EDN:

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

COMPUTERVISION CAD/CAM SYSTEMS

CAN MAKE YOUR IDEAS FLY.

0nly Computervision offers the best CAE CAD CAM software on a full range of industry standard platforms. From our Personal Designer ${ }^{\circledR}$ series for simpler design tasks to CADDStation Systems ${ }^{\text {™ }}$ whichenable you to design, engineer and manufacture the most complex products.

Computervision can also helpa company build, manage and protect

its investment in its complete database through a series of modularized Product Data Management systems.
through manufacturing.
For electronics, CADD-
Station provides a wide range of fully integrated PCB design software including schematics, simulation analysis, design rule checking, AUTOBOARD ${ }^{\text {® }}$

Left: Geometric modeling software enables designers to precisely define surface areas of the most complex products. Right: Newly available AUTOBOARD SMT is designed for the rigors of surface-mount technolog. You can design PCBs using blind and buried vias and create them with components on both sides of the boards.

The newest generation of CADDStation systems combine advanced engineering and design capabilities, including production solid modeling, NURBSurface Design,'" finite element modeling and analysis and parametric component libraries. Other features such as 2,3 and 5 axis machining carry designs forward
 manufacture a productand want to get it off the ground faster, better and for less, come fly withus. call or write: Computervision Corporation, Dept. 425B, 100 Crosby Drive, Bedford, MA 01730, (617) 275-1800.

COMPUTERVISION World leader in CAD CAM technology

From the Company That Wrote the Book on STD DOS...

The Industrial Strength Computer Family

STD DOS is Ziatech's implementation of IBM PC DOS on the rugged, low-cost STD Bus, giving industrial control applications access to the huge library of IBM PC software, In other words, a PC tough enough for industrial applications. Ziatech offers a complete family of STD DOS target systems and development tools designed to meet your application's specific requirements.

Single Board IBM AT Performance

The STD DOS V50 system delivers IBM AT performance and software compatibility on a single board STD Bus computer. Its unique surface mount design packages the functionality of many boards into one including: on-board 16 -bit data bus, 832 K memory capacity, real-time batterybacked clock, AC/DC power-fail protection, interrupt controller, DMA, two serial channels and three counter/timers.

Get the Book On -5T. 105 free.
Our 24-page STD DOS Technical Brochure shows how our STD DOS systems can begin answering your application's needs. Call or write for a free copy today.

Ziatech's STD DOS V50 delivers IBM AT performance und software compatibility.

Low Cost DOS, Under \$600

STD Mini-DOS runs PC DOS on a single 8088 -based STD Bus computer for applications with physical size constraints requiring less than 62 K application program memory, Instruments, data-collection terminals, and machine control applications can be equipped for under $\$ 600$ in single quantities.

The Original STD DOS with More Memory

Ziatech's original two-board set includes an 8088 -based single board computer and a DRAM memory board for applications with large memory needs. Both Mini-DOS and the original STD DOS feature two parallel ports, five counter/timers, a serial port, interrupt controller and provisions to add an intel 8087 math co-processor.

Video Options, New Driver Support, and More

system developers wanting to see more of the STD DOS family can choose from a growing list of options, including an EGA video/keyboard controller, disk subsystems, multiprocessing, solidstate disks, a device driver library called STD DDP. and a soon-to-be-released CMOS STD DOS system.

IBM, PC DOS. and IBM Personal Computer AT are frademarks of International Business Machines Corporation.

PUNCH UP YOUR FLASH A/D PER

FREEZE VIDEO SIGNALS WITHA SAMPLE \& HOLD AMP LIKE THIS.

Introducing the VA730 HighSpeed Sample \& Hold Amplifier the only monolithic IC of its kind that operates in the 50 MHz range.

The only one that's available in surface-mount packaging, and in both commercial and military grades.

And the only one that's designed specifically to operate with 8-bit flash converters.

Best of all, not only is it less costly than expensive hybrids, it's priced well below competing Japanese monolithics.
The VA730 has an A/D converter reference power supply, a sample \& hold function, and an ECL clock output section operating to a frequency of 50 MHz .

It's available in a 14 -pin cerdip package, in a 20 -pin ceramic leadless chip carrier (LCC), and in die form.
The VA730 Sample \& Hold Amp is just part of VTC's broad line of Linear Signal Processing (LSP) ICs, which includes Op Amps to 500 MHz gain bandwidth . . . precision, highspeed, and fast settling, plus dual and quad . . . with no sacrifice in performance.

A/D Converters to 12 bits,
$1 \mu \mathrm{sec}$ conversion.
Flash Converters to 8 bits,

250 MHz .

DACs to 12 bits, 100 nsec settling time.

A family of ECL and TTL High-Speed Comparators to 1.5GHz.

Video Amps and Unity Gain Amps to 2000V/ $\mu \mathrm{sec}, 300 \mathrm{MHz}$. And Operational Transconductance Amplifiers to 50V/usec, 75 MHz .

Quite simply, if your analog application requires high performance, you should be speciifying VTC's LSP ICS!
Most of these standard parts are also available as cells in our 6GHz Linear/Digital Bipolar Standard Cell Library, the VL3000.

They all feature $\pm 5 \mathrm{~V}$ operation, which means they help simplify your system power requirements, and reduce power consumption.
For samples and data sheets on the VA730, or any of our LSP products, call toll-free or write us today: VTC Incorporated, 2401 East 86th Street, Bloomington, MN 55420. (ln Minnesota: 612/851-5200.)

CALL 1-800-VTC-VLSI

LOMT: $10 \mathrm{HZ}=40 M H 2$
LHCK RATE: $f C K=2 V$
SHAN $=0$ TO

VTC Incorporated

Performance, Pure \& Simple.'.

Make any waveform come to life.

Now you can create arbitrary waveforms in real time just by using your oscilloscope screen. Our new Model 75 Arbitrary Waveform Generator gives you the tools to quickly produce any arbitrary waveshape: insert standard waveform segments, adjust their offset and amplitude, and create non-standard waveforms with our "thumbtack and rubberband" editing system. You can program an entire function visually without ever entering an x / y coordinate.

With more than 4,000 vertical and 8,000 horizontal points available, the most complex waveforms can be created and then stored in Model 75 's nonvolatile memory. You can play the waveform back at any rate, then edit it point by point.

Since the Model 75 costs just
\$2,095, you might want to buy several. Then you could link two or more Model 75's together and use their internal counters to produce sequences of "normal" waveforms mixed with bursts of "abnormal" ones, or create multiples of a function with phase displacement. An optional IEEE-488 [GPIB] or RS232C interface is available for only \$395.

For more information call or write Wavetek San Diego, P.O. Box 85265,9045 Balboa Ave., San Diego, CA 92138. Phone [619] 279-2200; TWX [910] 335-2007.

1. Place "thumbtack" markers.
2. Reset "thumbtack" marker positions.

3. Insert standard waveform.

4. Stretch "rubberband" with edit cursor.

5. Move "thumbtacks" and complete waveform editing.

the mustinal compliterouchn shaze Ranleadrall

5ven while it's working, and it will keep on working for a minimum of 5 years.

System 2 is IBM PC/XT software compatible and fits on a single $4.5^{\prime \prime} \times 6.6^{\prime \prime}$ card. So, for simple applications, embedding the system is easy, and the cost is minimal.

Vibration: Over 5ys

Shock: Over 20js
Reliaility: Over 5 year MTBF at $55^{\circ} \mathrm{C}$ Operation: 0 to $65^{\circ} \mathrm{C}$
Parts and lahor warranty: 5 years
Specifications
For more complex tasks, memory can be expanded to 640 K bytes, EGA and printer interfaces can be added, and semiconductor or bubble memory disk drive options selected. If your environment is not severe, floppy and hard disks are easily added*. If you want

to move data on a network, we have Novell or ViaNet compatible ARCNET interfaces.

Whatever your application, you will need I/O and its supporting software. We have up to 23 user slots, a wide selection of digital and analog industrial interfaces and their

Microsoft's MS-DOS 3.3
3 times performance of PC/X*** 128K bytes CMOS memory PC-compatible serial port, counter/imer \& interupt controller
Time of day clock
software drivers. Compatible Plugin I / O is also supplied by dozens of other manufacturers including Servo and stepper motor controls, bar code readers, voice recognition and response, and GPIB. If you want proprietary I/O, you can design and make your own plug-in boards for System 2. Be a mover and a shaker, call us today (800) 538-9570 or write Pro-Log Corporation, 2560 Garden Road, Monterey, CA 93940

PRO-LOG
CORPORATION
USA (800) 538-9570; Australia (02) 419-2088; Canada (416) 625-7752; England (0252) 851085; France (1) 3956-8142; Germany (07131) 50030; Haly (2) 498-8031; Switzerland (01) 624444

On the cover: Part 2 of EDN's Product Showcase No 26 completes our 1987 coverage of significant new products. This issue begins with a report on logic analyzers (pg 54), which introduces the product section on Instruments. An article on isolation amplifiers (pg 96), represented on the cover by Analog Devices' offerings, leads off the Components section, and a story on HLL cross compilers (pg 126) highlights the Computer-Aided Engineering product section. Complementing the section on Computers and Peripherals is a militaryapplications computer-systems article (pg 150), which includes boards such as the one on the cover from Titan/SESCO. (Conceptual photography by Dana Sigall; art direction by Kathleen Ruhl)

DESIGN FEATURES

Instruments

Consider logic analyzers for more than $\mu \mathrm{P}$ applications

Logic analyzers, which are well known to engineers who troubleshoot $\mu \mathrm{P}$-based systems, can also help you solve hardware and software problems with other digital systems. You'll get the best analyzer for your money if you carefully match the instrument's capabilities with your needs.-Doug Conner, Regional Editor

Components

Isolation amplifiers break ground loops and achieve high CMRR

Small size and low cost are creating new applications for today's isolation amplifiers. Based on magnetic, optical, or capacitive techniques, these amplifiers can retrieve microvolt-level signals riding on thousands of volts, can block ground loops, and can reject otherwise catastrophic fault voltages.-Tarlton Fleming, Associate Editor

Computer-Aided Engineering

HLL cross compilers speed

You may be surprised by what today's high-level-language cross compilers have to offer. These advanced software tools can significantly shorten a $\mu \mathrm{C}$-based product's development cycle, improve code reliability, guarantee programmer portability, and ease software maintenance while imposing minor speed and code-space penalties. -Steven H Leibson, Regional Editor

Computers and Peripherals

Low-cost, rugged commercial computers 150 fit military needs

To let your military application take advantage of the wealth of software and support-such as field service and peripherals-that exists for commercial computers, you can use either a MIL-spec or a ruggedized version of a commercial computer system. Which type you choose will depend on a number of cost/performance tradeoffs.-Margery S Conner, Regional Editor

1987 Product Database Index

EDN's product database represents products that received editorial coverage in EDN and EDN News between May and October 1987.

Continued on page 7

Two heads are better than one.

On October 5th, Fluke and Philips joined forces in a global alliance for test and measurement equipment. That means Fluke now sells and services Philips products in North America. With the same customerdriven support that Fluke has delivered for over 40 years. Call us. Because now there's a competitive alternative to HP and Tek. And that's a turn for the better. For you. Phone 1-800-426-0361 Ext. 77.

In the second part of December's Showcase, you can read about instruments, such as the one shown above, starting on pg 74; components, starting on pg 106; computer-aided engineering, starting on pg 136; and computers and peripherals, starting on pg 162.

PRODUCT REVIEWS

Instruments 74
Components 106
Computer-Aided Engineering 136
Computers and Peripherals 162
PRODUCT UPDATE
Graphics workstations 47
100,000-gate gate arrays 48
LITERATURE
Software 207
Integrated Circuits 208
Power Sources 210
Hardware and Interconnect Devices 212
Continued on page 9

AFIST FROM TELIRONX HOW TO INTEGRATE UP TO SIX 32-BIT μ PS AT ONCE.

Until now, debugging tightly linked multiple micro systems was slow, tedious, hit-and-miss work. Now it's a simple, exact science, using the tools of Tek's DAS9200 Digital Analysis System: - Parallel, independent modules let you simultaneously acquire 32768 bus transactions from as many as six 8 -, 16- or 32 -bit micro-

- Time-correlated, splitscreen display lets you scroll through disassembly of time-stamped data acquired from any two microprocessors. You can easily follow what each micro is doing at the same point in time.

■ Real-time event hand-

 shaking lets one acquisition module arm another-even if running at different speeds.Or you can link trigger mechanisms on different modules for interactive count and time measurements.
Whatever the combination of hardware and software design segments you need to monitor or integrate, nothing compares with the DAS9200 for pulling them together. For more examples of how the DAS9200 can tackle even the toughest jobs of system analysis, talk to your local Tek representative. Or call: 1-800-245-2036. In Oregon, 231-1220.

EDITORIAL

Now that 1987 is ending, the time's right to make big plans for 1988.

PROFESSIONAL ISSUES

How to work with a patent attorney.-Richard Simonelli, Ziji Technical Services

DEPARTMENTS

News Breaks 21
News Breaks International 24
Signals \& Noise 30
Calendar 36
Business/Corporate Staff 223
Career Opportunities 224
Advertisers Index 229
EDN's Design Ideas will return next issue.

A product-oriented design aid

To save you time in your efforts to keep current, EDN's editors have surveyed the new-product offerings from thousands of companies, screening and selecting only the most significant of those offerings introduced in the last six months. We present our findings-the best of the best-in a format designed to make your product selection as easy as possible. You can keep this Product Showcase as a reference until the next one that covers these four key product areas appears in July.

[^0]
Only Mentor Graphics stands

 up to the pressures $==$ It's easy to learn, yet also packs on PCB layout.As a PCB designer, you're under constant pressure from all sides. Endless ECOs from engineering. Impossible schedules from management. Anxiety from manufacturing.

The only way to survive and thrive is to be fast and accurate.

So the flashy simplicity of some PCB layout workstations makes them very appealing at first glance. But all too soon, you'll find they've made you neither faster nor more accurate. the power you'll need to cope with even the most complex board designs and technologies.

Within minutes after you sit down at Board Station, you'll be performing all its basic operations with confidence and ease. A fast, graphics-oriented interface moves you smoothly and comfortably from one design function to the next. All commands are grouped logically, with pop-up menus and pull-down forms.

And when you're ready for more sophisticated operations, Mentor Graphics stays right with you. Board Station's flexible and versatile editor lets you effectively tackle even the most

advanced layout problems, like SMDs and double-sided placement. And our component placement tool is the best anywhere, with software that thinks just like a PCB designer.

Also, you can shift effortlessly from interactive to automatic placement or routing, so your work effort is constantly optimized. And you have ready access to a large PCB geometry library, while intelligent logical-tophysical pin mapping streamlines your layout task. Board Station can even be gradually converted into a highly personalized tool with high-level macros and custom window layout.

What's more, you can share a database with the engineering department, so essential information is automatically forwarded to you, like specific component locations, critical nets and other design constraints.

Board Station. It's all part of a vision unique to Mentor Graphics, the leader in
electronic design automation. Let us show you where this vision can take you.

Call us toll free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390 (in Oregon call 284-7357).

PAL devices: We didn't wait for the future.

There's no doubt that we're fast. But speed isn't all that makes us the logical choice in programmable logic.

AMD PAL* devices give you more because they have more functions per chip. With unique features like input/output logic macrocells, buried registers and variable product term distribution, you can design with more efficiency. And freedom.

PAL devices you can count on.

Speed and functionality don't mean much if you can't count on your PAL devices. We can deliver better than 98\% programming yield. And we added extra circuitry for functional and AC testing. That means we can test parts prior to programming. Then after you've programmed all the parts, you'll be pleasantly surprised to discover our Post-Programming Functional Yield is an incredible 99.9\%.

Our products range from industry standard 20- and 24-pin PAL devices to the innovative 22 V 10 and the 23 S 8 . We've got the kinds of technologies and features you need in packages and temperature ranges to fit your design. We've even got highcomplexity $\mathrm{E}^{2} \mathrm{CMOS}$ products and ECL on the way.

And it's easy to use our PAL devices because we provide a broad selection of high level software that lets you get from system requirements to programmed product easily. Need more information? Just ask and well send you the AMD Program-

Performance Speed-Up 20-Pin PAL Devices		
Propagation		
Delay	Speed Level	Date
25.0ns	A Speed	Q4, 1981
15.0ns	B Speed	Q3, 1986
10.0ns	D Speed	Q3, 1987
7.5ns	E Speed	Q4, 1987

Now you don't have to wait for the future either.
*PAL is a registered trademark of, and is used under license from, Monolithic Memories Inc. Call toll-free (800) 538-8450 ext. 5000; inside California call (408) 749-5000. Sunnyvale, CA 94088

The development system you need won't exist until we create it for you.

Applied Microsystems lets you link the powerful tools you need with ease and precision.

Unless your system has off-the-shelf bugs, you can't solve your problems with off-the-shelf development tools. But if you try to pull all the pieces together yourself, you'll spend long frustrating hours and still wind up with a development system that falls short of your needs.

Now Applied Microsystems offers help: a new method of linking development tools that can be adapted to your specific needs. We offer you a seamless, painless interface along with the ability to match your host, language, operating system and soffware requirements to your engineering methods and target design, be it Intel, Motorola or Zilog.

Debug tools for your integrated development environment.

Whether you're working on an 8 -bit, 16 -bit or even 32 -bit microprocessor design, Applied Microsystems lets you tailor the emulation and debug tools you need. Everything from symbolic and source-level debuggers to assemblers, cross-compilers and utilities. The chart shown above

HOSTS	OPERATING SYSTEMS	TARGETS	LANGUAGES	TOOLS
VAX	VMS	8051,	C	Assemblers
MicroVAX	ULTRIX	8048 family,	Pascal	Linkers
UNIX	UNIX	8080,8085,	FORTRAN	Locaters
workstations	XENIX	$8086 / 88$,	PL/M	Compilers
- Apollo	MS-DOS	$80186 / 188$	and 80286	Assembler
- Sun		$68 \mathrm{HCl11}$	Symbolic	
- IBM AT		$6800 / 2 / 8$,		debuggers
MS-DOS		$6809 / 9 \mathrm{E}$,		Source level
workstations		$68000 / 8 / 10$	debuggers	
- PC	and 68020	Emulators		
- PCXT		Z80, MK3880/4		
- PCAT		and Z8001/2/3		
- Compatibles		NSC-800		
A stand-alone or host-control system of fully integrated debug tools				
built on high performance emulation.				

gives some idea of the power and convenience we can offer you, but it can only hint at the benefits you will enjoy.

Validate" ${ }^{\text {m links emulation with }}$ symbolic and source-level debugging.

When your software engineers only speak C and your emulator only speaks assembler, your development tools are worse than worthless. If your function is in assembler and your debugger speaks only C , you've got the same problem. The power of the Validate environment is that it works equally in high level languages and in assembler. You don't sacrifice any power or any comfort.

Call toll-free and ask for the proof.

Discover why our integrated development systems are the fastest and easiest ways to start and finish a design project. For technical and application details call 1-800-426-3925. In Washington, call (206) 882-2000. Or write Applied Microsystems Corporation, P.O. Box 97002 , Redmond, WA 98073-9702.
In Europe, contact Applied Microsystems Corporation Ltd., Chiltern Court, High Street, Wendover, Aylesbury, Bucks, HP22 6EP, United Kingdom. Call 44-(0)-296-625462. UNXX is aregisterd trademmako fitaT

Applied Microsystems Corporation

How to outwit the enemy.

$33 \mathrm{MHz}, 68$ pin; 1200 Gate:

12 MHz ;
100μ A Standby Power
CMOS FIFO
$15 \mathrm{~ns}, 20$ pin Bipolar PAL device

It's simple, buy the latest intelligence.
From whom? Monolithic Memories' Military Products Division, of course.

Our dossier is full of the products you need. Like Zero-Power CMOS FIFOs, 15ns Bipolar PAL' devices and flexible architecture CMOS Logic Cell" Arrays (LCA). The programmable gate arrays.

Soon we'll be deploying even more
up-to-date intelligence. Everything from Zero-Power CMOS PAL devices to the function-packed Bipolar PAL32VX10, a superset of the 22 V 10 . We'll even supply you with fast 512×9 and 1 K 9 CMOS Deep FIFOs.

Naturally, our intelligence comes with all the right qualifications. We carry a full line of Mil-Std-883 Class B devices, as well as JAN 38510 Class B devices from our DESC-certified facility.

Our latest products come with Standard Military Drawings. And most of our Bipolar processes are RAD HARD (ask us for neutron and dose rate radiation data.)

What's more, we offer prompt factory programming of all military PLDs. Whether you order a few or a few thousand.

But best of all, we've got some of the most intelligent military sales people and FAEs in the business. All dedicated to seeing that you get exactly what you need to surprise the enemy.

So call us at (800) 222-9323 and we'll send you a sample CMOS FIFO kit and our Military Preferred Parts Catalog.

Or write us at Monolithic Memories, Military Products Division, 2175 Mission College Blvd., Santa Clara, CA 95054-1192.

And the enemy will never know what hit them.

Monolithic MMH Memories

Now that we've teamed up with Advanced Micro Devices, we can provide you with even greater intelligence.

Hitachi's Hi-BiCMOS" SRAMs Deliver Explosive Speed, with Minimal Power Consumption

The red-tailed hawk is an incredible performer. For hours on end he soars effortlessly aloft in thermals, barely moving a muscle. Then, instantly, he descends upon his prey, achieving terminal velocity in a flash.

Now, Hitachi's revolutionary Hi-BiCMOS process brings you power-efficient, high-speed performance in a new series of SRAMs. Hi-BiCMOS transcends generic $\mathrm{Bi}-\mathrm{CMOS}$ by intermixing true bipolar and CMOS devices at the basic cell level. It's a generation ahead of $\mathrm{Bi}-\mathrm{CMOS}$, and two generations ahead of pure CMOS. The results of this fantastic new process technology can be seen in products like our HM6787-25 (64 K x 1) and HM6788-25 (16K x 4) 64K-bit SRAMs.

These devices have a 25 ns access time, are TTL I/O compatible, yet draw no more power than ordinary CMOS.

And, they're available today, in production quantities. Now, you can speed up the cycle time of your main and cache memories, image processing, or CAD/CAM systems without paying power consumption or heat penalties.

Hitachi's Hi-BiCMOS process is blue sky technology brought down to earth. As you well know, it's one thing to develop new product ideas-the trick is to be able to make the product. Hitachi's done both. That's because we've had more than two years' experience using Hi - BiCMOS internally, in our gate arrays. Being first has given us such an edge that we have a variety of Hi - BiCMOS SRAMs available nowin plentiful supply-with many more devices coming soon.

For example, we'll soon introduce 64 K SRAMs with 15 ns access time, ECL compatible I/O, and

Incredible

power consumption that's only one-half of standard ECL. And with our Hi-BiCMOS technology so firmly in place, 20ns 256 K SRAMs with ECL or TTLI/O aren't far behind.

Soar above your competition with Hitachi. Most MOS SRAMs you're using today will never be available in much faster versions. That's because pure CMOS is getting close to its limits. This is no secret. It's the reason why everybody is struggling to bring Bi -CMOS products to market. . . everybody except Hitachi. After all, we already have Hi-BiCMOS products available today. With Hitachi, you're a generation ahead of where everyone else hopes to be tomorrow.

For more information, call your local Hitachi Sales Representative or Distributor Sales Office today.

Fast Action: To obtain product literature immediately, CALL TOLL FREE, 1-800-842-9000, Ext. 6809. Ask for literature number R16.

Hitachi America, Ltd.

Semiconductor and IC Division
2210 O'Toole Avenue, San Jose, CA 95131
Telephone 1-408/435-8300

(0) HITACHI

We make things possible

$100 \mathrm{~V} / \mu \mathrm{s}$ GUARANTEED

PMI's OP-44 also guarantees a
15 MHz GBW and full power BW
of 1.5 MHz . And no compromises
on accuracy.

OP-44 HA-2520			
$\mathrm{V}_{\text {OS }}$	1.0	8	$\mathrm{mV} \max$
$\mathrm{TCV}_{\text {OS }}$	4	20	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ
$\mathrm{A}_{\text {VOL }}$	200	10	$\mathrm{~V} / \mathrm{mV} \min$
I_{B}	0.2	200	$\mathrm{nA} \max$
CMR	86	80	dB min

The OP-44 is available now . . . in 883 too. Get the high-speed facts from our 12 page OP-44 data sheet. Circle the reader service number or call 1-800-843-1515.

Precision Monolithics Inc.
A Bourns Company
Santa Clara, California USA
408-727-9222

NEWS BREAKS

EDITED BY JOANNE CLAY AND CHARLES H SMALL

HARDWARE / SOFTWARE ADD-ONS OFFERFD FOR SUN WORKSTATIONS

Third-party supplier Artecon Inc (Carlsbad, CA, (619) 931-5500) has introduced a series of hardware and software add-ons for Sun workstations. In the software area, the company offers a menu-driven shell for the Unix operating system. The package, called Artea, presents a consistent user interface across applications ranging from word processing to CAD. It also provides central file management and system administration. A single-user, binary license costs $\$ 625$, and the company also offers site licenses and quantity discounts.

The company's hardware products expand Sun systems. The desktop modularstorage unit, for example, allows you to add mass storage. The unit includes a cooling fan and power supply and your choice of one or two peripherals (disk or $1 / 4-\mathrm{in}$. tape). A single-drive disk unit ranges in cost from $\$ 4900$ to $\$ 17,900$ for 71 M to 636 M bytes. The company also offers the VME Pedestal enclosure. The 9-slot VME Bus enclosure replaces Sun enclosures having fewer expansion slots. You can use the VME Pedestal to add data-storage interfaces, memory boards, or other VME Bus cards. You simply remove the boards and peripherals from a Sun system and insert them in the new enclosure. The 9 -slot enclosure and power supply costs \$5380.-Maury Wright

VOICEBAND ANALOG INTERFACES OFFER LOW-COST DSP CONTROL

Providing a voiceband bandpass/antialiasing filter and a lowpass smoothing filter for speech-compression and -encoding applications, the TCM29C18 and TCM29C19 from Texas Instruments (Dallas, TX, (800) 232-3200) dissipate 60 mW in active mode and 5 mW in standby mode. They cost $\$ 3.60$ (1000). The difference between the two chips lies in their clock rates: The TCM29C18 requires a $2.048-\mathrm{MHz}$ clock to provide nominal voiceband filtering and $8-\mathrm{kHz}$ sampling; the TCM29C19 requires a $1.536-\mathrm{MHz}$ clock to deliver equivalent performance. Packaged in plastic, 16 -pin DIPs, these chips also contain circuitry that performs DSP functions such as signal conditioning, filtering, A/D and D/A conversion, timing, and voltage referencing.-J D Mosley

POP-UP SOFTWARE LETS YOUR PC EMULATE AN HP-41 CALCULATOR

If you never abandoned your yen for reverse-Polish notation, consider using the ELI-41 memory-resident software program from Eclipse Logic (Huntington Park, CA, (213) 569-6020); it lets your IBM PC or compatible computer operate as a HewlettPackard 41 Series scientific calculator. This $\$ 99.95$ package lets you run HP-41 programs and perform calculations to 15 digits of precision. The company even offers all of the HP-4l engineering, control, math, and statistics libraries on DOS-compatible floppy disks. Because the program is memory resident, you can access ELI-4l while running another application program.-J D Mosley

CAD/CAE SOFTWARE AIDS IN MICROWAVE HYBRID AND CHIP DESIGN

Hewlett-Packard's (Palo Alto, CA) HP 85150A microwave-design system helps you to design hybrid and monolithic microwave circuits by providing software for schematic capture, simulation, and artwork generation. The $\$ 29,000$ package runs on the company's HP 9000 Series 300 workstations. After you enter the schematic, the simulator uses frequency-domain, linear simulation to check the circuit. The company refined the 85150A's software-simulation models to reflect data obtained from real devices with its HP 8510 microwave network analyzer. An artwork generator automatically converts your schematic to hybrid layouts or monolithic-IC designs, and a graphics editor allows you to refine those automatically generated designs. Deliveries of the design system will begin in May 1988.-Steven H Leibson

NEWS BREAKS

3-GHz GaAs LASER DRIVER SUITS FIBER-OPTICS APPLICATIONS

Complementing its transimpedance amplifier, wideband amplifiers, and high-speed comparator, Anadigics Inc's (Warren, NJ, (201) 668-5000) latest circuit for fiber-optic applications is a $3-\mathrm{GHz}$ GaAs laser driver. The ALD30010 operates over the frequency range of 10 kHz to 3 GHz and represents another step in the company's quest to provide a GaAs chip set for the transmitter and receiver sections of high-data-rate fiberoptic systems. Because of an on-chip phase splitter that also provides gain, the ALD30010 needs only a 0.6 V p-p (0 dBm), single-ended input signal, and it can supply 35 mA of modulation current to the laser diode.

The ALD30010 can operate to 4.5 GHz as an analog current driver and to 5G bps in digital fiber-optic systems. You can also use the device as a wideband buffer amplifier that features voltage-controlled gain and offset functions. The ALD30010 costs $\$ 43.50$ (1000) in chip form and $\$ 65$ in an 8-pin flat pack.-Dave Pryce

SELF-CALIBRATING 13-BIT ADC INCLUDES S/H CONVERTER

Featuring the first successive-approximation algorithm of its type ever to be implemented on a monolithic chip, the ML2230 A/D converter from Micro Linear Corp (San Jose, CA, (408) 262-5200) can produce a 12 -bit-plus-sign sample every $30 \mu \mathrm{sec}$. You can connect the device directly (without adding TTL gates) to $\mu \mathrm{Ps}$ such as the 80 C 51 and the 80 Cl 86 ; the $68000 \mu \mathrm{P}$ family requires only a 74LSOO package to separate the RD and WR lines. On command, the converter performs a 2 -msec selfcalibration: After nulling the loop offsets, the circuit adjusts its loop gain to a precise value of two.

The ML2230 requires less area than a conventional S-A type does, because its conversion algorithm doesn't use a D/A converter for feeding back the successiveapproximation trial values. Self-calibration and the absence of a D/A converter thus eliminate any need for component trimming during the MLん230's manufacture. Builtin diagnostics provide self-tests for the analog and digital circuitry, as well as a debugging aid during your system-design cycle. Suitable for 8-bit data buses, the ML2230 comes in a 24 -pin DIP; a version with $\pm 1 / 2$-LSB linearity costs $\$ 25.95$ (100). For the same price you can order the ML2233, a similar product that features 13 output lines for direct interface to a 16 -bit data bus.-Tarlton Fleming

OPTICAL MEDIA HAVE SO-YEAR WARRANTY

To counter concerns about optical-media life, Laser Magnetic Storage International Co (Colorado Springs, CO, (303) 593-7900) now provides a written, 30-year warranty on its 12 -in. write-once, read-many (WORM) Laserdrive disks. Based on accelerated life testing, the warranty covers materials and defects on the unwritten media and also guarantees that the media will be readable for 30 years. Should you have a datarecovery problem on the media, the company will assist you in retrieving the data and will replace the bad disk at no charge.-Steven H Leibson

ANALOG SILICON COMPILER LETS YOU DESIGN 2OTH-ORDER FILTERS

The SCF Compiler from International Microelectronic Products (IMP) Corp (San Jose, CA, (408) 432-9100) is an analog silicon compiler for the synthesis, simulation, analysis, and physical design of switched-capacitor-filter circuits on the company's CMOS, combined analog-digital ASICs. The specification portion of the package is free to IMP customers; it supports the implementation of Butterworth, Chebyshev, and elliptic filters of as great as 20th-order complexity.-Jim Wiegand

Bringing the Worlds of Data Acquisition and DSP Together

You can have the best of both worlds from just one source. Data acquisition and DSP are just down the hall from each other at TRW LSI. That's good, because these functions must perform in close harmony in your system. We can relate. No one understands your total system needs better than we do.

And, no one offers a broader range of cost-effective, highperformance analog and digital circuits. Converters up to 200 MHz . DSP building blocks up to 20 MHz . And that's just for openers.

Data acquisition and DSP are on a converging course at TRW LSI. Not far beyond these doors lies a whole new world of data conversion, floating point, image processing and graphics DSP chips. If that sounds like opportunity knocking, you're right.

Our doors are always open. Our technical staff is waiting to help you. Let us help bring your high-performance data acquisition and DSP requirements together. Contact us at 619.457.1000 and ask for one of our applications engineers. We'll help make a world of difference in your system performance.

LSI Products Division
P.O. Box 2472, La Jolla, CA 92038
619.457.1000

In Europe, call or write:
TRW LSI Products
Konrad-Celtis-Strasse 81
8000 Muenchen 70, W. Germany
089.7103 .115

In the Orient, phone:
Hong Kong, 3.856199;
Tokyo, 03.461.5121; Taipei, 751.2062;
Seoul 2.553.0901

- TRW Inc. 1987 - 712 A01087

TRW LSI Products

NEWS BREAKS: international

PARALLEL-PROGESSING UNIX COMPUTER ACHIEVES 80 MIPS

Integrated Micro Products (Consett, UK, TLX 537747) is developing a VME/VSB Bus parallel-processing, multiuser Unix computer that is capable of 80-MIPS operation. The computer occupies a 21 -slot VME Bus backplane populated with a number of cards: CPU cards that accommodate multiple 68030μ Ps; multiple-card memory subsystems that provide as much as 256 M bytes of RAM; an intelligent, caching diskcontroller card; and 16 -channel serial I/O cards. The computer can accommodate more than 200 users.

A Uniplus+ operating-system kernel-written specially for the development project by Root Computers Ltd (London, UK, TLX 885995)—dynamically allocates users' tasks among the system's processors. Despite its ability to run tasks in a parallel-processing environment, the kernel offers the same operating-system calls as does a singleprocessor Uniplus+ system. Therefore, the computer maintains true binary compatibility with software that runs on single-processor Uniplus + computers. The project, code-named Magix, is under development with a port of Uniplus + version 2.2. However, the company intends to supply the computer-probably around the middle of 1988-with Uniplus+ version 3. The fully loaded computer will probably sell for less than $£ 100,000$.-Peter Harold

STEPPER-MOTOR DRIVERS EASE INTERFACE TO SINGLE-CHIP μ P

Mietec (Oudenaarde, Belgium, TLX 85739) plans to introduce two stepper-motor driver ICs during the first half of 1988. The MTC6017 is an H-bridge driver that's suitable for controlling the current in one winding of a bipolar stepper motor. Its pinout, its drive capability (0.8 A continuous), and its basic functions are similar to those of the industry-standard 3717-type driver. However, the MTC6017 sports two pins that a single-chip $\mu \mathrm{P}$ can use to program the winding current's level. Further, the device includes an on-chip 5V reference for its current-sense comparator. Another device with similar maximum drive current, the MTC6018, targets microstepping applications. It will provide a 6-bit on-chip D/A converter for winding-current control. The MTC6017 and MTC6018 will cost approximately $\$ 2.20$ and $\$ 2.50$, respectively.-Peter Harold

ALTERNATE SOURCE AVAILABLE FOR 1-CHIP μ Cs

NEC has agreed in principle to allow Matra Harris (Nantes, France) to act as an alternate source for NEC's μ PD78312 and 78310 single-chip microcomputers. The two devices are proprietary μ Cs that NEC targets at industrial-control and computerproduct applications. This agreement marks the first time that NEC has licensed a foreign company to act as an alternate source.-Tom Ormond

DEVELOPING ASIAN NATIONS TO BUY 8\% OF SEMICONDUCTORS IN 1988

South Korea, Taiwan, Hong Kong, and Singapore are expected to consume about 8\% -or approximately $\$ 2.9$ billion-of the world's semiconductor production in 1988 , according to the Electronics Industries Association of Japan (EIAJ). This figure represents an increase of 18% over the countries' 1987 consumption. The South Korean market will show the greatest growth; it's expected to demand $\$ 950$ million worth of semiconductors in the coming year. EIAJ predicts that Taiwan will run a close second, purchasing $\$ 910$ million worth of the world's semiconductors in 1988.-Joanne Clay be compatible with all automated production techniques common to PC board manufacturing. They can be installed with DIP auto-insertion equipment. They are sealed to withstand wave soldering and washing operations. And they provide both sensing and switching in a single space-saving device. Best of all, the ACTION Series 6600 combines production expediency with proven accuracy and reliability. Bimetallic snap-acting thermostats, the Series 6600 feature fast, positive response and excellent repeatability with 1 amp switching capability over a temperature range of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ to $120^{\circ} \mathrm{C}\left(248^{\circ} \mathrm{F}\right)$. To ensure performance, the temperature is factory pre-set, and cannot be altered in the field. Add automated thermostat installation to your PC board production line. Call us today for configuration availability and further details. Airpax Corporation, Frederick Division, Husky Park, Frederick, MD 21701. (301) 663-5141. A North American Philips Company.

improve circuit performance...\$12.95
 (6-49 qty)

Now available for the first time...IF bandpass filters that maintain constant 50-ohm impedance over their passband and stopband.

What are the significant advantages over conventional bandpass filters whose impedance and VSWR change drastically outside the bandpass region? For receivers, improved intermod performance. For wideband amplifiers, greater stability. For mixers, less spurious reflections and improved flatness of response. For oscillators, considerably better noise characteristics.
Housed in a hermetically-sealed package, only 0.4 by 0.8 by 0.4 in., the PIF-series IF bandpass filters meet MIL-STD-202 requirements, have a VSWR of 1.3 (typ), and are offered at IF center frequencies shown in the chart. For your design convenience, performance specs are provided at $20 \mathrm{~dB}, 10 \mathrm{~dB}, 1 \mathrm{~dB}$ rejection points within and outside the bandpass region.

Available for immediate delivery, the constant-impedance IF bandpass filters are priced at only $\$ 12.95$ (6-49 qty) and carry Mini-Circuits' one-year guarantee.

MODEL Center Frequency (MHz) Bandpass (MHz) 1dB max Bandpass (MHz) 10 Bax
Stopband (Mhz) 10 dB min Stopband (Mhz) 20dB min

PIF-30 30 25-35 7-120 2-210

PIF-40 42 42 35-49 10-168 3-300
PIF-5
50
$41-58$
$12-2$
$3-35$ -58
-200 50

PIF-60	PIF-70
60	70
$50-70$	$58-82$
$14-240$	$16-280$
$4-400$	$5-490$

finding new ways ..
setting higher standards

Amplifier Arsenal

$50 \mathrm{KHz}-2000 \mathrm{MHz}$, Low Noise 100 mW output Gain Controlled from $\mathbf{\$ 6 9 . 9 5}$

Our ZFL-2000 miniature wideband amplifier hit a bulls-eye when we introduced it last year. Now we've added more models to offer you a competitive edge in the continuing battle for systems improvement.

The ZFL-2000, flat from 10 to 2000 MHz , delivers +17 dBm output and is priced at only $\$ 219$.

Need more output? Our ZFL-1000H, flat from 10 to 1000 MHz , delivers +20 dBm output.

Is low noise a critical factor: Our ZFL-500LN and 1000LN boast a 2.9 dB NF.

Variable gain important? Our ZFL-1000G, flat from 10 to 1000 MHz , delivers +3 dBm output with 30 dB gain control while maintaining constant input/output impedance.

Searching for a high-quality, low-cost amplifier? Our ZFL-500 flat from 50 KHz to 500 MHz , delivers +10 dBm output for the unbelievable low price of only $\$ 69.95$. Need to go higher in frequency? Consider the ZFL-750, from 0.2 to 750 MHz , for only $\$ 74.95$. Or the $\$ 79.95$ ZFL-1000, spanning 0.1 to 1000 MHz .

One week delivery... one year guarantee.

SPECIFICATIONS

MODEL	FREQUENCY MHz	GAIN, dB (min.)	MAX. POWER OUTPUT dBm(typ)	NF $d B(t y p)$	PRICE Ea.	\$ Qty.
ZFL-500	0.05-500	20	+9	5.3	69.95	1-24
ZFL-500LN	0.1-500	24	+5	2.9	79.95	1-24
ZFL-750	0.2-750	18	+9	6.0	74.95	1-24
ZFL-1000	0.1-1000	17	+9	6.0	79.95	1-24
ZFL-1000G*	10-1000	17	+3	12.0	199.00	1-9
ZFL-1000H	10-1000	28	+20	5.0	219.00	1-9
ZFL-1000LN	0.1-1000	20	+3	2.9	89.95	1-24
ZFL-2000	10-2000	20	$+17^{\star *}$	7.0	219.00	1-9

* 30 dB gain control $\quad{ }^{* \star}+15 \mathrm{dBm}$ below 1000 MHz

If youre not finding Gate Array, Advanced Schotthy, and SMT faults, maybe the fault lies with your tester.

Introducing Teradyne's L210i.
The only true VLSI in-circuit tester.
There are a lot of other in-circuit testers out there. But on VLSI boards, all they test is your patience.
Now there's the L210i VLSI In-Circuit Tester from Teradyne. It has over 3,000 bidirectional test pins. With digital, analog, and memory testing on every pin. And 10 MHz pattern rates.
Most importantly, the L210i delivers 95% or greater fault coverage on VLSI boards, in just 1-2 months. Because it's the first and only in-circuit tester that handles the three biggest problems in in-circuit testing today.

The L210i delivers waveforms accurately at the board under test for repeatable test results.

Test ASIC's ASAP.

One of the biggest problems for in-circuit testers today is ASIC's. If they detect ASIC faults at all, it's only because you've spent weeks and weeks programming them.
Not so with the L210i. It has a unique VLSI device tester architecture. So you can use patterns from device design and test databases. The L210i's translators convert patterns quickly.

Plus, the L210i stores and processes lengthy test data efficiently. So you save valuable time in testing gate arrays and other semicustom devices.
You won't find that in any other in-circuit tester.

clusters. Memory arrays. Or hard-toisolate devices.

With its MultiMode capability, you can easily partition the board into functional clusters, making the most of the L210i's functional test and diagnostic techniques.

That means you'll never be trapped by in-circuit testability problems again.

The L210i is Teradyne's first board tester for VLSI in-circuit testing, and in-circuit tester budgets.

No-fault insurance.

Teradyne's L200 family has set the standard for VLSI board testing in this decade, driving test quality up to bring costs down.

Repeatability. Repeatability.

 Repeatability.With the L210i, you won't be plagued by unreliable tests of your high performance logic. False clocking. Or shifting signal timing.
Because the L210i features short, low inductance fixture wiring. Superb driver electronics. And powerful debug tools. So everything you test gets tested repeatedly. Including high speed ECL and FAST.* Even Advanced Schottky and CMOS, with their tricky overdrive impedances.

The L210i fears no logic.

The only in-circuit tester with an escape hatch.

The L210i is the only in-circuit tester that's flexible enough to test today's SMT

Now the L210i offers the first practical VLSI in-circuit test solution. It's the system you need to boost board yields at system test. And make your in-circuit test strategy successful.
If you can't afford a tester that misses VLSI faults, you'd better find out more about the L210i. Write Teradyne, 321 Harrison Avenue, Boston, MA 02118. Or call Daryl Layzer, L200 Product Group, 617/482-2700, ext. 2808.

[^1]
SIGNALS \& NOISE

Japan's defense role

I disagree with nearly all the statements and suggestions in Jon Titus's September 3 editorial "Increase Japan's defense role" (EDN, pg 53).

One reason Japan is a leading nation is that it does not waste its budget on unproductive military projects. Instead, it funds industry research, which turns out products and know-how that let Japan's industries increase their lead in so many areas.
If Japan was concerned enough about its defense role so that it, too, ordered an embargo of its state-of-the-art high-tech products, US companies would suffer the most. Japan is ahead in several key technologies, which it exports to the US and which are highly welcome there, if my impression is right. Like the US, it could use an embargo as a protectionist measure to prevent foreign companies from selling
products that contain Japanesemade components and that would compete with Japanese-made goods.

I have a suggestion on how US companies can open Japanese markets: Develop suitable products! The Japanese market is not nearly as protected or nationalistic as the US and Europe seem to believe. Why do German car makers achieve double-digit growth in Japan by selling high-priced cars, while American cars lose out? My company, a small German instrument manufacturer, sells its products in Japanese markets where no American companies even try to compete. Sometimes, one gets the impression that America feels offended from all sides, and tries to make up for this by building stronger armed forces.
The Japanese people are very open to foreign products. They often prefer foreign products to

Customer satisfaction means increased profit. Now you can guarantee that satisfaction 100%. Eliminate human error and harsh test equipment that can damage precision keyboards.
We offer: Test speeds up to 30 strokes per second - Semi-automatic, to fully conveyorized, stand-alone systems - Internal or external control for all applications • Tactile testing, bar code reading, and much more \bullet Complete record of all test results...All at a far lower cost than you ever imagined.
Let us show you how you can gain the competitive edge and expand your new design and production capabilities with 100% production test reliability.
Call Today (818) 709-6268

9960 Canoga Ave.. Chatsworth, CA • 91311
goods produced in their own country, if those products are what they wish! There are examples of American companies succeeding in Japan. I read an article about an American manufacturer of home-fitness and body-building equipment that, after a hard start-up phase in Japan, is now more successful there than it was in America.

The Japanese select the product with the required performance and backup. A number of American high-tech companies sell to Japan by understanding this. Even today, years after Japanese companies took over the leadership in chip technology, a good part of the manufacturing equipment for these very chips is of American origin.
Wolfgang Schweitzer
Langenbach, West Germany

Correction

In the October 1 Special Report (EDN, pg 142) on surface-mount connectors, the quantities listed for the AMP products in the table on pg 146 should be thousands (not millions).

Clarification

The Special Report on digital storage oscilloscopes (EDN, October 15, pg 90) states that according to the Nyquist criterion, designers need to sample "at a frequency that's at least twice the highest frequency that interests" them. More precisely, designers must sample at a frequency at least twice as high as the highest frequency component that has an amplitude greater than the A/D converter's least-significant-bit weight.

WRITE IN

> Sendyour letters totheSignals and Noise Editor, 275 Washington St, Newton, MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity.

shispory

It's the same old story. Static RAM suppliers come out with new claims base on, what else, speed. And with everybody touting speed, they all start looking alike. Until you look at reliability.

That's where INMOS breaks the mold.
At INMOS we've developed SRAMs that give you high performance without compromising reliability.

We've achieved that reliability with innovations
like using layered refractory metals to reduce electromigration and eliminate stress voiding, interlevel shorts and to reduce contaminates.

At the transistor level we use lightly doped drains to inhibit hot electron effects, yielding transistors that will last more than a century.

So if you're tired of the same old line about the same old stuff, call INMOS. Our 25 ns , 64 K SRAMs will make you look at chips in a whole new way.

RELIABLE 64K CMOS SRAMs Oinmos

DIIGIIZING

11 GHz . The 11402 Digitizing Oscilloscope features a full 1 GHz bandwidth right on the probe tip to help you make the most demanding voltage and timing measurements.
2. 10-14 BIT VERTICAL/ 10 ps HORIZONTAL RESOLUTION. 10-bit vertical resolution is averageable to 14 bits Self-calibration decreases error to less than 1% DC.

3 AUTOMATIC MEA-

SUREMENTS. Up to six measurements can be made at the push of a button, with results simultaneously displayed and continuously updated

4 PUSH-BUTTON

 HARD COPY. Plug in a Tek or compatible Epson dot matrix printer using the scopes' standard Centronics port.5 AUTOSET. Push a button on the front panel or on the probe to automatically set up the scope based on the signal characteristics of the selected trace.

6 TOUCH SCREEN.

Select a trace, a trigger, a measurement or other function by touching the appropriate area of the screen or by selecting from pop-up menus: the closest, most natural link yet between user and scope.

Tektronix introduces

 the 11000 Series: the new standard in digitizing and analog oscilloscopes.These new fully programmable scopes display more traces (up to 8) at higher bandwidths (up to 1 GHz), with greater accuracy (up to 0.6\% vertical), and include more new functions for expediting the capture
and
processing of data than can ever be listed here.

Two new digitizing scopes exert the power of three
processors, long records, the most powerful triggering and the highest throughput ever. Use
their built-in dual time-

THE NEW

 ERA IN DIGITIZING AND ANALOG OSCILLOSCOPES.ANALOG
7 MICROCHANNEL
PLATE. The single shot trace brightness of the Tek 11302 is almost 1000 times brighter than conventional scopes - enough to expose even the fastest transients to view.

8500 MHz INTEGRATED COUNTER/ TIMER. Use with dual delayed sweeps for precise timing measurements between selected points. Unique counter view trace lets you see exactly what you are triggering on.
9 CURSORS. Use to make precise measurements on any part of a displayed waveform.
$101 \mathrm{mV} /$ DIV SENSITIVITY. Achievable from four new plug-ins. These amplifiers feature fast overdrive recovery and wide dynamic range.

11 SELF-CALIBRATION. Push the Enhanced Accuracy button to calibrate the scope from amplifier input to CRT graticule, automatically, for the best vertical accuracy available in a scope today.
need know nothing about a scope's technology to get the most out of it.

The 11000 Series continues the plug-in versatility of the Tek 7000 Series. Five new plug-ins and three new probes tailor the new scopes to a full range of applications, from design and debug to production test. New single-ended amplifier
and differential amplifier plug-ins combine high bandwidth with low noise and fast overdrive recovery.

Demonstrations are now in progress. For more information or a personal demonstration, get in touch with your local Tek sales engineer. Or call Tektronix at 1-800-547-1512.

Mega Drams. Mega options.

Fast access from OKI:

 CMOS 1 Meg DRAMsin great working shape.

Maintaining a leading edge in CMOS technology and packaging, OKI meets your fast DRAM specs with unique flexibility.

Anyway you look at it, OKI's fast-track CMOS knowhow has got the one megabit DRAM shaped up to go. Now. No matter how demanding your parameters may be in performance or packaging, it's easy to work it out with OKI.

Need super high speeds? Tell us to jump, and all we ask is "how fast?'' OKI is shipping megabit Dynamic RAMs stripped down to 85 ns . (With 80ns on the way....and 60ns not far behind!)

Organization options? OKI offers both $1 \mathrm{Meg} \times 1$ and $256 \mathrm{~K} \times 4$ single-chip DRAMs. Both from the same die. To cut qualification time and expense, we built a bonding option into our basic chip design. Qualify one die, and you've got every OKI option covered!

Need a tidier single chip than the DIP? Ask us about the new SOJ package that provides the megabit DRAM in J-lead surface mount. Or, get still more compactness with the OKI ZIP package's very narrow profile.

Also turning space problems on end: OKI's SIMM packages load 9 to 18 megabits onto a single easy-to-use module. An instant surface mount capa-
 bility that packs up to 18 million bits into half the conventional space. And OKI's highly-automated production capabilities will be consolidating DRAMs in a TAB package too.

Mega DRAMs.
Mega CMOS options.
OKI wouldn't have it any other way.
Why should you?

Want more space-saving package solutions? OKI maintains a high profile in low profile memories - a complete range of package options to handle just about any real estate problem. Today and tomorrow. OKI package enhancements have been developed to carry you through upcoming DRAM generations: from 1-megabit to the 4- and even 16-megabit memories.

Get a Byte of DRAM
for only $\$ 186.00$! for only \$186.00!

Limited Time Offer: To help you work up your DRAM specs, OKI offers you a BY'E with parity of $1 \mathrm{Meg} \times 1$ CMOS DRAMs (9 plastic DIPs, fast page mode, 120ns) for only $\$ 186.00$ per Byte Kit.
\qquad Kits containing a

Name/Title Byte of 1 Megabit CMOS DRAMs. Price per Kit is $\$ 186.00$, plus $\$ 3.00$ for shipping/handling: \$189.00 Total/Kit, sales tax included. Offer limited to 3 Kits per customer.
Check or money order for $\$$ enclosed. (Sorry, no company purchase orders please.)

SEMICONDUCTOR
CIRCLE NO 37

Send complete data on OKI Megabit DRAMs.
(0)1ร EDN 122487 oki NOW DRAMs. Sunnyvale, CA 94086. (408) 720-1900.
Offer limited to 3 Kits per customer and expires December 31, 1987. Available only for USA \& Canada shipment.

CIRCLE NO 4

Need < l ns speed?

> Get it with our new silicon-gate DMOS FETs and Analog Switches. Greater accuracy. Lower capacitance. Higher gain. And less distortion.

Sometimes you can't get the switching speed your designs need from CMOS, JFET or bipolar technologies. And it's not often you require the expensive performance of gallium arsenide.

Get the accuracy you require with fast switching, low capacitance Siliconix SD210/2N7104 FETs and SD5000/2N7116 analog switches. They're available now! Fabricated in silicon-gate DMOS - the most stable technology for analog switches, multiplexers, A/D and D/A converters, choppers and sample-and-hold circuits that operate into the 750 MHz range.

Siliconix SD210 FET and SD5000 analog switch families feature $<1 \mathrm{~ns}$ switching speeds, capacitance under 3 pF and gain up to $10,000 \mu \mathrm{mhos}$ at 10 mA . And they come in a variety of package and screening types including surface mount, military and JEDEC.

Circuit accuracy is a function of charge injection. The DMOS process significantly outperforms CMOS, JFET and bipolar in this critical parameter.

Get a clear signal! Call 1 (800) 554-5565, Ext. 924 for complete information on Siliconix fast, accurate DMOS FETs and analog switches. And don't forget to ask for your free DMOS Design and Sample Kit!

WITHOURCOUEEIONS TOUCANTEOWRONG.

4,000,000,000 miles from Earth, and still on the job.

Our ICs have tackled tough jobs for over two decades.

Voyager 1 and 2. The most successful electronic systems ever to leave the Earth - and Harris ICs play an integral role.

Even before these spacecraft passed Saturn in 1980 and 1981, their accomplishments were impressive:

- Discovering the ring system surrounding Jupiter
- Logging the existence of volcanoes on the Jupiter moon Io
- Photographing Saturn's complex ring system
- Recording the many moonlets that surround Saturn

Just last year, Voyager 2 surveyed Uranus and discovered 10 new moons orbiting in its system. Ahead lies an encounter with Neptune in 1989. Beyond that, Voyager 2 will leave the solar system and journey the dark oceans of space, perhaps to meet another solar system, perhaps other beings.

Our bet is that whatever it encounters, Voyager 2 will still be functioning - still taking pictures and sending back data.

For 20 years, our commitment to developing, manufacturing and delivering the best ICs in the business has earned us a place in the highest-reliability space programs:

- GOES: HM-65162 16K RAM
- Voyager 1 and 2: HA-2500 and HA-2600 op amps
- Viking 1 and 2: HA-2520 and HA-2600 op amps
- IUS: HI-562A converters; HI-507A multiplexers
- Magellan: HM-6516 RAMs
- Intelsat: HA-2700 op amps
- Mariner, Skylab, Shuttle and nearly 100 similar programs.

To those who dreamed of exploring space and to those who achieved it: we salute you and look forward to teaming up with you in the future.
Discover more. In U.S. phone 1-800-4-HARRIS, Ext. 1800 for info and samples. In Canada, 1-800-344-2444, Ext. 1800.

> IN SPACE-READY ICs, THE NAME IS HARRIS

Harris Semiconductor: Analog - CMOS Digital Gallium Arsenide - Semicustom - Custom

3 HARRIS

Suppress those

nasty little surges.

With Surgector"and GE-MOV ${ }^{*}$ surge suppressors.

Now, whether you're designing small consumer products, industrial controls, high-rel military and aerospace systems, or anything in between, we have a surge protection solution for you. Because if one of our GE-MOV varistors isn't exactly right for the job, then one of our Surgectors probably will be.

Leader in Varistors.

We have the broadest line of varistors in the industry, with a range from 5 V to 3500 V , including the highest-energy MOV's in the industry (up to 70,000 peak amps and 10,000 joules).

They're widely used for incoming ac line protection in power supplies, clamping circuits and low voltage supply protection.

They're available in a variety of packages, including axial leaded, radial leaded, leadless surface mount, high-energy modules and connector-pin configurations. And they're all available for fast delivery.

Inventor of Surgector devices.

Surgector devices respond rapidly and handle a lot of energy. So they're ideal for protecting
sensitive or expensive components from lightning strikes, load changes, switching transients, commutation spikes, electro-static discharge and line crosses.

How they work.

Surgector devices combine a zener diode and an SCR into one reliable, cost-effective device.

At low voltages, the Surgector is "off," representing high forward impedance (only 50 nA leakage current). The instant clamping voltage is exceeded, the Surgector turns "on" and the zener immediately starts conducting. Within nanoseconds, the SCR turns on to handle heavy currents. Destructive surges are shunted to ground.

Once the surge passes, the device makes a fast transition back to the "off" state. You can choose from two-terminal, three-terminal or bi-directional devices.

We'll help you decide.

To determine which of these powerful technologies is best for you, plug into our applications hotline and let our experts help you decide.

For more information, call toll-free 800-443-7364, extension 21. Or contact your local GE Solid State sales office or distributor.

ANDO TESTS
 ALLTHE BASICS OF THE MOST ADVANCED ASICs

Ando has developed a completely new test system specifically designed for today's demanding ASICs and other high-speed, high pin-count logic ICs. The DIC-9035B VLSI Test System is the most advanced system available today.

Testing devices with as many as 512 pins is no challenge for the DIC-9035B. And it can test at rates up to 200 MHz in Multiplex mode, and still maintain an overall timing accuracy of $\pm 500 \mathrm{ps}$.

ASIC testing is much more costeffective because the DIC-9035B can
perform parallel test functions and provide long real-time pattern generation(512 k words), even with DC/pin architecture.

Because this system includes powerful analysis software, the DIC-9035B can be connected directly into your CAD system and/or EWS via Ethernet*. This provides instant, accurate feedback on problems to the design level, minimizing the turnaround time needed to bring an ASIC from R\&D to full production.

There are three models of the DIC-9035B covering the whole range
of testing to choose from: a $12 V_{p-p}$ station for MOS, a $2.5 \mathrm{~V}_{\text {pp }}$ station for ECL, and a low-capacitance station for CMOS.

When it comes to complete test systems for the most advanced electron devices, Ando can do! Faster, more efficient, and with higher pin counts than anyone else.

(b) AIDID

ANDO CORPORATION

- 480 Oakmead Parkway, Sunnyvale, CA 94086

Pbone: (408) 738-2636

- 7617 Standish Place, Rockville, MD 20855

Pbone: (301) 2943365

[^2]
EDITORIAL

Think big

An American automobile-company executive once remarked that if his company had one fault it was the failure to think big enough. In other words, the company could have exploited many situations if it had thought big and executed big plans. That man's comment came back to me recently when I read an old brochure describing Radio Shack's TRS-80 Model I computer-now about 10 years old. I couldn't help comparing the progress of Radio Shack with that of its rival, Apple Computer. The major difference that comes to mind is that Apple's founders, Steve Jobs and Steve Wozniak, thought big. Executives at Tandy didn't. Today, the results are obvious.

While Tandy hedged its bets, assuming that only a thousand computers would sell, and never sure who would buy them, Wozniak and Jobs knew they'd sell many thousands of computers, and they had a good idea of who their customers would be. Both computer companies started in the same position and with similar technical resources. Both companies used off-theshelf components-Tandy chose the $\mathrm{Z} 80 \mu \mathrm{P}$; Apple chose the $6502 \mu \mathrm{P}$. (Contrary to popular computer mythology, neither company was the first to market a personal computer. Companies such as Processor Technology, Sphere, and Commodore fielded earlier PCs, but those companies didn't think big, and their sales faltered.)

There are still opportunities for people who think big. But instead of doing so, many engineers tell themselves that there will never be another company like Apple - so why bother trying to duplicate its success? They forget, however, that people don't get rich by following the paths of others.

I've been brainstorming and have come up with two new-product opportunities worth exploring: the telephone and the photocopier. First, I'd like a small printer on my phone-one that could receive simple messages from phones with similar equipment. How I wish I could send secretaries my name and phone number rather than repeating it countless times each day.

But I'd like a small copier even better. Several companies already offer personal copiers, but because a copier, laser printer, scanner, and facsimile machine are so similar, let's have a unit that embodies all their functions. Such a machine could send and receive documents, copy papers, and convert articles to ASCII files for editing. It's sure fun to think big. But it must be even more fun to put big thoughts into action.

The VME Volksclosure． $\$ 995$ ．Ready to Run．
 Finally．The economies of mass production catch up
 You do get a choice between two multiple－output power

with VME and Multibus II enclosures．

Introducing thie Volksclosure，Electronic Solutions＇ economy model enclosure with turbo performance．All you do is add cards and peripherals for a complete， attractive desktop computer．

With the Volksclosure（also known as our Model One）everything comes standard：six VME or Multibus II slots， space for three half－height $51 / 4^{\prime \prime}$ disk drives，and a high－performance six－layer backplane all in a highly tooled enclosure with our handsome front panel that hides those ugly connectors and cables．

supplies： 190 Watts with 19 A at +5 V or 270 Watts with 30 A at +5 V ．You can also choose a J2 backplane for VME extended addressing or iLBX II for a Multibus II system．

Most important，while the Volksclosure costs less，you don＇t get less．It fully reflects Electronic Solutions＇commitment to quality and performance．For example， it meets UL and CSA safety standards and FCC Class A EMI／RFI specs to the letter．

The New Volksclosure．How to get a lot more mileage from your packaging budget．Call right now for complete details．

We＇ll FAX you the facts

Want the latest data in a hurry？Nothing is faster than Electronic Solutions＇new＂FAX the FACTS＂ program．If you have a FAX machine，just call our ＂ 800 ＂number，give us your FAX number and type of FAX machine，and the information you need from us．We＇ll FAX it to you immediately．

Electronit

PRODUCT UPDATE

Workstations perform 300,000 vector transformations $/ \mathrm{sec}$

By using a graphics accelerator, the HP 9000 Model 330 CHX and Model 350 CHX graphics workstations can perform 250,000 and 300,000 vector tranformations/sec, respectively. This short graphics-response time allows for fast screen updates and smooth pan and zoom operations.

The HP 98556A graphics accelerator, which comes with Models 330 CHX and 350 CHX , performs the vector transformations in hardware; thus, it provides an integer-based world-coordinate interface directly to the graphics hardware.

The HP 98556A employs an MC68020 as a dedicated graphicsprocessing unit (GPU) that manages the accelerator's graphics pipeline. The accelerator uses an integermath chip to implement a 2-D transform engine for the math-intensive transform calculations needed for scale, translate, rotate, and clipping functions. The GPU also supports cursor tracking and operations, eliminating the substantial system overhead normally associated with these functions. By providing hardware support for context switching and clip-list management, the GPU also improves the performance of software windows. The accelerator operates in multiple obscurable and movable windows by using the vendor's HP Windows/9000 window manager.

The Model 350 CHX workstation includes a $25-\mathrm{MHz}$, 68020 -based CPU; an MC68881 math coprocessor; a 1280×1024-pixel, 19 -in. color monitor with eight color planes and two overlay planes; the 98556A graphics accelerator; 8 M bytes of memory; a keyboard; a mouse; and an ID module. It costs $\$ 38,550$.

The Model 330CHX's CPU, also based on the $68020 \mu \mathrm{P}$ and accompa-

The 300,000-vector/sec graphics-performance rate offered by the HP 9000 Model 350 CHX translates to a reaction time of approximately 0.25 sec in applications such as pc-board design.
nied by a 68881 math coprocessor, runs at 16.6 MHz . The 330 CHX has a 16 -in., 1280×1024-pixel color monitor with eight color planes and two overlay planes; the 98556A graphics accelerator; 4M bytes of memory; a keyboard; a mouse; and an ID module. It sells for $\$ 22,250$.

The HP 98556A graphics accelerator is available as an add-on product for the vendor's Model 330CH and 350 CH workstations; it costs $\$ 6000$.-Jim Wiegand

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

160 Standard Models

- Single and Dual Output
- Temperature Range $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ with No Heat Sink or Electrical Derating
- All Units Shielded
- 500V DC Isolation Input to Output

OPTIONS AVAILABLE

- Expanded operating temp ($-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
- Stabilization Bake $\left(125^{\circ} \mathrm{C}\right.$ ambient)
- Temperature Cycle $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- Hi Temp, full power burn in
(100\% power, $125^{\circ} \mathrm{C}$ case temp)

Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514

PICO also manufactures over 500 standard DC-DC Converters and over 2500 Miniature Transformers and inductors.

C MODULA 2 PASCAL

Cross-Compiler Systems

- High performance, fieldproven software development systems producing extremely compact, fastexecuting, ROMable output code.
- Each cross-development package includes:
- C, Modula 2, or Pascal Cross-Compiler
- Macro Relocating CrossAssembler
- Object Code Librarian
- Object Module Linker
- Hexadecimal Format Loader [S-Records, Intel Hex, TEK Hex]
- Standalone Support Library [EPROMable, with full floating point support)
- All languages can be intermixed with assembly language
- Targets supported:
$6301 / 03$
$6801 / 03$
6809
$68 H C 11$
$68000 / 08 / 10 / 12$
$68020 / 881 / 851$
$32000 / 32 / 81 / 82$
- Available for following hosts VAX: VMS/UNIX/ULTRIX PDP-11: UNIX/TNIX/VENIX 68000: UNIX System V
PC,XT,AT: MS-DOS
PowerNode: UTX/32

UNIX: TM of AT\&T Bell Labs
VAX, VMS, PDP-11. ULTRIX
TM of Dig. Equip. Corp.
TNIX: TM of Tektronix Inc
VENIX: TM of VenturCom
PowerNode; UTX/32: TM of Gould Inc

> INTROL CORPORATION
> 647 W. Virginia Street Milwaukee, WI 53204 [414] 276-2937
> FAX: [414] 276-7026

PRODUCT UPDATE

Gate arrays feature 100,000-gate capacity

The LCA100K Compacted Array Plus family of gate arrays is the first array-based family of HCMOS ASICs to provide 100,000 usable gates on a chip, which is more than twice the density of other currently available gate arrays. The vendor achieved this level of integration by developing a proprietary, 3-layer metal-interconnect technology that allows for $0.7-\mu \mathrm{m}$ channel lengths.

The arrays let you put significant amounts of high-density memory and logic on the same chip. For example, these gate arrays let you combine 16 k bits of static RAM (having access times under 15 nsec), 64 k bits of ROM, and 46,000 usable logic gates (with gate delays of less than 460 psec through a 2 -input NAND gate) on a single chip.

The most obvious beneficiaries of this level of integration are system designers, who can now consolidate a whole system on a single chip or, in the case of a more complex system, can reduce the number of circuits required to implement the system. To get an idea of the significance of a 100,000 -gate array, consider the fact that the entire CPU logic of a VAX 11/780 could be implemented with 100,000 gates. The 100,000 -gate technology will also allow designers to increase the overall performance and reliability of circuits and reduce their size and power consumption.

To manage the design of chips as complex as the LCA 100 K Compacted Array Plus, the vendor offers the Modular Design Environment (MDE) software tools. This software includes an interactive graphics interface and floor-planning tools, which are absolutely necessary for designing at this level of integration. MDE also has logic and

The LCA100K Compacted Array Plus gate arrays combine $0.7-\mu \mathrm{m}$ channel lengths with 3-layer metal interconnects to provide as many as 100,000 usable gates per IC.
memory compilers, libraries of functional building blocks ranging in complexity from the SSI to the VLSI level, and hardware accelerators. Behavioral, gate-level, and multichip simulators for the support of system-level architecture are also included in MDE.

The LCA100K Compacted Array Plus family consists of three master slices that contain 139,104 to 236,880 gates. These arrays allow you to implement designs of 50,000 to 100,000 gates. As many as 344 signal I/O pads are available for these devices. The arrays also have eight pads that are dedicated to V_{DD}, and 12 that are dedicated to V_{SS}. The vendor estimates the nonrecurring engineering cost for a 100,000 -gate design to be $\$ 100,000$.

- Jim Wiegand

LSI Logic Corp, 1551 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 433-7146.

Circle No 710

We specialize in solutions that don't exist.

Yet.

Our engineers have the innovative expertise to create from scratch.

Call it the difference between Cannon and the other guys. Where others are content to modify or reinvent the wheel, we simply design a better wheel.

For example, Cannon is currently revolutionizing memory electronics with a credit card size device that can process information up to 1000 times faster than a conventional floppy disk. Cannon's new IC Memory Card can store data in unlimited applications, using a built-in connector to interface its memory electronics.

Cannon's Parallel Interconnect (PI) has already created similar excitement in the Flat Panel Display market by virtually eliminating soldering to allow for a gas-tight interface in 60 seconds flat. Stories like this happen everyday.

Innovative solutions. Part of the new story at Cannon.

Talk to us.

Worldwide Headquarters
10550 Talbert Ave.
Fountain Valley, CA 92708
Or call (714) 964-7400

The Biggest Fam

SC11203
DTMF Receiver
C. O. Quality

SC11204
DTMF Receiver Single supply

SC11270
DTMF Receiver North American Single supply

SC11271
DTMF Receiver CEPT Single supply

SC11280
DTMF Xceiver Single supply $w / \mu P$ port

SC11306
Combo CODEC
A-Law/Para w/high output

SC11311
Combo CODEC μ-Law/Serial w/high output

SC11312
Combo CODEC
A-Law/Serial

SC11310
PRGM Gain/ Loss Control

SC11315
PRGM E ${ }^{2}$ Gain/ Loss Control

When it comes to telecom, nobody gives you more to work with than Sierra. With 21 parts, we have the biggest, most complete family in the world.

We haven't put all our effort into just a few niches, either. We give you parts that cover a complete spectrum. From simple industry standard DTMF receivers to the hottest ADPCM transcoder ever introduced.

To start with the basics, we have five DTMF receivers, and three DTMF transceivers. They're all fully compliant with Bell and CEPT standards,
but each has a feature set to fit your application.

Then we give you six different CODECS: μ-law and A-law, in serial interface, parallel, and high output drive versions. To fit every permutation and combination you can think of.

There are two new programmable gain/loss circuits that cover a dynamic range of 50 dB . (one contains E^{2} which retains settings on power loss.) And a cross-point switch for highdensity switching applications. There's also a 2713 loopback circuit, and a

lly inThese Parts.
 SC11289
 DTMF Xceiver Single supply
 SC11290 DTMF Xceiver Single supply w/CPM

 SC11301
 Combo CODEC μ-Law/Serial
 SC11302
 Combo CODEC A-Law/Serial
 SC11305 Combo CODEC μ-Law/Para

SC11309 Line Equal.

SC11320
32×32 X-PT
Cross Point Switch

SC11330
4-Wire L/B

SC11360 ADPCM Xcoder

309B line equalizer.
Finally, there's our new ADPCM transcoder, which provides fully compatible 32KBPS transcoding. In addition to its two standard algorithms, this processor also features 24,16 , and 8 KBPS operation for bit-robbing and DSI applications. Designed for multichannel systems, the processor operates on 8 independent channels in an 8 KHz frame, where each channel is individually configurable, supporting full and halfduplex operation.

Like we mentioned earlier, every
member of this family is 100% industry standard. But that's not all. They also give you our proprietary Triple Technology."' In CMOS, for low-power, 5 V reliable operation.

So no matter whether your application involves the central office, transmission, or switching-or whether you need products for PBXs, autodialers, answering machines, remote banking, or line conditioning, just get in touch with us.

And get ready for the best thing you've ever seen in these parts.

CMOS LOGIC FROM THE MANUFACTURER OF

WORLD'S LARGEST CMOS.TOSHIBA.

But if you don't have our CMOS LOGIC data book, how could you know we're that strong?

Toshiba is a смоs logic pioneer, and in the 16 years since we first developed our смоs logic line, we've become the world's largest supplier.
Toshiba offers the most comprehensive cmos logic line available. From the standard 4000/4500 series up to our new highest speed TC74AC series-tomorrow's standard logic family.
With its high noise margin, high speed and low power consumption, the тс74HC series creates efficient device opportunities for designers of high speed portable instruments, telecommunications equipment, or any digital system.

WE WROTE THE BOOK

It's all in our Book. Detailed specifications on our complete line. Our Book is the definitive source for the newest and best in cmos logic. If you don't have a current copy, get one today.
And remember, you can order Toshiba logic with confidence. Confidence that Toshiba can ship
higher volumes of смоs logic than anyone else. And ship it on time at competitive prices. Confidence, too, that Toshiba ships only quality assured products.
So when you select logic, talk to the people with the power. Talk with Toshiba.

Characteristics/ Logic Families	$\begin{gathered} \text { New } \\ \text { HS-C }{ }^{2} \text { MOS } \\ \text { (74AC Series) } \end{gathered}$	HS-C ${ }^{2}$ MOS (74HC Series)	LSTTL	$\begin{aligned} & \text { *Std. C2MOS } \\ & \text { (4000/4500 } \\ & \text { Series) } \end{aligned}$
Prop. Delay Time (typ) GATE ($\mathrm{C}_{\mathrm{L}}=$ $15 \mathrm{pF})$	3.5 ns	8ns	9ns	125 ns
Max. Clock Freq. (typ) J/K F•F (C $\mathrm{C}_{\mathrm{L}}=$ 15 pF)	150 MHz	60 MHz	45 MHz	2 MHz
Quiescent Power Diss. (typ) (GATE)	$0.01 \mu \mathrm{~W}$	$0.01 \mu \mathrm{~W}$	8 mW	$0.01 \mu \mathrm{~W}$
Noise Margin $\mathrm{V}_{\mathrm{IH}(\text { min })} / \mathrm{V}_{\mathrm{IL}(\text { max })}$	$3.5 \mathrm{~V} / 1.5 \mathrm{~V}$	$3.5 \mathrm{~V} / 1.5 \mathrm{~V}$	2.0V/0.8V	$3.5 \mathrm{~V} / 1.5 \mathrm{~V}$
Output Current $\mathbf{I}_{\mathbf{I O H}} \mathbf{I}^{\mathbf{(m i n}) / \mathbf{I O L}}$ (min)	$24 \mathrm{~mA} / 24 \mathrm{~mA}$	$4 \mathrm{~mA} / 4 \mathrm{~mA}$	$0.4 \mathrm{~mA} / 4 \mathrm{~mA}$	$\begin{aligned} & 0.12 \mathrm{~mA} / \\ & 0.36 \mathrm{~mA} \end{aligned}$
Op. Volt. Range	2-6V	2-6V	4.75-5.25V	3-18V
Op. Temp. Range	$-40-85{ }^{\circ} \mathrm{C}$	$-40-85{ }^{\circ} \mathrm{C}$	$0-70{ }^{\circ} \mathrm{C}$	$-40-85{ }^{\circ} \mathrm{C}$

*Data believed to be accurate and representative of each logic family

TOSHIBA. THE POWER IN LOGIC.

[^3]
Instruments

Logic analyzer that supports as many as 400 channels (Hewlett-Packard)

Portable-PC-based logic analyzer with optional pattern generator (Kontron)

Consider logic analyzers for more than $\mu \mathrm{P}$ applications

Abstract

Logic analyzers, which are well known to engineers who troubleshoot μP-based systems, can also belp you solve bardware and software problems with other digital systems. You'll get the best analyzer for your money if you carefully match the instrument's capabilities with your needs.

Doug Conner, Regional Editor

Logic analyzers are virtually mandatory for developing and troubleshooting microprocessor-based systems, but they can benefit other digital applications as well. A logic analyzer may be just what you need for developing digital systems in which you need to look at more than four signals at once. Not only do logic analyzers offer many input data channels, but they also provide selective triggering, which lets you capture just the event you want. Further, the subnanosecond timing resolution available on some logic analyzers means that you'll seldom have to turn to an oscilloscope for precision timing analysis.
Because logic analyzers vary widely in performance and price, you'll benefit by carefully matching logicanalyzer performance with your needs. When you choose an analyzer, the four most important features to consider are channel count, asynchronous sampling rate, synchronous sampling rate, and triggering capabilities.

Enough channels for trigger word and data

The number of channels you'll require from your logic analyzer depends on the number of signals you need to examine and the number of signals required for your trigger word. If your analyzer has more than the minimum number of channels required, you won't have to move probes as often. Further, when you trouble-
shoot bus-based systems, the extra channels will let you cover all the control lines as well as the data and address lines.
In systems that incorporate microprocessors, the $\mu \mathrm{P}$ often dictates the required number of channels. An 8 -bit microprocessor would be well covered by a 32 channel machine; to probe every signal line of a 68000 $\mu \mathrm{P}$ would require about 60 channels. To troubleshoot interprocessor problems on a multiprocessor system, you'll need a machine with more than 100 channels. If you're looking strictly at the timing analysis of a circuit, and no microprocessors are involved, you may be satisfied with eight channels and a very fast asynchronous sampling rate.

Timing analysis for hardware problems

Asynchronous sampling (or timing-analysis mode) uses the logic analyzer's internal clock to determine when to sample. Because asynchronous sampling normally provides the best timing resolution, it is the mode that hardware engineers generally use to track down timing problems. A mid-performance logic analyzer typically offers a $100-\mathrm{MHz}$ asynchronous sampling rate, which yields $10-\mathrm{nsec}$ resolution. Although $10-\mathrm{nsec}$ resolution may be sufficient for you to see when incorrect data has been clocked into a register, it's not very helpful when you're looking for such problems as data-

You may be able to use the logic analyzer's powerful external trigger to trigger your oscilloscope.

Logic analyzer with $100-\mathrm{MHz}$ timing on 80 channels (HewlettPackard)
setup and -hold time violations. For sensitive timing problems, you'll need to turn to either a higher-performance logic analyzer or an oscilloscope.

Table 1 lists the salient specs for a representative sample of logic analyzers. Higher-performance models generally offer asynchronous sampling rates of 400 MHz and greater. Gould, Hewlett-Packard, Kontron, Outlook, and Tektronix, for example, all offer logic analyzers with asynchronous sampling rates in the range from 500 MHz to 2 GHz . Outlook's T100 uses an equivalent-time-sampling mode to obtain $100-$ psec resolution. Some logic analyzers even incorporate optional digital storage oscilloscopes (DSOs) for when you want to see what a waveform actually looks like. Even if you do need to pull out an oscilloscope to look at a particularly sensitive timing problem, you may be able to use your logic analyzer's powerful external trigger to trigger your oscilloscope.

Use state analysis to look at many channels

If your task is not to perform timing analysis but to follow the flow of data through a system, you'll want to look at the data only when it's valid. For this task, logic analyzers offer a synchronous-sampling mode (also called state-analysis mode or external clocking). By using a clock signal from the circuit under examination, along with some clock-qualifier control words, you can acquire data when it's valid. All logic analyzers typically display state information in binary, octal, decimal, hexadecimal, or ASCII form.

Midrange logic analyzers typically exhibit synchronous clock rates in the 25 - to $50-\mathrm{MHz}$ range. For microprocessor work, 25 MHz is adequate, because
you'll generally operate the analyzer at the bus rate, which is seldom greater than 5 MHz . When you troubleshoot bit-slice architectures, reduced-instruction-set computers (RISCs), mainframe computers, or highspeed digital systems in general, your synchronous clocking requirements may exceed 25 or even 50 MHz . Tektronix's DAS 9200 offers a $200-\mathrm{MHz}$ synchronous sampling rate while probing as many as 384 channels. Outlook's T100 will accept a $250-\mathrm{MHz}$ external clock and 32 input channels.

To decide whether a particular logic analyzer has adequate speed for your application, you need to consider more than just the clock rate. Data-setup and -hold times and channel-to-channel skew can also be important. Although these parameters seldom pose a problem in general microprocessor work, they can be a limiting factor when you're examining digital systems having high clock rates.

A logic analyzer's data-setup and -hold times are specified by the manufacturer, and they normally apply only to external clocking. If the circuit under test violates the logic analyzer's data-setup or -hold times, you may acquire incorrect state data.

Also keep in mind that every logic analyzer exhibits some skew between channels. An analyzer's skew is not generally as well specified as its data-setup and -hold times, but it's still important. If your machine's data sheet doesn't list the channel-to-channel skew, call the manufacturer to find out. It's important to know the skew, because it can be responsible for incorrect state data. Even if your circuit's setup and hold times initially look correct on the logic analyzer, the skew may cause data on one channel to arrive later or earlier than data on another. Some of the higher-performance logic analyzers allow you to compensate for the channel-tochannel skew.

Whether you're using an analyzer's state- or timinganalysis modes, it's possible for more than one transition of a logic state to occur between samples. Most logic analyzers provide a glitch-detection function to catch this occurrence. As the term applies to logic analyzers, a glitch is typically defined as more than one transition of a logic signal between samples.

Logic analyzers vary as to how they detect and display glitches. Note two things, however. First, all analyzers specify the minimum pulse width that they can detect; they can't detect a shorter pulse even though it may be crashing your system. Second, some logic analyzers allow you to logically AND a trigger word with glitch detection so that the logic analyzer can
look for a glitch in an area known to be troublesome while the system runs continuously.

Many analyzers offer a variable threshold

A logic analyzer can also help you find intermittent problems in other ways; for instance, by using a variable threshold. Virtually every logic analyzer offers a fixed TTL threshold for determining whether an input is high or low. Many offer ECL and variable thresholds as well. If you enounter intermittent system failures, you may be able to make them easier to find by varying the threshold level.

A variable threshold is also useful for setting up the proper threshold levels when you're working with CMOS logic. Some logic analyzers, such as Kontron's PLA286, allow you to assign channel groups to different thresholds so that you can observe ECL and TTL signals on different channels at the same time.

When choosing a logic analyzer, be sure to look at the probes available for the machine. If the probe causes too much loading on a circuit, rise times could slow down enough to result in system timing problems. Some manufacturers combat this problem by providing active probes, which cause very little circuit loading. Active probes can have low input capacitance, but are often bulky in comparison with passive probes. Passive probes are satisfactory in most cases; what's more, they're less expensive and more rugged than active probes, but for the most demanding applications-such as high-frequency circuits or circuits with high output impedance-active probes may be necessary to preserve the signal bandwidth of the circuit under examination.

In some situations, you may need to start debugging a circuit before all the functional blocks are available. Many logic analyzers offer pattern-generation options (see Table 1) that allow you to provide digital stimulation to a circuit to simulate missing functional blocks. These pattern-generation options can provide a useful tool for verifying and troubleshooting circuits (see box, "Pattern generator speeds development cycle").

Triggering to capture the right event

For the person who must track down software or hardware/software problems with a logic analyzer, triggering features are all-important. You'd choose a logic analyzer over an oscilloscope for this task because logic analyzers have better triggering functions than scopes do. Logic analyzers are especially useful for triggering on complex problems that require you to

Logic analyzer with $\mathbf{4 0 0 - M H z}$ transitional timing (Philips Test \& Measurement Instruments)
look at multiple lines simultaneously.
For example, suppose you want to see what data is being written to a certain address in your $\mu \mathrm{P}$-based system. Because your microprocessor is running a program, it is continuously accessing memory. To trigger on a specific address, the logic analyzer must monitor 20 address lines and trigger only when the correct address appears with a write-enable control signal. The trigger condition would be the correct data state for the 20 address lines plus the write-control lines. You could perform this task with an oscilloscope and a word-recognizer probe, but oscilloscopes can examine only two to four data lines at a time. A logic analyzer, in contrast, usually has 32 channels or more.

A logic analyzer's triggering function (or trace control, as it's also called) lets you logically combine an external clock input with other signals called clock qualifiers. Triggering thus allows you to clock data in from multiplexed data/address lines by setting up two enable conditions. One set of probes and a clock qualifier latch in the address, and another set of probes and a clock qualifier latch in the data. With some logic analyzers you must resort to double probing of the channels, which doubles the circuit loading. Other logic analyzers and probe sets accommodate the demultiplexing of signals, however. They allow you to attach only a single probe to each signal line; demultiplexing is performed either in the probe pod or in the logic analyzer.

A logic analyzer's sequential-triggering capabilities can help you track down problems that depend on the flow of a program. Sequential triggering can, for instance, show you what data is written to memory address FA00 by a subroutine called Meltdown. Your

TABLE 1-REPRESENTATIVE LOGIC ANALYZERS

MANUFACTURER AND MODEL								
ARIUM ML4100C SYS8	32	100	25		1k	5	5/1	13
ARRAY ANALYSIS MFI 1000C	62	200	25		1k	5	$2 / 2$	14
$\begin{aligned} & \text { BITWISE } \\ & \text { L10032000 } \end{aligned}$	32	100	25		256	-	$2 / 0$	1
$\begin{aligned} & \text { DOLCH } \\ & \text { LA } 432 \end{aligned}$	32	100	15		1k	-	$2 / 2$	8
C100	32	100	25		1k	7	8/2	4
EL TORO SYSTEMS PC-52	24	100	25		1k	-	4/0	1
$\begin{aligned} & \text { GOULD } \\ & \text { K115 } \end{aligned}$	72	200	70		1k	5	4/0	8
K450B	80	200	50		2 k	5	$6 / 0$	16
K500D	8	500	130		2k	2	2.5/0	2
HEWLETT-PACKARD 1651A	32	100	25	-	1k	5	10/0	8
1650A	80	100	25	-	1k	5	10/0	8
16500A	400	1000	25	-	1k	5	10/0	8
$\begin{gathered} \text { HILEVEL } \\ 3750 \end{gathered}$	256	50	50		16k	-	15/0	16
$\begin{gathered} \text { IWATSU } \\ 4620 \\ \hline \end{gathered}$	95	200	10		1k	3	50/0	4
KONTRON PLA 286	96	500	20		4k	-	20/0	14
$\begin{aligned} & \mathrm{NCI} \\ & \mathrm{PA} 480 \end{aligned}$	48	25	25		4k	-	-	16
$\begin{aligned} & \text { NICOLET } \\ & 8000 \\ & \hline \end{aligned}$	64	200	25		1k	3	20/0	8
NORTHWEST INSTRUMENTS μ ANALYST 2000	80	100	20	-	4k	5	25/0	15
$\begin{aligned} & \text { OUTLOOK } \\ & \text { T100 } \end{aligned}$	32	2000	250		4k	1.5	0.5/0	1
PANASONIC VP3663P	48	100	20		1k	5	20/0	4
PHILIPS PM3570	115	400	50	-	1k	4	12/0	7
$\begin{aligned} & \text { RACAL-DANA } \\ & 205-08 \end{aligned}$	48	10	12		250	-	30/0	4
RAPID SYSTEMS R3020	32	20	10		500	10	35/0	6
ROHDE \& SCHWARZ LAS	72	400	20		1k	-	20/0	8
$\begin{gathered} \text { SPECTOR } \\ 2330 \\ \hline \end{gathered}$	64	400	100		512	3	$2 / 2$	8
$\begin{aligned} & \text { TEKTRONIX } \\ & 1220 \end{aligned}$	32	100	25		2k	-	20/0	12
1240	72	100	50		512	6	12/0	14
DAS 9200	540	2000	200		4k	1.5	2.5/0	4

							TYPICAL CONFIGURATION AND PRICE		
									PRICE
$-9 \mathrm{TO}+9 \mathrm{~V}$	100k, 6					32	4 AT 100	16 AT 25	\$3685
TTL, ECL	100k, 5	-	-	-	-	32	16 AT 50	32 AT 25	\$4475
TTL	1M, 10	-	-	-		32	4 AT 100	32 AT 25	\$2295
TTL	LSTTL		-			32	4 AT 100	32 AT 15	\$1995
-9.9 TO +9.9V	1M, 7		-			32	8 AT 100	32 AT 25	\$7485
$-6 \mathrm{TO}+10 \mathrm{~V}$	12k		-			24	6 AT 100	24 AT 25	\$1299
$-9.9 \mathrm{TO}+9.9 \mathrm{~V}$	1M, 6	-			-	72	4 AT 200	64 AT 20	\$10,990
$-10 \mathrm{TO}+10 \mathrm{~V}$	1M, 6	-			-	80	40 AT 200	80 AT 50	\$28,990
$-6.35 \mathrm{TO}+6.35 \mathrm{~V}$	25k, 3			-	-	8	8 AT 500	8 AT 130	\$18,500
$-9.9 \mathrm{TO}+9.9 \mathrm{~V}$	100k, 8					32	32 AT 100	32 AT 25	\$4780
$-9.9 \mathrm{TO}+9.9 \mathrm{~V}$	100k, 8					80	80 AT 100	80 AT 25	\$8680
-9.9 TO +9.9V	100k, 8	-		-	-	80	80 AT 100	80 AT 25	\$13,280
TTL, ECL	TTL	-	-		-	192	192 AT 50	192 AT 50	\$14,520
$-5 \mathrm{TO}+5 \mathrm{~V}$	1M, 5					95	8 AT 200	64 AT 10	\$11,990
$-5 \mathrm{TO}+12.5 \mathrm{~V}$	1M, 5	-		-	-	56	8 AT 100	48 AT 20	\$10,150
TTL	-		-			48	48 AT 25	48 AT 25	\$2090
$-6 \mathrm{TO}+6 \mathrm{~V}$	100k, 10			-		64	16 AT 200	48 AT 25	\$14,650
$-6 \mathrm{TO}+6 \mathrm{~V}$	1M, 10	-	-		-	48	16 AT 100	32 AT 10	\$9330
TTL, ECL	50k,1		-		-	32	4 AT 2000	32 AT 250	\$32,500
$-6.35 \mathrm{TO}+6.35 \mathrm{~V}$	$1 \mathrm{M}, 8$					48	16 AT 100	48 AT 20	\$10,925
$-3 \mathrm{TO}+12 \mathrm{~V}$	$4 \mathrm{M}, 6$	-				35	35 AT 20	35 AT 20	\$7500
VARIABLE	60k, 12				-	48	48 AT 10	48 AT 12	\$8055
TTL, CMOS	-	-	-	-	-	32	16 AT 20	32 AT 10	\$3495
-9.9 TO +9.9V	1M, 6	-		-	-	56	8 AT 100	48 AT 20	\$17,730
$-6.3 \mathrm{TO}+6.3 \mathrm{~V}$	1M, 7.5	-				64	8 AT 400	64 AT 100	\$18,370
TTL	1M, 15					32	8 AT 100	32 AT 25	\$3795
$-6.35 \mathrm{TO}+6.35 \mathrm{~V}$	1M, 5	-				36	36 AT 50	36 AT 50	\$9950
$-2.5 \mathrm{TO}+5 \mathrm{~V}$	10k, 1	-		-	-	90	90 AT 20	90 AT 20	\$15,820

> Some of the higher-performance logic analyzers allow you to compensate for channel-to-channel skew.
first If/Then condition searches for the address that identifies the start of Meltdown. After that condition has been satisfied, the next sequential level waits until it recognizes FA00, then fills the analyzer's acquisition memory with data.

Now suppose that Meltdown doesn't write to FA00 every time it is called. The first time Meltdown is called, the first condition is satisfied, and the logic analyzer drops to the second condition (that of waiting for memory address FA00). Any subroutine can now write to memory address FA00. To avoid such unwanted triggering, you could use an If/Then/Else statement to jump back to the first condition if the system executes a return from subroutine Meltdown before addressing FA00.
Some logic analyzers provide a dozen or more sequen-tial-triggering decision levels, allowing you to set up complex flow conditions. When you're comparing analyzers, note that the capabilities of sequential triggers vary widely. It's not enough to compare just the number of levels. For example, Hilevel's 3750 allows 16 levels of triggering, and each level has four triggerword patterns that can be combined logically. You can perform as many as 12 different actions at each trigger level.

All logic analyzers allow you to trigger on a condition, and some also allow you to disable the trace or stop acquiring data. This feature can be useful when you only want to acquire specific data. In the Meltdown example above, when the trigger condition is satisfied the analyzer captures the desired data at FA00 and then fills the remaining 1023 locations in the 1 k -sample memory with unwanted information. The disable-trace capability would allow you to store the data that went into address FA00, then disable the trace and wait until the trigger condition is satisfied again, and so on. The analyzer's entire 1 k -sample memory would then contain only data written to address FA00.

Another useful triggering feature that many logic analyzers offer is range recognition. To find out whether your program ever accesses an illegal area in memory, you set up the range-recognizer condition to cover the illegal address range and then trigger on addresses inside that range.

Some logic analyzers allow you to use event counters and clock counters in your trigger condition. For instance, perhaps you have a peripheral that must be serviced within 10 msec whenever it generates an interrupt. A logic analyzer with a clock counter can trigger whenever the interrupt-service interval is ex-

Pattern generator speeds development cycle

Many logic analyzers now offer optional pattern generators. Pattern generators can perform a variety of functions, such as running design-simulation vectors through a circuit to verify that its response matches the simulation. They can also facilitate the development and debugging process by operating boards outside the system they'll eventually run in.
Suppose, for example, that you have a large, bus-oriented ATE system under development. Your company may have only one or two functional systems that you can use for debugging and integrating circuit boards during the development cycle. Yet six or eight engineers may be competing for system time to
debug their circuits. The usual result is that some engineers must work graveyard shifts to get time on the system. Communication suffers and so do schedules. But a logic analyzer with a pattern generator may be able to help.

You can make a test setup consisting of a backplane connector, power supplies, and a logic analyzer with a pattern generator to provide all the inputs for the circuit under test that are needed for debugging. The pattern generator provides the stimuli, which simulate the data, address, and any other digital inputs to the circuit under test that are required.
You can configure an HP 16500 A to provide 204 pattern-
generation channels operating at clock rates to 50 MHz and having a memory depth of 4 k patterns. Tektronix's DAS 9200 can provide as many as 1008 channels at 50 MHz with an 8 k -pattern depth. See Table 1 for other logic analyzers that provide optional pattern generators.

Other companies, such as Step Engineering (Sunnyvale, CA), provide ASIC-verification systems, which are essentially highspeed, wide-channel-width combinations of a logic analyzer and a pattern generator. You can also link a computer to your logic analyzer for generating and modifying patterns. Most logic analyzers provide IEEE-488 or RS-232C interfaces as standard, some offer them as options.

SA98

Real-time emulation, and the power to grow, make the SA98 the most advanced universal in-circuit emulator available today.

Sophia is setting the pace for highperformance universal microprocessor development systems and in-circuit emulators. The SA98 is the latest, most advanced, universal in-circuit emulator you'll ever need. It's easily upgraded to handle from 8- to 32 -bit microprocessors. And it's fully compatible with IBM's PC, AT or XT. The new price/performance leader . . . the SA98.

Parallel Interface

Sophia's unique parallel interface gives you a real speed boost over traditional RS-232 types. A built-in custom DMA controller permits high-speed downloading to the target memory without going back through the emulator module.

Dual Processor Emulation

Connect two SA98s together, set your independent triggers, and emulate two 8 - or 16 -bit microprocessors simultaneously. The split screen feature displays code execution for both.

Built-in Power

The features packed into the SA98 are designed with you in mind. Full symbolic debugging that gives you 25 times the functionality of other ICE units. The availability of 36 probes. Programmable breakpoints with more details, so well defined, you'll need fewer of them to solve your problems. The SA98 has all of this and more. It's the emulator you've always wanted.

- No wait state emulation
- OMF, TEK HEX, and S records data and symbolic handlers
- Up to 4 K trace buffer
- On-line help facilities
- High-level language source level debugger
- Dual processor emulation
- Programmable memory wait state generation

Call Toll-Free Today
800/824-9294. In California, call 800/824-6706.

Supporting 8-bit to 32-bit
 Microprocessors

INTEL
8085/80C85
8048/80C48
8051/80C51
8086/8088
80C86/80C88
80186/80188
80286
MOTOROLA
6801
6809/E
68 HCl
68000/10/12
68020
ZILOG
Z80A/B/H/C
Super-8
Z8
Z180
NEC
7810/11/78C10
78312
V20/V30
V40/V50
HITACHI
6301V/X/Y
6305U/V/X/Y/Z
6309 E
64180
ROCKWELL
6502/65C02
and more . .

ceeded.
Unfortunately, not all logic analyzers can evaluate trigger conditions as fast as they can acquire data. If you're using an external clock running at 50 MHz , and your logic analyzer needs 35 nsec to set up and check for a new trigger condition after satisfying the previous sequential condition, you've got a problem. The logic analyzer would not be able to evaluate the new condition at the next clock cycle, so it might miss a valid trigger condition.

Logic-analyzer vendors don't always list the setup and hold time and propagation delay for their logic analyzers' triggering sections on their data sheets. The triggering section's inability to process data at high clock rates may be a problem, so be sure to ask about it.

Because logic analyzers let you set up accurate trigger conditions, you won't have to search through screen after screen of acquired data to find the information you need. Further, a logic analyzer with extensive trigger control can often get by with a smaller acquisition memory.

Memory depths vary widely

The memory depths of logic analyzers vary from 256 to 32 k bits/channel. Memory depth can be important in both state and timing analysis. For example, if you've found an incorrect digital state in a system and you want to discover what caused that state, you can trigger on the incorrect state, acquiring data before the trigger (or pretriggering) so you can look for what led to the error. The longer the memory, the further back in time you can look.

Some logic analyzers, such as HP's 1650A and Philips 3570, have a feature called transitional timing, which increases the instrument's effective memory. With
transitional timing, instead of storing a sample of every channel at each clock cycle, the logic analyzer stores a sample only if at least one channel has changed state. Whenever a channel changes state, the machine also stores a time value. Without transitional timing, a logic analyzer that is asynchronously clocking data in at 100 MHz will completely fill a 1 k -sample memory in 10.24 $\mu \mathrm{sec}$. With transitional timing, the analyzer will acquire data until the channels have changed state 1024 times, which may take milliseconds or even seconds, yet retain 10-nsec resolution.
If you'll be using a logic analyzer to troubleshoot a microprocessor, you need to make sure the analyzer you use provides a disassembler for that particular microprocessor. The disassembler is software that converts machine code from the microprocessor back to assembly language, which simplifies the task of following what the system is doing. Some of the higher-performance microprocessors that perform instruction prefetches (the 68000 Series processors, for example) benefit from a disassembler that can filter out instructions that were fetched but not executed. If your analyzer's disassembler doesn't provide this feature, you'll spend more time trying to sort out what the microprocessor is doing.

Time correlation suits multiprocessor work

If you'll use your analyzer to troubleshoot a dualprocessor system, you'll have to consider some other analyzer features. For example, if both the processors in the system under test use different clocks, and you want to look at state information, you'll need a logic analyzer that can support the two external clocks. To compare what's happening on one processor with what's happening on the other processor at the same time, you'll also need some way to time-correlate the displayed information.

Logic analyzers that offer time correlation employ one of two general methods. One method, used in Tektronix's 1240 , is to keep track of the order in which states are clocked into acquisition memory. The other method, used in Hewlett-Packard's 1650A, is time stamping: When states are clocked into the logic analyzer, a time tag is attached to every state so that you can determine not only the order in which states are clocked in, but also the actual time difference between states (Fig 1). Many logic analyzers can support dualprocessor systems. HP's 16500A system can support as many as five independent processors, and Tektronix's DAS 9200 can support a total of six.
To clock some channels in synchronously and some

FREQUENCY SYNTHESIZERS

HIGH-PERFORMANCE DIRECT SYNTHESIZERS
Accurate, stable, quiet frequencies on command, fast. For NMR, imaging, SATCOM, surveillance, ATE. Sources adapting to your needs with options. High demonstrated reliability. Thousands in use

Range: $1-500 \mathrm{MHz}$
Resolution: $0.1 \mathrm{~Hz}-100 \mathrm{KHz}$ (opt.) Switching: $5-20 \mu \mathrm{~s}$
Output: +3 to $+13 \mathrm{dBm}: 50$ ohm Spurious Outputs: -70 dB

Phase Noise: $-63 \mathrm{dBc},(0-15 \mathrm{KHz})$ Freq. St'd: Oven, TCXO, Ext. Interface: BCD par. or GPIB
Size: $19^{\prime \prime} \mathrm{W}, 51 / 4^{\prime \prime} \mathrm{H}, 18^{\prime \prime} \mathrm{D}$
Price: $\$ 7,500.00^{*}$

Other Options:
Progr. Attenuator, $0-90 \mathrm{~dB}$ (or 0-99dB with GPIB) $\mathrm{n} \times 10 \mathrm{MHz}$ output $20-140 \mathrm{MHz}$ or any 10 MHz line (20-140)
*Prices are US only, manual \& remote, (BCD), 1 Hz res. with oven std.

OUR
(1 HZ RESOLUTION)
(HZ MHZ

Choice of table-look-up resolution with phase-continuous switching.
PROGRAMMED TEST SOURCES, INC.

> Some logic analyzers provide a dozen or more sequential-triggering decision levels, allowing you to set up complex flow conditions.

Fig 1-This printout of the 1650A's split-screen display uses markers (x and 0) to show the time correlation between the state listing and the timing waveforms. (Photo courtesy Hewlett-Packard)
asynchronously, you'll need a logic analyzer that can support both these features at once. HP's 1650A has this capability. The 1650A can be configured as two logic analyzers, and it can also display timing diagrams and state diagrams on one display, using markers to correlate the two sets of diagrams.

Histograms help optimize system performance

For optimizing system performance, a logic analyzer that can generate and display histograms can be useful. You can set up histograms that graphically track the percentage of time your system is spending in a given part of memory. By identifying routines that are using large amounts of processor time, you can concentrate on streamlining the code in these areas.

Although most logic analyzers are stand-alone units, some require personal computers. A number of logic

For more information . . .

For more information on the logic analyzers described in this article, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

Arium Corp	Hewlett-Packard Co	Northwest Instrument Systems Inc	Rapid Systems Inc
1931 Wright Circle	Box 10301	19545 NW Von Neumann Dr	433 N 34th St
Anaheim, CA 92806	Palo Alto, CA 94303	Beaverton, OR 97006	Seattle, WA 98103
(714) 862-7486	Phone local office	(503) 690-1300	(206) 547-8311
TLX 754903	Circle No 578	TLX 469558	TLX 265017
Circle No 572		Circle No 584	Circle No 589
	Hilevel Technology Inc		
Array Analysis Inc	18902 Bardeen Way	Outlook Technology Inc	Rohde \& Schwarz
145 Langmuir Laboratory, Brown Rd	Irvine, CA 92715	200 E Hacienda Ave	4425 Nicole Dr
Ithaca, NY 14850	(714) 752-5215	Campbell, CA 95008	Lanham, MD 20706
(607) 257-6800	Circle No 579	(408) 374-2990	(301) 459-8800
Circle No 573		TLX 350479	Circle No 590
	Iwatsu Instruments Inc	Circle No 585	
Bitwise Designs Inc	430 Commerce Blvd		Spector Instruments
297 River St, Suite 501	Carlstadt, NJ 07072	Panasonic Industrial Co	1156F Aster Ave
Troy, NY 12180	(201) 935-5220	2 Panasonic Way	Sunnyvale, CA 94086
(518) 274-0755	TWX 710-989-0255	Secaucus, NJ 07094	(408) 248-3993
Circle No 574	Circle No 580	(201) 392-4050	Circle No 591
		TWX 710-992-8925	
Dolch American Instruments Inc	Kontron Electronics	Circle No 586	Tektronix Inc
2029 O'Toole Ave	1230 Charleston Rd		Box 500
San Jose, CA 95131	Mountain View, CA 94039	Philips Test \&	
(408) 435-1881	(415) 965-7020	Measurement Instruments	(503) 627-7111
TWX 910-338-2023	TWX 910-378-5207	c/o John Fluke Mfg Co Inc	TLX 151754
Circle No 575	Circle No 581	Box C9090	Circle No 592
		Everett, WA 98206	
E1 Toro Systems	NCI	(206) 347-6100	
23702-B Birtcher Dr	Box 11025	TLX 185102	
El Toro, CA 92630	Huntsville, AL 35814	Circle No 587	
(714) 770-1474	(205) 837-6667		
Circle No 576	Circle No 582	Racal-Dana Instruments Inc	
		4 Goodyear St	
Gould Ine	Nicolet Test Instruments Div	Irvine, CA 92714	
3631 Perkins Ave	5225 Verona Rd	(714) 859-8999	
Cleveland, OH 44114	Madison, WI 53711	TLX 678341	
(216) 361-3315	(608) 273-5008	Circle No 588	
TLX 196113	Circle No 583		
Circle No 577			

NEW - Models 422 and 4215 MHz Sweep/Function Generators that offer low distortion, harmonic-free sine, triangle and square wave outputs. TTL output will drive up to 10 TTL loads for logic and digital circuit testing. Selectable sweep frequencies (. 05 Hz to 5.0 MHz), rates and sweep times. Model 422 features 6 -digit LED display and frequency counter capability for circuit monitoring.
Model 421, 120 VAC, Cat. \#12731 220 VAC, Cat. \#12733
$\$ 535.00$
Model 422, 120 VAC, Cat. \#12732 220 VAC, Cat. \#12734
$\$ 650.00$

NEW - Model 159 ACIDC Clamp-On Probe
Extend the capability of VOMs and DMMs with the Model 159 current probe. Access cables in almost any position with its unique 1.3 -inch (33 mm) jaw opening. 0.1 A to 500 A current range to 660 V (rms). Hall-effect technology for reliable, accurate results.
Model 159, Cat. \#12120 \$169.00

NEW - Model 460-6 DMM

High accuracy bench DMM with extended measurement capability. It is completely portable with a built-in, ni-cad battery pack and includes true rms measurement, pulse detection, selectable dB reference level and a $4-1 / 2$ digit LCD readout with 22 -segment bar graph. Designed to meet UL 1244 requirements.
Model 460-6, 120 VAC, Cat. \#12538
CIRCLE NO 84240 VAC, Cat. \#12539
AVAIL

NEW - Models 713 and 712 Universal Frequency Counters

Model 713 (to 520 MHz) and 712 (to 200 MHz) provide period, frequency, ratio, time interval and totalize functions for a wide range of applications from radio servicing to logic and control circuit testing and monitoring. Both feature an 8 -digit, high visibility, orange LED display, selectable attenuation and self-check of the 10 MHz time base.

712, 120 VAC, Cat. \#12722 220 VAC, Cat. \#12723	\$525.00
Model 713, 120 VAC, Cat. \#12724	
220 VAC, Cat.\#12725	\$675.00

CIRCLE NO 79
NEW - Models 488 and 487
Digital Multimeters
These new handheld DMMs feature
autoranging and data/peak hold, and
a $3-1 / 2$ digit LCD plus 71 -segment
analog display. Housed in a shock
resistant case for rugged use. AC and
DC current measurements; $300 \mu \mathrm{~A}$ to
20 A; 100 VDC, 750 VAC (rms);
diode check; and resistance to
$30 \mathrm{M} \Omega$. The Model 488 features true
rms measurements.

Model 487, Cat. \#48700 \$219.00
Model 488, Cat. \#48800 \$275.00

NEW - Model 464-4 DMM

Provides true rms voltage and current readings. Big, orange $3-1 / 2$ digit LED display for easy reading. 100 kHz frequency response. Designed to meet UL 1244 requirements.
Model 464-4, 120 VAC, Cat. \#12677
220 VAC, Cat. \#12678
220 VAC, Cat. \#12678
$\$ 325.00$
CIRCLE NO 83240 VAC, Cat. \#12679

SIMPSON ELECTRIC COMPANY

853 Dundee Avenue, Elgin, Illinois 60120-3090
(312) 697-2260 • Telex 72-2416 • Cable SIMELCO • FAX (312) 697-2272

IN CANADA: Bach-Simpson Ltd., London, Ontario
IN ENGLAND: Bach-Simpson (U.K.) Ltd., Wadebridge, Cornwall
Prices and Specifications Subject to Change Without Notice.

High-Performance IEEE-488 Solutions

for your

COMPARE THESE BENEFITS

Hewlett-Packard's new logic analyzer family offers you something not found in other logic analyzers...

HP's new logic analyzer family gives you more of what you want in logic analyzers. For less.

So now measurements are easier to make. And high-quality HP logic analyzers are easier to buy!

You get the performance that best suits you: from 32 to 400 channels of 100 MHz transitional timing/ 25 MHz state, and up to 80 channels of 1 GHz timing analysis.

Our new family also offers you easy operation, powerful triggering, a CAE link, an oscilloscope, pattern generation, portability, built-in mass storage, simple probing, optional 3 -year protection, and much more.

The small secret behind the big value.

To give you more for your money, HP developed a Logic-Analyzer-on-a-Chip containing a complete state analyzer, timing analyzer, and acquisition memory. This proprietary HP IC makes exceptional value possible... 80 channels of 100 MHz transitional timing for only $\$ 7,800^{*}$.

You can assign state or timing in 16 -channel increments. Get fully independent state, timing, state/timing, or state/state setups. Even time-correlate measurements on complex multiprocessor systems.

Operational simplicity runs in the family.

We've made our controls even easier than before, without sacrificing performance.

You can make timing or state measurements using just three menus, so you never get lost. Triggering setups, from the simple to the complex, are a snap. And autoscale gives you one-button setup for timing analysis.

You even get a color touchscreen and knob, or optional mouse with the new HP 16500A. Color lets you quickly distinguish between menu choices, measurements, and results...and find glitches more easily.

Probing made easy.

HP's new passive probes are lightweight and flexible...specially designed to grip easily and securely to your device under test. Plus, our preprocessors give you quick setups with most popular 8,16 , and 32 -bit $\mu \mathrm{Ps}$, including the Motorola 68020 and Intel 80386. And if you've already invested in HP preprocessors, we offer you an easy upgrade path.

> HP 1651A: full-featured logic analyzer for only $\$ 3,900$.*

With 32 channels of 100 MHz transitional timing for just \$3,900*, the HP 1651A gives the hardware engineer a highly economical, yet powerful debugging tool.

It's a full-featured logic analyzer with no compromises in state and timing capabilities (25 MHz state $/ 100 \mathrm{MHz}$ transitional timing on all channels), memory depth, triggering, or I/O features. It supports most popular 8-bit $\mu \mathrm{Ps}$ with full inverse assembly. Plus it's
compact, weighs just 22 lbs ., and has an optional carrying case for easy transport.

HP 1650A: the new standard in generalpurpose logic analysis for just \$7,800.*

The HP 1650A features timecorrelated state/state or timing/state operation on 80 channels. Plus eight sequence levels to meet your toughest triggering tasks. Yet it's priced below $\$ 8,000$! You get 25 MHz state $/ 100 \mathrm{MHz}$ transitional timing on all 80 channels, and preprocessor support for 8,16 , and 32 -bit μ Ps. And, the

More value.

HP 1650A is portable, lightweight, and small enough to fit comfortably on a crowded workbench. It's also programmable, has a built-in disc drive for storing measurements, and provides hardcopy documentation.
through your choice of performance modules. You can have up to 400 channels of 25 MHz state/100 MHz transitional timing. 8 channels of full-featured, simultaneous scope analysis. 80 channels of 1 GHz timing. Or 204 channels of $50 \mathrm{Mbit} / \mathrm{sec}$ stimulus.

Just \$12,400* buys you a

Now, bring real-world measurements into the CAE environment.

The HP 16500A is part of HP DesignCenter...a product development environment that unites engineers from IC design/verification to PCB design and test. By linking the HP 16500A with HP CAE, you can compare measurement results and simulated data on your workstation, and use measurement results as your simulator patterns.

HP 16500A: modular system solution, priced your way.

The HP 16500A is modular, with the flexibility to meet your debug, characterization, or pass/ fail test application needs today and tomorrow. You get a combination of state, timing, oscilloscope, and stimulus-response capabilities
basic configuration with 80 channels of 25 MHz state/ 100 MHz transitional timing.

You can trigger one module with another Time-correlate measurements between modules... 400 $\mathrm{Ms} / \mathrm{sec}$ scope and 1 GHz timing, for example. Even view state, timing, and analog on the same screen! Fully programmable, the HP 16500A eliminates the need for separate data storage and printer control. HP-IB and RS-232 are standard.

Mail the card today!

For more information, fill out and mail the postage-paid reply card today. Call us at 1-800-367-4772, Ext. 232W. Or contact your local HP sales office listed in the telephone directory white pages. Ask for the electronic instruments department.

Excellent reliability, service, and support.

When you purchase a logic analyzer from HP, you get high reliability. The support you need to be productive with your instrument quickly. And a worldwide sales and service network to ensure your continuing satisfaction for years to come.

HP 1651A \$3,900*
The HP 1651A is a generalpurpose, low-cost 32 channel logic analyzer with many features normally found on more expensive analyzers.

- 100 MHz transitional timing on all 32 channels.
- 25 MHz state on all channels.
- Support for most popular 8-bit μ Ps.
- Fully programmable, with built-in disc drive and hardcopy output.
- Portable and compact - weighs just 22 lbs.
- Optional 3-year protection

HP 1650A \$7,800*

The HP 1650A is a generalpurpose logic analyzer with a range of features to satisfy many requirements in design and test.

- 100 MHz transitional timing $/ 25 \mathrm{MHz}$ state on all 80 channels.
- Support for most popular 8, 16, and 32-bit $\mu \mathrm{Ps}$.
- Configurable as 2 totally independent analyzers.
- Fully programmable, with built-in disc drive and hardcopy output.
- Eight sequence levels with storage qualification, pattern and range recognizers.
- Glitch capture on all channels.
- Optional 3-year protection.

HP 16500A
The HP 16500A is a modular, configurable system solution that can meet a wide variety of logic analysis, oscilloscope, and stimulus-response measurement requirements.

- Configurable through your choice of performance modules:
- 25 MHz state $/ 100 \mathrm{MHz}$ transitional timing (80 channels per module) $\$ 5,200$ *
- $400 \mathrm{Ms} / \mathrm{sec} 100 \mathrm{MHz}$ bandwidth digitizing oscilloscope (2 channels per module) $\$ 5,500$ *
- 1 GHz timing (16 channel master) $\$ 7,800$ *
- $50 \mathrm{Mbits} / \mathrm{sec}$ pattern generation (12/48 channels per module) \$3,700/\$4,000*
- Mainframe \$7,200 *
- Color touchscreen and knob, with optional mouse
- Intermodule triggering.
- Two built-in disc drives.
- Fully programmable, with RS-232 and HP-IB interfaces.
- Optional 3-year protection.

[^4]Motorola 68020 is a trademark of the Motorola Corporation. Intel 80386 is a trademark of the Intel Corporation

The Fastest Growing Electronics EDN $=\mathbb{N E V N S}$ $==$ ICs hold more than D/A

81/2-digit DMM self-calibrates by using independent internal reference

The Model 1281 digital multimeter provides unusually stable readings of dc and ac voltage, resistance, and (optionally) de and ac current. When measuring dc voltage, the $31 / 2$-in.high unit maintains an average temperature coefficient of >0.25 ppm of full-scale range(FSR) $/{ }^{\circ} \mathrm{C}$ from 13 to $33^{\circ} \mathrm{C}$. Its dual internal zener references exhibit an average temperature coefficient of 0.1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from 0 to $50^{\circ} \mathrm{C}$ and are guaranteed to drift no more than 3 $\mathrm{ppm} /$ year at $23^{\circ} \mathrm{C}$. As part of the manufacturing process, the vendor monitors the stability of each reference for 90 days.

One of the references functions as the working standard. The other, in conjunction with an internal microprocessor, nonvolatile memory, sol-id-state choppers, and a precision

transformer, enables the instrument to perform self-calibration, which does not depend on resistance ratios.

The stability of ac and ohm measurements is consistent with the unit's dc-voltage performance. For example, despite ambient-temperature variation from 18 to $28^{\circ} \mathrm{C}$ for one year after calibration with external equipment, the ac-voltage measurements are accurate to 80
ppm of reading +10 ppm of FSR from 40 Hz to 10 kHz , and the resistance measurements are accurate to 8 ppm of reading +0.3 ppm of FSR. You can control the instrument via an IEEE-488.2 interface. The basic instrument costs $\$ 5700$; if you order it with optional true rmsmeasurement capability and 2- and 4 -wire resistance capability, it costs $\$ 7950$. Delivery, 10 weeks ARO.

Datron Instruments Inc, Box 85434, San Diego, CA 92138. Phone (619) 450-9971. TLX 756953.

Circle No 722
Datron Instruments Ltd, Hurricane Way, Norwich Airport, Norwich NR6 6JB England. Phone (0603) 404824. TLX 975173.

Circle No 723

\$3900 32-channel logic analyzer samples data at 100 MHz

The HP 1651A 32-channel logic analyzer can sample data at 100 MHz . It performs transitional timing and state analysis and can perform both types of analysis simultaneously. As a state analyzer, it stores 1024 samples/channel and works with systems having single-phase clocks whose frequency is as high as 25 MHz and whose pulse width is at least 10 nsec . The unit includes two state analyzers and has a pair of clock inputs. You can use either clock with either analyzer, and you can logically $O R$ the clocks or operate the state analyzers in demultiplexed or 2-phase mixed modes.

The instrument has eight pattern recognizers. When only one state analyzer is active, you can trigger on all eight. When both state ana-

lyzers are active, you can use four pattern recognizers with each state analyzer. An 8 -level state machine allows you to specify pattern sequences, which must appear before triggering occurs.

The unit accepts input signals from -9.9 to +9.9 V with a min p-p swing of 600 mV . You can set the threshold in 0.1 V steps with an accuracy of $\pm 150 \mathrm{mV}$ from -2 to +2 V and an accuracy of $\pm 300 \mathrm{mV}$ elsewhere in the input range. You con-
nect the analyzer to the unit under test via passive probes at the end of 16 -channel flat-woven cables. You can use the instrument to detect glitches as short as 5 nsec . In glitchcapture mode, it stores information about both data and glitches at every sample period.
Though the unit has no IEEE-488 interface, its integral $31 / 2-\mathrm{in}$. floppydisk drive allows you to store and recall instrument setups and measurement results. You can connect a printer to an RS-232C port and print out the current screen display. $\$ 3900$; pods and decompilers for popular 8 -bit $\mu \mathrm{Ps}, \$ 880$ to $\$ 1110$.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 724

WORLD'S FRST SYSTEM PRIENDIY CONDIIIONERS

 (2) PRECISION FILTERS, INC.
 4

Integrate filters, amplifiers, other conditioners your way in one system. That s system friendly Thats Precision 6000

Welcome to the new friendly open door policy on configuration.

You can mix a variety of filters including our newest: The Precision 1 MHz with $80 \mathrm{~dB} /$ octave, as well as the new $130 \mathrm{~dB} /$ octave fiters for up to 255 kHz .
You can add pre, post and gain-ranging amplifiers, as well as frequency band translators. Caibration an option, of course. You can soon add strain, charge, current and voltage input conditioners.
Yesterday's custom designs can now be assembled with today's standard hardware and software at friendly prices. Tomorrow's new instruments will fit right into today's mainframe and operate with today's friendly configuration and programming. Challenge us to show you.

Call friendly 607-277-3550.
Call for details. Wéll send our people's best friend, a magnetic dog, to remind you how system friendly conditioners can now be. Telex 646846. Or write.

Debugging tool triggers on VME Bus anomalies

When you plug the VBAT VME Bus-anomaly trigger board into an unused slot in a VME Bus-based system, it can monitor all activity on the bus. Within 80 nsec after it detects any of a large number of common VME Bus timing-protocol violations, it lights an LED and provides a trigger output. You can use the unit in conjunction with a logic analyzer to learn the basis of problems such as incompatibility among boards from several vendors or latent timing violations in products you are developing. The VBAT's 104 separate triggering circuits continuously and simultaneously monitor 94 bus lines. Its rule-based triggering algorithms detect 26 classes of tim-ing-protocol violations and provide trigger coverage that's broader by two orders of magnitude than that provided by the pair of ORed parallel triggers found on many logic analyzers.

Among the conditions that the unit detects are address, data, and write lines changing when they should be stable; $\overline{\mathrm{DS} 0}$ or $\overline{\mathrm{DS} 1}$ as-
serted before the bus is granted (or rescinded before DTACK goes high, and new bus grant generated before $\overline{\mathrm{BBSY}}$ is rescinded.

When you attempt to use a logic analyzer by itself to detect timing problems on a complex bus such as the VME Bus, you must often use trial and error to devise a triggering strategy likely to reveal the problem. The VBAT's parallel-triggering approach quickly establishes a trigger that you can apply to a logic analyzer. With some repetitive timing violations, the trigger occurs rapidly enough so that you can use it to obtain readable displays with nonstorage oscilloscopes. $\$ 1495$.

Ultraview Corp, Box 14734, Fremont, CA 94539. Phone (415) 6579501.

Circle No 725

Waveform recorder makes 250M 8-bit conversions/sec

The HP 5185A waveform recorder and the HP 5185T precision digitizing oscilloscope, which includes the waveform recorder, contain a pair of 8-bit flash ADCs that makes 250 million conversions/sec. The units offer an input bandwidth of 125 MHz , have maximum sensitivity of $\pm 50 \mathrm{mV}$ full scale ($400 \mu \mathrm{~V} / \mathrm{LSB}$) and provide memory that's 64 k samples deep. The recorder is intended for applications in which a separate computer, such as the vendor's Vectra PC, provides system control and data analysis. In addition to its 2048×2048-point monochrome display, the precision scope has the ability to perform 20 types of calculation and analysis on acquired data.

The scope can calculate and dis-

play FFTs; voltage, power, and phase spectra; p-p and rms voltages; frequency of sinusoids; and energy in a waveform. Included in the scope's repertoire is a waveformreconstruction algorithm called X-Fill that can improve the timedomain analysis of captured data as though the data had been sampled at $4 \times$ the actual sampling rate (as
long as sampling took place at $>2 \times$ the highest frequency component present in the data). In other words, X-Fill can make data sampled at $2.5 \times$ the Nyquist frequency look as though it had been sampled at $10 \times$ the Nyquist frequency. To further aid in time-domain analysis, the scope has a zoom feature that lets you magnify small portions of a waveform and pretrigger memory stores to as many as 64 k samples that occurred prior to the trigger. Waveform recorder, $\$ 28,200$; oscilloscope, $\$ 40,000$. Delivery, eight weeks ARO.
Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 728

$0 N L Y{ }^{\mp} 4,989$
 USA Price Only
 ANDIT'SLDADED! ■+13 dBm ■GPIB ■And More...

The new 2022C FM/AM Signal Generator is a solid, no-nonsense value that's loaded with every feature you need for manual and ATE use. There are no options to increase your cost.

The 2022C takes all the advantages of our popular 2022A and adds the extra fire-power of +13 dBm RF output for passivecomponent and intermodulation testing. You also get the added versatility of a built-in GPIB that's
there when you need it. Other additions include external FM input to allow dual modulation tests on receivers with sub-audible tone signalling and a memoryclear for security in military applications.

If your frequency range is between 10 kHz and 1.0 GHz , the 2022C will prove to be a very cost-effective solution with all the performance you need for AM, FM and $\phi \mathrm{M}$ measurements.

There's even more you should know about the 2022C: 100 Setting Storage - Reverse Power Protection - Accurate and Level Output • Calibration and Diagnostics in Memory • Choice of Calibration Units •

For a demo or literature contact MARCONI INSTRUMENTS, 3 Pearl Court, Allendale, NJ 07401. Or call (201) 934-9050.

Instruments

IEEE-488 instrument controller uses 80386 and 80387 processors

The PEP 301 is an MS-DOS-based hardware and software system for controlling instruments via the IEEE-488 bus. Its system unit uses an $80386 \mu \mathrm{P}$ operating at a clock speed of 16 MHz with no wait states, accompanied by an 80387 arithmetic coprocessor and 1M byte of RAM. You can configure RAM above 640 k bytes either as a RAM disk or as expanded memory, in accordance with the EMS (extend-ed-memory specification) standard. The system's high-resolution color monitor can display graphics compatible with the IBM CGA and EGA standards; the video adapter board supports both standards.

The mother board has eight I/O card slots-five 16 -bit slots, two 8 -bit slots, and one proprietary

32 -bit slot. As shipped, the 32 -bit slot is open, and you can locate the I/O cards so that three 16 -bit slots are open. The system includes a 40 M -byte hard-disk drive and a 1.2M-byte, $5^{1 / 4}$-in. floppy-disk drive; you can add one full-height or two half-height storage devices.

The system includes the vendor's Guru II (GPIB user-resource utility) software, MS-DOS, and GW-

Basic; it also runs several MS-DOSbased software packages available from the vendor. Some of the packages allow individuals with no previous programming experience to develop IEEE-488 instrument-control programs that run on the system. The system is compatible with popular third-party software, including 1-2-3, Framework, Timeline, and all Microsoft MS-DOS products. The product's price includes installation and system integration as well as a 1 -year warranty. $\$ 7995$. Compatible software, $\$ 500$ to $\$ 2095$.

Tektronix Inc, Instruments Group Inquiry Dept, Box 1700, Beaverton, OR 97077. Phone (800) 833-9433, ext 170; in OR, (503) 627 9000. TLX 151754.

Circle No 726

Function generator delivers arbitrary waveforms at $5 \mathrm{nsec} /$ point

The Model 9100 is a dual-channel instrument intended for benchtop or ATE (automatic test equipment) applications requiring both standard and user-defined waveforms at high data rates. It can produce square waves at frequencies as high as 100 MHz , sine waves at frequencies as high as 25 MHz , positive- or negative-going pulses with durations as short as 5 nsec, ramps, triangular waves, and dc levels. Its accuracy is $\pm 1 \%$ (or $\pm 20 \mathrm{mV}$) from -10 to +10 V into a high-impedance load, or -5 to +5 V into a $50-\Omega$ load. The full-amplitude rise time is ≤ 5 nsec with $< \pm 3 \%$ aberrations.

As an arbitrary-function generator, the instrument can produce waveforms containing from four to 65,5368 -bit points at rates ranging from 5 nsec to $20 \mathrm{sec} / \mathrm{point}$. You can

assign all the points to one waveform; when the unit produces two waveforms, you can assign 32,768 points to each waveform. The unit can store multiple waveforms comprising 350 k points in its batterybacked RAM for two months with the power off. You can link multiple waveforms and generate composite waveforms continuously or for a lim-
ited number of repetitions (you can specify as many as 65,536 repetitions).
The vendor provides an optional waveform-generation software package, Easywave, wnich runs on IBM PCs, PC/XTs, PC/ATs, and certain compatible computers. It allows you to define waveforms by using equations, by selecting and combining standard waveform elements, or by editing acquired waveforms. You can control the generator via a standard IEEE-488 port or an RS-232C port. \$8900; detachable handheld control panel, \$700. Easywave software, $\$ 1300$. Delivery, eight weeks ARO.

LeCroy Corp, 700 S Main St, Spring Valley, NY 10977. Phone (914) 425-2000.

Circle No 727

PC-HOSTED EMULATORS AND SUPPORT FROM \$1495.*

Want the right tools for your 8051-family job? You'll find them inside MetaLink's 8051 toolbox: complete In-Circuit Emulation hardware, software and thoughtware. A toolbox that lets you plug your PC into MetaLink's costeffective, high-performance 8051 family of development tools.

Why get your toolbox from MetaLink ${ }^{\text {TM }}$? We understand just how to get the best design performance from your applicationand to meet engineering budgets and quality standards.

Call MetaLink for your demo diskette to evaluate the capabilities of our MetaICE ${ }^{\text {TM }}$ units. Or, for qualified customers, we offer a free, 10 -day trial.

MetaICE-80515	MetaICE-80C452 MetaICE-83C152 MetaICE-80C451
MetaICE-80035	
MetaICE-8344	MetaICE-31A
MetaICE-51	MetaICE-32
MetaICE-52	MetaICE-32A
MetaICE-8044	
FOR FREE 8051 FAMILY	
POCKET REFERENCE	
GUIDE:	CIRCLE NO 89

T/ M Meralink
MetaLink Corporation
P.O. Box 1329, Chandler, AZ 85244-1329 (602) 926-0797 or (800) METAICE

IBM and PC are trademarks of International Business Machines Corp.

* Price is U.S. list

Instruments

PC-based emulators let you debug C or Pascal programs at source-code level

When you use them with the appropriate Pascal or C compiler, the KSE4 Series emulators let you debug software for 16-bit 8086- and 68000 -family μ Ps at the Pascal or C source-code level, as well as at the assembly-code level. You can control the emulators from the company's KDS-286 workstation, or from an IBM PC/AT or compatible computer, via an RS-232C or IEEE-488 interface.
For high-level-language debugging, the emulators allow you to display the source code, the static and automatic variables, the hierarchy of function calls, and the parameters passed between functions, in user-definable screen windows. To examine machine-code operation,

you can set up windows to display processor registers, memory contents, and trace-analyzer data. All the screens are dynamically updated as you step through the program, and you can switch between assembly-level and high-level-language debugging at will.
The emulators provide four hardware breakpoints that you can logi-
cally combine; you can define them by using unique addresses, address ranges, data, and target-processor control-line conditions. The emulators can accommodate as much as 2 M bytes of emulation memory and a 64 -channel, 8 k -word trace analyzer. From approximately DM 12,000 to DM 40,000 .
Kontron Messtechnik GmbH, Oskar-von-Miller-Strasse 1, 8057 Eching, West Germany. Phone (08165) 770. TLX 526719.

Circle No 729
Kontron Electronics Inc, 630 Clyde Ave, Mountain View, CA 94039. Phone (415) 965-7020. TWX 910-378-5207.

Circle No 730

The Stag PP40 Series of Gang/Set Programmers

The PP40, PP41 and PP42 are low-cost MOS programmers, ideally suited to both the production and design environments.

- Programming support for $24,28,32$, and 40-pin Single Chip Microprocessors.
- Quickly programs up to 8 devices using the Quick Pulse* and AMD's Flashrite*.
- Firmware upgradable to provide an ever increasing library of devices.
- Bi-colored LEDs and a clear 16 character display for error reporting and system status.

For further details, contact:

Stag Microsystems Inc. 1600 Wyatt Drive Santa Clara, CA 95054 (408) 988-1118 (CA) (800) 227-8836

40-pin EPROMs and EEPROMs and 28 and fastest available algorithms such as Intel's

Stag Microsystems Inc. 3 Northern Blvd. Amherst, N.H. 03031 (603) 673-4380 (800) 222-STAG
 auto-recall on power-up.

- Automatic system self-tests ensure operational integrity.
- Full editing capability on PP41 and PP42 enables powerful data manipulation.

Trust the fanily of signal generators proven on the world's production lines.

Three signal generators designed

 with the accuracy, convenience and reliability manufacturing demands.Manufacturers around the world,from Japan to Germany, from Australia to America-have put Fluke's family of signal generators on their production lines. You can trust the 6060 Series for your production testing needs, too.

The 6060 Series generates accurate, stable frequencies covering applications from 10 KHz to 2.1 GHz, with amplitude accuracies of $+/-1.0 \mathrm{db}$ to 1 GHz , and $+/-1.5 \mathrm{db}$ to 2.1 GHz . This gives you the higher testing confidence you need to maintain close quality control for your products. These signal generators are rugged for round-the-clock operation. And our stable circuits and high-stability
reference options permit you to establish long calibration intervals.

Our signal generators save testing time too. You can store fifty complete instrument set-ups in non-volatile storage. The interactive front panel and bright vacuum fluorescent display have been designed for convenient operation in the factory environment.

Innovative, easy-to-use controls allow simultaneous adjustment of amplitude and frequency. And the 6060 family is fully programmable via the IEEE bus, for highspeed automated testing.

All this capability makes the 6060 Series a great signal generator value. Contact your local Fluke Sales Engineer or call $\mathbf{1 - 8 0 0 - 4 2 6 - 0 3 6 1}$ to put proven performance on your production line.

Selection Guide

Frequency Range			
Applications	IEEE		
6060B	0.01 to 1050 MHz	General-purpose RF testing	opt.
6061A	0.01 to 1050 MHz	VLF-UHF Communications testing	inc.
6062A	0.1 to 2100 MHz	L-band comm., navigation, radar	inc.

FLUKE

TIMER/COUNTER
The PM 6666 programmable timer/ counter covers frequencies from dc to 120 MHz at $1-\mathrm{Hz}$ resolution and can optionally handle $1.1-\mathrm{GHz}$ signals. The unit uses reciprocal counting with an internal $\mu \mathrm{C}$ to eliminate the ± 1-cycle errors normally associated with this technique. With a 1 -sec measuring time, the resolution is seven digits. To make time measurements, you can invoke an average mode that permits you to measure intervals with a resolution of 20 psec. Optional mathematical compensation of the crystal's temperature coefficient produces stability of 2×10^{-7} over the 0 to $50^{\circ} \mathrm{C}$ range. Instead of equipping the counters with a proportional oven, the factory measures each crystal's frequen-cy-vs-temperature characteristic and stores corrections in nonvolatile memory. You can select trigger levels from -50 to +50 V , display the trigger levels, and autotrigger at frequencies higher than 100 Hz . You can remotely program 20 functions using an optional IEEE-488 interface. $\$ 995$.

John Fluke Mfg Co, Box C9090, Everett, WA 98206. Phone (800) 426-0361; in WA, (206) 347-6100. TWX 910-445-2943.

Circle No 358

WAVE ANALYZER

The vendor has added Zoom CZT (Chirp Z transform) capability to the firmware of the Data 6100 Universal Waveform Analyzer. At a fixed sampling rate and with a number of data points, CZT analysis provides a 65 -fold improvement in frequency-domain resolution compared with FFT analysis, which the unit also provides. However, the im-

provement in resolution comes at the cost of roughly tripled computation time. Another benefit of the new firmware is that it allows you to select as many as 30,000 waveform samples; the system does not restrict the number of samples to powers of two. You can also define the center frequency and the display's window width. You can make the frequency window very narrow or widen it to four times the sampling frequency.
Available plug-ins provide as many as four channels with 14 -bit resolution at 100 k samples/sec $(\mathrm{kHz}) ; 16$ bits at $1 \mathrm{MHz} ; 12$ bits at 36 $\mathrm{MHz} ; 8$ bits at 100 MHz ; and, for repetitive waveforms, 16 bits at the equivalent of 100 GHz . You can store setups, programs, and data in 48 k bytes of nonvolatile RAM. $\$ 7995$; plug-ins (one required), $\$ 2495$ to $\$ 12,800$.

Analogic Corp, Data Precision

 Div, Electronics Ave, Danvers, MA 01923. Phone (800) 343-8150; (617) 246-1600. TLX 6817144.Circle No 359

SYNTHESIZER

The FS-2000-18 synthesizes $10-\mathrm{MHz}$ to $18-\mathrm{GHz}$ frequencies with $4-\mathrm{Hz}$ resolution (0.4 Hz optional); it switches frequencies in less than 1 μ sec. At 100 MHz with a $10-\mathrm{Hz}$ offset from the carrier, the absolute phase noise-including internal reference noise-is $-105 \mathrm{dBc} / \mathrm{Hz}(105$ dB below carrier level $/ \mathrm{Hz}$). At 20 kHz from the carrier, noise drops to $-150 \mathrm{dBc} / \mathrm{Hz}$, and when the carrier is programmed to 18.4 GHz , the equivalent spec is $-108 \mathrm{dBc} / \mathrm{Hz}$. Spurious signals are -70 dBc to 2.3 $\mathrm{GHz} ;-64 \mathrm{dBc}$ to $4 \mathrm{GHz} ;-58 \mathrm{dBc}$ to 9.2 GHz ; and -52 dBc to 18.2 GHz .

The harmonics are -25 dBc max. The unit has a parallel BCD interface; you can get an IEEE-488 interface with a "fast learn" mode as an option. $\$ 89,500$. Delivery, 20 weeks ARO.

Comstron Corp, 10 Hub Dr, Melville, NY 11747. Phone (516) 7561100. TLX 4973525.

Circle No 360

DEVELOPMENT SYSTEM

The Echo μ P-development system can now list on screen the timealigned traces of software that executes on two different $\mu \mathrm{Ps}$. If you are developing multiprocessor systems, this feature lets you correlate the order in which two μ Ps execute instructions and determine the time they require for instruction execution. Using the capability, you can mix state display and assembly and high-level-language tracing in any combination. The system includes a 20 M -byte hard disk; a 1.2 M -byte floppy-disk drive; 1 M byte of main memory that's expandable to 4 M bytes; and a $9-\mathrm{in}$. CRT. It also includes one processor-specific personality card with 64 k bytes of overlay memory for 8 -bit chips and 256 k bytes to 1 M byte of overlay memory for 16 -bit chips; one emulation pod; complete emulation software; and an assembler, a linker, and a loader. Among the options are pods for simultaneous emulation of as many as eight μ Ps. Eight-bit μ Ps, $\$ 8940$; 16 -bit μ Ps, $\$ 12,980$.

Arium Corp, 1931 Wright Circle, Anaheim, CA 92806. Phone (800) 862-7486; in CA, (714) 978-9531.

Circle No 361

Introducing perfect 32-bit balance

The Philips PM 3570 Logic Analyzer. A no-compromise solution for true 32bit systems integration. At a price that won't weigh you down.
HEAVYWEIGHT PERFORMANCE

- 32-bit channel width: No other logic analyzer in its class offers 83 state plus 32 transitional timing channels for simultaneous, time-correlated display of software flow and high-speed hardware signals.
- Unmatched acquisition speed: Up to 400 MHz with 2.5 ns resolution for data capture four times faster than similarly-priced instruments.
- Transitional Timing: A Philips' innovation, this feature provides the equivalent of 132 GBytes of conventional RAM.
- Plus broad support: Get dedicated personality modules for quick connection to most 8 , 16 - and 32 -bit micros.

EASY MEASUREMENTS

- Softkey simplicity: Eight menu-driven softkeys give you direct access to over 300 different functions.
- Labeled timing channels: Lets you identity each channel with your own code names.
- Time-tagged events: Logs time between events for stored signals in synchronous and asynchronous acquisition modes.
- Non-volatile memory: Stores four complete user settings, measurement data and your last set-up-even at power-down.

UPSCALE SUPPORT

Count on a one-year warranty and all the application and service assistance you'll ever need. From Fluke-the people who believe that extraordinary technology deserves extraordinary support.

WEIGH THE DIFFERENCE

Call Fluke today at 800-44-FLUKE ext.77. And discover how easy it is to achieve perfect 32-bit balance.

John Fluke Mfg. Co., Inc., P.O. Box C9090, M/S 250C
Everett, WA. 98206
U.S.: 206-356-5400 CANADA: 416-890-7600 OTHER COUNTRIES: 206-356-5500
© Copyright 1987 John Fluke Mfg. Co., Inc. All rights reserved. Ad No. 1171-P3570

[^5]

SIGNAL SWITCH

In a single $12^{1 / 1 / 4}$-in.-high, rackmountable chassis, Series 1251 switching modules can provide as many as 280 channels of microwave, RF, audio, video, high-voltage and high-current signal switching that's programmable via an IEEE-488 interface. Plug-in cards allow you to configure the units to handle frequencies as high as 26.5 GHz , voltages as high as 250 V ac, and currents as large as 8 A . You can interconnect eight chassis to increase the capacity to 2240 channels. The internal analog bus has 10 lines; in a single 14 -slot chassis, some of the configurations you can create with the bus are a 4×70 matrix and a 280×1 multiplexer. The typical measured noise is $\leq-120 \mathrm{dBm}$ in a $5-\mathrm{kHz}$ bandwidth. Typical system with 14 modules, $\$ 9950$.
Racal-Dana Instruments Inc, 4 Goodyear St, Irvine, CA 92718. Phone (714) 859-8999. TLX 678341. Circle No 363

SCANNER CARDS

The 7158 low-current scanner, 7168 nanovolt scanner, 7067 4-wire resistance scanner, and 7402 thermocouple scanner are plug-in cards compatible with both of the vendor's scanner mainframes. The low-current scanner offers 10 channels of $1-\mathrm{pA}$ switching and is designed for
use with relatively inexpensive coaxial cables. It switches in 1 msec , tolerates common-mode voltages of 30 V , and is configured so that you can connect the output of several scanner cards to a single measuring instrument.

The nanovolt scanner has eight 2-pole channels implemented with junction-FET switches, and it achieves a differential offset of 20 nV . Copper-to-copper connections minimize thermocouple EMFs. Its actuation time is less than 3 msec , and at room temperature its input leakage is less than 50 pA .

The 10-channel resistance scanner offers both current sourcing and low-voltage sensing. Its 4 -wire configuration minimizes the effect of IR drops in the measurement setup. The scanner provides a pair of source contacts capable of switching 350 mA and a pair of low-voltage contacts with $1-\mu \mathrm{V}$ offset.

The thermocouple scanner is a 9 -channel, 2 -pole unit with integral cold-junction compensation. You connect thermocouples to it via an electrically isolated isothermal block; a semiconductor sensor monitors the block's temperature. 7158, \$950; 7168, \$1995; 7067, \$630; 7402, $\$ 500$.

Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (216) 248-0400. TLX 985469.

Circle No 362

RECORDER

The ES2000 system monitors as many as 40 analog or 80 digital sigmany as 40 analog or 80 digital sig-
nals. It consists of a data-acquisition and control unit based on a 68000 and control unit based on a 68000
$\mu \mathrm{P}$, an electrostatic printer with a
stationary array of 2112 writing elements, a nonfade monitor scope, and a keyboard. It records analog signals at frequencies as high as 35 kHz and transients as short as $25 \mu \mathrm{sec}$ at chart speeds from 0.25 to 500 $\mathrm{mm} / \mathrm{sec}$. You can program all functions via IEEE-488, RS-232C, and RS-422A interfaces. You can store an unlimited number of system setups, each with more than 100 k bytes of annotation, on disks in the integral $31 / 2-\mathrm{in}$. floppy-disk drive. The plug-in architecture lets you configure the unit with signal conditioners appropriate to your application. Two types of signal conditioners are available: One provides a pair of balanced-to-common inputs, calibrated zero suppression, and two event channels; the other has four event channels.

The unit accepts 11 -in.-wide fanfold or roll paper. It eliminates parallax by printing grid lines and time marks as it writes data; it lets you annotate printouts with chart speed, time marks, real time and date, and parameter identification. In addition, it will print out as many as 12 pages of text describing each test setup. $\$ 18,700$. Delivery, 60 days ARO.

Gould Inc, Test and Measurement, 3631 Perkins Ave, Cleveland, OH 44114. Phone (216) 361 3315.

Circle No 364

DIGITIZING SCOPE

The HP 54120T features a color display and, when in its "average display mode," can digitize four channels of repetitive input signals containing frequencies to 20 GHz . In "persistence mode," the bandwidth is 12.4 GHz max. The ADC resolves 12 bits; input impedance is 50Ω. You can set the scale factor from 1 to $80 \mathrm{mV} / \mathrm{div}$, sweep speed from 10 psec to $1 \mathrm{sec} / \mathrm{div}$, and trigger delay from 16 nsec to 1000 times the screen width or 10 sec , whichever is smaller. Integrated within the unit is a TDR (time-domain reflec-

FLUKE 9100A • DIGITAL TEST SYSTEM

Get to the test mode fast!

In fact, twice as fast.

If you're developing automated test procedures for microprocessor-based digital circuit boards, we'd like to introduce you to the concept of speed.

Fast Programming

With the 9100A Test Programmer's Station, you can generate powerful and detailed test programs in half the time it takes with other emulative-type systems. Weeks instead of months.

Easy-to-use software: The 9100A features a high-level programming language, syntaxchecking editor and source-language debugger all designed specifically for writing digital test and diagnostic routines.
Built-in decision tree: Enter board information in straightforward database format. Add stimulus routines. The 9100A then produces comprehensive test programs for Guided Fault Isolation (GFI) almost automatically. A special fault-tracing algorithm makes all the choices about the troubleshooting sequence.

Fast Troubleshooting

Here's where Fluke's new system really takes off!

Because the programs you develop on the 9100 A can be executed on the production line or in service by any number of low-cost 9105A Digital Test Stations. All of them with these features.

Full board coverage: This system isolates digital hardware faults down to the node level on all digital circuitry, SSI to ASIC, at rates up to 40 MHz .
Automated Fault Isolation: Lightringfast functional tests for the entire $\mu \mathrm{P}$ kernel-BUS, RAM and ROMare pre-programmed, and activated by simple keystrokes. Beyond the kernel, your GFI programs guide an operator right to the faulty node quickly, with diagnostics in plain English.
Advanced circuitry interface: Fluke's new Parallel IIO Modules let you test as many as 160 pins simultaneously at up to 10 MHz . Helping to isolate faults faster than you ever thought possible.

High-Performance Support

Fluke backs its full line of board test equip-ment-9100A Digital Test System, 9000A Micro-System Troubleshooter, 3200B Manufacturing Defects Analyzer and 3050B Functional Test System-with all the service, training and application support you need.

Fast answers

Call Fluke at 1-800-426-0361 to get up to speed fast!

From the world leader in emulative board testing.

CIRCLE NO 91
tometer) system with a combined rise time (pulse generator and scope) of 45 psec. The instrument performs several computations on data it acquires when making TDR measurements: Data is converted from the time domain to the frequency domain; before conversion back to the time domain, the computed frequency-domain response passes through a normalization filter derived from short-circuit and 50Ω calibrations. $\$ 27,825$.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 365

EEPLD DEVELOPMENT

The Erasic Develobpment System supports the vendor's electrically erasable PLDs. It consists of a PLD programmer, which can also program EEPROMs; an interface card for an IBM PC, PC/XT, or PC/AT; MultiMap, a PLD-design program; MultiSim, a PLD-simulation program; and more than 30 tutorial design examples. Data I/O Corp's (Redmond, WA) Abel PLD design package is available from the vendor as an option; you need it to run the PLD-design and -simulation programs. On a PC/AT, the PLD-design program creates a JEDECstandard load file for device programming; the program creates designs that utilize as much as 90% of the gate structures within a PLD. The PLD-simulation program employs test vectors of your specifica-
tion in performing a logic simulation of the device design. $\$ 749$; with Abel, $\$ 1895$.

Exel Microelectronics Inc, Box 49007, San Jose, CA 95161. Phone (408) 432-0500. TWX 910-338-2116.

Circle No 366

AC CALIBRATOR

The Model 4503 ac-voltage calibrator lets you control amplitude and frequency via an IEEE-488 interface. It covers the range of 30 Hz to 120 kHz with a frequency accuracy of 0.001%. You can vary the output level of the 3.5 -in. rack-mountable unit from 1 mV to 120 V ac in five ranges with 1 -ppm (6-decade) resolution. Its amplitude accuracy is 0.04% and distortion is less than 0.1%. With an optional amplifier housed in a separate chassis, you can increase the output to 1000 V ac max. $\$ 3995$. Delivery, 60 days ARO.

Electronic Development Corp, 11 Hamlin St, Boston, MA 02127. Phone (617) 268-9696.

Circle No 368

VLSI TESTER

The LT-1000 combines tester-perpin and shared-resource architectures to test devices that have as many as 256 pins. In its doublepulse mode, the tester can provide stimuli at a $100-\mathrm{MHz}$ data rate. The system's pin drivers can produce
linear-edge test signals that rise to 5.5 V in 1.6 nsec (10 to 90%). The basic data rate is 50 MHz ; because the double-pulse mode uses a pin driver's own inhibit function, and not an adjacent pin, producing $100-$ MHz stimuli does not reduce the number of device pins the unit can drive. It does sacrifice the inhibit function on double-pulsing pins, however. The first system installed at your facility includes a programdevelopment station with programgeneration software, and a comput-er-controlled autocalibration station. The program-development and autocalibration stations need not be duplicated for subsequent systems installed at the facility. Initial system, $\$ 829,000$. Average system cost for a 5 -system installation, $\$ 736,000$. Delivery, eight to 12 weeks ARO.

Tektronix Inc, Box 500, Beaverton, OR 97077. Phone (503) 6277111. TLX 151754.

Circle No 367

SCOPE PLUG-IN
The 4180 dual-channel high-speed digitizing plug-in increases the acquisition speed of the vendor's 4094 digitizing scope to 200 M samples/ sec. You do not have to reduce the sampling rate if you install two of the plug-ins in one scope to obtain 4 -channel data acquisition. The sin-gle-ended inputs have 1-M Ω input impedance and full-scale sensitivity from $\pm 100 \mathrm{mV}$ to $\pm 40 \mathrm{~V}$. You can select a pretrigger delay as large as 99.9% of the sweep time or a posttrigger delay as large as 2^{25} sample intervals. The unit calculates FFTs and performs other mathematical operations on acquired data, such as

F-UKR 8840A MULTMEEER

Counter-fit

If you think all low-cost frequency counters are inferior imitations of precision lab instruments, guess again. Fluke has a new 120 MHz counter that's a perfect fit for test systems, bench tops and budgets.

Honest performance at only $\$ 995$.

The Philips PM 6666 counter delivers seven full digits of resolution at gate times of one second. More than 20 measurement functions. Automatic trigger-level setting. And first-rate input protection to

350 V . All packaged in a rugged, shielded metal case.

Add full programmability with the GPIB/ IEEE-488 option. A 1.1 GHz input. Or Philips' unique mathematically-controlled crystal oscillator timebase for precise measurements with no warm-up time.

All this performance is backed up by one of the most trusted names in instrumentation: Fluke, with service and support that's never more than a phone call away. So don't take chances. For genuine
solutions to fit your test and measurement needs, come to Fluke. For more information and complete specifications, phone 1-800-44-FLUKE ext. 77.

[^6]
FடபKE

virtual and exponential averaging. $\$ 7900$. Delivery, 120 days ARO.

Nicolet, Test Instruments Div, Box 4288, Madison, WI 53711. Phone (608) 273-5008.

Circle No 370

TEST INTERFACE
The UTI-1 routes signals between a unit under test (UUT) and test instruments such as digital multimeters; analog and digital signal sources; oscilloscopes; data recorders; and data analyzers. The device comes with an internal bus, a power supply that can provide power to the UUT, and an IEEE-488 interface. The vendor offers a variety of internally mounted, off-the-shelf support modules to facilitate connecting the UTI-1 to specific analog and digital test instruments, external power supplies, and stimulus sources. You can control the internal bus and the support modules via the IEEE-488 bus. Each type of UUT requires a separate interchangeable test adapter (ITA). By changing ITAs, you can use the same test setup to test many different devices. $\$ 7400$.

Wandel and Goltermann Inc, 1030 Swabia Ct, Research Triangle Park, NC 27709. Phone (919) 9415730. TWX 810-621-0002.

Circle No 386

FIBER TESTERS

The 7721, 7723, and 7725 optical time-domain reflectometers let you make bandwidth and attenuation measurements on fiber-optic cables. The instruments use menu and automatic setups to locate breaks in the fiber and to achieve repeatable

measurements of bandwidth, cable losses, and splice losses. The CRT trace of the cable's characteristic is fully annotated with the losses, and you can recall initial cable profilesstored on an optional magnetic-tape cassette-for comparison purposes. An integral printer provides hardcopy results. A manual operating mode allows you to make additional measurements and to zoom in on areas of special interest.
The reflectometers are designed for $850-\mathrm{nm}$ multimode, $1300-\mathrm{nm}$ multimode, and $1300-\mathrm{nm}$ monomode cables, respectively. In the first instrument, a fiber connector accepts several cable sizes and reduces the dead zone in the fiber to zero. The instruments for use with multimode fiber feature a backscatter singleway dynamic range (SWDR) of ≥ 25 dB , and the monomode instrument specs a backscatter SWDR of ≥ 24 dB. All the instruments have IEEE-488 and RS-232C interfaces and operate from ac line or 10 to 16 V dc supplies. From Fr Fr 115,000 to Fr Fr $180,000$.
Enertec Instruments, 5 rue Daguerre, 42030 St Etienne Cedex 2, France. Phone 77252264. TLX 300796.

Circle No 387
Solartron Instruments, 2 Westchester Plaza, Elmsford, NY 10523. Phone (914) 592-9168. TLX 145487.

Circle No 388

TESTER

The 4031 portable RF communications tester performs service, repair, and production testing on a wide array of radio-communications equipment-for example, military and private mobile radios, cellular radios, digitally encoded radio equipment, selective call radios, DTMF phones, and pagers. The tester has $2-\mu \mathrm{V}$ input sensitivity and includes a spectrum analyzer that operates to 1 GHz and a digital oscilloscope with a 7 -in. screen. The screen can simultaneously display as many as three simulated analog meter movements, which you can zoom to full screen size for better visibility. On-screen limit indications highlight out-of-limit conditions.

A microphone input allows you to perform voice-over testing of mobile and cellular radios, and a patented modulation technique provides pulse modulation of an RF carrier without carrier-frequency drift. You can program the tester using memory cards that contain as much as 100 k bytes of operating system or of user-defined test sequences. An IEEE-488 interface is standard. Options include full-duplex operation, relay interface cards, and a userdefinable data-transmission module. Around $£ 9000$.
Solartron Instruments, Victoria Rd, Farnborough, Hampshire GU14 7PW, UK. Phone (0252) 544433. TLX 858245.

Circle No 389
Solartron Instruments, 2 Westchester Plaza, Elmsford, NY 10523. Phone (914) 592-9168. TLX 145487.

Circle No 390
Continued on pg 92

The smart scope for people who hate to wait

The Philips microcomputer-controlled PM 3050 Series. The only 50 MHz scopes in the world smart enough to find and display the signalautomatically.

SMART PERFORMANCE

- Autoset finds the signal at the touch of a button. Philips' intelligent beamfinder automatically selects amplitude, timebase and triggering for error-free instant display of any input signal on any channel.
- 16kV CRT for optimum viewing. When it comes to brilliance, clarity and spot quality, nothing in its class shines brighter.
- LCD Panel for confident, ata - glance operation. A valuable information center, it instantly displays all instrument settings and parameter values. With no mistakes.
- Auto-Triggering "thinks for you". This builtin intelligence provides fast, accurate, prop-erly-triggered signals up to 100 MHz .
- IEEE Compatibility. The PM 3050 Series is the only family of 50 MHz scopes with an add-on IEEE-488 interface option for fast computer hook-up.
- Choice of Models. Single timebase or delayed sweep versions are available.

SMART SUPPORT

Philips PM 3050 Series also comes with a 3 -year warranty and all the technical and service assistance you need. From Flukethe people who believe that extraordinary technology deserves extraordinary support.

SMART BUY

For about what you'd pay for the next-best scope you get innovative engineering that's
more productive and easier to use. You get plug-in modularity and IC microelectronics for reliability you've never seen in this class before. Plus, for a limited time, you get a no-risk, no-questions-asked, 30 -day moneyback guarantee. So why wait any longer?
TEST THE DIFFERENCE
So call Fluke today at $\mathbf{8 0 0 - 4 4 - F L U K E ~}$ ext. 77. And find out how smart your next oscilloscope buy can be.

John Fluke Mfg. Co., Inc., P.O. Box C9090, M/S 250C, Everett, WA. 98206
U.S.: 206-356-5400 CANADA: 416-890-7600 OTHER COUNTRIES 206-356-5500
© Copyright 1987 John Fluke Mfg. Co., Inc.
All rights reserved. Ad No. 1075-P305X

PM $3050 / 55 \cdot 50 \mathrm{MHz} \cdot$ OSCILLOSCOPES

Instruments

SCOPE ADAPTER

The DSA524 and DSA511 digital storage adapters turn a conventional analog oscilloscope into a 2-channel digital storage oscilloscope. The first instrument has an input sampling rate of 20 M samples $/ \mathrm{sec}$, providing you with useful bandwidths for single-shot and repetitive signals of 5 and 35 MHz , respectively.

When the second instrument samples at 10 M samples/sec, its corresponding bandwidths are 1 MHz and 20 MHz . Both instruments sample with 8 -bit resolution.
The second storage adapter has a capture memory of 4096 words per channel; the normal display mode shows a 1024 -word window on the capture memory. A trace-compres-

sion mode allows you to display all 4096 samples on the oscilloscope, and a trace-magnification mode expands any 101-word section across the full screen width. This adapter has a trace memory of 1024 words per channel and normal and magnified display modes. Both adapters allow you to capture pretrigger trace information, and both provide digital post-trigger delay. The first adapter also offers delay by number of trigger events.

Additional features include CRT trace annotation, nonvolatile trace storage, and computation functions on and between traces. In addition, the first adapter offers linear or sine interpolation, digital averaging, and autoranging inputs. An RS-423 interface is standard, and an IEEE488 interface is optional on both adapters. DSA524, £585; DSA511, £395.

Thurlby Electronics Ltd, New Rd, St Ives, Huntingdon, Cambridgeshire PE17 4BG, UK. Phone (0480) 63570. TLX 32475.

Circle No 391

BOARD TESTER

By simulating operation of the target system's $\mu \mathrm{P}$, the $\mathrm{B} 3 \mathrm{~T} \mu \mathrm{P}$ board tester allows you to run predefined,

VP-5610P. The little scope that goes a long way.

How many features can you pack into the smallest 100 MHz auto-ranging scope on the market? More than enough to go from field...to factory...to lab...with ease.

VP-5740P. Our smartest combination analog/digital oscilloscope ever.

The VP-5740P is so smart, it thinks for itself. It can run a program of up to 1000 steps and get your measurements automatically. It can read high-speed transient signals using its 100 MHz sampling clock and three 10 kiloword memories. And it provides functions like flash conversion and 100 megasamples per division to keep work moving.
As for smart design, the VP-5740P features a full 7 "display to view accumu-

In fact, the VP-5610P gives you many of the most valued features of a bench scope. Its impressive list includes three independent channels, microprocessor control, an optional GP-IB interface, digital readout and either AC or optional DC operation. It handles dual X-Y operations and offers solid state switching that's virtually impervious to moisture and contact noise.

What's more, combining a bench and field scope into a single package with a competitive price makes it the one you can't afford to do without.
lated and memory waveforms or related digital information. A GP-IB interface is built in. So are a host of calculating functions which include not only addition, subtraction, multiplication and division but advanced functions such as integration, differentiation, square and square root.

Also, when used as a nonstorage scope, the VP-5740P delivers a 100 MHz dual trace plus delayed sweep.

Panasonic scopes are the choice for reliability - and mobility. And that's where today's smart money's going.

For more information or a demonstration, contact your local Panasonic representative, or: Panasonic Industrial Company, Instrumentation Dept./MSD, Two Panasonic Way, Secaucus, NJ 07094. (201) 392-4050.
functional test sequences to test a board's components. Interface pods, which plug into the board's μ P socket, let you test boards based on popular 8 -bit $\mu \mathrm{Ps}$ and microcontrollers. Standard tests include detection of short circuits on data, address, and control buses; long and short RAM tests; and ROM checksum tests. You can also control and monitor individual $\mu \mathrm{P}$ control lines and memory and I/O read/write functions. Further, you can toggle the data and address buses, stimulate the board with walking data patterns, and disassemble program code into assembly-code mnemonics.
Other features of the tester include logic-analysis/stimulus and frequency probes that allow you to monitor and control a board's I/O ports, a $5 \mathrm{~V} / 1 \mathrm{~A}$ power-supply output to power the board under test, and an RS-232C remote-control port. You can store as many as 1500 test
instructions in the tester's internal nonvolatile memory or download test sequences from EPROM using the tester's ZIF socket. Test results are displayed on an LCD, and an integral printer provides hard-copy output. B3T, £1395; $\mu \mathrm{P}$ interface pods, $£ 100$ each.

Polar Instruments Ltd, Box 97, St Sampson's, Guernsey, Channel Islands, UK. Phone (0481) 53081. TLX 4191591.

Circle No 392

IN-CIRCUIT EMULATOR

The HMI-200-80 is a Z-80 in-circuit emulator that requires an IBM PC or compatible computer for operation. It supports $\mathrm{Z} 80-, \quad \mathrm{Z} 80 \mathrm{~A}-$, Z80B-, and Z80H-based target systems that use bank-switching and bank-addressing schemes to address as much as 256 k bytes of memory, four times the maximum size normally associated with the $\mathrm{Z} 80 \mathrm{Se}-$

ries μ Ps. The emulator's capabilities include an embedded logic-analyzer function, a pair of 72 -bit-wide $\times 4 \mathrm{k}$-deep trace buffers with selective-trace capability, complex break and trigger points, a μ sec-resolution interval timer, and two bank-selection schemes. The unit can support real-time emulation at clock rates of 8 MHz max or can operate in single-step mode. $\$ 4750$.

Huntsville Microsystems Inc, Box 12415, Huntsville, AL 35802. Phone (205) 881-6005.

Circle No 384

New lightweight and compact vacuum generators are complete with internal silencer and suction filter forming a modular unit which may stand alone or be manifold mounted up to ten stations. The suction flow ranges from 0.65 SCFM to 1.4 SCFM and the NZM series produces vacuum to 25 in . Hg . Optional features include supply and release valves and vacuum switches (24 VDC and 110 VAC) which mount to the vacuum generator. Direct mounting vacuum switches with $1 / 8^{\prime \prime}$ NPTF tap are available to meet many applications. Proven field performance is your guarantee to exceptional service life with the NZM series vacuum generators.

SMC PNEUMATICS INC.
 3011 N. Franklin Rd. P.O. Box 26640 • Indianapolis, IN 46226
 Phone: 317-899-4440 Fax: 317-899-3102 - Telex: 27-2184

Because you're thinking fast...
you need responsive
suppliers as well as fast
parts. Comlinear is tuned
in. With high quality, high
speed products. Assist-
ance from R\&D-level
applications engineers to
help develop your ideas
quicker. Sales and distri-
bution that get you what you need fast. Quality product documentation with guaranteed specs so you don't waste time. In your business, time is everything. Count on us for the speed you need.

Now, only from Comlinear, monolithic op amps with incredible high-speed, fast-settling performance.

Our new 200MHz CLC400 is designed for low-gain applications (± 1 to ± 8) and settles in a mere 10 ns to 0.1%. For gains greater than 7, choose our 150 MHz CLC401, with the same 10 ns settling time. Both feature low power (150 mW), low distortion, stability without compensation, plus overload and short circuit protection. They're ideal as flash A/D drivers and D/A current-tovoltage converters, or in video distribution and line driving applications.

Our experience in high speed amplifiers now brings you monolithic op amps with numbers like you've never had before. A new dimension in performance is now available for your analog designs.

Try one. Fast.

\section*{with 10 ns settling times and $150-200 \mathrm{MHz}$ bandwidths.}
 Introducing monolithic op amps

That's fast!

Isolation amplifiers break ground loops and achieve high CMRR

> Small size and low cost are creating new applications for today's isolation amplifiers. Based on magnetic, optical, or capacitive techniques, these amplifiers can retrieve mi-crovolt-level signals riding on thousands of volts, can block ground loops, and can reject otherwise catastrophic fault voltages.

Tarlton Fleming, Associate Editor

Isolation amplifiers (IAs) have traditionally found use in applications such as medical electronics, but don't overlook these units for other, more mundane applications. Indeed, IA manufacturers anticipate greater use of these amplifiers as more designers learn of the shrinking IA sizes and prices. Compact DIP and SIP versions are now available, and although IAs suitable for medical equipment still cost upwards of $\$ 100$, versions rated for general-purpose use are available for as little as $\$ 25$. And for less than $\$ 10$, you can buy differential amplifiers that provide good common-mode rejection even though they don't offer the galvanic isolation of true IAs.
An isolation amplifier (sometimes called an isolator) provides differential amplification for signals over a typical range of 0 to $\pm 10 \mathrm{~V}$ while allowing virtually no current flow between the IA's input and output. Thus, large voltages between the input and output have negligible effect on the output signal, and no ground loop can encompass the input- and output-signal commons. You can introduce an IA to preclude the formation of troublesome ground loops, to reject large unwanted common-mode voltages, or to guard against the high voltages that might appear during a fault condition.
Like the earliest types, many of today's IAs include in the signal path a transformer that provides magnetic
isolation. A major advantage of this type of IA is that it employs an additional transformer that delivers power across the isolation barrier to activate the IA's input stage. (Other types depend on an external dc/dc converter to supply isolated power to the input side.) Moreover, this input-stage supply voltage is usually also accessible for powering external circuits (Fig 1).

Interwinding capacitance creates leakage

The nonconducting barrier in such units consists of a galvanic separation between primary and secondary windings within the transformers. Careful design allows this barrier to withstand thousands of volts and to exhibit only a few picofarads of stray capacitance between the windings.
Low capacitance is important because ac voltage across the barrier, such as pickup from the power lines, will couple through the interwinding capacitance and appear as noise mixed with the output signal. To reduce the interwinding capacitance and to increase the isolation voltage, Intronics introduces a third winding between the primary and secondary of each transformer (Fig 2).
The majority of today's IAs continue to employ magnetic isolation. Many of these are modular or rackmounted types that include filters and other specialpurpose circuits. But by using custom ICs, miniatu-

An isolation amplifier provides differential amplification while allowing virtually no current flow between the input and output.

rized transformers, and automated surface-mountassembly procedures, Analog Devices has produced a magnetically isolated IA-the AD202- in the form of an 11-pin single-in-line package (SIP) that measures only $2.08 \times 0.625 \times 0.250 \mathrm{in}$. (Actually, the package is a ZIP-a SIP whose pins are staggered in a zig-zag pattern.)

Miniature transformers pass AM signal

The AD202 contains two tiny transformers, one for the signal and one for power. You apply 15 V , and an internal $25-\mathrm{kHz}$ oscillator drives the power transformer's primary. The secondary winding connects to a rectifier and filter that can provide 0.4 mA at $\pm 7.5 \mathrm{~V}$ enough isolated (and unregulated) power to operate external adjustment networks or low-power references and op amps. The $25-\mathrm{kHz}$ signal also synchronizes the IA's amplitude-modulator and -demodulator circuits, which enable the precise transmission of dc levels across the isolation barrier.

Version AD202K of this IA can withstand a continu-

Fig 1-Model AM-227 isolation amplifiers from Datel can amplify 0to $5-\mathrm{Hz}$ signals with a gain of 10 to 1000 while rejecting common-mode voltages as high as 1000 V dc. Moreover, they provide isolated power for external input circuitry.

Fig 2-Intended for medical applications, this isolation amplifier from Intronics features an instrumentation-amplifier front end and a dedicated guard-drive amplifier. The common-mode voltage rating is 5000 V de continuous or 6500 V pk. A third winding between the primary and secondary of each transformer reduces the intervinding capacitance and increases the isolation voltage.
ous voltage of 2000 V dc or 1500 V rms at 60 Hz between the input and output. Its common-mode rejection for a $60-\mathrm{Hz}$ signal is $100 \mathrm{~dB} \min$ (at unity gain, with a source impedance no greater than $1 \mathrm{k} \Omega$). The nonlinearity error is 0.025% max over the $\pm 5 \mathrm{~V}$ input range, the typical $-3-\mathrm{dB}$ bandwidth is 5 kHz , and the settling time to within $\pm 10 \mathrm{mV}$ is about 1 msec . The total interwinding capacitance for the two transformers is less than 5 pF . Also available in a $2.10 \times 0.70 \times 0.350-\mathrm{in}$. DIP, the AD202K costs $\$ 32$ (100).

Clock-driven IAs allow synchronization

The AD204 is similar to the AD202 but requires an external $25-\mathrm{kHz}, 15 \mathrm{~V}$ p-p clock signal instead of the 15 V supply. Both IAs include an uncommitted input amplifier that lets you buffer the input signal or introduce gain. The clock input drives the power transformer and thereby produces unregulated $\pm 7.5 \mathrm{~V}$ supply voltages at the IA's input side. This isolated supply can deliver as much as 2 mA for the operation of input preamps, semiconductor strain gauges, or other circuits.

In a multiple-IA system, you can drive AD204s in parallel from the same clock source to eliminate the
possibility of beat frequencies. (Analog Devices offers the AD246 for this purpose, a clock-driver IC that can drive 32 AD204s.) The AD204K costs $\$ 29$ (100); the AD204J, $\$ 25$ (100).

Another IA from Analog Devices, the AD210, provides isolated power to the amplifier's output port as well as the input port. (This arrangement lets you use the device as an input or an output isolator, and it provides protection from faults in the power source.) The unit's $50-\mathrm{kHz}$ power oscillator and two power transformers generate separate $\pm 15 \mathrm{~V}$ supply voltages for each side of the isolation barrier; you connect only 15 V to the amplifier.

Automation speeds amplifier assembly

The AD210 has an uncommitted input amplifier and a unity-gain output buffer, and it includes a $20-\mathrm{kHz}$, 3 -pole filter for removing output ripple and noise. Compared with the AD202/204, the AD210 offers wider bandwidth (-3 dB at 20 kHz), more isolated power (5 mA at $\pm 15 \mathrm{~V}$), and higher common-mode voltage ($\pm 3500 \mathrm{~V}$ dc or 2500 V rms at 60 Hz). All three products feature surface-mounted components and automated assembly. The AD210AN comes in a $2.10 \times 1.00 \times 0.35-$ in. DIP and costs $\$ 47$ (100).

Intronics offers a variety of modular, magnetically isolated IAs. For example, the IA296, a $3.53 \times 2.53 \times 0.63-\mathrm{in}$. module, suits medical applications. It includes an instrumentation-amplifier input and a guard-drive amplifier, and it exhibits unusually low input-voltage noise ($3 \mu \mathrm{~V}$ rms from 10 Hz to 1 kHz). The device offers 5000 V dc isolation and $170-\mathrm{dB}$ CMRR (160 dB with a $5-\mathrm{k} \Omega$ source-resistor imbalance). Its price is $\$ 178(100)$.

The Intronics $\$ 122$ (100) IA175 comes in the same size module and has specs compatible with 12 -bit dataacquisition systems. It specs 0.005% nonlinearity error and provides input/output isolation of 5000 V dc or 3000 V rms. Its bandwidth at -3 dB is 1 kHz . The IA175 includes an input amplifier, an output filter, and an $8-\mathrm{kHz}$ power oscillator. It requires only 15 V for operation.

Amplifier isolates low-frequency signals

The Intronics IA184/284 IAs are suitable for general industrial use. Both offer 2500 V ac or de isolation, $1-\mathrm{kHz}$ bandwidth, $126-\mathrm{dB}$ CMRR, and 0.025% nonlinearity error. The IA184 also offers provision for externally synchronizing the internal oscillator. Both units are packaged in modules that measure $1.5-\mathrm{in}$. square

Capacitively coupled, hermetically sealed isolation amplifiers (Burr-Brown Corp)
and 0.64 in . high. Prices are $\$ 57.30$ (100) for the IA184 and $\$ 51$ (100) for the IA284.

Analogic and Datel offer similar magnetically coupled IAs for the amplification of low-level, low-frequency signals in the presence of high common-mode interference. Analogic's MP227A and Datel's AM-227 have user-selectable gain ranges of 10 to 1000 and a $-6-\mathrm{dB}$ bandwidth of 5 Hz (set by a 1-pole input filter and 2 -pole output filter). These IAs provide 1000 V dc isolation, achieve a $166-\mathrm{dB}(\mathrm{min}) \mathrm{CMRR}$, and come in 2.76×1.18-in. 16-pin DIPs. The MP227A costs $\$ 65$ (100); the AM-227, $\$ 47$ (100).

Burr-Brown, too, offers a transformer-coupled IAModel 3656-but for new designs the company recommends its capacitively coupled or optically coupled models. Among these newer alternatives is a novel type of isolation amplifier that Burr-Brown introduced last year, in which two small (3-pF) capacitors differentially couple a desired signal across the isolation barrier. The ISO106, for example, withstands 4950 V dc min and provides minimum CMRRs of 140 dB (dc) and 125 dB $(60 \mathrm{~Hz}$ ac). Its small-signal bandwidth is a respectable 70 MHz . The company has other products of this type under development and plans to introduce them in 1988.

Isolation capacitors must be small

Capacitive coupling is a simple, rugged, and inexpensive technique when compared with transformer (magnetic) coupling. On the other hand, it represents a compromise that carries two significant penalties. Although the capacitors differentially couple a signal of interest, their sum (6 pF) behaves as an undesirable stray capacitance, coupling unwanted ac common-mode currents across the barrier. The coupling capacitors are made as small as practical to minimize this effect.

The other disadvantage is simply that capacitors cannot transfer power across the isolation barrier, and IAs employing the technique require nominal $\pm 15 \mathrm{~V}$ supply voltages on both sides of the barrier. BurrBrown offers two de/de converters for this purpose: the PWS725 (1500V rms isolation) and the PWS726 (3500V rms isolation), which cost $\$ 21.30$ and $\$ 27.70$ (100), respectively.

> Capacitive coupling is a simple, rugged, and inexpensive technique when compared with transformer (magnetic) coupling.

Burr-Brown cites its Reliability Report \#000396 as evidence that constructing an IA with capacitive-coupling hardware bestows high reliability on the device. Each barrier capacitor in the ISO106 consists of thickfilm, interlocking spirals of tungsten, embedded within the IA's ceramic substrate. The result is a 3 -chip hybrid device that the company claims is the industry's first hermetically sealed isolation amplifier. The report shows that no ISO106s failed when subjected to a continuous barrier stress of 3500 V rms at $25^{\circ} \mathrm{C}$ for 1008 hours. This test result is equivalent to a mean time-tofailure spec of 1660 years.

The ISO106 and the ISO102 are 16-pin devices in 600 -mil-wide DIPs. The ISO106 package length is that of a 40 -pin DIP, however, and the ISO102 package is the length of a 24 -pin DIP. Physical separation in the longer package supports a higher minimum guaranteed isolation voltage: 3500 vs 1500 V continuous at 60 Hz . The barrier voltage has little effect on the output signal for barrier-voltage slew rates of less than $100 \mathrm{~V} / \mu \mathrm{sec}$. What's more, the IA can withstand, without damage, barrier-voltage slew rates to $100 \mathrm{kV} / \mu \mathrm{sec}$.

These IAs employ digital signal transmission across the barrier. A voltage-controlled oscillator (VCO) on the input side drives the two barrier capacitors. A sense amplifier on the output side receives the pulses and drives a phase-locked loop (PLL). Because the input VCO and an identical VCO within the PLL operate at the same frequency, their input voltages are identical. This output-side, VCO-input voltage is the desired output signal; it becomes the IA's output voltage after passing through a $100-\mathrm{kHz}$ second-order active filter.

Optical isolation is the remaining practical alternative
for isolation-amplifier design. In this approach, an LED on the input side converts the analog input to a corresponding light level, which illuminates a photodiode on the output side. Bandwidth, speed, and cost were original advantages for this IA type, but recent trans-former-based IAs offer comparable performance in those areas.

Optically coupled IAs have a niche

Like capacitively coupled IAs, the optically coupled types require an isolated power source to operate circuits on the isolation barrier's input side. (For plenty of applications, such power is already available or is easily added.) You should also be aware that, over time, all optocouplers exhibit a degradation of the currenttransfer ratio (CTR).

Burr-Brown offers three optically coupled IAs, all of which employ a circuit technique that counteracts the effects of degradation in the LED output. The company recommends Model ISO100 for new designs. This device specs a 750 V isolation voltage, $146-\mathrm{dB}$ CMRR (at a gain of 100), a $60-\mathrm{kHz}$ bandwidth, and a $0.3-\mu \mathrm{A}$ barrierleakage current (at $240 \mathrm{~V}, 60 \mathrm{~Hz}$). The package is an 18 -pin, $1.0 \times 0.5 \times 0.2$-in. DIP, and the price is $\$ 25.50$ (100).

The ISO100 is a current-input, voltage-output device; you convert an input voltage to current by adding an external resistor. The amplifier's input stage drives an LED that equally illuminates two closely matched photodiodes. One photodiode resides on the other side of the isolation barrier, where a current-to-voltage amplifier converts the diode current to an output voltage for the IA.

The other photodiode connects to the input stage's

For more information . . .

For more information on the isolation amplifiers mentioned in this article, contact the following manufacturers directly or circle the appropriate number on the Information Retrieval Service card.

Analog Devices Inc	Burr-Brown Corp	Intronics	Ohio Semitronics Inc	Pacific Instruments Inc
Box 280	Box 11400	57 Chapel St	1205 Chesapeake Ave	215 Mason Circle
Norwood, MA 02062	Tucson, AZ 85734	Newton, MA 02158	Columbus, OH 43212	Concord, CA 94520
(617) 329-4700	(602) 746-1111	(617) 964-4000	(614) 486-9561	(415) 827-9010
TWX 710-394-6577	TWX 910-952-1111	TWX 710-335-6835	TWX 810-482-1630	TWX 910-481-9977
Circle No 351	Circle No 353	Circle No 355	Circle No 356	Circle No 357
Analogic Corp	Datel			
Audubon Rd	11 Cabot Blvd			
Wakefield, MA 01880	Mansfield, MA 02048			
(617) 246-0300	(617) 339-3000			
TWX 710-348-0425	TWX 710-346-1953			
Circle No 352	Circle No 354			

IF YOU'RE WASTING TIME LOOKING FOR THE BROADEST LINE OF SMD' PASSIVES,

[^7]
New!

A LOW PROFILE PCB SWITCH...

The new Series 98 from EAO has the great styling of a low profile control with an important difference: it's the only low profile PCB switch that's completely sealed. Built to IP-67 standards (similar to NEMA 4 and 13), this newest EAO switch remains watertight in up to 3 feet of water attemperatures from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Watertight seals aren't all. The Series 98 has gold plated, low bounce contacts with an estimated lifetime of 5 million operations. Rated at 50 VAC/72 VDC @ $100 \mathrm{~mA} ; 3 \mathrm{~W}$ maximum, it's available in three sizes and several configurations including non-illuminated, illuminated with one or two LED's, momentary or maintained action (Form C), four cap colors and a film insert.
Stop fishing around. Now EAO has a great looking, low profile control with the added security of a watertight seal. It's your ideal catch!
EAO Switch. You can feel the difference.
Only from

BOX 552, MILFORD, CT 06460 • 203/877-4577 TLX: EAO SWITCH MFRD 964347
summing junction-an arrangement in which negative feedback forces the diode to produce a current equal to the IA's input current. Accordingly, the IA's transfer function depends mainly on optical matching of the two photodiodes, not on the LED's absolute output level. Ideally, the photodiode currents are equal during operation. Laser trimming improves the current matching, and negative feedback enhances the amplifier's linearity.

Consider the alternatives to an IA

Your application may not require a full isolation amplifier-if so, Burr-Brown's Model INA117 differential amplifier offers an alternative. For applications that require common-mode rejection of $\pm 200 \mathrm{~V}$ or less but do not require galvanic isolation, you can save money by using the INA117; the INA117AM version costs $\$ 7$ (100).

The monolithic INA117's laser-trimmed resistor network attenuates the input signal and provides $80-\mathrm{dB}$ rejection of the common-mode voltage. Feedback around the amplifier restores the differential-mode gain to unity. This device's dynamic response beats that of most IAs: $200-\mathrm{kHz},-3-\mathrm{dB}$ bandwidth; $30-\mathrm{kHz}$ fullpower bandwidth; and $10-\mu \mathrm{sec}$ settling time (to within $\pm 0.01 \%$).
Certain rack-mounted amplifiers offer another alternative to the galvanically isolated IA. The product line at Pacific Instruments, for example, includes amplifiers with $\pm 300 \mathrm{~V}$ common-mode ratings. Magnetic isolation in these units allows the power supply to float with the common-mode voltage, but the signal path does not contain galvanic isolation. Typical products are the Model 8655 transducer amplifier ($\$ 875$ each) and the Model 3150 instrumentation amplifier ($\$ 425$ each). The 8655, for instance, is a line-powered, rack-mounted instrument that is 5.25 in . high and 1.63 in . wide.

Finally, Ohio Semitronics offers a variety of transducers that sense current, voltage, and power at high voltage levels and produce a proportional output. Transducers of the VT8 Series, for instance, sense the rms level (dc to 5 kHz) of voltages from 50 mV to 1000 V while guaranteeing 1500 V isolation from input to output. You specify the output response as 1 mA full scale, 10 V full scale, or 4 to 20 mA . The price for a 1000 V , 10 V -output version is $\$ 350$.

EDN

Off-The-Shelf Rocker Switches

 To Fit Your Design ParametersOak rocker switches are available in an assortment of designs, colors, sizes and styles to retrofit most existing design parameters. These attractive and highlyreliable switches are available in single or double pole, lighted, non-lighted or LED varieties. Choose from 6 standard colors and 9 profiles. Quick Connect terminations are standard, with other terminations available.
Oak rocker switches' off-the-shelf capability ensures prompt delivery. UL and CSA approved. Most have VDE, BEAB and SECV approval.
Contact: Oak Switch Systems Inc.

P.O. Box 517

Crystal Lake, IL 60014
Phone: 815/459-5000
CIRCLE NO 99

Lighted Pushbutton Switches Meet Military, Commercial Specifications
Oak's Optolite lighted pushbutton switches and indicators are available in a wide variety of sizes to meet most design requirements. They feature nine custom colors, eleven pushbutton styles, custom legends including dual lamp/split legends, and choice of mounting options.
A wide range of electrical ratings (dry circuit to 15 amps) and contact configurations are available in both alternate and momentary operation with up to 10 million duty cycles. The switches are UL, CSA listed and many are available with international approvals.
Contact: Oak Switch Systems Inc.

[^8]
Standard and Custom Solenoids For Almost All Circuit Designs

Oak Switch System's extensive line of rotary and linear solenoids include box frame, tubular, flat pack, and rotary selector. All are engineered and manufactured to meet stringent quality standards.
Oak has standard solenoids for virtually any force/stroke requirement. Oak engineers will also custom design rotary or linear solenoids to meet client specifications.
Contact: Oak Switch Systems Inc.

CIRCLE NO 101

What you can't see is the experience.

Go ahead, look closely. Oak Micromotion membrane switch panels invite your rigorous inspection. From every angle, the quality is apparent. Colors are crisp, clean, and to your specifications. Graphics are exact. Options such as texture, LED's and tactile feel are just as you require.
And while you can feel the quality, you can't see Oak's more than 50 years of switch manufacturing experience. But you can sense it from the moment you call. You immediately know you're talking with professionals, people who know the demands of industrial and commercial environments.
Take a good look at Oak Micromotion membrane switch panels. You'll see high reliability, unlimited graphic design options, competitive prices and fast delivery. You might not see the experience, but the quality tells you it's there.

The latest word in modular plugs and jacks. And the same solid story of savings.

The popularity and wide acceptance of modular plug design make it especially appealing for I/O. Now, get the low applied cost and tooling support you need to make the most of it.

Our pre-loaded plugs mass terminate (with double strain relief) round or flat-oval wire, tinsel or stranded conductors. Topand side-entry jacks simplify pcb
design. And our selective gold contacts offer long life while trimming costs.

Our production hand tool is simply the best of its kind anywhere. We also offer a low-cost field/prototype tool, as well as benchtop or highspeed application machinery for the production rate you want, and the
benefits you need.
Low cost and high productivity. From AMP.

Call (717) 780-4400 for more information. Ask for the AMP Modular Interconnection Desk. AMP Incorporated, Harrisburg, PA 17105-3608.

Our modular plug production hand tool cuts cable, strips cable jacket and mass terminates loose piece plugs.

Components

Bright, $\mathbf{6 4 0} \times 200$-pixel EL display offers high contrast, long life

Providing brightness and viewingangle specs comparable to a CRT's, the de-driven ELIC electroluminescent (EL) display panel is the thinnest display available. Including driver electronics, this flat-panel display has a thickness of less than 0.575 in.

This resistive dc EL display operates at voltages from 120 to 180 V . As a result, the ELIC avoids the voltage-induced pixel-failure problems (caused by thin-film dielectric breakdown) that plague ac EL displays. The 620×200-pixel dc EL panel consumes 20 W typ. It specs a pixel luminance of 25 fL , with a degradation not exceeding 30% in 10,000 hours.
The display provides a flicker-free image and a viewing angle of greater than 120°. It operates over 0 to $55^{\circ} \mathrm{C}$. The frame rate is typically 60 Hz , and the unit can withstand a shock as great as 50 g .

You can select from two versions of this amber display. The ELICG000 has an 8.956×3.898-in. active display window. Including the bezel, the overall package measures $10.74 \times 5.9 \times 0.6 \mathrm{in}$. The active display area in the ELIC-I000 measures 7.7×4.8 in.; the overall package is $10.54 \times 7.8 \times 0.6 \mathrm{in}$. The -G000
has $0.01 \times 0.0171-\mathrm{in}$. pixels, and the -1000 's pixels are $0.008 \times 0.02 \mathrm{in}$. Prices start at $\$ 800$ for a single display, but drop to $\$ 385$ in 5000 piece quantities.
Cherry Electrical Products, 3600 Sunset Ave, Waukegan, IL 60087. Phone (312) 360-3500.

Circle No 711

Miniature digital current sensors operate in harsh environments

The CS Series current sensors include miniature series-connect versions. The sensors are fully encapsulated for exposure to harsh environments, and you can mount them on pc boards. They provide in-line current sensing for applications such as motor control, powerloss detection, and performance verification.
The series-connect digital current sensors are available with different operating points, and they can all be interchanged. The sensors are protected against transients, and the output voltage is isolated from the sensed current input.
The sensors operate from a 4.5 to

24 V de supply and provide an opencollector output that changes to a low state when the sensed current exceeds the operating point. Their response time is $60 \mu \mathrm{sec}$, and their solid-state construction provides for consistent repeatability. The sen-
sors' operating-temperature range spans -25 to $+85^{\circ} \mathrm{C} . \$ 19.50$. Delivery, six to eight weeks ARO.
Micro Switch, 11 W Spring St, Freeport, IL 61032. Phone (815) 235-6600.

Circle No 713

Make your move to $\mathrm{P}_{\&} \mathrm{~B}$ for high quality, board mount relays.

Cost Effective 1mA-30A Switching

For applications ranging from consumer goods to industrial controls, P\&B relays have the features you need for 1 milliamp through 30 amp switching on your printed circuit board. These cost effective relays meet requirements established by international regulatory agencies. Many models are available from stock, and they're all built to the same exacting specifications that have made P\&B relays the standard of the industry.

10A, SPDT Switching

T70 relays are low-cost, SPDT units offering silver or silver-cadmium oxide contacts for loads from 1 milliamp through 10 amps . Available with an immersion cleanable, sealed case.

4,000V Isolation

RK series relays feature 8 mm coil-to-contact spacing for 4,000 volt isolation. SPDT models switch loads to 20 amps , and DPDT models switch up to 5 amps . Both sealed and unsealed versions are offered.

30A Workhorse

T90 relays have SPDT contacts of silver-cadmium oxide for 30 amp loads or silver for loads up to 15 amps. Available as an open relay or sealed for immersion cleaning. A snap-on dust cover is offered for open models.

Quick Connects, Too

T91 relays feature the same ratings as T90 relays and provide both quick connects and printed circuit terminals for load connections. Sealed and dust cover versions are available. Optional case provides flanges for panel mounting and quick connects for all connections.

Dot-matrix graphics display includes $\mu \mathrm{P}$-based controller

Model APD-192G088-1 is a 192 -column $\times 88$-row graphics display. The full-field dot-matrix design includes drive electronics and a $\mu \mathrm{P}$-based controller. You can program the display to operate in serial or parallel mode.

The APD-192G088-1 contains all the refresh memory, character-generation capability, and control logic it needs to serve as a direct readout. Single- and dual-byte commands control complex display tasks such as scrolling or line and character insertion. Its $4 \mathrm{k} \times 8$-bit EPROM generates 256 characters: 128 ASCII characters and 128 block graphics characters. Alternate character sets can be programmed by the factory or by you.

The display measures

$10.35 \times 6 \times 2.2$ in. and has a $7.66 \times 3.5-$ in. viewing area. It's also available with circuitry that interfaces directly to CRT controllers. $\$ 699$ (100).

Dale Electronics Inc, 2064 12th Ave, Columbus, NB 68601. Phone (402) 564-3131.

Circle No 712

Programmable active filters feature 256:1 tuning range

Digitally programmable active filters in the 878 Series let you select a corner frequency for a highpass filter over a $256: 1$ frequency range. The units contain 8-bit CMOSclocked D latches that can be digitally configured to operate in any of three modes: They can transfer fre-quency-control input data into the latches on the strobe's (clock's) rising edge, they can transfer control input data on the strobe's falling edge, and they can continuously follow the frequency-tuning input data in a nonlatching transparent mode.

The 10 models in the series offer a choice of 8 -pole Butterworth and elliptic transfer characteristics. Each model is available with one of five factory-set tuning ranges: 0.1 to $25.6 \mathrm{~Hz}, 1$ to $256 \mathrm{~Hz}, 10$ to 2560 Hz ,

0.1 to 25.6 kHz , or 0.2 to 51.2 kHz .

All 878 Series products are complete filters that require no external components or adjustments and operate from noncritical ± 12 to $\pm 18 \mathrm{~V}$ power supplies. The modules come in $2 \times 4 \times 0.4-$ and $2 \times 4 \times 0.6-\mathrm{in}$. sizes. Their input and output impedances

are $200 \mathrm{k} \Omega$ and 10Ω, respectively. $\$ 300$.

Frequency Devices Inc, 25 Locust St, Haverhill, MA 01830. Phone (617) 374-0761. TWX 710-347-0314.

Circle No 715

LOW COST WITH LOGIC

Need logic output? The KLT100 Series interrupters offer high speed OPT-IC-I photo-IC's with optional output geometries and guaranteed logic levels saving follow-on circuitry required by most standard phototransistor outputs.

EFFECTIVE OPTIONS FROM

LOGIC WITH REGULATOR

Have requirements other than TTL? The KLT200 Series interrupters offer an onboard regulator on the OPT-IC II photo-IC's expanding the operating supply voltage from 4.5 to 16 volt range with no appreciable increase in required supply current.

OPTEK TECHNOLOGY, INC.

LOW-POWER OPTION

Have system power constraints? The KLT300 Series interrupters feature the OPT-IC III photo-IC's with extremely sensitive thresholds enabling LED drive currents as low as 5 mA .

Four new standard optoelectronic devices from Optek give you more choices for high-speed electricalmechanical applications. Call Optek for samples or data sheets. If you have a special application, give us your specs, and we'll customize the parts you need.

Optek Technology, Inc. 345 Industrial Blvd. McKinney, Texas 75069
Phone 214/542-9461 Fax 214/542-1739
(c) 1987 Optek Technology, Inc.

FINALLY, A HIGH-CONTRAST REFLECTIVE

Marginal contrast ratios? The KR100 Series reflective assemblies feature phototransistors designed to decrease low-level light gain while not affecting the high-level light gain.

Small silicon-based sensors monitor acceleration, vibration, and shock

Model 3021 piezoresistive, fullbridge accelerometers monitor acceleration, vibration, and shock. They exploit the mechanical and electrical properties of silicon to develop long-term stability. The silicon structure of the sensors consists of suspended beams that are implanted with piezoresistors. Each accelerometer chip measures only $7.9 \times 7.3 \mathrm{~mm}$. Because of a novel 3 -layer silicon structure, the device can act as its own housing. The accelerometer is well suited for applications in which a heavier device would impede the movement of the structure it's attached to.

Model 3021 accelerometers are

designed to operate at 5 V , and they achieve full-scale sensitivities of more than 50 mV while operating in the range from ± 5 to $\pm 100 \mathrm{G}$. The sensors are designed with built-in overforce stops, and they have a damping factor of 0.707 to provide critical damping. Alternate damping ratios are available. The temperature dependence of the damping is controlled to more than $\pm 10 \%$ over the entire operating range. $\$ 87$. Delivery, stock to eight weeks ARO.
IC Sensors Inc, 1701 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 432-1800.

Circle No 714

Conductive-rubber keyboards feature tactile feedback, suit harsh environments

The SF62000-Input keyboards provide the environmental sealing you'd associate with membrane keyboards, but have tactile feedback similar to that of full-travel keyboards. Their environmental sealing exceeds BS-5490 class IP67 requirements, suiting them for use under wet, corrosive, or otherwise hostile conditions. Standard versions include 4 -, 12 -, and 16 -position keyboards and a "qwerty" keyboard.
The keyboards incorporate a 1 piece silicone-rubber molding that is profiled, providing raised keys. The silicone-rubber molding fits over a metal backplate that supports a plastic film on which the switchcontact traces are printed. The plastic film also provides a flexible leadout for connections to the switch matrix; the leadout is terminated in a 0.1 -in.-pitch connector.

The switches have a maximum contact bounce of 5 msec and a maximum contact resistance of 200Ω. You can operate the switches at voltages as high as 24 V dc and at currents as high as 50 mA . The
force required to operate each key is typically $1.16 \mathrm{oz}(33 \mathrm{~g})$. The vendor claims the keyswitches can typically withstand 2 million operations without showing any signs of siliconerubber fatigue or unacceptable degradation in switch performance. The keyboards operate over -55 to $+125^{\circ} \mathrm{C}$, so they're suitable for use in military equipment. The 4 -position keyboard is $\$ 24$; the qwerty keyboard costs $\$ 75$.
Marconi Electronic Devices Ltd, Microsystems Div, Hargreaves Rd, Groundwell Industrial Estate, Swindon SN2 5BE, UK. Phone (0793) 727005. TLX 444460.

Circle No 716
Marconi Electronic Devices Inc, Microsystems Div, 45 Davids Dr, Hauppauge, NY 11788. Phone (516) 231-7710. TLX 275801.

Circle No 717

ONLY ONE OPTOCOUPLER ELIMINATES LOGIC INTERFACE PROBLEMS.

Logic interface causing confusion?
Pull yourself together. Use General Instrument's Optologic ${ }^{\text {TM }}$ Optocoupler.
The First Logic Look-Alike.
Our Optologic ${ }^{\text {rm }}$ is the first optocoupler that looks

Available Configurations
 exactly like a common 74-series logic gate at both input and output. For both CMOS and TTL. So it's easy to design in and specify. Without all that trial and error.

It reduces parts count and board space, too. Because our convenient, 6 -pin package has everything.

Protects You From Noise.
With Optologic ${ }^{\text {rm }}$ you get $15 \mathrm{kV} / \mu$ s common mode transient immunity. 2500 VAC RMS isolation. Propagation delay of 60 ns . And datacom support to typically 15 Mbaud. That adds up to excellent noise rejection, insulation, and high data speeds.

Plus consistent performance over time and temperatures. Call And Face The Facts.

Don't waste time withanything else. Optologic ${ }^{\text {™ }}$ is faster to design in. Contact your distributor for data and samples. If you prefer, call or write General Instrument, Optoelectronics Division, 3400 Hillview Avenue, Palo Alto, CA 94304. (415) 493-0400.

And never face interface problems again.

GENERAL INSTRUMENT

Optoelectronics Division

High-speed, 8-bit A/D flash converter includes onboard track-and-hold circuit

The TKAD20C is an 8 -bit, hybrid A/D converter that can digitize high-speed, single-shot analog input signals from de to 125 MHz at a conversion rate of 250 M samples/ sec. Featuring input-signal bandwidths to 1.3 GHz , the device also has a built-in track-and-hold circuit for accurate, high-speed data conversion. Further, it includes a selectable demultiplexer, which gives you the option of configuring the TKAD20C to transmit data at an 8 -bit, $250-\mathrm{MHz}$ data rate or a 16 -bit, $125-\mathrm{MHz}$ data rate.

The converter also features a 50Ω input impedance, and its <3-psec aperture jitter gives it an effectivebit accuracy of seven bits at 125 MHz typ. (Effective-bit perfor-

mance is a measure of the true signal accuracy of the device; this mea-
sure takes aperture jitter, noise, and distortion into account.)
The TKAD20C contains a track-and-hold (T/H) circuit that enables the device to follow extremely fast signals until it's told to hold the signal for the A/D converter to digitize. The T/H circuit's voltage gain of four reduces the differential-input-signal requirements to 270 mV . The converter operates from a $\pm 5 \mathrm{~V}$ supply, typically dissipates 5 W , and is housed in an 84 -pin ceramic package. The commercial version of the part costs $\$ 850$.

Tektronix Inc, Box 1700, Beaverton, OR 97075. Phone (800) 8359433 ext 100.

Circle No 718

14-bit, deglitched hybrid DAC fits surface-mount applications

Assembled in a 32 -pin flatpack measuring $1.8 \times 1.1 \times 0.2 \mathrm{in}$., the DAC02311 D/A converter delivers 14 -bit, $10-\mathrm{MHz}$ deglitched performance. The device includes input storage registers, a 14 -bit DAC, a track-andhold deglitcher, and precision reference and timing circuits.

With external jumpers, you can program the DAC's output voltages to $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}, 0$ to -10 V , or 0 to -5 V . The device is available in $13-$ and 12 -bit linearity grades, and it has 14 -bit resolution. Its settling time (to $\pm 0.5 \mathrm{LSB}$) for a fullscale $\pm 5 \mathrm{~V}$ output change is $1 \mu \mathrm{sec}$. For small-signal stepping, its word rate can reach 10 MHz .

The DAC begins operating when a strobe-in signal is applied to it. At that time, the input registers are updated and the deglitcher is placed in hold mode for approximately 50

nsec. During the hold mode, the device's analog output remains constant while the internal DAC's glitch settles. After the glitch disappears, the DAC is placed in track mode and the output moves smoothly to its new voltage. For LSB changes, the settling time is 50 nsec .

The converter allows you to make external pedestal, delay, gain, and offset adjustments. You can use an
external potentiometer to zero the pedestal error or to match two DACs in X- and Y-channel applications. The DAC requires 15 V dc at 50 mA max,-15 V dc at 35 mA max, and 5 V dc at 45 mA max. From $\$ 245$; delivery, stock to eight weeks.

ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600. TWX 510-228-7324.

Circle No 719

Electroluminescent display provides graphics and 25 -line $\times 80$-column text

The Finlux MD640.400 flat-panel electroluminescent display has a screen resolution of 640×400 pixels, allowing you to display high-resolution graphics or 25 lines of text at 80 characters/line. The display comes with a display-driver board and power supply and requires only TTL-level video data, a video clock, and horizontal and vertical syncpulse inputs. It's designed to scan at a refresh rate of 60 Hz .

Comprising a matrix of $0.22-\mathrm{mm}$ square pixels on a $0.3-\mathrm{mm}$ pitch (which is equivalent to 83 pixels $/ \mathrm{in}$.), the display produces a flicker-free yellow image with a viewing angle of greater than 140°. The pixel luminance is typically $90 \mathrm{~cd} / \mathrm{m}^{2}$. The display area is 122 mm high and 195

mm wide, and the whole display assembly, including the driveelectronics board, measures 158.5 mm high, 228.6 mm wide, and only 18.3 mm deep.

A dc/dc converter, which you can use remotely or mount on the back of the assembly, is supplied with the unit; it's connected to the display via
a ribbon cable. The converter requires de inputs of 12 or 15 V and 5 V , and the display typically consumes 16 W . It operates over 0 to $55^{\circ} \mathrm{C}$.

Prototypes of the display are available now; production shipments are scheduled to start during the first quarter of 1988. The initial sample price for the MD640.400 is DM 2710 , or $\$ 1650$.
Lohja Corp, Electronic Display Div, Box 46, 02201 Espoo, Finland. Phone 042001. TLX 125023.

Circle No 720
Finlux Inc, 20395 Pacifica Dr, Suite 109, Cupertino, CA 95014. Phone (408) 725-1972.

Circle No 721

high voltage diodes, cartridges and assemblies

To 15.000 PRV, to 6A. Standard recovery. 22 off-the-shelf models.

21 off-the-shelf models. 30 PRV, to 5A. Recovery times to 100 ns .

Television and CRT diodes 14 models to 30 KV , to 2.5 mA , to 100 ns recovery. to $100^{\circ} \mathrm{C}$.

Packs 5 to 250 KV ; to 25 A . Standard and fast recovery to 100 ns .
Custom designs, complete engineering and fabricating facilities to design and manufacture to your specifications available. Application engineering provided at no cost. Standard and fast recovery.
Delivery from stock. Many special and unique features. Reasonable costs. Write for catalog. Test and evaluation samples available.

electronic devices
An American Electronic Components Company 21 Gray Daks Avenue, Yonkers, New York 10710 914-965-4400•Telex681-8047•Fax914-965-5531

WORST CASE CIRCUIT ANALYSIS
 TRAINING COURSE

PREPARED BY:

DESIGN AND EVALUATION, INC.
1000 White Horse Road, Suite 304
Voorhees, NJ 08043 (609) 770-0800

- Valley Forge, PA February, 1988
- Pasadena, CA February, 1988
- Orlando, FL April, 1988
- San Diego, CA May, 1988
- Washington, DC May, 1988
- Boston, MA September, 1988
- San Francisco, CA October, 1988
- London, England Spring \& Fall 1988 On-Site Presentations Available
Just Added: HAWAII July 1988

FREE - To All Attendees,
3-Vol. Set
WCA Handbooks $\$ 495.00$ Value
(Can be purchased separately)
Free 15 Day Trial

Taiwan Liton Electronic Co., Ltd.

12th FI., 25 Tunhwa S. Rd., Taipei, Taiwan, ROC Tel: (02) 771-4321/8 Fax: 886-2-751-1962 Tlx: 24514/20211 TWLITON
${ }^{\text {'IBM PC/AT }}$ and PC/XI are trademarks of the International Business Machines Corp.
CIRCLE NO 53

Components

MOTOR CONTROLLERS

Series 3000 controllers are designed to drive 200 step/revolution stepper motors. Available in versions that control high- or low-voltage motors, the controllers feature an indexer control that makes programming and testing movement commands simple, even for first-time users.

The indexer control lets you generate as many as 200 separate stepmotor move profiles, each tailored for starting speeds, acceleration and deceleration rates, running speeds, and distance of moves. To establish the move parameters, you merely set switches on a plug-in Remote Programming Unit and store the parameters in the indexer's nonvolatile EEPROM.
You may choose between a decoded or encoded operating mode, either of which determine the number of move commands stored in the indexer. The decoded mode permits a maximum of eight separate moves; the encoded mode allows 200 moves, the maximum number. In either mode, a single input signal instructs the controller to execute a programmed move. Programmer, \$504.90; \$1421.28 and \$1491.21 (10) for low- and high-voltage controllers, respectively.
Bodine Electric Co, 2500 W Bradley Pl, Chicago, IL 60618. Phone (312) 478-3515. TLX 253646.

Circle No 525

CRYSTALS

CX-AT-HT
high-temperature quartz crystals are designed for surface mounting and provide outputs in the 8 - to $24-\mathrm{MHz}$ range. Capable of withstanding vapor-phase, infra-red-solder-reflow, or wave-solder-
ing processes, the crystals are available in $16-\mathrm{mm}$ tape on a standard 7 -in. reel, with as many as 1000 devices per reel.
The crystals are manufactured by a photolithographic process. Their standard frequencies are 11.592, 12, 16,20 , and 24 MHz . Their frequency tolerance ranges from 50 to 10,000 ppm typ, and their aging spec is 5 ppm for the first year. Industrial units have an operating range that spans -40 to $+85^{\circ} \mathrm{C}$, and militarygrade devices have an operating range from -55 to $+125^{\circ} \mathrm{C}$.
The crystals meet MIL specs for shock, solderability, terminal strength, vibration, solvent resistance, resistance to soldering heat, fine-leak tests, and thermal shock. $\$ 4$ to $\$ 4.70$ (1000).
ETA Industries Inc, 35 E 21st St, New York, NY 10010. Phone (212) 505-5340.

Circle No 526

OSCILLATORS

Model C-500 voltage-controlled oscillators (VCO) feature a $500-\mathrm{MHz}$ tuning range from 950 to 1450 MHz . They have a $-90-\mathrm{dBc}$ phase noise specification at 25 kHz offset, -30 dBc harmonics, and a power output of $11 \mathrm{dBm} \pm 1 \mathrm{~dB}$.

The VCOs come in two versions. Model C-500A requires 15 V dc for power and draws only 30 mA . Tuning voltage to achieve the full 500 MHz tuning range spans 0.5 to 28 V dc. Model C-500B requires 12 V dc for power and tuning voltage of -12 to +12 V dc. Output impedance measures 50Ω.
The oscillators operate over 0 to
$70^{\circ} \mathrm{C}$ with no degradation in performance. They come in 4-pin metal packages that measure $0.8 \times 0.8 \times 0.25 \mathrm{in} . \$ 50$. Delivery, two to 12 weeks ARO.
Z-Communications Inc, 5450 NW 33rd Ave, Suite 100, Fort Lauderdale, FL 33309. Phone (305) 735-1000.

Circle No 527

LED ARRAYS

These T-1 LED arrays come in sin-gle- and dual-row versions for rightangle mounting to pc boards. An additional tab on the bottom of their package improves positioning and alignment during the mounting process.
The units are available in blocks of $1,2,4,8$, or 16 LEDs and they have a mounted height of $0.41-\mathrm{in}$. max. The manufacturer tests the LEDs to ensure uniform light intensity and tins the LEDs' terminals to improve solder-joint reliability.
The arrays are housed in a thermoplastic package and operate from -40 to $+85^{\circ} \mathrm{C}$. They are available in red, green, and yellow. In the case of the dual-lamp devices, standard combinations are red/red, green/ green, yellow/yellow, red/yellow, red/green, and yellow/green. From $\$ 0.50$.
Elma Electronic Inc, 41440 Christy St, Fremont, CA 94538. Phone (415) 656-3400.

Circle No 528

OPTICAL ENCODERS

HEDS-5500 Series quick-assembly optical incremental encoders are designed for the high-volume digitalencoder market. Mounting and assembling the units on the motor entails only four steps. No follow-up mechanical or electrical adjustments are necessary to activate the encoders, and the mounted encoders are insensitive to radial and axial play.
The encoders contain a highly collimated LED light source and an
integrated circuit with detectors and output circuitry. Due to the detectors' design, the quadrature states of the encoders typically vary by no more than five electrical degrees. The quadrature signal is guaranteed for frequencies to 100 kHz and over a -40 to $+100^{\circ} \mathrm{C}$ operating range.

The encoders are available in nine standard resolutions: 96, 100, 192, $200,256,360,400,500$, and 512 counts per revolution. You can obtain other resolutions by special order. \$33 (250).
Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 529

MEMBRANE KEYPADS

Series 4000 membrane keypads are available in 3×4 and 4×4 arrays with either embossed-detented or flat nontactile keys. Each keypad features a 5 -million-cycle lifetime, sealed splashproof switches, a builtin static shield, and a chemically resistant graphic overlay.

The 4×4 arrays have hexadecimal keypad graphics, whereas the 3×4 units have standard telephone-type keypads. Standard graphics colors are red, black, and white. Configured in an X-Y matrix, the silver switch contacts are mounted on heat-stabilized rigid polyester, which has a 94V-0 UL rating.
The keypads come with 6 -in. flextail terminations, which include both male and female connectors. From $\$ 5.53$ (1000). Delivery, four to five weeks ARO.

C\&K Components Inc, 15 Riverdale Ave, Newton, MA 02158. Phone (617) 964-6400.

Circle No 530

CONVERTERS

Series 278A300 units are tracking LVDT-to-digital converters. They produce an 11-bit offset binary code as well as an overrange bit. The overrange output warns you that a
converter's range limit has been exceeded. After you correct the overrange condition, the unit automatically resets itself.

The 11-bit position-output is accurate to 0.1% of full scale over the 0 to $70^{\circ} \mathrm{C}$ operating range. The converters accept 2.5 V rms inputs and no preamplifiers, trimmers, demodulators, or filters are required.

Packaged in $2.0 \times 2.0 \times 0.38-\mathrm{in}$. micromodules, the converters rival the size of hybrids yet retain the flexibility and performance of modular converters. \$249. Delivery, stock to 10 weeks ARO.

Control Sciences Inc, 9509 Vassar Ave, Chatsworth, CA 91311. Phone (818) 709-5510.

Circle No 531

LSI electroluminescent (EL) lamps offer the designer a surface illumination alternative far superior to incandescent or other conventional light sources. And, whereas other makes of EL lamps may offer some of our product features, comparative tests prove that for long life, brightness, uniform light diffusion, color stability, resistance to moisture, heat, vibration and shock, no other EL lamps can match ours.
Thin, flexible and lightweight Many shapes, sizes and colors These rugged, solid-state EL lamps provide cool, uniform light across the entire lamp surface, eliminating the need for sockets, bulbs, diffusers and reflectors. Power consumption is small due to low current demand. A thin profile (.032") permits high density packaging; and with IC-style leads available, lamps are compatible with PCBs. Although stocked in rectangular shapes for immediate delivery, we can design EL lamps in a variety of custom shapes and sizes including complex forms with
multiple holes and cutouts. Available with pressure-sensitive adhesive on front or rear surfaces.

If you'd like a copy of our brochure, or have questions regarding EL applications, just call, write or TWX the LSI Marketing Department.

Luminescent Systems Inc.
 Setting the Standard

Tel. (603) 448-3444 TWX 710-366-0607
Etna Rd., Lebanon, NH 03766

PROTECTORS

RXE Series Polyswitch circuit protectors are positive temperature coefficient (PTC) resistors that protect electrical circuits against overcurrent conditions. The product line includes units rated to 60 V ; all devices in the series operate over a -40 to $+85^{\circ} \mathrm{C}$ range.
These units undergo a large,
abrupt change in resistance when excessive current or temperature heats them above a specific point. When you correct the fault, the devices cool and reset, allowing normal circuit operation to resume.

Unlike fuses, these circuit protectors do not require manual resetting or replacement. As a result, consumers cannot defeat them or use
incorrect substitutes. The units also offer advantages over circuit breakers, which are prone to vibrationrelated failures and can prematurely reset and thereby lead to continuous cycling and possible circuit damage. $\$ 0.50(10,000)$.

Raychem Corp, 300 Constitution Dr, Menlo Park, CA 94025. Phone (415) 361-3333. TLX 348316.

Circle No 532

RELAYS

The OMA160 is an ac/dc MOSFEToutput solid-state relay specifically designed for data-acquisition, instrumentation, and ATE applications. Its internal design optically couples an IR LED with a proprietary photovoltaic IC to control a pair of custom DMOS (double diffused MOS) output chips. This allows the units to drive ac and de loads directly from CMOS and TTL circuits.

The relays have switching speeds under 100 usec, which provide switching rates in excess of 5 kHz . Their output capacitance is typically 1 pF , which allows them to control signal frequencies well into the RF range with negligible leakage current.

Their ability to switch ac or dc voltages from a few $\mu \mathrm{V}$ to 250 V makes the units viable replacements for reed relays, over which they offer advantages in terms of reduced drive power, support circuitry, and pc-board real-estate requirements.

The devices' 6 -pin DIP housings

Components

frequency; units are available with an adjustment that allows you to set the frequency to within $\pm 0.0001 \%$. The standard models provide better than $\pm 0.0025 \%$ stability over 0 to $70^{\circ} \mathrm{C}$; higher stability and wider operating ranges are available as options.

The oscillator aging rate equals 5 ppm for the first year and 3 ppm per
year thereafter. The unit's internal design employs surface-mount components to reduce package size to $1.5 \times 1.5 \times 0.5$ in. $\$ 275$. Delivery, six to 10 weeks ARO.

Vectron Laboratories Inc, 166 Glover Ave, Norwalk, CT 06850. Phone (203) 853-4433. TWX 710-468-3796.
provide industry-standard optocoupler or solid-state relay pin-out compatibility. Lead forming is offered for surface-mount applications. $\$ 2.00$ (25,000). Delivery, four to six weeks ARO.

Theta-J Corp, 107 Audubon Rd, Wakefield, MA 01880. Phone (617) 246-4000.

OPTICAL ENCODERS
PM Series panel-mount optical encoders are designed for applications that require manual control. Interchangeable with analog potentiometers, they provide direct digital accuracy without the need for A / D conversion.

TTL-compatible square-wave signals let you sense relative movements and direction of rotation. The devices come in 1.1×0.7-in. packages and have a resolution of 256 pulses per revolution. You may order an optional index output. Without index output, $\$ 24.50$; with index output, $\$ 34.50$ (1000).

BEI Motion Systems Co, 1755 B La Costa Meadows Dr, San Marcos, CA 92069. Phone (619) 4712600.

Circle No 534

ECL CLOCK

The Model CO-233KEQ ECL clock oscillator provides a stable 100 k type ECL logic output at any specified frequency from 150 to 500 MHz . The standard unit operates from $-4.5 \mathrm{~V} \mathrm{dc} ;-5.2 \mathrm{~V}$ units are available.

The oscillator output is factory set to within $\pm 0.001 \%$ of the specified

Our thin, flexible electroluminescent lamps dramatically improve LCD readout by providing higher contrast and better visibility. A thin profile (.032") allows high density packaging, and pressure-sensitive adhesive can be supplied on front or rear surfaces for rapid assembly.
Uniform, cool light source in many shapes, sizes and colors Our backlighting ELs emit even illumination across the entire lamp surface. They also eliminate the need for sockets, bulbs, diffusers or reflectors. Lamps are usually supplied in rectangular shapes, but we can create many custom shapes and sizes including complex forms with multiple holes and cutouts. With IC-style leads, lamps are compatible with PCB assembly. Eight standard colors are available and custom colors can be created.

If you'd like more information relating to LCD applications, just call, write or TWX the LSI Marketing Department.

Luminescent Systems Inc.
 Setting the Standard

Tel. (603) 448-3444 TWX 710-366-0607
Etna Rd., Lebanon, NH 03766

Components

OSCILLATOR

The Model C-1100 frequency source automatically synchronizes its output to periodic or random external inputs and thereby acts as a triggercoherent timebase. The device is available with a user-specified fixed-frequency output between 850 kHz and 115 MHz .

The oscillator generates its speci-
fied output frequency as an ECLlevel pulse train with a 20 or 50% duty cycle. The package consists of a delay-line oscillator combined with sychronizing, frequency divider, and interface circuitry for adapting the device for TTL- or ECLlevel inputs. The device features $\pm 0.003 \% /{ }^{\circ} \mathrm{C}$ frequency stability over the 0 to $50^{\circ} \mathrm{C}$ operating range.

PULL A LIGHT SWITCH.

FROM THIS... TO THIS.

Durel"' Electroluminescent (EL) lighting from Rogers eliminates the wasted space, energy, and heat of incandescent bulbs.
EL is light years ahead: No catastrophic failure. No filament to break. Immune to shock and vibration.

Uniform surface brightness and color: A single Durel lamp can replace a group of individual incandescent bulbs and costly light pipes.
Low power consumption: Typically less than 2 mA per sq. in. at 115 V , 400 Hz . Ideal for battery power and low-current drain applications.
Thin: Nominal thickness of $0.024^{\prime \prime}(0.6 \mathrm{~mm})$ for space-efficiency.
Pliable: Flexibility permits bending to fit unique shapes.
High visibility in smoke/fog: Ideal for emergency lighting.
Call or write for information.

, $1 / 3$ ROGERS

Rogers Corporation, Special Products Division 645 West 24th Street, Tempe, AZ 85282 (602) 967-0624
$\$ 350$
Berkeley Nucleonics Corp, 1198
Tenth St, Berkeley, CA 94710. Phone (415) 527-1121.

Circle No 535

TRIMMER
The surface-mountable Model 3314 trimming potentiometer is a sealed device that can withstand total solder immersion at $300^{\circ} \mathrm{C}$. A plastic body and 0 -ring construction maintain seal integrity even after processing. The device's $4.45-\mathrm{mm}$ square body and $2.55-\mathrm{mm}$ mounted height minimize pe board real-estate requirements. The package is compatible with all major vacuum pick-and-place equipment.

The standard resistance values for the device range from 10Ω to 2 $\mathrm{M} \Omega$ and contact resistance variation is 1%. The trimmer is packaged in $12-\mathrm{mm}$ embossed tape on 7 -in. reels. $\$ 1.09$ (1000). Delivery, 12 weeks ARO.

Bourns Inc, 1200 Columbia Ave, Riverside, CA 92507. Phone (714) 781-5500.

Circle No 536

TRANSFORMERS

PL Series low-profile power transformers feature ratings suitable for triple-output regulated power supplies. The units meet the requirements of European/International standards such as VDE, IEC-65,

Components

CSA, and UL.
These transformers are primarily intended for $\mu \mathrm{P}$, control, and instrument applications. Dual nonconcentric bobbins, and an insulating shroud provide high insulation and reduce capacitance. The $130^{\circ} \mathrm{C}$ insulation system meets UL 94V-0 flammability requirements.

The transformers are available with dual primaries for $115 / 230 \mathrm{~V}$, $50 / 60 \mathrm{~Hz}$ applications. You can obtain regulated outputs of 5 and $\pm 12 \mathrm{~V}$ dc. $\$ 6.87$ to $\$ 8.77$ (250).

Microtran Co, Box 236, Valley Stream, NY 11582. Phone (516) 561-6050.

Circle No 537

DISPLAYS

Model 77/232 serial-input displays provide from two to as many as six 3 -in.-high digits. You can use the units in a single stand-alone display application or as one display in a multistation network, even if the displays are thousands of feet apart.

You communicate with the displays via a 2 -wire bus that carries either TTL, current-loop, RS-232C, RS-422, or RS-485 signals at a fieldselectable rate of $300,1200,2400$, 4800 , or 9600 baud. By using internal DIP switches, you can individually address as many as 98 displays on the bus.

A plug-in board in each display determines the type of serial communication the display uses. For example, an RS-485 transmission can be sent 4000 ft to 32 displays on a common 2-wire bus. $\$ 325$ to $\$ 425$.

Vorne Industries Inc, 5831 N Northwest Hwy, Chicago, IL 60631. Phone (312) 775-9440.

Circle No 538

MOTOR CONTROLLER

The GS-C200 stepper-motor controller module operates with the company's GS-D200 stepper-motor driver to provide complex movement capabilities. Programmed with over 20 high-level movement instructions, the controller can, for example, execute ramp operations, synchronize multiple movements,
and provide accurate positioning in either absolute or incremental modes. The control program can include program loops and conditional program execution.

The controller contains an EEPROM for program storage and retrieval, and incorporates an autoload function that boots the required program at power-on. Al-

At only. $085^{\prime \prime}$ thick, our new fiberglass electroluminescent panels are designed to replace lightplates and traditional metal plates that may not presently be illuminated. Our thin $.085^{\prime \prime}$ panels weigh 40% less than a typical $.220^{\prime \prime}$ plexiglass panel, and with an expansion coefficient equal to aluminum, the panels are ideal for surface-mount applications.

As the pioneer developers of EL lamps, as well as the process of encapsulation, we have combined the uniform, cool surface illumination of EL with the strength of fiberglass to create a new standard for panels.

Durability and long life luminescence
LSI EL lamps eliminate the need for sockets, bulbs, diffusers or reflectors, and add no heat to the assembly. This, together with their long life and availability in many colors, make them the intelligent choice for panel illumination-far superior to LEDs or incandescent bulbs. We create panels (including standard . $220^{\prime \prime}$ plexiglass) in almost any shape and size, as well as complex designs with multiple holes and cutouts. Lamps can be filtered to comply to ANVIS or other military specifications, or to your design requirements.
If you'd like a copy of our brochure, or have questions regarding panel applications, just call, write or TWX the LSI Marketing Department.

Tel. (603) 448-3444 TWX 710-366-0607
Etna Rd., Lebanon, NH 03766

Components

ternatively, you can control or download programs to the unit via its RS-232C interface; as many as seven controllers can share the same RS-232C link. Before executing commands, the controller checks them for errors or inconsistencies. In addition to its RS-232C interface, the controller has several TTLcompatible control inputs and out-
puts.
A built-in switchmode converter allows you to power the controller from a 12 to 40 V supply-usually the same supply that you use to power the stepper motor. Development software, which allows you to develop programs for the controller with an IBM-PC or compatible computer, is available. The unit mea-
sures $85 \times 60 \times 20 \mathrm{~mm} . \$ 140(100)$.
SGS Microelettronica SpA, Via C Olivetti 2, 20041 Agrate Brianza, Italy. Phone (039) 65551. TLX 330131.

Circle No 565
SGS Semiconductor Corp, 1000 E
Bell Rd, Phoenix, AZ 85022.
Phone (602) 867-6100. TLX 249976.
Circle No 566

Multi-Channel Filter for Data Acquisition Systems

The Model 9016 makes filtering easy

Expandable-Up to 16 channels
Configurable-Choice of filter trans-
fer functions
Butterworth Elliptic BessellLinear phase
Simple-Menu driven operation Agile-Fine tuning from 0.1 Hz
to 102.4 kHz
Adaptable-Pre- and post gain to 40 dB

Efficient-Non-volatile memory stores up to 8 set ups per channel
Conversational-80 character display for front panel operation, and HELP messages
Programmable-By keypad or bus-standard parallel or IEEE-488

INTERFACE MODULE

By providing a direct interface between RS-232C and RS-422A serial data links, the NM422AD pc-board mounting interface module lets you convert between RS-232C and RS422A without having to resort to multirail power supplies or de-de converters. The module has sufficient drivers and receivers to provide two full-duplex links. It operates from a single 5 V supply and typically consumes 300 mW of power. The unit is housed in a DIP package with a $17 \times 30-\mathrm{mm}$ footprint and a height of 9 mm . The module has an operating temperature range of 0 to $70^{\circ} \mathrm{C}$. Around $\$ 18(1000)$.

Newport Components Ltd, Tanners Drive, Blakelands North, Milton Keynes MK14 5NA, UK. Phone (0908) 615232. TLX 825621.

Circle No 571

SUPPRESSOR CAPS

PMZ2067 Series RFI suppression capacitors can handle voltage transients as high as 8 kV , and they employ a self-healing paper dielectric that can withstand a $\mathrm{dV} / \mathrm{dt}$ of $2000 \mathrm{~V} / \mu \mathrm{sec}$ max. They are available with capacitance values in the range of 0.001 to $0.022 \mu \mathrm{~F}$ and have a nominal capacitance tolerance of $\pm 20 \%$. Their voltage rating is 250 V ac at 50 Hz , and their recommended dc operating-voltage limit is 1000 V dc.

At 1 kHz , the capacitors spec a dissipation factor of 1.3%. Their insulation resistance, measured at 23
generate a signal at both the S_{1} and S_{2} outputs.
The device has an internal optical filter that permits it to operate over a spectral range of 7 to $14 \mu \mathrm{~m}$. Its power-supply voltage range spans 3 to 15 V dc. $\$ 19$ (100). Delivery, six to eight weeks ARO.
Siemens Corp, Special Products Div, 186 Wood Ave, Iselin, NJ 08830. Phone (201) 321-3400.

Circle No 544

PLASMA DISPLAY

The APD-256M026, a 256 -character dot-matrix plasma-panel display, comes complete with drive electroniss and a controller. The unit provides eight 32 -character lines, and each 5×7 dot-matrix character measures $0.18 \times 0.26 \mathrm{in}$. A 5 -dot underbar character lets you display a visible cursor.

The unit includes a $4 \mathrm{k} \times 8$-bit EPROM character generator that's capable of storing two 128 -character sets, including 128 ASCII character and an alternate set of 128 characters. You can program the latter character set. You can also program the display to operate in either serial or parallel mode. $\$ 730$ (100).

Dale Electronics Inc, Box 609, Columbus, NB 68601. Phone (402) 564-3131.

Circle No 539

DETECTOR

The LHi 1158 pyroelectric detector is a sensor designed specifically for alarm devices that require high reliability. Because it includes redundent detectors, the unit can distinguish between real and false alarms.
Housed in a TO-5 package, the unit comprises two dual-element detectors (lithium tantalate sensors) that have a common supply and ground. The parallel connection provides a high signal-to-noise ratio, whereas the lithium-tantalate sensor ensures long-time stability over a -40 to $+70^{\circ} \mathrm{C}$ operating range. A real alarm condition must sion for through-hole or surface mounting to a pe board. From $\$ 350$ (100).

Plassey Optoelectronics Ltd, Wood Burcote Way, Towcester, Northants NN12 7JS, UK. Phone (0327) 51871. TLX 312428.

Circle No 569
Plassey Three-Five Group, 9630 Ridgehaven Court, San Diego, CA 92123. Phone (619) 571-7724. TWX 910-322-1347.

Circle No 570

YOU CAN USE AUTOMATIC INSERTION EQUIPMENT!

If you don't have automatic insertion equipment, we're banking that some day you will. To prove that, we'll charge you the same low price for all your purchases-no more need for the low-volume premium prices you're paying now.

AVAILABLE IN
 2, 3, 4, 5, 6, 7 \& 8 POSITIONS

FREE SAMPLE!
WITH STAPLED BUSINESS CARD TO YOUR LETTERHEAD AMERICAN RESEARCH \& ENGINEERING 1500 EXECUTIVE DRIVE ELGIN, IL 60123
312-888-7245

CIRCLE NO 25

Components

LEDs

Units in the SLR-37 Series of T-1 LEDs mount flush to the pe board. The LEDs are available in a choice of three lens types-colored-diffused, colored-clear, and transparent (water-clear).
The devices measure $3.1 \times 4.7 \mathrm{~mm}$ and have a -55 to $+100^{\circ} \mathrm{C}$ operating range. The viewing angle measures
50° for diffused types and 30° for colored-clear and transparent units. At $10-\mathrm{mA}$ forward current, the typical luminous intensity equals 10 mcd for diffused-lens units and 16 mcd for the clear and transparent types.

These LEDs are packaged for brightness matching and are available in red, high-efficiency red, orange, yellow, and green. $\$ 0.15$ to

$\$ 0.35$ (1000). Delivery, six to eight weeks ARO.
Rohm Corp, Box 19515, Irvine, CA 92713. Phone (714) 855-2131. TWX 910-595-1721.

Circle No 540

D/S CONVERTER

The DSC5031 16-bit digital-tosynchro converter requires no external power-it generates its internal power from its reference input. Its output is 1.5 VA , accuracy equals 1.3 are minutes, and radius accuracy is 0.03%. These accuracy specs apply over the full operating temperature, frequency, and load ranges.

The converter is both 8 - and 16 -bit- $\mu \mathrm{P}$ compatible and is packaged in a $3.1 \times 2.6 \times 0.42-\mathrm{in}$. module. Its output stage is fully protected and includes fast-acting active-currentlimiting circuitry. A built-in test circuit continuously monitors the current in all three output drivers along with other internal test points.

The converter features double buffering on all input-logic data bits. All digital inputs are TTL and 5V-CMOS compatible. From $\$ 710$. Delivery, six to eight weeks ARO.

Natel Engineering Co Inc, 4550 Runway St, Simi Valley, CA 93063. Phone (805) 581-3950.

Circle No 550

ROTARY SWITCHES

S-400 rotary switches provide from two to as many as 11 positions and offer shorting and nonshorting contacts. BCD contact arrangements are also available. Supplied with

And for
 MULTILAYER CERAMIC CHIP CAPACITORS with proven performance and delivery...

- Exceed RS 198 \& MIL C-55681
- Class I COG (NPO) from 1.0 pFd to $.027 \mu \mathrm{Fd}$
- Class IIX7R - 100 pFd to $.68 \mu \mathrm{Fd}$
- Engineers Evaluation Kit Available at Nominal Cost
Delcap Division
Call for your nearest Sales Representative (716) 652-3600 Telex 91-293 Fax (716) 652-4814 West Coast (714) 768-5522 Telex 855-642

AMERICAN PRECTSION INDUSTRIES Electronic Components Group 270 Quaker Road East Aurora, NY 14052-0449 MADE IN AMERICA BY AMERICAN CRAFTSMEN TO AMERICAN STANDARDS OF EXCELIENCE

Components

either 8 - or 12 -pin wafers for pcboard mounting, the switches feature fully enclosed environmentproof bodies that keep dirt, dust, dampness, and flux out of the switch-contact area. The manufacturer claims a 25,000 -cycle life.
These rotary switches employ a wear-compensating, dual-ball index construction that provides detent angles of 30,60 , and 90°. The switches are available with a variety of shaft and bushing sizes.
The devices carry 6A and have a make/break rating of 100 mA at 125 V ac or 250 mA at 28 V dc. Special switch options include molded delrin spacers between decks, and rear bearing and shaft extensions. $\$ 8$ (OEM qty). Delivery, four to six weeks ARO.
Electroswitch Southern Operations, 2510 North Blvd, Raleigh, NC 27604. Phone (919) 833-0707. TWX 910-240-4611.

Circle No 542

OPTICAL DEVICES

The MLED81 LED and the MRD821 large-area detector are designed for infrared remote control and other sensing applications. The LED supplies a 16 mW typ power output at a 940 nm wavelength. The detector is characterized by a large active area with $50 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2}$ sensitivity.
The detector is mechanically designed for automated handling and accurate positioning, and it uses an infrared filter to reject visible light. The emitter is housed in a T- $13 / 4$ clear epoxy package, whereas the detector comes in a plastic sidelooking package. MLED81, \$0.59; MRD821, $\$ 1.20$. Delivery, stock to eight weeks ARO.

Motorola Inc, Semiconductor Products Sector, Box 52073, Phoenix, AZ 85072. Phone (602) 2443818.

Circle No 543

THINK LOGIC... SWITCH LOGIC...

SWITCH WITH MOXIE ${ }^{\text {m }}$ THERMAL SENSORS!

STABLE • RELIABLE • REPEATABLE

This solid state thermal switch is designed for the fast response times needed to protect sensitive electronic components.

- Sharp Transition
- Fixed hysteresis
- High noise immunity
- No mechanical contacts
- TCR $-200 \% /{ }^{\circ} \mathrm{C}$
- C MOS compatible
- TO-18 package
- Mounting lug, lead wire optional
- Switching temps: $57,60,65,75 \& 85^{\circ} \mathrm{C}$
- Samples available upon request

APPLICATIONS: Power transistor protector; switching power supplies; Battery chargers; Smoke \& Fire detectors; Telecom equipment; Dual speed fan control; U.P.S.; Fan failure warning; etc....

Canadian Thermostats \& Control Devices Ltd.

8415 Mountain Sights Avenue Montreal Quebec Canada H4P 2B8 Tel: (514) 739-3274 TIx: 05-825619

HLL cross compilers speed l-chip- mC software development

You may be surprised by what today's high-level-language cross compilers have to offer. These advanced software tools can significantly shorten a $\mu \mathrm{C}$-based product's development cycle, improve code reliability, guarantee programmer portability, and ease software maintenance while imposing minor speed and code-space penalties.

Steven H Leibson, Regional Editor

Although most engineers and programmers developing code for $\mu \mathrm{P}$-based systems have already switched from assembly to high-level languages (HLLs) to reap the benefits of faster coding and better program reliability, the tradition of programming $\mu \mathrm{Cs}$ in assembly language still predominates (mostly through inertia). The early μ Cs' tiny memories and unique architectures mandated the use of assembly language, but you can now take advantage of an increasing number of cross compilers tailored for today's more powerful $\mu \mathrm{C}$ architectures and realize the benefits of HLLs.

Users of $\mu \mathrm{C}$ cross compilers cite speedy development as the primary reason for switching from assembly language. (Ed Note: In this article, μ C cross compilers are simply called compilers for brevity's sake.) David Wright, a member of General Motors' (Warren, MI) advanced engineering staff, uses Introl's C compiler to develop code for Motorola's $68 \mathrm{HC11} \mu \mathrm{C}$. Wright and his group build prototype electronic components for potential automotive applications, including antilock-brake and engine controls. He regards C as an excellent language for quickly prototyping experimental systems. If General Motors later decides to develop the
prototype into a product, the programmers can rewrite the software in assembly language to reduce code space for the company's extremely high-volume applications. Wright says, however, that the compilers "are close to the point where the memory differential isn't all that great."

Speed the prototyping process

Larry Fish, a development engineer with Comstream Corp (San Diego, CA), uses an Archimedes C-8051 compiler to create code for various $\mu \mathrm{Cs}$ based on Intel's 8051 architecture. Comstream, a manufacturer of modems for satellite communications, uses μ Cs to perform monitoring and control functions. Fish agrees with Wright that $\mu \mathrm{C}$ compilers shorten software development times. Part of the reason for the reduced development cycles is that a compiler allows programmers to think in terms of algorithms instead of in bytes and architectures.

For instance, he says, to perform a 16 -bit addition of two numbers on an 8 -bit $\mu \mathrm{C}$ using an HLL, you just add the numbers. Using assembly language, you have to first add the lower bytes of the two numbers, save the

Users of $\mu \mathrm{C}$ cross compilers cite speedy development as the primary reason for switching from assembly language.
carry bit, add the two upper bytes together, and then add in the carry. This relatively simple operation requires several lines of assembly language but necessitates only one function in an HLL. Because HLL programs are shorter and easier to write, you achieve both shorter development times and improved code reliability.

Fish wasn't a quick convert to HLL software development for $\mu \mathrm{Cs}$, however. He was apprehensive when he first thought about straying away from the traditional approach of using an assembler. A large project with a tight schedule forced the issue. "You cross your
fingers and hope that the tools work," he says. All went well on the first project that used the compiler, and Comstream now develops about 95% of its source code in C. It develops the remainder, mostly low-level I/O drivers, in assembly language.

Not only do compilers reduce development times and enhance code reliability, but they simplify software maintenance later on in a product's life. For example, Fish maintains both the assembly-language programs running in older products and the C programs running in the newer systems. Of the two, he claims maintenance and upgrades are "orders of magnitude easier"

8088 compilers can produce $\mu \mathrm{C}$ code

Many designers use Intel's 8088 (or a derivative such as the company's 80188) in embedded-system designs because of the tremendous amount of software available for that processor architecture. The same HLL cross compilers that generate programs for $8088 \mu \mathrm{Ps}$ can produce code for NEC's (Mountain View, CA) recently introduced 8 -bit μ PD70322 (V25) and 16-bit μ PD70332 (V35) μ Cs. Both devices execute 8088 object code and incorporate 16 k bytes of ROM, 256 bytes of RAM, two full-duplex serial channels, DMA controllers, and parallel I/O ports.

IBM PCs are ideal

IBM PCs and compatibles make ideal development stations for projects employing such devices. Several vendors offer compilers for the PC in just about any language you might wish to use. A few of these, including Manx Software's \$499 Aztec C86 commercial system and Datalight's (Bothell, WA) $\$ 139$ Optimum-C compiler with its \$159 ROM-It development kit,
support ROM-code generation for embedded systems by allowing you to locate code modules at absolute memory locations.

However, if your PC compiler can't generate ROM code, you may be interested in products that allow you to convert executable files into absolute code. For example, the $\$ 95$ ROM Kit from Luctor Corp (Phoenix, AZ) will help you put. EXE files into a ROM using one of two techniques.

If your target system will execute its program directly out of ROM, the ROM Kit simply locates your code at an absolute address. However, if you want to gain additional speed by executing your code from RAM, the software package allows you to place executable files in ROM along with a 2 k -byte loader program. After a reset, the loader transfers your code to RAM and then starts program execution.

Selectivity is possible

The ROM Kit loader also allows you to place several .EXE files in ROM so that your target system can selectively load and
run different programs. Luctor manufactures hard-disk-drive testers and developed the ROM Kit to aid development of its own 80188 -based line of testers. The company then decided that other developers might need such a tool and decided to offer its software as a product.

Link \& Locate from Systems and Software replaces Microsoft's linker and generates absolute object code from relocatable object modules. The $\$ 350$ software package includes a crossreference generator, an object code librarian, a linker, a locator, and hexadecimal formatters that create files in either Intel MCS-86 or Tektronix Tekhex formats.

A variety of PC compilers and assemblers generate object modules compatible with Link \& Locate because the Microsoft linker relocatable-object file format is a common denominator for IBM PC software development. The company also offers versions for DEC's VAX, and Sun, Pyramid, Sequent, and Apollo computer systems.
for code developed with HLL programs, whereas tweaking assembly-language programs "is a nightmare every time."

Another major advantage to using HLL compilers is
programmer portability. If an engineer learns assembly language for one $\mu \mathrm{P}$ or $\mu \mathrm{C}$, he or she can transfer very little of his new-found knowledge about that processor's assembly language and architecture to an-

Debugging HLL programs on microcomputers

When debugging a high-levellanguage (HLL) program on a $\mu \mathrm{C}$, you can choose from three approaches: software simulation, ROM-based debugging, or in-circuit emulation. A software simulator models the $\mu \mathrm{C}$ in software and then interprets your compiled program using that simulation.

The SIM-8051 from Cybernetic Micro Systems (San Gregorio, CA) is an example of such a simulator for the $8051 \mu \mathrm{C}$. It works with symbolic files produced by Archimedes' C-8051 compiler. The $\$ 595$ simulator runs on an IBM PC and displays multiple windows containing source code, register values, memory contents, and a stack image. With such a simulator, you don't need any hardware to try your code, but you must simulate all I/O activity using prepared stimulus files.

If you want to use a ROMbased debugger, Cybernetic Micro Systems offers the dICE51, a $\$ 795$ debugger that plugs into your target system and communicates with an IBM PC over a serial link. It includes a preprogrammed 8051 that allows a software simulator running in the PC to perform I/O operations in the target environment. The software running on the PC presents the same user interface as the company's SIM-8051 simulator.

If you want to test your code at full speed, however, you'll need an in-circuit emulator. American Automation offers emulators for its $\mu \mathrm{C}$ compilers based on the company's AA545 development station, which costs $\$ 4675$. In-circuit emulator pods plug into the development station and your target system. Emulator pods for various $\mu \mathrm{Cs}$ supported by the company's C compilers cost $\$ 2795$ to $\$ 3995$.

Two in-circuit emulators that accept symbolic files from Archimedes' C-8051 and Intel's
PL/M-51 compilers are the $\$ 1495$ EMUL31-PC from Nohau Corp
(Campbell, CA) and the MetaIce series of emulators from Metalink (Chandler, AZ). The EMUL31-PC consists of software and two boards: a card that plugs into a PC, and an emulator pod that plugs into your target system. The emulator pod accepts an 8031 or any other 40 -pin $\mu \mathrm{C}$ from the 8031 family. Metalink offers emulators for all the $\mu \mathrm{Cs}$ based on the 8051 architecture, including Intel's 83C152 communications controller, which incorporates an 8051 core processor. The company's emulators range in price from $\$ 1495$ to $\$ 4995$.

> Despite all their advantages, HLL compilers don't automatically eliminate the need for an assembler.
other processor. HLL programmers, in contrast, generally can apply a tremendous amount of experience gained on one project to the next because the HLL compiler masks the μ C's underlying hardware.

Wright, Fish, and Paula Brown, a marketing manager at Intei's Development Tools Operation, agree. In fact, according to Brown, Intel's customers believe that programmer portability is more important than code portability for $\mu \mathrm{C}$ development work; the architectural diversity of hardware designs that incorporate $\mu \mathrm{Cs}$ usually precludes the re-use of software from one project to the next, no matter what language was used to create that software. Most companies certainly want their programmers to be able to write code for a variety of processor architectures, however.

This same sort of portability also allows you to develop software before building any hardware at all. You can develop a prototype on a $\mu \mathrm{P}$ system and then transfer it to a $\mu \mathrm{C}$ using a cross compiler.

Ron Bodle, a consultant working at Daron Associates (Recida, CA), uses Turbo C, a $\$ 99.95$ compiler from Borland International (Scotts Valley, CA), to develop software for systems containing $\mu \mathrm{Ps}$ and $\mu \mathrm{Cs}$. Turbo C is a resident compiler that generates code for the 8088 $\mu \mathrm{P}$ (or one of its descendants) on an IBM PC (see box, " 8088 compilers can produce $\mu \mathrm{C}$ code"). The object code
that Turbo C produces won't run on the target system, but, according to Bodle, the compiler's speed and ease of use enable him to write and debug code very quickly on a PC. He then uses a cross compiler to recompile the same source code for the target $\mu \mathrm{P}$ or $\mu \mathrm{C}$.

The need for assembly language remains

Despite all these advantages, HLL compilers do not automatically eliminate the need for an assembler. You may need to write time-critical sections of code, including interrupt-service routines and some hardware-specific modules (such as low-level I/O drivers), in assembly language. You should be cognizant, however, that many times even these routines are candidates for HLL coding. Compilers may generate slower code than assemblers, but the difference between compiler-generated and hand-crafted assembly code may not be very great and sometimes no difference in execution speed exists at all.

When shopping for a compiler, you'll want to consider the type of output each compiler generates. If a compiler package includes a linker and creates relocatable object modules, you may be able to avoid the cost of an assembler if you plan to use only the HLL to create your code. You should be aware that linkage formats for these relocatable object modules vary among compiler

TABLE 1-REPRESENTATIVE CROSS COMPILERS FOR $8051 \mu \mathrm{C}$

VENDOR	COMPILER	LANGUAGE	HOST CPU	COMPILER OUTPUT	PRICE	ASSEMBLER PRICE	COMMENTS
AMERICAN AUTOMATION	AA554-8051	C	PC	ASSEMBLER SOURCE CODE	\$795	\$595	COMPANY ALSO OFFERS DEBUGGER AND INCIRCUIT EMULATOR
ARCHIMEDES SOFTWARE	C-8051	C	PC, MICROVAX, VAX (VMS, UNIX)	RELOCATABLE OBJECT CODE	$\begin{gathered} \$ 995 \\ \text { TO } \$ 5995 \end{gathered}$	INCLUDED	FREE DEMO DISK, BIMONTHLY NEWSLETTER
BOSTON SYSTEMS OFFICE	BSO/PLM 8051	PL/M	PC, VAX, GPX, MICROVAX, VAXSTATION	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 3750 \\ \text { TO } \$ 16,500 \end{gathered}$	INCLUDED	INCLUDES DEBUGGER
INTEL	D86PLM51NL	PL/M	PC	RELOCATABLE OBJECT CODE	\$750	\$750	COMPANY ALSO OFFERS DEBUGGER/ IN-CIRCUIT EMULATOR
MICRO COMPUTER CONTROL	MICRO/C-51	C	PC	ASSEMBLER SOURCE CODE	\$750	\$750	MONTHLY NEWSLETTER COVERING CROSSCOMPILER TECHNIQUES
OKAPI SYSTEMS	8051C	C	PC (XENIX), SUN, VAX	ASSEMBLER SOURCE CODE	\$3500	INCLUDED	
	8051C	C	PC (MS-DOS)	ASSEMBLER SOURCE CODE	\$950	INCLUDED	INCLUDES MKS TOOLKIT OF UNIX-LIKE SOFTWARE TOOLS
SCIENTIFIC ENGINEERING LABS	FLEX51	PASCAL	PC	ASSEMBLER SOURCE CODE	\$745	INCLUDED	\$35 DEMO DISK

vendors: Frequently you can't intermix modules from different HLL compilers and assemblers.

Exceptions to this situation occur when a vendor, such as Intel or Introl, offers more than one HLL compiler for a $\mu \mathrm{C}$. Many debugging tools also make use of linkable-object files to obtain symbolic information (see box, "Debugging HLL programs on microcomputers"). If you use a symbolic debugger to troubleshoot
your $\mu \mathrm{C}$ code, you'll want to make sure that your compiler generates modules that your debugger can use.

Determining the need for an assembler

In addition, some compilers generate assembly-language source files that you then must assemble. Vendors of such compilers may include an assembler for the

VENDOR	-REPRE	SENTA	IVE CRO	S COMPI	ERS	OR 6471	$80 \mu \mathrm{C}$
	COMPILER	LANGUAGE	HOST CPU	COMPILER OUTPUT	PRICE	ASSEMBLER PRICE	COMMENTS
AMERICAN AUTOMATION	AA554-64180	C	PC	ASSEMBLER SOURCE CODE	\$795	\$595	COMPANY ALSO OFFERS DEBUGGER AND IN-CIRCUIT EMULATOR; SUPERSTUFF UTILITY HANDLES BANK SWITCHING TRANSPARENTLY
ARCHIMEDES SOFTWARE	C-Z80/64180	C	$\begin{gathered} \text { PC, MICROVAX, } \\ \text { VAX (VMS, } \\ \text { UNIX) } \end{gathered}$	$\begin{aligned} & \text { RELOCATABLE } \\ & \text { OBJECT } \\ & \text { MODULES } \end{aligned}$	$\begin{gathered} \$ 995 \text { TO } \\ \$ 5995 \end{gathered}$	INCLUDED	FREE DEMO DISK, BIMONTHLY NEWSLETTER
BOSTON SYSTEMS OFFICE	BSO/C	C	VAX, GPX, MICROVAX, VAXSTATION	$\begin{aligned} & \text { ASSEMBLER } \\ & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \$ 2000 \text { TO } \\ \$ 8500 \end{gathered}$	$\begin{gathered} \$ 1500 \text { TO } \\ \$ 6500 \end{gathered}$	COMPANY ALSO OFFERS CROSS DEBUGGER
	BSO/PASCAL	PASCAL	VAX, GPX MICROVAX, VAXSTATION	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 2000 \text { TO } \\ \$ 8500 \end{gathered}$	$\begin{gathered} \$ 1500 \text { TO } \\ \$ 6500 \end{gathered}$	COMPANY ALSO OFFERS CROSS DEBUGGER
INTERMETRICS	INTERTOOLS	C	$\begin{aligned} & \text { PC, APOLLO, } \\ & \text { SUN, VAX, } \\ & \text { VAXSTATION } \end{aligned}$	$\begin{aligned} & \text { RELOCATABLE } \\ & \text { OBJECT } \\ & \text { MODULES } \end{aligned}$	$\begin{gathered} \$ 1000 \text { TO } \\ \$ 5000 \end{gathered}$	$\begin{gathered} \$ 800 \text { TO } \\ \$ 4000 \end{gathered}$	COMPANY ALSO OFFERS CROSS DEBUGGER
	INTERTOOLS	PASCAL	$\begin{gathered} \text { APOLLO, SUN, } \\ \text { VAX, } \\ \text { VAXSTATION } \end{gathered}$	$\begin{aligned} & \text { RELOCATABLE } \\ & \text { OBJECT } \\ & \text { MODULES } \end{aligned}$	$\begin{gathered} \$ 2500 \text { TO } \\ \$ 5000 \end{gathered}$	$\begin{gathered} \$ 2000 \text { TO } \\ \$ 4000 \end{gathered}$	COMPANY ALSO OFFERS CROSS DEBUGGER
LATTICE	Z80COMPILER	C	PC	$\begin{aligned} & \text { RELOCATABLE } \\ & \text { OBJECT } \\ & \text { MODULES } \end{aligned}$	\$500	NOT OFFERED	
MANX SOFTWARE SYSTEMS	AZTEC C CROSS	C	PC, CP/M	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 349 \text { TO } \\ \$ 1250 \end{gathered}$	INCLUDED	INCLUDES 64180 ASSEMBLY-CODE OPTIMIZER
MICROTEC RESEARCH	MCC180	C	PC	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 1750 \text { TO } \\ \$ 6000 \end{gathered}$	INCLUDED	COMPANY OFFERS TRIAL-SIZE DEMO DISKS
	PAS HD64180	PASCAL	PC	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 1750 \text { TO } \\ \$ 6000 \end{gathered}$	INCLUDED	COMPANY OFFERS TRIAL-SIZE DEMO DISKS
SOFTAID	MTBASIC	BASIC	PC, CP/M (NOTE 1)	$\begin{aligned} & \text { ABSOLUTE } \\ & \text { OBJECT } \\ & \text { CODE } \end{aligned}$	\$450	NOT APPLICABLE	LANGUAGE HAS BUILTIN MULTITASKING. $\$ 5500$ FOR COMPILER SOURCE
2500AD SOFTWARE	64180 C	C	$\begin{gathered} \text { PC, ZEUS, } \\ \text { VAX (UNIX, } \\ \text { VMS) } \end{gathered}$	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 500 \text { TO } \\ \$ 2000 \end{gathered}$	INCLUDED	
Z-WORLD	HI-TECH C	C	PC, CP/M (NOTE 1)	ASSEMBLER SOURCE CODE	$\begin{gathered} \$ 195 \mathrm{TO} \\ \$ 345 \end{gathered}$	$\begin{gathered} \$ 49.95 \mathrm{TO} \\ \$ 195 \end{gathered}$	COMPANY OFFERS RESIDENT DEBUGGER. SEE NOTE 2
NOTES: 1. THE SOFTAID MTBASIC AND THE CP/M VERSION OF THE HI-TECH C COMPILERS REQUIRE CP/M EMULATOR SOFTWARE OR A 64180 COPROCESSOR CARD AVAILABLE FROM Z-WORLD TO RUN ON A PC HOST. BOTH COMPILERS WILL ALSO RUN ON ANY CP/M-BASED COMPUTER. 2. AVAILABLE IN AUSTRALIA FROM HITECH SOFTWARE, ALDERLY, QUEENSLAND.							

If you decide to write your next $\mu \mathrm{C}$ program in an HLL, you'll find several languages to choose from.

TABLE 3—REPRESENTATIVE CROSS COMPILERS FOR 6301, 6801, AND 68HC11 $\mu \mathrm{Cs}$

VENDOR	COMPILER	TARGET μ Cs	LANGUAGE	HOST CPU	COMPILER OUTPUT	PRICE
AMERICAN AUTOMATION	AA554-6301 AA554-6801 AA554-6811	$\begin{gathered} 6301 \\ 6801 \\ 68 \mathrm{HC} 11 \end{gathered}$	C	PC	ASSEMBLER SOURCE CODE	\$795
ARCHIMEDES SOFTWARE	$\begin{gathered} \mathrm{C}-6301 / 6801 \\ \mathrm{C}-68 \mathrm{HC} 11 \end{gathered}$	$\begin{gathered} 6301 / 6801 \\ 68 \mathrm{HC} 11 \end{gathered}$	C	PC, MICROVAX, VAX (VMS, UNIX)	RELOCATABLE OBJECT MODULES	\$995 TO \$5995
INTERMETRICS	INTERTOOLS	6801/68HC11	C	PC, APOLLO, SUN, VAX, VAXSTATION	RELOCATABLE OBJECT MODULES	\$1000 TO \$5000
	INTERTOOLS	6801/68HC11	PASCAL	PC, APOLLO, SUN, VAX, VAXSTATION	RELOCATABLE OBJECT MODULES	\$1000 TO \$5000
INTROL	$\begin{aligned} & \mathrm{C} 01 \\ & \mathrm{C} 03 \\ & \mathrm{C} 11 \end{aligned}$	$\begin{gathered} 6801 \\ 6301 \\ 68 \mathrm{HC} 11 \end{gathered}$	C	PC, AT\&T 3B1, VAX, MICROVAX, CONVERGENT TECH, STRIDE, STRITEK, GOULD POWERNODE	ASSEMBLER SOURCE CODE	\$1950 TO \$8000
	$\begin{aligned} & \text { M2-01 } \\ & \text { M2-03 } \\ & \text { M2-11 } \end{aligned}$	$\begin{aligned} & 6801 \\ & 6301 \\ & 68 \mathrm{HC} 11 \end{aligned}$	MODULA-2	PC, AT\&T 3B1, VAX, MICROVAX, CONVERGENT TECH, STRIDE, STRITEK, GOULD POWERNODE	ASSEMBLER SOURCE CODE	\$1950 TO \$8000
OKAPI SYSTEMS	6301 C	6301/6801	C	PC (XENIX), SUN, VAX	ASSEMBLER SOURCE CODE	\$3500
WINTEK	PCC01	6301/6801/68HC11	C	PC	RELOCATABLE OBJECT CODE	\$895

TABLE 4-REPRESENTATIVE CROSS COMPILERS FOR OTHER μ Cs

VENDOR AND TARGET $\mu \mathrm{C}$	COMPILER	LANGUAGE	HOST CPU	COMPILER OUTPUT	PRICE
ARCHIMEDES SOFTWARE INTEL 8096/80C196	C-8096	C	PC, MICROVAX, VAX (VMS, UNIX)	RELOCATABLE OBJECT MODULES	\$995 TO \$5995
INTEL	D86C96NL	C	PC	RELOCATABLE OBJECT CODE	\$750
	D86PLM96NL	PL/M	PC	RELOCATABLE OBJECT CODE	\$750
LATTICE NEC μ PD78310/78312	NEC COMPILER	C	PC	RELOCATABLE OBJECT CODE	\$1250
MICRO COMPUTER CONTROL ZILOG SUPER8	MICRO/C-S8	C	PC	ASSEMBLER SOURCE CODE	\$750
MICRO COMPUTER CONTROL ZILOG $Z 8$	MICRO/C-Z8	C	PC	ASSEMBLER SOURCE CODE	\$750
NATIONAL NATIONAL HPC16003/43/83	MOLE-HPC-IBM-C	C	PC	ASSEMBLER SOURCE CODE	\$795
SKY COMPUTERS TI 32020	SKYC20	C	PC, SUN, VAX	ASSEMBLER SOURCE CODE	\$1500 TO \$3500
TEXAS INSTRUMENTS TI 320C25	TMDX3242255	C	PC, VAX	ASSEMBLER SOURCE CODE	\$2500 TO \$5000

ASSEMBLER PRICE	COMMENTS
\$595	ONE ASSEMBLER HANDLES BOTH THE 6301 AND THE $6801 \mu \mathrm{Cs}$; COMPANY ALSO OFFERS DEBUGGERS AND IN-CIRCUIT EMULATORS
INCLUDED	FREE DEMO DISK, BIMONTHLY NEWSLETTER
\$800 TO \$4000	SEPARATE VERSIONS AVAILABLE FOR 6801 AND 68HC11; COMPANY ALSO OFFERS CROSS DEBUGGER
\$800 TO \$4000	SEPARATE VERSIONS AVAILABLE FOR 6801 AND 68HC11; COMPANY ALSO OFFERS CROSS DEBUGGER
INCLUDED	COMPANY PLANS TO RELEASE A DEBUGGER IN JANUARY 1988
INCLUDED	COMPANY PLANS TO RELEASE A DEBUGGER IN JANUARY 1988
INCLUDED	
INCLUDED	

ASSEMBLER PRICE	COMMENTS

purchase price of the compiler, but some do not. Don't count on an assembler from one company to assemble a source file generated by another company's compiler. If price is your overriding concern, be sure and compare the total cost of a software development system by adding the assembler's cost to that of the compiler if one is not included. Tables 1, 2, 3, and 4 list representative HLL cross compilers for several $\mu \mathrm{Cs}$. The tables also indicate the type of code each compiler generates and the cost of a companion assembler if one is necessary.
Don't overlook the host computer you plan to use. It also has an effect on the cost of a compiler. As you can see from the tables, compilers are available that run on computers ranging from PCs to top-of-the-line VAXs. A compiler's cost tends to track the purchase price of the host computer, so for small projects you may want to stick with the lower-cost, PC-based compilers. For large, multiprogrammer projects, you may find that the compilers running on the larger machines may be more suitable because these machines often provide better environments for software teams.

Compilers for some unconventional $\mu \mathrm{Cs}$ appear in the tables as well. Engineers usually think of Texas Instruments' 320 C 20 and 320 C 25 as DSP processors, for instance, but some designers use the devices in nonDSP applications. According to Elaine Braun-Keller, DSP product manager for Sky Computers, TI's 320 Series can function as excellent high-speed, generalpurpose μ Cs that incorporate a fast multiplier for good measure.

Also, compilers that generate code for the popular Zilog Z80 and Hitachi $64180 \mu \mathrm{P}$ architectures can now generate code for a $\mu \mathrm{C}$: Hitachi's HD647180 (Table 2). This recently introduced device has 16k bytes of on-chip EPROM. You can find several resident HLL compilers for the Z80 that run on computers using CP/M because of the $\mu \mathrm{P}$'s association with that venerable operating system. You can also use a CP/M emulator like the $\$ 99.95$ ZSIM program available from Z-World to run these tools as cross compilers on a PC.

If you decide to write your next $\mu \mathrm{C}$ program in an HLL, you'll find several languages to choose from-C, Pascal, PL/M, Modula 2, and even Basic. Programminglanguage preferences often resemble something of a religious issue with programmers. Certain vendors, including Intel, Intermetrics, and Introl, offer $\mu \mathrm{C}$ compilers for more than one HLL: They've found that language preferences often depend more on personality and programming style than on what each language can

For more information . . .

For more information on the $\mu \mathrm{C}$ development products discussed in this article, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

National Semiconductor Corp
Box 58090
Santa Clara, CA 95052
(408) $721-5000$
TLX 346353
Circle No 691
Nohau Corp
51 E Campbell Ave
Campbell, CA 95008
(408) 866-1820
Circle No 692

Okapi Systems Inc
Box 3095
Everett, WA 98203
(206) 258-1163
Circle No 693

Scientific Engineering Laboratories
255 Beacon St, Suite 3D
Somerville, MA 02143
(617) 625-0288

Circle No 694
Sky Computers Inc
Foot of John St
Lowell, MA 01852
(617) 454-6200

TLX 4991331
Circle No 695

Softaid

8930 Rte 108
Columbia, MD 21045
(301) 964-8455

Circle No 696
Texas Instruments Inc
Semiconductor Group (SC-740)
Box 809066
Dallas, TX 75380
(800) 232-3200

TLX 73324
Circle No 697
2500AD Software Inc
17200 E Ohio Dr
Aurora, CO 80017
(303) 369-5001

Circle No 698
Wintek Corp
1801 South St
Lafayette, IN 47904
(317) 742-8428

TLX 709079
Circle No 699
Z-World
1722A Picasso Ave
Davis, CA 95616
(916) 753-3722

Circle No 700
do; HLLs exhibit similar abilities to perform most tasks.

You should consider more objective factors when selecting a language, however. Such factors include the following: the availability of a compiler for the host system you plan to use during code development; the size of the programs you plan to write; the number of programmers working on the project; the efficient utilization of critical on-chip memory by a particular compiler; and how effectively a compiler and its libraries support a $\mu \mathrm{C}$'s unique features. Many $\mu \mathrm{Cs}$ have special hardware components such as UARTs, the 8051's multiple memory maps, or the A/D converters found in Intel's 8096 and Motorola's 68 HC 11 , and some compilers explicitly support these features through language extension.

Many compiler data sheets don't discuss these contributing factors, and you may have to dig a bit deeper to find answers. One approach to discovering the efficiency and utility of the compiler in question is to ask a vendor for references. Most companies have customers who are willing to speak with you and can provide far more insight into the capabilities of the software than can a data sheet.

In addition, some vendors will compile a short program for you to illustrate the type of code a particular compiler generates. American Automation offers such a service that it calls Telebench. If you send the company a disk containing source code, it will return the disk
with a compiled version of your program and tell you how much time the compilation required.

You can also order demonstration disks containing "trial-size" compilers from several companies. The compilers on these disks can generate small programs so you can examine how they work. For example, National offers free C-compiler and assembler disks for its HPC series of μ Cs. The company has put a software "governor" on the compiler so that it accepts only about 1000 lines of source code, and generates no more than 3 k bytes of code and another 3 k bytes of data. Considering that the HPC16043 and HPC16083 $\mu \mathrm{Cs}$ incorporate respective 4 k - and 8 k -byte ROMs, you can write substantial programs with these free software packages.

EDN

References

1. Horton, Eric P, "Make your own low-cost 8051 emulator," EDN, November 13, 1986, pg 193.
2. Satten, Corey, "C compilers speed single-chip- $\mu \mathrm{P}$ development," EDN, June 26, 1986, pg 213.
3. Terry, Chris, "Cross-development tools for PCs and minis let you develop software for 8 -bit $\mu \mathrm{Ps}$," $E D N$, April 15, 1987, pg 89.
4. Wright, Maury, " $\mu \mathrm{P}$ simulators let you debug software on an IBM PC," $E D N$, December 11, 1986, pg 196.

Article Interest Quotient (Circle One) High 485 Medium 486 Low 487

128 formulas at the speed of light.

The Casio FX-5000F

Formula Calculator. To save
you the time and trouble of looking up or memorizing many of the most important mathematical and scientific formulas, we put 128 of them in our FX-5000F Formula Calculator. And you can call them up in a flash.

The formulas are numbered and cover the fields of math, statistics, physics, electronics and mechanics. Plus you can input 12 of your own. Just key-in the appropriate number and the for-
mula you need appears instantly. The alpha numeric display with 10 digit mantissa plus 2 digit exponent is easy to read and scrolls to over 70 characters. Its two-line display shows both the formula and the answer simultaneously.

And it doesn't stop there. Once you've recalled the formula, the calculator prompts you to input the values of the variables and automatically calculates the result.

The FX-5000F's 675 steps of program memory allow you to create some pretty sizeable pro-
grams and store them until needed While an instant replay feature lets you review and edit formulas at the touch of a button.

Adding to its usefulness are an additional 160 powerful functions, for a combined total of 288 functions and formulas.

To get the list of 128 formulas, as well as more information about how the Casio FX-5000F delivers them with the speed of light, call 1-800-626-2916 Ext. 82

Where miracles never cease

Computer-Aided Engineering

Windowed operating environment for CAE spans a variety of computer systems

The Vanguard Stellar CAE design system integrates a complete CAE tool set in a graphical shell that provides a windowed operating environment. This environment allows for complete design-file compatibility among the various tools, which include a schematic-design system, a symbol editor, a layout editor, an autorouter, a design-rule checker, an electrical-rule checker, analog and digital simulators, and a document editor.

The Stellar system works on many computers, but operation is identical. Once you've learned how to use the system on an IBM PC/AT, you'll know how to use it on a Sun/3, a VAX, or a Microvax II GPX workstation. To communicate
with other vendors' simulation tools, the Stellar system uses the CSDF (Common Simulation Data Format) for data transfer. At present, the system can communicate with Silos, Cadat, PSpice, Spice, and Hilo.
The ASCII database resides at the core of the system. Each of the tools works with and creates ASCII files, so you can transfer data among tools. For example, you can transfer a section of a schematic to a document, or you can tell a simulator which node in a circuit you would like to view.
The document editor provides simple mixed text-and-graphics capability for engineering documentation, and it supplies interfaces to
desktop-publishing packages. Having direct access to such documents as schematics, pc-board layouts, and simulation results simplifies the creation of high-quality documentation.
Commands are very similar from one tool to the next. It's not necessary for you to relearn the use of each tool as you progress in the design cycle. Also, each tool has a simple 7 -command mode that allows you to tackle many tasks without having to master the full complexity of the system. Prices range from $\$ 15,900$ for a PC/AT-based system to $\$ 50,000$ for a VAX-based system.
Case Technology Inc, 2141 Landings Dr, Mountain View, CA 94043. Phone (415) 962-1440. TLX 506513.

Circle No 677

Advanced-CAE tool set aids in design and simulation of DSP systems

The Signal Processing Worksystem (SPW), a set of tools for designing and simulating a DSP system, runs on either VAXstation computers under VMS or on Apollo Domain workstations.

The Designer's Database Schematic Capture (DDSC) tool provides menu-driven facilities for capturing a design in the form of hierarchical blocks and analyzing their operation and interaction. You can generate a net list from your graphical design representation.

The Simulation Program Builder (SPB) converts the DDSC block schematic to a program that simulates the behavior of the DSP system. The SPB builds a sequence of procedure calls representing the mathematical function that each

block is to perform. The initialization phase sets the initial conditions for each block; the run phase executes the mathematical operations representing each block in the sequence determined by the block schematic; and the termination phase provides output information about the state of each block.
The Signal Display Editor (SDE)
can display as many as 40 signals; it automatically scales each signal to fit the display window. The SDE allows you to generate various signal waveforms and provides the means to analyze a simulation run.
The Instrument Interface Library (IIL) lets you acquire data or control instruments in real time via an IEEE-488 interface. It supports the vendor's 11401 high-speed digitizing oscilloscope and selected TM5000 modular instruments; you can build your own blocks, however. The starting price of the SPW (software only) is $\$ 30,000$.
Tektronix Inc, CAE Systems Div, Box 4600, M/S 94-525, Beaverton, OR 97076. Phone (503) 629-1255. FAX (503) 645-8067.

Circle No 680

mover
Prepare to be impressed. Meet the new line of high-performance plotters from Houston Instrument. ${ }^{\text {TM }}$ HI's sleek new DMP-60 series is designed to impress even the most demanding CAD professional. Discover unprecedented flexibility-blended with ultra-fine resolution, speed, and software compatibility. Benefit from HI's rigorous standards for quality, reliability, and service. All at prices starting from $\$ 4,695$.*

Watch the DMP-60 series double as a scanner with HI's unique SCAN-CAD ${ }^{\text {TM }}$ option. Quickly produce multicolored drawings when you use the Multi-Pen adaptor. Plot several originals-without tying up your PC when you add HI's buffer expansion board.

Select media as small as $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ or as large as $36^{\prime \prime} \times 48^{\prime \prime}$. Load either $\mathrm{DM} / \mathrm{PL}^{\text {TM }}$ or HP-GL 758X-compatible software. Then watch as your plotter quickly produces a drawing polished to a precise resolution of 5 ten-thousandths of an inch. Smile

programs including an overnight plotter-replacement service. And then relax, knowing that HI's new plotters rest on 27 years of engineering excellence.
Move up. To a fine, new line. From Houston Instrument. Begin by calling 1-800-444-3425 or 512-835-0900 or writing Houston Instrument, 8500 Cameron Road, Austin, TX 78753. *U.S. suggested retail price.

HOUSTON INSTRUMENT
 A DIVISION OF AMETEK

Houston Instrument, SCAN-CAD, and DM/PL are trademarks of AMETEK, Inc.

Computer-Aided Engineering

System for CAE design management runs on network of workstations

EDS III is an IC-design system that consists of a graphics editor and a block manager. It is fully compatible with the vendor's GDS II system, and it includes a communications link that connects GDS II systems running on Data General computers with EDS III systems. The link uses the TCP/IP network protocol. EDS III currently runs on Sun workstations and will be available for DEC and Apollo machines in the first quarter of 1988.

Each network node provides a name server that records the names of users and files resident on that node, and communicates those names to users on other nodes. A library administrator determines the location of a library requested by a user and makes it accessible. Compared with GDS II's database, EDS III's database uses less disk

space and provides faster access to data. New routines let you extract data for processing by other applications.
The graphics editor is written in C , and the graphics portion is isolated to achieve portability without sacrificing speed. You can enter any command directly from the keyboard, or you can use the extensive menu system. You can configure the menus to suit your application; change the command names; or as-
sign new command names to simple functions, macros, or command files that will execute complex command sequences.
The block-manager module lets you fix the location of blocks and standard cells via manual or automatic placement or a combination of both. The automatic-placement routines accept specific design rules, which you create with an interactive editor. You can also create a file of generic design rules that the editor will automatically map into specific rules. There are no restrictions on the placement of blocks, or on how you attach power and ground to the blocks. Editor, $\$ 20,000$; block manager, $\$ 50,000$.

GE Calma Co, 501 Sycamore Dr, Milpitas, CA 95035. Phone (408) 434-4000. TLX 3720067.

Circle No 678

CAE network node features both digital- and analog-simulation capabilities

The Configurable Analysis Engine is a network server that provides a network of IBM PC/ATs (or compatibles) with resources for digital and analog simulation, accelerated schematic compilation, physical modeling, and CAE database management. The basic unit consists of a $68020 \mu \mathrm{P}, 4 \mathrm{M}$ bytes of RAM, 80M bytes of mass storage, an Ethernet interface, and software for schematic compilation and either accelerated analog simulation or nonaccelerated digital simulation.

For accelerated digital simulation, you need the bit-slice processor option; this processor uses an 88 -bit microcode word and has a machine cycle time of 55 nsec . It can

run digital simulations 30 to 50 times as fast as the 68020 system processor.

For accelerated compilation and accelerated analog simulation, you need to add one or more generalpurpose RISC (reduced-instruction-set-computer) processors. You can
use as many as four of these processors for Monte Carlo analysis and other computation-intensive applications.

The physical-modeling section uses one or two VLSI stimulus cards and a maximum of five VLSI carrier cards; the modeler can exercise chips at rates as high as 16 MHz . You can also add as much as 65M bytes of dual-port RAM for large modeling applications. The price of a basic unit starts at $\$ 30,900$.

Cadnetix Corp, 5757 Central Ave, Boulder, CO 80301. Phone (303) 444-8075.

Circle No 679

TEXAS INSTRUMENTS REPORTS ON MEMORY MANAGEMENT

IN THE ERA OF MegaChip

Memory-management ICs fron you bring memory arrays up to

Memory systems are a prime area for significant improvements in overall system throughput. Read how TI's memorymanagement ICs can get you in and out of memory faster no matter which processor you choose.

Y
whose solution has eluded design en neers for years: How to catch memor speeds up to CPU speeds. The soluti lies with TI's advanced memorymanagement circuits, and you can u them with whichever processor best suits your application.

Texas Instruments can help processor speeds.

A universal architecture enables -hese TI devices to work with - and enhance - virtually any high-speed nicroprocessor or bus structure, even zustom engines.
In addition, your component count is cut because these are single-chip VLSI circuits. Your design time and effort are shorter and easier because of

TI's comprehensive Memory Management Design Kit (see page 4).
TI addresses your major memory-design concerns To immediately improve memory-access time, use both main and cache memories, as shown in the block diagram.
This approach can produce up to a 3 X increase in system performance.

Frequently accessed data and instructions are stored in a few high-speed static random-access memories and "tagged" by a TI industry-standard cache controller (SN74ACT2151/4).
These CMOS controllers are the fastest available and can support deep cache architectures of 16 K or even 32 K .

TI's MegaChip Technologies

Our emphasis on volume manufacturing of high-density circuits is the catalyst for ongoing advances in how we design, process, and manufacture semiconductors and in how we serve our customers. These are our MegaChip ${ }^{\text {TM }}$ Technologies. They are the means by which we can help you and your company get to market faster with better, more competitive products.
tions on chip to improve flexibility and speed and to allow for custom timing routines. This controller supports nibble- and page-mode access and scrubbing-mode refresh to increase memory output.

This scheme is cost-effective because slower, less expensive dynamic randomaccess memories (DRAMs) can be used for main memory.

When you must assure system integrity, use of an error-detection-and-correction (EDAC) circuit can improve system reliability 500 -fold. Since this approach is necessary with memory arrays larger than half a million bits, TI offers its leadership 32-bit EDAC.

The SN74AS632 detects dual-bit errors and detects and corrects singlebit errors while avoiding processor wait states. It is the fastest EDAC available: 25 ns for error detect, 32 ns for correct.

Interfacing between processor and main memory gets tougher as speeds increase. But TI has the SN74ALS6301 DRAM timing controller. It can handle any DRAM up to 1 Mbit and incorporates only the essential func-

Soon to come: An ASIC (applicationspecific integrated circuit) solution.

Reducing over/undershoot is accomplished by TI's 2000 Series buffers and drivers -25 -ohm series-damping resistors on the output prevent false reads at DRAM input. For example, the SN74BCT2828 driver can reduce undershoot by 40% compared to traditional approaches. TI's 2000 Series has a high-drive current suitable for VME and MULTIBUS ${ }^{\oplus}$ II bus structures.

You can use any or all of TI's memory-management ICs to obtain the superior performance that marks a market winner. And there's no design rule that says your memory-management chips and your CPU have to come from the same supplier.

Turn page for more information.

The tools you need to design a high-performance memorymanagement system are between these

covers:

At $\$ 149$, the value of TI's Design Kit far outweighs its cost. In one compact file, we've included just about everything you'll need to bring your memory array up to speed. Everything, that is, except your imagination in creating your own unique product differentiators. Here's what you get:

- All necessary high-performance ICs, including
-SN74ACT2154 2K X 8 Cache Address Comparator
-SN74AS632 32-bit EDAC
-SN74ALS6301 16K to 1 Mbit DRAM Controller
—SN74BCT2828 10-bit Buffer/ Driver with series-damping resistor
-TIBPAL16R8-10 and TIB82S105B High-speed Programmable-logic Devices for user-defined timing control
-TMS4464 256K DRAM
- Memory Management Applications Handbook containing applications reports and briefs that supply valuable insights into memory-management system design.
- Data sheets on TI circuits designed for efficient memory management.
- Memory-management-product software graphic-symbol libraries and supporting documentation for use with Futurenet ${ }^{\text {TM }}$ or Mentor Graphics ${ }^{\text {TM }}$ CAE systems.
For more information on TI's
Memory Management Design Kit, call 1-800-232-3200, ext. 3203, or contact your nearest TI field sales office or authorized distributor.

[^9]Texas Instruments Incorporated
SDVØ63ED8ø0C
P.O. Box 809066

Dallas, Texas 75380-9066
YES, please send me more details on TI's universal memorymanagement ICs.

DSP DESIGN TOOL

The DSPlay software package runs on an IBM PC or compatible computer that's equipped with at least 256 k bytes of RAM and a CGA or equivalent color-graphics board. The software can use (but does not require) an 8087 or 80287 math coprocessor. Screen menus let you create functional block diagrams (called FlowGrams) and define the processing that each block will perform. The menus, pullup lists, and context-sensitive help windows make it easy to enter, edit, and run DSP algorithms. Once you've developed a FlowGram, you can save any or all of the blocks for future use, and then execute the program.

When debugging, you can execute a single block or execute the program only as far as a selected point. After making changes, you can continue execution from a selected point. The software lets you generate test waveforms for your design. These waveforms include sine and cosine waves; white or Gaussian noise; and triangular, square, or trapezoidal pulses. You can process these signals with routines that perform Fourier transforms, correlations, or convolutions, as well as standard arithmetic and trigonometric functions. The programs perform all calculations in floatingpoint format with a 40 -bit mantissa and an 8-bit exponent. The software can also work with the vendor's A/D- and D/A-converter boards. DSPlay design package, $\$ 495$; DSP Educational Package, $\$ 25$.

Burr-Brown, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. TLX 666491.

Circle No 393

PLD DESIGN TOOL

FutureDesigner is a menu-driven program that integrates schematic capture, behavioral logic specification, interactive design verification, and logic synthesis. During entry, you can describe each part of your circuit in the terms best suited to it;
that is, you can describe it by means of hierarchical schematics, state diagrams, logic equations, or truth tables. During interactive verification, the program detects and helps you correct connectivity errors and other common design errors. It performs automatic logic synthesis, which optimizes the performance of the design by means of logic reduction and factoring that eliminates redundant circuitry.

You can simulate your design's performance with the help of the vendor's Dash-CADAT Plus logic simulator. The program can partition behavioral descriptions into multiple PLDs; you specify which outputs are to be assigned to which devices, and the program automatically assigns the inputs accordingly. It generates both a schematic for the gate-array vendor and JEDEC output files for programming PLDs. The program runs on IBM PC/ATs and compatibles, and the price includes a 32 -bit coprocessor with 2M bytes of onboard RAM. $\$ 11,500$.
FutureNet, 9310 Topanga Canyon Blvd, Chatsworth, CA 91311. Phone (818) 700-0691. TWX 910-494-2681.

Circle No 394

LOGIC DESIGN TOOL

Scratchpad combines a schematiccapture editor and an interactive logic simulator. It runs on an IBM PC, PC/XT, PC/AT, or compatible. The package provides libraries of standard TTL- and high-speed CMOS-logic ICs, including oneshots. The program lets you design a complete schematic in step-bystep fashion, and it automatically checks for drafting and design errors.
As you complete each section of your design, an incremental compiler compiles the section and a highspeed, interactive simulator verifies it. You can select either a timing display, which shows all the signals (including glitches), or a functional display, which shows only the
glitches' functional effects. If the simulator detects no errors, you can convert the section into a module or software macro and store it for use in future designs. The package includes interfaces for transferring any module or complete design to other CAE programs for board layout and other processing. $\$ 2950$.

Aldec, 3525 Old Conejo Rd, Suite 111, Newbury Park, CA 91320. Phone (805) 499-6867.

Circle No 395

IC DESIGN TOOL

Working in conjunction with the vendor's Analog Workbench or PC Workbench software, the IC Design Tool Kit analyzes the linear characteristics of analog designs. It analyzes designs for linear ICs, mixedsignal ICs, digital ICs, or any combination of these types. The program lets you enter fabricationprocess parameters, so that the simulator can account for parasitic elements and variations inherent in the selected fabrication process. You can assign either nominal values or distribution ranges to the entered parameters.

The package includes bipolar and CMOS device models of transistors, capacitors, and resistors. You can also create custom models that contain your own process parameters, and then store the models in a private library. You can use Monte Carlo techniques, evaluate a circuit's sensitivity, and estimate worst-case conditions to calculate the manufacturing yield before you commit your design to silicon. The

Smoke Alarm feature lets you analyze the stress levels in your design to improve device reliability. The IC Design Tool Kit costs $\$ 13,500$ as an option to Analog Workbench, which runs on Apollo, Sun, and HP workstations; it costs $\$ 8000$ as an option to PC Workbench, which runs on the IBM PC/AT or compatibles.

Analog Design Tools Inc, 1080 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 737-7300.

Circle No 396

IC DESIGN TOOL

ValidCompose is the first tool in the vendor's product line to be entirely driven by design rules. It runs on Sun 3 workstations and on DEC's VAXstation. You begin the design process by creating a functional schematic in which the cells to be used appear as boxes that define the cells' relative shapes and sizes and their connection points. You then use the program's editing features to optimize the cell placement. To minimize wire lengths, the program performs automatic pair and port swapping, as well as automatic rotation and mirroring of cells. It also provides both automatic and interactive routing.

The program performs placement and routing according to design rules that you specify, by means of the editor, on the original schematic. You can identify critical paths and specify wider individual wires than the design rules call for. During floor planning, the program groups cells with critical interconnections and alerts you to the occurrence of critical paths that are too long. Once the program has performed the initial cell placement, it automatically compacts the chip into the smallest possible space, while observing the design rules. $\$ 20,000$.

Valid Logic Systems, 2820 Orchard Parkway, San Jose, CA 95134. Phone (408) 432-9400. TLX 3719004.

Circle No 397

CAE SOFTWARE
Hiwire is a schematic drawing package that runs on the IBM PC and compatibles. Enhancements include two libraries for ECL components and ladder diagrams, and PostScript output for laser printers. The menu-driven program lets you create library symbols by combining labels, lines, and arcs. You can use a plotter, dot-matrix printer, or laser printer to print a complete schematic diagram. The program can also create a net list and a bill of materials, and it provides cross-checking utilities.

Smartwork is a pc-board design package that accepts net lists created by Hiwire and that helps you generate artwork for the board. Once you have placed all the components, the autorouter finishes the routing process. The vendor has removed the copy protection from the backup diskette, so that you can now install Smartwork on a hard disk. Hiwire and Smartwork, $\$ 895$ each.

Wintek Corp, 1801 South St, Lafayette, IN 47904. Phone (317) 7428428. TLX 709079.

Circle No 398

3-D MODELING SOFTWARE

Generic 3-D is a polygon-based 3-D solid-modeling program with a wireframe display. It features a 3-D cursor, and it has perspective, extrusion, isometric-view, construc-tion-plane, multiple-window, auto-matic-sectioning, interferencechecking, object- or group-duplication, and surfaces-of-revolution fea-
tures. You can use the program as a stand-alone package, or you can transfer your models to Generic CADD and other of the vendor's products. Also available is the add-on 3-D Rendering Module, which defines a solid object by means of its boundaries-faces, vertices, and edges. Generic 3-D, \$199.95; 3-D Rendering Module, $\$ 149.95$.

Generic Software Inc, 8763 148th Ave NE, Redmond, WA 98052. Phone (206) 885-5307.

Circle No 399

SIMULATION MODEL

The Am29000 SmartModel is a simulation model of the Am29000 32-bit $\mu \mathrm{P}$ from Advanced Micro Devices (Sunnyvale, CA). It lets you perform simulations that verify both hardware and software designs. The model lets you check for violations of timing requirements (such as setup and hold times, or minimum pulse widths), and also analyzes usage conditions such as I/O protocols and initialization parameters. Whenever the model detects an error condition, it supplies a detailed error message that allows you to pinpoint the location and nature of the problem. The model is currently available for use on Mentor Graphics systems, and versions for other systems are in development. $\$ 6900$.

Logic Automation Inc, 19500 NW Gibbs Dr, Beaverton, OR 97005. Phone (503) 690-6900.

Circle No 401

TEST GENERATOR

The automatic test-generator program Anvil ATG runs on IBM PC/XTs, PC/ATs, or on any compatible with 640 k bytes of RAM and a hard disk with 4 M bytes of available storage. The package furnishes an event-driven, time-based simulator, a concurrent fault simulator, a gen-eral-purpose automatic test-vector generator, and utility programs.

> "CASE and DEC combine...to offer CAE solutions that work!"

CASE Technology's new Vanguard CAE Design System, in combination with Digital's VAX-based engineering workstations, provides one of the most complete computer-aided engineering solutions available. The system includes schematic capture for PCB and ASIC design, digital logic simulation, circuit simulation and PCB design capabilities.

The strength of the Vanguard CAE design solution is its flexibility. With DECNet and DECNet/DOS, using VAX minicomputers and workstations linked with standard personal computers, an entire engineering facility can be networked, creating a completely integrated design automation environment.

The Vanguard system can also be utilized as a front-end CAE design tool for users that need to integrate existing
tools or as a facility solution for those interested in a single source for their CAE needs.

With more than 3000 installed systems worldwide, CASE Technology has developed a solid reputation as a premier supplier of professional CAE design tools. If you haven't seen what CASE has to offer, then now is the time.

CASE Technology Inc., 2141 Landings Drive, Mountain View, California 94043
Phone (415) 962-1440; Telex 506513;
Fax (415) 962-1466

CASE
TECHNOLOGY
"CAE Solutions Planned R Rigt from the Start"

Computer-Aided Engineering

The software is menu-driven, but you can bypass the menus if you want a series of jobs to run in batch mode without operator attention.

According to the vendor, the program typically achieves 90 to 100% fault detection, even on highly sequential designs, such as state machines. The faults considered include stuck-at-0 and stuck-at-1 logic elements and incomplete or improperly blown fuses. So as not to obscure true-fault coverage, the program removes from consideration undetectable faults that derive from redundancy or unused circuitry. $\$ 4950$.

Anvil Software, 369 Massachusetts Ave, Suite 192, Arlington, MA 02174. Phone (617) 641-3861.

Circle No 400

PARTS LISTER

The Enhanced Part List Utility is a software package that lets you build either a simple parts list, showing quantity, part name, and location designator of each part, or a customized list with additional information supplied by the operator. The area-translator utility can format the parts-list output files (or any ASCII file) into a FutureNet area file that you can load directly into a FutureNet Dash schematic. The program runs on IBM PCs and compatibles, and costs $\$ 95$; registered users of earlier versions can upgrade to the Enhanced version for $\$ 45$.

CAE Utilities, 14819 Sherman Way, Suite 8, Van Nuys, CA 91405. Phone (818) 989-3308.

Circle No 402

SCHEMATIC CAPTURE

EE Designer version 1.7 is a PCbased software package for schematic capture, logic simulation, pcboard design, and artwork generation. This version is enhanced by a new graphics kernel that lets you define trace widths, pad sizes, and D-code settings for

Gerber photoplotting. The router now offers orthogonal-snap and dou-ble-snap modes for improved schematic routing.
The package contains a new symbol library with corresponding cross-reference files. In addition, the plot-file feature lets you write your own device drivers so that you can generate prototype-quality artwork on an Epson-compatible, dotmatrix printer. You can also direct output to pen plotters, photoplotters, NC drill tapes, and laser printers that can use the HPGL graphics language. $\$ 995$; current users may upgrade to version 1.7 at a cost of $\$ 200$.

Visionics Corp, 343 Gibraltar Dr, Sunnyvale, CA 94089. Phone (408) 745-1551.

Circle No 403

ANALOG SIMULATOR

PSpice, a program that lets you simulate and analyze analog electrical circuits, is now available on Sun workstations that run the Unix operating system with Sun Windows. The latest additions to the Sun family of options for PSpice are the Probe graphics postprocessor, the Parts parameter estimator, and the Digital Files option.

The Probe option lets you check the progress of a simulation and uses Sun Windows so that you can reposition or resize the Probe window at any time. Using the Parts option, you can construct a parts list and a cost estimate from the PSpice database.
The Digital Files option lets you convert the output of a digital simulator to a format that PSpice can use for a simulation run; alternatively, you can convert the output of PSpice to a format that a digital simulator can use. The option currently provides conversions to and from three formats: ViewLogic's ViewSim format; HHB Softron's Cadat format; and a generic format if you have some other digital simulator and can convert the generic format to your simulator's format. These options are also available for IBM PC and VAX/VMS machines. Prices depend on the host machine and range from $\$ 350$ to $\$ 3800$.
MicroSim Corp, 23175 La Cadena Dr, Laguna Hills, CA 92653. Phone (800) 826-8603; in CA, (714) 7703022. TLX 265154.

Circle No 404

DUAL-MODE SIMULATOR

Viewsim/AD is a mixed-mode analog and digital simulator system that runs on VAX computers under the VMS operating system. You can perform a single simulation run on a design that employs both analog and digital components. MicroSim's (Laguna Hills, CA) PSpice analog simulator processes the analog components; the vendor's Viewsim digital simulator processes the digital components.

Both simulators run concurrently as separate tasks under VMS; a special interface, developed by MicroSim, synchronizes the two simulators and permits the transfer of information between them; extensions to Viewsim and the associated schematic editor, developed by the vendor, let you use your existing digital and analog device libraries to build

MICRO-LOGCIIII: The CAE tool with a 10,000 -gate digital simulatra for your PC.

mixed-mode designs that you can later simulate with Viewsim/AD. When you've completed the simulation, you can use the Viewwave waveform processor to display both analog and digital results interactively. The Viewsim/AD package includes Viewsim, PSpice, the special interface between them, and Viewwave. $\$ 25,000$.

Viewlogic Systems Inc, 275 Boston Post Rd W, Marlboro, MA 01752. Phone (617) 480-0881. TLX 174242.

$$
\text { Circle No } 406
$$

LOGIC VALIDATOR

The Ikos 1900 is a modular logicvalidation system that can simulate gate arrays and ASICs with as many as 245,000 gates. You pass schematic-capture data to the validator from the workstation on which you designed the circuit; the validator is compatible with most currently available ASIC-design workstations. You also pass test data to the validator from an IBM PC/AT or compatible machine, which provides the user interface for the validator; you can link multiple PC/ATs to the validator via an Ethernet LAN. The validator accelerates the entire sequence of logicvalidation events; it processes input test cases (input pattern generation) and presents output results (logic analysis) while you're running a simulation. The user interface provides immediate feedback of detected errors so you can correct the errors at an early stage-you don't have to wait for information until
the end of a batch run.
The validator's features include tools that create test data, faultsimulation tools to help design diagnostic procedures, multichip simulation, and a software logic analyzer. The basic validator system, consisting of user-interface software and hardware that can simulate as many as 16,000 gates, costs $\$ 54,950$. Additional 16,000-gate evaluator boards cost $\$ 10,500$ each.

Ikos Systems Inc, 145 N Wolfe Rd, Sunnyvale, CA 94086. Phone (408) 245-1900.

Circle No 408

ASIC EVALUATOR

Topaz II is a design-verification system that lets you test high-speed, high-gate-count ASIC prototypes. You can generate clock pulses at speeds as high as 100 MHz , and you can increase the test speed, in increments of 100 kHz , to a maximum of 50 MHz in order to characterize the maximum operating speed of the device under test. A shmoo-plot program lets you plot voltage and timing parameters over a wide range of other operating conditions; you can measure timing parameters with a resolution of 100 psec .

The basic system includes an integrated test fixture, programmable power supplies, an IBM PC/ATcompatible workstation that provides the user interface, and all software utilities. You can increase the number of device pins by 18 -pin increments ($16 \mathrm{I} / 0$ pins and two strobe pins) to a maximum of 288 pins. From $\$ 35,000$.

HiLevel Technology Inc, 18902 Bardeen, Irvine, CA 92715. Phone (714) 752-5215. TLX 655316.

Circle No 409

FAULT EVALUATOR

The Fault Inferencer is a worksta-tion-based fault evaluator that uses a critical-path-tracing algorithm. It first creates a fault list from the schematic-capture data on the de-

sign to be simulated and then collapses this list into different classes of indistinguishable faults. This collapsing process not only takes into account simple node equivalences, but also performs single-fanout and functional-fault collapsing. A preprocessor then removes all indistinguishable faults caused by inputs that are tied high or low, thereby further reducing the number of fault classes that must be considered.

The evaluator uses one fault from each class for simulation and runs a good-machine simulation to determine the state of all nodes for each vector; it determines fault coverage by back-tracing all critical paths. You can use either the vendor's pat-tern-generation language or an external file of test vectors as input to the evaluator. The reports it generates show the expected outputs from a faultless machine, as well as the fault classes detected for each vector. $\$ 45,000$.
Aida Corp, 5155 Old Ironsides Dr, Santa Clara, CA 95054. Phone (408) 980-5200.

Circle No 410

INTERFACE

Using this graphics-software enhancement, you can upgrade SilvarLisco schematic capture, simulation, and pc-board layout software, running on the company's 6000 Se ries graphics workstations to provide additional display capabilities. The software allows any 6000 Series workstation to drive two monitors independently, allowing you to display two separate graphics images

Computer-Aided Engineering

simultaneously. For example, you can hold an image on one monitor while you zoom in on an area of particular interest with the other monitor. The display resolution for each display head is 1448×1024 pixels with 256 displayable colors. The software runs with the Silvar-Lisco Coregraph graphics driver. $£ 250$.
Sigmex Ltd, Sigma House, N Heath Lane, Horsham, W Sussex RH12 4UZ, UK. Phone (0403) 50445. TLX 877937.

Circle No 419

PC-BOARD CAD

In addition to providing you with the company's Solution-4000 pcboard layout software, the Kit-Solu-tion- 4000 includes the graphics board necessary to convert a DEC Micro-PDP computer into a suitable workstation for the software. You can use the kit on any Micro-PDP computer that uses the $11 / 23,11 / 73$,
or 11/53 CPU with 256 k bytes of RAM. The resultant workstation allows you to perform schematic capture, to design multilayer pc boards using interactive or fully automatic placement and routing, and to produce pc-board manufacturing documentation. SFr 40,600.
Academi Systems SA, 50 Avenue de la Praille, 1227 Geneva, Switzerland. Phone 022-432760. TLX 422842.

Circle No 417
Academi Systems Inc, 2418 Armstrong St, Livermore, CA 94550. Phone (415) 449-3294. TWX 910-240-7812.

Circle No 418

LOGIC SIMULATOR

OrCAD/VST (verification and simulation tools) is an event-driven digit-al-logic simulator that runs on the IBM PC and compatibles. You start a simulation by calling up a net list
that's generated by the vendor's OrCAD/SDT (schematic design tools) package. OrCAD/VST then links the design and builds the simulation model. Next, you use the menus to specify as many as 200 input stimuli and to define the signals the program is to trace. Because the program uses a virtual screen, you can display as many as 50 signals or buses and place as many as three markers on the screen. When running on an $8-\mathrm{MHz}$ $\mathrm{PC} / \mathrm{AT}$, the program can handle as many as 10,000 events $/ \mathrm{sec}$. The program comes with a library that includes models of all popular TTL, ECL, CMOS, and memory devices. You can add new models to the library with the aid of the compo-nent-modeling program supplied with OrCAD/VST. $\$ 995$.

OrCAD Systems Corp, 1049 SW Baseline St, Suite 500, Hillsboro, OR 97123. Phone (503) 640-5007.

Circle No 412

Series CV Compact Economy Switchers

Compare to LH Series TMF!
More power! Better specs! Better prices!

Now for a limited time - purchase small quantities @ 100 piece price!

Call Toll Free 1-800-523-2332
Derticorl Po. Box 1369 \# WISSAHICKon Avenve. north wales. PA 19954

Computers and Peripherals

MIL-spec (left) and ruggedized (above) versions of the
Data General MV 8000 Series computer
(Rolm Mil-Spec Computers)

Low-cost, rugged commercial computers fit military needs

> To let your military application take advantage of the wealth of software and sup-port-such as field service and peripherals -that exists for commercial computers, you can use either a MIL-spec or a ruggedized version of a commercial computer system. Which type you choose will depend on a number of cost/performance tradeoffs.

Margery S Conner, Regional Editor

A number of commercial minicomputers and microcomputers are available in MIL-spec and ruggedized versions that you can use in certain military applications. Most of these computers are available as complete systems, but some come as boards. MIL-spec and ruggedized computers have three main advantages over systems based on specialized military architectures. First, the MIL-spec or ruggedized boards are built from more current technology. Second, many hardware and software engineers are familiar with the architectures of these commercial boards, and finally, field service for them is easier to arrange.

When you choose between a MIL-spec version and a ruggedized model, you'll face certain tradeoffs. MILspec versions have the advantage of meeting the environmental and manufacturing requirements of all the branches of the US military. However, they cost more and are based on less-current technology than versions that are merely ruggedized. A ruggedized version lets you take advantage of the most current technology at a considerable cost savings. However, these products are limited to non-mission-critical applications. You can use Tables 1 and 2 to compare the specifications and prices for a representative sample of MIL-spec and ruggedized commercial computer systems.

The cost and lead-time premium you'll incur when
you buy a MIL-spec computer board results from the design, manufacturing, and test requirements inherent in military-qualified systems. A MIL-spec version must meet the performance specifications of its commercial counterpart, while being built entirely from scratch with all-MIL-spec components. The assembly and test processes are also controlled by military specifications. Because most of the commercial computers employ proprietary ICs, the manufacturer of the MIL-spec version not only incurs the time delay associated with developing a complicated MIL-spec IC, but also must foot licensing and developmental costs for the proprietary parts.

You have good reason to question quality

Historically, the military hasn't used commercially available components and equipment; the parts were often unreliable because of manufacturing problems in the semiconductor industry. Military-qualified electronics equipment couldn't be unreliable; it had to meet design and manufacturing requirements that ensure that the equipment would not fail because of a harsh environment. Commercial systems were also not suitable for military use. The commercial sector did not design systems to maintain their performance specs under worst-case conditions, a practice the military

> Ruggedized computers cost about half what a MIL-spec version costs and yet use morecurrent technology.
normally follows. These factors combined to produce systems that were too unreliable for use in harsh environments.

MIL-spec procedures evolved to enforce worst-case analysis, manufacturing control, and documentation of all the associated steps of producing products to be sold to the military. This regimen forces a manufacturer who sells systems to the military to follow good design and manufacturing practices and prove that it's following them.
Both design and manufacturing procedures are changing in the commercial electronics industry, however. As the gate capacity of off-the-shelf, custom, and semicustom ICs increases, the number of pc-board interconnects decreases and the reliability over the life of the product increases. In addition, CAD tools at both the IC and the board level enforce good, consistent design practices. And the need to remain competitive is now forcing commercial manufacturers to produce highquality, reliable products, which in turn requires good manufacturing practices. In sum, the pressures of the market are prompting manufacturers of commercial
products to use military design and documentation standards.

Analog Devices (Norwood, MA), for example, a major manufacturer of linear devices for military as well as commercial applications, makes both the commercial and the MIL-spec versions of its parts on the same production line. Yet the military parts cost more, the company admits frankly, because of the additional cost of military documentation and testing. Indeed, you might surmise that the single largest item produced by the defense industry is paper.

In an attempt to combine higher-quality commercial parts with MIL-spec manufacturing techniques, Raytheon is preparing to offer DEC VAX-compatible computers in three versions: standard, extreme, and hardened. The standard version will use screened and burned-in commercial-grade components; it will also meet or exceed the requirements of MIL-E-16400 class 4 (shipboard sheltered). The extreme system will be a high-reliability implementation that uses MIL-STD883B or higher-grade components and meets or exceeds the requirements of MIL-E-16400, MIL-E-4168, and

TABLE 1-REPRESENTATIVE MIL-SPEC COMMERCIAL COMPUTERS

MANUFACTURER	MODEL	COMMERCIAL VERSION	TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	HUMIDITY	ALTITUDE (FT)	VIBRATION	OUTSIDE DIMENSIONS (IN.)	WEIGHT (LBS)
AEROFLEX LABORATORIES	ARX 3/50	SUN 3/50	$-55 \mathrm{TO}+85^{\circ} \mathrm{C}$	$100 \%^{3}$	70,000	$\begin{gathered} 10 \mathrm{G}, \\ 5 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$7.56 \times 10.12 \times 10.44$	20
MILTOPE CORP	TAC-PC	IBM PCIAT	$\begin{aligned} & -20 \mathrm{TO}+60^{\circ} \mathrm{C} \\ & -40 \mathrm{TO}+71^{\circ} \mathrm{C}^{2} \end{aligned}$	$95 \%{ }^{4}$	$\begin{aligned} & 16,000^{1} \\ & 50,000^{2} \end{aligned}$	$\begin{gathered} 5 \mathrm{G} \\ 50 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$12.25 \times 15.0 \times 19.65$	65
NORDEN SYSTEMS	MIL VAX II	DEC MICROVAX II	$\begin{aligned} & -54 \mathrm{TO}+55^{\circ} \mathrm{C}^{1}, \\ & -62 \mathrm{TO}+85^{\circ} \mathrm{C}^{2} \end{aligned}$	$100 \%^{3}$	35,000	$\begin{gathered} 5 \mathrm{G}, \\ 5 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$7.62 \times 10.12 \times 19.62$	$\begin{gathered} 50 \mathrm{TO} \\ 90 \end{gathered}$
ROLM MIL-SPEC COMPUTERS	1900 HAWK/32 SERIES	DATA GENERAL MV 8000	$-55 \mathrm{TO}+71^{\circ} \mathrm{C}$	95\% ${ }^{4}$	70,000	5 TO 2000 Hz	$7.68 \times 12.62 \times 22.97$	$\begin{gathered} 90 \\ \text { (MAX) } \end{gathered}$
TITAN/SESCO	$\begin{aligned} & \text { SECS-80 } \\ & 500 \text { MCS } \\ & \text { SERIES } \end{aligned}$	INTEL iSBC	$-55 \mathrm{TO}+71^{\circ} \mathrm{C}$	100\% ${ }^{3}$	70,000	$\begin{gathered} 10 \mathrm{G}, \\ 5 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$9.44 \times 14.95 \times 13.38$	36
	SECS $286{ }^{5}$	INTEL iSBC 80286-BASED	$-55 \mathrm{TO}+71^{\circ} \mathrm{C}$	-	-	-	-	-
	$\text { SECS } 186^{5}$	INTEL iSBC 80186-BASED	$-55 \mathrm{TO}+71^{\circ} \mathrm{C}$	-	-	-	-	-
NOTES: 1. OPERATING 4. NON 2. NONOPERATING 5. SIN 3. CONDENSING	NCONDENSI	COMPUTER						

MIL-spec version of Sun system (Aeroflex Laboratories)

MIL-E-5400T class 2. The hardened computers will be able to survive tactical levels of nuclear weapons effects (NWE). The three versions will be available in 1988.

If a MIL-spec computer is too expensive for your application, consider a ruggedized computer. Unlike products that meet military specifications, ruggedized

MAX MEMORY (BYTES)	OPERATING SYSTEM	PRICE	
16 M	UNIX	$\$ 25,000$ TO $\$ 35,000$	COMMENTS

equipment is commercial equipment that's purchased from a commercial vendor and repackaged to be able to operate in harsh environments.

As an analogy for the difference between a ruggedized version of a computer and a MIL-spec version, consider a raw egg. Engineering students demonstrate the ruggedized-packaging approach each year during Engineering Week when they design a package that enables a fresh egg to withstand a drop of about 100 feet. The egg has been ruggedized. A MIL-spec version of the egg would require the chicken (the original manufacturer) to license the engineering students to design and manufacture a substance that would perform the function of a raw egg, yet meet the environmental condition of surviving a $100-\mathrm{ft}$ drop.

Keep in mind, however, that there's no set definition of ruggedization. In general, the systems covered in Tables 1 and 2 contain commercial pc boards and have ruggedized chassis, board mounts, power supplies, and peripheral equipment. The ruggedized parts (Table 2) meet some version of various environmental MIL specs. For example, all the systems meet MIL-STD810D requirements for shock resistance of as much as 15 g while operating and 20 g while not operating, and resistance to vibration inputs of 2 g applied in a sinusoidal manner. And in every system listed, all internal cabling is coated with Teflon rather than with PVC. You'll need to check the specification sheets of the particular ruggedized system you're considering to make sure it will meet your application's requirements.

As mentioned, a ruggedized computer is less expensive and can incorporate more current technology than a MIL-spec version. Joel Avery, product manager for Rolm Mil-Spec Computers, estimates that a manufac-

Market demand for higher quality has increased the quality of commercial electronics equipment.
turer can bring a ruggedized version of a commercially available computer to market in three to nine months, while a full-MIL-spec version requires 18 months to three years. The cost of the ruggedized version will be about 50% of the cost of the MIL version. Under license from Data General, Rolm makes both a MIL-spec and a ruggedized version of its Hawk/32 series of Data General MV 8000 Series computers. The MIL-spec Model 1900 measures $7.68 \times 12.62 . \times 22.97 \mathrm{in}$. and costs $\$ 175,000$. The ruggedized Model 2900 measures $8.75 \times 19 \times 24 \mathrm{in}$. and costs $\$ 88,000$.

Remember the commercial market's volatility

As you consider MIL-spec and ruggedized computers, be aware that some drawbacks accompany the advantages of buying on the commercial market. That market is volatile, after all, so commercial products, likewise, are subject to rapid change. This idea runs counter to the military philosophy of retaining control over equipment changes. For example, suppose that you're designing a system that will incorporate a ruggedized version of an IBM PC-compatible chip set. If
your product will have a manufacturing lifetime of, say, 10 years, you'll need to be sure that the chip set will still be available in 10 years. In the fast-changing personalcomputer market, however, it's quite possible that the chip set won't last that long. The military market has not tolerated such fast-paced change.

One solution to this problem would be for the ruggedizing company (the OEM) to retain a manufacturing license from the original manufacturer of the commercial product. If the commercial company ceases to manufacture the product, the ruggedizing company would then have the right to do so. However, this event could cause sharp increases in the OEM's equipmentproduction costs.

CAD/CAE tools promote quality

Because commercial IC and component manufacturers are increasingly using CAD/CAE tools, however, the problems of discontinued parts and of less-thanrigorous design practices are diminishing. Not only do these tools make it feasible for the manufacturers to design and make semicustom chips, but they also prom-

TABLE 2-REPRESENTATIVE RUGGEDIZED COMMERCIAL COMPUTER SYSTEMS

MANUFACTURER	MODEL	CPUs SUPPORTED	TEMPERATURE (${ }^{\circ} \mathrm{C}$)	HUMIDITY	Altitude (FT)	VIBRATION	OUTSIDE DIMENSIONS (IN.)
MDB SYSTEMS	RCS MODEL 21P	DEC LSI $11 / 73$ PDP $11 / 83$ MICROVAX II	$\begin{gathered} 0 \mathrm{TO} 50^{\circ} \mathrm{C}^{1} \\ -30 \mathrm{TO}+70^{\circ} \mathrm{C}^{2} \end{gathered}$	90\% ${ }^{4}$	10,000	$\begin{gathered} 2 \mathrm{G}, \\ 50 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$17 \times 17 \times 23.5$
MILTOPE CORP	TIGER	IBM PCIAT	$\begin{aligned} & -10 \mathrm{TO}+55^{\circ} \mathrm{C}^{1} \\ & -55 \mathrm{TO}+71^{\circ} \mathrm{C}^{2} \end{aligned}$	95\% ${ }^{4}$	$\begin{aligned} & 15,000^{1} \\ & 40000^{2} \end{aligned}$	$\begin{gathered} 2 \mathrm{G} \\ 50 \mathrm{TO} \\ 2000 \mathrm{~Hz} \end{gathered}$	$7.0 \times 17.62 \times 24.5$
NORDEN SYSTEMS	RUGGED PDP-11	DEC PDP-11	$\begin{gathered} 0 \mathrm{TO} 50^{\circ} \mathrm{C}^{1} \\ -40 \mathrm{TO}+70^{\circ} \mathrm{C}^{2} \end{gathered}$	90\% ${ }^{4}$	$\begin{aligned} & 10,000^{1} \\ & 40,000^{2} \end{aligned}$	$\begin{gathered} 1.4 \mathrm{G}, \\ 10 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$12.25 \times 16.87 \times 23.00$
ROLM MIL-SPEC COMPUTERS	$\begin{aligned} & 2900 \\ & \text { HAWK/32 } \\ & \text { SERIES } \end{aligned}$	DATA GENERAL MV 8000	$\begin{gathered} 0 \mathrm{TO} 55^{\circ} \mathrm{C}^{1} \\ -40 \mathrm{TO}+85^{\circ} \mathrm{C}^{2} \end{gathered}$	95\% ${ }^{4}$	10,000	$\begin{gathered} 2 \mathrm{G}, \\ 20 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$8.75 \times 19.0 \times 24.0$
RUGGED DIGITAL SYSTEMS	R/630	DEC MICROVAX II	$\begin{gathered} 0 \mathrm{TO} 50^{\circ} \mathrm{C}^{1} \\ -40 \mathrm{TO}+70^{\circ} \mathrm{C}^{2} \end{gathered}$	10 TO 90\%	$\begin{aligned} & 10,000^{1} \\ & 40,000^{2} \end{aligned}$	$\begin{gathered} 2 \mathrm{G}, \\ 50 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$12.25 \times 19.0 \times 22.5$
	R/8250	$\begin{gathered} \text { DEC } \\ \text { VAX } 8250 \end{gathered}$	$\begin{gathered} 0 \mathrm{TO} 50^{\circ} \mathrm{C}^{1} \\ -40 \mathrm{TO}+70^{\circ} \mathrm{C}^{2} \end{gathered}$	10 TO 90\%	$\begin{aligned} & 15,000^{1} \\ & 40,000^{2} \end{aligned}$	$\begin{gathered} 2 \mathrm{G}, \\ 50 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$12.25 \times 19.0 \times 21$
	R/1184	$\begin{gathered} \text { DEC } \\ \text { PDP } 11 / 84 \end{gathered}$	$\begin{gathered} 0 \mathrm{TO} 50^{\circ} \mathrm{C}^{1} \\ -40 \mathrm{TO}+70^{\circ} \mathrm{C}^{2} \end{gathered}$	10 TO 90\%	$\begin{aligned} & 15,000^{1} \\ & 40,000^{2} \end{aligned}$	$\begin{gathered} 2 \mathrm{G}, \\ 50 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$12.25 \times 19.0 \times 21.5$
TRILOBYTE COMPUTER CORP	TRILOBYTE V	IBM PCIAT	$\begin{gathered} 0 \mathrm{TO} 55^{\circ} \mathrm{C}^{1} \\ -45 \mathrm{TO}+65^{\circ} \mathrm{C}^{2} \end{gathered}$	$100 \%{ }^{3}$	10,000 ${ }^{1}$	$\begin{gathered} 4.5 \mathrm{G} \\ 5 \mathrm{TO} 2000 \mathrm{~Hz} \end{gathered}$	$15.75 \times 16.87 \times 25.0$
	TRILOBYTE IV	$\begin{gathered} \text { DEC } \\ \text { VAX 11/780 } \end{gathered}$	$\begin{gathered} 0 \mathrm{TO} 50^{\circ} \mathrm{C}^{1} \\ -33 \mathrm{TO}+71^{\circ} \mathrm{C}^{2} \end{gathered}$	90\% ${ }^{4}$	10,000	$\begin{gathered} 4.5 \mathrm{G} \\ 5 \text { to } 2000 \mathrm{~Hz} \end{gathered}$	$12.25 \times 19.0 \times 22.5$

NOTES:
$\begin{array}{ll}\text { 1. OPERATING } & \text { 3. CONDENSING } \\ \text { 2. NONOPERATING } & \text { 4. NONCONDENSING }\end{array}$
ulgate tighter design rules than you could previously count on from the commercial sector.

Further, the government actually favors the use of nondevelopmental items (commercial equipment) for certain applications as long as the equipment meets performance requirements. This endorsement has coincided with the military's emphasis on C^{3} (communication, control, and command) equipment. Because it's typically deployed in noncombat stations, C^{3} equipment can often take advantage of the cost savings afforded by ruggedized equipment. Because C^{3} equipment is deployed in noncombat stations, it doesn't always have to meet strict MIL specs; instead, it can be ruggedized. These two factors have prompted several companies to introduce new ruggedized products.

Don't assume that ruggedization will become the predominant trend in military electronics, however. Equipment intended for mission-critical applicationswhich usually means combat situations-must be able to tolerate environmental extremes. For example, you can't rely on outside air for cooling pc boards inside a system intended for a combat environment. The air in a

WEIGHT (LBS)	PRICE	COMMENTS
80 TO 100	$\begin{gathered} \$ 55,000 \mathrm{TO} \\ \$ 61,000 \end{gathered}$	INCLUDES RX50 FLOPPY-DISK DRIVE AND REMOVABLE RD53 HARD-DISK DRIVE
35	\$14,000	RUGGEDIZED HEWLETT-PACKARD VECTRA
<100	$\begin{gathered} \$ 50,000 \text { TO } \\ \$ 125,000 \end{gathered}$	
72 TO 80	\$88,000	RUGGEDIZED VERSION OF MODEL 1900
65 TO 100	$\begin{aligned} & \text { \$75,000 } \\ & \text { (TYPICAL } \\ & \text { SYSTEM) } \end{aligned}$	
90 TO 105	$\begin{array}{\|c\|} \hline \$ 150,000 \mathrm{TO} \\ \$ 300,000 \end{array}$	R/8350 VERSION AVAILABLE WITH TWO R/8250 CPU BOARDS
90 TO 105	$\begin{gathered} \$ 100,000 \text { TO } \\ \$ 125,000 \end{gathered}$	
80	\$5950	INCLUDES ZENITH PASSIVE BACKPLANE AND PROCESSOR, MEMORY, AND MULTIFUNCTION BOARDS
70	\$30,320	INCLUDES RD53 HARD-DISK DRIVE, TK50 TAPE DRIVE, AND 1M BYTE OF RAM

Rugged chassis for either a DEC Micro-PDP-11 or MicroVAX II (Norden Systems)
combat environment might contain compounds that corrode metal.

Whether an application requires MIL-spec products depends on other factors as well. On a naval vessel, for instance, the shipboard computer that handles mundane accounting tasks might well be ruggedized. But the ship's fire-control system will most likely be a MIL-spec version. Then again, even some noncombat applications require nothing less than full MIL-spec equipment. Two examples would be equipment used in space, and equipment specified to survive a nuclear blast. (Of course, humans can only be ruggedized-we have no MIL-spec humans to run the surviving equipment.)

Whether you decide on a MIL-spec or a ruggedized computer for your application, you'll find a wide assortment of equipment from a number of manufacturers to choose from, including microcomputers, single-board computers, and minicomputers.

Because of the popularity of the personal computer, the microcomputer is finding favor in military markets. Echoing its success in industrial applications, the IBM PC and its derivatives, the $\mathrm{PC} / \mathrm{XT}$ and $\mathrm{PC} / \mathrm{AT}$, are the most popular. As in the commercial sector, its popularity results from the fact that it's inexpensive and readily available, that it has abundant software support, and that a multitude of engineers are already familiar with it.

Miltope Corp has both a MIL-spec and a ruggedized version of a portable PC/AT. The MIL-spec TAC-PC includes an 80 -column, 25 -line ac plasma display and cost $\$ 25,500$. The ruggedized Tiger is based on Hewlett-Packard's Vectra PC/AT compatible and has an upgraded electroluminescent display that's compatible

Abstract

Because no formal definitions exist for ruggedization, you must check each ruggedized product's specs to make sure it will meet your application's requirements.

with IBM's Color Graphics Adapter (CGA). It has space for three half-height floppy- or hard-disk drives.

Trilobyte Computer offers the Trilobyte V ruggedized IBM PC/AT-compatible system without boards, which you can configure with any hardware you choose. Alternatively, they sell the system fully configured with a Zenith passive backplane (instead of the traditional mother board configuration) and processor, memory, and multifunction boards for $\$ 5950$.

Apple's MacIntosh II may also become popular with the military. Keep in mind that Apple (Cupertino, CA), has pursued a different approach to providing alternate sources and ruggedized versions of its Macintosh II than IBM has with its PCs. Although IBM has allowed manufacturers to clone the PC with impunity in the past, Apple has kept much tighter control over its alternate sources. Apple has signed a licensing agreement with Magnavox to provide a ruggedized version of the Macintosh II.

These MIL-spec and ruggedized microcomputers are either portable or rack mountable. If you need to embed a single-board computer in your system, consider Titan/Sesco's line of Intel iSBC-compatible boards. The SECS 80 Series-available in versions with 80286, 80186, and $8086 \mu \mathrm{Ps}$-offers a choice of operating systems: iRMX, MTOS-UX/86, and VRTX.

VRTX, a real-time operating system, is attractive because it can read and write MS-DOS files. Although MS-DOS is the most common operating system for

MIL-spec model of a portable PC/AT (Miltope Corp)
personal computers, it does not perform well in a real-time environment. And little of the available MS-DOS software is useful in a battlefield environment -few soldiers have the urge to run a spreadsheet while under fire. Battlefield programs may need to access databases generated by an MS-DOS program, however. Similarly, the data gathered on the battlefield may subsequently need to be analyzed by an MS-DOS program. VRTX allows a real-time computer to read and write such MS-DOS files.

If your deeply embedded system requires the mini-

For more information . . .

For more information on the MIL-spec and ruggedized computers discussed in this article, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

Aeroflex Laboratories Inc
35 S Service Rd
Plainview, NY 11803
(516) 694-6700
Circle No 701
MDB Systems Inc
Box 5508
Orange, CA 92613
(714) 998-6900
TWX 910-593-1339
Circle No 702
Miltope Corp
1770 Walt Whitman Rd
Melville, NY 11747
(516) 420-0200
TWX 510-221-1803
Circle No 703

Norden Systems
40 Continental Blvd
Merrimack, NH 03054
(603) 424-8200

Circle No 704
Raytheon Co
Equipment Div 528 Boston Post Rd
Sudbury, MA 01776
(617) 443-9521

Circle No 705
Rolm Mil-Spec Computers
One River Oaks Pl
San Jose, CA 95134
(408) 432-8000

TWX 310-372-5902
Circle No 706

Rugged Digital Systems Inc
328 Gibraltar Dr
Sunnyvale, CA 94089
(408) 747-1770

Circle No 707
Titan Corp
Sesco Div
20151 Nordhoff St
Chatsworth, CA 91313
(818) 709-7100

TLX 691404
Circle No 708
Trilobyte Computer Corp
1447 Catalina St
San Leandro, CA 94577
(415) 895-1100

TWX 910-350-0171
Circle No 709

Fully featured CCIII V.22 bis (2400 bps)

 modems.in 12 sq. in.

\author{

- Surface-mount manufactured
}

- Low power

- Standard or custom

\square TTL interfaced Compact 16 square inches \square Fully Hayes \ddagger command set compatible Integral adaptive equalizer in sophisticated CTS C-MOS designed signal processor \square Optional European fallback capabilities of CCITT V. 22 A/B, V. 23 and V. 21 Less than $\$ 180.00$ each in quantity.

CTS2424STH. Smallest, lowest power standard modem \square Integral adaptive equalizer in advanced CTS C-MOS designed signal processor $\square 12$ square inches \square Uses less than 1 watt power

Others offer less capability - greater size. CTS offers greater capability-less size. The choice is yours in three advanced, 2400 bps full duplex modems:

CUSTOM DESIGN. First known battery powered modem utilizing surface mount manufacturing technologies for laptop microcomputers \square Occupies less than 13 square inches Low power-consumes less than 1 watt.

CTS2424STM. Smallest available standard applications modem with MNP* error correcting Class 4 protocol

CTS Fabri-Tek, Inc. Datacomm Products Division

Data Pump Custom Designed 2400 Full Duplex Modem. Circle No. 105

TTL Interfaced 2400 bps Full Duplex Modem for Small Quantitu Users. Circle No. 106

Quadmodem Four 2400 bps Full Duplex Modems on One Board Circle No. 107

Half-Pak \#24 IBM ${ }^{\dagger}$
PC Compatible Half Card 2400 bps Modem Circle No. 108

[^10]
Turn Good Ideas Into Good Articles

With EDN's FREE Writer's Guide!
Would you like to get paid for sharing your clever engineering ideas and methods with your professional colleagues? If so, then send for EDN's new FREE writer's guide and learn how.

You don't need the skills and experience of a professional writer. And you don't need to know publishing jargon. All you do need are a little perseverance, your engineering skills, and the ability to communicate your ideas clearly.

Our new writer's guide takes the mystery and intimidation out of writing for a publication. It shows you how to write for EDN using skills you already have. Plus, it takes you step-bystep through the editorial procedures necessary to turn your ideas into polished, professional articles.

Get your FREE copy of EDN's writer's guide by circling number 800 on the Information Retrieval Service Card or by calling Sharon Gildea at (617) 964-3030.

MIL-spec 80186-based single-board computer with arithmetic coprocessor (Titan/Sesco)
computing power of a VAX, note that Raytheon expects to offer the 810, a single-board computer featuring 32-bit-wide VAX architecture. The board also has a hardware floating-point accelerator, as well as 256 k bytes of RAM and a 256 k -byte PROM. Its input and output take place either through two RS-423 serial ports or through a 13.3 M -byte/sec VAXBI I/O bus. The real-time VAXELN operating system is the only OS available for the board.

MIL-spec and ruggedized minicomputers available as systems consist of a processor board, mounting chassis, and power supply. You add memory and peripherals as needed. On the MIL-spec side, Raytheon and Norden are the DEC VAX licensees, while Rolm is the Data General MV 8000 Series licensee. Your choice of a ruggedized minicomputer includes Rugged Digital for DEC and Rolm for the Data General.
Because Rolm offers a MIL-spec and a ruggedized version of the same computer, you can change from MIL-spec to rugged or rugged to MIL-spec if your application's requirements should change. It's quite possible that after selecting one version and fieldtesting it in your application, you may decide that its environmental and reliability requirements are tighter or looser than you originally thought. The choice between a MIL-spec and a ruggedized system is a relatively new one. Until the military and its contractors gain more experience in judging the criteria used to select MIL-spec and ruggedized equipment, the ability to choose between a MIL-spec and ruggedized version of the same computer may be important.

Reference

Schultz, James B, "Ruggedized computers offer low-cost readiness," Defense Electronics, January, 1987, pg 69.

Article Interest Quotient (Circle One) High 482 Medium 483 Low 484

Acromag has solutions for interfacing A/D, D/A and Digital I/O signals to the VMEbus.

Our extensive line of VMEbus-based products handles your interfacing applications for test and measurement, industrial control, or data acquisition.

If you need to interface with industrial sensors and industry standard field signals:

DC VOLTS OR CURRENTS MILLIVOLT
THERMOCOUPLE RTD
AC VOLTS OR CURRENTS STRAIN GAUGE
PRESSURE
FREQUENCY

We have total solutions from the field wiring to the VMEbus.

PERFORMANCE

For basic A/D conversion, we've incorporated many operational features to improve overall throughput to your host processor.

For more advanced applications, Acromag's Data Acquisition Subsystem simplifies sensor interfacing and reduces host activity. So you can concentrate on processing the data while our on-board CPU handles routine tasks.

Function	In/Out	$\begin{array}{\|c} \text { Max } \\ \text { Signal Range** } \end{array}$	Features	Product
High-Speed Analog I/O	16D/32SE**in 2 out, opt.	$\pm 10 \mathrm{in} / \mathrm{out}$	12 Bit A/D, 67K chan/sec throughput 12 Bit D/A	AVME9320 AVME 9321
High-Res. Analog I/O	$\begin{aligned} & \text { 16D/32SE in } \\ & 2 \text { out, opt. } \end{aligned}$	$\pm 10 \mathrm{~V}$ in/out	14 Bit A/D, 33K chan/sec throughput 12 Bit D/A	AVME 9330 AVME 9331
Analog Out	8 out	$\pm 10 \mathrm{~V}$, Vout 4-20mA, Iout	12 Bit D/A, $6 \mu \mathrm{sec}$ Vout, $25 \mu \mathrm{sec}$ Iout, throughput	AVME9210 AVME 9215
Data Acq Controller	16D/32SE in, opt.	$\pm 10 \mathrm{~V}$	14 Bit A/D, 256 in, scans, linearizes, limit checks	AVME9100 AVME9110
Subsystem Expanders	16D/32SE in	$\pm 10 \mathrm{~V}$	High level expander	ECS9120
	16 D in	$\pm 10 \mathrm{~V}$	Filtered inputs	ECS9121
	8D/16D in	$\begin{array}{\|c\|} \hline-6 \text { to }+60 \mathrm{mV} \\ -15 \text { to }+150 \mathrm{mV} \\ \text { Thermocouple } \\ \hline \end{array}$	250 V isolation, interface for TC, RTD, and Pressure with termination panels	$\begin{aligned} & \text { ECS9142-60 } \\ & \text { ECS9142-150 } \\ & \text { ECS9142-60B } \end{aligned}$
Digital I/O	64 in/out	0-30V in/out	8 in with latch and interrupt	AVME9480 AVME9481

*SE - Single ended D - Differential
""Most inputs and outputs have programmable ranges.

Acromag ${ }^{(1)}$

30765 Wixom Road, Wixom, MI 48096
(313) 624-1541, Telex: 247354

SUPPORT PRODUCTS

Acromag's termination products interface to your field wiring using screw terminals and to the VME backplane using ribbon cable. I/O connections are at the rear of the boards.

The modular, high-accuracy analog signal conditioning system connects to any of our VME highlevel analog boards-like a termination panel. Available modules cover virtually all signal types and provide electrical isolation.
And we provide a comprehensive software support package for VERSAdos-with drivers, diagnostics, and a subroutine library in 'C'.

QUALIFICATIONS

Let Acromag's 30 years of experience in signal interfacing benefit you. When you need to interface analog or digital signals to the VMEbus, call or write today. For more information request "Acromag's Signal Interfacing Solutions for the VMEbus' bulletin.

POWER

MIZAR INTRODUCES UNISTAR-32"...THE FIRST AT\&T 32100-DRIVEN VME DEVELOPMENT SYSTEM TO UNLEASH THE FULL POTENTIAL OF UNIX.'

Mizar's new Unistar-32 VME/UNIX gives a whole new meaning to power with the most sophisticated development system available for UNIX-based software applications. It's the first super microcomputer to provide system designers with powerful mainframe performance in a multi-user, multi-tasking software development system.

A new, multi-lingual microprocessor family

AT\&T's full 32-bit set of matched WE ${ }^{\oplus} 32100 \mathrm{VLSI}$ chips form the nucleus of the Unistar- 32 central processing VME module. Designed to optimize the operation of both C high level language and UNIX System V/VME, this unique CPU module also offers you a general purpose, coprocessor interface which facilitates CPU interaction with the memory management unit and the math accelerator unit.

Now you can run UNIX at full throttle.

UNIX System V/VME was written specifically for the WE 32100 microprocessor and its family of peripherals. It has been tuned for the VME environment, undergone extensive field testing and supports more than 1500 commercially available application programs. By porting the latest UNIX system to VMEbus, the optimized 32-bit architecture is available for your applications. So you get efficient process switching and memory management, optional hardware floatingpoint capabilities and several other features not yet available on most UNIX systems.
Check out the specs on our new VME/ UNIX development system today. The open-ended VMEbus architecture in our Unistar-32 development system maximizes your potential for high speed data transfer and provides unmatched modular expandability with the use of VMEbus compatible boards. It's a high performance vehicle that can take you anywhere you want to go.

Computers and Peripherals

Color-graphics printer for PCs produces 167 cps of near-letter-quality text

The HP PaintJet is a color-graphics and near-letter-quality (NLQ) printer for PC users. It produces text and graphics with 180×180 dot/in. resolution and NLQ text at 167 cps . The thermal ink-jet printer prints an average page of text in about 40 sec and a full page of color graphics in about four minutes.

It holds black, yellow, magenta, and cyan inks and mixes them to produce red, blue, and green. The software can mix the primary colors to provide 330 hues. Sixty nozzles transfer the ink to the media, and two disposable cartridges, one for

black ink and one for color, contain the nozzles, inks, and electrical printing elements. One cartridge is capable of printing about 1.1 million characters, which translates to about 1100 pages of black text and

180 pages of color graphics.
The printer handles Z-fold and cut-sheet paper as well as transparency film in A and A4 sizes. It has 12 character sets, including Roman, Spanish, and German. An RS-232C or CCITT V. 24 interface is standard; an HPIB interface is optional. The printer weighs 11 lbs and measures $3.86 \times 17.4 \times 11.89 \mathrm{in}$. It sells for $\$ 1395$; black and color cartridges are $\$ 27.95$ and $\$ 34.95$, respectively.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 441

Bidirectional VME Bus repeater transfers data at 30 M -byte/sec rates

The 2000 Series transfers VME Bus data bidirectionally at 30 M bytes/ sec. It allows plug-and-play 32 -bit address and data expansion of VME systems (for example, the Sun III) while incurring a transfer overhead of 40 nsec . It automatically supports master or slave VME Bus cards in the primary expansion system. The board also performs all necessary system-controller operations, including system-clock-source, busarbitration, and bus-timer functions. You can configure the resident bus arbiter to support VME Bus arbitration schemes, or you can disable it if the expansion system already has an arbiter.

The series operates with any combination of release-on-request (ROR) or release-when-done (RWD) requesters in both the primary and expansion systems. This architecture enables more than two VME

Bus systems with masters to be linked in a star network. In addition, the series can handle any combination of interrupts and interrupt handlers in either the primary or the expansion chassis. A remote-daisy-chain-return feature automatically expands the interrupt-acknowledge command to include all

of the interrupters in the remote chassis when more than two VME Bus systems are linked in a star network. $\$ 1995$. Delivery, stock to six weeks ARO.

HVE Engineering Inc, 1684 Dell Ave, Campbell, CA 95008. Phone (408) 370-4666. TLX 467956.

Circle No 444

Computers and Peripherals

Security system permits developers and VARs to lease their software products

The DS1207 Timekey is a postage-stamp-size security system that enables software developers and publishers to lease their products for a predetermined time period. It features a self-erasing memory, which you can set to expire anywhere from one day to two years after the first access. When the preset time runs out, the software becomes disabled, prohibiting unauthorized use.

The device fits into the company's DS1255 Keyring and works with any IBM PC, PC/XT, PC/AT, PS/2, or compatible. You insert the Keyring into the computer's parallel port, and then plug the Timekey into the Keyring to identify an authorized user and unlock the software. Because the unit dates the software and erases its passwordprotected memory after a predetermined amount of time, software

publishers and VARs (value-added resellers) can offer their customers pay-as-you-go rentals. A gauge on
the Timekey allows the customer to monitor the time remaining on the lease.

Four partitioned memory sections in the device form barriers to ensure security. These consist of a 24 -bit section for storing the unalterable communications protocol; a 64 -bit section for software-package identification; a 64 -bit section for storing 10^{19} passwords; and a 384-bit section that's alterable only after a user presents the correct password. A random-data generator immerses the real password and other information in a stream of meaningless data to prevent unauthorized users from ascertaining the correct password. $\$ 10$ (100).

Dallas Semiconductor, 4350 Beltwood Parkway, Dallas, TX 75244. Phone (214) 450-0400.

Circle No 442

Single-board computer for the STD bus uses $7.16-\mathrm{MHz}$ CPU, offers bubble memory

A PC/XT-compatible industrial computer, the System 2 Model 5A is based on a V20 CPU running at 7.16 MHz . The single-board computer contains 128 k bytes of system RAM, a ROM disk with Microsoft's MS-DOS 3.2 and a 64 k -byte user program space, a 32 k -byte PROM containing the BIOS (basic I/O system), a battery-backed clock, an 82C54 counter/timer, an 82C59A interrupt controller, and a PC-compatible serial port.
System-expansion options include floppy-disk drives, 20 M -byte hard disk drives, 640 k bytes of system

RAM, and the company's 7350 IBM EGA (Enhanced Graphics Adapter) compatible graphics/keyboard card. Other options are available as well.

For example, the System 5 Model A supports a 360 k - or 720 k -byte bub-ble-memory disk drive from Magnesys Corp and an Arcnet LAN-interface board from Contemporary Control Systems. The Arenet option permits the user to interconnect units over a 2.5 M -bps data link. Including the card, 3 -slot card rack, cables, and documentation, the System 5 Model A costs $\$ 1045$; card only, $\$ 850$.
Pro-Log Corp, 2560 Garden Rd, Monterey, CA 93940. Phone (800) 538-9570; in CA, (408) 372-4593.

Circle No 451

Computers and Peripherals

VME Bus LAN controller specs data transfers of 30 M bytes $/ \mathrm{sec}$

The V/Ethernet 4207 Eagle, a VME Bus board for Ethernet communications, is a $16-\mathrm{MHz} 68020$-based platform capable of DMA transfer rates exceeding 30 M bytes/sec. All data paths are 32 bits wide. The node controller enhances its data-transfer capability by decoupling the 68020 and its local $32 \mathrm{k} \times 32$-byte scratchpad RAM from the data bus, which passes data from Ethernet to the VME Bus via transceivers.

Pipeline registers prevent the controller's Lance communication processor chip from locking up the local data bus as it controls the data flowing to and from Ethernet. A 1k-byte Buspacket FIFO buffer

provides $40-\mathrm{nsec}$, single-cycle data transfers to the VME Bus from a 512k-byte block of RAM located on the local data bus.

You can store diagnostics and protocol codes in the Eagle's 64k bytes of EPROM. The board also has 32 bytes of nonvolatile RAM for boot
routines. The controller can operate in one of three modes: DMA, slave, or mixed. In the DMA mode, the controller is the bus master, executing commands received from the host CPU. In the slave mode, the host CPU on the VME Bus controls the bus and the reads and writes into the controller's RAM. In the mixed mode, the CPU and the controller share control of the bus; the CPU determines where to move the data, and then the controller moves it. \$3495 (100).

Interphase Corp, 2925 Merrell Rd, Dallas, TX 75229. Phone (214) 350-9000.

Circle No 445

VME Bus single-board computer fills its 68030 cache with no wait states

Suited for use in real-time, multiprocessor, and Unix systems, the PME 68-32 incorporates a $68030 \mu \mathrm{P}$ and 4 M bytes of dynamic RAM. You have the option of adding a 68882 or 68881 math coprocessor. The board's VME Bus interface conforms to IEEE-P1014 Rev D. VME Bus system-controller functions include a 4 -level arbiter and a 7 -level interrupt handler.

The PME 68-32 operates at processor clock frequencies as high as 33 MHz . The onboard dynamic RAM is dual-ported to the VME Bus and the $68030 \mu \mathrm{P}$, but you can configure it in 1 M -byte blocks for local access only. The 68030 can fill its internal cache from the dynamic RAM without incurring wait states. Part of the RAM is set aside to

provide a mailbox memory with mailbox interrupt capabilities.

You can also remotely reset the board by addressing a dual-port RAM location. Each of the board's two 32-pin JEDEC-compatible memory sockets can accommodate as much as 128 k bytes of EPROM; optionally, one of them can accept a maximum of 32 k bytes of static RAM.

The PME 68-32 has two softwareprogrammable synchronous/asynchronous serial ports, which you can configure as either RS-232C or RS-422 interfaces. An expansion connector, which carries the company's PEX 8-bit local-bus-extension interface, allows you to expand the board's functionality. A $16-\mathrm{MHz}$, 1 M -byte version costs approximately $\$ 6000$.

Plessey Microsystems Ltd, Water Lane, Towcester, Northants NN12 7JN, UK. Phone (0327) 50312. TLX 31628.

Circle No 454
Plessey Microsystems, 1 Blue Hill Plaza, Pearl River, NY 10955. Phone (914) 735-4661. TWX 710-541-1512.

Computers and Peripherals

Graphics-controller board can achieve 8M-pixel/sec line-drawing speeds

The Presto graphics-controller board for IBM PC/ATs and compatibles uses the 32 -bit TI 34010 chip running at 50 MHz to process 3 to 5 MIPS. For long vectors, its linedrawing speed is 1.25 M pixels/sec, but an optional line-drawing engine accelerates this rate to greater than 8 M pixels $/ \mathrm{sec}$. The 34010 also permits the programming of features such as software real-time pan and zoom and display-list processing.

The board comes with 512 k bytes of dynamic RAM, which is expandable to 4.5 M bytes. An additional 2 M or 4 M bytes of memory is available via a memory-expansion option. The board also has 32 k bytes of

ROM. It has two command sets: the Pepe command set, which ensures compatibility with the company's second-generation product; and the Professional Graphics Language (PGL) command set.

Different models provide noninterlaced resolutions of 1280×1024
pixels or 1024×768 pixels. Color choices range from 16 from a palette of 4096 to 256 from a palette of 16.8 million. The Presto board also allows real-time updating of a proc-ess-monitoring display and 3-D object rotation. Prices vary from $\$ 2395$ for versions with 1024×768 pixel resolution and 16 colors, to $\$ 3150$ for models with 1280×1024 pixel resolution and 256 colors. The line-drawing-engine option costs $\$ 425$.

Vectrix Corp, 2606 Branchwood Dr, Greensboro, NC 27408. Phone (800) 334-8181; in NC, (919) 2880520. TLX 574417.

Circle No 443

PC/AT bus adapter transfers data to host at 10M bytes $/ \mathrm{sec}$

The AHA-1540 SCSI host adapter board for the PC/AT sends bursts of data across the host bus at rates as high as 10M bytes/sec. Furthermore, it performs 2M-byte/sec asynchronous transfers and 5M-byte/sec synchronous transfers to SCSI bus peripherals.

The board has a mailbox architecture to implement multitasking in the I/O subsystem. The host CPU communicates with the host adapter through 255 memory-resident mailboxes. Each mailbox represents a task currently active in the I/O subsystem. The host adapter only interrrupts the host CPU on completion of a task. In MS-DOS applications, the host adapter emulates a standard PC/AT bus disk controller.

The board can also operate as a

PC/AT bus master. The SCSI transfer rate results from the company's AIC-6250 SCSI protocol IC residing on the board. The host adapter includes disconnect/reconnect, arbitration, and command-linking and -queuing features. It also can recog-
nize synchronous and asynchronous peripherals concurrently tied to the bus. $\$ 285$ (100).
Adaptec Inc, 580 Cottonwood Dr, Milpitas, CA 95035. Phone (408) 432-8600.

Circle No 448

Computers and Peripherals

Single controller board allows 96 RS-232C devices to connect to VME Bus

The Deltalink controller board provides an inexpensive means of connecting a VME Bus system to as many as 96 different RS-232C devices. It consists of three units: the Deltalink Hub (MVME336), which is a double-height VME controller board; the transition module (MVME751), which mounts on the VME Bus; and the Deltalink Server (SYS336M16-1), which can be a maximum of 800 ft from the VME system. The Deltalink Hub contains six Motorola MC68605 controller chips that interface with the transition module.
The controller board permits 12 concurrent DMA channels to oper-

ate between the controller chips and the 128 k -byte, onboard global RAM. It also provides 32-bit-wide transfers over the VME Bus and selectable 24- and 32-bit addressing. The transition module provides six output drivers for unshielded twist-
ed-pair wiring. It is intended to drive a maximum of six remotely located Servers. The Servers concurrently support 16 active RS232 C ports at rates to 19.2 k bps.

All transmissions between the Hub and Servers are 1 M bps full duplex. Characters are synchronously transmitted in HDLC-encoded (high-level data-link control) packets with cyclic redundancy checks. Together the MVME336 and the MVME751 cost $\$ 1800$; the SYS336M16-1 costs $\$ 1800$.

Motorola, Microcomputer Div, 2900 S Diablo Way, Tempe, AZ 85282. Phone (800) 556-1234.

Circle No 446

System for developing TMS320C25 code runs on IBM PCs and samples at 50 kHz

The TMS320C25 Development System is a general-purpose DSP system for IBM PCs, PC/XTs, PC/ATs, and compatibles. Using the TI TMS320C25 DSP processor running at 40 MHz , the system can serve as a development tool or an application board. It comes with 16 -bit A / D and D/A converters, which can achieve sample rates reaching 50 kHz , and an onboard sample-and-hold function.
It also comes with 16 k words of 35 -nsec (zero wait-state) RAM, expandable to 64 k words of program RAM and 64 k words of data RAM. In addition, the board has a 12 -port expansion bus that provides data, address, and control links to external hardware.
Monitor software handles single-

step, breakpoint, or full-speed operation. The software, resident on the PC host, can take data from the TI Macro Assembler/Linker and download it to the board. The system can perform signal processing that's independent of host operation.
You can order TI's TMS320C25 Macro Assembler/Linker and the
company's Signalink320 data-acquisition separately. The system, monitor software, and documentation sells for $\$ 2595$.
Spectrum Signal Processing Inc, 240 H St, Blaine, WA 98230. Phone (800) 663-8986; in WA, (604) 438-7266.

Circle No 450

Computers and Peripherals

RISC-based color-graphics workstation sustains operation of 10 MIPS

The Hitech-10 desktop workstation is based around MIPS Computer Systems' $16.67-\mathrm{MHz}$ R2000 RISC chip set and is capable of a sustained throughput of 10 MIPS. It has an 8 -plane, 1280×1024-pixel image memory that can simultaneously display as many as 256 colors from a palette of 16.7 M . A 16 - or $20-\mathrm{in}$. color monitor is also included.

The workstation comes with either Unix 4.3 BSD or Unix System V, and either an X-Windows (version 11) or News distributed window management system. Because it incorporates these industry-standard window management systems, together with optimizing compilers for C, Pascal, and Fortran, the task

of porting CAE software onto the workstation is easier. Networking facilities include Ethernet/Cheapernet interfaces that operate with

TCP/IP and NFS protocols.
The Hitech- 10 has 8 M bytes of RAM (expandable to 40 M bytes), an MS-DOS-compatible floppy-disk drive, and hard-disk-drive options that provide 95 M to 320 M bytes of internal hard-disk storage. You can also install a 60 M -byte tape cartridge. An IBM PC/AT-compatible expansion bus provides internal expansion facilities. The Hitech-10 is targeted at OEMs and VARs; you can expect end-user prices starting at $£ 25,000$.

Whitechapel Workstations Ltd, 75 Whitechapel Rd, London E1 1DU, UK. Phone 01-377 8680. TLX 885300.

Circle No 456

CPU cards for Multibus II systems allow 32-bit user expansion

The OSM-B17 and the OSM-B37 Multibus II CPU boards feature a proprietary OME (onboard module expansion) interface, a 32 -bit bus that allows you to plug in various piggyback boards to extend local memory or increase board functionality. You can design your own piggyback modules or use the company's standard modules.
The OSM-B17 has an $8-\mathrm{MHz}$ $80186 \mu \mathrm{P}$, an 82258 advanced DMA controller, and 1 M bytes of onboard dynamic RAM. Optionally, you can dual-port 512 k bytes of the dynamic RAM to the 80186 and to the Multibus II PSB bus. The OSM-B37 has a $20-\mathrm{MHz} 80386 \mu \mathrm{P}$, an 82258 A advanced DMA controller, a 64 k -byte zero-wait-state static-RAM cache,

and 2M bytes of onboard dynamic RAM. You can configure the RAM as dual-ported memory.
Both boards incorporate a mes-sage-passing coprocessor to interface to the Multibus II PSB bus, and both have resident firmware to support Multibus II's built-in self-test and power-on diagnostics. Also,
they can accommodate an optional math coprocessor. I/O facilities include serial ports, SCSI-bus/gener-al-purpose parallel ports, and Cen-tronics-compatible ports. JEDECcompatible memory sockets allow you to install as much as 256 k bytes of EPROM.

Available piggyback modules include interface boards for the company's AMS and SMP buses, an 8Mbyte memory board, and a graphics board. OSM-B17, around DM 5000 ; OSM-B37, around DM 11,000; piggyback modules start at DM 500.
Siemens AG, Zentralstelle für Information, Postfach 103, 8000 Munich 1, West Germany. Phone (089) 2340. TLX 5210025.

Circle No 457

Computers and Peripherals

Communications protocol interface connects VAXs to the Defense Data Network

The CPI 9000 communications protocol interface consists of both hardware and software and connects VAX computers to the Defense Data Network (DDN). It is certified by the Defense Communications Agency. An intelligent front-end processor offloads the standard or basic X. 25 network-level communication tasks from the host.

You can configure the board with a maximum of 512 k bytes of RAM. The CPI 9000 uses the Z8030 SCC multiprotocol serial-communication chip; two serial ports can simultaneously handle line speeds reaching 64 k bps. Six additional lower-speed serial ports are also available.

The interface incorporates all the layers of the DoD protocol architecture into three software levels. The user level executes the application layer, which consists of Telnet, FTP, and SMTP. The kernel level performs the transport and internet layer protocol (TCP/IP). The board level implements the packet, frame, and physical levels of X.25. An X. 25 DDN multiport system for the Q Bus with an Ultrix/32M operating system costs $\$ 5500$.

Simpact Associates Inc, 9210 Sky Park Ct, San Diego, CA 92123. Phone (619) 565-1865.

Circle No 452

EGA/VGA video-graphics-overlay board features 720×480-pixel resolution

The VGO-AT is an IBM PC/ATcompatible graphics and text controller board with overlay capability. This IBM EGA/VGA- (Enhanced Graphics Adapter/Video Graphics Array) compatible board has 256 k bytes of RAM, allowing it to display 16 colors from a palette of 64 and to achieve resolutions of 640×480 or 720×480 pixels.

The host CPU writes ASCII characters and bit-mapped graphics to the board's memory. The board then superimposes the memory contents onto a video signal from an external source, such as a video-disk player, a video machine, or a video camera. The VGO-AT composes the signal in such a way that the external video signal rests behind the graphics and alphanumeric characters.

The controller board's NTSC output is capable of driving large projection screens. The board converts the NTSC input signal to an RGB input signal using digital-signal processing and comb-filter techniques, and it is capable of driving fixedsync or multisync RGB monitors. It also provides an RGB-to-NTSC encoder, which allows NTSC overlay
output for broadcast applications. The VGO-AT is compatible with the US Army's EIDS video-disk-based training system and costs $\$ 1495$.

Matrox, 1055 St Regis Blvd, Dorval, Quebec, H9P 2T4, Canada. Phone (514) 685-2630. FAX (514) 685-2853.

Circle No 453

Calling all modems NEC introduces an enhanced 16-bit DSP

Whatever your modem design calls for, NEC's DSP family has the answer. We've been covering your 16 -bit needs since 1980 with our pioneering μ PD7720. For 32-bit applications, we offer the μ PD77230. And now we're bridging the gap with our enhanced 16-bit CMOS μ PD77C25.

The enhanced 77C25 gives you twice the performance of the 77C20A. 77P25 is coming soon. Twice the speed -122 ns . More than twice the memory capacity $-2 \mathrm{~K} \times 24$ instruction ROM, $1 \mathrm{~K} \times 16$ data ROM, and 256×16 data RAM. Yet the same
power consumption-0.2W max.
You can replace two 77C20As with one 77C25-with little modification in peripheral circuits. Available in 28-pin DIP or 44-pin PLCC. The 77C25 is both pin- and software-compatible at the source level with the 77C20A. Development tools are available off the shelf and the EPROM-version

For a complete answer to your modem needs, call NEC. We've got you covered from 1,200 to 19,200bps and everywhere in between.

For further information, please contact:
■ USA Tel:1-800-632-3531.
In California: 1-800-632-3532. TWX: 910-379-6985.

- Europe W. Germany

Tel:0211-650302. Telex:8589960 NE D.
The Netherlands
Tel:040-445-845. Telex:51923 NEC B NL.

Sweden

Tel:08-732-8200. Telex:13839 NECSCAN S.
France
Tel:1-3946-9617. Telex:699499 NEC EF.
Italy
Tel:02-6709108. Telex:315355 NECEIT I.
UK
Tel:0908-691133. Telex:826791 NECUK G.
\square Asia Hong Kong
Tel:3-755-9008. Telex:54561 HKNEC HX.
Taiwan
Tel:02-522-4192. Telex:22372 HKNEC TP.
Singapore
Tel:4819881. Telex:39726 NECES RS.

- Oceania Australia

Australia
Tel:03-261-6355. Telex:AAA38343 NECBCD.

Computers and Communications

Computers and Peripherals

VME Bus analog-input board offloads data-acquisition processing from host

The DVME-601, an analog-input board for the VME Bus, uses an $8-\mathrm{MHz} 68010 \mathrm{CPU}$ and 64 k bytes of private RAM to offload VME Bus host processors of all A/D scanning and math processing. The card accepts 16 single-ended or eight differential analog-input channels. Four A/D-converter modules provide resolution choices of 12,14 , or 16 bits and conversion speeds as fast as 4μ sec.
The board provides samples to the local memory at a rate of 170,000 samples/sec. Full-scale inputs over the range of 0 to $5 \mathrm{~V}, 0$ to 10 V , and ± 5 or $\pm 10 \mathrm{~V}$ are jumper selectable. An onboard instrumentation ampli-

fier is resistor programable over a gain range of 1 to 1000 .
The card also has 64 k bytes of EPROM, which is expandable to 128 k bytes, and 64 k bytes of dualported RAM, which it shares with the VME Bus. The DVME-601 uses the dual-ported RAM to transfer
data blocks, command/status information, bidirectional interrupts, and programs to be downloaded to the local RAM for execution.
A 68901 peripheral controller chip provides five external-I/O or localinterrupt bits, an RS-232C port, and four 8 -bit counter/timers. The user may run his own math programs on the board while the host performs other tasks. Operating as a VME bus slave, the DVME-601 occupies 64 k bytes of host memory. A 12 -bit, $20-\mu \mathrm{sec}$ model costs $\$ 1995$.
Datel, 11 Cabot Blvd, Mansfield, MA 02048. Phone (617) 339-9341. TWX 710-346-1953.

Circle No 447

Controller for flat-panel displays emulates operation of VT220 terminal

The C220 is a controller board for electroluminescent and ac plasma flat-panel displays. It emulates a VT220 terminal capable of driving 80 columns and 25 lines of text on 512×256-pixel, 640×200-pixel, and other matrix displays. The board includes interfaces for an RS-232C host port, a keyboard port, and a printer port. Multiple character sets for ASCII, multinational, graphics, and Hebrew, as well as four user-definable character sets, are standard.
The card can operate in two modes. The terminal mode permits a keyboard connected to the controller to bring the terminal setup parameters to the screen. Once the parameters are set, you can save them in memory for future powerups. The controller mode permits

the user to control the display from the host CPU. You can change the default parameters and store them in the controller memory for future power-ups. The printer port is bidirectional and can also function as a
modem interface. $\$ 595$ (100).
Digital Electronics Corp, 31047 Genstar Rd, Hayward, CA 94544. Phone (415) 471-4700. FAX (415) 489-3500.

Circle No 449

VME by mallix

68000/68010 Single-Height VME Systems

- ROM and Disk-based Systems
- OS-9/68000 Operating System
- Supports Hard and Floppy Drives (up to four)
- Open and fully enclosed configurations available
- Cost Effective (ROM-based Systems Under $\$ 1,800$, Disk-based Systems Under $\$ 3,400$)

For more information on our complete line of VME-bus products call or write:

MATRIX CORPORATION

1203 New Hope Road • Raleigh, NC 27610 • Phone (919) 833-2000 • Fax (919) 833-2550

System Solutions Doit Come from Boxes. They Come From Minds.

In particular, the minds at System Industries.

You see, our purpose in life isn't to see how much iron we can get into your system. It's to see how much performance we can get out of it.

So while we're the leading supplier of high performance peripheral subsystems for VAXs, we actually solve problems with software.

The software between our ears,
that is. By optimizing those resources first, we can do the same for yours.

So much so, we've helped customers who thought they needed new CPUs put off upgrading, in some cases, for years.

The same kind of thought goes into our boxes. Which means they're not just boxes.

Our plug-and-play storage subsystems are tuned to deliver higher

performance, with lower price tags.
You can also get a performance boost with our intelligent disk servers and a more intelligent clustering strategy.

We'll even serve a vertical market of one-with subsystems customdesigned to streamline your particular disk intensive application.

Every bit of this is backed up by the largest field engineering and
service organization this side of Maynard, Mass.

Nowhere, however, will you find people with more inspiration, perspiration, and dedication to bring to bear on your difficulties.

Nor more elegant solutions than the ones we provide.

For more information, call us at 800-333-2220*: And find out what we have in mind for you.

\#
 SYSTEM INDUSTRIES

Computers and Peripherals

COLOR PRINTER

The $4 / 62$ is a color dot-matrix printer designed for high-volume, letterquality printing applications. Like the vendor's $4 / 66$ unit, it can switch automatically from cut sheets to fanfold paper, without your having to remove the paper from the tractors. An 18 -wire staggered printhead lets the printer produce letterquality characters at 120 cps in a single pass. Its resolution is 60×18 dots/character; its noise level is below 55 dB .
The device prints in seven colors, and you have the option of employing as many as six of the 20 available fonts on one page. The $15.4-\mathrm{in}$. printable width permits the processing of legal documents, spreadsheets, and B-size landscape paper. The printer is compatible with the IBM Graphics Printer and the Epson JX 80. $\$ 2160$.

Honeywell Bull Italia, 120 Howard St, Suite 800, San Francisco, CA 94105. Phone (415) 974-4340. Circle No 625

RASTER DISPLAYS

The GR-4400 Series furnishes 2-D and 3-D raster-display systems. Each model includes a $19-\mathrm{in}$. noninterlaced monitor, a 68000 -based $\mu \mathrm{P}$ with custom-designed gate arrays, and a keyboard. They each have two color-display modes. The GR-4406 performs 2-D wireframe transformations at a rate of 300,000 vectors/sec. The GR-4416 performs 3-D wireframe transformations at 400,000 vectors/sec and features a memory scheme that permits dynamic updating during real-time operations.

The basic unit comes with 0.5 M bytes of dynamic RAM, which is expandable to 4.5 M bytes in the GR4406 , and to 6.5 M bytes in the GR4416. In normal display mode, each system can display a 1280×1024 pixel image with as many as 1024 colors from a palette of 16 million. In full-color mode, each model can display the full 16 million colors but with a resolution of 640×512 pixels. Each display's communication interfaces include Ethernet, Cheapernet, 16 -bit parallel, RS-232C, and RS-449. Two software application packages are available. $\$ 20,950$ to $\$ 52,000$.

Seiko Instruments USA Inc, 1130 Ringwood Ct, San Jose, CA 95131. Phone (408) 943-9100.

Circle No 626

ANSWERING MACHINE

The CAM turns any IBM PC/XT, PC/AT, or compatible PC into a smart telephone-answering machine, according to the manufacturer. Using its onboard $\mu \mathrm{P}$, the board digitizes the caller's voice and stores it on the computer's hard disk. The device is fully operational even when the PC is running other programs. The board requires the following devices for operation: one expansion slot; MS-DOS or PC-DOS version 2.1 or higher; a hard-disk drive; a floppy-disk drive for initial program loading; a 384k-byte RAM with at least 256 k bytes of user memory; an 80 -column display and adapter; a standard telephone line capable of Touch Tone operation; and a standard Touch Tone telephone.

The board uses a proprietary voice-compression algorithm to store 1 sec of speech in 3 k to 3.5 k bytes of disk storage space. Some of the featūres include multiple-voice mailboxes, which allow you to have your own mailbox (with passwords for privacy); message forwarding, which allows the device to call you at another location and deliver the message as it is received; call trans-
fer, which allows you to transfer calls to another extension instead of leaving a message; and remote operation, which lets you change almost any system parameter from a remote Touch Tone telephone. $\$ 349$.

The Complete PC Inc, 521 Cottonwood Dr, Milpitas, CA 95035. Phone (408) 434-0145.

Circle No 627

A/D BOARD

The AD300 is an A/D converter board for the HP 9000 Series $200 /$ 300 workstations. The board allows data acquisition from 32 singleended or 16 differential analog inputs. It has a 4 -channel simultaneous sampling capability with 12 -bit resolution and a throughput of 200 kHz . A $\mu \mathrm{P}$ controls all onboard operations, thus unburdening the host. A 64k FIFO buffer further reduces the host's load.

An onboard channel sequencer allows the board to store a list of as many as 2048 states, each with its own channel, mode, and gain specification. An 8 -bit digital output port gives you control of external instrumentation. Two external trigger lines are provided to meet specific application requirements. One uses a rising-edge signal to initiate sampling, and the other sets a voltage level for input triggering in $20-\mathrm{mV}$ increments within the $\pm 5 \mathrm{~V}$ input voltage range. The board is programmable, using HP's GPIO protocol. $\$ 1900$.

Infotek Systems, 1045 S East St, Anaheim, CA 92805. Phone (714) 956-9300.

Circle No 628

Gates Energy Products has purchased GE's Battery Business Department, making us the world's largest source of sealed rechargeable batteries.

What does this mean to you?
That Gates is dedicated to providing you with the best rechargeable batteries in the world.
Gates now has the technology and resources to offer the largest selection of rechargeable batteries including nickel cadmium, nickel hydrogen and sealed lead batteries-from .065Ah to 300Ah.

Leading the technological advancements at Gates is our new GEMAX ${ }^{\text {™ }}$ Series of nickel cadmium cells. These cells are providing more run time and maximizing power delivery in all product applications by incorporating higher capacities and lower internal resistance.

As a result of GEMAX technology, Gates now offers the world's highest capacity, production-volume Sub C cell at 1.4 Ah (1-hour rate). And more advancements are on the way.

Our commitment to supply batteries tailored to your specific applications is
yet another aspect of our determination to make sure that Gates batteries are superior.
No other rechargeable battery company in the world is taking such dramatic steps to perfect and expand their rechargeable battery products as the new Gates. It's time you discovered the difference.
For more information worldwide, contact one of the Gates Regional Sales Offices listed below.

EASTERN U.S.
1 Prestige Dr. Meriden, CT 0645 (203) 238-6840

SOUTHERN U.S. 1835 Savoy Dr. Suite 200 Atlanta, GA 30341 (404) 458-8755

PACIFIC AND ASIAN 3706 A Shun ASIAN 200 Connaught Rd Centre 200 Connaught Rd. Centra Hong Kong 11-852-5-403073

EUROPE
EUROPE
Loomer Rd. Industrial Estate Chesterton
Newcastle-under-Lyme
Newcaste-under-Lyme
Staffs. ST5 7LB, Great Britain
Staffs. STJ 7B, Gr

WESTERN U.S.	CENTRAL U.S.
4063 Birch St. \#130	2860 S. River Rd.
Newport Beach,	Suite 401
CA 92660	Des Plaines, IL 60018
(714) $852-9033$	(312) $827-9130$

© 1987 Gates Energy Products, Inc

Computers and Peripherals

VME BUS MODULE

The XVME-682 VME Bus PC/AT processor module is a 2 -card set that brings PC/AT compatibility to the VME Bus. It has a $10-\mathrm{MHz} 80286$ $\mu \mathrm{P}$ and can perform as a VME Bus master and interrupt handler. A PC/AT bus expansion is optional at the VME Bus P2 connector. The board's features include 1 M to 4 M bytes of dual-port RAM, a ROMresident BIOS, a battery-backed time-of-day clock, facilities for an 80287 math coprocessor, two serial ports, a Centronics parallel interface, a keyboard interface, and a watchdog timer.

In addition, the board has a hard/ floppy-disk-drive controller and an EGA/CGA (Enhanced Graphics Adapter/Color Graphics Adapter) graphics controller. A local bus unites the 2 -board architecture and allows direct communication with EGA/CGA or disk-drive-controller circuitry without tying up the VME Bus. The board can address its local memory as well as 16M bytes (A24) of VME Bus address space. $\$ 2800$.
Xycom, 750 N Maple Rd, Saline, MI 48176. Phone (313) 429-4971.

Circle No 633

PROTOCOL CONVERTER

The SmartNet 5250/T protocol converter allows as many as seven asynchronous devices to be connected to IBM Systems $34 / 36 / 38$ or 5294 minicomputers. It attaches to the computer via a standard 2 -conductor shielded twinax cable and can be located as far as 5000 ft away. The device supports more than 45 asynchronous terminal types, including IBM 3161/62/63/64, DEC VT100/ VT102/VT220, C Itoh 7103, Lear Siegler, Adds Viewpoint and Viewpoint 60+, Hazeltine, Televideo, and Wyse.

Video and editing features let you use 132 -column $\times 27$-line asynchronous displays to emulate IBM 3180 Model 2 terminals. The unit also supports seven colors, thus allowing asynchronous color displays to emulate IBM 5292 Model 1 terminals. The converter can run with parallel and serial printers such as IBM's Proprinter XL, Quietwriter 2, Wheelprinter, 3812 Pageprinter, HP LaserJets, and Okidata or Epson FX 80/85. \$2595.

PCI Inc, 26630 Agoura Rd, Calabasas, CA 91302. Phone (818) 8805704.

Circle No 635

DATA TRANSPORTER

The IV-3272 FSDT (full-speed data transporter) is a data module for the VME Bus. It allows data transfers across the bus at 40 M bytes $/ \mathrm{sec}$. The module achieves this speed by using 32-bit transfers, address pipelining, and slave modules that return the DTACK command within 30 to 50 nsec. You specify transfers by writing a software routine (a transfer parameter block, or TPB) to an onboard location.

The TPB includes information on the source, destination, type, and length of the transfer. The TPB may also contain a pointer to the next TPB, thus allowing sequential transfers. Flexible bus-release modes make the transporter useful in multiprocessor systems as a dedicated message passer. The board also contains a TMS32010 DSP chip, which can analyze data as transfers occur. $\$ 2365$ (100).

Ironics Inc, 798 Cascadilla St, Ithaca, NY 14850. Phone (607) 277 4060. TLX 705742.

Circle No 634

2400-BPS MODEM

The Practical Modem 2400 SA is a $2400-\mathrm{bps}$ stand-alone modem that is fully Hayes compatible. It can store as many as 10 telephone numbers for automatic dialing and has features such as an automatic answer
mode, echoplexer, speaker volume, and half- or full-duplex operation. You select the number of times the phone rings before the modem answers. The dial features include Touch Tone or pulse; programmable pause interval; and originate call from answer mode.

The modem meets the following standards of operation: CCITT at 2400 bps , Bell 212A at 1200 bps , and Bell 103 at 300 bps . It operates with the Hayes command set, which allows a computer or terminal to control the modem, using communications software through an RS-232C interface. The modem measures $10.5 \times 5.5 \times 1.3 \mathrm{in}$. and is designed to fit under a telephone. $\$ 239$.

Practical Peripherals, 31245 La Baya Dr, Westlake Village, CA 91362. Phone (818) 991-8200. TWX 910-336-5431.

Circle No 636

CRT TERMINAL

The CIT310 DEC-compatible terminal can connect to two hosts for simultaneous operation. In effect, it acts like two complete CIT224 terminals. Two separate cable connections allow dual sessions between a central DEC VAX or MicroVAX II computer and a remote computer connected via a modem or a LAN. In the dual-session mode, the screen can be split horizontally, allowing you to select the percentage of display devoted to each session. Each host can have an independent screen display of 24 rows, and pressing the mode/session key allows you to toggle between screens. One session can display a 132 -column mode, enabling you to view spreadsheet data while the other session is in an 80column mode for word processing.

The terminal provides 1 k byte of nonvolatile memory per session for storing 180 programmable functions that are accessible through 45 function keys. The device can locally store four pages or 100 lines of screen information, and it can allocate the memory to one session or

Computers and Peripherals

split it evenly for a dual session. Viewports let you display small sections of memory; a review mode is available for line-by-line scrolling. The terminal has a $14-\mathrm{in}$. diagonal flat-screen display in soft white, amber, or green phosphors. The DIN keyboard comes with 108 keys. $\$ 749$.

CIE Terminals Inc, 2505 McCabe Way, Irvine, CA 92714. Phone (800) 624-2516; in CA, (714) 660-1421. TWX 910-595-1103.

Circle No 637

CD ROM

The XM-3100B CD ROM opticaldisk drive provides 680 M bytes of storage space and comes in a $51 / 4-\mathrm{in}$. form factor with a height of $13 / 4 \mathrm{in}$. It has an average access time of 400 msec. Its stereo-audio capability lets you use audio data to supplement text and image data; it has a SCSI interface and uses an inter-
changeable Sony cartridge. Read operations can be performed with or without an error-correction code. When an ECC is used, the bit error rate is $<1 \times 10^{-12}$. Less than $\$ 600$ (100).

Toshiba America, Disk Products Div, 9740 Irvine Blvd, Irvine CA 92718. Phone (714) 583-3108.

Circle No 638

I/O BOARDS

The DT2841 Series is a set of analog and digital I/O boards for the IBM PC/AT. The series provides 12 - or 16 -bit A/D inputs and two 12 -bit

D/A outputs. The boards use an external I/O port (called DT-Connect) to transfer data to a processor board (such as the company's DT7020 array processor); this method avoids using the slower IBM PC/AT bus.
The boards in the series differ in their analog input characteristics and throughput speeds. Inputs can be either single-ended or differential. A/D throughputs can range from 40 to 750 kHz . The two D/A channels can provide either single or dual simultaneous outputs at rates as high as $130 \mathrm{kHz} /$ channel. In addition, each board contains 16 digital I/O lines organized as two 8 -bit ports. Each port can be set for input or output transfers. Prices range from $\$ 1450$ to $\$ 2995$, depending on the model.
Data Translation Inc, 100 Locke Dr, Marlboro, MA 01752. Phone (617) 481-3700. TLX 951646.

Circle No 640

Multibus"I \& 68020: A New Standard of Power

Heurikon introduces the most powerful 32 -bit single board microcomputer for Multibus 1 .

The HK68/M120 features include:
Up to 25 MHz Motorola 68020 - Up to 4MB on-board DRAM with parity $=256 \mathrm{~K}$ EPROM Optional 68851 PMMU = Full SCSI interface $=16$-bit iSBX ${ }^{\text {™ }}$ connector $=$ iLBX $^{\text {TM }}$ memory expansion bus = Two serial ports = Optional 68881 floating point coprocessor - Mailbox interrupt support UNIX ${ }^{T / 4}$ and realtime support.

HEURIKON

Computers and Peripherals

CPU CARD

The TP23MII Multibus-II CPU card is based on a $68020 \mu \mathrm{P}$ and an optional 68881 math coprocessor and is available in two versions. The TP23MII/U4 has a 68851 PMMU (paged memory-management unit) and 4 M bytes (expandable to 16 M bytes) of onboard dynamic RAM, so it's suitable for use as a Unix programming environment. The TP23MII/R1, which has only 1M byte of dynamic RAM and no PMMU, is best suited to real-time applications.

The board has two DMA controllers, one of which controls data transfers via the Multibus-II interface's message-passing coprocessor; the other controls data transfers via the board's SCSI and iLBX-II interfaces. The board also has an iSBX interface, and you can optionally have an onboard Ethernet interface with its own DMA capabilities.

Additional onboard facilities include sockets for as much as 256 k bytes of EPROM, a battery-backed 2 k -byte static RAM and real-time clock calendar, and six RS-232C I/O ports. The board may optionally be supplied with the Unix System V. 2 operating system or a VRTX realtime kernel. Software to link VRTX and Unix, using Multibus-II transport protocols, is available. TP23MII/U4, £4800; TP23MII/R1, $£ 3300$.

Tadpole Technology plc, Titan House, Castle Park, Cambridge CB3 0AY, UK. Phone (0223) 461000. TLX 818152.

Circle No 668
Tadpole Technology Inc, 6747 Sierra Ct, Suite K, Dublin, CA 94568. Phone (415) 828-7676.

Circle No 669

CPU CARD

The M-CP386/016 is a 32 -bit Multi-bus-II CPU card based on an 80386 $\mu \mathrm{P}$ and an 82380 DMA controller, both of which operate at a clock frequency of 16 MHz . You can optionally add a $16-\mathrm{MHz} 80387$ math

coprocessor. The board has eight JEDEC-compatible 32-pin sockets for as much as 1 M byte of zero-waitstate static RAM, and four 32-pin sockets that accept as much as 1 M byte of EPROM. Additional onboard functions include two RS232C I/0 channels, and a real-time clock/calendar.
A memory-expansion connector allows you to add as much as 8 M bytes of memory, using $1 \mathrm{M}-, 2 \mathrm{M}-$, or 4M-byte piggyback memory-expansion modules. You can also provide additional memory, or I/O expansion, via the board's P2 connector, which carries the company's cCBX expansion interface. The board's Multibus-II PSB interface incorporates a message-passing coprocessor and supports the Multibus-II BIST (built-in self-test) and interconnect space functions. $£ 2950$.

Concurrent Technologies Ltd, Fairfax House, Causton Rd, Colchester, Essex C01 1RJ, UK. Phone (0206) 42996. TLX 94012560.

Circle No 664
Concurrent Technologies Inc, 25401 Cabot Rd, Suite 206, Laguna Hills, CA 92653. Phone (714) 7683332. TLX 989159.

Circle No 665

GRAPHICS BOARD

The OPAC graphics board combines two AMD QPDM quad pixel data-flow-manager ICs and a 2M-byte frame buffer to provide a high-resolution graphics subsystem for VME Bus systems. The board allows you to simultaneously display as many as 256 colors from a palette of 16.8 M
colors, using a 1280×1024-pixel resolution display with a refresh rate of 60 Hz . By cascading three OPAC boards and using VME Bus broadcast data transfers, you can program all the QPDMs in parallel. This configuration allows you to operate with 24 bits/pixel without slowing graphics operations.

Other features of the board include a text update rate in excess of 10,000 characters/sec and BitBlt operations at pixel rates in excess of 16 M pixels/sec that allow you to build an entire screen in 16 msec . Graphics commands to the board are queued in a 1 k -byte onboard FIFO buffer, relieving the host processor of the necessity to wait for the board to become available for new graphies commands. Software support for the board includes the company's QPAC software-development tools, and high-level graphics packages such as GKS. Version with one QPDM and 1 M byte of RAM, approximately $\$ 3300$; version with two QPDMs and 2M bytes of RAM, approximately $\$ 5500$.

Eltec Elektronik GmbH, Gali-leo-Galilei-Strasse 11, 6500 Mainz 42, West Germany. Phone (06131) 50630. TLX 04187273.

Circle No 666
American Eltec Inc, 569 S Marengo Ave, Pasadena, CA 91101. Phone (818) 449-1558.

Circle No 667

TRANSPUTER BOARD

The VMTM is a double-Eurocard VME Bus board that contains four T414 or T800 Inmos Transputers, each provided with 1 M byte of local memory. Point-to-point routing of the 16 Transputer links, through which the Transputers communicate, is software configurable via an IMS-C004 link switch, allowing you to modify the topology of the Transputer array. The link switching also lets you access individual Transputers via the VME Bus. External link connections let you configure a Transputer array, using multiple

Computers and Peripherals

VMTM boards, or communicate with other Transputer systems.

Program development is supported by the Occam programming language and by C, Pascal, and For-tran-77 compilers. The board is suitable for use as an accelerator for VME Bus systems or as a multiuser Transputer development system. As a development system, each board can support four users. A software-development package, Megatool, is available to support the use of the board as a multiuser Transputer development system in OS-9 VME Bus systems and in Sun
workstations operating under Unix. Populated with T414 Transputers, the VMTM board costs DM 13,800 .
Parsytec GmbH, Juelicher Strasse 338, 5100 Aachen, West Germany. Phone (0241) 1822275.

Circle No 670

TRANSPUTER BOARD

Equipped with nine 32 -bit T414 or T800 Transputers, each having 1 M byte of RAM, the Fast9 add-in board provides IBM PC/ATs or compatible computers with 90 MIPS or 13M flops of processing power. The Transputers are organized as one master and eight slaves. Transputer links from the slaves are routed through a software-programmable IMS-C004 link switch, allowing you to configure the Transputer array in a range of topologies. In addition, you can route 16 Transputer links to adjacent Transputer boards to create larger Transputer arrays.

The master Transputer controls the link switching and supervises operation of the other eight Transputers. The software provided with the board includes support for the IBM PC host interface and control of the slave Transputers and programmable link switch. The board runs all the Inmos Transputer development software. Version with T414-20 Transputers, £9950; version with T800-20 Transputers, approximately $£ 12,000$.

Quintek Ltd, Southfield House, 2 Southfield Rd, Westbury-onTrym, Bristol BS9 3BH, UK. Phone (0272) 628196. TLX 449683.

Circle No 676

I/O BOARDS

The VIOS and VIOP are intelligent, single-Eurocard VME Bus I/O boards providing serial and parallel I/O facilities, respectively. Each board has an onboard $68000 \mu \mathrm{P}$

> The 5075 Constant Power PSU from Prism Electronics Prism programmable power

$\triangle 250$ VA Constant

Power.
\triangle Maximum current 20 amps .
\triangle Maximum voltage 32 volts.
\triangle IEEE-488 control with full talk/listen and SRQ.
\triangle Internal DVM.
\triangle Front panel display of currently available
maximum values. \triangle Designed and manufactured in the U.K

The Prism 5000 series offers many combinations of voltage and current outputs, dual supplies and four quadrant (sink) operation, all with front panel and IEEE programming.

For full details of the 5075 and the complete range contact us now.

PRISM ELECTRONICS

[^11]
Computers and Peripherals

provided with 64 k bytes of local RAM (expandable to 256 k bytes), and 64 k bytes of dual-port RAM (expandable to 512 k bytes for the VIOS and 256k bytes for the VIOP). The boards also have two 32-pin JEDEC-compatible memory sockets for as much as 256 k bytes of EPROM.
The VIOS board provides you with four synchronous/asynchronous I/O channels controlled via 68562 communications controllers. You can configure these channels as RS-232C, RS-422, RS-485, $20-\mathrm{mA}$ current loop, or fiber-optic interfaces by installing small piggyback boards.

The VIOP has two 68230 I/O/timer ICs that provide 32 individually programmable I/O lines and eight control lines. Piggyback options provide 16 -bit parallel input or parallel output ports plus four control lines. The company can also provide an optically isolated version. VIOS, DM 1450; VIOP, DM 1300.

Pep Modular Computers GmbH, Am Klosterwald 4, 8950 Kaufbeuren, West Germany. Phone (08341) 81001. TLX 541233.

Circle No 671
Pep Modular Computers Inc, Carnegie Office Park, 600 N Bell Ave, Pittsburgh, PA 15106. Phone (412) 279-6661. TLX 6711521.

Circle No 672

BOARD COMPUTER

The CC-97 is suitable for use as an intelligent SCSI-bus controller or CPU card in VME Bus systems or as a stand-alone computer board. The double-Eurocard board has a $16-\mathrm{MHz} 68000$ or $10-\mathrm{MHz} 68010 \mu \mathrm{P}$,

and an $8-\mathrm{MHz} 68450$ DMA controller, both of which can access the 2 M bytes of onboard dual-port RAM without wait states. It provides eight 28 -pin memory sockets in which you can install as much as 256 k bytes of EPROM and 128 k bytes of static RAM. Battery backup facilities are provided for static RAM. A 512-byte EEPROM holds system-configuration parameters.

The board's SCSI-bus interface uses the WD33C93 SCSI-bus controller chip to support mass-storage devices, and the board also has communication controllers for two asynchronous serial channels, and two multiprotocol synchronous/asynchronous serial channels. A batterybacked real-time clock/calendar/ alarm and three 16 -bit timer/ counters are also provided.

The card gains access to the VME Bus via an A24, D16 interface that supports multiprocessor environments with a VME Bus interrupt requester and handler and mailbox facilities. The CC-97 draws around 2.6 A from the 5 V supply and operates over 0 to $70^{\circ} \mathrm{C}$. Approximately $\$ 3600$.
Compcontrol bv, Stratumsedijk 31, 5600 AD Eindhoven, The Netherlands. Phone (040) 124955. TLX 51603.

Circle No 673
Compcontrol Inc, 15466 Los Gatos Blvd, Suite 109-365, Los Gatos, CA 95032. Phone (408) 3563817. TWX 510-601-2895.

Circle No 674

CPU CARD

The SC280 is a single-Eurocard STE Bus CPU card based on a

$10-\mathrm{MHz}$ Z280 $\mu \mathrm{P}$. The Z280 is code compatible with the $\mathrm{Z} 80 \mu \mathrm{P}$ and features an on-chip cache, pipeline architecture, and MMU, DMA, and serial-I/O facilities. The board has four JEDEC-compatible, 28-pin memory sockets. Three of these sockets can accommodate as much as 96 k bytes of static RAM, which is sufficient for the board to run CP/M with only the addition of a suitable floppy-disk-drive controller board and disk drive. Two of the four sockets together accept as much as 128k bytes of EPROM. Additional onboard facilities include two RS232 C I/O channels, one 2 -wire RS-485 I/O channel, and four counter/timers.
The board's STE Bus interface handles as many as six STE Bus interrupts and two DMA requests. Bus timeout, system clock, and reset functions are also provided, and the board can operate in multimaster STE Bus systems that incorporate a bus arbiter. The board's power-supply requirements are 1 A at 5 V and $<30 \mathrm{~mA}$ at $\pm 12 \mathrm{~V}$. $£ 295$.
Arcom Control Systems Ltd, Unit 8, Clifton Rd, Cambridge CB1 4WH, UK. Phone (0223) 411200. TLX 94016424.

Circle No 675

HOST ADAPTER

The PT-VME420 SCSI/VME Bus host adapter for the VME Bus provides onboard resources that are built around a $12.5-$ or $16.7-\mathrm{MHz}$ 68020 CPU. The module has two DMA devices. The DMA interfaces

Computers and Peripherals

transfer data concurrently to or from a 512 k -byte dual-access RAM (2M bytes optional). One DMA interface moves VME Bus data at sustained rates of more than 12.5 M bytes/sec. The other DMA interface moves data to and from a SCSI bus at sustained rates of more than 4 M bytes/sec with a burst rate of more ,than 5 M bytes/sec.

The SCSI bus interface is based on the Western Digital WD33C92/93 VLSI chip. The firmware supports SCSI operation in conformance with ANSI X3T9.2 rev 17 and handles multithreaded and scatter-gather operations. In a target mode, two SCSI host adapters can be operated back to back, allowing intersystem communications via the SCSI bus. You can also use a resident diagnostic Trace function that allows a realtime display of SCSI-bus activity and host-to-host adapter commands. $\$ 2095$.

Performance Technologies Inc, 435 W Commercial St, East Rochester, NY 14445. Phone (716) 5866727. TWX 650-293-8297.

Circle No 641

8-IN. DISK DRIVE

The Sabre 1230 quarter-rack disk drive features a storage capacity of 1236M bytes. It has a transfer rate of 3.02 M bytes $/ \mathrm{sec}$ with an average
seek time of 16 msec . The drive uses both thin-film media and thin-film heads. Interface options include SMD-0, SMD-E, SCSI, and IPI-2. The drive uses a 2,7 RLL recording code to achieve a high-density recording.

The unit includes eight disks, and it provides 15 surfaces and 1635 tracks/surface. A dedicated $\mu \mathrm{P}$ pro-
vides position control for the closedloop servo system. The drive also includes built-in diagnostics and self-test features. $\$ 6470$ (OEM qty). Production deliveries are expected during the second quarter of 1988.

Control Data Corp, Box 0, Minneapolis, MN 55440. Phone (612) 853-7388.

Circle No 642

Dotronix Engineers work closely with you to design products that meet your exacting requirements.

Monochrome Displays from $3^{\prime \prime}$ to $25^{\prime \prime}$ Color Displays from $10^{\prime \prime}$ to $19^{\prime \prime}$

Fixed- and Multi-Frequency

Applications include:

Desktop Publishing CAD/CAM/CAE and Graphics Medical Imaging/Diagnostics

Bank/Brokerage Terminals Airline Flight Information Government/Military

Industrial Process Control Test and Measurement Instruments Closed Circuit TV Security Systems

Includes the full product line of Video Monitors, Incorporated, a subsidiary of Dotronix, Inc.

DOTRONIX, INC.

160 First Street S.E. New Brighton, Minnesota 55112-7894
(612) 633-1742 TWX: 9105633541

FAX: (612) 633-7025
Facilities in Minnesota, Wisconsin and Taiwan

Computers and Peripherals

ANALOG I/O CARD
The RBX428 is an intelligent analog I/O card for the SBX Bus. The card has 16 single-ended or eight differential analog inputs and two analog outputs. A CMOS $8051 \mu \mathrm{P}$, having a 64 k -byte EPROM and 32 k bytes of RAM, provides the onboard intelligence. The card also incorporates a 128-byte FIFO buffer, which transfers data to and from the card. The analog input section includes an instrumentation amplifier with resis-tor-programmable gain, an S/H-amplifier circuit, and an A / D converter with 12 -bit resolution.

Input voltage ranges can be unipolar (50 mV to 10 V) or bipolar (± 25 mV to $\pm 10 \mathrm{~V}$). The analog inputs are protected to $\pm 32 \mathrm{~V}$. A space is provided for you to install lowpass filters to reduce input noise. The A/D converter has a throughput conversion rate of 33 kHz ; an optional $59-\mathrm{kHz} \mathrm{A} / \mathrm{D}$ throughput rate is available. The two analog outputs have 12 -bit resolutions, and jumpers let you set one of six voltage ranges. $\$ 695$.

Robotrol Corp, 16100 Caputo Dr, Morgan Hill, CA 95037. Phone (408) 778-0400.

Circle No 643

WORKSTATION

The RD² 3000 is a fully integrated workstation. Running on Unix System V release 3.0, the system supports reasoning-based software called RelationalLisp, a Common Lisp database integrator. RelationalLisp lets you represent, reason about, and manipulate large-scale databases from within Common

Lisp. You can also connect the software to existing commercial databases. The system also provides full control of X-Windows from Common Lisp.

The system is based on a $16-\mathrm{MHz}$ $80386 \mu \mathrm{P}$ with a memory capacity of 4 M to 16 M bytes. The I/ O bus is PC/AT compatible and has four slots available for expansion. An 80287 coprocessor is standard and an 80387 is optional. You can choose from three types of monitors with resolutions of 1280×1024 pixels: a $20-\mathrm{in}$. diagonal black and white, a $16-\mathrm{in}$. diagonal RGB color, and a 19-in. diagonal RGB color monitor. The system's mass storage includes a 1.2 M -byte floppy-disk drive; a hard-disk drive with a capacity of 72 M to 120 M bytes; and a 60 M -byte tape-cartridge drive. From \$19,985.

MAD Intelligent Systems Inc, 2950 Zanker Rd, San Jose, CA 95134. Phone (408) 943-1711. TLX 171827.

Circle No 644

PROTOTYPING BOARD

The SP-Proto double-Eurocard VME Bus board provides you with a ready-made VME Bus interface, and a wrap-and-wire area in which you can prototype circuits. The module's VME Bus (Rev C) interface handles all VME Bus timing and control signals, address decoding, data-bus control, DTACK generation, and interrupt-request and interrupt-vector generation. All processed VME signals are avail-
able on two duplicated connectors.
The interface accepts three posi-tive-edge-triggered onboard interrupts, routing them on a single VME Bus interrupt level with different interrupt vectors. You can program the interrupt level and the vectors used. You can also implement dual-port RAM on the board without having to add extensive arbitration logic. \$613.

NV Spinnov SA, Pleinlaan 2, Building K6, 1050 Brussels, Belgium. Phone 02-641 2844. TLX 61051.

Circle No 645

DMA CONTROLLER

The NB-DMA-8-G multifunction interface board for the MacIntosh II computer functions as a DMA controller and as an interface between the PC Nubus and an IEEE-488 bus. The board's functions include eight DMA channels, eight counter/ timer channels, and eight interrupt channels. The 32 -bit DMA controller handles the Macintosh's full 4Gbyte address space and can transfer data across the bus at 13 M bytes/sec for 32 -bit transfers. The board is one of a series of boards from the vendor that feature the National Instrumentation Real-Time Integration (RTSI) bus.

The RTSI bus transfers analog and digital information between plug-in boards over a 50 -pin ribbon cable. The DMA controller board unit manages the RTSI bus by providing timing functions and interrupt support. The board and the RTSI bus operate with the company's LabView software. $\$ 1295$.

National Instruments, 12109 Technology Blvd, Austin, TX 78727. Phone (800) 531-4742; in TX, (800) 433-3488. TLX 756737.

Circle No 648

1-BOARD COMPUTER

The CY4110 is a VME Bus singleboard computer on a $9 \mathrm{U} \times 280-\mathrm{mm}$ Eurocard. The board's large format

Computers and Peripherals

lets the manufacturer provide a number of features, including a 68020 CPU (in 12.5-, 16.67-, or $20-\mathrm{MHz}$ versions), an optional 68881 floating-point coprocessor, an optional 68851 paged MMU, and 2 M or 4M bytes of dual-ported dynamic RAM with parity. The board also contains four 28-pin JEDEC ROM/ static-RAM sockets configured as a 32 -bit memory, one 28 -pin JEDEC ROM socket for the monitor/debugger, a 68440 2-channel DMA controller, and a floppy-disk-drive controller. It also has a SCSI interface, a parallel printer port, four RS-232C ports, a 24 -bit counter/timer and real-time clock, and a VME Bus master/slave interface (A32, D32).

In parallel-processing systems, the board allows the 68020's local resources to be truly local, reserving the system bus for global communications and system resources. $12.5-\mathrm{MHz}$ version with 2 M bytes of dynamic RAM, $\$ 5700$; $20-\mathrm{MHz}$ ver-
sion, $\$ 6100$.
Cyclone Microsystems, 25 Science Park, New Haven, CT 06511. Phone (203) 786-5536.

Circle No 646

PRINTER

The CrystalPrint VIII is a nonimpact page printer that combines a printer-resident controller with a Casio liquid-crystal shutter (LCS) print device. Because the LCS technology requires fewer moving parts than laser technology, the manu-
facturer claims that it's more reliable. However, LCS technology provides the same resolution (300 dots/in.) that a laser printer does. The controller emulates HewlettPackard's LaserJet Plus printer, thus making the printer compatible with Microsoft's Windows and the Aldus PC Pagemaker. The printer puts out eight pages/minute.

Other features include three ROM-resident and cartridge-based type fonts from Bitstream; downloadable fonts, including H-P compatible fonts; 1.5 M bytes of RAM for 300 -dot/in. bit-mapped graphics on DIN A4, DIN B5, letter- and legal-size paper; and optional Epson, Diablo, HPGL, and IBM ProPrinter command and font emulations. $\$ 2495$.
Data Technology Corp, 2551 Walsh Ave, Santa Clara, CA 95051. Phone (408) 727-8899. TLX 4745044.

Circle No 649

Termillex

Handheid Terminals. $\begin{aligned} & \text { W-AN HT/1000 } \\ & \text { TO'LL CUSTOMIZE TO SUIT } \\ & \text { YOUR APPLICATION. }\end{aligned}$

Do you need custom graphics and key codes, special circuitry, a bar code reader, proprietary ROM, or an - emergency stop switch?
 As the HT/1000 becomes a part of your developing system, our engineers will help you specify options and modifications to make it suit your application exactly. Termiflex works closely with many Original Equipment Manufacturers, tailoring our terminals to meet the specific requirements of their products and markets.

QUANTITY SHIPMENTS TO MEET YOUR SCHEDULE.

We'll build your units to strict quality standards, coordinate delivery with your manufacturing timetable, and provide warranty support. Join the many OEMs who rely on Termiflex to provide user terminals for their products.

The

Ultimate

 Complement

EDN magazine for technology in depth.
EDN News for news of products, technology, and careers.
Together, they provide complete coverage
of electronics for engineers and
engineering managers worldwide.

EDN REPRINTS

You asked for it!

A Designer's Guide to Linear

 Circuits-VOLUME IThis original, 186-page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs, and discusses the theories behind all the design techniques presented.

A Designer's Guide to Innovative

 Linear Circuits - VOLUME II The reader response to Volume I was so positive, that we're offering Jim Williams' latest analog design articles - from 1983 to 1986-in an all-new Volume II. An even bigger collection than before, Volume II is still written in the language of working engineers, but now covers the newest and more complex circuits and systems you asked for! 266 pages.
The Latest from the Best!

You can buy the volumes separately, or as a set. Either way, you'll have all the latest information on the most sophisticated linear ICs ... from Jim Williams, one of the country's foremost linear-circuit designers.

A Designer's Guide to CMOS ICs

 CMOS is fast becoming the chosen technology for developing integrated circuits. That's because CMOS ICs are able to implement ultra-complex system-level functions on a chip! Now you can meet the special challenges posed by this new breed of ICs with A Designer's Guide to CMOS ICs. You'll learn the advanced design and fabrication techniques required. Plus the latest linear and digital CMOS ICs available.

A Designer's Guide to Semicustom Integrated Circuits

Learn how to design a semicustom IC with A Designer's Guide to Semicustom Integrated Circuits. Based on EDN's own design experience, this ninechapter booklet outlines the complete procedure used to design, fabricate, and test EDN 1, a chip with a 1200 equivalent-gate complexity. You'll not only learn the steps to take when creating ICs, but also the design/cost analyses and vendor-interface methods that lead to successful semicustom chips.

Mail coupon to:

EDN Reprints/EDN Magazine \bullet Cahners Building • 275 Washington Street

- Newton, MA 02158-1630

Please send the following Designer's Guide(s):
\qquad copies of A Designer's Guide to CMOS ICs
$\square \$ 6.95$ UPS $\square \$ 10.95$ non USA
copies of A Designer's Guide to Semicustom Integrated Circuits
\square \$ 6.95 UPS
$\square \$ 10.95$ non USA
copies of A Designer's Guide to Innovative Linear Circuits
Vol. I $\square \$ 14.95$ UPS $\square \$ 19.95$ non USA
Vol. II $\square \$ 18.95$ UPS $\square \$ 23.95$ non USA

Please print clearly. This is your mailing label.

NAME

\qquad
TITLE \qquad
COMPANY \qquad
ADDRESS
CITY \qquad
STATE \qquad ZIP \qquad

Power and Precision.
 Piezoelectric ACtuators from Tokin.

A job worth doing, is worth doing with excellence and impeccability. That means not compromising standards. Especially where multilayer piezoelectric actuators are concerned. And that brings us to Tokin. Because when you get the inside story on Tokin actuators, you won't settle for less.

The difference comes from Tokin's exclusive non-adhesive sintering, HIP (hot isostatic press) and insulation processes. Combined, they deliver an incomparable boost in mechanical strength.

Tokin offers two types of piezoelectric actuators. Powerful, supersensitive stack-type actuators for printers and piezoelectric relays. And bimorph types for low-voltage (60V), large displacement applications.

Don't compromise. And don't procrastinate. Call us now.

Voltage vs. Displacement

Force generation vs.
Displacement
(measured at 60V DC)

Displacement reduction ratio is 5% or less at $85^{\circ} \mathrm{C}$.
Voltage vs. Displacement

Force generation vs.
Displacement
(measured at 100V DC)

Force generation (kg)

Performance

	Dielectric displacement	Force generation
Stack type	$(\mu \mathrm{m} / 100 \mathrm{~V})$ $\pm 10 \%$	$(\mathrm{kg} / 100 \mathrm{~V})$ $\pm 20 \%$
NLA-1.4 $\times 3 \times 9$	6.5	14.0
NLA- $2 \times 3 \times 9$	6.5	21.0
NLA-2 $2 \times 3 \times 18$	15.0	21.0
NLA-5 $\times 5 \times 9$	6.5	87.0
NLA-5 $\times 5 \times 18$	15.0	87.0
NLA-10 $\times 10 \times 18$	15.0	350.0
Bimorph types	$(\mu \mathrm{m} / 60 \mathrm{~V})$	$(\mathrm{g} / 60 \mathrm{~V})$
	$\pm 20 \%$	$\pm 20 \%$
NLB-33 $\times 11 \times 1$	150	30
NLB-40 $\times 12 \times 1$	300	30
NLB-50 $\times 14 \times 1$	450	48

Takin

Tokin Corporation
Hazama Bldg., 5-8, Ni-chome
Kita-Aoyama, Minato-ku,
Tokyo 107, Japan
Tel: Tokyo (03) 402.6166
Fax: Tokyo (03) 497-9756
Telex: 02422695 TOKIN J
You can reach our agents by phone:

1987

Product Database Index

(May through October 1987)

Including products from EDN and EDN News

About this database. . .

The database represents products that received editorial coverage in EDN and EDN News between May and October 1987. EDN's products include those featured in Product Updates, showeases, and individual short-product sections. The products from EDN News include those from the New Products and Product Features sections.
You'll find products in eight main groups:
Computer-Aided Engineering Software
Computers and Peripherals
Components
ICs and Semiconductors

Hardware and Interconnect
Test and Measurement Instruments
Power Sources

For more information about the products in the Index, use the addresses in EDN and EDN News to contact the manufacturers directly.

PRODUCT DATABASE INDEX

COMPUTER-AIDED
 ENGINEERING

ASIC simulator

ZyMOS Corp, ZyPsim-AT, EDN, 7/23/87, pg 240

Accelerator

Aida Corp, PerSim, EDN News, 5/21/87, pg 57
Aida Corp, PerSim, EDN, 7/23/87, pg 248
Racal-Redac Inc, Visula Mipper, EDN News, 7/16/87, pg 50
Trancept Systems Inc, TAAC-1, EDN News, 5/21/87, pg 57
Analysis program
MicroMath Scientific Software, MINSQ, EDN, 8/20/87, pg 311

Automatic router

Accel Technologies Inc, Tango-Route, EDN News, 6/18/87, pg 47
Accel Technologies Inc, Tango-Route, EDN, 7/09/87, pg 189
Calay Systems Inc, Design Automation family, EDN, 6/25/87, pg 118

Board-design system

Calma Co, Board Series, EDN News, 7/16/87, pg 49
Calma Co, Board Series, EDN, 7/23/87, pg 248
Case Technology, Release 3.2 of the Vanguard, EDN News, 5/21/87, pg 56
Great Softwestern Co Inc, Auto-board System 2.1, EDN News, 10/22/87, pg 57
CAD for Mac
Micro CAD/CAM Inc, MGMS Professional CAD, EDN, 5/28/87, pg 268
CAD library
Micrografx Inc, CAD ClipArt, EDN, 8/20/87, pg 310
CAD package
Calcomp, Cadvance, EDN News, 6/18/87, pg 48

CAD software

Abvent, Space Edit, EDN News, 9/10/87, pg 57
Bishop Graphics, Quik Circuit, EDN News, 8/13/87, pg 43
Generic Software Inc, Version 3.0 Generic CADD, EDN News, 9/10/87, pg 58
Visual Information Inc, Design and Solid Dimensions, EDN News, 7/16/ 87, pg 50

CAD system

Micro Control Systems Inc, Version 3.0 CADKEY, EDN News, 6/18/87, pg 50
CAE buyer's guide
CAE buyer's guide
Aptos Systems, CAE/CAD Buyer's Guide, EDN, 10/29/87, pg 330

CAE librarian

CAE Utilities, Library Management Program, EDN, 6/25/87, pg 321

CAE network

FutureNet, Dash-Net, EDN, 7/23/87, pg 246

CAE software

Case Technology, Stellar, EDN News, 9/10/87, pg 32
Generic Software Inc, DE-2, EDN, 7/09/87, pg 184
Generic Software Inc, Generic 3-D, EDN, 10/29/87, pg 320
Phase Three Logic Inc, CapFast CAE, EDN, 7/09/87, pg 182
Wintek Corp, Hiwire, EDN, 10/29/87, pg 330

CAE system

Scientific Calculations Inc, Scicards, EDN, 5/14/87, pg 288
Wayne Kerr Inc, IDS4000, EDN, 6/11/87, pg 256
CAE/ATE link
Hewlett-Packard Co, 74241 A EDS/3065, EDN News, 8/13/87, pg 42

CASE tool

Visual Software Inc, vsDesigner, EDN News, 8/13/87, pg 42
Cell compiler
Silicon Compiler Systems Corp, GDT, EDN, 7/09/87, pg 184

Cell library

VTC Inc, VL3000, EDN News, 8/13/87, pg 45
Circuit analyzer
Spectrum Software, Version 3.0 Micro-Cap II, EDN News, 8/13/87, pg 42

Circuit simulator
Simucad Corp, Pacsim, EDN News, 8/13/87, pg 42

Circuit-generator software

Silicon Compiler Systems Corp, -, EDN News, 10/22/87, pg 56
Code-generator link
Index Technology Corp, XL/Interface Telon, EDN, 10/29/87, pg 318

Compiler
Communication Machinery, ASN.1, EDN, 7/23/87, pg 240

Configuration tool

Honeywell Indus Automation Sys, Workbook, EDN, 6/11/87, pg 254
Conversion package
Silicon In Action, PCBconvert, EDN News, 9/10/87, pg 57

DSP design

Burr-Brown Corp, DSPlay, EDN, 8/20/87, pg 308
Tektronix, Signal Processing Worksystem, EDN News, 9/10/87, pg 57
Data analysis
BBN Software Products Corp, RS/1, EDN, 9/03/87, pg 285

Data-transfer software

Visual Information, DXF Transfer, EDN News, 9/10/87, pg 57

Design software

EEsof Inc, Version 1.1 Microwave Spice, EDN News, 6/18/87, pg 50
LSI Logic Corp, Modular Design Environment, EDN News, 7/16/87, pg 49
PC-CAD, Version 2.0, EDN News, 5/21/87, pg 56

Design system

Mentor Graphics Corp, Release 5.3 Cell Station, EDN News, 6/18/87, pg 48

Desktop system

FutureNet Corp, Semicustom Development System, EDN News, 6/18/ 87, pg 48

Development package

National Semiconductor Corp, SYŞ2/20, EDN News, 5/21/87, pg 56

Digital logic simulator

Orcad Systems Corp, VST, EDN News, 8/13/87, pg 42

Enhancement software

HLB Technology, Cadjet, EDN News, 10/22/87, pg 57

Equation processor

Pulse Research, Libra, EDN, 8/20/87, pg 309

Expert system

NCR Corp, Design Advisor, EDN, 9/17/87, pg 108

Filter-design software

California Scientific Software, Version 2 Filter, EDN News, 8/13/87, pg 42
Microwave Software Application, LEFLTR, EDN, 10/29/87, pg 320
RLM Research, Active Filter Design, EDN, 7/23/87, pg 246
RLM Research, Version 2.10, EDN News, 5/21/87, pg 56

Function analysis

BV Engineering, XFER, EDN, 7/23/87, pg 239

Gate-array design

Matra Design Semiconductor, GateAid Plus/PC, EDN, 7/23/87, pg 248
Tektronix CAE Systems Div, Gate Array WorkSystem, EDN, 7/23/87, pg 239
United Tech Microelectronics, -, EDN News, 6/18/87, pg 48

Graphics board

New Media Graphics Corp, Graflex, EDN News, 9/10/87, pg 57

Graphics software

Case Technology Inc, Vanguard Stellar, EDN, 7/09/87, pg 58

Graphics subsystem

Jupiter Systems, Satellite, EDN, 7/23/87, pg 244

Hybrid-circuit CAE

Hewlett-Packard Co, Electronic Design System, EDN, 7/23/87, pg 246

IC debugger

Daisy Systems Corp, Locator IC, EDN News, 8/13/87, pg 43

IC design

Analog Design Tools Inc, IC Design Tool Kit, EDN, 9/17/87, pg 304
Trimeter Technologies Corp, Logic Consultant, EDN News, 7/16/87, pg 50
Valid Logic Systems, ValidCompose, EDN, 10/01/87, pg 233
IC-verification software
Valid Logic Systems Inc, -, EDN News, 8/13/87, pg 43
Linear simulator
EEsof Inc, Touchstone 1.5, EDN News, 5/21/87, pg 56

Logic design tool

Aldec, Scratchpad, EDN, 9/17/87, pg 304

Mechanical CAD software

MacNeal-Schwendler Corp, MSC/pal, EDN, 5/14/87, pg 290

Megacells

Gould Inc, Digital, EDN News, 8/13/87, pg 45

PRODUCT DATABASE INDEX

Computer-Aided Engineering (Continued)

Memory-cell generators

Standard Microsystems Corp, StanRAM, StanROM, EDN News, 8/13/ 87, pg 45

Microwave design

Microwave Software Application, CXline, EDN, 8/20/87, pg 309

Network

FutureNet, Dash-Net LAN, EDN News, 5/21/87, pg 56

PC-board CAD

Kontron Electronic Inc, $K A D-286$, EDN, $7 / 23 / 87$, pg 246
Tektronix Inc, CAE Systems Div, DN3000, EDN, 7/23/87, pg 241
Visionics Corp, EE Designer II, EDN, 7/23/87, pg 239
Visionics Corp, EE Designer Layout Module, EDN, 7/09/87, pg 182
Wayne Kerr Datum Ltd, Artworker 3000, EDN, 7/23/87, pg 241

PLD design tool

FutureNet, FutureDesigner, EDN News, 8/13/87, pg 42
FutureNet, FutureDesigner, EDN, 9/03/87, pg 282

PLD software

Valley Data Sciences, Altsoft and Latsoft libraries, EDN News, 7/16/87, pg 49
Power CAE
Analog Design Tools, Power Design Tool Kit, EDN News, 10/22/87, pg 56
Daisy Systems Corp, DSpice, EDN, 9/03/87, pg 282

Project planner

Inmax Corp, Project:Vision Level 2, EDN, 10/01/87, pg 232

Rip-up router

Daisy Systems Corp, STAR, EDN, 10/15/87, pg 250
SMT software
Computervision Corp, Autoboard SMT, EDN News, 8/13/87, pg 43
Schematic CAD
Cocad Ltd, ESP, EDN, 7/23/87, pg 248

Schematic entry

Daisy Systems Corp, Entry!, EDN, 8/20/87, pg 312

Schematic flattener

Valid Logic Systems Inc, ValidFlat 1.5, EDN News, 5/21/87, pg 57
Shape library
Scientific Calculations Inc, SIS Library, EDN, 10/29/87, pg 318

Silicon compiler

Sagantec BV, ASA, EDN, 7/23/87, pg 246
Silicon Compilers Inc, Genesil, EDN News, 6/18/87, pg 50
Silicon Compiler Systems Corp, MacroCompiler, etc, EDN, 7/23/87, pg 233

Simulation library

Intergraph Corp, ACS, EDN, 7/23/87, pg 234

Simulation models

EIS Modeling Inc, —, EDN, 10/29/87, pg 332

Simulation software

Altera Corp, PLFSIM, EDN News, 10/22/87, pg 57
Simulator
Analog Design Tools Inc, Simukit, EDN News, 8/13/87, pg 45
Intergraph Corp, Analog circuits, EDN News, 6/18/87, pg 47
Mentor Graphics Corp, MSpice Plus, EDN News, 6/18/87, pg 47
Mentor Graphics Corp, Mspice Plus, EDN, 6/25/87, pg 320
Simulator
MicroSim Corp, PSpice, EDN, 7/09/87, pg 182
Viewlogic Systems Inc, Viewsim 386, EDN News, 6/18/87, pg 26

Software

Data I/O Corp, Silicon Circuit Boards, EDN News, 6/18/87, pg 48
ECAD Inc, Dracula III, EDN News, 10/22/87, pg 56
VLSI Technology Inc, Chip Compiler, EDN News, 6/18/87, pg 47

Symbol library

Cadnetix Corp, —, EDN, 7/23/87, pg 240

Test-generation software

GenRad Inc, ATG-32, EDN, 7/23/87, pg 240
Timing-analysis tool
NCR Microelectronics Div, VITAT, EDN, 7/09/87, pg 176
Tool kit
Expertware Inc, CMT, EDN, 5/28/87, pg 265

VLSI analysis

HiLevel Technology Inc, Meta-Shmoo, EDN, 7/23/87, pg 242

Workstation

Aida Corp, CoSim II, EDN, 7/23/87, pg 240
Apollo Computer Inc, Domain Series 4000, EDN, 10/15/87, pg 213
Apollo Computer Inc, Series 4000, EDN News, 10/22/87, pg 57
Aries Technology Inc, Conceptstation, EDN, 7/23/87, pg 242
Cadnetix Corp, CDX-60000S, EDN News, 6/18/87, pg 47
Cadnetix Corp, CDX-60000S, EDN, 7/23/87, pg 235
Calay Systems Inc, Design Automation family, EDN News, 6/18/87, pg 47
Cambridge Micro Computers Ltd, -, EDN, 6/11/87, pg 239
Daisy Systems Corp, Personal Logician 286, 386, EDN News, 5/21/87, pg 57
Daisy Systems Corp, Personal Logician 386, EDN, 7/23/87, pg 233
Data I/O Corp, Silicon Circuit Board, EDN News, 9/10/87, pg 58
Hewlett-Packard Co, Series 9000 Model 350, EDN, 7/23/87, pg 241
Spectragraphics Corp, DS 1082GXT, EDN, 8/20/87, pg 290
Sun Microsystems Inc, Sun-4, EDN News, 7/16/87, pg 49
Tektronix Inc, 4126, EDN, 5/14/87, pg 256
Wayne Kerr Inc, IDS 4000, EDN, 7/23/87, pg 234
$\boldsymbol{\mu} \mathrm{P}$ programming aid
Step Engineering Inc, MetaStep, EDN, 6/11/87, pg 256
$\boldsymbol{\mu} \mathbf{P}$ simulator
Mecklenburg Engineering, -, EDN, 7/09/87, pg 184

INTEGRATED CIRCUITS \& SEMICONDUCTORS

16-Bit $\mu \mathrm{P}$
Hitachi America Ltd, HD641016, EDN, 10/01/87, pg 210
32-Bit $\mu \mathrm{P}$
NEC Electronics Inc, μ PD70632 (V70), EDN, 6/25/87, pg 296

32-Bit $\mu \mathrm{P}$

Motorola Inc, MC68030, MC68881, EDN, 7/09/87, pg 134

A/D converter

Analog Devices Inc, AD9002, EDN, 7/09/87, pg 132
Burr-Brown Corp, ADC80MAH-12, EDN, 7/09/87, pg 149
Crystal Semiconductor Corp, CS5016, EDN, 7/09/87, pg 110
Ferranti Electronics Ltd, ZN503, ZN504, EDN, 8/06/87, pg 246
Hybrid Systems Corp, HS 9476, EDN, 7/09/87, pg 155
Intech Advanced Analog, ADC6002, EDN News, 7/16/87, pg 44
Integrated Device Technology, IDT75C18/28, EDN, 5/14/87, pg 286
Maxim Integrated Products, AD7574, EDN, 5/28/87, pg 228
Maxim Integrated Products, MAX133/4, EDN News, 5/21/87, pg 1
Maxim Integrated Products, MAX150, EDN News, 10/22/87, pg 44
Maxim Integrated Products, MAX160, MAX161, EDN News, 6/18/87, pg 35
Maxim Integrated Products, MAX162, EDN News, 7/16/87, pg 39
Maxim Integrated Products, MAX162, EDN, 10/29/87, pg 263
Plessey Semiconductors, SP97308E, EDN, 10/01/87, pg 212
TRW, LSI Products Div, THC1068, EDN, 7/09/87, pg 162
Teledyne Semiconductor, TSC827, EDN, 8/06/87, pg 244
Texas Instruments Inc, TLC1541, EDN, 9/03/87, pg 274
Thaler Corp, ADC100, EDN News, 6/18/87, pg 35

Amplifier

Avantek Inc, MSA-0520, MSA-1023, EDN, 10/15/87, pg 227
Avantek Inc, MSA-0635, -0670, EDN, 10/29/87, pg 284
Burr-Brown Corp, INA106, EDN, 7/09/87, pg 162
Analog I/O port
Analog Devices Inc, AD7569, EDN, 10/01/87, pg 212

Analog filter

Wolfson Microelectronics Ltd, WM2120, WM2130, EDN, 8/20/87, pg 279

Analog switch

Linear Technology Inc, LR404, EDN, 8/06/87, pg 240
Topaz Semiconductor, CDG201, EDN, 10/15/87, pg 238

Bar-graph ADC

GE/Intersil, ICL7182, EDN, 7/09/87, pg 154

Bipolar digital logic

Fairchild Semiconductor Corp, -, EDN News, 10/22/87, pg 46
Bipolar switch
Unitrode Corp, UC2950, EDN News, 7/16/87, pg 44
Cache RAM
Thomson Components-Mostek Corp, MK41H80, EDN, 7/09/87, pg 122

SMALL IS POWERFUL I

Power Tronic's.new PTS Series Switching. Power Modules are the smallest in the world and its compact DC:DC converters can meet the strictest requirements.
What's more, they are reliable due to their innovative design, rigid quality control and powerful production, which makes them versatile enough for all OEM applications.

Power Tronic For profitable OEM partnership.

DC-DC Converters PTA-4100 DA

PTA-4135 CF PTA-4195 CF

Safety Approval:

ICs and Semiconductors (Continued)

Chip set
Faraday Electronics, FE3400, EDN, 8/06/87, pg 245
Faraday Electronics, FE3500 Chip Set, EDN, 10/15/87, pg 233
Clock IC
GE/RCA Solid State, CDP68HC68T1, EDN, 8/20/87, pg 274
National Semiconductor Corp, DP8530, EDN, 10/15/87, pg 228
Communication IC
Advanced Micro Devices Inc, Am7968, EDN, 9/17/87, pg 268
Ferranti Electric Inc, ZN1440 Chip Set, EDN, 10/29/87, pg 265
Signetics Corp, 2681/BQC, 68681/BQC, EDN, 5/28887, pg 224
Thomson Components-Mostek Corp, MK5025, EDN, 7/09/87, pg 149
VLSI Technology, VL85C30, EDN, 10/01/87, pg 208
Compander IC
Advanced Micro Devices Inc, Am7971, EDN, 7/09/87, pg 145
Comparator
Elantec Inc, EL2018, EL2019, EDN, 10/15/87, pg 241 Plessey Semiconductors Ltd, SP93808, EDN, 8/06/87, pg 244 Raytheon Co, Semiconductor Div, LP165, -365, EDN, 7/09/87, pg 158 Signetics Corp, SE/NE5105A, EDN, 6/25/87, pg 304
Texas Instruments Inc, TACT2150, EDN News, 6/18/87, pg 35

Coprocessor

Intel Corp, 80387, EDN, 5/14/87, pg 282
Crossbar switch
Texas Instruments Inc, SN74AS8840, EDN News, 9/10/87, pg 37

D/A converter

Analog Devices Inc, AD568, EDN, 10/29/87, pg 263
Analog Devices Inc, $A D 7245, A D 7248$, EDN News, $8 / 13 / 87, \mathrm{pg} 1$
Analog Devices Inc, AD7628, EDN News, 5/21/87, pg 34
Analog Devices Inc, AD767, EDN News, 10/22/87, pg 46
Analog Devices Inc, Model AD9703, EDN, 7/09/87, pg 148
Brooktree Corp, Bt107, EDN, 10/15/87, pg 236
Brooktree Corp, Bt 453, EDN News, 7/16/87, pg 40
Brooktree Corp, $B t 454$, EDN, $6 / 11 / 87$, pg 245
Brooktree Corp, Bt457, EDN, 9/17/87, pg 265
Burr-Brown Corp, PCM56P, EDN, 7/09/87, pg 157
Datel, DAC-330, EDN, 10/29/87, pg 267
Ferranti Electric Inc, ZN438, EDN, 6/11/87, pg 242
Ferranti Electric Inc, ZN559, EDN, 10/29/87, pg 273
GE/RCA, CA3338, EDN, 5/14/87, pg 280
Honeywell, Inc, HDAC7541Z, EDN, 7/09/87, pg 163
Hybrid Systems Corp, HS9372, EDN, 7/09/87, pg 107 Intech Advanced Analog, -, EDN News, 8/13/87, pg 35 Integrated Device Technology, IDT75C19/29, EDN, 6/25/87, pg 298
Precision Monolithics Inc, PM-7224, EDN, 10/15/87, pg 228
Precision Monolithics Inc, PM-7548, EDN, 8/06/87, pg 240
Texas Instruments Inc, TLC7524, EDN, 10/01/87, pg 214
DSP IC
AT\&T Technology Systems, DSP32C, EDN News, 8/13/87, pg 28
AT\&T Technology Systems, DSP32C, EDN, 9/03/87, pg 99
Analog Devices Inc, ADSP-32XX family, EDN, 7/09/87, pg 150
General Inst Microelectronics, GIM DSP320EE12, EDN News, 6/18/87, pg 36
Marconi Electronic Devices Inc, MA7100, EDN, 7/09/87, pg 108
Motorola Inc, DSP56200, EDN News, 7/16/87, pg 40
NEC Electronics Inc, μ PD77C25, EDN News, 9/10/87, pg 41
Texas Instruments Inc, TMS320, EDN News, 5/21/87, pg 30
Zoran Corp, VSP-10, EDN, 7/09/87, pg 116
Data separator
Adaptec Inc, AIC-6225, EDN News, 8/13/87, pg 5
Data-acquisition IC
Burr-Brown Corp, SDM862, SDM863, EDN, 8/06/87, pg 240
Ferranti Semiconductors, ZN437, EDN, 6/25/87, pg 294
Linear Technology Corp, LTC1091, EDN, 8/06/87, pg 82
Micro Linear Corp, MLZ200, EDN, 7/09/87, pg 126
Data-acquisition module
Hybrid Systems Corp, HS9414, EDN, 7/09/87, pg 154
Data-acquisition system
Maxim Integrated Products, MAX161, EDN News, 9/10/87, pg 40
Dialer chip
Marconi Electronic Devices Inc, MA545, EDN, 9/17/87, pg 271
Diode
Amperex Electronic Corp, BYV-18 series, EDN, 6/25/87, pg 313

Display driver

Siliconix Inc, Si9559, EDN, 10/01/87, pg 208
Driver IC
SGS Semiconductor Corp, L9350, EDN, 7/09/87, pg 149
SGS Semiconductor Corp, TDA8143, EDN, 5/28/87, pg 228

EEPROM

General Instrument Microelectr, DSP320EE12, EDN, 9/03/87, pg 271
Seeq Technology Inc, 38C16, 38C32, EDN, 7/09/87, pg 108
Seeq Technology Inc, 38C16, 38C32, EDN, 5/28/87, pg 116

EPROM

Thomson Components-Mostek Corp, TS27C1024, EDN, 7/09/87, pg 149
Waferscale Integration Inc, WS27C64F, EDN News, 6/18/87, pg 36
Waferscale Integration Inc, WS57C256F, -257, EDN, 9/03/87, pg 274
Waferscale Integration Inc, WS57C49B, EDN, 8/06/87, pg 239

Encoder/decoder

Mx-Com Inc, FX365, EDN, 7/09/87, pg 150

FIFO memory

Cypress Semiconductor Corp, CY7C408/409, EDN, 6/25/87, pg 305
Integrated Device Technology, IDT72103, -72104, EDN News, 6/18/87, pg 38
Integrated Device Technology, IDT72103, IDT72104, EDN, 7/09/87, pg 122
Integrated Device Technology, IDT72401, IDT72403, EDN, 10/29/87, pg 267
Marconi Electronic Devices Inc, MAZ001, EDN, 7/09/87, pg 157
Saratoga Semiconductor, SSL7401-SSL7404, EDN, 8/20/87, pg 278
Signetics Corp, 74HC7030, 74HCT7030, EDN, 8/20/87, pg 268

FM receiver

Motorola Inc, MC3362, EDN, 8/20/87, pg 278
Fiber-optic LAN chips
Advanced Micro Devices Inc, Supernet, EDN, 10/29/87, pg 132

Filter IC

Exar Corp, XR-1020, EDN, 9/03/87, pg 270
Wolfson Microelectronics Ltd, WM3015, EDN, 8/20/87, pg 279

Flash converters

Sony Corp of America, CXA1076K,-1176K, EDN, 6/11/87, pg 246
Floppy-disk-drive controller
Standard Microsystems Corp, FDC765ALJP, EDN News, 5/21/87, pg 29

Frequency synthesizer

Signetics Corp, TDD1742T, EDN, 7/09/87, pg 114

GaAs MMICs

Pacific Monolithics, PM-CAM0601, PM-CAM0615, EDN, 7/09/87, pg 144

GaAs amplifier

Anadigics Inc, AWA20601, EDN, 5/14/87, pg 282
Microwave Semiconductor Corp, TIA1500, EDN, 7/09/87, pg 142

GaAs buffer

Harris Microwave Semiconductor, HMD-11188-2, EDN, 7/09/87, pg 156

GaAs gate array

Ford Microelectronics Inc, 21G06, EDN, 7/09/87, pg 163
TriQuint Semiconductor Inc, TQ3000, EDN News, 10/22/87, pg 43

GaAs logic IC

California Eastern Laboratory, μ PD700B, etc, EDN, 7/09/87, pg 150
TriQuint Semiconductor Inc, Q-Logic family, EDN, 7/09/87, pg 158

GaAs op amp

Anadigics Inc, $A O P 3510$, EDN, 7/09/87, pg 155

GaAs prescaler

Anadigics Inc, ADV 3040, EDN, 7/09/87, pg 154

Gate array

Fairchild Semiconductor Corp, FGE6320R, EDN News, 7/16/87, pg 39
Fujitsu Microelectronics Inc, $B C$ Series, EDN, 8/20/87, pg 268
Fujitsu Microelectronics Inc, Models ET3000, ET4500, EDN, 7/09/87, pg 142
Laserpath, LP5000A, LP7000C, EDN News, 5/21/87, pg 30
Matra-Harris Semiconducteurs, MAF Series, EDN, 10/29/87, pg 116
Raytheon Co, CGA70E18, CGA40E12, EDN News, 8/13/87, pg 37
Siemens AG, SH100E family, EDN, 10/29/87, pg 114
United Tech Microelectronics, UTB-R, EDN News, 8/13/87, pg 35
Xilinx Inc, XC3000, EDN, 10/29/87, pg 142

Graphics IC

Advanced Micro Devices Inc, Am8172 VDAF, EDN, 10/15/87, pg 238
Chips and Technologies Inc, CS8245, EDN News, 9/10/87, pg 37
Motorola Inc, MC10320, EDN, 7/09/87, pg 158
Paradise Systems Inc, PVGA1, EDN, 9/17/87, pg 105

ICs and Semiconductors (Continued)

IR source

High Technology Sensors Inc, SS-102, EDN News, 9/10/87, pg 41
Image processor
Zoran Corp, ICP, EDN, 10/15/87, pg 236

Instrument amplifier

Analog Devices Inc, AD526, EDN, 10/01/87, pg 210

Interface adapter

Rockwell International Corp, R65NC22, EDN News, 8/13/87, pg 35 Rockwell International Corp, R65NC22, EDN, 8/20/87, pg 278

Isolation amps

Burr-Brown Corp, ISO102, -106, EDN, 5/28/87, pg 227

LCD display driver

Signetics Corp, PCF2201, EDN, 10/01/87, pg 125
LSI host-interface chip
Future Domain Corp, TMC-900, EDN News, 8/13/87, pg 35

Latch

Sprague Electric Co, UGN-3077, UGS-3077, EDN, 6/25/87, pg 310

Line driver

Linear Technology Corp, LT1030, EDN News, 7/16/87, pg 40

Line drivers/receivers

National Semiconductor Corp, DS8921A, EDN News, 6/18/87, pg 36

Line interface

Crystal Semiconductor Corp, CS61534, EDN, 6/11/87, pg 240

Linear array

AT\&T Technologies, ALA family, EDN News, 8/13/87, pg 36 AT\&T Technologies, ALA family, EDN, 7/09/87, pg 110

Logic array

Advanced Micro Devices Inc, AmPAL20XRPXX, EDN, 10/01/87, pg 214
Fairchild Semiconductor Corp, 16L8D, 16R4D, -6D,-8D, EDN, 8/20/87, pg 268
Intel Corp, 5AC312, EDN, 10/29/87, pg 129
Monolithic Memories, PALC20R8Z,-16R8Q,-22V10H, EDN News, 7/16/ 87, pg 40
Signetics Corp, PLHS18P8A, EDN News, 8/13/87, pg 36
Texas Instruments Inc, Series TIPAL16XX-10, EDN News, 9/10/87, pg 40
Logic circuit
Toshiba America Inc, Series TC74AC, EDN News, 8/13/87, pg 37

MOSFET driver

Silicon General Inc, SG1626/SG3626, EDN, 8/20/87, pg 268

MUX-amplifier

Maxim Integrated Products, MAX452, EDN, 6/11/87, pg 245

Math IC

Analog Devices Inc, ADSP-3212, ADSP-3222, EDN News, 9/10/87, pg 38
Analog Devices Inc, ADSP-8018, -7018, EDN, 7/09/87, pg 162
Bipolar Integrated Technology, B2110/B2120, B3110/B3120, EDN News, 7/16/87, pg 26
Bipolar Integrated Technology, B3011, EDN, 7/09/87, pg 158
Bipolar Integrated Technology, B3011, EDN, 5/14/87, pg 284
Bipolar Integrated Technology, B3110/B3120, EDN, 7/09/87, pg 116
Logic Devices Inc, LMS12, EDN News, 8/13/87, pg 36
Logic Devices Inc, MPY112K, EDN News, 9/10/87, pg 40
Marconi Electronic Devices Inc, MA7010, EDN, 7/09/87, pg 145
TRW Electronic Components Grp, TMC3210, EDN News, 7/16/87, pg 39

Memory controller IC

National Semiconductor Corp, DP8420V Series, EDN, 7/09/87, pg 130
National Semiconductor Corp, DP8522, EDN, 10/01/87, pg 208

Microcontroller

Mitsubishi Electronics America, M50747ES, EDN, 7/09/87, pg 142
Mitsubishi Electronics America, M50930FP, etc, EDN, 5/14/87, pg 280
Philips, Elcoma Div, MAB8032AH, MAB8052AH, EDN, 7/09/87, pg 148
Signetics Corp, PCB83C552, EDN, 8/20/87, pg 93

Military hybrid

ILC Data Device Corp, BUS-65601, MIL-STD-1553, EDN News, 9/10 87, pg 38

Modem IC

Exar Corp, $X R$-2100,-2400,-2401,-2402, EDN News, 10/22/87, pg 43
Exar Corp, XR-2130, EDN, 9/17/87, pg 268
Oki Semiconductor, M80C51-58,M6950,-6928-07, EDN News, 7/16/87, pg 40

Siemens AG, SAB82511, EDN, 10/29/87, pg 112
Thomson Components-Mostek Corp, TSG7515, EDN, 9/03/87, pg 271

Motor controller

Advanced Micro Systems Inc, SMC-23, EDN, 10/15/87, pg 234

Motor driver

SGS Semiconductor Corp, L6202, EDN, 8/20/87, pg 271
SGS Semiconductor Corp, L6217, L6217A, EDN, 7/09/87, pg 124
SGS Semiconductor Corp, L6230, EDN, 9/17/87, pg 265
Sprague Electric Co, UDN-2943Z, EDN, 7/09/87, pg 159
Thomson Components-Mostek Corp, TEA3718, EDN, 10/01/87, pg 210
Thomson Components-Mostek Corp, UAA2081DP, EDN, 9/17/87, pg 269
Motor-control IC
Marconi Electronic Devices Inc, MA 818P, EDN, 7/09/87, pg 158

Multiplexer

Maxim Integrated Products, MAX358, MAX359, EDN, 7/09/87, pg 149
Siliconix Inc, DG535, EDN, 6/11/87, pg 240
Siliconix Inc, DGP508A, EDN, 9/17/87, pg 275

Op amp

Advanced Linear Devices Inc, ALD1701, EDN News, 5/21/87, pg 30 Advanced Linear Devices Inc, ALD1701, EDN, 6/25/87, pg 298 Analog Devices Inc, AD5539, EDN, 6/25/87, pg 294
Analog Devices Inc, AD9610, EDN, 9/17/87, pg 273
Apex Microtechnology Corp, PA08V, EDN News, 8/13/87, pg 36
Burr-Brown Corp, OPA602, EDN, 10/15/87, pg 232
National Semiconductor Corp, LM 837 , EDN, 8/06/87, pg 244
Plessey Semiconductors, SL2541, EDN, 7/09/87, pg 145
Precision Monolithics Inc, OP-471, EDN News, 5/21/87, pg 29
Precision Monolithics Inc, OP-200, EDN, 10/29/87, pg 259
Precision Monolithics Inc, $O P-42$, EDN, $5 / 14 / 87$, pg 287
Precision Monolithics Inc, PM-1008, EDN, 9/17/87, pg 265
Op amps
Comlinear Corp, CLC400, EDN, 10/29/87, pg 259

Optocoupler

Hewlett-Packard Co, HCPL-2200 series, EDN, 6/25/87, pg 310
Oscillator
Murata Erie North America, -, EDN News, 5/21/87, pg 29
PLL synthesizer
Siemens Components Inc, TBB200, EDN, 10/29/87, pg 274
Phone trunk
Micro Linear Corp, ML202, ML203, EDN News, 9/10/87, pg 37
Pin-driver IC
Pulse Instruments Co, PT-401, EDN, 10/29/87, pg 271

Power MOSFET

International Rectifier, IRFAE50, etc, EDN, 10/01/87, pg 206
Power driver
Sprague Electric Co, UCN-5804B, EDN News, 7/16/87, pg 44
Sprague Electric Co, UDN-2540B, EDN, 10/29/87, pg 273

Power supply IC

Cherry Semiconductor Corp, CS-320/321, EDN, 7/09/87, pg 126 GE/Intersil, ICL7675, ICL7676, EDN News, 7/16/87, pg 39 Siemens Components Inc, TDA-4918, -4919, EDN, 10/01/87, pg 214
Power transistor
General Semiconductor Ind Inc, 2N6920A/27A, 2N6980A/81A, EDN 10/15/87, pg 224
Thomson Components-Mostek Corp, ETD, EDN, 7/23/87, pg 168
R/D converter
Analog Devices Inc, Model 2S81, EDN, 6/11/87, pg 240
RAM
Brooktree Corp, Bt401 family, EDN, 7/09/87, pg 144
Catalyst Semiconductor Inc, CAT71C256, CAT71C256L, EDN, 10/29/87, pg 265
Electronic Designs Inc, 8808C45, EDN News, 6/18/87, pg 35
Fujitsu Microelectronics Inc, MB84256 family, EDN, 7/09/87, pg 154
GE Solid State, CDP68HC68R1 and -R2, EDN, 10/29/87, pg 274
Matra-Harris Semiconducteurs, Comet family, EDN, 10/29/87, pg 111
Mitsubishi Electronics America, M5M5257, M5M5258, EDN, 6/25/87, pg 300
Mitsubishi Electronics America, M5M5257P, M5M5258P, EDN, 8/06/87, pg 246
Motorola Inc, MCM6288P30, EDN, 5/28/87, pg 228
Saratoga Semiconductor, SSM6168/70/71/72, EDN News, 5/21/87, pg 29
Thomson Components-Mostek Corp, MK4511, EDN, 8/06/87, pg 246
VLSI Technology Inc, Model VTzoC18, etc, EDN, 7/09/87, pg 144
VLSI Technology Inc, VT16AM8, EDN, 7/09/87, pg 144
VLSI Technology Inc, VT $7 C 122$, EDN, 5/28/87, pg 230
Vitelic Corp, $16 k$-bit, EDN News, $9 / 10 / 87$, pg 38
Vitelic Corp, V61C32, EDN, 10/01/87, pg 212

ICs and Semiconductors (Continued)

RISC $\mu \mathrm{P}$

Fujitsu Microelectronics, MB86900, EDN News, 9/10/87, pg 41

RISC controller

VLSI Technology Inc, VL86C310, EDN, 5/28/87, pg 230

Rad-hard ICs

Marconi Electronic Devices Inc, 54HSC-, 54HST-Series, EDN, 8/20/87, pg 277

Regulator IC

Linear Technology Corp, LT1083, EDN, 10/29/87, pg 261
Siliconix Inc, Si9100, EDN, 5/28/87, pg 224

SCSI controller

Emulex Corp, ESP, EDN, 8/20/87, pg 272
Emulex Corp \& NCR Corp, ESP, EDN News, 6/18/87, pg 36
Emulex Corp, NCR Corp, ESP/53C90, EDN News, 8/13/87, pg 28
Logic Devices Inc, L5380, EDN News, 7/16/87, pg 44
Logic Devices Inc, L5380, EDN, 9/17/87, pg 269

SCSI protocol IC

Adaptec Inc, AIC-6250, EDN, 9/17/87, pg 112

Servo IC

Silicon Systems Inc, SSI 567, 568, 569, EDN, 7/09/87, pg 130

Shift register

GE/RCA Solid State, CD54/74HC/HCT597, EDN News, 8/13/87, pg 36

Signal converter

Edsun Laboratories Inc, EL286-88-10, EDN, 8/20/87, pg 280

Sound controller

GE/RCA Solid State, CA3259, EDN, 10/29/87, pg 263

Supply monitor

Siltronics Ltd, S2862, EDN, 9/03/87, pg 273
Sprague Electric Co, ULN-8131A, EDN, 5/28/87, pg 226

Synthesizer

Pentek Inc, Model 1080, EDN, 10/15/87, pg 234

Telecommunication IC

Gould Inc, S3547, EDN, 6/25/87, pg 305
Plessey Semiconductors, MV1812, EDN, 10/29/87, pg 271

Telephone IC

Marconi Electronic Devices Inc, MA534, EDN, 8/20/87, pg 274

Teletext IC

Signetics Corp, SAA5250, EDN, 10/15/87, pg 238

Thermocouple compensator

Linear Technology Corp, LT1025, EDN News, 9/10/87, pg 1

Thyristor

Amperex Electronic Corp, BT145, EDN, 5/14/87, pg 274
Amperex Electronic Corp, BTS59, BTR59 Series, EDN, 10/01/87, pg 202

Timer IC

Advanced Linear Devices Inc, ALD1502, ALD1504, etc, EDN, 7/09/87, pg 142
Seiko Instruments USA Inc, Model S-8081B, EDN, 7/09/87, pg 156

Track/hold IC

Crystal Semiconductor Corp, Model CS31412, EDN, 7/09/87, pg 154

Transceiver

Signetics Corp, SAA1045, EDN, 10/15/87, pg 232

Transistor

Ferranti Electric Inc, SOTFET, EDN, 6/11/87, pg 224
Hewlett-Packard Co, HSMX-3131, -3635, EDN, 6/25/87, pg 313
SGS Semiconductor Corp, SGSF323, SGSF463, EDN, 8/06/87, pg 250

Translator circuit

Linear Technology Corp, LTC1045, EDN News, 8/13/87, pg 37

Transmitter/receiver IC

GE/RCA Solid State, ICL232, EDN News, 10/22/87, pg 43

Triac

Thomson Components-Mostek Corp, BTA06, BTA08, EDN, 9/17/87, pg 287

VCO

Z-Communications Inc, C-500, C-500A, C-500B, EDN News, 10/22/87, pg 46

Voice-compression chip

Dallas Semiconductor Inc, DS2167, EDN, 7/09/87, pg 107

Voltage comparator

Anadigics Inc, ACP10010, EDN News, 9/10/87, pg 40
Voltage regulators
Omnirel Corp, Series OM7800, OM7900, EDN News, 6/18/87, pg 38

$\mu \mathrm{P}$ IC

Advanced Micro Devices Inc, 80286-16, EDN, 10/29/87, pg 268
Advanced Micro Devices Inc, 80L286, EDN, 8/06/87, pg 246
Chips and Technologies Inc, 82C100, EDN, 10/29/87, pg 271
Chips and Technologies Inc, Neat Chip Set, EDN, 10/15/87, pg 228
Dallas Semiconductor Inc, DS5000, EDN, 7/09/87, pg 124
Motorola Inc, MC68HC05C2, MC68HC05C3, EDN News, 10/22/87, pg 43
$\mu \mathrm{P}$ family
Harris Corp, —, EDN, 7/09/87, pg 142

$\mu \mathrm{P}$ support chip

Gould Inc, S61393, EDN News, $5 / 21 / 87$, pg 29
Intel Corp, 80386 family, EDN, 7/09/87, pg 132
Intel Corp, 80387, 82385, 82380, EDN, 5/14/87, pg 114
Intel Corp, 82380, EDN News, 5/21/87, pg 34
Siemens Components Inc, SAB82257, EDN, 7/09/87, pg 148
Siemens Components Inc, SAB82257, EDN, 6/25/87, pg 300
VLSI Technology, VL82C100, -101,-102,-103,-104, EDN News, 7/16/87, pg 39
$\mu \mathrm{P}$ system ASIC
Toshiba America Inc, TMPZ84C01XAX series, EDN, 6/25/87, pg 304

COMPONENTS

A/D converter
GE/Datel, ADC-974, EDN, 8/20/87, pg 271
Hybrid Systems Corp, HS1068, EDN, 8/06/87, pg 239
Intech Advanced Analog, ADC1600-2, EDN, 9/03/87, pg 270
TRW, THC1068, EDN, 5/28/87, pg 227

Amplifier

Avantek Inc, Model PPA-6232, EDN, 9/17/87, pg 276
Avantek Inc, UTO-1023, EDN, 9/03/87, pg 264
Hewlett-Packard Co, HAMP-4001,-4002, EDN, 5/14/87, pg 278
Signetics Corp, NE5212, EDN, 7/23/87, pg 204

Attenuator

Bourns Inc, Stepped Attenuators, EDN, 9/17/87, pg 276
Fotec Inc, A438, EDN, 7/23/87, pg 204

Capacitor

Electronic Concepts, 5 MC12, 5 MC16, EDN News, $7 / 16 / 87$, pg 46
International Components Corp, DP Series, EDN, 5/14/87, pg 266
Johanson Dielectrics Inc, S-920, EDN, 8/06/87, pg 252
Mepco/Centralab Inc, Mono-Axial, EDN, 10/01/87, pg 205
Murata Erie North America Inc, TZ03, EDN News, 9/10/87, pg 44
Rifa AB, PMZ2067 Series, EDN, 10/29/87, pg 111
Sprague Electric Co,-, EDN News, 7/16/87, pg 48
Sprague Electric Co, Type 293D, EDN, 7/23/87, pg 202
Sprague-Goodman Electronics, Surftrim, EDN News, 9/10/87, pg 44
Coil
Toko America Inc, Molded, EDN News, 9/10/87, pg 43

Connector

AMP Inc, $R S$-232C, EDN News, 6/18/87, pg 42
Control system
Automatic Timing \& Controls Co, ATCOM-64, EDN, 10/01/87, pg 101
Computer Dynamics, CDI-Ladder, EDN, 10/01/87, pg 112

Controller

DCI Inc, Series 200B, EDN, 7/23/87, pg 201
Sycon Corp, 2800 Series, EDN, 10/01/87, pg 112

Converter

B\&B Electronics Mfg Co, Model 422CL, EDN, 9/03/87, pg 269
Converter module
Dymec Inc, Model 3855, EDN, 5/28/87, pg 258

Counter

Hecon Corp, Model 706, EDN, 7/23/87, pg 208
Crystal
Ieta Industries Inc, $C X-A T-H T$, EDN News, 10/22/87, pg 49
Current transmitter
TC Ltd, -, EDN, 10/29/87, pg 287

D/A converter

Analog Devices Inc, AD392, EDN, 5/14/87, pg 287
DIP switch
American Research \& Eng, K40, EDN, 7/23/87, pg 187

Components (Continued)

JAE Electronics Inc, 51D Series, EDN, 7/23/87, pg 206
JAE Electronics Inc, 53D Series, EDN, 6/25/87, pg 317

Data converter

Telebyte Technology Inc, Model 61, EDN, 10/01/87, pg 202
Data-acquisition system
DGH Corp, Series D2000, EDN, 10/01/87, pg 96

Delay line

Bel Fuse Inc, 0402 Series, EDN, 5/14/87, pg 268
PCA Electronics Inc, EP9677, EDN, 8/20/87, pg 264
PCA Electronics Inc, EP9749 Series, EDN, 7/23/87, pg 204
PCA Electronics Inc, EP9810 Series, EDN, 9/17/87, pg 281
Toko America Inc, $S P, S Q, S S$, EDN, 8/06/87, pg 251

Digital encoder

Litton Systems Inc, Model 721, EDN, 10/01/87, pg 119

Digital panel meter

Acculex Corp, DP-650, EDN, 8/20/87, pg 264
GE Datel, PM-5050, EDN, 7/23/87, pg 170

Digital readout

National Machine Systems, Model LU10, EDN, 10/01/87, pg 221

Digital/synchro converter

Natel Engineering Co Inc, DSC5131, EDN, 6/11/87, pg 98

Display

Cherry Electrical Products, ELIC, EDN, 10/01/87, pg 126
Cherry Electrical Products, EL1C, EDN, 9/17/87, pg 282
Hewlett-Packard Co, HDSP-2111, HDSP-2112, EDN, 7/23/87, pg 204
IEE Inc, LCD 5618, EDN, 10/29/87, pg 282
IEE Inc, Model 3601-35-240, EDN, 10/01/87, pg 92
IEE Inc, Model 3601-35-240, EDN, 7/23/87, pg 165
IEE Inc, Model 3601-35-240, EDN, 9/03/87, pg 260
IEE Inc, Supernova, EDN, 6/25/87, pg 312
Siemens Components Inc, PD1165, 1167, EDN, 7/23/87, pg 188
Vorne Industries Inc, Model 77/232, EDN, 7/23/87, pg 146
Vorne Industries Inc, Model 77/719, EDN, 10/01/87, pg 106

Display module

IEE Inc, 3601-88-016, EDN, 10/15/87, pg 224
IEE Inc, 4283-01, EDN, 10/01/87, pg 101
IEE Inc, 4283-01, EDN, 7/23/87, pg 191
IEE Inc, Model 3601-87-032, EDN, 9/17/87, pg 287
Industrial Electronic Engrs, 4283-01, EDN, 5/28/87, pg 252

Drive enclosure

Sigma Information Systems, SA-H163, EDN, 8/06/87, pg 252

EL display

Finlux Inc, Finlux MD640.400, EDN, 10/29/87, pg 114
Sigmatron Nova Inc, MDS-23, EDN, 7/23/87, pg 168

Encoder

Computer Conversions Corp, DDS $90-10$, EDN, 7/23/87, pg 208
Disc Instruments Encoders, LDM 20, EDN News, 9/10/87, pg 44

Fiber-optic interface

SI Tech Inc, 2105/2106 Bit-Driver, EDN, 7/09/87, pg 220
Thomas \& Betts Corp, Data Channel, EDN, 7/09/87, pg 216

Fiber-optic switch

Eotec Corp, Allen-Bradley 800-T, EDN News, 7/16/87, pg 48

Filter modules

Frequency Devices Inc, $848 P 8 E$, EDN, 7/23/87, pg 181

Fuse-switch

Heinemann Electric Co, PS1, EDN, 10/01/87, pg 102

Heatsink

AAVID, 5922, EDN News, 10/22/87, pg 48
Thermalloy Inc, Models 2305, 2306, EDN, 5/14/87, pg 268

Humidity sensor

General Eastern Instruments, RH-8, EDN, 7/23/87, pg 197

Hybrid amplifier

HyComp Inc, HC4500, EDN, 5/28/87, pg 226

I/V Converter

Calex Mfg Co Inc, I60S5.135, EDN, 8/06/87, pg 250

IF limiter

RHG Electronics Laboratory Inc, ICDX750, EDN, 10/29/87, pg 284
RHG Electronics Laboratory Inc, Model ICDS1000, EDN, 10/29/87, pg 282

Indicator
Industrial Devices Inc, 5900 Series, EDN, 7/23/87, pg 181 Industrial Devices Inc, Series 6000, EDN, 7/23/87, pg 206

Inductor

Microtran Co, Common-mode suppression, EDN News, 5/21/87, pg 40
Williamson Windings Inc, EH168, EH150, EH125, EDN News, 6/18/87, pg 3

Industrial processor

Analog Devices Inc, $\mu M A C-6000$, EDN, 10/01/87, pg 96
Instrumentation amp
Calex Mfg Co Inc, Model 178, EDN, 6/11/87, pg 228

Interface hybrid

ILC Data Devices Corp, BUS-66300 II, EDN, 6/25/87, pg 296

Keyboard

Advanced Input Devices, Snap-in key, EDN News, 10/22/87, pg 48
Fujitsu Components, $F K B-2831,-2835,-3140$, EDN, 6/25/87, pg 316
IEE Inc, —, EDN, 10/01/87, pg 207
IEE Inc, Panelswitch, EDN, 5/14/87, pg 268
Industrial Electronic Engrs, —, EDN, 9/03/87, pg 262
Xcel Corp, KD220, EDN, 7/23/87, pg 191

Keylock switch

Carlingswitch Inc, Lockette, EDN, 6/11/87, pg 220
ITW Switches, F036 Series, EDN, 7/23/87, pg 192

Keypads

IEE Inc, Sealedswitch, EDN, 8/06/87, pg 253

Keyswitch

Omron Electronics Inc, B3W, EDN, 7/23/87, pg 194

LCD

Ind'l Electronic Engineers, LCD 5618, EDN News, 10/22/87, pg 47

LCD module

Densitron Corp, -, EDN News, $5 / 21 / 87$, pg 40
Interface Products Inc, 一, EDN News, 10/22/87, pg 49

LED

Amperex Electronic Corp, CQW-58A, -89A, -89B, EDN, 8/20/87, pg 266
Data Display Products, WB200-X-6, EDN News, 7/16/87, pg 46
Data Display Products, -, EDN News, 10/22/87, pg 48
Data Display Products, Series PCH125X-200, EDN News, 5/21/87, pg 38
Data Display Products, T-1 LED, EDN, 10/15/87, pg 218
Dialight Corp, GaAlAs LEDs, EDN, 5/14/87, pg 278
Dialight Corp, Series 552, EDN, 7/23/87, pg 194
Hewlett-Packard Co, HDSP-470X, HDSP-440X, EDN, 7/23/87, pg 201
Ind'l Electronic Engineers, Series SMD, EDN News, 10/22/87, pg 48
Ledtronics Inc, 55SB206, EDN, 7/23/87, pg 181
Marktech International Corp, MT100-UR, EDN News, 9/10/87, pg 45 Rohm Corp, SLR-40 Series, EDN, 10/29/87, pg 288

Laser module

Mitsubishi Electronics America, FU-11SLD-N, EDN, 5/28/87, pg 252
Line-interface modules
Cermetek Microelectronics Inc, CH1811, CH1810A, EDN, 10/15/87, pg 228

Magnetic rotary encoder

National Machine Systems Inc, Model RE10, EDN, 7/23/87, pg 166

Mixer

RHG Electronics Laboratory Inc, $D M R, D M R H$, EDN, 10/01/87, pg 205

Modulator

KDI Electronics Inc, Model MOP-103, EDN, 8/20/87, pg 261

Monitor-controller

Analogic Corp, ITG 2600, EDN, 10/01/87, pg 120

Motor controller

BEI Motion Systems Co, MCH05-24, EDN, 10/01/87, pg 106
Galil Motion Control, PIC-850 Series, EDN, 7/23/87, pg 202
Technology 80 Inc, Model 4327, EDN, 8/06/87, pg 250

Motor driver

American Precision Industries, CMD-110, EDN, 10/01/87, pg 101
General Controls Inc, -, EDN, 8/20/87, pg 262
Oregon Micro Systems Inc, MH10, EDN, 6/25/87, pg 315
Motor-design kit
Piezo Electric Products Inc, Motor/Actuator Kit, EDN, 9/17/87, pg 285

Optical detector

Telcom Devices Corp, 13PD100-F, EDN, 7/23/87, pg 181
Optical encoder
BEI Motion Systems Co, H20, EDN, 10/01/87, pg 114
Hewlett-Packard Co, HEDS-5500, EDN News, 7/16/87, pg 46

Components (Continued)

Hewlett-Packard Co, HEDS-9200, EDN, 8/20/87, pg 261
Litton/Itek Encoder, Model 13/23K, EDN, 7/09/87, pg 222
Optical module
AT\&T Components \& Electronic, 1218 and 1306AA, EDN, 10/29/87, pg 278
Honeywell Optoelectronics Div, HFE4010, HFD3000, EDN, 7/23/87, pg 199

Optical sensor

Siemens Components Inc, SFH 910, EDN, 7/23/87, pg 208

Optical source

Motorola Semiconductor Product, MFOE1100 Series, EDN, 7/23/87, pg 199
Optical switch
Motorola Inc, MOC70, MOC71 Series, EDN, 10/29/87, pg 259

Optocoupler

Amperex Electronic Corp, PO40/44A, etc, EDN, 7/23/87, pg 210
Texas Instruments Inc, OP18012 Series, EDN, 5/28/87, pg 252

Oscillator

Motorola Inc, MSO Series, EDN, 7/23/87, pg 192
Vectron Laboratories Inc, CO-434V Series, EDN, 7/23/87, pg 192

Output module

International Rectifier, DO 061, EDN, 9/17/87, pg 278

Phase detector

RHG Electronics Laboratory Inc, PDM4-8, EDN, 7/23/87, pg 202
Plasma display
Dale Electronics Inc, APD-240MO26A, EDN, 10/29/87, pg 284
Fujitsu Component of America, FPF-8050-HFUG, EDN, 7/23/87, pg 188
Fujitsu Component of America, FPF-8050-HFUG, EDN, 6/11/87, pg 223

Port adapter

Gold Key Electronics Inc, Converser, EDN, 7/09/87, pg 211

Port switch

Telebyte Technology Inc, Model 325, EDN, 5/28/87, pg 258

Potentiometer

Bourns Inc, 3296-OT1, 3386-OT1, EDN News, 7/16/87, pg 48
Bourns Inc, 3314, EDN News, 10/22/87, pg 47
Mepcopal Co, ST-5, ST-6 Series, EDN, 9/03/87, pg 260

Power drivers

SGS Semiconductor Corp, L6114, L6115, EDN, 7/23/87, pg 212
Pressure controller
Dynisco, μ PC 659, EDN, 10/01/87, pg 104

Pressure sensor

IC Sensors Inc, HIT Series, EDN, 7/23/87, pg 192
IC Sensors Inc, Model 410, EDN, 9/17/87, pg 278
IC Sensors Inc, Model 81, EDN, 9/17/87, pg 285
Micro Switch, Series 14PC, EDN, 7/23/87, pg 194
NovaSensor, NPI Series, EDN, 10/01/87, pg 114
Sensym Inc, BP01, EDN, 8/06/87, pg 250
Sensym Inc, SCX Series, EDN, 7/23/87, pg 185
Pressure switch
Henry G Dietz Co, -, EDN News, 8/13/87, pg 38

Quartz crystal

ETA Industries Inc, $C X-A T$, EDN News, $7 / 16 / 87$, pg 46 Standard Crystal Corp, -, EDN News, 5/21/87, pg 38

RF amplifier

Amplifonix Inc, Model TM 6117, EDN, 5/28/87, pg 254

Rectifier

Semtech Corp, Isopac, EDN News, 6/18/87, pg 42

Reference junction

Hades Mfg Co, NC111, EDN, 5/14/87, pg 276

Relay

Alcoswitch, Series HG, HH, EDN News, 6/18/87, pg 42
Aromat Corp, Model TQ, EDN, 5/28/87, pg 256
Communications Instruments Inc, Type MN, EDN, 8/20/87, pg 266
Coto Corp, 3475, EDN News, 8/13/87, pg 39
Electronic Specialty Corp, -, EDN, 10/29/87, pg 288
Gordos Corp, -, EDN News, 7/16/87, pg 48
Gordos Corp, Valuline Series, EDN, 8/20/87, pg 262
Hamlin Inc, Model HE3351A, EDN, 7/23/87, pg 206
ITT Components, Type A, EDN, 7/23/87, pg 187
Magnecraft Electric Co, Class 237, EDN News, 9/10/87, pg 45

National Controls Corp, R2025, EDN, 7/23/87, pg 183
Original Electric Mfg Co Inc, OL-C, EDN News, 10/22/87, pg 48
Original Electric Mfg Co Inc, Oar, EDN, 10/29/87, pg 278
Original Electric Mfg Co Inc, SRZ, EDN News, 6/18/87, pg 42
Original Electric Mfg Co Inc, SRZ-3A, EDN, 6/25/87, pg 317
Potter \& Brumfield Inc, KHA Series, EDN, 9/03/87, pg 260
Potter \& Brumfield Inc, Series KHA, EDN News, 8/13/87, pg 39
Potter \& Brumfield Inc, Series T91, EDN News, 9/10/87, pg 46
Siemens Components Inc, P1, EDN, 9/17/87, pg 282
Silicon Power Cube Corp, -, EDN, 9/03/87, pg 269

Resistor

Dale Electronics Inc, SPR-2182, EDN News, 8/13/87, pg 39
Dale Electronics Inc, SPR-2182, EDN, 8/20/87, pg 261 Int'l Manufacturing Services, -, EDN News, 5/21/87, pg 40
Resistor/capacitor kits
Communications Specialists Inc, CR-1, EDN News, 10/22/87, pg 49
S/D converter
Natel Engineering Co Inc, HSRD1056, EDN, 5/14/87, pg 280
SAW filters
Siemens AG, G3206, EDN, 5/28/87, pg 256

Sampling converter

Analog Solutions, ZAD2764, EDN, 10/29/87, pg 268

Scanner

Automatic Timing \& Controls Co, 7022, EDN News, 5/21/87, pg 38

Servo amplifier

Copley Controls Corp, 215A, EDN News, 10/22/87, pg 39
Copley Controls Corp, Model 218, EDN News, 9/10/87, pg 44
Copley Controls Corp, Model 218, EDN, 10/01/87, pg 90
Copley Controls Corp, Model 218, EDN, 10/15/87, pg 216
Copley Controls Corp, Model 241, EDN, 7/23/87, pg 165

Signal conditioner

Analog Devices Inc, 1B32, EDN, 10/01/87, pg 202
Analog Devices Inc, $5 B$ Series, EDN, 7/23/87, pg 197
MetraByte Corp, MB Series, EDN, 10/29/87, pg 287

Speed controller

Control Resources Inc, PC-DC, EDN, 7/09/87, pg 209

Suppressor

General Semiconductor Ind Inc, $420 L$, EDN News, $6 / 18 / 87$, pg 46 General Semiconductor Ind Inc, $420 L$, EDN, 7/23/87, pg 202 General Semiconductor Ind Inc, 420T, 423T, EDN, 8/06/87, pg 253

Switch

Amperex Electronic Corp, RI-25, EDN, 8/06/87, pg 251
Augat/Alcoswitch, ASE/F Series, EDN, 6/11/87, pg 220
C\&K/Unimax Inc, TF Series, EDN, 7/23/87, pg 183
Cutler-Hammer Products, -, EDN News, 10/22/87, pg 48
Digitran, Series 200T, 700T, EDN News, 10/22/87, pg 47
Efector Inc, Proximity, EDN News, 5/21/87, pg 38
Entrelec, $V Y 40$, EDN News, $6 / 18 / 87$, pg 41
Feme Electronics Inc, T Series, EDN News, 10/22/87, pg 49 Grayhill Inc, Series 61, EDN, 10/01/87, pg 117
ITT Schadow Inc, Series MSA power, EDN News, 5/21/87, pg 40
Loral Corp, Series 020 spdt coaxial, EDN News, 9/10/87, pg 43
Mec, Models 15.502, 15.552, EDN, 10/29/87, pg 112
Micro Pneumatic Logic Inc, MPL-604, EDN News, 6/18/87, pg 46
Micro Pneumatic Logic Inc, MPL-609, EDN News, 9/10/87, pg 46
NKK Switches, Series JB, Series G, EDN News, 6/18/87, pg 41
NKK Switches, Series JF spst, EDN News, 9/10/87, pg 46
SGN and Co Inc, Series ET, Series EP, EDN News, 7/16/87, pg 48

Switch-core arrays

W H Brady Co, -, EDN, 5/28/87, pg 252

Switching rectifiers

TRW Electronic Components Grp, DSR3000, DSR5000, EDN News, 8/13/87, pg 38

Terminal

Entrelec, Series 10,000 , EDN News, 10/22/87, pg 47

Thermal recorder

General Scanning Inc, AR-41, EDN, 7/23/87, pg 136

Thermistor

Mepco/Centralab Inc, 644 Series, EDN, 10/15/87, pg 218

Timer modules

Red Lion Controls Inc, CUB3T, CUB3TR, EDN, 10/15/87, pg 222
Touch display
Wells-Gardner Electronics Corp, K7000, EDN, 5/14/87, pg 274

Components (Continued)

Trackball

MicroSpeed Inc, FastTrap, EDN, 7/23/87, pg 166

Transducer

Sensym, ST2000, EDN, 10/01/87, pg 109

Transformer

AIE Magnetics, 8631, 8632, EDN, 7/23/87, pg 204
Dale Electronics Inc, TA-40-01, EDN, 10/01/87, pg 205

Transistor

Ferranti Electric Inc, ZVN4106F, EDN, 7/23/87, pg 210

Transistor packages

Kyocera America, Ceramic TO-8 and TO-99, EDN News, 5/21/87, pg 38
Trimmer
Mepcopal Co, CT-6 Series, EDN, 6/11/87, pg 228
Video buffer
National Semiconductor Corp, LH4002, EDN, 9/17/87, pg 265
Wideband amplifier
Apex Microtechnology Corp, WA01, EDN, 10/01/87, pg 212

HARDWARE AND INTERCONNECT

Adapter kits
L-COM Data Products, Modular Adapter Kits, EDN, 7/09/87, pg 216

Adapter sockets

Aries Electronics Inc, -, EDN News, 5/21/87, pg 40

Adapters

Augat Inc, Surface-mount, pin-grid, EDN News, 9/10/87, pg 44

Alignment pads

Thermalloy Inc, Clip mount, screw mounting, EDN News, 10/22/87, pg 47
BNC connectors
Automatic Connector Corp, BNC connectors, EDN, 5/14/87, pg 273

Backplane

BICC-Vero Electronics Inc, G64 Bus Backplanes, EDN, 7/09/87, pg 226
Hybricon Corp, -, EDN, 10/01/87, pg 205
Matrix Corp, Series MS-BP J1, EDN News, 9/10/87, pg 44
Mupac Corp, -, EDN, 6/11/87, pg 220
Mupac Corp, -, EDN, 9/17/87, pg 282
Mupac Corp, CE, CG Series, EDN, 6/11/87, pg 228

Battery holder

Keystone Electronics Corp, Lithium coin-cell, EDN News, 8/13/87, pg 39

Board inserter/ejector

Scanbe, S-217, EDN News, 5/21/87, pg 40
Breadboard panel
Kollmorgen Corp, Protoboard, EDN News, 8/13/87, pg 38

Cabinet

ELMA Electronic Inc, Model 48, EDN, 7/09/87, pg 218

Cabinet cooler

Noren Products Inc, CC600F, EDN, 7/09/87, pg 206

Cable

3M, Series 1700 , EDN News, $6 / 18 / 87$, pg 41
Woven Electronics, Woven Ribbon, EDN News, 10/22/87, pg 49
Card frame
General Devices Co, Europak, EDN News, 10/22/87, pg 48

Card guide

Bivar Inc, Circ-O-Gide, EDN, 7/09/87, pg 226
Chip carrier
Augat Microtec, Phip, Phil, EDN, 6/25/87, pg 306

Concentrator

Algo Inc, DTMF-600, EDN News, 10/22/87, pg 47

Connector

AMP Inc, Hinged connector, EDN News, 8/13/87, pg 41
AMP Inc, Hinged connector, EDN, 7/09/87, pg 206
AMP Inc, Series 050 , EDN News, $9 / 10 / 87$, pg 45
Amlan Inc, Flat-cable DIP, EDN News, 10/22/87, pg 49
Automatic Connector Inc, -, EDN, 7/09/87, pg 229
Beta Phase Inc, ZIF, EDN News, $8 / 13 / 87$, pg 38
Bicc-Vero Electronics Inc, Neptune, EDN News, 9/10/87, pg 43

Burndy Corp, Computerbus card-edge, EDN News, 9/10/87, pg 43 CW Industries, CMB Series, EDN, 7/09/87, pg 221
Elco Corp, Series 8442 , EDN News, $7 / 16 / 87$, pg 48
Elco Corp, Series 8442, EDN, 7/09/87, pg 221
Electrovert Inc, Series 8113B, EDN, 7/09/87, pg 214
ITT Cannon, DL Drawer, EDN, 7/09/87, pg 211
JAE Electronics Inc, PICL Series, EDN, 7/09/87, pg 213
Lemo USA Inc, -, EDN, 10/29/87, pg 278
Molex Inc, DL-50, EDN, 8/06/87, pg 252
Molex Inc, Mini-Fit Jr, EDN, 7/09/87, pg 212
Molex Inc, Series DL 50, EDN News, 5/21/87, pg 40
PCD Inc, $E L D / 200, E L B / 156$, EDN News, 8/13/87, pg 38
Positronic Industries Inc, D-subminiature, EDN News, 10/22/87, pg 49

Connector

TRW Electronic Components Grp, -, EDN News, 10/22/87, pg 47
TRW Electronic Components Grp, Cardcon, EDN News, 10/22/87, pg 48
TRW Electronic Components Grp, Strip, EDN News, 10/22/87, pg 49
Vernitron Corp, Theta-D, EDN, 7/09/87, pg 222
Connector cover
Interconnect Technologies, Snaplock, EDN News, 8/13/87, pg 41
Interconnect Technologies, Snaplock, EDN, 7/09/87, pg 211

Connector protector

Stevens Products Inc, -, EDN News, 6/18/87, pg 46
Stevens Products Inc, —, EDN News, 10/22/87, pg 48

Connector shell

Ossi Connectors Ltd, Plastic Connector Shells, EDN, 7/09/87, pg 212

Connector system

3M, Scotchflex, EDN, 7/09/87, pg 216

DIP socket

Precicontact Inc, FSWP/FSWB Series, EDN, 7/09/87, pg 220
Precicontact Inc, Series ISO, EDN, 6/25/87, pg 310
Wells Electronics Inc, Series 812, EDN, 7/09/87, pg 212

Disk enclosure

Sigma Sales, SA-H163, EDN, 7/09/87, pg 212

Edge connector

Viking Connectors Co, -, EDN, 7/09/87, pg 228

Enclosure

CTS Corp, MVE, EDN News, 7/16/87, pg 46
Cabtron Systems Inc, Flat-Top, EDN, 10/01/87, pg 109
Cabtron Systems Inc, Flat-Top, EDN, 7/09/87, pg 219
Heurikon Corp, HSE, HCE, HPE, EDN News, 10/22/87, pg 47
Mupac Corp, Series 508, EDN, 10/01/87, pg 98
Odenwalder Kunsttstoffwerke, Vario-box, EDN, 7/09/87, pg 226
Recortec Inc, RME Series, EDN, 7/09/87, pg 222
Sigma Information Systems, SA-H123S, EDN, 5/14/87, pg 271
Sigma Information Systems, SA-H155, EDN, 10/01/87, pg 94
Tracewell Enclosures Inc, E Series, EDN, 10/01/87, pg 119

F-O system

American Lightwave Systems Inc, FT1300, EDN, 6/11/87, pg 226

Fan enclosure

Unitrack/Calabro Industries, Series RA, EDN News, 5/21/87, pg 38
Unitrak/Calabro Industries, Series RA Fan-Pak, EDN, 7/09/87, pg 216
Fan tray
Knurr AG, Airmatic 3000, EDN, 7/09/87, pg 229

Fiber splicer

AMP Inc, Optimate mechanical splicer, EDN News, 7/16/87, pg 48
Flat cable
Woven Electronics, Space-Mizer, EDN, 7/09/87, pg 212
Flat-cable mount
Panduit Corp, —, EDN, 7/09/87, pg 228

Header

Carrot Components Corp, -, EDN, 6/25/87, pg 306
Thomas \& Betts Corp, Compliant contact, EDN News, 9/10/87, pg 45

Heat exchanger

Mclean Midwest, $H X$ - $38 D F$, EDN, 7/09/87, pg 224

Heat sink

Aavid Engineering Inc, 5225-XT, EDN, 7/09/87, pg 222
Aavid Engineering Inc, 5922, EDN, 10/15/87, pg 221
Aavid Engineering Inc, $5931 B$, EDN, 7/09/87, pg 211
Thermalloy Inc, Series 6380, EDN, 9/17/87, pg 289
Junction box
Burr Brown Corp, TMJ2, EDN News, 6/18/87, pg 41
LAN cable
Belden Wire and Cable, -, EDN News, 8/13/87, pg 38

PRODUCT DATABASE INDEX

Hardware and Interconnect (Continued)

LED lens

Visual Communications Co Inc, SQB 400 Series, EDN, 9/17/87, pg 276

LED panel lamp

Marl International Ltd, MPL34, EDN, 7/09/87, pg 230

Mobile test cart

Cabtron Systems Inc, Test Cart, EDN, 7/09/87, pg 209

Optical link

Siecor Electro-Optic Products, ODCL1, EDN, 10/01/87, pg 120
Optical modem
Burr-Brown Corp, LDM80, EDN, 9/03/87, pg 264

Optical sensor

Aromat Corp, $M Q$, EDN, 10/01/87, pg 104

PGA socket

Augat Interconnection, Series PKC, EDN News, 8/13/87, pg 38
Electronic Molding Co, -, EDN, 7/09/87, pg 214

Piezoelectric fan

Piezo Electric Products Inc, LP24HT, EDN, 10/15/87, pg 216

Plastic accessories

Electro-Space Fabricators Inc, -, EDN, 7/09/87, pg 219

Prototype board

BICC-Vero Electronics, -, EDN News, 6/18/87, pg 41
Multiwire/East, Protoboard Series, EDN, 10/29/87, pg 286
Vector Electronic Co, -, EDN News, 6/18/87, pg 41

Prototype panel

Kollmorgen Corp, Protoboard, EDN, 10/15/87, pg 218

Screw termination panel

GE/Datel, DVME-691, EDN News, 7/16/87, pg 48

Socket

3M, Quick Lock, EDN News, 10/22/87, pg 48
Aries Electronics Inc, Series 570, EDN, 7/09/87, pg 211
Electrovert Inc, Series 8113, EDN News, 6/18/87, pg 42
Garry Electronics, Quiet, EDN News, 8/13/87, pg 41
Hypertronics Corp, HPG241F32, EDN, 7/09/87, pg 219
Nepenthe Inc, IC113 Series, EDN, 6/11/87, pg 226
Wells Electronics Inc, Leadless-chip-carrier, EDN News, 10/22/87, pg 49
Socket adapter
Methode Electronics Inc, CA 1741, EDN, 5/28/87, pg 260
Socket/post connector
CW Industries, Nano, EDN News, 5/21/87, pg 40

Sockets

Aries Electronics Inc, —, EDN, 6/25/87, pg 316

Strain-relief cover

Panduit Corp, Mas-Con, EDN, 7/09/87, pg 226

Surface-mount connector

$3 \mathrm{M},-$, EDN News, $5 / 21 / 87$, pg 38
Surge protector
MCG Electronics Inc, Model 415, EDN, 7/09/87, pg 220

Switch panel

Ind'l Electronic Engineers, -, EDN News, 9/10/87, pg 43

Terminal

Entrelec, Series 10,000 , EDN, 7/09/87, pg 224

Terminator

Mepco/Centralab Circuit Sys, ECL, EDN News, 9/10/87, pg 45

VME Bus

Mizar Inc, MZ 75904, EDN News, 8/13/87, pg 38
ZIF socket
Aries Electronics Inc, -, EDN, 7/09/87, pg 216

TEST AND MEASUREMENT INSTRUMENTS

AC calibrator

Electronic Development Corp, Model 4503, EDN, 5/28/87, pg 279

ASIC tester

Modular Test Systems, TS2064, EDN, 10/15/87, pg 256
ASIC verifier
Cadic Inc, STM5200, EDN News, 6/18/87, pg 52
Cadic Inc, STM5200, EDN, 6/25/87, pg 325
Sentry/Schlumberger VHSIC Test, IDS 5000, EDN, 7/23/87, pg 269

Amplifier

Sonoma Instrument Co, 330, EDN News, 6/18/87, pg 52

Analog meters

D1 Products Inc, $A P M-70 W$, EDN News, 10/22/87, pg 55

Analyzer

Hewlett-Packard Co, HP $8510 B$, EDN News, $7 / 16 / 87$, pg 52
Rohde \& Schwarz-Polarad Inc, Model FSAL, FSAP, EDN, 7/23/87, pg 292
Solartron Instruments, Model 1260, EDN, 8/06/87, pg 259

Analyzer option

Rohde \& Schwarz-Polarad Inc, LAS-B8, EDN, 8/20/87, pg 302
Step Engineering Inc, Step-40 SDT, EDN News, 6/18/87, pg 54

Arbitrary generator

LeCroy Research Systems, Model 9100, EDN, 7/23/87, pg 277

Attenuator

EG\&G Almond Instruments, -, EDN News, 6/18/87, pg 53

Audio tester

Audio Precision, $D C X-127$, EDN, 10/29/87, pg 308

Autoranging DPM

Acculex Corp, DP-950, EDN, 10/29/87, pg 286
Bit-error-rate analyzer
Intelco Corp, 620, EDN News, 8/13/87, pg 50

Board fabricator

Girard Electronics, Protoflex-III Model PF-IIIA, EDN, 7/23/87, pg 281

Board tester

GenRad Inc, GR2750, EDN, 8/06/87, pg 258
Zehntel Inc, 1800 Series, EDN, 9/03/87, pg 279
Zehntel Inc, 850 F/I, EDN, $9 / 17 / 87$, pg 323

Bus expander

Prism Instruments Ltd, Delta, EDN, 9/03/87, pg 281

CPU verifier

MicroMark Engineering, MJ700, EDN, 10/15/87, pg 214
Calibrator
Keithley Instruments Inc, Model 263, EDN, 9/17/87, pg 320
Capacitance-voltage analyzer
Keithley Instruments Inc, 590, EDN News, 6/18/87, pg 54

Comb generator

ST Research Corp, Model 1040A, EDN, 10/29/87, pg 305

Comm tester

Atlantic Research Corp, Interview 5 series, EDN, 6/25/87, pg 324
Component tester
RE Instruments Corp, CT10, CT20, EDN News, 6/18/87, pg 52
Conductivity meter
Charleswater Products Inc, Micro-Meg, EDN, 6/11/87, pg 252

Counter

Philips T\&M Instruments Inc, PM6665, EDN, 7/23/87, pg 281
Racal-Dana Instrument Inc, Model 1995, EDN, 7/23/87, pg 288
DMM calibrator
Ballantine Laboratories Inc, Model 4052H, EDN, 6/25/87, pg 325

DPM

International Microtronics, Model 100, EDN, 6/25/87, pg 315

DRAM tester

Computer Sve Technology Inc, DM 700, EDN, 6/25/87, pg 324
DS1 tester
Digital Transmission Systems, 1004, EDN News, 10/22/87, pg 54
DSP development system
Atlanta Signal Processors Inc, ADP, EDN, 6/25/87, pg 282
Microcraft Corp, DSP-320, EDN, 7/23/87, pg 241

DVM/DMM calibrators

Datron Instruments, Model 4707, 4705, EDN, 5/28/87, pg 281

Data generator

B \& B Electronics Mfg Co, 232DG, EDN, 10/29/87, pg 316
Data logger
Cyborg Corp, Loggernaut, EDN News, 5/21/87, pg 44
Wavetek San Diego, Model 52/53, EDN, 10/15/87, pg 254

Debugger

Concurrent Sciences Inc, Soft-Scope 80286 etc., EDN, 7/23/87, pg 292
Microcosm Inc, MicroScope 68k, EDN News, 8/13/87, pg 48
Development module
Advanced Software Machine Syst, pdm/8, EDN, 10/29/87, pg 296

PRODUCT DATABASE INDEX

Test and Measurement Instruments (Continued)

Development station

Step Engineering, MicroStep, EDN News, 7/16/87, pg 51

Development system

Ashling Microsystems Inc, CTS51, EDN, 7/23/87, pg 292
Kontron Electronics Inc, KPDS, EDN, 7/23/87, pg 290
Motorola Inc, DSP56000ADS, EDN, 7/23/87, pg 122

Device analyzer

EG\&G Princeton Applied Res, Model 8300, EDN, 8/20/87, pg 304
Device driver
Ziatech Corp, DOS.GPID, EDN News, 8/13/87, pg 48

Digital meter

Schaevitz Engineering, MDTR-352S, EDN News, 7/16/87, pg 51

Digital multimeter

Beckman Industrial Corp, DM71, EDN News, 10/22/87, pg 54
Beckman Industrial Corp, DM71, EDN, 10/15/87, pg 254

Digital tester

Inter-Venture, LogicBridge 136, EDN News, 9/10/87, pg 60
John Fluke Mfg Co, Inc, 9100 Series, EDN, $6 / 25 / 87$, pg 326
Summation Inc, DSR10, EDN, 10/29/87, pg 313

Digital thermometer

A W Sperry Instruments Inc, $D T-160$, EDN, $7 / 23 / 87$, pg 279
Beckman Industrial Corp, 440, 445, EDN News, $9 / 10 / 87$, pg 60
Beckman Industrial Corp, 440, 445, and 450, EDN, 10/15/87, pg 260

Digital word generator

Interface Technology, Model RS-690, EDN, 7/23/87, pg 272

Digitizer

Tektronix Inc, 7912HB, EDN, 5/14/87, pg 296

Digitizing plug-in

Nicolet, 4180, EDN, 10/01/87, pg 226
Disk test system
Wilson Laboratories Inc, 7000 , EDN, 10/01/87, pg 92

Drawing scanner

Houston Instrument, Scan-Cad, EDN, 7/23/87, pg 290

Drive tester

Brian Instruments, Brikon 723B, EDN News, 8/13/87, pg 50
Pioneer Research, PR 4042, EDN News, 6/18/87, pg 54

EMI finder

Hewlett-Packard Co, HP 8590A Option H51, EDN, 10/01/87, pg 228

EPROM emulator

Memocom, Memulator 16, EDN News, 10/22/87, pg 55
Memocom, Memulator 16, EDN, 9/17/87, pg 296

EPROM programmer

Bytek Corp, S125, EDN, 9/17/87, pg 314
Bytek Corp, Writer-RX, EDN News, 10/22/87, pg 54
Bytek Corp, Writer-RX, EDN, 9/03/87, pg 279
Data I/O Corp, 288, EDN News, 5/21/87, pg 43
Data I/O Corp, Gangpak V7.1, EDN, 9/17/87, pg 314
Epotek Corp, SE4944, EDN, 5/28/87, pg 280
Promac, P2A, EDN News, 8/13/87, pg 55
Sherman Pirkle Inc, Model 8606, EDN News, 9/10/87, pg 60 Sherman Pirkle Inc, Model 8606, EDN, 10/01/87, pg 226

ESD simulator

Electro-Metrics, EDS-300, EDN News, 10/22/87, pg 52
KeyTek Instrument Corp, MiniZap, EDN News, 5/21/87, pg 43
Schaffner EMC Inc, NSG 432, EDN News, 7/16/87, pg 51

Emulator

Applied Microsystems Corp, EC 7000/8051, EDN News, 7/16/87, pg 52
Applied Microsystems Corp, EC 7000/8051, EDN, 8/06/87, pg 257
Hewlett-Packard Co, HP 64265A, EDN News, 7/16/87, pg 52
Hewlett-Packard Co, HP-64265A, EDN, 6/25/87, pg 284
IAM, $6800 \mu P$, EDN News, 7/16/87, pg 52
Intel Corp, Ice-5100/044, EDN, 10/15/87, pg 258
MetaLink Corp, MetaICE-83C152, EDN, 10/29/87, pg 300

Fade simulator

Tekelec, TE1000, EDN, 10/01/87, pg 230

Fiber tester

Photon Kinetics Inc, Model 2200, EDN, 10/01/87, pg 102
Solartron Instruments, Models 7721, 7723, 7725, EDN, 10/29/87, pg 306

Frequency counter

Racal-Dana Instruments Inc, Model 1999, EDN, 5/28/87, pg 274

Frequency generator

John Fluke Mfg Co Inc, 6062A, EDN, 7/23/87, pg 295
Function generator
Elpaz Instruments Inc, 300 Series, EDN, 8/20/87, pg 304
Hewlett-Packard Co, HP 8094A, EDN, 10/15/87, pg 258
Iwatsu Instruments, $S G-4111$, EDN News, $9 / 10 / 87$, pg 64
Iwatsu Instruments, SG-4111, EDN, 8/20/87, pg 299
Nicolet, NIC-41, -42, EDN, 5/14/87, pg 298
Rohde \& Schwarz-Polarad Inc, AFGU, EDN, 7/23/87, pg 270
Gain-phase meter
Solartron Instruments Inc, 1253, EDN, 7/23/87, pg 287

Generator

Bruel \& Kjaer Instruments Inc, Models 1049, 1051, EDN, 7/23/87, pg 277
New Wave Instruments, LRS-100/2, EDN, 8/20/87, pg 304
I/O expansion chassis
Wavetek San Diego, 53, EDN News, 9/10/87, pg 63

IBM PC scope

Rapid Systems Inc, R2000, EDN, 9/17/87, pg 314

IEEE Bus controller

Prism Instruments Ltd, Gamma IEEE-488, EDN, 10/29/87, pg 302
IEEE Bus expander
IOtech Inc, Expander 488, EDN, 10/15/87, pg 260

IEEE-488 port

Data Precision Inc, Model 1488, EDN, 6/25/87, pg 325

ISDN tester

Tekelec Airtronic Inc, TE-921, EDN, 9/03/87, pg 279

Impedance tester

Biddle Instruments, Sensitek VIT-64, EDN News, 6/18/87, pg 55
In-circuit programmer
Elan Digital Systems, 1019, EDN News, 7/16/87, pg 51

Instrument modules

Hewlett-Packard Co, 61019A, 61025A, 61020A, EDN News, 6/18/87, pg 54

Interface

Hand Held Products Inc, HP-IL, RS-232C, EDN News, 9/10/87, pg 63

LC meter

Sencor Inc, LC77, EDN, 6/25/87, pg 325

LCR bridge

Prism Instruments Ltd, LCR451, EDN, 8/20/87, pg 301

Laser-energy meters

Laser Precision Corp, Rj-7600 Series, EDN, 10/29/87, pg 311
Lead straightener
Integrated Concepts, Model 1020, EDN, 9/03/87, pg 276

Lead tester

Anza Tech Inc, Model 410, EDN, 5/28/87, pg 276

Level translator

Pulse Instruments, PI-6800, EDN, 8/06/87, pg 258

Logic analyzer

Advanced Computer Instruments, CLK 2400, EDN, 8/20/87, pg 290
BitWise Designs Inc, Analog Pod, EDN News, 10/22/87, pg 51
Bitwise Designs Inc, Logic 100,-10/16,-20/8,-10/8, EDN News, 6/18/87, pg 52
Dolch Logic Instruments Inc, Compact-100, EDN, 7/23/87, pg 282
Gould Inc, $K_{4} 50 B$, EDN News, 10/22/87, pg 54
Gould Inc, $K 450 B$, EDN, $9 / 03 / 87$, pg 281
Gould Inc, K50, EDN, 7/23/87, pg 296
Hewlett-Packard Co, HP 1650A, EDN News, 9/10/87, pg 60
Hewlett-Packard Co, HP 1650A, HP 1651A, EDN, 10/29/87, pg 315
Kontron Electronics Inc, PLA286, EDN, 7/23/87, pg 287
NCI, PA480, EDN News, 10/22/87, pg 52
Soltec Corp, PLA-3300, EDN News, 6/18/87, pg 54

Logic system

Hewlett-Packard Co, HP 16500A, EDN, 10/29/87, pg 306
Logic test system
Dolch Logic Instruments Inc, M128, EDN, 8/20/87, pg 301

MAC/488 interfaces

National Instruments Corp, NB-GPIB, EDN, 7/23/87, pg 292

MAP tester

Allen-Bradley Co, -, EDN News, 6/18/87, pg 53

Mate counter

EIP Microwave Inc, Models 535, 538, EDN, 9/17/87, pg 318

PRODUCT DATABASE INDEX

Test and Measurement Instruments (Continued)

Media tester

Steinberg Associates, FDDT-3500, EDN, 6/11/87, pg 251

Microwave noise testers

Eaton Corp, 2275S, 2276S, EDN, 8/20/87, pg 299

Mixed ATE

Hewlett-Packard Co, HP 9480, EDN, 7/23/87, pg 279
Teradyne Inc, A500, EDN, 7/23/87, pg 281

Motion analyzer

Instrument Marketing Corp, HSV, EDN, 10/01/87, pg 101
Multibus II developer
Intel Corp, Modules Development Platform, EDN, 10/01/87, pg 226

Multimeter

Philips ECG Inc, $A M-14, A M-20, C M-30, C X-920, D M-76$, EDN News, $8 /$ 13/87, pg 48

Network analyzer

Hewlett-Packard Co, Model HP 8510B, EDN, 7/23/87, pg 277
Wiltron Co, 561, EDN, 10/01/87, pg 228

Noise canceller

Noise Cancellation Tech Inc, NCT 2000, EDN, 9/17/87, pg 314
OTDR
Photon Kinetics Inc, 3100 H , EDN News, $5 / 21 / 87$, pg 43
OTDR pulse suppressor
Light Control Systems Inc, -, EDN News, 6/18/87, pg 55
Optical converters
Tektronix Inc, -, EDN News, 10/22/87, pg 51
Optical meter
Fotec Inc, M160, S170, EDN News, 6/18/87, pg 52
Optical probe
Tektronix Inc, P6701, P6702, EDN, 10/29/87, pg 305
Oscillograph
Soltec Corp, Lumigraph 5F15, EDN, 5/28/87, pg 272

Oscilloscope

BBC-Metrawatt/Goerz, SE571, EDN, 10/15/87, pg 257
Dolch American Instruments Inc, SC-01, EDN News, 10/22/87, pg 10
Dolch American Instruments Inc, Scout SC01, EDN, 10/01/87, pg 226
Enertec Instruments, 5602, EDN, 10/29/87, pg 311
Gould Inc, 1604, EDN, 10/01/87, pg 230
Gould Inc, 4 -channel, EDN News, 8/13/87, pg 48
Hewlett-Packard Co, HP 54120T, EDN News, 9/10/87, pg 60
Hewlett-Packard Co, HP5185T, HP54112D, HP54120T, EDN, 8/06/87, pg 77
Hitachi Denshi America Ltd, V-1065, V-1060, EDN News, 6/18/87, pg 52
Hitachi Denshi America Ltd, V-1065,-1060,-665,-660, EDN, 7/23/87, pg 298
Hypres Inc, PSP-1000, EDN, 7/23/87, pg 267
ITT-Metrix, OX7100, EDN, 6/11/87, pg 251
Iwatsu Instruments Inc., SS-6122, SS-6611, EDN, 7/23/87, pg 282
Kikusui International Corp, COM 7100 A, EDN, $6 / 25 / 87$, pg 326
Leader Instruments Corp, LBO-315, EDN, 6/25/87, pg 326
Philips T\&M Instruments Inc, PM3320, EDN, 7/23/87, pg 270
Tektronix Inc, 2430A, EDN, 7/23/87, pg 288
Tektronix Inc, 2221, EDN News, 7/16/87, pg 51
Tektronix Inc, 2221, EDN, 8/06/87, pg 258

PC-board inspector

Vanzetti Systems, Series 6000, EDN, 6/11/87, pg 252

PC/AT instrument controller

Wavetek San Diego, Wavetest, EDN, 10/29/87, pg 141

PLD programmer

Advin Systems Inc, Sailor-PAL, EDN, 8/20/87, pg 306
Elan Digital Systems, Model-1014, EDN, 10/15/87, pg 256
Panel meter
Simpson Electric Co, Series 2842, 2843, EDN, 5/28/87, pg 258

Pattern generator

NCM Corp, Video Wonderbox, EDN News, 7/16/87, pg 52
Phase calibrator
Elpaz Instruments Inc, GPIB Speedac, EDN, 10/15/87, pg 257
Phase standard
Clark-Hess Com Research Corp, Model 5000, EDN, 7/23/87, pg 279

Power meter

Anritsu America Inc, ML4803A, EDN, 10/01/87, pg 228

Power-line display

Primeline, 881 Powerscope II, EDN, 10/29/87, pg 312

Printer interface

IOtech Inc, COM488, EDN, 8/20/87, pg 302

Process monitor

GE/Datel, PM-5060, EDN News, 10/22/87, pg 52

Programmer/adapter

Data I/O Corp, EPROM Adapter, EDN, 10/01/87, pg 228

Protocol analyzer

Hewlett-Packard Co, HP 4954A, EDN, 10/29/87, pg 315

Pulse generator

Philips T\&M Instruments Inc, PM 5785, EDN, 7/23/87, pg 282

RF generator

Farnell Intl Instruments Ltd, PSG1000, EDN, 7/23/87, pg 287
Wi-Comm Electronics Inc, GRF15, EDN, 6/11/87, pg 251

Recorder

Advance Bryans Instruments Ltd, C1013, etc, EDN, 5/28/87, pg 276
BBC-Metrawatt/Goerz, SE110, SE111, EDN, 10/29/87, pg 302
Primeline, $H R-1100, H R-2100$, EDN, 10/29/87, pg 313

Recording system

Gould Inc, ES2000, EDN, 10/15/87, pg 206

Reflectometer

Advantest America Inc, TQ8450, EDN News, 9/10/87, pg 63
Hewlett-Packard Co, HP 8145A, EDN News, 9/10/87, pg 60
Hewlett-Packard Co, HP 8145A, EDN, 9/03/87, pg 276

SCR tester

Brindle \& Associates Inc, Model 1500IR, EDN, 9/17/87, pg 316
SCSI development system
Adaptec Inc, SDS-2, EDN News, 5/21/87, pg 8

SCSI exerciser

Peer Protocols Inc, Peer-2000, EDN News, 8/13/87, pg 55
Scan converter
PDS Video Technology Inc, VCS-6400, EDN, 5/14/87, pg 298

Scope adapter

Thandar Electronics Ltd, TD201, EDN, 9/17/87, pg 318

Scope software

Hem Data Corp, Version 2.5 Snapshot, EDN News, 8/13/87, pg 55
Shorts locator
Asemtek, Shortec-2020 PCB, EDN, 5/14/87, pg 300

Signal analyzer

Panasonic Industrial Co, VS-3321P, EDN News, 10/22/87, pg 54

Signal generator

Marconi Instruments, 2022A, EDN, 5/28/87, pg 280
Network Technology Inc, Montest-D4, EDN News, 9/10/87, pg 64

Software analyzer

Orion Instruments Inc, OptiLab, EDN, 7/23/87, pg 282

Spectrum analyzer

Hewlett-Packard Co, HP 71210A, HP 70700A, EDN, 9/17/87, pg 316
IFR Systems Inc, $\boldsymbol{A}-8000$, EDN, 6/11/87, pg 251

Speech-development system

Microtel Inc, SDL, EDN News, 6/18/87, pg 54

Storage package

LeCroy Research Systems Corp, Model MS01, EDN, 6/11/87, pg 252

Synchro simulator

Natel Engineering Co Inc, L200, EDN, 5/28/87, pg 272
Synthesizer
A\&A Engineering, Williams Synthesizer, EDN, 7/23/87, pg 295

Temperature monitor

Datel, PM-5060, EDN, 10/01/87, pg 90
Temperature probe
John Fluke Mfg Co Inc, 80T-150U, EDN News, 8/13/87, pg 48
Test chamber
Tenney Engineering Inc, Tenney Jr, EDN News, 10/22/87, pg 51
Test development station
Analog Devices Inc, -, EDN News, 5/21/87, pg 43
Test fixture
Hewlett-Packard Co, HP 34597A, EDN, 8/20/87, pg 301
Test-generation software
GenRad Inc, ATG-32, EDN News, 7/16/87, pg 51

PRODUCT DATABASE INDEX

Test and Measurement Instruments (Continued)

Thermal recorder

Astro-Med Inc, MT-8500-4, EDN, 8/20/87, pg 299
Thermometer
Tegam Inc, Model 878, EDN, 6/11/87, pg 228

Thermometer bridge

H Tinsley and Co Inc, Senator, EDN, 5/14/87, pg 296
Troubleshooter
Information Scan Technology, Model 5700C, EDN, 8/20/87, pg 302

VLSI tester

Advantest America Inc, T3381, EDN, 8/20/87, pg 299

VME Bus analyzer

Concise Technology, CVMEOM1, EDN, 7/23/87, pg 133
VME chassis
Wavetek San Diego, 680, EDN News, 5/21/87, pg 17
Wavetek San Diego, Model 680 , EDN, $7 / 23 / 87$, pg 267

Vacuum test fixture

Factron Schlumberger, Diss-Stat, EDN News, 8/13/87, pg 48

Vector generator

Hewlett-Packard Co, HP 8780A, EDN, 7/23/87, pg 282

Video generator

Network Technologies Inc, Montest-AD8, EDN, 10/29/87, pg 302
Wallington Instrument Co, TDG-1, EDN, 10/29/87, pg 308

Voltage calibrator

Valhalla Scientific, 2720GS, EDN, 9/03/87, pg 280
Waveform analyzer
Dranetz Technologies, Series 656, EDN News, 5/21/87, pg 43
Iwatsu Instruments Inc, SAS-8130, EDN, 10/15/87, pg 254

Waveform digitizer

DSP Technology Inc, Model 2610, EDN, 6/11/87, pg 248
Keithley Instruments Inc, Model 194A, EDN, 7/23/87, pg 296
LeCroy Corp, 6880A, EDN News, 8/13/87, pg 48
Sequence Inc, 3000 Series, EDN, 7/23/87, pg 269

Waveform generator

RC Electronics Inc, $R C-200$, EDN, 5/14/87, pg 300
Waveform recorder
Hewlett-Packard Co, 5185A, EDN News, 10/22/87, pg 52
Winchester tester
Cambrian Systems Inc, CS-1010, EDN, 9/17/87, pg 323
$\mu \mathrm{C}$ development system
Systek, 7001 Development System, EDN, 7/23/87, pg 142

$\mu \mathrm{P}$ debugger

Applied Microsystems Corp, Validate-X-Ray, EDN, 7/23/87, pg 281

$\mu \mathrm{P}$ development system

Emulogic Inc, 68020 pod, EDN, 7/23/87, pg 279
Orion Instruments Inc, PAK68HC11, EDN, 6/25/87, pg 327
Step Engineering, Microstep, EDN, 7/23/87, pg 277
$\boldsymbol{\mu} \mathrm{P}$ emulator
Orion Instruments Inc, 14 MicroTarget, EDN, 10/15/87, pg 254
Ziltek Corp, Ice-Engine/m-64180, EDN, 10/01/87, pg 228
$\mu \mathrm{P}$ program analyzer
Step Engineering, Performance Analyzer, EDN, 6/11/87, pg 248
$\mu \mathrm{P}$ simulator
Logic Automation Inc, Clipper SmartModel, EDN, 8/06/87, pg 254

SOFTWARE

AI software tool
Knowledge Garden Inc, KnowledgePro, EDN, 10/29/87, pg 322
APL
Leptonic Systems Co, MacAPL, EDN, 7/09/87, pg 189
Ada tool
Intermetrics Inc, Byron PDL, EDN, 5/28/87, pg 266
Analysis
Allen-Bradley Co, Statistical Process Control, EDN News, 8/13/87, pg 46
Basic source code
Softaid Inc, MTBasic, EDN, 7/23/87, pg 241

C language

Borland International, Turbo C, EDN, 9/03/87, pg 286
QNE International, Quic-PRO 5, EDN, 10/01/87, pg 232
Software Development Systems, -, EDN, 6/25/87, pg 322
Sterling Castle Software, Blackstar C library, EDN, 6/25/87, pg 322
Texas Instruments Inc, TMS320C25 C Compiler, EDN, 10/15/87, pg 249
CAE software
Maxam Technologies Inc, UltraCADD, EDN News, 7/16/87, pg 50
Maxam Technologies Inc, UltraCADD, EDN, 7/09/87, pg 180

CASE tool

Cadre Technologies, Teamwork, EDN, 5/14/87, pg 290
Promod Inc, ProMod/SC, EDN, 8/06/87, pg 255
Visual Software Inc, vsDesigner, EDN, 7/09/87, pg 176

CP/M word processor

MicroPro International Corp, WordStar Release 4, EDN, 10/29/87, pg 322
Communications software
Communications Research Group, Blast-Host, EDN, 7/23/87, pg 242
Server Technology Inc, EasyLAN 2.5, EDN News, 9/10/87, pg 67

Compilers

UniSoft Corp, —, EDN, 5/28/87, pg 268

Cross compiler

Forth Inc, ChipForth, EDN, 6/25/87, pg 323
Software Development Systems, UniWare $68020+68881$, EDN News, 5/21/87, pg 50
DSP software
Datacube Inc, EuclidTools, EDN News, 6/18/87, pg 1
Forth Inc, $F B-320$, EDN, $8 / 20 / 87$, pg 310

Data acquisition

Lotus Development Corp, Measure, EDN, 7/23/87, pg 244

Database software

Protek, Tekbase, EDN, 7/09/87, pg 184
Solartron Instruments, Impulse, EDN, 7/09/87, pg 193

Debugger

Microcosm Inc, Microscope 68k, EDN, 6/25/87, pg 325
Disk utilities
Design Software Inc, Survival Kit, EDN, 7/09/87, pg 182

EGA/VGA BIOS

Interlink Business Network, -, EDN, 10/01/87, pg 234

Emulator

Pentica Systems Ltd, Mime-600, EDN, 9/17/87, pg 310

Expert-system shell

Expertech, Xi Plus, EDN, 5/14/87, pg 292
Mystech Associates Inc, Aurora, EDN, 6/25/87, pg 322

File conversion

Rapid Systems Inc, R900, EDN, 5/28/87, pg 262

File finder

Polaris Software, Polaris Zoo Keeper, EDN, 8/20/87, pg 311

Format converter

Rapid Systems Inc, R900, EDN, 8/06/87, pg 254
SMT Inc, Interchange, EDN, 10/29/87, pg 318

Fortran language

Intel Scientific Computers, Vast-2, EDN, 10/15/87, pg 245

Graphic software

AT\&T Graphic Software Labs, Software Visions series, EDN, 6/25/87, pg 321
Capital Equipment Corp, CEC-Graph, EDN News, 10/22/87, pg 58
Graphic Software Systems Inc, GDT, EDN, 10/15/87, pg 252
Graphic Software Systems Inc, GSS*X/386, EDN, 10/15/87, pg 249
Motorola Microcomputer Div, Concept/GKS, EDN, 9/17/87, pg 308
IEEE-488 driver
Ziatech Corp, DOS.GPIB, EDN, 9/17/87, pg 310

Image software

Imaging Technology Inc, ITEX PCplus, EDN, 7/09/87, pg 193
Primagraphics Ltd, VCS, EDN, 10/01/87, pg 232
TMS Inc, TMSFAX, EDN, 9/03/87, pg 285
Interactive analysis
BBN Software Products Corp, Dataprobe, EDN, 5/28/87, pg 265

LISP language

Gold Hill Computers Inc, CG LISP 386 Developer, EDN, 6/25/87, pg 319 Solution Systems, TransLisp Plus, EDN, 7/09/87, pg 189

Lab software

Philips T\&M Instruments Inc, LAB60, EDN, 7/09/87, pg 186

PRODUCT DATABASE INDEX

Software (Continued)

Language

Digitalk Inc, —, EDN, 5/28/87, pg 266
Digitalk Inc, Smalltalk/V, EDN, 7/09/87, pg 190

Librarian

Thought Dynamics, Fetch, EDN, 10/15/87, pg 245
Link software
Thomson Components-Mostek Corp, TSVME791, EDN, 7/09/87, pg 178
MAP Network tool
Motorola Inc, TBFA, EDN, 8/06/87, pg 254
MAP software
Motorola Inc, MicroMap 2.1, EDN, 9/17/87, pg 306
MS-DOS extensions
AI Architects Inc, OS/286, OS/386, EDN News, 9/10/87, pg 69

Macroassembler

Microsoft Corp, Macro Assembler, EDN, 10/29/87, pg 328

Management-system software

Apollo Computer Inc, Open Dialogue, EDN News, 10/22/87, pg 61
Math tool
MathSoft Inc, MathCAD V2.0, EDN, 10/29/87, pg 326
Microcode tool
HiLevel Technology Inc, Hale Macro-Meta Assembler, EDN, 7/23/87, pg 242
Motion-control software
Ormec Systems Corp, Max, EDN, 5/14/87, pg 288
Multilingual UNIX
UniSoft Corp, UniPlus + System V, Rel 3, EDN, 6/25/87, pg 321

Multitasking operating system

Ready Systems, MPV/68000, -68010, -68020, EDN News, 10/22/87, pg 58

Network interface

Apollo Computer Inc, Open Dialogue, EDN, 10/15/87, pg 242
OCR software
AST Research Inc, ReadRight, EDN, 5/14/87, pg 288
OS extender
Phoenix Technologies Ltd, Control/386, EDN, 8/20/87, pg 312
OS/2 development kit
Microsoft Corp, —, EDN, 9/03/87, pg 285
Operating system
AT\&T, Unix System V Release 3, EDN News, 10/22/87, pg 59
Allen Systems, SK-11, EDN, 7/23/87, pg 244
Kontron Electronics Inc, $R T / i X$, EDN, $9 / 17 / 87$, pg 313
Root Technical Systems, Uniplus + 1386, EDN, 10/15/87, pg 242
Wendin Inc, Wendin-DOS, EDN News, 6/18/87, pg 57
Oscilloscope link
Tektronix, 11300, 11400 Series, EDN, 5/28/87, pg 270
PC batch handler
VM Personal Computing, BEYOND.BAT, EDN, 9/17/87, pg 308

PC storage scope

HEM Data Corp, Snapshot Storage Scope V2.5, EDN, 6/25/87, pg 323

PC-Ultrix bridge

Locus Compuţing, PC-Interface, EDN, 7/09/87, pg 184
PC-to-DEC link
Digital Equipment Corp, Network-Integration Package, EDN, 10/15/87, pg 247
Parallel math tool
BBN Advanced Computers Inc, Math Advantage, EDN, 9/03/87, pg 282

Parser

QCAD Systems Inc, QParser + , EDN, 10/29/87, pg 328
Part-listing program
LiveWire Software, Partlister V3.0, EDN, 6/25/87, pg 318

Pascal language

Certified Software Corp, OmegaSoft Pascal, EDN, 5/14/87, pg 292
Motorola, Pascal-2 Compiler, EDN, 8/20/87, pg 311
TurboPower Software, T-Debugplus, EDN, 10/15/87, pg 245
Printer emulator
AST Research Inc, LaserJet Plus Software, EDN, 8/20/87, pg 308

Project-management software
Metier Management Systems, Artemis Project and Link, EDN News, 7/16/87, pg 54

Publishing software

Digital Equipment Corp, VAX Document, EDN, 7/09/87, pg 186

Real-time OS

Force Computers Inc, UniFLEX/MP, EDN, 7/09/87, pg 178

Real-time analysis

Burr-Brown Corp, Labtech Notebook, EDN, 10/29/87, pg 324
Real-time software
Intel Corp, iRMK, EDN, 10/29/87, pg 326
Kadak Products Ltd, AMX Version 2.0, EDN, 10/01/87, pg 233
Ready Systems, VRTX32, EDN News, 10/22/87, pg 59
Ready Systems, VRTX32, EDN, 8/20/87, pg 308

Repair software

Prime Solutions Inc, Disk Technician, EDN News, 6/18/87, pg 56

Software

Applied Reliability Consult, PC-Link, EDN News, 5/21/87, pg 54
Powertronic Systems Inc, Maintainability Prediction, EDN News, 5/21/87, pg 52
Rational Systems Inc, DOS/16M, EDN, 8/06/87, pg 254
Software tools
Temart, Axion, EDN, 7/09/87, pg 186

Subroutine library

Data Translation Inc, DT-Iris, EDN News, 5/21/87, pg 51

Support software

Datacube Inc, Maxware, EDN News, 7/16/87, pg 53

Telecom software

Hayes Microcomputer Products, Smartcom III, EDN, 8/20/87, pg 310

Terminal emulator

Ultratek, Graphic 4000, EDN, 5/14/87, pg 292

Test software

ILC Data Device Corp, BUS-69005, EDN News, 5/21/87, pg 51
ILC Data Device Corp, BUS-69005, EDN, 10/15/87, pg 242

Timing software

Custom Real-Time Software, Stopwatch, EDN News, 5/21/87, pg 54
Custom Real-Time Software, Stopwatch, EDN, 5/14/87, pg 294

Touchscreen

John Fluke Mfg Co Inc, TCS Toolbox, EDN, 7/09/87, pg 186

VAX backup

Syco System Communications Inc, Automatic Backup, EDN, 9/17/87, pg 313
Window system
Opus Systems, Opus Systems X, EDN, 9/17/87, pg 304

$\boldsymbol{\mu} \mathrm{P}$ development software

Advanced Micro Solutions, AMS 51, EDN, 10/29/87, pg 320

μ P-to- μ P comm

Microbar Systems Inc, MPCX, EDN, 9/17/87, pg 306

COMPUTERS AND PERIPHERALS

32-bit computer

Apple Computer Inc, Macintosh II, EDN, 5/14/87, pg 256
Ivy Microcomputers Corp, Ivy 386 Series' Model 40, EDN, 10/29/87, pg 292
Mitsubishi Electronics America, MP 386 Series, EDN, 9/17/87, pg 300
A/D board
PEP Modular Computers Inc, VADI, EDN, 10/29/87, pg 297
A/D converters
Matrix Corp, Series MS-AD12, EDN News, 10/22/87, pg 58
Accelerator
Levco, Prodigy SE, EDN, 5/28/87, pg 240
MicroWay, FastCache-286, EDN News, 5/21/87, pg 51
PC Technologies Inc, 386 Express, EDN, 8/20/87, pg 296
SMT Inc, XT-286, EDN, 8/20/87, pg 294
Sky Computers Inc, Vortex family, EDN, 7/23/87, pg 139
Acquisition board
Strawberry Tree Computers Inc, ACM2-12-8A, EDN, 10/29/87, pg 292
Add-in board
Micropar Inc, T4, EDN, 8/06/87, pg 73

PRODUCT DATABASE INDEX

Computers and Peripherals (Continued)

Analog I/O card

Efisysteme, CESA-2/01, EDN, 5/28/87, pg 249
Robotrol Corp, RBX388, EDN, 5/14/87, pg 260

Analog input card

Robotrol Corp, RBX311, EDN, 8/20/87, pg 295

Answering machine

The Complete PC Inc, CAM, EDN, 9/03/87, pg 259

Arcnet interface

Comendec Ltd, V-ARC02, EDN, 9/03/87, pg 252

Array processor

Analog Devices Inc, RTI-680-HS, EDN News, 9/10/87, pg 75
Computer Design \& Applications, MicroMSP-4, EDN, 7/23/87, pg 121

Axis controller

Thomson Components-Mostek Corp, TSVME440, EDN, 5/28/87, pg 240

Backplane

Mupac Corp, Central Services Module, EDN News, 9/10/87, pg 67

Bitbus system

Honeywell, Micro Switch Div, -, EDN News, 7/16/87, pg 54

Board computer

Cyclone Microsystems, CY4110, EDN, 8/20/87, pg 290
Diversified Technology Inc, -, EDN News, 7/16/87, pg 53
Plessey Microsystems Inc, PME 68-23, EDN, 5/28/87, pg 238
Windrush Micro Systems Ltd, Omega-OEM, EDN, 8/06/87, pg 238
Ziatech Corp, ZT 8816/8817, EDN, 7/23/87, pg 114

Board set

Sun Microsystems Inc, Sun-子, EDN, 9/17/87, pg 294

Bubble memory

Plessey Microsystems Inc, PBU85D, EDN, 5/14/87, pg 256

Bubble-memory cassette

Bubbl-tec, BDJ-1, BDJ-2, EDN, 7/23/87, pg 103

Bus adapter

Sigma Information Systems, SDC-HA11, EDN, 10/15/87, pg 206

CPU card

EKF Elektronik Messtechnik, VME-68050, EDN, 9/17/87, pg 302
EKF-Elektronik-Messtechnik, 10681-MCU, EDN, 10/29/87, pg 290
Force Computers Inc, CPU-24/25, EDN, 8/20/87, pg 283
Signetics Corp, PG2100, EDN, 8/20/87, pg 286
Thomson Components-Mostek Corp, TSVME 106, EDN, 7/23/87, pg 128

CRT terminal

CIE Terminals Inc, CIT310, EDN, 8/20/87, pg 294

Card set

Micro Standards Corp, STD/PC System, EDN News, 6/18/87, pg 56

Central service module

Microbar Systems Inc, CSM-B, EDN, 7/23/87, pg 107

Cluster controller

CIE Systems Inc, CIE 4071, EDN, 7/23/87, pg 142

Color monitor

Hitachi America Ltd, HM-5219, EDN News, 5/21/87, pg 52
Hitachi America Ltd, HM-5219, EDN, 5/14/87, pg 256
Princeton Graphics Systems, Ultrasync, EDN, 8/06/87, pg 232

Color printer

Honeywell Bull Italia, 4/64, EDN, 8/06/87, pg 232

Communication board

AST Research Inc, AST-220, EDN, 7/23/87, pg 122
Intelligent Technologies Int'l, Clusternet II, EDN, 7/23/87, pg 110
Pro-Log Corp, 7315, EDN, 10/29/87, pg 296

Communication converters

DGH Corp, A1000, EDN, 7/23/87, pg 103

Computer

Ampro Computers Inc, Little Board PC, EDN, 5/28/87, pg 242
Diversified Technology, SB/AT, EDN News, $5 / 21 / 87$, pg 54
Force Computers Inc, CPU-21B, EDN News, 5/21/87, pg 46
Hawthorne Technology, HT-68k TinyGiant, EDN, 5/28/87, pg 250
Mitsubishi Electronics America, Series MP 386, EDN News, 10/22/87, pg 59

Computer board

Dynatem Inc, RM65-68000, EDN, 7/23/87, pg 145
Force Computers Inc, CPU-22/23, EDN, 10/15/87, pg 83
Force Computers Inc, $C P U-386$, EDN, $7 / 23 / 87$, pg 122

PEP Modular Computers Inc, VMPM68KC, EDN News, 5/21/87, pg 50 PEP Modular Computers Ine, VMPM68KC, EDN, 5/28/87, pg 240

Computer system

Micro/sys Inc, ECX Model 188, EDN, 10/01/87, pg 117
Xycom Inc, 4150, EDN, 10/01/87, pg 110

Controller

Central Data Corp, SCSI/Floppy, EDN, 6/11/87, pg 232
Xycom, XVME-402, EDN News, 10/22/87, pg 59

Controller board

Excelan Inc, Ethernet, EDN News, 9/10/87, pg 73
Gulton Industries Inc, TAC-385, EDN, 10/01/87, pg 224
Rancho Technology, Three-in-One, EDN News, 6/18/87, pg 57

Coprocessor

Zaiaz International Corp, 933 Computer Engine, EDN News, 5/21/87, pg 50
Coprocessor board
Forth Inc, FB-4016, EDN, 8/06/87, pg 238
Iskra VME Technologies, VMEx286, EDN, 5/28/87, pg 236
Mercury Computer Systems Inc, MC3200AT, EDN, 10/29/87, pg 300
Zelea, Trisonic 8, EDN, 7/23/87, pg 60

Counter/timer

Datem Ltd, $d D C M 345$, EDN, 10/01/87, pg 216

Cross-development systems

Sierra Systems, Sierra C, EDN News, 7/16/87, pg 53

D/A board

National Instruments, NB-AO-6, EDN, 10/15/87, pg 209

DSP board

Ariel Corp, DSP-16, EDN, 7/23/87, pg 98
Thomson Components-Mostek Corp, TSVME350, EDN, 6/11/87, pg 235

DSP prototyping package

Forth Inc, -, EDN News, 10/22/87, pg 59

Data acquisition

Data Translation Inc, DT2811, EDN, 5/28/87, pg 236
GW Instruments Inc, MacADIOS, EDN, 10/29/87, pg 294
Data transporter
Ironics Inc, IV-3272, EDN News, 10/22/87, pg 58
Ironics Inc, $I V$-3272 FSDT, EDN, 10/15/87, pg 206

Data-acquisition card

Gespac Inc, Gesada-1A, EDN News, 5/21/87, pg 52
Gespac Inc, Gesada-1A, EDN, 5/28/87, pg 234
Strawberry Tree Computers, Analog Connection Jr, EDN, 7/23/87, pg 146

Data-link board

Stollmann GmbH, SICC-SNA, EDN, 9/03/87, pg 252
Desktop computer
Unbound Inc, Qube QS-720, EDN News, 10/22/87, pg 59

Desktop scanner

Hewlett-Packard Co, ScanJet, EDN, 7/23/87, pg 100

Desktop subsystem

AST Research Inc, TurboVision, EDN, 9/17/87, pg 296

Development kit

Micro Industries, MIB II 186/110, EDN, 6/25/87, pg 284

Digitizing tablet

Numonics Corp, 2205, EDN, 7/23/87, pg 136
Disk drive
C Itoh Electronics Inc, YD-701, YD-801, EDN, 5/14/87, pg 264
Fujitsu America Inc, M2243T, M2243R, EDN News, 9/10/87, pg 70
Lapine Technology, Spartan 40 SCSI, EDN News, 9/10/87, pg 73
Maxtor Corp, LXT-170, EDN News, 6/18/87, pg 26

Disk-controller board

Adaptec Inc, $A C B-238 X$, EDN, 7/23/87, pg 112
Distributed Logic Corp, DQ246, $D Q 256$, EDN News, 9/10/87, pg 70
Matrix Corp, MS-HFD, EDN, 7/23/87, pg 146

Display

Greyhawk Systems Inc, Softplot 2222, EDN, 6/11/87, pg 231

Display controller

Metheus Corp, 1000VM Series, EDN, 10/15/87, pg 211
Univision Technologies Inc, UDC-800, EDN, 5/28/87, pg 236
Display system
Cambridge Computer Graphics, Xcellerator, EDN, 7/23/87, pg 108

Drive tester

Pioneer Research, PR4042, EDN, 7/23/87, pg 121

PRODUCT DATABASE INDEX

Computers and Peripherals (Continued)

Electroluminescent display

Sigmatron Nova Inc, MDS-23, MDS-35, EDN News, 5/21/87, pg 46

Ethernet adapter

Ungermann-Bass Inc, NICl2, EDN, 10/01/87, pg 219

Ethernet interface

Eltec Elektronik GmbH, Ethernet-IPIN, EDN, 10/15/87, pg 214
Vertec Ltd (Electronics), VTC-710, EDN, 5/28/87, pg 238

Evaluation board

Zymos Corp, ZyATB-1, EDN, 6/25/87, pg 288

Expansion board

University Res and Dev Assoc, PADC-DAC-8, EDN News, 9/10/87, pg 75
Floppy disk
Verbatim Corp, DataLife 2M-byte, EDN News, 9/10/87, pg 67
Forth computer
Triangle Digital Services Ltd, TDS9090, EDN, 9/03/87, pg 256

GPIB board

IOtech Inc, COM488, EDN News, 8/13/87, pg 46
GPIB controller
ICS Electronics Corp, 488-PC1, EDN, 7/23/87, pg 126
Graphics adapter
STB Systems Inc, VGA Extra, EDN, 10/01/87, pg 216

Graphics board

Eltec Elektronik GmbH, GRAZ-4, EDN, 8/20/87, pg 284
Force Computers Inc, SYS68K/AGC-2, EDN, 10/15/87, pg 213
Kontron Electronics Inc, 7000 CB , EDN, 10/29/87, pg 299
PEP Modular Computers Inc, VGPM, EDN, 10/29/87, pg 296
Tecmar Ine, EGA Master 480, 800, EDN, 7/23/87, pg 125
Tektite, TT786, EDN, 6/25/87, pg 288
Graphics computer
Benchmark Technologies Ltd, Picture Processor, EDN, 10/15/87, pg 209

Graphics controller

Matrox Electronic Systems, PG-1281, EDN News, 7/16/87, pg 1
Verticom Inc, Desktop 1280, EDN, 7/23/87, pg 128
Graphics monitors
Barco Industries Inc, Series $C D C T 6000$, EDN News, $5 / 21 / 87$, pg 51
Graphics processor
Matrox Electronic Systems, MG-1280, EDN, 5/14/87, pg 264
Graphics subsystem
CalComp Display Products Div, CGS-4600, EDN, 7/23/87, pg 122
Graphics terminal
Pericom Inc, MX1000, EDN, 7/23/87, pg 105
Pericom Inc, MX10000, EDN, 6/11/87, pg 236
Wyse Technology, WY-99GT, EDN News, 6/18/87, pg 56
Hard-disk controller
Konan Corp, Model KXP-230, EDN, 10/29/87, pg 294

Hard-disk drive

Control Data Corp, 9715-1000 FSD, EDN, 7/23/87, pg 108
Lapine Technology Corp, LT4000 Spartan, EDN, 5/28/87, pg 120
Lapine Technology Corp, Spartan 20, EDN, 7/23/87, pg 98
Maxtor Corp, LXT-170, EDN, 5/28/87, pg 119
Micropolis Corp, 1500 and 1600 families, EDN, 10/29/87, pg 138

Hard-disk subsystem

CMS Enhancements Inc, Data Exchange, EDN, 7/23/87, pg 110

I/O adapter

Computer Modules Inc, LSBX-Mother/AT, EDN, 9/03/87, pg 256

I/O board

Analog Devices Inc, RTI-820, EDN, 9/17/87, pg 292
Computer Dynamics, Series HPIO, EDN News, 10/22/87, pg 58
Data Translation Inc, DT2811, EDN News, 5/21/87, pg 52
Data Translation Inc, DT2841 Series, EDN, 9/17/87, pg 295
Eltec Elektronik GmbH, IBAM, EDN, 7/23/87, pg 130
National Instruments, NB-DIO-32F, EDN, 6/25/87, pg 286
National Instruments, NB-MIO-16, EDN, 5/28/87, pg 234
Omnibyte Corp, —, EDN News, 5/21/87, pg 46
I/O controller
Ironics Inc, $I V$-1624A, EDN News, 10/22/87, pg 58

IBM PC LAN

Trans-M Corp, NET-127, EDN, 8/20/87, pg 295

IEEE Bus interfaces

IOtech Inc, Personal488/2, -/2A, EDN, 9/17/87, pg 290

IEEE board

Capitol Equipment Corp, 4×488, EDN, 10/01/87, pg 219
IEEE-488 controller
National Instruments, GPIB-PC Conv, EDN, 6/25/87, pg 282
Image processor
Imaging Technology Inc, Series 200, EDN, 7/23/87, pg 139

Image-display processor

AT\&T Pixel Machines, Series PXM 900, EDN News, 7/16/87, pg 53

Imaging board

Matrox Electronic Systems Ltd, MVP-AT, EDN, 7/23/87, pg 146
Imaging system
Visual Info Technologies Inc, Model 120, EDN, 9/03/87, pg 104

Industrial computer

Pro-Log Corp, System 2, EDN, 10/01/87, pg 89

Interface

IOtech Inc, Personal488, EDN News, 9/10/87, pg 9
National Instruments, NB-DMA-8-G, EDN News, 9/10/87, pg 67
Octagon Systems Corp, 507, EDN News, 9/10/87, pg 75
Plessey Microsystems Inc, MBI-1, EDN News, 9/10/87, pg 69
Ziatech Corp, ZT/2, EDN News, $9 / 10 / 87$, pg 67
Interface card
Octagon Systems Corp, 508, EDN, 9/03/87, pg 251

Interface terminals

Burr-Brown Corp, TM2500, TM2700, EDN, 7/23/87, pg 126

Internetwork bridge

Bridge Communications Inc, IB/1-FT, EDN, 7/23/87, pg 148

Keyboard

Genest Technologies Inc, -, EDN News, 5/21/87, pg 54
Xcel Corp, LCD Touch-Screen Keyboard, EDN, 7/23/87, pg 145

LAN

Syntel Microsystems, Sycom, EDN, 9/17/87, pg 290

LAN bridge

CrossComm Corp, $487 E E$, EDN News, $9 / 10 / 87$, pg 67

LAN controller

Interphase Corp, V/Ethernet 4207 Eagle, EDN, 10/01/87, pg 128

LAN interface

Comendec, Q-ARC-01, EDN, 8/06/87, pg 235

LAN repeater

Cabletron Systems Inc, LR-2000, EDN News, 5/21/87, pg 54
LAN repeater and transceiver
Cabletron Systems Inc, MR-9000C, MT-800, EDN News, 5/21/87, pg 51
LAN server
Bridge Communications Inc, CS/50, EDN, 8/20/87, pg 283
Laser printer
Kyocera Unison Inc, F-3010, EDN, 10/15/87, pg 214

Magnetic-tape subsystem

Zetaco, Zip-12, EDN News, 9/10/87, pg 75

Math coprocessor

Weitek Corp, 1167, EDN, 7/23/87, pg 148

Memory board

Chrislin Industries Caribe Inc, CI-QBUS-EDC, EDN News, 8/13/87, pg 46
Dual Systems Corp, VMEM-16MB, EDN, 7/23/87, pg 147
Force Computers Inc, SRAM-4, EDN, 6/11/87, pg 231
Micro Memory Inc, MM-6210D, EDN News, 5/21/87, pg 51

Memory module

Micro Memory Inc, MM-6220D, EDN, 10/15/87, pg 214
Micro Memory Inc, MM-7300D, EDN News, 9/10/87, pg 73
Texas Instruments Inc, MIM, EDN News, 6/18/87, pg 57
Toshiba America Inc, THM91000S-10/12, EDN News, 9/10/87, pg 70

Memory subsystem

Magnesys, Geardrive, EDN News, 7/16/87, pg 54
Military interface board
Sabtech Industries, NT1632FS, EDN, 7/23/87, pg 107
Mobile computer system
Titan Severe Environment Sys, SECS 80/MCS, EDN News, 7/16/87, pg 54

Computers and Peripherals (Continued)

Modem

Anderson Jacobson, AJ 2412-STH, EDN, 7/23/87, pg 148 Anderson Jacobson, AJ 9601-STF, EDN News, 9/10/87, pg 69 Anderson Jacobson, CCITT V.29, EDN News, 10/22/87, pg 61 Micom Systems Inc, M3124EH, EDN News, 9/10/87, pg 32
Micom Systems Inc, M3124EH, EDN, 7/23/87, pg 126
Novation Inc, Parrot 1200, EDN News, 6/18/87, pg 57
Practical Peripherals, Practical Modem 2400 SA, EDN, 10/01/87, pg 216
Racal-Vadic, VI1222PA, EDN News, 6/18/87, pg 56
Rockwell International Corp, R144DP, EDN, 6/25/87, pg 291

Modem security

Control Cable Inc, Modem Security Enforcers, EDN News, 10/22/87, pg 58
Monitor
Carroll Touch, Total-Touch, EDN, 6/11/87, pg 231
Cornerstone Technology, Vista 1600, EDN, 9/17/87, pg 294
Zenith Data Systems, ZCM-1490, EDN News, 8/13/87, pg 46

Motion control

Metrabyte Corp, MStep-5, EDN, 6/25/87, pg 318

Motion controller

Galil Motion Control Inc, -10 Series, EDN, 5/28/87, pg 260
Galil Motion Control Inc, DMC-230, EDN News, 5/21/87, pg 54
Galil Motion Control Inc, DMC-230 Series, EDN, 7/23/87, pg 100

Motor controller

Integrated Motions Inc, Amadeus-96, EDN News, 10/22/87, pg 58

Multibus II card

Data Translation Inc, Dt2401 Series, EDN, 5/28/87, pg 234

Multibus II module

Microbar Systems Inc, CSM-B, EDN News, 5/21/87, pg 52

Multiplexer

Metrabyte Corp, ISO-4, EDN, 5/28/87, pg 249
Sigma Information Systems, SCD-DHV11/8, EDN, 7/23/87, pg 147

Network

Western Digital Corp, StarCard Plus, EDN, 5/28/87, pg 250

Network card

Arcom Control Systems Ltd, SNETS, SNETM, EDN, 7/23/87, pg 134 Arcom Control Systems Ltd, SNETS, SNETM, EDN, 6/25/87, pg 292

Network integration

Digital Equipment Corp, IBM PC Network Integration, EDN News, 10/22/87, pg 59

Network interface

Motorola Inc, MHW10000, EDN, 6/25/87, pg 293

Neurocomputer

Hecht-Nielsen Neurocomputer, Anza, EDN News, 9/10/87, pg 75

OEM controller

Measurement Technology Inc, MT1000, EDN, 8/20/87, pg 283

Optical disk drive

Maximum Storage Inc, APX-3000, EDN, 7/23/87, pg 105

Optical disk system

Data/Ware Development Inc, DW34800, EDN News, 6/18/87, pg 57

Optical-disk kit

Scientific Micro Systems Inc, —, EDN, 10/29/87, pg 295
PC add-in
Blue Chip Technology Ltd, AIP-24, AIP-48, EDN, 8/20/87, pg 288
NMI Electronics Ltd, PCLVDT6, EDN, 10/29/87, pg 297

PC fax

Leaf Systems Inc, PC ImageFax, EDN, 5/28/87, pg 250

PC network

BCSoft Corp, SimpleNet LAN, EDN, 9/17/87, pg 306
PC/AT bus adapter
Adaptec Inc, AHA-1540, EDN, 10/01/87, pg 130
PC/VAX network
Xyplex, PC Expander, EDN, 6/25/87, pg 318

Page printer

Data Technology Corp, CrystalPrint VIII, EDN, 10/29/87, pg 290
Parallel I/O board
Matrix Corp, MS-PIO, EDN, 8/20/87, pg 293

Personal computer
Wang Laboratories Inc, Professional Computer 280, EDN News, 7/16/ 87, pg 54
Wyse Technology, Model 3216, EDN, 8/20/87, pg 297
Photoplotter
Glaser AG, DP-1545, EDN, 7/23/87, pg 133
Pointing device
MicroSpeed Inc, FastTrap, EDN News, 5/21/87, pg 52

Port expanders

Integrated Marketing Corp, Data Manager 4x4, EDN, 9/03/87, pg 254
Portable microcomputer
CAD/CAM On-line Inc, MiDAS, EDN News, 9/10/87, pg 73

Printer

Nissho Information Systems, NP-2405, EDN, 7/23/87, pg 139
Okidata, Microline 393, EDN, 9/17/87, pg 290
Wenger Printers AG, Model 2/1, EDN, 10/15/87, pg 209

Printer network

Support Systems International, PrintNet II, EDN, 9/17/87, pg 299

Processor

Heurikon Corp, HK68/M120, HK68/M220, EDN News, 6/18/87, pg 56
Processor board
XYZ Electronics Inc, CPU-69K8, EDN, 10/01/87, pg 223
Protocol board
Force Computers Inc, SIO-2, EDN, 9/17/87, pg 299

Protocol converters

Printer Systems Corp, Printmate Coax, Twinax, EDN News, 9/10/87, pg 73
Prototyping board
NV Spinnov SA, SP-Proto, EDN, 8/20/87, pg 296

RAM board

Europel Systems Ltd, COSMOS-16, EDN, 10/01/87, pg 223
Force Computers Inc, SYS68K/DRAM-6, DRAM-7, EDN, 7/23/87, pg 106
PEP Modular Computers Inc, VMEM-S1, EDN, 8/06/87, pg 238

RAM disk

Corvallis MicroTechnology Inc, HP-IL RAM Disk, EDN, 10/01/87, pg 221

Raster displays

Seiko Instruments USA Inc, GR-4400 Series, EDN, 9/03/87, pg 251
Real-time controller
Umecorp, Expert Controller, EDN, 10/01/87, pg 94
Relay output cards
Electronic Instr \& Spec Corp, -, EDN News, 5/21/87, pg 46

Repeater

Systech Corp, Spur, EDN News, 7/16/87, pg 54

SCSI adapter

Sigma Sales, SDC-HA11, EDN, 10/15/87, pg 211
SCSI host adapter
Performance Technologies Inc, PT-VME420, EDN News, 8/13/87, pg 46 Performance Technologies Inc, PT-VME420, EDN, 8/20/87, pg 286

STD I/O card

Octagon Systems Corp, 500 I/O, EDN, 7/23/87, pg 136
STD bus computer
Pro-Log Corp, System 2, EDN, 7/23/87, pg 146
STD bus modules
Miller Technology Inc, MTI-1000, EDN, 7/23/87, pg 106
Security system
Micronyx, Triad Plus, EDN News, 5/21/87, pg 46

Silicon disk

Altec Electronic GmbH, Silicon-Disk 250S, EDN, 6/11/87, pg 232
Kontron Electronics Inc, KAT-PRE, EDN, 7/23/87, pg 133
Small computer
Multitech Electronics Inc, Acer 710, EDN, 7/23/87, pg 141
Smart card
Multimil Inc, Memocard, EDN News, 5/21/87, pg 51
Multimil Inc, Memocard, EDN, 5/28/87, pg 114
Storage board
Qualogy Inc, QPC-5211, -5212, -5213, EDN, 6/25/87, pg 290

Storage device

Scientific Micro Systems Inc, SMS 1000 model 68, EDN News, 6/18/87, pg 57

PRODUCT DATABASE INDEX

Computers and Peripherals (Continued)

Supercomputer

Int'l Product Solutions Inc, Colossus/GP, EDN News, 7/16/87, pg 54 Supermicrocomputer
Fortune Systems Corp, Formula 4000, EDN News, 10/22/87, pg 59
Tape controller
Ciprico Inc, Tapemaster 2000, EDN, 7/23/87, pg 141
Tape drive
Alloy Computer Products Inc, APT-40/Q, EDN News, 7/16/87, pg 54 Mountain Computer Inc, Series TD4000, EDN News, 6/18/87, pg 56

Text converter

Swisscomp Inc, Smart Speaker, EDN, 10/01/87, pg 224
Timing analyzer
Falcon Technology, Mipster, EDN, 8/06/87, pg 238
Touch controller
Interaction Systems Inc, 4003 Touch Controller, EDN, 7/23/87, pg 121
Touchscreen
MicroTouch Systems Inc, Resistive-membrane, EDN News, 10/22/87, pg 59
Transputer interface
Parsytec GmbH, Megaframe, EDN, 8/06/87, pg 235
Unix computer
Microproject International Inc, Unicorn B/200, EDN News, 10/22/87, pg 39
Unix lab system
Masscomp, Scientific Laboratory System, EDN, 7/23/87, pg 239
Unix-V computer
SBE Inc, Model 500/550, EDN, 7/23/87, pg 136

VME Bus

Ciprico Inc, Rimfire 3500, EDN, 7/23/87, pg 121
Heurikon Corp, HK68/VE, EDN, 7/23/87, pg 139
Interphase Corp, V/MIX 3210, EDN, 7/23/87, pg 112
Logical Design Group Inc, VME-0286AT, EDN, 10/01/87, pg 219
Microproject Corp, Unicorn C, EDN, 10/29/87, pg 137
Motorola Corp, XVME140, EDN News, 10/22/87, pg 1
Torch Computers Ltd, VME32QX, EDN, 10/29/87, pg 296
Video board
NV Spinnov SA, SP-Diva, EDN, 6/25/87, pg 286

Video display terminals

Falco Data Products Inc, Falco 5000, -5600, EDN News, 9/10/87, pg 69
Video port expander
Network Technologies Inc, Videx-10D, EDN News, 9/10/87, pg 69

Video printer

Axoim Edwards CPE Inc, TX-2000, EDN, 6/25/87, pg 282
Sony Corp of America, UP-811, EDN, 10/29/87, pg 290

Vision system

i2S, IDS512, IDS542, EDN, 8/06/87, pg 235

Voice recognition

The Voice Connection, IntroVoice VI, EDN, 9/17/87, pg 295
Voice/data mux
Micom Systems Inc, Oneliner, EDN, 10/29/87, pg 297

WORM drive

Mountin Optech Inc, SEL-2, EDN, 9/03/87, pg 251
Workstation
Cadnetix Corp, CDX-6000S, EDN, 10/01/87, pg 98
Datamedia Corp, Colorscan/2, EDN News, 8/13/87, pg 46

XT/AT-compatible

ADAC Corp, Model 4000AT, EDN, 10/01/87, pg 89
$\boldsymbol{\mu}$ controller boards
Octagon Systems Corp, SBS-1000, -1100, -1200, EDN, 9/03/87, pg 102

POWER SOURCES

Backup power supply
Philips T\&M Instruments, PE5270/83, EDN, 7/09/87, pg 251

Battery

Catalyst Research Corp, μ PowerCell, EDN, 7/09/87, pg 246

Converter

Alban Inc, NM1212, NM1515, EDN News, 6/18/87, pg 55
International Power Sources, SA, SB Series, EDN, 7/09/87, pg 250
Vicor Corp, VI-200 Series, EDN, 7/09/87, pg 259

DC/DC converter
Brandner Vertriebs-GmbH, SR851,-8101, -8201, EDN, 7/09/87, pg 253
Burr-Brown Corp, PWR1017, EDN, 7/09/87, pg 249
Burr-Brown Corp, PWR5038, EDN, 9/17/87, pg 280
Burr-Brown Corp, PWR5104, PWR5105, EDN, 9/03/87, pg 267
Burr-Brown Corp, PWS725, EDN, 9/17/87, pg 289
Calex Mfg Co Inc, -, EDN, 8/20/87, pg 261
Calex Mfg Co Inc, 12Q15.050, EDN, 9/03/87, pg 260
Calex Mfg Co Inc, Model 48S5.1000, EDN, 7/09/87, pg 257
IRT Corp, HPS-3015, EDN News, 10/22/87, pg 51
Inpower, 2700 Series, EDN, 7/09/87, pg 251
Int'l Power Devices Inc, CUS509, CUS1209, CUD-1210-5, EDN News, 8/13/87, pg 50
Int'l Power Devices Inc, Series GWS, EDN News, 10/22/87, pg 51
International Power Sources, NM Series 0505i, 1212i, 1515i, EDN, 5/14/ 87, pg 266
Intronics Inc, KS 200 and 300 Series, EDN, 10/15/87, pg 216
Kepco Inc, ERD series, EDN, 6/25/87, pg 306
Power General, -, EDN News, 6/18/87, pg 53
Power General, -, EDN, 7/09/87, pg 260
Power General, DC60 Series, EDN, 10/15/87, pg 227
Power General, Series 730, EDN, 6/25/87, pg 308
Power General, Series 750, EDN News, 7/16/87, pg 52
Semiconductor Circuits Inc, B Series, EDN, 9/03/87, pg 264
Tamura Corp of America, Series RCN, Models RFP, RHP, EDN News, 7/16/87, pg 51
Westcor Corp, Series VI-200, EDN News, 9/10/87, pg 60

Inverter

Endicott Research Group Inc, Series P, EDN, 7/09/87, pg 260

Lithium cells

Eastman Kodak Co, Ultralife lithium battery, EDN News, 7/16/87, pg 51

Power supply

Advance Power Supplies Inc, P1000, EDN, 7/09/87, pg 244
Astec (USA) Ltd, Model SA1000-3104, EDN, 9/17/87, pg 280
CEAG Electric Corp, COM6000, EDN, 5/14/87, pg 271
Computer Products Inc, Pony Series, EDN News, 10/22/87, pg 55
Computer Products Inc, Pony Series, EDN, 10/01/87, pg 205
Computer Products Inc, XL325, EDN, 7/09/87, pg 246
Converter Concepts Inc, VE100, EDN, 7/09/87, pg 260
Custom Power Systems Inc, 1872, EDN News, 6/18/87, pg 53
Deltron Inc, Series V, EDN News, 9/10/87, pg 63
Deltron Inc, VF Series, EDN, 7/09/87, pg 257
Hewlett-Packard Co, HP 6632A, etc, EDN, 5/28/87, pg 280
Hunting Hivolt, Series-1000 Mk II, EDN, 8/20/87, pg 267
Integrated Power Designs Inc, LPS Series, EDN, 7/09/87, pg 249
Jerome Industries Corp, Desktop, EDN News, 8/13/87, pg 48
Jerome Industries Corp, X, Y, EDN, 10/01/87, pg 206
Kepco Inc, RBX 48-12.5K, EDN, 7/09/87, pg 242
Lambda Electronics, Wattbox LFQ, EDN, 7/09/87, pg 241
Logitek Inc, Standard, custom, EDN News, 10/22/87, pg 54
NCR Corp, H4ACL051212, EDN, 7/09/87, pg 241
Onan Corp, Model 4501, EDN, 7/09/87, pg 251
Panasonic Industrial Co, Series K, EDN News, 9/10/87, pg 60 Philips, 190 Series, EDN, 10/29/87, pg 116
Power General, Series 4155, EDN News, 8/13/87, pg 55
Power General, Series 4155, EDN, 9/03/87, pg 267
Power Ten Inc, Series 3100 model 4010, EDN News, 6/18/87, pg 52
Power Ten Inc, Series 3300, EDN, 7/09/87, pg 242
Powertec Inc, Model 6D Multimod, EDN, 9/17/87, pg 111
Qualidyne Systems Inc, Case 21, EDN, 7/09/87, pg 259
Remote Systems Technology Inc, Series 29, EDN, 7/09/87, pg 251
Shindengen America Inc, SY/G, EYG/G Series, EDN, 7/09/87, pg 246
Shindengen America Inc, Series SY/G and EY, EDN News, 8/13/87, pg 50
Sierra Power Systems, $7 M 400$, EDN News, $6 / 18 / 87, p g 55$
Sierra Power Systems, $7 M 400$, EDN, $6 / 25 / 87$, pg 312
Sierra Power Systems, 9S400, EDN News, 6/18/87, pg 53
Sola, -, EDN News, 8/13/87, pg 48
Switching Systems Int'l, SQV350, EDN, 10/01/87, pg 207
Todd Products Corp, MAX-500, EDN News, 6/18/87, pg 55
Todd Products Corp, Max-500 Series, EDN, 7/09/87, pg 246
Todd Products Corp, Series SC, EDN News, 10/22/87, pg 54
Weir Electronics Inc, HSS150, EDN, 7/09/87, pg 253
Weir Electronics Inc, SMM500, EDN, 6/25/87, pg 312
Power switches
Electronic Measurements, Series EMS, EDN News, 9/10/87, pg 64
Safe supplies
Conver Corp, WP Series, EDN, 7/09/87, pg 246
UPS
Chloride Transipack, EDP100, EDN, 7/09/87, pg 255
Voltage converter
Maxim Integrated Products, MAX680, EDN, 7/09/87, pg 250

Publication describes control software

This 6-pg brochure examines OnSpec Control Software, a software package for control of high-speed data-acquisition hardware and industrial computers. The 4 -color publication details the software's features, options, and applications; lists supported hardware; and describes the vendor's user-support services.

Heuristics Inc, 9723A Folsom Blvd, Suite 231, Sacramento, CA 95827.

Circle No 437

Guide to software and services

The Directory of Micro Engineering Software/Services provides detailed information about engineering software and associated services. The book, divided into 27 sections, contains more than 700 engineering packages and furnishes more than 250 company descriptions. The packages are grouped into sections by their engineering function, such as civil engineering, CAD, mechanical engineering, or structural/stress analysis. The book provides you with system requirements, pricing, and maintenance/support information. The company descriptions include market emphasis, types of
services provided, sales volume, geographical area serviced, and principal contacts. The directory also includes a product index, which lists packages in alphabetical order; a vendor index that helps you determine which packages and services a vendor offers; and a service index that cross-references the service vendors according to the type of service offered and the market area serviced. $\$ 239$.

Decision Graphics Inc, 555 Sparkman Dr, Suite 652, Huntsville, AL 35816.

INQUIRE DIRECT

Software users' journal

Reference(Clipper): The Independent Guide to Clipper Expertise is designed to aid users of Clipper software. It provides programming tips, user-defined functions, data-base-management techniques, utility programs, and reviews and articles that deal with Clipper applications. Regular columns include features written by Clipper experts; reviews of Clipper-related products; Utility of the Month userdefined functions of the month; a column on networking solutions; an Expert's Log: Advanced Tutorial; Beginning User's Log; Advanced User's Log; and Procedure of the Month. The journal is published monthly. Annual subscription, \$89; 2-year subscription, $\$ 160$.

Pinnacle Publishing Inc, Box 1693, Tacoma, WA 98401.

INQUIRE DIRECT

Publication reports on software

The quarterly newsletter, Software Technology Report, details information about current software design and implementation, testing topics, and product reviews. Future reports will address such topics as how to design and implement ma-chine-independent software modules and how to select programming languages. Annual subscription,
$\$ 29$. To obtain a free sample issue, send a self-addressed stamped envelope.

Software Technology Report, Microcomputer Applications, Box E, Suisun, CA 94585.

INQUIRE DIRECT

Document explains software system

This 4-pg, 4-color brochure presents an overview of the company's Opera software system, a project-management risk-analysis program for the IBM PC, PC/XT, PC/AT, and compatibles. The publication sums up the package features, lists the hardware/software requirements, and contains drawings of sample screens.
Welcom Software Technology, 1325 S Diary Ashford, Suite 125, Houston, TX 77077.

Circle No 438

Directory lists more than 1700 computer programs

You can now obtain the 1987 edition of the Directory of Computer Software from the National Technical Information Service of the US Department of Commerce. Listing more than 1700 federal common-use programs that have been tested and proven for mainframes and $\mu \mathrm{Cs}$, the directory is keyed two ways: by subject categories, which list brief program abstracts; and in indexes by agency, accession number, and subject. These indexes contain all computer programs in the directory; additional hardware and language indexes contain entries for a limited number of programs. The directory includes 100 new programs from the National Energy Software Center. $\$ 48$.

US Department of Commerce, National Technical Information Service, 5285 Port Royal Rd, Springfield, VA 22161.

INQUIRE DIRECT

LITERATURE: INTEGRATED CIRCUITS

Data converters and voltage references presented

The 320-pg data book 1987 Data Converters and Voltage References details information about 27 ADCs (including 16 new devices) and 11 voltage references. It provides a complete product list, converter selector guides, package information, and a listing of US sales representatives and distributors.
Maxim Integrated Products, 510 N Pastoria Ave, Sunnyvale, CA 94086.

Circle No 610

Guide helps you
 select IC products

The 64-pg Product Selector Guide and Price List features new products, a product application guide, and a full product-line selector guide. Also included is information about custom products; quality assurance, reliability, and HR pro-

grams; die and wafer sales; and sur-face-mount products. An industry cross-reference and price list, as well as listings of the vendor's sales representatives, franchised distributors, chip distributors in the US, and international sales representatives, complete the catalog.
Maxim Integrated Products, 510 N Pastoria Ave, Sunnyvale, CA 94086.

Circle No 611

Handbook summarizes analog applications

The 1987 Analog Data Acquisition Applications Seminar handbook treats a wide range of topics, including CMOS data converters, video amplifiers and multiplexers, lowpower de/dc converters, switchedcapacitor filters, surface-mount packages, op amps, and $\mu \mathrm{P}$ support circuits. Figures, schematics, tables, and illustrations complete the publication.
Maxim Integrated Products, 510 N Pastoria Ave, Sunnyvale, CA 94086.

Circle No 614

Disk speeds selection of power transistors

Specs in Secs is a catalog on a disk that contains information about more than 1600 bipolar power transistors and power MOSFETs and features more than 3500 cross-refer-
subsystem pumps new excitement into Micro Vax II, turning up to four terminals into high performance, high resolution graphic workstations. Brooktree ${ }^{(8)}$ RAMDACs pump out the color, enabling CalComp to do it all on a single board.

ences. To use it, you need an IBM PC or compatible with 384 k bytes of RAM. The disk communicates with you in any of five languages. In the bipolar-transistor category, you can specify characteristics for breakdown voltage, collector current, power dissipation, polarity, package, price, and 10 other parameters. The TMOS (T-configuration MOS) power-MOSFET category contains breakdown voltage, drain current, $r_{\text {DS(ON) }}$, power dissipation, package, price, and seven other parameters. The disk is available for $\$ 2$ by re-
questing DK101/D.
Motorola Semiconductor Products, Literature Distribution Center, Box 20924, Phoenix, AZ 85063.

INQUIRE DIRECT

Report discusses surface-mount devices

The Surface Mount Devices Reliability Report (RR-2) covers the step-by-step development of reliable sur-face-mount devices. It highlights the vendor's molding compound, lead frame, and manufacturing flow, which, the vendor claims, provide greater reliability than do standard surface-mount-device manufacturing materials and flows. The publication also describes the vendor's design and testing methodology and quality-assurance program.

Maxim Integrated Circuits, 510 N Pastoria Ave, Sunnyvale, CA 94086.

Circle No 616

Reference for bipolar power transistors

The fifth edition of the Bipolar Power Transistor Selector Guide and Cross Reference (SG48) contains device-selection tables that include European-manufactured devices, as well as sections on Switchmode, Darlington, and lowvoltage power-switching transistors and military-qualified devices. The publication features revisions to the cross-reference that increase its accuracy, and suggests alternatives for discontinued items; it lists more than 1100 standard off-the-shelf power transistors and several thousand special types of bipolar power transistors.

Motorola Semiconductor, Literature Distribution Center, Box 20924, Phoenix, AZ 85063.

Circle No 612

Brooktree

Brooktree Bt458. Triple 8-bit
RAMDAC with 256 color lookup table. Available in speeds from 80 MHz to 135 MHz . TTL compatible. CalComp Formula $1^{\text {TM }} 1280 \times 1024$ resolution graphics subsystem for the DEC Micro Vax II. Displays 256 colors from a 16.8 million color palette.
Brooktree Corporation, 9950 Barnes Canyon Road, San Diego, California 92121. 1-800-VIDEO IC or 1-800-422-9040, in California.

Micro Vax II is a registered trademark of Micro Vax II is a registered trademark of
Digital Equipment Corp. Formula 1 is Digital Equipment Corp
a CalComp trademark.

Catalog of

power semiconductors
The 144-pg Power Semiconductor Catalog covers the company's range of products. It provides tables with key specifications for each product type, accompanied by drawings of and dimensions for each package. The products covered include HexFET power MOSFETs; Schottky rectifiers; ultrafast-recovery diodes; standard- and fast-recovery rectifiers; phase-control, inverter-type, and gate-turn-off thyristors; power modules; military/government and custom products; and custom/standard assemblies, such as heat sinks and mounting hardware. Other sections are devoted to available literature, product cross-references, a JEDEC/alphanumeric index, and descriptions of quality/reliability programs.

International Rectifier, 233 Kansas St, El Segundo, CA 90245. Circle No 430

Power sources summarized

The expanded Sola Products Catalog now offers mail-in priority service cards that allow you to receive product updates, quotations on part numbers, or assistance from engineers. The 68 -pg publication also presents the theory, design, and operation of the vendor's voltageregulation and line-conditioning products. Divided into four sections, the book covers power conditioning,
power-line monitors, uninterruptible power supplies (UPS), standby power sources (SPS), and power supplies. The new products it features are a $3-\mathrm{kVA}$ UPS; 300- and 1200-VA SPSs; and a 50W singleoutput switching power supply.

Sola, 1717 Busse Rd, Elk Grove Village, IL 60007.

Circle No 341

Local and remote control of high voltage

Programmable High Voltage is an $18-\mathrm{pg}, 4$-color brochure that details programmable multiple-channel high-voltage power-supply systems. Its two main sections contain product summaries of the medium- and highest-density systems; these summaries include functional descriptions, features, specifications, and ordering information, as well as a number of illustrations.
LeCroy, 700 S Main St, Spring Valley, NY 10977.

Circle No 342

Packet contains facts about EMS products

The EMSPAK/D package combines available literature on the EMS (Energy Management Series) pow-er-module products. Data sheets are included for products with currenthandling capabilities ranging from 50 to 300 A and 1000 to 1200 V . Also included in the package is the EMS

Selector Guide (SG114), along with data sheets for the 22 devices in the series.

Motorola Inc, Literature Distribution Center, Box 20924, Phoenix, AZ 85063.

Circle No 433

Brochure aids in choosing a UPS

The pamphlet The Step-by-Step Guide to Specifying the Right UPS presents an overall view of a UPS (uninterruptible power supply) to help you in selecting the UPS that best suits your needs. It provides a table with which you can determine your load profile, as well as two forms on which you can specify your single-phase and 3 -phase UPS requirements. It also defines generic specifications and features three single-line UPS diagrams, depicting power supplies of 1 to $3 \mathrm{kVA}, 5$ to 10 kVA , and 15 to 50 kVA , respectively.

General Power Systems, Box 65008, Anaheim, CA 92805.

Circle No 434

Catalog details power supplies

This publication provides details and specifications for a range of power supplies and accessories. It covers 3,5 , and 15 W encapsulated de/de converters; 40 W single- and triple-output Eurocard de/de converters; 100W Euromodule de/dc converters; 1 and 5 W encapsulated linear power supplies; and Eurocard-footprint linear and switchmode power supplies.

A F Bulgin \& Co plc, Power Conversion Div, Park Lane, Broxbourne, Hertfordshire EN10 7NQ, UK.

Circle No 436

New 52-page 1988 catalog

Acopian single, dual and triple output power supplies featured in our new catalog for 1988 are shipped in three days. Included are PC-boardmounting and chassis-mounting mini modules. DC-DC converters. General-purpose modular supplies with outputs to 200 Vdc and current ratings to 32A. Narrow-profile supplies a mere $1.68^{\prime \prime}$ thin. Plug-in
supplies. MIL-tested supplies. Unregulated supplies for driving relays and displays. Supplies with broad adjustment ranges. Our rackmounting power supplies and systems, and redundant output systems are shipped in nine days. The catalog contains complete specs and pricing information. Call or write for your copy.

P.O. Box 638, Easton, PA 18044 Call toll free (800) 523-9478
P.O. Box 2109, Melbourne, FL32902 Call toll free (800) 327-6817

Coaxial products catalog

Catalog \#587 is a $29-\mathrm{pg}$ listing that features a full line of coaxial adapters, connectors, attenuators, terminations, and cable assemblies. The newly featured line of coaxial attenuators includes BNC, "N," SMA, and TNC. Both flexible and semirigid cable assemblies are available. The publication includes technical specifications and pricing for more than 1000 items.

Pasternack Enterprises, Box 16759, Irvine, CA 92713.

Circle No 420

EMC guide

The Guide to Interference Control, Using Beryllium Copper addresses a variety of EMC (electromagnetic compatibility) test-and-measurement and design concerns. The publication treats such topies as theoretical design requirements and the selection of specific shielding materials. It features charts, tables, graphs, and dimensional drawings.

Instrument Specialties Co, Delaware Water Gap, PA 18327.

Circle No 421

App note on

fiber-optic LANs

The $4-\mathrm{pg}$ application note, Testing Fiber Optic LANs, covers the testing requirements of most of these devices, including Ethernet and to-ken-ring LANs. The topics examined include testing fiber-optic cables, troubleshooting systems, and margin testing.

Fotec Inc, Box 246, Boston, MA 02129.

Circle No 423

Catalog focuses on

IC sockets

Catalog 87-798 lists IC sockets that remove the risk of soldering ICs directly onto pe boards. The $130-\mathrm{pg}$ book divides IC sockets into two categories-production sockets and test and burn-in sockets. It provides

photographs, drawings, and schematics, as well as detailed explanations of product features, performance characteristics, and materials. The publication's semi-conductor-to-socket cross-reference chart matches common devices with complementing square and DIP sockets; its listings appear by manufacturer, part number, and description. Another special feature is a section on pin-grid-array patterns.

AMP Inc, Box 3608, Harrisburg, PA 17105.

Circle No 424

Catalog details jumpers

This 16-pg 1987 product-information catalog covers preformed jumper wires and bare-wire jumpers on tape and reel. Other products listed are precut hookup wires, kynar wires for wire wrapping, and cut tubing. A small packet of product samples is attached inside the front cover.

Squires Electronics Inc, 503 N 13th Ave, Cornelius, OR 97113.

Circle No 427

Data sheet for surface-mount repair

A 2-pg data sheet describes the vendor's SRM-100 surface-mount rework and repair system. The publication details how the system works and how it utilizes the proprietary
programmable matrix heater. It also highlights the system's features and benefits, which include eliminating the need for expensive tooling to handle different surface-mount-device configurations. The data sheet's reverse side lists general, control-system, vision-system, utility, and physical specifications of the product.

SRTechnologies Inc, Pond Lane, Concord, MA 01742.

Circle No 422

Handbook describes range of hardware products
The second edition of the Electronics Handbook describes the company's complete range of hardware products and power supplies. In addition to established product lines, new products described in the handbook include encapsulated de/dc converters, open-frame and cased power supplies, new $19-\mathrm{in}$. and ABS plastic instrument cases, and IDC and environmentally sealed connectors. One section, devoted to $\mu \mathrm{P}$ system-hardware-support products, includes hardware components for the VME, Multibus-I and -II, and Futurebus bus standards. The last section of the book outlines the company's manufacturing service facilities for wiring and assembly operations.

Bicc-Vero Electronics Ltd, Flanders Rd, Hedge End, Southampton S03 3LG, UK.

Circle No 428

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

THE WIDEST RANGE OF DIGITAL SIGNAL PROCESSING TOOLS AVAILABLE...

DSP Development Systems:

- TMS32020 \& TMS320C25 Dev't Systems
- DSP-16 Real Time Data Acquisition Processor (TMS32020/C25)
- 77230 Development System (NEC μ PD77230)
- ADSP2100 Development System
- DF-1 Dataflow Processor (NEC μ PD7281)

DSP Applications Systems:

- 77230 Co-Processor (NEC μ PD77230)
- 2-Channel \& 4-Channel Data Acquistion Voice Systems:
- μ PD7763/64 Speech Recognizer/Synthesizer
- Speech Synthesis Module

SPECTRUM ~SIGNAL PROCESSING INC

Boston: 1-800-323-1842 or 890-3400
USA, West: 1-800-663-8986
In Canada: (604) 438-7266
CIRCLE NO 331

DF-1 DATAFLOW PROCESSOR
DSP development \& applications with world's first dataflow chip. Four 10 MHz NEC μ PD7281 Dataflow Processors, 20 MIPS ALU power, 20 MIPS Flow Control $64 \mathrm{k} \times 18$ RAM, PC access via μ PD9305 MAGIC chip, DMA interface with PC's controller. Complete with menu-driver DFOS monitor program, 'C' Library Assembly language drivers, demo software. US \$1,495

ADSP2100 DEVELOPMENT SYSTEM

PC plug-in board with ANALOG DEVICES' ADSP2100 processor for DSP and high-speed numeric processing applications. With 40 k RAM (45ns) user expandable to 112 k , 12 -bit A/D \& D/A (200 kHz), input sample-and-hold, I/O expansion supports multi-board applications. Debug monitor \& documentation. US $\mathbf{\$ 2 , 5 9 5}$.
COMPLETE WITH ANALOG DEVICES' Development software, Assembler/Linker, Simulator Application routines. US $\mathbf{\$ 2 , 9 9 5}$.

CIRCLE NO 337

TMS 320C25 DSP DEVELOPMENT SYSTEM
IBM-PC based DSP development system for TI's TMS320C25. With 16 -bit 50 KHz A/D \& D/A, sample and hold, $16 \mathrm{~K} \times 16$ RAM (35 ns) expandable to 128 K on board, $/ / 0$ expansion. Supports multi-board applications. Debug monitor provides single-step, breakpoints, and full speed operation. US $\$ 2,595$. TI's Macro Assembler/Linker avail sep. US $\$ 395$.

CIRCLE NO 332

77230 DSP DEVELOPMENT SYSTEM
DSP development for NEC ${ }_{\mu}$ PD 77230 (CMOS 32 bit floating point DSP). IBM-PC plug-in board with ${ }_{\mu}$ PD77230, COMBO/CODEC with on-chip A/D, D/A, anti-aliasing \& reconstruction filters, prototype area, $12 \mathrm{~K} \times 32$ RAM expand. to 48 K on-board, 4 MHz serial 1/0 interface. Complete EDSP Dev't S/Ware: debug monitor, Signal Generator, 'C' Library, Plotter. US $\$ 1,995$

SAMTEC OFFERS NEW SERIES .045" SQ. POST TERMINAL STRIPS
New Samtec . $045^{\prime \prime}$ square terminal strips are precision drawn from Phosphor Bronze wire. A choice of terminal centerline spacing is available with leads on either $.156^{\prime \prime}$ or $.200^{\prime \prime}$ centers. For terminal strips with leads on . 156 " centers, there is a choice of the standard body, or a locking body design for high vibration applications. The body on all designs is glass filled polyester, rated UL 94V-0.
Terminals are supplied plated with 200 microinches of bright acid Tin. These terminal strips are rated for 7 amp at 100 VDC service. A choice of several different terminal lengths is available and the position of the terminal in the body can be modified from standard product for special applications. Price at the 1,000 piece level is $\$.52$. For information or samples, contact:

Samtec, Inc.
P. O. Box 1147, New Albany, IN 47150

Phone: (812) 944-6733
FAX: (812) 948-5047 TELEX: 333-918
CIRCLE NO 338

IEEE488 \$145 LOW COST PC/XT/AT INTERFACE

FOR IEEE-488 (GPIP/HPIB)

- SHORT CARD FOR PCIAT/XT \& COMPATIBLES
- 1 OF 6 INTERRUPT LEVELS
- 1 OF 2 DMA CHANNELS
- UP TO 4 BOARDS/COMPUTER
- CONTROLLER/TALKER/LISTENER
-QUANTITY DISCOUNTS
-COMPATIBLE WITH MOST SOFTWARE
PACKAGES
Call today for datasheet!
B\&C MICROSYSTEMS
355 West Olive Ave., Sunnyvale, CA 94086 Ph: (408)730-5511 Fax: (408)730-5521 Visa \& MC

CIRCLE NO 333

LOW COST

LINEAR IC TESTER M-750

Provides DC/AC functional test and parametric measurement for most operational amplifiers and voltage comparators. "GO/NO GO" functional test, checks DUT's closed loop stability, level swings and gain bandwidth. $41 / 2$-digit auto ranging, auto unit display offers fast and easy measurement up to ten different parameters. RS-232C \& IC handler interface. Price: $\$ 2,495$

Information Scan Technology, Inc. 487 Gianni St.

Santa Clara, CA 95054
(408) 988-1908

CIRCLE NO 339

FREE!!! ENGINEERING

SOFTWARE CATALOG

- 32 PAGES - 8 CATEGORIES

75 DETAILED PRODUCT DESCRIPTIONS - MANY MORE TECHNICAL PRODUCTS LISTED

- CAD
- ELECTRONIC

DESIGN

- GRAPHICS
- MATHEMATICS/

ENGINEERING
SUPPORT
Vinterleave, Inc.
2940 NOBLE ROAD, SUITE 3
CLEVELAND HEIGHTS, OH 44121 (216) 291-1001

CIRCLE NO 349
25MHz 48 CHANNEL PC-BASED LOGIC ANALYZER \$1595.00

48 Channels @ $25 \mathrm{MHz} \times 4 \mathrm{~K}$ word deep 16 Trigger words/16 trigger sequence Automatic set-up and loading of symbol tables Symbolic disassembly of microprocessors Storage and recall of trace data to disk 65 K Pass/Delay Counter
16 Channel Waveform Display
Disassembles available for:
8088
Z
800

8088	Z80	6801
8086	8085	6303
68000	6502	8031
		NCI

6438 UNIVERSITY DRIVE
HUNTSVILLE, AL 35806 (205)837-6667

CIRCLE NO 752

SCHEMA II

 Schematic Capture

FREE Demo Disk: 1-800-553-9119 SCHEMA's success is the talk of the CAE industry and thousands of satisfied SCHEMA owners know why. Incredible speed, ease of use, and power have made SCHEMA a best-selling schematic capture program for engineering professionals the world over Now, SCHEMA II is available. SCHEMA II sells for $\$ 495$ and supports most common IBM PC/XT/ AT configurations. Please call today for a free SCHEMA II demo disk OMATION
In Teas Call (214) 231.5167
CIRCLE NO 350
 Super8 c COMPILER

* Call today for a FREE technical bulletin * MICRO COMPUTER CONTROL
P.O. Box 275 - Hopewell, NJ 08525 USA Telex 9102404881 MICRO UQ FOR IMMEDIATE ACTION CALL: (609) 466-1751

CIRCLE NO 753
SYNCHRONOUS/ASYNCHRONOUS RS-422, RS-485, RS-232, CURRENT LOOP

SYNCHRONOUS COMMUNICATION

- 1 Mbaud data transfer rate
- DMA facility
- Byte sync, SDLC, HDLC
- RS-422, RS-485, RS-232

ASYNCHRONOUS COMMUNICATION

- Single/dual port option
- Selectable interrupt
- Address selectable
- Current Loop, RS-422, RS-485, RS-232

TOLL FREE: 1-800-553-1170
478 E. Exchange St. Akron, Ohio 44304 (216)434-3154 TLX:5101012726 FAX:(216)434-1409

II

MXI-100

- GPIB controller board for IBM

PC/XT/AT

- Control up to 14 Devices
- User friendly Software Commands
- DMA Transfer to 200 k byte/sec.

\$345.00 including software
QUA TECH, INC.
478 E. Exchange St. Akron, OH 44304
(216) 434-3154 TLX: 5101012726 800-553-1170

CIRCLE NO 751

Small Space Advertising For Big Results
-
EDN Product Mart

CIRCLE NO 754

LeCROY MODEL 9100 HIGH SPEED CUSTOM WAVEFORM GENERATOR
LeCroy's new Arbitrary Function Generator features an output rate of up to 200 megapoints/sec to permit the generation of wide bandwidth custom waveforms not previously possible with simple digital techniques. The 9100 offers 2 channels, 10 V output range, 5 nsec risetime, 350 KB of non-volatile waveform storage and 64 KB of high speed operating memory. Standalone operation as either a standard function generator or pulse generator is built in. Easy-to-use waveform creation software is MS-DOS compatible. Price, $\$ 8900$ (U.S.A.), plus options.

LeCROY CORPORATION, 700 Chestnut Ridge Rd
Chestnut Ridge, NY 10977-6499 (914) 578-6020

CHIP COILS DC-DC CONVERTERS PULSE TRANSFORMERS

Our Chip Coils is good for your miniaturization \& surface mounting. DC-DC Converters, pulse transformers \& band pass filters is now complete with excellent functions. We also supply choke coils, power chokes, linearity coils, toroidal coils, pulse transformers, coupling transformers, power transformers and others. Send for details today.!

ABO OEM and Agent Inquiries Invited
ABC TAIWAN ELECTRONICS CORP. No. 422, Sec. 1, Yang Fu Rd., Yangmei 32627, Taoyuan, Taiwan, R.O.C.
Tel: (03) 4788088, Telex: 32379 ABCEC Fax: (03) 4755503

IEEE-488 (GP-IB, HP-IB) FOR THE IBM PERSONAL SYSTEM/2 ${ }^{\text {™ }}$ - Control instruments, plotters, and printers.

- Supports BASIC, C, FORTRAN and Pascal.
- High speed DMA and shared interrupts.
- Software library. Risk free guarantee.

Capital Equipment Corp. 99 South Bedford St. Burlington, MA. 01803
Call today (617) 273-1818
CIRCLE NO 770

Low-Cost

In-Circuit Emulators!

NEW! 68010
68000 Z80 Z80+ 80858088 NSC800

- Real time or single step execution.

Small enough to plug into $\mu \mathrm{P}$ socket.

- RS-232 interface to terminal or PC.
- Up/download HEX/S-record files.
- Hardware or software break points.
- $\$ 550$ to $\$ 1995!$ -

Nicolet 800-NICOLET (642-6538) or 608-273-5008

Macintosh II, SE, Plus
UniversalCross-Assembler\$299.00

0006 CbO	COPK		
0001 cear	S5/m		-
08025589	LARP		
9003 01800z60	Lsis	日R1, 020	
0005 cove	RPTK		10005000470660116005251445172
${ }^{\text {¢088 }}$ 8080	14	*. P98	
000? 5538	LARP		
0008 coue	Lefic	ARE, 0	
0009 0001FFF	Lfle	OFFFF\%	
89008 6000	Smal	negone	
$000 c 80011003$	Latis	3000\%	

Includes editor and universal cross-assembler with instruction tables and example source programs for ALL of the following MPU's, MCU's, and DSP's:

Generates intel hex, Motorola-S records, and straight binary output compatible with most EPROM programmers and in-circuit emulators.
Available for MS-DOS systems and the ATARI ST series.

- Inquire about our MEMULATOR In-Circuit EPROM Emulators.

MEMOCOM
DEVELOPMENT
TOOLS

CIRCLE NO 768

IN-CIRCUIT PC EMULATORS
Plug-in emulators for your PC. The only emulator in the world that plugs directly into the PC card cage.
Real-time emulators provide powerful debug capability at full clock speed.

Current support for:

Z80B	8031
Z80C	8032
Z80H	

Coming Up!!!
Microprocessor support for:

8085	65 C 02
80 C 85	65 C 12
NSC800	65 C 102
6502	65 C 112
6512	HD64180

TEHTS® RELATIONAL MEMORY
P.O. Box 6719 San Jose, CA 95150

TO ORDER BY PHONE CALL:
(800)448-4880 CA (408) 356-1210

CIRCLE NO 771
IBM COMPATIBLE RS232 EASI-DISK 3 $1 / 2-51 / 2^{\prime \prime}$ FLOPPY DATA STORAGE \& TRANSFER SYSTEM

Information Transfer toffrom Non IBM Compatible Systems to/from IBM \& Compatibles: (Over RS-232 or 488 Interface).

- Reads \& Writes MS DOS Disks
- RS-232/488 I/O
- Rugged Portable Package/battery option
- ASCII or Full Binary Operation
- Baud Rate 110 to 38.4 K Baud
- Automatic Data Verification
- Price $\$ 895$ in Singles-OEM Qtys. Less. 28 other systems with storage from 100 K to 35 megabytes.
 ANALOG \& DIGITAL PERIPHERALS, INC. 815 Diana Drive

Troy, Ohio 45373 TWX 810/450-2685

NEW! ADVANCED ACTIVE

FILTER DESIGN SOFTWARE

Version 3.0 designs Lowpass, Highpass, Bandpass, Bandstop and ALLPASS fiiters with Butterworth, Chebyshev, elliptic and Bessel Mesponse NOW calculates values for National MF-10, Reticon, graphics for broup or phase delay graphics for group or phase delay, gain, phase, impulse and step
response of the complete fitter or individual section response of the complete filter or individual section Combine filters for system design/analysis Modify circuits to observe effects (\$525) for IBM PC, XT, AT, PS/2

SPICE FILE CONVERSION OPTION AVAILABLE
RLM Research
P. 0. Box 3630
Boulder, CO 80307-3630 (303) 499-7566
CIRCLE NO 769

CIRCLE NO 772

Schematic-Capture Software

 from WintekCreate and revise schematics quickly and simply with HiWIRE®and your IBM PC. With a click of the mouse button, select a symbol from our extensive library; with a few more clicks, add connecting wires. Netlist, bill-ot-materials, and smARTWORK® cross-checking utiities included. HiWIRE is $\$ 895$ and comes with a 30 -day money-back guarantee. Credit cards acceptéd.

Wintek Corp.
1801 South St., Lafayette, IN 47904
(800) 742-6809 or (317) 742-8428

CIRCLE NO 775

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

PROFESSIONAL ISSUES

How to work with a

Richard Simonelli, Ziji Technical Services

If you plan to hire a patent attorney and assign him full responsibility for filing your application and tending to all the details, think again. Technically complex inventions require inventors to take an active role in the application process. Understanding the roles of the patent specialists with whom you'll work, as well as your own responsibilities, will increase your chances of being awarded a patent.
Many inventors seeking a patent hire a patent agent or a patent attorney. A patent agent can legally prepare a patent application and file it with the US Patent and Trademark Office (PTO) in Alexandria, VA. Patent agents, however, are not permitted to practice law. They can't legally represent you in court cases related to your patent application or to patents that you hold; however, a number of law offices and corporations employ both agents and attorneys. (For simplicity's sake, in this article references to patent attorneys also apply to patent agents.)
A patent attorney is a member of the Patent Bar and is permitted to practice before the PTO. Patent attorneys must have a technical background. They're required to have taken some science or engineering
courses, and many hold college degrees in the sciences. Some worked as scientists or engineers before embarking on legal careers.

> You must submit a well-prepared application because, if the PTO rejects it or objects to it, your amendments can't introduce new matter.

Although patent attorneys are often conversant in the physical sciences, you shouldn't expect to convey the details of your invention to a patent attorney with any less effort than you would expend briefing a colleague from a related but different field. As one patent attorney recently remarked, "If I understand it at a glance, it may not be worth patenting."

Your main contact at the PTO is the patent examiner assigned to your application. The PTO employs 1400 patent examiners, one of whom it assigns to review each patent application. The patent examiner assigned to your case has a technical background and some expertise in
the field of your invention. When the PTO stipulates that "a person skilled in the art" must be able to practice an invention from its description in the patent application, they have the patent examiner in mind.

Often inventors are unavailable or too busy to provide the detailed technical information that the patent agent or attorney requires in the application-writing process. In such a case, it's advisable to retain a liaison person to work with the agent or attorney. The liaison person retained must be able to understand the invention and translate any technical information for the attorney, just as the inventor would.

Do your homework

Your work with any of these individuals, though, will proceed much more smoothly if you've already met certain conditions requisite to the issuance of most patents. Two items of importance in a patent application are the availability of dated and witnessed documentation recording the invention's technical progress, and timeliness in filing the patent application-two conditions that you are largely responsible for fulfilling.
It's good insurance for anyone
working on a project that might result in a patent to document the project's progress in a laboratory notebook. Notebooks for this purpose should contain bound and consecutively numbered pages. Periodically, an inventor should sign and date the notebook. In addition, at least one other technical person should sign and date the notebook, indicating that he or she has witnessed and understood the work.

If you didn't keep a notebook to chart your idea's progress, another form of documentation that establishes an invention's earliest date of record is a patent disclosure. In a patent disclosure, the inventor describes the invention's main ideas and theories. The PTO permits inventors to register patent disclosures themselves without the assist-
ance of an attorney; the notebook, however, is the preferred method of documentation.

Dates recorded in the notebook or patent disclosure, as well as the date on which the invention was first built and tested, are useful evidence in the event of patent litigation. In case of conflict, the date on which the inventor filed the application becomes another important piece of evidence.

No matter how ready a market you see for an invention, be careful not to publish, make public, or offer to sell your invention more than one year prior to the date on which you file the application. Under the law, such actions constitute disclosure, and an inventor who discloses an idea too early is forever barred from obtaining a patent on it. Even an
offer of sale may start the one-year clock. The rules for foreign patents are stricter: You are barred from obtaining a patent in most foreign countries if your invention was published anywhere or utilized within that country prior to the filing date.

Starting the application

The formal patent-application process begins when you contact an agent or attorney. One of the first things you should do is give your attorney a clear explanation of the need for your invention. Explain either in written or verbal form why the invention fills an as yet unmet need. Describe any related devices in your field and explain why your invention is different. Wax enthusiastic about your device relative to its particular market or technical

A format for patents

The cover page contains the title, abstract, and all legal and identifying data for the patent, as well as a reduced drawing of the invention. The PTO prepares the cover page from the specifications, drawings, and formal documents contained in the application and requires no direct assistance from the inventor.
The abstract of a patent briefly summarizes the patent disclosure and conveys key subject matter in a condensed format. A quick reading of the abstract is often useful when you are scanning a collection of patents in a prior-art search. A patent attorney typically prepares the abstract with no direct assistance from the inventor.
The drawings of the invention appear next. The inventor contributes the basic drawings, and the attorney places them in the proper format.
The field of invention constitutes a brief introduction to the body of a patent, indicating the kind of device that will be described. The patent attorney prepares this section. It appears after the cover sheet and the drawings.

The background of the invention appears next. It discusses the need for the invention and explains
why specific examples of prior art do not accomplish what the invention does. The attorney prepares this explanation based on the discovered prior art and on information from the inventor.

The summary of the invention is another short statement. It describes the actual invention, introducing the more detailed explanations that follow.

The brief description of the drawings serves as the source of short captions for each figure in the application. The patent attorney prepares this portion of the application.

The detailed description of the invention is the technical meat of the application. It describes the invention in conjunction with the drawings in a manner that permits "one skilled in the art" to implement the invention. The inventor contributes to this portion. Good communication between an inventor and a patent attorney leads to a much stronger description.

The final part of the patent is the claims section. The claims define the portions of the invention for which legal protection is afforded. The claims establish the parameters of legal protection, and they are written by the attorney.

PROFESSIONAL ISSUES

PATENTED

niche, providing enough detail and content for the attorney to write a good background section for the application (see box, "A format for patents").
At this point, you should elect to have your attorney conduct a "prior art" search. Prior art refers to published material or working devices that publicly describe or that employ the principles of an invention. Issued patents, both foreign and American, are considered prior art. You may be unpleasantly surprised if a patent has already been issued for your idea or encouraged if your idea proves to be new. If you decide to pursue the patent, your application will probably cite the results of the prior-art search.
Inventors are legally obligated to bring to the PTO's attention all prior art of which they are aware. Bringing material prior art to the attention of your patent attorney is one of the first ways that you can assist the attorney in obtaining a valid patent. Even if some discovered prior art seems to hurt your chances for a patent award, be sure
to inform your attorney of the discovery. Your attorney has the necessary legal know-how to best evaluate the significance of such discoveries.

Develop an accurate block diagram or a functional flow chart for the patent application. Keep the patent attorney and examiner in mind as you prepare these materials. Make sure that you represent each stimulus and response of your system and that you identify all electronic, mechanical, and software components. Be sure to include every important technical feature.
There are two important reasons for producing detailed, thorough drawings. The first reason is directly related to the application process: Should the PTO reject or object to your application, any amendments you make to it in response can't introduce new matter. So if the application contains at least one reference to each occurrence of important technical subject matter, your attorney will have legitimate material to cite or clarify in the amend-
ment process. The second reason for making sure your drawings are complete is geared to the future: Work performed now will ultimately assist you in the commercial documentation for your idea once you've received a patent.

In some instances, software forms an integral part of a patent application. Anything you can do to explain how your software works to people who are not programmers or software engineers will help you in the long run. Although the preferred tools in software engineering are data-flow diagrams, structure charts, and menu trees, the PTO is much more comfortable with the venerable flow chart. Patent examiners are skilled in their assigned areas of technology, but their skills usually don't match those of practicing engineers.

Meet with your attorney as often as necessary to clarify technical points. Make good use of whiteboards or blackboards, just as you would in any R\&D situation. But no matter how many "chalk talks" and discussions take place, it's a good

Why the patent examiner most often rejects a patent

> Obviousness or anticipation: A patent rejected for its obviousness is one in which there are no new and unexpected results. The examiner states that although the invention is not identical to prior art, it would be an obvious extension of cited prior art to arrive at the present invention.

> The examiner cites anticipation when he contends that, in one or more previous patents, your invention is essentially described or anticipated. Failure to provide an enabling disclosure: The examiner states that the application provides insufficient technical detail to practice the invention. The attorney and inventor must amend the technical description to provide more technical detail, without inserting any new matter.
> Improper legal format, or informalities in the
drawings: In this case, the examiner states that the format of the application violates one of the PTO's many rules pertaining to legal form. He may also contend that one or more of the drawings violate the format requirements. In this case, the patent attorney must amend the application or drawings to clear up the cited problems. The inventor rarely needs to assist in this process.
More than one invention exists within the application: The examiner states that there is, in effect, more than one invention being claimed. You and your attorney are requested to elect a single invention to pursue. You may file a divisional application to cover the other invention(s) in the application. You still retain the original filing date if you file a divisional application.

PROFESSIONAL ISSUES

PATENTED

idea to supply your attorney with written documents that outline your idea's key points. Written documents left with your attorney provide an additional opportunity to establish a date for your invention.

Be sure that you divulge to your attorney the best techniques for implementing your invention. Patent law requires that an application divulge the "best mode" of invention known at the time of the filing. Don't hold back information in a misguided attempt to retain a different approach for other purposes.

If you have effectively communicated the technical information to your patent attorney, a first draft of the application should soon be ready for your review. Most of the draft application will be familiar because of your technical input. What you will see for the first time is the claims section of the patent, which defines the scope of legal protection that your invention will receive should it be awarded a patent.

Understand what patents protect

There are two kinds of claims, independent and dependent. Independent claims are broad in scope and define the technical art unique to your patent in a manner that results in expansive legal protection. Dependent claims limit the definition of the independent claims and are narrow in scope.

Examine the claims carefully. Do you understand which claims are independent and which claims are dependent? Has the attorney claimed everything you think should be claimed? Do you understand the terminology of the claims? Remember that art that is mentioned in the descriptive portions of the patent, but not claimed, is legally unprotected. Is it clear to you which technical features your patent will protect? Don't be shy. Question your
attorney as extensively as you feel necessary.
Within six to 15 months, your attorney's office will receive the first formal communication from the PTO regarding your patent application. These formal communications are called office actions. The first action is often the examiner's rejection or objection. If the PTO rejects your application, you have a limited period, usually no more than six months and often less, within which to make a timely response.
The PTO rejects or objects to a patent on any of several grounds (see box, "Why the patent examiner most often rejects a patent"). Your attorney will respond to the office actions, most of which are nontechnical in nature, by amending the application and making counter arguments. Even if your technical assistance isn't needed, make certain you're kept up to date on all actions and responses.
Often the examiner turns up prior art not cited in the application and rejects the application on the basis of this prior art. Have your attorney provide you with copies of the examiner's citations. Read them carefully. Identify any technical differences, and relay your findings to your attorney. Later, meet with your attorney and review counter arguments. If the art is similar to your invention, one or more brainstorming sessions between you and your attorney may well identify essential differences between your invention and the prior art. Your attorney will then place the technical arguments in the appropriate legal formats, modify the claims if necessary, and submit an amendment to the PTO.
Sometimes it's useful to meet with the examiner and discuss the problems. The presence of the inventor or a liaison at such a meeting
can clarify technical points. Some inventors take this opportunity to demonstrate their inventions. Examiners often enjoy seeing a physical embodiment of the invention or a device that incorporates the invention.
If you participate in such an interview, keep your role upbeat, enthusiastic, and technical. The interview is a human interlude in a process that so far has been technical and routine. Address the aspects of your invention that the examiner objects to. A little human contact, properly applied, can often break a logjam and result in the acceptance of your application.

Once the PTO has granted a patent and the applicant paid the issuance fee, the patent issues in about three months. That's the time for champagne, handshakes, and con-gratulations-a little celebrating before you get back to work on the next invention.
There may be secondary applications spawned by your idea and any number of new patent applications in the future. But an important part of the work has already been done: You've set up lines of communication and established a sound working relationship with your attorney, and you can now look forward to an ongoing, enjoyable, and productive relationship.

EDN

Author's biography

Richard Simonelli is an independent consultant based in Boulder, CO. He received a BSEE from the Polytechnic Institute of New York and an MSEE from Cornell University. He has 22 years of engineering experience in analog and digital design.

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

BUSINESS/CORPORATE STAFF

EDN's CHARTER

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.

275 Washington St
Newton, MA 02158
(617) 964-3030

F Warren Dickson
Vice President/Publisher
Newton, MA 02158
(617) 964-3030

Telex 940573
Diann Siegel, Assistant
Peter D Coley
VPIAssociate Publisher!
Advertising Sales Director
Newton, MA 02158
(617) 964-3030

Ora Dunbar, Assistant/Sales Coordinator
NEW ENGLAND
John Bartlett, Regional Manager
John Bartiett, Regional Manager
Chris Platt, Regional Manager
Chris Platt, Regional Manage
199 Wells Ave
Newton, MA 0215
(617) 964-3730

STAMFORD 06904
George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORIK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th Si
New York, NY 10011
(212)463-6419

PHILADELPHIA AREA
Steve Farkas, Regional Manager
487 Devon Park Dr
Suite 206
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager
Randolph D King, Regional Manager
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60017
(312) 635-8800

DENVER 80206
John Huff, Regional Manager
44 Cook St
(303) 388-4511

DALLAS 75243
Don Ward, Regional Manager
9330 LB. Freeway
Suite 1060
(214) 644-3683

SAN JOSE 95128
Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Charles J Stillman,
Regional Manager
12233 W Olympic Blvo
(213) 826-5818

ORANGE COUNTYI
SAN DIEGO 92715
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager Walt Patstone, Regional Manager 1750 SW Skyline BIvd, Box 6 (503) 297-3382

UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manager
Jan Dawson, Regional Manager
27 Paul St
London EC2A 4JU UK
$4401-6287030$
Telex: 914911; FAX: 01-628 5984

SCANDINAVIA

Stuart Smith
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
FRANCEITTALY/SPAIN
Alasdair Melville
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
WEST GERMANY/SWITZERLAND/AUSTRIA
Wolfgang Richter
Sudring 53
7240 Horb/Neckar
West Germany
49-7451-7828; TX: 765450

ISRAEL
Elan Marketing Group
13 Haifa St, Box 33439
Tel-Aviv, Israel
Tel: 972-3-268020
TX: 341667
EASTERN BLOC
Uwe Kretzschma
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984

FAR EAST

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
Irvine CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Telex: J2322609 DYNACO

TAIWAN

Acteam International
Marketing Corp
6F, No 43, Lane 13
Kwang Fu South Rd
Mailing Box 18-91
Taipei, Taiwan ROC
760-6209 or 760-6210
Telex: 29809
FAX: (02) 7604784
KOREA
BK International
Won Chang Bldg, 3rd Floor 26-3
Yoido-dong, Youngdungpo-ku
Seoul 150, Korea
Tel: 785-6665
Telex: K32487 BIZKOR
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415

CAREER OPPORTUNITIES
CAREER NEWS
Roberta Renard
National Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8610

Dan Brink
Western Sales Manager
18818 Teller Ave
Suite 170
Irvine, CA 92715
(714) 851-9422

Maria Cubas
Production Assistant
(201) 228-8608

Cahners Magazine Division
William Platt, Chief Executive Officer
Terry McDermott, President
Frank Sibley, Group Vice Presiden
Tom Dellamaria, VP/Production \& Manufacturing

Circulation

Denver, CO: (303) 388-4511
Sherri Gronli, Group Manager
Eric Schmierer, Manager

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R Westphal, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018. Phone (312) 635-8800.

CAREER OPPORTUNITIES

1988 Editorial Calendar and Planning Guide

Issue Date	Recruitment Deadline	Editorial Emphasis	EDN News
Feb. 4	Jan. 14	Semicustom ICs, Computers \& Peripherals	,
Feb. 18	Jan. 28	Materials \& Hardware, CAE, Power Sources	Mailing: Feb. 11
Mar. 3	Feb. 11	Communications, CAE, High-Speed Logic	Closing: Mar. 3 Mailing: Mar. 24
Mar. 17	Feb. 25	Graphics, Filters, Software/CAE	
Mar. 31	Mar. 10	Power Semiconductors, Memory/Graphics, Fiber Optics	
Apr. 14	Mar. 23	Communication Technology Special Issue, Communication Systems	Closing: Mar. 31 Mailing: Apr. 21
Apr. 28	Apr. 7	Software, Industrial Computers, Interface ICs	
May 12	Apr. 21	Analog Technology Special Issue, Analog Converters	Closing: Apr. 28 Mailing: May 19
May 26	May 5	CAE, Software, Sensors/Transducers	
June 9	May 19	CAE, Analog ICs, Test \& Measurement	Closing: May 29 Mailing: June 16
June 23	June 2	Data Communications, DSP, Components	
July 7	June 14	Product Showcase-Vol. I, Power Sources, Software	Closing: June 23 Mailing: July 14
July 21	June 30	Product Showcase-Vol. II, CAE, Test \& Measurement	
Aug. 4	July 14	Sensors \& Transducers, Analog ICs, Graphics	Closing: July 21 Mailing: Aug. 11
Aug. 18	July 28	Military Electronics Special Issue, Displays, Military ICs	
Sept. 1	Aug. 11	Instruments, Op Amps, Computers \& Peripherals	Closing: Sept. 1 Mailing: Sept. 22
Sept. 15	Aug. 25	Data Acquisition, Data Communications, Digital ICs	
Sept. 29	Sept. 8	DSP, Graphics, Optoelectronics	
Oct. 13	Sept. 22	Test \& Measurement Special Issue, Instruments, Computers \& Peripherals	Closing: Sept. 29 Mailing: Oct. 20
Oct. 27	Oct. 6	CAE, Computers \& Peripherals, Integrated Circuits, Wescon '88 Show Preview	
Nov. 10	Oct. 20	Programmable Logic Devices, Integrated Circuits, Test \& Measurements, Wescon '88 Show Issue	Closing: Oct. 27 Mailing: Nov. 17
Nov. 24	Nov. 3	Microprocessor Technology Directory Graphics, CAE	
Dec. 8	Nov. 16	Product Showcase-Vol. I, Power Sources, Software	Closing: Nov. 21 Mailing: Dec. 15
Dec. 22	Dec. 1	Product Showcase-Vol. II, Computers \& Peripherals, Test \& Measurement	

Call today for information:

> East Coast: Janet O. Penn (201) 228-8610
> West Coast: Dan Brink (714) 851-9422
> National: Roberta Renard (201) 228-8602

Honeywell: Where your vision becomes reality

At Honeywell Avionics Systems, our emphasis is on long-range research and development. Your vision of future technology is needed in developing sensor technology, microwave \& RF, and display technology. Career opportunities are available in the following areas:

Engineering Section Head

In this position, you will be responsible for directing a group of electrical and microelectronic packaging engineers in the development of custom hybrid microcircuits for avionics systems' hardware. To qualify, you must have experience in analog circuit design and analysis and technical administration experience in a group leadership capacity. Good communications skills, both verbal and written, and the ability to interface frequently across department lines are also required. Experience or knowledge in microelectronic packaging, materials and processes would be beneficial.

Fiber Optic Engineers

Join a team of engineers and scientists that are developing a fiber optic gyroscope for the next generation of navigation and attitude reference system applications. Positions are available in areas of integrated optics, fiber optic component development, and sensor systems.

R\&D Electronics Engineer

Develop new computer architectures for solving real time, three dimensional and high resolution graphics problems. Also develop models of liquid crystal and thin film transistor operations for improving flat panel displays and driver technology. You should be familiar with three dimen-
tal drive technology

Digital Circuit Design Engineer

In this position you will work initially with microprocessor digital design and work into digital system design using TTL, CMOS and semicustom VLSI design techniques of standard cell and gate arrays.

Microwave \& RF Engineers

Join an expanding team of professionals. Your experience will be put to use in developing antenna design, microwave receiver and transmitter design, microwave GaAs FET amplifier and power FET amplifier design. Experience with GaAs MMIC designs is highly desirable.

Optical Scientist

To qualify for this leadership position, you should have a minimum of five years of experience. Experience working with high brightness and high resolution displays is desirable.

To qualify for these positions, you should have a BSEE or BS degree in Computer Science, Physics or a related field and a minimum of three year's experience.

Make your vision a reality

Honeywell offers you a competitive salary and benefits package, all in an environment that allows you to create and grow. Send your resume and salary history, in confidence, to C.E. Williams (EDN-E771C.), Honeywell, Avionics Systems, P.O. Box 21111, M/S DV5C, Phoenix, AZ 85036-1111

Together, we can find the answers.

Honeywell

EDN Databank

Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Services, Lit. has formed the EDN Databank. What is the Databank? it is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are ne fees or charges.

IDENTITY

- The computer never forgets. When your type of jab comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and It's affiliated offices.
- Your identity is protected. Your resume is carefully screed to be sure it will not be sent to your company or parent organization.
- Your background and carter objectives will periodically be reviewed wilt h you by a PSL professional placement person. We hope you're happy in your current pasttimon. At the same time, chances are there is an ideal job you'd prefer II you knew about it. That's why it makes sense for you to register with the Ell Databank. To do se, just mall the completed ed formal below, along with a copy of your resume, tr: Placement Services, Li., Inc.

Name
Home Address:
City State: \qquad Zip:

Home Phone (include area code):

PRESENT OR MOST RECENT EMPLOYER

Parent Company

Your division or subsidiary:
Location (City, State) \qquad
Business Phone if O.K. to use:

POSITIONDESIRED

Industry of Current Employer:
\qquad

Reason for Change:

PREVIOUS POSITION:
Job Title:

Duties and Accomplishments:
COMPENSATION/PERSONAL INFORMATION

WILl RELOCATE
\square will not relocate
\square OTHER

COMPUTER PROFESSIONALS

GTE IS COING PLACES IV 1988 AYD WERE TAKING THE BEST WITH US.

At GTE Government Systems, our progress with communications systems is taking us in exciting new directions. And we're taking the area's best technical professionals with us.
If that's you, you'll have a hands-on role in creating realtime voice and information processing systems for DoD. These large-scale, networked systems feature Ada* and integrate the latest technologies. LAN communications. Distributed data base management. SIGINT. Distributed computer security. Voice signal processing. Storage migration over magnetic and optical media. And other innovations you'd have to see to believe.
If you're ready for real challenge in 1988, explore the following opportunities:

SYSTEMS ENGINEERS

You will write operational concepts; design system architectures; and write and review specifications. Your work will encompass signal processing, local area networks, and man-machine interfaces
Your capabilities should include feasibility studies, tradeoff analyses, good written communications, customer presentations, three or more years experience and a $B S / M S$ in an engineering field.

PROGRAM/PROJECT MANAGERS

You will plan, direct, and control the development of large subsystems from proposal through installation. The emphasis will be on software/hardware team leadership. You will also make presentations and interface directly with the customers.

A systems engineering background in SIGINT or voice communication systems and familiarity with milestone planning, C/SSR, and system level reviews are a must Eight plus years of experience and a BS/MS in an engineering field are required.

ADA SOFTWARE ENGINEERING

Team Task Leads

You will serve as technical lead for development or integration and test of major Ada-based software systems; and perform software requirements analysis, systems specification, design, code, test and initial integration.
You must have a BS in CS, EE, Math or equivalent experience, plus at least four years experience in real-time, interactive system development working on large systems such as VAX/VMS using modern languages. Familiarity with layered DEC products and DoD applications desired. Knowledge of Ada is a plus.

COMMUNICATIONS SOFTWARE ENGINEER

You will lead the development of three subsystems of a large-scale, secure, real-time, distributed network. You'll
be involved in the full range of software development from requirements analysis to test and integration.
You must have a technical BS/MS and five or more years experience. Preferred expertise includes LANs, VAX computers, DECNET, military standards, structured methodologies, communication interface simulators, the OSI/ISO model, communications protocols (like TCP/IP), voice processing, and distributed processing techniques.

TEST \& INTEGRATION MANAGER

You will provide technical management support in the areas of T\&l requirements analysis/determination, comprehensive test program development, test document generation, and test conduct and reporting. You will also establish and achieve business development goals.
This role requires a BS/MS in EE, CS, and experience developing large-scale communications systems for DoD. Expertise with state-of-the-art automated tools and techniques would be helpful.

SOFTWARE INTEGRATION/TEST PROFESSIONALS Team Leads

You'll be the driving force behind systems software integration and test analysis, plans, and procedures for a large, real-time software development project. Your role will range from developing, conducting, and analyzing software tests to working closely with the software development team to ensure the testability of their designs. And you'll approve related plans and procedures at the Ada program component level.
You must be able to apply the latest automated tools and techniques for software integration and test design, development, tracking, and analysis, and be well-versed in large-scale applications of one or more of the following: digitized mass storage, data bases, networking, data management and accounting, voice processing, human factors requirements, and security engineering.
You must also have a technical BS/MS plus two years in software engineering and large, real-time systems development. Recent software system integration and test experience is essential. DEC VAX and VMS operating systems experience is strongly preferred. SIGINT or DATA COMMUNICATION experience would be a definite plus.
If you want to go far, go with the best in ' $88 \ldots$ GTE Government Systems. You will enjoy competitive compensation, a professional work environment, and complete benefits, including educational assistance, a stock purchase plan, a tax-deferred savings plan, and much more. Please send your resume in confidence to: GTE GOVERNMENT SYSTEMS CORPORATION, Washington Operations, Suite 200NT, 1700 Research Boulevard, Rockville, MD 20850.
An equal opportunity employer
U.S. citizenship required.
*Ada is a registered trademark of the U.S. Government. Ada Joint Program Office.

SEARGHME

On-line technical career opportunities

Welcome to the job network of the future. A free service, with 24 -hour access to on-line career information. Exclusively for experienced technical professionals. Communicate directly with high-tech and Fortune 1000 companies. From your PC or terminal at home or at work, at your leisure. Confidentially. Enter or upload your resume for fast, direct response.

Whether you're just a little curious or actively pursuing a new job, you'll find what you're looking for on-line with BPI AdLine. Explore high-tech opportunities, employee benefits, everything you need to know about today's greatest career challenges.

BPI AdLine. The smart way to stay in touch.
Created by the same people who bring you the original BPI TECH FAIRS. You can also use BPI AdLine to check on dates, times and locations of upcoming TECH FAIRS in your area.

Business People Inc.,The Nation's Leader in Recruiting Technology, 100 North Seventh Street, Minneapolis, MN:5.5403 Phone 612 -370)-(0).50)

ADVERTISERS INDEX

ABC-Taiwan Electronics Corp 218
ACCEL Technologies Inc 217
Acopian Corp* 211
Acromag Inc 159
ADPI 218
Advanced Micro Devices 12-13
AIE Magnetics 217
Airpax Corp/Frederick Div 25
American Precision 125
American Research and Engineering 123
AMP Inc 104-105
Ando Corp 44
Applied Microsystems Corp 14-15
Bayer AG** 18-19
B\&C Microsystems 214, 217
BP Microsystems 215
Brooktree Corp 208-209
Bytek Corp 213
CADdy Corp 149
Canadian Thermostats \& Control Devices Ltd 125
Capital Equipment Corp 218
Case Technology 145
Casio Inc 135
Comlinear Corp 95
Computer Vision C2
Cotronic** 77
CTS Corp 157
Cybernetic Micro Systems 36
Data I/O Corp/Futurenet Div C4
Delevan Div, API 116
Deltron Inc 149
Design and Evaluation 114
Design Computation Inc 217
Dotronix 181
EAO Switch Corp 102
Eastman Kodak Co 213
Electronic Devices 114
Electronic Solutions 46
Farnell International Ltd** 83
Ferranti Electric** 87
Frequency Devices 122
Gates Energy Products Inc 175
GE/RCA Solid State 42-43
General Instrument Optoelectronics Div 111
Harris Semiconductor Marketing Div 39-41
Hasco Technology 30
Heurikon Corp 177
Hewlett-Packard Co 67-72
Hitachi America Ltd* 18-19
Houston Instrument 137
Information ScanTechnology Inc

Inmos Corp31
Innovative Software Systems 215
Interleave 216
International Rectifier C3
Introl Corp 48
Intusoft 215
ITT Cannon 49
John Fluke Manufacturing
Co Inc . .'6, 81, 83, 85, 87, 89, 90, 91
KeyTek Instrument Corp 36
LeCroy Corp 216
Logical Devices Inc 213
Logical Systems Corp 215
Luminescent
Systems Inc 117, 119, 121
Marconi Instruments* 77
Matrix Corp 171
Memocom 218
Mentor Graphics Corp 10-11
Mepco/Centralab 101
MetaLink Corp 79
Microcomputer Control 216
Microtek** 6
Mini-CircuitsLaboratories26-27, 230
Mizar Inc 160-161
Monolithic Memories Inc 16-17
National Instruments 66
NCl 216
NDK 118
NEC Corp 169
Nicolet Test Instruments Div 218
Oak Switch Systems Inc 103
OKI Semiconductor* 34-35
Omation Inc 216
Optek Technology Inc 109
Panasonic Industrial Co* 93
Philips
Elcoma Div**34-35, 184-185
Philips Test \& Measuring
Instruments Inc** 81, 91
Phillips Chemical Co 38
Pico Electronics Inc 47
Plessey Optoelectronics** 158
Potter \& Brumfield 107
Powertronic 191
Precision Filters Inc 75
Precision Monolithics Inc 20
Prism Electronics Ltd 179
Programmed Test Sources Inc 63
Pro-Log Corp 4
Qua Tech Inc 216
Quelo Inc 215
Relms 218
Richco Plastic Co 113
Rockland Scientific 92
Rogers Corp 120, 217
Samtec Inc 214
Schaevitz Engineering 213
Shelly Associates 215
Sierra Semiconductor 50-51
Siliconix Inc 37
Simpson Electric Co 65
Single Board Solutions 213
SMC Pneumatics Inc 94
Sophia
Computer Systems Inc 61
Spectrum Signal
Processing Inc 214
Stag Microsystems Inc 80
System Industries 172-173
Taiwan Liton
Electronic Co Ltd 115
Tatum Labs 215
T-Bar Inc 124
TEAC Corp** 85
Tektronix Inc 8, 32-33
Teradyne Inc 28-29
Termiflex Corp 183
Texas Instruments Inc 139-142
Tokin Corp

$3 \mathrm{KHz}-800 \mathrm{MHz}$

over 50 off-the-shelf models from ${ }^{2} 295$

Choose impedance ratios from 1:1 up to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*). Fast risetime and low droop for pulse applications; up to 1000 M ohms (insulation resistance) and up to 1000 V (dielectric withstanding voltage). Available for immediate delivery with one-year guarantee.

Call or write for 64 -page catalog or see our catalog in EBG, EEM, Gold Book or Microwaves Directory. *units are not QPL listed
finding new ways .
setting higher standards

TO-3

 Power in a Plastic PackageNow power supply OEMs can design out TO-3s and TO-3P bipolars and design in large-die TO-3P HEXFET power MOSFETs that offer the economy of TO-220s and the power handling capability of TO-3s. Consider this. TO-3P HEXFETs meet or exceed TO-3 specs. Thermal resistance is lower than equivalent die sizes in TO-3s. Leads, too, conform to UL and VDE spacing.
TO-3P HEXFETs also offer an isolated mounting hole to simplify installation, cut hardware costs and assembly time
Best of all, you can expect the same high quality and reliability all HEXFET power MOSFETs guarantee.
Over thirty TO-3P HEXFET part numbers are ready now to upgrade your design. Voltage ratings range up to 500 V , and current up to 41A depending on Rds(on) and die size. For complete data, call (213) 607-8842. Today.

Most HEXFETs now in stock for immediate delivery!

AUTOMATIC SCHEMATIC.

FUTUREDESIGNER: DRAW LESS. DESIGN

MORE. Introducing FutureDesigner ${ }^{T M}$ the only advanced design entry workstation that lets you describe your circuit in compact, high-level terms and create more complex designs faster. FutureDesigner's flexible, new techniques encourage creativity and experimentation, helping you produce innovative products quickly and more accurately.

MULTIPLE DESIGN ENTRY MODES FOR SPEED AND FLEXIBILITY. Describe

 your circuit with any combination of structural and behavioral representations. Use schematics to enter the structural portions of the design; such as data paths in a memory array. For portions easier to describe behaviorally, like sequencers or decoders, simply enter equations, truth tables or state diagrams using on-screen input forms.
ADVANCED DESIGN VERIFICATION

 HELPS YOU GET IT RIGHT THE FIRSTTIME. For the behavioral portions of your design, use FutureDesigner as a "what if" tool to try different design approaches. Immediately verify that your circuit works as you intended. For the structural portions, design check tools detect and help you correct connectivity and other common design errors. Together these features significantly shorten the design iteration cycle.

LOGIC SYNTHESIS CONVERTS YOUR

 EQUATIONS INTO SCHEMATICS. Once you've entered equations, state diagrams or truth tables, FutureDesigner's logic synthesizer eliminates redundant circuitry and optimizes your design for size/speed trade-offs. FutureDesigner is the only design entry workstation that will then automatically produce the correct schematics and integrate them with the total structural design.[^12]
MORE CHOICES IN TECHNOLOCIES, VENDORS AND SYSTEMS. Future-

Designer is technology independent. Choose the most convenient mix of TTL, PLDs, gate arrays or other ASICs from a wide range of semiconductor manufacturers. You can easily migrate from one technology to another without redesign.
FutureDesigner output is an industry standard, widely accepted by engineering service bureaus and semiconductor vendors. You'll also have access to both FutureNet ${ }^{\circledR}$ and other CAD systems for simulation and PCB layout.

Call us today and learn how a FutureDesigner workstation gives you the flexibility and accuracy to design innovative products faster.

1-800-247-5700 Dept. 707

[^0]: Cahners Publishing Company \square A Division of Reed Publishing USA \square
 Specialized Business and Consumer Magazines for Building \& Construction \square Interior Design \square Electronics \& Computers \square Foodservice \& Lodging \square Manufacturing \square Book Publishing \& Libraries \square Medical \& Health Care \square Child Care/Development

[^1]: *Trademark of Fairchild Semiconductor Corp.

[^2]: *Ethernet is a registered trade mark of Xerox Corp.

[^3]:

 and
 $1 / 2$

[^4]: * U.S. list price

[^5]: PM 3570 • LOGIC ANALYZER

[^6]: John Fluke Mfg. Co., Inc., P.O. Box C9090, M/S 250C, Everett, WA 98206.
 U.S.: (206) 356-5400 CANADA: (416) 890-7600. OTHER COUNTRIES: (206) 356-5500.
 ${ }^{\circ}$ Copyright 1987 John Fluke Mig. Co., Inc. All rights reserved. Ad No. 1071-P6666.

[^7]: eSMD is a service mark of North American Philips Corporation

[^8]: P.O. Box 517

 Crystal Lake, IL 60014
 Phone: 815/459-5000

[^9]: ${ }^{\text {ru }}$ MegaChip is a trademark of Texas Instruments Incorporated.
 Futurenet is a trademark of Futurenet Corporation. Mentor Graphics is a trademark of Mentor Graphics Corporation.
 © MULTIBUS is a registered trademark of Intel Corporation
 27-4510

[^10]: *Registered trademark of Microcom. \ddagger Registered trademark of Hayes Microcomputer Products, Inc. †Registered trademark of International Business Machines, Inc.

[^11]: Prism Electronics Ltd,
 Burrel Road, Industrial Estate, St. Ives, Huntingdon, Cambridgeshire PE17 4NF ENGLAND.
 Telephone (0480) 62225
 Fax (0480) 494047
 Telex 32303 PRISM G

[^12]: Data I/O Corporation 10525 Willows Road N.E., P.O. Box 97046, Redmond, WA 98073-9746, US.A. (206) 881-6444/Telex 15-2167 FutureNet 9310 Topanga Canyon Boulevard, Chatsworth, CA 91311-7528 (818) 700-0691/Telex 910-494-268)
 Data I/O Canada 6725 Airport Road, Suite 302 , Mississauga, Ontario L4V 1V2 (416) 678-0761/06968133
 Data I/O Europe World Trade Center, Strawinskylaan 633 , 1077 XX Amsterdam, The Netherlands (20) 622866 /Telex 16616 DATIO NL Data I/O Europe World Trade Center, Strawinskylaan 633,1077 XX Amsterdam, The Netherlands (20) 622866 / Telex
 Data I/O Japan Sumitomoseimei Higashishinbashi Bldg., 8F, 2-1.7. Higashi-Shinbashi, Minato-ku, Tokyo 105, Japan

