 -pin DIP. $\$ 9$ (1000).

Texas Instruments, Semiconductor Group (SC-784), Box 809066, Dallas, TX 75380. Phone (800) 2323200 , ext 700 .

Circle No 352

## RISC PROCESSOR

- Operates in either RISC or MIL-STD-1750A mode
- Low-power $1.5 \mu \mathrm{~m}$ CMOS fabrication

The UT1750AR reduced-instruc-tion-set computer (RISC) is a $\mu \mathrm{P}$ that also supports MIL-STD-1750A 32-bit floating-point operations and 48-bit extended-precision floatingpoint operations on chip. It has a full 64 k -word address space and is expandable to 2 M words with the optional UT1750 memory-management unit. The UT1750AR has built-in $\mu \mathrm{P}$ bus arbitration and DMA support; it also contains a 9600-baud UART for MIL-STD1750AR console mode. In the RISC mode, the device operates at 6

MIPS of throughput, using a $12-\mathrm{MHz}$ clock; in the MIL-STD-1750' mode, it operates at 0.7 MIPS, using the digital-avionics-instruction set. The UT1750AR is TTL compatible and is available in either a 144 -pin pin-grid array or a 132 lead flatpack. $\$ 650$.

United Technologies Microelectronics Center, Military Standard Products Dept, 1575 Garden of the Gods Rd, Colorado Springs, CO 80907. Phone (800) 645-8862; in C0, (303) 594-8259.

Circle No 353


## PROGRAMMABLE FILTER

- Programmable, 7th-order lowpass active filter
- Implements RC and SC filters on same chip
Designed primarily for instrumentation and data-acquisition systems, the HSCF24040 implements both RC (resistor-capacitor) and SC (switched-capacitor) filters on the same chip. It provides high-precision antialiasing protection prior to A/D conversion. Device specifications guarantee full 12 -bit performance with respect to noise, distortion, and antialiasing protection. A differential architecture for the SC filter provides an $85-\mathrm{dB}$ dynamic range, and the RC/SC filter provides a $>76-\mathrm{dB}$ stopband attenuation. The SYNC and CNVRT control signals, combined with a programmable reduction in the sample rate, eliminate the need for an
external $\mathrm{S} / \mathrm{H}$ function prior to A/D conversion in many applications. The HSCF24040 operates from a $\pm 5 \mathrm{~V}$ supply and dissipates 150 mW . $\$ 26.90$ (100).
Honeywell Inc SPT, 1150 E Cheyenne Mountain Blvd, Colorado Springs, C0 80905. Phone (719) 5401000.

Circle No 354


## QUAD OP AMP

- Low offset voltage
- Independent operation

The HA-5134 quad op amp features a maximum offset voltage of 100 $\mu \mathrm{V}$. Unlike most quad devices (that share a common bias network), the four op-amp units (on a single chip) are completely independent in their operation. This independent functioning can boost the device's chan-nel-separation performance to 120 dB . The slew rate is $1 \mathrm{~V} / \mu \mathrm{sec}$, the unity-gain bandwidth is 4 MHz , and the minimum gain is $1500 \mathrm{~V} / \mathrm{mV}$. The op amp comes in a 14 -pin ceramic DIP. HA1-5134-2, $\$ 16.20$; HA1-5134-5, \$9.45 (100).

Harris Corporation, Semiconductor Sector, Box 883, Melbourne, FL 32901. Phone (305) 724-7800.

Circle No 355

## DIFFERENTIAL AMP

- $\pm 200 \mathrm{~V}$ common-mode range
- 74-dB common-mode rejection

According to the vendor, the INA117P differential amplifier offers you a safe, economical approach to conditioning low-level signals in the presence of high voltages. It has a differential input range of $\pm 10 \mathrm{~V}$

and a common-mode input-voltage range of $\pm 200 \mathrm{~V}$. You can use the amplifier in ac or dc power-line monitoring, test equipment, and indus-trial-control and data-acquisition equipment not requiring total galvanic isolation. The device contains a premium-grade op amp and a precision resistor network on a single chip. It has a unity gain with a maximum error of $0.05 \%$ and a settling time of $6.5 \mu \mathrm{sec} . \$ 4.20$ (100).
Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 7461111. TLX 666491.

Circle No 356


## MOTOR CONTROLLER

- For open-loop, 3- or 4-phase mo-tor-control systems
- Two versions to satisfy different sensor phasing
The MC33034 is an integrated brushless de motor controller. It has a rotor position decoder for commutation sequencing, a temperaturecompensated voltage reference that can supply power to Hall-effect sensors, a programmable sawtooth oscillator, three open-collector top drivers, and three high-current to-tem-pole drivers that can drive power MOSFETs. Its safety features include cycle-by-cycle current limiting, undervoltage lockout, internal thermal shutdown, and a
fault output that you can interface to a microprocessor. It controls motors in major appliances, in blowers and pumps, in automotive fans and windshield washers, and in industrial machinery. $\$ 4.90$ (100).

Motorola Inc, Technical Information Center, Box 52073, Phoenix, AZ 85072. Phone (602) 897-3840.

Circle No 357


## LOW-NOISE OP AMP

- Chopper stabilized
- Single- or dual-supply operation

The TSC76HV52 op amp is pin compatible with the low-voltage TSC7652 and extends power-supply operation to $\pm 15 \mathrm{~V}$. Single- or dual-supply operation is possible. The device's output-voltage swing is typically $> \pm 13 \mathrm{~V}$ into a $2 \mathrm{k}-\Omega$ load. The open-loop gain is 120 dB min with a $10 \mathrm{k}-\Omega$ load. Optimized for low noise and low power, the op amp's noise is $0.2[\mathrm{mu}] \mathrm{V}$ p-p for a $1-\mathrm{Hz}$ bandwidth, and the supply current is 1 mA at $\pm 15 \mathrm{~V}$. The off-set-voltage drift is $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The device extends the input commonmode voltage to the negative supply rail, permitting single-supply operation. The common-mode rejection is a 120 dB min . The device is available in 8 - or 14 -pin cerDIPs. From $\$ 4.85$ (100).

Teledyne Semiconductor, 1300 Terra Bella Ave, Mountain View, CA 94039. Phone (415) 968-9241. TWX 910-379-6494.

Circle No 358


16-BIT ADC

- Converts in $15 \mu \mathrm{sec}$
- Pin-compatible with ADC-76 and $A D-376$

Produced in a MIL-STD-1772 certified facility, the HS9576 ADC is available in two temperature ranges -0 to $70^{\circ} \mathrm{C}$ (commercial) and -55 to $+125^{\circ} \mathrm{C}$ (military). The military versions are screened to MIL-STD883C. Devices for both temperature ranges are available with no-miss-ing-code accuracy grades of 13 and 14 bits. The conversion time for the 14 -bit operation is $15 \mu \mathrm{sec}$ and linearity error is $\pm 0.003 \%$ max. The

HS9576 operates from $\pm 15 \mathrm{~V}$ and 5 V power supplies. It comes in a 32 -pin hermetically sealed ceramic DIP. Commercial versions, \$109 and \$120; military versions, $\$ 299$ and $\$ 340$ (100).

Sipex Corp, Hybrid Systems Div, 22 Linnell Circle, Billerica, MA 01821. Phone (617) 667-8700.

Circle No 359

## GaAs LOGIC ICs

- 1.3-GHz expandable 4-bit adder
- 1.4-GHz carry look-ahead generator

The 10 G 100 is a $1.3-\mathrm{GHz}, 1200-\mathrm{psec}$ delay, expandable 4 -bit adder. The companion 10 G 101 is a $1.4-\mathrm{GHz}$, 675-psec delay, carry look-ahead generator. The carry look-ahead IC expands the adder's capability of handling 16 -bit-wide additions; multiple 10 G 100 s and 10 G 101 s can implement fast adders of any larger

word size. The GaAs chip set can process a 16 -bit addition in 2.06 nsec compared with the 7.6 nsec required for 100 K ECL circuits. The vendor also claims that you can realize a $30 \%$ improvement in speed by using the 10G101 separately to replace ECL look-ahead circuits in existing adder designs. The 10G100 and 10G101 are part of a series targeted for DSP subsystems such as BCD adders and subtractors, ALUs, digital filters, and FFT processors. The 10G100 and 10G101 operate over the 0 to $85^{\circ} \mathrm{C}$ tempera-

W atch Apple's new Macintosh II do for color computing what the original Macintosh did for black \& white. Our RAMDAC enables Macintosh II to display some of the finest quality graphics available in a personal computer.
ture range and are available in 40-pin leaded or leadless chip carriers. $10 \mathrm{G} 100, \$ 59.50 ; 10 \mathrm{G} 101, \$ 55$ (100).

GigaBit Logic, 1908 Oak Terrace Lane, Newbury Park, CA 91320. Phone (805) 499-0610. TLX 6711358.

Circle No 360

## DRIVER IC

- Incorporates three low-satura-tion-voltage drivers
- Protection against output desaturation

The TDF1783SP driver IC contains three independent drivers that feature an output-saturation voltage of 0.35 V at 1.5 A . Their supply voltage range is 6 to 32 V . By adding a sense resistor to each output you can program the output current limit. Internal logic for each driver detects desaturation of the output stage and automatically turns off the driver
after a programmable delay period if desaturation occurs. In addition, the device has thermal-overload protection, which turns off all three drivers if the IC temperature rises excessively. $\$ 4.50$ ( 1000 ).

SGS-Thomson Microelectronics, Via C Olivetti 2, 20041 Agrate Brianza, Italy. Phone (039) 65551. TLX 330131.

Circle No 361
SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. TLX 249976.

Circle No 362

## TRANS-Z AMPLIFIER

- $280-\mathrm{MHz}$ bandwidth
- Settles to $1 \%$ in 7 nsec

The AD9611 transimpedance amplifier features a $280-\mathrm{MHz}$ bandwidth and an offset voltage of $\pm 0.5 \mathrm{mV}$; its dynamic performance is indepen-

dent of gain. It settles to $1 \%$ and $0.1 \%$ in 7 and 13 nsec, respectively; the rise and fall times are 1.3 nsec and 1.5 nsec . Designed for highspeed signal-processing applications that require high gain and wide bandwidth, the amplifier can drive $\pm 4 \mathrm{~V}$ into a $50 \Omega$ load; this capability allows the device to serve as an input buffer amplifier for highspeed, flash A/D converters. The device also suppresses voltage spikes that may damage flash ADCs. A proprietary feature of the device is constant power dissipation with load variations. This attribute,


Macintosh II. $640 \times 480$ resolution, displays 256 colors simultaneously from a 16.8 million color palette.
Bt453. Triple 8-bit 40 MHz RAMDAC
with 256 color lookup table.
Monolithic CMOS.
Brooktree Corporation, 9950 Barnes
Canyon Road, San Diego, California
92121. 1-800-VIDEO IC or 1-800-

422-9040, in California.
Apple ${ }^{\text {s }}$ and Macintosh ${ }^{m \mathrm{~m}} \mathrm{II}$ are trade-
marks of Apple Computer Corporation.
combined with a typical $720-\mathrm{mW}$ power dissipation, lets the amplifier operate in ambient temperatures to $110^{\circ} \mathrm{C}$ without heat sinking. It operates from $\pm 5 \mathrm{~V}$ supplies and is available in industrial and military temperature grades. From $\$ 84$ (100).

Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 329-4700. TWX 710-394-6577.

Circle No 363

## CACHE-TAG RAMs

- 4096-word $\times 4$-bit organization
- 15-nsec access time

The SSL4180 and SSL4181 functionally equivalent circuits feature a fast flash-clear function and word-width expansion. The 4180 has a totempole output; the 4181 has an opendrain output. Both devices are TTL compatible, have 4096 -word $\times 4$-bit organization and include an on-chip

comparator to generate a hit-ormiss output. The devices are packaged in 22 -pin DIPs. Four speed ratings are available: 15 -nsec version, $\$ 53$; 20 -nsec version, $\$ 32.30$; 25 -nsec version, $\$ 24.60$; 35-nsec version, $\$ 17.50$ (1000).

Saratoga Semiconductor, 10500 Ridgeview Ct, Cupertino, CA 95014. Phone (408) 973-0945.

Circle No 364

## STATIC RAMs

- $4 k$-bit ECL devices fabricated in a bipolar/CMOS process
- Feature 8- and 10-nsec access times
The SSM10470 (10K ECL) and 100470 (100K ECL) provide $10-$ nsec access times, and the $10474(10 \mathrm{~K}$ ECL) and 100474 ( 100 K ECL) offer 8 - or 10 -nsec access times. These short access times suit the static RAMs for use in high-speed computers, graphics workstations, ATE, and high-speed logic analyzers. The 10470 and 100470 offer $4 \mathrm{k} \times 1$-bit organization and come in 18-pin DIPS; the 10474 and 100474 feature $1 \mathrm{k} \times 4$ bit organization and come in 24 -pin DIPs. The devices are fabricated in a technology that integrates bipolar and CMOS elements in a monolithic chip. From $\$ 16.43$ to $\$ 21.43$ (100).

Saratoga Semiconductor, 10500 Ridgeview Ct, Cupertino, CA 95014. Phone (408) 973-0945.

Circle No 365


# TEXAS INSTRUMENTS REPORTS ON MEMORY MANAGEMENT 

## IN THE ERA OF

## MegaChip

## Memory-management ICsfrom you bring memory arrays up to



Memory systems are a prime area for significant improvements in overall system throughput. Read how Tl's memorymanagement ICs can get you in and out of memory faster no matter which processor you choose.

You can now solve a problem whose solution has eluded design engi neers for years: How to catch memory speeds up to CPU speeds. The solutio lies with TI's advanced memorymanagement circuits, and you can use them with whichever processor best suits your application.

# Texas Instruments can help processor speeds. 



A universal architecture enables these TI devices to work with - and enhance - virtually any high-speed microprocessor or bus structure, even custom engines.

In addition, your component count is cut because these are single-chip VLSI circuits. Your design time and effort are shorter and easier because of

TI's comprehensive Memory Management Design Kit (see page 4).

## TI addresses your major memory-design concerns

To immediately improve memory-access time, use both main and cache memories, as shown in the block diagram. This approach can produce up to a 3X increase in system performance.
Frequently accessed data and instructions are stored in a few high-speed static random-access memories and "tagged" by a TI industry-standard cache controller (SN74ACT2151/4). These $2 \mathrm{~K} \times 8$ CMOS controllers are the fastest available and can support deep cache architectures of 16 K or even 32 K .

## TI's MegaChip Technologies

Our emphasis on volume manufacturing of high-density circuits is the catalyst for ongoing advances in how we design, process, and manufacture semiconductors and in how we serve our customers. These are our MegaChip ${ }^{\text {TM }}$ Technologies. They are the means by which we can help you and your company get to market faster with better, more competitive products.
tions on chip to improve flexibility and speed and to allow for custom timing routines. This controller supports nibble- and page-mode access and scrubbing-mode refresh to increase memory output.


High-speed memories can be designed with less effort and implemented more cost-effectively by using TI's family of universal memory-management ICs. These devices, all of which are contained in TI's Memory Management Design Kit, will work with and enhance almost any high-speed processor.

This scheme is cost-effective because slower, less expensive dynamic randomaccess memories (DRAMs) can be used for main memory.

When you must assure system integrity, use of an error-detection-and-correction (EDAC) circuit can improve system reliability 500 -fold. Since this approach is necessary with memory arrays larger than half a million bits, TI offers its leadership 32-bit EDAC.

The SN74AS632 detects dual-bit errors and detects and corrects single-bit errors while avoiding processor wait states. And at 25 ns for error detection, it meets your high-performance needs.

Interfacing between processor and main memory gets tougher as speeds increase. But TI has the SN74ALS6301 DRAM timing controller. It can handle any DRAM up to 1 Mbit and incorporates only the essential func-

Soon to come: An ASIC (applicationspecific integrated circuit) solution.

Reducing over/undershoot is accomplished by TI's 2000 Series buffers and drivers - 25 -ohm series-damping resistors on the output prevent false reads at DRAM input. For example, the SN74BCT2828 driver can reduce undershoot by $40 \%$ compared to traditional approaches. TI's 2000 Series has a high-drive current suitable for VME and MULTIBUS ${ }^{\circledR}$ II bus structures.

You can use any or all of TI's memory-management ICs to obtain the superior performance that marks a market winner. And there's no design rule that says your memory-management chips and your CPU have to come from the same supplier.

Turn page for more information.

# The tools you need to design a high-performance memorymanagement system are between these 

## covers:

At $\$ 149$, the value of TI's Design Kit far outweighs its cost. In one compact file, we've included just about everything you'll need to bring your memory array up to speed. Everything, that is, except your imagination in creating your own unique product differentiators. Here's what you get:

- All necessary high-performance ICs, including
-SN74ACT2154 2K $\times 8$ Cache Address Comparator
—SN74AS632 32-bit EDAC
—SN74ALS6301 16K to 1 Mbit DRAM Controller
-SN74BCT2828 10-bit Buffer/ Driver with series-damping resistor
—TIBPAL16R8-10 and TIB82S105B High-speed Programmable-logic Devices for user-defined timing control
—TMS4464 256K DRAM
- Memory Management Applications Handbook containing applications reports and briefs that supply valuable insights into memory-management system design.
- Data sheets on TI circuits designed for efficient memory management.
- Memory-management-product software graphic-symbol libraries and supporting documentation for use with Futurenet ${ }^{\text {TM }}$ or Mentor Graphics ${ }^{\text {TM }}$ CAE systems.
For more information on TI's Memory Management Design Kit, call 1-800-232-3200, ext. 3203, or contact your nearest TI field sales office or authorized distributor.

Texas Instruments Incorporated
SDVø63ED80øC P.O. Box 809066

Dallas, Texas 75380-9066
YES, please send me more details on TI's universal memorymanagement ICs.


[^23]


## POWER SUPPLIES

- Feature 90,000-hour MTBF
- Offer $80 W$ of continuous output power

The four SP1-80 Series 80 W switching power supplies feature singleended forward converter topologies and operate at a $45-\mathrm{kHz}$ switching frequency to achieve a 90,000 -hour MTBF. The various models offer 5, 12,15 , and 24 V dc outputs. The supplies have a $70 \%$ min efficiency and feature circuitry that provides indefinite protection against short circuits on the output and that automatically recovers upon removal of
the short. The line and load regulation spec at 0.1 and $0.5 \%$, respectively. The devices' supply outputs are adjustable over a $\pm 10 \%$ range. Their hold-up time equals 16 msec and their output ripple measures $1 \%$. All models feature soft-start capability and power-good indicators. Optional features include a VDE-compatible B-input filter, a power-failure monitor, and a metal enclosure. $\$ 139$. Delivery, stock to eight weeks ARO.

Power General, Box 189, Canton, MA 02021. Phone (617) 828-6216. TWX 710-348-0200.

Circle No 366


## LCD MODULE

- Offers back lighting
- Controller includes display RAM, character-generator ROM
The AND673JO includes an LED that provides yellow backlighting
and an LCD that features a 16 character $\times 1$-row display. It features a cursor and $3.1 \times 5.76-\mathrm{mm}$, $5 \times 7$ dot-matrix font. The module has a built-in controller that includes display RAM and charactergenerator ROM. The module's dimensions are $80 \times 36 \times 16 \mathrm{~mm}$. The supply voltage requirements are 5 V for the LCD and 4 V (at 125 mA $\max$ ) for the LED back light. $\$ 25$ (100).

AND Corp, 770 Airport Blvd, Burlingame, CA 94010. Phone (415) 347-9916.

Circle No 367

## LED ARRAYS

- Save assembly time
- Come in green, red, or yellow

Featuring a tab on the bottom of their housings to improve positioning and alignment, these T-1 LED arrays are suited to right-angle mounting on pe boards. You can obtain them in blocks of $1,2,4,8$, and 16 to save assembly time. The LEDs come in red, green, or yellow, and they feature tinned terminals to improve the reliability of soldered contacts. No hardware is required to mount the assemblies. The units are compatible with automatic insertion and cleaning processes. From $\$ 0.50$.

Elma Electronic Inc, 41440 Christy St, Fremont, CA 94538. Phone (415) 656-3400.

Circle No 368

## HEAT SENSOR

- Reacts to heat from the human body
- Features a buffered digital output
The IR1000 digital sensor module outputs a logic signal when a person moves into its field of view. A reference input allows you to adjust sensitivity and vary the sensing range. The module operates in daylight and responds to changes in infrared radiation in the range of 8 to $14 \mu \mathrm{~m}$. To provide noise immunity, the module rejects signal fluctuations outside the range of 01 . to 10 Hz . The digital output can drive either TTL- or CMOS-type devices. The output is buffered and provides $\pm 150 \mathrm{~mA}$. The module also provides an analog representation of the received infrared radiation for measurement applications. $\$ 25$ (100).

Infrared Inc, Box 47, Parlin, NJ 08859. Phone (201) 721-7160.

Circle No 369


VECTRON LABORATORIES, INC.
166 Glover Avenue. Norwalk, CT 06850
203/853-4433. TWX: 710/468-3796


MOSFETs

- Surface-mountable devices
- Switching speed specs at 1 nsec

The DE-275 Series power MOSFETs have switching speeds of 1 nsec and average power ratings of 1 to 5 kW at pulse recurrence rates in excess of 10 MHz . The line includes P- and N-channel devices with 100 and 200 V drain to source break-down-voltage ratings and N -channel units with 500,800 , and 1000 V ratings. The devices use a ceramic substrate with a thermal coefficient close to that of silicon, so the die are somewhat protected from uneven expansion and contraction. The thermal impedance from junction to heat sink equals $0.4^{\circ} \mathrm{C} / \mathrm{W}$. All DE Series devices are surface mountable. From $\$ 135$.

Directed Energy, 344 E Foothills Parkway, Fort Collins, CO 80626. Phone (303) 226-6138.

Circle No 370

## OPTICAL LINKS

- Meet Tempest specifications
- Feature 2-km transmission capability

These transparent, full-duplex fi-ber-optic communications links are suitable for interface extensions. The Microll10T furnishes DCE (data communications equipment) compatibility at the terminal or CPU end of the link; the Microl120T provides DTE (data terminal equipment) compatibility at the modem end. Both modules meet Tempest specifications and feature SMAcompatible connectors. The link transmission capability ranges to 2 km at data rates of 76.8 k bps in
synchronous or asynchronous mode. The data, receive/transmit clock, and control signals simultaneously pass through the link from DTE to DCE. The modules fully support the standard interface control-signals associated with the RS-232C and MIL-STD-188C standards. $\$ 385$ per end.

Versitron Inc, 6310 Chillum Pl NW, Washington, DC 20011. Phone (202) 722-8600.

Circle No 371

## IF AMPLIFIERS

- Feature 70 dB typ IF gains
- Handle rugged military environments

Models ICE2104 and ICEVT2104 linear IF amplifiers have a $4-\mathrm{MHz}$ bandwidth centered at 21 MHz . The ICE unit has a single IF output, whereas the ICEVT provides IF and video outputs. Both amplifiers have $50 \Omega$-input and -output impedances, and noise figures of 4 dB max. The ICE model features typical IF gains of 70 dB ; the ICEVT typically generates IF and video I/O gains of 80 dB . Both amplifiers are suitable for rugged military environments. They weigh 3 oz and come in machined aluminum $3.53 \times 1.5 \times 9.48$-in. packages. Each amplifier draws approximately 100 mA at 12 V dc. ICE2104, $\$ 795$; ICEVT2104, $\$ 935$. Delivery, 90 days ARO.

RHG Electronics Laboratory Inc, 161 E Industry Ct, Deer Park, NY 11729. Phone (516) 242-1100. TWX 510-227-6083.

Circle No 372

## TOUCHSCREEN

- 100 point/in. resolution
- Comes with controller and menu-driven software

The pressure-sensitive IntelliTouch Trace screen uses two small transducers to send very short bursts of acoustic waves along the horizontal

# Since RTE bought Mallory's Aluminum Electrolytics, they've put their money where their mouth is. 



## Announcing the latest, largest investment in this dynamic product line: our new Aerovox M plant - over 50\% bigger \& just across the street!

When RTE bought Mallory's aluminum electrolytic capacitor line last year, priority \#1 was to retain the quality and respect this fine product line al ready enjoyed by retaining the same facility and skilled work force. However, they immediately began building for a bigger future with new management appointments plus major improvements like key equipment upgrades, in-house CAD-assisted engineering, and a computerized order entry/customer service system. Also, field sales was assigned to the service-driven rep and distributor organization of Aerovox Inc., another RTE company and a world-leader in AC capacitors.

But for the ambitious future RTE envisioned for this vital product line, we needed more room - fast! Available land across the street from the original Mallory plant allowed us to build - then move - without losing production or a single skilled worker!

Our new plant has been shipping product for over two months, with improvements in yields and quality already evident. So now our big news is about completing another giant step on our way to becoming \#1 in aluminum electrolytics. For your next cap requirement, call your Aerovox rep or us, and see for yourself what a difference a full commitment to excellence can make in a product line that was outstanding to begin with!


Send for a set of technical bulletins today


Shooting for the moon?
Our rotary switches have been there and back. And on almost every NASA project since the space program began.
We make everything from microminiature rotary selector switches to totally enclosed explosion-proof power selector switches, for major aifframe and aerospace contractors all over the globe.
And, if we don't have what you need, we can design and custom build a switch to your exact specifications.
Even if they're out of this world.
P.0. Box 3038, 3111 Winona Avenue Burbank, CA 91504 (818) 846-1800 TWX 910-498-2701 FAX (818) 842-3396

## COMPONENTS \& POWER SUPPLIES

and vertical edges of the screen. As each burst travels along the edge of the glass, a reflective array diverts a small fraction of the incident energy across the glass screen. A mir-ror-image array receives these wavelets and sends them to two receiving transducers. The transducers generate electrical signals and send them to the controller. Depending on the controller used, the screen resolution can range as high as 100 points $/ \mathrm{in}$. The screen is available with either RS-232C or bus controllers as well as menudriven, general-purpose application software. The screen is available in 5 - to 19 -in. displays. For a screen with a cable and a controller, from $\$ 400$ (OEM qty).

Elographics Inc, 105 Randolph Rd, Oak Ridge, TN 37830. Phone (615) 482-4100. TLX 350348.

Circle No 373


## LED

- Emits the majority of its light output laterally
- Suitable for wide-area illumination of displays
Suitable for the illumination of large-area displays, Argus $3-\mathrm{mm}$ LEDs have a special lens that emits only $20 \%$ of the LED's light output in a forward direction-the remaining light output is emitted laterally. The LEDs are available in red, yellow, or green. under the model numbers LS-K380, LY-K380, and LG-K380 respectively. For optimal

2-dimensional lighting, the manufacturer recommends that you mount the LED in the center of a conical reflector and cover it with a diffuser. The reflector should have a reflection coefficient of more than $90 \%$. You can get good results by using Procan-B7375 thermoplastic polyester. $\$ 0.15$ to $\$ 0.20(25,000)$.
Siemens AG, Zentralstelle für Information, Postfach 103, 8000 Mu nich 1, West Germany. Phone (089) 2340. TLX 5210025.

Circle No 374
Siemens, Opto Div, 19000 Homestead Rd, Cupertino, CA 95014. Phone (408) 257-7910. TWX 910-338-0022.

Circle No 375


## DIP SWITCHES

- 10,000-cycle switching life
- Available in shorting and nonshorting versions
Available with BCD, hexadecimal, and Gray-coded outputs, Series 07 DIP switches come in shorting/ nonshorting, horizontal-/verticalmount versions. The devices feature either screwdriver or shaft-type actuation options, and they are hermetically sealed and washable. The contacts can switch 0.2 A at 50 V max. The switches have a lifetime of 10,000 switching cycles, and the operating range specs at -40 to $+85^{\circ}$ C. From $\$ 3.50$ (100).
Elma Electronic Inc, 41440 Christy St, Fremont, CA 94538. Phone (415) 656-3400.

Circle No 376

## COMPONENTS \& POWER SUPPLIES



## SUPPRESSOR

- Handles 300A surge currents - -40 to $+85^{\circ} \mathrm{C}$ operating range

The SGT23B13 transient surge protector can handle 300A peak surge currents. It features two monolithic compound structures-each consists of a thyristor whose gate contains a special diffused section that acts as a zener diode. The sections are connected in antiparallel to provide bidirectional protection in a single 2-lead, modified TO-202 package. In the forward-blocking mode, the SGT23B13's high-impedance, low-leakage off-state condition minimizes loading of the telecommunications line. Its operating range spans -40 to $+85^{\circ} \mathrm{C}$. $\$ 1.24$ (1000).
GE Solid State, Route 202, Somerville, NJ 08876. Phone (201) 6856456.

## INQUIRE DIRECT



DELAY LINES

- Feature 2- to 112-nsec delays
- 20-nsec maximum rise times

The EPA087 Series screwdriver-adjustable delay lines cover a 2 - to 112 -nsec delay range and are available with 50,75 , or $100 \Omega$ characteristic impedance. The eight delay ranges for each impedance level measure from 2 to 12 through 12 to

112 nsec . The output rise times (from the 10 to $80 \%$ points) vary with the variable delay range and spec at 2.5 nsec for a 2 - to 12 -nsec delay line to 20 nsec for the 12 - to 112 -nsec units. For a $100 \Omega$, 2- to 12-nsec line, $\$ 20$ (1000). Delivery, stock to six weeks ARO.
PCA Electronics Inc, 16799 Schoenborn St, Sepulveda, CA 91343. Phone (818) 892-0761.

Circle No 378

## DRIVER/CONTROLLER

- Accommodates 600M-bps data rates
- Slow start/stop circuitry for laser protection

The LDC 600 laser driver/controller can drive and control compatible laser diodes at 600 M bps. It maintains preset optical power while providing a current source for regulating a thermoelectric cooler/heater. The $1.5 \times 2-\mathrm{in}$. module readily mounts on standard pe boards. The unit features bandgap referenced current sources that allow it to maintain all parameters over the full operating range. This feature simplifies the system-design process by eliminating variations in forward current, drive level, and automatic laser-power control. Slow start/stop circuitry guards laser systems from damage that can occur when power is suddenly turned on or off. The module features $50 \Omega$ differential ECL inputs. $\$ 349$.
Tektronix Inc, Electro-Optic Components Group, Box 500, Beaverton, OR 97077. Phone (503) 627-4220.

Circle No 379

## POWER SUPPLIES

- Provide four outputs
- Feature international input capability
The four SQM Series quad-output, open-frame switching power supplies provide outputs of 150 to

Because you're thinking fast... count on us for the speed you need.

## Now, 19ns settling op amps that survive saturations and shorts

Comlinear's two new high-speed op amps bring you built-in protection against saturation. Plus simple shortcircuit protection. That means easy solutions for fast input and output amplifiers in systems where signal level or load can't be controlled.

## use as little as $\mathbf{5 7 m W}$...

Our new 170MHz CLC205 offers fast dynamic performance and power consumption down to 57 mW (with $\pm 5 \mathrm{~V}$ supplies). A settling time of 24 ns to $0.05 \%$ is complemented by the drive performance of a $\pm 12 \mathrm{~V}$ output swing and $\pm 50 \mathrm{~mA}$ output current.

## or drive up to $\pm 100 \mathrm{~mA}$.

For higher drive, call for our 180MHz CLC206 which will drive up to $\pm 100 \mathrm{~mA}$ and settle in just 19 ns (to $0.1 \%$ ). It is coupled with a high slew rate of $3400 \mathrm{~V} / \mu \mathrm{s}$ and delivers a largesignal bandwidth of 70 MHz at $20 \mathrm{~V}_{\mathrm{pp}}$.

Both of these new op amps give you saturation and short-circuit protection plus tested and guaranteed performance at half the price of other high-speed amps. Now you can be safe at high speed.


CIRCLE NO 19

## TlComlinear - Corporation Solutions with speed 4800 Wheaton Drive Fort Collins, Colorado 80525 (303) 226-0500



350 W . The 5 V main outputs have current ratings of 20 to 50 A ; auxiliary outputs of $5,12,15$, and 24 V have current ratings of 16 A max. The supplies' standard features include international input capability, builtin line filtering, overload and overvoltage protection, and remotesense and overtemperature-shutdown capability. Options include RFI/EMI covers, power-failure-detection circuitry, and power-valid signals. $\$ 239$ to $\$ 379$.

Switching Systems International, Box 1599, Placentia, CA 92670. Phone (714) 996-0909.

Circle No 380

## SWITCH-MODE SUPPLIES

- Provide 600 W of output power at 12, 15, 24, or 50 V
- Can be paralleled for greater output power
The SMS600 series of single-output fan-cooled switch-mode power supplies provide output power of 600 W and are available with nominal output voltages of $12,15,24$, or 50 V . The 12 and 15 V outputs are covered by a single model, which features a potentiometer for output selection. The 24 and 50 V versions have a potentiometer, which gives you approximately $\pm 10 \%$ control over the output voltage. The line regulation is specified at less than $0.25 \%$ for a $\pm 15 \%$ change in the input voltage, and the load regulation is better than $0.5 \%$ for a 10 to $100 \%$ load change. The power supplies have an $80 \%$ efficiency at normal operating loads. The supplies' standard features include remote output sens-

ing, and signals that indicate that the device is fully operational and that warn of power or output-fan failure. The output is protected against overcurrent and overvoltage conditions. The supplies meet major safety and RFI standards. £275 (100).

Weir Electronics Ltd, Durban Rd, Bognor Regis, Sussex PO22 9RW, UK. Phone (0243) 865991. TLX 86543.

Circle No 381
Weir Inc, 418 3rd St, Annapolis, MD 21403. Phone (301) 268-0122. TWX 510-600-7370.

Circle No 382


[^24]CIRCLE NO 20
CIRCLE NO 21

## CAE for



## EECO Introduces the World's Toughest Fully Sealed Coded Switch.

Tough enough to meet any challenge fire, ice or anything in between.

We designed the features of this new generation coded rotary switch around your needs . . .

- $-65^{\circ}$ to $+125^{\circ} \mathrm{C}$ temperature range
- Only top and bottom sealed switch of its size
- Military grade quality at commercial prices
- Unique dual detent locks
- Easy single-throw actuation
- Large top and side reading characters
- Wide selection of numeric codes

This top performer comes to you from the pioneer of coded rotary switch technology.

With all the benefits you've learned to expect from EECO. Like on-time delivery, better than competitive pricing, lifetime warranty.
For your free evaluation unit, just fill out and mail the coupon. Then get ready to meet the hot new switch that freezes out the toughest competition.

Model 2700 Coded Rotary Switch Actual Size


## MONITOR SYSTEM

- Uses phone lines to warn of possible facility damage
- Dials as many as four phone numbers

The Model 1100 Sensaphone system is a monitoring system for remote or unattended facilities. A proprietary voice synthesizer delivers a warning message in English over phone lines if a condition exists that will damage the facility. In the event of an alert condition, the system will dial as many as four phone numbers in sequence. All built-in sensor functions are selectable and programmable and can sense electrical power, temperature, and sound from a smoke or fire alarm. The device has

four digital alert channels. Its $\mu \mathrm{P}$ can simultaneously monitor as many as seven conditions. The system includes a call-in status-report feature with a programmable listening
time. $\$ 300$.
Phonetics Inc, 101 State Rd, Media, PA 19063. Phone (215) 5658520,

Circle No 383


TRANSPUTER BOARD

- Modules for the IBM PC, PC/XT, and PC/AT
- Seven daughter boards and two mother boards
The TRAM Transputer-modules family consists of seven daughter boards and two mother boards for the IBM PC, PC/XT, PC/AT, and compatible computers. The mother-and-daughter-board concept permits rapid prototyping and evaluation of multi-Transputer systems. The mother board contains rows of socket pins that accommodate daughter boards of varying sizes, and it features a digital switch on a chip, letting you "softwire" networks of Transputers into various
configurations. Physically, the interface comprises a 16 -pin dual-inline socket with a $3.5-\mathrm{in}$. pitch. The smallest daughter board measures $1.05 \times 3.5 \mathrm{in}$. and contains a Transputer with 32 k bytes of static RAM. The largest board contains a Transputer and 1M byte of static RAM. IBM PC mother board, $\$ 1226$; Eurocard mother board, $\$ 1750$; daughter boards, $\$ 584$ to $\$ 7471$.

Inmos Corp, Box 16000 , Colorado Springs, CO 80935. Phone (303) 6304300.

Circle No 384

## ADDRESS GENERATOR

- Uses a custom, 80M-flop CPU to calculate IEEE 32-bit addresses
- Scales images and rectifies spatial distortions

The AddGen MK 11 address-generator board performs image warping to spatially transform points of an image to a target space. The board calculates the address of the points in the target image for the particular space transformation used. It

determines the course and subpixel locations and the magnification factors of the target pixel. It evaluates third-order polynomials at a $10-\mathrm{MHz}$ rate for first- and secondorder equations. The rate equals 5 MHz for third-order equations. The board can also perform depth-perspective transformations. It uses an $80 \mathrm{M}-$ flop CPU to calculate the IEEE 32 -bit, floating-point addresses. You can scale images and rectify spatial distortions in an interactive manner. $\$ 6000$. Delivery, 60 days ARO.

Datacube Inc, 4 Dearborn Rd, Peabody, MA 01960. Phone (617) 535-6644.

Circle No 385

1-800-BELDEN-4

Belden ${ }^{\oplus}$ Heavy-Duty Direct Burial Fiber Optic Cable

Belden ${ }^{\oplus}$ Telecommunications Fiber Optic Cable


## FACSIMILE

- Telephone and facsimile machine speed-dials 32 numbers
- Transmits a business letter in 17 sec

The FaxPhone 20 is a combination telephone and facsimile machine. It can speed-dial as many as 32 numbers ( 16 facsimile and 16 telephone)

## GENTRON'S NEW



- SPECIFICALLY DESIGNED WITH LOW CIRCUIT INDUCTANCE FOR HIGH SPEED SWITCHING TO 5 N.S.
- LOW THERMAL RESISTANCE JUNCTION TO CASE
- CONSTRUCTION YIELDS 2500 VOLTS(RMS) OF ELECTRICAL ISOLATION TO THE HEATSINK
- PACKAGE HAS PRINTED CIRCUIT PINS (OPTIONAL $90^{\circ}$ BEND)


To find out more about Gentron's transistor series, contact:


Gentron Corporation
6667 North Sidney Place, Milwaukee, WI 53209
(414) 351-1660

Telex: 26881
at the touch of a key. It's compatible with the following classes of facsimiles: G3, G2, and 6-minute FM units. It has a $5-\mathrm{pg}$ automatic document feeder and can transmit a page at rates of 17 sec in G3 mode, 3 minutes in G2 mode, and 6 minutes in FM mode. Its document widths range from $5^{7 / 8}$ to $81 / 2 \mathrm{in}$. A 20 -digit, 2-line LCD provides step-by-step prompts and status messages. The unit records and prints out all facsimile use in periodic activity reports, so you always have a complete record of all transmissions and receptions. Its modem speeds range from 2400 to 9600 bps and have automatic fallback. $\$ 1995$.
Canon USA Inc, 1 Canon Plaza, Lake Success, NY 11042. Phone (516) 488-6700.

Circle No 386


## SYSTEM CARD

- Has CPU, memory, and disk controller
- Includes multitasking operating system
The 9500 board for the STD Bus combines many control and communications functions on one board. It features an $8-\mathrm{MHz}$, V25 CPU, which is code compatible with an 8088 ; two RS-232C ports; alphanumeric display and matrix keyboard ports; 24 digital I/O lines; a floppy-disk controller for two disks; an EEPROM programmer; 128k bytes of static RAM; an SBX expansion connector; and interrupt capability from 12 sources. Space for as much as 384 k
bytes of RAM or ROM is available. The card is all CMOS, but can drive CMOS and TTL peripheral cards. A multitasking operating system called STD Basic III is an interactive compiler with a universal set of industrial Basic commands that can manipulate hardware on the card or on other peripheral STD Bus cards. You can program STD Basic like Basic for the IBM PC; 37 of its 160 commands are tailored for the industrial environment. $\$ 695$.

Octagon System Corp, 6510 W 91st Ave, Westminster, CO 80030. Phone (303) 426-8540.

Circle No 387

## VOICE SYSTEM

- Synthesis unit can recognize 200 words
- An 80C88 $\mu$ P manages as much as $1 M$ byte of RAM

The Portable Voice Data Logger (PVDL) is a self-contained batterypowered, data-entry device. It consists of a Telxon Portable Computer (PTC) along with the company's voice-recognition and -synthesis unit. It uses CMOS surface-mount components to minimize size and power requirements. An $80 \mathrm{C} 88 \mu \mathrm{P}$ manages as much as 1 M byte of static RAM. The device features a 64 k -byte operating system, as much as 256 k bytes of EPROM for applications, a real-time clock, multiple interrupts both vectored and polled, a 21 -character $\times 16$-line display, an alphanumeric keypad, a modem, and a wand or a laser bar-code scanner. The voice-recognition and -synthesis subsystem is based on an SC-02/ SSI-263A speech-synthesis IC, having unlimited text-to-speech synthesis capabilities. In addition, the susbsystem can recognize 200 words. The handheld unit withstands shock and vibration, EMI, and RFI. \$3000.

The Voice Connection, 17835 Skypark Circle, Suite C, Irvine, CA 92714. Phone (714) 261-2366.

Circle No 388

## BUS STIMULATOR

- Allows you to generate VME Bus interrupts and bus requests
- Stimulates legal or spurious bus conditions
The CVMEBS1 bus stimulus module allows you to excercise VME Bus-interrupt and bus-arbitration functions by generating bus signals
that are not easily generated by other means. You can also use it to control generation of the VME Bus ACFAIL, SYSRESET, and SYSFAIL signals. By operating pushbuttons on the module's front panel, you can generate a VME Bus interrupt on any one of the VME Bus's seven interrupt levels or generate a bus request on any one of the four

bus-request lines. For interrupts, you can also set the eight LSBs of the STATUS/ID that the module places on the bus during the inter-rupt-acknowledge cycle. During this interrupt-acknowledge cycle, the board simulates a ROAK (release on acknowledge) interrupter. When you activate a bus request, the selected bus-request signal remains active until the board receives a bus grant at the appropriate level -at which point the module asserts BBSY and negates the bus request. In addition to stimulating legal interrupt and bus-request cycles, you
can also generate spurious interrupts or bus requests to test the system's response to ghost conditions. When you generate SYSFAIL, SYSRESET, or ACFAIL signals in normal mode, they are automatically cross coupled to simulate normal VME Bus operation. When the module is operating in its "spurious" mode, you can generate these signals individually. $\$ 2000$.

Concise Technology, 227a Aylesbury Rd, Bierton, Aylesbury, Buckinghamshire HP22 5DS, UK. Phone (0296) 81483. TLX 975646.

Circle No 389

## GRAPHICS PROCESSOR

- Provides Multibus-II systems with $1024 \times 800$-pixel displays
- Incorporates two 82786 graphics processors
The FAB210 is a color-display coprocessor card for Multibus-II systems. It includes an onboard 80286 CPU with 32 k bytes of onboard RAM and 256 k bytes of EPROM, and two 82786 graphics processors that access as much as 4 M bytes of onboard video RAM. In noninterlaced mode, the unit can display images at a maximum resolution of
$1024 \times 800$ pixels. The 8 -bit pixels allow you to display 256 monochrome gray scales, or 256 colors from a palette of 16 M colors via the onboard color look-up table. The 4M bytes of onboard video RAM can store as many as four separate fullresolution images, and you can transfer video information to the video RAM either via the MultibusII iPSB bus or via the board's iLBXII bus interface. The board displays video-camera images and can overlay these images with graphics information. The video output takes place via $75 \Omega$ RGB analog outputs
and two TTL video outputs. From Fr Fr 36,000.
Centralp Automatismes, 16 rue Gabriel Peri, 92120 Montrouge, France. Phone (1) 42533617. TLX 632380.

Circle No 390

## MEMORY BOARD

- Provides 2M bytes of EMS 4.0 memory
- Parity-checked RAM uses 150 nsec, 256 k -bit RAM chips


The BocaRAM/30 memory board for the IBM PS/2 Models 25 and 30 or compatible computers comes with $0 \mathrm{k}, 256 \mathrm{k}, 1 \mathrm{M}$, or 2 M bytes of RAM. Its software drivers support the Lotus/Intel/Microsoft (LIM) expanded memory specification (EMS) version 4.0. The software includes a print

# NAMELY,MAXTOR'S DISTRIBUTORS. 

Great deals, off the shelf deliveries, available now. So call today.

| MAXTOR COMPANIES: |  |
| :---: | :---: |
| STORAGE DIMENSIONS, INC. 408/395-2688 |  |
| U.S. DESIGN CORPORATION 301/577-2880 |  |
| DISTRIBUTORS: |  |
| ALABAMA |  |
| Huntsville | (P) (205) 837-9300 |
| Huntsville | (Q) (205) 830-1881 |
| ARIZONA |  |
| Tempe | (A) (602) 966-6600 |
| CALIFORNIA |  |
| Chatsworth | (A) (818) 700-1000 |
| East Irvine | (A) (714) 768-4444 |
| Sacramento | (A) (916) 922-6800 |
| San Diego | (A) (619) 453-9005 |
| San Jose | (A) (408) 295-4200 |
| COLORADO |  |
| Englewood | (A) (303) 790-4500 |


| CONNECTICUT |  |
| :--- | :--- |
| Norwalk | (P) (203) 853-1515 |
| Meriden | (A) (203) 237-2282 |
| FLORIDA |  |
| Orlando | (P) (305) 834-9090 |
| Ft. Lauderdale (P) (305) 428-8877 |  |
| GEORGIA |  |
| Atlanta | (P) (404) 448-1711 |
| Atlanta | (Q) (404) 449-9508 |
| ILLINOIS |  |
| Chicago | (P) (312) 437-9680 |
| Elk Grove | (A) (312) 640-6066 |
| INDIANA |  |
| Indianapolis | (P) (317) 849-7300 |
| KANSAS |  |
| Kansas City | (P) (913) 492-0500 |
| MARYLAND |  |
| Gaithersburg | (P) (301) 921-0660 |
| Columbia | (A) (301) 995-6640 |


| MASSACHUSETTS |  |
| :--- | :--- |
| Lexington | (P) $(617) 861-9200$ |
| Wilmington | (A) $(617) 657-5170$ |
| Norwood | (S) $(617) 769-3400$ |
| MICHIGAN |  |
| Livonia | (P) (313) 525-1800 |
| Grand Rapids (P) (616) 698-1800 |  |
| MINNESOTA |  |
| Twin Cities | (P) (612) 944-3355 |
| Eden Prairie | (A) (612) 944-5454 |
| MISSOURI |  |
| St. Louis | (P) (314) 432-4350 |
| NEW JERSEY |  |
| Pine Brook | (P) (201) $575-3510$ |
| Fairfield | (A) $(201) 227-7960$ |
| Woodbury | (P) (516) 921-8700 |
| Binghamton | (P) $(607) 722-9300$ |
| Rochester | (P) (716) $381-7070$ |
| Hauppauge | (A) $(516) 273-1660$ |
| N. CAROLINA |  |
| Raleigh | (Q) $(919) 876-7767$ |

N. CAROLINA (continued) UTAH

| Charlotte | (P) (704) 527-8188 |
| :--- | :--- |
| Raleigh | (P) (919) 544-5400 |
| OHIO |  |
| Cleveland | (P) (216) 587-3600 |
| Dayton | (P) (513) 236-9900 |
| OKLAHOMA |  |


| OREGON |  |
| :--- | :--- |
| Beaverton | (A) (503) 643-1114 |
| PENNSYLVANIA |  |
| Pittsburgh | (P) (412) 782-2300 |
| Horsham | (P) (215) 674-4000 |
| Horsham | (A) (215) 443-5150 |
| TEXAS |  |
| Austin | (P) (512) 835-4000 |
| Dallas | (P) (214) 386-7300 |
| Houston | (P) (713) 988-5555 |
| Dallas | (Q) (214) 733-4300 |
| Austin | (Q) (512) 835-0220 |
| Houston | (Q) (713) 240-2255 |

CIRCLE NO 25


CIRCLE NO 26

## DID YOU KNOW?

## EDN is distributed

 at every major electronics/computer show in the U.S., France, and Germany.
## COMPUTERS \& PERIPHERALS

spooler, an installation program, and diagnostics. The LIM version 4.0 expanded memory is compatible with all LIM/EMS version 3.2 memory software. The priority-checked memory is composed of 150 -nsec, 256 k -bit RAM chips. The board measures $13.25 \times 4.2 \mathrm{in}$. and requires 5 V at 1 A typ. 0 k -byte version, $\$ 175$; 256 k -byte version, $\$ 225$; 1 M -byte version, $\$ 345$; 2M-byte version, $\$ 545$.

Boca Research Inc, 6401 Congress Ave, Boca Raton, FL 33487. Phone (305) 997-6627. TLX 990135.

Circle No 391


LAN BOARD

- Utilizes the SMC 9026 VLSI controller for connection to ArcNet
- Provides 2k bytes of dual-ported RAM

The V-ARC02 LAN interface board allows integrators to connect with ArcNet LANs. The board is built around the SMC 9026 VLSI controller and functions as an intelligent slave in a VME Bus system. It implements the J1 interface of the VME specification Rec C1. The interrupt level, interrupt vector, and base-address addressing range are jumper selectable. The board has 2 k bytes of dual-ported RAM, which provide four 512 -byte packet buffers. The board uses industry-standard ArcNet cable transceivers. The unit connects to the network cable either by a BNC connector on its front panel or via a coaxial lead to a connector on its chassis. $\$ 1590$.

Comendec Ltd, C\&C Marketing, Box 280, Batavia, IL 60510. Phone (312) 879-7003.

Circle No 392

## NEW PRODUCTS

## CAE \& SOFTWARE DEVELOPMENT TOOLS



## SCHEMATIC CAPTURE

- Lets you design pe boards and PLDs
- Library includes more than 2000 standard parts
CapFast CF1000 is an entry-level schematic-design software package that runs on the IBM PC, PC/AT, PS/2, and compatibles. The package includes a schematic editor, a symbol editor, a symbol library, netlist extractors, a parts-list program, and a plotting utility. The symbol library contains more than 2000
standard parts in IEEE and ANSI formats. You can create an unlimited number of hierarchy levels and perform multipage schematic editing at any level. Other features include flexible property editing, automatic checking of the electrical design rules, split-screen capability, dynamic panning, and keyboard macros. To run the package, your computer must have an IBM EGA or a compatible display board. $\$ 395$.

Phase Three Logic Inc, Box 985, Hillsboro, OR 97123. Phone (503) 640-2422.

Circle No 412

## DATA ANALYSIS

- Lets you acquire, manipulate, and plot data
- Allows plotting of 10 dependent variables simultaneously
KaleidaGraph is a data-analysis program for the Macintosh PC. You can acquire data from a spreadsheet program such as Excel or from a host computer with the aid of a communications program. The datamanipulation functions include statistical functions, least square re-
gression, and linear/normal probability functions. You can save your plots as KaleidaGraph, Pict, or MacPaint documents, or direct the output to a laser printer. A built-in calculator provides the ability to execute programs with as many as 1000 steps, has 100 memory registers, and provides standard scientif-ic-calculator functions. $\$ 179$.

Peripherals Computers \& Supplies Inc, 2457 Perkiomen Ave, Reading, PA 19606. Phone (215) 7790522.

Circle No 413

## COMPONENT LIBRARY

- Includes symbols for PC/AT chip sets
- Works with P-CAD CAE system

LIB-2 is a component library that contains symbols and part characteristics for the PC/AT chip sets from Chips \& Technologies, Inc (Milpitas, CA). You can use the library with the vendor's P-CAD CAE system. The library and CAE system help you design and lay out PC/ATcompatible products. $\$ 450$.

Personal CAD Systems Inc, 1290 Parkmoor Ave, San Jose, CA 95126. Phone (800) 523-5207; in CA, (800) 628-8748. TLX 3717199

Circle No 414

## COMPARATOR

- Compares outputs of digital simulation runs
- Reports all differences between runs
SimCompare can compare the outputs of any simulators, regardless of the host machines on which the simulations were run. You can ask the program to report on all differences between the runs, and you can also specify the parameters that interest you and request a report only, for example, on glitches longer than 100 nsec, or on transitions that violate the setup-time rules for the receiving device. You can also specify reporting limits that will help you evaluate best- and worst-case simulation results. The program is particularly useful for comparing your own simulation of an ASIC with the simulation run by the foundry that manufactures the device. The program runs on Apollo computers. $\$ 8000$.

Logic Automation Inc, 19500 NW Gibbs Dr, Beaverton, OR 97006. Phone (503) 690-6900.

Circle No 415

## REAL-TIME ADA

- Lets you develop real-time software for embedded computers
- Provides real-time, multitasking, run-time kernels
The RTAda Runtime System consists of several integrated modules that achieve the functionality, high performance, and predictable response necessary for real-time embedded applications. The kernel, ARTX, provides the Ada tasking model; system facilities such as queues, event flags, semaphores, and mailboxes; and explicit taskingcontrol mechanisms. The cross-development tools include validated Ada self-hosted and crosscompilers, a source-level debugger, a global optimizer, language tools, and downloading tools. Depending on host machine and target, from $\$ 4000$ to $\$ 70,000$.

Ready Systems, 449 Sherman Ave, Palo Alto, CA 94306. Phone (415) 326-2950.

## Circle No 393

## FAX PACKAGE

- Lets IBM PCs send and receive fax messages
- Has an optical-character-recognition option
The PC-Fax package allows you to use an IBM PC/XT, PC/AT, or a compatible computer to send fax messages to, or receive them from, an International Group III fax machine. Alternatively, you can use it to send telex messages or electronic mail. The package can transmit or receive any word-processing document, desk-top-publishing image, or paint-box-system image. You can generate input from the PC's memory or keyboard, from an optional digitizer tablet, or from a hard-copy scanner or fax machine. The fax software can capture and transmit drawings generated by CAD packages. When operating in the normal mode, the package provides $202 \times 98$-pixel resolution; when oper-
ating in the fine mode, it provides $204 \times 196$-pixel resolution. The basic software operates in accordance with International Group III CCITT fax standards, and you can upgrade it to Group IV. The transmission software includes a directory of fax numbers, as well as automatic dialing and redialing facilities. You can program the software to transmit messages during "cheaprate" periods and to poll other fax or communications systems to determine if there are any fax messages programmed for transmission to your PC's number. The PC can receive fax messages while you're using it for other tasks. The software automatically saves incoming fax messages to disk, and it informs you of their receipt by audio and video prompts. You can then recall messages to the PC's screen and zoom in on them to examine details, or you can output them to a printer or plotter. PC-Fax package, including telephone-line interface hardware, $£ 750$; optical-character-recognition package, £295.

Softech Professional Systems Ltd, 9 Tonbridge Chambers, Pembury Rd, Tonbridge, Kent TN9 2HZ, UK. Phone (0732) 362688.

Circle No 394

## 80386 DEBUGGER

- Provides real-time breakpoints in software
- Can work with CodeView and Symdeb debuggers

Soft-ICE is a software-based debugging tool for program development under PC-DOS or MS-DOS. It takes full advantage of the 80386 architecture and provides a range of capabilities more commonly associated with hardware debuggers. The debugging tool runs entirely in extended memory, so that the target program has the full 640 k bytes of main memory available to it. The debugger allows you to set realtime, hardware-level breakpoints for trigger by I/O port accesses, by
interrupts, by reads or writes to specific memory locations or address ranges, or by conditions arising from the target program's execution. The debugging tool traps invalid operation codes and general protection violations that occur during the debugging of the target program. It runs in 80386 protected mode, so a runaway program can't overwrite it. To run the debugger, you need an IBM PS/2 Model 80, an 80386-based IBM PC/AT or compatible machine, or a computer with an 80386 coprocessor card, and your system must possess a Hercules monochrome-display adapter or IBM MDA; an IBM CGA, EGA, or VGA board; or a compatible. $\$ 386$.
Nu-Mega Technologies, Box 7607, Nashua, NH 03060. Phone (603) 888-2386.

Circle No 395

## C CROSSCOMPILER

- Provides all Kernighan and Ritchie features of the language
- Compiles to assembly language for the DSP56000 family

The DSP56KCC is a C crosscompiler that runs on IBM PCs and compatibles, Sun workstations, and VAX/VMS or VAX/Unix machines. The vendor will offer a Macintosh II version soon. The compiler generates assembly-language code for the vendor's DSP56000 family of digital signal processors; you can assemble and link the assembly-language code with the vendor's DSP56000CLAS cross-development tools. The preprocessor performs macro expansion, conditional compilation, and file inclusion. An incre-mental-compilation feature lets you optimize time-critical sections of your DSP code. MS-DOS version, \$709; Unix and VMS versions, $\$ 4709$.

Motorola Inc, Technical Info Center, Box 52073, Phoenix, AZ 85072. Phone (512) 440-2030.

Circle No 396

## DIGELEC PROUDLY PRESENTS

# A Logic Programmer that really performs and the whole show is yours for only \$2795* 






20, 24, 28 PIN IFLS PLS 100-179

## NATIONAL

20, 24 PIN PLDS A, B VERSIONS
MMI
20,24 PIN PLDS
C22V10, 32VX10
A, B, C, D VERSIONS

AMD
20, 24 PIN PLDS
2358, 22V10
2971, 29PL141

TI
20, 24 PIN PLDS
B, C VERSIONS

CYPRESS
20, 24 PIN PLDS 20G10, 22V10 EPLD, PLD

ICT/GOULD 18CV8 EEPLD

VTI
16V8, 20 V 8 EEPLDS


OVER 200
PLDS WITHOUT ADAPTER

## FUTURE

DEVICES AND TECHNOLOGIES



## RICOH



## SUPPORTS

20 TO 68 PIN
PLCC PACKAGES

## JEDEC FORMAT

SUPPORT

## SOFTPACK

EASY REPLACEABLE PLUG-IN FIRMWARE

LOGILINK
FOR PC REMOTE CONTROL

## TEST \& MEASUREMENT INSTRUMENTS



## DIGITAL PANEL METERS

- 34 models measure and control many variables
- Most models fit $1 / 8$ DIN enclosures

A+ Series digital panel meters comprise 34 models. Most of the meters come in $1 / 8$ DIN cases, though the vendor will provide the meters uncased for OEM applications. The se-
ries includes $31 / 2$ - and $41 / 2$-digit ac and dc voltage and current meters with scalable inputs; meter relays; process, temperature, and BCD monitors; a 6 -digit counter; and several microprocessor-based instruments. $\$ 50$ to $\$ 900$.

Triplett Corp, 1 Triplett Dr, Bluffton, OH 45817. Phone (419) 358-5015.

## Circle No 397



## SIGNAL GENERATOR

- Covers 10 kHz to 1 GHz
- Provides $13-d B m$ output

The 2022C signal generator covers a frequency range of 10 kHz to 1 GHz and provides a $13-\mathrm{dBm}$ output level. The unit includes both an internal modulation source and an external frequency-modulation input. You can use the internal source and the external input simultaneously to achieve composite modulation wave-
forms. When operating below 100 MHz , the unit specs a $10-\mathrm{Hz}$ frequency resolution; when operating at or above 100 MHz , it has $100-\mathrm{Hz}$ resolution. A standard IEEE-488 interface facilitates calibration. $\$ 4989$. Delivery, four to six weeks ARO.

Marconi Instruments, 3 Pearl Ct, Allendale, NJ 07401. Phone (201) 934-9050.

Circle No 398

## SYNTHESIZER

- Provides output frequency resolution of $1 \mu \mathrm{~Hz}$
- Holds spurious outputs below $-100 \mathrm{dBc}$
When you supply a 5 - or $10-\mathrm{MHz}$ input to the 3031B reference-frequency synthesizer, it produces an output whose frequency differs
from that of the input by a programmable amount of $\pm 4 \mathrm{kHz}$ max. If you use a $5-\mathrm{MHz}$ input, you can control the frequency offset with a resolution of $1 \mu \mathrm{~Hz}$; if you use a $10-\mathrm{MHz}$ input, the resolution equals $2 \mu \mathrm{~Hz}$. With a $100-\mathrm{Hz}$ offset, phase noise is -145 dBc . The device features spurious outputs of -100 dBc . You can specify IEEE-488, BCDTTL, front-panel, or analog-voltage frequency control. $\$ 14,950$. Delivery, 12 weeks ARO.

Pentek Inc, 10 Volvo Dr, Rockleigh, NJ 07647. Phone (201) 7677100.

Circle No 399


## PULSE GENERATOR

- Produces pulses at rates from 25 to 250 MHz
- Holds rise and fall times to 100 psec
The Model AVNN-1-C pulse generator produces output pulses at repetition rates from 25 to 250 MHz , with a duty factor that you can vary from 30 to $70 \%$. The rise time is 100 psec. Using single-turn controls, you can set the peak-to-peak output amplitude as high as 5 V and add an optional, internally generated dc offset. This combination of capabilities enables the unit to drive ECL circuits. The generator provides a sync output for scope triggering; furthermore, you can trigger the generator's output by supplying a 0.3 V rms sine wave or a $50 \%$ dutyfactor square wave. Optionally, you can have the vendor equip the instrument so that you can program the output level, pulse width, and dc


## INSTRUMENTS

offset by applying de voltages. The unit is housed in a $4 \times 8 \times 12$-in. enclosure and operates from 110 or $220 \mathrm{~V}, 50-$ or $60-\mathrm{Hz}$ power. $\$ 2493$ to \$2973. Delivery, 60 days ARO.
Avtech Electrosystems Ltd, Box 5120 Station F, Ottawa, Ontario, Canada K2C 3H4. Phone (613) 2265772. TLX 0534591.

Circle No 400


## PROGRAMMER

- Consists of PC bus board and programming pod
- Includes PLDASM assembler and programming software

The Sprint Plus programming system consists of a PC bus card, a 28 -pin programming pod, the PLDASM logic assembler, and programming software. These items allow you to turn logic equations (and unprogrammed CMOS, NMOS, or bipolar PLDs) into programmed devices. In addition to logic devices, the product can handle EPROMs, EEPROMs, and bipolar PROMs. Because the unit resides in the host, it does not usurp a serial port, nor does it require you to download code into the programmer. As the company adds new devices to the unit's library, it will provide updates of the software on floppy disk, but no hardware or firmware modifications are scheduled. The programmer handles PLD data as standard

## NEW POWER. FIMILIR

Three thousand watts. The new 371 handles it easily-without requiring a heat sink. The 371 calculates and displays both DC ( $\mathrm{H}_{\mathrm{FE}}$ ) and small signal ( $\mathrm{H}_{\mathrm{fe}}$ ) beta, and ON resistance. Test power MOSFETS, gate turnoff thyristors, power diodes, insulated gate bipolar transistors and more.
Push-button hardcopy and programmability. The 370 and 371 give you hard-

Get more done with new programmability-standalone or over the GPIB.
Familiar front panel, rugged design. Like the hardworking 576, the new 370 and 371 come with Tek reliability, quality, and support. To learn more, contact your local

| RANGE | 370 | 371 |
| :---: | :---: | :---: |
| Max Peak Vollage | 2000 V | 3000 V |
| Peak Current Pussed | 20 A | 400A |
| Max Peak Power | 220w | 3000w |
| Price | \$17325 | \$19950 | Tek representative, or call 1-800-835-9433, ext. 170.



JEDEC files, and PROM data as standard binary or hex files. Before programming a device, the programmer verifies that it is blank; after programming, it verifies the contents. In addition, if a PLD's JEDEC file includes test vectors, the programmer applies them. $\$ 1795$.

Promac, 800 Airport Rd, Monterey, CA 93940. Phone (408) 3733607. TLX 882141.

Circle No 401


FREQUENCY CONVERTER

- Provides a 3-phase, 400-Hz output
- Has optional remote-control facilities
The MPC-643/682 static frequency converter provides a $400-\mathrm{Hz}, 3-$ phase output with a line-to-line voltage of 160 to 200 V . It requires a $50-\mathrm{Hz}, 380$ to 415 V supply. The converter has overload, overtemperature, and output short-circuit protection. It also has remote voltage sensing and a soft-start facility. Its options include variable output-voltage control (via a front-panel or remote potentiometer) over the 160 to 200 V range, as well as an 8 -bit parallel or IEEE-488 interface for digital control of the output voltage. You can also have meters fitted to monitor each output phase. The con-
verter mounts in a standard 19 -in. rack and has an 18U-high front panel. From $£ 8200$.

Antronics Ltd, Book House, Glebelands Centre, Vincents Lane, Dorking, Surrey RH4 3HW, UK. Phone (0306) 883600. TLX 888941.

Circle No 402


## IEEE-488 CONTROLLERS

- Incorporate coprocessor with HP Basic 5.0 in ROM
- Include 8086- or 80286-based PCs

The HP PC 305 and 308 are turnkey instrument-control systems based on the vendor's Vectra family of MS-DOS-based personal computers. They incorporate a Basic language coprocessor, a plug-in card that in-cludes-in addition to an IEEE-488 interface-a 68000 coprocessor with 512k bytes of RAM separate from the Vectras' system RAM, and ROMs containing the HP Basic 5.0 language. HP Basic is an advanced dialect that supports structured programming constructs and includes a rich set of instrument-control instructions. The coprocessor can utilize system RAM as a RAMdisk. Once you have acquired data from IEEE-488-based instruments connected to the coprocessor card, you can analyze it on the same system with any of the commercially available data-analysis packages that run under MS-DOS on the 8086
or $80286 \mu \mathrm{P}$. $\$ 3895$ to $\$ 6695$, depending on type of display and whether the system includes a hard disk.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 403


## SYNTHESIZERS

- Provide two independent synthesized frequencies
- Reference both outputs to one frequency standard

The PTS 040, 160, 250, and 500 are frequency synthesizers whose model numbers indicate their maximum output frequencies. Each model's primary output, whose frequency you can control from the front panel or via BCD inputs, has a level that you can vary from 3 to 13 dBm . In addition to the primary output, each unit also provides a second $3-\mathrm{dBm}$ frequency-synthesized output, referenced to the same frequency standard as the primary output and remotely programmable in $1-\mathrm{Hz}$ steps from 0.1 to 3.0 MHz . You can choose an oven-stabilized crystal or a temperature-compensated crys$\operatorname{tal}$ (TCXO) as the standard; you can also connect your own 5 - or $10-\mathrm{MHz}$ frequency reference. Each synthesizer features phase-continuous frequency switching. On the primary output, frequency switching occurs within 5 to $20 \mu \mathrm{sec}$ of the command; on the secondary output, it occurs within $1 \mu \mathrm{sec} .160-\mathrm{MHz}$ unit with TCXO, \$5400.

Programmed Test Sources Inc, Box 517, Littleton, MA 01460. Phone (617) 486-3008.

Circle No 404

This advertising is for new and current products．

## Please circle Reader Service number for additional information from manufacturers．

## S．I．TECH F／O BIT－DRIVERS IBM PC／XT／AT COMPATIBLE with Diagnostic Software

Model 2320 I and II Bit－Drivers are board－level communications products with single or dual RS－232 full duplex channels．They connect and operate inside any IBM PC／XT／AT or similar computer systems，as well as personal computers．No need for RS－232 cables and external modem devices．Plus you＇ll get diag－ nostic software to help you bring your fiber optic communications channel on－line．Data rates up to 19.2 KBps ；distance to $15,000 \mathrm{ft}$ ． （ 5 km ）．Small size，light weight and EMI／RFI problem－free．Status indicators are standard． Volume discounts．For complete Model 2320 specifications，write to：

## S．I．TECH

P．O．Box 609，Geneva，IL 60134
Or call：312／232－8640
CIRCLE NO 325

CY525 3rd generation Stepper Motor Controller most intelligent controller offers linear ramping， 10,000 steps $/ \mathrm{sec}$ ， unlimited stepping，change rate on the fly，read position on the
fly，and
fly，and \％more．
Coses）



## Cy

compatible
40 pin．+5
40 pin，+5 volt
TTL． 8 bit $/ / \mathrm{O}$ inter to ncomputer． $\mathbf{\$ 1 9 5}$ ea $\$ 880 / 10$
Protoryping board available．

Cybernetic MicroSystems
P．O．Box so00，San Gregorio，CA 94074
（415） $796-3000$ Telex： $171-135$ atn：Cyb
415） $776-3000$ Telex： $171-135$ attn：Cyber


IC SOCKETS－8，14，16，18，20，22， $24,28,40,42,48$ contact LCC SOCKET－68 contact PLCC SOCKET－28，32，44，52，68， 84 contact series


Winpoint Electronic Corp． P．O．Box 89．80，Taipei，Taiwan，R．O．C．Office：No．47． Chi－Wei St．San Chung City，Taipei，Taiwan，R．O．C． Tel：（02）986－0208，984－0209
Telex： 34227 WINPOINT Fax： $886-2 \cdot 9838555$
CIRCLE NO 326
68000 COMPUTER PC／XT HARDWARE COMPATIBLE

ミO「
－のOO

－SK＊DOS®OPERATING SYSTEM WITH EDITOR，ASSEMBLER，UTILITIES
－HUMBUG® ${ }^{\text {DEBUG }}$ MONITOR
－ 1 MB ZERO WAIT STATE DRAM
－FDC， $4 \times$ RS－232，PRINTER PORTS
－ 6 PC／XT I／O SLOTS \＆KEYBOARD
PERIPHERAL TECHNOLOGY
1480 TERRELL MILL RD．STE． 870
MARIETTA，GA 30067 404／984－0742


America's most advanced Personal Programmer The Digital Media IQ-280 can program 40 PIN devices. The most advanced firmware controlled pin driver system available means younever have to worry about buying another line offers the power and leatures comparable to many of the $\$ 5.000$ programmers, but at a fraction of the costs. Support for CMOS. NMOS, ECL. Bipolar. PROMs, EPROMs,
eEPROMs, PLDs ePLDs, IFLs, FPLDs, up to 40 pinDIP packages. Altera, AMD, Atmel Cypress, Excel, Fairchild, Fujitsu, GI Hitachi, Hughes, Intel, Lattice, Mitsubishi, Motorola, National NEC, MMI Samsung, Seeq. Sierra. Signetics, SMOS. Whatever your need is. Digital Media can help you solve it. And you won't believe how little it costs.
Call (714) $751-1373$ to receive a complete product specification
package immediately
CIRCLE NO 331


## UNIVERSAL I/O

This board has nine 8 bit parallel I/O ports ( 8255 's) and 16 analog inputs. Each analog input has a $0-5$ volt range, 8 bit resolution 20 Meg . input impedance. Conversion time is 200 us per channel. This board also has interrupt-timer circuitry, prototyping area. A dip switch is used to select the I/O address ( 32 are used). The ports interface via 16 pin ribbon cables. This board uses a full size slot. Order Part number 83-064A at $\$ 229.95$ from

John Bell Engineering, Inc. 400 Oxford Way Belmont, CA. 94002 (415) 592-8411

## 6800/6809 Micro Modules



CIRCLE NO 332


PARALLEL I/O
This board has six 8 bit parallel I/O ports (8255's). A dip switch is used to select the I/O address. The ports interface via 16 pin ribbon cables. This board uses a half size slot. Order Part number 86-108A at $\$ 99.95$ from

John Bell Engineering, Inc. 400 Oxford Way
Belmont, CA. 94002
(415) 592-8411

CIRCLE NO 335


## ADCTelecommunications

4900 West 78th Street, Minneapolis, MN 55435 (612) 893-3010

EPROM PROGRAMMER \$349


THE EP-1'S A GREAT VALUE \& HERE'S WHY:

- READS, PROGRAMS, COPIES OVER 300 EPROMS AND EEPROMS FROM 29 MANUFACTURERS INCLUDING 2716-27513, 2804-28256, 2701 - READS \& WRITES INTEL, MOTOROLA, STRAIGHT HEX AND BINARY -OPTIONAL HEADS PROGRAM INTEL $874 X, 8751,87 C 51,8755$
- MENU-DRIVENCHIP SELECTION BY MFG \& PN: NO MODULES - MENU-DRIVEN CHIP SELECTION BY MFG \& PN: NO MODULES - FAST, SLOW, QUICK PULSE PROGRAMMING ALGORITHMS - SPLIS FLLES BY BASE ADDRESS AND ODD/EVEN (16832 BIT) -5, 12.5, 21, 25 VOLT PROGRAMMING FOR CMOS AND -A SUFFIX PARTS - FREE PCDODS SOFTWARE -RS232 TO ANY COMPUTER - GOLD TEXTOOL ZIF SOCKET
- SAME DAY SHIPMENT
- ONE YEAR WARRANTY
- 8 BAUD RATES TO 38,400
- MONEY GACK GUARANTEE - GWO FREES FRMMWARE UPDATES CALL TODAY FOR MORE INFORMATION

800/225-2102 713/461-9430 TELEX 1561477 10681 HADDINGTON \#190 HOUSTON, TX 77043

CIRCLE NO 333


## ANALOG INPUT

This board has 16 analog inputs. Each input is 8 bit resolution and 0 to 5 volt input range. Space is provided for resistors to change the input voltage range. Conversion time is 200 us per channel. ORDER part \# 87-016A \$99.95

John Bell Engineering, Inc. 400 Oxford Way
Belmont, CA. 94002
(415) 592-8411

CIRCLE NO 336

## SMART CARD EXTENDER EASY ON <br> $\$ 195^{\circ 0}-\mathrm{PC} / \mathrm{XT}$ <br> A mart card exten $\$ 225^{\circ 0}$ - AT PC/XT/AT and compatibles

- Allows card insertion and extraction without power on/ off cycles
- Saves time by eliminating DOS re-boots
- Reduces wear and tear on hard
 disk drives
- Extends host interface for hardware and software development and test
- A single switch controls the connection of all signals to and from the computer bus
- Patent pending


## 30 DAY NO RISK EVALUATION

APPLIED DATA SYSTEMS
9811 Mallard Dr. Suite 203
Laurel, MD 20708
For more information call 800-541-2003

## SCHEMA II Schematic Capture



FREE Demo Disk: 1-800-553-9119 SCHEMA's success is the talk of the CAE industry and thousands of satisfied SCHEMA owners know why. Incredible speed, ease of use, and power have made SCHEMA a best-selling schematic capture program for engineering professionals the world over Now, SCHEMA II is available. SCHEMA II sells for $\$ 495$ and supports most common IBM PC/XT/ AT configurations. Please call today for a free SCHEMA II demo disk. OMATION

CIRCLE NO 340


## PC488

LOW COST PC/XT/AT INTERFACE FOR IEEE-488 (GPIB/HPIB) - includes installable dos device drivers -1OF 6INTERRUPT LEVELS

- 10 OF 2 DMA CHANNELS
- UP TO 4 BOARDS PER COMPUTER
- CONTROLLER / TALKER LIISTENER
- CUSTOM SOFTWARE SUPPORT AVAILABLE
- COMPATIBLE WTTH MOST IEEEA88 SOFTWARE
- OUANTITY DISCOUNTS
visa mc amex
Call today for datasheetll B\&C MICROSYSTEMS

355. West Olive Ave, Sunnyvale, CA 94086 PH: (408) $730-5511$ FAX:'(408)730-5521 TELEX: 984185


CIRCLE NO 341


VOLGEN AMERICA INC:
39650 Liberty Street, Suite 325, Fremont, CA 94538 Phone 415-498-5950 Fax 415-498-5954

CIRCLE NO 344


## Great Designs Start With Tango-Schematic.". Just \$495.

Designs quickly come to life with Tango-Schematic's easy-to-use drawing editor and extensive component libraries. Features four line types, four text sizes, repeat and block functions, unique built-in word processor. Includes DRC, BOM, Wire List, Net List outputs and crisp plots, prints, or laserprints. The perfect front end to our popular Tango-PCB and Tango-Route board design systems.

For IBM PC/XT/AT/PS2. Just \$495. Full-function Demo Package: $\$ 10$. Order toll-free 800 433-7801. VISA/MC. Thirty-day money back guarantee.
ACCEL Technologies, 7358 Trade St., San Diego, CA 92121 Outside N., S. America contact HST Technology (Australia) Phone: 61-02-34-8499 FAX: 61-02-23-8771 CIRCLE NO 347
(E) PROM/(E) PLD MULTIPROGRAMMER ${ }^{\text {m }}$ OFFERS 18/12 PROTECTION PLAN


BYTEK's new 135 is a SET EPROM Programmer, a GANG EPROM Duplicator, \& a UNIVERSAL Device Programmer. Complete stand alone operation via 25 keys, or PC hookup with RS232. With standard $256 \mathrm{~K} \times 8$ RAM, the 135 supports more devices than any other production programmer, including 32 pin EPROMs. Can be easily expanded to support 40 pin EPROMs, 40 pin Micros, Bipolar PROMs \& Logic Array Devices. 18 MONTH WARRANTY \& 12 Month FREE Device Updates.
Model 135-E just \$995.00
Call today: 1-800-523-1565
In Florida: (305) 994-3520 BYTEK Corporation
1021 S. Rogers Cir., Boca Raton, FL 33487
FAX: (305) 994-3615 TELEX: 4998369 BYTEK
CIRCLE NO 342


FOR PS/2


MODELS 50, 60, 80

- Two Channel
- Transfers to 256 K baud
- Address Selectable
- Interrupt Selectable

1-800-553-1170


478 E. Exchange St., Akron, OH 44304 TEL: (216) 434-3154 FAX: (216) 434-1409 TLX: 5101012726

CIRCLE NO 345


## Glide Through PCB Design.

TangoPCB ${ }^{\text {™ }}$ Create the toughest board designs with powerful layout software that's a snap to use. Function-rich Tango-PCB supports eight layers, 1 mil grid, OrCAD" or Schema" netlist input, print/plot/ photoplot output, and more.

## Tango Route ${ }^{\text {™ }}$ Get impressive completion rates

 and remarkable speed with Tango-Route, a four layer, eleven pass autorouter.
## Just $\$ 495$ each.

For IBM PC/XT/AT/PS2. Compare features and you'll buy Tango. Or try full-function Demo Package, just \$10. Order toll-free: 800 433-7801. VISAMC. Thirty-day money back guarantee.
ACCEL Technologies, 7358 Trade St., San Diego, CA 92121 CIRCLE NO 347

smARTWORK ${ }^{\text {P PCB }}$ Software. In a fraction of the time hand taping requires, you can create double-sided printed-circuit boards with smARTWORK and your IBM PC. The program's features include continual design-rule checking, automatic pad shaving, a silkscreen, and text for all three layers. smARTWORK with autorouting is $\$ 895$ (without, $\$ 495$ ) and comes with a 30-day money-back guarantee. Credit cards accepted. Write or call

Wintek Corporation
1801 South Street, Lafayette, IN 47904 (800) 742-6809 or (317) 742-8428 CIRCLE NO 349


CAEICAD Integrated
software Package
for IBM PC, XT or ${ }^{\text {AT }} \$ 0$ O
can afford to be withont this end to engineer circuit design, simulation and PCB layout tool. You can pay up to 15 times more and still not get all the features offered by EE Designer-Schematic Capture . . Circuit Simulation. . . PCB Layout. 30 day money back guarantee. Full purchase price refunded if not completely satisfied.
Call 1-800-553-1177 today to order your package. Bank cards
 welcome.

FREE 1988/89 EQUIPMENT GUIDE

U.S. Instrument Rentals has just published its New 1988/89 Product Guide. This free 400 page guide to instrumentation provides information on most of the 5000 different models (from all major manufacturers) of electronic test and measurement and data processing equipment that USIR has in its inventory. The new Product Guide is a comprehensive, single-source reference book containing descriptions, photos, and technical data. Rent, lease, or purchase with immediate delivery. Call today for your free copy!
UNITED STATES INSTRUMENT RENTALS, INC.
2988 Campus Drive
San Mateo, CA 94403 (800) 824-2873
CIRCLE NO 350

## "D" SIZE PLOTTER

$\$ 2295^{00}$
$\$ 169500$
INTRODUCTORY OFFER

- Model PC 3600
- Repeatability $.001^{\prime \prime}$
- Speed at $7^{\prime \prime}$ Per Second
- Vacuum Paper Hold Down
- High Resolution Circles: Suitable for PCB Artwork
(415) 490-8380 ZERICON

STEVENSON BUSINESS PARK
BOX 1669 - FREMONT, CA 94538
CIRCLE NO 753

## DSPASAP \$1,95

Drive your DSP design to market as fast as possible with our 320 C 25 in-circuit emulator.
The ICE PAK features real time emulation to 40 MHz 16 K words ( 35 ns ) program overlay memory, user definable break handler routine, single step trace, disassembler, and RS-232 communications for fast downloading of programs and data.
Options include 64 K word non-volatile memory upgrade, cross assembler and communications software for PC or Macintosh. Inquire about our 320C10 ICE PAK 1301 Denton Drive, Suite 204
Carrollton,
TX 75006
(214) 446-9906

## MEMOCOM

DEVELOPMENT T O O L S

## A Lot For A Little

Reach 137,000 specifiers of electronics components, equipment,
and systems for only $\$ 780$.

EDN Product Mart
478 E. Exchange St., Akron, OH 44304 TEL: (216) 434-3154 FAX: (216) 434-1409 TLX: 5101012726

CIRCLE NO 751


CIRCLE NO 754


## SUB MINIATURE DC-DC CONVERTERS Small in Size - Low in Price NEW from NEWPORT!

Save board space and cost with the NEWPORT range of DC-DC converters. The latest surface mount technology offers more power in a smaller package at a lower price.
Inputs: $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V
Outputs: $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}, \pm 15 \mathrm{~V}$ up to 1 Watt
Available in SIP or DIP versions, fully isolated, high efficiency. All components $100 \%$ burned-in and triple tested.

SEND FOR DATA SHEET
ALBAN Inc.
2336B Walsh Ave., SANTA CLARA, CA 95051
Tel: (408) 988-3949 FAX: (408) 988-3986
CIRCLE NO 757

## Analog Circuit Simulation



## NEW SPICE_NET \$295.00

 Make SPICE input files from schematic drawings using pull down menus and a mouse to draw and connect parts. Use an IBM PC with any UC Berkeley compatible SPICE program. Simulation Programs- IS_SPICE, \$95.00. Performs $A \bar{C}, D C$ and Transient analysis.
- PRE_SPICE \$200.00: Adds Monte Carlo Analysis, Sweeps, Optimization, libraries and algebraic parameter evaluation
- Intu_Scope \$250: A graphics post processor works like a digital oscilloscope. Easy to use with all the waveform operations you will ever need.
for


## IBM

PC's from intusoft
(213) 833-0710
P.O. Box 6607 San Pedro, CA 90734-6607


GP-IB, HP-IB CONTROL FOR YOUR PC, PC/AT and IBM PERSONAL SYSTEM/2 ${ }^{\text {w }}$

- Control instruments, plotters, and printers.
- Supports BASIC,C,FORTRAN and Pascal.
- Fast and easy to use. Thousands sold.
- Software library. Risk free guarantee.


Capital Equipment Corp. 99 South Bedford St. Burlington, MA. 01803
FREE demo disk. Call (617) 273-1818

CIRCLE NO 758


16-BIT CMOS SINGLE BOARD COMPUTER
The LPM-SBC50 is an all CMOS STD Bus V-50 (CMOS 80186) SBC featuring 1M byte addressing. DMA, 32 -pin memory sockets, serial RS-232/422 channel, 3 timers, 24 parallel I/O lines, real time clock, and watchdog timer. $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ operating temperature. Very low power consumption. Available as NMOS/TTL or CMOS from

## WinSystems, Inc.

P.O. Box 121361, Arlington, TX 76012
(817) 274-7553

CIRCLE NO 761


## \$ 125 87C51 PROGRAMMER

The UPA87C51 converts general purpose programmers into 8751/C751 programmers. Select 2732A on your programmer, plug in the UPA, and you have an 8751/87C51 programmer. With the UPA87C51 you can also program the 8751 and $87 C 51$ security bits and the 87C51 encryption array. It's very simple and VERY cost effective.
Price $\$ 125$ including UPS ground shipping. Adapters are also available for the 63701V0, 63705 V 0 , and 8751 and are priced at $\$ 65-\$ 95$.

## LOGICAL SYSTEMS

6184 Teall Station, Syracuse NY 13217 USA (315) 478-0722 Telex: 6715617 LOGS

CIRCLE NO 759
SBX MODULES


We've upgraded our SBSxSCSI module to support BlockMode Psuedo-DMA transfers. That means CPUs without DMA can increase transfer speeds by not polling for READY on every byte. We've also added an optional Centronicscompatible printer port (SBSXSCSI/CEN). If you only need the printer port, save money with our low-cost SBSxCEN module. We also offer a Floppy-Disk Controller module (SBSXFDC) that handles $31 / 2^{\prime \prime}, 5^{1 / 4} 4^{\prime \prime}$, and $8^{\prime \prime}$ drives with $S D, D D$ and $H D$ formats.
Call or write for more information.
Single Board Solutions, Inc.
20045 Stevens Creek Blvd.
Cupertino, CA 95014
(408) 253-0250

CIRCLE NO 762


UNIVERSAL E(E)PROM PROGRAMMER KITS FROM \$95

- No personality modules; Menu-driven device selection.
- On board power supply ( $110 / 220 \mathrm{~V}$ AC)
- Direct technical support; Full 1 year warranty
- User friendly software; Complete help menu.
- Quick pulse algorithm ( 27256 under 60 sec ).
- Programs 27 xx to 1 Mbit; 25xx, 68 xx , CMOS; EEPROMS - Micros: 8741, 8742, 8748, 8748H, 8749, 8749H \& more.
- IBM-PC, Apple, CPM or Unix driver, Autobaud RS232
- Offset/split Hex, Binary, Intel \& Motorola 8,16,32 bit.
- Manual with complete schematics.

VISA MC AMEX Call today for datasheets !! B\&C MICROSYSTEMS

355 WEST OLIVE AVE. SUNNYVALE, CA 94086 PH: (408) 730-5511 FAX: (408) 730-5521 TELEX: 984185


8051 Debugger with In-Circuit-Element The CY-8051 in-circuit element replaces the 8051 and communicates with your IBM-PC over COM1. The powerful dynamic user interface provides source code and symbolic debugging with easy access to all 8051 spaces. Live keyboard, Global Symbol Monitor, 'C' support. Histogram generated during reduced speed execution. Lowest cost, most powerful 8051 design support. Mil spec and CMOS versions available

Cybernetic Micro Systems, Inc. Box 3000 - San Gregorio, CA 94074 • USA (415) 728-3000 - Telex: 910-350-5842

CIRCLE NO 760


RS232 M

- Eprom emulator for 2716's - 27512's
- Supports 8,16 , or 32 bit wide busses
- Non-Volatile memory standard
- Up to 19200 Baud
- Accepts Intel Hex formats
- 150 ns access time standard

30 DAY NO RISK EVALUATION
APPLIED DATA SYSTEMS
9811 Mallard Dr. Suite 203 Laurel, MD 20708
For more information call 800-541-2003
CIRCLE NO 763

## SOLENOID Engineering Manual



Send for the latest 68 -page Solenoid Engineering Manual from Deltrol - Packed with useful information including performance data, stroke/force curves, selection factors - industry's broadest range of miniature,

DELTRDL
contrals
2745 S. 19th St. Milwaukee, WI 53215 Phone 414/671-6800 Telex 2-6871
4305-1
CIRCLE NO 766


KEC ELECTRONICS, Inc.'s KE SERIES of high-power, single out-put DC switching power supplies combine high power and compact packaging to meet a broad range of applications. They are available in 750 and 1000 Watt configurations, with additional outputs up to 3KW in the near future. KEC's quality manufacturing ensures reliable performance and operating integrity under the severest environments.
The KE SERIES single output switching power supplies feature PALS (Programmed Automatic Load Sensing) for load line drop compensation, power failure signal output, and remote programming. Additional features include voltage regulation, fancooling and built-in protection against overload and overvoltage conditions. All units are UL and CSA approved and

EMI filter conforms to FCC Class A on conduction noise.
KEC makes it easy to choose the exact power supply to meet your standards. Select from over 200 standard products or have KEC's engineers custom-design a precision switching power supply just for you. Discover the real Multiple Choice in power supplies-Discover KECII Write for your FREE literature and information kit or call KEC toll-free today!

## 1-800-255-5668

KEC ELECTRONICS, INC. 20817 Western Avenue, Torrance, CA 20501
(213) 320-3202, FAX (213) 618-1197

[^25]

## High-performance ICs cataloged

The 544-pg data book Smart Analog describes the vendor's full line of analog ICs. It provides an extensive overview of products and operations, including price and performance benefits as well as data sheets for 11 new products. The publication divides the semiconductors into categories of ISDN line interfaces, T1 and PCM-30 telecom-munications-line interfaces, jitter attenuators, DTMF receivers, statically and dynamically tested ADCs, and T/H amplifiers and filters. Besides the overall product information, such as features and specifications, the catalog discusses quality, reliability, and mechanical data, and lists sales representatives throughout the world.

Crystal Semiconductor Corp, Box 17847, Austin, TX 78760.

Circle No 405

Spice Tutorial can make circuit design easier. The $100-\mathrm{pg}$ document contains explanations, examples, and problems that illustrate the commands and circuit elements of Berkeley Spice; this manual also costs $\$ 40$. Finally, Spice Modeling Notes shows you how to develop circuit element models using standard laboratory equipment. The price of this $140-\mathrm{pg}$ publication is $\$ 55$.

Oholiab Technology, Box 851731, Richardson, TX 75081.

INQUIRE DIRECT

## Application note dispells mystery of common terms

The DPM-10 application note helps clarify your questions about several common terms and problem areas, such as isolated and nonisolated signal source inputs, common-mode voltages, and safety precautions for wiring primary line power to any device. The note provides wiring diagrams and standard formulas for component selection in voltage dividers, attenuators, and shunt circuits. It also guides you in the measurement of high- and low-level voltages, as well as the measurement of signals from resistance bridges, solid-state temperature sensors, and similar devices.

Acculex, 440 Myles Standish Blvd, Taunton, MA 02780.

Circle No 407

## Tutorial aids for Spice

If you use Spice (simulation program with integrated circuit emphasis), or are thinking of using it, this series can provide you with useful information. Selecting Hardware for Math-Intensive Programs (Version 87.3) includes evaluations of 80386 -based accelerator boards, 80386-based personal computers, and a comparison of the 80287 and 80387 math coprocessors. It costs $\$ 30$. A User's Guide to Spice allows you to compare the various versions of Spice before buying a circuitsimulation program and costs $\$ 40$. A

## Software products for musicians

The vendor's Musician's Music Software Catalog contains a comprehensive overview of music software products and musical-instrument digital interfaces (MIDI). It helps you make the best choice for your needs when selecting music hardware and software computer products.
Digital Arts \& Technologies, Dept CPR, Box 11, Milford, CT 06460.

Circle No 408


Academic Press is launching a new series of books for high technology professionals. To write these books, we are seeking authors in such fields as:

- 32-bit microprocessor systems
- ASIC technologies
- data acquisition and conversion
- sub-micron IC technologies
- semiconductor manufacturing and QC
- test and measurement systems
- telecommunications and ISDN
- surface mount devices
- multiprocessing technologies
- and similar topics on the leading edge of electronics.
For those who can "write the book" on hot electronics topics, Academic Press will pay generous royalties and back their efforts with intensive promotion and marketing campaigns. Editorial guidance and support will be an important part of the writing process.

[^26]
## Data for measuring temperature

Designed to facilitate engineering calculations on personal computers, this $5^{1 / 4}$-in. floppy disk contains temperature - measurement - handbook data. It highlights the computation of resistance vs temperature tables for resistance temperature detectors (RTDs) and millivolts vs
temperature for a variety of thermocouples. It also generates wire tables for metals such as copper, aluminum, platinum, and constantan. Further, it describes specifications for the vendor's line of industrial RTDs and thermocouples and tells you how to determine parts numbers for probes; accessories; and heating, ventilation, and air

# Today's Advanced Technology Demands Batteries With A Future 



Innovative research and design enables Eagle-Picher to consistently provide highly reliable power sources for today's hightechnology products.

The Carefree ${ }^{\circledR}$ and Carefree ${ }^{\text {TM }}$ Magnum series represent the most flexible lines of maintenance-free, rechargeable, sealed, leadcalcium batteries in the world.

The electro chemistry of the Keeper II® Lithium series ensures up to 10 years of dependable service in standby applications where long-life memory back-up is required.


Eagle-Picher Industries, Inc.
Box 130 • Bethel Road • Seneca, MO 64865
Phone: (417) 776-2256 • TWX-62864271
conditioning products. Available at no cost to system designers and engineering personnel who specify and purchase temperature-measurement sensors and accessories.

RdF Corp, 23 Elm Ave, Hudson, NH 03051.

Circle No 409

## Paper presents wiring-board laminates

The reprint of a paper Printed Wiring Board Laminates for Multiplane Applications, reproduced from the International SAMPE (Society for the Advancement of Material and Process Engineering) Electronics Conference Series, discusses a bendable laminate for printed wiring boards. It describes the material Bend/flex, a nonwoven fiber-reinforced epoxy, which can be postformed after printing, etching, and populating with components. The document details the material's physical and electrical properties and sums up preliminary results for surface-mount components and plat-ed-through holes.

Rogers Corp, 1 Technology Dr, Rogers, CT 06263.

Circle No 410

## Applications for dual-channel analyzers

The $32-\mathrm{pg}$ booklet A World of Applications deals with 12 applications where you can use a dual-channel analyzer to identify and help you solve engineering problems. In the area of acoustics, it focuses on sound-intensity measurements and architectural acoustics. The section on electroacoustics reviews transducer measurements and sound-reinforcement systems. It also provides an analysis of servo systems and materials. Finally, it outlines how dual-channel analyzers can assist you in college courses.

Bruel \& Kjaer Instruments Inc, 185 Forest St, Marlborough, MA 01752.

Circle No 411

# BUSINESS/CORPORATE STAFF 

## EDN's CHARTER

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.

275 Washington St
Newton, MA 02158
(617) 964-3030

## Warren Dickson

Vice President/Publisher
Newton, MA 02158
617) 964-3030

Telex 940573
Diann Siegel, Assistant
Peter D Coley
VP/Associate Publisher/
Advertising Sales Director
Newton, MA 021
(617) 964-3030

Ora Dunbar, Assistant/Sales Coordinator
NEW ENGLAND
John Bartlett, Regional Manager
Chris Platt, Regional Manager
99 Wells Ave
Newton, MA 02159
617) 964-3730

STAMFORD 06904
George Isbell, Regional Manager 8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th St
New York, NY 10011
(212)463-6419

PHILADELPHIA AREA
Steve Farkas, Regional Manager
487 Devon Park Dr
Suite 206
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager
Randolph D King, Regional Manager
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60017
(312) 635-8800

DENVER 80206
John Huff, Regional Manager
44 Cook St
(303) 388-4511

DALLAS 75243
Don Ward, Regional Manager
9330 LBJ Freeway
Suite 1060
(214) 644-3683

SAN JOSE 95128
Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Regional Manager
12233 W Olympic Blvd
(213) 826-5818

ORANGE COUNTY/
SAN DIEGO 92715
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone, Regional Manage
1750 SW Skyline BIvd, Box 6
(503) 297-3382

UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manage
27 Paul St
London EC2A 4JU UK
44 01-628 7030
Telex: 914911; FAX: 01-628 5984

## SCANDINAVIA

Stuart Smith
27 Paul St
01-628 7030
Telex: 914911; FAX: 01-628 5984
FRANCE/ITALY/SPAIN
Alasdair Melville
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
WEST GERMANY/SWITZERLAND/AUSTRIA
Wolfgang Richter
Sudring 53
7240 Horb/Necka
West Germany
49-7451-7828; TX: 765450

ISRAEL
Igal Elan
Elan Marketing Group
13 Haifa St, Box 33439
Tel-Aviv, Israel
Tel: 972-3-268020
TX: 341667

## EASTERN BLOC

Uwe Kretzschma
27 Paul St
London EC2A 4JU UK
O1-628 7030
Telex: 914911; FAX: 01-628 5984

## FAR EAS

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Telex: J2322609 DYNACO

## TAIWAN

Acteam International
Marketing Corp
$6 F$, No 43, Lane 13
Kwang Fu South Rd
Mailing Box 18-91
Taipei, Taiwan ROC
760-6209 or 760-6210
Telex: 29809
FAX: (02) 7604784
KOREA
BK International
Won Chang Bldg, 3rd Floor 26-3
Yoido-dong, Youngdungpo-ku
Seoul 150, Korea
Tel: 785-6665
Fax: $784-1915$
Telex: K32487 BIZKOR
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415

CAREER OPPORTUNITIES,
CAREER NEWS
Roberta Renard
National Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
Roseland, NJ 0706
201) 228-8610

Western Sales Manager
18818 Teller Ave
Suite 170
Irvine, CA 92715
(714) 851-9422

Maria Cubas
Production Assistan
(201) 228-8608

Susan M Campanella, Advertising/Contracts Supervisor
Nan Coulter, Advertising/Contracts Coordinator
(617) 964-3030

William Platt, Sr, Vice President, Reed Publishing USA
Cahners Magazine Division
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Group Vice President, Electronics/Computers
Tom Dellamaria, VP/Production \& Manufacturing

## Circulation

Denver, CO: (303) 388-4511
Sherri Gronli, Group Manage
Eric Schmierer, Manager

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R
Westphal, Cahners Reprint Service, Cahners Plaza,
1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018. Phone (312) 635-8800.

# "Their new 030 board int really a singleboard computer. 

## It's a single-board system".

OEMs weren't prepared for the level of functionality our new MVME147 processor module delivers. On one standard VME card, it packs virtually all the functions you need to build a small, multi-user system.
How? Mainly through ASICs like the single-chip VMEbus interface and Peripheral Channel Controller. Plus high-density on-board DRAM (4 or 8 Mbytes),SCSI interface and Ethernet chip set. To even come close in functionality, it would take as many as five conventional modules.

Besides which, the 147 outperforms everything in sight. It takes maximum advantage of Motorola's new 32-bit MPU-the MC68030-coupled with a floatingpoint coprocessor. Both running at up to 25 MHz ,


And since the 147 features both UNIX ${ }^{\circledR}$ and real-time operating system support, you can plug it into your existing 020-based architecture and software base. So you achieve a level of integration never before possible, while protecting your existing investment. All of which gives you unprecedented price/ performance advantages for just $\$ 3747$ in OEM quantities of 100 .

To get an idea of what the future of VME looks like, call us today-toll free: 1-800-556-1234, Ext. 230; in California, 1-800-441-2345, Ext. 230. Or write: Motorola Microcomputer Division, 2900 Diablo Way, Tempe, AZ 85282.
UNIX is a registered trademark of AT\&T.

## Deborah Asbrand, Associate Editor

It happens all too often. A company sets ambitious timetables for project completion. Parts arrive weeks or months late. Managers insert last-minute design changes. To conclude a project on deadline, frantic engineers work extra hours, most of them unpaid.
Physical problems, such as throbbing temples and aching backs, usually result from the emotional pressures in the workplace. Employees describe themselves as "stressed out" and "maxed out." When the going gets really tough, they're "stressed to the max." "It's like being in a frying pan," says Ted Miller, a test-engineering manager for Teradyne (Boston, MA). "You feel like you're sizzling."

But while people under stress usually share a deep frustration and a long list of physical aches, the causes of those ailments vary from person to person. The same experience that reduces one person to a heap of frazzled nerves leaves another person cool and ready for more. "Look at the people on a roller coaster," says Paul Rosch, director of the American Institute of Stress (Yonkers, NY). "At the back you see the people holding on tight who can't wait to get off. In the front seats are the wild-eyed thrill seekers with their arms up in the air."
Just as stress defies definition, at least from a scientific point of view, so does a cure for it. Antidotes for stress are highly individualized. Some work out their frustrations best through physical exertion; oth-
ers prefer the quieting, tranquil processes of meditation, yoga, or biofeedback. But in addition to finding quick relief, people need to develop a long-term plan for reducing stress. Knowing how to deal with tension can benefit a person's career as well as his or her health: "The secure, peaceful person is much more successful than the person who looks stressed," says Jean Hollands, a Mountain View, CA, consultant and author of the book, The Silicon Syndrome-How to Survive a High-Tech Relationship."

Engineers aren't the only ones who are feeling the heat. In fact, the at-wits-end feeling, once expressed only by those willing to risk being labeled weak or incompetent, is being voiced loudly in all industry sectors. Employees are reporting more stress-related illnesses, and

that's costing companies more money in lost work time and medical costs. Employees are also filing suits against employers whom they believe have caused inordinate amounts of stress at the workplace.

To protect themselves, more companies are trying to help their employees. They're developing stressmanagement strategies that teach workers how to handle on-the-job tensions as well as the personal problems that they carry into the workplace. Implementing such programs can be a difficult step to take. Although stress has shed much of its image as a taboo subject, many businesses have mixed feelings about admitting that their employees are under stress. As a result, some prefer euphemistic names for stress management. "Companies like it couched in different terms-motivational training, relaxation training, or conflict resolution," says Hollands.

Nevertheless, the number of em-ployee-assistance programs (EAPs) has shot up $25 \%$ in five years. EAPs recognize stress as a full-fledged health hazard, and the best programs offer preventive measures in the form of physical-fitness programs and company-sponsored counseling for workers with financial, legal, psychological, or family problems.

At Hughes Ground Support Systems in Fullerton, CA, 13,000 employees can participate in outdoor recreational facilities and an intramural sports league, and they can consult two full-time counselors. Most employees who visit the counselors' offices have problems with alcohol or drug abuse and marital and family problems, says Mary Lou Finney, assistant manager of employee counseling and a counselor at the Fullerton facility for six years. Usually, individuals have a combination of problems that they need help with. "It's rare for someone to come in with a problem that's easily iden-
tified as one thing," says Finney.
In addition to sports and counseling, a monthly seminar on diffusing job stress is among the most popular on-site courses the company sponsors. The 40 employees who fill each session watch a 22 -minute videotape narrated by the company's physician and then practice such stressreducing techniques as stretching, fist clenching, abdominal breathing, and progressive muscle relaxation (see box, "Stress reduction for the desk-bound").

## Busting loose

Whether it occurs in the form of a brief, imaginary excursion to a balmy South Sea island or through a strenuous game of basketball, some method of escape from stress is critical to an individual's physical and mental health. Indeed, the illnesses that result from unchecked stress read like a litany of human suffering: Hypertension, headaches, backaches, stomach disorders, skin rashes, and infertility are all at times attributable to tension.

Engineers respond to daily pres-
sures in a number of ways. Ted Miller douses his frustrations by swimming in a pool that's a short walk from Teradyne. "I really pound the water and swim away my frustrations," says Miller, age 29. On the days that he doesn't swim, he runs five miles. He's also played basketball in the company's intramural league. The high-energy hollering in the games reflects much more than the participants enthusiasm, he says.
Jim Hodge, 32, a senior principal member of the technical staff at Concurrent Computer Corp (Tinton Falls, NJ), keeps his frustrations
under control by taking karate classes two nights a week. He also maintains a careful diet and takes vitamins. Photographs of peaceful mountain scenes hang on his office walls. When he arrives at work each day, he switches on a small cassette deck beneath his desk that emits the soothing strains of Handel or Mozart.

On the hectic days when he works through lunch, Hodge reserves at least five minutes for some relaxing activity-taking a short walk or just leaning back in his chair and unwinding. The leisure action can take any form as long as it's unrelated to

## Stress reduction for the desk-bound

Two exercises that you can perform at your desk trigger the body's parasympathetic nervous system, lowering blood pressure and slowing the heart beat. These physical reactions can temporarily relax you.

Fist-clenching. Make a fist and squeeze it tightly for a count of three. Then outstretch your fingers and palm for another count of three. Repeat several times.
Abdominal breathing. Forget all those times you walk around trying to hold your stomach in. Instead, take a deep breath and extend your abdominal muscles as you inhale. Slowly exhale and feel your body relax. Abdominal breathing, as opposed to breathing only through your chest, relaxes your entire body.

## Books to read for more information

Role Stress-How to handle everyday tension, by Stuart Palmer. Prentice-Hall Inc, Englewood Cliffs, NJ, 1981.
Stress Management-A comprehensive guide to wellness, by
Edward Charlesworth and Ronald Nathan. Atheneum, New York, 1984.

The Joy of Stress, by Peter Hanson, MD. Andrews, McPeel \& Parker, Kansas City, MO, 1985.
The Relaxed Body Book (a companion book to the PBS series "Bodywatch"), by the editors of American Health magazine. Doubleday \& Co, Garden City, NY, 1986.
Calm Down-A guide to stress and tension control, by F J McGuigan. Prentice-Hall Inc, Englewood Cliffs, NJ, 1981.
Total Relaxation-The complete program for overcoming stress, tension, worry and fatigue, by Frederick Lenz, MD. The BobbsMerrill Co Inc, Indianapolis/NY, 1980.
work. "It's definitely not looking at logic diagrams," he says.

## The root of most problems

The most trying encounters in any engineering department, however, generally have nothing to do with sloppy diagrams or late parts. The source of greatest conflict is working with people. Indeed, mastering the social and political landscape of a company can require as much effort as solving differential equations.

Design engineer Nancy Stevens, 42 , says that only about half of her work at her Carlsbad, CA, employer requires use of her engineering know-how. The rest, she says, taps talents she honed raising two children before she went into engineering 10 years ago. "At least $50 \%$ of what I do is organizational and requires me to focus my skills. Most of that I learned from being a housewife."

In fact, engineers who lack Stevens's organizational and diplomatic skills are at a distinct disadvantage in the workplace. "The nontechnical aspects of a company-the social and political issues-are really half the battle," says James Rago, a San Francisco consultant. A 1984 survey of 249 Canadian engineers found that organizational factors caused the greatest stress to the engineers. Among the engineers surveyed, those working as first-level supervi-sors-the middle managers-reported the most tension.

The most effective way to manage stress, experts say, is through cognitive restructuring. The lay-term translation? Instead of trying to change the people and events around you, focus your energies on altering the way you respond to them. "Stress isn't going to go away, so people need to improve their way of handling stress through their listening and communications skills," says John Kennedy, director of the San Jose, CA, office of Human Affairs International, which oper-
ates employee-assistance programs on a contractual basis.

## Long-term payoffs

Engineers who've taken the time to develop their business acumen say the benefits have been well worth their efforts. Miller recently capped three and a half years of night school with a master's degree in business administration from Boston University. The courses he took in organizational behavior have improved his ability to manage a project smoothly, he says. "When you come across engineering problems, you have the training to solve them. But when there are problems on your team, and you don't have the tools to solve them, you get very frustrated."

While working at a "panic pace" on a 16 -month project, Hodge realized that his success in the position required a finesse that he didn't
have in working with people. "I knew I needed some pointers," he says. He read books on management, self-esteem, and motivation. He also put to use his 30 -minute commute listening to cassette tapes on the same subjects.

## The same experience that reduces one person to a heap of frazzled nerves leaves another person cool and ready for more.

The result of his self-education, Hodge says, is a better understanding of how he can help the engineers on his projects work together. His sharpened management skills also make him a more reliable engineer. "When I was younger, I was more
prone to get into trouble with people. I sometimes felt I had to blame someone else for my problems." Now, he says, he's aware of his own strengths and limitations.

Most engineers have little trouble developing "people skills." Once they are convinced of the need to develop such skills, they already possess the problem-solving muscle needed to acquire new skills, says Richard Mayer, manager of human resources for the Battelle Pacific Northwest Laboratory in Richland, WA. "Engineers get into problem solving," he says. "They want to make things better." And a little education goes a long way toward reducing the emotional frustrations in engineering.

EDN

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520


## Electronic Equipment Export Section

2-9-13 Nakameguro, Meguro-ku, Tokyo 153, Japan
Telephone: (03) 710-2557 Facsimile: (03) $792-0007$ Telex: 2466623 SECTOK J

## An Opportunity to Exceed

At Daisy Systems Corporation, we're not offering you an opportunity to succeed. We're offering you a chance to exceed. Exceed what you thought you could achieve technologically. What you expect for yourself professionally. Exceed how far you thought you could go.
We know what it means to exceed. When we pioneered CAE in 1981, nobody expected us to grow as fast as we did. Not even us. We did it by building design tools that exceeded the standards of their time. We still do. We invest more dollars into R\&D than any other CAE company.
We've seen a lot of changes too. Now, backed by a strong, experienced management team, we're growing again. Our company revenues are on the rise. We've introduced successful new products and we're working on more. And that could be your opportunity to exceed.

## Analog and Digital Design - Automation (ADDA)

- Sr. Software Engineers
- Sr. Hardware Engineers


## Customer Support (CSD)

- Sr. Applications Engineers
- Product Support Engineers


## Marketing

- Sr. Product Marketing Specialists


## Product Integration and Test (PIC)

- Sr. Product Assurance Engineers


## North America Sales <br> Division

- Sr. Sales Representatives
- Sr. Applications Engineers

This could also be your opportunity to work in our state-of-the-art facility. To get excellent benefits including a $401(\mathrm{k})$ plan with high matching ratios, a stock purchase plan, and medical/dental/vision/life insurance. And, of course, a competitive salary. Send your resume now, to Professional Staffing, Dept. EDN-37, Daisy Systems Corporation, P.O. Box 7006, Mountain View, CA 94039-7006. Equal Opportunity Employer. Principals only, please.



Call today for information:
East Coast: Janet O. Penn (201) 228-8610
West Coast: (714) 851-9422
National: Roberta Renard (201) 228-8602

Join the hunt for undersea challenge at GE-Government Electronic Systems Division in Syracuse, New York. You'll be right on target for exciting work on the new SSN-21 Seawolf class submarine...developing systems architecture and providing overall program management for the AN/BSY-2 fully integrated combat system. We also have challenging assignments on a wide range of other submarine and surface ship acoustic programs.

As a recognized leader in sonar signal processing and in in tegrating ASW sonar systems, GE GESD is advancing the state-of-the-art in key underwater technology areas. To meet this technological challenge, we need engineers, from entry level professionals to seasoned experts on modern military electronics involving software and systems engineering and analog and digital design. Choice opportunities are available for:

## Software Engineers

opportunity to advance if you're experienced with:

- Real time software development
- Architecture and design of embedded programmable processors (68000 or similar processor)
- Top down structured design in ADA or Fortran
- Software Quality Assurance in accordance with MIL-S-483


## Systems Engineers

opportunities currently exist in:

- Large Scale Combat Systems Analysis;

Design and Development

- Acoustics \&c Signal Processing
- Algorithm development
- Sensor systems design \&c development
-Control systems engineering
- Reliability/Maintainability/Human Factors


## Hardware Engineers

help design the future by working in:

- Advanced architecture and design
- CMOS gate array development
-Power supply design
- Analog or digital circuit design
(board and component level)
- Transmitter design
$\bullet$ Electronics Packaging/Cabinet Design


## Test and Evaluation Engineers

with experience in:
-Detailed test plan development
-Facilities layout
-Top level test documentation
-Subcontract management
$\bullet$ EMI/EMC Engineering

GE's highly competitive salary and benefits package includes extensive in-house technical and management training. Syracuse is located in beautiful lake country, with many cultural and recreational attractions. The area is notable for its attractive housing and
low cost of living. Apply by sending resume, indicating area of pro fessional interest, in confidence, to: GE Government Electronic Systems Division, CODE ADEDN, PO Box 4840, CSP-4-48, Syracuse, NY 13221. U.S. Citizenship Required.

## Opportunity Slip By...

The stage is set for you at RCA Electronic Systems Depart ment in Moorestown, New Jersey. Join our team of engineers in making major contributions to the design of the AN/BSY-2 for the Navy's new SSN-21 Seawolf submarine. This fully in tegrated combat system will be the most sophisticated ASW
system ever deployed-superior in its automated command control functions and unsurpassed in timesaving data infor mation processing.
Your engineering foresight and technological expertise will be vitally important in the following positions:

## Unit Manager, <br> Software Systems Design

- BSEE/MSEE
-10+ years in software development
for engineering applications
$\bullet 3+$ years with embedded systems
-Knowledge of military systems; configuration control, validation and verification


## Senior Engineers, Combat Control

- BSEE
${ }^{-5}+$ years in Combat Control performance definition, design and test for real time Combat Control Systems
$\bullet$ Knowledge of U.S. Navy systems, preferably submarine systems.


## Senior Digital Design Engineers

- BSEE
- 5+ years in the design of digital subsystems
- Experience in special purpose digital processor design
-Strength in current custom design and simulation techniques


## Software Manager

-BSEE or BSCS
$-5+$ years direct experience in the design and development of large real time Command and Control Systems utilizing sensor data inputs.

- Experience in the design, code and test in one or more of the following:
-Software tools - Computer Assisted
Software Engineering (CASE)
- Real time executives, schedules and operating systems
-System resource managerial software
-Relational data base software system

RCA Electronic Systems Department offers an outstanding salary and benefits package, and includes two on-site master's degree programs. Our location in Moorestown is a pleasant suburban environment just 15 miles outside of Philadelphia with
close proximity to leisure activities of the shore and mountains. For confidential consideration, forward your resume to: RCA Electronic Systems Division, CODE ADEDN, Bldg. 108-111, Moorestown, NJ 08057. U.S. Citizenship Required.


If you are seeking exciting challenges, you're invited to look to Link. Bring us the following qualities and we will provide an excellent career enhancement opportunity in the mainstream of real-world simulation technology.

## ASW SYSTEMS ENGINEERING ACOUSTICS:

BS degree in a technical field
ASW Underwater Acoustics
Target Modeling
Ocean Modeling
Sonar Sensor Systems
Signal Processing Digital
Logic Systems
NON-ACOUSTICS:
BS degree in a technical field
Radar Signal Processing
Radar Simulation
Radar Landmass Simulation
Electronic Surveillance Measurement

## SOFTWARE ENGINEERING

BS degree in a technical field Object Oriented Development (OOD)
Instructor Stations
Computer Displays
Interactive Display Systems
Real-Time Simulation
ADA, FORTRAN
MIL-STD-2167/1679/1644

## FIELD ENGINEERING

BS degree in a technical field
Computer Displays
PDP-11
FORTRAN
Harris FORTRAN \& Assembly Flight Dynamics
Flight Simulation
Tactics Simulation

## COMPUTER SYSTEMS ENGINEERING

BS degree in EE or Computer Science
Distributed Microprocessors
Real-time Networking
Exec Schedulers, I/O Drivers
Maintenance and Test Software
TECHNICAL WRITERS and DOCUMENTATION SPECIALISTS
BA/BS in English, Journalism, or
Engineering
Proposal Development and Preparation
MIL-STDS-2167 and 1644
Software Programming (FORTRAN ACL, PDL, COBOL)
Flowcharting
Technical Forms GPO Style Guide

## GROUND WARFARE SIMULATION

BS degree in a technical field War Gaming Simulation
Math Modeling
FORTRAN

## COMPUTER SYSTEMS ENGINEERING

BS degree in technical field
Human-Machine Interface
MASSCOMP
UNIX/C Environment
3rd Generation Instructor Stations

## SOFTWARE ASSURANCE ENGINEERING

BS degree in Engineering, Mathematics, or Computer Science
Software Engineering
Software Quality Assurance
High Order Programming Languages
Software Configuration Management

## AI EXPERT SYSTEMS APPLICATIONS

BS degree in technical field
(MSEE preferred)
Military Tactical Simulation R\&D
Programs (ASW, Combat Command
Training, and Embedded Training Systems)

## PLANT PROCESS CONTROL ENGINEERING

BS degree in a technical field
Computer Displays
Interactive Display Systems
PPC Systems
Local Area Networks
Instructor Stations
Software Qual Assur Engineering Artificial Intelligence
DEC VAX, Gould SEL, SEL MPX, SEL RTM, Assembler, FORTRAN 77, PASCAL

Please send resume
and salary requirements to:
THE SINGER COMPANY
Mink Simulation Systems Division
Employment Department 3/7 11800 Tech Road
Silver Spring, Maryland 20904
An Equal Opportunity Employer M/F/H/V

# DaVinci would fiave worked fiere. 

L_ike many of today's most innovative thinkers, chances are Da Vinci would have gravitated toward the superb facilities and rich creative climate of Olivetti's Advanced Technology Center in the San Francisco Bay Area. Our PC product line continues to meet the ever expanding needs of business, ranging from the M- 240 to the M- 380 series - our '386-based PCs (marketed in the U.S. as the AT\&T6386WGS series). We provide an aggressive pace, and the opportunity to work with the very latest technology has to offer.
Hardware Project Leader. you will lead a group of one to two engineers in developing a very high speed ' 386 -based advanced personal computer. You should have a minimum of 5 years of hardware development experience, preferably with a product that has been produced in high volume. You should be familiar with IBM compatibility issues, and possess a BSEE or equivalent. Please respond to position \#458.

## Hardware Design Engineers

'386. Our key design group is looking for senior and intermediate level engineers to develop our next generation of high-end personal computers. The work will involve hardware development in the areas of CPU, memory and bus design, and will include taking the project from inception through release to manufacturing. You'll be part of a dynamic design group with a high level of technical expertise, exciting projects and an aggressive schedule. We're looking for professionals with 3 to 5 years of hardware design experience. PC related design experience is highly desirable. A familiarity with Intel 8086, 80286 and 80386 microprocessors is preferred. Please respond to position \#402.

We'll offer you a very competitive salary and one of the best benefits packages in the industry - including 4 weeks paid time off. To apply, please send your resume (indicating position desired) to Professional Employment, (Ad \#8) Olivetti ATC, 20300 Stevens Creek Blvd., Cupertino, CA 95014. EOE

## CATERPILLAR INC.

## OPPORTUNITIES FOR ELECTRONIC ENGINEERS

## LOOKING FOR A REAL CHALLENGE IN THE FIELD OF ELECTRONICS?

Caterpillar Inc. has job openings for electronic engineers in the area of control systems and component development. We are searching for individuals to work on the design and development of systems utilizing micro-processor and analog circuit technology to control engine and vehicle functions. The candidate must have a BSEE or BS Computer Engineering as a minimum. Experience in hardware, software, or electronic sensor technologies would be helpful, but not mandatory. Job location is in Peoria, Illinois. Salaries and fringe benefits are excellent. Openings are immediately available. Please send your resume, transcript and salary requirements to:

> Caterpillar Inc.
> Attn: Mr. Wes T. Durand Technical Center - Building A 100 N.E. Adams Peoria, Illinois $61629-1490$


## THE EDN MAGAZINE/EDN NEWS Recruitment Package

The most cost-effective way to reach the most professionals!

EDN reaches more than 137,000 engineers and engineering managers, the largest circulation in the electronics field. EDN News reaches EDN's U.S. circulation of more than $121,500$. And, when you place equivalent space in both the Career Opportunities section of EDN, and the Career News section of EDN News in the same month, you'll get a $1 / 3$ discount off the EDN News rate!
EDN MAGAZINE/EDN NEWS
Where Advertising Works.


## Still Growing In Atlanta

Loral Information Display Systems, a division of Loral Corporation (NYSE), designer of digital electronic information systems and graphic displays for military applications, continues to grow and has the following immediate openings:
RELIABILITY ENGINEER: Engineering degree plus $7-10$ years direct experience in military reliability functions. Experience in MTBF, design analysis, failure analysis and corrective action programs in military applications.
MAINTAINABILITY ENGINEER: Engineering degree plus 7-10 years direct experience in military maintainability. Must be knowledgeable in MTTR calculations, creation of program requirements and built-in test.
MECHANICAL ENGINEER: Requires BSME and 5-7 years experience in design of military avionics packaging, stress $\&$ thermal analysis. Must be knowledgeable of MIL E 5400, MIL STD 454, MIL STD 810 and military documentation requirements.
TECHNICAL WRITER/ILLUSTRATOR: Requires 7-10 years experience in technical writing of electronic/avionics manuals for military applications. Must also have illustration background with experience on PC-based or desktop publishing system.
Loral Information Display Systems offers a ground floor opportunity in a progressive electronics company. Our location is suburban Atlanta in our own office park. We offer top industry pay and benefits. If interested, please call (collect) (404) 448-1604 or send resume to:

LORAL INFORMATION DISPLAY SYSTEMS Dept. 256
6765 Peachtree Industrial Blvd.
Atlanta, GA 30360
Attn: Robert C. Hall
An Equal Opportunity Employer M/F/HN
US Citizenship Required


Information Display Systems


## HARDWARE/SOFTWARE

SCl Systems, Inc. is a rapidly growing $\$ 550$ million Fortune 500 electronics developer / manufacturer and Alabama's eighth largestemployer. Our products and systems are used in a variety of applications including:

- SPACE SHUTTLE

PAYLOADS

- FIGHTER AIRCRAFT INSTRUMENTATION
- FLIGHT

AVIONICS

- $\mathrm{C}^{3}$

SYSTEMS

Currently experienced design engineers, project / lead engineers, systems engineers and program managers are needed for hardware / software development in the following areas:

- GATE ARRAYS
- SIGNAL PROCESSING
- MILITARY MEMORIES
- FIBER OPTICS
- REAL-TIME O / S
- POWER SUPPLIES
- DATA BUS INTERFACES
- ADA / JOVIAL
- SMT ENG.
- MISSILE INTEGRATION
- SENSORS / FLIR
- APPLICATIONS / MARKETING
- 1750-A PROCESSORS
- RELIABILITY / COMPONENTS
- MANUFACTURING ENG.
- ATE

SCl is located in one of the Southeast's most respected technology centers. Our Huntsville, Alabama location features a low cost of living; excellent schools, housing and shopping areas; and the scenic beauty of the Tennessee Valley. Call collect or send resume with salary requirements to:

Kirk Scruggs
Professional Staffing Administrator

## ADVERTISERS INDEX

| Abbott Transistor Labs Inc | 95 | KEC Electronics Inc | 246 |
| :---: | :---: | :---: | :---: |
| Academic Press/ |  | Keithley Instruments | 45 |
| A Division of HBJ Publishers | 247 | Kepco Inc | 4 |
| ACCEL Technologies Inc | 243 |  |  |
| ACDC Electronics | 92, 196 | Logical Devices Inc | 241 |
| Acme Electric Corp | 108-109 | Logical Systems Corp | 245 |
| ADC Telecommunications | 242 | LTX Corp | 174-175 |
| Aerovox Mallory | 223 |  |  |
| Alban Inc | 244 | Marconi Microsystems |  |
| AMP | 66-67 | Maxtor | 232-233 |
| Analog Design Tools Inc | 203 | MCG Electronics Inc | 216 |
| Analog Devices Inc | 85, 190-191 | Memocom | 4 |
| Andyne Computing | 244 | Mepco/Centralab |  |
| Applied Data Systems | 242, 245 | Mini-Circuits Laboratories | 26-27, 199 |
| Applied Microsystems Corp | 157 | Molex Inc | 64 |
| ASIX | 178-179 | Motorola Microcomputer Div | 28-29, 250 |
| AT\&T Technologies | 15-17 | Motortola Semiconductor Produ M S Kennedy Corp | $\text { ts Inc . . } 63$ |
| Bayer AG** | 54-55 | Multibus Manufacturers Group | 35-38 |
| B\&C Microsystems | 243, 245 | Murata Erie North America Inc | 132-133 |
| Belden Wire \& Cable | 229 |  |  |
| Bergquist Co | 216 | National Semiconductor Corp | 46-47 |
| BP Microsystems | 242 | NCR Corp | 48-49 |
| Brooktree Corp | 214-215 | NEC Corp | 106-107 |
| Burndy Corp | 150-151 |  |  |
| Burr-Brown Corp | 101 | Octagon Systems |  |
| Bytek Corp | 243 | OKI Semiconductor* | 68-69 |
|  |  | Omation Inc |  |
| Capital Equipment Corp | 245 | Optelecom | 231 |
| C\&K/Unimax | 152 |  |  |
| Clearpoint | 52 | P-Cad |  |
| Comlinear Corp | 225 | Peripheral Technology |  |
| Cybernetic Micro Systems | 241, 245 | Phihong Enterprise Co Ltd | 68 |
| Cypress Semiconductor |  | Philips Elcoma Div** |  |
|  |  | Philips Test \& |  |
| Daisy Systems Corp | 88-89 | Measuring Instruments Inc** | 69, 125 |
| Dale Electronics Inc |  | Potter \& Brumfield | 104-105 |
| Data I/O Corp |  | Powerex Inc | 130-131 |
| Datel | 58 | Precision Monolithics Inc |  |
| Deltrol Controls | 245 | Prem Magnetics |  |
| Deltron Inc | 226 |  |  |
| Digelec Inc | 237 | Qua Tech Inc | 243,244 |
| Digital Equipment Corp | 208-209 |  |  |
| Digital Media Inc . . | . 242 | Qualidyne Syster | -148-149 |
| Du Pont Electronics | 30-31 | Quantum Corp | 148-149 |
| Eagle Picher | 248 | Ramco Electric | 70 |
| EDN Caravan | 210-211 | Rapid Systems |  |
| EECO Inc | 227 | Raytheon |  |
| EG\&G Wakefield Engineering Inc | 98 | RMC Ltd |  |
| Electro-Mechanics ........... | 243 | Robinson-Halpern |  |
| Emerson \& Cuming Inc | 103 | Robinson-Nugent Inc | 176-177 |
| Ferroxcube | 180 | Samsung Semiconductor | 71-78 |
|  |  | Semikron International Inc |  |
| Gates Energy Products Inc |  | SGS-Thomson Microelectronics | .54-55 |
| Gentron | 230 | SI Tech. |  |
| GE/RCA Solid State . . 18-19, 110-1 | 11, 192-193 | Siemens AG** | 10-11 |
| Gould/AMI | . 159-168 | Siemens-Power Semiconductors |  |
|  |  | Signal Transformer Co Inc . . | C4 |
| Hall-Mark | 65 | Signum Systems |  |
| Hilevel Technology Inc | . 145 | Silicon Systems Inc | 86-87 |
|  |  | Single Board Solutions | 245 |
| Inmos Corp* | 10-11 | Solid State Devices Inc | 207 |
| Integrated Device Technology Inc |  | Spang Power Control |  |
| Intel Corp | 90-91 | Spectrum Software |  |
| Intusoft | 245 | Stanford Applied Engineering | 141 |
|  |  | Stanley Electric Co . . . . . . . |  |
| Janco Corp | 224 | Statek |  |
| Jenson Transformer |  | Stimpson Co Inc |  |
| John Bell Engineering | 242 | SUNX Sensors |  |
| John Fluke Manufacturing Co Inc | * . . 20, 127 | Supertex Inc |  |

Tai-Kung Enterprise** ..... 127
Tektronix Inc ..... 40-41, 146-147, 239
Teledyne Semiconductor ..... 189
Termiflex Corp ..... 32
Texas Instruments Inc ..... 217-220
Thomas and Betts Corp ..... 50
Titan/SESCO ..... 94
Topaz Semiconductor ..... 234
United Technologies
Microelectronics Center ..... C2
Universal Data Systems ..... C3
US Instrument Rentals ..... 244
Valid Logic Systems Inc ..... 12-13
Vectron Laboratories Inc ..... 222
Visionics Corp ..... 244
Volgen America ..... 243
Westcor .....  6
Winpoint Electric Corp ..... 241
WinSystems Inc ..... 245
Wintek Corp ..... 242, 244
Xicor Inc ..... 80
Xilinx ..... 128-129
Zericon ..... 244
Zilog Inc ..... 201
Recruitment Advertising ..... 255-261
Eaton Corp
Loral Information Display
Olivett
Singer Link Simulation SystemsWestern Digital
*Advertiser in US edition
**Advertiser in International edition

## Expert systems will enter US business market via DBMSs

Expert systems may well make their first major mark in the US business market through database management systems (DBMSs), according to the Intelligent Systems Analyst, a publication of Richmond Research (New York, NY). Although databases constitute a prinary computer application, they are unwieldy and often difficult for end users to master. Thus, the size of databases inherently invites the use of expert systems. Expert systems are most useful in situations where data abounds-and where it sometimes overwhelms conventional database management.
Recently, an increasing number of companies have become concerned with connectivity, integration, and embedded expert systems. Whereas some companies are moving into these areas by purchasing companies that develop expert tools, some software vendors have set up their own R\&D teams to develop expert systems in house. Other companies have been entering alliances and joint ventures to meet the challenge of integrating expert systems into database management.
Richmond Research concludes that because IBM, whose mainframes store more than $80 \%$ of all existing database files, has put integrated SQL (Structured Query Language) into its new line of desktop computers, the mating of expert systems with DBMSs in the near future seems inevitable. In the per-sonal-computer area, expert systems developed as shells with no outside reference are becoming obsolete as systems that facilitate access to specific databases begin to appear.
Several types of software could result from this trend in AI (artificial intelligence) applications. The implementation of intelligent interfaces is one. In this case, natural-

language front ends that use adaptive interface approaches and aid the user in fathoming uncertain requests could play a significant role in improving database management. Intelligent back ends also present opportunities. Such software would analyze information stored in databases and discern patterns that, in turn, could also improve basic management techniques.
Another option involves reality checking-that is, solving the problems that occur when people enter inaccurate data. Expert systems could check for inconsistencies and maintain the integrity of database systems by indicating when totally
illogical information or numbers are entered. An even more far-reaching application is the use of expert systems to facilitate the retrieval of information from among incompatible databases. The use of AI in this manner could hasten advances in interconnectivity.
The application of AI to database system management has just begun -and has begun slowly at that. But software developers may uncover great opportunities by considering how AI can fit into their products. And, conversely, database users should begin figuring out how intelligent databases could influence their businesses.

## Relay market to gross \$1.5B by 1991

The US market for relays should enjoy a steady $9 \%$ annual growth rate over the next few years. The estimated value of the 1987 market is $\$ 1$ billion; by 1991, its value should reach $\$ 1.5$ billion, according to Venture Development Corp of Natick, MA. A recent study conducted by the market research firm shows that 10 vendors account for $50 \%$ of the total relays shipped and that a majority of these companies derive 50 to $100 \%$ of their relay revenues from military customers.
In alphabetical order, the ten
principal vendors are Aromat, Clare Division of General Instrument, Deutsch, Genicom, Hi-G/Nytronics, Leach, Omron, Siemens/Potter and Brumfield, Struthers-Dunn, and Teledyne Relays. Makers of military relays generally produce miniature, sealed, electromechanical relays of the TO-5 or crystal can type. Such relays resist high levels of shock and vibration and are very reliable in harsh environments. But they are also quite sophisticated and highly specialized, which is why so few companies have elected to compete in this large segment of the US relay market.

## Molex Is Making The Connection Between...

## HIGH CURRENT 8HIGHDENSITY

From power supply to power distribution, Molex makes the connection.

Molex, the industry leader, now offers the most complete line of pin and socket connectors available. From standard wire-to-wire and wire-to-board versions, to the newhigh-performance "Mini-Fit Jr."

Mini-Fit Jr. meets today's demand for miniaturized desiǵn components.

With current handling capability of up to 9 amps per circuit, and a connector mating force of only 1.54 pounds per circuit, the Mini-Fit Jr. offers the ideal solution to your high current and high density interconnection requirements.



Molex is THE source for immediate delivery of pin and socket products.

Molex has factory stock and distributor inventory around the world. Our pin and socket connectors meet full UL, CSA, VDE, and EAMCL standards. Features include silo protected terminals, positive lock, and pull tabs. They're available in brass or phos-bronze, with tin or selective gold plating for low cost and high performance.

Molex has the pin and socket connector you need, in the size and configuration you need, for every discrete wire application.

Service To The Customer...Worldwide I

Mini-Fit Jr. is our new generation power connector for your panel-towire, wire-to-wire, and board-towire applications.

## MODEM DESICN ELEGANCE AT 2400 BPS

ACTUAL SIZE

## A FULLY FEATURED V. 22 bis ON 9.6 SQ. IN.

At Universal Data Systems, surface-mount technology has brought a new level of engineering elegance to V .22 bis modem design. Using a combination of LSI and surface mounting techniques, we're now able to fit a fully featured V. 22 or V. 22 bis on 9.6 sq. in. of board space.
And when we say fully featured, we mean fully featured. Requiring +5 and $\pm 12 \mathrm{~V}$ to operate, this superminiature device has the same auto-dial, autoanswer, audio driver, line diagnostic and self-test features formerly found only on larger, heavier, more power-hungry and more expensive V.22s.
 attractive price, contact UDS
detailed specifications. Universal Data Systems, 5000 Bradford Drive, Huntsville, AL 35805. Telephone 800/451-2369; Telex 752602 UDS HTV.

Universal Data Systems
(4) motorola inc.

Information Systems Group

# At Signal, weire raising the standards of custom transformers. 

We've been saying for years that the industry knows Signal as the leader in high quality standard magnetics.
True enough.
But it's also true that some of our best customers have been buying custom transformers from us for years. And you can too... whether you need a minor modification of one our standard designs, or a brand new idea for a lead-ing-edge design.
Laminated core transformers, ferrites, powdered metal, tape-wound toroids - every one of these falls in line
with Signal's many capabilities. Because Signal's expertise extends across the spectrum of magnetics design.
That same expertise guarantees you the kind of engineering support you'd always hoped for but seldom get. And consistent, repeatable product performance. It also promises that when you approve the prototype, you won't be getting any nasty surprises when the finished product is delivered.

So when your design calls for high quality magnetics that you can't find in our catalog, don't hesitate to pick up
the phone and call us. Our staff of transformer experts will be happy to help with your design.

When you're ready for custom magnetics, you're ready for Signal.
For a quotation or a copy of our latest catalog, call:
(516) 239-5771


## Signal Transformer.

## The/merican

 Original.
[^0]:    * 30 dB gain control $\quad{ }^{* *}+15 \mathrm{dBm}$ below 1000 MHz

[^1]:    EDN ${ }^{\ominus}($ ISSN 0012-7515) is published 38 times a year (biweekly with 1 additional issue a month) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Electronics/Computer Group Vice President; Jerry D Neth, Vice President/Publishing Operations; J Walsh, Financial Vice President/Magazine Division, Thomas J Dellamaria, Vice President/Production and Manufacturing. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5191. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5191 and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\text {at }}$ the Denver address. EDN ${ }^{\text {© }}$ copyright 1988 by Reed Publishing USA; Saul Goldweitz, Chairman; Ronald G Segel, President and Chief Executive Officer; Robert LKrakoff, Executive Vice President; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, $\$ 100 /$ year; Canada/Mexico, $\$ 115 /$ year; Europe air mail, $\$ 135 /$ year; all other nations, $\$ 135 / y e a r$ for surface mail and $\$ 210 / y e a r$ for air mail. Except for special issues where price changes are indicated, single copies of regular issues are available for $\$ 6, \$ 8$, and $\$ 10$ (USA, Canada/Mexico, and foreign). Please address all subscription mail to Eric Schmierer, 44 Cook Street, Denver, CO 80206-5191.

[^2]:    Cahners Publishing Company, A Division of Reed Publishing USA $\square$ Specialized Business Magazines for Building \& Construction $\square$ Manufacturing $\square$ Foodservice \& Lodging
    $\square$ Electronics \& Computers $\square$ Interior Design $\square$ Printing $\square$ Publishing $\square$ Industrial Research \& Technology $\square$ Health Care $\square$ and Entertainment. Specialized Consumer Magazines:
    $\square$ American Baby $\square$ and Modern Bride.

[^3]:    Data I/O Corporation 10525 Willows Road N.E., P.O. Box 97046, Redmond, WA 98073-9746, U.S.A. (206) 881-6444/Telex 15-2167 FutureNet 9310 Topanga Canyon Boulevard, Chatsworth, CA $91311-7528$ (818) 700-0691/Telex $910-494-2681$
    Data I/O Canada 6725 Airport Road, Suite 302, Mississauga, Ontario L4V 1V2 (416) 678-0761/06968133
    Data I/O Europe World Trade Center, Strawinskylaan 633, 1077 XX Amsterdam, The Netherlands (20) 622866/Telex 16616 DATIO NL
    

[^4]:    NMOS, Colorado Springs, Colorado 80935. Tel. 719-630-4000, Orange County 714-957-6018, Santa Clara 408-727-7771,Denver 303-252-4100, Minneapolis 612-932-7121, Dallas 214-490-9522, Boston 617-366-4020, Baltimore 301-995-6952, Atlanta 404-242-7444.
    INMOS Transputer and IMS are trademarks of the INMOS Group of Companies. Motorolais a registered trademark of Motorola, Inc. Intel is aregistered trademark of In

[^5]:    *FASI is a trademark of Fairchild Semiconductor Corp.

[^6]:    GE/RCA/Intersil Semiconductors
    Three great brands. One leading-edge company.

[^7]:    Termiflex Corporation 316 Daniel Webster Highway Merrimack, NH 03054

[^8]:    P.O. Box 457 - Sandy Lake, Pennsylvania 16145 - 412-376-7515 • FAX 412-376-2249

[^9]:    - Integrated schematic editor
    - Fast analysis routines
    - High-resolution graphic output
    - Standard parts library of $500^{*}$ types
    *IBM versions only.

[^10]:    MICRO-CAP II is a registered trademark of Spectrum Software.
    Macintosh is a trademark of McIntosh Laboratory, Inc. and is being used with express permission of its owner. Hercules is a registered trademark of Hercules Computer Technology
    IBM is a registered trademark
    of International Business Machines, Inc.

[^11]:    Series 32000 is a registered trademark of National Semiconductor Corp. VAX is a registered trademark of Digital Equipment Corp. UNIX is a registered trademark of AT\&T Bell Labs
    VRTX is a registered trademark of Hunter \& Ready Corp.
    © 1987 National Semiconductor Corp.

[^12]:    Other quality Thomas \& Betts products include: IDC Cable and Connector Systems, DIP \& VLSI
    Sockets, Fiber Optic Systems and Two-Piece Connectors.

[^13]:    *AVAILABLE IN OTHER SIZES
    Clearpoint is a registered trademark of Clearpoint Research Corporation. DEC, MicroVAX 2000, MicroVAX II are trademarks of Digital Equipment Corporation. Sun is a trademark of Sun Microsystems Inc. DN3000, DN4000 and Apollo are trademarks of Apollo Computer. IBM, RT PC are trademarks

[^14]:    *Part types available in 2Q '88. All other part types available now.

[^15]:    * $N=$ THE PRICE OF A 1 M -BIT DRAM, WHICH IS CURRENTLY ABOUT \$20. FOR VIDEO RAMs MANUFACTURED IN JAPAN, THESE PRICES ARE SET ACCORDING TO

[^16]:    Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106; Headquarters: (617) 329-4700; California: (714) 641-9391, (619) 268-4621, (408) 559-2037; Colorado: (303) 590-9952; Maryland: (301) 992-1994; Ohio: (614) 764-8795; Pennsylvania: (215) 643-7790; Texas: (214) 231-5094; Washington: (206) 251-9550; Austria: (222) 885504; Belgium: (3) 237 1672; Denmark: (2) 845800; France: (1) 4687-34-11; Holland: (1620) 81500; Israel: (052) 28995; Italy: (2) 6883831, (2) 6883832, (2) 6883833; Japan: (3) 263-6826; Sweden: (8) 282740; Switzerland: (22) 315760 ; United Kingdom: (932) 232222; West Germany: (89) 570050

[^17]:    Improving Data Conversion Productivity

[^18]:    GE Integrated Power Systems Dept
    Box 13049
    Research Triangle Park, NC 27709
    (800) 243-7364;
    in NY, (315) 457-9335
    Circle No 650
    Micrel Inc
    1235 Midas Way
    Sunnyvale, CA 94086
    (408) 245-2500

    TWX 910-379-0007
    Circle No 651
    Motorola Ine
    Technical Information Center
    Box 52073
    Phoenix, AZ 85074
    (512) 928-6705

    Circle No 652
    National Semiconductor
    2900 Semiconductor Dr
    Santa Clara, CA 95052
    (408) 721-5000

    TWX 910-339-9240
    Circle No 653
    SGS-Thomson Microelectronics Inc
    1000 E Bell Rd
    Phoenix, AZ 85022
    (602) 867-6100

    TLX 249976
    Circle No 654
    Siemens Components Inc
    Semiconductor Group
    2191 Laurelwood Rd
    Santa Clara, CA 95054
    (408) 980-4500

    TLX 989791
    Circle No 655
    Sprague Electric Co
    Semiconductor Group
    Box 2036
    Worcester, MA 01613
    (617) 853-5000

    Circle No 656
    Texas Instruments Inc
    Semiconductor Group
    Box 809066
    Dallas, TX 75380
    (800) 232-3200

    Circle No 657
    Unitrode Integrated Circuits Corp 7 Continental Blvd
    Merrimack, NH 03054
    (603) 424-2410

    Circle No 658

[^19]:    Xilinx, Logic Cell Arroy, XACT and Programmable Gate are trademarks and The Programmable Gate Array Company is a service mark of Xilinx, Inc.

[^20]:    Daisy ${ }^{\text {™ }}$ is a trademark of Daisy Systems Corp.
    Mentor Graphics ${ }^{\text {™ }}$ is a trademark of Mentor Graphics Corp.
    Valid ${ }^{\text {™ }}$ is a trademark of Valid Logic Systems Inc.
    FutureNet is a registered trademark of FutureNet, a Data I/O Company.
    P-CAD* is a registered trademark of Personal CAD Systems, Inc.

[^21]:    C 1987 Analog Design Tools, Inc. Analog Workbench and PC Workbench are trademarks of Analog Design Tools.

[^22]:    These and many more are available. *All SSDI Schottky Rectifiers are hermetically sealed.

[^23]:    ${ }^{\text {ru }}$ MegaChip is a trademark of Texas Instruments Incorporated.
    Futurenet is a trademark of Futurenet Corporation.
    Mentor Graphics is a trademark of Mentor Graphics
    Corporation.
    ${ }^{\circledR}$ MULTIBUS is a registered trademark of Intel
    Corporation.
    27-4510A

[^24]:    Call Toll Free 1-800-523-2332
    

[^25]:    "KEC-BRINGING MORE POWER TO YOU'

[^26]:    If you are interested in being an author, contact: Harry Helms, Senior Editor
    Electronics and Electrical Engineering Academic Press
    1250 Sixth Avenue, San Diego, CA 92101 or call (619) 699-6840.

    CIRCLE NO 29

