

SPECIAL ISSUE: Analog technology
Evaluating op amps' ac characteristics
Analog multiplexers
Video-interface circuits
JFET-input op amps
ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Analog CAE complements traditional design tools

IEIEI हों। चाहा सी हा सा साता

Our MACGEN silicon compiler developed the world's fastest 16 -bit multiplier accumulator.

Structured Arrays combine high-density memories with up to 41,000 logic gates.

High Performance cell-based 1750 CPU combines logic, ROM and processors.

Channel-free Compacted Arrays combine logic and memory functions with up to 129,000 available (up to 70,000 utilized) gates.

If your system design looks good on a board, think how impressive it's going to look on a single chip.

Which is precisely where our 1.5-micron ASIC technology will put it.

Now every design is downsized, whether you're working with our Standard and Structured Cells, or Structured Arrays and channel-free Compacted Arrays. Or our silicon-compiled 16 -bit and 32 -bit MAC chips.

All of them let you design a more powerful system with fewer components and fewer bugs. A system with more functions, in less space.

But it's not just our 1.5-micron CMOS technology that makes your designs more efficient.

It's also our ASIC design tools that let you create any cell or array solution with the same proprietary software methodology.

Use our LDS ${ }^{*}$ core software with any one of our fifteen add-on modules. Like the advanced behavioral or multi-chip simulator, chip floorplanning or logic simulation accelerator.

And you're guaranteed working parts whether you design on your own mainframe, mini or engineering workstation. Or at any of our 30 ASIC design centers-the largest network in the world.

We've shortened prototype delivery time, too. A mere five to six weeks for Structured Cells, three for Compacted Arrays and Structured Arrays, and as little as ten days for Gate Arrays.

Call your nearest LSI Logic design center, or send us your system design problem. We'll show you just how quickly you can jump into higher integration.

Without going overboard.
LSI LOGIC

HOWTOAVOD GOING OVERBOARD.

$-\infty$

Different Shielding Problems Demand Different Goating Solutions. Only Acheson Offers ThemAll.

SILVER

- Highest attenuation $>80 \mathrm{db}$
- Less than half the cost of "conventional" silver coatings
- Thin film build
- Stable electrical properties

- Stable electrical properties
- Low cost
- Medium - High attenuation $65-75 \mathrm{db}$

NICKEL

- Stable electrical properties
- Easy to mix
- Low cost
- Medium attenuation

50-70 db

GRAPMIE

- Stable electrical properties
- Lowest cost
- Low attenuation $30-40 \mathrm{db}$

EMI/RFI INTERFERENCE

Selecting a conductive coating that performs well and offers a cost-effective solution to your particular EMI problem is easy when you deal with Acheson, the leader in EMI technology! We offer a "complete line" of Electrodag ${ }^{\circledR}$ conductive coatings - silver, copper, nickel, graphite - because different shielding problems demand different coating solutions.

Electrodag conductive coatings are uniquely formulated to help even your most sensitive
electronic equipment function properly. regardless of environment. Each can be simply spray applied using conventional methods, and all air dry. In addition, Electrodag conductive coatings allow your system to meet or surpass today's stringent FCC and VDE requirements, and most are UL recognized.

Electrodag conductive coatings assure you of quality protection at a competitive price. Our seasoned support staff will
gladly work with you in solving your specific EMI problem. For additional details on our line of "EMI Eliminators" and/or technical assistance, call or write today.

CIRCLE NO 20

Acheson Colloids Company
P.O. Box 288, Port Huron, M1 48060

TOLL FREE 1-800-255-1908
In Canada:
P.O. Box 665, Brantford, Ontario N3T 5P9
(519) 752-5461

WHATS NEW IN G GHz LINEAR?

THE VA703713: FAST, VERSATILE BUILDING BLOCKS FOR YOUR ANALOG SYSTEM.

Introducing the VA703/VA713 High-Speed Operational Transconductance Amplifiers . . . the latest addition to our broad line of highperformance Linear Signal Processing (LSP) integrated circuits. VTC's LSP line gives you a whole range of analog solutions, for: \square Signal conditioning
\square Data acquisition/conversion
\square Signal transmission
\square And special functions
The line includes a complete selection of Op Amps to 500 MHz bandwidth . . . precision, high-speed, and fast settling, plus dual or quad. A/D Converters to 12 bits.
Flash Converters to 8 bits, 250 MHz .

SACs to 12 bits.
A family of ECL and TTL High-
Speed Comparators.
Video Amps and Unity Gain Amps to $2000 \mathrm{~V} / \mu \mathrm{sec}, 300 \mathrm{MHz}$.

And Operational Transconductance Amplifiers like the new VA703 and VA 713, which feature a broad loop bandwidth of 75 MHz , and a high slew rate of $50 \mathrm{~V} / \mu \mathrm{sec}$.

If your analog application requires
high speed, high slew rate, low off-
sets, large power bandwidth,
high output drive capability, fast conversion rates,
and/or higher packaging density . . . then you should be
specifying VTC's
high-performance
LSP ISs in your systerm!
What's more, these parts are specified with $\pm 5 \mathrm{~V}$ operation to help simplify your system power requirements, and reduce power consumption

They're available in commercial or military temp ranges . . . in cerdip, PDIP, SOIC, LCC, PLCC, or metal can packages, and in die form. Get up to speed with the latest in high-performance linear. Call us toll-free today, or write for data sheets and samples: VTC Incorporated, 2401 East 86th Street, Bloomington, MN 55420. (In Minnesota: 612/851-5200.)

CALL 1-800-VTC-VLSI

 $\rightarrow\left\{\begin{array}{l}B W \propto g m / c \\ g m=\frac{I A B C}{2 \sqrt{t}}\end{array}\right.$
$I B=\frac{I A B C}{23}=\frac{I A B C}{18}$
$I O S=0.05 I B$
R
$R_{N} N=200+\frac{A B \sqrt{I}}{I A B C}$

Just another engineering milestone.

There was a time when engineers spent much of their time calculating, measuring, and writing down the results.

Remember logarithm tables? Maybe not.

Well now you can forget about conventional data loggers and multimeters too.

Because Wavetek has created a new tool that takes their place-a tool that will soon take its place on every engineer's bench.

It's called the Data Multimeter.

As you might expect, it measures voltage, current, and resistance. But it also measures temperatures, volt-amps, dB, frequencies, periods, pulse widths, and circuit continuity.

And it takes all these readings not on just one channel, but four-simultaneously. Add multiplexer options and you can scan more than 200 channels, then store as many as 72,000 readings in an internal memory.

You'll also have a digital display of all four
channels-with bar graphs if you wish.
There is a builtin computer that provides alarms, lookup tables, slope and offset calculations, averaging, and channel comparison.

You can add digital I/O, analog control outputs, and GPIB-or use the standard RS-232 communications interface.

All of this in a portable package that can operate off line current, or replaceable or rechargeable batteries. Prices start at under \$3,000.*

For details about this engineering milestone, call or write Wavetek San Diego, Inc., 9045 Balboa Âve., P.O. Box 85265, San Diego,

Tel. [619] 279-2200;
TWX 910-335-2007
*U.S. price only.

THIS PC/XT-COMPATIBLE INDUSTRIAL COMPUTER MAY HAVE ONE FALLING...EVERY7 YEARS.

That's the Pro-Log System 2 Mean Time Between Failures (MTBF) at $55^{\circ} \mathrm{C}$. When you need reliability, that's it. An industrial computer that works and keeps on working for the life of your application. And it's covered by a 5 -year limited warranty.

A HUGE SOFTWARE POOL

System 2 comes with Microsoft's MSDOS 3.2 operating system and runs Lotus 1-2-3 and Flight Simulator. So it's PC/XT-compatible, right down to the chip level. Which is important for running industrial software, where real time response is needed.

Data acquisition, process monitoring and control, and multitasking software, plus a wide selection of editors, debuggers, and high-level languages are available. Many of them from Pro-Log.

HARD-WEARING HARDWARE

System 2 is based on the industrystandard STD BUS. So a wealth of industrial quality add-on products is available from over 100 STD BUS manufacturers.

PLUS ROOM TO EXPAND
You expand System 2 by simply plugging in additional STD BUS cards. Up to 23 expansion slots are available and many options, such as 640 K bytes of memory, EGA/Keyboard interface, and printer interface, can be factory installed.

A DISK DRIVE FOR EVERY APPLICATION

System 2 can be configured with IBMcompatible $31 / 2$-inch or $5 \frac{1}{4}$-inch floppy disk drives and a 20 M -byte hard disk.* For minimum power, maximum reliability and temperature range, select semiconductor (ROM and RAM) disk drives.

Take care of your next 7 years
TODAY. Call toll-free (800) 538-9570 or write Pro-Log Corporation 2560 Garden Road, Monterey, CA 93940
*Thermal and mechanical specifications are reduced by the use of mechanical disk drives.
MS-DOS 3.2 and Flight Simulator are registered trademarks of Microsoft Corp. Lotus 1-2-3 is a registered trademark of Lotus Development Corp. IBM is a registered trademark of International Business Machines Corp.

USA TLX: 171879, Australia (02) 419-2088; Canada (416) 6257752; England (0252) 851085; France (1) 3956-8143; Germany (07131) 50030; Italy (2) 498-8031; Switzerland (01) 624444

On the cover: Analog CAE systems are now among the tools you can select to speed your linear designs. But you'll need to develop the skill to know when to use the CAE systems and when to rely on the traditional benchtop instruments. See pg 138. (Photo courtesy Analog Design Tools)

DESIGN FEATURES

Special Report: Board-level analog CAE
Analog CAE packages are steadily improving. Selecting one isn't easy, however. What's more, you might find it difficult to decide when the use of such systems is appropriate.-David Shear, Regional Editor

JFET-input amps are unrivaled for speed and accuracy

JFET-input amplifiers provide an economical means of achieving high accuracy in applications that need wide bandwidths for large signals. They are ideal for pulse amplifiers, fast D / A converters, peak detectors, and logarithmic amplifiers.-Peter Henry, Precision Monolithics Inc

Simple circuits provide accurate ac testing of op amps
Op amps' de characteristics are usually well controlled by vendor testing, but the parts' ac performance rarely is. You can use familiar test equipment and some simple test circuits to test op amps' ac characteristics.-Barry Harvey, Elantec

Low-cost circuits maintain
 quality of multiplexed video signals

Because video signals often pass through many black boxes and levels of interconnection, you must design your video switching circuitry to accommodate the attendant cumulative signal degradation. -Greg Schaffer, Maxim Integrated Products

Proper testing can maximize performance in power MOSFETs

MOSFETs are a viable option when it comes to satisfying the needs of today's power electronics systems. Some problems do occur in certain applications, however, and you must address these problems by realistically testing the transistor to ensure successful system performance.-Kim Gawen and Warren Schultz, Motorola Inc

Designer's Guide to Codecs-Part 2

A codec-or coder/decoder-performs the analog-to-digital (encoding) and the digital-to-analog (decoding) conversion of the human voice. Part 1 of this 2 -part series provided an overview of a codec's structure and function and described codecs' standard features. This article covers advanced codec features such as software control of operating modes, and it discusses noise considerations.-Brady Barnes, Inter-Tel

Continued on page 7 EDN ${ }^{\text {² }}$ (ISSN 0012-7515) is published 38 times a year by Cahners Publishing Co, a Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158. William M Platt, President; Terrence M McDermott, Executive Vice President; Jerry D Neth, Vice President of Publishing Operations; J J Walsh, Financial Vice President/Magazine Division; Thomas J Dellamaria, Vice President Production \& Manufacturing; Frank Sibley, Group Vice President. Copyright 1987 by Reed Publishing USA, a division of Reed Holdings Inc; Saul Goldweitz, Chairman; Ronald G Segel, President and Chief ExecutiveOfficer; Robert L Krakoff, Executive Vice President. Circulation records maintained at Cahners Publishing Co, 27s St Pau St, Denver, CO 80206 . Second class postage paid at Denver, CO 80202
and additional mailing offices. Postmaster: Send address changes to EDN ${ }^{\star}$, 270 St Paul St, Denver, CO 80206.

Good as Gold

The 70 Series Multimeters: the shining standard by which others are measured.

These multimeters are produced through advanced technology that assures you a wealth of product features. Giving you solid value for your money.

Security of a 3 -year warranty.

A 3 -year warranty reduces your cost of ownership. So you don't have to pay the price over and over for lesser-quality multimeters.
More features for your money.
Choose from either the basic 73 or the feature-rich 75 and 77 . You'll find the features you need at the price you can afford. Touch Hold ${ }^{T M}$ for capturing and holding readings. Audible tones to signal you for continuity. Autoranging for simple operation. And a sleep mode for extending battery life up to 2000 hours.
Made in the U.S.A.
Like other Fluke products these multimeters offer you uncompromised quality at competitive prices. So get your hands on a 70 Series Multimeter at leading electronics distributors nationwide. Or, call toll free 1-800-227-3800, ext. 229 tor a free brochure.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73, 75, 77

$\$ 79, \$ 109, \$ 145$	3-year warranty
$0.7 \%, 0.5 \%$, and 0.3% basic dc accuracy	Audible continuity (75 \& 77)
Analog/digital display	Range hold (75 \& 77)
Volts, ohms, 10A, diode test	Multipurpose holster (77)
Autorange	Touch Hold function (77)
$2000+$ hour battery life	

Manufacturers of analog switches and multiplexers are reducing their products' on-resistances and internal capacitances, extending their bandwidths, and improving their breakdownvoltage tolerances (pg 65).

TECHNOLOGY UPDATE

Improved analog switches and multiplexers bring benefits to old and new applications

Process improvements, particularly in the integration of CMOS logic and double-diffused MOS (DMOS) analog switches onto a single chip, have resulted in analog switches and multiplexers that offer lower on-resistance, reduced leakage currents, faster switching, and reduced power consumption compared with their predecessors.-Peter Harold, European Editor

The mature, yet evolving, technology
 Delay lines, although available since the 1960 s, aren't much different from the early versions: Most are manually assembled, hybrid components. But their technology has evolved and matured, easily matching increases in circuit operating speed.-Tarlton Fleming, Associate Editor

Surface-mount technology forces engineers 93 to follow testability guidelines

Because surface-mount-technology pc boards are so much harder
to test than boards manufactured with other, less-dense technologies,
design engineers will at long last have to follow the test-engineering
community's guidelines for designing testability into boards.-Charles
H Small, Associate Editor

PRODUCT UPDATE

High-speed flash A/D converter 111
Analog-circuit-simulation program 113
16-MHz support peripherals for $80386 \mu \mathrm{P}$ 114
Repeaters for multiplexers 117
VME Bus disk controller 120
DESIGN IDEAS
Decode overlapped EPROM, RAM, and I/O 241
Clamping amplifier simplifies measurement 242
Circuit deletes power-line cycles 246
Nonlinear load extends PLL frequency range 250
Model pnp-substrate capacitance correctly 252

[^0]
PLUG A TEK DIGITAL INTO YOUR SYSTEMS NOW FOR AS LITTLE AS \$4700.

Now get automatic answers easily, economically, with immediate hard copy output. The 100 MHz Tek 2230 or 60 MHz 2220 are highperformance, high-value digital storage oscilloscopes. Equip either with an optional GPIB or RS-232-C interface and digitized data can be ported to your PC, sent over phone lines, or directed to your printer or plotter for hard copies.

With either option the 2230 includes batterybacked memory that provides 26 K of keep-alive CMOS memory-for storing up to 26 waveform sets.
Expect the most for your money-and get it-with
Tek. You can capture events as narrow as 100 ns at any sweep speed thanks to our proprietary peak detect mode. Trigger on complex waveforms using variable

Features	2230	2220
Analog/Digital Storage BW	100 MHz	60 MHz
Max. Sampling Speed	$20 \mathrm{MS} / \mathrm{s}$	$20 \mathrm{MS} / \mathrm{s}$
Record Length	4K/1K (selectable)	4K
Save Reference Memory	One, 4K Three, 1 K	One, 4K
Vertical Resolution	$\begin{gathered} 8 \text { bits } \\ 10 \text { bits (AVG mode) } \\ 12 \text { bits (AVG mode over bus) } \end{gathered}$	8 bits
CRT Readout	Yes	No
Cursor Measurements	Yes (storage mode)	No
GPIB/RS-232-C Options	Yes (\$850)	Yes (\$550)
Battery-Backed Memory (save 26 waveform sets)	Yes (inc. with 2230 communications options)	No
Price	\$5150	\$4150

sweep holdoff. View events occurring prior to or after a trigger event with pre/post trigger. Eliminate noise with built-in signal averaging. Store acquired waveforms
as either 1 K or 4 K records. And simply push a button for real-time display analysis - the 2230 and 2220 double as conventional analog scopes.

You can increase vertical resolution - via the busfrom 8 to 12 bits with signal averaging. And Tek software is available to help you get the most from your systems configurations.

Call Tek direct for a free diskette demo. Or to place an order! Technical personnel will answer your questions, take an order and expedite delivery. Orders include complete documentation, operating manuals, worldwide service back-up and Tek's 3-year warranty that even covers the CRT.

Call Tek direct:

1-800-433-2323 for free diskette or video tape 1-800-426-2200
for orders and/or technical advice
In Oregon, call collect: 1-627-9000

```
        VP/Publisher
    F Warren Dickson
VP/Associate Publisher/Editorial Director
            Roy Forsberg
                Editor
            Jonathan Titus
            Managing Editor
                Rick Nelson
        Assistant Managing Editor
            Joan Morrow
            Special Projects
                    Gary Legg
            Home Office Editorial Staff
275 Washington St, Newton, MA 02158
                    (617) 964-3030
            Tom Ormond, Senior Editor
        Deborah Asbrand, Associate Editor
            Joanne Clay, Associate Editor
        Tarlton Fleming, Associate Editor
        John A Gallant, Associate Editor
        Clare Mansfield, Associate Editor
            Dave Pryce, Associate Editor
        Cynthia B Rettig, Associate Editor
            Charles Small, Associate Editor
            Chris Terry, Associate Editor
            Jim Wiegand, Associate Editor
            Valerie Lauzon,Staff Editor
            Helen McElwee,Staff Editor
            Steven Paul, Production Editor
                    Editorial Field Offices
    Margery S Conner, Regional Editor
    Newbury Park, CA: (805) 499-7901
    Bob Cushman, Special Features Editor
    Port Washington, NY: (516) 944-6524
            Chris Everett, Regional Editor
            San Jose, CA: (408) 296-0868
            Steven H Leibson, Regional Editor
            Boulder, CO: (303) 494-2233
            J D Mosley, Regional Editor
            Arlington, TX: (817) 465-4961
            David Shear, Regional Editor
            San Jose, CA: (408) 296-0868
            Maury Wright, Regional Editor
            San Diego, CA: (619) 748-6785
            Peter Harold, European Editor
                    0603-630782
            (St Francis House, Queens Rd
            Norwich, Norfolk NR1 3PN, UK)
            Contributing Editors
Eva Freeman, Robert Pease, Bob Peterson,
                    Don Powers, Bill Travis
            Editorial Services
        Kathy Leonard, Office Manager
        Loretta Curcio,Nancy Weiland,
                    Sharon Gildea
                    Art Staff
            Kathleen Ruhl, Art Director
    Ken Racicot, Assistant Art Director
    Chin-Soo Chung, Graphic Designer
    Deborah Queally, Graphic Designer
        Production/Manufacturing Staff
        William Tomaselli, Production Supervisor
        Donna Pono, Production Manager
    Beth Ann Cooper, Production Assistant
    Andrew A Jantz, Production Assistant
            Diane Malone, Composition
            Graphics Director
                Norman Graf
    VP/Production/Manufacturing
                Wayne Hulitzky
Director of Production/Manufacturing
                John R Sanders
            Director of Research
                Deborah Virtue
            Marketing Communications
            Janice Molinari, Manager
Jennifer Ware, Communications Manager
    Corie Rand, Promotion Coordinator
        Anne Foley, Promotion Assistant
```

[^1]

Only Mentor Graphics maps symbols to silicon.

The bigger the IC design, the bigger the problem: you're trying to locate a discrepancy between the schematic and your IC layout, but all you have is an ASCII error report. It's like driving all over a strange city to find an address - without a map.

That's why Mentor Graphics created REMEDI, ${ }^{\mathrm{TM}}$ a graphical interface that helps debug complex layouts. REMEDI works with Dracula II, taking the leading layout verification package's layout-versus-schematic checks a step further. LVS errors detected with Dracula II can be quickly pinpointed on both the layout and
schematic using REMEDI's interactive graphical correlation capabilities.

And, because REMEDI is part of ChipGraph, ${ }^{\text {TM }}$ the powerful Mentor Graphics full custom IC layout editor, as soon as you find an error you can fix it. There's no need to move back and forth between the layout editor and the debugging tool to correct the design database.

Today's complex VLSI designs demand a layout tool that lets you create and navigate efficiently through a maze of mask data. So ChipGraph provides flexible geometry editing and fast cell-based layout tools. Beyond this,

Structured Chip Design (SCD), a hierarchical approach to physical layout, removes much of the unnecessary and confusing mask data, while retaining correct functionality and interfaces.

With SCD, you can work with a simplified representation of the cell when making higher level decisions. And you can easily move between SCD and more familiar tools, with no loss of productivity. The result? The tightest possible layout, created quickly and accurately.

ChipGraph also lets you partition a large design over any number of workstations while maintaining version control, through a networkwide shared database.

And there's no need to worry about losing old data when switching to a new tool. ChipGraph offers full data compatibility with your existing design files.

Best of all, ChipGraph is not just an idea it's a working reality. Designers are already
using ChipGraph to lay out 32-bit microprocessors and multi-megabit RAMS.

It's all part of a vision unique to Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll-free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390
(in Oregon call 284-7357).
GMentor

Everything doesn't need to be your fault.

Designing a new system has enough risks. Why pass up an off-the-shelf sure thing like AMD's complete Ethernet chip set?

We designed the Am7990 Lance, Am7992B SIA, and the AM7996 Transceiver to work with one another. And what happened? They work with one another.

AMD can offer you something no one else can offer. Absolute confidence.

Our chip set has been around since the beginning of Ethernet. It's been proven by years of successful networking in systems. That means you won't be designing it in, then covering your tracks when it doesn't work. (And if you work with Cheapernet, you're still safe, because our chip set does, too.)

Look at it this way:
You're going to get blamed for a few things in life that are absolutely not your fault. Why not choose the AMD Ethernet chip set and pick up some easy praise?

Advanced Micro Devices 7

901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088

Data shouldn't take 30 minutes to travel two and a half feet.

Instead of killing time, you could be killing bugs. Because Applied Microsystems now offers a high speed emulator interface to rescue debug sessions bogged down by data throughput. Its the industry standard architecture called SCSI. The bus that can squeeze fiveminute transfers into 10 seconds.

Downloading and transfering data at speeds up to 1.5 Mbytes per second over a SCSI bus gives you a powerful advantage. Your information is now moving up to 30 times faster than you're used to, creating a virtual link between your host and target system.

That advantage becomes even more important when you're working with big blocks of code as you would on a 68020 or 80286 design.

With SCSI, your development environment takes on the dimension of immediacy. You have control and visibility without waiting. And
true interactive debugging becomes possible for the first time.

SCSI unites real-time emulation with source level debugging.

Thanks to SCSI's tremendous speed, the events of high performance emulation are transported to your host as they happen. Trace information appears on your computer in seconds, not minutes. And through VALIDATE ${ }^{m}$ you can immediately debug in your

Call for the facts that speak for themselves.

Find out why Applied Microsystems emulation with SCSI is the most painless way to begin a design project and finish it on schedule. For full details, call 1-800-426-3925 toll-free and ask for Telemarketing. In Washington state call (206) 882-2000. Or write to Applied Microsystems, P.O. Box 97002, Redmond, WA 98073-9702.

In Europe contact Applied Microsystems Corporation Ltd., Chiltern Court, High Street, Wendover, Aylesbury, Bucks, HP22 6EP, United Kingdom. Call 44-(0)-296-625462. UNIX is a registered trademark of AT\&T.

 Hillili

Applied
Microsystems
Corporation

Are your suppliers giving you less attention than you deserve?

You can never get too much attention.

At least that's how Monolithic Memories sees things.
So when you come to us for your system components, you get much more than parts. You get a partnership. Which includes all the service and support you'll need throughout your design process.

First, there's our network of Field Applications Engineers, 50 or so of the most highly evolved minds in the field.

They'll give you all the hands-on help it takes to get the most out of our circuits. Like applications support. Design problem troubleshooting. Even test program debugging.

Then there's our Applications Hotline, staffed by engineers who really know their way around our PAL, PROM and advanced logic ICs, as well as our new Logic Cell"Arrays (LCA). If they can't solve your design problems, they'll direct you to the people who can.

You get more up-to-the-minute support, too. From our updated PALASM* software. Our new LCA XACT"' software. Our on-going series of PAL device seminars. And, most importantly, our commitment to maintain our record of hitting over 98% of promised first ship dates.

We give our distributors close attention, too. Which means they can do the same for you. Whether you need prototypes, programming services or inventory management.

So instead of getting ignored after getting your components, talk to us.

Monolithic Memories, 2175Mission College Blvd., Santa Clara, CA 95054. (800) 247-6527.

We'll give you all the support you need. Without any monkey business.
Logic Cell and XACT are trademarks of Xilinx, Inc. PAL and PALASM are registered trademarks of Monolithic Memories, Inc. © 1987, Monolithic Memories, Inc.

WHOSAYS SHOTGUN

IT WASA WEDDING?

According to our customers, it was more like an elopement.

You see, although our merger "shocked the design automation world,' as the press put it, it was only natural for our customers to join together what they believe to be the best CAE tools with the best CAD tools. In fact, many of our major customers have been integrating Valid systems with Telesis systems for years.

So, technically speaking, the marriage is working. We just made it more formal.
The results are promising, indeed.
It's a new generation of EDA. And in a very short time, we'll grow to become the first and only legitimate, front-to-back, $\mathrm{CAE} / \mathrm{CAD}$ solution for system design running in theVMS ${ }^{m}$ or UNIX ${ }^{\text {m }}$ environment.

For the first time, systems designers can take their designs from concept through layout faster and easier than ever before. With CAE/CAD hardware, software, service and support all coming from one vendor.

Find out what our merger means to you now, and in the future. For a free brochure, call 1-800-821-9441. In California, call 408/432-9400, Ext. 311. On second thought, maybe it was a marriage made in heaven.

smARTWORK Keeps Getting Smarter

Smarter Artwork

Three years ago, Wintek engineers created smARTWORK to reduce the time and tedium of laying out their own printed-circuit boards. Thousands of engineers have since discovered the ease of use and sophistication that makes smARTWORK the most popular PCB CAD software available. And thanks to them, smARTWORK keeps getting better.

New smARTWORK Features

\square Silkscreen layer for component placement and identification
\square Text capabilities for all three layers
\square Selectable trace widths and pad shapes and sizes
\square User-definable library
\square Ground planes created with a single command
\square Solder-mask and padmaster plots generated automatically
\square Quick printer 2X checkplots
\square Additional drivers for printers
\square Optional drill-tape and Gerber photoplotter utililies
\square AutoCAD® .DXF file output
\square Completely updated manual
$\square 800$ number for free technical assistance
smARTWORK transforms your IBM PC into a PCB CAD system

Interactive routing, continual design-rule checking, pad shaving, and production-quality 2 X artwork have always been a part of smARTWORK. And now that many customer suggestions have become a part of the software, smARTWORK is an even better value. That's why we offer it with a thirtyday money-back no-nonsense guarantee.

Using an Epson or IBM dot-matrix printer, you can create 2 X artwork and 1X or 2 X checkplots in a fraction of the time hand-taping requires

$2^{\prime \prime}$ by $4^{\prime \prime}$ section of a $10^{\prime \prime}$ by $16^{\prime \prime}$ doublesided board with silkscreen layer

[^2]
FUNCTIONAL LOGIC TESTERS TEST OVER -55 TO +177º

A line of parallel functional testers for engineering, quality-assurance, and reliability applications will be shown by Aehr Test Systems (Menlo Park, CA) at Semicon/West ' 87 next week. (The show will be held in San Mateo, CA, on the 18th to the 2lst.) The MBT-208 Series includes four burn-in/test systems designed for testing memory and logic devices over -55 to $+177^{\circ} \mathrm{C}$. Device capacity varies with IC package size and required test speeds. Typically, you can test as many as 3000 dynamic RAMs at one time.

The four models differ in their pattern-generation capabilities. The MBT-208 with the VSP pattern generator is optimized for logic quality/reliability applications. The other three pattern generators are optimized for memory quality/reliability or memory functional characterization applications.

Prices for the MBT-208 range from $\$ 198,000$ to $\$ 300,000$ depending on the pattern generator. (Production testers with higher throughput rates cost more than $\$ 500,000$.) Models are complete turnkey systems that include host programmer/controller, software license, and operator training.-Chris Everett

SUB-\$550 40M-BYTE DRIVE INCLUDES SCSI IN $3 ½-I N$. PACKAGE

The Spartan LT4000 Winchester drive from Lapine Technology (Milpitas, CA, (408) 262-7077) serves the new generation of small computers that need 40M bytes of storage. The drive, which costs less than $\$ 550$ (1000), includes an embedded SCSI (Small Computer System Interface) controller in the $31 / 2-\mathrm{in}$. package. Although the drive employs a stepper motor to drive the actuator, it performs average seeks in less than 35 msec . Worst-case seeks finish in less than 80 msec . The drive dissipates 15 W from 5 and 12V supplies.-Maury Wright

THREE AUTOROUTERS ACGELERATE PC-BOARD LAYOUT

Three CAD vendors are introducing autorouters for their pc-board layout systems. Each of the autorouters attempts to connect components on a layout without adding unnecessary vias and signal layers.

Racal-Redac (Westford, MA) hasn't changed its \$24,000 Visula autorouter, but it has increased the operating speed of the software. The company has ported the autorouter to a superminicomputer developed by MIPS Computer Systems (Sunnyvale, CA). The Mipper superminicomputer specs an operating speed of 8 MIPS, which enables the router to run six times faster than it does on an Apollo DN3000 workstation. It includes a 337 M -byte hard-disk drive, a streaming-tape drive, and 8 M bytes of RAM and costs $\$ 79,950$.

At the lower end of the price spectrum, Accel Technologies (San Diego, CA) is bringing out a $\$ 495$ autorouter that runs on IBM PCs. The Tango-Route autorouter interfaces to the company's $\$ 495$ pc-board layout system. Features of the autorouter include 90° and 45° routing, a maximum board size of $32 \times 19 \mathrm{in}$., and as many as four layers.

The third autorouter combines IBM PC compatibility and a hardware accelerator. To use Bishop Graphics' (Westlake Village, CA) Pathfinder pc-board layout program, you run Autodesk's (Sausalito, CA) AutoCAD drafting package on an IBM PC and add a plug-in card for autorouting. The autorouter card is available in two configurations-
the standard version contains an $8-\mathrm{MHz}, 8$-bit $\mu \mathrm{P}$; the second model uses a $25-\mathrm{MHz}$, 32 -bit $\mu \mathrm{P}$. The $25-\mathrm{MHz}$ autorouter runs seven times faster than the $8-\mathrm{MHz}$ card. The fast model costs $\$ 5990$; the standard version costs $\$ 2995$.-Eva Freeman

RCA TO INTRODUCE VIDEO-RATE DSP CHIPS

Look for RCA to introduce a new line of DSP chips aimed at high-end DSP applications. The chips should be introduced some time in early summer and will be suitable for video DSP applications. The line will include a programmable FIR filter, a least-means-squared adaptive FIR filter, and a programmable-length FIFO buffer. The parts will feature 8 -bit, $14-\mathrm{MHz}$ performance.-Jim Wiegand

SURFACE-MOUNTABLE THERMISTOR IS HERMETICALLY SEALED

The surface-mount-sensor (SMS) line of hermetically sealed thermistors from Midwest Components Inc (Muskegon, MI) offers designers low-cost devices for measuring temperature or providing thermal-compensation on SMT pc boards. Devices in the series come in cylindrical packages that resemble MELF diodes. They cost $\$ 0.30$ $(10,000)$ and are offered in resistance values ranging from $2 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. The manufacturer also offers the device on tape-and-reel.-Steven H Leibson

ANALOG AND DIGITAL SIMULATORS EXPAND THEIR MODEL LIBRARIES

Mentor Graphics (Beaverton, OR) has increased the size of its analog-device library to 920 models. The library includes op amps, bipolar transistors, zener diodes, MOSFETs, and diodes. The library costs $\$ 20,000$ for the first copy; additional licenses cost $\$ 2000$.

Digital designers can use Quadtree's (Bridgewater, NJ) Designers' Choice behavioral models to simulate VHSIC (very-high-speed IC) systems. The models simulate a set of high-speed digital chips from TRW's Electronics and Technology Div (Redondo Beach, CA). The device library includes a window- and a content-addressable memory, a matrix switch, a microcontroller, an address generator, and a multiplier/accumulator. Models will be sold only to qualified US defense contractors. Each behavioral model costs $\$ 5000$; the complete set of eight models costs $\$ 32,000$. Shipments of the models will begin in August.-Eva Freeman

FORWARD-ERROR-CORRECTION CHIP IS FASTER THAN PREDECESSOR

Featuring a 20M-bps data rate, the SRT 241203-I Hyper-Fec III forward-errorcorrection IC can correct as many as three errors and detect as many as four errors in each 12-bit data word. Available from Space Research Technology Inc (Austin, TX), the device is pin compatible with the company's earlier, 2.5M-bps error-correction part and costs 40% less. The $\$ 75$ chip contains an encoder and decoder that, respectively, convert each data word by adding or stripping 12 check bits to the 12 data bits. The encoder and decoder can operate at different data rates.-Steven H Leibson

Until today, the only way you could get a true video speed, 12 -bit D/A converter was by compromising signal integrity, power dissipation and cost.

Now,TRW LSI Products Division, the leader in high-performance D/A converters, offers you the ideal alternative. Meet the TDC1012, a monolithic 12-bit D / A converter that operates at a 20 MHz data rate and settles in an incredibly fast 30ns.

The TDC1012 not only leads the way in settling time, it also features rise/ fall times of less than 4 ns . And it does all this while holding output glitches to 25 pV -sec . . so you can forget about that expensive deglitcher circuit.
As for price-very attractive! The TDC1012 is available in a 24 -lead plastic or ceramic package, with
prices starting at $\$ 35$.
For optimum flexibility and performance, the TDC1012's complementary outputs are capable of driving 40 mA into a doubly terminated 50 ohm transmission line. Power dissipation is a cool 1.1W. And, of course, the TDC1012 is TTL compatible and operates from standard +5 V and -5.2 V power supplies.
This breakthrough in converter technology is made possible by TRW's Omicron- $\mathrm{B}^{\text {™ }}$ one-micron triple diffused process. It's available now from Arrow Electronics, Hall-Mark and Hamilton-Avnet.

Remember, you always get FULL SPEC PERFORMANCE from TRW LSI.

For immediate technical assistance and literature, call or write:

LSI Products Division,
TRW Electronic Components Group, P.O. Box 2472, La Jolla, CA 92038, 619.457.1000

In Europe, call or write: TRW LSI Products, Konrad-Celtis-Strasse 81, 8000 Muenchen 70, W. Germany, 089.7103 .115

In the Orient, phone:
Hong Kong, 3.856199;
Tokyo, 03.461.5121; Taipei, 751.2062;
Seoul, 2.553.0901
©TRW Inc. 1987 -TRS-5107R

TRIE

LSI Products Division

TRW Electronic Components Group

BIPOLAR POWER TRANSISTORS SUIT HIGH-FREQUENCY CONVERTERS

High-voltage, bipolar power transistors in the ETD (Easy-To-Drive) Series from Thomson Semiconducteurs (Paris, France, TLX 204780; in the US, (201) 438-2300) are capable of $100-\mathrm{kHz}$ switching. The series includes 10 and $20 \mathrm{~A}\left(\mathrm{IC}_{\text {SAI }}\right)$ transistors with a $\mathrm{V}_{\mathrm{CEW}}$ rating of 400 V and $\mathrm{V}_{\mathrm{CEV}}$ ratings of 850 or 1000 V . All the transistors have a maximum fall time at $100^{\circ} \mathrm{C}$ of $0.15 \mu \mathrm{sec}$.

Operated without negative base bias, ETD transistors switch as fast as conventional bipolar transistors with negative base bias and therefore allow simplification of basedrive circuitry. In addition, their extended RBSOA (reverse bias safe operating area) allows you to use them without, or with smaller, snubber components. The BUF410, a 10A/850V transistor, sells for around Fr fr 11 (10,000).-Peter Harold

JAPANESE CAMERA INCORPORATES AMERICAN SEMICONDUCTORS

The recently introduced EOS 620 and EOS $65035-\mathrm{mm}$, automatic-focus cameras from Canon (Tokyo) incorporate three different surface-mountable semiconductor devices developed and marketed by Motorola Inc (Phoenix, AZ). An MC68HCll $\mu \mathrm{C}$ packaged in a 64-lead, gull-wing chip carrier acts as the camera's main processor and exposure-control element and communicates over a serial link with μ Cs embedded inside each lens in the EOS autofocus series. Two MPCly10 smart-power motor controllers operate the camera's shutter and film-movement motors, and an SFX1O power FET controls the internal power bus.-Steven H Leibson

SINGLE-BOARD COMPUTER ADAPTS TO OEM REQUIREMENTS

Targeted at workstation OEMs, the JT-68020 VME Bus-compatible single-board computer from Integrated Micro Products (Consett, UK, TLX 537747) accepts a piggyback 68851 paged-MMU module that allows it to run Uniplus+ v2.2 (version 3 is currently being ported). The board runs a $16-20$-, or $25-\mathrm{MHz} 68020 \mu \mathrm{P}$ and an optional 68881 math coprocessor; it can be supplied with as much as 4 M bytes of onboard dual-port RAM. Space for 2M bytes of EPROM and as much as 32 k bytes of static or nonvolatile RAM is also provided.

An expansion bus connector allows you to add as many as three daughter boards for additional serial I/O and RAM, a SCSI-bus interface, or for prototyping purposes. The board's VME Bus base address is software defined by data in nonvolatile RAM, and other board set-up parameters are stored in a PAL. The computer starts at £2950.

- Peter Harold

JOINT VENTURE TO OFFER ON-LINE SEMICONDUCTOR INFORMATION

A 10-company venture will offer next year an on-line information service on foreign and Japanese semiconductors and electronics components. Among the companies involved in this venture are Nippon Telegraph and Telephone Corp, Mitsubishi Corp, Hitachi, Toshiba, Fujitsu, and Oki Electric. Users will be able to access the database via PCs or facsimiles to obtain device specifications, photos, and circuit diagrams. When this service first begins, the database is expected to contain information on 15,000 catalogued items; after five years, the companies expect to have information on 900,000 devices.-Joan Morrow

Stimulate experiments with real-time analog waveforms reproduced from your actual captured data! Connected via the GPIB interface, the Nicolet Model 4094 digital oscilloscope teamed up with the Nicolet Model 42 arbitrary function generator provides instantaneous waveform storage and generation.

800/356-3090
or 608/273-5008

Nicolet Digital Oscilloscopes

Incoming signals digitized by Nicolet's high accuracy 12 -bit, 10 MHz digitizers or high speed 8 -bit digitizers allow you to see things you've never seen before. Zoom expansion to X256 allows you to see the details in waveforms composed of up to 16 k points. Cursor readout of measurement values, continuously variable pretrigger positioning, and built-in disk drives all contribute to Nicolet's tradition of measurement power and ease of use.

Nicolet Programmable Function Generators
 Outgoing signals are accurately generated from the 12 -bit by 2 k arbitrary

 waveform memory in the Model 42. Real-time duplication of the captured signal can be produced at speeds up to $1 \mu \mathrm{Sec}$ per data point.Continuous, triggered, gated, and burst output modes are possible. A unique feature, arbitrary sweep, allows you to accurately program the output frequency. Standard waveforms (sine, triangle, square, sawtooth, pulse), $10 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ to $20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ amplitudes, are all available at speeds up to 4 MHz .
"Instruments of Discovery"
For more information circle 43

one-piece design defies rough handling

Check these features:

\checkmark Each unit undergoes high-impact shock test
\checkmark Available from 1 to 40 dB
\checkmark DC to 1500 MHz
\checkmark Unexcelled temperature stability, $.002 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
$\checkmark 2 \mathrm{~W}$ max. input power (SMA is 0.5 W)
\checkmark BNC, SMA, N and TNC models
\checkmark Immediate delivery, 1-yr. guarantee

NEW!
Precision 50-ohm terminations ... only \$6.95 (1-24)
DC to $2 \mathrm{GHz}, 0.25 \mathrm{~W}$ power rating, VSWR less than 1.1
BNC (model BTRM-50), TNC (model TTRM-50)
SMA (model STRM-50), N (model NTRM-50)
finding new ways
P.O. Box 350166 . Brooklyn, New York 11235-0003 (718) 934-4500 Domestic and International Telexes: 6852844 or 620156

*Freq. (MHz)	Atten. Tol. (Typ.)	Atten. Change, (Typ.) over Freq. Range	VSWR (Max.)		
		DC-1000	$1000-1500$	DC- 1000 MHz	$1000-1500 \mathrm{MHz}$
DC-1500 MHz	± 0.3	0.6	0.8	1.3	1.5

*DC- 1000 MHz (all 75 ohm or 30 dB models) $\quad \mathrm{DC}-500 \mathrm{MHz}$ (all 40 dB models)
MODEL AVAILABILITY
Model no. = a series suffix and dash number of attenuation
Example: CAT 3 is CAT series, 3 dB attenuation. - denotes 75 ohms; add -75 to model no - denotes 50 ohms

ATTEN	SAT (SMA)	CAT (BNC)	NAT (N)	TAT (TNC)
1	-	-	-	-
2	-	-	-	-
3	-	- \quad -	-	-
4	-	-	-	-
5	-	-	-	-
6	-	- \quad -	-	-
7	-	-	-	-
8	-	-	-	-
9	-	-	-	-
10	-	- \square	-	-
12	-	-	-	-
15	-	-	-	-
20	-	-	-	-
30	-	-	-	-
40	-	-	-	

PRICING (1-49 qty.): CAT (BNC). $\$ 11.95$, SAT (SMA).. $\$ 14.95$ TAT (TNC) . $\$ 12.95$, NAT (N).. $\$ 15.95$

transformers

$3 \mathrm{KHz}-800 \mathrm{MHz}$ over 50 off-the-shelf models from $\$ 295$

Choose impedance ratios from $1: 1$ up to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Fast risetime and low droop for pulse applications; up to 1000 M ohms (insulation resistance) and up to 1000 V (dielectric withstanding voltage). Available for immediate delivery with one-year guarantee.

Call or write for 64-page catalog or see our catalog in EBG, EEM, Gold Book or Microwaves Directory.

In the old days, factories blew smoke. Now it's the salesmen who do.
"What you need is a
cradle-to-grave vendor," they say. "Yeah, that's the easiest way to integrate PCB design."
What they don't say is that single-vendor integration also offers you the fastest route from cradle to grave. Simply stated, this nearsighted approach has thrown our entire industry into chaos. Creating a veritable CAD/CAM bedlam.
What you need is a CAD partner, who believes in open system architecture. Who believes in process automation, not just creating piecemeal solutions to speed isolated tasks.
Who understands that CAD is a vital link in successfully completing your PCB

design and getting it to market. Who is willing to adapt to your individual design environment.
Who understands the importance of competitive compatibility and helps you maximize your current system investment. And works with what you already have, instead of expecting you to walk away from previous investments.
Who believes making sense is just as important as making sales.
At Calay, wed like to think were just such a partner. And we think you'll appreciate how we can help make the entire PCB design process easier to manage. And more profitable.
Call us at 714-863-1700. For facts, not flim flam.

Putting an end to CAD/CAM bedlam.

ONE PROTOTYPE THREE PRO FIVE PROTOTYP] SEVEN PROT

Teradyne's new CAE tools help you get to market faster by

Designing VLSI circuit boards that work the first time isn't child's play. You can't do it without fast, accurate feedback on design and test quality.

Now count on Teradyne to help. With our new family of CAE products, you'll uncover flaws before they're cast in hardware. So you'll be able to jump from initial design directly to final prototype. And from design to manufacturing test.
Start with a firm design foundation.
The process starts with DATAView our new design entry system. Running it on a standard AT-class PC, you can control the whole design process right at your desk. From schematic entry and waveform analysis on the PC to simulation and fault simulation on more powerful networked computers. All with the same mouse-and-menus multiple-window interface.

You move from schematic capture to simulation effortlessly. DATAView's links with our LASAR Version 6 simulation system save hours of model compilation time.

Incremental compiling lets you revise a design and resimulate in minutes.
Make your design work together before it comes together.

LASAR Version 6 is the only sure way to avoid multiple trips to artwork as well as costly rework steps in manu-

Teradyne networks advanced CAE tools for convenience and performance.

giving you a working prototype the first time.

for analyzing PC board designs prior to prototyping. For instance, LASAR takes full device timing specifications into account for true worst-case timing analysis. And it eliminates shared timing ambiguity in reconverging signals. Both of which mean LASAR finds real design errors reliably.

Finally, you can use LASAR fault simulation. It will uncover testability problems and untested circuit functions before it's too late.
Simulation without trial and tribulation.
LASAR also takes care of the board modeling problem. It includes models of over 4000 devices. And the most popular gate array libraries.

For new VLSI parts, our DATASource hardware modeling system uses actual devices instead of software models. A single system supports multiple users and concurrent fault simulation. With extraordinarily fast response.

LASAR and DATASource work with any VAX. For
simulations up to 25 times faster, you can use our new parallel/multiprocessing host, DATAServer. It will give you quick results, with full LASAR precision.
Teradyne makes it easy.
If you want to avoid multiple prototypes and get to market faster with better products, Teradyne's new CAE system is the way. Why not call Daryl Layzer at (617) 482-2700, ext. 2808 for more information. Or write Teradyne, 321 Harrison Avenue, Boston, MA 02118.
VAX is a trademark of Digital Equipment Corp.
AT is a trademark of International Business Machines Corp.

IERADY过

We measure quality.

For just \$2495, Data I/O® now offers two easy ways to put the power of logic in your designs. The LogicPak'm, with the generic adapter, transforms your 19, 29A, or 29B Universal Programming System into a sophisticated logic programming tool that supports virtually all programmable logic devices (PLDs). Or, if you don't already own one of our universal systems and want to program the popular PLDs, choose the 60A Logic Programmer.

Data I/O has set device programming standards for more than 15 years. So whichever programmer you choose, you can feel confident that you'll have the most reliable, up-to-date device support available today.

Call us today for a complete information packet on our logic programmers.

SIGNALS \& NOISE

Technical writers aid software-design teams

Dear Editor:
In reference to the article "Expert designers evaluate pc-based schematic editors" (EDN, December 25, 1986, pg 82), I would like to say a few words in behalf of my profession. I designed and wrote the Dash-4C manuals; it was a real boost to see that Gary Strunc appreciated the soul-searching and agonizing I went through to produce what I felt was the best documentation possible.

In defense of my fellow technical writers in CAE, let me suggest that poor documentation is often the result of not using a technical writer to produce manuals. Often a company gets to the documentation stage and decides to cut corners or simply misunderstands what technical writers do ("We have a junior engineer here; we'll have her write it").

It takes just as much expertise to design a manual as it does to design the software package. In fact, the difficulty in designing a manual increases as the design of the software package worsens. A system that is not intuitively understandable requires more and better documentation.

As for understanding the needs of the engineer or designer, I personally am not an engineer. In fact, FutureNet was my first contact with electronics, engineers, and PCs: I came from a programmer-productivity-tool, IBM-mainframe background. However, I understand how people learn and think and remember, and I know that they don't all do it the same way. Unfortunately, the same can't be said for all the engineers who are designing software packages.

An electronic engineer designing software for other EEs is less likely to be concerned with writing intuitively understandable packages than, say, a software programmer would be. The engineer is more likely to say, "Well, I'm an EE and I
understand it; if the user doesn't, he should find another job," forgetting that although he or she is computer oriented, the user may not be. FutureNet has discovered this fact, and to its credit, the company now spends huge amounts of development time in prototyping user interfaces to be sure that the final product is intuitively understandable, or user friendly.
As a technical writer, I feel that some of my best work is not what the user sees in the manual, but the contributions I make during product design. I serve as a user advocate, insisting on consistency and pushing for what's easiest for the user, even if it's harder for the programmer. My general rule of thumb is this: If you need immense amounts of documentation to explain a program, the program is not designed well enough.
In sum, technical writers are valuable members of software-development teams. Their expertise can make the difference between a package that is easy to learn and use and a package that wastes the user's time and gets returned.
Sincerely yours,
Pam Kayoumy
Senior Technical Writer
EEsof Inc
Westlake Village, CA

Chip implements
 RSA algorithm

Dear Editor:
The Technology Update article entitled, "Availability of cryptographic ICs augurs the increasing use of data encryption" (EDN, January 22, pg 63), incorrectly stated that "it would be very expensive (and perhaps impossible, at present) to implement [the RSA algorithm] in hardware."
In fact, our chip, the CY1024 cryptographic IC, does implement the RSA algorithm in hardware. The chip performs the computations

POWER.

DIGITIZING

$1 \mathbf{1 G H z}$. The 11402 Digitizing Oscilloscope features a full 1 GHz bandwidth right on the probe tip to help you make the most demanding voltage and timing measurements

2 10-14 BIT VERTICAL

 10 ps HORIZONTAL RESOLUTION. 10 -bit vertical resolution is averageable to 14 bits Self-calibration decreases error to less than 1% DC
3 AUTOMATIC MEA-

 SUREMENTS. Up to six measurements can be made at the push of a but ton, with results simultaneously displayed and continuously updated
4 PUSH-BUTTON

HARD COPY. Plug in a
Tek or compatible Epson dot matrix printer using the scopes standard Centronics port.

5 AUTOSET. Push a button on the front panel or on the probe to automatically set up the scope based on the signal characteristics of the selected trace.

6 TOUCH SCREEN.

Select a trace, a trigger, a measurement or other function by touching the appropriate area of the screen or by selecting from pop-up menus: the closest, most natural link yet between user and scope.

Tektronix introduces the 11000 Series: the new standard in digitizing and analog oscilloscopes.
These new fully programmable scopes display more traces (up to 8) at higher bandwidths (up to 1 GHz), with greater accuracy (up to 0.6\% vertical), and include more new functions for expediting the capture

and

pro-
cessing can ever be isted

Two new digitizing scopes exert the power of three 16-bit
processors,
long records, the most powerful triggering and the highest throughput ever. Use
their built-in dual time-
 view both the whole trace and the details on screen at once.

Two analog scopes feature an integrated 500 MHz universal counter/timer for unequaled resolution, accuracy, and scope versatility - for the

ERA IN DIGITIZING AND ANALOG OSCILLOSCOPES.

SIGNALS \& NOISE

necessary for SEEK, RSA, or Diffie-Hellman algorithms on numbers considerably larger than the 200-digit numbers cited in the article. The chip operates on numbers over 1000 bits, computes in less than 1 second, and costs less than $\$ 100$ in OEM quantity.
Sincerely yours,
Lewis C Morris
President/CEO
Cylink Corp
Sunnyvale, CA

Corrected formula

Dear Editor:
EDN's January 8 issue contains an informative and interesting article by R F Cobb: "Use statistics to test communications systems efficiently" (pg 143). The approximations for $Q(X)$ and $Q(Y)$ are of particular interest to me because they are also widely useful outside the context of
the article. Unfortunately, Mr Cobb presents an incorrect solution for $\mathrm{Q}(\mathrm{X})$ where X is negative (pg 147). This is evident when you inspect the formula for T, where, if X is set equal to $-1 / p$, the value of T would be infinite.

Instead, for all values of X , the correct value of T is:

$$
\mathrm{T}=\frac{1}{1+\mathrm{p}|\mathrm{X}|}
$$

Thank you for presenting articles such as Mr Cobb's. They attack important problems in ways that can be extended to many other applications. Mr Cobb, in particular, has provided helpful insight in many areas, not only in the present article but in the 4-part FFT series EDN published in 1984 (March 8, 1984, pg 209; April 5, 1984, pg 237; May 3, 1984, pg 265; and June 14, 1984, pg 183). Keep up the excellent work! Sincerely yours,
David King

Manager, Advanced Programs TRW Microwave Inc
Sunnyvale, CA

Please dial again

EDN's March 18 Product Update on Micro Linear's (San Jose, CA) ML2200 chip (pg 104) contained an incorrect phone number for the company. The correct number is (408) 262-5200.

YOUR TURN

EDN's Signals and Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Send your letters to the Signals and Noise Editor, 275 Washington St, Newton, MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity.

Where to find almostany testenvironmentonEarth. Plus afew that arent.

Lockheed's Environmental Test Laboratory provides complete environmental, electromagnetic interference/compatibility and stress screening services on a 24 -hour-per-day basis. All at one location.

We have 26 years' experience testing all types of equipment under carefully controlled laboratory conditions. Whether your specifica-
tions are military or commercial, we're fully equipped to handle your climatic/atmospheric simulation, structural, enclosure or noise testing, and much more.

Call Jack Glavine at (201) 757-1600
Extension 2267 or 2227 with your equipment test specifications. However impossible they may seem.

Performanice Semiconductor's CMO5 SRAMs

Density	Product number	Organization	Speed (ns)	SPECIAL FEATURES	AVAILABILITY	COMMENTS
64K	P4C164	$8 \mathrm{~K} \times 8$	20	300 MIL PKG	NOW	All configurations are crackling fast. (Of course, if you need a little less speed, we can help you with that, too.)
64K	P4C187	$64 \mathrm{~K} \times 1$	12		NOW	
64K	P4C188	16K $\times 4$	17		NOW	
64K	P4C198	$16 \mathrm{~K} \times 4$	20	W/OE	NOW	
64K	P4C198A	$16 \mathrm{~K} \times 4$	20	W/OE \& CE2	NOW	
64K	P4C1982	$16 \mathrm{~K} \times 4$	20	SEPARATE I/O	NOW	
64K	P4C1981	$16 \mathrm{~K} \times 4$	20	SEPARATE I/O	NOW	
72K	P4C163	$8 \mathrm{~K} \times 9$	20	300 MIL PKG	SEPT	
16K	P4C116	$2 \mathrm{~K} \times 8$	15	300 MIL PKG	JULY	All this performanceat affordable prices.
16K	P4C168	4K x 4	12		NOW	
16K	P4C169	4K $\times 4$	12	FAST CS	NOW	
16K	P4C170	4K x 4	12	W/OE	NOW	
16K	P4C1682	4K $\times 4$	15	SEPARATE I/O	NOW	
16K	P4C1681	4K $\times 4$	15	SEPARATE I/O	NOW	
4K	P4C147	$4 \mathrm{~K} \times 1$	10		SEPT	33% Faster than the closest contender!
4K	P4C148	$1 \mathrm{~K} \times 4$	10		SEPT	
4K	P4C149	$1 \mathrm{~K} \times 4$	10	FAST CS	SEPT	
4K	P4C150	$1 \mathrm{~K} \times 4$	10	SEP I/O W/RESET	SEPT	
4K	P4C151	$1 \mathrm{~K} \times 4$	10	W/COMPARATOR	SEPT	
1K	P4C422	256×4	8		NOW	World's fastest available CMOS SRAM.
Fast, Conl x Affardahle						

As always, you can depend on Performance Semiconductor for the fastest CMOS SRAMs. In fact, we now have the broadest range of high-speed CMOS SRAMs in the industry. And we also have the fastest and coolest 8 -bit comparator, 32-bit EDACs, multilevel pipeline registers, and diagnostic scan registers.

The popularity of our CMOS SRAMs is driving our volume up-and our prices down-even on our fastest SRAMs, whose speed remains uncontested.

Because of our $6^{\prime \prime}$ wafers and high yields, we have the capacity to handle all of your high-performance CMOS SRAM needs, with the kind of assistance and prices you'd expect from the CMOS SRAM leader.

THE POINT OF NO RETURN.

When you put a Fujitsu ASIC to work, you can rest assured it will work the way it should. And keep on doing its job for a very long time to come. In fact, when you look at our performance record over the years, you'll be hard pressed to find any field failures at all.

This is no empty promise. Product reliability has been a way of life for us for more than 15 years.

That's why we always take a conservative approach to the design process. Giving you realistic worst case specs that no production device will exceed.

Guaranteeing a minimum 90\% utilization of all gates. And giving you a simulation-to-production correlation of 99%.

It's also why we control every step of the production process. From design to wafer fab to assembly
and final test,including 100% AC testing at frequency. So nothing is left to chance.

To us, reliability in the field is everything. And when you remember we've taken over 8,000 ASIC devices from design through mass production, you can see that well give you a level of confidence no one else can offer.

So count on parts that have longer life expectancies.

Call our Hot Line today at (800) 556-1234, Ext. 82; in California (800) 441-2345. Look into ASICs you can send out the door. Never to return again.

CIRCLE NO 90

FUJITSU
MICROELECTRRONICS. INC
Technology That Works.

Control by

Bring intelligence to your VMEbus system with FORCE's new dual ported controllers.

Specification		serial	disk	graphics
		ISIO-1/2	ISCSI-1	AGC
	Processor	68010/10 MHz	68010/10 MHz	63484/8 MHz
	Dual ported memory	$128 / 512 \mathrm{~K}$ no wait state	$128 / 512 \mathrm{~K}$ no wait state	$2 \mathrm{MB}$
	Interface	8xRS232/RS422	SCSI/SA 460	RS434 (RGB)
	Speed	RS232 : 38400 baud RS422 : 2 M baud	$1.5 \mathrm{Mbit} / \mathrm{sec}$	64 MHz pixel frequency 1600×1280 pixels
	Driver support	PDOS*, UNIX*V	PDOS*, UNIX*V	PDOS*, UNIX*V
	Unique SW packages	firmware based on real time kernel	hashing and caching firmware	GKS 2.0b
	Availability	now	now	now

Whatever your VME need - CPUs, memories, controllers, software - FORCE has it. Each product comes with a 500 + page user's manual and with FORCE's proven quality and reliability.

intelligence

 applications support.

[^3]
TOSHIBA.THE POWER

AREA SALES OFFICES: CENTRAL AREA, Toshiba America, Inc., (312) 945-1500; EASTERN AREA, Toshiba America, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America, Inc., (408) 244-4070; SOUTHWESTERN REGION, Toshiba America, Inc.. (714) 752-0373; SOUTH CENTRAL REGION, TOShiba America, inc., 214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (404) 493-4401; MAJOR ACCOUNT OFFICE, POUGHKEEPSIE, NEW YORK, Toshiba America, Inc., (914) 462-5710; MAJOR ACCOUNT OFFICE, BOCARATON, FLORIDA, TOshiba America. Inc., (305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, MOntgomery Marketing. inc., (205) 830-0498; ARIZONA, Summit Sales, (602) 998-4850; ARKANSAS, MIL-REP Associates, (512) 459-8602; CALIFORNIA (Northern) Elrepco, Inc., 415) 962-0660; CALIFORNIA (L.A. \& Orange County) Bager Electronics, lne., b18 712-0011, 714) $957-3367$, San Diego County Eagle Technical Sales, (619) 743-6550; COLORADO, Straube Associates Mountain States, Inc... (303) 426-0890; CONNECTICUT, Datcom, Inc. 203) 288-7005; DISTRICT OF COLUMBIA, ArboTek (301) 825-0775; FLORIDA, Sales Engineering Concepts, (305) 426-4601, (305) 682-4800; GEORGIA, Montgomery Marketing, Inc., (404) 447-6124; IDAHO, Components West, (509) 922-2412; ILLINOIS, CarISon Electronic Sales, (312) 956-8240; INDIANA, Leslie M. DeVoe Company, (317) 842-3245; IOWA, C.H. Horn, (319) $393-8703$; KANSAS, D. L.E. Electronics, (316) 744-1229; KENTUCKY, Leslie M. DeVoe Company, (317) 842-3245; LOUISIANA, MIL-REP Associates, (713) 444-2557; MAINE, Datcom, Inc., (617) 891-4600; MARYLAND, ArboTek, (301) 825-0775; MASSACHUSETTS, Datcom, Inc., (617) 891-4600; MICHIGAN, Action Components Sales, (313) 349-3940; MINNESOTA, Electric Component Sales, (612) 933-2594; MISSISSIPPI, Montgomery Marketing, Inc., (205) 830-0498; MISSOURI, D.L.E. Electronics, (316) 744-1229;

We are the leader in 1Mb DRAMs. In 256K static RAMs, CMOS EPROMs and IMb ROMs. Yet, people still think of us only as the world leader in CMOS and NMOS static RAMs.

We are the world leader in CMOS and NMOS static RAMs, in $16 \mathrm{~K}, 64 \mathrm{~K}$ and 256 K byte wide memory products. We make the fastest 2 K x 8 at 35 ns and also a $4 \mathrm{~K} \times 4$ static RAM at 35 ns . We pioneered the $8 \mathrm{~K} \times 8 \mathrm{CMOS}$ static RAM and are now offering a $64 \mathrm{~K} \times 1$ (55 ns) and $32 \mathrm{~K} \times 8$ CMOS static RAM.

But we make more than static RAMs. As you can see from the chart, we have a complete line of DRAMs, CMOS, and NMOS ROMs, EPROMs, and one time programmables. And they are all in volume production today.

Tradition of being first.

We were also the first to introduce the 1 Mb DRAM and we're now the market leader. We were one of the first suppliers of the 256 K CMOS static RAM. We were a leader with the 256 K ROM and within a year of introduction, we shipped more than all other suppliers combined. And we are matching that with our 1 Mb CMOS mask ROM.

So you can see that we have the capability to supply the memory products you want-when you want them.

That's memory power; that's Toshiba.

TOSHIBA MEMORY PRODUCT SUMMARY									
PART No.	ORG.	process	samples	PROD.	SPEED	SORTS	S availab	BLE (ns)	PACKAGE OPTIONS
DYNAMIC RAMS									
TMM4164AP	$64 \mathrm{KX1}$	NMOS	YES	YES	150	200			P
TMM41256P 2	$256 \mathrm{KX1} 1$	NMOS	YES	YES	120	150			P/T
TMM41257P 2	$256 \mathrm{KX1}$	NMOS	YES	YES	120	150			P/T
TMM41464P	64 KX 4	NMOS	YES	YES	120	150			P
TC511000P/J	1 MbXl	CMOS	YES	2Q'86	100	120			P/J
TC511001P/J	$1 \mathrm{MbX1}$	CMOS	YES	2Q'86	100	120			P/J
TC511002P/J	$1 \mathrm{MbX1}$	CMOS	YES	2Q'86	100	120			P/J
TC514256P/J	256 KX 4	CMOS	YES	2Q'86	100	120			P/J
TC514258P/J 2	$256 \mathrm{KX4}$	CMOS	YES	2Q'86	100	120			P/J
STATIC RAMS									
TMM2114AP	$1 \mathrm{KX4}$	NMOS	YES	YES	120	150			P
TMM2016AP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2016BP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2015AP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2015BP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2064P	8KX8	NMOS	YES	YES	100	120	150		P
TMM2063P	$8 \mathrm{KX8}$	NMOS	YES	YES	100	120	150		P
TC5504AP	4KX1	CMOS	YES	YES	200	300			P
TC5514AP	$1 \mathrm{KX4}$	CMOS	YES	YES	200	300			P
TC5516/17AP	2KX8	CMOS	YES	YES	200	250			PFY
TC5517/18BP	$2 \mathrm{KX8}$	CMOS	YES	YES	200	250			PFY
TC5517/18CP	2KX8	CMOS	YES	YES	150	200			PFY
TC5565P	8KX8	* CMOS	YES	YES	120	150			PFY
TC5565AP	8KX8	* CMOS	2Q'86	2Q'86	100	120			PFY
TC5563AP	8KX8	*CMOS	2Q'86	2Q'86	100	120			PFY
TC5564P	$8 \mathrm{KX8}$	CMOS	YES	YES	150	200			PY
TC55257P	32KX8	*CMOS	YES	YES	100	120	150		P
HIGH SPEED STATIC RAMS									
TMM2018D	$2 \mathrm{KX8}$	NMOS	YES	YES	35	45	55		D
TMM2068D	4 KX 4	NMOS	YES	YES	35	45	55		D
TMM2078D	4 KX 4	NMOS	YES	YES	35	45	55		D
TC5561P	$64 \mathrm{KX1}$	*CMOS	YES	YES	70				P
TC5562P	$64 \mathrm{KX1}$	*CMOS	YES	YES	45	55			P
EPROMS									
TMM2764DI	8KX8	NMOS	YES	YES	150	200	250		D
TMM2764AD	$8 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM27128D	$16 \mathrm{KX8}$	NMOS	YES	YES	150	200	250		D
TMM27128DI	$16 \mathrm{KX8}$	NMOS	YES	YES	150	200	250		D
TMM27128AD	$16 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM27256D	$32 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM27256DI	$32 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM27256AD	32KX8	NMOS	YES	YES	150	200			D
TC57256D	$32 \mathrm{KX8}$	CMOS	YES	YES		200	250		D
TMM27512D	$64 \mathrm{KX8}$	NMOS	YES	YES		200	250		D
ONE TIME PROGRAMMABLES									
TMM2464AP	8KX8	NMOS	YES	YES	200				PF
TMM24128AP	16KX8	NMOS	YES	YES	200				PF
TMM 24256 AP	32KX8	NMOS	YES	YES	200				PF
TMM24512P	64 KX 8	NMOS	2Q'86	2Q'86	250				PF
MASK ROMS									
TC5364/5/6P	$8 \mathrm{KX8}$	CMOS	YES	YES	250				P28
TMM23256P	$32 \mathrm{KX8}$	NMOS	YES	YES	150				P28
TC53257P	$32 \mathrm{KX8}$	CMOS	YES	YES	200				FP28
TC53512P	$64 \mathrm{KX8}$	CMOS	YES	2Q'86	200				P28
TC531000P	$128 \mathrm{KX8}$	CMOS	YES	YES	200				P28
TC532000P	$256 \mathrm{KX8}$	CMOS	YES	2Q'86	200				P32
P-PLASTIC C-CERAMIC F-FLAT PACK ${ }^{*}$ CMOS $=4$ TRANSISTOR CELL LOW POWER					D-CERDIP		-DIE	T-PLCC	J.SOJ

TOSHIBA. THE POWER IN MEMORIES.

TOSHIBA AMERICA, INC.

[^4]
RELIABLE SYSTEM POWER. PERIOD.

Case 10
600 to 1800 Watts
5"x8" x11"
$\mathrm{N}+1$ Redundancy
AC and DC Inputs
For $5 \times 8 \times 11$ "slot" switching power supplies from 600 to 1800 Watts, the Qualidyne Case 10 is all you need to know. MTBF of 50,000 hours. Single or multiple (up to 5) fully regulated outputs from 2 to 48 VDC. Precision paralleling for $\mathrm{N}+1$ redundancy. AC and DC input voltages. Safety listings from UL, CSA and TUV. Compliance with IEC 380 \& VDE 0806. FCC 20780 Class A filtering. Nothing fancy, just reliable slot power-period.

THE SWITCHER FIT FOR YOUR NEEDS

Qualidyne

QUALIDYNE SYSTEMS, INC.
3055 Del Sol Boulevard, San Diego, CA 92154 (619) 575-1100 Telex: 709029 FAX: 6194291011 (800) 445-0425 in Calif. (800) 237-6885

PCB Switches from JAE Electronics...

The choice is yours!
Select the switch for your PCB applications from three different versions available from JAE Electronics-all with gold plated wiping contacts:

- Machine insertable DIP Switches. 51D Series-Reliably sealed for automatic soldering and cleaning, and truly machine insertable with standard IC handling equipment.
- Binary Coded Rotary DIP Switches. 41/42J Series-Bit designated terminals are shorted automatically for each setting. Switches have reliable seal for automatic soldering and cleaning.
- PCB mounted thumbwheel switches. 22J Series-Larger size allows for thumb as well as screwdriver actuation. All mounting orientations and bases are sealed for automatic soldering.
Choose the switch that meets your needs. And look to JAE Electronics for all of your requirements-lighted pushbutton switches, miniature pushbutton switches, keylock switches, flat panel keyboards, connectors and more.

For prices, samples and literature, contact JAE Electronics today. 1901A E. Carnegie Ave., Santa Ana, CA 92705 • (714) 250-8770 • Telex 681-438 (JAE US) (800) JAE-PART (523-7278) Toll free except in California and Alaska

MICROPROCESSOR MASTERY!

The Development System that Supports 150 Different Microprocessors.

A complete solution

Here, at last, is the working environment of the future for developing error-free and efficient microprocessor code. Save time and money with UniLab II's seamlessly integrated toolset:
An 8/16-Bit Universal EmulatorWith UniLab's full selection of symbolic debug commands you can quickly display and change all registers, memory, and ports, plus set software and hardware breakpoints. An Advanced 48-Channel Analyzer- wied to views saurce Most other files, previous development systems are dead in the water if there is a hardware fault, such as a simple bus short. Now, you can use the power of UniLab to home in on both software and hardware problems quickly.
An Input Stimulus GeneratorYou conveniently specify system inputs and observe the results. A Built-In EPROM Programmerhelps finish the job!
Development Dreams Come True

Use Unilab's advanced windows to set up your screen the way you want to... view multiple items of interest. Imagine being able to automatically compare a current trace with previous trace data to instantly determine differences. You can set breakpoints, singlestep, then go back to the analyzer without missing a beat. If you make a change in your code, use UniLab's built-in line-by-line assembler to instantly patch the fix and test the results. Think of the time savings.

Find Bugs Fast

Searching for bugs by single-stepping through suspect code can take forever. Now, with UniLab, just specify the bug symptom you are looking for as a trigger spec and let UniLab catch the bug for you as
on-zine teip
menus command your program Glossary, and runs in real time Word List.

Get Running Fast

You probably won't use your development system every day. You do need a system that's easy to learn, and easy to come back to. That's UniLab. It lets you use commands or menus- or a mixture of both. The same commands work for all MPUs. Useful help screens, an on-line manual \& glossary, instant pop-up mode panels, a quick command and parameter reference, are at the ready.

Affordable, Expandable

At less than $\$ 5,000$ UniLab costs less than our less-able competitors. You can add our new Program Performance Analysis option to help you optimize your software. If you don't need UniLab's power, other models are available from $\$ 2,995$. Get
 the story on UniLab II and how it can revolutionize your software design efficiency, as it has for thousands. Universities, ask about our Education Outreach Discount Program.

Call Toll-Free 1-800-245-8500.

 In California call (415) 361-8883.

When you own or rent a UniLab II, you get access to Orion's team of Applications Engineers.
 트ㄹㅡㅡㅡ․․․․․․․ INSTRUMENTS, INC. TELEX 530942

CIRCLE NO 26

Now submicron accuracy is a reality in air-slide, structural, and XY components. TOTO precision ceramics put you much closer to zero than steel or granite, and demonstrate a range of superior characteristics - hardness, rigidity, lightness, and an uncanny immunity to friction and environment. Specify TOTO for those applications that require extreme accuracy and durability.

PRECISION CERAMICS

Nexionel Meohine Stutelns has
ky Bistis lime
(114) 122 : 1630

Cahife NMIL MACH TSTN
fetex: 683426
fix: $7144921-162$

CALENDAR

Single-Chip DSP Processors and VLSI Semicustom Architectures, Boston, MA. DSP Associates, 18 Peregrine Rd, Newton, MA 02159. (617) 964-3817. June 8 to 9.

IEEE MTT-S International Microwave Symposium, Las Vegas, NV. Steven March, Symposium Steering Committee Chairman, Maury Microwave Corp, 8610 Helms Ave, Cucamonga, CA 91730. (714) 987-4715. June 9 to 11.

University / Government / Industry Microelectronics Symposium, Rochester, NY. Lynn Fuller, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623. (716) 475-2035. June 9 to 11.

Troubleshooting MicroprocessorBased Equipment and Digital Devices, Atlanta, GA. Micro Systems Institute, 73 Institute Rd, Garnett, KS 66032. (800) 247-5239. June 9 to 12 .

Advanced Printed Circuit Board Design Techniques, Milwaukee, WI. Center for Continuing Engineering Education, University of Wisconsin-Milwaukee, 929 N Sixth St, Milwaukee, WI 53203. (414) 2273125. June 10 to 12.

National Computer Conference, Chicago, IL. AFIPS, 1899 Preston White Dr, Reston, VA 22091. (800) $622-1987$; in VA, (703) 620-8955. June 15 to 18.

ISDN, Atlanta, GA. Information Gatekeepers, 214 Harvard Ave, Boston, MA 02134. (617) 232-3111. June 15 to 19.

North Central Lightwave Expo, Minneapolis, MN. Lightwave, 235 Bear Hill Rd, Waltham, MA 02154. (617) 890-2700. June 16 to 18.

Satellite Communications (short course), Boston, MA. Continuing Education Institute, 21250 Califa St, Woodland Hills, CA 91367. (818) $710-1142$. June 16 to 19.

Our 100MHz Digital Oscilloscope calculates, analyzes, memorizes...and it's programmable too.

Three 10-kiloword memories, $\mathbf{7 "}^{\prime \prime}$ CRT display, 100 MHz sampling clock and various data processing functions.
In this advanced day and age you need more than just a measuring instrument. You need a unit that thinks and remembers for you. For high-speed transient signals, meet the VP-5740P, a scope with a 100 MHz sampling clock and three 10-kiloword memories.

Programming, which includes panel operation sequence and waveform/waveform-parameter calculations, gives you automatic measurements. Accumulated and memory waveforms and corresponding digital information can be viewed on a large 7" CRT display. You also have GP-IB interfacing plus a wide variety of built-in computer functions including interpolation and YES/NO decisions. And, as a non-storage oscilloscope, the VP-574OP offers high performance with 100 MHz dual trace and delayed sweep.

For more information or a free demonstration, contact your local Panasonic Instrumentation representative or: Panasonic Industrial Company, Memory Systems Division, One Panasonic Way, Secaucus, NJ 07094.
(201) 392-4050.

- 100 Megasamples per/second digitizing
- Three 10K word memories
- 35 MHz single shot
- Internal programming capabilities (up to 1000 steps)
- Math pack, algebraic and calculus functions
- Advanced cursor function
- Rise-time calculations with auto min-max feature
- Waveform expansion
- 100 MHz analog 2-channel oscilloscope
- Auto-ranging
- Alphanumeric display
- $\mu \mathrm{P}$ control-front panel
- GP-IB standard
- Multiple YES/NO function
- Future memory expandability

GE/RCA HC: Your clear path

into the world of CMOS.

Only GE/RCA has the broad line, unique parts and 25 years of CMOS experience to support you every step of the way.

Your venture into the world of high-speed CMOS can be very rewarding-if you travel with the right CMOS partner.

A logical first step.

We have been the leader in CMOS logic for more than two decades.

We pioneered with the 4000 series and followed with high-speed CMOS and ACL.

Today, we have more than 270 highspeed CMOS devices. And that number is growing fast, because every time we make a new HC device (and we have the industry's broadest line), we make the corresponding part in HCT, too.

A design engineer's dream.

This broad line includes quite a few unique parts (for a sample, see the box below). And we have extensive experience
in High-Rel, ASICs, memories and microprocessors, so we can help you get the most possible from this outstanding technology.

And a purchasing agent's, too.

There's more to good CMOS than good design. We have a track record of delivering competitively-priced parts on time. And we've invested millions of dollars to provide the production capacity and leading-edge technology you need.

Add to this a record for reliability that has truly withstood the test of time (after all, we invented CMOS), and you'll see why so many people have started successful journeys into CMOS with GE/RCA at their side.

Take a big step in the right direction, and call toll-free 800-443-7364, ext. 15. Or contact your local sales office or distributor.

Our unique high-speed CMOS analog switches are among the highest frequency, lowest distortion devices available today.

HC/HCT4016, 4066, 4316

- Wide analog input voltage range: 0 to 10 V .
- Low Ron: 4066 (25 ohm typ @ 4.5V, 15 ohm @ 9V); 4016, 4316 (45 ohm typ @ 4.5V, 30 ohm @ 9V).
- Frequency response of -3db down @ 180 MHz (4016, 4316), -3db down @ 200 MHz (4066), both driving a 75 ohm load.
- Maximum control switching frequency to 35 MHz .
- Low "OFF" leakage current. - Low distortion.
- Applications: Instrumentation, Direct Current to 50 MHz Switching Systems, Cable TV, Workstations.

HC/HCT4051, 4052, 4053, 4351, 4352, 4353

- Wide analog input voltage range: 0 to 10 V .
- Low "ON" resistance: 70 ohm typ (Vcc-Vee $=4.5 \mathrm{~V}$), 40 ohm typ (Vcc-Vee $=9 \mathrm{~V}$).
- Low crosstalk between switches.
- Fast switching and propagation speeds.
- "Break-before-make" switching.
- Applications: Audio and Video Switches, Synch Detection, Video Mixing, RF Frequency Switching, Data Multiplexing, Data Conversion, Data Transmission.

Our Phase-Locked Loop devices offer greater speed and linearity than any other CMOS PLL's...plus low power consumption.

HC/HCT4046A

- Operating frequency range up to 17 MHz (fc) at $\mathrm{VCc}=4.5 \mathrm{~V}$.
- Built-in op amps for excellent linearity.
- Op-amp buffered demodulated output.
- 3 phase comparators to choose from.
- Applications: FM Modulation/Demodulation, Frequency Synthesis, Frequency Multiplexing, Voltage to Frequency/Frequency to Voltage Conversion, Servo Control Systems, Data Synchronization, Manchester Coding/Decoding.

HC/HCT7046

- Operating frequency range up to 17 MHz (fc) at $\mathrm{Vcc}=4.5 \mathrm{~V}$.
- Built-in op amps for excellent linearity.
- Op-amp buffered demodulated output.
- A pin which indicates lock detect.
- 2 phase comparators to choose from.
- Applications: FM Modulation/Demodulation, Frequency Synthesis, Frequency Multiplexing, Voltage to Frequency/Frequency to Voltage Conversion, Servo Control Systems, Data Synchronization, Manchester Coding/Decoding.

So, how's your latest PCB design coming along?

While you inch your way into another PCB, thousands of other engineers are racing through designs just as complex - start to finish - in a matter of days, not weeks.
No, they're not using high-priced minicomputer workstations.
They are using Redcad ${ }^{T M}$ software on an ordinary IBM PC AT. ${ }^{1}$
Right about now you're probably guessing that this is some stripped-down, bare-bones version of the big, dedicated workstations Racal-Redac is famous for.
Hardly. Redcad is powerful enough to breeze through just about any board design that comes your way.

For instance, Redcad makes it impossible to break electrical connections when you move terminal points - even through as many as 20 levels of hierarchy.
And at the layout stage, Redcad automatically routes your PCB's traces, memory arrays and supply

rails. What takes a full day by hand takes only a few minutes by Redcad.
The point is, Redcad can help you complete three to five times the projects you currently handle in the same amount of time. For about $\$ 15,000$.
So how fast can Redcad streamline your group's work?
That depends on how quickly you return the attached card, or phone us at (714) 859-6336, Irvine, California. We'll put you in touch with your nearest Racal-Redac representative and he'll rush you a complete description of the Redcad software system. RAGALD
${ }^{1}$ IBM PC AT are trademarks of the International Business Machines Corporation.
 A Business and Technology Update

TThe Japan Electronics seminar on October 7 in Osaka is designed to help European and U.S. executives seek out new business opportunities in Japan. The day-long seminar, which will coincide with the Japan Electronics Show, has been structured to provide attendees with a statistical overview of the Japanese electronics industry, as well as a preview of upcoming technological trends.

The seminar is intended both as an introduction to Japan for first-time visitors as well as an update of Japanese business and technology for seasoned travelers in the Far East. If you buy from, compete with, or sell to Japanese electronics companies, this seminar is for you.

DATE:

October 7, 1987
In conjunction with the
Japan Electronics Show

LOCATION:

Royal Hotel,
Osaka, Japan
SEMINAR FEE:
\$350
OFFICIAL
LANGUAGE:
English

CO-SPONSORS:

AEA and
Electronic Business
In cooperation with:
RAI Gebouw bv of Holland
U.S. Electronics Industry Japan Office
Japan Electronics Show Association
Osaka Chamber of Commerce and Industry EDN magazine
Elektronica of Holland Plesman Publications of Canada

CONFIRMED SPEAKERS:

Kaoro Kubo, vice president and general manager of NTT International. "The Japanese telecommunications industry: Opportunities for foreign suppliers"
Kazuhiko Kobayashi, manager of the Systems Engineering Division of Hitachi Ltd. "Factory automation in the Japanese computer industry"
Hiroshi Komiya, head of the Saijou Works, Mitsubishi Electric Corp. "Manufacturing technology in the semiconductor industry"
Bill Totten, president of Ashisuto K.K. "The Japanese market for U.S. and European software"

David H. Johnson, senior manager for Network Systems Sales, AT\&T International. "Opportunities for U.S. communications manufacturers in Japan"
Dinker Bir, vice president of technology at Northern Telecom Japan Inc. "Trends in telecommunications"
Pat O'Malley, strategic marketing director for the Semiconductor Sector at Nippon Motorola Ltd. "The Japanese semiconductor market"
Gen Narui, regional manager for Educational Services at Nihon Digital Equipment Corp. "Recent developments in artificial intelligence at DEC"

Stephen Donovan, representative director of Monolithic Memories K.K. "Selling niche products in Japan"
 Shohei Kurita, Tokyo editor for Electronic Business, author. "The Fifth Generation Computer Project"
 Gene Norrett, vice president and director of the Semiconductor Industry Group, Dataquest Inc. "Electronics trends among countries on the Pacific Rim"
 Alberto Socolovsky, associate publisher and editorial director of Electronic Business. "Structural differences between the U.S. and Japanese electronics industries"

Speaking on "Trends in consumer electronics":
Nobuyoshi Yokobori, manager of the R\&D Planning Office, Corporate Engineering Division, Matsushita Electric Industrial Co. Ltd.
Masaru Yamano, executive vice president, Sanyo Electric Co. Ltd.
Tadashi Sasaki, corporate management advisor, Sharp Corp.
Nobuo Tateishi, executive vice president, Omron Tateishi Electronics Corp.

REGISTRATION FORM

NAME
COMPANY
ADDRESS
CITY \qquad STATE \qquad ZIP

TEL \qquad TELEX \qquad FAX

NUMBER TO ATTEND

PAYMENT ENCLOSED

Please return your registration to:

IN U.S.A.:
Ms. Florence Lewis
American Electronics Assoc. 5201 Great American Parkway Santa Clara, Calif. 95054 Tel: (408) 987-4200
IN CANADA:
Ms. Sharon Raspin Plesman Publications 2 Lansing Square, \#703 Willowdale, ON. M2J 5A1
Tel: (416) 497-9562

IN JAPAN:
Mr. Steve Weiner
U.S. Electronics Office

Kioicho Nanbu Bldg., 3F
3-3 Kioicho,
Chiyoda-Ku, Tokyo
Tel: (03) 237-7195
IN HOLLAND:
Nippon Express Nederland bv Parnassutoren Locatellikada 1 1076 AZ Amsterdam Tel: (020) 792777

WHO HAS 1000 PAGES OF SMART POWER ANSWERS TO MOTION CONTROL PROBLEMS?

The brighter your smart power source, the better your solutions to motion control problems. In terms of useable information, the SGS Motion Control Application Manual outshines them all.

This comprehensive reference work contains hundreds of pages of motion control application hints and smart power application specific integrated circuits.
Here's a sampling of the invaluable information you can get:
Stepper motor driving. Take a close-up look at the L6217, a chip containing everything you need to control and drive a twophase bipolar stepper motor from your micro bus: two full bridge output stages, 8 output clamp diodes, chopper current
control circuits, input latches, even 2 D/A converters

THE BRIGHTER POWER

SGS is recognized for excellence in integrated power design throughout the industry. That's why SGS designs like the L298 dual H-Bridge motor driver, the L296 switching regulator, and many others have become industry standards.
Time and again, SGS is the preferred partner when customers need to combine their systems know-how with true architectural skills and silicon design expertise.

SGS' design excellence covers the whole range of electronic applications and includes world leading products for motor driving, solenoids and other actuators. The proof is in our 1000-page Motion Control Application Manual. If you are a designer in the motion control field, then you can't afford not to have it. To get your copy, just send your business card and a check for $\$ 15.00$
to: SGS Semiconductor Corporation, 1000 East Bell Road, Phoenix, Arizona 85022,
Attn. Literature
Department (602/867-6259).
Production
is limited, so
hurry! This offer is good while supply lasts.

Faster!
 CMOS at speed.

A few more fast, fast reasons to call for our new databook:

1. New 64K SRAM. 25ns. Seven configura-tions-including bit-wide, nibble-wide, bytewide, separate I/O, and all with low, low, power. As low as 50 mA active at 45 ns .
2. New 128K Reprogrammable PROM. 45 ns. 100 mA active, 30 mA standby.
3. New 64×9 and 64×8 FIFOs. 35 MHz . Virtually no bubble through. Cascadeable. 4. Fastest 22V10 Reprogrammable PLD. 25ns. 55 mA . And we have the board to turn your PC into a PLD/PROM programmer, too!
4. High speed CMOS SRAM.
5. High speed CMOS PROM.
6. High speed CMOS PLD.
7. High speed CMOS LOGIC.
8. Fabricated and assembled in our DESC-certified U.S.A. facilities.
This databook; packed with high speed, low power parts, is yours for a phone call. DATABOOK HOTLINE: 1-800-952-6300, Ask for Dept. CD2 1-800-423-4440 (In CA), Ask for Dept. CD2
(32) 2-672-2220 (In Europe)
(416) 475-3922 (In Canada)

The hole-in-the-foot gang

The US government is finally taking a firm stand on its Japanese trade imbalance, although it's shooting itself in the foot by doing so. Recently, Secretary of Commerce Malcolm Baldrige exerted Cabinet-level pressure that eventually crushed Fujitsu's purchase of Schlumberger's interest in Fairchild. Often overlooked in the aftermath of the aborted deal is one of Baldrige's explanations. It seems he didn't want Fujitsu to get into the US supercomputer market while Japan keeps American-made supercomputers out. Secretary Baldrige isn't alone in worrying about the market for US-built computers. Senator Howard Metzenbaum (D-OH) had similar concerns; the Fujitsu-Fairchild deal, he feared, would have let Fujitsu dominate the US supercomputer market.

Unfortunately, because we lack clear international trade goals and any plans to establish them, the US government goes out of its way to hand many supercomputer orders to competitors such as Fujitsu and NEC. For example, a White House export-control group vetoed the sale of a $\$ 20$ million Cray Research 4-CPU supercomputer to India. India's Meteorological Center wants to duplicate a Cray computer system already used in Europe for weather research. The US will allow India to buy a scaled-down dual-processor version of the 4-CPU model. NEC, however, has also offered the Indians a dual-processor supercomputer, and the Japanese electronics giant has received from the Indian government a letter of intent to purchase another supercomputer system as well. And India isn't the only country that wants supercomputers.

The Commerce and Defense Departments are now arguing over whether or not to sell relatively old and obsolete technology to Iran. It appears the Iranians liked our TOW missiles so much that they have asked to buy our computers too. Specifically, they want DEC PDP 11/70, 11/84, and 11/73 computers for their electric-power authority and their press agency. The Commerce Department favors the sale, while the Defense Department opposes it. Look at it this way: If the sales deal stalls, the Japanese may dominate the world market for obsolete minicomputers. No comments yet from Baldrige or Metzenbaum.

As these events illustrate, trade policies are often inconsistent and diverge from current political and economic needs. Therefore, we must carefully and clearly redefine our international-trade goals so that we can apply them in a consistent manner. We can start by establishing a single committee that would identify inconsistencies in our policies and, after public debate, reorganize and administer those policies.

We need to get on with competitive international trade. It is senseless to divide the responsibility for major trade decisions among organizations that cannot resolve problems resulting from clashes between their parochial and conflicting policies.

HP's integrated CAE/CAD

The HP DesignCenter offers integrated CAE/CAD software tools that accelerate the design process from idea to test. These tools, which run on the HP 9000 Series 300 technical workstations, improve productivity and communication throughout the product development process. So engineers can design faster and get products to market quickly.

Analog and digital design on one system

Both digital and analog designers can use the same HP design capture system,
helping you to maximize return from your CAE/CAD investment. The system offers a number of features that help speed design, including a consistent environment of component libraries and schematics; hierarchical design entry; integrated documentation; on-line electrical rule checking; automatic component selection; and links between external design tools and design capture.

Faster microprocessor software development

You get HP computeraided software engineering. And some of the most advanced hardware and software
integration tools available, including real-time emulation for over 40 processors. These tools let engineers tap the power of HP's microprocessor development environment to speed product development.

There's even a link to design capture from microprocessor system development so engineers can transfer programs directly to simulation, reducing both simulation setup time and the possibility of manual-entry errors.

Advanced PCB design tools for a head start in manufacturing

HP's automated printed circuit design system helps

Accelerate your product from idea to design and

turn engineering ideas into finished printed-circuitboards quickly. And gives you the assurance that boards will match the approved design from engineering and be practical to manufacture.

You get a link from schematic capture to PCB design for highest design integrity, and system features that optimize designs for your actual manufacturing environment. The result is reduced manufacturing costs, higher yield, and improved reliability.

You can also transfer netlist and part information from PCB design to HP's board test system, ending manual-entry hassles and errors.

HP DesignCenter:our commitment to CAE/CAD

HP's CAE/CAD tools are part of HP DesignCenter a powerful product development environment that unites the activities of electronic, mechanical, and software engineers through integrated systems, software, and support.

For all the facts, call your local HP sales office listed in the telephone directory white pages. Or call 1-800-447-3282 (in Colorado call 590-5540 collect) for free literature on our CAE/CAD solutions.

development test.

$>D D D D D D D D D D D D D D D D D D D$ to finished product faster

Whether you're using Common Command Set (CCS) or not. It
doesn't matter. Because we've got a series of high capacity
$51 / 4$ " Winchester drives that you can use right now. And, in most cases, without any driver software changes. Without any delays. The Toshiba MK-150

Series. The most easy to integrate trio of $514^{\prime \prime}$ hard drives on the market today.

What makes them so easy to integrate is a little switch our engineers built in for your convenience. It lets you change to an embedded SCSI drive without changing your present SCSI unique command set. Or, if you want to start using CCS, just flip the switch. Either, or. Now or later.

And we've got the drives now. All three of

them. With capacities up to 173 megabytes. And a fast average access time of 25 milliseconds. All with a very high 30,000 hour MTBF. The kind of reliability that Toshiba is famous for.

And of course they come with all the support Toshiba is famous for, too. Fast evaluation unit delivery. Responsive technical assistance. And if embedded SCSI's not your game, the MK-150's are also available with an ESDI interface.

So don't delay. You can put off the decision to go to CCS but you don't have to put off the benefits of going to embedded SCSI. Just go with Toshiba.

For more information call 408-727-3939. Or write Toshiba America, Inc., Disk Products Division, 3910 Freedom Circle, Suite 103, Santa Clara, CA 95054.

We're ready and waiting. Even if you're not.

The timeis ripe for your megabit move.

NEC announces the fastest 1Megabit CMOSDRAM.

You waited till 1 megabit DRAM technology reached maturity. Now it's time to move. NEC, the world leader in memory production, gives you 80ns
access time and CMOS technology in a 1 megabit DRAM. You can't find this high-capacity, high-speed, low-power combination anywhere else.

Why move up from 256 K ? Because now you get fourfold capacity with 25% less power consumption. Our megabit memories feature a $1.0 \mu \mathrm{CMOS}$ process, 2-layer polysilicon wiring and trench capacitor design.

Choose from three families with 1-bit organization or two families with 4 -bit organization. All give you three speed options: 80/100/120ns. And a wide range of packages: plastic DIP, ZIP and SOJ for surface mounting.
Supply voltage is $5 \mathrm{~V} \pm 10 \%$.
Find out how you can put the squeeze on the competition by moving up to NEC's 1 megabit DRAM, today.

CHINON: Scanning the future.

Chinon's design engineers have a serious commitment to produce the most technologically advanced products that the mind of man can imagine.

That commitment has created subsystems, peripherals and components that could change the way we think about computers-and change the way computers are used.

The Scanner and the CD-ROM units pictured here are the types of products that continually move the leading edge forward. The Scanner could change the way business works by making true OCR technology more affordable and easier to use than ever before. The unique scanning head design means that the document to be scanned remains fixed, unlike other scanners that
can only accept a single sheet fed through the unit. It is also extremely compact and lightweight, and is designed to set new standards of cost-effectiveness.

CD-ROMS can provide users with access to databases that, only a few years ago, were possible only with a mainframe system.

Technology is still moving as fast as the best minds can advance it. At Chinon, our commitment to that progress keeps our products at the very forefront of the leading edge. We're bringing the future of computing to the needs of today.

Chinon America, Inc., 6374 Arizona Circle Los Angeles, CA 90045 (213) 216-7611 FAX: (213) 216-7646

TECHNOLOGY UPDATE

Improved analog switches and multiplexers bring benefits to old and new applications

Peter Harold, European Editor

Process improvements, particularly in the integration of CMOS logic and double-diffused MOS (DMOS) ana\log switches onto a single chip, have resulted in analog switches and multiplexers that offer lower on-resistance, reduced leakage currents, faster switching, and reduced power consumption compared with their predecessors. The combined effect of reduced on-resistance and reduced internal capacitance has yielded devices with analog bandwidths as high as 300 MHz . Improvements in breakdown-voltage tolerance have allowed manufacturers to produce analog switches with a signal range of $\pm 70 \mathrm{~V}$ and multiplexers capable of handling $\pm 50 \mathrm{~V}$ signals. In addition, the new multiplexers can withstand overvoltages on their analog inputs without damaging themselves or their signal sources.

The new parts serve in a range of traditional applications, from lowlevel, precision signal switching to high-frequency switching, and some have inspired new applications-for example, in power switching and industrial control. For precision signal switching, Siliconix's DG Series analog switches and multiplexers have formed the template for a range of industry-standard devices, now available from several alternate sources. Some manufacturers have taken advantage of advances in process technologies to produce improved versions that are pin- and function-compatible with the DG Series parts.

Siliconix itself has introduced two such parts-the DGP201A and DG571. The DGP201A quad spst analog switch features an improved

These quad spst analog switches, the ADG201A/202A and ADG221/222 from Analog Devices, feature approximately half the on-resistance and twice the switching speed of earlier pin-compatible parts.
leakage current compared with the company's original DG201A device. Tested on $\pm 16.5 \mathrm{~V}$ supplies with $\pm 15.5 \mathrm{~V}$ analog signals, the DGP201A's source and drain offstate leakage currents over the full operating temperature range are 1 nA max for devices that operate over the -40 to $+85^{\circ} \mathrm{C}$ extended industrial-temperature range and 10 nA max for military-tempera-ture-range (-55 to $+125^{\circ} \mathrm{C}$) devices. These figures compare with 100 nA for the original DG201A.
The DGP201A also specs a $50-\mathrm{pC}$ max charge-transfer error (or charge injection) at $25^{\circ} \mathrm{C}$, plus a 100 -nsec max switching-speed variation and a 15Ω max on-resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ variation between different switches in the same package over the full operating ranges-specifications that don't exist on the DG201A
data sheet. In addition, DGP201A devices are tested over a ± 10.8 to $\pm 22 \mathrm{~V}$ supply range, with several parameters tested for every device in each production run, to ensure thorough evaluations of your design. Prices range from $\$ 5.22$ to $\$ 40.04$, depending on the package type and grade (all prices quoted in this article are for quantities of 100 unless otherwise specified). You can obtain these devices processed to MIL-STD-883 requirements.

Switch handles $\pm 50 \mathrm{~V}$

The DG571 quad spst analog switch is pin-compatible with the DG201A, but it handles input voltages as great as $\pm 50 \mathrm{~V}$. For input signals between -50 and +30 V , the military version features an on-resistance of 75Ω max, and the commercial (0 to $70^{\circ} \mathrm{C}$) and extended-

The cost of speed just went down.

Before now, if you wanted a high speed digital storage oscilloscope that didn't sacrifice accuracy, you had to pay an incredibly high price. Not any more. Because Gould's hot new 4070 series is here. Breaking the speed and price barrier with a super fast, super accurate instrument that starts at the unheard of price of $\$ 7,990$.

2 or 4 channels. Incredible speed and accuracy.

Available in 2 or 4 channels, the 4070 DSO comes with $400 \mathrm{MS} / \mathrm{s}, 8$ bit ADC's per channel. It's also the first portable DSO able to capture single shot signals to 100 MHz bandwidth (3.5 nanosec risetime). Plus Gould's low noise, low jitter design assures high measurement fidelity.

User Friendly.

Even if you've never used a DSO before, you'll find the 4070 easy to operate. As a bench instrument it offers familiar functionality, four reference set ups and a convenient Auto Setup ${ }^{\text {TM }}$ feature that automatically determines instrument settings for quick acquisition and display of unknown signals.

Built-in plotter and more.

There's also an optional integral four
pen digital plotter for convenient hard copy documentation of test results. Full programmability, including front panel controls and menu selections over the IEEE-488 or RS423 bus. A 170 keypad option that quickly converts it into a powerful signal analyzer. Exclusive triggering capabilities and so much more.

So, if you want a full function DSO with speed, accuracy, and a low price, or information on any of Gould's oscilloscope, logic analysis, or recording products, call 1-800-GOULD-10 or write Gould Inc., Test and Measurement, 3631 Perkins Avenue, Cleveland, Ohio 44114.

GOULD
Electronics
industrial versions spec an on-resistance of $60 \Omega \max$ over the full operating range ($40 \Omega \max$ at $25^{\circ} \mathrm{C}$ for all versions). The devices' quiescent power consumption is 270 $\mu \mathrm{W}$ max. Unlike the DG201A and DGP201A, which have TTL-compatible inputs, the DG571 requires input-low and input-high levels of $\leq 3.5 \mathrm{~V}$ and $\geq 11.5 \mathrm{~V}$-compatible with CMOS logic operating from 15 V supplies. Prices for the three grades range from $\$ 10.46$ to $\$ 25.94$.

Siliconix has recently extended the DG Series analog switches with the DG400 through DG405, DG411, DG412, and DG413 devices. The DG400, $-01,-02,-03,-04$, and -05 are analog switches providing one spst, two spst, one spdt, two spdt, one dpst, and two dpst switches per package, respectively. All nine new devices feature $\mathrm{a} \pm 15 \mathrm{~V}$ input-signal range. The maximum full-tempera-ture-range $\mathrm{R}_{0 \mathrm{~N}}$ is 35Ω for the military versions and 50Ω for the ex-tended-industrial parts (25Ω and $30 \Omega \max$ at $25^{\circ} \mathrm{C}$). The turn-on time (t_{ON}) is 125 nsec max, and the turnoff time ($\mathrm{t}_{\mathrm{ofF}}$) is $75 \mathrm{nsec} \max$ at $25^{\circ} \mathrm{C}$. The military and extendedindustrial versions consume respective maximum supply currents of 1 and $10 \mu \mathrm{~A}$ from both the positive and negative supplies. The spdt versions guarantee make-before-break operation. Prices for the DG400/05 group range from $\$ 2.13$ to $\$ 20.74$, depending on the grade and required switch configuration.

The DG411 and DG412 are quad spst analog switches with normally open (NO) and normally closed (NC) switches, respectively. The DG413 has two NO and two NC switches in the same package. In most cases, the switch specifications of all three devices are similar to those of the military versions of the DG400/05 group. Prices range from $\$ 3.51$ to $\$ 26.97$, depending on the grade and the package. The DG400/05 group and the DG411, DG412, and DG413 are available processed to MIL-STD-883 requirements.

The $\$ 3.15$ ADG201A and $\$ 2.95$

Capable of handling $\pm 50 \mathrm{~V}$ signals, the $1 H 9108$ 8-channel multiplexer from GE-Intersil features a source off-state leakage of 2 nA and a drain offlon-state leakage of 15 nA .

ADG202A quad spst analog switches from Analog Devices are functionally compatible with their DG201A and DG202 counterparts, but they feature approximately half the R_{ON}. The maximum full-temper-ature-range $R_{0 N}$ value for the military, industrial (-25 to $+85^{\circ} \mathrm{C}$), and commercial ADG201A and ADG202A is 145Ω, compared with 250Ω for the original Siliconix equivalents. Switching times are approximately twice as fast; at $25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{ON}}$ is 300 nsec max and $\mathrm{t}_{\mathrm{OFF}}$ is 250 nsec max. Analog Devices also supplies the latched-digital-input versions of these switches, the $\$ 2.56$ ADG221 and ADG222. Other recent introductions include the AD7590DI, AD7591DI and AD7592DI, all of which cost $\$ 4.95$. These parts are pin-compatible, latched-digital-input versions of the AD7510DI Series overvoltage-protected analog switches.

Maxim Integrated Products' DG201A, DG211, DG202, and DG212-all quad spst analog switches-have static and dynamic switch specifications that closely match those of the Siliconix's originals. What distinguishes the Maxim parts is a maximum current from
their positive and negative supplies of $100 \mu \mathrm{~A}$, suiting them for use in battery-powered and portable equipment. This figure compares with respective positive and negative supply currents of 2 and 1 mA max for the Siliconix DG201A and DG202, and $0.48 \mathrm{~mA} \max$ for both supplies of Siliconix's DG211 and -212 members of the series.

In addition, the Maxim parts are specified for operation with supplies ranging from ± 4.5 to $\pm 18 \mathrm{~V}$, and unlike most DG211 and DG212 devices, the Maxim DG211 and DG212 don't require an additional 5 V rail to supply their logic circuitry. The Maxim parts are also guaranteed not to latch up if the power supplies are removed with the analog signals still connected, although you must still take steps to limit the current that flows under such conditions.

By any other name . . .

The Maxim DG201A and DG202 are also available under the Maxim part numbers MAX331 and MAX332, respectively. The $\$ 8.80$ MAX331 and MAX332 are available only as military components. The DG201A comes in commercial, ex-tended-industrial, and military ver-
sions and ranges in price from $\$ 3.15$ to $\$ 8.58$. The DG202, available as a military, industrial, or commercial component, ranges in price from $\$ 3.55$ to $\$ 8.80$. The $\$ 1.60$ DG211 and DG212 are available only as com-mercial-grade parts.

The improvements made in ana-log-switch technology have also appeared, naturally enough, in the latest analog-multiplexer products. Siliconix, for example, has added the DG568 and DG569 high-voltage devices to its multiplexer family. The DG568 handles eight singleended (SE) channels, and the DG569 handles four differential channels. Both parts range in price from $\$ 14.13$ to $\$ 33.67$, and both can handle $\pm 50 \mathrm{~V}$ analog signals. For input signals between -50 and +30 V , these multiplexers spec a maximum full-temperature-range R_{ON} of 75Ω for the military version and 60Ω for the industrial and commercial devices ($40 \Omega \max$ at $25^{\circ} \mathrm{C}$ for all devices). The multiplexers have onchip latches with CMOS-compatible inputs to simplify the interface to $\mu \mathrm{P}$ systems.

GE-Intersil also offers a $\pm 50 \mathrm{~V}$, 8-channel multiplexer. The IH9108 is pin- and function-compatible with the DG568. Switch specifications for both devices are approximately equivalent, except that the military version of the former offers improved leakage-current specs. At $25^{\circ} \mathrm{C}$ (the preliminary IH9108 data sheet doesn't include figures for the full temperature range), the source off-state leakage, drain off-state leakage, and drain on-state leakage are 2,15 , and 15 nA , compared with figures of 5,25 , and 20 nA for the Siliconix DG568. Commercial, industrial, and military versions of the IH9108 cost $\$ 25.45, \$ 30.45$, and $\$ 50.70$, respectively.

For applications that don't need to handle signals greater than $\pm 15 \mathrm{~V}$, but that need protection against abnormal input voltages-for example, in data-acquisition systems where you have limited control over noise- and fault-induced input over-

Analog inputs of $\pm 35 \mathrm{~V}$, when applied to unpowered MAX358, -359, -368, or -369 8-channel (SE) and 4-channel (differential) multiplexers from Maxim Integrated Products, typically result in less than 200 pA of input current.
voltages-you can obtain multiplexers that suit the task. Harris Semiconductor provides input overvoltage protection on its HI546 through HI549 multiplexers. These versions of the company's HI506A through HI509A devices guarantee 7% max channel- $\mathrm{R}_{0 \mathrm{~N}}$ matching within the same device. Products in the HI546/549 group range in price from $\$ 7.90$ for a commercial version to $\$ 84.75$ for a military part processed to MIL-STD-883.

All these devices withstand overvoltages on their analog inputs as great as 20 V above the positive supply rail or below the negative supply rail; that is, when they're operating from $\pm 15 \mathrm{~V}$ supplies, the multiplexers are protected against overvoltages as great as $\pm 35 \mathrm{~V}$. More important, unlike other manufacturers of parts that incorporate overvoltage protection, Harris guarantees that such overloads won't disturb the sig-nal-handling performance of other
multiplexer channels within the device. In a data-acquisition system, this feature can be a very important one, because it enables you to continue monitoring a system even when one of the signal sources develops an overvoltage fault.

Because the input impedance of an overvoltage input is approximately $1 \mathrm{k} \Omega$, however, the input may draw several milliamperes of current from the signal source during overload conditions, and you must consider the resulting power dissipation, both with respect to the signal source's capabilities, and with respect to the allowable power dissipation in the multiplexer. In addition to handling overvoltage signals, the Harris parts also provide an input impedance of approximately $1 \mathrm{k} \Omega$, even if the multiplexer's power supplies are removed while input signals are still present.

Maxim Integrated Products takes this measure of protection one step

It's the smart solution in more ways than one.

If you've been looking for front panel features to lift your products out of the ordinary, your search is over!

Take a look at Hewlett-Packard's new red and yellow HDSP-211X series dot matrix displays. Only HP offers you highly readable, 8 -character, end-stackable units with seven soft-ware-driven brightness levels, a full 128 ASCII character set, sixteen userdefinable, flashable characters, plus full display blinking.

And...the drivers are built in to give you the space savings and short design time you want.

The price? At only $\$ 36$ apiece in quantities of 250 , it's a value that's hard to beat.

Take a good look.
Sample HP's smart Alphanumeric Display for just $\$ 10.00$. Order from Monte Smith, Hewlett-Packard, Components Group, 370 West Trimble Road, Mail Stop 91-1G, San Jose, CA 95131. Make checks payable to Hewlett-Packard Company.
Name \qquad
| title
| COMPANY \qquad
ADDRESS/MAIL STOP \qquad

CITY/STATE/ZIP
APPLICATION \qquad
CHECK ONE: $\square H D S P-2111$ (YELLOW) EDN051487 \square HDSP-2112 (RED)
further. On its HI508A and HI509A, and on its HI508L and HI509L latched-digital-input versions (which are all pin compatible with the corresponding Harris parts), an overvoltage condition on any input channel causes that channel to turn off. The input current is limited to $10 \mu \mathrm{~A}$ max for the commercial device and $5 \mu \mathrm{~A}$ for the military device.

If the multiplexer's power supplies are removed when analog input voltages are still present, all channels turn off and input currents are limited to 5 and $2 \mu \mathrm{~A}$ for the commercial and military components, respectively. Unlike other pin-compatible parts, these Maxim multiplexers are specified to operate from supplies in the ± 4.5 to $\pm 18 \mathrm{~V}$ range, and they offer reduced power consumption (for example, the military versions of the 508 A and 509 A consume 0.7 mA max for the positive supply and 0.2 mA max for the negative supply).

Prices for the Maxim HI508A and HI509A start at $\$ 7.35$ for a commer-cial-grade component and $\$ 17.35$ for a military-grade component. The HI508L and HI509L versions sell for $\$ 7.95$ to $\$ 18.75$. The company also offers the devices as the MAX358, $-359,-368$, and -369. In addition, Maxim offers versions of the Intersil DG508A and DG509A with reduced $\mathrm{R}_{\text {on }}$, reduced leakage currents and power supply currents, and faster turn-on and turnoff times after assertion of the enable input.

If your application calls for the routing of high-frequency signalsfor example, on video or RF chan-nels-you'll welcome the recent introduction of analog switches and multiplexers that handle the required switching with acceptable levels of off-state isolation and crosstalk. In order to achieve sufficient off-state isolation at high frequencies, nearly all these switches and multiplexers employ T-switch configurations, which provide a shunt path to ground for those ac signals

A 3-dB bandwidth of 250 MHz distinguishes the CDG2214 spst analog switch from Topaz Semiconductor. The device also specs off-state isolation figures of 100 and 200 MHz at 37 and $22 d B$, respectively.
that break through from the input when the switch is open.
GE-Intersil's 16-pin IH5352 quad spst RF/video switch and 14-pin IH5341 dual spst RF/video switch have a $100-\mathrm{MHz}$ typ $3-\mathrm{dB}$ bandwidth. The maximum full-tempera-ture-range $R_{\text {ON }}$ is 100Ω for $\pm 5 \mathrm{~V}$ inputs. For an individual switch operating at 10 MHz with 75Ω source and load impedances, both the off-isolation and the cross-coupling rejection ratio (or crosstalk) between a driven on-state switch and an off-state switch output are 60 dB typ. The IH5352 is priced from $\$ 7.75$ to $\$ 15.50$; the IH5341, from $\$ 3.90$ to $\$ 8.90$. (The price depends on the grade for both.) Maxim produces pin- and function-compatible devices under the same part numbers, but these devices spec a minimum off-isolation of 70 dB ; the cross-coupling rejection ratio is 70 dB for the Maxim IH5341 and 66 dB for the Maxim IH5352.
Topaz Semiconductor's \$2.45

CDG201B, which is pin compatible with the DG201, is also suited to switching high-frequency signals. The switch's on-state insertion loss of approximately 0.5 dB into a $1-\mathrm{k} \Omega$ load, or 5 dB into a 50Ω load, exhibits a typical roll-off of less than 1 dB at 100 MHz . At 10 MHz the minimum off-state isolation rejection ratio of the switch is 60 dB with a 50Ω load, and under similar conditions the channel-to-channel crosscoupling rejection ratio is 80 dB typ. The switch's source and drain capacitances are 3 and 0.3 pF , respectively. For analog signals between -10 and +2 V , the switch's R_{ON} is 120Ω max at the device's maximum operating temperature of $85^{\circ} \mathrm{C}(80 \Omega$ max at $25^{\circ} \mathrm{C}$). The CDG201B's control inputs are TTL compatible.
Topaz's \$2.30 CDG308 and CDG309 quad spst analog switches target applications similar to those served by the CDG201B, but they have CMOS-compatible inputs and faster switching times (250-nsec
*Local Intelligent Network Controller connects your world so many ways at such a low price!

- 5 v 40 pin CMOS
- 300 Baud to 57.6 K Baud
- Selectable Token support
- Numerous Operational Modes
- \$75/ea., \$30/(100)

Parallel to Serial

Serial to Parallel

2 CY233s per Node RS-232-C

Host Ring Serial Ring Network with up to 255 Nodes or Stations (2048 I/O Lines)

Party Line Alternate Topology for 256 8 -Bit Ports or 2 K I/O Lines

Cybernetic Micro Systems, Inc.
Box 3000 • San Gregorio, CA 94074 • USA (415) 726-3000 • Telex: 910-350-5842
\square Rush free data sheet on the CY233-LINC
\square Send \$10 User Manual
\square Send Manual and __ chips at $\$ 75$ ea. $+\$ 5$ Shipping \square California Residents add Sales Tax
\square Check enclosed \square Charge my MC/VISA/Amex card Card \# \qquad expire \qquad sign

Name \qquad Title \qquad Company Phone Address
\qquad Phone Stop

City \qquad Zip
max t_{ON} and 220 -nsec max $\mathrm{t}_{\text {OFF }}$, compared with 600 - and $300-$ nsec \max for the CDG201B). The off-state isolation rejection ratio is 60 dB min at 10 MHz with a 50Ω load. In addition, the devices have a quiescent supply current (that is, the current drawn when all switches are off) of only 100 nA typ ($500 \mathrm{nA} \max$) at $25^{\circ} \mathrm{C}$.
Topaz's $\$ 3.90$ CDG4308 and CDG4309 analog switches use the same respective dies as the CDG308 and CDG309, but the -4308 and the -4309 come in 20 -pin rather than 16 -pin packages. The 20 -pin package allows for an additional unconnected pin between each switch's input and output, providing an extra 6 dB of off-state isolation. For all these devices the analog signal range is limited to $\pm 10 \mathrm{~V}$ when the devices are operating from $\pm 15 \mathrm{~V}$ supplies.
The company's $\$ 3.76$ CDG5341, a 14-pin, CMOS-compatible dual spst analog switch, has a 50 MHz min $3-\mathrm{dB}$ bandwidth. When the device is operating at 10 MHz with a 50Ω load, both the off-state isolation and cross-coupling rejection ratio are 80 dB min. In contrast, the company's \$1.25 CDG2214, a CMOS-compatible spst analog switch housed in an 8 -pin miniature DIP, has a $3-\mathrm{dB}$ bandwidth of 250 MHz and offers a
minimum off-state isolation of 37 dB at 100 MHz and 22 dB at 200 MHz with a 50Ω load.

Muxes for professional video

Siliconix has recently introduced two 16 -channel video multiplexer products, the DG536 and the lower cost DG535. Targeted at professional, broadcast-quality video applications, the $\$ 19.20$ DG536 has an ana\log bandwidth of 300 MHz . At 5 MHz the device specs a minimum all-hostile crosstalk level (see box, "Definitions") of -60 dB , a multi-plexer-disabled crosstalk level of -85 dB typ, and an adjacent-input crosstalk level of -92 dB typ. The company achieves the low adjacentinput crosstalk by providing ground pins, internally connected to ac ground, between each analog input pin.

The $\$ 14.40$ DG535 is for industrial markets. It comes in a 28 -pin DIP and lacks the additional ground pins between the multiplexer inputs. At 5 MHz the multiplexer specs a typical all-hostile crosstalk level of -60 dB , a typical multiplexer-disabled crosstalk level of -60 dB , and a typical adjacent input crosstalk level of -72 dB .

Maxim offers two 16 -pin, 8 -channel RF/video multiplexers, designated the MAX310 and MAX311.

Definitions

"All-hostile" crosstalk is the decibel ratio of the voltage that appears at a multiplexer output to a stimulus voltage that's applied simultaneously to all off-channel inputs. "Multiplexer-disabled" crosstalk is the decibel ratio of the voltage at the multiplexer output to a voltage applied simultaneously to all the inputs with the multiplexer disabled-that is, when all switches are off. "Adjacent-input" crosstalk is the decibel ratio of the voltage that appears at off-channel inputs to the voltage applied to an adjacent on-channel input.
These parameters represent the worst-case operating conditions for the multiplexer. You should use caution, however, when comparing different manufacturers' devices on the basis of these figures, because there's ample scope to massage them by choosing different load-resistor values for the on-channel inputs and multiplexer outputs, or by modifying the test conditions.

Both parts cost $\$ 8$ to $\$ 14.40$, depending on the grade. The MAX310 is an 8-channel (SE) multiplexer, while the MAX311 is configured to switch four differential-input channels. At 5 MHz both devices spec an all-hostile crosstalk of -58 dB typ with on-channel source and load resistances of 75Ω (-63 dB if you reduce the on-channel source impedance to 10Ω). At 5 MHz the multiplexer-disabled crosstalk is -63 dB typ, and the adjacent-input crosstalk is -72 dB typ. Topaz's $\$ 2.30$ CDG4500, a 14 -pin, 4 -channel high frequency multiplexer, has a minimum $3-\mathrm{dB}$ bandwidth of 100 MHz and specs a minimum all-hostile crosstalk level of -62 dB at 10 MHz with a 50Ω load.
Multiplexers capable of handling high frequencies are suited not only to analog signal routing, but also to digital-signal-routing functions. In some applications they can eliminate the need for ECL data multiplexers, with attendant reductions in system power consumption and cost.

Devices switch 140 V p-p

Most analog switches and multiplexers find use in signal-switching applications-for example, in dataacquisition systems, programmablegain amplifiers, and multiplexer sys-tems-for which such parameters as leakage currents, $\mathrm{R}_{\mathrm{ON}}, \mathrm{R}_{\mathrm{ON}}$ modulation effects, and switching speeds are the main influences on signal integrity. Supertex Inc, however, emphasizes power-switching and in-dustrial-control applications for its high-voltage analog switches.

Operating from $\pm 80 \mathrm{~V}$ supplies, the company's HV10 to HV18 analog switches can switch analog signals as high as 140 V p-p. Less expensive versions for operation from $\pm 70 \mathrm{~V}$ supplies can switch 120 V p-p signals. The product family includes direct-input and latched-digital-input 4-channel switches and latchedinput 8-channel switches. Measured with a switch current of 200 mA , the 4 -channel switches spec a typical R_{ON} of 15Ω, and the 8 -channel

8-Trace Capability
\checkmark Alternate Triggering
2 Time Bases 3-Channel Input
\checkmark Clear, Bright Trace
0.5 mV Sensitivity
2-Year Warranty
Coast-to-Coast Service
Circle 158 for product information

For immediate delivery or more information call toll-free

In New York State 516-231-6900

For professionals
 the Instruments Corporation difference.

UPDATE

switches spec a typical $R_{\text {ON }}$ of 25Ω. The 4-channel switches have a peakcurrent rating of 3A per channel; the 8 -channel switches, 1.5 A per channel. All the switches can handle analog signals from dc to 10 MHz , and they typically provide 45 dB of off-state isolation at 5 MHz .
The switches incorporate a metalmasked CMOS-logic array, which allows the company to provide a variety of different control mechanisms. These mechanisms include individual latched digital inputs, serial data entry into a shift register, and 3 - to 8 -line or dual 2 - to 4 -line binary decoders for switch selection. In addition to its 3 - to 8 -line decoder, the HV14 has a separate data input so that you can turn a selected switch on or off. All the devices except the HV17 have internal input latches so that your system can load new data without affecting the existing state of the outputs. The control inputs are compatible with CMOS logic operating from a 10 to 15 V supply.
Targeted applications for the Supertex parts include systems that require high-voltage ac drive for piezoelectric devices-for example, in ultrasound imaging equipment and ink-jet printers. Because this type of application often requires the drive electronics to be built into the actuator, Supertex offers its switches in surface-mount packages and in naked die form as well as in DIPs. Prices for plastic-DIP ver-

Channel phase-shift matching of less than 1° at 5 MHz suits the MAX310 and MAX311 8 -channel (SE) and 4-channel (differential) multiplexers from Maxim Integrated Products Inc to the routing of composite-video color signals.
sions range from approximately $\$ 16$ to $\$ 19(1000)$.

Both Maxim Integrated Products and Supertex Inc have recently introduced a family of high-voltage analog switches, designated the 341, 343, 345 and 348 (with a MAX prefix for the Maxim parts and HV for the Supertex parts). The Supertex 341,343 , and 345 are dual spst, dual spdt, and dual dpst analog switches, respectively; their maximum full-temperature-range $R_{\text {ON }}$ is 100Ω. The equivalent spec for the Maxim parts is 160Ω. The 348 has the same dual-spst configuration as the 341 , but it has a maximum full-temperature-range $R_{\text {ON }}$ of 75Ω for the Supertex part and 80Ω for the Maxim part.

All the switches operate from split supplies in the ± 20 to $\pm 50 \mathrm{~V}$ range, or from single supplies in the 20 to 60 V range, and they have an analog signal range that equals the supply-rail voltages. The peak current rating is 0.5 A per switch. The maximum continuous switch cur-
rent is subject only to the package's power-dissipation limits. The manufacturers offer commercial, industrial (Supertex), extended-industrial (Maxim), and military versions of the parts. Prices from both manufacturers range from approximately $\$ 6$ to $\$ 19$, depending on the grade.
The products discussed in this article have been introduced in the last 18 months, or are slated for introduction during the second quarter of 1987. Choosing the right analog switch or multiplexer, of course, requires detailed analysis of all data-sheet parameters, and you should keep in mind that there are many earlier parts, from the companies mentioned above and from other companies such as Precision Monolithics Inc and National Semiconductor Corp, that may provide equally good price/performance ratios.

EDN
Article Interest Quotient
(Circle One)
High 509 Medium 510 Low 511

For more information

For more information on the analog switches and multiplexers offered by manufacturers mentioned in this article, circle the appropriate number on the Information Retrieval Service card or contact the following maufacturers directly.

Analog Devices Inc One Technology Way Norwood, MA 02062 (617) 329-4700

Circle No 707
GE-Intersil
10600 Ridgeview Court
Cupertino, CA 95014
(408) 996-5000

Circle No 708

Harris Corp

Semiconductor Sector Box 883
Melbourne, FL 32901
(305) 724-7000

Circle No 709
Maxim Integrated Products Inc
510 N Pastoria Ave
Sunnyvale, CA 94086
(408) 737-7600

Circle No 710

National Semiconductor Corp 2900 Semiconductor Dr Santa Clara, CA 95052 (408) 721-5000

Circle No 71
Precision Monolithics Inc 1500 Space Park Dr Santa Clara, CA 95050 (408) 727-9222 Circle No 712

Siliconix Inc
2201 Laurelwood Rd
Santa Clara, CA 95054
(408) 988-8000

Circle No 713
Supertex Inc
1225 Bordeaux Dr
Sunnyvale, CA 94088
(408) 744-0100

Circle No 714
Topaz Semiconductor Inc
1971 N Capitol Ave
San Jose, CA 95132
(408) 942-9100

Circle No 715

ESD testing has determined that delicate MUXes can be hazardous to your wealth.

Harris OV-protected MUXes survive toughest ESD tests!

What's your best MUX choice for worst-case ESD survival? We decided to find out.

The test: We tested dozens of analog MUXes now on the market to MIL-STD-883 Method 3015.2 procedures using multiple samples and different lots.

The result: The best performers included Harris OV-protected MUXes which met specs even after exposure to more than 4,000 volts. Harris industry-standard MUXes withstood 3,000 volts. What happened to the MUXes one company "guarantees" to meet the
military's 2,000 volt requirement? They got zapped by as little as 200 to 300 volts.

The moral: Perform your own MIL-STD ESD testing on MUXes before design-in (or before adding costly extra components), so field failures don't ground your system later.

The offer: For full test results, call 1-800-4-HARRIS, Ext. 1410 (in Canada, 1-800-344-2444, Ext. 1410). Or write Harris Semiconductor Products Division, P.O. Box 883, MS 53-035, Melbourne, Florida 32902-0883.

The end.
"I'm burned up about MUX test failures!'

AT\&T Single Chip DSPs: the firstand the fastest.

NowAT\&Toffers the worlds's first floating point andfastest fixed pointDSPs.

Only AT\&T can give you a complete single-chip Digital Signal Processor solution for all your analog and digital applications. Because, only AT\&T has a single-chip floating point DSP in full production, as well as the fastest fixed point DSP available.
Speed and flexibility. The AT\&T DSP32 has a 32bit floating format with 24 bits of precision. It has an on-chip CAU that allows it to perform like a 16-bit microprocessor with 32-bit floating point capabilities.
This makes precision possi-
ble over a wider range, so essential for high tech applications such as computer aided design, image processing and speech compression.

If your requirement is for faster speeds, our fixed point DSP16 operates at 75 ns . It is the first single-chip DSP to approach "building block" speeds.
Easier programming, development and debugging.
AT\&T's DSPs make it easier to develop algorithm implementations. Unlike competitive DSPs, AT\&T DSPs are
programmed using high
level C-like Syntax, which is equation-like and much easier to program. AT\&T also offers a complete single-board system for the development and real-time evaluation of your DSP programs. Plus, we offer a complete UNIX ${ }^{*}$ and MS*-DOS software library for creating, testing and debugging applications programs.

Single chip

 means savings.So, whatever your applications: voice signal filtering, speech and video signal compression, spectral analysis, graphics and computer-aided design, AT\&T's single-chip DSPs can cut your development time as well as cutting power consumption and board area.

And, of course, AT\&T Bell Laboratories' ongoing R\&D will assure you that AT\&T will stay at the forefront of DSP technology.

For more information, call $1800372-2447$, or send the reply coupon. In Europe, call AT\&T Microelectronics in Munich, Germany at 089/95970, Telex 5216884 . In Singapore, call 2508422/2533722, Telex RS21473/RS55038. Let us show you why AT\&T is the only DSP supplier with a complete single-chip solution for all your analog and digital applications.

Digital signal

 processor seminars. To find out about AT\&Tsponsored and third-partysponsored seminars on our 16- and 32-bit DSPs, call us at $1800372-2447$.ATET
The right choice.

ANALOG DEVIGES' FIRST REAL SECOND SOURCE.

Choose identical equivalents (or Maxim improved parts).

AD565A	12-Bit DAC
AD566A	1-Bit DAC
AD578	1-2it 3 μ s ADC
AD580	+2.5V Ref.
AD581	+10V Ref.
AD584	Prog. Ref
AD2700	+10V Prec. Ref.
(MAX670	Ultra Prec. +10V Prec. Ref.)
AD2710	+10V Prec. Ref.
(MAX671	Ultra Prec. +10V Prec. Ref.)

```
AD2701 -10V Prec. Ref. AD7224 8-BitDAC
AD7225 Quad 8-BitDAC
AD7226 Quad 8-BitDAC
AD7520 10-Bit DAC
AD7521 12-Bit DAC
AD7523 8-BitDAC
AD7524 8-Bit Buff. DAC
AD7528 8-Bit Dual DAC
```

```
AD7530 10-Bit DAC AD7531 12-BitDAC AD7533 10-Bit DAC AD7541 12-Bit DAC AD7541A 12-Bit DAC AD7542 12-Bit \(\mu\) P DAC AD7543 12-Bit \(\mu\) P DAC AD7545 12-Bit Buff. DAC AD7572 12-Bit \(5 \mu \mathrm{~s}\) ADC
```

AD7574 8-Bit 15 $\mu \mathrm{s}$ ADC (MAX160 8-Bit $4 \mu \mathrm{~S} \mu \mathrm{PADC})$ AD7581 8-Bit 8ch. $67 \mu \mathrm{~s}$ DAS (MAX161 8-Bit 8ch. 20μ S DAS) AD7820 8-Bit 1.3μ s ADC (MAX150 8-Bit 1.3μ s ADC/Int. Ref. AD7824 8-Bit 4ch. ADC (MAX154 8-Bit 4ch. ADC/Int. Ref.) AD7828 8-Bit 8ch. ADC (MAX158 8-Bit 8ch. ADC/Int. Ret.)

Free 100\% Burn-in and improved ESD protection.

Most IC failures occur in the first few hours of operation. We minimize these failures by improving designs, building the parts better and testing them to an extent that commercial analog parts have never been tested before. Every part we make comes with free $24 \mathrm{hr} / 150^{\circ} \mathrm{C}$ Burn-in (equivalent to 165 days at $70^{\circ} \mathrm{C}$) and is electrically tested at both elevated and room temperature. This results in an incredibly low failure rate of 7.5 failures per billion hours of operation. And as a further hedge against failure, our parts are designed to withstand electrostatic discharge (ESD) of more than 2000V per pin.

All available in Small Outline packages (SOIC).

Only Maxim offers all these parts in the smallest, most reliable surfacemounted package, the SOIC. In fact, the failure rate of our 8 to 60 lead plastic SMD's is several times lower than the rest of the industry. (See chart.)

How do we do it? Advanced package materials. Plus rigorous wafer lot qualifications. Like 96 hours pressure pot (PCT), 192 hours life test at $150^{\circ} \mathrm{C}$. And a solder immersion test that replicates the thermal shock and stress of board assembly.

Available for the first time from a distributor near you.

For a free copy of our Data Conversion Databook, call your Maxim representative or distributor today. And put the second source first.

Maxim Integrated Products, 510 N. Pastoria Avenue, Sunnyvale, CA 94086, (408) 737-7600.

[^5]
The mature, yet evolving, technology of delay lines suits modern requirements

Tarlton Fleming, Associate Editor

Delay lines, although available since the 1960s, aren't much different from the early versions: Most are manually assembled, hybrid components. Despite no quantum jumps or significant changes, though, delay lines don't suffer from the threat of obsolescence. Their technology has evolved and matured, easily matching increases in circuit operating speed. Because today's faster signals require shorter delay intervals, manufacturers are able to produce smaller and less-expensive lines.
Most delay-line products are electromagnetic LC types, with several cascaded sections. Each section consists of a series inductor and a shunt capacitor. Delay lines based on LC sections alone are called analog, or passive, delay lines (Fig 1a). The more prevalent types, often called digital delay modules, add one or more hex-buffer ICs to produce an active delay line (Fig 1b).
Whereas passive delay lines can operate on either analog or digital waveforms, the digital types are suitable for use with digital waveforms only. Most delay-line applications are strictly digital, simply because of the prevalence of digital systems and because such applications often use delay lines to eliminate timing skew.

Of the many delay-line manufacturers, most offer similar product lines in which the various DIP, SIP, and surface-mount packages conform to industry-standard pinouts. Product variations include single-, dual-, and triple-line devices as well as variable, multiple-tap, and digitally programmable delay lines.

Technitrol's digital delay modules offer a choice of delays spanning 1 to

Fig 1-A passive LC delay line (a) consists of sections in cascade, each containing a series inductor and a shunt capacitor. An active, digital delay line (b) includes inverter gates.

500 nsec and include devices compatible with most logic families: ECL, CMOS, and TTL (S, LS, AS, and ALS). The company guarantees a delay tolerance for these products over their specified operating-temperature and supply-voltage ranges that's $\pm 2 \%$ of the maximum delay.
The company's TTLDL25 delay line is TTL compatible and provides five taps of 5 nsec each over the range of 5 to 25 nsec . (In most applications you use only one tap, the one that provides a delay interval closest to what you need.) Available in a 14 -pin DIP as well as in a 14- or 16 -pin surface-mount package, the part sells for $\$ 25$ (100). Another member of the same family, the 5 -tap TTLDL500, provides 100 -nsec increments for the same price.
The manufacturer's other TTLcompatible delay modules include 3 -tap and 10 -tap devices. Further, you can buy 5 -tap devices that are
compatible with 10 K ECL or 8 -tap delay lines compatible with 100 K ECL. The 100 K ECL parts provide delays from 1.2 to 200 nsec in increments as short as 0.5 nsec.
Although few applications require dynamic control of delay time, test equipment and systems whose de-lay-time requirements change during operation may require programmable digital delay lines. These products have a single buffered output, and you set the delay by applying an appropriate input code.
Kappa Networks is one such manufacturer of programmable delay lines. The 3 -bit (eight delay increments), STTL-compatible PT36 Series offers delay increments ranging from 1 to 50 nsec; each member of the series costs $\$ 12.85$ (100). Similarly, the 4 -bit (16 delay increments) STTL-compatible PT42 Series provides delay increments of 1 to 100 nsec. A device in this series costs $\$ 19.95$ (100).

The new TI PROCALC comes with power windows.

 Standard.

 Standard.}

The new TI-95 PROCALC ${ }^{\text {TM }}$ from Texas Instruments brings you unique Power Windows ${ }^{\text {TM }}$ as standard equipment. See how fast, how easily they bring all the power of this advanced programmable calculator to your engineering tasks.

A single keystroke executes
the function shown in each window. And you can open the five Power Windows to more than 200 preprogrammed functions-and as many user-defined functions as you need. Reassign them from within your programs. And enjoy state-of-the-art capability without hard-to-

Power Windows give you menu-style access to $200+$ scientific and engineering functions. Only the TI-95 PROCALC gives you Power Windows.
remember keystroke sequences.
Keystroke programming is as easy as calculating. And PROCALC saves programs-with as many as 7,200 steps - in Constant Memory ${ }^{\text {TM }}$ internal 8K RAM or optional 8K plug-in cartridges.

An unprecedented set of builtin scientific functions will speed you through your daily calculations. But if you need more, there are options: statistical and mathematical software cartridges. A portable printer. And a cassette interface for large volumes of data.

See how PROCALC's Power Windows set a new standard. Test drive a TI-95 PROCALC today.

Texas INSTRUMENTS

[^6]
TECHNOLOGY UPDATE

As mentioned, digital delay modules only work with digital signals, but passive delay lines are useful for analog video, radar, and sonar signals, as well as for digital signals. Because passive LC lines have no buffer ICs at the input and output, they can provide lower minimum delay times than the digital delay modules can.

On the other hand, the passive types introduce a new array of electrical parameters for the designer to worry about-parameters whose effects are buffered and hidden within a digital module. These include input-to-output attenuation, characteristic impedance, rise time, bandwidth, and distortion. Furthermore, some applications require that you provide compensation for the passive delay line to achieve a linear phase response.

Most companies that manufacture digital delay lines also sell passive ones. From ESC Electronics, you have a choice of single- or triple-line devices and a choice of 5,10 , or 20 taps. Delays per tap vary from 1 to 200 nsec. Package offerings include $14-$ and 16 -pin DIPs; $3-$-, 7 -, and 14 -pin SIPs; and surface-mount types.

PCA Electronics' passive delay lines have 10,20 , or 24 taps, providing tap delays ranging from 1 to 50 nsec. The single-tap EP123 Series includes devices with fixed delays spanning 0.5 to 10 nsec in $0.5-\mathrm{nsec}$ increments, 10 to 20 nsec in 1 -nsec increments, and 20 to 40 nsec in 5 -nsec increments. The series even boasts a 0 -nsec device for those designers who decide they don't need a delay after all. The company charges the same- $\$ 2.60$ (100)-for any member of the EP123 Series.

In addition, PCA offers a series of variable passive delay lines, which suit applications where fixed-tap devices don't provide enough resolution. Products in the EPA087 Series look like multiturn pc-mount trimming potentiometers and provide adjustment ranges from 10 to 100 nsec. Each costs $\$ 25$ (100).

This monolithic CMOS delay line, a member of the DS1000 Series, has five delay taps, each laser-trimmed to within 1 nsec of the desired delay value. The manufacturer, Dallas Semiconductor, claims the device is more reliable than the conventional LC hybrid type shown in the background (without its cover).

Another form of delay line suitable for use only with analog signals is the charge-transfer device. This MOS IC shifts an analog signal from input to output in bucket-brigade fashion by transferring sample packets of charge from one capacitor to the next (Fig 2). Applications for these delay lines include voice scrambling, reverberation effects in stereo equipment, and the generation of vibrato, chorus, phaser/ flanger, and tremolo effects in electronic musical instruments.

Each time the ϕ_{1} clock signal goes high, the input transistor turns on,
charging capacitor C_{S} with a sample of the input voltage. Subsequent clock cycles shift the charge packet along the chain one stage at a time, which means that the input-to-output delay depends on the clock frequency and the number of stages.

Charge of the bucket brigade

EG\&G Reticon's delay lines of this type, for example, have a great number of stages that let you delay an analog signal from $300 \mu \mathrm{sec}$ to more than 4 sec . The RD5106A, with 256 stages, costs $\$ 3.50$; the RD5107A, with 512 stages, sells for

Fig 2-This structure is a bucket-brigade-type of analog delay line, in which a signal in the form of discrete charge packets shifts one stage along the chain with each cycle of the clock waveforms ϕ_{1} and $\phi_{2} .\left(V_{B B}\right.$ is a dc voltage that biases the interstage transistors, which minimize the Miller capacitance between stages.)

NEW COMBINATION MODEM/UART CHIP FOR INTEGRAL BUS APPIICATIONS

- Modem/UART combination optimized for integral bus applications
- Stand-alone mode allows full modem and UART control from CPU bus, with no dedicated μ P required
- Dual-port mode suits conventional designs using local uP for transparent modem operation
- Complete modem functions for 1200 BPS (Bell 212A, V.22) and 0-300 BPS (Bell 103, V.21) operation
- Fully compatible 16450 / 8250 UART with 8250 B or 8250 A selectable interrupt emulation
- CMOS chip operates from single +5 V power supply; draws only 75 mW (15 mW with power down)
Silcon Systems new K222U combines the performance and features of the SSI K222L. 1200 BPS single-chip modem with an industry standard $8250 / 6450$ UART function in a single 40-pin chip.
The new modem/UART chip is optimized for MS-DOS bus integral intelligent modem applications such as portable or lap-top personal computers In the stand-alone mode, the modem functions can be fully controlled through the 8250 interface, with the main CPU performing both data communication and modem control without the need for an additional dedicated microcontroller.
For conventional plug-in card applications, the dual-port mode permits using a dedicated local microcontroller with the modem, allowing the modem function to be transparent to the main CPU. The 8250 section can also be used independent of the modem function, providing an added serial port at no extra cost when the modem function is disabled. The modem portion of the K222U provides all analog functions needed for an intelligent modem compatible with 212AN.22 N. 21 Bell and CCITT standards.
For more information on the new K222U, or the complete K -Series family of compatible modem IC's, contact: Silicon Systems, 14351 Myford Road, Tustin, CA 92680
Phone: (714) 731-7110, Ext. 575.
$\$ 6.30$; and the RD5108A, with 1024 stages, is priced at $\$ 10.85$ (100).

All charge-transfer devices achieve quantization of an analog signal without resorting to A/D converters. Because they sample the signal, it may be necessary to provide a lowpass filter at the input to prevent aliasing errors, and to include a smoothing filter at the output to remove quantization noise.

Something new and different

In a departure from the conventional types of delay lines, Dallas Semiconductor's DS1000 Series consists of monolithic CMOS chips, each of which gives you five delay taps and delay increments ranging from 10 to 100 nsec . The delay at each tap is simply the propagation time through the preceding amplifier stages.

Patented circuit-design techniques compensate for variations in propagation time caused by changes in the operating conditions, and laser trimming sets each tap delay
within 1 nsec of the desired value. Prices for this series start around $\$ 4$ (100).

All-silicon delay lines provide obvious advantages in reliability and assembly costs, but Dallas Semiconductor faces obstacles in gaining acceptance for these parts over the longstanding, entrenched hybrid types. The company bolsters its claims by noting that these delay lines occupy less space (a 5 -tap device fits in an 8 -pin miniature DIP) and provide equal precision for lead-ing- and trailing-edge delays.

Delay-line customers and users, however, haven't yet swamped the firm with orders. They point out that the hybrid types do a satisfactory job, provide wider ranges of delay times and operating temperatures, and are comparable in price to the passive LC types. EDN

Article Interest Quotient
(Circle One)
High 503 Medium 504 Low 505

For more information

For more information on the delay lines discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

Dallas Semiconductor

4350 Beltwood Parkway South
Dallas, TX 75244
(214) $450-0400$

Circle No 701
EG\&G Reticon Corp
345 Portero Ave
Sunnyvale, CA 94086
(408) $738-4266$

Circle No 702

ESC Electronics Corp

 534 Bergen Blvd Palisades Park, NJ 07650 (201) 947-0400Circle No 703
Kappa Networks Inc
1443 Pinewood St
Rahway, NJ 07065
(201) 396-9400

Circle No 704

PCA Electronics Inc 16799 Schoenborn St Sepulveda, CA 91343
(818) 892-0761

Circle No 705
Technitrol Inc
1952 E Allegheny Ave Philadelphia, PA 19134
(215) 426-9105

Circle No 706

"WE DESIGNED THIS CHIP FOR YOU."

How Our Modem/UART Chip Can Simplify Your New Integral Modem Designs. "With our experience as the industry leader in single chip modem IC's, we knew we could integrate a UART with a modem, but we asked you 'who needed it?' Your answer was-all the designers wanting to put the modem inside their products - especially designers of lap-top PC's, portable terminals, and other bus-oriented products.
"You told us you wanted a modem chip that connects directly to the computer bus with no additional IC's - a chip compatible with popular bus standards but flexible in use. And you wanted it to run from a single +5 volt supply with the lowest possible operating power. So we developed the SSI K222U-the industry's most highly integrated combination modem and UART. And here's what our new chip does for you.
"It operates off the system microprocessor without the need for a separate controller chip. It frees up board space for other purposes by putting the modem, the UART, and system related functions all in one 40-pin DIP. It provides you with all the modem functions you need for world-wide operation at 300, 600, and 1200 bps rates for Bell and CCITT standards. And it gives you a UART interface that is completely compatible with the industry standard 8250A/16C450 devices used with IBM PC compatible products. Our unique design also allows you to use the UART independent of the modem function, giving you an additional serial port. All of this in a low-power CMOS device that operates from a single +5 V supply. In short, it's a chip that we designed for your application."

Call Now!

 (714) 731-7110, Ext. 575For more information on the SSI K222U, or the complete K-Series family of compatible modem IC's, contact: Silicon Systems, 14351 Myford Road, Tustin, California 92680.

"Where we design to your applications."

Automatic.

Then get it into silicon with our CAM package. It works with more CAM formatters than any other.

Or soup-up your GDSII.

Under all the new automation, the new system is still a GDSII at heart. Which means it shares the same commands and a host of other
features that you know by heart.
Better yet, it means that you can get a few more miles out of your clamshell. Because most of the new automated software can be added to your existing GDSII System.

Go for a spin.
To arrange a demonstration of the new automated IC design
system or for more information call 1-800-GE-CALMA, ext. 332.
And shift your designs into high gear.

For workstations that thrive in a multivendor

HP's powerful family of technical workstations fits right in with your present computing resources, as well as those added in the future. With industry standard networking, operating systems, and languages. Plus hundreds of advanced application packages, and performance extras to give you the competitive edge in all of your engineering and technical activities.

Our solutions are implemented on one of the industry's largest technical computer and workstation families. It consists of the HP Technical Vectra PC, the HP 9000 series 200/300/500, and the new model 840 Precision Architecture Computer.

Full UNIX System V compatibility.

HP's technical workstations use AT\&T's System V UNIX operating system with Berkeley 4.2 enhancements and HP improvements. The result is a standard tuned to the workstation environment with windowing, real-time I/O extensions, graphics, six languages and other extras.

The networking you need.

HP offers the networking to unify design, test, manufacturing, and technical office automation in your company. You'll have ARPA and Berkeley services and TCP/IP on Ethernet** and IEEE 802.3 to provide connectivity with IBM, DEC, and other vendors' products.

AI power without special AI machines.

You get everything you expect in a multipurpose workstation, plus the ability to run Artificial Intelligence on the same machine. Based on Common Lisp, it lets you harness AI power for accelerated software development. You can also get premier expert system tools from companies such as Intellicorp and Teknowledge.

Wide range of graphics solutions.

The choice is yours...from low-cost monochrome to high-resolution color monitors...from simple report

run UNIX systems and environment, talk to HP.

graphics to 3D solids modeling. There are industry standards like GKS and ANSI Computer Graphics Virtual Device Interface (CG-VDI), to protect your investment by making your existing software portable. HP's accelerated graphics solutions are highly modular, so you can upgrade whenever you choose.

Hundreds of application packages.

Specialized technical applications? No problem. HP's application packages include logic and analog CAE, PCB CAD, microprocessor software development, 2D design and drafting, 3D solids modeling and finite element analysis, documentation and report generation, and database management. New software packages are constantly being added for an even larger selection.

HP-protecting your investment.

Buying HP's solutions is not only a smart decision initially, but it provides the added benefit of lower cost of ownership that reflects our commitment to quality and service. For more information, call your local HP sales office listed in the telephone directory white pages.

Tap HP's DATA-LINE for complete facts...instantly!

For on-line information 24 hours a day, use your computer, modem, and HP's DATA-LINE. Dial 1-800-367-7646 (300 or 1200 baud, 7 bits even parity, 1 stop bit). In Colorado call 1-800-523-1724.

[^7]

STANTEL 636 Remington Road, Schaumburg, Illinois 60173
Name: \qquad Company: \qquad Address:
Tel: \qquad Position:

DEDICATED TO EXCELLENCE IN TANTALUM
Tel: 312-490-7150 (East)

For winning 8051 family designs that meet your time-to-market deadline and engineering budgetyou'll need development tools, particularly In-Circuit Emulation.

The price of your success? From $\$ 1,500$ to $\$ 5,000$ with MetaLink's PC-hosted 8051-family of development tools and add-ons!

With our MetaICE-52 tool for example, you can add real time, transparent 8052 -family In-Circuit Emulation to your lab PC for $\$ 3,295-$ a fraction of the cost of large, dedicated development stations.

All MetaICE units plug in to your IBM or compatible PC via a standard RS-232 serial port. In one compact box, you get full symbolic debug, 16,000 hardware break points, 16 K of both program and external data memories, 12 break conditions, all microcontroller modes supported-and much more.

With our menu-driven software, telephone support and patentpending 8051 family design-you can go to work instantly on a wide range of 8051 microcontrollerdriven products.

All MetaICE units are afforda-ble-like our $\$ 2,895$ MetaICE-51 for 8051 emulation, the MetaICE31 for 8031 support ($\$ 1,495$) and our 80515 unit, the MetaICE80515 , just $\$ 4,995$.

And, if you add our optional MetaICE-CHEST feature (included in MetaICE-80515), you can reach a full 64 K of program and external data memories, 128,000 hardware breakpoints, 4 K trace buffer and 15 break/trace conditions-for an additional $\$ 1,495$.
"Who are these guys?" you ask. MetaLink is the leader in PChosted 8051 In-Circuit Emulation products. Nobody knows 8051 architecture, applications and software inside and out like we do. Need 8051 emulation solutions? Call MetaLink...the ICE-House ${ }^{\text {TM }}$: 1-800-METAICE.

Y4 Meralink

33 West Boxelder Place, Suite 110 Chandler, AZ 85224 Call (800)638-2423 or (602) 926-0797 Telex: 4998050 MTLNK IBM is a registered trademark of IBM Corporation (All prices are USA list)

PC-hosted 8052 ICE for under \$3500!

CIRCLE NO 113

With a Planar light-emitting electroluminescent flat panel display, you could use the rest of this space for anything you like. Call either 503-690-1100 or 503-690-1102, or write for a brochure: PLANAR SYSTEMS, INC. 1400 N.W. Compton Drive Beaverton, Oregon 97006.

Surface-mount technology forces engineers to follow testability guidelines

Charles H Small, Associate Editor

Because surface-mount-technology (SMT) pc boards are so much harder to test than boards manufactured with other, less-dense technologies, design engineers will at long last have to follow the test-engineering community's guidelines for designing testability into boards. Test engineers claim that testing and reworking improperly designed and laid out SMT pe boards can eat up a major portion of the total cost of making a product.

With so much money at stake, engineering management may heed the recommendations of the test community and enforce design-fortestability guidelines. But these guidelines are far more than a simple collection of design ideas, tips, and standard-practice recommendations; the full scope of the testengineering community's recommendations for SMT entails a fundamental restructuring of both design-engineering teams and the way a company accounts for productivity gains.

The test community is unanimously recommending that the traditional barrier between design and manufacturing be removed and that test engineers get involved in the design of SMT boards from the earliest stages. The test community maintains that managing the complex tradeoff between density and testability requires the full-time attention of a knowledgeable test engineer.

Further, test engineers recommend that companies change their accounting procedures so that the beneficial effects of designing for testability can be traced. Some ex-

The finer lead pitches and high pin counts of SMT devices make pc boards bearing SMT devices harder to test than boards manufactured with older, less-dense technologies. (Photo courtesy Hewlett-Packard's Manufacturing Test Div)
perts claim that testing and rework can account for as much as 45% of the total cost of getting an SMT design out the door.

Because testing and rework consume so many production dollars, test engineers maintain that design engineers must compromise their design goals and be satisfied with packing somewhat fewer than the maximum possible number of devices onto a given SMT pe board.
Testability guidelines reduce an SMT board's density in two basic ways: Some guidelines require designers to include extra devices so that the test equipment can partition and isolate the circuits and devices under test, thereby gaining control of them; other guidelines require that pc-board designers open up the spacing between components and add extra pads and vias so that bed-of-nails fixtures can probe the circuits under test.

Many of the test community's cir-cuit-design guidelines will sound familiar to any design engineer who has read testability articles in the past. The guidelines recommend that design engineers insert extra gates in clock circuits so that automatic test equipment (ATE) can control or back-drive the clock circuit. Similarly, they recommend that designers insert extra control gates or jumpers in critical circuit paths and feedback loops. (Design engineers in the past have been reluctant to add extra gates in critical circuit paths because of the extra delays the gates incur.)

Further, to ensure that ATE can isolate and back-drive individual components, designers should make certain that every unused input has its own pullup or pulldown resistor.

The testability guidelines also recommend that registers, counters, and state machines be easy to

We're even better than you think. Absolutely!

Now the 6071A and the 6060B Signal Generators have a guaranteed absolute level accuracy of 1.0 dB .
Whether you need the highest spectral purity (6071 A) or are required to do generalpurpose testing (6060 B), you'll benefit from being able to rely on our improved signal generator accuracy. And, it won't cost you a penny more!
Fluke signal generators are designed for critical applications in the military, defense and mobile communications industries. You'll find them optimized for high-volume production. They're easily integrated, and our fast switching rates will save you production time.

SPECIFICATIONS	6071A	6060B
Frequency	200 kHz to 1040 MHz	10 kHz to 1050 MHz
Amplitude	-127 dBm to +13 dBm	-127 dBm to +13 dBm
Accuracy	$\pm 1.0 \mathrm{~dB}(520 \mathrm{MHz})$	$\pm 1.0 \mathrm{~dB}$
Spurious	$<-90 \mathrm{dBc}(520 \mathrm{MHz})$	$<-60 \mathrm{dBc}$
Modulation	$\mathrm{AM}, \mathrm{FM}, \phi \mathrm{M}$	AM, FM

The unique architecture of these programmable signal generators allows us to emphasize low noise/spurious signals, while reducing expense to you through the use of innovative circuit designs.

You also get superior RF shielding with the 6071A and the 6060B. Our cast aluminum housing and RFI gasket-sealed covers result in low radiated EMI and microphonics.

Whatever your performance needs are, Fluke's family of signal generators offer you an unbeatable value. And, our aftersales support is unparalleled.

Find out what we mean. Call 1-800-426-0361 today or contact your local Fluke sales engineer or representative.
initialize. Note that the methods (such as level-sensitive scan design) employed in IC design to initialize the registers of an IC, work well when you're testing individual ICs before assembly. But test engineers find that the built-in test functions of such chips take too long to use after a number of the chips have been assembled onto a pc board. Test engineers also encourage design engineers to include more-extensive built-in test functions with $\mu \mathrm{P}$-based boards.

One test-industry consulting firm, Logical Solutions Technology Inc (Campbell, CA), goes even further in suggesting extra devices. This company's solution to the problem of testability is to add specialpurpose testing chips to a circuit. These chips can monitor and stimulate critical nodes in a circuit. The chips have their own, dedicated I/O bus, called the T-Bus (or testability bus).

Testability guidelines will also have a major impact on board layout and routing. And, indirectly, these guidelines will reflect on circuit designers, because the guidelines limit circuit designers' ability to pack SMT boards as densely as possible.

For example, the mechanical properties of so-called "pogo pins" (small spring-loaded probes, embedded in a test fixture, which touch various points on the pe board under test) impose several limitations on SMT pc-board density.

Test engineers will not allow a probe to come in direct contact with a device or a device's leads. Such direct probing has two disadvantages: First, it can bend or otherwise damage the probe if the part is not properly aligned, and second, the probe could push down an improperly soldered device or lead, causing a bad connection to test out as good.

This SMT-pad pattern accommodates devices having 50-mil-spaced leads. It also provides test points on 100-mil centers, which are suitable for conventional bed-of-nails fixtures. (Pattern courtesy Interconnect Technology Inc)

Therefore, pc-board designers must provide an isolated target-a pad or a via-for the pogo pin to come in contact with. (The pc-board designer can't simply extend an SMT device's pads; an extended pad can disturb the surface tension of the molten solder that serves to align an SMT device during soldering.) These extra pads and vias reduce the board's density, because they use up portions of the pc board's real estate that would otherwise be devoted to working devices or traces.

Further, test engineers prefer to have test points all on one side of a board and to have them spaced on the older 100 -mil grid rather than on the newer 50 -mil (or smaller) grids of SMT boards. Having all the test points on one side of a pc board allows test engineers to employ a single-sided, bed-of-nails test fixture rather than the much more expensive and less reliable twosided (or "clamshell") fixture. At present, pogo pins suitable for 50 -mil spacing cost five times as much-and fail twice as often-as 100 -mil pins do.

What's more, although two-sided fixtures are relatively new to pcboard assembly, makers of bare, multilayer pe boards already have considerable experience with twosided test fixtures. These manufacturers find two-sided fixtures to be a high-maintenance item.

PC-board designers must be careful not to place too many test points in one area, or the combined pressure of many pogo pins concentrated in that area could deform the pc board under test.

Test engineers also do not care for pc-board traces that are buried inside multilayer boards and hidden under the SMT devices. They prefer to have traces out in the open where they can get at them.

All the foregoing constraints on the pc-board designer's options serve to increase testability at the expense of pc-board density.

Once the test engineers actually

Carborundum ${ }^{\text {® }}$

 noninductive ceramic power resistors solve tough problems.We make three types of noninductive ceramic resistors that can solve tough resistance problems, save money and space.

Regardless of the pulse shape, we have the resistor. Our Type SP handles large amounts of power from 60 cycles through VHF. Type AS can absorb huge amounts of energy in millisecond pulses. Type A solves high resistance problems in high voltage situations.

For more information on ceramic power resistors and our broad line of thermistors and varistors, call or write today.

Standard Oil

Engineered Materials Company
Electronic Ceramics Division P.O. Box 339

Niagara Falls, New York 14302
716 278-2553

STANDARDOIL

ENGINEERED MATERIALS
CARBORUNDUM ${ }^{*}$ ELECTRONIC COMPONENTS

TECHNOLOGY UPDATE

get their hands on the finished pc boards, however, they'll find that several developments in electronics -of which SMT is only one-are dealing test engineers a new hand. In the past, test engineers could take advantage of in-circuit testers having literally thousands of pogo pins to test not only all the devices on a board individually, but also the continuity of each trace. That way, they could isolate bad components and bad pc-board traces with one test. Knowing the exact location of bad components and traces allowed the test engineers to rework bad boards easily.

Now that even the least dense SMT board carries twice the circuitry of through-hole boards, SMT boards do not allow the probing of all the end points of a given trace. Test engineers may have to test the bare pe board for continuity first, and later settle for merely probing selected nodes on the loaded board. For the first few SMT designs that a company does, the test engineers typically bring out far more test points than they do for later designs, when they've become more comfortable with SMT.

The fact that component manufacturers have raised their quality levels significantly in recent years may obviate the testing of every component in a circuit. Test engineers may instead opt to perform in-circuit testing just of functional groups of components, or they may forego incircuit testing altogether in favor of the faster, but less informative, functional test.

Test engineers beware!

If test engineers do succeed in insinuating themselves into their company's design-engineering teams, they may be surprised at what their new-found power may cost them. Most companies do not currently have the accounting machinery in place to properly assess the productivity savings that accrue from the extra time spent at the design stage. In the past, any pro-

Test points need to be close to SMT devices (a). Test engineers do not recommend extending the solder pad (b) because of soldering problems. They also do not recommend probing on or near an SMT device (c) because of possible damage to the probe. (Illustrations courtesy Signetics SMD Technology)
ductivity gains were usually credited to manufacturing. Now, if management backs a thorough design-for-testability program, test engineers may find design engineers taking some of the credit for productivity gains.

EDN

Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514

NEW CIRCUIT TECHNOLOGY.

4SM-7107
ADPAT New MUTILYTHIC® integrated ceramic circuits combine the advantages of MTT TT Size \ldots increased reliability \ldots with the benefits associated with fewer manufacturing steps. Spragués innovative CT CT ran a ${ }^{\text {MULTILYTHIC }}{ }^{\circledR}$
 (TT RELIABILITY PROBLEMS. $=$ monolithic circuit substrate. MULTILYTHIC ${ }^{\circledR}$ circuit surfaces are used for both active and passive devices such as thick-film resistors, transistors, diodes, IC chips, varistors, and inductors. Right now, Sprague is working with automotive, aerospace, defense, telecommunications and computer manufacturers to achieve unique MULTILYTHIC ${ }^{\circledR}$ circuit packaging solutions to space/reliability problems. We're ready to work with you today to develop application specific devices for your special circuit packaging needs.

Sprague Electric Co., a Penn Central unit, Lexington, MA. For applications assistance, call your Sprague district sales office or representative. For technical information, write to Technical Literature Service, Sprague Electric Co., P.O. Box 9102, Mansfield, MA 02048-9102.

> Now, you can integrate filters, amplifiers, frequency band translators and other signal conditioners your way in your system about any way you wish. You can do it as never before We ve gone beyond user friendly and created system friendly That's new Precision 6000.

Now, custom systems at friendly off-the-shelf prices

Yesterday's custom systems are configured with today's standard hardware and software. Yesterday's unaffordable becomes very affordable today. Tomorrow's new instruments will operate in today's mainframe. That's system friendly with futures.

Friendly language brings down old barriers

No longer do you have to be concerned about the programming idiosyncrasies of a number of instruments. All Precision 6000 asks is familiarity with a few basics.

You set up from the
Precision 6000 front panel with prompting and cuing from its program. You string your set-ups together for the test routine required. One command uploads set-ups to the host computer.

Friendly is letting you all but forget programming, so you can concentrate on measurement problems.

More innovation from the leader

We're adding all the advances announced here to the features Precision has introduced over the last decade. $80 \mathrm{~dB} /$ octave
attenuation, time delay superior to Bessel, 1° phase match, choice of serial, parallel or GPIB computer interfaces, for example. That's system friendly indeed.

Call friendly 607-277-3550.

Call for all the details on new Precision 6000. Let us send you our people's best friend, a dog with a magnetic back to remind you how system friendly conditioners can now be. Telex 646846. Or write.

5) PRECISION FILTERS, INC.
 240 Cherry Street, Ithaca, New York 14850

Source, Measure, Connect, A three-word synopsis of Keithley's expertise, dedication, and product line」 For the past 40 years, we have systematically developed instrumentation that performs at superior levels and allows our customers to select a Keithley for any test and measurement need. Sensitivity, high resolution and low level measurements have always been our hallmarks. In the first years of our company, we made an electrometer that measured in the femtoamp range, and we're still the leader in low level measurements today However, it has not only been our low level measurement expertise that has kept our customers loyal, Our customers come to us for solutions to their measurement problems in research, design and test labs ${ }_{\wedge}$ Throughout the seventies and eighties, Keithley has become a major factor in providing a wide line of test instruments, such as high-performance DMMs, scanners, sources, semiconductor CV meters,
picoammeters, micro-ohmmeters and other more specialized products such as the new Hall Effect Card and package These are a coordinated set of products which enable you to configure complete automatic systems without sacrificing sensitivity, resolution or convenience ${ }_{\text {a }}$ A system made up of Keithley instruments gives you extra convenience, precision and support . Since all Keithley instruments share a common programming language, you get the precise answer you're seeking without time wasted learning a new language for each new instrument Keithley products are supported with application assistance by telephone consultation, complete documentation and detailed application notes.
We have the capability to provide solutions for your measurement problems Just contact our Product Information Center ${ }_{\text {A }}$ Keithley Instruments, 28775 Aurora Road, Cleveland, Ohio 44139』 (216) 248-0400.

Company: Tektronix
Agency: Young \& Roehr
"Definitely the most informative and graphically interesting.
The sexiest ad in the book!"
president
Andrionies
"Well illustrated, specifications easy to read in a separate table.
Thorough description of the important features."
Engineering Manager
Teradyne, Inc.
"A 'shake the earth' ad! It can't miss."

Engineer

Raychem Corp.
"Heavy paper. Good visuals. Idea matched illustration. It should get excellent results."
Electronic Design Engineer
National Semiconductor Corp.

Company: Industrial Chemical Products
Agency: Kerker \& Associates, Inc.

"Good color. Well written. Informative."
Director of Product Planning Zoran Corp.
"The videocassettes viewing offer makes you realize how interested they are in helping you find solutions to problems."
Quality Control Engineer ce
"The diversity of products plus the technical assistance offered made me re-read this ad and then file it for future reference. A winner."
Section Manager Raytheon

Company: NEC Corporation Ageney: Global Advertising Co., Ltd.
"This ad says they can deliver. That's what I'm interested in knowing."
Test Engineer
Teledyne
"Picture draws attention while informing with concise but meaty copy."
Electrical Engineoring Manager Digital Devices, Inc.
"32-bit micro is state-of-the-art, and so is the ad."
Design Engineer Kyowa Dengyo Corp.

"I have felt this way!" Applications Engineer Kodak
"Combines humor with detailed specs. Perfect!" Senior Analytical Engineer Mamilton Standard
"Very clever ad."
Senior Staff Technical Advisor
Konica Business Machines

Company: Hewlett-Packard
Agency: Tallant/Yates Advertising
For workstations that run UNIX systems and thrive in a multivendor environment, talk to HP.

"Creative color, informative, hot-line number a plus."
Engineering Manager TRW Opfoelectronics
"Interesting photo backed by copy that tells a solid story that makes sense."
Director, Ufilities Engineering Georgia Public Service Commission
"Good headline. Good copy paragraphs. Believable ad." Project Manager/PC Division IBM

"Easy to read. Informative. Attractive."

Software Engineer
Speech Plus, Inc.
"Good picture. Powerful words. Reliable source. And an 800-number."

Test Engineer
Philips Test and Measurement
"The ad encourages curiosity."
Sysfems Engineer
Fundamental Information Systems

Company: Monolithic Memories, Inc.
Agency: Tycer Fultz Bellack

"... an attention-grabbergood photo, good message, great offer."
Digifal Design Engineer
Honeywell, Inc.
"Direct. Practical. Useful."
Sysfems Engineer
Fundamental Information Systems
"Their offering their databook puts them ahead of their competition."
Manager of Engineering Magnavox

Company: Motorola Semiconductor
Products, Inc.
Agency: CommAd Advertising

"Good picture. Good products. Free samples."
Project Leader Tan Systems
"Color grabs your attention, tear-out coupon does the rest."
Plant Electronic Engineer Hercules Aerospace
"Informative. Easy 'phone help.' Worthwhile ad."
Design Engineer
Westinghouse Electrical

Company: Quantum
Agency: Battenberg, Fillhardt \&
Wright, Inc.

"Arresting headline pulled me into a very informative ad. And it even looked good."
Production Manager
GTE ATEA
"I liked their comparing reliability with innovation. Those are important to me."
Senior Test Engineer
Data General
"This ad jumped out at me. Meaningful and informative."
Systems Engineer
Newlett-Packard

Company: GE/RCA Solid State
Agency: Cappiello \& Chadbrowe, Inc.

Company: Toshiba America, Inc.
Agency: Reiser Williams de Yong
"Simple, clean, to the point." Industrial Engineer Bell Telephone Mfg. Co.
"Visual comparison really fits the ad."
Applications Engineer Digital Equipment Corporation
"The design makes sense. Good, hard hitting information."
Systems Engineering Manager
Rockwell International

EDN

A climate of excellence where advertising works.

Cahners Publishing

A Division of Reed Publishing USA
Specialized Business and Consumer Magazines for
Building \& Construction, Interior Design, Electronics \& Computers, Foodservice \& Lodging, Manufacturing, Book Publishing \& Libraries,

Medical \& Health Care, and Child Care/Development

Philips KTY sensors. For sensing a wider range of temperatures, for pennies.

Philips KTY silicon temperature sensors are not only attractively priced, they also monitor a wider range of temperatures than any other sensor.
Three models monitor temperature ranges from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$; and $0^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$.

Wide operating range and excellent reproduceability are direct results of proven silicon planar technology.
By utilizing the nearly linear temperature-dependent resistivity of silicon, Philips KTY sensors can detect and respond to temperature changes in the broad ranges mentioned, with response times as fast as one second.
Exceptional accuracy of Philips KTY sensors results from a positive temperature coefficient (PTC) of 0.7
percent per degree Centigrade. They are available off the shelf in tolerances of $\pm 1 \%, \pm 2 \%$, and $\pm 5 \%$.

Because KTY sensors are small, are not polarity dependent, and need no special interfacing, they are ideal for applications involving solid-state circuitry. Configurations: plastic-encapsulated, axial lead glass bead, and surface-mounted device.

And remember, whatever the model, whatever the package, we're talking pennies.

To find out how Philips KTY sensors can fit into your measurement and control designs, call or write Amperex Electronic Corporation, A North American Philips Company, George Washington Highway, Smithfield, RI 02917. Phone (401) 232-0500; TWX 710-381-8808. In Canada contact Philips Electronics Ltd, ELCOMA Division.

High-speed flash A/D converter features $115-\mathrm{MHz}$ bandwidth, dissipates 750 mW

Fabricated in an advanced, highdensity bipolar process, the AD9002 flash A/D converter features a sampling rate of 150 M samples/sec and a $3-\mathrm{dB}$ analog bandwidth of 115 MHz . According to the manufacturer, the converter also has the industry's lowest typical power dissipation (750 mW) and analog input capacitance (17 pF).

The AD9002 includes 256 parallel comparator stages whose outputs are decoded to drive the ECL-compatible output latches. The unusually wide analog input bandwidth of 115 MHz is a by-product of both the
extremely dense bipolar process and the device's layout. This wide bandwidth, along with the high encoding rate, lets you use the part to acquire very accurate high-speed pulse inputs without using an external track/hold amplifier. The comparator's output-decoding scheme (in which the encoding cycle and the output latch both trigger on the rising edge of the encode signal) minimizes false codes, a capability that's critical for high-speed signals.
A feature that's particularly helpful in high-noise environments is the AD9002's external hysteresis-con-

Featuring a sampling speed of 150 M samples/sec and an analog bandwidth of 115 MHz , the AD9002 8-bit flash A/D converter includes 256 parallel comparator stages whose outputs are decoded to drive the ECL-compatible output latches.
trol pin, which you can use to optimize the comparator's sensitivity. The AD9002 also incorporates an overflow bit that signals over-range inputs. You can disable the overflow output by means of the overflowinhibit pin.
Other key specifications for the converter include a signal-to-noise ratio of 43 dB at 1 MHz , harmonic suppression of 63 dB at 1 MHz and 50 dB at 40 MHz , and maximum differential linearity of 0.5 LSB . To operate, the AD9002 needs only a voltage reference, an encode signal, and a single -5.2 V supply.
The AD9002 ADC is suitable for a wide range of signal-acquisition uses that require high-speed digitization of analog and pulse waveforms. Specifically, it's useful in such applications as digital radio, ATE and digital oscilloscopes, radar guidance, laser/radar warning receivers, and electronic warfare.
The AD9002 is available with 0.5 LSB or 0.75 LSB linearity. Both of these parts come in industrial-grade (-25 to $+85^{\circ} \mathrm{C}$) and MIL-STD-883 $\operatorname{Rev} \mathrm{C}\left(-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ versions. The industrial-grade parts come in 28 -pin ceramic DIPs. The military grades are available in 28 -pin ceramic DIPs or leadless chip carriers.

Unit pricing for the industrialgrade parts is $\$ 90$ for the 0.75 -LSB version and $\$ 135$ for the 0.5 -LSB version. The MIL-STD-883 parts are priced at $\$ 270$ and $\$ 360$ for the 0.75 -LSB and 0.5 -LSB versions, respectively. The industrial grades are available now; the MIL-STD883 grades are scheduled for delivery in August.-Dave Pryce
Analog Devices, One Technology Way, Norwood, MA 02062. Phone (617) 329-4700. TWX 710-394-6577.

Circle No 729

We're delivering picosecond speeds
 in
 24 holls.

Solutions to high speed design problems can be in your hands tomorrow. Because we have, in stock, a complete line of ultrafast PicoLogic GaAs ICs ready to ship to you in volume today.

By using standard ECL I/0 levels and power supplies, PicoLogic ICs speed up your present ECL designs across the board. And for applications that simply must outrun ECL, you can have a successful Pico-Logic-based design up and running the same day parts arrive using our Prototyping Kit.

Our line continues to expand. PicoLogic now covers all commonly used 100K ECL catalog functions. And our standard cell library plus design and foundry services help many leading companies create GaAs ASICs, including LSI circuits with over 2,000 gate complexity.

A 10:1 return on investment.

Our customers tell us that the value added to systems that use PicoLogic produces at least a 10 to 1 return on investment. Why? Because your new higher speed product leapfrogs the competition, provides your marketing staff with products that sell themselves and allows you to sell at a premium price with higher profit margins. Today, PicoLogic ICs are designed into many systems:

1) Our Time Division MUX/DEMUX and clock and Data Recovery Circuit create a $1.5 \mathrm{Gbit} /$ s digital interface in fiber optic communications links.
2) In ATE and lab instruments PicoLogic ICs

- produce square signals with 125 ps output transition times;
- decrease the skew in clock distribution by a factor of four (4); and
- generate and deserialize vectors at GHz rates.

3) Synthesizer and PLL control loops operating up to 1 GHz use our new Phase/ Frequency Comparator, Variable Modulus Divider and Synchronous Counter.
4) $2 \mathrm{~K} \times 2 \mathrm{~K}$ display electronics rely on our 1.5 GHz Shift Register for pixel generation with speed margin to spare.
For Application Notes and a quotation on ICs you can order today and use tomorrow, contact us immediately.
GigaBit Logic, 1908 Oak Terrace Lane,
Newbury Park, CA 91320-5524. Telex
6711358. Phone (800) GaAs ICs (422-7427). in CA (805) 499-0610.

PicoLogic ${ }^{\text {™ }}$ Digital ICs	Part No.	Speed	Availability	PicoLogic ${ }^{\text {™ }}$ Digital ICs	Part No	Speed	Availability
Gates				Arithmetic Operators			
Quad 3 Input NOR	10G000A	290 ps	In Stock	Dual 9-Bit Parity Generator/			
Quad 2 Input NOR	10G001	290 ps	In Stock	Checker and 8-Bit Equivalence			
Quad Differential XOR/XNOR				Checker	$10 \mathrm{G045}$	800 ps	In Stock
and Line Receiver	$10 \mathrm{G002}$	1.8 GHz	In Stock	Ultra-High Speed 4-Bit Adder	$10 \mathrm{G100}$	800 ps	In Stock
5, 4, 3, 2/3,2 Input AO/AOI	10G003	600 ps	4 weeks ARO	Ultra-High Speed Carry Lookahead	$10 \mathrm{G101}$	500 ps	In Stock
Drivers/Receivers/Comparators				4-Bit ALU (10181 ECL equivalent)	$10 \mathrm{G181}$	2 ns	6 weeks ARO
Dual Complementary Driver/ Comparator	10G012B	1.8 GHz	In Stock	Monolithic FET and Diode Arrays 15 mA Diode Array			
Dual $4: 1$ Fanout Buffer	10G011B	700 ps	In Stock	15 mA Diode Array 100 mA Diode Array	16 G 010 16 G 011	-	In Stock In Stock
Dual Differential MUXed Fanout Buffer	10G010	1.5 GHz	In Stock	Single Gate FET Array	$16 G 020$ $16 \mathrm{G} 021$	15 GHz 15 GHz	In Stock In Stock
Flip Flops and Registers				V	G021	GHz	In Stock
Dual Precision D Flip Flop	10 G 021 A	2.7 GHz	In Stock	NanoRam ${ }^{\text {m }}$ Memory			
Quad MUXed Input D Flip Flop	$10 \mathrm{GO23}$	2 GHz	In Stock	256×4-Bit Pipelined Static RAM	12G014	$3 \mathrm{~ns}$	Production
Ouad XOR Input Flip Flop	10G024	2 GHz	In Stock			cycle time	Sampling
Octal Register/Shitt Register and PN Code Generator	10G022	1.5 GHz	In Stock	Communication Products 8:1 Time Division MUX	$10 \mathrm{CO40}$	$1.5 \mathrm{~Gb} / \mathrm{s}$	
Register Files				1:8 Time Division DEMUX	10G041	$1.5 \mathrm{~Gb} / \mathrm{s}$	In Stock
16×43-Port Register File	10G030	1 ns	6 weeks ARO	Clock and Data Recovery Circuit	16 G 040	$2.0 \mathrm{~Gb} / \mathrm{s}$	In Stock
Multiplexers/Demultiplexers				$16 \mathrm{G040}$ Demo/OEM Board	90GCDR	-	In Stock
Quad 4:1 or Dual 8:1 MUX	10G(046	600 ps	In Stock	Phase Frequency Comparator	16 G 044	1.0 GHz	In Stock
Quad 2:1 MUX $3: 8$ or Dual 2:4 Decoder/DEMUX	10G004	1.8 GHz	In Stock	ASIC Products			
Counters/Prescalers	10 O 4	.00ps	In Stock	SC-1 Standard Cell Library	$80 \mathrm{GSC1}$	-	Available
2-Stage Divider	10G060	2.5 GHz	In Stock	Foundry Program	-	-	Available
4-Bit Synchronous Programmable Counter	10G061	1.6 GHz	In Stock	Prototyping \& Support Products Universal Prototype Kit			
7-Stage Counter/Divider	10G065	3.0 GHz	In Stock	Universal Prototype Board	90 GUPB	-	In Stock
Variable Modulus Divider	10G070	2.0 GHz	In Stock	High Speed Socket (40L. Package)	90GSKT-40I,	-	In Stock

Library of voltage-vs-current functions accelerates analog-circuit simulation

By using an algorithm that interpolates parameters from electricaldata curves, the ACS circuit simulator can model devices four to 15 times as fast as Spice can. Furthermore, the simulator can model all analog devices-even ones that Spice must break into combinations of smaller components.

Simulations that use the Spice program require device models. The ACS package, however, simply extracts device parameters from measurements of electrical parameters.

To model an analog device with this simulator, you enter the cur-rent-vs-voltage, capacitance-vsvoltage, and inductance-vs-voltage functions of the device. Then, for each applied voltage in a simulation, the program consults the electricaldata files and finds the state of the device.

You can add electrical data to the simulator by performing measurements or by entering a graph. You can also use a Spice model.

The package's automodeler module translates device measurements into electrical-data files. To measure the capacitance, inductance, and resistance functions of a device, you must connect a Hewlett-Packard 4145B or 4280 test system to the company's workstation.

The simulator module runs directly from the electrical-parameter database. By using measurements supplied by the automodeler module, the simulator can provide results that are within 2% of the correct solution.

You don't need to measure every analog device that you want to simulate; the vendor offers a library of standard devices. Each stand-ard-device file provides three sets of

By consulting its tables of current-vs-voltage functions, the ACS System can simulate circuits that contain such devices as SCRs, triacs, and lamps.
performance characteristics: maximum, typical, and minimum.

The library has typical resistors, capacitors, inductors, and diodes. It also includes bipolar junction transistors, junction FETs, MOSFETs, LEDs, and transformers.

Because the simulator doesn't use device models, the ACS library can offer components that Spice-based simulations can't model. For example, the library includes zener diodes, tunnel diodes, tunnel junctions, diacs, triacs, and SCRs. Other devices included in the library are glow tubes, triggers, photoconductors, op amps, and voltage regulators.

You can set up an analog simulation the same way that you set up a simulation in a laboratory-by using a workbench. The package's software workbench module features a voltmeter, power supply, function generator, spectrum analyzer, and oscilloscope. Instead of controlling the instruments by turning knobs, you adjust the test settings with the workstation's keyboard or mouse.

ACS runs on the company's Interpro $32(\$ 15,000)$ and $32 \mathrm{C}(\$ 25,000)$ workstations. The ACS automodeler and device-library modules each cost $\$ 20,000$; the simulator and the workbench modules each cost $\$ 10,000$.-Eva Freeman

Intergraph Corp, 1 Madison Industrial Park, Huntsville, AL 35807. Phone (205) 772-2000. TWX 810-726-2180.

Circle No 725

16-MHz support peripherals for $80386 \mu \mathrm{P}$ transfer system data via a 32 -bit bus

Because the timing and I/O specs of the 80387,82385 , and 82380 support chips match the requirements of the $80386 \mu \mathrm{P}$, the four chips together form an optimized 32 -bit computer. The support chips all use supersets of existing microinstruction sets, so you won't need to write new microcode. Moreover, the chips are compatible with the MS-DOS and Unix operating systems.

The 80387 accelerates floatingpoint calculations; the 82385 controls cache-memory functions. The 82380 Integrated System Peripheral combines DMA control with sys-tem-support functions.
The three support chips help 80386-based computers run faster. For example, because the 82380 DMA controller can use all the channels on a 32 -bit bus, it eliminates I/O delays. In addition to its DMA con-
troller, the 82380 includes a 20 -level programmable interrupt controller, four 16-bit programmable interval timers, a programmable wait-state generator, dynamic RAM, a refresh controller, and system-reset control logic. This chip replaces about 20 LSI and VLSI components.
The 82385 accelerates the operation of 80386 -based computers because it eliminates processor wait states. The cache-memory controller also reduces the number of bus calls to main memory. Using this chip, you can update a system's main memory after each write cycle without affecting the speed of the processor.
The 80387 also speeds system op-eration-it runs floating-point calculations four to six times faster than does the company's earlier 80287 floating-point coprocessor.

Aside from its speed, the 80387 resembles the earlier model. The 80387 understands the same objectcode instructions that the 80287 and 8087 coprocessor chips understand.

Communication between the 80386 and the 80387 is transparent to all application software. Whenever the $\mu \mathrm{P}$ needs to perform a float-ing-point calculation, it simply transfers the calculation to the coprocessor. The coprocessor's operation set comprises trigonometric, logarithmic, exponential, and arithmetic instructions.
Because support chips are worthless without a fast $\mu \mathrm{P}$, the vendor is introducing a $20-\mathrm{MHz}$ version of the 80386. According to the vendor, the $20-\mathrm{MHz} 80386$ runs faster than the CPUs in Digital Equipment's VAX 8600 and IBM's 4381.
The $20-\mathrm{MHz} 80386$ is available now. The manufacturer plans to ship the $20-\mathrm{MHz}$ versions of the 80387 and the 82380 in the second half of 1988 ; the $16-\mathrm{MHz}$ models are available now. Shipments of the $16-\mathrm{MHz} 82385$ will not start until the second half of 1987; the vendor will announce the price at that time.

The $20-\mathrm{MHz} 80386$ costs $\$ 599$; the $16-\mathrm{MHz} 80387, \$ 500$. The $16-\mathrm{MHz}$ 82380 costs $\$ 149$; the $20-\mathrm{MHz}$ version, $\$ 299$ (100).-Eva Freeman

Intel Corp, Box 58065, Santa Clara, CA 95052. Phone (408) 9875730.

Circle No 726

[^8]
Looking for bargains in top quality peripherals? We've got your number:

Zilog's impressive family of peripherals includes some of the most popular in the industry. That's not surprising. A rapidly growing number are available in CMOS, and most are available in space saving PLCC versions. Plus they're compatible with all major 8-, 16- and 32-bit applications. Not to mention highly competitive prices, off-the-shelf delivery, and Zilog's solid

reputation for the highest quality. Nobody offers more universal peripherals than we do. So if you don't find what you need "on sale" here, contact your local Zilog sales office or your authorized distributor today. We've got your number. Zilog, Inc./ 210 Hacienda Avenue/Campbell, CA 95008-6609/(408) 370-8000.
*Prices based on volume, lowest priced package.

Right product. Right price. Right away.

 W. GERMANY Munich (49) (89) 612-6046, JAPAN Tokyo (81) (3) $587-0528$, HONG KONG Kowloon (852) (3) 723-8979. R.O.C.: Taiwan (886) (2) 731-2420, U.S. AND CANADADISTRIBUTORS; Alliance Elec, Anthem Electric, Bell Indus,, Graham Elec, Hall-Mark Elec, JAN Devices Inc., Lionex Corp., Schweber Elec., Western Microtech., CANADA Future Elec., SEMAD.

Zilog
an affiliate of
EXXON Corporation

CADDOCK's Precision and Ultra-Precision Resistor Networks

 provide a designer's choice of performance that will optimize solutions in precision analog circuit designs.

Custom Type T912 and T914 Precision and Ultra-Precision Resistor Networks.

Custom models of these precision 'pairs' and 'quads' can include these special performance features:

- Resistance Values: from 1K to 2 Megohms with maximum ratios of 250-to-1.
- Absolute TC: as low as $15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.
- Ratio TC: as low as 2 PPM $/{ }^{\circ} \mathrm{C}$.
- For Type T912/T914 data, circle Number 201.

Precision Decade Resistor Voltage Dividers and Current Shunt Resistor Networks deliver many optimum combinations of precision and temperature coefficient performance for high accuracy range-switching circuitry.

Standard Type 1776 Precision Decade Resistor Voltage Divider Networks.

The Type 1776 Precision Decade Resistor Voltage Dividers provide a family of networks that includes 3, 4 and 5-decade voltage dividers with ratios from 10:1 to 10,000:1. Standard performance includes a wide range of specifications in particular combinations that meet the most often requested requirements.

- Absolute Tolerances: from 0.25% to 0.1%.
- Ratio Tolerances: $0.25 \%, 0.1 \%$ or 0.05%.
- Absolute TC: from $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ to 25 PPM $/{ }^{\circ} \mathrm{C}$.
- Ratio TC: from $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ to $5 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.
- Voltage Coefficient: As low as 0.02 PPM/Volt.

With 36 standard models to choose from, each circuit designer can specify the exact levels of performance required by each application.

- For Type 1776 data, circle Number 202.

Standard Type 1787 Precision Current Shunt

 Resistor Networks.[^9]- Resistance Values: 1 ohm , 10 ohms, 100 ohms and 1000 ohms.
- Absolute Tolerances: 0.25\% 0.1% or 0.05%.
- Absolute TCs: $100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$, $80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ or $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.

There are now 12 standard models of the Type 1787 Current Shunt Resistor Networks available for 3 and 4-decade applications, and prototype quantities of many models are normally available from factory stock.

- For Type 1787 data, circle Number 203.

Your Custom Precision and Ultra-Precision Resistor Networks from Caddock:

- Can be delivered in only 6 weeks ARO
- With total NRE charges typically under $\$ 950^{00}$
- Includes 10 prototype

- Thin-Profile, Single-In-Line package design.

Type T1794 Custom Low TC Precision and Ultra-Precision SIP Resistor Networks.

Caddock's Tetrinox ${ }^{\text {® }}$ resistance films provide a wide choice of Absolute TCs, Ratio TCs and
 precision tolerance specifications. Select the performance of your custom network from the following:

- Resistance Values: from 500 ohms to 50 Megs.
- Absolute Tolerances: $1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%$, $0.10 \%, 0.05 \%$ and 0.025%.
- Ratio Tolerances: $1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%$, $0.10 \%, 0.05 \%$ and 0.025%.
- Absolute Temperature Coefficients: $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$, $25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ and $15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
- Ratio Temperature Coefficients: $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$, $25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}, 10 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ and $5 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
- For Type T1794 information, circle Number 204.

Type 1789 Custom Low Resistance Value Precision SIP Resistor Networks.
Using Caddock's Micronox ${ }^{\text {® }}$ resistance films, your low resistance custom networks can now include:

Resistance Values: from 0.5 ohms to 10,000 ohms.

- Absolute Tolerances: $1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%$, 0.10% and 0.05%.
- Ratio Tolerances: $1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%$, 0.10% and 0.05%.
- Absolute Temperature Coefficients: $100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$, $80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ and $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Ratio Temperature Coefficients: $80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$, $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}, 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ and $15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
- For Type 1789 information, circle Number 205.

Caddock's high thru-put manufacturing capabilities provide cost-effective, on-time delivery of your custom resistor network requirements. Custom network designs are now in-production in quantities from 500 networks per year to as high as 500,000 networks per year.

For fast solutions to your custom resistor network needs, call our Applications Engineers at Telephone No. (714) 788-1700.

Repeaters for multiplexers stretch host/terminal lines

Users of the HPS distributed communication subsystem family of multiplexers can now spread clusters of RS-232C terminals over cable distances of as much as three miles by using Spurs (Systech Pluriaxial Unplug Repeaters).

The Spurs come in three versions: The HPS-5580 Spur has six coaxial connectors, the HPS-5581 has six coaxial connectors and one fiberoptic connector, and the HPS-5582 has six coaxial connectors and two fiber-optic connectors. Mixing the three different Spur products in a system allows you to use fiber-optic cable to provide electrical isolation and to increase the distance be-
tween the host and the terminals.
By using the Spurs in conjunction with the company's HPS host adapters and cluster controllers, designers of multiuser Multibus I-, Multibus II-, and VME Bus-based systems can simplify the cabling connecting hosts and RS-232C terminals. An HPS communication subsystem includes an intelligent host-adapter board that offloads system I/O functions from the CPU. Instead of providing direct connections to multiple terminals, the HPS host adapter provides a LAN connection at the host computer's back panel.

The LAN used by the HPS multi-

A combination of coaxial and fiber-optic links between the HPS-5581 and HPS-5582 repeaters (Spurs) and HPS cluster controllers provides electrical isolation and flexible fan-outs to terminals. The Spurs also allow you to extend your computer-communication links to as much as three miles.
plexers operates transparently to the user and connects to the cluster controllers via a single coaxial cable. The cluster controllers each serve 8 or 16 RS-232C terminals with traditional serial cables. The LAN employs a token-passing concept, similar to Arcnet, that allows each terminal to operate at 9600 baud. The cluster controllers can be daisychained, and the last one can be as far as 1000 ft from the host.

Because the LAN connects the various cluster controllers (sometimes via Spurs) in a virtual circle, the physical configuration of Spurs and cluster controllers does not affect the operation of the LAN. Theoretically, Spurs could connect 254 clusters, but at present the hostadapter firmware supports only 128 terminals.

The Spur products provide even more flexibility in implementing an I/O subsystem. You can connect a 5580 Spur to a host adapter, employ

Allowing you to place terminals three miles from the host, the HPS-5580 family of repeaters provides flexibility in distributed-communication-subsystem multiplexer schemes.
a 5580 as a repeater, or use a 5580 to provide coaxial cable connection to five cluster controllers, or you can do all three. If you don't connect cluster controllers between Spurs, the Spurs can be as far apart as 1500 ft ; if you do connect clusters between the Spurs, the Spurs can be 1000 ft apart. The coaxial link between a host adapter and a Spur is
limited to 1000 ft .
The fiber-optic links connecting two Spurs can be as long as 4000 ft ; you must link the fiber-optic connectors of the first 5581 or 5582 only with the fiber-optic connectors of the other 5581 or 5582 . Further, you can't connect cluster controllers directly to an optical link; you must connect them to a coaxial connector.

All three Spur models are immediately available. Models HPS-5580, HPS-5581, and HPS-5582 cost \$610, $\$ 1505$, and $\$ 2205$ (100), respectively. The same cluster controllers and Spurs work with Multibus and VME Bus host adapters.-Maury Wright Systech Corp, 6465 Nancy Ridge Dr, San Diego, CA 92121. Phone (619) 453-8970. TLX 4990507.

Circle No 728

EXAR OFFERS THE INDUSTRY'S LARGEST FAMILY OF SC FILTERS.

With extensive experience in the design of modem filters, EXAR offers you the widest selection of high performance general purpose switched capacitor filters. EXAR's filters are manufactured in our state-of-the-art Class 10 CMOS wafer fabrication facility utilizing proprietary double poly, double metal CMOS process.

EXAR filters give you the edge that no competition can match:

- Low Power
- Low Noise
- Lower Clock Feedthrough Voltage
- Wide Supply Range including single 5V
- Faster Clocking Capability (typically 2.5 MHz)
- Low Output Offset Voltage

THE EXAR FAMILY OF FILTERS

		DEVICE	AVAILABILITY
	X X -1015	7th-order Elliptic Lowpass Filter	NOW
	XR-1016	7th -order Elliptic Lowpass Filler with two uncommitted operational amplifiers	NOW
	XR-1010	Dual Second-order Switched Capacitor Building Block	NOW
	XR-1020	Datacommunication Instrumentation Filter 10 fiters used to Characterize the Phone Line	NOW
	XR-1001	Fourth-order Lowpass Filter: Butterworth 100:1	NOW
	XR-1002	Butterworth 50:1	NOW
	XR-1003	Fourth-order Lowpass Filter: Bessel 100:1	NOW
	XR-1004	Bessel 50:1	NOW
	Xhr-1005	Fourth-order Lowpass Filter: Chebyshev 0.1dB 100:1	NOW
	XR-1006	Chebyshev 0.1dB 50:1	NOW
	Xh. 1007	Fourth-order Lowpass Filter: Chebyshev 0.5d8 $100: 1$	NOW
	X P -1008	Fourth-order Lowpass Filter: Chebyshev 0.5dB 50:1	NOW

Available soon in military grade.

	Device	Application	Type	Speed (BPS/	Tech- nology	Features

EXAR offers you the quality and customer support needed for your filter applications. In addition, EXAR can address your specific filter requirements with customized switched capacitor solutions. Utilize our years of engineering expertise and know how in filters. Call or write EXAR for your filter needs. 750 Palomar Avenue, Sunnyvale, CA 94086 Tel. (408) 732-7970.

\square Please send me additional information on General Purpose Filters.

EDN051487
\square Please send me information on Modem Filters.
\square Please send me EXAR's Short Form Catalog.

Name \qquad Title-

Company Dept./Div.

Address.

City \qquad State \qquad Zip \qquad

Phone (\qquad Ext. \qquad
Application
EXAR
750 Palomar Avenue, Sunnyvale, CA 94086 Tel. (408) 732-7970 TWX 910-339-9233

(Fully Automated System Troubleshooting) Completely Eliminates The Drudgery Of Testing!

New IBM PC-based FAST software gives you the lowest-cost solution to testing even the most sophisticated chips and boards. FAST completely automates your test functions and provides instant test results and troubleshooting guidance. The turn-key FAST system meets every design engineering, manufacturing test, and field test requirement!

- Easy to use; makes you productive in minutes
- No need to write test procedures
- Works with your existing test patterns and test set-ups
- Tests parts in live systems
- No need to disconnect clocks, feedbacks, or single shots
- Handles all parts

FOR A FREE DEMO DISKETTE CALL
(805) 499-6867

ALDEC
Automated Logic Design Co. 3525 Old Conejo Rd., \#111 Newbury Park, CA 91320

VME Bus disk controller has 2.4M-byte $/ \mathrm{sec}$ access time

The 752 H-SMD disk controller uses an 8 k -byte FIFO buffer, read-ahead techniques, and a proprietary sec-tor-packetizing scheme to achieve a disk-transfer rate of 2.4 M bytes $/ \mathrm{sec}$. According to the manufacturer, the controller exhibits a peak DMA rate of 18 M bits/sec and an aggregate, or weighted average, rate of approximately 10 M bits/sec.

The VME Bus disk controller uses a scheme the manufacturer calls "Dynathrottle" to create packets of as many as six disk sectors, which are then sent via DMA to the host processor. This technique reduces the intersector dead time, which can account for as much as 50% of the time required for data transfer between a disk and the host. The size of the packets is determined in part by the amount of data accumulated in the controller's onboard FIFO buffer, which operates as a cache for disk data.

The Dynathrottle scheme also allows you to use software to regulate the size of packets. For example, if you wish to emphasize fast diskaccess time, you can use a large packet size; if you want to distribute bus time more evenly among the devices on the VME Bus, you can use smaller packets.

In conjunction with the Dynathrottle technique and the 8 k -byte onboard FIFO buffer, the 752 employs a read-ahead technique. The controller reads ahead on the disk until the FIFO buffer is filled. Because most file systems require a number of sequential sections, this read-ahead technique provides a high hit rate, even for multiple block reads.

The disk controller supports any $5^{1 / 4-}$ to 14 -in. SMD-interface drive having transfer rates from 1 M to

By employing read-ahead and sectorpacketizing techniques, the 752 single-board disk controller achieves an aggregate DMA transfer rate of 10 M bits $/ \mathrm{sec}$.
2.4 M bytes $/ \mathrm{sec}$. You can attach any two such devices to the controller.
The disk controller's programmable interrupt levels, vectors, and address modifiers allow it to support multiple processors. The 752 also supports both 32 - and 48 -bit errordetection and -correction schemes. The board costs $\$ 2695$.

—Jim Wiegand

Xylogics Inc, 144 Middlesex Tpk, Burlington, MA 01803. Phone (617) 272-8140.

Circle No 727

It takes a year to get these SOS RAMs-true or false?

It's true with some suppliers. But not Marconi. We can deliver MAS6116 $2 \mathrm{~K} \times 8$ bit RAMs from stock in four to six weeks flat!

These Static RAMs answer your need for both delivery and reliability, meeting MIL-STD-883C requirements for Class B devices (for class S devices allow slightly longer). They also provide exceptional radiation hardness, with figures that far exceed VHSIC requirements:
-Total Dose: > 100 K RAD (Si)

- Transient Upset: > 10^{10} RAD (Si)/sec
- Latch up: Not possible!
- Single Event Upset: $<2 \times 10^{-10}$ errors/bit-day.
Marconi's advanced technology and fast delivery are the results of ten years of SOS manufacturing experience. That experience stands behind all our SOS devices, from RAMs to

Octals to DSPs to gate arrays. Our expertise also includes standard cell sOS products, as well as standard and semi-custom non-rad hard CMOS devices.
So for $2 \mathrm{~K} \times 8$ SOS RAMs now -or for any CMOS need-put Marconi to the test; you'll be impressed with our answers. For immediate product and delivery information, fill out the coupon below. Or contact Marconi Electronic Devices, Inc, Integrated circuits Division,
45 Davids Drive, Hauppauge, NY 11788; (516) 231-7710.

```
\squareK}\times8\mathrm{ SOS RAMS in four weeks? Of course I'm interested. Have a Representative contact me at once.
\(\square\) Send me information about Marcon devices. I am interested in:
\begin{tabular}{ll}
\(\square\) RAMs & \(\square\) Octal \\
\(\square\) DSPS & \(\square\) Gate arrays \\
\(\square\)
\end{tabular}
```


Name

Company \qquad street \qquad
City \qquad State Zip
\qquad
Clip and mail to:

45 Davids Drive, Hauppauge, NY 11788.

Crimp performance story. 26 GHz, and economy too.

Our solderless SMA connectors for semi-rigid coax have already changed the way people think about productivity in manufacturing and field repairand put a lot of soldering equipment in the corner to gather dust.

Now our latest versions are pushing performance even further by handling frequencies up to 26 GHz . And we aren't through yet.

We're also offering tighter radius 90° S on our "short style" SMAs, and blind-mate styles for rack and panel applications. And MIL-C-39012 types qualified to

Category F.
And a variety of stripline launchers for optimum board-tocable signal transfer. And an expanded selection of adaptors for easier interface with other configurations. And the option of integral environmental seals that apply as you crimp.

And we're still offering installation that takes just seconds, with simple, first-time phase matching. And a finished
job that outperforms conventional systems in ruggedness, space requirements, weight - and installed cost.

In short, a lot of crimp SMA performance and a lot of AMP support that takes a lot of heat off you.

Call (717) 780-4400 and ask for the SMA Information Desk. AMP Incorporated, Harrisburg, PA 17105-3608.

AM- Interconnectingideas

Blind mate styles simplify rack and panel installations.

Cadnetix the standard C

Finally, full-function CAE for your standard IBM PC.

For a long time, full-function CAE and a standard IBM PC couldn't be mentioned together in the same breath. The Cadnetix PC System has changed all that.

Finally, an experienced CAE vendor has outfitted an unmodified IBM PC/AT ${ }^{T m}$ or $\mathrm{XT}^{T M}$ with the same excellent hierarchical schematic capture tools included on our high-end workstations. We've given you immediate access to real CAE component and semicustom libraries via Ethernet."' And, we've made your PC a "window on the network," linking it to powerful Cadnetix engines for simulation, physical modeling and physical layout. All this without expensive alterations or add-on hardware. The Cadnetix PC System is a complete CAE resource that hasn't been converted into a high-cost hybrid.

The super-computer power of Cadnetix Engines, directly available to your PC's.
With Cadnetix, your IBM PC becomes much more than a normal entry-level CAE workstation. For fast analysis of your largest designs, Cadnetix gives you direct access from your PC to our full line of CAE Engines.

You'll develop designs on the PC, then compile and analyze them on high-performance engines tailored for accelerated compilation, simulation, physical modeling and database management. And Cadnetix has integrated all of these functions into a single network resource featuring both a RISC processor and a bit-slice processor to accelerate various applications tasks.

Our Analysis Engine is a versatile processing node offering you the choice of configurations you need for your design analysis environment. With up to 280 Mb of disk, mass storage for database management is essentially unlimited. Options include:

- Bit-Slice Engine with Simulation: This bit-slice application-specific accelerator speeds through logic simulations at 200,000 evaluations per second - 200 times faster than typical workstations. Worst-case analysis tools are standard. GP Engine: A general purpose engine providing accelerated compilation and SPICE. Based on a RISC architecture chip set, it has an effective operating rate of 10 million instructions per second. In addition, a compiler and debugger tool set allow you to accelerate 'C' programs which you develop.
- Physical Modeling Engine: This engine simulates

introduces AE workstation.

VLSI chips at vector rates of up to 16 MHz and accommodates devices with up to 364 inputs and 384 outputs. Vector storage of $512 \mathrm{~K} \times 91$ bits provides for longer simulations and simultaneous analysis of up to 30 devices.
Powerful Cadnetix engines complement PC capabilities, achieving top efficiency in compute-intensive design tasks while supporting lowest-cost per engineer for routine access.

Now your PC has the capability of an entire design network.

The Cadnetix PC System is not just another PC software package. It is your window to complete, supported solutions for electronic systems design.

READERS' CHOICE

Of all the new products covered in EDN's March 4, 1987, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, or refer to the indicated pages in our March 4, 1987, issue.

DIGITAL PATTERN GENERATOR

The DataSource-8600 is a hardware/software package that turns an IBM PC or compatible computer into a low-cost, high-performance digital pattern generator, recorder, and analyzer (pg 99).
Analytic Instruments Corp.
Circle No 603

A VOICE-COMPRESSION CHIP

The DS2167 combines a digital signal processor with an algorithm known as Adaptive Differential Pulse Code Modulation on a single chip. The result is a 32 k -bps voice-transmission rate, which doubles the capacity of T1 lines (pg 104).
Dallas Semiconductor Inc.
Circle No 601

A ROTARY ENCODER

The Model RE10 magnetic rotary encoder bridges the gap between industrial encoders and open-frame kits. The compact, lightweight device is impervious to environmental hazards (pg 100).
National Machine Systems Inc. Circle No 602

C COMPILER

The C 386 compiler and the RLL 386 relocation, linkage, and library tools package are 80386 softwaredevelopment tools that run on the IBM PC/AT or compatibles (pg 203).
Intel Corp.
Circle No 604

- DOT-MATRIX PRINTERS

The FX-86e (80-column) and FX-286e (136-column) are 9 -pin dot-matrix printers that provide Roman and sans serif near-letter-quality fonts as standard features (pg 204).
Epson America Inc.
Circle No 605

ISDN INTERFACES

Primary Rate Interface for direct connection to $1.544(23 \mathrm{~B}+\mathrm{D})$ or 2.048 (30B + D) Mbps ISDN interface

- Monitors a DS1 service (two DS1 signals) and simulation of a DS1
TE/NT or CO/ET
Basic Rate Interface for direct connection to a $192 \mathrm{Kbps}(2 \mathrm{~B}+\mathrm{D})$ ISDN interface
- Monitors a Basic Rate Interface (S or T) and simulates a Basic TE or NT Insertion or extraction of information from signaling or (D) channels 56 or 64 Kbps data (B).
ISDN/LAPD software packages including Q.921/Q. 931 analysis and automatic LAPD simulation

FINISHED SIMULATION AND ANALYSIS APPLICATION PACKAGES

- X. 25 Official Qualification Procedures as used for the Department of Defense DDN Network
- X. 75 Certification Procedures developed for interoperability testing by a major Bell Operating Company
- SNA 3270 and BSC 3270 Exercisers, prewritten tests for exercising IBM devices
- Real Time display of interpreted traffic
- History display of interpreted traffic from the acquisition buffer
- Event display of BOP frame types
- X. 25, SDLC/SNA and Bisync statistics packages
- 20 Mbyte hard disk provides abundant storage space for your own scenarios

COMPATIBILITY

Upward compatibility with Chameleon and Chameleon II applications allows you to run and expand existing test solutions on the Chameleon 32.

"C" PROGRAMMING LANGUAGE SUPPORT

With Tekelec's " C " programming capabilities for the Chameleon 32, you can write application specific programs tailored to your individual needs. Tekelec's "C" Programming Package includes specific libraries written by Tekelec for HDLC, SDLC and LAPD.

"PAGES"

Innovative page display feature allows multiple simulation tests on various channels to be viewed simultaneously. The five analysis applications, Statistics, Real Time, Triggering, History and Event can be displayed simultaneously on different pages.

EXPANDABILITY

State-of-the-art hardware and software, with expandable chassis and bus architecture provide the flexibility you need for growth over many years.

TWO MACHINES IN ONE

Dual port allows you to simulate or analyze different channels on the same or different physical ports simultaneously.

TRIGGERING

- Virtually unlimited number of triggers may be implemented
- Multiple conditions and actions may be set for each trigger

Call today to get your solution tomorrow, 1-800-TEKELEC

Testing communications of the future today. ${ }^{\text {M }}$

You wouldn't do this with your AnalogVLSI devices.

You'll have to if you go to most ATE companies for a solution to today's sophisticated "system silicon" testing problems. Because all you'll get is a makeshift tester. And that means resigning yourself to man-months of custom hardware work integrating analog and digital instrumentation. And putting up with the long hours of low-level software development that go with custom solutions. Worse, you can expect these delays to cut your chances of getting your product to market on time.

Teradyne now has a simple answer to this complex testing problem. The A500 Analog VLSI Test System. It's the first of a new generation of systems specifically for AVLSI "system silicon" devices. A test system that can help you cut critical product development time by months or even years.
One Test System, Once and for All With AVLSI devices you won't get fast design feedback, unless you test individual components - the
"building blocks" of system silicon. And you won't comply with customer and industry requirements if you don't do complete "system" functional testing. With conventional test systems it means two of everything. Two testers, two test programs, two insertions, two data bases. And more than twice the time to get to market.

The A500 allows you to do it all with one system. So there's only one system to program. One insertion to make for both component and functional testing. And only one data base to work with. Which means significantly less time to market.

Vector Bus II": the Great Integrator

The heart of the A500 is Teradyne's unique Vector Bus II architecture. It integrates analog and digital VLSI test capability at the system level. Which means you won't have to build special applications hardware for every new device you design. Vector Bus II eliminates that costly custom-work bottleneck

Why accept it in an AnalogVLSI Test System?

with such features as TimeMaster ${ }^{\text {tw }}$ Synchronization, Mixed-Signal Event Control, and MultiSource Data Mixing.

A Picture's Worth a Thousand Keystrokes

The A500 also revolutionizes program development. Our IMAGE ${ }^{\text {m }}$ (Interactive Menu-Assisted Graphics Environment) software gives you graphics programming as powerful as device designers' CAD/CAE tools. Using a mouse to control multiple windows, pop-up menus and software "power tools," you move ideas rapidly from mind to screen. And much faster to market.

Teradyne's new A500 is the only test system with the features you need to win the race for Analog VLSI market opportunities. To find out more, call Beth Sulak at (617) 482-2700, ext. 2746. Or call your nearest Teradyne sales office or write: Teradyne, Inc., 321 Harrison Avenue, Boston, MA 02118.

cMy interconnect

supplier better

act like a

partner-

Or he's off

the list."

Tough customers

 team with 3M.Tough, demanding customers like you are putting 3M at the top of the supplier list, to boost the design and production efficiencies that give you an edge in today's marketplace. Why? An expanded line of interconnect products and a growing commitment to service.

New, broader product line. With 3M as your partner, you get more choices than ever-at every interconnect level.

- 3M's advanced TAB technology bridges the IC-to-package gap with tapes that connect up to 400 peripheral leads per IC.
- Textool test, burn-in and end-use IC sockets and carriers are crucial to your product reliability.
A growing array of PWB connectors and cables meets your tough design criteria.Application-specific IDC or molded cable assemblies are delivered promptly from assembly centers nationwide.
- Standard and customized transmission line assemblies match your high-speed data applications.

New, broader service commitment. Tough customers like you demand services that increase design and manufacturing efficiency. With 3M as your partner, you get more service than ever.

Need better response and updating on orders? 3M's Order Express ${ }^{\text {SM }}$ pools orderprocessing activity at a single toll-free number. Ready to network your orders to complement JIT processing? 3M's EDI capabilities are
ready to serve your real-time ordering needs. Want a maximum first-pass yield on products you receive? 3M's Statistical Process Control means you receive on-spec products.

New, broader support capabilities. Tough customers with tough questions can get help over the phone from 3M technical personnel. We will provide you with specification or application data.

Backing up 3M in your area is our professional direct sales and distributor network. These experts respond promptly to your needs and get you the samples or data you need to move your design into production. We've even improved our product catalogs, so now it's easier than ever to specify 3 M quality for your design. Even the one you need by yesterday.

Now that we've expanded our product line and services, teaming up with 3M is the surest way to cut costs and boost efficiency.

For sales and ordering information, dial 1-800-CALL-EPD or write Electronic Products Division/3M, Department T, P.O. Box 2963, Austin, TX 78769-2963.

LEADTIME INDEX

Percentage of respondents

(TEM
TRANSFORMERS
Toroidal
Pot-Core
Laminate (power)
CONNECTORS
Military panel
Flat/Cable
Multipin circular
PC
RF/Coaxial
Socket
Terminal blocks
Edge card
Subminiature
Rack \& panel
Power

PRINTED CIRCUIT BOARDS

Single-sided	0	82	18	0	0	0	3.9	6.0
Double-sided	0	46	54	0	0	0	5.7	6.1
Multilayer	0	27	67	6	0	0	7.2	8.7
Prototype	9	81	10	0	0	0	3.2	4.9

RESISTORS

Carbon film	48	28	24	0	0	0	2.8	5.0
Carbon composition	50	29	14	7	0	0	3.1	5.3
Metal film	47	21	21	11	0	0	3.9	6.2
Metal oxide	33	33	34	0	0	0	3.7	5.4
Wirewound	12	47	35	6	0	0	5.1	6.9
Potentiometers	22	35	30	13	0	0	5.5	6.8
Networks	36	21	21	22	0	0	5.7	7.9
FUSES								
SWITCHES	50	28	22	0	0	0	2.6	4.1
Pushbutton								
Rotary	24	33	29	9	5	0	6.0	5.5
Rocker	19	25	44	12	0	0	6.2	7.3
Thumbwheel	29	43	21	7	0	0	4.1	4.6
Snap action	10	40	40	10	0	0	6.0	6.4
Momentary	25	17	42	8	8	0	7.3	5.1
Dual in-line	10	40	30	10	10	0	7.7	7.4

WIRE AND CABLE

\section*{| Coaxial |
| :--- |
| Flat ribbon |}

Multiconductor

Hookup

Wire wrap
Power cords
Other

| 36 | 37 | 18 | 9 | 0 | 0 | 4.0 | 4.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 39 | 44 | 11 | 6 | 0 | 0 | 3.1 | 5.0 |
| 44 | 19 | 37 | 0 | 0 | 0 | 3.6 | 4.8 |
| 64 | 27 | 9 | 0 | 0 | 0 | 1.5 | 1.9 |
| 73 | 18 | 9 | 0 | 0 | 0 | 1.3 | 2.8 |
| 18 | 47 | 29 | 6 | 0 | 0 | 4.7 | 4.5 |
| 0 | 0 | 100 | 0 | 0 | 0 | 8.0 | 6.0 |

POWER SUPPLIES

Switching	12	31	38	19	0	0	6.8	9.4
Linear	10	40	40	10	0	0	6.6	8.6

[^10]
RELAYS

General purpose	30	35	25	10	0	0	4.6	5.6
PC board	10	42	32	16	0	0	6.2	7.9
Dry reed	0	50	38	12	0	0	6.4	7.9
Mercury	0	33	67	0	0	0	6.3	10.1
Solid state	13	27	47	13	0	0	6.6	7.9

DISCRETE SEMICONDUCTORS

Diode	42	23	31	4	0	0	3.8	6.3
Zener	41	18	29	12	0	0	4.7	6.9
Thyristor	13	37	38	12	0	0	6.1	8.3
Small signal transistor	31	23	38	8	0	0	5.0	7.6
FET, MOS	29	36	21	7	7	0	5.7	6.9
Power, bipolar	17	50	33	0	0	0	4.2	6.4

INTEGRATED CIRCUITS, DIGITAL

CMOS	24	38	29	9	0	0	4.9	7.1
TTL	36	27	32	5	0	0	4.1	6.3
LS	35	35	25	5	0	0	3.8	6.8

INTEGRATED CIRCUITS, LINEAR										
Communication/circuit	8	33	42	17	0	0	6.9	8.2		
OP amplifier	23	15	54	8	0	0	6.0	7.3		
Voltage regulator	20	30	45	5	0	0	5.3	6.6		

| MEMORY CIRCUITS
 RAM 16k | 25 | 42 | 33 | 0 | 0 | 0 | 3.9 | 7.1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAM 64k | 25 | 42 | 25 | 8 | 0 | 0 | 4.5 | 5.8 |
| RAM 256k | 27 | 46 | 18 | 9 | 0 | 0 | 4.2 | 8.2 |
| ROM/PROM | 27 | 46 | 27 | 0 | 0 | 0 | 3.5 | 6.7 |
| EPROM | 25 | 44 | 12 | 19 | 0 | 0 | 5.2 | 6.0 |
| EEPROM | 20 | 40 | 40 | 0 | 0 | 0 | 4.4 | 8.5 |
| DISPLAYS | | | | | | | | |
| Panel meters | | | | | | | | |

MICROPROCESSOR ICs

8 -bit	29	28	43	0	0	0	4.3	7.8
16 -bit	40	20	40	0	0	0	3.8	8.2

FUNCTION PACKAGES

| Amplifier | 33 | 17 | 33 | 17 | 0 | 0 | 5.8 | 11.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Converter, analog to digital | 11 | 33 | 45 | 11 | 0 | 0 | 6.3 | 7.0 |
| Converter, digital to analog | 14 | 14 | 57 | 15 | 0 | 0 | 7.2 | 7.7 |

LINE FILTERS

$$
\begin{array}{llllllll}
22 & 22 & 56 & 0 & 0 & 0 & 5.1 & 8.3 \\
\hline
\end{array}
$$

CAPACITORS

Ceramic	42	26	26	6	0	0	3.7
4.9							
Ceramic monolithic	41	29	24	6	0	0	3.7
4.6							
Ceramic disc	47	29	18	6	0	0	3.2
Film	44	11	45	0	0	0	3.9
Electrolytic	25	35	25	15	0	0	5.4
Tantalum	26	35	35	4	0	0	4.5

INDUCTORS

12	38	38	12	0	0	6.1	7.6

[^11]
SIEMENS

Surface mount varistors... technology in a new dimension.

Introducing Siemens surface mount Metal Oxide Varistors... our newest generation of surface mount innovation.
Siemens pioneered surface mount technology, and we've never stopped directing its destiny. That's why our new varistors do more than provide the many advantages of surface mounting (such as reducing harmful effects of ESD) - they give you renowned Siemens quality and flexibility. For example, Siemens varistors are
symmetrical in shape - which means your production line moves faster and smoother because there's no need for orientation.
Siemens high quality surface mount varistors are available with voltage ratings from 4 to 300 V AC (5.5 to 385 V DC) and comply with IEC Standard 384. Each is a breakthrough of small proportions with big advantages for you.

Call 1-800-222-2203 $\times 4546$ for immediate design or delivery information. Or return the coupon for our new data sheets.

Siemens...your partner for the future in surface mount varistors.

HIGH PERFORMANCE ASICs

High-Speed, Low-Power, Digital ASICs with Analog and I/O Functions

Break out of the speed/power trap

Caught in the speed/power trap? CMOS too slow, ECL too hot? Tired of leaving analog or high current drivers off your chip?
Ferranti Interdesign offers you alternatives with an advanced $1.5 \mu \mathrm{~m}$ double layer metal bipolar process that's faster than CMOS, demands less power than ECL and requires only low-cost standard packaging.
Whether your design calls for high-speed, low-power digital gate arrays or digital gate arrays with analog and bus driver functions, Ferranti Interdesign has the answer.

> Differential Logic-
> 2 to 4 times faster2 to 4 times lower power

Our advanced "Differential Logic" circuit techniques allow the ULA to achieve flip-flop speeds up to 250 MHz at only $425 \mu \mathrm{~W}$ - But don't stop at your logic gates Put more of your system on the chip, standard single-cell 48mA

peripherals give you up to 40 bus drivers!

Each ULA in the DS Series contains high-performance I/O cells. These cells are designed to allow the integration of special digital and linear functions such as comparators, oscillators and amplifiers for extremely versatile interfacing.
With complexities from 600 to 10,000 gates, system speeds to 100 MHz at an average gate power of only $210 \mu \mathrm{~W}$, the ULA-DS provides the low-power solution to your increased speed requirements.

Unparalleled CAD support

Ferranti Interdesign offers the designer complete CAD support with an extensive macro library on your Valid ${ }^{\text {m }}$, Daisy ${ }^{\text {m }}$, or VAX ${ }^{\text {m }}$ workstation, or if you prefer, consult our engineers, free of charge,
and draw on our over 15 years of linear and digital design experience.

ULA - Your High Performance ASIC Solution

Why wait-when you can start reaping maximum benefits in terms of performance, economics, reliability and design security, today, by putting your system on silicon with the High Performance ULA-DS Seriesanother ASIC solution from Ferranti Interdesign.

For more information on the ULA family and our full range of Analog, Digital and mixed Analog/Digital ASIC products and capabilities, please call us at (408) 438-2900.

Solutions
 in

FERRANTI

Ferranti Interdesign Inc
Sequoia Research Park 1500 Green Hills Road Scotts Valley, CA 95066

WE'LL BE AROUND FOR AND THE NEXT.

We know you face stiff competition with your next generation of products. Were actively working to help you stay in front

Starting with substantial investments in research and development and in product, process and mechanization engineering, we have committed all of our resources to a single goal: to be the leading source for the advanced, reliable passive components you'll need in the months and years ahead.

Broadest line of passive components in the U.S.

Since we've combined the resources of Mepco//Electra and Centralab, we can meet your needs better than ever. We offer the broadest line of passives
in the industry. Both leaded and surface mount. And we're adding new components, new configurations and new packaging alternatives all the time.

For example, we challenge you to find a supplier that can match Mepco/ Centralab's wide selection of capacitors. Ceramic Capacitors. Film Capacitors. Aluminum Electrolytic Capacitors.

We also have a broad selection of resistors, including Thick Film Chip Resistors. Metal Film Resistors. Precision MELF Resistors. Nonlinear Resistors. And Trimming Potentiometers.

Our electromechanical line includes Rotary and Pushbutton Switches. Keyswitches. Membrane Switches made to your precise specifications. And custom or standard Potentiometers.

Leading in SMDs ${ }^{\circledR}$: selection, performance and reliability.

We can meet your growing needs for superior component performance in small sizes. We offer the largest selection of passive Surface Mount Devices (SMDs) in the industry, many with unique performance advantages. For example, our BLUE CHIP ${ }^{\circledR}$ Tantalum Capacitor has achieved worldwide recognition for reliability in many applications that demand outstanding electrical characteristics in a very small size.

Our SMD Ceramic Chip Capacitors are another example of how Mepco/Centralab can help you greatly enhance circuit board density with superior SMD components. They offer state-of-the-art volumetric efficiency in a capacitance device. And they re available in a wide selection of capacitance values, dielectric materials and voltage ratings.

the next geveration. AND THE NEXT... \$20 million in passives your competition.

We're backed by Philipsa worldwide technology leader.
We're a North American Philips company. As such, we share the resources and know-how of Philipsan established leader in surface mount technology and electronics research and development. We have the commitment, the financial strength and the stability to stay the active leader in passive components well into the future.

At Mepco/Centralab, quality is everyone's responsibility.

Statistical Process Control is at work in all Mepco/Centralab manufacturing plants. Our online operators
are responsible for testing product quality at frequent inter-vals-at each critical step of every manufacturing operation.
Through the personal commitment to quality control that is shared by each of our employees, our most demanding customers can rely on Mepco/Centralab. Time after time. We're dedicated to manufacturing passives that meet your requirements, and we have implemented quality programs such as "Ship to Stock.

Make us a part of your next generation.

We want to be your partner in passives. We're prepared to meet your toughest performance or selection criteria in order to prove our capabilities. We'll meet your volume requirements as well as your precise scheduling needsincluding "Just in Time" delivery.

With Mepco/Centralab, you'll find the selection, reliability, availability and technical support you need. All from one dependable source. So beat the competition with your next generation of products. Team up with the active leader in passive components. We'll be around.

For more complete information on our product line, please send in the coupon. Or call us at (305) 881-3257.

Mepco/Centralab, Inc. DN5 2001 W. Blue Heron Blvd. Riviera Beach, FL 33404 Att: Corp. Advertising Yes, I want to stay ahead of my competition.
Please send me the following catalog(s):

MEPCO/CENTRALAB

Analog CAE packages are steadily improving. Selecting one isn't easy, however. What's more, you might find it difficult to decide when the use of such systems is appropriate.

Board-level analog CAE

Using Monte Carlo analysis to determine the effect of component variations on circuit operation, MicroSim's PSpice can help you create designs that are tolerant of manufacturing inconsistencies.

David Shear, Regional Editor
Selecting an analog CAE system can prove to be difficult and time consuming. You won't find benchmarks that enable you to readily compare the relative performance of systems like those listed in Table 1 on pg 142. You'll have to balance such factors as the hardware the system requires, the circuit simulator it employs, and, of course, the cost. In addition, you'll have to evaluate such subjective criteria as the friendliness of the user interface and the importance to you of any high-level design aids (like behavioral modeling) the system might offer.

The packages range from low-
cost personal-computer-based versions to ones costing $\$ 50,000$ and more that run on minicomputers or mainframes. You might find use for systems at each end of this spectrum: A Spice derivative that runs on a PC might be best for obtaining a first look at a design's behavior; for more accuracy, you can later employ the more complex models of a more expensive CAE system.

Know when to use a system

But knowing which system to select isn't the only difficulty you'll face in adopting computer-aided analog design. Completing an accurate design on schedule will depend on your ability to know when

Computer simulations meet the real world in today's sophisticated analog CAE packages. Features like behavioral modeling can prove to be invaluable when you need to model electromechanical equipment. You can't readily describe such equipment in a form that an electronic-device simulator like Spice can understand. (Photo courtesy Analogy)
to use the system you do buy, which, after all, will be only one of many design tools at your disposal. Although many such systems offer features like virtual instruments, the systems don't replace scopes and soldering irons: You'll find times to use the analog CAE system, but at other times you'll remain at the bench. To effectively use the CAE tools, you'll have to develop the skills to know when each tool is appropriate.

The ambiguity attendant to the selection and application of analog CAE systems mirrors the ambiguities of analog design itself. When you begin an analog design project, you can employ a textbook approach to develop an idealized ana-
log model that meets your design goals, but when you substitute real components for your ideal models, you'll often as not find that parasitic effects preclude the results you wanted. You must then modify the circuit in an effort to achieve the desired goal.

No substitute for reality

Traditionally, such modifications have involved expensive, time-consuming pc-board rework. With an analog CAE system, you can quickly accomplish some of the manipulations involved in minimizing unwanted real-world effects before you ever sit down at the bench with a hand-wired prototype, but no system can model all of the par-

Functional descriptions allow you to quickly enter complex circuits without having to design each of the individual pieces. Daisy offers a library of functional descriptions. You can play what-if games at a very high level to check the architecture of your design before getting into the details of the compo-nent-level design.
asitic elements that might influence a pe board's operation. Eventually, you must build the real-world device and see how it reacts. Nevertheless, judicious use of automated tools can help ensure that your first prototype comes close to meeting your original design goals.

You might begin the process of selecting an analog CAE package by imagining a version of the ideal analog CAE system (see box, "The ideal analog CAE system") and comparing the available products to your ideal. You can begin your comparison using Table 1; as a next step, you can evaluate the demos that many vendors offer. Demos help you determine if a program accepts and displays data in a format you are comfortable with.

Evaluating a demo should be one step in product selection, but it should never be your only step. Demos are invariably impressive, but quite often the displays you see are created from a file of precalculated data. Such demos don't

Compare available products with your notion of what an ideal analog CAE system should do.

actually run the vendors' simulators, for example, so the speed of screen update is not indicative of the systems' real-time response.

Use the system you might buy

Therefore, when you've made a tentative purchasing decision, use the system you plan to buy in an actual design. A short design session can help you determine not just how well the system works but also how well you work with the system. If you schedule such a session, be sure to explain to the CAE vendor in advance what you want to do so the vendor can be prepared to help you: Keep in mind that you won't be an expert in the operation of the system you're evaluating when you begin the session; you'll have to rely on the vendor to filter the instructions necessary for your test design from the system's documentation. Should you buy a particular vendor's product, you would be well advised to attend the classes that the vendor offers so that you can
begin to master all the capabilities of what is probably a complex system.
The capabilities that you'll find as you evaluate the packages range from behavioral modeling, which lets you evaluate a design concept, to parameter-variation analysis, which lets you evaluate a design at the component level.

Behavioral modeling is useful because the vast majority of analog systems interact with an electromechanical device: a motor or a sensor, for example. You can't readily describe such devices in terms that standard analog modeling programs (Spice and its derivatives) can understand, but CAE systems that offer behavioral modeling allow you to use what vendors call templates to simulate any analog system that you can describe with a set of mathematical equations.
When you represent a system behaviorally, you're using a topdown methodology to create a design. First, you describe the entire
system by defining the behavior of the various black boxes that make up the design. Once the high-level design functions properly, you begin the detailed design of the first black box. You design and simulate this black box separately from the entire system; then, you
test the completed black box within the entire system, verifying that it performs its required function. You then progress to the other black boxes until the entire system has been designed and the system simulation is working.

You will also find it useful to be

The ideal analog CAE system

As a starting point in the selection of an analog CAE system, you might define what you consider the ideal system and then see how vendors' offerings measure up.

Your ideal CAE system might allow a hierarchical design input that begins with a description of your design goals. With this system, you would divide the design into separately created functional descriptions. These high-level descriptions in turn would allow you to try different architectures and approaches with relative ease. At this level, you wouldn't consider the compromises that your design would ultimately entail; you would simply test your basic theory. When satisfied with this functional design, you would verify it by using the ideal system's high-level simulator; then, you would modify the design as needed.

After you've designed and verified all of the functional blocks, the ideal CAE system would help you lay out the pc board. This process would be interactive so that you could bring your experience to bear to optimize component placement.

After layout, the ideal CAE system would model the parasitics that would plague the finished board to determine whether the board would meet spec. The layout and parasitic-modeling processes would repeat until the design worked in a simulated realworld environment.

When you are pleased with the design, the ideal analog CAE system would interface to a plotter (for the creation of the pc board artwork), to an automatic assembly system, and to automatic test equipment.

The ideal system would automatically create and update models by measuring real-world components and boards.

The ideal system would automatically conduct design verification at all levels; verification would consist of design-rule checking and simulation. Documentation would be hierarchical; the system would automatically update any changes to all affected documents.

The ideal system would be truly easy to use. You would not need to have a Unix guru on staff; you wouldn't even need to know one. The system would include virtual instruments that would work just like the real ones, allowing instantaneous changes of settings.

And of course, the ideal system would be affordable.
able to functionally describe the system you are designing. A feature that vendors call "functional description" allows you to implement a high-level representation of a functional block like a differentiator, integrator, or multiplier-you needn't model those functions at the device level.

Improving product quality

Many of today's analog CAE systems automate tasks relating to the quality of the product you design. Such packages offer features like stress analysis to ensure not only that your design will work but that it will work over temperature, that all components will operate within their safe operating areas, and that your product will operate despite worst-case variations in component values.

Decisions on whether you should select a package that offers behavioral modeling, Monte Carlo analysis, and functional-description capability will depend on your personal design approach. Other factors, however, will be dictated by the complexity of the circuits you're designing. For example, if a system can handle a maximum of 200 parameters and a single op amp consumes 50 of them, the system won't be adequate for you if you're designing circuits with more than a few op amps.

Unfortunately, data regarding packages' capabilities in this area is scarce. Few vendors provide data on the number of nodes their packages accommodate, and very few state the number of nodes that a particular model would require. Thus, it's important that you attempt to implement a circuit that's representative of your designs when you try out a system.

Similarly difficult to quantify is

TABLE 1-REPRESENTATIVE ANALOG CAE PACKAGES

To determine if your circuit is operating within acceptable limits, Daisy's analog CAE package monitors each component. This display shows that Q_{i} is stressed beyond its safe operating limits.
the effectiveness of a system's component library. The number of components in the library is not as important as the quality of the models, although you shouldn't assume that if a vendor offers a large number of components, the quality of its library is poor. The quality, for you, depends upon what you might use the models in the library to represent. You must consider whether you'll be simulating operation at extremely low currents, high currents, or, perhaps, high frequencies. A model that is adequate for one of these conditions might not be adequate for the others.

In general, the accuracy of a model is an illusive concept. It's difficult to predict how closely a model will represent a real device under all possible operating conditions. Moreover, even when you determine that a model is not adequately representing a transistor, for example, you might have trouble telling which of a long list of parameters should be modified to

> The complexity of the circuits you're designing, as well as your personal design approach, will affect your selection of an analog CAE package.

improve the model's accuracy. (Nevertheless, you'll want to update your models whenever you're able to do so. The improved models could help you optimize your existing design or improve the quality of your new designs. Furthermore, vendors will be very interested in any improvements you find necessary to the models.)

Tools aid model creation

Creating the models initially is even more difficult. In an effort to solve this problem, many vendors are beginning to offer tools that assist you in the creation of models. With such tools, you might enter the model of an op amp, for instance, by entering the datasheet specs into the CAE system, which in turn uses those specs to create the appropriate model. The resulting model can only approximate the real device because no data sheet can completely describe a device. Analog IC manufacturers are cautious about providing additional information for use in devel-
oping models; they fear becoming responsible for meeting some implied specifications as a result of this information.
Another way you can create models is to extract the model parameters from an actual device. Many vendors offer this option.
A related factor you'll consider is the simulator that the system employs. But unless you plan to create your own models, you needn't be overly concerned about whether the simulation program is Spice, Saber, or a proprietary version. One factor you might consider in this regard is that Spice traditionally has suffered from a well-publicized convergence problem. Most versions of Spice start with an initial set of conditions and continually calculate new sets that should converge to a solution. The process might, however, never converge, in which case the simulation effort would yield no data. Many vendors claim that with their Spice enhancements the convergence problem won't appear for the vast ma-

High PrecisionAbsolutely

Therés no such thing as

 "almost precise." That's wby you should select Hybrid Systems-the leader in 16-bit bybrid and monolithic analog signal processing components. our demand for high precision is absolute. So is ours. Since we introduced the industry's first 18-bit DAC five years ago, Hybrid Systems has dedicated itself to creating high precision analog signal processing components that simply will not compromise your performance, or our position of acknowledged leadership in the field. As a result, we now offer an impressive family of 16 -bit products designed to make high precision as accessible —as it is essential-for your demanding

In DAC's, choose from an exceptionally wide range of products including monolithic, microprocessor compatible, voltage output, and current output components. You can also select products that feature low cost or high accuracy - all with

In other areas, Hybrid has both the only true 16 -bit hybrid ADC on the market and the fastest with a $15 \mu \mathrm{sec}$. conversion time. Just as important, the additional 16-bit products presently under development will continue the Hybrid Systems tradition of precision with breakthroughs in speed, cost, and accuracy in every type of analog signal processing component, including Data Acquisition Systems.

High precision. We insist on it. We deliver it. And we will never compromise it in any of our components, or in any of your applications . . . because it's simply too important to both of us.
GREAT NEWS! Hybrid Systems now offers a brand new, revolutionary 16 -bit Sample/Hold component with dielectric absorption compensation. For more information, or to order our new 1986 Catalog, call or write Hybrid Systems today.

HybridSystems

The majority of current analog CAE systems provide a schematic-capture option or can use another vendor's schematic-capture package.

A wide variety of graphic outputs are available with analog CAE systems. The Grapher from Cadnetix includes a legend window and a marker window to help you interpret data.
jority of simulations, but they don't offer a quantifiable value of the likelihood of convergence.

For day-to-day operation, much more apparent than the simulator's operation will be the way you communicate with the CAE system and the way the system communicates with other CAE products, like schematic-capture systems and photoplotters. If you find it difficult to enter a design and interpret the results, you will find the system to be of limited benefit. On the other hand, if the system accepts data in a form you are familiar with and presents the results of the simulation in a form you are familiar with, then the system will be more useful. Almost all of today's analog CAE systems provide a schematic-capture option or can use another vendor's schematiccapture package.

The wide variety of graphical aids make interpretation of the simulation results much easier. Many packages present data in the

form of virtual instrumentsscreen representations that mimic the format of real instruments. You can perform advanced calculations on the data acquired from the simulator, and you have tremendous flexibility in selecting the pre-

Parametric plotting allows you to optimize a circuit by changing component values and seeing the results of these changes. Here, FutureNet's Dash-Analog Workbench displays the frequency response of a circuit with various values of a capacitor.

Custom Hybrid Solutions

Our advanced engineering and manufacturing environment puts Hybrid Systems in great shape to meet your most sophisticated custom hybrid needs.
$\mathbf{N}_{\text {o one essein the industry }}$ hasit: A manulac. turing facility so advanced and sophisticated that it can transform your custom hybrid needs into custom hybrid solutions . . . more quickly, more economically, more expertly than ever before.

Our recent multi-million dollar investment in state-of-the-art automation equipment is a major factor in Hybrid Systems' emergence as a major force in custom hybrid design and production. Our CAE/CAD system helps us design your custom hybrids faster and better. Automated assembly equipment increases accuracy and reliability and decreases production time. And the most advanced LTX Automatic Test Equipment available ensures absolute dependability in even your most demanding applications.

It is precisely this investment-and our expert staff of Analog Signal Processing Engineers-that enables Hybrid Systems to create everything from single chip devices to a recent custom hybrid with 89 chips and over 760 wires.

Our custom hybrid solutions are available from industrial grade all the way to full military grade with MIL-STD-883
rev. C screening. They can also be produced to meet all Class " S " specifications.

This kind of performance exemplifies our ability to deliver efficient and reliable products that help your company get the edge on the competition.

Hybrid Systems: a proven center of Analog Signal Processing engineering expertise. And a proven center of advanced capabilities that's shaping the future in custom hybrid components.

For more information, contact us today at (617) 667-8700.

> Many vendors are beginning to offer tools that assist you in the creation of models; the models, however, can only approximate the real device.

Fig 1-Analog CAE systems predicted stable operation for this simple comparator circuit (\boldsymbol{a}), but when built, the circuit exhibited the instability that an experienced analog designer would have expected. Viewed on an oscilloscope (b), the comparator's output produced many transitions (the scope triggered on the first), although the simulations only showed one. (Photo courtesy Linear Technology Corp).
sentation of the data.
The virtual instruments, however, won't provide the instantaneous response of real instruments. On the bench, you can change the frequency of a oscillator or the sweep speed of a scope as fast as you can turn a knob, and you can monitor different circuit nodes as fast as you can move a probe. On the bench, therefore, you can interact with a circuit and get to know it. With the virtual instruments, in contrast, considerable time can elapse between the time you initiate a measurement command and the time you see the result. Depending upon the system and your tolerance to this delay, you might

find that using the virtual instruments is very frustrating.

On the other hand, many measurements that you can make with an analog CAE system would be difficult or impossible with benchtop instruments. With CAE systems, you can measure the current in any branch, the instantaneous power of all components, the effects of extreme temperature, and the effect of worst-case component variations.

Try to be objective

Many engineers are overly optimistic about analog CAE because it seems to promise to ease their jobs. Many hope that the analog

CAE systems will make up for what they don't already know. But even the what-if games that users can play with the system require that users know which questions to ask, and basic analog-circuit knowledge remains indispensible.

Consider, for example, the simple comparator circuit shown in Fig 1a. The high source impedance of the voltage reference and the lack of hysteresis suggest an inherently unstable design. However, several analog CAE systems predicted stable operation.
(Incidentally, modeling this simple circuit proved to be difficult. Some systems did not have the LM311 in their libraries. One com-

> "A CASE for SUN in Computer-Aided Engineering"

It's a first! CASE Technology now offers its new Vanguard CAE Design System, a comprehensive set of electronic
design applications for the system level designer - PCB and ASIC-on the SUN 3 family of engineering workstations. The system includes schematic capture, logic and fault simulation, circuit simulation, and PCB design capabilities.

The full-featured Vanguard system and the SUN 3 workstation represents one of the best values available for a high performance CAE design system. Using Ethernet TCP/IP and NFS, SUN 3 engineering workstations and personal computers can be networked together to create a completely integrated engineering environment.

CASE promotes its flexibility as a front-end CAE design tool for users
concerned with integration of existing tools and as a facility solution for those interested in a single source for all of their CAE needs.

With more than 3000 installed systems worldwide, CASE Technology has developed a solid reputation as a premier supplier of professional CAE design tools. If you haven't seen what CASE has to offer, then now is the time.

CASE Technology Inc., 2141 Landings Drive, Mountain View, California 94043
Phone (415)962-1440; Telex 506513; FAX (415) 962-1466.

CASE
TECHNOLOEY

make Sense.

(617) 577-1133

Order our \$20 Interactive Demo Disk. Ask about DADiSP for IBM-PC/XT/AT, DEC MicroVAX, HP9000, Masscomp 5000 , and Sun Workstations. For further information write DSP Development Corporation, One Kendall Square, Cambridge, MA 02139, (617) 577-1133

DSP
Development
Development
Corporation
pany had its model of the LM311 in the shop for repairs-an upgrade to include the strobe pinand another vendor had nine signals defined on the 8 -pin device. The ninth signal, named C, was removed manually with the vendor's editor.)

When built and examined using a scope, the circuit produced, as expected, an output that exhibited multiple transitions each time the input crossed the reference (Fig 1b). If this circuit were being used to condition a signal that was then to be counted, the error would be enormous.

Analog CAE is not the solution for a lack of knowledge in analog engineering techniques. In the comparator experiment, the design looked fine in simulation, but in the real world it was useless. The knowledge and experience of the analog designer is still very much a part of the design process.

Keep an eye on reality

You must keep an eye on reality when using an analog CAE system. It is easy for the simulator to put 100 W into a $1 / 4 \mathrm{~W}$ resistor, but the actual circuit would soon fill the room with the sweet smell of a cooked resistor. When you are having a problem with the simulation, look at the voltages at each node and see if it's close to what you would expect. If a circuit node sits at 84 V when the circuit's powersupply level is only 12 V , then something is wrong.

There is more to using one of today's analog CAE systems than knowing how to run the program. You need to understand the limitations of the models you are using. There is no substitute for an understanding of methods used by the simulator. If you blindly accept
the output of the simulator, you will quite often find yourself in trouble.

These tools are very complex, and you'll need time to acquire the experience to know when to use each tool. But the effort is well worth the time expended. Those engineers that only use a breadboard and have not learned to use these new tools are limiting themselves. The opposite is also true: Those who only know how to use the analog CAE system are going to have a hard time getting a circuit to work in the real world.

EDN

References

1. Travis, Bill, "Low-cost PCs and software analyze analog circuits," EDN, October 2, 1986, pg 163.
2. Freeman, Eva, "Tester mockups and device libraries bring CAE to analog pc-board design," EDN, May 29, 1986, pg 49.
3. Kiefer, Richard, "PC-based programs aid analog-circuit design and analysis," $E D N$, April 17, 1986, pg 175.
4. Schreier, Paul, "Simulators benefit from graphic interfaces, reliable convergence," Personal Engineering \& Instrumentation News, January 1987, pg 35.
5. Bloom, Michael, "Mixed-mode simulators bridge the gap between analog and digital design," Computer Design, January 15, 1987, pg 51.

Article Interest Quotient
 (Circle One)

High 500 Medium 501 Low 502

MICRO-LOGIC II': The CAE tool with a 10,000-gate
 MICRO-LOGIC II.'. The CAE tool with a 10,000 -gate digital simulator for your PC.

THE PROGRAMMABLE GATE YOU'VE ALWAYS WANTED.

We don't mean to be wishywashy, it's just that our Programmable Gate Array delivers both more of what you want and less of what you don't.
 tional gate array which is cast in cement at the factory, the Programmable Gate Array is user-programmable. So there's no risk in design or inventory. And that makes it a lot less dicey.

As in, more speed and less money.

More density and less risk.
And more design flexibility but

By combining the advantages of VLSI with the advantages of programmability.And.eliminating the disadvantages.
"OF COURSE.A PROGRAMMABLE GATE ARRAY."

That's what logic designers said when we asked them if they could describe the ideal logic device.

We couldn't agree more. Just look at the benefits of such a device.

You get the wide open architecture of a gate array, without the penalties.The NRE, the long development time, the inventory risk, the limited testability, and last but certainly not least, the $50-50$ chance that system changes may mean another pass.
less time to market. How can one part offer
so much? How can one part offer
so much?

Instead, you get programmability.Unlimited reprogrammability. No NRE. A development cycle you can measure on one page of a month-to-month calendar.And a standard part that arrives on your doorstep already tested 100% perfect down to the last transistor.

You can't beat it with a stick.

SPEED,DENSITY, PRICE.

 PICK ANY THREE.Until the Programmable Gate Array, logic design was a frustrating game of give and take.

You gave up certain things as limited logic solutions took away your options.

With the Programmable Gate Array, you give up nothing.

You might not expect much speed in a part like this. But at 70 MHz, the Programmable Gate Array is more than fast enough for most applications. And with 1800 gates to work with, why shell out for a bunch of little PLDs?

Xilinx, Logic Cell, and XACTare trademarks and "The Programmable Gate Array Company" is a service mark of Xilinx, Inc. Other brand or product names are trademarks or registered trademarks of their respective holders. © 1986 Xilinx, Inc., 2069 Hamilton Ave.,San Jose, CA 95125, (408) 559-7778.

ARRAY.IT'S JUST WHAT MORE OR LESS.

Does this picture remind you of a gate array? Perhaps if the bills were on fire. By comparison, there is no comparison. The Programmable Gate Array costs far less to develop. And nothing to change.

Let's look at logic design's Big Three: speed, density and price.

Our new Programmable Gate Array, the XC 2018, turns toggle rates of 70 MHz . And weve enhanced our original part, the XC 2064, to run just as fast.

There's more density, too. As promised, there are 1800 honest gates in the 2018. And thanks to our unique Logic Cell ${ }^{\text {" }}$ Array architecture, the magic number's going to be 8000 by year-end.

The price, however, is continuing to go down, just like the prices of other standard parts.

AFULLSET OF POWERTOOLS.

Everybody knows you can't do a good job without the right tools. So we offer everything you need.

We've connected with Future-

Net"to bring you their schematic capture capabilities, the most powerful and popular in the industry.To which we've added our own auto-place-and-route.

This, in addition to our already extensive integrated XACT"'development system. Complete with an interactive graphics-based, mouse-and-menu driven design editor, a simulator, and the logic industry's only in-circuit emulator. It runs real I/O in real time, so you get real design verification, in the system.

Every bit of the above runs on an IBM ${ }^{\circ} \mathrm{PC} / \mathrm{XXT}$ "' $\mathrm{PC} / \mathrm{AT}^{\text {"' }}$ or clone. And you can get started for just $\$ 3600$.

JUSTTELLUS WHAT YOU WANT.
Like to see some more information so you can chew on it in the privacy of your home or office? We have a free design handbook that tells all.

Rather find out first hand what you can do with the Programmable Gate Array? Order our evaluation kit (affectionately known as EK-01).It has the software and documentation youll need to evaluate your application on the Programmable Gate Array and see how it performs.

Better yet, why not get right down to business by talking with one of our field application engineers? They can answer any questions you might have. And you can get our application support right from the beginning.

All you have to do is call us.
Toll-free at (800) $255-7778$. In California, (408) 559-7778.Or contact your local Xilinx sales representative or Hamilton/Avnet distributor.

How many gates do you really get?

Other PLDs claim lots of gates, but their restrictive architectures only let you use a small fraction of them. Our patented Logic Cell Array architecture is more open. So you can use all the gates we claim And there are more chips with more gates-on the way.

After all, why use anything else when the Programmable Gate Array gives you so much more? And, so much less.

8. XILINX

The Programmable Gate Array Company ${ }^{\text {s" }}$

Objects \& Groups of Objects are easily rubberbanded in real time.
" E " size worksheet supports over 200 256 K DRAM's.

OR 8707

20 Net List Formats - Compatible to most PC board and simulation work stations.
Part Libraries - Featuring 3000+ unique parts. Spend less time creating parts, more time designing.
$\square 200+$ Levels of Hierarchy - Usually found with more expensive packages.
Runs on your IBM PC/XT/AT or compatible - Use the cost-effective work station you already own.
40 Drivers - Supporting the most common graphic cards, printers and plotters.
Excellent Documentation - The program is intuitive and simple to use. The manual and tutorial make learning quick and easy.
Support - OrCAD provides excellent support: technical staff to answer your questions, a Bulletin Board System for 24 hour support, 1 year free product updates and a trained international sales and support network.
Great Price - For only $\$ 495$, OrCAD/SDT is the most cost-effective schematic design tool available.

With OrCAD/SDT, you get all of these and more!

Call or write today for our FREE Demo Disk and brochure.

OrCAD
 Systems Corporation

1049 S.W. Baseline St., Suite 500 Hillsboro, OR 97123
(503) 640-5007

CIRCLE NO 139

Contact your OrCAD Representative For Further Information

1. WA, OR, MT, ID, AK

Seltech, Inc.
503-627-0716
2. N. CA, Reno NV Elcor Associates, Inc. 408-980-8868
3. So. $C A$

Advanced Digital Group 714-897-0319
4. Las Vegas, NV, UT, AZ, NM Tusar Corporation 602-998-3688
5. ND, SD, MN, W. WI Comstrand, Inc. 612-788-9234
6. NE, KS, IA, MO Walker Engineering, Inc 913-888-0089
7. TX, OK, AR, LA Abcor, Inc. 713-486-9251
8. $\mathrm{MI}, \mathrm{E} . \mathrm{WI}, \mathrm{IL}$ Cad Design Systems, Inc. 312-882-0114
9. IN, OH, KY, WV, W. PA Frank J. Campisano, Inc. 513-574-7111
10. TN, NC, SC Tingen Technical Sales 919-878-4440
11. FL

High Tech Support High Tech Supp
813-920-7564
12. $\mathrm{DE}, \mathrm{VA}, \mathrm{MD}, \mathrm{DC}$ MGM Visuals 703-352-3919
13. $M S, A L, G A$ Electro-Cadd 404-446-7523
14. E. PA, NJ, NY Beta Lambda, Inc. 201-446-1100
15. CT, RI, MA, VT, NH, ME DGA Associates, Inc. 617-935-3001

How EED Designerconvinced Larry Kelly that professional CAE/CAD can be affordable.

CAE/CAD packages don't become best sellers through advertising claims. They either deliver - or they don't. The EE Designer family does. And the best proof comes from our customers. Here - unsolicited and unaltered is a response from a former skeptic.
Obviously, Larry Kelly at Trinity Electronics Systems has joined the thousands of engineers and designers

who are convinced EE Designer delivers professional capabilities and power - at previously unheard of costs.

Why not see for yourself? There's no risk, because our EE Designer/Autorouter, EE Designer II/Autorouter II and 2D Drafting packages come with a 30-day moneyback guarantee. Call toll-free at 1-800-553-1177. Use MasterCard or VISA. And become another EE Designer believer.

 CORPORATION

343 Gibraltar Drive, Sunnyvale, CA 94089
(408) 745-1551 Telex: 346352

Fax: (408) 734-9012
CIRCLE NO 140

10708-181 Street Systems Ltd.

Introducing the MK41H80 TAGRAM ${ }^{\text {M }}$ from Thomson-Mostek. The industry's first and fastest integrated 16 K CMOS cache tag SRAM dedicated for use in all high-speed processor environments.

TAGRAM gives you a $4 \mathrm{~K} \times 4$ CMOS SRAM and a 4-bit comparator integrated on a single chip. It's optimum for interface with 16-25 MHz processors, and is backed by 1.2μ double level metal full CMOS process technology - the same proven process used in all ThomsonMostek 16K VF SRAMs.

TAGRAM comes in three speed grades: 20, 25 and 35 ns . And every MK41H80 cache TAGRAM is available in 300 mil, 22-pin plastic and ceramic DIPs. What's more, TAGRAM's full-

Actual MK41H80 TAGRAM Scope Trace Photograph
speed read access ensures that even copyback designs can be implemented without ever having to wait. And it features Flash Clear - the function requested most often by cache system designers. So your cache can be wiped clean to all zeros in 40ns. Max.

High-performance cache applications demand high-speed solutions. If you'd like to realize a 30% reduction in access time compared to discrete solutions - plus a substantial reduction in the cost of component real estate-start increasing your cache flow with the newest member of our family. The MK41H80 TAGRAM.

We're Thomson-Mostek. And we perform.

$12 \mathrm{~ns}=\tau_{\text {DCA }}=$ DATA COMPARE ACCESS TIME $20 \mathrm{~ns}=\tau_{\text {ACA }}=$ ADDRESS COMPARE ACCESS TIME

Match Access Timing

Direct MappedCache System Block Diagram

DEVICE	CONFIG	PINS	$\overline{\mathrm{CE}}$	$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{CLR}}$	MATCH
41 H 68	$4 \mathrm{~K} \times 4$	20	x				
41 H 69	$4 \mathrm{~K} \times 4$	20		x			
41 H 78	$4 \mathrm{~K} \times 4$	22	x		x		
41 H 67	$16 \mathrm{~K} \times 1$	20	x				
$41 H 66$	$16 \mathrm{~K} \times 1$	20		x			
$41 \mathrm{H} 79^{\star}$	$4 \mathrm{~K} \times 4$	22	x		x	x	
$41 H 80$	$4 \mathrm{~K} \times 4$	22			x	x	x

Other available Fast Static RAMs from Thomson-Mostek
U.S. and Canadian Sales Offices

Western Area:

Santa Clara, CA 408/970-8585 Irvine, CA 714/250-0455
Woodland Hills, CA 818/887-1010
Seattle, WA 206/632-0245
Longmont, CO 303/449-9000
Scottsdale, AZ 602/998-1580
Tigard, OR 503/620-5517

Eastern Area:

Burlington, MA 617/273-3310
Mariton, NJ 609/596-9200
Huntsville, AL 205/830-9036
Liverpool, NY 315/457-2160
Poughkeepsie, NY 914/454-8813
Dublin, OH 614/761-0676
Greensboro, NC 919/292-8396
Norcross, GA 404/447-8386

Central Area:
Carrollton, TX 214/466-8844
Bloomington, MN 612/831-2322
Schaumburg, IL 312/397-6550
Austin, TX 512/451-4061

Canada:

Montreal, Quebec 514/288-4148

Brampton, Ontario 416/454-5252

Semiconductor

Distributors
Add Electronics
Advent Electronics
All American Semiconductor
Almac Electronics Corp
Almo Electronics, Inc.
Dixie Electronics
Future Electronics
Greene-Shaw
Hammond Electronics Integrated Electronics Corp.
ITAL Sales
Kierulff Electronics
Lionex Corp.
Marshall Industries
Nu-Horizons Electronics
Pioneer Technologies Group
Pioneer-Standard
Quality Components (Q.C.-SW)

Quality Components (Q.C.-SE)
R.A.E. Industrial

Schweber Electronics
Solid State, Inc
Zentronics
Zeus Components, Inc.

Get on board with AutoCAD' 2.6.

Computer-aided design
Until recently, it conjured up images of massive, room-sized computers and engineers in white lab coats.

But a few years ago, AutoCAD ${ }^{\star}$ changed all that. With a software package that turned the personal computer on your desk

into an easy-to-use electronic drawing board. For everything from PC boards to shopping centers. Tooling to topographical plans. Technical illustrations, Facilities layouts.

Even \#4-6-4

Hudson

 model railroad trains.Now AutoCAD is even better.

Introducing AutoCAD 2.6

Of course, the newest version of AutoCAD still has all the features that made the original the industry standard. Accuracy, Power, and Versatility.

But now, there are improvements all down the line.

Like AutoCAD 3D Level 2 which allows you to generate lines and faces at any angle on a drawing, not just on or parallel to the $\mathrm{X}-\mathrm{Y}$ plane.

Or associative dimensioning which automatically updates dimensions after you've stretched, scaled, or rotated an object.

And transparent PAN, VIEW, and ZOOM, which you can use while another command is in progress.

The result? A powerful electronic drawing tool that lets you concentrate on the drawing, and not on the electronics.

Feel Comfortable at the Controls

Never used a computer before?
AutoCAD's easy-to-use menus guide you from action to action. You can even create your own menus. And use an on-line "HELP" command if you get stuck.

Save hours of drafting time. Draw frequently used diagrams just once and re-enter where needed.

What if you have second thoughts, or make a mistake? AutoCAD's new, sweeping UNDO capability lets you erase what you've done-so you have total freedom to draw and experiment.

There are also enhanced customization features. Support for over 30 different microcomputers (as well as several 32-bit UNIX-based systems). Even support for the new IGES standard, to let you easily and accurately translate drawings between AutoCAD and most other CAD systems.

All of which combine to make the new AutoCAD fit more neatly and comfortably than ever into the way you're used to working.

How to Get on Board

For a demonstration of AutoCAD 2.6, or any of our other products, call or write us for the name of the dealer nearest you.

Call us too if you want the location and telephone number of your nearest Authorized AutoCAD Training Center.

We'll make sure you get headed down the right track.

Autodesk, Inc. 2320 MARINSHIP WAY SaUsalito, CA 94965 (800) 445-5415 TElex 275946 ACAD UD CompuServe GO ADESK

The first choice in plotting.

First in monochrome. Versatec invented the wide format electrostatic plotter in 1974. Three generations later, Versatec plotters are still the fastest, most accurate, most reliable of all monochrome electrostatics.

Only Versatec offers 200 and 400 ppi resolution in plotting widths of 22, 24, 36 and 44 inches. Get paper and film output, twin roll media supply. "plug-in anywhere" international power supply, and lowest operating costs.

And only Versatec gives you all these options-high accuracy ($\pm 0.01 \%$), automated media cutter, tilt to 15 degrees line enhancement, and hardware character generator.

First in color. Versatec invented electrostatic color plotting in 1982. We give you a choice of plotting widths (24, 36 and 44 inches), 200 and 400 ppi resolution, and color/monochrome output.

Dual axis tracking and an integral alignment pass assure unparalleled accuracy. High quality paper and film with mirror imaging enable proofing and final output on the same plotter. And a character generator creates banner pages quickly and efficiently.

Compact size, light weight, and low power requirements simplify installation. And an easy-to-use control panel simplifies operation.

First in connectivity. Versatec offers more interfaces to more computers, a larger library of integrated plotting software packages, and a bigger family of modular standalone and embedded rasterizers accepting both parallel and industry-standard serial data formats.

Discover why Versatec sells more electrostatic plotters than all competitors combined. Circle the readers' service number or call toll-free 800/538-6477.*
*In California, call
toll-free 800/341-6060

Versatec is a trademark of Versatec, Inc. Xerox is a trademark of Xerox Corporation.

Plot data courtesy of Intergraph Corporation, Uniras. and Zeh Engineering Systems.

JFET-input amps are unrivaled for speed and accuracy

> JFET-input amplifiers provide an economical means of achieving bigh accuracy in applications that need wide bandwidths for large signals. They are ideal for pulse amplifiers, fast D/A converters, peak detectors, and logarithmic amplifiers.

Peter Henry, Precision Monolithics Inc

JFET-input operational amplifiers are an option for designers who require speeds greater than those provided by standard bipolar op amps such as the OP-07. The high slew rates of JFET-input amplifiers make these devices attractive for pulse amplification and other applications that require wide bandwidths and handle large signals. Their low bias currents make them equally suitable for peak detectors and logarithmic amplifiers. Furthermore, their fast settling rates make them ideal for fast, high-precision DACs.

To obtain the full performance of which JFET-input amplifiers are capable, you'll need to take all the standard precautions in designing and laying out your pc boards, along with a few extra precautions that are specific to JFET-input devices (see box, "Caveats, warnings, and design reminders," on pg 166).

An autozeroing JFET-input amplifier can help a CMOS D/A converter achieve a fast settling time while converting the DAC's current output into voltage levels and reducing output impedances. You'll obtain the fastest settling times from bipolar DACs, because they have lower output capacitance than their CMOS counterparts, but CMOS devices have the advantages of low price and the availability of a wide variety of interface options. The primary disadvantage of CMOS DACs is their large output capacitance, which can be 50 to 120 pF for an 8-bit DAC, and as much as 70 to 150 pF for a 12 -bit DAC. This large capacitance increases the settling time. However, if you add a JFET-input amplifier (such as PMI's OP-42) to create a voltage output, you can compensate for the output capacitance. A CMOS DAC will then settle in approximately $3 \mu \mathrm{sec}$ to within 0.01% of a 10 V full-scale output step.

The offset voltage of many older JFET amplifiers suffered from large thermal drifts. However, newer state-of-the-art precision JFET-input amplifiers exhibit relatively little drift with temperature, and the resulting output error is generally insignificant unless you operate the amplifier at a high gain level. If your application requires the minimum possible offset error, however, you can use a servo loop that automatically corrects offset-voltage and drift errors. In Fig 1's circuit, for example, IC_{1} multiplexes eight analog channels to the input of an OP-42 or OP-44 amplifier, which has a gain of 100 . One of the analog channels grounds

JFET-input amplifiers provide high slew rates and low offset and drift, and they have low input bias currents.
the amplifier input in order to correct for $\mathrm{V}_{\text {os }}$ (offset) errors; the other channels are available for signals.

To correct $V_{\text {os }}$ errors during a conversion, you first drive the three multiplexer-address lines $\left(\mathrm{A}_{1.3}\right)$ high, so that multiplexer IC_{1} grounds the input of JFET-input amplifier IC_{2}. At the same time, AND gate IC_{3} drives the Zero line low and thereby causes the switching circuitry consisting of transistors Q_{1} and Q_{2} to turn on JFET switch Q_{3}. This action connects JFET-input amplifier IC_{4} into the feedback path of IC_{2} via that IC's null pins (1 and 5) and thereby forces the output of IC_{2} to assume the value of the offset voltage at the input of IC_{4}. The current in the feedback loop then develops a voltage across hold capacitor C_{H}.

Keep leaks away from correction circuitry

After a time period that's determined by the RC time constant of $R_{1} C_{H}$ and the current through Q_{3}, you can change the multiplexer address so that the Zero line goes high and turns off Q_{3}. The voltage across C_{H} holds
the output of IC_{4} (which is also the offset-voltage compensation for IC_{2}). IC_{1} has a relatively long switching time, so Q_{3} turns off before IC_{1} connects a new input to IC_{2}; consequently, the signal cannot leak into offsetcorrection circuits.
If you use the component values shown in Fig 1, you should make sure that the Zero line remains low for at least $200 \mu \mathrm{sec}$ to ensure proper nulling. You can achieve a faster nulling time by using a JFET switch that has a higher $\mathrm{I}_{\text {DSS }}$, such as a 2 N 4393 , but you'll do so at the expense of increased leakage and faster droop. Some error is induced by charge injection through Q_{3} into C_{H}, but you can minimize this error by using a large value of C_{H}.
To minimize droop at the output of IC_{4}, make sure that hold capacitor C_{H} is a low-leakage type (such as a polystyrene device). For higher precision, add a potentiometer to null the offset voltage of IC_{4}. When you use the component values shown, the droop of the offset voltage at $25^{\circ} \mathrm{C}$ is only $1.3 \mu \mathrm{~V} / \mathrm{sec}$. Near the center of

Fig 1-This autozeroing amplifier multiplexes seven inputs to a common output. The eighth input grounds the input of $I C_{2}$ to zero the amplifier's offset voltage. Before you select a signal, hold the three address lines high for 200 usec to ensure proper zeroing.
the adjustment range, each 100 mV of swing at the output of IC_{4} will cause a shift of $150 \mu \mathrm{~V}$ in the $\mathrm{V}_{\text {os }}$ of IC_{2}. The circuit is capable of correcting as much as 10 mV of offset, so that it can handle some system offsets in addition to IC_{2} 's offset.

You can substitute digital correction

If your application requires digital correction of the offset voltage, you can substitute an ADC/DAC combination for IC_{4}. With this scheme, when you ground IC_{2} 's input, the ADC digitizes the IC's output (offset) voltage and passes a correction factor to the DAC, which in turn applies an analog nulling voltage to pin 1 of IC_{2}. This modification is of value in applications that digitize the output of IC_{2}, and it has the advantage that digital correction circuits do not droop with time. However, the scheme is a needless complication in systems that do not include a $\mu \mathrm{P}$ for other purposes.
The level-shifting circuitry (D_{1} and $\mathrm{D}_{2}, \mathrm{Q}_{1}$ and Q_{2}) converts a TTL signal to the levels necessary to drive JFET switches, and you can use the same circuit in a wide variety of applications. When the TTL input signal ($\overline{\mathrm{Zero}}$) goes low, it turns off transistor Q_{1}. This action forces the base of transistor Q_{2} to -15 V , turning off Q_{2} and holding the gate of Q_{3} at ground level. While these conditions continue, Q_{3} presents a low impedance to the signal applied to it through R_{1}. Consequently, the inverting input of IC_{4} follows the output signal of IC_{2}, and IC_{2} charges C_{H}.

When the TTL Zero signal goes high again, it turns on Q_{1} and Q_{2}, which in turn pull the gate of Q_{3} to -15 V . This action puts Q_{3} into a high-impedance state, so that the switch disconnects the input of IC_{4} from the output of IC_{2}, and IC_{2} maintains the charge across C_{H}.

Fast S/H amplifier exhibits $\mathbf{0 . 0 1 \%}$ accuracy

The characteristics of JFET-input amplifiers make them natural choices for fast sample-and-hold (S/H) amplifiers. Fig 2a's circuit has an aperture time of 80 nsec and can acquire a 10 V step in less than $1 \mu \mathrm{sec}$ with an accuracy of 0.1%, and in $2 \mu \mathrm{sec}$ with an accuracy of 0.01%. The corresponding settling times are 100 nsec and 300 nsec , respectively.

The Sample/Hold control-input circuit uses the same level-shifting circuit used by the autozero circuit described above, with the addition of a Schottky clamping diode $\left(D_{3}\right)$ and a pullup resistor R_{1} to accelerate transitions. Diodes D_{4} and D_{5} prevent the forward-biasing of JFET switches Q_{3} and Q_{4}. During the sampling time, the JFET switches conduct, so that amplifiers IC_{1} and
IC_{2} both operate at unity gain and IC_{1} charges hold capacitor C_{HI}. The $\mathrm{V}_{\text {out }}$ signal precisely tracks the $\mathrm{V}_{\text {IN }}$ signal.

When you switch the control line to the hold mode, the JFET switches present a high impedance, so that Q_{3} disconnects the output of IC_{1} from the input of IC_{2}, and Q_{4} allows IC_{2} to charge hold capacitor $\mathrm{C}_{\mathrm{H} 2}$. The charges on the two hold capacitors then cause IC_{2} to maintain the $V_{\text {out }}$ signal at the sampled value.

Matched components reduce errors

The low bias current of the JFET-input amplifiers and the low leakage of the JFET switches combine to minimize leakage of the charges on $\mathrm{C}_{\mathrm{H} 1}$ and $\mathrm{C}_{\mathrm{H} 2}$. Furthermore, you can closely match the remaining leakage by matching the capacitor values and by using a matched pair of JFET switches contained in the same housing. This configuration has two advantages. First, it matches the amounts of charge injection through the switches into capacitors $\mathrm{C}_{\mathrm{H} 1}$ and $\mathrm{C}_{\mathrm{H} 2}$ and thereby considerably reduces the hold step. In fact, adjusting a trimmer capacitor connected in parallel with one of the hold capacitors will let you reduce the hold step below 1 mV .

Second, the scheme causes the I_{os} of IC_{2} and the leakage through the matched JFET switches (rather than absolute leakage levels) to control the voltage droop at the output terminal. Furthermore, the output voltage is controlled by the differential voltage between the two capacitors. The absolute voltages across the capacitors droop because of IC_{2} 's bias current, but both droop at the same rate, making this voltage change appear as a common-mode effect. The differential voltage is controlled by I_{os}, which is usually much smaller than $\mathrm{I}_{\mathrm{B}} . \mathrm{IC}_{2}$ can maintain a constant output voltage, even though the actual voltage levels on the two capacitors may change considerably during the hold period. In Fig 2a's circuit, this scheme reduces the droop rate to $7 \mu \mathrm{~V} / \mathrm{msec}$. Fig 2b shows a sine wave applied to the S / H circuit, and the resulting samples at the output.

The control provided by these differential voltages breaks down when their absolute values fall below the minimum input voltage of IC_{2}. However, that condition will typically not occur until several seconds have elapsed. You can reduce both the hold step and the droop rate even more by using larger values for the capacitors, but you'll then sacrifice some speed. (For more on the examination of errors, see box, "Calculating error magnitudes," on pg 168.)

You can exploit the low bias currents inherent in a

Offset drift is most likely to create an error when you operate the amplifier at high gain.

JFET-input amplifier to create a fast peak detector (Fig 3a) that can capture a 10 V peak only $2.5 \mu \mathrm{sec}$ wide. This circuit uses the level shifter employed by the two previous circuits, but it does not drive any FET switches. Instead, a Reset command causes Q_{2} to discharge hold capacitor C_{H} directly.

After a reset operation, the voltage across C_{H} is negative, so the circuit will detect very small peaks even if the ac signal has a negative dc offset. Be aware, however, that the reset method prevents this circuit
from detecting negative peaks. The droop rate is 3 $\mathrm{mV} / \mathrm{msec}$ and is mainly due to leakage of the charge on C_{H} through Q_{2}; diode D_{5} contributes very little charge leakage, because it operates with only a small voltage across it. The action of the circuit is illustrated in Fig 3b.

You'll find that JFET-input amplifiers yield excellent performance in logarithmic amplifiers. Fig 4's circuit follows the usual log-amp configuration, in which the logarithm of the input voltage is derived from the

Fig 2-This fast sample/hold amplifier (a) uses two hold capacitors to minimize both the hold-step effect and the output droop. You can see the very small hold step and the absence of droop in the scope photo (b).

Fig 3-This peak detector (a) can capture a 10V peak that's only $2.5 \mu \mathrm{sec}$ wide. After a reset it can detect very small peaks even if the ac signal has a negative dc offset. The detector's JFET-input amplifiers have very low input bias currents and therefore minimize leakage from the hold capacitor. This low leakage is responsible for the absence of droop (b).

Fig 4-This logarithmic amplifier eliminates temperature effects by ensuring that the two log-conversion transistors are always at the same temperature. The conversion transistors are on the same substrate as a heater transistor and a temperature sensor, which are connected to each other in a feedback loop.

In an S / H circuit, you can minimize leakage from the hold capacitor by using JFET-input amplifiers that have low bias currents.
differential between the threshold voltages of two transistors (Q_{1} and Q_{3}). A precision reference source (IC_{1}) sets the collector current of Q_{3}, and the input voltage controls the collector current of Q_{1}. You can derive the threshold voltages $\left(\mathrm{V}_{\mathrm{T}}\right)$ of the transistors using the following equation:

$$
\mathrm{V}_{\mathrm{T}}=(\mathrm{kT} / \mathrm{q}) \ln \left(\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{S}}\right),
$$

where q is the electronic charge, T is the temperature, and k is Boltzmann's constant. The difference in V_{T} between the two transistors is then

$$
\Delta \mathrm{V}_{\mathrm{T}}=(\mathrm{kT} / \mathrm{q})\left[\left(\ln \mathrm{I}_{\mathrm{Cl}}\right)-\left(\ln \mathrm{I}_{\mathrm{C} 3}\right)\right] .
$$

The output voltage is $\Delta \mathrm{V}_{T}$ multiplied by a factor appropriate to your application. The circuit scales the output for 1 V per decade with a zero-crossing at an input

Caveats, warnings, and design reminders

The following design principles are critical for the performance of any high-speed amplifier. They are included here as a check list.

- Use separate supply traces and grounds for each amplifier.
- Bypass each supply, right at each amplifier, with a 1 to $10-\mu \mathrm{F}$ tantalum electrolytic capacitor connected in parallel with a glass or ceramic capacitor that has a value of 0.01 to $1 \mu \mathrm{~F}$.
- Provide separate supply lines and ground lines for the digital and analog sections of your system.
- Switching power supplies can inject spikes of several hundred millivolts into the supply lines, and they can radiate EMI. Shield the analog sections and bypass all supply lines at the point where they enter the shielded enclosure.
- Be careful not to exceed an amplifier's maximum inputvoltage specification. If a signal could be applied before the amplifier's supplies reach their full values, provide clamping diodes-but remember that these devices add leakage and capacitance to the circuit.
- Be careful not to exceed the maximum junction temperature or the maximum power-dissipation ratings of an amplifier. If you connect a capacitive load to the output of an op amp, be sure to include in your calculations the power dissipation caused by the rms ac currents delivered to the load.
- Internal power dissipation raises an IC's junction temperature. You can find the amount of the increase from the formula $\Delta T=P_{D} \theta_{J A}$, where P_{D} is the power dissipation and θ_{JA} is the thermal resistance of the package. For 8 -pin packages lacking a heat sink, this parameter varies from $90^{\circ} \mathrm{C} / \mathrm{W}$ (plastic DIP) to $200^{\circ} \mathrm{C} / \mathrm{W}$ (TO-99 can). The junction temperature is the ambient temperature plus ΔT.

Precautions for JFET amps

The following design principles also have general application, but the focus here is on their implications for designing with JFET-input op amps.
First, remember that a rise in junction temperature increases the bias current of a JFET-input op amp; a rise of $10^{\circ} \mathrm{C}$ may dou-
ble the bias current. JFET-input op amps have a naturally low bias current, however; for PMI's OP-42, for example, the current is only 200 pA at room temperature and less than 20 nA over the full military temperature range. The errors produced by such small currents are usually insignificant; at a slew rate of $100 \mathrm{~V} / \mu \mathrm{sec}$, you would need a current of 1 mA to drive stray capacitances amounting to only 10 pF . Although some JFET-input op amps use cancellation methods to decrease bias current, these techniques can create excessive phase shifts in highspeed amplifiers.

Remember also that the slew rate of an op amp varies according to the voltage difference between its two inputs. If you want to achieve the maximum slew rate specified in the data sheet, you must ensure a difference of about 2 V between the inputs of a JFET-input op amp so that one side of the op amp's differential-input circuit turns completely off. At unity gain, such voltages are normal, but in circuits that have a higher gain, the input-voltage levels-and hence the slew rate-decrease. A JFET-input op amp that yields a slew rate of $60 \mathrm{~V} / \mu \mathrm{sec}$ at unity gain might yield only $20 \mathrm{~V} /$ $\mu \mathrm{sec}$ if you operate it at a gain
voltage of 100 mV . For a $\mathrm{V}_{\text {IN }}$ greater than zero, this configuration yields a transfer function of

$$
\mathrm{V}_{\text {OUT }}=-\left[\log \left(\mathrm{V}_{\text {IN }} / \mathrm{R}_{\text {IN }}\right)+4\right]
$$

(for $\mathrm{V}_{\text {out }}$ in volts and the quantity $\mathrm{V}_{\text {IN }} / \mathrm{R}_{\text {IN }}$ in amps). The circuit operates correctly for inputs from 1 mV to more than 10 V .

The above equations show that the temperatures of
the log-conversion transistors have a direct effect on the output voltage. Conventional circuits provide temperature correction by using a thermistor instead of a resistor in place of R_{7}. This circuit uses a special method to provide an isothermal environment for the logconversion transistors.

The MAT-04 IC used in this circuit is a symmetric
of 100 with a $\pm 100-\mathrm{mV}$ input signal.

You should also keep in mind that an amplifier that has a high slew rate or a wide bandwidth doesn't necessarily settle fast. Many amplifiers with high slew rates obtain their speed at the cost of inducing excessive ringing in the output waveform; this ringing increases the settling time. Remember, too, that the ac characteristics of some amplifier types vary widely from part to part. Data sheets usually specify a typical settling time. Very few vendors guarantee a maximum value.

Varying compensation

Most JFET-input op amps have input capacitances from 4 to 8 pF . A small capacitor placed across the feedback resistor compensates for the pole created by the input capacitance. The amount of compensation needed depends on the performance you expect from the amplifier. Critical damping may give the fastest settling times to within very narrow error bands. In general, however, you'll improve the settling time, even to error bands as small as 0.01%, by providing compensation that yields slight underdamping. The optimum compensation is a function of the circuit and its layout, and
you'll have to determine its value by experiment.

Proper compensation becomes critical when you use an op amp to convert the current output of a DAC to a voltage output. The output capacitance of the DAC, in parallel with stray capacitance and the input capacitance of the op amp, exacerbates any ringing and instability problems, and you'll have to optimize the compensation for the combination of settling speed and accuracy that you want.

The gain-bandwidth product (GBW) is adequate to describe the ac response, at any frequency, of single-pole amplifiers such as the 741. The more complex design of a JFET-input op amp such as PMI's OP-42 yields higher slew rates with greater stability, but it distorts the meaning of the GBW. Nevertheless, you can derive an approximation of the cutoff frequency for any closed-loop gain ($A_{V C L}$) from the following formula:

$$
\mathrm{f}_{\mathrm{C}}=\left(\mathrm{GWB} / \mathrm{A}_{\mathrm{VCL}}\right)
$$

This approximation is adequate for most purposes and is valid for most amplifiers, including PMI's OP-42 and OP-44.

The slew rate (SR) of an amplifier largely determines the maximum frequency at which it
can operate with large signals. You can calculate this frequency (known as the power bandwidth, or BW_{P}) from the equation $B W_{P}=S R /(\pi V$ p-p $)$. An amplifier such as the OP-42, which has a $50 \mathrm{~V} / \mu \mathrm{sec}$ slew rate, can operate at frequencies above 800 kHz with only 1% distortion on a 20 V p-p signal. The OP-44 has a BW ${ }_{P}$ that's greater than 1.5 MHz ; it achieves a slew rate of $100 \mathrm{~V} /$ $\mu s e c$ in applications that have a closed-loop gain greater than three.

PMI's OP-42 guarantees settling times of $1 \mu \mathrm{sec}$ or less to an accuracy of 0.01%-that is, to within $\pm 1-\mathrm{mV}$ error bands-for a 10 V input step. You can approximate settling times for input steps other than 10 V by subtracting the slew time from the specification and adding the slew time for the desired output change. For example, to obtain the settling time for a 1 V step, subtract the slew time for 10 V (167 nsec at $60 \mathrm{~V} / \mu \mathrm{sec}$) from the 800 -nsec typ settling time. To this result $(800-167=633 \mathrm{nsec})$ add the slew time for 1 V (16.7 nsec) to obtain a calculated settling time of approximately 650 nsec to 0.01%. The OP-42's measured settling time for a 1 V step is somewhat better, being less than 600 nsec.

Calculating error magnitudes

For a concrete example on which to base an examination of errors, assume a circuit consisting of the autozeroing amplifier of Fig 1 on pg 162 as the first stage, and the S / H amplifier of Fig 2 on pg 164 as the second stage. Provide zeroing pulses to the amplifier in the first stage once every millisecond to eliminate thermal drifts and offset problems.

For the purposes of this discussion, assume that IC_{2} is a PMI OP-44, with a GBW of 50 MHz (think of the entire circuit of Fig 1 as this gain stage). Because IC_{2} operates with a gain of 100 , the system bandwidth is 500 kHz before signals enter the S/H amplifier. The S/H circuit yields $2.5-\mu \mathrm{sec}$ acquisition times and holds the output for $18 \mu \mathrm{sec}$; consequently, the sampling bandwidth is 50 kHz . Assume that the power supplies are well regulated so that you can ignore power-supply rejection. Also, ignore phase errors.

Assessing gain-stage errors

In the first stage, errors arise primarily from finite gain, com-mon-mode rejection (CMR), and noise. Servo amplifier IC_{4} nulls IC_{2} 's offset voltage and drift; these values are no greater than 1 mV over the full temperature range, without additional adjustment. The drift is negligible during the periods between nulling. IC_{4} also nulls the offset voltage caused by bias current flowing through the multiplexer. If you assume that source impedances are no greater than 1 $\mathrm{k} \Omega$, then the contribution traceable to bias current is less than
$1.5 \mu \mathrm{~V} \times \mathrm{A}_{\mathrm{VCL}}$, or an additional 1.5 mV . (This includes leakage current from the switches in the MUX-08.) At dc, the commonmode error is only 0.004% (essentially nonexistent), but at 50 kHz the CMR falls to 70 dB and can contribute an error of 0.03\%.

You can express open-loop gain errors as a percentage of the signal; at dc, these errors are approximately equal to the percentage calculated from $\mathrm{A}_{\mathrm{VCL}} / \mathrm{A}_{\text {voL }}$. Both the OP-42 and the OP-44 have an open-loop gain of more than 500,000 . At dc, the gain error is less than 0.02%, but at 50 kHz , gain errors can contribute amplitude errors as high as 0.5%. The amplitude error decreases rapidly as the operating frequency moves away from the $500-\mathrm{kHz}$ cutoff frequency $\left(f_{C}\right)$.

You can obtain an approximate value of the error, for any frequency f, from the formula

$$
\epsilon_{\mathrm{A}} \approx 1 / 2\left(\mathrm{f} / \mathrm{f}_{\mathrm{C}}\right)^{2},
$$

down to the frequency at which the formula yields a value that's less than the de value. In Fig 1's circuit, this point occurs at 10 kHz . Because the amplitude error is primarily a function of f_{C}, operating the amplifier at a lower closed-loop gain would result in a significantly smaller error at any given frequency.

You can calculate the noise by multiplying the square root of the bandwidth by the rms noise density. In a wideband amplifier , the noise is dominated by the high-frequency flatband noise,
rather than by the higher-density low-frequency noise. For PMI's OP-42 amplifier, the flatband-noise density is typically $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. To get an idea of the worst-case performance, use $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, which yields a value of $10.6 \mu \mathrm{~V} \mathrm{rms}$ at the input and 1 mV at the output. Always use the full bandwidth of the circuit for noise calculations, because noise frequencies higher than the maximum signal frequency can alias into the lower frequencies and affect the final value.

You'll see that, because error terms sum in an rms fashion, gain error is the dominant source of error. The OP-42 and OP-44 amplifiers minimize, but do not eliminate, these errors. Consequently, you'll find that the output of the autozeroing amplifier is accurate to within 0.5% at 50 kHz , and to within 0.02% at frequencies below 10 kHz , with the addition of a $7-\mathrm{mV}$ noise contribution and 2.5 mV of offset error.

These gain-stage errors are passed on to the S/H amplifier, which has its own sources of error, arising from aperture time and aperture jitter, hold steps, droop, and finite CMR (think of the entire circuit of Fig 2 as the S / H stage). However, because the amplifiers of the S/H stage operate at unity gain, they eliminate gain error that's caused by bandwidth limitations or high closed-loop gain, and they greatly reduce the other errors associated with the multiplexed stage.

You can simplify matters by
eliminating the input amplifier $\left(\mathrm{IC}_{1}\right)$ and driving the S / H buffer (IC_{2}) directly from the output of the multiplexed stage. Then the primary source of error affecting the output will consist of the hold step (1 mV) and acquisition error (0.01%). Errors arising from aperture uncertainty and aperture jitter will be minor and will add no more than 0.01%.

The CMR error can be more significant, depending on the frequency. It's difficult to estimate what frequency to use for calculating errors in the S/H stage; some designers use the dc specifications, on the assumption that the amplifier operates in dc mode after the hold settling time. This assumption would be true for long hold times, but in fact the S / H stage not only reproduces the primary waveform but also adds high-frequency
components to form steps. For this reason you should always use actual operating frequencies in your error calculations. Consequently, at 50 kHz , the $70-\mathrm{dB}$ CMR of the OP-42 amplifier can contribute 0.03% error. The error terms again sum in rms fashion to yield a total of slightly less than 0.04% error from the S / H stage. Noise is negligible in comparison with that delivered by the gain stage, and the dc offset is simply that of the OP-42, an additional 0.75 mV .

Improving performance

The total system error for both the gain stage and the S / H stage consequently becomes approximately 0.05% at frequencies less than 10 kHz and increases to 0.5% at 50 kHz . This is in addition to the $7-\mathrm{mV}$ noise contribution and $2.25-\mathrm{mV}$ dc off-
set. You could eliminate gainstage errors by cascading two amplifiers, each with a gain of 10 , instead of using a single amplifier with a gain of 100 . The error terms contributed by the S / H stage would dominate in such a configuration.

You can calibrate and eliminate many of the error terms discussed above. For example, in a system that uses a fast Fourier transform to examine the spectral content of a waveform, you could apply a correction factor to correct for gain roll-off at high frequencies. You could also correct for CMR errors by applying an additional correction factor based upon the signal level. DC offsets are simply eliminated by subtracting a constant term from the signal. Noise can be eliminated only by averaging many repetitive signals.
array of four transistors placed at the corners of a square. Two of these transistors, located at diagonally opposite corners, act as the log-conversion elements. Of the remaining two transistors, one $\left(Q_{4}\right)$ acts as a heater and the other $\left(\mathrm{Q}_{2}\right)$ acts as a temperature sensor. IC_{3} forces the V_{T} of Q_{2} to a specific value by varying the current through Q_{4}, and it maintains this value by means of the thermal feedback between Q_{2} and Q_{4}. The symmetrical layout of the IC ensures that the two log-conversion transistors are always at exactly the same temperature. The component values shown will maintain the MAT-04 die at approximately $60^{\circ} \mathrm{C}$.

This operation may violate the rated specifications of the MAT-04 package and cause degradation of $Q_{A}^{\prime} s \beta$, but it does not hurt performance, because the characteristics of the heater are unimportant. You'll get the best results by encasing the MAT-04 package in thermally insulating foam, such as the urethane foam used for housing insulation.

To null the amplifier, you begin by setting the input voltage to 1 mV . Adjust the offset voltage of IC_{1} for an output of 3 V . Next, raise the input to 10 V and adjust
the gain for an output of -1 V . These two adjustments are interactive, so you may have to repeat them several times. You can modify the zero-crossing point by changing the value of resistor R_{3}.

EDN

Author's biography

Peter Henry is a product marketing engineer at Precision Monolithics Inc (Santa Clara, CA). He is responsible for the definition and introduction of new analog products. Peter joined PMI in 1985 after graduating from the University of California at Berkeley, where he earned a BA in physics. In his spare time he enjoys scuba diving
 and 4-wheel-driving.

Article Interest Quotient (Circle One) High 482 Medium 483 Low 484

"Hey, here's one supplier who isn't talking "blue sky" about GaAs MMICs!'

Small size, easy to use...

 lower cost than hybrid designs.We think you will be amazed at how much our family of lowcost, gallium arsenide MMIC gain blocks can save in overall system design time and cost. And how they provide uniform performance Jver wide bandwidths. So you can drop them in wherever utility gain blocks are required.

Take our little HMR-10502 GaAs MMIC amp, for instance. It provides 10 dB typical gain and 10 mW output power from 0.5 to 5 GHz .

Or its companion MMIC, our HMR-10503. It provides 10 dB typical gain and 10 mW output power from 1 to 5 GHz and

HMR-10502 MMIC

HMR-10503 MMIC

HMM-11810 MMIC
MMICs shown approximately twenty times actual size. includes on-chip decoupling capacitors.

Designed for higher

 frequencies.For higher-frequency applications, we also offer the HMM-11810 - with 5 dB typical gain and 50 mW output power over the 6 to 18 GHz band.

Since they're fully cascadable, you can combine multiple MMIC chips on the same carrier. They require no tuning, and only minimal assembly.

Like all Harris GaAs products, these MMICs offer improved radiation hardness over silicon devices, and are well-suited to applications requiring Hi-Rel Qualification.

And, best of all - they're available from stock!
Consider the advantage of our MMICs in your next microwave system design.
Why wait? For GaAs MMIC amplifiers today, there's really only one choice - Harris Microwave Semiconductor. In U.S. phone 1-800-4-HARRIS, Ext. 1501, or (408) 433-2222. (TWX: 910-338-2247) In Canada: 1-800-344-2444, Ext. 1501.

> IN GALLIUM ARSENIDE, THE NAME IS

Harris Semiconductor: Analog - CMOS Digital Gallium Arsenide - Semicustom - Custom

13 HaRRIS

Donit Wait

Install]EDEC

 Plastic Chip Carriers Right Now! Without new assembly techniques. Without new equipment!
New Burndy Chip Carrier socket adapts $.050^{\prime \prime}$ chip carriers to $100^{\prime \prime}$ board spacing!

Now you can enjoy all the benefits of $.050^{\prime \prime}$ technology-without any of the headaches.

Our new chip carrier socket makes the transition to $\mathbf{. 0 5 0} \mathbf{0}^{\prime \prime}$ technology a simple matter of component substitution-with the same wave soldering equipment and assembly techniques you're currently using. It's as simple as that. Nothing else changes. No new carrier registration problems. No new equipment. No new quality controls.

So why wait for cost-effective JEDEC

Type C Plastic chip carriers to pass you by when you can enjoy all the benefits right now! Without any of the penalties. And at the same time, you can enjoy all the benefits you get from socketing. Pluggability! Field serviceability! Improved quality contro!! Reduced installation costs! And more! You're ready for it-right now. And we've just made it easier for you with our new chip carrier socket. Get the full story. Just write or call: Burndy Corporation, I.C. Socket Product Manager, Norwalk, CT 06856, (203) 852-8437.

New from TRW... A 130 MHz Hyphid Video Amplifier for Ultra High Resolution.

CR2424 Output Waveform

The most cost effective video driver on the market today!
Applications that require ultra-high resolution graphics have been limited up to now - because of the speed of their video amplifiers. This new hybrid from TRW RF Devices overcomes that limitation. It provides..

- 130 MHz minimum bandwidth at 40 V swings
- 2.5nsec typical rise and fall times at full output
- 15,000 volts/ $\mu \mathrm{sec}$ slew rate
- Low power consumption - typically less than 3W
And this new hybrid - the CR2424 - is easy to use. It drives capacitive loads
directly or through transmission lines, with no output tuning and no need for critical external components.
The CR2424 is priced, in quantities over 5000, at only \$15.00-significantly lower than the price of other amplifiers that cannot match this one in resolution or speed.
In addition to a broad range of commercial applications, this product is also available in a hermetic package that meets MIL Std. 883 requirements. Look to TRW RF DEVICES for the latest developments in HIGH-RESOLUTION TECHNOLOGY.

For further information, for assistance with your particular requirements, for the location of your nearest distributor, contact your local TRW ECG Field Sales office or call Matthew Hartwig, Sales Engineer CRT Devices:
RF Devices Division
TRW Electronic Components Group 14520 Aviation Boulevard Lawndale, CA 90260, 213.536.0888 OTRW Inc. 1987-TRFF7100 R

RF Devices Division
TRW Electronic Components Group

Simple circuits provide accurate ac testing of op amps

Abstract

Op amps' de characteristics are usually well controlled by pendor testing, but the parts' ac performance rarely is. You can use familiar test equipment and some simple test circuits to test op amps' ac characteristics.

Barry Harvey, Elantec

When designing with op amps, you often need to measure the parts' most commonly used ac parameters quickly and accurately. These ac characteristics often vary among parts from different vendors, and they can even vary among parts from different manufacturing lots. Further, over the life of a product, the vendor may insert subtle changes that render the part's data-sheet curves less than representative. You can use commercially available laboratory test equipment and some simple test circuits to test op amps for open-loop gain and phase, input and output impedance, power-supply rejection ratio (PSRR), and common-mode rejection ratio (CMRR). (Ref 1 outlines a method for measuring an op amp's settling time.)

Just as the oscilloscope is the key instrument for taking voltage-vs-time measurements, the network analyzer with gain- and phase-measurement capability is the key instrument for taking steady-state ac measure-
ments. To take these measurements, you can use an instrument like the Hewlett-Packard 3577A network analyzer and gain/phase meter or the 4192A (or 4194A) 4 -wire ohmmeter and gain/phase meter. Each of these machines contains an oscillator that's controllable in frequency and amplitude and a gain/phase measurement system. The latter two each have a 4 -wire (floating force and sense) ac ohmmeter. All their functions are programmable via the IEEE-488 bus. If you don't have one of these instruments, you can take all these measurements with a collection of other instruments: an oscillator, a gain/phase meter, a vector/impedance meter, and S-parameter equipment.
When you measure an op amp's open-loop characteristics, you don't have to run the op amp in open-loop mode. However, all op amps have too much dc gain for you to bias their outputs properly without feedback, so some feedback will be required. You can use a test circuit like the one shown in Fig 1a to measure the amplifier's open-loop characteristics. In the circuit, the op amp is connected in a "gain of -10 " arrangement, a configuration in which almost all devices are stable.
The gain/phase meter measures the $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$ of the amplifier. $V_{\text {OUT }} / V_{\text {IN }}$ is the precise definition of open-loop gain, assuming that the impedance of the parallel combination of R_{L} and C_{L} at the operating frequency (f_{0}) is much larger than the $\mathrm{Z}_{\text {out }}$ of the amplifier at that frequency. Alternatively, you can make the combination of R_{L} and C_{L} similar to the conditions under which the amplifier will actually be used, and then measure the effective open-loop characteristics of the amplifier.

The network analyzer with gain/phase

measurement capability is the key instrument for steady-state ac measurement.

You can adjust the dc offset level of the oscillator to move the op amp's dc output level to your region of interest. This adjustment may be necessary at higher frequencies, where the behavior of most op amps changes significantly with the dc level.

Note that although the open-loop measurement is uncorrupted in Fig 1a, the closed-loop gain at high frequencies is affected by the probe capacitance at the inverting input to the op amp. Standard oscilloscope probes are compatible with gain/phase-meter inputs, but their capacitance may cause oscillations of the amplifier in a closed loop. A $1 \times$ probe will extend the dynamic range of measurement by 20 dB at the gain/ phase meter (in comparison with a $10 \times$ probe), but the probe's large capacitance will require you to insert approximately 10 pF of feedback capacitance (C_{F}). A $10 \times$ probe may not require feedback capacitance. An active $1 \times$ FET probe is even better; the circuit is usually not disturbed by the small input capacitance of the probe, and the probe does not attenuate signals, so it enhances the signal-to-noise ratio and the dynamic range of the gain/phase measurement.

You can verify the ac balance of the probes by measuring the oscillator output with both probes connected, replacing the op amp with a shorting wire, and monitoring the deviation from 0 dB between them. You can log the $0-\mathrm{dB}$ error and subtract it from future readings, or you can adjust the probes to balance by
using their trimmers.
If you wish, you can use active circuit buffers instead of probes, but the buffers will require an additional gain calculation. Tektronix's P6201 probes can drive a 50Ω load at the gain/phase input, so you can use long cables (which should be of equal length) between the device and the meter.
When you're using the open-loop scheme, it's important that you maximize the signal levels to improve the S / N ratio of the measurements. Remember, the gain/ phase meter will be called upon to deal with $100-\mathrm{dB}$ ratios at low frequencies. The larger signal at the device output is the phase reference for the meter. You can increase the B input signal to the meter by adding an external 40 dB of gain. Of course, you'll have to calibrate the two probes, plus the $40-\mathrm{dB}$ amplifier, by replacing the device under test with a wire from input to output as before.
The amplifier has three built-in limitations related to potential signal levels. The first is the slew-rate limitation of the output. In general, in order to preserve the linearity of the output, you should keep the output rms level to less than the quantity slew rate/(30fo). The second limitation is that the device's output voltage and current are limited by the power-supply voltage and the values of the load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)$ and load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ at the operating frequency.
The third limitation is more subtle. The input stage

Fig 1-To measure an op amp's open-loop characteristics, you can connect the op amp in a "gain of -10" arrangement (a), in which most devices are stable. The gain/phase meter measures the $V_{O U T} / V_{I N}$ of the amplifier. You can use the optional $40-d B$ gain block to increase the input signal to the meter. The plot (b) shows the gain and phase of the EL2006 op amp as a function of frequency. Where the gain is 34 dB , zero phase occurs at 15 MHz .
will be linear for small inputs only. At high frequencies, the device's gain will fall and the inverting input signal level will rise. In general, you should keep the rms input level no higher than $\sim 18 \mathrm{mV}$ at any frequency.

You should use an oscilloscope to determine whether the circuit or its connections are causing the op amp to oscillate. To keep the test setup stable, you should always have a proper 50Ω termination for $\mathrm{R}_{\text {IN }}$. Although the setup requires you to observe several rules, the measurement technique is accurate and repeatable once you've established the operating conditions under which you will test your op amp.

Fig 1b shows a plot of the gain and phase of an op amp , the EL2006, taken with the test setup in Fig 1a, minus the compensating capacitor. (The extra resistor at the summing junction of Fig 1a maintains closed-loop stability.) An HP 3577A was used both to take the measurements and to control the plotter. As the cursors in Fig 1b show, zero phase occurs at 15 MHz where the gain is 34 dB , or $50 \mathrm{~V} / \mathrm{V}$. The plot indicates that the op amp's closed-loop gain of 100 would have a $-3-\mathrm{dB}$ frequency of about 9.5 MHz and a phase margin of 38°, for an overall gain-bandwidth product of nearly 1 GHz .

To take this measurement, you should make a small RF-worthy fixture for the device and mount the fixture directly on the BNC connectors of the 3577A's front panel, thus eliminating cabling or loading effects. Solid coaxial cables within the box provide the best measurement accuracies when your test frequency is above 50 MHz . Also, unless you adhere to diligent construction practices, you're better off selecting $1-\mathrm{M} \Omega$ input impedance rather than 50Ω.

Use ac ohmmeter to measure input impedance

Fig 2 shows a very simple method of measuring an op amp's input impedance. The 4 -wire ac ohmmeter arrangement of the 4192 A is directly connected to the amplifier's input. $\mathrm{H}_{\mathrm{CURR}}$ and $\mathrm{L}_{\mathrm{CURR}}$ are the currentforcing terminals of the ohmmeter, and $\mathrm{H}_{\mathrm{POT}}$ and $\mathrm{L}_{\text {Pот }}$ are the potentiometric (voltage-sense) inputs. In this machine, the shields of the four coaxial cables (the cables should be of equal length) are connected to one another, but they are not connected to the device ground.

You perform the calibration for the open-circuit measurement with the device under test out of its socket so that the wiring and socket capacitances are zeroed out. You need to be aware of two operating considerations. First, you should use the smallest possible rms-signal
drive level (5 mV , if the S / N ratio permits). And then, you should make certain that the input signal doesn't cause the output to flail about, because this large output signal can be fed back to the input via the feedback capacitance, severely affecting your measurements.

To this end, you need to set up a small dc input offset voltage to drive the device's output to the supplyvoltage level. When you supply 5 mV of signal input to the test circuit, a $10-\mathrm{mV}$ offset will clamp the output as long as the device's dc offset doesn't exceed about 2.5 mV . It's wise to monitor the device's output with an oscilloscope to ensure that the output sits at the supply level with a minimum of input offset voltage.

Measuring output impedance

You can measure an op amp's output impedance when the op amp is in either the closed-loop-gain or the open-loop-gain configuration. You can use the circuit shown in Fig 3a for testing an op amp connected as a unity-gain buffer. You zero the 4192A by replacing the device with a wire from output to ground at the socket. In this way, you effectively null the wiring inductance. The $10-\mathrm{k} \Omega$ resistor serves to isolate the low output impedance of the device from the 50Ω impedance of $\mathrm{H}_{\text {CURR }}$.

This isolation ensures that currents smaller than the idling current of the output stage can be forced into the device so that any crossover distortion of the device will not affect the readings. You then vary the oscillator level to confirm that little measurement error is occurring. You can also adjust the dc level of the oscillator output to see if the output impedance of the device changes with current. You can use any gain-feedback

Fig 2-To measure an op amp's input impedance, you connect the 4-wire ac ohmmeter arrangement of the HP 4192A directly to the input of the amplifier. To obtain accurate measurements, you should use the smallest possible drive signal.

Tou can measure the open-loop characteristics of an op amp without running the op amp in open-loop mode.
configuration you desire, depending on how you're ultimately going to use the device.
Fig 3b shows a way to measure open-loop output impedance. The operating frequency is set high enough to limit the open-loop gain to $<10,000$. Thus, the device's closed-loop gain of 10,000 will not perturb the reading. The dc voltage source, V_{os}, nulls the device's output offset near ground.

Measuring power-supply rejection ratio

The simplest way of measuring an amplifier's PSRR is to place a resistor of 10Ω or less (depending on the op amp you're testing) between the negative supply pin of the device and its bypassed power supply (Fig 4a) and couple a small ac signal across the resistor. You measure the positive supply's PSRR similarly. Because PSRR is a measure of the device's induced input offset voltage, which is caused by the supply signal, the quantity B / A on the gain/phase meter is a direct reading. As before, you connect the A input (phase reference) of the meter to the largest available signal to obtain the best noise performance.
This circuit has a few performance limitations. For example, at low frequencies, the PSRR of many op

(a)

Fig 3-You can measure either the closed-loop or the open-loop output impedance of an op amp. The circuit in a is for testing an op amp connected as a unity-gain buffer. The circuit in b measures open-loop output impedance. You should operate the device at a frequency high enough to limit the open-loop gain to less than 10,000 .
amps can exceed 100 dB , and little signal is available at the device output for you to measure without severe noise problems. Another limitation is that, at some power-supply slew rate, the output PSRR signal will be distorted and inaccurate. By varying the oscillator drive, you can observe the B/A ratio to vary at some large amplitude. You will have to reduce the drive to substantially below that amplitude level, and again, the low S / N ratio will affect the readings.

Fig 4b shows an improved setup. In this circuit, the feedback ratio requires the op amp to provide a gain of 1000, which enhances the low-frequency PSRR range by 60 dB at the frequencies where the PSRR is greatest. At most frequencies, the op amp will not be able to

Fig 4-A simple way to measure an amplifier's PSRR is shown in \boldsymbol{a}, in which a small ac component from the oscillator is superimposed on the supply voltage. The quantity B / A on the gain/phase meter provides a direct reading of PSRR. The circuit in b provides an improved method of measuring PSRR. In this circuit, the op amp provides a gain of 1000. This gain enhances the low-frequency PSRR range by some 60 dB , and you must normalize B/A readings.
provide the full gain, and your PSRR calibration will fail.

To provide a means of calibration, you can switch the oscillator and gain/phase meter to measure the actual gain at the operating frequency, and then you can use that gain when you perform the PSRR measurement. To normalize the PSRR reading, you can use the equation $\operatorname{PSRR}=$ gain $_{f} \times \mathrm{A} / \mathrm{B}$ when the test setup is in PSRR mode. For the test setup in Fig 4b, this equation holds true at a gain bandwidth beyond that of the device under test. The equation doesn't hold true for the setup in Fig 4a. Again, you must adjust the input signal so that the amplitude of the output signal remains within limits.

Measuring common-mode rejection ratio

Fig 5 shows the common method of measuring CMRR. This scheme requires that an oscillator drive the supplies with respect to the noninverting input of the op amp. The supply variations cause a variation in $\mathrm{V}_{\text {os }}$ at the input of the amplifier; the variation, or CMRR, is measured at the B input of the gain/phase meter. The amplifier could operate at a closed-loop gain of 1000 or so to boost the signal available to the meter.

The problem with the approach shown in Fig 5 is that the output of the circuit, which is expected to be at ground for a device with infinite CMRR, also sees the supply variations. To move the output by x volts with respect to ground (the supplies are at ac ground) will require an input signal of $\mathrm{x} /$ gain volts, where gain is measured at the operating frequency. This signal can't be distinguished from the valid CMRR-induced signal that is seen at the input. Thus, you can't measure a CMRR greater than the gain of the amplifier at the

Fig 5-This circuit provides a common method of measuring an op amp's CMRR. The oscillator drives the supplies with respect to the noninverting input of the op amp. Supply variations cause a $V_{o S}$ variation at the amplifier's input; this variation is measured at the B input of the gain/phase meter. The problem with this approach is that the op amp's output also sees the supply-voltage variations.
operating frequency.
The circuit shown in Fig 6 uses the $V_{\text {os }}$ balance pins of the amplifier as a feedback path. By providing a means of feedback that is separate from the normal inputs of the amplifier, you can connect the inputs and drive them, instead of driving the supplies, with the oscillator. Thus, you can easily measure a CMRR greater than the open-loop gain over wide frequency ranges.

One of the offset null pins will provide the overall negative phase required to set a reasonable dc output. The 4 -transistor circuit shown is basically a $2 / 100-\mathrm{k} \Omega$ transconductance feedback path into the offset null pins, which normally provide a forward conductance path to the device output. For supply voltages slightly greater than those provided to the op amp, the collectors of the transistors will comply with the internal bias level of the offset null pins.

This feedback arrangement provides a CMRR gain that is dependent on the device under test and is typically from 10 to 1000 with the resistor values and supply voltages shown. To find the forward gain at the operating frequency, you must switch to the calibrate mode. As before, the input signal must be in the linear range of the device. You then set the switch to the CMRR mode; the corrected CMRR value is gain ${ }_{f} \times \mathrm{A} / \mathrm{B}$

Fig 6-This circuit measures an op amp's CMRR. The setup uses the $V_{O S}$ balance pins of the amplifier as a feedback path. You connect the inputs and drive them with the oscillator. Thus, you can measure a CMRR greater than the open-loop gain over a wide frequency range.

A gain/phase meter measures an op amp's

 $V_{\text {OUT }} / V_{\text {IN }}$, which is the precise definition of open-loop gain.when the test setup is in the calibrate mode.
Fig 7a shows an even simpler method of measuring CMRR that you can use to test op amps (such as the EL2006 or ELH0032) that have balance, or offset null, pins. In this setup, the feedback path is simply a $62-\mathrm{k} \Omega$ resistor, a value that does not severely upset the bias of the EL2006. (This resistor value depends on the op amp under test.) You can offset the ac input with an external dc V_{CM} level. With the switch in the calibrate position, you take a normalization curve (output vs frequency).

You then throw the switch to the measure position and multiply the resultant Y data (output vs frequency) by the previously taken calibration data to obtain the normalized CMRR.
Fig $7 \mathbf{b}$ shows the calibration and the normalized CMRR results for an EL2006 amplifier. Note that the scales are offset between the curves because of the large dynamic range. This method yields reasonably quiet data even at the $130-\mathrm{dB}$ measurement obtained at 10 kHz . The EL2006 is an improved version of the

Fig 7-A simple method of measuring CMRR, useful for op amps that have offset null pins (such as the EL2006 and ELH0032), is shown in a. The feedback path is a $62-k \Omega$ resistor, and you can offset the ac input with an external dc $V_{C M}$ level. Plot b shows the calibration and the normalized CMRR results for the EL2006. The scales are offset because of the large dynamic range. Plot chows the curves for the earlier ELH0032 amplifier. At 1 MHz , the ELH0032 has a CMRR of only 68 dB , whereas the EL2006 has 96 dB .

Only one controller fits here.

The 1722A is designed for fast system integration, right down to the size.

When you're configuring an ATE station, no computer makes integration as fast and easy as Fluke's 1722A Instrument Controller. Designed for a standard 19-inch rack, the 1722A doesn't have to be adapted to your system. It slides into your rack in seconds.

We've built a powerful microcomputer, disk drive, CRT with graphics, and IEEE interfacing into one compact package. It's everything you need to automate your test station.

Speed integration with Fluke's software. Choose from 5 different programming

languages, including Extended BASIC, FORTRAN, C, and ATLAS for fast development. IEEE-488 commands are built in, not added on, so each command does more. Application packages like our new Touchscreen Toolbox simplify the process even more.

Once programmed, the touch-sensitive display replaces the keyboard for system control. The operator is prompted one step at a time and responds by simply touching the screen.

When you size up your options, you'll choose the only powerful controller that can slide right into your rack.

Contact your local Fluke Sales Engineer or call 1-800-426-0361 for more information.

CIRCLE NO 161

ए—

Reusable CLINCHER II Jackets enclose your components in layers of cushioned, shielded material that is superior to thin film conductive bags. The unique Peel-Back design offers easy product insertion and inspection. The "clam shell" closing effect permits a natural secure closure. The combination of these benefits make CLINCHER II Jackets ideal for use in tote boxes, one-way shipping cartons and bulk shippers.

CLINCHER II is only part of a total system.

After listening to you and analyzing your packaging situation, your local ADE rep will respond to your needs from the broad base of products and design capabilities at his disposal. CLINCHER ${ }^{\text {TM }}$, CANCEL ${ }^{\circledR}$ and CADDY-PACK ${ }^{\circledR}$ are joined together to become an optimum packaging solution engineered to take the anxiety out of transporting your components.

To get in touch with how CLINCHER II Jackets can help protect your products, call us toll free at 950-1088 (wait for the tone, then dial 637235). Customan will send you-AT NO CHARGE-ADE's Guide to ESD Damage Control.

ADE, Inc.
1430 East 130th Street
Chicago, IL 60633
312/646-3400
CANCEL, CLINCHER and CADDY-PACK are registered trademarks of ADE, Inc. ${ }^{\circledR}$ 1987, ADE, Inc.

ELH0032 amplifier. At 1 MHz , the EL2006 has a $96-\mathrm{dB}$ CMRR, whereas the ELH0032 has only 68 dB (Fig 7c). Note that the calibration gain is different, because the op amps' internal circuit values are slightly different.

By following the procedures described, you can take several difficult ac measurements of op amps with only a few specialized instruments and a minimum of added circuitry. The key is to measure ratios, not absolute values, and to normalize the results with the same measurement equipment.

EDN

Reference

1. Harvey, Barry, "Take the guesswork out of settlingtime measurements," $E D N$, September 19, 1985, pg 177.

Author's biography

Barry Harvey is a senior design engineer for high-speed analog ICs at Elantec (Milpitas, CA), where he has worked for one year. He was previously employed at Precision Monolithics, Siliconix (both of Santa Clara, CA), and AMD (Sunnyvale, CA). Barry has an MSEE from Stanford University, and he has been granted two pat-
 ents. In his spare time he enjoys playing guitar and mandolin and programming his Amiga computer.

Article Interest Quotient (Circle One) High 479 Medium 480 Low 481

PMI's OP-42
PMI's newest high speed op amp guarantees slew rate of $50 \mathrm{~V} / \mu \mathrm{s}$ and settling time of $1 \mu \mathrm{~s}$ to 0.01%. With its 10 MHz gain bandwidth and 850 kHz full power BW, the OP-42 combines high speed with accurate DC performance.

$\mathrm{OP}-42$		
$\mathrm{~V}_{\mathrm{OS}}$	$750 \mu \mathrm{~V}$	Max
$\mathrm{A}_{\mathrm{VOL}}$	500,000	Min
CMR	88 dB	Min
$\mathrm{TCV}_{\mathrm{OS}}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	Max

Guaranteed unity gain stability, capacitive load tolerance, and clean transient response make the OP-42 easy to use.
with only 6 mA of supply current max.

Guarantees
Fast Settling
Plus DC Precision

The precision solution.

MORE POWER

The combined strength of GE/RCA puts all the MOSFETs you need at your fingertips.

Here's why the combination of GE and RCA is good news for users of power MOSFETs:

Dropping in on IRF.

Our IRF types are pin-for-pin compatible drop-in replacements for IRF Hexfets.* Available from 60 V to 500 V , with current capacity from 2 to 20 amps , they're ready for fast delivery at very competitive prices.

Better-than-equivalent proprietary parts.
Using our own CAD program, we've optimized the performance of power MOSFETs. And we've made substantial investments in automated
manufacturing, 100% cassette-to-cassette wafer handling and laser alignment. The result is very high packing density (for lower cost), high quality, tested ruggedness and reliability.

Rugged MOSFETs.

Our rugged MOSFETs have specified avalanche energy ratings. They can be used as drop-in replacements for industry standard IRF types to add a new dimension of reliability to your systems.

Logic-Level MOSFETs.
We pioneered the Logic-Level MOSFET (L²FET), enabling you to direct drive from High-

TO YOU.

Speed CMOS, NMOS, or TTL logic, with no sacrifice in speed, RDS(on), current-handling capability or reliability. From 50 V to $200 \mathrm{~V}, 1$ to 15 amps .

IGTs and COMFETs.
We invented Conductivity Modulated FETs (both COMFETs and IGTs). Together, they're the industry's broadest line of devices that combine the reduced drive circuitry of MOSFETs with the low conduction losses and low prices of bipolars.

And new high-speed COMFET devices with a rated fall time of only $1 / 2 \mu \mathrm{sec}$ offer significant cost and performance advantages over all other power devices for many applications in the 200-500 volt/1-20 amp range.

All this and High-Rel, too.
Long a leader in High-Rel devices, we've brought that expertise to Power MOSFETs.

We have the industry's broadest line of QPL-
approved n-channel, p-channel and L^{2} FETs. Plus dozens of High-Rel versions of IRF JEDEC types and GE/RCA JEDEC types. We also offer Added Value Screening for MOSFET devices not yet covered by military specs.

Plug into the source.

Our MOSFETs come in a wide range of packages, including: Hexdip, TO-202AB, TO-204AA \& AE, TO-205AF, TO-218, TO-220AB, TO-237, TO-247, TO-251 and leadless chip carriers. And we have an experienced staff of technical and applications specialists.

Call toll-free 800-443-7364, extension 16. Or contact your local GE/RCA sales office or distributor.

It can happen whether you're a 10 -ton lizard or a high-volume manufacturer of state-of-the-art business equipment.

No matter how well your design has performed in the past, it's always in danger of being crowded out of existence by a newcomer.

One that's even better suited to the environment than you are.

The Sensor Consultants can help you survive.

Working together, we can improve your product design with sensors, switches, and manual controls that provide new ways to satisfy customers for less money.

And the earlier you involve us in your design process, the better we can help.

Lower your total cost.

Our in-house test labs, custom manufacturing capabilities, and Honeywell's vast technology network enable us to work with you to develop components that reduce costs without hurting product performance.

Whether it's a value-added subassembly that saves you manu-

facturing steps. Or an off-the-shelf sensor that's been redesigned to lower component costs.

Specialized support for high-volume needs.
As market conditions change, you can react quickly with special MICRO SWITCH services such as fast prototype delivery, statistical process control, and JIT or dock-
to-stock shipments.
All backed by a reputation for quality that's made our products the industry standards for over 50 years.

Let's work together.
For a free booklet that
describes how we've helped other companies thrive in a competitive environment, write the Sensor

Consultants at MICRO SWITCH,
Freeport, IL 61032. Or call us at 815-235-6600, ext. 606.

Together, we can find the answers.

MICRO SWITCH

a Honeywell Division

CIRCLE NO 16

ABOUT SYNCHRO-CONVERSION • HIGH-SPEED, HIGH ACCURACY D/A \& A/D CONVERSION • 1553 BUS DEVICES
PUBLISHEDBY ILC DATA DEVICE CORPORATION MAY 1987

MIL-STD-883 PROGRAMMABLE SYNCHRO CONVERTER

The SDC-14560 series S/D converters offer programmable resolution of $10,12,14$ or 16 bits, tachometer-like high quality velocity output and accuracy to 1.3 arc minutes. In addition, a Built-InTest (BIT), CT mode operation, transparent latch, and three-state output in two bytes are standard features.
All Models are available fully compliant with MIL-STD-883. DDC is the only manufacturer of fully compliant hybrid synchro converters.

Velocity output (VEL) from the SDC-14560 is a ground based voltage of 0 to $\pm 10 \mathrm{VDC}$ at the highest tracking rate for each resolution. VEL is positive for an increasing angle. Through the use of this highly characterized signal, the electro-mechanical tachometer may be eliminated from the system.

The benefit is savings in system size, weight and cost.

All SDC-14560 converters provide Built-In-Test (BIT), a transparent latch and three-state output in two bytes. The BIT circuit detects over-velocity, out-of-null circuit conditions, and most converter or input failures. The threestate, two byte output and transparent latch provide for easy computer interface and continuous angle tracking while an inhibit is applied during data transfers.

Two input options are included in the SDC-14560 series: synchro or resolver. Models are offered with broadband frequency ranges of 360 to 1 kHz , or 47 to 1 kHz .

The SDC-14560 is a Monobrid ${ }^{\circledR}$ design which incorporates a custom LSI chip in its circuitry. Use of the LSI chip results in fewer parts, thereby increasing the reliability.

The converters are packaged in a compact 36 -pin DDIP measuring $1.9 \times 0.78 \times 0.21$ inches and weigh 0.7 oz. Power requirements are $\pm 15 \mathrm{VDC}$ and +5 VDC supplies. Two operating temperature ranges are available: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The SDC-14560 series is designed for use in modern high performance high-rel military motion control systems.
Learn how you can improve your system designs with the new SDC-14560 from DDC. Call one of our regional offices today for all the details.

- Monobrid is a registered trademark of ILC Data Device Corp.

CERTIFIED AND QUALIFIED TO MIL-STD-1772

ILC DATA DEVICE CORPORATION

TEXAS INSTRUMENTS REPORTS ON GRAPHICS

IN THE ERAOF MegaChip

Graphics in the Era of MegaChip Technologies:

New Texas Instrument: lets you program circle:

 plus filled polygons, spline curves, antialiased lines

From PC displays to laser printers, the flexibility of TI's TMS34010 processor delivers the leading-edge performance you need today and to stay out in front tomorrow.

In TI's TMS34010 Graphics System Processor, you have a ne and better graphics-design approach: The first high-performance, 32-bit CMOS microprocessor optimized for graphics applications.

The 34010 can execute all functior needed by graphics operating environ ments; hard-wired coprocessors can only execute a small part.

32-bit graphics processor around competition...

"Because the 34010 is programmable, it is in a league all its own."
Jim Richards, president of VMI, is talking graphics performance. You can program the 34010 processor to perform any graphics function you want, unlike hard-wired coprocessors. This means you can readily customize your system to outperform your competition.

But there's an even more important aspect to consider. The 34010 will help keep your system ahead of competition because it is compatible with existing graphics hardware standards - $\mathrm{CGA}^{\mathrm{TM}}$ EGA, ${ }^{\text {TM }}$ and PGC $^{\text {TM }}$ - and supports graphics software standards such as CGI, DGIS, ${ }^{\text {TM }}$ and MS-Windows. ${ }^{\text {TM }}$
Standards like Windows and DGIS run faster on TI's TMS34010 The 34010 is also among the fastest microprocessors available. It handles six million instructions per second with a "draw" rate of up to an amazing 50 million pixels per second. Thus, it can boost total system performance.

Because of the support of MSWindows and DGIS alone, many major applications software packages can already run on 34010 -based systems.

TI's MegaChip Technologies

Our emphasis on high-density memories is the catalyst for ongoing advances in how we design, process, and manufacture semiconductors and in how we serve our customers. These are our MegaChip ${ }^{\text {Tw }}$ Technologies, and they are the means by which we can help you and your company get to market faster with better products.
workstations, terminals, plotters, FAX, image processing, digital copiers, mass storage, robot vision, and communications.

TI's total systems solution

 In implementing your design, you'll want to consider other building blocks TI has developed. Included are the single-chip TMS34070 66-MHz Color Palette that supports simultaneous display of 16 out of 4,096 colors and the| GRAPHICS-PRODUCTS ROAD MAP | | | | |
| :---: | :---: | :---: | :---: | :---: |
| VIDEO PERIPHERALS | | | | |
| dISPLAY CONTROLLERS AND PROCESSORS | | | | |
| MEMORY PRODUCTS | | | | |

Road map to tomorrow's graphics systems: Next-generation additions to TI's innovative graphics-products family will allow you to build on your present designs to develop even higher-performance systems.

"You would think TI designed the 34010 with our technology

 in mind."Luis Villalobos, Conographic president, refers to the power of the 34010 to process font outlines for desk-top publishing. Resolution up to $64 \mathrm{~K} \times$ 64 K means no hardware limits for laser printers and other hard-copy devices.
Host independence and the flexibility of a device programmable in "C" language make TI's 34010 the cost/ performance leader for PC displays, laser printers, desk-top publishing,

TMS70C42 Microcontroller that handles all serial interface duties.
Also included are high-speed video random-access memories (TMS4161 and TMS4461), plus linear small and large-area CCD image sensors.
To provide the host bus interface and any other customized functions you may require, TI offers quick design and production turnaround through its Application-Specific Integrated Circuits (ASICs) capabilities.
Development tools are available now for applying the 34010 . Turn the page for details.

"TexasInstrumentshadready the full set of development tools we needed"
 As William Frentz, executive vice pres-

 ident at Number Nine Computer, points out, TI has ready the hardware, software, and documentation you will need to make designing in the 34010 as fast and as easy as possible.TI's 34010 software includes a full Kernighan and Ritchie " C " compiler with extensions and an assembler package for both MS-DOS ${ }^{\text {TM }}$ and VAX ${ }^{\text {m }}$ operating environments.

A graphics/math library provides source code for more than 100 functions, whereas a typical controller chip offers only 15 to 20 . A special font library contains more than 100 type fonts to expedite development of desktop publishing applications.

The TMS34010 XDS/22 Emulator is a flexible, realtime, in-circuit emulator. It can be used in a stand-alone mode through a standard terminal or through a host computer with a powerful debugger interface.

To see immediately what TI's new graphics processor can do for you, just plug the TMS34010 Software Development Board into an IBM ${ }^{\circledR}$ PC-compatible or TI Professional computer. The board is populated with TI's 34010 Graphics Processor, Color Palette, and VRAMs. It provides an ideal environment for developing your own high-performance graphics applications.

For more information on TI's total graphics-system solutions, including details on Tl's Graphics Design Kit and design training courses, complete and return the coupon today. Or write Texas Instruments Incorporated, P.O. Box 809066 , Dallas, Texas 75380-9066.

[^12] a comprehensive design kit (left rear), a realtime emulator, and a plug-in software development board. On floppy and magnetic disks: "C" compiler, assembler package, and function and font libraries. User's guides, development books, product bulletins and data sheets, and TI's newsletter, Pixel Perspectives, are all readily available.

Hundreds of designers must be right Hundreds of hardware and software designers are making TI's 34010 the new graphics standard. Among them are leading boarddevelopment houses and major software vendors.
In fact, the wide range of graphics standards and application software already written for TI's 34010 makes it the easiest-to-use new graphics chip ever introduced. Here's just a sampling of the software that will run on top of Graphic Software Systems DGIS• 34010:

Software Products	Company
AutoCad ${ }^{\text {™ }}$	AutoDesk
GSS** ${ }^{\text {Ca }}{ }^{\text {w }}+$	GSS
Master Series ${ }^{\text {TM }}$	Ashton-Tate
Freelance Plus ${ }^{\text {™ }}$	Lotus GPG
Graphics Development Toolkit ${ }^{\text {TM }}+$	IBM
Harvard Presentation Graphics ${ }^{\text {TM }}$	Software Publishing Corp.
ProDesign II $^{\text {TM }}$	American Small Business Computers
VersaCad ${ }^{\text {™ }}$	VersaCad Corp.
Windows ${ }^{\text {TM }}+$.	Microsoft
Symphony ${ }^{\text {TM }}, 1-2-3{ }^{\text {™ }}$	Lotus Development
P-CAD ${ }^{\text {™ }}$	Personal CAD Systems
${ }^{\text {ru }}$ Trademarks are as noted.	
or these operating environments.	

Texas Instruments Incorporated

SPV153ED700C
P.O. Box 809066

Dallas, Texas 75380-9066
YES, please send me information on TI's Total Graphics-System Solutions.

$\overline{\text { NAME }}$
TITLE
COMPANY
ADDRESS
AREA CODE
TELEPHONE

Low-cost circuits maintain quality of multiplexed video signals

Abstract

Because video signals often pass through many black boxes and levels of interconnection, you must design your video switching circuitry to accommodate the attendant cumulative signal degradation.

Greg Schaffer, Maxim Integrated Products

Patching a video system together may seem as easy as hooking up some cables to the appropriate boxes and then turning on the power, and for existing video systems it may be just that simple. However, if you're designing the circuits that provide the link between several video signals, the seemingly simple task of switching the signals and driving them down 75Ω cables can prove troublesome.

Commercial television stations have assigned frequency bands that are 6 MHz wide. Television transmitters limit the bandwidth of their video signals to about 4 MHz . As a video signal travels from a camera to an antenna, it passes through many levels of interconnection, each of which contributes an error component. To minimize accumulative errors due to frequency and phase distortion, TV studio facilities normally maintain bandwidths about twice that of the transmitters; you
must design your studio video conditioning and routing equipment such that it maintains a signal to within 1 dB at 8 MHz , even after the signal has gone through several cascaded circuits.

You can only achieve this level of signal preservation by keeping the error contribution from each individual circuit substantially lower than the $1-\mathrm{dB}$ at $8-\mathrm{MHz}$ figure might indicate. Note the following $-3-\mathrm{dB}$ bandwidths ($\mathbf{f}_{-3 \text { dB }}$) required of each of n cascaded circuits to give an overall frequency response of -1 dB at 8 MHz :

$$
\begin{aligned}
& \text { For } n=1, \mathrm{f}_{-3 \mathrm{~dB}}=15.72 \mathrm{MHz} \\
& \text { For } n=2, \mathrm{f}_{-3 \mathrm{~dB}}=22.90 \mathrm{MHz} \\
& \text { For } n=3, \mathrm{f}_{-3 \mathrm{~B}}=28.32 \mathrm{MHz} \\
& \text { For } n=4, \mathrm{f}_{-3 \mathrm{~dB}}=32.86 \mathrm{MHz} \\
& \text { For } n=5, \mathrm{f}_{-3 \mathrm{~B}}=36.85 \mathrm{MHz} \\
& \text { For } n=6, \mathrm{f}_{-3 \mathrm{~dB}}=40.45 \mathrm{MHz} .
\end{aligned}
$$

Note that a system with six stages requires that each of the cascaded components have a $-3-\mathrm{dB}$ bandwidth of about 40 MHz to ensure a total system response of -1 dB at 8 MHz .

A brute-force approach to this problem of signal degradation will work. A wideband amplifier such as the 3554 (80 MHz) is effective, and it also provides enough current output (100 mA) to act as a distribution amplifier (a commonly used circuit in video applications). In Fig 1, the circuit is configured to run at a closed-loop gain of 2 . This gain compensates for the loss due to the back-termination resistors. The signal response of the circuit falls to about -3 dB at 40 MHz .

A major difficulty with these high-speed amplifiers is that they are very layoutsensitive.

Fig 1-The 3554 amplifier has the drive capability to drive several video cables; it's shown here configured as a distribution amplifier.

High-speed power amplifiers such as the 3554 consume 1W-not an uncommon figure when driving several cables.
Another wideband, higher-speed, amplifier, the NE5539, has a $-3-\mathrm{dB}$ bandwidth of 100 MHz when operating at a gain of 2 . This part has limited output-voltage-swing capabilities, but it is capable of driving a single video cable. When driving such a cable, the NE5539 generally requires a pull-down resistor from the output to the negative supply.
Although effective, high-speed amplifiers don't provide the optimal solution. High-quality video compo-nents-those that give a flat frequency response out to 10 MHz -tend to be expensive, power-hungry, and layout-sensitive. Among other things, you must carefully bypass the power supply pins on the chips; the bypass capacitors you use must have very short leads in order to minimize inductance. Also, when employing these parts, you should use ground planes extensively. To help you use the parts properly, however, manufacturers do provide drawings of proper pe-board layouts.

Fortunately, if your system doesn't have to have a flat frequency response to 10 MHz , and you only need to switch a couple of video signals, you can build low-cost

Video switches present their own peculiar problems

Video switches differ from conventional analog switches. Whereas traditional analog switches are optimized for dc operation, video switches are optimized for ac operation. Typically an analog switch will exhibit about 50 dB of off-isolation at 10 MHz ; in contrast, a video switch's off-isolation at 10 MHz is 70 dB .
In a common video-switch configuration (Fig A), two bilateral switches are configured in series, and another switch shunts them to form a T switch. The n_{1}, $\mathrm{n}_{2}, \mathrm{p}_{1}$, and p_{2} regions are on while n_{3} and p_{3} are off and vice versa. In the off state, some of the input signal is coupled through to n_{2} and p_{2}, but n_{3} and
p_{3} are on, and thus the switch shunts most of the signal to ground. This T configuration provides the high off-isolation.

Often, a video switch is configured to directly drive 75Ω loads, but because the switch's

Fig A-A video switch's typical T configuration improves off-isolation.
on-resistance can go as high as 200Ω, the resulting signal loss through the switch can be significant. For example, a 100Ω switch driving a 75Ω load will cause a $7.4-\mathrm{dB}$ loss in signal strength. The on-resistance also varies with voltage, which can cause differential-gain errors.

When the switch is off, the cable is unterminated, but, when the switch is on, the cable is terminated with a 175Ω load-quite a mismatch between the cable and termination. To avoid mismatch problems, you should terminate the cable directly with a 75Ω resistor, then add the switch, and follow that with a buffer or amplifier to drive the output video cable.

Fig 2-You can configure a 4066, with its bilateral switches, as a video multiplexer.
video-switching circuits that give $-3-\mathrm{dB}$ bandwidths as high as 10 MHz . The most basic element is the switch itself (see box, "Video switches present their own peculiar problems"). A good video switch is judged on the basis of three primary characteristics: off-isolation, crosstalk isolation, and bandwidth. Off-isolation is a measure of how much of a video signal gets through an off switch when the switch is supposed to be blocking the signal. Crosstalk isolation is a measure of how much of a signal is coupled inadvertently from channel to channel within the switch.

A CMOS 4066 switch shows promise as far as its bandwidth (-3 dB at 65 MHz) is concerned. However, feedthrough attenuation is only 50 dB at 1 MHz , and it should be an order of magnitude better than that. A $60-\mathrm{dB}$ isolation at 4 MHz is satisfactory. You can achieve this level by using three bilateral switches of a 4066 in a T configuration, configuring two 4066 s to make a 1-pole double-throw switch.

As an alternative solution to this feedthrough isola-

Fig 3-By adding an amplifier to the circuit of Fig 2, as shown here, you can drive the video cable properly.

Fig 4-An emitter-follower allows you to boost the output drive of your video circuitry.
tion problem, connect two bilateral switches in series to form a quasi-T switch (Fig 2). Parasitic capacitance at points A, B, and C shunt the signal to ground when the switches are in the off state. Because the two switches are in series, the circuit achieves about 63 dB of attenuation at 10 MHz . A disadvantage is that the $-3-\mathrm{dB}$ bandwidth of the composite switch is about 25 MHz compared to a single switch's 65 MHz . Although

25 MHz isn't particularly fast for a video switch, it's sufficient for many video switching applications.
A typical video application entails a circuit driving a 150Ω load, which can reduce the gain of an amplifier enough to warrant the inclusion of additional circuitry to boost the gain of the circuit. In Fig 3, a video multiplexer uses an HA-2520 amplifier. Capacitor C_{1} boosts the gain of the op amp at higher frequencies,

Video signals' phase linearity is paramount

When designing video circuits, you must understand the nature of video signals. The standard US video signal generates a picture, consisting of 525 horizontal lines interlaced to give two fields of 262.5 lines, and transmits approximately 60 fields (30 pictures) per second. Each horizontal line of the picture transmits a color-burst signal at 3.58 MHz .

Two signals, I and Q, carry the color information, which is centered around the color-burst frequency. This information is derived from the phase relationship of the I and Q signals with respect to the color-burst signal; therefore, it's important that your video-processing circuits
maintain good phase linearity.
Two measurements affect phase linearity: differential gain and differential phase. Minimizing these two prevents unwanted interaction between the intensity and color of a signal. If a video circuit has a lot of differentialphase error, then a picture's color will change with its brightness.

As an example of how to measure differential-gain error, use a $3.58-\mathrm{MHz}, 100-\mathrm{mV}(200 \mathrm{mV}$ $\mathrm{p}-\mathrm{p}$) signal superimposed on a $1-\mathrm{kHz}, 500-\mathrm{mV}$ p-p signal. This combined signal has a $700-\mathrm{mV}$ p-p range, about the same as a video signal. If you send the signal through a highpass filter,
ideally the only signal you should see is the $3.5-\mathrm{MHz}$ signal, and it should be of constant amplitude. In reality, though, the amplitude varies, providing evidence of the circuit's differentialgain error. For instance, if the output amplitude varies between 99 and 100 mV , then the differ-ential-gain error is 1%.
The variation in phase shift of the output signal with respect to the input signal, expressed in degrees, is the differential-phase error. By the time a video signal reaches a transmitter, the total differential-phase error should not exceed 3 degrees at 3.58 MHz .

Discover the Power of Integrated CAE Design Capture and Verification.

	IN ASERIES
Engineering	

Finding the most powerful electronic design solutions is now easier than ever, thanks to the Designer's WorkSystem.'"

Developed by Tektronix as part of Tektronix Aided Engineering, the Designer's WorkSystem combines design capture and verification tools into one powerful solution.

Designer's Database Schematic Capture (DDSC ${ }^{\text {w }}$) provides you with a fast, user-customizable, menu-driven system for design capture of IC and PCB schematics.

From that same DDSC user interface, you can create graphic and textual descriptions of your circuit stimulus and run one of our powerful design verification tools, HILO ${ }^{\text {e- }} 3$ Logic Simulation System or SPICE" 2 G. 6 analog simulator Graphical simulation results are easy to view using our interactive graphical circuit probe capability. Once you're ready to document your project, our TekWriter"

Engineering Design Documentation System (based on Interleaf"') lets you merge DDSC design schematics and simulation data with professional text formats and other graphics for fast, camera-ready documentation.

It's all part of Tektronix Aided Engineering. A family of integrated WorkSystems addressing each area of your electronic design cycle. From design capture, verification and documentation to IC and PCB layout. All running on industrystandard platforms from

Best of all, it's from Tektronix. The name you've always trusted to get the engineering job done. So you're assured of worldwide service, support and training.

To discover the power of Tektronix Aided Engineering, contact your local Tektronix, CAE Systems Division, sales office. Or call 800/547-1512. Tektronix, CAE Systems Division, 5302 Betsy Ross Drive, P.O. Box 58137, Santa Clara, CA 95052-8137.

[^13]
Feedthrough attenuation should be about 60 dB at 4 MHz .

where both the op amp and multiplexer begin to roll off. The net result is a $-3-\mathrm{dB}$ response from the multiplexer input to the amplifier output of 7.3 MHz . Due to the peaking action of C_{1}, the $-1-\mathrm{dB}$ point is 5 MHz .

You can substitute another low-cost op amp, the LM318, in the circuits of Fig 2 and 3 for simplicity's sake and enhanced performance. Because, at unity gain, the LM318's phase margin is less than that of the HA2520, you don't need to include the peaking capacitors. The resulting bandwidth is 20% less than the HA2520 circuit's.

You can also increase Fig 3's bandwidth, as well as its drive capability, by adding an emitter-follower (Fig 4). The circuit can drive four 75Ω doubly terminated cables, and it achieves a $-3-\mathrm{dB}$ bandwidth of 9.7 MHz . The resistor in the collector lead, R_{1}, limits the current flow through the transistor in the event of a short circuit. To reduce power consumption, you can operate the circuit from $\pm 5 \mathrm{~V}$; however, the circuit's frequency response falls off about 15% at reduced power-supply voltages. If you do opt for $\pm 5 \mathrm{~V}$ operation, be sure to use the full $\pm 5 \mathrm{~V}$ to power the 4066 to minimize the part's on-resistance. You'll also need to change the

Fig 6-This method of ganging multiplexers degrades the bandwidth of your video circuitry.

Fig 5-A CMOS-input amplifier such as the MAX450 presents a lighter load to your video switch.

A coax conductor so small it will pass through the eye of a needle. That's microminiature.
We've gathered 133 of these low capacitance coaxes into a precision cable with an OD just over half an inch. Without compromising speed, signal fidelity, flex life, or reliability.
We're using our special capabilities and experience in micro-miniature cables, connectors, and termination techniques to satisfy the demanding requirements of some of the world's largest diagnostic imaging manufacturers. The cable geometry must be precise; the manufacturing tolerances are diminishing. And the requirements are many: lower capacitance, higher speed, controlled impedance, and the continuing demand for toughness and reliability unique to hand-held devices.

What's next? Through our R\&D, we've produced a prototype with even smaller conductors for a micro-miniature 512 50-ohm coax cable. The OD? Would you believe .600 ? Our products are getting smaller every day. And that's helping us to grow.

NATIONAL ELECTRIC CABLE
Micro-miniature cable and connector solutions

16640 S.W. 72 nd Avenue Portland, OR 97224 (503) 620-9400

Offices in San Francisco, Wilmington, Munich, and Tokyo

You must be careful in your designs not to degrade the bandwidth of these parts.
protection resistor, R_{1}, to 20Ω.
The MAX450 op amp is yet another low-cost op amp suited to video switching applications. Fig 5 shows a MAX450 connected to a 4066 video switch. This op amp has the disadvantage of operating with a relatively high quiescent current (25 mA), but because of its CMOS input, the input current is negligible compared to that of a bipolar op amp.

All the previous examples, which use 4066 switches to select one of two video signals, are fine for a limited number of input signals, but you shouldn't infer that you can switch more than two signals by just cascading a number of 4066 s . As you increase the number of channels you want to switch, the bandwidth of the circuit decreases steadily. In addition, the number of devices necessary for multiplexing increases as you add decoder logic to control the switches. Using the 4066switch approach to build an 8-channel multiplexer requires about six IC packages and a $-3-\mathrm{dB}$ circuit bandwidth in the 9 - to $10-\mathrm{MHz}$ range.

A better approach is to use one IC. The MAX310 8 -channnel video multiplexer provides break-beforemake switching and a $-3-\mathrm{dB}$ bandwidth of 15 to 20 MHz , depending on the bias conditions. You must be careful in your designs, though, not to degrade the part's bandwidth. Fig 6 shows a circuit in which the MAX310 multiplexes 64 video channels onto one output line. Only one multiplexer is active at a time, and its output capacitance is 57 pF ; that of the other multiplexers is 38 pF , and therefore the total output capacitance

Fig 7-By adopting a 3-tiered approach and adding high-speed amplifiers, you can significantly improve the frequency response of the multiplexing circuitry.
is 323 pF . The typical on-resistance of a channel is 150Ω. This 64 -channel multiplexer's RC time constant is therefore 48 nsec . The corresponding $-3-\mathrm{dB}$ rolloff frequency is only 3.3 MHz , and you've wasted the part's bandwidth.

You can double the bandwidth of the circuit to about 6.7 MHz by using the configuration of Fig 7 (minus the amplifiers). In this circuit, the "on" channel path consists of two T switches connected in series. The path's resistance is 150Ω, and the capacitance is 60 pF (including pc-board traces). The RC time constant is therefore 9 nsec , and the corresponding $-3-\mathrm{dB}$ rolloff frequency for each switch is 18.6 MHz . The rolloff frequency of the combined switches is 6.7 MHz ; adding one component doubles the circuit's bandwidth. Circuit path delays prevent you from obtaining any further bandwidth gains from this technique; using a 3-tiered technique won't confer any improvements in bandwidth.

To obtain a $12-\mathrm{MHz}$ rolloff with this circuit, add the high-speed amplifiers as shown in Fig 7. Your amplifiers must exhibit negligible rolloff at that frequency, which in turn requires that the amplifiers have $50-\mathrm{MHz}$ unity-gain frequencies. Unfortunately, amplifiers with $50-\mathrm{MHz}$ unity-gain frequencies can be quite expensive, but you can substitute less-expensive high-speed buffers. These buffers are nothing more than emitterfollowers with high bandwidths and gains close to 1. The BUF-03, for example, has a $50-\mathrm{MHz}$ bandwidth, slews at $250 \mathrm{~V} / \mu \mathrm{sec}$, and has an offset of only a few millivolts. The buffer's gain could prove troublesome, but if you substitute this part for the amplifiers in Fig 7 , the gain is about 0.995 , which causes very little loss in signal amplitude.

EDN

Author's biography

Greg Schaffer is a senior member of the technical staff at Maxim Integrated Products in Sunnyvale, CA, where he is involved with analog IC design. Greg is a member of the IEEE and the ISA. He received his BSEE from MIT, his MSEE from UC Berkeley, and an MS in computer science from the University of Arizona. He has two patents to his credit and enjoys running, rock climbing, horse racing, and playing the piano.

Article Interest Quotient (Circle One) High 470 Medium 471 Low 472

TAKE A CLOSER LOOK AT MULTIFLLAR MAGNET WIRE.

Whenever two or more magnet wires travel together, MULTIFILAR magnet wire is worth a closer look. This parallel-bonded, color-coded magnet wire offers many benefits for both small and large users.

Engineers should specify it when they're concerned with space, weight and reliability. Where consistent capacitance and impedance characteristics are needed, MULTIFILAR magnet wire outperforms windings where two separate magnet wires are used.

Production users benefit from increased layer winding speeds, reduced labor and handling. Color-coding assists in conductor identification and reduces termination errors.

MULTIFILAR magnet wires are custom produced by MWS. We guarantee flat, parallel construction in an array of sizes 16 AWC and finer, with up to 20 conductors in some sizes.

Both round and flat constructions are available. Color-coded conductors are available in most insulations with up to 10 different colors in some sizes. Conductor separation is also guaranteed with certain bonding mediums.

For an even closer look, send for a free sample, specifications and ordering information. Production minimums are as low as 500 feet.

MWWS
 Wire Industries

TREASONS WHY... BICC-VERO MAKES THE BEST VME BACKPLANES

You've already invested quality time and budget in building the very best VME computer system for your application

Now, interconnect your components with the very best backplane. Select from the full range of sizes and configurations offered by BICC-VERO.

BICC-VERO supports their VME Backplanes with a full line of card frames, enclosures, and connectors. Ask for the details.

Call us or your BICC-VERO Distributor for complete information.

VERO
 BICC ELECTRONICS

CIRCLE NO 147
BICC-VERO ELECTRONICS, INC.
1000 Sherman Avenue Hamden, CT 06514
(203) 288-8001 TWX: 510-227-8890 systems the way you want.

Right from the start, you can select just the right package for your system design. Traditional DIP, high density ZIP or surface mount SOJ.
And, they're all available now.
Mitsubishi's 1 Mb ZIP package provides a cost-effective, widely sourced high density alternative to DIPs. The ZIP's low profile allows tight board-toZoard spacing, plus, it's auto-insertable using traditional DIP throughhole production technology.

Optimum package selection. Fast tach access times. Mitsubishi introduces 1 Mb performance and packaging that let you design your able using traditional DP through

				Package			cess Time	
Part \#	Configuration	Mode	Plastic DIP (P)	Plastic J-Lead (J)	Plastic ZIP (L)	(-10)	$\begin{gathered} \mathrm{t}_{\mathrm{RAC}} / \mathrm{t}_{\mathrm{CAC}} \\ (-12) \end{gathered}$	(-15)
M5M4C1000	$1 \mathrm{M} \times 1$	Fast Page	-	-	-	100/25	120/30	150/40
M5M4C1001	$1 \mathrm{M} \times 1$	Nibble	-	-	-	100/50	120/60	150/75
M5M4C1002	$1 \mathrm{M} \times 1$	Static Column	-	-	-	100/25	120/30	150/40
M5M44C256	$256 \mathrm{~K} \times 4$	Fast Page	-	-	-	100/25	$120 / 30$	150/40
M5M44C258	$256 \mathrm{~K} \times 4$	Static Column	-	-	-	100/25	120/30	150/40
MH1M08	$1 \mathrm{M} \times 8$	Fast Page	J (socketed), JA (pinned) J (socketed), JA (pinned)			100/25	120/30	150/40
MH1M09	$1 \mathrm{M} \times 9$	Fast Page				100/25	120/30	150/40

For high density applications, where an upgrade from a $256 \mathrm{~K} \times 8 / 9$ is required, and/or height is not critical, Mitsubishi also offers $1 \mathrm{M} \times 8$ and $1 \mathrm{M} \times 9 \mathrm{SOJ}$ memory modules.

CMOS Technology

Mitsubishi's CMOS design makes two new modes of 1 Mb device operation possible: static column and fast

1M x 1 DRAM Package Dimension Comparison

Package	Relative Density (Plane)	Relative Density (Nolume)	Package Height In. (max.)
DIP (Dual In-Line)	1.0	1.0	0.18
ZIP (Zig-Zag In-Line)	$1.6-2.0$	0.7	0.4
SOJ (Small Outline J-Lead)	$1.05^{*}\left(2.1^{* *}\right)$	1.1^{*}	0.165
Module (1M $\times 9$ Chips)	$3.25 /$ device	$0.7 /$ device	0.8

[^14]

New 56-page 1987 catalog

Acopian single, dual and triple output power supplies featured in our new catalog for 1987 are shipped in three days. Included are PC-boardmounting and chassis-mounting mini modules. DC-DC converters. General-purpose modular supplies with outputs to 200 Vdc and current ratings to 32A. Narrow-profile supplies a mere $1.68^{\prime \prime}$ thin. Plug-in
supplies. MIL-tested supplies. Unregulated supplies for economically driving relays and displays. Voltage programmable supplies. Our rack-mounting power supplies and systems, and redundant output systems are shipped in nine days. The catalog contains complete specs and pricing information. Call or write for your copy.

P.O. Box 638, Easton, PA 18044 Call toll free (800) 523-9478
P.O. Box 2109, Melbourne, FL32902

Call toll free (800) 327-6817

You need microprocessor control for your new product. You want to beat the competition to market. But microprocessor designs take time.
Cubit's STD Bus board level computers get the job done fast. You save hardware design time, prototyping time and debugging time. And we include software tools to get the job done fast
STD Bus is simple, compact and inexpensive. It is also rugged and rich in industrial I/O functions that other busses neglect

NEED HELP WITH COOLING DESICN PROBLEMS?

At Torin Engineered Blowers, we specialize in providing creative solutions to air-moving application problems.

Comprehensive test-laboratory facilities, and over 40 years of design experience have established our reputation for technical leadership in custom blower design for the electronics cooling, business machine, aerospace and military markets.

Our quality product line includes custom-designed single, dual and multi-stage centrifugal blowers, transverseflow blowers, mixed-flow blowers, cabinet blowers and vane-axial fans.

As part of Fasco Industries, we are now uniquely positioned to provide you with country-wide sales coverage, dedicated design and sampling capabilities on both East and West coasts, in-house availability of electric motors and cost-effective manufacturing through Fasco.

Call on us when your air-moving requirements exceed the ordinary. Our product line is limited only by your imagination.

TORIN ENGINEERED BLOWERS

HAWKER

FASCO

MOTORS AND BLOWERS

FASCO INDUSTRIES, INC.

MOTOR DIVISION HEADQUARTERS 500 Chesterfield Center
Suite 200
St. Louis, MO 63017
314-532-3505 / Telex: 44-7455

Proper testing can maximize performance in power MOSFETs

> MOSFETs are a viable option when it comes to satisfying the needs of today's power electronics systems. Some problems do occur in certain applications, however, and you must address these problems by realistically testing the transistor to ensure successful system performance.

Kim Gauen and Warren Schultz, Motorola Inc

Most designers are quite satisfied with MOSFET performance, but others have experienced problems with applications involving multiple-transistor designs. In certain half- or full-bridge configurations, MOSFETs fail at apparently modest stress levels. The source of these failures is a set of three concurrent operating conditions, which collectively have become known as commutating $\mathrm{dv} / \mathrm{dt}$. A commutating safe-operatingarea (CSOA) test circuit that follows a workable specification format can provide data that helps you counter the effects of these failure sources.

Several sources of problems

Before looking at the test spec and the test circuit, you should become familiar with the problem sources, of which there are a number. First, the MOSFET's diode must conduct during the switching cycle. Though
it's a necessary condition of device failure, diode conduction cannot destroy the MOSFET by itself. Normally, the MOSFET is virtually immune to dv/dt-related failures, but it's much more sensitive when its intrinsic diode conducts current.

The change from majority to minority current carriers as the conduction mode changes is the problem source here. When the transistor operates as a MOSFET, it's not troubled by storage times or stored charge, because it's a majority-carrier device. On the other hand, its diode is a minority-carrier device. Consequently, it has forward- and reverse-recovery times because of charge storage. The stored charge associated with the diode is what degrades MOSFET performance. During reverse recovery, the rapid removal of stored charge increases the base-emitter voltage of the MOSFET's parasitic bipolar transistor, and this discharge increases the tendency for undesired turn-on.

This need to remove stored charge rapidly during reverse recovery is actually the second necessary condition for commutating stress failure. Fast charge removal increases current densities and peak electric fields. Because the turn-on speed of the transistor in the opposite leg of the half-bridge has the greatest effect on commutation speed, it has great influence on device stress.
There's a third failure condition: The stored charge must be extracted through a reapplied voltage of at least 30% to 50% of the device's maximum $V_{D S}$ rating. If the bipolar transistor turns on, failures occur when operating conditions are outside the SOA. A bipolar
transistor's $\mathrm{BV}_{\text {CEO }}$, which is usually about 50% of its $\mathrm{BV}_{\text {CES }}$, is one of the major factors that limit SOA.

Problems affect an exclusive club

These conditions exclude most circuits as candidates for commutating-dv/dt problems. All single-transistor designs are immune, and many multiple-transistor designs undergo no commutation stress, because the third failure condition is not fulfilled. The following examples can help you predict which multiple-transistor applications may develop problems. The first circuit described illustrates one of the most common problem areas. The second represents a design situation in which commutating dv/dt is not normally a concern.

Consider the bidirectional de motor controller represented by Fig 1. Varying the duty cycle provides speed control, and the rotation direction depends on which transistor is controlling the motor speed. When one transistor is providing this control, the opposite transistor is inactive as a MOSFET, but its diode serves as a commutating rectifier. To reduce the audible noise, most designers operate their systems at frequencies greater than 20 kHz , so switching speeds are also high.

The turn-on of the drive transistor (Q_{1} in this case) impresses commutating-dv/dt stress on Q2's diode. As Q_{1} turns on, the load current commutates from Q_{2} 's diode to Q_{1}. More importantly, Q_{1} also supplies the reverse-recovery charge for D_{2}. Fig 2 shows Q2's diode

Fig 1-Commutating-dv/dt stress on the power transistors is a major problem in this PWM dc motor-controller system.

Fig 2-All three conditions for commutating-dv/dt failures are evident in these motor-controller waveforms. $I_{D z}$ shows the effect of the diode's conducting during the switching cycle, $I_{Q_{1}}$ reflects the need to remove stored charge rapidly during reverse recovery, and $V_{D S Q}=$ shows the need to extract the stored charge through a high reapplied voltage.
current, its drain-to-source voltage, and what many believe to be the most stressful time for failure. Note that the three elements required for commutating-dv/ dt failure are present: As shown by the high $\mathrm{dv} / \mathrm{dt}$ and high di/dt, Q2's diode is experiencing the combined stress of reapplied high voltage, the presence of minority carriers, and the rapid extraction of charge.
The second example, a half-bridge switch-mode power supply (Fig 3), usually has no problems with commutating-dv/dt stress. One crucial difference between this system and the motor-control circuit is that the transistors are switching alternately. Circuit analysis shows that, in the ideal case, output rectifiers D_{1} and D_{2} are the primary freewheeling rectifiers, and the MOSFET diodes are essentially inactive. In reality,

Fig 3-A MOSFET's intrinsic diodes generally do not experience commutating-dv/dt stress in a half-bridge switching power supply, even though they act as freewheeling rectifiers.

Fig 4-Many parameters affect total device stress during commutating dv/dt, and it can be difficult to select the meaningful and convenient independent variables for CSOA testing. The CSOA spec begins with $I_{F M}$, the reapplied voltage, and the commutation speed.
however, each intrinsic diode must clamp the energy in the transformer's leakage inductance when the opposite transistor turns off. Generally, this situation is acceptable, because the energies involved are small, diode conduction is brief, the reapplied voltage is only a fraction of the device rating, and reverse recovery is slowed by the parasitic inductance. Consequently, in these circumstances power-MOSFET commutating characteristics are usually not a problem.

You have cause for concern in half- or full-bridge circuits only if the load current does not pass through zero during each cycle. DC-to-ac inverters and the motor-control circuit are prime examples.

Establishing a CSOA spec format

To help eliminate problems associated with the MOSFET's intrinsic diode, MOSFET manufacturers can provide devices that are more immune to commutation stress, offer a test method that defines device capability, and publish ratings that detail the safe operating area for the commutating-dv/dt mode. This rating can come in the form of a commutating safe operating area.
Most manufacturers are striving to introduce devices with greater CSOA. Even when supplied with these
devices, however, users will remain cautious (maybe unnecessarily) unless the new capability is defined and guaranteed. Lack of a universally accepted test method to standardize CSOA specs is now the major roadblock in this effort. This snag, though unfortunate, is understandable; it's simply very difficult to specify CSOA.

Fig 4 illustrates the relationships between the various parameters that influence CSOA. (Arrows represent a cause-effect relationship; for example, you work with the R_{BE} and C_{DS} factors to affect the reverserecovery charge.) It's very difficult to select the most meaningful and convenient independent variables for testing. Selecting the three most critical circuit-dependent parameters seems to be the best approach. These parameters are the forward current in the diode just before commutation (I_{FM}), the reapplied voltage (or peak drain-to-source voltage when $\mathrm{V}_{\mathrm{DS}(\mathrm{PK})}>\mathrm{V}_{\mathrm{DD}}$), and commutation speed. To develop the format for a CSOA spec, you can start with these parameters and expand the format to include the effects of junction temperature, the effects of drive-transistor on-resistance, or the results of introducing snubbers to reduce $\mathrm{dv} / \mathrm{dt}$.

At least two methods proposed for specifying commutating $\mathrm{dv} / \mathrm{dt}$ have become popular. Initially, design-

Series 32000 makes VAX power more personal.

NOW YOU CAN JOIN HEWLETT-PACKARD, FUTURENET, EATON, COMPUTERVISION, AND OVER 50 OTHER COMPANIES IN BRINGING 32-BIT POWERTO THE LARGEST INSTALLED BASE IN THE WORLD

There are over 10.7 million* IBM ${ }^{\text {® }}$ personal computers and compatibles in use today. That's the largest "installed base" in the world - an enormous pre-existing market that represents an enormous marketing opportunity. And National Semiconductor is leading the way for OEMs, systems integrators, VARs and VADs to take full advantage of it.

Because it's now possible to put the power of a VAX ${ }^{\text {m }} 11 / 780$ into the PC environment. At a mere fraction of the cost.

PC add-in boards, based on National's Series 32000^{∞} family, allow you to immediately upgrade almost any personal computer to true 32 -bit performance.

Simply by plugging a Series 32000based board into one of the computer's standard expansion slots,** you can deliver the power and speed of a $\$ 30,000$ workstation for about $\$ 3,000$.

That means you can put highperformance CAE/CAD capabilities onto every engineer's desktop. You can distribute more computing power to more people at a lower cost in a multiuser, multitasking office environment.

[^15]
tasking environment in the industry. Yet they can still run important personalproductivity tools like spreadsheets, word processing, and project managers under DOS.

PLUG INTO THE MARKET NOW
 Obviously, the potential of the PC

 add-in market is enormous. And it's already being tapped with Series 32000 -based boards being manufactured by a number of OEMs. IfYou can capitalize on the hot new market in desktop publishing. The opportunities are endless.

DELIVERTRUE 32-BIT POWER

Already more than 50 key systems integrators, VARs andVADs have realized the potential of this market by using PC add-in boards.

And more PC add-in board manufacturers are using the Series 32000 than all other 32-bit microprocessors combined.

That's because no other 32-bit microprocessor offers a more complete, integrated family of solutions, including coprocessors, peripherals, software, and development tools.

And, because the entire family was designed with the same highly symmetrical, orthogonal 32-bit architecture, the Series 32000 is fully software-compatible across all its CPU offerings. So your customers' software investment is completely protected even as they migrate to higher performance.

BRIDGE THE UNIX-DOS GAP

A Series 32000 -based add-in board gives your customers the best of both worlds in operating systems. Since the Series 32000 was the first 32 -bit microprocessor to support fill demand-paged virtual UNIX," your customers can run high-performance engineering and business applications in the most cost-efficient multiuser, multi-
you're a systems integrator, VAR or VAD, contact one of these companies about their products.

Or if you're a board-level OEM yourself, follow their lead by contacting National Semiconductor about how you can design the Series 32000 into your own product.

[^16]Either way, the PC add-in market represents one of the most significant business opportunities in years. With over $10,000,000$ prospective customers. And the Series 32000 can help you reach every one of them.

Personally.
National Semiconductor
MS 23/200
P. O. Box 58090

Santa Clara, CA 95052-8090

There is cause for concern in balf- or fullbridge circuits only if the load current doesn't pass through zero each cycle.
ers used a single dv/dt value, because it simplified matters, and they felt that failures were predominantly $\mathrm{dv} / \mathrm{dt}$-induced. This philosophy lost favor for several reasons. First, devices do not fail solely because of $\mathrm{dv} / \mathrm{dt}$. In fact, few failures occur during peak dv/dt; more are found later during periods of maximum voltage stress and reduced $d v / d t$ (Fig 5). Second, $d v / d t$ varies considerably during reverse recovery, and it's very difficult (to say nothing of an oversimplification) to select a single representative value. Finally, dv/dt during commutation is a function of device characteristics and circuit conditions. You have little control over $\mathrm{dv} / \mathrm{dt}$ unless you use snubbers.
Developing a curve of maximum di/dt vs peak dv/dt is the second specifying option. In this technique, you set

Fig 5-Instead of failing during peak dv/dt (a), the $4 \mathrm{~A} / 450 \mathrm{~V}$ device that was tested to generate these waveforms failed when the reapplied voltage was increased from 360 to 361 V (b).
di/dt by controlling the turn-on speed of a drive transistor and use snubbers to vary dv/dt. Unfortunately, this method has some drawbacks too. For one thing, the specification does not consider the two most critical parameters-forward diode current and reapplied voltage. Second, it's not wise to rely on snubbers in characterizing devices; it's far better to omit them from the design, and the newest MOSFETs have ample CSOA without them. What's more, the addition of snubbers only makes the task of characterizing the device more difficult, because they add another variable. Finally, some intrinsic diodes are much faster than others; they return the diode current from the reverserecovery peak to zero very abruptly, and the rise in $V_{D S}$ to V_{R} is very fast. These diodes must be able to withstand the dv/dt values that they inherently create.

Dissecting the CSOA test fixture

The features of the CSOA test fixture discussed here (Fig 6a) reflect the format described earlier. Most important, the fixture and the test procedure truly characterize the device under test (DUT) by minimizing the effects of circuit parasitics. The fixture's design decreases stray inductances in critical portions of the circuit to practical minimums-an approach that provides the only means of correlating test results with those of other test circuits.
The circuit's design assumes that test results are independent of the duty cycle, and that failures occur because of peak instantaneous stresses rather than multiple exposures to lower-level stresses. Accepting these assumptions (and test results indicate that it's rational to do so) significantly simplifies the test circuit. And if the DUT heat-sinking requirements are minimal, the test circuit's layout can be much denser.
The timing waveforms of Fig 6b illustrate the operation of the test circuit. NOR gates IC_{1} and IC_{2}, configured to form an astable multivibrator, generate a 10 - to $100-\mathrm{Hz}$ clock frequency. The clock signal's rising edge triggers two monostable multivibrators- $\mathrm{IC}_{3}-\mathrm{IC}_{4}$ and $\mathrm{IC}_{5}-\mathrm{IC}_{6}$. The $\mathrm{IC}_{3}-\mathrm{IC}_{4}$ output signal controls the on-time of the MJE13009, which acts as a constant-current source that delivers forward current $\left(\mathrm{I}_{\mathrm{FM}}\right)$ to the MOSFET's intrinsic diode. You set $I_{F M}$ by varying potentiometer R_{1}.
The $\mathrm{IC}_{5}-\mathrm{IC}_{6}$ monostable multivibrator delays the turn-on of Q_{2}. The minimum delay is set at $10 \mu \mathrm{sec}$ to allow stored charge to accumulate in the diode's junction. After this delay, the $\mathrm{IC}_{7}-\mathrm{IC}_{8}$ monostable multivibrator generates a turn-on signal for Q_{2} for 10 to 50

Fig 6-To determine the characteristics of just the transistor under test, this CSOA test circuit's design and layout minimize the effects of circuit parasitics.
$\mu \mathrm{sec}$. For the duration of the turn-on pulse, Q_{2} applies a reverse voltage to the DUT's drain-source diode and forcefully extracts the reverse-recovery charge. During the reverse-recovery interval, the circuit accurately simulates the same conditions that appear in the dc motor controller discussed previously.

A few additional circuit characteristics enhance device testing. First, the drain of the DUT attaches directly to the system ground plane. This direct connection greatly simplifies V_{DS} monitoring and improves measurement accuracy; there's no need to use differential measurement techniques or float an oscilloscope
with this layout. This layout also allows you to use a probe-tip adapter rather than a conventional ground clip; the adapter provides an excellent ground connection for the scope. These precautions are necessary because the V_{DS} measurement is the most influential, and its rate of change can be greater than $10 \mathrm{~V} / \mathrm{nsec}$.
The ability to withstand DUT failure is another, mundane, but necessary, feature of the test circuit. The $R_{\mathrm{DS}(0 \mathrm{~N})}$ of driver-transistor Q_{2}, and Q_{2} 's cutoff current level at the applied gate-to-source voltage, are the primary factors limiting the current surges that can appear at failure. In either case, the MOSFET's rug-

WhenGeorge'Tobias and his designteam needed every ASIC solution-from PLDs to gate arrays to standard cells-they called everyASIC company they needed: National.

It's the pressure every design engineer is familiar with. The pressure to squeeze more functionality into a smaller space.

That's why today's designs are requiring more ASIC solutions - and more than one type of ASIC solution in the same system.

And that's why more designers, like GeorgeTobias and his team, are calling the one company that can meet all their needs in every ASIC category and can provide the full range of design tools, technical support, manufacturing capacity, and long-term commitment to ensure that those needs will be met on time, on budget, and in spec.

That one company is National Semiconductor.

NO ONE OFFERS YOU MORE DESIGN FLEXIBILITY

National is the only company in the industry that can offer you a clear-cut upward-integration path from programmable logic devices to gate arrays to standard cells.

And we're the only company that can offer you a full range of capabilities within each of those categories.

Programmable logic. National has one of the most complete PLD listings available. We offer a variety of circuit types in a variety of process technologies, including bipolar, CMOS, and ECL.

Gate arrays. National has one of the most complete gate-array listings available. We offer a variety of densities, from 600 to

[^17]

8700 equivalent gates, with higher densities in development, all with sub-nanosecond speeds.

Standard cells. National has one of the most complete standard-cell listings available. We offer a variety of functional blocks in a comprehensive and continually expanding cell library that will include logic, linear, memory, interface, microprocessor, and peripheral elements.

And you're not "stuck" at any level. Once you're comfortable with your program-mable-logic design, for example, you can integrate the PLDs and glue logic into a gate array.

Or you can prototype your design as a gate array and then migrate it directly with no re-engineering - to the full integration of a standard cell.

Or you can simply stay with your gatearray solution indefinitely, knowing that you can "tweak" your design relatively easily to maintain your competitive edge.

NO ONE OFFERS YOU MORE DESIGNSUPPORT

National is the only company in the industry that has committed the full magnitude of its semiconductor technology to the development of a complete cell library.

With a standard-product list that includes over 9,000 proven devices, we not only have more circuit-design experience, but we also have a broader base of circuit-design resourcesto help you implement your specific application.

And you can tap into those resources on all the leading workstations, including Daisy, Mentor, Valid, and Futurenet (IBM ${ }^{\infty} \mathrm{PC}$).

NO ONE OFFERS YOU MORE MANUFACTURING CAPACITY

National is the only company in the industry that can offer you a complete, comprehensive, dedicated ASIC manufacturing capability.

In Santa Clara, California, we have a dedicated 4-inch quick-turn line that can give you rapid prototyping and small production runs.

And in Arlington,Texas, we have a world-class, 6 -inch wafer-fab operation that meets Class-10 standards to give you high volume with high reliability.

So whether you're an experienced ASIC designer or you're just now ready to take that first big step toward higher integration, whether you're working with a single design or dozens, whether you need one device or millions, there's only one company that is as committed to your ASIC needs as you are.

National.
National Semiconductor
ASIC Solutions
P.O. Box 58090

Santa Clara, CA 95052-8090
gedness with respect to current surges and the test's low duty cycle provide Q_{2} with the safety margin it needs to survive.

Other, simpler test circuits are more convenient to use in some aspects. In Fig 7's circuit, for example, the test cycle begins when the drive transistor turns on and current ramps up in the coil. The drive transistor then turns off, and current commutates into the diode of the DUT. Before the diode current decays to zero, the drive transistor turns on again and forces the diode into rapid reverse recovery.

You trade simplicity for flexibility

The very simplicity of this technique compromises test flexibility. The biggest problem is that the circulating current, or forward current in the diode, is a function of the supply voltage, so it's difficult to change these two parameters independently of one another. Also, none of the elements in this circuit are subject to great amounts of loss; even low supply voltages and minimum driver duty cycles can pump the current in the coil to undesirably high levels. This factor complicates testing at high voltage levels. When the drive transistor operates at low duty cycles, the diode conducts most of the time, causing the MOSFET to heat up. The need to incorporate heat sinks results in an increase of the circuit's size.

As an option, you could feed a burst of pulses to the driver. This scheme reduces DUT heating problems and allows you to test at high supply-voltage levels. You'll also increase the complexity of the test circuit, however, and $I_{F M}$ still depends to a great degree on the supply-voltage level. You'll also have to monitor the high-speed reverse-recovery interval at the end of the pulse train-an inconvenient thing to do.

Using the CSOA specification

The format of the CSOA rating makes it easy to use. Designers must only maintain V_{DS} and I_{FM} within specified limits. Also, $\mathrm{t}_{\text {FRr }}$ (or current fall time during reverse recovery) is specified as a minimum allowable value. Pushing devices to their limit in a half-bridge PWM dc motor controller produces failures that match those seen in the CSOA tester. Therefore, the test method and test circuit do indeed simulate stresses found in real-world applications. You must remember, however, the ways in which important test circuit parameters can skew the comparison.

The CSOA tester imparts maximum device stress for

Fig 7-Although it's simpler and more convenient than Fig 6's circuit in some aspects, this CSOA test circuit lacks flexibility. The biggest problem is that circulating current is a function of supply voltage, so it's difficult to change these parameters independently of one another.
a given $\mathrm{I}_{\mathrm{FM}}, \mathrm{V}_{\mathrm{R}}$, and $\mathrm{t}_{\mathrm{FRR}}$. Doing so typically yields a worst-case assessment of device capability and provides you with some guard bands. Test-circuit features include a reapplied voltage input with sufficient bypass capacitance to maximize $\mathrm{dv} / \mathrm{dt}$ and voltage stress; a drive transistor (Q_{2} in Fig 6) with a low $R_{D S(O N)}$ for high I_{RM}; and a complementary emitter-follower gate drive for Q_{2} to reduce $d v / d t$ effects on the driver when the diode under test turns off.

You should also be aware of three additional testcircuit parameters that can degrade CSOA. Unfortunately, the design engineer, rather than the manufacturer, specifies these parameters, so it's difficult to include them in a CSOA specification.

The first parameter is the gate-to-source resistance $\left(\mathrm{R}_{\mathrm{GS}}\right)$ of the DUT. If R_{GS} or the gate-to-source inductance (L_{GS}) is high during reverse recovery, the intrinsic diode generates a large dv/dt that can cause V_{GS} to exceed its threshold value. Although the large $\mathrm{dv} / \mathrm{dt}$ doesn't fully turn the MOSFET on, it does force the

You must decrease stray inductances in critical portions of your test circuit if you hope to correlate results with those from other test schemes.
device into the active region and slows the reverserecovery process (Fig 8). This operating mode increases commutation power losses and clearly involves $\mathrm{dv} / \mathrm{dt}$ turn-on. Decreasing the gate-to-source impedance $\left(\mathrm{Z}_{\mathrm{GS}}\right)$ is normally the best way to solve this problem. However, increasing Z_{GS} to slow reverse recovery can reduce $V_{\text {DS }}$ peaks and may even prevent the MOSFET from avalanching.

The test circuit's junction temperature is the second parameter that can degrade CSOA. Even so, although you might intuitively suspect that T_{J} has a major effect on CSOA, test results taken to date indicate that it does not. These results make sense when you recall that the

Fig 8-Increasing $\boldsymbol{R}_{\text {Gs }}$ slows the reverse-recovery process and increases commutation power losses. However, the higher impedance reduces peak instantaneous stress and may also keep the device from avalanching.
reversed-biased safe operating area (RBSOA) of bipolar transistors is also relatively independent of T_{J}. The fact that commutating-dv/dt waveforms are fairly constant as T_{J} changes also indicates that T_{J} has a minor effect. Varying other, more dominant parameters often causes waveform changes that signal impending dv/dt DUT failure.

The parasitic inductance between the positive and negative rails of the half-bridge in the test circuit is the final parameter under strict control of the design engineer. The test circuit does not clamp this inductance, and as a consequence the DUT may avalanche briefly at very high commutation speeds. As the following discussion on the effects of avalanching illustrates, it's most important to minimize this inductance in all cases.

The UIS test is not a viable alternative

Today, there are some designers who feel that a UIS (unclamped inductive switching) test is an adequate substitute for a CSOA test. This group argues that the common cause of device failure in the two testing modes occurs when a high base-emitter shorting resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)$ activates the parasitic bipolar transistor. Though this reasoning applies to most devices, it's flawed in two ways.
First, some devices may pass a UIS test and then fail in the commutating-dv/dt mode because of device deficiencies other than high $\mathrm{R}_{\text {BE }}$. When you consider the MOSFET's voltage-termination rings, gate feeds, bonding pads, and cell interconnections, it's obvious that the device consists of much more than a few thousand paralleled cells. In some devices, these secondary features can clearly limit performance in one test and not in the other.

Second, a flaw in the current UIS test method makes it difficult to correlate UIS and CSOA test results. A study of UIS waveforms (Fig 9) clarifies this point. As the data shows, a device may react to overvoltage stress in at least three ways.

Three reactions to overvoltage stress

Some devices fail immediately in avalanche, and V_{DS} collapses to approximately 0 V . Other MOSFETs can maintain their $\mathrm{BV}_{\text {DSS }}$ during the entire transient period if the current and pulse durations are not too great. Finally, the drain-to-source voltage of some devices may collapse to a lower level. This lower voltage indicates that the MOSFET's parasitic bipolar transistor

National
Semiconductor

Finally, graphics to matchyour imagination.

INTRODUCING THE FIRST EFFECTIVELY PARTITIONED VLSI ARCHITECTURE FOR TRULY FLEXIBLE GRAPHICS SYSTEMS DESIGN

Imagine a graphics architecture so powerful, you can achieve 16 K -by- 16 K resolution. So effective, you can add virtually unlimited planes of color without degrading performance. So flexible, you can integrate it into an existing design or use it to build an entire range of new systems.

That's the Advanced Graphics Chip Set from National Semiconductor.

By using a multiple-chip, modular approach, the Advanced Graphics Chip Set avoids the design compromises and limitations of single chip solutions.

That gives you two unprecedented benefits: performance and flexibility.

Which means you can design exactly the type of system you need with exactly the level of performance your application demands.

For example, you can integrate part of the chip set with an existing general-purpose microprocessor for a low-end display.

Or you can utilize the chip set's full capabilities for a high-end, high-performance, high-resolution CAE/CAD workstation or laser printer - with virtually unlimited planes of color. Yet with the same high-

Abstract

THE ADVANCED GRAPHICS CHIP SET Raster Graphics Processor (RGP). A fully programmable, high-performance microprocessor engine specially tuned for graphics applications. Samples available Third Quarter, 1987. Bitblt Processing Unit (BPU). A 20-MHz data chip that controls data movements within its dedicated memory plane and between it and other memory planes in a multi-color system. Available now. Video Clock Generator (VCG).A timing and control generator providing all of the synchronization signals needed by a graphics system, with a pin-programmable pixel frequency of up to 225 MHz . Available now. Video Shift Register (VSR).A parallel-to-serial shift register capable of serial output shift rates up to 225 MHz . Available now. All derices available in PLCCs.

speed performance as a black-and-white application.

In fact, you can design an entire range of graphics systems without having to "reinvent the wheel" each time, by using the same hardware building blocks and the same central software in each of the systems.

THE MULTIPLE-CHIP SECRET

The secret to all this flexibility and performance is our unique multiple-chip, modular approach. Rather than trying to squeeze all the important graphics functions onto a single chip - which would require some significant design and performance
compromises - we've partitioned appropriate functions onto individual buildingblock ICs. This allows us to optimize the design of each chip, and allows you to optimize your own design for your particular application.

GRAPHICS
 WITHOUT LIMITS

What matters most about the Advanced Graphics Chip Set, of course, is what it does for you. And that answer is clear when you consider its high performance, its modular approach, its open architecture, and its programmability: It gives you graphics without limits. It gives you true design freedom. It gives you the opportunity, for the first time, to design a graphics system "custom fit" to your exact specifications.

So what are you waiting for? If you're tired of those limited single-chip solutions bogging down your designs, take a look at the Advanced Graphics Chip Set. And learn how you can design a graphics system to match your needs . . as well as your imagination.

For more information and availabilities, just contact your local National Semiconductor Sales Engineer or write: National Semiconductor
Advanced Graphics, MS 23-200
P.O. Box 58090

Santa Clara, CA 95052-8090

National Semiconductor

Pushing devices to their limit in a balfbridge motor controller produces failures that track those seen in the CSOA tester.

has been activated. Consequently, the magnitude of V_{DS} during avalanche equals the transistor's $\mathrm{BV}_{\mathrm{CER}}$.

If you increase the UIS test's supply voltage above $\mathrm{BV}_{\mathrm{CER}}$, you have no mechanism to limit the avalanche current, and the DUT normally fails. The magnitude of the supply voltage can therefore have a great effect on a device's energy-handling capability. It's relatively easy to improve the present UIS test method so that it can detect devices that exhibit this BV ${ }_{\text {CER }}$ "snapback." Instead of checking only for device failure, you can sample the $V_{\text {DS }}$ waveform in avalanche to ensure that it stays above the transistor's maximum $V_{D S}$ rating.

As switching speeds increase in the commutating-dv/ dt mode, CSOA operating conditions begin to mimic those of UIS testing. During the final phase of reverse recovery, the diode current is dropping toward zero from its negative peak. You can think of this current as

Fig 9-Because of defects in the present UIS test method, a device may fail in one of three ways. Some devices fail immediately in avalanche (a), while others can maintain their $B V_{D S S}$ during the entire transient period (b). In the third case (c), the drain-to-source voltage of some devices may collapse to a lower level.
decreasing drain current. If the diode recovers abruptly, the associated $\mathrm{di} / \mathrm{dt}$ can be extremely large-perhaps greater than $1000 \mathrm{~A} / \mu$ sec. Parasitic inductances oppose these rates of change in current, and the polarity of the induced voltages causes them to add to the reapplied voltage and increase the voltage stress on the DUT.

Fig 10, which illustrates the reverse-recovery behavior of a $10 \mathrm{~A} / 50 \mathrm{~V}$ MOSFET device, clearly shows the effect of the unit's $B V_{\text {CER }}$. Clipping of the $V_{D S}$ waveform at the device's BV ${ }_{\text {CER }}$ (which corresponds to the value observed in UIS testing) and the coincident drain current show that the device is in avalanche. Though the device passes this test, reliability in this operating mode is uncertain because the parasitic bipolar transistor is obviously being activated. If V_{R} should exceed $\mathrm{BV}_{\mathrm{CER}}$, device failure is likely. Because the device has a tendency to snap back to a $\mathrm{BV}_{\mathrm{CER}}$, it could fail in the commutating-dv/dt mode even though it survives a UIS test.

Reliability in the commutating-dv/dt mode

In determining and optimizing reliability in the com-mutating-dv/dt mode, designers face a situation that's similar to the one they face when working with the RBSOA of bipolar transistors. Standard reliability life and power-cycling tests aren't too helpful because the stresses they impose don't reflect the stresses seen during dynamic operating conditions. In addition, the curves in these tests describe operation in a typical

Fig 10-Commutation at very high speeds can cause avalanching in the device under test-an unreliable mode of operation.
application, and they lose some of their meaning when the actual operating conditions are different.

There are a number of ways to guarantee reliability. First, make sure that the peak V_{DS} remains within its maximum rating, and that I_{FM} and I_{RM} do not exceed the intrinsic diode's pulsed current rating. Second, you can use the CSOA data to look for signs of bipolar turn-on. This should rarely be a limitation, because the CSOA is normally derated from conditions that cause any bipolar activation. Nevertheless, a small load change that causes an abrupt change in the reverse-recovery waveform is one of the signs of bipolar turn-on. Another sign is that, as circuit conditions change (Fig 10), the drain-to-source voltage does not change in magnitude after reaching its plateau.

EDN

Authors' biographies

Kim Gauen is a senior applications engineer for the semiconductor products sector of Motorola Inc (Phoenix, $A Z$), where he's responsible for developing applications for power products. He's been with the company for five years and holds a BS in elementary education from Southern Illinois University and a BSEE from the University of Missouri. In his spare time, Kim enjoys bicycling and reading.

Warren Schultz is principal engineer for the low-frequency power-transistor and thyristor group at Motorola. Previously employed by GE Aerospace, he's been with Motorola for 14 years. Warren holds a BSEE from Lehigh University and an MBA from Arizona State University. He's been granted one patent, and three more are pend-
 ing, for his work with Motorola's Smartpower technology.

Article Interest Quotient (Circle One) High 473 Medium 474 Low 475

65 Rushmore Street, Westbury, NY 11590 (516) 997-7474 • Outside N.Y. 1-(800) DIONICS

CIRCLE NO 34

TANTALUM CHIP CAPACITORS FOR SURFACEMOUNT DEVICES

行
 National
 Semiconductor

Introducing the no-compromise microcontroller.

NATIONAL'S 17 MHz HPC , THE WORLD'S FASTEST MICROCONTROLLER, LETS YOU DESIGN THE WAY YOU WANT TO... NOT THE WAY YOU HAVE TO

Think of those designs that could have led to higher sales, if only your microcontroller had been faster. . . had used less power... or had come with a family of on-board functions to fit your application.

Remember the performance compromises you made because that microcontroller didn't exist.

It does now... for a lot less than you would expect to pay for such performance.

THE FASTEST EXECUTION TIME YET

At a clock rate of 17 MHz , HPC offers a 240 -nanosecond instruction cycle, the fastest on the market. It also has a powerful instruction set, with 16x16-bit multiply and 32×16-bit divide. Which means you'll get the high throughput necessary for today's compute-intensive controller applications.

THE HIGHEST LEVEL

 OF INTEGRATIONYour system will need fewer components, operate at higher speeds and be more reliable with on-board functions, such as: software programmable UART; high-speed input/outputs (52 general-purpose I/0 lines/68-pin package);
16 -bit timers, including six PWMs and a watchdog timer; input capture registers; ROM and RAM;

The first 16-bit CMOS High Performance microController family is available now
and MICROWIRE/Plus, ${ }^{\text {TM }}$ a three-wire, synchronous interface, connecting HPC to proprietary and standard peripherals.

AN EXPANDING PRODUCT LINE

HPC's modular common-processor core and memory-mapped architecture gives us the flexibility to introduce many new parts in the family. Choose from memory and on-board peripherals, and, soon EEPROM, A/D, HDLC protocol controllers, DMAs and gate arrays to create a powerful microcontroller for your automotive, telecom, data processing, military, medical, factory automation or industrial control application.

THE BENEFITS OF ADVANCED CMOS

HPC employs National's double-metal advanced CMOS process technology. The device uses very little operating power and is designed for low power consumption in HALTT and IDLE modes. In addition, it operates over a wide range of supply voltages, from 3 to 5.5 V , and temperatures from -55° to $+125^{\circ} \mathrm{C}$. And parts fully qualified to Class B of MIL STD 883 will be available soon.

LOW-COST,

COMPREHENSIVE SUPPORT

Our Microcontroller On-Line Emulator (MOLE ${ }^{\text {TM }}$) provides low-cost support from initial software development to final hardware emulation and ROM pattern submission. It works with any IBM PC or com-
patible and has high-level language support, including a C compiler.

Plus, you'll get fast, expert help when you need it through "Dial-A-Helper," our exclusive on-line application assistance program. Available 24 hours a day. Free of charge.

BACKED BY AN ON-GOING COMMITMENT

We've developed the broadest family of 4;8- and 16-bit microcontrollers of any U.S. based manufacturer. That commitment continues as we expand the family at our world-class six-inch wafer fabrication facility dedicated to advanced CMOS process technology. Today, at 2 microns, 17 MHz . Tomorrow: 1.5 microns, 20 MHz and above.

COMPARE THE HPC TO THE COMPETITION

DON'T SETTLE FOR A COMPROMISE

We have HPCs available now: HPC16030, HPC16040, HPC16073 and HPC16083. Available in various mil-temp ranges and package options, including PLCCs. For more information, contact us today.
National Semiconductor
MS 23-205
P. O. Box 58090

Santa Clara, CA 95052-8090

National Semiconductor

Therejustisnt a discrete way to do this.

INTRODUCING THE WORLD'S FIRST FULLY INTEGRATED 4 MBIT DRAM CONTROLLER. AND THE FIRST AFFORDABLE LSI SOLUTION

It's easy to improve your memory array controllers. But you don't have to be discrete to do it. Because now National has the LSI solution:

The world's first fully integrated 4 Mbit , low-power advanced CMOS DRAM controller/driver. Our new DP8422.

It can directly drive up to 64 megabytes. Fast. Because it operates without waitstates. And it's flexible enough to interface to National's Series 32000^{*} or any 8-bit, 16-bit or 32-bit microprocessor or system bus. Without external circuitry.

So you'll save both design time and valuable real estate. And we made it completely programmable, so it can be

tailored to your specific applications.
But best of all, this incredible performance comes in at the best

[^18]value around. No other LSI or discrete solution can even come close.

ONLY NATIONAL PROVIDES SUCH AN ADVANCED DEVICE

DP8422 DRAM CONTROLLER

- Directly addresses and drives up to 64 megabytes using 4 Mbit DRAMs
- Eliminates CPU waitstates
- Fully programmable
- High capacitive drivers
- Interfaces to any 8 -bit, 16 -bit or 32-bit microprocessor or system bus
- Low-power, 2-micron microCMOS process
- Supports all major DRAM types and access schemes, including video RAMs
- Dual-CPU-access supported
- High-precision delay line
- Support for error detection and correction
- Low-cost, high-density PLCC packages
- Meets Military/Aerospace specifications

WHEN PERFORMANCE COUNTS, YOU'VE GOT CONTROL

All major DRAM types and access schemes are easily supported.

If you have a second CPU, DMA, LAN or graphics controller that requires shared access to the same memory array, it's no problem. The DP8422 provides on-board arbitration logic to support shared memory accessing.

For your applications using a single CPU, there are the DP8421 1Mbit and DP8420 256 K DRAM controllers.

Each is perfect when high-performance memory access is essential. You can be sure of that, with speed features such as support for Burst/Nibble, Page and Static Column memory-access modes, as well as memory interleaving.

These integrated DRAM controllers can actually match the advanced bipolar performance levels achieved by the industry's fastest DRAM controllers - National's DP8418/19 and DP8428/29s.

CHOOSE FROM NATIONAL'S BROAD RANGE OF DRAM CONTROLLERS

Programmable video RAM controller/drivers are also available as a part of National's Advanced Graphics Chip Set (DP8520/21/22).

DISCRIMINATING DESIGNERS DON'T NEED TO BE DISCRETE

When you look for LSI memory support, National has always been the one with the right solution. And now we've broken through the discrete price/performance barrier to make LSI the best solution. In terms of performance, flexibility and cost.

So no matter what choices you've looked to in the past, take advantage of National's full range of DRAM controllers.

For more information, call your National sales engineer or distributor today.
Memory Support
National Semiconductor
M/S 23-200
P. O. Box 58090

Santa Clara, CA 95052-8090

Electro-Films + Semi-Films.

The single source for all your thin-film requirements on ceramic or silicon.

Take advantage of ElectroFilm's size. Now, the largest dedicated supplier of thin-film passive components.
Take advantage of our product breadth. Chip resistors, chip inductors, and chip MOS capacitors; ultra-precision packaged and unpackaged resistor networks; microwave patterned substrates; surface mounted devices and more!
Take advantage of our product size. From near invisible $0.015^{\prime \prime} \times 0.015^{\prime \prime}$ chip resistors to $4.0^{\prime \prime} \times 3.0^{\prime \prime}$ complex patterns and everything in between.
Take advantage of our tolerances. Lines and spaces to $0.0004^{\prime \prime} \pm 0.00005^{\prime \prime}$ on ceramic, $0.0001^{\prime \prime}$ $\pm 0.00002^{\prime \prime}$ on silicon; TCR tracking to $\pm 0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; discrete resistor TCR's to $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; ratio tolerances to $\pm 0.003 \%$; operating temperatures from $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
Take advantage of our quality. A total commitment to complete customer satisfaction is our foremost concern through statistical process control as well as through precise product verification.
Take advantage of our experience. Combined, the most years of experience in all phases of thin-film technology.
Take advantage of Electro-Films for all your passive component needs. You'll get them when you need them, from West Hurley to Warwick.

Call:

> ETS甘Electro-

The Creative Force in Thin-Film Technology.

111 Gilbane Street Warwick, R.I. 02886

(401) 738-9150

FAX (401) 738-4389 TWX 710-382-0405

Check advanced features and noise specs when selecting codecs

Abstract

A codec-or coder/decoder-performs the analog-todigital (encoding) and the digital-to-analog (decoding) conversion of the human voice. Part 1 of this 2-part series provided an overview of a codec's structure and function and described codecs' standard features. This article covers advanced codec features such as software control of operating modes, and it discusses noise considerations.

Brady Barnes, Inter-Tel

Almost any codec/filter combo chip that you find today offers standard features such as low power consumption and a minimal requirement for off-chip support circuitry, and many codecs offer features such as A/B signaling (see EDN, April 30, pg 211). But now, manufacturers are beginning to produce codec/filter combos that offer extra features that a microprocessor can access by using customized software (which you write). A microprocessor communicates serially with such a codec and programs the codec with appropriate control codes and data. The versatility and power made available by these codecs can lead to some very reliable and practical designs.

With some exceptions, such advanced codecs offer the following features:

Digital signal processing: Codecs that employ digital techniques (rather than analog ones) to process a voice signal offer several advantages, including highly predictable performance, better tolerance to temperature and process variations, a higher power-supply rejection ratio, less crosstalk, and better testability. Furthermore, DSP allows users to employ microprocessor commands to customize the analog characteristics of a codec to their specific circuit and application. Advanced Micro Devices' single-sourced Am7901 SLAC (Subscriber Line Audio-processing Circuit) and Siemens's PEB2060 (an SLD-compatible codec for which Philips is the alternate source) are examples of codecs that offer DSP capabilities.

SLD interface: The Subscriber Line Datalink (SLD) interface is a 3-wire digital interface that connects the codec to a master device. The master device oversees the switching of PCM voice data of eight to 16 codecs. The SLD interface combines the transmit and receive wires into one wire, thereby reducing the interconnect complexity between the codec and other devices. Furthermore, the SLD interface also allows for the exchange of control and signaling data between the codec and the microprocessor (Fig 1.) Intel's 29C48, 29C50,

Fig 1-The SLD interface provides four channels to each codec: two channels for voice, one for control information to the codec, and one for signaling information.
and 29C51 codecs (Matra-Harris is the alternate source for the 29 C 48) and Siemens's PEB2060 support the SLD.

Loopback test modes: Another advanced feature of codecs is loopback testing. The three basic types of loopback testing are analog, subscriber, and digital.

In the analog loopback mode, the analog output is tied (internally) to the analog input. This mode allows functional testing of the codec as well as gain adjustment.
The subscriber loopback mode is useful for analog-toanalog testing from the subscriber side of the codec. In this mode, the PCM output of the encoder is fed back around to the PCM input of the decoder. In this manner, the analog input is actually sent through the transmit filter and encoder and then back through the receive section's decoder and filter.

In the third mode, the digital loopback mode, the combo retransmits the PCM word it receives on the digital input back out on the PCM output. This loopback test is useful for evaluating the integrity of the path to the codec. A word of caution: Different manufacturers apply slightly different meanings to these loopback modes. Be sure you consult the data sheet regarding a specific codec's loopback mode or modes
before assuming you understand the exact meaning of what's advertised.

Programmable gain, impedance matching, and trans-hybrid balancing: Some codecs allow for a programmable gain change of 12 dB in the transmit path and 15.5 dB in the receive path, and some employ programmable filters to implement the programmable impedance matching and trans-hybrid balancing. Others provide an alternate method of programmable balancing: These codecs allow you to connect external balance networks to three control pins. Then, under software control, such a codec can select one (or any combination) of these three networks.

Programmable filters: The AMD Am7901 and Siemens PEB2060 allow user programming of several different digital filters, thereby allowing you to customize the frequency response of the codec to correct for peculiarities in the analog circuitry that interfaces to the codec.

Secondary analog input: One SLD-compatible codec has an unfiltered secondary analog input. The secondary analog channel, which may be used for voice or for any $4-\mathrm{kHz}$, band-limited signal, is made possible only because of the SLD interface, which allows for two voice channels (an A and a B channel, not to be confused with A / B signaling).

Three-party conferencing: This feature, available only on SLD-compatible codecs, basically involves adding the voice data on the A and the B channels to effect a form of conferencing. This feature might have only limited usefulness now; nevertheless, when ISDN is in common use, the feature could be used for 3-party conferencing on 2 -line phones. Even now, you might encounter applications for which the feature may prove beneficial. For example, it might be possible to use this feature to mix two single tones together to produce a DTMF tone.

A/B channel assignment: The SLD interface provides four channels to each codec: one for control information to the codec, one for signaling information, and two channels-labeled A and B-for voice. In most cases, the codec uses only the A channel for voice data; the B channel goes unused. However, because an SLDcompatible codec can be programmed via a pin to transmit and receive voice data on a particular channel, two codecs can share one SLD line: One codec operates on the A channel and the other codec operates on the B channel. The control data always has an address (A or B) associated with it, so even when two codecs share one SLD line, you can be assured that control data goes

Abstract

Some codecs use digital techniques, rather than analog ones, to process a voice signal.

to the right codec. The A/B channel-assignment feature allows twice as many codecs (16 instead of eight) to interface with a single line-card controller (such as the Intel 2952).

Programmable SLIC chip select: Most applications involving codecs will have their analog side interfaced to a SLIC (subscriber-line interface circuit). In order to facilitate interfacing the codec to a SLIC, especially when two codecs share the same SLD line, codecs include a programmable SLIC chip-select input.

Signaling: Finally, a very important feature of advanced codecs is their signaling capability. Rather than sending signaling data by using A / B signaling (that is, 8th-bit signaling), these codecs provide several I/O pins to perform functions such as hookflashing, ringing, and pulse dialing, or to monitor for such conditions as hookflashing, ringing, and loss of loop current.

In the case of the SLD-compatible codecs, signaling information is passed back and forth between the codec and the microprocessor via the signaling channel (Fig 1). (As with all other channels, this channel is limited to 8-bit words.) This added capability can save you from having to add buffers and registers to your design.

Besides these advanced features, advanced codecs also have programmable power-down/standby modes as well as programmable μ-law or A-law encoding (except for the Am7901). Obviously, these advanced features aren't free. You can expect to pay anywhere from $\$ 6$ to $\$ 12$ per codec (in 10 k quantities) for these devices. If you don't need or don't desire these extras in your design, you can probably select a no-frills codec somewhere in the $\$ 4$ to $\$ 6$ range.

A checklist of performance characteristics

Probably the most important specifications that describe a particular codec are its transmission, or performance, characteristics:

- Gain and dynamic range
- Frequency response
- Gain tracking
- Output drive capability
- Distortion
- Noise
- Crosstalk
- Power-supply rejection
- Power dissipation.

Because just about every codec's data sheet states that the codec meets CCITT and AT\&T specs, you can expect the performance characteristics of all codecs to meet at least a base-line level. Make sure that the data
sheet states that the codec meets all of the applicable CCITT and AT\&T requirements, not just some of the specs.

Note, however, that meeting these specs may not be adequate. A case in point is that of idle-channel noise. EIA's RS-464 spec requires an idle-channel noise spec of no more than 16 dBrnC , port-to-port. This spec is more stringent than that required by CCITT and AT\&T.

As you begin to compare manufacturers' data sheets for different codecs, you'll find that the one thing they all have in common is a lack of standardization in the way they present specs. Some manufacturers indicate only typical values, some indicate only minimum or maximum values, and others provide both. Moreover, the conditions and the units used will vary from codec to codec. This situation certainly is a deterrent to the engineer who is cross-comparing codecs. In fact, in some cases, it is nearly impossible to compare specs.

Understanding noise specifications

Several transmission characteristics-including frequency response, noise, distortion, crosstalk, and delay -describe a codec. Each of these characteristics is important in its own right; however, noise is an especially important consideration when you're selecting a codec.

The noise is called idle-channel noise (ICN). As the name implies, it is the noise that is heard when the line is idle (that is, when there is no talking). Most often, phone users hear this type of noise when making a long-distance call. But the noise is present on every call, whether local or long distance.

One source of noise in a codec is quantization noise (discussed in part 1 of this 2-part series). Theoretically, if the analog input to the codec is at 0 V (that is, if the line is idle), then the digital output of the codec should remain constant. But in reality, the digital output of the codec will fluctuate ever so slightly about the binary value assigned to zero. This fluctuation (noise) is caused by the analog-to-digital circuitry of the codec. The digital-to-analog section of the codec also contributes noise, but generally does so to a lesser degree. This fluctuation is heard as idle-channel noise.

Every codec will have an associated noise specification listed on its data sheet. Trying to decipher these numbers, however, can be frustrating. Furthermore, not every codec has its noise characteristics specified in the same units. This lack of standardization of noisedata specs makes it very difficult for the design engi-

In most applications, a codec's analog side connects to a SLIC (subscriber-line interface circuit).
neer to compare codecs. Nevertheless, by understanding the meaning of the different units used to specify noise levels, you can, in most cases, make noise comparisons between different codecs.

First, the noise characteristic might state that it is either C-message weighted or P-message (psophometrically) weighted.

The pass band of a telephone system's voice channel (a VF channel) goes from 0 to 4 kHz , and speech is confined to about 300 to 3000 Hz . Hence, the idlechannel noise that a user hears is typically limited to these frequencies as well. What's important, though, is not how much total noise is present on the phone line, but rather how much noise is present that's an annoyance to the telephone user. For example, noise in the frequency range of 100 to 300 Hz does not bother a telephone user as much as noise in the $1-$ to $2-\mathrm{kHz}$ frequency range does.

C-message weighting is common in the US

To represent the way the human ear responds to noise at various frequencies, a special weighting curve called the C-message weighting curve was developed.

This curve is shown in Fig 2. C-message weighting is used primarily in the US. In Europe, a slightly different weighting scheme is used; it is called psophometric weighting, or P-message weighting. The International Telegraph and Telephone Consultative Committee (CCITT) has defined noise as measured on a psophometer (an instrument for measuring circuit noise). Consequently, European manufacturers commonly use noise measurements based on psophometric weighting.

Hence, when noise measurements are made for a voice-grade transmission line, the type of weighting filter employed (that is, C-message, psophometric, or $3-\mathrm{kHz}$ flat) must be specified on any units. For example, if a C-message weighted filter was used, then the suffix "C" is added to the unit (dBrnC). Likewise, if a psophometrically weighted filter is used, then the suffix " p " is added to the unit (dBmp).

Fig 2 shows the relationship between C-message and psophometric weighting curves, which, as you can see, are slightly different. Unless the codec's data sheet specs both C- and P-message weighted characteristics, you'll find it hard to compare the two.

Now consider some of the terms that are used to spec

Fig 2-Telephone users are more irritated by noise at certain frequencies than noise at other frequencies. Consequently, the C-message weighting curve, which represents the response of the human ear to noise at different frequencies, was developed for use in the US, and the slightly different P-message weighting curve is used in Europe.

LSI technology and UDS engineering expertise have combined to deliver two major improvements in modem design．Two of the most complex modems in the UDS product line－the fast－polling 9600FP and the Trellis Coded 14.4 －have now been reduced to 40 square inches of board space for each complete modem．To accommodate varying OEM configurations，a wide variety of form－factor layouts and option packages is available．

9600FP

This UDS modem delivers 9.6 kbps speed，with only 8 ms turn－ around time，making it ideal for fast－poll applications．A simple strap change puts the device into V． 29 configuration，which includes alternative data rates of 7200 and 4800 bps ．

14．4 Trellis Coded

14.4 kbps （V．33）speed，merged with the signal－to－noise ratio enhancement of trellis coding，makes this modem your most cost－effective choice for moving large volumes of data over dedicated lines．It is particularly useful in applications such as
complex computer graphics，where error minimization is especially critical．The device has a fallback rate of 12 kbps and is strappable to V．29．

These new OEM modem cards are small wonders！For technical details and quantity prices，contact Universal Data Systems， 5000 Bradford Drive，Huntsville，AL 35805．Telephone 205／721－8000．Telex 752602 UDS HTV．

（⿴囗⿰丨丨⿰讠

（4）MOTOROLA INC．

information Systerns Group

CIRCLE NO 155

One thing codecs have in common is a lack of standardization in the way their specs are presented.
noise characteristics. Almost all engineers are familiar with the common units dB and dBm , but you might not have encountered $\mathrm{dBm} 0, \mathrm{dBrn}, \mathrm{dBrn} 0$, etc.

Reference noise power is $\mathbf{1 ~ p W}$

Recall that dB (decibel) is simply a unit of measure of relative power expressed logarithmically: $10 \log \left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)$. It is common to reference measured powers to one milliwatt and use units of dBm . However, because noise power levels are quite small (on the order of -40 to -90 dBm), it makes more sense to reference noise power to a much smaller reference power, such as one picowatt. Just as the suffix " m " of dBm indicates a power measurement relative to one milliwatt, so the suffix "rn" (as in dBrn) indicates a power measurement relative to reference-noise (rn) power, which is defined as one picowatt. Hence, $0 \mathrm{dBrn}=-90 \mathrm{dBm}$, or $90 \mathrm{dBrn}=0$ dBm .

Sometimes values are expressed in units of dBp . Because no m or rn is inserted between the dB and the p, you might wonder what this unit means. Actually, dBp implies dBrnp, but data sheets don't include the "rn." Therefore, dBp is noise power (in dB) referenced to one picowatt and measured using a psophometrically weighted device.

Another suffix you might encounter is 0 . The 0 implies that the measurement is referenced to or measured at a reference point in the system called the $0-\mathrm{dB}$ transmission-level point (0TLP). The term 0TLP is somewhat confusing because the 0TLP is not necessarily a physical point in the system where you could attach a probe and measure the signal level. Instead, the 0 TLP is simply a frame of reference (that is, a concept), and it may or may not have an associated physical point in the system that corresponds to the 0TLP.

The CCITT uses the concept of an 0TLP when it specifies the relationship between the PCM input of a codec and the level of the audio input in recommendation G. 711 section 4. The G. 711 recommendation specifies an 8 -byte digital code (which represents a $1-\mathrm{kHz}$ sine wave of a certain amplitude) that is to be fed into the decoder of the codec. Assuming that the gain through the decoder section of the codec is one, the analog output level should be 0 dBm 0 .

Consequently, data sheets for codecs will state the test conditions under which the transmission characteristics were measured. These test conditions usually state that the A / D and D / A sections are set for unity gain. Moreover, the test conditions also state the nominal input level (in dBm) that produces a level of 0 dBm 0
(as defined by CCITT G.711). This level will vary from codec to codec.

For example, a codec's data sheet might state that an input of 4 dBm (across a 600Ω load) will produce a digital signal that, when decoded, produces an output of 0 dBm 0 . Hence, if you measure 23 dBrnC of noise at the analog output of this codec (assuming gain is one in both the A/D and D/A sections), you could restate this value as $19 \mathrm{dBrnC}(19 \mathrm{dBrnC} 0=23 \mathrm{dBrnC}-4 \mathrm{~dB})$.

Measurements are referenced to 0TLP

All noise measurements are typically referenced to the 0TLP specified by CCITT G.711. That's good, because it lets you make apples-to-apples comparisons when examining noise characteristics of different codecs. In brief, any power measurement (whether it's expressed as $\mathrm{dBm}, \mathrm{dBrn}$, or some other unit) can be made at any point in the circuit or system and referred to 0 dB TLP (0TLP) by subtracting the transmission level from the power measurement. The transmission level is simply the ratio (in dB) of the power of a signal at some point to the power of the same signal at the 0TLP. The transmission level for a codec is usually stated in the test conditions of its transmission characteristics.

Two more considerations arise when you're evaluating a codec's noise performance. First, noise measurements are typically stated as two measurements, one for the transmit (A/D) section and one for the receive (D/A) section, so you may wonder how to combine these two noise measurements into one noise measurement for a port-to-port (that is, A/D-to-D/A) noise characteristic. Second, you'll want to know what noise specifications or recommendations a codec should meet.

Recall that these noise measurements are actually power measurements. You can't simply add the two numbers to get an overall noise figure. For example, if a codec has 14 dBrnC 0 of transmit noise and 10 dBrnC 0 of receive noise, the overall noise is not 24 dBrnC 0 . In order to combine the two noise measurements into one, you must first convert the numbers from dB (logarithmic form) to their linear values. Then you can algebraically add these two power measurements and convert the result back to dB .
One recommendation that codecs should meet is CCITT recommendation G.712, section 4, entitled "Idle-channel noise." In section 4.1, the recommendation states that the idle-channel noise should not exceed -65 dBm 0 p . The recommendation gives no value units of dBrnC 0 .

Time is of the essence. The essence of the HP DraftMaster Plotter. The fastest A to E size drafting plotter made by Hewlett-Packard. A plotter so fast, any designer can create big ideas at blinding speeds.

How did we do it? With unsurpassed acceleration. And features like a new pen-sorting algorithm. Bi-directional plotting. And a very fast resident micro-processor. We even offer a model with roll-feed for nonstop plotting.

But the HP DraftMaster doesn't sacrifice output quality for its blinding speed. Every plotter is thoroughly tested to ensure the highest reliability and precision. So you get smooth arcs, straight lines and perfectlyformed characters, time after time. Furthermore, it handles a variety of
pens on drafting film, vellum or paper -all at optimal speeds.

Naturally, it works with just about any computer. Like the HP Vectra PC and BM PC's. As well as popular PC-CAD software like AutoCAD and VersaCAD. And the DraftMaster brings with it HP's worldwide reputation for quality. Prices start at just \$9,900*

Why wait? For a brochure and a sample plot, call us at 1800 367-4772, Ext. 901A.

The drawing shown below was produced on the HP DraftMaster with AutoCAD software.

hp HEWLETT hp PACKARD

AutoCAD is a registered trademark of AutoDesk Inc. VersaCAD is a registered trademark of T\&W Systems. *Suggested U.S. list price. (c) 1987 Hewlett-Packard Co. PE12703

How to create monumental plots in a matter of minutes.

With a diameter of only 12 mm , the AT-11 audio transducer is really small! Yet it produces 80dBA at 10 cm . It's PC board-mountable and wave solderable.

Send for our AT Bulletin for complete specifications on Projects Unlmited's extensive line of audio transducers. Call or write: Projects Unlimited, Inc., 3680 Wyse Road, P.O. Box 14538, Dayton, OH 45414-2539. Phone (513) 890-1918. TWX: 810-450-2523.

Another Sound Idea from Projects Unlimited

DAS9200 DIGITAL ANALYSS: NOW TEK MAKES THE IMPOSSIBLE LOOK EASY.

Evont Hare: dolas

includiras values outside displayed ranges Horlz. Scale:
Median Range: $760-869$ us
sempo-2

stad Dow:

Foctar

Step backwards through acquired data, including subroutines, stack and register models, using time-correlated split-screen displays to pinpoint problems.

Software Performance Analysis, like this distribution of a subroutine's execution times, helps you easily understand the activity of your code.

In every dimension-speed, channel width, memory depth, trigger capability, modularity and ease of use-the DAS9200 dwarfs what's been possible before.

The DAS9200 features a tightly coupled, high-speed architecture in which multiple card modules can act as a single unit. Large color-coded displays, pop-up menus, performance analysis graphs,
multi-tasking and more combine to take logic analysis to levels like these:

1

 State-driven triggering at 200 MHz . You can use up to 384 channels of sync and async data acquisition. You can assurancetest high-speed logic at full speed, using 4-level state tracking and high-speed counter/timers. You can monitor and verify all timing measurements in a circuit.2 Symbolic, real-time software debugging. Register deduction and stack simulation let you pinpoint problems like stack overflow or incorrectly restored pointers - without breakpoints or manual notation.

Digital Hardware

2 Simultaneous integration of up to six microprocessors. Use the dual timebases and real-time handshaking between system modules to set up split-screens displays that scroll in precise time alignment.

> 160 channels of acquisi-
> 4 tion at 2 GHz . Use up to 500 ps sample interval and
vector depth, and 1 ns edge placement, it offers the power, precision and simplieity to be an attractive alternative to centralized systems.

6 Stop wishing for the
 1 impossible in digital anal-

 ysis: Compare your wish list against the complete list of DAS9200 capabilities. Contact your Tek sales engineer, or call toll-free for more information. Call 1-800-245-2036.In Oregon, 1-213-1220.

Available in desktop and rackmount versions, the DAS9200 mainframe can be augmented with up to three expansion mainframes for a total of 28 card slots.

Tektronix
 COMMITIED TO EXCELIENCE

America,
 Harris will meet your rad-hard future...just as we have for 20 years past.

Free
for the Asking
A superb book with all the 1987 Ford, Mercury, Merkur and Lincoln vehicles including:

- Thunderbird Turbo

Coupe-Motor Trend's
"Car Of The Year"

- Taurus and Mustang GT-Two of Car and Driver's "Ten Best" Send for your free copy today.

To receive
your complimentary
copy of the Ford Motor Company
Collection of 1987 Cars and Light Trucks, use
this postage-paid card.
NAME (PLEASE PRINT)
ADDRESS
CITY SMS STATE
Please tell us when you plan to purchase your next new vehicle:
$\square 0-3 \mathrm{mo} .4-6 \mathrm{mo}, \square 7-12 \mathrm{mo}$.
131-2 yrs. No plans within hext 2 yrs .

The Facts

The Cars...

The Trucks... The Prices...
Over 100 colorful $7^{\prime \prime} \times 10^{\prime \prime}$ photographs bring you the style and design of Ford Motor Company cars and light trucks. Settle back and review all Ford, Mercury, Merkur and Lincoln vehicles in this unique collection.

We've even included vital information about each vehicle-body style, seating capacity, engine size, EPA rating and, of course, the price.

This handsome, informative book will be delivered to your home at no cost. So, complete the postage-paid card and mail it today.

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

If the reply card has been removed, you may write directly to:
The Ford Motor Company Collection
1987 Cars and Light Trucks P.O. Box 7039

Lincoln Park, MI 48146
and request your free book.

DESIGN IDEAS

Decode overlapped EPROM, RAM, and I/O

W H Payne
Sandia Labs, Albuquerque, NM

Today's large RAM and EPROM chips (32k and 64 k bytes and up) let you reduce the size, the complexity, and even the cost of EPROM-based microcontroller systems. Using a physical memory composed of two 32 k -byte RAM chips and two 32 k -byte EPROM chips (Fig 1), you can implement a 64k-byte memory in which the RAM and EPROM sections overlap almost completely.
This arrangement allows nearly full use of the addressable space because you can set the system's RAM/ EPROM boundary where it belongs-near the application's highest EPROM location. A conventional system's boundary, on the other hand, must lie on an address location determined by the physical chip size (in bytes). For example, for a system based on three EPROM chips of 8 k bytes each, the RAM must begin at the 24 k -byte level. Therefore, if your application requires only 17 k bytes of EPROM, you must forego 7 k bytes of memory.

Fig 1's system also includes space for eight memorymapped I/O devices, located at the top of the RAM for the convenience of microcontrollers such as the 8051, which lack an $\mathrm{I} O / \overline{\mathrm{M}}$ signal. The eight base addresses shown reserve 16 RAM locations for each device, leaving the top 128 RAM addresses inaccessible. You establish the RAM and EPROM boundary by using a DIP switch or jumpers to manually set the fence address $\mathrm{B}_{15}-\mathrm{B}_{8}$, shown in the memory's logical-organization diagram (Fig 2).
In Fig 3, the magnitude comparator IC_{1} compares the high byte of the fence address with the high-byte address lines and issues a signal (0 for RAM, 1 for ROM). (Comparing only the high bytes simplifies the decoding circuit but leaves as much as 256 bytes of RAM unaddressable.) Next, the 2- to 4 -line decoder IC_{2} uses the decoder signal and the A_{15} address line to activate the appropriate memory chip. The 8 -input NAND gate IC_{3} and the 3 - to 8 -line decoder IC_{4} generate chip-select signals for the eight I/O devices. For active I/O devices, another 8 -input NAND gate (IC_{5}) generates an IO / M signal that disables the selection of RAM.

EDN

To Vote For This Design, Circle No 747

Fig 1—This $\mathbf{6 4 k}$-byte memory system provides $64 k$ bytes of physical RAM virtually overlapped by 64 k bytes of physical EPROM.

Fig 2-The logical organization of Fig l's memory locates memorymapped I/O space at the top of the RAM and lets you set the boundary between the RAM and EPROM by manually setting a fence address.

Fig 3-These ICs control Fig I's memory. $I C_{1}$ and $I C_{z}$ select the $R A M$ and EPROM chips according to the fence-address position, and $I C_{3}$ and $I C_{4}$ decode I/O addresses. $I C_{5}$ generates an $I O / M$ signal.

Clamping amplifier simplifies measurement

Kevin Hoskins
 National Semiconductor, Santa Clara, CA

Using a clamping amplifier consisting of two differential stages, you can prevent oscilloscope overdrive, which distorts an op amp's settling-time measurement. Fig 1 depicts a conventional circuit for measuring the settling time of an op amp (IC_{1} in this case). Following a step change at the input, a replica of the variations representing settling phenomena occur at the amplifier's inverting input and at node A . (The $1-\mathrm{k} \Omega / 1-\mathrm{k} \Omega$ dividers reduce these signal amplitudes to one-half that at the amplifier's output.) Schottky diodes D_{1} and D_{2} clamp the signal excursions at node A , and the FET buffer $\left(Q_{1}\right)$ allows you to preserve the fidelity of the signal while connecting an oscilloscope to the circuit output.

The difficulty in all such settling-time circuits is to observe the settling waveform at a resolution sufficient to permit measurement, but not to saturate the scope's vertical amplifier. The Schottky diodes in Fig 1 set the output range at well over 200 mV , and consequently a large undershoot in the settling waveform (Fig 2) initiates overdrive, causing distortion that apparently extends the op amp's settling time to about 500 nsec . (The actual settling time is less.)

Fig 2-Fig 1's response to an approximate 10V-step input shows an undershoot on the lower trace that overloads the scope. The resulting scope-recovery time produces an apparent 500-nsec settling time for the amplifier under test. Horizontal scale is 100 nsec/div; vertical scale is 2V/div for top trace, $5 \mathrm{mV} /$ div for bottom trace.

You can circumvent this distortion problem with a clamping amplifier that prevents scope overdrive by restricting the output range to $\pm 125 \mathrm{mV}$ (Fig 3). Simply connect the amplifier's input to the circuit output of Fig 1. Another benefit of this configuration is that the voltage gain of 20 lets you display the signal at a lower sensitivity. In addition, the amplifier's 40-nsec

Fig 1-This circuit measures op-amp settling time by creating a false summing node (A) at virtual ground, which tracks the amplifier's output settling excursions.

dc to 3 GHz

- less than $1 d B$ insertion loss over entire passband
- greater than 40 dB stopband rejection
- 5 section, 30dB per octave roll-off
- VSWR less than 1.7 (typ)
- over 100 models, immediate delivery
finding new ways
- meets MIL-STD-202
setting higher standards
- rugged hermetically sealed package ($0.4 \times 0.8 \times 0.4 \mathrm{in}$.)
- BNC, Type N, SMA available

| LOW PASS Model \quad *LP- | $\mathbf{1 0 . 7}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ | $\mathbf{7 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{4 5 0}$ | $\mathbf{5 5 0}$ | $\mathbf{6 0 0}$ | $\mathbf{7 5 0}$ | $\mathbf{8 5 0}$ | $\mathbf{1 0 0 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min. Pass Band (MHz) DC to | 10.7 | 32 | 48 | 60 | 98 | 140 | 190 | 270 | 400 | 520 | 580 | 700 | 780 | 900 |
| Max. 20dB Stop Frequency (MHz) | 19 | 47 | 70 | 90 | 147 | 210 | 290 | 410 | 580 | 750 | 840 | 1000 | 1100 | 1340 |

Prices (ea.): $\mathrm{P} \$ 9.95$ (6-49), $\mathrm{B} \$ 24.95$ (1-49), N \$27.95(1-49), S \$26.95(1-49)

HIGH PASS	Model	*HP-	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$
$\mathbf{1 0 0 0}$													
Pass Band (MHz)	start, max.	41	90	133	185	290	395	500	600	700	780	910	1000
Min. 20dB Stop Frequency (MHz)	200	400	600	800	1200	1600	1600	1600	1800	2000	2100	2200	
	55	95	116	190	290	365	460	520	570	660	720		

Prices (ea.): P \$12.95 (6-49), B \$27.95 (1-49), N \$30.95(1-49), S \$29.95 (1-49)

* Prefix P for pins, B for BNC, N for Type N, S for SMA example: PLP-10.7

DESIGN IDEAS

settling time (to within $\pm 0.01 \%$) doesn't affect the measurement of most monolithic op amps.

The clamping amplifier comprises two differential stages, $\mathrm{Q}_{1}-\mathrm{Q}_{2}$ and $\mathrm{Q}_{3}-\mathrm{Q}_{4}$, each consisting of RF transistors selected for a $V_{B E}$ match of $\pm 1 \mathrm{mV}$. For Q_{1} and Q_{2}, resistor R_{5} sets the transistors' emitter resistance R_{E} to 5.2Ω and sets the quiescent collector currents to 5 mA ; R_{13} does the same for Q_{3} and Q_{4}. The voltage gain for each stage then equals the equivalent right-hand collector resistance divided by $2 \mathrm{R}_{\mathrm{E}}$.
Q_{4} 's collector sees 25Ω (R_{10} in parallel with the 50Ω termination), and Q_{2} 's collector sees $90 \Omega\left(R_{2}, R_{11}\right.$, and $2 \mathrm{R}_{\mathrm{E}} \beta$ in parallel, where $\beta \approx 100$). Therefore, the first stage has a gain of 8 , and the second has a gain of 2.5 . The overall gain of 20 compensates for the gain of 0.5 in Fig 1's circuit.

The second stage accommodates the $\pm 125-\mathrm{mV}$ clamping action, provided you load the output with a 50Ω resistor as shown. When Q_{3} is off, the constant $10-\mathrm{mA}$ current through R_{13} flows through Q_{4} 's 25Ω collector load, producing a maximum output excursion of -250 mV . As a result, the settling waveform remains on the screen (Fig 4). There is no recovery time because the waveform hasn't overdriven the scope. You can see that the actual settling time of Fig 1's LF401 op amp is about 310 nsec.

To achieve maximum operating speed, the circuit layout should include a ground plane, and all connec-

Fig 4-This settling waveform shows that Fig 3's circuit has clipped the undershoot (off the screen in Fig 2) at - 250 mV , allowing accurate measurement of the amplifier's 310-nsec settling time. Horizontal scale is 100 nsec/div; vertical scale is 2V/div for top trace, $50 \mathrm{mV} / \mathrm{div}$ for bottom trace.
tions to transistors $Q_{1}-Q_{4}$ should have the shortest possible lead lengths. The damping networks $\mathrm{R}_{7}-\mathrm{C}_{3}$ and $\mathrm{R}_{15}-\mathrm{C}_{13}$ suppress parasitic oscillations in the two stages, and the $100-\mu \mathrm{F} / 100 \Omega$ CRC networks in the -15 V line isolate the stages' supply voltage. If some oscillation persists, you can add a ferrite bead on the grounded lead of $\mathrm{C}_{4}, \mathrm{C}_{14}$, or both.

EDN

To Vote For This Design, Circle No 746

NOTES:

1. BYPASS EACH ELECTROLYTIC CAPACITOR WITH A $0.082-\mu \mathrm{F}$ POLYPROPYLENE-FILM CAPACITOR.
2. TRANSISTORS Q_{1} THROUGH Q_{4} ARE NE02132s (NEC); Q_{5} AND Q_{6} ARE 2N2222s.
3. RESISTORS ARE 1% METAL-FILM TYPES.

Fig 3_This 2-stage RF amplifier amplifies and clamps the output of Fig 1, letting you observe the final settling waveform at a resolution of $\pm 1 \mathrm{mV}$ without overdriving the oscilloscope's vertical amplifier.
You'll find outstanding specs, performance, pricing and availability in these new I/O Modules... from Grayhill or your local Grayhill distributor, in all standard configurations. All are compatible with 5,15 or 24 V logic circuits.

AC output	120 V or 240 V	black case
DC output	3 V to 60 V	red case
AC input	12 V or 240 V	yellow case
DC input	3 V to 32 V	white case

Prove it to yourself. . . ask us for free literature with complete product specifications and prices.

561 Hillgrove Avenue, P.O. Box 10373 LaGrange, Illinois 60525-0373 USA
Phone: (312) 354-1040 TLX: 6871375
TWX: 910-683-1850 FAX: (312) 354-2820

DESIGN IDEAS

Circuit deletes power-line cycles

Steve Ross

Kentrox Industries, Portland, OR
The circuit of Fig 1 is useful in testing the response of equipment to a momentary loss of power. Each time you
depress the normally on start switch, the circuit deletes zero to seven full or half cycles from the line voltage applied to the load. You can create various load-voltage waveforms by appropriate settings of the 8 -pole DIP switch.

Fig 1—This circuit deletes a sequence of whole or half cycles from the line voltage applied to the load according to a 7 -cycle pattern that you program using the DIP switch's sections S_{1} through S_{8}.

SIEMENS

At Siemens Opto... One great idea leads to another!

Introducing the latest evolution in opto technology... .200" four-character
5×7 dot matrix Programmable Displays-loaded with CMOS intelligence.

Now...Siemens Opto, the inventors of alphanumeric Intelligent Display ${ }^{\circledR}$ and Programmable Display ${ }^{\top \mathrm{M}}$ devices, is proud to present another evolutionary product.
Just look at these important design and performance features:
Dot Matrix Format
■ Four .200" 5×7 dot matrix characters (readable from 8^{\prime})

- Available in green (PD-2437) and high-efficiency red (PD-2435)

■ Upper \& lower case letters (96 char. ASCII format)

- Wide viewing angle (no magnification)
- End stackable

Software Programmable Features

- Bidirectional data bus (Read/write - ASCII data \& control data)
- True microprocessor peripheral
- Software controlled attributes
- 3 brightness levels
-3 modes of blinking
- Blanking
- Asynchronous memory clear
- Lamp test

For more information, contact Siemens Components, Inc. Optoelectronics Division 19000 Homestead Road Cupertino, CA 95014 (408) 257-7910.

Distributors: Advent; Hall-Mark; Marshall

DESIGN IDEAS

The simple full-wave rectifier (diodes D_{2} and D_{3}) supplies about 9 V to the logic ICs. Diodes D_{1} and D_{4} also rectify the stepped-down line voltage and apply alternate half cycles to the Schmitt-trigger inverters in IC_{1}. The inverters square these half-sinusoidal waveforms, and diodes D_{5} and D_{6} constitute an OR gate that combines the inverter outputs for use as a clock signal to IC_{2} and IC_{3}.

Section S_{8} of the DIP switch determines whether the circuit deletes half or full cycles. The remaining sections (S_{1} through S_{7}) determine the number and serial position of the cycles deleted. Shift register IC_{2} converts the information in these sections to a serial bit stream, which controls the solid-state relay K_{1} via flip-flop $\mathrm{IC}_{3 \mathrm{~A}}$.
(An open switch deletes a full or half cycle by opening the relay, removing line voltage from the load during that period.)

In each scope photo of Fig 2, the top traces show the load voltage (which you measure at the monitor terminal,) and the bottom traces show the corresponding control voltage for the solid-state relay K_{1} (which you measure at $\mathrm{IC}_{3 \mathrm{~A}}$, pin 2). You trigger the scope on the falling voltage (IC_{3}, pins 6 and 8), which you create by activating the start button.

EDN

To Vote For This Design, Circle No 749

Fig 2-The top traces in these photos show the load-voltage waveforms, following activation of the start switch, for various settings of the DIP switch: With S_{1} open and all others closed, one half cycle is deleted (a); with all switches open, seven full cycles are deleted (b); with either $S_{l}, S_{2,2} S_{5,}$ and S_{6} open or $S_{l,} S_{k}$ and S_{x} open, two alternate full cycles are deleted (c); and with all switches open except S_{i}, three full cycles on either side of a single full cycle are deleted (\boldsymbol{d}).

Expand your bandwidth and maintain your gain...

$20 \mathrm{Vpp}(200 \mathrm{~B})$ to 50 MHz at gains of 2 to 50

with these high-speed, high-drive op amps from Comlinear

With this op amp family, you don't sacrifice speed for gain. . . or for power. Because Comlinear designs eliminate traditional performance tradeoffs. Check the specs.
But there's more than performance. You also get complete $\mathrm{min} /$ max and over-temperature specifications. DC and AC parameter testing on every part. Unmatched ease of use (all are unity-gain stable, without compensation). Plus evaluation boards and top-notch design support. Which adds up to design productivity and confidence.
To expand your bandwidth, call (303) 226-0500 today. Or write Comlinear Corporation, 4800 Wheaton Drive, Fort Collins, Colorado 80525.

SPECIFICATIONS (Typical)

	$\begin{aligned} & -3 \mathrm{~dB} \text { Bandwi } \\ & \mathrm{A}_{\mathrm{v}}=4 \end{aligned}$	$\begin{array}{r} \text { th }(\mathrm{MHz}) \\ \mathrm{A}_{v}=40 \end{array}$	Settling Time to 0.1% (nsec)	Slew Rate ($V / \mu \mathrm{sec}$)	$\begin{aligned} & \text { Output } \\ & (\pm \mathrm{V}, \mathrm{~mA}) \end{aligned}$
General Purpose					
CLC103	170	130	10 (to 0.4\%)	6000	11,200
CLC200	100	90	18	4000	12,100
CLC220	200	160	8	7000	12,50
CLC300	105	70	20	3000	10,100
Low Offset ($\mathrm{V}_{\text {os }} \leqslant 1 \mathrm{mV}, 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$)					
CLC201	100	90	18	4000	12,100
CLC203	180	130	15 (to 0.2\%)	6000	11,200
CLC221	200	120	15	6500	12,50
CLC2311	165 ($\mathrm{A}_{\mathrm{v}}=1$)	120 (V_{V}	5) 12	3000	11,100

DESIGN IDEAS

Nonlinear load extends PLL frequency range

Basel F Azzam and Christopher R Paul Coherent Communications, Hauppauge, NY

A PLL chip such as the 74 HC 4046 in Fig 1 uses an external capacitor and resistor to set the frequency range for an internal voltage-controlled oscillator (VCO). By replacing the fixed resistor R_{4} with a nonlinear one, you can extend the VCO's frequency range by a factor of 50 or more. For the component values shown, when pin 11 connects to R_{4}, the range is 17 to 300 kHz ; in contrast, when the pin connects to the nonlinear load, the range is 2 kHz to 2 MHz .

Capacitor C_{1} and the current through pin 11 control the PLL's output frequency. Higher current produces a higher frequency. When V_{11} equals 0.5 V , for example,
the high $-\beta$ transistor Q_{1} is off and the resistance from pin 11 to ground is $R_{2}+R_{3}$. As V_{11} increases, Q_{1} turns on and draws more current from pin 11. Thus, the effective impedance, Z , is

$$
\mathrm{Z}=\frac{\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\beta\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)}+\mathrm{R}_{\mathrm{e}}}{\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}-\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{11}}},
$$

where β is the transistor's beta and V_{BE} equals 0.75 V .

To Vote For This Design, Circle No 748

Fig 1-By connecting the nonlinear load \boldsymbol{Z} to pin 11 of the $P L L$ chip $I C_{1}$, you can extend the PLL's frequency range by a factor of 50 , as compared with that possible by using a fixed resistor $\left(R_{i}\right)$.

Dialight Components. For a complete selection that builds on quality.

Indicator lights, switches, and optoelectronics. Literally millions of Dialight components to choose from. All constructed for the kind of reliability that will do justice to your finished product.

Take Dialight LED circuit board indicators, for example. They're 100% pretested, and feature an easy to mount modular design for reliable, labor-saving board assembly.

Or Dialight readout displays. Complete assemblies ready for instant panel-mounting to save time and money.

Or Dialight switches. Pushbuttons, rockers, toggles, levers. Momentary or alternate action. Incandescent, LED, or neon illumination. Hot stamped or engraved graphics. In a wide selection of terminations, contact ratings and mounting styles. Even sealed switches you can solder and wash with other components to reduce assembly costs.

Then there's Dialight indicator lights. Incandescent, LED or neon light sources available in a wide range of sizes and configurations. They'll meet just about
any application requirement including military specs. In fact, we've developed over a million different indicator light designs to become the world's largest manufacturer.

Call us today at (201) 223-9400, or write Dialight Corporation, 1913 Atlantic Ave., Manasquan, NJ 08736. If you can't find what you need in our free catalogs, we'll design it for you. So whatever it is you're building, you can build on quality. With Dialight components.

Dialight - Kulka - HHSmith

Model pnp-substrate capacitance correctly

Vincent Condito and Jerry Frazee
Fairchild Semiconductor, Mountain View, CA

A number of Spice programs incorrectly model the capacitance from a pnp transistor to the substrate. If you have such a program, you can correct the problem by creating a modified subcircuit model. Some Spice programs' models are incorrect because the capacitance to the substrate connects to the collector rather than the base. Other programs model the pnp transistor so that it does connect to the base, but they assign the wrong polarity of coefficient for the base-to-substrate voltage. Either of these can slow a circuit's operation during simulation.
Fig 1 shows the parasitic capacitance between a junction-isolated transistor and the substrate. Analysis programs model the capacitance between the substrate and the transistor's collector. (The substrate must connect to the circuit's most negative potential to ensure isolation of the transistors.) For lateral pnp transistors, however, the capacitance should connect between the substrate and the base.

First, a simple experiment will show how your program handles the pnp transistor. Connect the transis-
tor (in software) as shown in Fig 2. With V_{1} and V_{2} set to 0 V , the junction-to-substrate capacitance (CJS) should measure 2 pF (an .OP command causes the program to print Q's dc operating parameters). Next, change V_{2} to 0.3 V and run the program again-CJS should remain 2 pF . If the value changes, your program has incorrectly connected the capacitance to Q's collector. (Note that you enter this capacitance value as CJS, but the Spice printout labels it CCS.) Next, change V_{2} back to 0 V and V_{3} to 0.3 V . CJS should read 1.69 pF . If it reads more than 2 pF , the program is using the wrong polarity for the voltage coefficient of the capacitance.
If you find that your Spice program suffers from either of these two drawbacks, a different subcircuit model will take care of them (Fig 3). Eliminate the lumped substrate capacitance and instead add a simple diode from the base to the substrate. Use the same CJO, VJ, and M values that you used in connection with CJS.

EDN

Fig 1-This wafer cross-section shows the structure of npn and pmp transistors used in bipolar-IC processes. As shown, the models for the junction-to-substrate capacitance (CJS) should connect to the npn's collector and to the pnp's base, respectively.
SPICE DECK TO CHECK FOR SUBSTRATE-CAP PLACEMENT ON PNP MODEL LPNP PNP CJS=2PF VJS=.5 MJS=. 75

$\begin{array}{lllll}\text { I1 } & 1 & 2 & \mathrm{DC} & 50 \mathrm{UA}\end{array}$
$\begin{array}{lllll}\text { V1 } & 1 & 2 & \text { DC } & 50 U A \\ \text { V1 } & 1 & 0 & \text { DC } & 10 \mathrm{~V}\end{array}$
$\begin{array}{ccccc}\mathrm{V} 1 & 1 & 0 & \mathrm{DC} & 10 \mathrm{~V} \\ \mathrm{~V} 2 & 3 & 0 & \mathrm{DC} & \mathrm{OV}\end{array}$
V3 40 DC OV END

MODEL LPNP PNP CJS $=0$
MODEL LSUB D CJO=2PF VJ $=.5 \mathrm{M}=.75$
REM LATERAL PNP MODEL $1=$ COLLECTOR, $2=$ BASE, $3=$ EMITTER, $4=$ SUBSTRATE $\begin{array}{llllll}\text { SUBCKT } & \text { LATPNP } 1 & 2 \\ \text { Q2 } & 1 & 2 & 3 & 4 & \text { LPNP } \\ \text { D1 } & 4 & 2 & \text { LSUB }\end{array}$ ENDS

Fig 3-If your Spice program is incorrect, substitute this pnptransistor model, which uses a diode to model the junction-substrate capacitance for the model in Fig 2.

Check P\&B's R10 family of relays for stock solutions to your switching problems.

R10	R10-R	${ }_{\text {R10S }}$	R10.T	R10L	R12	R300	featues:
\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	PLastic dust cover
	\checkmark						Immersion cleanable case
				\checkmark			LED INOICATOR
\checkmark	\checkmark		\checkmark				ac coil
\checkmark	DC COIL						
\checkmark	\checkmark		\checkmark				Sensitive coil
		\checkmark					ULTRA. SENSITIVE COIL
\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	voltage actuated coil
\checkmark	\checkmark	\checkmark	\checkmark				CURRENT ACtuated Coll
\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	Solden/socket terminals
\checkmark	\checkmark	\checkmark		\checkmark			PC terminals
			\checkmark				octal-strle plug
						\checkmark	dual coil latching
					\checkmark		tIME deLay
\checkmark	V						7.5 Amp contacts
\checkmark	V		\checkmark	\checkmark	\checkmark	\checkmark	5 AMP Contacts
\checkmark	V	\checkmark	\checkmark	\checkmark		\checkmark	2 AMP Contacts
\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	LOW Level contacts
\checkmark	V		\checkmark	V		\checkmark	DRY CIRCuit Contacts

With contact forms through 8PDT and six contact types offering switching from dry circuit through 7.5 amps , there's an R10 family relay with the features you need. A wide range of options and models combine to provide versatile switching for many varied applications.
Mounting, termination, coil sensitivity, contact and other options are available on stock models. Most are UL recognized and CSA certified. All are compact, quality units that provide the reliable performance you expect from Potter \& Brumfield products.
In addition to general purpose relays, the R10 family also includes units with special functions. The R30D combines a latching function with the basic R10 relay, while the R12 time delay relay includes a solid state timing circuit inside the R10-type case.
All R10 family relays fit a broad range of sockets. Solder, printed circuit and screw terminal sockets are all available off-the-shelf.
Find out more about R10 family relays by contacting your authorized $\mathrm{P} \& \mathrm{~B}$ stocking distributor or sales representative. For the name of the one nearest you, call toll free 800/255-2550.

Design Entry Blank

\$75 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone \qquad
Company
Division (if any) \qquad
Street
City \qquad State \qquad Zip

Design Title
Home Address \qquad

Social Security Number
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
Date \qquad
Your vote determines this issue's winner. All designs published win $\$ 75$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

ISSUE WINNER

The winning Design Idea for the February 19, 1987, issue is entitled "Two-way amplifier uses few parts," submitted by Rudy Stefenel of Luma Telecom (Santa Clara, CA).

A NEW
 TERMIFLEX TERMINAL FOR $\$ 195$.

ST/32 -
INDUSTRIAL QUALITY

- 32 Character LCD
- Compact
- RS232C Interface
- 30 Alphanumeric Keys
- Custom Graphics Available

Termiflex has taken its years of experience and leadership in control/display units (CDU) and produced the $S T / 32$. This rugged, versatile CDU is available for overnight delivery.

	TERMIFLEX CORPORATION
	316 Daniel Webster Highway
Merrimack, NH 03054	
Termiflek	$(603) 424-3700$

CIRCLE NO 38
Robotics, Industrial Drives, Railways, U.P.S., Welding Machines COUNT on LEM MODULES

Like an insulated shunt. A perfect feed back system between power current and electronic control.

- Accuracy, stability and linearity guaranteed for life
- Response time betier than $1 \mu \mathrm{~s}$. Bandwidth DC to 100 kHz
- Reliable in hostile environments MTBF 2×10^{6} hours.
- Large range available for all applications (up to 50 kA)

THE \$64 ANSWER

Now you can have a good-looking VF display at an affordable price with IEE's new line of "NOFRILLS', FLIP ${ }^{\text {Tw }}$ vacuum fluorescent display modules.
These compact, economical displays share many of the most convenient features of the standard IEE FLIP display line, but at a much lower cost. The 1×20 model shown above is priced at only $\$ 64$ each in quantities of 100. Production-quantity pricing is even lower.
"NO-FRILLS" FLIPs are ideal for high-volume OEM applications such as copiers, point-of-sale terminals, pay telephones, and security systems.

And, just look at all of the features:

- Bright, easy-to-read 5×7 dot matrix characters
- On-board microprocessor that accepts parallel ASCII data
- Operation from a single +5 VDC power supply

Several formats are available including 1×16, $1 \times 20,1 \times 32,1 \times 40,2 \times 16$, and $2 \times 20 ; 1 \times 24$ and 2×40 models are coming soon.
So, if you want a low-cost, high-quality front-panel performer, just call IEE and ask the \$64 question.

3-D WORKSTATION

- Produces stereoscopic images
- Suitable for CAD/CAM applications

The 4126 workstation displays a stereoscopic image by switching between two slightly offset views of an image. A liquid-crystal shutter polarizes views for the right and left eyes. The user wears glasses that distinguish between the right-eyeand left-eye polarization. The workstation can accept single 4128- or 4129-style 3-D picture files, run those workstations' software, and then create the appropriate leftand right-eye stereo images. The
basic configuration consists of a 19 -in. display with 1280×1024-pixel resolution, 2 M bytes of user RAM, and a controller that displays 16 colors from a palette of 16 million. You can opt to boost the number of displayable colors to 256 . Other options include shaded-surface stereoscopic viewing, as much as 6 M bytes of memory, a DMA interface, flop-py-disk drives, additional RS-232C interfaces, interfaces for a color copier and for mass storage, and a mouse. From $\$ 29,950$.
Tektronix Inc, Box 15273, Portland, OR 97070 . Phone (800) 2255434; in OR, (503) 235-7202.

Circle No 351

32-BIT $\mu \mathrm{C}$

- Features an open-bus architecture
- Based on a $16-M H z 68020 \mu P$

The Macintosh II computer is a 32-bit computer that incorporates a $16-\mathrm{MHz}$ Motorola $68020 \mu \mathrm{P}$ and a 68881 floating-point coprocessor chip in its standard configuration. The $\mu \mathrm{C}$ also comes with 1 M byte of RAM that's expandable to 8 M bytes. With add-in boards, you can
expand the RAM to as much as 1.5G bytes. The computer features an Appletalk network interface, a SCSI interface port, two RS-422 serial ports, and six 32 -bit NuBus expansion slots. The NuBus's fairarbitration and geographical-addressing procedures allow an add-in card to identify itself, eliminating the need to set DIP switches for system configuration. You can choose either a $12-\mathrm{in}$. monochrome monitor or a $13-\mathrm{in}$. RGB monitor.

Both are analog monitors that allow the computer to display as many shades of gray or color as the human eye can distinguish. Basic unit, $\$ 3898$; unit with 40 M -byte hard disk, $\$ 5498$.

Apple Computer Inc, 20525 Mariani Ave, Cupertino, CA 95014. Phone (408) 996-1010. TLX 171576.

Circle No 352

COLOR MONITOR

- Provides 1600×1280-pixel resolution
- Features new shadow-mask and yoke technologies
The HM-5219 color monitor has 1600×1280-pixel resolution. Incorporating a new yoke design, the monitor achieves an $89-\mathrm{kHz}$ horizontal scan rate (as opposed to the $64-\mathrm{kHz}$ scan rate of the previous design). The monitor increases the resolution of the company's 1280×1024-pixel monitor by 50%. The color monitor employs a proprietary transistor technology, which further enhances resolution. $\$ 5200$.

Hitachi America Ltd, Office Automation Systems Div, 950 Elm Ave, Suite 170, San Bruno, CA 94066. Phone (415) 872-1902. TLX 176308.

Circle No 353

BUBBLE MEMORY

- Uses removable bubble-memory cartridges
- Available as a military- or com-mercial-grade unit
The PBU85D bubble-memory unit provides you with as much as 2 M bytes of nonvolatile mass storage suitable for use in severe environments that would preclude the use of mechanical drives. The unit accepts two removable bubble-memory cartridges, which are available

The Best Of Both

New Pressure Sensors

Announcing SCX!

This new family of pressure sensors offers real-world performance at down to earth prices.
Features include:

- Guaranteed precision over temperature: 1% Max!
- Calibrated zero: 300 microvolts Max!
- Calibrated span: 1% Max!
- 26 models. From 0-1psi up to 0-100 psi for absolute, differential or gauge measurements.

While others write articles and make promises about their "future low-cost precision pressure sensors" . . Sensym delivers today . . . with prices starting at $\$ 15 / 100$ pcs.
And if you're prototyping now, be sure to ask about our "instant" evaluation board. Call us today.

F	R	E	E

\square Please call me, I'd like free SCX samples for evaluation.
\square Please rush me the free 1987 Sensym Handbook. (This handbook contains over 160 pages of application information and product specifications.)

Co. Name
Address
\qquad Zip

Telephone \qquad

Bxt.

For Your Toughest Noise, DC, And Dynamic Error Problems

Need ultra-low noise or bias current? High speed? Exceptional precision? Special packaging? Best performance/ price levels available anywhere?
Burr-Brown has the solutions, and they're backed by over 30 years of op amp design and manufacturing experience. Nobody else can make that statement, and nobody else makes parts as good as these:

Ulitr-Precision, Low Noise Difet ${ }^{\circ}$-OPA111

- $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ max noise
- $\pm 0.25 \mathrm{mV}$ max offset
- $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max drift
- \$5.45

Precision, Wide-Band Difer-0PA606

- $35 \mathrm{~V} / \mu$ s slew rate
- 13 MHz bandwidth
- \$2.30*

Low Noise Precision Bipolar-0PA27/37

- $3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ max input noise $(1 \mathrm{kHz})$
- $\pm 25 \mu \mathrm{~V}$ max offset $\left(25^{\circ} \mathrm{C}\right)$
- \$2.95*

Ulitra-Low Bias Current Difer-0PA128

- ± 0.075 pA max bias current $\left(25^{\circ} \mathrm{C}\right)$
- $\pm 0.5 \mathrm{mV}$ max offset $\left(25^{\circ} \mathrm{C}\right)$
- $-55 /+125^{\circ} \mathrm{C}$ model
- \$10.25*

Fast Video Buffer Difet-OPA633

- $2500 \mathrm{~V} / \mu$ s slew rate
- 275 MHz bandwidth
- HA-5033 pinout
- \$4.00*

Free Selection Guide, Application Notes
Our new "Operational Amplifiers" guide contains key product specifications, pin-outs, and performance diagrams for our newest op amps, plus handy applications notes and examples. Ask your representative for a free copy, or contact Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734. 602/746-1111.

BURR-BROWN ${ }^{\circ}$ EB

with storage capacities of 512 k bytes or 1 M byte. The cartridges provide an average data-access time of 10 msec , and you can softwareselect the size of memory blocks from 256 to 4096 bytes per block. The cartridges measure $4.5 \times$ $2.7 \times 0.9 \mathrm{in}$. and are interchangeable between units. The memory unit interfaces to a host system via an RS-422 serial port at data rates of between 75 and 76.8 k baud. A range of alternative serial and parallel interfaces is also available. The PBU85D has an operat-ing-temperature range of -55 to
$+80^{\circ} \mathrm{C}$ and is available as a commer-cial- or military-grade component. From $£ 3000$ to $£ 10,000$, depending on grade and memory capacity.
Plessey Microsystems Ltd, Water Lane, Towcester, Northants NN12 7JN, UK. Phone (0327) 50312. TLX 31628.

Circle No 354
Plessey Microsystems Inc, One Blue Hill Plaza, Pearl River, NY 10965. Phone (914) 735-4661. TWX 710-541-1512.

Circle No 355

CPU CARD

- Has $68020 \mu P$ and $1 M$ byte of dual-port RAM
- Single-height Eurocard format

The VMPM68KC provides you with a 68020-based VME Bus CPU system in a single-height Eurocard. The CPU system occupies two adjacent slots in a VME Bus J1 back-

plane. It includes a $12.5-$ or $16.7-$ $\mathrm{MHz} 68020 \mu \mathrm{P}$, an optional 68881 math coprocessor, 1 M byte of zero-wait-state static RAM, and 512 k bytes of ROM/EPROM space. Its additional onboard facilities include two serial I/O ports and a real-time clock. The $68020 \mu \mathrm{P}$ has 32 -bit access to the static RAM and ROM/ EPROM via a dedicated local bus. The static RAM is also ported to the VME Bus via an A24/D16 slave interface. The processor has an A24/ D16 master/slave interface to the VME Bus. The processor board in-

THIS TIME TRY A HALL EFFECT SENSOR!
 NOTHING ELSE MEASURES UP

For non-contact position, speed and current detection, check out the control advantages of a Hall device from Kearney/ Wabash, the leading U.S. designer and manufacturer of custom Hall Effect semiconductor sensors:

- Digital or linear output
- Proven reliability in harsh automotive environments from-40 to 175C
- Infinite life
- No contacts to wear or bounce
- Zero-speed detection
- Senses both DC and AC fields
- High linearity and sensitivity
- Response to 100 KHz
- Sinking to 20 ma
- Compact sensing area
- Cost competitive with other sensing techniques
- Device design and qualification assistance provided - Prototypes as fast as 6 weeks

Find out about it today! Clip and return coupon or call Frank Dickmeyer for a complimentary Hall Effect brochure.
cludes VME Bus system-controller functions that you can disable if you wish. It also has a single-level bus arbiter and an interrupt-requester module. Its software support includes a debug monitor and the OS$9 / 68 \mathrm{~K}$ operating system. $\$ 2100$ for the $12.5-\mathrm{MHz}$ version with the math coprocessor; $\$ 2850$ (100) for the $16.7-\mathrm{MHz}$ version.

Pep Modular Computers GmbH, Am Klosterwald 4, 8950 Kaufbeuren, West Germany. Phone (08341) 8974. TLX 541233.

Circle No 356
Pep Modular Computers Inc, 600 N Bell Ave, Pittsburgh, PA 15106. Phone (412) 279-6661. TLX 6711521.

Circle No 357

> INTERCONNECT SYSTEMS DIVISION, MICRODOT INC. gives you a broad range of quality interconnecting devices.

The INTERCONNECT SYSTEMS DIVISION-MICRODOT INC. has a longstanding worldwide reputation as a respected supplier of a broad array of electronic/ electromechanical connecting devices and specialty cable. The INTERCONNECT SYSTEMS DIVISION charter encompasses the engineering and manufacture of high-reliability MIL-Spec and commercial electronic/electromechanical connectors. CIA products include: MIL-Spec circular \& custom hermetic connectors. MALCO manufactures an array of high density microminiature "D" connectors meeting MIL-C83513, coaxial connectors \& cable, high density circular connec-
tors, backplane assemblies \& headers QPL'd to MIL-C-28754, telephone module plugs \& jacks, as well as " D " subminiature crimp and board side connectors \& assemblies.
For additional information write: INTERCONNECT SYSTEMS DIVISION, MICRODOT INC., 12 Progress Drive, Montgomeryville, PA 18936, (215) 699-5373. TWX: 510-661-8206.

INTERCONNECT SYSTEMS DIVISION MICRODOT INC.
> "Helping Industry Put Things Together With World-Class Products" ${ }^{\text {tw }}$

You've waited along time for this 2GHz signal generator.

For too many years, if you needed a cost-effective 2 GHz signal generator, you had to settle for clumsy, clunky Klystron-based units. Many of which have been around since the last World War.

To achieve any accuracy you needed a counter to set frequency. Then it would drift. And such primitive technology necessitated high maintenance costs.

Of course you could opt for the precision of a synthesizer. It only takes $\$ 20,000$ or more.

At last, a true alternative.

The Wavetek Model 2520 puts these past technologies and problems far behind you.

Now you can have a 2.2 GHz syn thesized signal generator with all the features and convenience of the popular 1 GHz synthesizers. But, remarkably, at the price of an old-fashioned Klystron generator.

2.2 GHz for under $\mathbf{\$ 8 , 0 0 0}$.

You've come to expect a lot of performance from your 1 GHz signal generator. Now you can have that same affordable, effective performance in a 2.2 GHz generator with no compromises.
Frequency range down to 200 $\mathrm{KHz}+13 \mathrm{dBm}$ output power.* Excellent spectral purity. Near field RFI typically <0.1 microvolt. Fast and precise setting of frequency to 10 Hz resolution by keyboard or spin knob. Fully annunciated displays. AM and FM. Pulse modulation with 80 dB on/off ratio.* State of the art GPIB interface.
No compromises.

Pure and simple.

The 2520 accomplishes all this performance without sacrificing simplicity. There's no synthesizer easier to maintain, easier to calibrate. With Autocal you just turn a key and 2520 software helps you through calibration in only fifteen
minutes. Simplicity and state-of-the-art manufacturing techniques provide long MTBF and the durability to stand up to the rigors of everyday use.

Options for your application.

The 2520 offers a wide range of standard features and an even wider range of options to match the instrument to your specific needs. In fact, the 2520 is engineered to make it easy to modify for very specialized applications. Just ask our engineers about it.

Seeing is believing.

We want to show you that the Wavetek 2520 is the best 2 GHz generator available for your testing needs. Contact your local Wavetek Representative or give us a call for a demonstration. Wavetek Indiana, Inc., 5808 Churchman, Beech Grove, IN 46107, 317-788-9351.

Here's why. Most MLC capacitors are made by co-firing the ceramic dielectric and the metal electrode in a single operation. That's like baking a cake with frosting already on it. It can create some real problems.

ACE process improves reliability

In Corning's famous ACE process, the electrode is injected after the dielectric is fired. The result is a dramatic reduction in internal stress, and that means virtually no delaminations.

The icing on our cake is a special lead alloy electrode that eliminates silver migration, a
leading cause of low voltage failure. It also gives you exceptionally low ESL and ESR for optimum decoupling.

Axials, radials, and chips

Corning MLC axials, radials, and chips all offer the reliability of ACE technology. And they are specially packaged for use in automatic insertion and placement equipment.

The newest member of the ACE family is the $.33 \mu \mathrm{~F}$ axial, which is insertable on the same .3 -inch center as DIPs, providing greater space efficiency and superior decoupling.

Ending capacitor problems is a piece of cake. Circle the reader service number for our new ACE family brochure. Or call (919) 878-6234.

COMPUTERS \& PERIPHERALS

flops (double precision). The vector preprocessor converts standard Fortran 77 programs to programs having vector-processing-compatible formats, thus making it easier to port existing applications to the accelerator. The board transfers data internally at the rate of 80 M bytes/ sec. The accelerator for the PC/AT performs over 2 M flops in 64 -bit mode. At the high end, in a system where the board uses its full speed -an 80M-byte/sec data-transfer rate-the board achieves 5 M flops in 64-bit mode. PC/AT version, from $\$ 9900$; bus versions, from $\$ 11,900$.

Sky Computers Inc, Foot of John St, Lowell, MA 01852. Phone (617) 454-6200.

Circle No 359

GRAPHICS SYSTEMS

- Include plug-in card and monitor for IBM PC/AT computers
- Provide 1024×768-pixel grayscale or color displays
The Xcellerator range of 1024×768 pixel display systems for the IBM PC/AT and compatible computers includes a monochrome version that provides eight shades of gray, and color versions that are capable of displaying 16 or 256 colors from a palette of 16 million. Versions are available for interlaced and noninterlaced displays. Each system comprises a CRT monitor and a plug-in card for the IBM PC/AT. Based on Texas Instruments' 34010 graphics-processor chip, the system is capable of continuous short-vector drawing at speeds of 80,000 vectors/ sec , long-vector drawing at 1.25 M

NOW ACCEPTIING APPLICATIONS

You'll find with any technological advance. new opportunities are created. In our case it's new applications:

ADHESIVE APPLICATIONS.

We ve designed the finest high tech adhesive systems in the world; all specially formulated to give you the versatility and performance needed for any application.
Pacer's Advanced Technology Series represents patented technology overcoming the classical problem areas of cyanoacrylate applications: dirty, contaminated, porous, acidic or alkaline surfaces as well as high temperature, high impact or high moisture environments and the occurrence of chlorosis or whitening during cure.

The Pacer Ana-Lok grades are high performance anaerobic compounds developed for thread locking, sealing, joining, fastening and retaining metal components. The ANL grades do not contain solvents and can be pre-applied. They do not require a primer or any special surface preparation. Ana-Lok also gives you excellent gap filling abilities and, in many cases, eliminates the need for mechanical fasteners. Six grades are available with five to fifteen minute cure times.

Our Insta-Lok grades are unique patented technology: structural cyanoacrylates offering the strength and durability of an anaerobic and the cure time of an instant adhesive. Unlike anaerobics, these compounds perform well on platings, stainless steel and plastic fasteners without the use of surface activators.
Our dynamic work with high technology adhesives creates new opportunities for you. Take advantage and call us now with your applications. Let us show you what your new Pacer adhesive system can really do.

FOR LESS...

- QUANTITY DISCOUNTS (AS LOW AS $\$ 17.25$ EA)
- WORLD'S SMALLEST LED \& LCD
- RS-232/RS-422 INTERFACES
- DISPLAY \& CONTROL
- MANY, MANY APPLICATIONS

Call Today For FREE APPLICATION CATALOG

pixels/sec, and 8×16-pixel character generation at 25,000 characters/sec. The plug-in card's graphics processor can run application programs with minimal intervention from the host computer, and it can access as much as 7 M bytes of memory. You can add an optional National Semiconductor 32081 floating-point processor to the card. The vendor offers program-development tools and driver software for a number of CAD and graphics packages. Monochrome version, £2495; color versions, from £4195 to £5395. The plug-in cards for the color systems are available separately at between $£ 2195$ and $£ 2895$.

Cambridge Computer Graphics Ltd, Unit 33, Clifton Rd, Cambridge CB1 4ZN, UK. Phone (0223) 214444. TLX 817274.

Circle No 360
Cambridge Computer Graphics, 6201 Ascot Dr, Oakland, CA 94611. Phone (415) 530-4148. TLX 797032.

Circle No 361

GRAPHICS PROCESSOR

- For Multibus I architecture
- Features 1280×1024-pixel resolution

The MG-1280 Multibus I card provides 1280×1024-pixel resolution and draws at a rate of 35,000 vectors/sec max. An 8-bit color-lookup table allows you to display 256 colors simultaneously from a palette of 16 million. An onboard 32016 CPU and HD63484 drawing processor together enable the board to draw as many as 15,000 characters $/ \mathrm{sec}$. The board performs bit-block tranfers at the rate of 13 M transfers $/ \mathrm{sec}$. It also
provides high-level graphics commands such as Draw Line and Fill Area. $\$ 4995$.

Matrox Electronic Systems Ltd, 1055 St Regis Blvd, Dorval, Quebec, Canada H9P 2T4. Phone (514) 685-2630. TLX 05822798.

Circle No 362

DISK DRIVES

- $31 / 2$ - and $5^{1 / 4}$-in. floppy drives offer $2 M$ and $3.2 M$ bytes
- Use standard heads, media, and codes

Two floppy-disk drives, the YD-701 and the YD-801, use standard heads, media, and encoding, so they are compatible with the 1.6 M - and 1 M -byte standards. The YD-701 is a $31 / 2$-in. floppy-disk drive that provides 2 M bytes of storage. The YD-801 $51 / 4-\mathrm{in}$. floppy-disk drive provides 3.2 M bytes of storage. The manufacturer uses a new read circuit that allows greater recording densities. The YD-701 is fully readwrite compatible with 2 M - and 1.6 M -byte drives that use high-density media. The drive is read-write compatible with 1 M -byte media formats and read compatible with 500 k -byte media formats. The YD-801 uses the same data-transfer rate, track density, and number of tracks as do 1.6 M -byte drives. YD-701, $\$ 225$; YD-801, $\$ 240$.
C Itoh Electronics Inc, 19300 S Hamilton Ave, Torrance, CA 90248. Phone (213) 327-9100.

Circle No 403

Design Accuracy is the bottom line in CAE/CAD

 performance. And Visula's precision has made it the world's top-of-the-line software for generating manufacturable PCBs.(2) Nisulat abilitmitting to a layout. And the system is just as useful to the CAD engineer, because of its gridless routing and its total compatibility with evolving technologies.
Experience the design accuracy of Visula from Racal-Redac. Call or write for more information.

COMPONENTS \& POWER SUPPLIES

DC/DC CONVERTERS

- 11-W/ins power density
- 500 V dc I/O isolation

The NM Series 0505i, 1212i, and $1515 i \mathrm{de} / \mathrm{dc}$ converters use state-of-the-art surface-mount technology to achieve power densities exceeding $11 \mathrm{~W} / \mathrm{in}^{3}$. Operating from a 5 V dc input, the converters generate ± 5, ± 12, and $\pm 15 \mathrm{~V}$ dc, respectively. The output power equals 750 mW ; the input-to-output isolation is 500 V dc. The converters' efficiency is 80%, and the operating temperature (with no derating) ranges from -25 to $+80^{\circ} \mathrm{C}$. The DIP models require $0.32 \mathrm{in}^{2}$ of board space, and the SIP versions take up $0.18 \mathrm{in}^{2}$. DIP model, $\$ 19.50$; SIP model, $\$ 13$ (1000).

International Power Sources Inc, 10 Cochituate St, Natick, MA 01760. Phone (617) 651-1818. TWX 510-100-3630.

Circle No 363

CAPACITORS

- Designed for high-temperature applications
- 2000-hour nominal load life

DP Series radial-lead capacitors feature a solid tantalum electrolyte that ensures stable electrical performance over -55 to $+125^{\circ} \mathrm{C}$. They also feature a stable oxide layer, which minimizes leakage for long periods of time. The leakage current is $\leq 0.01 \mathrm{CV}$ or $0.5 \mu \mathrm{~A}$, whichever is greater. Capacitance values range from 0.1 to $150 \mu \mathrm{~F}$, and the tolerance specs at $\pm 20, \pm 10$, or
$\pm 5 \%$. The load life is $2000(\pm 12)$ hours at $85^{\circ} \mathrm{C}$. The capacitors utilize a self-extinguishing epoxy resin, which avoids epoxy rundown on the leads. You can obtain the units on
tape and reel. $\$ 0.069$ (1000). International Components Corp, 105 Maxess Rd, Melville, NY 11747. Phone (516) 293-1500.

Circle No 364

THERMAL RECORDER

- 200×800 dot/in. resolution
- Comes with demonstration soft ware

The AR-41 2-in. thermal recorder/ printer can print graphics, text, bar codes, histograms, and waveforms. It uses curve-smoothing software to produce images with resolutions as high as 200×800 dots/in. The unit can use paginated and semiperforated or plain $50-\mathrm{mm}$ roll paper, and it can print the 96 -character ASCII set horizontally or vertically. It features an automatic paper-feed system. The recorder/printer is housed
in an injection-molded, glass-filled polycarbonate chassis. It comes with demonstration software (a diskette-based program) that runs on IBM PCs and compatibles with MS DOS 2.0 or later versions. The software demonstrates the recorder features and standard operational modes and checks for proper functioning of the unit. A Centronics interface lets you send data directly from a PC to a printer. $\$ 420$.

General Scanning Inc, Box 307, Watertown, MA 02272. Phone (617) 924-1010.

Circle No 365

LOOK WHAT YOU GET.

Single unit
 prices for KEPCO/TDK SERIES ERX
 SINGLE
 OUTPUT SWITCHING POWER SUPPLIES

240 WATTS s210

Includes optional cover* CA-18, \$13. $2.76^{\prime \prime} \mathrm{H} \times 12.91^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ ($70 \mathrm{~mm} \times 328 \mathrm{~mm} \times 123 \mathrm{~mm}$) $5.5 \mathrm{lbs}(2.5 \mathrm{Kg})$

120 WATTS
 \$153

Includes optional cover* CA-17, \$11. $2.76^{\prime \prime} \mathrm{H} \times 8.90^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ ($70 \mathrm{~mm} \times 226 \mathrm{~mm} \times 123 \mathrm{~mm}$) $3 \mathrm{lbs}(1.4 \mathrm{Kg})$

60 WATTS
 s94

Includes optional cover* CA-16, \$11. $2.36^{\prime \prime} \mathrm{H} \times 7.09^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ $(60 \mathrm{~mm} \times 180 \mathrm{~mm} \times 123 \mathrm{~mm})$
$1.5 \mathrm{lbs}(0.7 \mathrm{Kg})$

> 30 WATTS
> \$65
> Includes optional cover* CA-15, \$11. $2.17^{\prime \prime} \mathrm{H} \times 5.51^{\prime \prime} \mathrm{D} \times 4.84^{\prime \prime} \mathrm{W}$ $(55 \mathrm{~mm} \times 140 \mathrm{~mm} \times 123 \mathrm{~mm})$ $1.5 \mathrm{lbs}(0.7 \mathrm{Kg})$
> (Substantial OEM quantity discounts available.) *The optional cover is shipped separately.

> For complete specifications and 144-page Applications Handbook \& Full-Line Catalog write Dept. JVF-12, KEPCO, INC., 131-38 Sanford Ave.,

> Flushing, NY 11352 USA (718) 461-7000 • TWX \#710 582-2631

> FAX (718) 767-1102

- 5V, 12V, 15V, and $24 V$ models available in all sizes
. output of $12 \mathrm{~V}, 15 \mathrm{~V}$, and 24 V models can be adjusted -30 ,
$+10 \%$ around the nominal; output of 5 V models, $-20 \%,+10 \%$.

- Overvoltage protection

.shuts down the switching oscillator drive and reduces the output to zero when voltage reaches the OVP setting.

- Rectangular

 current limiting.lets you drive non-linear loads without their high initial surge causing the power supply to "lock out." Allows operation in series or parallel.

- Remote error sensing
.compensates for voltage drops up to 0.35 V per wire.
- 68-80\% efficiency ...240W model operates its FETs at 100 KHz .
- Selectable 115/230V input \ldots. $85-132 \mathrm{~V}$ or $170-264 \mathrm{~V}$.) Also operates from $260-340 \mathrm{~V}$ d-c input.
- Built-in EMI filter
... attenuates line-conducted EMI below FCC 20780, Class B.
- Soft start
. . limits a-c input surge.
- 8 mm spacing and transformer insulation to meet IEC 380, VDE 0806 .. approved by TÜV Rheinland. Also listed by UL and certified by CSA.

- Optional enclosure

for EMI shielding, \& protection.

- Quick connect

Molex input/output connectors
(240 Watt model has a barrier
strip). Optional cable kits available.

ERX
30 WATT
MODELS

THE POWER SUPPLIER ${ }^{\text {™ }}$

KEYBOARDS

- Available with built-in background illumination
- Totally sealed construction

Panelswitch keyboards are available in $3 \times 4,4 \times 4$, and 4×5 configurations. They feature gold-plated snap-dome switches, a polyester sealing membrane, and illuminated or nonilluminated keys mounted on a pc board-all securely retained by a low-profile bezel. The spst switches spec a 1Ω max contact resistance. X-Y matrix or single-pole common-bus outputs are standard. Panelswitches are available with built-in background illumination. The illuminated versions have black opaque characters on a white translucent key; nonilluminated models have white legends on a black background. Custom legends are available in both styles. EMI/RFI shielding is also available. $\$ 30$ (25).

Delivery, six to eight weeks ARO.
IEE Inc, Planar Products Div, 7740 Lemona Ave, Van Nuys, CA 91409. Phone (818) 787-0311. TLX 4720556.

Circle No 366

HEAT SINKS

- Require no thermal grease or epoxy
- Thermal resistances to $4^{\circ} \mathrm{C} / \mathrm{W}$

Designed for chip carriers and pingrid arrays, these pin-fin heat sinks rely on impingement cooling techniques. Models 2305 and 2306 were specifically designed to become the latch cover for the 268-5400 leadless chip carrier socket from 3MTextool. No thermal grease or epoxy is needed for attachment of the heat sinks. The 2305 stands 0.5 in. tall and has a thermal resistance of $3^{\circ} \mathrm{C} / \mathrm{W}$ with $500 \mathrm{ft} /$ minute impingement. The 2306 stands 0.26 in . tall and has a $4^{\circ} \mathrm{C} / \mathrm{W}$ thermal resist-
ance. Model 2330 is designed for pin-grid arrays in the 149-pin count range. It has a $1.3^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance. Model 2306, $\$ 0.36$ (1000).

Thermalloy Inc, Box 810839, Dallas, TX 75381. Phone (214) 2434321.

Circle No 367

DELAY LINES

- ECL and TTL compatible
- Delays of 100 to 1000 psec

Delay lines in the 0402 Series are available in SIPs and feature delays of 100 to 1000 psec in $100-\mathrm{psec}$ increments. They employ gold-plated pins to maximize conductivity and the precision of delays, and they are TTL and ECL compatible. Other specifications include output rise times (measured from 20% to 80%) of 0.9 to 1.5 nsec , a temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max, and an operating range of -55 to

8 AND 16 BIT PROGRAMMER PROM EMULATOR
EPROMS ■ EEPROMS MICROCOMPUTERS

UNIVERSAL PROGRAMMER EPROMS ㅌ EEPROMS ■ BIPOLAR PROMS SINGLE CHIP MICROCOMPUTERS PROGRAMMABLE LOGIC

Z-1000B

Z-1000B
 devices growing monthly PROMs - Easy Device Easy Device
Updating Updating
Using Using
EPROM EPROM
Firmware

Z-1200B - Low Cost Gang Programmer

T-816

- Z-3000 High Volume Gang Programmer - Z-2500B In-Circuit Programmer
- ZAP 68 Low Cost EPROM and Motorola Microcomputer Programmer
(818) 914-1926

The fastest SCSI controllers in the

Emulex blows away the competition with lightning fast SCSI performance. Up to 24 MHz disk interface transfer rates, the fastest in the industry, by using our own VLSI technology. Intelligent controller firmware for optimum efficiency, allowing overlapping operations on up to four peripherals to reduce system delays. And comprehensive implementation of the Common Command Set.

Our controllers even reduce SCSI overhead by 50% with command queing/linking. Plus, we provide peak SCSI bus optimization with a powerful disconnect/reconnect algorithm.

EMULEX SCSI PERFORMANCE MATRIX

CONTROLLER	MT02	MT03	MD01	MD21/S2	MD23
TYPE (\# of Drives)	TAPE (1)	TAPE (1)	DISK (2)	DISK (2)	DISK (4)
FIFO	16 KB	16 KB	16 KB	32 KB	64 KB
LOGICAL BLOCK SIZE (Bytes)	$256 / 512$	$256 / 512$	$256 / 512$	$256 / 4096$	$256 / 4096$
CCS	N/A	N/A	NO	YES	YES
ECC	$16-$ Bit CRC	$16-$ Bit CRC	48 -Bit	48 -Bit	48 -Bit
DRIVE INTERFACE	90 SPEED	90 KBYTES	KBYTES to 24 MBits	Up to 24 MBits	Upto24 MBits
DRIVES SUPPORTED	QIC-36 Type	QIC-44 Type	ST506	ESDI	ESDI

With this kind of commitment to performance and efficiency, it's easy to see why Emulex is the top gun in SCSI. To find out more about our fast SCSI solutions call 1-800EMULEX3. In California (714) 662-5600. Or write Emulex Corporation, 3545 Harbor Blvd., P.O. Box 6725, Costa Mesa, CA 92626.

Emulex SCSI products are stocked nationally by Hamilton/Avnet, Kierulff Electronics and MTI Systems Corp.

Gotcha!

CIRCLE NO 183

Schroff ${ }^{\circ}$

OUR CABINETS WITHSTAND THE TOUGHEST TEST OFALL THE TEST OF TIME

As a company dedicated to technical excellence, Schroff helps you prepare for the future. So you can be the first to take advantage of it. For example, our Eurorack and Minirack cabinets are designed to help you meet changing market conditions. They're available in more than 45 different sizes, with a wide range of accessories and options, including RFI/EMI shielding, full glass doors (a Schroff exclusive), and much more. So chances are, you'll always be able to offer the features your customers are looking to buy.
Schroff Eurorack and Minirack cabinets are manufactured in the United States. They meet EIA, IEC, VDE and DIN standards. And they're made to deliver maximum rigidity and strength. As a result, you, and your customers, can be sure these cabinets will last as long on the job as they will in the market.
If your present cabinets can't pass the test of time the way Eurorack and Minirack can, it's time you looked at Schroff.

CIRCLE NO 184

COMPONENTS \& POWER SUPPLIES

$+125^{\circ} \mathrm{C}$. The working voltage equals 50 V dc, and distortion measures 7.5% max. All units are bidirectional and built to conform to MIL-L-23859. \$2.05 (1000).

Bel Fuse Inc, 198 Van Vorst St, Jersey City, NJ 07302. Phone (201) 432-0463.

ENCLOSURE

- Accommodates two disk drives
- Includes two power supplies

The SA-H123S mounting enclosure accommodates two Fujitsu Winchester disk drives. Each drive has its own 175 W power supply, rear on/off switch, and fan. Each supply provides 5 V at $25 \mathrm{~A},-12 \mathrm{~V}$ at 5 A , and 24 V at 5 A . Two additional fans provide cooling with side exhaust to maximize air flow. The enclosure is available in two versions: a tabletop unit, which includes a front panel and rubber feet, and a version that mounts in a standard $19-\mathrm{in}$. Retma rack. The enclosure is designed to withstand operational temperatures of 0 to $50^{\circ} \mathrm{C}$, and humidity ranging to 95%, noncondensing. $\$ 1392$.

Sigma Information Systems, 3401 E La Palma Ave, Anaheim, CA 92806. Phone (714) 630-6553. TLX 298607.

Circle No 369

POWER SUPPLY

- Provides a 3000W output
- 0.5\% line and load regulation

The COM6000 provides a nominal output of 5 V at 600 A . The output is user adjustable over a 4.5 to 7.2 V dc range. A full complement of inter-

How To Turn A Computer Into A Shock Absorber:

Surge and ESD are the most common cause of failure in semiconductor-based equipment. And with existing protection technology, it's all so unnecessary.

KeyTek manufactures the broadest line of Keylek manufactures the broadest line of
surge and ESD test equipment in the world.

Every year, lightning, switching transients, human ESD and other "shocks" account for billions of dollars in downtime and repair costs and for untold numbers of disgruntled customers.

And we can't help but ask, "WHY?"
The facts are that, today, well-developed protection technologies, test standards and test instrumentation exist. And with a comprehensive, company-wide program, any computer, microprocessor, or semi-conductor-based product can be turned into a nearly invincible "shock absorber" able to withstand thousands of volts of surge and ESD without failure, malfunction or the need for user-supplied protection.

At KeyTek, we provide the equipment and the expertise to help you test your product's vulnerability to surge and ESD at every step of the manufacturing process from design to the inspection of incoming components to the QA/QC testing of complete systems on the manufacturing floor to the interconnection and networking of systems in the field.

Among our customers are the biggest and most successful companies in the world. They manufacture computers, telecommunications equipment, manufacturing and process control systems, microprocessorbased appliances and other consumer goods. And their products are resistant to the ravages of surge and ESD. As a result, our customers enjoy considerably lower after sales costs, happy and satisfied customers, a superior competitive position and higher profits.

We'd like to convince you that you too can enjoy these benefits. Send for free copies of our Surge and ESD protection handbooks. They describe the common causes of surge and ESD as well as protection technologies, the latest releventtest standards and the most sophisticated test equipment.

You may get your copies by calling our Technical Services Department at (617) 658-0880.
Or send your request on a company letterhead to KeyTek Instrument Corporation, 260 Fordham Road, Wilmington, MA 01887.

KeyTek Instrument Corporation, 260 Fordham Road
Wilmington, MA 01887 Phone: (617) 658-0880
TELEX: 951389

COMPONENTS \& POWER SUPPLIES

face signals includes remote-sense, remote-margin, power-good, and logic-inhibit signals, and an isolated sequence to enable the output. The supply features overvoltage protection and ac under- and overvoltage lockout. Self-testing front-panel lamps indicate power-on, overcurrent, overvoltage, and overtemperature conditions. The supply complies with the emission standards of FCC Docket 20780, Class B. Combined line and load regulation is better than 0.5%, and the temperature coefficient is less than $0.02 \% /{ }^{\circ} \mathrm{C}$ over the 0 to $50^{\circ} \mathrm{C}$ operating range. The Output ripple and noise is less than 100 mV p-p, and the powerholdup time equals 12 msec . The efficiency exceeds 75%. $\$ 3500$. Delivery, stock to six weeks ARO.
CEAG Electric Corp, 1324 Motor Parkway, Hauppauge, NY 11788. Phone (516) 582-4422.

Circle No 370

CONNECTORS

- Provide pc-board-mounting BNC connections
- Incorporate a threaded section for securing into panels

This family of pc-board-mounting BNC connectors includes versions for horizontal or vertical mounting. The body of each connector incorporates a molded thread to secure the connector into the panel, which can be 4 mm thick. A flat surface on one side of the thread resists the rotational torque associated with the insertion and removal of a mating plug. You can fix the socket to the pe board with self-tapping screws, or by soldering in special mounting pins. The body of the socket insulates the connector from the pc

Wondering about analog circuit simulation?

PSpice is the world's most widely used analog circuit simulator.

Is it because PSpice was the first SPICE compatible simulator for the IBM-PC ${ }^{\text {TM }}$? And the only one for both PC and VAX ${ }^{\text {TM }}$?

Or, perhaps because these features are not available from "brand X"?

- GaAs MESFET modeling
- power transformer modeling
- "Monte Carlo', analysis

Maybe because of our Probe graphics,

and our Parts device modeling?

Or that the top four PC-based CAE companies sell or recommend PSpice to their customers?

MicroSim gives you reliable convergence and expert technical support. PSpice version 3 shows our commitment to advancing the industry standard.

MicroSim's PSpice software runs on IBM-PC ${ }^{\text {TM }}$ compatible and DEC VAX ${ }^{T M}$ computers.

MicroSim Corporation

 23175 La Cadena Drive Laguna Hills, CA 92653 (714) 770-3022 • (800) 826-8603
Call today for further information and a free evaluation copy of our software.

IBM-PC is a trademark of International Business Machines Corp. VAX is a trademark of Digital Equipment Corporation.
board and from the panel, and it incorporates standoffs, which allow solvent cleaners to penetrate beneath the connector assembly. The connectors have a nominal impedance of 50Ω and a working voltage of 500 V dc or ac peak. Polypropylene insulation provides an insulation resistance greater than $500 \mathrm{M} \Omega$, and the silver-plated contacts meet the requirements of BS-9210 N0001 Part 2 and MIL-C-39102. The connectors operate over -40 to $+85^{\circ} \mathrm{C}$. A low-profile version is available. Approximately $\$ 1$ (OEM qty).
Greenpar Connectors, Cambridge Rd, Harlow, Essex CM20 2ER, UK. Phone (0279) 27192. TLX 81404.

Circle No 371
Automatic Connector Corp, 400 Moreland Rd, Commack, NY 11725. Phone (516) 543-5000.

Circle No 372

THYRISTORS

- Handle 25A rms and surge currents as high as 300A
- Have a typical gate-controlled turn-on time of $2 \mu \mathrm{sec}$

BT145 Series thyristors have an onstate current rating of 25 A rms and are housed in TO-220 plastic packages. In addition, they can handle surge currents as high as 300 A . The thyristors are available with voltage ratings of 500,600 , and 800 V . The minimum gate current required to trigger the devices is 35 mA at
$25^{\circ} \mathrm{C}$, and the gate-controlled turnon time is $2 \mu \mathrm{sec}$ typ. The use of refined alloy-bonding techniques to mount the die inside the package contributes to the elimination of hot spots and improved thermal stability. Approximately $\$ 1.20(10,000)$.

Philips, Elcoma Div, Box 523, 5600 AM Eindhoven, The Netherlands. Phone (040) 757005. TLX 51573.

Circle No 373
Amperex Electronic Corp, George Washington Hwy, Smithfield, RI 02917. Phone (401) 2320500.

Circle No 374

TOUCH DISPLAYS

- Resolutions range from TV grade to fine
- Screen sizes to 19 in .

The K7000 displays provide solutions to most interactive display re-quirements-graphics superimposed on video, high-quality RGB analog, NTSC, audio, etc. They employ proprietary Cyclops singleLED touch-screen technology. The displays are available in 13-, 15-, 18 -, and $19-\mathrm{in}$. sizes and either as standard CRTs or as full-square, flat-faced tubes. The display resolutions range from TV grade $(320 \times 240$ pixels) to fine $(640 \times 240$ pixels). The built-in intelligent controller transmits X-Y data via an RS-232C interface. Custom sizes and configurations are available upon request. $\$ 700$ to $\$ 800$. Delivery, four to six weeks ARO.
Wells-Gardner Electronics Corp, 2701 N Kildare Ave, Chicago, IL 60639. Phone (312) 252-8220. TLX 253286.

Circle No 375

1-Mil. Diagonal. Powerful. High Capacity.

THE DC/AUTOROUTER II PRICED AT \$2,450*

HIGH COMPLETION RATE

The field-proven DC/AUTOROUTER II" is a high-end, professional autorouter for IBM personal computers and compatibles. With its low-cost, true diagonal autorouting and typical completion rate of $93-98 \%$, DC/AUTOROUTER II" clearly outperforms the competition.

FEATURE-PACKED

DC/AUTOROUTER II" automatically generates a drill hole tape file and drill hole, solder masks, and silk screen art masters. The totally reentrant DC/AUTOROUTER II" can be interrupted and restarted with no loss of work. And parameters allow routing to be tailored to your specific needs.

COST SAVING

DC/AUTOROUTER IITM saves you money three ways:

1. Reduced board routing costs
2. Reduced board manufacturing costs over competitive autorouters
3. Reduced up-front costs by not requiring expensive, dedicated hardware.
DC/AUTOROUTER II"'s sophisticated
via minimization pass produces lower cost boards than competitive autorouters that cost several thousand dollars more.

PLENTY OF POWER

DC/AUTOROUTER II" boasts highend power. Designed specifically for autorouting large, dense commercial boards, DC/AUTOROUTER II" supports well over 350 ICs per board. And DRAFTSMAN-EE"', our graphics editor for schematic entry and board editing, is just as powerful. Built for the poweruser, these products break the DOS 640 KB memory barrier by supporting EMS memory boards, yet the minimum memory requirement is just 512 KB .

MONEY-BACK GUARANTEE

DRAFTSMAN-EE" ${ }^{\text {w }}$ and DC/AUTOROUTER II" ${ }^{\text {T}}$ come with 60 -day moneyback guarantees. They run on industry standard personal computers, such as IBM and ATET PCs as well as the COMPAQ DESKPRO 286 and 386.
The choice is simple: DC/AUTOROUTER II" $^{\text {" }}$-an outstanding autorouter at any price. Call today for more information: (201) 922-4111.

DC/AUTOROUTER ITV FEATURES

- 2 to 16-layer boards
- Any shape board up to $32^{\prime \prime} \times 32$
- Over 350 ICs per board
- 1-mil "gridless" operation and placement
- True diagonal routing-an absolute must for medium to high density boards
- Powerful via minimization
- Sophisticated hugging and re-route algorithms for exceptional performance
- Common planes for power and ground
- Variable pad, via and drill hole sizes
- Variable route widths
- Single-layer and all-layer exclusion areas
- Arbitrary area fill
- Manual routing at any angle and any trace width before or after autorouting
-Thorough design rule checking and netlist comparison
- Pen plotter, Gerber photoplotter, or printed output
*Requires DRAFTSMAN-EE ${ }^{\text {™ }}$ with manual routing option.

DDESIGN COMPUTATION

Design Computation, Inc.
Ten Frederick Avenue, Neptune, NJ 07753 (201) 922-4111 TWX: 510-601-8352

Proportional Joysticks Small Size Big Performance

They're only a little over an inch long and weigh under an ounce, but their performance is king-size.
Operation is easy and natural, promoting higher speed and accuracy in positioning and tracking tasks. Resolution is infinite, with continuous output and no dead zone Rugged construction allows flawless operation even in severe environments. And mean time between failures is 200,000 hours, with a minimum of $10,000,000$ cycles.
Small wonder these joysticks have been used so successfully in computer graphics, visual displays, fire control systems, hoists, vehicle control and robots, among other applications. Chances are they could be useful to you, too. Want to find out? Just call or write us for more information.

MS
 Measurement Systems, Inc.
 121 Water Street, Norwalk, CT 06854 203-838-5561

CIRCLE NO 55

COMPONENTS \& POWER SUPPLIES

REFERENCE JUNCTION

- Accuracy to within $\pm 1^{\circ} \mathrm{C}$
- Fully encapsulated package

Model NC111 is a miniature, highaccuracy, half-bridge, cold-junction temperature-compensating network. Its compensation accuracy is within $\pm 1^{\circ} \mathrm{C}$ over an ambient operating range of -54 to $+100^{\circ} \mathrm{C}$. A wide range of excitation voltages is available. The entire compensation network and the cold-junction thermocouples are encapsulated. The unit is available in pe-board-mountable versions or with leads. $\$ 27.20$ (100).

Hades Manufacturing Corp, 151 Verdi St, Farmingdale, NY 11735. Phone (516) 249-4244.

Circle No 376

SWITCHING SUPPLIES

- Power outputs to 1750 W
- 80% standard efficiency

The seven units in the VF Series of 5 -output switching power supplies offer outputs of $750,1000,1250$, 1500 , or 1750 W . The standard output voltages are 5,12 , and 24 V ; 15 , 18 , and 48 V units are available by

ADVERTISEMENT

SURFACE MOUNT (SMD) SWITCHES
ALCOSWITCH has surface mount switches, consisting of: AD series DIP and $A A / C, A R$ series DIP programming switches, sub-miniature toggle/pushbutton the SMT/P series switches, and the AS series auto-insertable slide switches. The DIP switches are available in 2 through 10 positions with optional integral pull up resistors or diodes. The SMT/P switches are in single or double-pole, while the AS slide switches are in one, two, four, or six-poll versions. All are molded from high temperature polymers, designed specifically to withstand vapor-phase or infra-red reflow soldering, and allow for aqueous or solvent cleaning. For more information Call (617) 685-4371, ALCOSWITCH 1551 Osgood Street, North Andover, MA 01845.

CIRCLE NO 45

"tiny" VRA TOGGLE AND PUSHBUTTON SWITCHES

ALCOSWITCH offers right angle \& vertical right angle termination options for the extensive TT/TP Series subminiature "tiny" toggle and pushbutton switches. Intended for high density PC board layouts. The TT/TP-VRA options combine .3X .3X . 2 case size with on-edge mounting These features maximize switch space density, allowing the design engineer room for miniaturization or additional components. Rated at 0.4VA @ 20VDC maximum. For more information Call (617) 685-4371, ALCOSWITCH, 1551 Osgood Street, North Andover, MA 01845

> OUR Business is Making a Name For YOURSELF

- MOLDED PLASTIC NAMEPLATES Economical, eye-appealing and durable. They will sell your name every day your products are in use.
- DIE CAST ZINC NAMEPLATES There's no better way to imaginatively and effectively prove your pride in the products you sell.
- OVERLAYS \& SWITCHES Exceptional design flexibility and outstanding visual appeal. Completely compatible with Douglas Membrane Switches.
- SCREEN PRINTED NAMEPLATES. Handsome and sparkling bright. Use them to advertise, identify, instruct, inform, control and decorate.
- THERMAL DIE CUT EMBLEMS \& ALUMINUM DATA PLATES, TOO

16-page, full-color Designers Guide to Nameplates

DDUFLAS CORPORATION 620 12TH AVENUE SOUTH MINNEAPOLIS, MN 55415 PHONE (612) 333-8911
special order. The fan-cooled units meet UL, CSA, IEC, and VDE safety standards and comply with FCC and VDE conducted-emission standards when configured with optional filtering. The series' efficiency is 80%. All models provide overload protection by means of foldback current limiting (with automatic recovery), and the outputs are protected against reverse voltages. Overvoltage protection is standard on the main output and optional on other outputs. The supplies have a soft-start feature to protect critical components. Other protection options include line-monitor, logic-inhibit, and thermal-shutdown functions. Output margining is also available. $\$ 515$ to $\$ 875$ (OEM qty). Delivery, four to eight weeks ARO.
Deltron Inc, Box 1369, North Wales, PA 19454. Phone (215) 6999261. TWX 510-661-8061.

Circle No 377

AMPLIFIERS

- Housed in standard TO-8 cans
- Gain flatness to 1600 MHz

The HAMP-4001 and -4002 variable-gain-control amplifiers are intended for applications requiring automatic gain control. They combine PINdiode and microwave-transistor technologies in a circuit packaged in a standard TO-8 can. The HAMP4001 provides a $22-\mathrm{dB}$ gain, $30-\mathrm{dB}$ gain control, and gain flatness over a 2 - to $1250-\mathrm{MHz}$ range. Response characteristics are maintained over both the gain-control range and the -55 to $+85^{\circ} \mathrm{C}$ operating range. The HAMP-4002 provides a $17-\mathrm{dB}$ gain and a $29-\mathrm{dB}$ gain control, and it has
a 2 - to $1600-\mathrm{MHz}$ frequency range, all with a gain flatness of 1 dB over the -55 to $+85^{\circ} \mathrm{C}$ operating range. Available TXV versions meet the requirements of MIL-S-19500/MIL-STD-883. HAMP-4001, \$100; HAMP-4002, \$115 (100).

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 378

GaAlAs LEDS

- Produce 200 mcd from $10-\mathrm{mA}$ drive currents
- Maintain long lifetimes with drive currents as high as 1 A
This family of red GaAlAs LEDs includes versions with luminous intensities as high as 200 mcd for a drive current of 10 mA . A novel chip-passivation technique allows the devices' GaAlAs layers to contain a high level of aluminum. The resulting high electron-injection efficiency not only provides the relatively high luminous intensities obtainable with low drive currents, but also allows you to drive the LEDs with de or pulsed currents as high as 1 A without seriously affecting their life expectancy. In addition, the high aluminum content in the GaAlAs layers produces optical radiation at a wavelength of 650 nm . The human eye is more sensitive to this wavelength than to the 660 - to $670-\mathrm{nm}$ wavelengths typical of standard red LEDs. Approximately Gld 0.225 to Gld 0.275 (OEM qty).

Philips, Elcoma Div, Box 523, 5600 AM Eindhoven, The Netherlands. Phone (040) 757005. TLX 51573.

Circle No 379
Dialight Corp, 203 Harrison Place, Brooklyn, NY 11237. Phone (718) 497-7600.

Circle No 380

SAMTEC-YOUR BEST BUY IN INTERCONNECTS!

"Samtec's fair price and ADDED VALUES give you more for your money in ways that really count!" Sam Shine, Proprietor

ADDED VALUE really makes Samtec a different breed of cat.

ADDED VALUE-Fast, friendly sales and order entry staff. Technical answers by trained people who know Samtec products as well as competitive units.

ADDED VALUE-Delivery when you need it, as promised-without excuses. Phone notification 3 days ahead if shipping date is changed. You always know your order status.

ADDED VALUE-Your "Sudden Samples" will be sent within 24 hours. You will always know the part is right before you order.

ADDED VALUE-Zero failure rate for Samtec interconnects. This is reported by Samtec customers-demanding OEM's, large and small.

ADDED VALUE-Careful, tested packaging that assures perfect, on-time delivery. Member, "National Safety Transit Authority."

Now, with all of these unique Samtec ADDED VALUES-can you afford to buy your critical interconnect devices on price alone? More and more smart specifiers realize that avoiding problems before they occur far outweighs the initial apparent price savings. Quality is remembered long after price is forgotten. Your customer will remember, too.

Interconnect Guide plus New 72 -page Catalog. Guide is valuable reference for keeping up with new interconnect products and applications. New revised, enlarged Catalog has specs on all Samtec interconnects.

EUROPEAN SAMTEC, Ltd. 35 Deerdykes View, CIRCLE NO 98 Westfield, Cumbernauld, Scotland G68 9HN 6158

SUDDEN SERVICE

WORLDWIDE SAMTEC, Inc. P.O. Box 1147, 810 Progress Blvd., HEADQUARTERS: New Albany, IN 47150 USA Phone: (812) 944-6733

Shrouded IDC terminal strips, matching cable strips.

. $025^{\prime \prime}$ sq. terminal strips, single/ double row, shrouded.

S/D CONVERTER

- Operates from a 5 V supply
- Tracks at 7200% sec

The HSRD1056 synchro-to-digital converter provides 16 -bit resolution, $7200^{\circ} /$ sec tracking, and 1.3-arc-minute accuracy when operating from a 5 V supply. The power dissipation is 50 mW . The converter includes 3 -state outputs configured as two 8 -bit bytes, a $\mu \mathrm{P}$ interface, a circuit that prevents false lockup when subjected to a step input of 180°, and a reference-synthesizer circuit that reduces the effect of speed voltages at high rotational speeds. The outputs have a test bit that reads a logic one when the tracking error exceeds 1°, and a high-quality analog velocity signal

that allows you to eliminate the mechanical tachometer in many applications. The package is a 36 -pin dou-ble-width DIP. From $\$ 560$. Delivery, six to eight weeks ARO.

Natel Engineering Co Inc, 4550 Runway St, Simi Valley, CA 93063. Phone (805) 581-3950. TWX 910-494-1959.
patible digital inputs, which are similar to the input circuitry of the company's HCT CMOS logic. Packages include 16 -pin plastic and ceramic DIPs. From $\$ 6$ (1000).

GE/RCA, Solid State Div, Box 2900, Somerville, NJ 08876. Phone (201) 685-6994.

INQUIRE DIRECT

ANALOG SWITCH

- 70-dB off isolation at 10 MHz
- $\pm 10 \mathrm{~V}$ analog-input range

The CDG201B is a quad-spst analog switch with TTL-compatible control inputs. Pin- and function-compatible with industry-standard DG201 switches, the monolithic device combines CMOS and DMOS (double-diffused MOS) technology. The switches offer a wide bandwidth, with less than $1-\mathrm{dB}$ rolloff at 100 MHz . The off isolation is 70 dB at 10 $\mathrm{MHz}, 40 \mathrm{~dB}$ at 100 MHz . The analog input range is $\pm 10 \mathrm{~V}$ using $\pm 15 \mathrm{~V}$ supplies. Chips are available in die form or housed in 16-pin DIPs. In-
dustrial version, $\$ 2.45$ (100). Delivery, six weeks ARO.

Topaz Semiconductor, 1971 N Capitol Ave, San Jose, CA 95132. Phone (408) 942-9100. TWX 910-338-0025.

Circle No 383

MICROCONTROLLERS

- Feature onboard LCD drivers - 3V battery backup

The M50930FP, M50931FP, and M50932FP monolithic, 8 -bit CMOS microcontrollers can drive as many as 128 LCD segments. Low-power, 3 V battery-backup operation renders the $\mu \mathrm{Cs}$ suitable for portable

The amazing Casio FX-4000P programmable scientific calculator. In power, it's comparable to the most highly touted calculators on the market today.

It offers you 160 total functions, including 83 scientific functions, such as hexadecimal/ decimal/binary/octal conversions, standard deviation and regression analysis.

Making it easier to deal with long computations, its 12 character
alpha-numeric display scrolls to 79 characters and its instant formula
FX-4000P
160
12 Scrolls to 79
550 Step
up to 79 chr
Hex-Bin-Octal
2 Variable
divisions. This allows 10 different programs to be stored at once.

And it includes up to 94 data memories, which are invaluable for statistical analysis.

Finding all this power at your fingertips is remarkable enough, let alone at half the price of some competitors. If you can put your finger on a scientific calculator that gives you more power at any price, by all means buy it.

CASIO
 Where miracles never cease

[^19]applications. Each $\mu \mathrm{C}$ can operate in the $\mu \mathrm{P}$, memory-expansion, sin-gle-chip, or evaluation modes. Instruction sets are upwardly compatible with that of the $6502 \mu \mathrm{P}$; the new devices offer augmented addressing modes and 13 additional instructions. The $\mu \mathrm{Cs}$ offer 4 k to 8 k bytes of ROM and 128 to 512 bytes of RAM. Other features include five 8 -bit timers (four when you use serial I/O), one 16 -bit timer, a UART, and a $2-\mu \mathrm{sec}$ min execution time for instructions. Development tools include in-circuit emulator boards, debugging systems, piggyback evaluation chips, and software that runs on the IBM PC, PC/XT, and PC/AT, and on CP/M-based systems. From $\$ 6.25$ (5000). Delivery, six to eight weeks after ROM code is installed.
Mitsubishi Electronics America Inc, Semiconductor Div, 1050 E Arques Ave, Sunnyvale, CA 94086. Phone (408) 730-5900.

Circle No 384

GaAs AMPLIFIER

- Operates from 2 to 6 GHz
- Provides 9.5-dB gain and 14.5dBm output power
The AWA20601 is a wideband GaAs MMIC (monolithic microwave IC) amplifier suitable for use in broadband electronics-countermeasures (ECM) and telecommunications systems. It operates at 2 to 6 GHz and provides $9.5-\mathrm{dB}$ gain and $14.5-\mathrm{dBm}$ output power. The device is available in an 8-pin flatpack or in die form for hybrid applications. It includes all necessary bias circuitry

What's missing from this transducer?

Novotechnik's TLH series of Linopot position

 transducers feature a rodless, side-actuated design, avoiding 'pump effect' problems and allowing stroke lengths of $150-2000 \mathrm{~mm}$. A new ball coupling design prevents offset-generated forces from being transmitted to bearing surfaces. Extra-robust construction gives the TLH long life under arduous conditions (-30 to $+100^{\circ} \mathrm{C}$, 5 to 2000 Hz vibration), high operating speeds, excellent resolution and repeatability (.01 mm), and linearity of between .07 and $.01 \%$, depending on stroke length.The TLH is immune to electrical interference, and requires no inbuilt power supply to maintain data in the event of power failure. Call or write for catalog to:
novotechnik u.s., inc Village Plaza, Building II, Suite ' H ', 488 Boston Post Road, Marlborough, MA 01752 Tel: (617) 485-2244 FAX: (617) 485-2430

Now there's a component information and ordering source with data that's never out of date.

If you're still designing the products of the future with the methods of the past, it's time you discovered VideoLog. The VideoLog Electronics Network frees you from the drudgery of component catalogs, spec sheets, and update bulletins by placing the data on more than 750,000 semiconductors online.

The information is instantly searchable Updated daily. Creating a comprehensive engineering reference source that makes anything you could have on your shelves not just outdated-but in some cases obsolete.

VideoLog contains both commercial and military components, prices, alternate source cross-references, and new product announce
ments. Enter up to 15 key parameters and get a list of components that match. Or enter a part number and find out the manufacturer, its electrical parameters, second sources, if it is still made, and whatever else you need to know. All within minutes.

Only SchweherNET
 gives you online ordering.

Once you know what you want, you can get pricing QuickQuotes and order parts right online. And have them shipped within 48 hours. Using SchweberNET, via the VideoLog Electronics Network, you're immediately in contact with the computerized inventory
of Schweber Electronics, one of the world's largest distributors of electronic components. In addition to semiconductors, SchweberNET lets you order computer products, connectors, and passives for all your prototype and small quantity needs. Why use outdated sources when you can be updated so easily? For more information, call 1-800-VIDEOLOG (1-800-843-3656). In Conn.: 203-838-5100. Or write us at 50 Washington St., Norwalk, Conn. 06854.

FREE ONLINE DEMO:
 : Dial 1-800-VIDPEEK

(1-800-843-7335) with any ASCII (80 col.) terminal or PC, and 300 - or 1200 -baud modem (even parity, 7 data bits, 1 stop bit). In Conn: 203-852-1239.

MOTOR DRIVER

- Operates at 24 V ; delivers 1 A
- Includes protection circuitry

The UDN-2943Z is a half-bridge motor driver with extensive protection circuitry. The $24 \mathrm{~V} / 1 \mathrm{~A}$ device drives dc servo motors. You can also use the driver in pairs for fullbridge applications, or as triplets for 3-phase brushless dc motors. On-chip safeguards include thermal and overvoltage shutdown, cross-over-current protection by means of an internally generated dead time, and short-circuit protection (when the source driver is shorted to
ground). Input-logic lockout, which prevents the source and sink drivers from turning on simultaneously, and transient suppression are other safeguards. The pulse-width-modulated driver features saturated outputs, which minimize power consumption. The device comes in a modified 5-lead, power-tab TO-220 plastic package. $\$ 1.35$ (100). Delivery, 10 to 12 weeks ARO.

Sprague Electric Co, Box 9102, Mansfield, MA 02048. Phone (617) 853-5000.

Circle No 387

16×16-BIT MAC

- Multiply-accumulate time is 11 nsec
- Dissipates 5.5W typ

Based on the company's high-density bipolar VLSI process, the B3011 fixed-point multiplier-accumulator (MAC) provides an 11-nsec typ mul-

tiply-accumulate time for 16 -bit inputs. This ECL-compatible chip is the industry's fastest, according to the manufacturer. The typical power dissipation is 5.5 W . The chip's 40-bit accumulator, useful for complex-number and double-precision computations, has dual input registers and a 40-bit output. The package is a 132 -pin pin-grid array. Commercial grade, $\$ 340$ (100).

Bipolar Integrated Technology, 1050 NW Compton Dr, Beaverton, OR 97006. Phone (503) 629-5490.

Circle No 388

Only Plessey Semiconductors has both an 8 -bit flash ADC with a guaranteed 110 MHz conversion rate, and a companion amplifier with a unity gain bandwidth of 400 MHz . Together, they can solve your data conversion problems in a lot less space using fewer components.

The SP97508 converter has accuracy better than $\pm 0.5 \mathrm{LSB}$ and features a full Nyquist analog bandwidth. Typical power dissipation is a low 1.2 W , and it requires only a single -5.2 V supply.
gives you three times the performance of equivalent gallium arsenide devices, and features adjustable open loop gain and output current

The rest of the family Data Conversion Products		
ADC's	SP97508	8 -bit 110 MHz
ADC Driver	SP9756	6 -bit 110 MHz
Comparators	SP9680/5/7	2.2 nsec family
Support	SL9210	8 -bit latches
DAC's	SP9768	8 -bit 150 MH
	SP9770	10 -bit 75 MHz
	SP97618	8 -bit 250 MHz
		graphics

$(\pm 50 \mathrm{~mA})$ with a gain-bandwidth of 2 GHz at 20 dB . Typical slew rate is $1300 \mathrm{~V} / \mu \mathrm{Sec}$.

Both devices are available to MIL SPEC 833C. And they're part of a complete family of ADCs, DACs and other support circuits.

Let Plessey show you the answer to your data conversion problems. Call customer service in Swindon (0793) 726666. Fax: (0793) 726666 Ext. 250. After-hours Fax: (0793) 729412. Tx: 444410.

In the United States, call (800) D) \rightarrow ? PL

YOU CAN WRESTLE WITH A FEW THOUSAND LINES OF CODE TO PROGRAM YOUR EXPERIMENTS.

Developing scientific experiments takes creativity.
Writing code to run them takes sweat. At least it used to.
But no longer. Because we've just solved the scientific and engineering programming problem.

OR YOU CAN USE LabVIEW.

Picture the perfect programming language.

Imagine software where diagrams are really executable programs.

Imagine running experiments and simulations through front panels that look and act just like instruments. On screen!

Imagine reusable software modules that can control your instruments, in any application. Programs for data acquisition, data reduction, signal processing, analysis, conversion, and display.

Imagine a programming environment so powerful that productivity is measured in hours instead of days.

The Macintosh made it possible. LabVIEW made it happen. Automated testing, measurement, and simulation has never been easier or faster.

Call for details. 800/531-4742.

DESKTOP ENGINEERING HAS ARRIVED.

D/A CONVERTER

- 8-bit CMOS device dissipates 400 mW
- Resolution of more than 1280×1024 pixels
The IDT75C18/28, an 8 -bit, CMOS video D/A converter, can directly drive a 75Ω load at standard video levels with a resolution exceeding 1280×1024 pixels. It dissipates 400 mW . The device requires no additional registering, buffering, or deglitching for most applications. The IDT75C28 is TTL compatible, and the ECL-compatible IDT75C18 is pin compatible with the TRW TDC1018. Voltage levels at the IDT75C18's outputs conform to the RS-170 and RS-343 monitor standards; this feature simplifies connection to a graphics CRT. The device includes four inputs that control synchronization, blanking, intensified video, and all-white display. Packages include a 24 -pin hermetic DIP, a 28 -pin leaded chip carrier, and a $24-\mathrm{pin}, 0.3-\mathrm{in}$. plastic DIP. Commercial-grade device in a ceramic DIP, $\$ 27.50$ (100).

Integrated Device Technology Inc, Box 58015, Santa Clara, CA 95052. Phone (408) 727-6116. TWX 910-338-2070.

Circle No 389

QUAD D/A CONVERTER

- Performs read-back checks
- 40-nsec bus-access time

The AD392 quad 12-bit D/A converter offers a bus-access time of 40 nsec. It also features read-back checks, which let the $\mu \mathrm{P}$ verify that the data latched in the converter's registers is the same as that sent from the $\mu \mathrm{P}$. The hybrid device in-
cludes control logic, registers, latches, and four voltage-output D/A converters. The power requirement is $\pm 15 \mathrm{~V}$; the dissipation is 1.3 W typ. The maximum integraland differential-linearity errors are $\pm 1 / 2$ and $\pm 1 \mathrm{LSB}$, respectively. An autozero function sets all converters to zero by addressing a single pin. The device comes in a 32 -lead ceramic DIP. From $\$ 99$ (100).

Analog Devices Inc, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 935-5565. TWX 710-394-6577. TLX 174059.

Circle No 390

HIGH-SPEED OP AMP

- $50 \mathrm{~V} / \mathrm{\mu sec}$ slew rate
- Settles to within 0.01% in $1 \mu \mathrm{sec}$

The OP-42 op amp offers unity-gain stability and a symmetrical $50 \mathrm{~V} /$ μ sec min slew rate. The gain-bandwidth product is typically 10 MHz , and the $1-\mu \mathrm{sec}$ settling time (to within $\pm 0.01 \%$) is guaranteed by an automated production-test system. Other specs include a 500 k min open-loop gain into a $10-\mathrm{k} \Omega$ load (200 k gain into a $2-\mathrm{k} \Omega$ load); an $88-\mathrm{dB}$ min CMR ; a $750-\mu \mathrm{V}$ inputoffset voltage; and an offset-voltage drift of $10-\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$. Input bias current is 200 pA max at $25^{\circ} \mathrm{C}$. The op amp is available in an 8-pin ceramic miniature DIP, an 8-lead TO-99 can, and, for the industrial and military temperature ranges, a 20 -lead ceramic leadless chip carrier. From $\$ 3.75$ (100).
Precision Monolithics Inc, Box 58020, Santa Clara, CA 95052. Phone (408) 727-9222. TWX 910-338-0218. TLX 172070.

Circle No 391

Instruments

μ P-based Programmable E/I dc Calibrator

Model 520/A
The Model 520/A is micro-processor based and is compatible with IEEE-488, (GP-IP).
The height is only $31 / 2$ inches, features current mode outputs from 10 nanoampers (nA) to 110 milliampers (mA), in 2 ranges, with extraordinary compliance of 100 Vdc . Even with this power, ideal for transducer instrument testing (4-20 and 10-50 mA), the accuracy is $\pm 0.005 \%$!
The voltage mode has 3 ranges with outputs from 100 nV to 110 Vdc and optional to 1100 Vdc. Compliance current is 100 mA . The one year accuracy is $\pm 0.002 \%$.
All ranges and both modes resolve to 1 ppm . A crowbar zero provides a reference for this essential value.

Availability: 60 days.
Price: $\$ 2,895$. 1000V option $\$ 550$.
GSA contract GS00F-86293
Engineering Contact: Bob Ross
Tel: (617) 268-9696
CIRCLE NO 12

AC Voltage Reference System

Remotely Controlled Multiple Output

System 408
1 to 8 AC Voltage outputs independently and remotely controlled, variable and simultaneous in a single $51 / 4^{\prime \prime}$ high chassis.
A phase angle of 0° and 180° is also programmable.
All functions programmed via IEEE-488
(GP-IB) interface bus.
Some applications: Synthesize linear velocity sensors, simultaneous calibration of multiple instrumentation and data logging systems without multiplexing delays. Simulation of transducers. For design, evaluation and calibration of accelerometers, amplifiers, A/D converters, digital and analog meters.
Specifications include: Range: 10 mV to 30 Vac resolved to 1 mV . The compliance current is: 50 mA . The accuracy is: $\pm(0.05 \%$ of setting +15 mV). Output frequency (synchronized to an external sine wave stimulus): at a selected, fixed frequencies between 10 Hz and 400 Hz .
Price: \quad Main frame: $\quad \$ 3,995$
Output modules: \$895/each
Engineering Contact: Bob Ross
Tel: (617) 268-9696
CIRCLE NO 51
ELECTRONIC DEVELOPMENT CORP.
11 Hamlin St., Boston, MA 02127
Tel: (617) 268-9696
TLX: 951596 (ELECDEVCO BSN)

NEW PRODUCTS

CAE \& SOFTWARE DEVELOPMENT TOOLS

MOTION CONTROL

- Lets you develop and test mo-tion-control software on a PC
- Accepts input from command files as well as from keyboard

The Max software package, which runs on an IBM PC or compatible machine, lets you develop and test motion-control software for pro-cess-control systems that use acbrushless or dc-servomotor technology. You can use either the functions built into the software or the commands of the vendor's mo-tion-programming language (MPL) to establish communications with individual motors or to monitor the performance of the process-control system. Certain Max functions can report the current system status (for example, the system position, system velocity, or condition of system inputs) or the current system configuration (for example, jog speed, index distance, or acceleration profile). Other functions display motion-control command files stored on your disk, let you find or change communications parameters, and let you execute PC-DOS commands while Max is running. You can enter commands directly from the key-
board or cause the program to execute a complex sequence of commands from a command file that's stored on disk. $\$ 249$.

Ormec Systems Corp, 19 Linden Park, Rochester, NY 14625. Phone (716) 385-3520.

Circle No 392

CAE SYSTEM

- Facilitates surface-mounting and double-sided placement
- Features multitasking and multiwindowing
The Scicards system, an interactive software package for the design of pe boards and thick-film hybrid microcircuits, accepts schematic data from a CAE interface or from the vendor's Schemactive schematiccapture program. It assists you in component placement and routing; you can use automatic or manual placement strategies or a combination of both. The Scicards and Schemactive programs share a common database, so that changes and corrections made during layout automatically modify the schematic drawings. An audit file maintains a history of your work and allows you
to go back through the file to remove steps that produced errors. The package runs under VAX/VMS on a VAXstation II/GPX enhanced with the vendor's Dragon graphics chip set, which accelerates graphics processing. $\$ 25,000$.

Scientific Calculations Inc, 7635 Main St, Fishers, NY 14453. Phone (800) 828-6552; in NY, (716) 9249303.

Circle No 393

OCR SOFTWARE

- Algorithms yield tolerance of flaws
- Reads at 600 wpm on a $6-\mathrm{MHz}$ IBM PC/AT
ReadRight is an optical characterrecognition software package that operates with the vendor's TurboScan optical page scanner. The software uses topological algorithms that allow it to read a large selection of font styles in sizes from 6 to 12 points, a pitch of 10 to 15 cpi , and a maximum line spacing of 8 lpi. The program can read reduced and enlarged photocopies, and you can mix fonts within a word, line, or page. Thus, you can use automatic page feeders, because you don't have to specify the font for each page. The algorithms yield high recognition rates and a high tolerance of flaws, such as broken characters-the manufacturer claims the package's accuracy is as high as 99.9% (depending on the quality of the document) at reading speeds as great as 600 wpm on a $6-\mathrm{MHz}$ IBM PC/AT. The program converts scanned text to ASCII files that are compatible with most word processors, and it converts scanned images to binary code for processing by the computer. It uses data compression and DMA transfer of scanned data to achieve a maximum scanning time of 9.9 sec for an $81 / 2 \times 11$-in. document.

Cramped for space?

Ultra-miniature
snap action switch.
Fits where other switches won't

...or can't.
 So small, a lot of them
 will fit into your densely packed PC board.

CHERRY ELECTRICAL PRODUCTS

3600 Sunset Avenue, Waukegan, IL 60087 - (312) 360-3500
Switches • Automotive Devices • Electronic Components
Displays • Printed Circuit Boards $\cdot 1 \mathrm{Cs} \cdot$ Keyboards

ELECTRONIC COMPONENTS

Manufacturers of Quality Electronic Components Serving the Nation trom Texas and Calitornia -BATTERY HOLDERS \& CLIPS.COILS - CAPACITORS • CONNECTORS • FUSES - JACKS • KNOBS • LAMPS • PLUGS - MICROPHONES • POTENTIOMETERS - RELAYS - RESISTORS - SWITCHES - TRANSFORMERS.SPEAKERS•LEDS - SEMICONDUCTORS - RF COILS OVER 16,000 DIFFERENT ITEMS IN STOCK: catalogs mailed outside usa send $\$ 2.00$

MOUSER ELECTRONICS
2401 HiwY 287 NORTH MANSFIELD. TX 76063 PHONE 817-483.4422

CIRCLE NO 63

\square Please send information about these titles:

Name

Company/Institution

Address

City
State \qquad
Phone
Call toll-free 800-521-3044. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to: University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

To run the program you need an IBM PC/AT or a compatible computer equipped with at least 512 k bytes of RAM. $\$ 695$.
AST Research Inc, 2121 Alton Ave, Irvine, CA 92714. Phone (714) 863-1333.

Circle No 394

MECHANICAL CAE

- Performs static and dynamic fi-nite-element analysis
- Runs on Macintosh

MSC/pal performs both static and dynamic finite-element analysis on the Apple Macintosh. The package is similar to the vendor's IBM PCbased product, but provides pulldown menus and dialogue boxes. Using it, you can break a structure or mechanical component into a number of discrete elements that the software then analyzes for tolerance to stress, vibration, pressure, and temperature. The program's element library includes beams, triangular and quadrilateral plates, plane-stress and plane-strain membranes, scaler springs, masses, dampers, and generalized mass and stiffness matrices. Its interactive graphics features include 3-D wireframe plotting, scaling, and rotating, as well as $\mathrm{X}-\mathrm{Y}$ plotting for ele-ment-stress scanning and dynamic response. 300 -node version for a 512 k -byte Macintosh, $\$ 995$; 500node version for a 1 M -byte Macintosh, $\$ 1495$.
MacNeal-Schwendler Corp, 815 Colorado Blvd, Los Angeles, CA 90041. Phone (213) 258-9111. TLX 4720462.

Circle No 395

CASE ON VAX

- Structured-analysis and -design tools
- Network users share common data dictionary

Teamwork structured-analysis and -design tools, formerly available only for Apollo's Domain workstations, are now available for DEC's VAX/VMS machines in the 700, 8000, and MicroVAX II series. Teamwork/SA is a structured-analysis tool that uses the YourdonDeMarco techniques and data-flow diagrams to analyze system requirements and the flow of data through a system. The program performs consistency checks among the data dictionary, the minispecifications, and all levels of the data-flow diagrams. Teamwork/RT provides the same facilities, but also lets you model the sequence, timing, and control aspects of real-time systems. Teamwork/SD lets you capture the module and subroutine details that are required during the coding phase. Teamwork/Access lets you access the Teamwork database of a project and extract any data for use by other tools, including docu-ment-production systems. One-time fee for installation of the database, $\$ 5500$; Teamwork/SA, -RT, and -SD, $\$ 8900$ each; Teamwork/SA plus -RT or -SD, $\$ 12,500$.

Cadre Technologies Inc, 222 Richmond St, Providence, RI 02903. Phone (401) 351-5950.

Circle No 396

ACCELERATOR

- Evaluates as many as 128,000 gates
- Speeds software simulation

PerSim is a hardware-software coprocessor contained on a board that uses the IBM PC/AT bus and plugs into an Apollo DN3000 workstation. The coprocessor consists of a proprietary RISC (reduced-instructionset computer) that accelerates the execution of the vendor's Logic- and

Make it friendly. Touch it.

Design a system that gives you a competitive edge. Make it simple to use. Easy to learn. Make it friendly. With a touch input system from Carroll Touch, the world's leading OEM supplier of touch products.

Discover the full line of solutions Carroll Touch offers. From infrared to overlay touch products. Select from a wide range of standard add-on units in a variety of sizes. Or from a line of fully integrated computer displays equipped with touch. Or specify your own unique requirements.
Once you've chosen the Carroll Touch product that's right for your system, you'll discover even more. Exceptional quality and ruggedness. High reliability. Low maintenance. Making touch more affordable and cost-effective than ever.

Whether it's sophisticated test equipment for automotive technicians. Or a medical diagnostic system for patient care. Make your next system friendly. Touch it. Begin by calling $512 / 244-3500$.

Carroll Touch

a subsidiary of AMP Incorporated
P.O. Box 1309

Round Rock, Texas 78680
512/244-3500 Telex 881906
CIRCLE NO 193

Fault-Simulation design tools. Two models are available: Model I can simulate as many as 64,000 gates and perform 1 million gate evaluations per second. Model II can simulate as many as 128,000 gates and perform 2.5 million gate evaluations per second. According to the vendor, comparable products from other sources cost $\$ 120,000$ or more. Model I, $\$ 7500$; Model II, $\$ 20,000$.
Aida Corp, 3375 Scott Blvd, Suite 342, Santa Clara, CA 95054. Phone (408) 748-8571.

Circle No 397

ACQUISITION SOFTWARE

- Collects digital and analog data from as many as 600 sources
- Can analyze data and issue alarms

The Impulse software package, which runs on the IBM PC, PC/XT, $\mathrm{PC} / \mathrm{AT}$, or a compatible computer, accepts real-time analog or digital data from the vendor's Imp measurement pods. Each pod accepts signals from as many as 20 analog or digital channels, and each is sealed in a NEMA 4X enclosure for use in hostile environments. You can connect as many as 30 pods to a host IBM PC over the proprietary 2-wire serial bus, which has a data rate of 163 k bits/sec; the cable can be as long as 1 km . The software can collect real-time data from current and voltage sensors, thermocouples,
strain gauges, frequency counters, event counters, interval timers, and other measuring devices. You can apply linear conversions to all inputs in order to obtain results specified in engineering units. An 8 -channel spreadsheet feature displays results in real time and allows immediate access to any channel in the system. You can store the incoming data in as many as 10 independent disk files. A field-installable graphics/ alarm option lets you display trends and bar graphs and can initiate alarms if data from critical channels falls outside previously specified upper and lower limits. A communications option allows you to acquire data in the background while running other programs or DOS functions in the foreground, as well as providing bidirectional data transfers between the host PC and another computer. Impulse, \$1495; graphics/alarm option, $\$ 1000$; communications option, $\$ 1200$.

Solartron Instruments, 2 Westchester Plaza, Elmsford, NY 10523. Phone (914) 592-9168.

Circle No 398

EXPERT-SYSTEM SHELL

- Rule-based, extended inference mechanism
- Interfaces external files and telecommunication links

Xi Plus is an expert-systems shell that runs on the IBM PC/AT and compatibles. It allows you to develop an expert system by collecting knowledge on a particular topic and integrating it in a knowledge base in a form that the inference mechanism can use. The inference mechanism is rule-based, and it uses both for-ward- and backward-chaining procedures. The program also provides interfaces to external files, graphics systems, and telecommunications links. In constructing the rules for the expert system under development, the program uses menus extensively to prompt the user for information. It accepts replies in
conversational English, issuing further prompts as necessary to clarify these replies for the inference mechanism. You can use this tool to construct expert systems having as many as 1200 rules. $\$ 1250$.

Expertech, 650 Blair Island Rd, Suite 204, Redwood City, CA 94063. Phone (415) 367-6293.

Circle No 399

PASCAL FOR PDOS

- Single-pass compiler generates relocatable code for 68000
- Provides extensions for industri-al-control software
OmegaSoft Pascal, originally introduced for the Motorola $6809 \mu \mathrm{P}$, is now available in a version that runs under the PDOS operating system on Motorola's 68000 and 68020 processors. The fast, 1-pass compiler generates relocatable code that is ready for linking and can run under the host operating system or on a different target machine. The compiler conforms to the ISO (International Organization for Standardization) level 0 standard and has extensions that facilitate the development of process-control and other real-time applications. If a 68881 numeric coprocessor is present in the system, the compiler will generate code that makes use of it. The complete package includes an assembler, a linker, a debugger, a screen editor, a Pascal shell, and the source code of the run-time library. $\$ 900$.

Certified Software Corp, 616 Camino Caballo, Nipomo, CA 93444. Phone (805) 929-1395.

Circle No 400

TERMINAL EMULATOR

- Lets an IBM PC emulate a graphics terminal
- Features Kermit and Xmodem file-transfer protocols
The Graphics 4000 is a software package that allows an IBM PC,

For the best GạAs performance, testdrive a Ford.

At Ford, we know the true test of a product -performance and availability. Test us. Test drive our E/D Foundry.

Our E/D self-aligned gate process will put you on the fast track with the highest performance in the industry. And it's run in one of the largest production GaAs fabs in the world today.

Our E/D Foundry Service Center provides full support - from concept to finished product. Test our design consultation services. Use our complete foundry design tool ${ }^{\text {kit, }}$, featuring CASSIM ${ }^{\text {™ }}$, our proprietary circuit simulator. Finish vour product with our packaging and test. We'll meet all your special requirements.

If you need a test vehicle for your GaAs designs, try our E/D gate array. It's over 1100 gates of fast track performance.

Test our custom and semi-custom foundry services. Test our gate array.

Test Ford just once. Call 1-800-824-0812, and we'll show you how driving new technology will put you in the winner's circle with your next product.

Ford Microelectronics, Inc.

PC/AT, or compatible computer to emulate all the functions of Tektronix $4105,4010 / 4014$, and DEC VT100 color and monochrome graphics terminals. The software is compatible with the IBM EGA (enhanced graphics adapter) and CGA (color graphics adapter) cards, as well as with Hercules adapters. You can also use the built-in ADI-Autocad driver with most color-graphics boards. The package accepts input from a mouse or a graphics tablet and provides output in a format acceptable to most popular color and monochrome graphics printers. The
package also lets you use either the Kermit or the Xmodem error-detection protocol to transfer files from the PC to another computer. To run the emulator software, you need an IBM PC or a compatible computer equipped with at least 256 k bytes of RAM and a graphics-adapter board. \$199.

Ultratek, 23520 Telo St, Suite 12, Torrance, CA 90505. Phone (213) 534-8244.

Circle No 401

PROGRAM TIMING

- Lets you measure program-execution time in $\mu \mathrm{sec}$
- Separate values for primary program and system functions
Stopwatch is a memory-resident utility that runs on the IBM PC or a compatible computer and lets you measure program-execution times with a resolution of $1 \mu \mathrm{sec}$. The
program's measurements use the standard IBM PC-family video clock; thus, the PC is not dependent on the type of processor or the system clock rate. You can request the program to report the total execution time of the program under test. Alternatively, the program can break this total into the separate subtotals attributable to the program under test, to disk access, and to the BIOS or other PC-DOS functions. You can use the program in conjunction with debuggers such as Debug, Symdeb, or Codeview to measure the execution time from a Go command to a breakpoint. The distribution disk includes sample Basic, dBASE, Lotus 1-2-3, C, and assembly-language programs that demonstrate the use of Stopwatch. $\$ 59.95$.

Custom Real-Time Software, Box 1106, West Caldwell, NJ 07007. Phone (201) 228-7623.

Circle No 402

TODAY'S TEMPEST APPLICATIONS HAVE CHOMERICS WRITTEN ALL OVER THEM

EMI shielded raceway between equipment protects cables while providing easy access. shielding on cabinet doors and panels. mesh and elastomer gasket provides EMI

Molded-in-place conductive cover gasket provides integral EMI shield environmental seal.

Chomerics CRT and display windows combine EMI shielding and glare reduction.

Whether your TEMPEST requirements are in military, institutional, or architectural applications, Chomerics' extensive experience will assure you the most cost effective EMI shielding in minimal time and with minimal expense.
At Chomerics we take a comprehensive program approach to TEMPEST protection. This approach, called "TEMPESTITE", starts at the initial system definition, proceeds through design/ development/prototype, and ultimately to final TEMPEST EDN May 14, 1987
testing and certification.
Our unparallelled selection of standard TEMPESTITE ${ }^{\text {Th }}$ EMI products provides the basis of most shielding solutions. For special situations, we have the capabilities to develop, test, and document performance of custom shielding products.

If you have a product or system that must meet TEMPEST requirements, you need Chomerics.

Circle the number below or call 617-935-4850 for additional information on our TEMPEST services.

aGRACE company
LEADER IN EMI SHIELDING INNOVATION, DESIGN, AND TESTING TECHNOLOGY.

77 Dragon Court
Woburn, MA 01888
Tel: 617-935-4850
TWX: 710-393-0173

VECTOR ANALYZER

- Displays in-phase and quadrature components
- Has 350-MHz bandwidth

The HP 8980A vector analyzer is a dual-channel sampling analyzer that displays the in-phase and quadrature components of a demodulated signal with respect to a reference signal. The digitizer has 12 -bit resolution and a built-in X/Y display. Its
bandwidth ranges from de to 350 MHz . The input sensitivity ranges from $5 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$, and the timebase ranges from $0.5 \mathrm{nsec} /$ div to $2 \mathrm{msec} / \mathrm{div}$. The unit accepts 50Ω or high-impedance probes. $\$ 19,000$. Delivery, 12 weeks ARO.

Hewlett-Packard Co, Inquiries Manager, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 404

DIGITIZER

- Scan converter has 525-psec rise time
- Accepts 7000 Series plug-ins

The 7912HB scan-converter digitizer has 9-bit vertical resolution and 10 -psec time resolution; its rise time is 525 psec. The unit accepts the maker's 7000 Series plug-ins for vertical amplifiers and timebases. You can program it over the IEEE-488 bus, and it can transfer 20 of its 512-sample waveforms per second over the IEEE-488 bus. $\$ 30,025$.

Tektronix Inc, Box 1700, Beaverton, OR 97075. Phone (800) 547-1512; in OR, (800) 542-1877.

Circle No 405

LOGIC ANALYZER

- Includes $100-\mathrm{MHz}$ timing and 20-MHz stateltiming analyzers
- Has built-in IBM PC/AT-compatible computer
The PLA 286 logic analyzer contains a proprietary, IBM PC/ATcompatible industrial computer board. The board has a $10-\mathrm{MHz}$ $80286 \mu \mathrm{P}$ and 1 M bytes of RAM. The instrument has a $3^{1 / 2}$-in. floppydisk drive; a $31 / 2-$ in. hard-disk drive is optional. The mother board has four slots for logic-analyzer boards and a fifth for other IBM PC boards. The vendor offers two logic-analyzer cards: the 4820 , which has 48 $20-\mathrm{MHz}$ state/timing channels, and the 8100 , which has eight $100-\mathrm{MHz}$ timing channels. You can install a maximum of two 4820 and two 8100 boards, and you can use the full complement of timing and state channels together. The timing analyzer's triggering facilities include a
window trigger mode, which allows you to specify time periods of 30 nsec to 12.5μ sec between sequential trigger events. The timing analyzer's triggering also includes an event-duration filter, which lets you search for trigger events that are longer or shorter than a defined period (in the $10-\mathrm{nsec}$ to $12.5-\mu \mathrm{sec}$ range). The $100-\mathrm{MHz}$ channels have a trace-memory depth of 8000 words, and the $20-\mathrm{MHz}$ channels have a memory depth of 4000 words. The analyzer runs commercial software packages under MS-DOS. From approximately DM 15,000 to DM 31,000 or $\$ 7400$ to $\$ 15,400$. Delivery, eight weeks ARO.

Kontron Messtechnik GmbH, Oskar-von-Miller-Strasse 1, 8057 Eching, West Germany. Phone (08165) 77541. TLX 526719.

Circle No 406
Kontron Electronics Inc, 630 Clyde Ave, Mountain View, CA 94039. Phone (415) 965-7020. TWX 910-378-5207.

Circle No 407

THERMOMETER BRIDGE

- Measures PRT resistance with primary standards lab accuracy
- Includes an IEEE-488 control interface

For use in primary standards labs, the Senator automatic thermometer bridge measures the resistance of platinum resistance thermometers (PRTs). The bridge has 1000,100 , and 10Ω ranges; the maximum resolution on the 10Ω range is $1 \mu \Omega$. The

CAPTURE IT

Capture data at fast trigger rates-internal or external-with the new Model 194A High Resolution Digitizer. Here are the advantages:

Faster, More Thorough Testing.
NOW-With the Model 194A High Speed Digitizer, you can acquire samples with external trigger pulses. Capture discrete samples synchronized to changes in position, distance, angle, \log (time), a stimulus level, or other events. With trigger rates up to 1 MHz , you can take more data in less time. That means more complete testing at lower cost.

Resolution of 16 bits. At rates up to 100 kHz .
The Model 194A's 16-bit ($4^{1 / 2}$-digit) resolution lets you detect 1 part in 32,000-far better than most digitizing devices. For higher frequency waveformsup to 1 MHz -the 194A samples with 8 -bit resolution. And its 64 k bytes of memory is up to 8 times that of other digitizers.

Add the 1944A Channel 2 option and acquire two different waveforms simultaneously, in time sync, or asynchronously. Each channel is independent, isolated, fully programmable, and has 64 k bytes of memory.
The 194A provides 5 trigger options for initiating a measurement. Pre- and post-trigger data can be stored.

Analyze and Automate

The 194A directly displays key waveform parameters such as integration, RMS, average, and peak-peak. With two channels installed you can compute ratio or difference between channels.

All functions are IEEE-488 bus programmable. And our exclusive, built-in TRANSLATOR software reduces bus transfer time and simplifies documentation.
At $\$ 4095$, you won't find better performance. And the optional second channel for just \$1995 doubles acquisition capability. For complete details contact the Product Information Center, Keithley Instruments, Inc., 28775 Aurora Road, Cleveland, Ohio 44139, (216) 248-0400.
equivalent temperature accuracy is $0.0005^{\circ} \mathrm{C}$. The bridge also has a ratiometric capability that allows you to compare PRTs. A multichannel, remote switching unit and an IEEE-488 interface, both optional, allow you to incorporate the bridge in data-logging and ATE systems. After linearizing the PRT in an external computer, you can download the corresponding temperature for display on the Senator's front panel. From approximately $\$ 20,000$.

H Tinsley \& Co Ltd, 61 Imperial Way, Croyden, Surrey CR0 4RR, UK. Phone 01-681-8431. TLX 8952453.

Circle No 408

50-GHz SCOPE

- Sampling scope uses superconducting circuitry
- Scope has 5-psec effective rise time
The PSP-1000 $50-\mathrm{GHz}$ sampling digital oscilloscope has a built-in liquidhelium cooling system for its superconducting circuitry. The single- or dual-channel unit also accepts plugins that allow you to configure it as a time-domain reflectometer. The instrument has voltage ranges of 10 $\mathrm{mV}, 100 \mathrm{mV}$, and 1 V . Its dynamic range is 46 dB , and it can store as
many as 1024 data points. Its effective sampling-sweep speeds range from $5 \mathrm{psec} / \mathrm{div}$ to $1 \mathrm{nsec} / \mathrm{div}$. The unit has built-in math functions for common waveform calculations, including FFTs. Its CRT can show four waveforms and markers. PSP1000 mainframe, $\$ 120,000$; plug-ins, from $\$ 20,000$ to $\$ 45,000$.

Hypres Inc, 500 Executive Blvd, Elmsford, NY 10523. Phone (914) 592-1190.

Circle No 409

FUNCTION GENERATORS

- Include arbitrary-function model
- Units have $\pm 0.005 \%$ frequency accuracy max
The NIC-41 and NIC-42 function generators offer a maximum frequency accuracy of $\pm 0.005 \%$. The NIC-41 provides sine, triangle, and square waves over the de to $4-\mathrm{MHz}$ frequency range. The output of the

NIC-42 can be as high as 2000 12-bit samples/sec, and the instrument can store as many as 99 front-panel settings. Both units offer linear and log sweep rates, along with AM and FM auxiliary inputs. The NIC-42 can also execute arbitrary sweep rates. The units have a $\pm 10 \mathrm{~V}$ output range $(\pm 5 \mathrm{~V}$ into 50Ω). NIC-41, $\$ 1700$; NIC-42, $\$ 3600$. Delivery, 45 days ARO.

Nicolet, Test Instruments Div, Box 4288, Madison, WI 53711. Phone (608) 273-5008.

Circle No 410

SCAN CONVERTERS

- Units convert high-resolution CRT signals to NTSC format
- One model suits IBM PC displays

The VSC line of video scan converters change high-resolution CRT signals into NTSC formats suitable for recording on a video cassette recorder (VCR). You need a computer or a graphics terminal having RGB and sync outputs. (The company can provide adapter kits for units without these outputs.) The Model VSC6400 works with 1280×1000-pixel displays having $64-\mathrm{kHz}$ scan rates. Model VSC-5500 converts resolutions as high as 1024×1024 pixels at

How can you be sure you're getting the best wire-the right wire-for all your transmission needs? Specify AT\&T wire.

Because nobody gives you AT\&T's years of experience and understanding in designing wiring for transmission and computer systems. And, nobody can give you all of AT\&T's product innovations, such as dual foam insulation for greater data transmission rates;
irradiated PVC for tougher wire protection; and low friction vinyl jackets for pulling wire through tight spaces. And, nobody gives you AT\&T's experts, who will work with you to match the right insulation, shield and sheath to optimize the performance of your wire.

So why make choosing wire an adventure when you can be sure? Make "The right choice." Call 1800 372-2447 for more
information about AT\&T's full line of wire and cable products for premise distribution and peripheral connections. © 1985 AT\&T Technologies, Inc.

55 kHz ; Model VSC-3400, which is suitable for use with IBM PCs, converts 800×500-pixel resolutions at 34 kHz . Model VSC-6400, $\$ 14,995$; Model VSC-5500, $\$ 12,995$; Model VSC-3400, $\$ 9995$.

PDS Video Technology Inc, 1152 Santa Barbara St, San Diego, CA 92107. Phone (619) 222-7900.

Circle No 411

FREQUENCY ANALYZER

- Signal analyzer makes gain and phase measurements
- Unit operates over 20 kHz to 1 MHz

The 1253 gain/phase analyzer operates over a $20-\mathrm{kHz}$ to $1-\mathrm{MHz}$ frequency range. Its two input channels feed a common analyzer, and its gain and phase accuracies are 0.1 dB and 1.0°, respectively. The instrument digitizes input signals to 15 -bit resolution. Its internal software can isolate the fundamental frequency being measured from extraneous noise. The instrument's nonvolatile memory allows you to program a sequence of measurement setups, which you can protect against alteration by operating a keyswitch. The unit is programmable over the IEEE-488 bus. $\$ 9500$ or $£ 4800$.

Solartron Instruments Inc, 2 Westchester Plaza, Elmsford, NY 10523. Phone (914) 592-9168. TLX 145487.

Circle No 412
Solartron-Schlumberger, Victoria Rd, Farnborough, Hampshire GU14 7PW, UK. Phone (0252) 544433. TLX 858245.

Circle No 413

COMPACT SCOPES

- Portable scopes have $8 \times 10-\mathrm{cm}$ CRTs
- Compact scopes weigh 13 lbs

The four models of the Compact Series oscilloscopes have $8 \times 10-\mathrm{cm}$ CRTs. The scopes measure $11 \times 14 \times 5 \mathrm{in}$. and weigh 13 lbs . The V-1065 and V-160 have a $100-\mathrm{MHz}$ bandwidth; the V-665 and V-660 spec 60 MHz . The V-1065 and V-665 have on-screen cursor readouts for voltage, time, and frequency. Their trigger circuits can lock onto a signal continuously even if the frequency and level change. V-1065, \$1795; V-1060, \$1495; V-665, \$1395; V-660, $\$ 1095$. The products will be available for delivery in June.

Hitachi Denshi America Ltd, 175 Crossways Park W, Woodbury, NY 11791. Phone (800) 645-7510; in NY, (516) 921-7200.

Circle No 414

PC GENERATOR

- IBM PC hosts instrument mainframe
- Pulse and waveform generators plug into mainframe
The RC-200 is an IBM PC-hosted arbitrary-waveform and pulse generator. The unit comprises the RC-202 controller mainframe and two plug-ins-the RC-204 pulse generator and the RC-216 arbi-trary-waveform generator. In addition to controlling the plug-ins, the RC-202 has 16 digital I/O lines and four D/A converters. The RC-204 has four pulse generators, and the RC-216 has a 16-bit arbitrary-waveform generator. The RC-216 can generate one to 64 k samples; its
time resolution ranges from $2 \mu \mathrm{sec} /$ sample to 71 minutes/sample. The plug-in also has a programmable attenuator. The mainframe accepts as many as two generators. RC-202, \$895; RC-204, \$1195; RC-216, \$1395; control software, $\$ 695$.

RC Electronics Inc, 5386 Hollister Ave, Santa Barbara, CA 93111. Phone (805) 964-6708. TLX 295281.

Circle No 415

SHORTS LOCATOR

- Pinpoints precise position of
shorted traces
- Heat reveals location

The Shortec 2020 PCB locates short circuits on loaded or bare pe boards. The device's spring-loaded probes measure the resistance of a short and then apply a controlled current through the shorted nodes on the pc board. A heat-sensitive film reveals the physical location of the short as it begins to heat up. Shortec 2020 PCB, $\$ 2890$.

Asemtek, 17 Cummings Park, Woburn, MA 01801. Phone (617) 932-1815.

Circle No 416

Amstar Electronics Group California Instruments Corp.

Telex 695047
FAX: 6192798139
Call Toll Free: 800-356-2244
In California: 800-821-1634

Ergonomic Engineering Reaches a New Height With a Flat Screen and Invar Mask Equipped Display Tube

Toshiba, always in pursuit of greater clarity in displays, has changed the concept of display tube technology. The FS tube was born of our quest for improved ergonomic engineering. It is not only Flat and Square, but it now has an Invar Mask. The results are clarity, brightness and reduced ambient light reflection for fatigue-free viewing. The Toshiba FS display tube also boasts high reliability and high quality and comes in a wide lineup to meet virtually any OA equipment need.

WIDE LINEUP

		Screen dot pitch (mm)	Display area (mm)	Display capability (pixels/line)	Faceplate radius (mm)
9' (7.5V) FS	E8075**	0.28	140×105	460	900
$10^{\prime \prime}$ (9V) Conventional	E2957	0.28	170×130	580	495
$13^{\prime \prime}$ (12V) FS	E8046/E8077	0.36/0.28	230×170	590/760	1100
12" (12V) Conventional	E8001/E8032	0.36/0.28	220×160	560/720	647
15" (14V) FS	E2995/E2994	0.39/0.31	260×190	610/770	1200
$14^{\prime \prime}$ (13V) Conventional	E2971/E2894	0.39/0.31	250×180	$590 / 740$	575
17" (16V) FS	E8162	0.26	300×220	1060	1370
$16^{\prime \prime}$ (15V) Conventional	E2864	0.31	290×210	820	653
$21^{\prime \prime}$ (20V) FS	E8142/E8170*	0.42/0.31	370×280	$810 / 1100$	1730
$20^{\prime \prime}$ (19V) Conventional	E2862	0.31	360×270	1000	820

*Under development ** Full pincushion correction free

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

LOGIC MONITOR CONTROLLER
Display logic states of up to 40 channels. Switches allow each channel to be forced to logic high, logic low or floated (monitor only). CMOS, TTL compatible. Quick change write-on label for user notes. Supplied with test cable and 40 -pin IC test clip. Cables and test clips for 6 to 40 pin IC's and individual test leads available. \$269.

BETA AUTOMATION INC.
3541 Old Conejo Rd., Newbury Park, CA 91320. (805) 499-5785.

CIRCLE NO 325

CIRCLE NO 326

UNIVERSAL PROGRAMMER
MPUs
BPROM
PAL IFL
E/EPLD E/EPROM
SIMPLE
POWERFUL
MODULAR
COST-EFFECTIVE
IC TESTER
IC TESTER include a wide range of logic, memory (SRAM, DRAM) device tests with testing vector editing capability

- SYSTEM-GENERAL U.S.A

CORPORATION
P.O. BOX: 53-591, Taipel,

Taiwan, R.O.C.
FAX: 886-2.7212615 3105 EL Camino, \#201
Santa Clara, CA 95051 TEL 886 - 7212613

CIRCLE NO 329

PROM \& LOGIC PROGRAMMERS for virtually all available devices

- DIGELEC Model 824
- LOGIC/PLD Programmers
$\$ 1995$. to $\$ 3450$.
- EE/EEPROM \& μ C Programmers \$895. to \$1795.
UNIVERSAL Programmer
$\$ 4950$. to $\$ 8000$.
- GANG \& SET Programmers \$1395. to \$2395.
Phone TOLL FREE for Specifications
1-800-367-8750 (in NJ 201-493-2420)

CIRCLE NO 327

FREE TEST EQUIPMENT GUIDE
U.S. Instrument Rentals has just published its 1987/88 Product Guide. This free 368 -page guide to instrumentation provides information on most of the 5,000 different models (from all major manufacturers) of electronic test and measurement and data processing equipment that USIR has in its inventory. The new Product Guide is a comprehensive single-source reference book containing descriptions, photos and technical data. Rent, lease or purchase with immediate delivery. Call today for your free copy!

United States Instrument Rentals, Inc.
2988 Campus Drive, San Mateo, CA 94403 800-824-2873
CIRCLE NO 330

Frequency synthesizers produce precision frequencies， governed by a high－stability frequency standard．With easy， fast remote programming，they are vital in advanced measurement or production systems and serve as stand－ alone test equipment．Properties，specs，applications＋ prices of the PTS 040，160， $250+500$ are given．Data sheets on 2 new units，the PTS 120 and 160／250 Delta are included． Programmed Test Sources，Inc．， 9 Beaver Brook Rd．，P．O． Box 517，Littleton，MA 01460 （617－486－3008）

F\＆W：Specialists
in Graphics and CAD OEM SPECIAL！
PC－COMPATIBLE HIGH－RESOLUTION DISPLAY SUBSYSTEM

＊ $800 \times 640 \times 16$ colors
＊IBM XT，AT，RT compatible
＊Ikegami in－line tube，high scan rate， non－interlaced，flicker－free $14^{\prime \prime}$ monitor ＊Controller card is ARTIST，AutoCAD software compatible
＊All software，cable，installation instructions included－plug into your computer and GO！ Special Offer－Buy 1 at our usual 100－piece price
－Also available： $19^{\prime \prime}$ systems，digitizer tablets， plotters at O E M prices！
ARTIST is a registered trademark of Control Systems． F \＆W COMMUNICATIONS 194 Main Stree Marlborough MA 01752 Tel．（617）485－1144

Advanced Active Filter Design Software Active filter design program release 2.00 designs most types of active filters，including elliptic．Calcu－ lates values for MFB，VCVS，biquad，state variable and Reticon filter circuits．Interactive graphics for gain，phase and group delay frequency response and impulse or step response of the complete filter or individual section．Cascade filters or modify cir－ cuits and observe effects．\＄525．

RLM Research
RLM Research
P．O．Box 3630
Boulder，CO $80307-3$
RLM Research
P．O．Box 3630
Boulder，CO $80307-3630$
（303）499－7566
CIRCLE NO 333

Analog Circuit Simulation

A full featured SPICE based simulator runs on the IBM PC with interactive Input and Output

PRE＿SPICE，\＄200．00：Interactive control，Monte Carlo Analysis，Optimization，libraries and parameter evaluation． IS＿SPICE，\＄95．00：Performs AC，DC and Transient analysis． Intu＿Scope，\＄250．00：Displays，manipulates and plots data． Programs are not copy protected，come with a 30 day money Programs are not copy protected，come with a 30 day money coprocessor and CGA or EGA or Hercules graphics

P．O．BOX 6607
 intusoft San Pedro，CA 90734－6607 Tele：（213）833－0710

CIRCLE NO 336
mers，oscilloscopes，printers，recorders， terminals．．．much more．Call for free catalog：Eastern Time Zone（including Miss，Tenn，Ala）（800）225－1008，in Mass （800）643－1011．All other locations（800） 227－8409，in Cal（800）331－3440．
Genstar REI Sales Company CIRCLE NO 335

FOR SALE！

Thousands of bargain－priced electronic instru－ ments－with warranties－ available now． Analyzers， PROM program－

－CINCLE NO 336

LIKE－NEW INSTRUMENTS

Wru． 2 seriol pois 4 parellel orith in 4 $4.5^{\circ} \times 6.5^{\circ} \mathrm{PC}$
EXPANSION MODUIES：RAM，EPROM，CMOS RAM／ battery，analog $1 / 0$ ，serial $1 / 0$ ，parallel $1 / 0$ ，counter timer，IEEE－488，EPROM programmer，floppy disks， cassette，breadboard，keyboard／dispiay
＊จ TVIVTBK Wintek Corp
180 Soulh street
tolovente，in 4790 a

CIRCLE NO 334

Flow Charting II + The New Plus for Fast Flowcharting FLOW CHARTING
is new! It s now
Flow Charting II + , with more speed + more functions + more printing options; - 10 text fonts; 26 shapes; - Line mode can stop at a shape; - Backspace key can erase a line to its origin; - Free text entry anywhere, or select autocentering; - Vertical or horizontal printing; one chart or multiple charts.
Used by Fairchild, Bechtel and more than 500 other major corporations. Edit quickly and accurately - even major edits - with Flow Charting II + , the Specialist.
See your retail store or call:

PATTON \& PATTON

800/672-3470, ext. 897 California 800/538-8157, ext. 897 National 408/629-5044 International)

CIRCLE NO 343

6W,9W\&12W HIGH EFFICIENCY DC/DC CONVERTERS Over 50 models avail. combining quality \& performance, variety of input ranges and single/dual outputs. The 6 -side shielded $2^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$ case is ideal for analog I/O subsystems, telecom, medical \& mobile equipment. Other specs inc. input Pi filter, over 500 VDC isol., $\pm .03 \%$ regul., hi-Sw freq., up to 80% effic'y, I/O protection \& std pinning. Prices from $\$ 84$ (1-9). Del stock to 2 wks . CONVERSION DEVICES, INC., 101 Tosca Dr., Stoughton, MA 02072, (617) 341-3266.

CIRCLE NO 346

CIRCLE NO 341

TEMPERATURE TRANSDUCERS

By Relco are complete self-contained units which supply a linear high level voltage proportional to temperature to recording and control instruments without additional external components or amplifiers. Outputs of 0 to +5 volts and 0 to +10 volts are typical.

These new transducers are available in either low cost epoxy or in stainless steel for immersion use.

RELCO PRODUCTS INC., 5594 E Jefferson Ave., Denver, CO 80237 (303) 756-1143

CIRCLE NO 344

DOUBLE-SIDED

 PCB LITERATURE!Dynacircuits, Inc., leader in the single-sided printed circuit board
 industry, is offering a full color brochure which focuses on the company's twosided plated-thruhole facility. The brochure is of particular interest to PCB design engineers, specifiers and purchasers.

Send for your
complimentary copy today!
dynacirevituinc.
11230 Addison St.
Franklin Park, IL 60131

Flow and Level: 296 pages with new pitot tube sensors, multitube rotameters, turbine systems, and non-invasive level sensors. This valuable reference also has informative articles and guides on various sensor types and flow systems.

Call or write TODAY for more information!
Contact:
OMEGA ENGINEERING, INC
AN OMEGA Group Company
One Omega Drive
P.O. Box 4047

Stamford, CT 06907
Telephone: (203) 359-7613
Telex: 996404
CIRCLE NO 342

OMEGA'S BOOK OF BOOKS

OMEGA'S Encyclopedia of Scientific and Technological Books is a one-stop ordering source for books from the major science and lechnology publishers of the world. This catalog gives information on over 12,000 books from 14 publishers covering 16 subject categories including all engineering disciplines, the sciences, math, engineering computer software, and computer science. For easy reference, books are "recommended", and noted as "new" Others are grouped into mini-libraries for easy ordering. All books can be ordered by calling an 800 number or by using the book's easy-to-use order form. Most major credit cards are honored. Circle reader service number or write today to:

> OMEGA ENGINEERING

One Omega Drive, P.O. Box 4047 stamford, Connecticut 06907

CIRCLE NO 345

NEW! 68K VME SINGLE BOARD COMPUTER 512 K dual-ported RAM, 256 K EPROM. Four RS232C ports with independent local interrupts. Programmable timer, floating point processor, RTC with battery backup. Seven local and seven VME maskable interrupts. Selectable bus level, full address-modifier handling, dynamic interrupt vectoring.
Options: 68010 CPU, superFORTH (full 32 bit, multitasking disk operating system).
Low price, full engineering support.
SMC, P.O. 201, Wheeling, IL 60090.
(312) $564-3311$

IRCLE NO 348

Solenoid Valve Engineering Catalog

Send for the latest 40-page Solenoid Valve catalog from Deltrol - Packed with useful information on full range of 2 \& 3-way solenoid valves for most liquids and gases. Direct plastic-molded coils, brass or stainless bodies.
DELTRTOL. contrals 10 2745 S .19 th St.
Milwaukee WI 53215 Milwaukee, WI 53215 Phone $414 / 671-6800$ Telex 2-6871

STOP NOISE IN PGA, LCC PACKAGES
PGA MICRO/Q decoupling capacitors provide low-inductance, high-frequency noise decoupling for PGA, LCC packages on complex board layouts. Fit under PGA or LCC sockets use no extra board space. Choose from many pinout configurations. Rogers Corp., 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624.

CIRCLE NO 752

Schematic-Capture Software from Wintek
Create and revise schematics quickly and simply with HIWIRE ${ }^{\text {® }}$ and your IBM PC. With a click of the mouse button, select a symbol from our extensive library; with a few more clicks, modify our symbols or create your own. Netlist, bill-of-materials, and smARTWORK ${ }^{\text {® }}$ cross-checking utilities are included. HiWIRE is $\$ 895$ and guaranteed.

UNIVERSAL EPROM PROGRAMMER \$495!!

- Built in timer eraser optn; foam pad area
- Menu selection; No personality modules
- User friendly softw; Complete help menu
- Direct tech. support; Full 1 yr. warranty
- Stand alone duplication \& verify
- Quick pulse alogrithm: 27256 under 60 sec
- All $24 / 28$ pins to 27011 \& CMOS E(E)PROMS
- Micros: $8741,2,8748,48 \mathrm{H}, 49,49 \mathrm{H}$ \& CMOS.
- Auto baud RS232 to 19.2 k ; Free PC Drivers
- Ofset/split Hex, Binary, Intel \& Motorola 8, 16 \& 32 bit files; Kits from \$95! Visa \& MC B\&C Microsystems
355 W. Olive Ave, Ste 103, Sunnyvale, CA 94086 Ph (408) 730-5511 800-642-7617

CIRCLE NO 350

GP-IB, HP-IB CONTROL FROM YOUR PC.

- Control instruments and peripherals.
- Supports BASIC, C, FORTRAN, and Pascal.
- Use with ASYST ${ }^{\text {w }} \quad$ Lotus Measure ${ }^{\text {w }}$
- Fast and easy-to-use. Thousands sold.
- Hardware and software - \$395 complete

Capital Equipment Corp. 99 South Bedford St. Burlington, MA. 01803

Call today (617) 273-1818 CIRCLE NO 753
A GANG EPROM DUPUCATOR that's a SET EPROM PROGRAMMER $\$ 695.00$

The BYTEK S 125 GANG WRITER was designed for the production EPROM programming (duplicating) envronment. The 32 character AlphNumenic LCD provides an extremely User Friendly environment. Easy to read messages insure proper operation for fast and easy programming. No configuration or personality modules are required. Programming can be learned by nontechnical personnel in minutes.
STANDARD FEATURES INCLUDE

- Programs virtually all EPROMs, (MOS/ CMOS/HMOS) \& EEPROMs including MegaBit Devices.
- GANG DUPLICATOR: Up to 8 devices can be copied simultaneously.
- SET EPROM PROGRAMMING: 16 -bit and 32 -bit words. (Optional 64 -bit words.)
UV Erasers from $\$ 47$
BYTEK's programming instruments offer unsurpassed quality, reliability, and are backed up by an exclusive One Year Warranty, Free Software Updates with unlimited Customer Service and Product Support
Call Toll Free: 800-523-1565. In Flonda: (305) 9943520
BYTEK Corporation
instrument Systems Division
1021 S. Rogers Cir., Boca Raton, FL 33431 TELEX: 4998369 BYTEK FAX: (305) 994-3615 CIRCLE NO 756

EPROM PROGRAMMER \$350
PAL OPTION \$250
20 and 24 Pin Pals
\$100
MP OPTION
\$350
BIPOLAR OPTION
HITACHI/INTELADAPTORS\$ 75
LOGIC ANALYZER \$995
50 MHz .8 Channel expandable to 32 \$395
Simulates 2716 Through 271024
FREE DEMO DISK
ams 780 S.W. 14th Street

Small Space Advertising For Big Results

EDN Product Mart

CIRCLE NO 754

 Generator Board (WAAG) generator- 20 MHz to 2 KHz sample/clock rate
- Transfer data tolfrom disk file
- $\$ 895.00$ complete

[^20]Your PC board (WAAG) as well as an arbitrary waveform signal

CIRCLE NO 757

$0-12-12$
 Communications Board

 Tir-For IBM-PC/AT/XT and compatibles
-Dual RS-422/RS-485 interface - Differential drivers to 4000 ft .

MXI-100

- GPIB controller board for IBM PC/XT/AT
- Control up to 14 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.

(1)$\$ 345.00$ including software QUA TECH, INC.
478 E. Exchange St. Akron, OH 44304 (216) 434-3154 TLX: 5101012726 CIRCLE NO 759

Our Densepak Adaptors. A large family of socket type packages. Converts non-standard Surface Mount and thru-board IC devices into DIP outline packages. Densepak mounts on all standard wire wrap or circuit panels. Series SSM and RSM for square and rectangular packages. Series APG and DAP for Pin Grid and off-grid DIP packages. Bridge the technology gap, with Densepak. Tel: (617) 222-2202.
TWX: 710.391.0644.

THAT WORKS.
 CIRCLE NO 762

WinSystems, Inc.
PO Box 121361
Arlington, TX 76012
817/274-7553
CIRCLE NO 765

CMOS $80 C 88$ SINGLE BOARD STD BUS COMPUTER

Features the 16 -bit 8088 with 8087 coprocessor socket and 1 Mbyte addressing, On-board functions include 2 JEDEC 28 -pin memory sockets for up to 128 K bytes of RAM. EPROM, or EEPROM. Includes one RS-232/RS-422 serial port, 8259A interrupt controller, 3 16-bit counter/timers, SBX connector, and Watchdog timer. Available in NMOS/TTL or CMOS from

AUGAT IS INNOVATION

Our Crystal Sockets. Compact unit construction for dependable mechanical and electrical life. For HC-18/U, HC-25/U, HC-42/U, HC-43/U, HC-49/U and HC-50/U crystals. Put the crystal in, it stays put. No shake or rattle, no matter how you roll it.
Tel: (617) 222-2202.
TWX: 710.391.0644.

THAT WORKS.

CIRCLE NO 760

Glide Through PCB Design
With Tango-PCB. Just 445.
Create the toughest board designs with powerful layout software that's a snap to use. Function-rich Tango-PCB supports eight layers, true power and ground planes, OrCAD ${ }^{\text {TM }}$ or Schema ${ }^{\text {TM }}$ netlist input, and more. For IBM PC/XT/AT. Compare features and you'll buy Tango-PCB. Just \$495. Or try full-function Demo Package, just \$10, Thirty-day money-back guarantee. Order toll-free: 800 433-7801 In CA: 800 433-7802 VISA/MC
 San Diego, CA92121 CIRCLE NO 763

AUGAT IS innovation

Our DIP/SIG. The connector system with the major advance in low noise, high density interconnection built in. For double your I/O signal density. The answer for emulation and microprocessor development systems. Tel: (617) 222-2202. TWX: 710.391.0644.

Statek Corp. 512 N. Main St. Orange, CA 92668. Tel (714) 639-7810; Telex 67-8394; TWX (910) 593-1355.
A Technicorp company.
CIRCLE NO 766

Booklet explains new data-acquisition standard

The 56-pg product summary, New Frontiers in Data Acquisition, presents an overview of the company's System 1800 Series, a Fastbus (IEEE-960) line of instrumentation devices. It also describes the company's system-protocol and data-acquisition modules. Application notes and technical data sheets for the data-acquisition modules that meet the Fastbus standard are also included.

LeCroy Corp USA, 700 S Main St, Spring Valley, NY 10977.

Circle No 417

Catalog describes industrial-control devices

This $16-\mathrm{pg} 4$-color catalog lists the company's product line of intelligent and nonintelligent alphanumeric displays and accessories. It also describes the thumbwheel and pushwheel assemblies used with programmable controllers.

Cherry Electrical Products, 3600 Sunset Ave, Waukegan, IL 60087.

Circle No 418

Linear applications

The 350-pg manual, Linear Applications Handbook: A Guide to Linear Circuit Design, is written for system designers. Various chapters in the 360-pg book cover 3-terminal regulators, applications of

switched-capacitor-instrumentation building-block circuits, thermal techniques in measurement and control circuitry, and direct digitization of transducer outputs. Other chapters discuss high-speed comparator techniques, design of linear functions for 5 V -only operation, and high-performance voltage-to-frequency converters. All applications include the schematics and parts values for the circuits described. $\$ 9.95$.

Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035. INQUIRE DIRECT

Datacomm products

The Blue Book includes more than 2000 data-communication products offered by 200 manufacturers. New listings in the $168-\mathrm{pg}$ publication include the Genicom Series printers, which are IBM compatible; protocol converters from Adacom; and testequipment supplies from Datacom Northwest. A full line of centraloffice, outside-plant, customerpremise, and data-communication
supplies is available.
GTE Supply, 5225 Wiley Post Way, Lakeside Plaza 2, Salt Lake City, UT 84116.

Circle No 419

Tools for your PC

Each edition of The Catalog of Personal Computing Tools for Scientists and Engineers contains information on hard-to-find IBM PC-compatible products, which the publisher selects as part of an ongoing review of numerous hardware and software manufacturers. The products are evaluated in the book according to cost/performance tradeoffs, programming considerations, installation, and operation. The latest issue of the catalog presents such products as data-acquisition and -control systems, scientific software packages, image processors, oscilloscopes, logic analyzers, and data and function generators. Other offerings include digital multimeters, frequency counters, IEEE-488 controllers, LANs, de-sign-automation systems, and dataline monitors. In addition to producing this catalog, the company provides applications assistance for the products over the telephone.

Personal Computing Tools, 101 Church St, Unit 12, Los Gatos, CA 95031.

Circle No 420

Two brochures address distributed-control system

These two brochures present information on Mycro II, an advanced distributed-control system. Bulletin 3900 describes the system, detailing the configurable CRT operator station, the basic CRT operator station, the multiloop controller, various components and hardware associated with the system, the architecture, and services. Bulletin 3901 offers an overview of Mycro II, including discussions of the ideal system architecture, integrated system elements, improved opera-

HCHREL DATA CONVERIRS FOR ML APPLCATONS

Break through to new performance levels

DATEL's microcircuit facility was among the first to be certified to MIL-STD-1772; now required to provide MIL-STD-883 compliant devices.

At DATEL, our commitment to the highest standards of quality and reliability is more than a well-intentioned ideal. It's a commitment that DATEL builds into each and every one of its products.

DATEL's superior quality, high-perfor-
mance products are designed and manufactured by an innovative team of skilled professionals, utilizing the latest in sophisticated design and manufacturing tools.

DATEL's data conversion products allow you to break through to new levels of performance for military, aerospace and other high-reliability applications. Call or write today for a complete information package on all our data acquisition products.

MIL-STD-1772

Now, call on Sony for your highspeed, high-resolution A/D and D/A conversion needs.

That way, your designs benefit from the highest performance A/D and DA monolithic converters available anywhere. All thanks to our unique low-power ECL process.

Our A/D converters include an 8 -bit, $100-\mathrm{MHz}$ device that was designed for the super-slow motion equipment used in the 1984 Olympics. A TDC-1048 replacement chip (CXA 1096 P) that requires just 25% of the 1048 's power dissipation. A unique $20-\mathrm{MHz}, 10$-bit chip. And a $250-\mathrm{MHz}, 8$-bit converter that will be available in early 1987 . (All 30to $100-\mathrm{MHz} \mathrm{A} / \mathrm{D}$ converters are available with extended temperature range, from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.)

Our high-speed D/A converters cover a wide range of applications, with conversion speeds as high as 160 MHz , and resolution up to 10 bits.

The hig news in high-speed, high-resolution A/D and D/A conversion.

Or consider our high-resolution A/D and D/A converters. Including 16-bit monolithic devices at 44 and 88 kHz .

Of course, all our converters

are competitively priced, and are available in diverse packaging, such as plastic and ceramic dips, and leadless chip carriers.

Plus they're backed by the highquality, reliability and nationwide service that you'd expect from any Sony product.

To get the full story on Sony A/D and D/A converters, just call your nearest Sony representative. Or write us today at 23430 Hawthorne Blvd., Suite 330, Torrance, CA 90505.
SONY
tor interaction, vital information gateways, and effective process management. Both brochures are 3 -hole punched for loose-leaf filing.

Moore Products Co, Spring House, PA 19477.

Circle No 421

App note discusses

 measuring switching speedThis application note, Verifying Synthesizer Switching Speed, discusses a measurement method used in the final test calibration of fastswitching synthesizers. It includes definitions, measurement limitations, a typical test setup, and a detailed test procedure. The information is particularly useful to synthesizer users and to those working in calibration labs.

Wavetek Inc, Box 85265, San Diego, CA 92138.

Circle No 422

How to evaluate system-level testing

This 5-pg reprint, Measurements on Optical Fiber Systems, discusses the proper evaluation method for subsystem- and system-level testing. It examines fiber-optic-system features such as optical margin, bit error rate, eye diagram, and alarm and redundancy switch-overs. The reprint details the measurements required during the installation and troubleshooting periods.

Intelco Corp, 8 Craig Rd, Acton, MA 01720 .

Circle No 423

How to choose a color monitor
A brochure entitled Gaining the Color Advantage: How to Select a Color Monitor for Your PC discusses many of the options and variables of color monitors. It suggests, for example, that buyers compare the brilliance of all colors to make sure that colors are bright and true,
and that whites are actually white. The pamphlet offers other tips and tries to answer many of the important questions about how to evaluate color displays.

Princeton Graphic Systems, Box 853, Valley Forge, PA 19482.

Circle No 424

OCXO • TCXO • VCXO • TCVCXO AND GENERAL PURPOSE CLOCKS.

High rel and performance.
Total quality assurance. And Bliley can fine tune the specs to price-sensitive budgets.
Tell us your requirements.
Our vertical capabilities give you the assurance edge.
Quartz Crystals • Crystal Oscillators • Free Catalog
First Name in Frequency Control.

BLILEY ELECTRIC COMPANY

2545 West Grandview Blvd. P.O. Box 3428, Erie, PA 16508 (814) 838-3571 TWX 510-696-6886

FAX 814-833-2712
CIRCLE NO 65

Macro Programming for 1-2-3, by Daniel N Shaffer. 304 pgs ; $\$ 19.95$; Hayden Books, Indianapolis, IN, 1987. Phone (317) 298-5400.

Concentrating on the use of $1-2-3$'s keyboard macro facility in spreadsheet, graphics, and datamanagement functions, this book provides tips on how to make 1-2-3 spreadsheets faster and easier to use and more powerful by taking advantage of version 2.0 . It addresses topics such as using range names, using 1-2-3's automatic typing features, and using 1-2-3's programming features.

Mastering Expert Systems with Turbo Prolog, by Carl Townsend. 272 pgs; \$19.95; Howard W Sams \& Co, Indianapolis, IN, 1987. Phone (317) 298-5566.

Using practical and tutorial examples and program listings, this book
shows you how to design expert systems with Turbo Prolog. It provides the design elements necessary to make an expert system-from concept to application. After explaining the fundamentals, the book teaches you how to use Turbo Prolog, how to use databases, and how to control the flow of execution. It also has a section on special Prolog techniques.

Computer - Integrated Manufacturing Handbook, edited by Eric Teicholz and Joel N Orr. 466 pgs; $\$ 59.95$; McGraw-Hill Book Co, New York, NY, 1987. Phone (609) 4265254.

This handbook is a practical treatment of the technology of CIM (computer-integrated manufacturing) by more than 20 specialists in the field, with emphasis on the economics of CIM. It discusses the role
of CAD/CAM in CIM and numerical control systems, and it give a projection of future trends and developments. Other topics the book examines include robotics, process planning, production planning and control, the role of materials handling, technology management and factory automation, planning for a competitive CIM environment, and how controls, feedback, and benchmarking help implementation.

Hy-Q Handbook of Quartz Crystal Devices, by David Salt. 229 pgs; \$69.95; Van Nostrand Reinhold, New York, NY, 1987. Phone (212) 254-3232.

Intended for use by engineers concerned with frequency management, this book provides background material on both the design and manufacture of quartz devices to help you understand the practical

ELECTRIFYINGSOLUTIONS:

[^21]
Looking for a faster amplifier?

 Don't settle for more when the FL2020 offers so much less. Less settling time, less power consumption and less cost.
scope out the EL2020. It delivers useable gain at high frequency, low settling time, high slew rate and less power consumption.

- $\mathrm{AV}=2$ at 65 MHz
- 90 ns settling time to 0.1%
- $500 \mathrm{~V} /$ / s slew rate
- 10 ma supply current

The EL2020's unique circuit topology allows it to be used at closed loop gains from 1 to 10 with minimal sacrifice of bandwidth or slew rate, as is common with current generation op amps.

This low cost amplifier, fabricated via the Elantec monolithic Dielectric Isolation (DI) process, can drive coax directly - up to 50Ω. Output Disable allows busing of multiple circuits. And short circuit protection prevents damage if the output is shorted.

The EL2020 is available in both military and commercial versions. Hybrid performance in a monolithic design. Gain with more accuracy at speed. And lower cost (\$4.95@100-

EL 2020 CN) in a smaller package (plastic or ceramic 8 -pin mini-dips).

Elantec-where élan is more than just a name-and service is more than just a word. We've got what you're looking for. And to prove it we offer the industry's only two-forone guarantee on all our devices.

Set your sights on our high performance EL2020 amplifier. Write us on your company letterhead about your EL2020 application. We'll send you a free sample. Contact Elantec at 1996 Tarob Court, Milpitas, CA 95035. (800) 821-7429. In California, (408) 945-1323. Be sure to ask for our free 1987 Data Book.

Distributed by Future Electronics- GBL Goold Electronics-Gerber Electronics- Hammond Electronics-Intercept Electronics- Nu Horizons Electronics-Schuster Electronics-U.S. Hybrid Supply- Wyle Laboratories-Zeus ComponentsInsight Electronics
Elantec European Office: 87 Jermyn Street London SWI Y6JD England Telephone: 44-1-839-3841 Telex: 917835 Fax: 44-1-930-0751

The ARX20 Automatic Router never goes home, never takes a break, never gets sick, never makes a mistake, and never leaves any routing incomplete

The ARX20 ${ }^{\text {TM }}$ automatic router from Scientific Calculations is a high performance processor driving powerful multiple algorithms for total routing of large, complex, high density printed circuit boards. The off-line server can queue and route any number of designs from any number of workstations through a Local Area Network (LAN). It performs unattended, day and night, freeing your users and CAD systems for other work. Unlike other systems, it handles clearances, trace widths and vias of any size. And it won't compromise your design rules. It "sees through" up to 32 board layers at once, determining instantly

system. Physical memory ranges to 12 MB . The unit is $29^{\prime \prime}$ high, $19^{\prime \prime}$ wide and $31^{\prime \prime}$ deep. For more information, write or give us a call. We'll give you a demonstration.

7635 Main Street, Fishers, NY 14453
1-800-4-HARRIS Ext. 4363
1-800-344-2444 (Canada)
where there are congested areas and where the best trace paths are. You can query the system anytime to determine route status. Automatic cleanup routines reduce the number of vias, shorten trace lengths and eliminate loops and hooks. The ARX20 system CPU is the full 32-bit MC68020 microprocessor hosting the UNIX V operating

CIHARRIS

ARX20 is a trademark of Scientific Calculations. MC68020 is a trademark of Motorola. UNIX V is a trademark of AT\&T Bell Laboratories.

NEW BOOKS

and theoretical limitations on the performance of commercially available products. Divided into four parts, the book leads you from understanding a crystal resonator as a physical device (part 1), to the manufacture of crystal resonators (part 2). Part 3 deals with the crystal as a circuit component, and part 4 discusses the main characteristics of bulk-wave crystal oscillators and crystal filters. In the final chapter, the author explains the basic circuit configurations of narrow, intermediate, and wideband crystal filters.

Being the Boss: The Craft of Managing People, by L Kent Lineback. 192 pgs; $\$ 18.70$ (member); $\$ 24.95$ (nonmember); IEEE Press, New York, NY, 1987. Phone (201) 9819535.

This book stresses the fundamental activities required to manage people effectively. The book has three parts. It begins with a case history of a manager in a software development group, then goes on to present a plan to assist you in coordinating your day-to-day activities. Part II, the Fundamental Cycle of Management, explains the specific activities a manager repeats constantly. The third part examines problem solving and how to deal with situations such as hiring, firing, and appraising.

Effective Meetings for Busy People: Let's Decide It and Go Home, by William T Carnes. 348 pgs; $\$ 22.30$ (member); $\$ 29.75$ (nonmember); IEEE Press, New York, NY, 1987. Phone (201) 981-1393.

This book pinpoints the reasons behind unsuccessful meetings and presents a new methodology to make them more effective, interesting, and profitable. The principles discussed are valid for meetings in all kinds of organizations. The author reviews some established traditions and opens the way to new concepts, ideas, and techniques.

Polaroid’s Ultrasonic Ranging System opens the door to new technology.

It can be found in "non-touch" screen computer monitors, AGV's, industrial robotics, electronic games, tape measures, aids for the disabled, loading docks, collision avoidance systems for cars, trucks and pleasure vehicles. And, yes, it even opens doors.

The Polaroid Ultrasonic Ranging System is an accurate, highly sensitive way to detect and measure the presence and distance of objects from 10.8 inches to 35 feet. What's more, accuracy, sensitivity and range can all be improved with circuit modifications.
Three of a kind. Polaroid offers three ultrasonic transducers for a wide variety of applications. You can choose the original instrumentgrade transducer, proven in millions of SX-70 Sonar Autofocus cameras. Orour Environmental Transducer, available in a sturdy housing to withstand exposure to rain, heat, cold, salt spray, chemicals, shock and vibration. And
 now you can select our newest, smallest transducer, developed for Polaroid Spectra, the camera of the future. All use reliable, accurate and sensitive electrostatic transducer technology. All are backed by Polaroid.
 System. But now you can get this technology in our Designer's Kit for only \$165*. To order your Designer's Kit, please send a check or money order for $\$ 165$ for each kit, plus all applicable state and local taxes, to: Polaroid Corporation, Ultrasonic Components Group, 119 Windsor Street, Cambridge,MA 02139. Questions? Call Polaroid's Applications Engineers at 617-577-4681.

Announcing EDN Magazine's Exclusive Hands-On, Surface-Mount Design Series

Watch For It, Starting May 28th.

John Butler: Trading in a doctor's bag for a career in programming

Photographs by Doug Wilson

In the little spare time that John Butler had during his cardiology fellowship at the Medical College of Wisconsin, he always made an effort to read books and magazine articles on computer technology, a subject that had held his interest briefly before he began medical school.

Browsing through a bookstore, he came upon a volume on structured computer programs and began reading about finite mathematics. "I can't do analog math, which I thought meant I couldn't do math," Butler says. "It wasn't until I got that book that I discovered a whole new kind of math, the math of sets and relationships, the field of finite math."

That discovery helped Butler make a decision that he had been considering for a long time. "I was excited by finite mathematics and unexcited by the practice of fee-forservice medicine," he says. "The more I looked at cardiology, the more it seemed that there was a place in it for computers." Deciding that he might better serve medicine by improving the medical community's use of technology than by working as a physician, Butler decided to leave behind both his position at St Luke's and the medical career for which he had been preparing for the last eight years.

After going back to school yet again-this time to earn a master's degree in computer science-Butler joined Microsoft Corp in Redmond, WA. Since 1982, he has worked on the development, marketing, and product support of Windows, the company's version of a windowing environment. Despite the twists and turns of his professional career, he has never really abandoned the goal that first led him to medicine-that of serving people. By continuing his work at Microsoft, he hopes someday to write easy-to-use medi-

One year shy of becoming a cardiologist and beginning the medical career for which he'd spent eight years preparing, John Butler abandoned medicine and switched to software. . .

PROFESSIONAL ISSUES

cal application programs that will allow doctors to spend more time treating patients and practicing preventive medicine.

Choosing a medical career came naturally to Butler, whose family tree already included several physicians. After studying psychology as an undergraduate at the University of Washington in Seattle, he applied
for admission to several medical schools. His acceptance by New York University was no doubt influenced to some extent by his application, in which his flair for the unusual was apparent. In a large blank space reserved for some form of personal expression, Butler wrote a limerick: "There once was a young man with a mission, which was to

become a physician, so he wrote a short verse, which though rather terse, he hoped would amuse the commission."
In medical school, Butler's goals and attitudes proved equally unconventional compared with those of his fellow students. "Most of the students cared about learning the facts and doing whatever it is a doctor does to earn money," he says. He became part of a small group of NYU students who worked to bring humanistic changes to the school's grueling curriculum. They instituted a student note-taking service, for example, so that students who missed a class could obtain the lecture notes. They also argued successfully for a course that taught students how to ask basic medical questions in Spanish, an important tool for providing medical care in New York City, where a large part of the population is Hispanic.

Catching up with technology

In 1976, while a resident physician at the University of Pittsburgh's Presbyterian Hospital, Butler discovered that computer technology had come a long way since 1969 when he had taken an undergraduate course in the Algol language and submitted cards to large computers for processing. "I picked up a copy of Popular Electronics and learned that, for $\$ 1500$, you could buy all of the parts used to build a computer as powerful as the ones I used to submit decks to."
Medicine, however, appeared to be extending a less than warm welcome to the new advancements. Though the medical community had quickly found use for the detailed x-rays that CAT scanners produced, it found the benefits of other ad-

New Airpax Series 6600 thermostats are specially designed to be compatible with all automated production techniques common to PC board manufacturing. They can be installed with DIP auto-insertion equipment. They are sealed to withstand wave soldering and washing operations. And they provide both sensing and switching in a single space-saving device. Best of all, the ACTION Series 6600 combines production expediency with proven accuracy and reliability. Bimetallic snap-acting thermostats, the Series 6600 feature fast, positive response and excellent repeatability with 1 amp switching capability over a temperature range of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ to $120^{\circ} \mathrm{C}\left(248^{\circ} \mathrm{F}\right)$. To ensure performance, the temperature is factory pre-set, and cannot be altered in the field. Add automated thermostat installation to your PC board production line. Call us today for configuration availability and further details. Airpax Corporation, Frederick Division, Husky Park, Frederick, MD 21701. (301) 663-5141.
A North American Philips Company.

PROFESSIONAL ISSUES

vanced equipment less readily apparent. In 1978, in the critical-care unit of Milwaukee County Hospital where Butler worked as a cardiologist, a minicomputer with a Fortran program for storing patient records went virtually unused. The machine's complicated user interface, Butler says, caused most doctors to shy away.
"Clearly what had happened was that nobody who was going to use the machine had been in on the design of the program," he says. Moreover, though the data was being presented to doctors in a new format, the information was not being analyzed any differently. "Some doctors were being trained how to get the data from the machine, but nobody was being trained to analyze the data." The result was that much of the new equipment was little more than technological window-dressing.

The timing of Butler's observation of the gap between technology and medicine was important for him. For a number of reasons, he found himself growing increasingly detached from the medical profession. An emphasis on good health was missing from much of the medical community's activities. Instead, Butler saw too many doctors managing their practices, and their patients, as proprietors running businesses.

He also grew uncomfortable with the skewed earning ratios in the medical profession. "I had a problem with the $40: 1$ ratio of earning power to responsibility," Butler says. While some doctors were earning large salaries for relatively few hours of work, technicians were working longer hours, providing crucial support services, and taking home much smaller paychecks. At one private hospital where Butler worked as a cardiology fellow, most of the teaching was done by a lowpaid technician; the doctor, who was presumably teaching the resident physicians, spent six hours each
week at the hospital and earned three times the technician's salary.

But two specific instances sealed Butler's decision to leave medicine. The first came when he discovered that, upon the orders of the attending physician, it was a techniciannot the physician-who decided the

> He was deeply disturbed by many of his medical colleagues' disinclination towards change; the notion that the practice of medicine could be improved seemed foreign to many of them.

critical moment at which fluid was to be drained from around the heart of a seriously ill patient. The second instance occurred when an attending cardiologist incorrectly diagnosed Butler's slightly irregular heartbeat, which Butler knew to be a normal variance, as a congenital heart defect. That diagnosis, based on a cardiogram of Butler's heart, had a chilling effect on him. "It was wrong," he says flatly. "Furthermore, it was insupportable on the basis of the evidence."
"I thought that here's a system that pays the wrong people too much money and doesn't educate people," Butler recalls. He was deeply disturbed by many of his colleagues' disinclination towards change; the notion that the practice of medicine could be improved seemed foreign to many of them. Rather than continue as a physician, and despite strong support from the medical faculty, Butler chose to leave medicine, ending his fellowship a year early. "I had no hope," he explains. "The problems of the system seemed insurmountable."

As difficult as the decision was for Butler to make, it proved almost as difficult for his peers in medicine to
understand. "I had never hung any of my identity on the label of 'doctor,' so that was not hard to give up. What was difficult to understand was the feeling among many doctors that I had failed as a physician."

With the financial support of a fellowship from the National Institute of Health, Butler returned to the University of Washington to conduct research at the Center for Bioengineering and study computer science. Lacking some of the math requirements needed for graduate study, he spent two quarters in undergraduate classes. "It was really hard being a student again. I had already been a freshman undergrad, a freshman in medical school, an intern, and a resident, and here I was at the bottom of the rung again."

Yet Butler was there with a specific purpose in mind. He had left his medical career, but he had not left behind his thoughts of improving medicine. The computing advances that had occurred paved the way for new ties between technology and medicine, and he saw himself, once he had studied computers, as someone who could help forge those ties. His goal for the computer knowledge he was acquiring was clear: "To make computers usable for doc-tors-to make sure that when a doctor decided to use a computer, it was going to be well used."

After graduating in 1982, Butler began looking for a job. Most companies he approached were unsure of what to do with "a lapsed physician," as he calls himself. At a neighbor's suggestion, Butler sent a résumé to Microsoft Corp. He had written a graphics program as a graduate student, and he found that his interests in graphics matched closely with Microsoft's. In early 1982, he joined the then seven-yearold company as employee number 180.

His original job was to build on the success of the company's GW Basic program and enhance it.

GYPERTRONICS ANNOUNGES... The End of the Connector Compromise

entabenetan

STROKE "wiwe
HOLDING FORCE 12 OZ.
*Based on average test results of 35 and 38 AWG.
New Ledex Series 20 tubular solenoids give your design extraordinary repeatability and reliability (100 million actuations typical). And, they cost far less than you might expect to pay for a long life solenoid. Sizes: $1 / 2^{\prime \prime} \times 1^{\prime \prime}, 3 / 4^{\prime \prime} \mathrm{x}$ $11 / 2^{\prime \prime}$, and $1^{\prime \prime} \times 2$ ". Available with a variety of performance characteristics (push or pull, some off-the-shelf), with terminals or leads. Tell us about your custom application. Send for literature.

Ledex Inc.

P.O. Box 427

Vandalia, Ohio 45377-0427 U.S.A. Phone: 513-898-3621
helpful solenoid technology CIRCLE NO 68

PROFESSIONAL ISSUES

From the beginning, though, he viewed windowing capabilities as the foundation that would make computers more usable. Indeed, he was more excited by the potential of windowing applications than by the graphics library on which he was working. Reluctantly, he says, "My boss and I made an agreement that I would only talk about windowing on Friday afternoons."
In early 1984, shortly after Microsoft introduced Windows, he moved to marketing. His entry to marketing, he says, is attributable to his enthusiasm for the product and to the company's shorthandedness. Had the company not experienced the spectacular growth it did over the past few years-from 180 employees when Butler was hired in 1983 to more than 1300 in early 1987-Butler says it's unlikely someone without experience would have been given the opportunity to move into marketing.
Butler's substitution of enthusiasm for marketing polish, however, was well suited to the task at hand: convincing vendors of windows' importance. "Gradually, the windowing concept has gained credibility," Butler says proudly. "After a while, the questions changed from 'Why windows?' to 'Why Windows vs [other window packages like] Gem or Topview?'"
Four years of work in the electronics sector has left Butler with no regrets about leaving medicine. "I feel daily that I've made the right decision," he says. He delights in the patterns of change and experimentation that characterize the computer industry. "In computer science, there's richer thinking, more ways of doing things, more unexplored territory," he says. "When you sort data, you realize there are lots of different ways to do it, and they're all right." In medicine, he says, there's a feeling that there's only one way to do something.
Working to promote expanded
use of windowing applications gives him the ability to effect change that he missed in medicine, he says. "In medicine, I could have impacted the 3500 patients I cared for, I could add value to each life as I touched it, but I wouldn't have had a lot of leverage. In this position, though, I have tremendous leverage: We've sold 700,000 copies of the Windows program."

Still on his agenda, though, is the task of writing easy-to-use applications packages for doctors. Current software for medical-practice management tracks a physician's billing records, but nothing more, he says. Butler envisions a system that integrates continuing-education capabilities with spreadsheet capabilities. "The general practitioner is going to want to take the best advantage of the little time he's got, between patients, for example." He foresees doctors spending 30 min utes each morning with their computer, perhaps finding out the latest diagnostic tests for hepatitis, for instance.
The greatest boon to doctors is probably in the technology that is still several years off, Butler says. Voice printing, for example, will allow doctors who don't type to use computers. Talking computers will be an asset, he says, "because a great place to reach doctors is in their cars, on their way to work and traveling to and from three or four hospitals."
His rationale for choosing windows as a way of looping his career back towards medicine is simple: He believes it's the computer technology best able to help cardiologists because it will let doctors spend more of their time on medical care, the skill they are trained in. "That's all windowing is, a way to let people do what they do best."

EDN

Article Interest Quotient
 (Circle One)

High 506 Medium 507 Low 508

Advanced emission control. EMC Data Line Filters from Tokin.

Tough world EMI/EMC standards such as FCC, VDE and VCCI (Japan) demand effective countermeasures-for both power and data lines.

And Tokin offers an expanded lineup of data line filters designed to the most rigorous standards ever.
Consider our D-16C DIP noise filter for high impedance over a wide range, or EMC chip filters (M608, 614 and 620)-ideal for absorbing

Shapes
and Dimensions

SNT-S2O

SBT-0440T

30F102P

D.16C

M608

in signal transmission lines. Tokin feed-through filter capacitors (30F102P) suppress high-frequency noise emissions-even microwaves. And our radical lead micro-inductors for normal
mode noise absorption come into two series: SNT for high currents and SBT for high fre-
quencies.
But these are just a start. For details, pick up the phone and call us today.

Specifications

	Circuit Diagram	Impedance ($\mathrm{k} \Omega$)	Insertion Loss (dB)
SB Coil SBT Series (SBT-0440T)	\xrightarrow{m}	$\begin{gathered} \geqq 0.9 \\ \text { (at } 100 \mathrm{MHz} \text {) } \end{gathered}$	-
SN Coil SNT Series (SNT-S20)	\xrightarrow{m}	$\begin{gathered} \geqq 0.4 \\ \text { (at } 100 \mathrm{MHz} \text {) } \end{gathered}$	-
EMC Chip Filter (M608)	$2 m$	$\begin{gathered} \geq 0.3 \\ \text { (at } 100 \mathrm{MHz} \text {) } \end{gathered}$	-
DIP Noise Filter (D16C)	$\therefore\binom{m}{(11)}:$	$\begin{gathered} \geqq 0.3 \\ \text { (at } 100 \mathrm{MHz} \text {) } \end{gathered}$	-
Feedthrough Filter Capacitor (30F102P)	$m_{\frac{1}{5}}$	-	$\begin{gathered} \geqq 60 \\ \text { (at } 450 \mathrm{MHz} \text {) } \end{gathered}$

Limits for Radiated Emissions

ETCL (EMC Test \&
Component Laboratory)
Tokin America's ETCL provides a full range of EMC
technical services including measurement, countermeasures and consulting. Call us for details.

Takill

Tokin Corporation
Head Office: Hazama Bldg., 5-8, Ni-chome,
Kita-Aoyama, Minato-ku, Tokyo 107, Japan Tel:. Tokyo (03) 402-6166 Telex: 02422695 TOKIN J Tokin America Inc.
2261 Fortune Drive, San Jose. Calitornia 95131
U.S.A. Tel: $408-432-8020$
You can reach our agents by phone: London 01-837 2701; Paris 1.45 3475 35; Milan (0331) 678.058; Munich (089) 5164-0; Seoul (02) 777-5767. Taipei (02) 7311425;
Hong Kong 3-315769. Singapore 747-8668

Whether you're just a little curious or actively pursuing a new job, you'll find what you're looking for on-line with BPI AdLine.' ${ }^{\text {TMI }}$ The new, convenient way for you to communicate with high tech employers via computer. Just call up BPI AdLine ${ }^{\text {TM1 }}$ on your PC or terminal, at home or work, at your leisure. The service is free and operates around the clock-24 hours a day.

Once you're on-line, explore Fortune 1000 companies; their job openings, employee benefits, corporate facilities and much more company related information. You can even enter your resume into the system and rest assured it will be in the right hands, right away.

BPI AdLine ${ }^{T \mathrm{~T}}$ is designed for you, the experienced technical professional. It's easy. It's quick. And it's completely confidential. BPI AdLine ${ }^{\text {T.4 }}$ is the convenient way for you to explore your professional potential and discover the job that awaits you ... on the line. Companies are continuously added to the system. Please check regularly for updates.

Created by the same people who bring you the original BPI TECH FAIRS. You can also use BPI AdLine ${ }^{\text {Th. }}$ to check on dates, times and locations of upcoming TECH FAIRS in your area.

"We are not an employment agency."
Business People Inc., 100 North Seventh Street, Minneapolis, MN 55403

More than you ever expected

... where annual gaming revenues total \$2 billion, and DEFENSE SPENDING APPROACHES \$3 BILLION ..
... where major resorts host more than 14 million visitors each year while nearby some of the world's MOST ADVANCED TECHNOLOGY IS BEING DEVELOPED

. . .

.. where even the largest hotel cannot rival the employment provided by NELLIS AFB, the LARGEST BASE in the TACTICAL AIR COMMAND and NEVADA'S LARGEST SINGLE EMPLOYER.
. . . and where Southern Nevada's FLAWLESS CLIMATE . . . ABUNDANT RECREATION . . . NO STATE INCOME TAX . . . LOW COST OF LIVING . . . and HIGH QUALITY OF LIFE combine to make Las Vegas one of the TOP 5 FASTEST GROWING METRO AREAS IN THE U.S.!

If you have the skills we are seeking, you will be selected to visit us in Las Vegas and discuss your future on the cutting edge of technology.

SR. PROGRAM MANAGERS: Ten plus years including experience in setting up and managing formal DOD Engineering Programs for design and development of RF and Microwave systems. Background should include hands-on involvement with WBS development, compliance to MIL Spec, configuration management, and coordination of program support functions. Specify position code 3-EDN-5-7.

SR. RF/SYSTEMS ENGINEERS: Advanced Degree. Ten plus years experience in military RF and microwave analysis, design, and implementation. Ground based radar system experience desirable. Specify position code 1-EDN-5-7

SR. DIGITAL ENGINEERS: Advanced Degree. Ten plus years experience in signal processing, analysis, design, implementation, and data collection systems. System level and detailed knowledge of microprocessor hardware, firmware, and BUS architectures. Familiarity with radar systems desirable. Specify position code 2-EDN-5-7

$$
\begin{aligned}
& \text { Submit Resume Specifying Position Codes to: } \\
& \text { EG\&G Special Projects, Inc. } \\
& \text { Attn: Jack Pollock, Recruiter } \\
& \text { P.O. Box 15110 } \\
& \text { An Vegas, Nevada } 89114 \\
& \text { A.S. Citizenship Required }
\end{aligned}
$$

CAREER OPPORTUNITIES

1987 Editorial Calendar and Planning Guide

Call today for information.
East Coast Janet O. Penn (201) 228-8610
West Coast Dan Brink (714) 851-9422
National Roberta Renard (201) 228-8602

PRODUCT MANAGERTECHNICAL PROGRAMS

Micropolis has achieved industry leadership through excellence in the design and manufacture of high performance Winchester disk drives.
The addition of new product lines has created an opportunity for a marketing manager with solid technical knowledge to work with the engineering departments in product problem resolution and requirements definition.
This position requires an individual with outstanding communication skills, the ability to interface effectively within the company and with customers, and a dedication to performance excellence. Must have $5+$ years experience in OEM peripherals and a related bachelor's degree. You'll find a fast-paced, winning environment at Micropolis. If you are a results-oriented individual with a high degree of initiative, send your resume to: Tina Purwin, Professional Employment.

MICROPOLIS CORPORATION
 21123 Nordhoff Street
 Chatsworth, CA 91311

No Agencies, Please
Equal Opportunity Employer
MICROPSLIS

> Applications Engineer Miniature Quartz Crystals/Oscillators

Work with OEM design engineers in medical, telecommunications, computer \& instrumentation markets. EE degree required. 3-5 years related experience. Excellent salary and benefits. Send resume \& salory history:

Keith Brown

ETA INDUSTRIES, INC.
8 W. 40th Street New York, NY 10018

SOFTWARE ENGINEER

Develop a custom operating system and compiled BASIC language for portable data loggers. Requires BSCS and experience in operating system and compiler design. BSEE or hardware design experience desirable.

Omnidata offers an excellent benefit package, including 2ø\% profit sharing, $4 ø l k$ retirement plan and medical insurance.

Please send resume to: Omnidata International Inc., 130 So. Main, Logan, Utah 84321. Attn: Director of Engineering. No phone calls or agencies please.

OMNIDATA

> Staff scientist/R\&D expert with unmatched experience in flexible and rigid printed circuitry seeks fresh challenge in new ventures, product innovation and development, applications engineering. Available full time or consultation

> Box 101
> EDN Recruitment Adv.
> 103 Eisenhower Pkwy.
> Roseland, NJ 07068

ENGINEERS
SYSTEMS \square SOFTWARE \square HARDWARE

THE
 signals
 ARE Clear

Put yourself on an exciting wavelength for career growth at GE-Government Electronic Systems Division-a dynamic innovator in SONAR, RADAR and other advanced technologies.
As submarine fleets run deeper and quieter, detection on both sides of the undersea thermal barrier becomes a tougher-than-ever challenge. At GESD, we are meeting this challenge by developing a whole range of surface ship ASW and submarine search and navigation systems. We are continuing to extend our recognized leadership in acoustic programs, offering talented engineers exceptional opportunities in systems design and implementation.

We are also moving ahead rapidly in developing solid-state tactical radars with greatly increased performance, mobility and survivability. Programs are also underway to enhance the ability of over-the-horizon radar systems to quickly detect and identify targets at extremely long range.

GESD currently seeks engineers to join us in these and other areas such as parallel processor architecture... performance monitoring/fault location...failover analysis...sensor systems design.... programmable processor research and design...reliability/maintainability analysis...HW/SW interfaces...ship integration...field installation and support.

At least 4 years of directly applicable experience is required, along with a BS degree in Electrical Engineering, Physics, Applied Math, Computer Science or Computer Engineering. Of special interest would be a background in Acoustic Signal Processing, Microwave Technology, Computer Architecture, Analog Design, Data Processing, Displays or Human Factors Engineering.

GE's highly competitive salary and benefits package includes extensive inhouse technical and management training. Syracuse is located in beautiful lake country, with many cultural and recreational attractions. The area is notable for its attractive housing and low cost of living. Apply by sending resume, indicating areas of professional interest, in confidence to:
GE-Government Electronic Systems Division, ATT: Program Manager, ADEDN, P.O. Box 309, Liverpool, NY 13088.

The Future Is Working At

Western Development Laboratories Division

We're the hottest company in the business!

Western Development Laboratories Division has dozens of contracts under way, many in multi-year programs, with a backlog stretching well into the 1990s. Our success is due to many factors-technological innovation, a reputation for quality and reliability, and a diverse set of capabilities, from software development to spacecraft construction.
You can find out more by applying for one of the following current openings

Systems/Satellite Transponder Design Engineers

Responsibilities will include analysis, development and design of satellite communications systems. Requires a BSEE, or equivalent, plus 5-8 years of experience in microwave transponder/subsystem design. Familiarity with all aspects of communications transponders required-TT\&C transponder design a plus. Respond to Dept. PF-EDN0514.

Systems/Satellite Data Receiver Engineers

Analyze, develop, and design survivable satellite data communications systems. Requires $3-10$ years' PCM modem experience (including phase lock loops and digital data recovery), a BSEE/MSEE or equivalent. Familiarity with all aspects of satellite data receiving equipment desired. Respond to Dept. PF-EDN0514.

Senior Communications Equipment Engineer

Define subsystem architecture, develop subassembly/assembly-level interface specs and TEMPEST design criteria, direct equipment circuit design and equipment procurement. Requires 10 years' related experience in military data, voice, and fiber optic communications systems. BSEE or equivalent. Experience with state-of-the-art technical control facility design a priority. Respond to Dept. PF-EDN0514.

COMSEC Engineers

System design, equipment specification, development, integration and testing of secure voice/data systems. Minimum 8 years' experience including design and integration of systems with current crypto equipment, modems and muxes. Should be familiar with red/black isolation requirements, Autodin, and DDN interfacing. BSEE or equivalent required. Respond to Dept. JP-EDN0514.

Principal Image Processing Engineer

Must possess an extensive knowledge of image processing subsystem design and implementation with 12 years of related experience. Requires a solid system hardware and software implementation background rather than theoretical systems analysis. Will provide technical guidance and be responsible for overseeing the technical progress of design and implementation of a total image exploitation segment. Responsible for the implementation and integration of the design verification prototype. Respond to Dept. JP-EDN0514.

Reliability Engineer

Minimum of 8 years' reliability engineering and IAW MIL-STD 785B experience applied to complex military ground electronics systems required. Must have experience in development of reliability math models, predictions, allocations, FMECA, reliability test plans, test procedures, data analyses, and test reports. Experience with radiation hardened parts programs desirable. BS/MS in EE, math/stats or equivalent required. Respond to Dept. PF-EDN0514.

Maintainability Engineer

Responsibilities include developing and conducting maintainability demonstration plans. Requires a minimum 8 years of experience in maintainability engineering IAW MIL-STD-470/471/472 contractual requirements. Also requires a $\mathrm{BS} / \mathrm{MS}$ in electrical engineering, math, stats or equivalent. Should have experience in the development of logistics support analysis plans and data IAW MIL-STD-1388-1A/2A and maintenance-oriented life cycle cost studies. Direct experience with large-scale military ground electronics systems and ability to include maintainability plan and test reports, LSAR plan/trade studies and LCC programs also necessary. Respond to Dept. PF-EDN0514.
Send your résumé, indicating appropriate department, to Ford Aerospace \& Communications Corporation, Western Development Laboratories Division, Professional Staffing, 3939 Fabian Way, M / S D04, Palo Alto, CA 94303-4697. An equal opportunity employer. Principals only, please.

Ford Aerospace \&
Communications Corporation

Engineers \& Scientists

Current Opportunities In INERTIAL INSTRUMENTS \& RADAR/COMMUNILCATIONS

Desien \& deveiopmer bsimse

- Inertial Instrument Design

Gyros-Accelerometers

- Inertial Navigation Systems Analyses
- Optimal Filtering Techniques
- Automatic Control Theory
- Closed Loop Control Techniques
- Microwave-RF
- Antennas
- Radar
- HW/SW Systems

PROIIGT ASSURANGE BS, BT

- Establish Test Equipment Requirements
- Reliability
- System Level Testing
- Inertial Instrument Fabrication \& Test
- Hardware/Software Quality
- Develop QA criteria for electromechanical components \& systems
- Process Control

Some people think only "snow" when they think Buffalo. We do get snow, and enjoy great skiing.

But in fact, Buffalo has more sunny days than other parts of the state. We average only 3 days/year when the mercury hits zero. We get less precipitation than Miami or Mobile. We enjoy a full 4 -season lifestyle.

You see, a lot more than snow is coming down in Buffalo. The excitement of our professional sports teams. Theatres. Art. The Buffalo Philharmonic. More than 1000 lively restaurants and clubs. 3000 acres of parks with sailing, swimming, tennis, golf-all kinds of family recreation.

And Buffalo's easy living is easily affordable. Good-sized houses, for example, cost less than half what they would in most other cities. What's more-commuting to and from Buffalo is a breeze. Transportation facilities are excellent.

A MAJOR BUFFALO ATTRACTION: BELL AEROSPACE TEXTRON.

WHERE YOUR CAREER FORGES AHEAD ON THE LEADING EDGE OF TECHNOLOGY.

Engineers with a keen eye to the future think "Bell" when they think Buffalo. Bell appeals to your zest for breakthrough technology in gravity measuring systems • inertial instruments like accelerometers and gyros • velocity meters • cooled instruments/cool laser mirrors • antenna systemsairborne, shipboard and land vehicle • automatic aircraft and microwave landing systems and more.

Brilliant "firsts" are a 50 -year tradition with Bell. With management strongly committed to initiative, we back you with the last word in design and test system resources.

Whatever your current discipline and experience, forge ahead by sending your resume with salary history to: David W. Pearl, Bell Aerospace Textron, P.O. Box One, Buffalo, NY 14240. Discover all the features that make Buffalo and Bell a great home base.

Technology...Bell's response to an ever-changing world.

Bell Aerospace TEXIRON

Division of Textron Inc.

...COMMITMENT

...INNOVATION

...EXCELLENCE

These were more than words to us when Westech began in 1981. It was our philosophy then, and today is an integral part of our business life. In fact, going in to our sixth year of producing successful career events and recruitment publications throughout America, another word can be added to the list...EXPERIENCE.
...EXPERIENCE in producing Career Expos that have realized cost effective recruiting results from coast to coast, with special emphasis in high technology communities of the WESTERN UNITED STATES...
..EXPERIENCE in publishing recruitment magazines that are specifically designed to reach experienced technical candidates in the Southern and Northern California markets.
...EXPERIENCE in delivering COMMITMENTS, INNOVATION and EXCELLENCE to our clients that constantly achieve cost effective recruitment results with our products.

Westech career Expo

Westech Career Expos are designed to put you face to face with experienced, currently employed and hard to reach Engineering, Computer, Data Processing and Software professionals. In 1987 Westech will produce over 25 events in 8 major West Coast and SunBelt markets.
Over the past six years, companies have been able to hire an average of 5 exempt level professionals per Career Expo attended. Surveys indicate, the cost effectiveness of our "open house format" is surpassed only by employer referral programs and 98 percent of all exhibiting companies return to recruit at future Westech events.
Once you've involved your company in a Westech event, you're sure to make us an on-going and integral part of your recruitment campaign.
For additional information on Westech Career Expos held in Santa Clara, CA; Los Angeles, CA; Long Beach, CA; San Diego, CA; Seattle, WA; Denver, CO; Phoenix, AZ; Dallas, TX; Austin, TX and other special locations, please call us today at (408) 970-8800.

High Technology Careers, the Nation's largest independently produced recruitment publication, blankets the Santa Clara Valley and neighboring counties with a circulation of over 330,000 copies.
HTC's distribution, utilizing the San Jose Mercury News, provides advertisers with the largest readership among high-technology professionals residing in Santa Clara and surrounding areas.

The extensive distribution coupled with favorable advertising rates makes High Technology Careers Northern California's most significant recruitment advertising media purchase.
High Technology Careers Magazine is published every other month, six times a year. Call today for closing dates and rate information. (408) 970-8800.

Southern California supports the nation's largest engineering and computer workforce, Professional Careers magazine delivers circulation of 120,000 to these technical professionals.
Our compilation of home addresses in Southern California consists of more than seventy publications, associations and user groups serving the engineering, programming and data processing communities.
Professional Careers is read by a select group of experienced professionals chosen solely by the trade journals that they read and the organizations that they belong to. The concentrated distribution of Professional Careers makes it Southern California's most targeted and cost-effective recruitment advertising media purchase.
Professional Careers Magazine is published every other month, five times a year. Call today for closing dates and rate information. (408) 970-8800.

When It Comes To Semiconductor Technology, We Have A Little More To Talk About.

We're the Semiconductor Sector of Harris Cor poration, a Fortune 200 leader with over $\$ 2$ billion in annual sales. For more than 20 years we've been at the forefront of Integrated Circuit innovation, and are now one of the dozen leading IC suppliers in the country. Using today's most advanced technologies-bipolar, CMOS, dielectric and oxide isolation, gallium arsenide and MNOS-we're proud of what we've done, and plan to do much more in the future. Continuing growth and success have opened the following exciting opportunities at various locations around the country:

DIGITAL FIELD APPLICATION MANAGER/ Mountain View, CA

ANALOG FIELD APPLICATION MANAGER/

Mountain View, CA
Two positions are available in Field Applications. These positions will be responsible for product design ins and interfacing with customers and sales regarding product application. In addition, responsibilities include providing applications support including technical seminars for our customers and field sales force, systems-level design ins and post sales technical support for your region. Travel will be required 30% of the time in order to support the region's customers. To qualify, a BSEE/MSEE as well as 5 years' experience are required.

ACCOUNT EXECUTIVE/
 Costa Mesa, CA
 ACCOUNT EXECUTIVE/

Marlton, NJ (Philadelphia area)
Responsibilities include sales to existing accounts and new account penetration in the
high end industrial and military markets. A BSEE and 3-5 years' experience in microelectronic sales are required. Design experience would be helpful.

Melbourne, Florida Opportunities:

SR. ASSEMBLY PROCESS ENGINEER

You will be responsible for yield improvement as well as analyzing process and equipment problems. You will also recommend corrective action and conduct tests to determine control over variables during production. In addition, you will sustain daily process, maintain and develop SPC and JIT programs and interface with off-shore plants. To qualify, you must have a BS degree, preferably in Engineering, Chemistry, Physics or Materials with 2 or more years' experience.

LEAD/STAFF ANALOG TEST ENGINEER

You will be responsible for driving SPC issues, identifying variances of tester capabilities and implementing corrective action for software or hardware controls to resolve or track variances. In addition, you will act and interface with R\&D on new product introductions. To qualify, you should have a BSEE and 4-6 years' experience using LPX and Teradyne IC test systems.

DATA ACQUISITION APPLICATIONS ENGINEERS

You will provide customers technical assistance for data acquisition product lines and prepare data sheets, application notes and technical briefs. You will also provide techni-
cal presentations to field sales and customers and conduct test evaluations and characterizations of circuits. You should have $4-6$ years circuit design/applications experience using multiplexers, S/H amplifiers, A/D and D/A converters. Broad familiarity with detailed specifications and applications of these devices is also required.
We also have opportunities available for the following positions:

- Semi-Custom Product Marketing/Applications Engineers

- Linear Product Marketing/ Applications Engineers
A BSEE and 3-5 years' applicable experience are required.

At Harris Semiconductor, we are always in search of Semiconductor Professionals in all technologies. So, please send your resume, in strictest confidence, to the ad dress listed below, even if your credentials do not happen to meet the requirements of these particular positions.
In addition to the challenge, Harris Corporation prides itself in maintaining an atmosphere condusive to personal and professional growth. Harris Semiconductor offers an excellent compensation and benefits package, including a 401 k savings program and profit sharing retirement plan, contributory life insurance, and major medical plans. In addition, vehicle allowance and incentive bonus are available for the field positions.
For immediate, confidential consideration, please send your resume, including salary requirements, to: Ron Skellie, Professional Staffing, Harris Semiconductor, MS53-003, Dept. EDN/ 0514, P.O. Box 883, Melbourne, Florida 32901-0101. We are an equal opportunity employer M/F/H/V.

C MODULA 2 PASCAL

Cross-Compiler Systems

- High performance, fieldproven software development systems producing extremely compact, fastexecuting, ROMable output code.
- Each cross-development package includes:
- C, Modula 2, or Pascal Cross-Compiler
- Macro Relocating CrossAssembler
- Object Code Librarian
- Object Module Linker
- Hexadecimal Format Loader [S-Records, Intel Hex, TEK Hex]
- Standalone Support Library [EPROMable, with full floating point support]
- All languages can be intermixed with assembly language
- Targets supported:

6301/03
 6801/03
 6809
 68HC11
 68000/08/10/12 68020/881/851 32000/32/81/82

- Available for following hosts: VAX: VMS/UNIX/ULTRIX PDP-11: UNIX/TNIX/VENIX 68000: UNIX System V
PC, XT,AT: MS-DOS
PowerNode: UTX/32

UNIX: TM of AT\&T Bell Labs
VAX, VMS, PDP-11, ULTRIX
TM of Dig. Equip. Corp.
TNIX: TM of Tektronix Inc.
VENIX: TM of VenturCom
PowerNode; UTX/32: TM of Gould Inc

INTROL CORPORATION 647 W. Virginia Street Milwaukee, WI 53204 [414] 276-2937

F Warren Dickson
Vice President/Publisher
Newton, MA 02158
(617) 964-3030

Diann Siegel, Assistant
Peter D Coley
Associate Publisher/
Advertising Sales Director
Newton, MA 02158
(617) 964-3030
Mary F Frissor

Mary E Frissora, Assistant
NEW ENGLAND
John Bartlett, Regional Manager
Chris Platt, Regional Manager
199 Wells Ave
Newton, MA 02159
(617) 964-3730

STAMFORD 06904
George Isbell, Regional Manager 8 Stamford Forum, Box 10277 (203) 328-2580

ROSELAND, NJ 07068
Daniel J Rowland, Regional Manager
103 Eisenhower Parkway
(201) 228-8620

PHILADELPHIA AREA
Steve Farkas, Regional Manager
999 Old Eagle School Rd
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager Randolph D King, Regional Manager
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60018
(312) 635-8800

DENVER 80206

John Huff, Regional Manager
270 St Paul St
(303) 388-4511

DALLAS 75234
Don Ward, Regional Manager
13740 Midway, Suite 515
(214) 644-3683

SAN JOSE 95128
Walt Patstone, Regional Manager Bill Klanke, Regional Manager Philip J Branon, Regional Manager Mark Holdreith, Regional Manager 3031 Tisch Way, Suite 100 (408) 243-8838

LOS ANGELES 90064

Charles J Stillman, Jr
Regional Manager 12233 W Olympic Blvd (213) 826-5818

ORANGE COUNTY/
SAN DIEGO 92715
Jim McErlean, Regional Manager 18818 Teller Ave, Suite 170 Irvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone, Regional Manager
1750 SW Skyline Blvd, Box 6
(503) 297-3382
UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manager
39A Bowling Green Lane
London EC/1R/OBJ UK
44-1-278-2152
Telex: 28339

SCANDINAVIA

Stuart Smith
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
FRANCE/ITALY/SPAIN
Alasdair Melville
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984

WEST GERMANY/SWITZERLAND/AUSTRIA

Wolfgang Richter
Sudring 53
7240 Horb/Neckar
West Germany
49-7451-7828; TX: 765450

ISRAEL

Igal Elan
Elan Marketing Group
13 Haifa St, Box 33439
Tel-Aviv, Israel
Tel: $972-3$-268020
TX: 341667
EASTERN BLOC
Uwe Kretzschmar
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-6285984
FAR EAST
Ed Schrader, General Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: (03) 366-8301
Telex: J2322609 DYNACO

TAIWAN

Acteam International
Marketing Corp
4F, No 87, Kwang-Fu N Rd
Taipei, Taiwan ROC
Telex 2004HORTEX
FAX. (02) 7604784
7604784

KOREA

Korea Media Inc
Rm 110, A-11 Bldg 49-4,
Hoihyundong 2-Ka, Chung-Ku
CPO Box 2314 , Seoul, Korea
Tel: 82-2-755-9880
Telex: K26?49
SINGAPORE
Cheny Tan Associates
Cheny Tan Asso
1 Goldhill Plaza
No 02-01
Newton Rd
Singapore 1130
Tel: 2549522
Telex: RS 35983 CTAL

PRODUCT MART

Joanne Dorian, Manager
475 Park Avenue South
New York, NY 10016
(212) 576-8015

CAREER OPPORTUNITIES/
CAREER NEWS
National Sales Manager
103 Eisenhower Parkway
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8610

Dan Brink
Western Sales Manager
2041 Business Center Dr
Suite 109
(714) $851-9422$

Diann Siegel
Boston Sales Representative
Newton, MA 02158
(617) 964-3030

Maria Cubas
Production Assistant
(201) 228-8608

Cahners Magazine Division
William Platt, President
Terry McDermott, Executive Vice President
Frank Sibley, Group Vice President
Tom Dellamaria, VP/Production \& Manufacturing

Circulation

Denver, CO: (303) 388-4511
Sherri Gronli, Group Manager
Eric Schmierer, Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R
Westphal, Cahners Reprint Service, Cahners Plaza,
1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018.
Phone (312) 635-8800.

Play to win．

In the rough and tumble electronics industry，you＇ve got to play hard to stay in the game as you rush for higher quality，lower costs，and increased production
Go for the goal at NEPCON East＇ 87
At NEPCON you have the home field advantage if you＇re respon－ sible for circuit design and packaging，fabrication，assembly，test and inspection．It＇s the world class event that brings it all together in electronics manufacturing for you and all the members of your technical team．

25th Anniversary Event

June 9－11， 1987
Bayside Exposition Center and World Trade Center Boston，Massachusetts

Product exhibition with hands－on demonstrations by over 500 leading companies－compare and evaluate before you buy
User－oriented Conference Program－the largest，most up－to－date learning forum for all disciplines of elec－ tronics manufacturing
A special edition of ADEE East－Automated Design and Engineering for Electronics－exhibits and con－ ference sessions that show how CAE and CAD for circuit design can benefit you
Electrotest－the Electronic Test Center－a special exhibitor segment and conference track where you＇ll find solutions to test problems
PC Boardwalk and InSurf－the exclusive fully－ operational production line demonstrating the latest techniques for high－quality，high－volume production of ＂busy＂multilayer circuits and assemblies

Kick off！

Start the game off right and preregister using the form below which entitles you to FREE admission to the exhibits．

NEPCON East＇87

Advance Registration Form（Exhibits Only）
Photocopy this form for all the members of your manufacturing team．

Mailing deadline：May 15，1987．After May 15， 1987 do not mail．For free admission to exhibits only，bring completed form to a badge typist at the NEPCON registration center．（No one under 18 will be admitted．）

Job Category（Check only one） A \square Circuit／System Packaging B \square Circuit／System Design C Production／Manufacturing	D Quality Control，Test \＆ Inspection Purchasing \square F Corporate Management	$\begin{aligned} & \text { G口 Sales } \\ & \text { H Research/Development } \\ & \text { I } \square \text { Other } \end{aligned}$
Business Category（Check only one）		
A \square Computers，Peripheral	E Medical Electronics	$1 \square$ Consumer Electronic
Equipment	$\mathrm{F} \square$ Aircraft，Missiles，Space，	Products
B Office or Business	Military	$J \square$ Automotive Electronics
Machine	\square Test and Measurement	or Appliances
\square Communications，	Equipment，Inst．	K \square Independent Research
Systems／Equipment	\square Electronic Components	Test Design
D Industrial Electronic	and Sub－Assemblies	$\llcorner\square$ Contract Manufacturing
Control Systems／Equipment		M \square Other

Control Systems／Equipment
Number of Employees in Your Company（Check only one）
CD 500－999 ED 3000＋
I＇m Interested in the following product categories．（Check all that apply） $\begin{array}{ll}01 \square \text { PC Design } & 03 \square \text { Circuit Assembly } \\ 02 \square \text { PC Board Fabrication } & 04 \square \text { Circuit Packaging }\end{array}$
A \square Please register me for exhibits only Free admission with this form．Save $\$ 10.00$ ．
B Please send more information and registration materials for the Conference Program
$\mathrm{C} \square$ Please send hotel information．
Phone（312）299－9311
Cut out and mail to：Cahners Exposition Group，Cahners Plaza， 1350 East Touhy Avenue，P．O．Box 5060．Des Plaines，IL 60017－5060 c） 1987 Reed Holdings，Inc．

B2

ADVERTISERS INDEX

ies Inc	307
Acculex Corp	264
Acheson Colloids Co	
Acopian Corp*	204
ADE Inc	182
Advanced Computer Instruments	305
Advanced Micro Devices.	12-13
Advanced Microcomputer	
Systems Inc	306
Airpax Corp/Frederick Div	319
Alco Electronic Products Inc	277
Aldec	120
AMP Inc	122-123
Amperex Electronic Corp*	109
Applied Microsystems Corp	14-15
Aries Electronics Inc	234
AT\&T Technologies	78-79, 299
Augat-Interconnection Systems	. 307
Autodesk	158
B\&C Microsystems	306
Beta Automation Inc	. 303
BICC-Vero Electronics Inc	. 202
Bliley Electric Co	311
BP Microsystems	304
Burndy Corp	172-173
Burr-Brown Corp	258
Bytek Corp	306
Caddock Electronics Inc	116, 117
Cadnetix Corp	124-125
Cahners Exposition Group	333
Calay Systems	.28-29
California Instruments Corp	301
Capital Equipment Corp	306
Carroll Touch Inc	291
Case Technology	149
Casio Inc	281
Cherry Electrical Products Inc	289
Chinon America Inc	
Chomerics Inc	295
Comlinear Corp	249
Conversion Devices Inc	305
Corning Electronics	262
Cubit/Proteus Industries Inc	. 205
Cybernetic Micro Systems	71
Cypress Semiconductor	
Data I/O Corp	
Datel	309
Deltrol Controls	. 306
Design Computation Inc	275
Dialight Components	251
Digelec Inc	303
Dionics Inc	221
Douglas Corp	
DSP Development Corp	150
Dynacircuits	
Elantec Inc	. 313
ElectroFilms Inc	
Electronic Business	. 53
Electronic Development Corp	287
Electronic Solutions	. 110
Emulex Corp	
E-T-A Circuit Breakers	304
Exar Corp	
Ferranti Interdesign Inc	134-135
Force Computers Inc	40-41
Ford Microelectronics	293
Ford Motor Co	240A-B
Fujitsu Microelectronics Inc^{*}	38-39
FutureNet/Div of Data I/O	
F\&W Communications	304
GE Calma	86-87
Genstar REI Sales Co	304
GE/RCA Solid State	-49, 184-185
Gigabit Logic	
Gould Recording Systems	
Grayhill Inc	245
Harris Microwave	
Semiconductor	170-171
Harris Semiconductor	
Products	75, 238-239
Heurikon Corp	

Hughes Aircraft Col	
Hybrid Systems Corp 145, 15	
Hypertronics Corp . 321	
E	
ILC Data Device Corp	
Industrial Devices Inc . 13	
In-Power**	
International Rectifer	
Introl Corp . 332	
Intusoft	
JAE Electronics Inc	
John Fluke	
Kearney/Waba	
Keithley Instruments 100	
Keithiey Instruments Systems Components . 297Kepco Inc . 267	
Key Tek Instrument Corp 46, 272	
Leader Instruments Corp 73	
Ledex Inc	
Lockheed Electronics/	
Environmental Test Labs	
Logic Devices . 271, 273	
Logical Devices Inc . 30	
LSI Logic Corp . C2	
3M Electronic Products 130-131	
Malco . 260	
Marconi Electronic Devices*	
Markenrich Corp . 30	
Matsuo Electronics	
Maxim Integrated Products 80	
Measurement Systems Inc 276	
Mentor Graphics Corp 10-11	
Mepco/Centralab . 136-13	
MetaLink Corp .	
Micro Switch* . 186-18	
MicroSim Corp	
Mini-Circuits Laboratories	
itsubishi Electronics Amer	
Inc/Semiconductor Div	
Monolithic Memories Inc	
Mouser Electronics . 29	
MWS Wire Industries 20	
Nanomask** . 38-3	
National Electric Cable 19	
National Instruments . 28	
National Machine Systems 4	
National Semiconductor Corp	

214-215, 218-219, 222-223, 224-225
NEC Corp
62-63
Nicolet Test Instruments Div
. 25
Nova Tran Corp
276
Novotechnik US Inc 282
Omation Inc
Omega Engineering Inc . 305
OrCAD Systems Corp . 154
Orion Instruments 45
Outlook Technology . 240
Pacer Technology
.263
Panasonic Industrial Co*47

Patton \& Patton . 305
Performance Semiconductor Corp
Philips Test \& Measuring
Instruments $\mathrm{Inc}^{* *}$
Planar Systems
47, 121
Plessey Semiconductor . 285
Polaroid Corp
285
315
Potter \& Brumfield 253
Precision Filters Inc
Precision Monolithics Inc
Programmable Logic
Projects Unlimited/FEME
.234
Pro-Log Corp
PTS Communications
Qua Tech Inc
Qualidyne Systems Inc
304

Qualidyne S
Racal-Redac

	254
Relco Products Inc	305
RLM Research.	304
Robinson-Halpern	303
Rockwell International	235
Rogers Corp	306
Rohde \& Schwarz**	109
Samtec Inc	. 279
Schroff	. 270
Scientific Calculations	. 314
SenSym	57
SGS Semiconductor Corp	54-55
Siemens AG**	157
Siemens Components Inc*	133, 247
Silicon Systems Inc	84, 85
SMC	305
Sohio Engineered Materials Co	96
Sony Corp of America	310
Spectrum Software	151
Sprague Electric Co	33, 97
Stantel Components Inc	90
Statek . . .	307
Sunrise Electronics Inc	268
Switching Power Inc	312
Systems General	303
Tatum Labs	304
Tekelec	127
Tektronix Inc	236-237
Tektronix-CAE Systems	. . 197
Teradyne Inc	128-129
Termiflex Corp	. 254
Texas Instruments Inc	189-192
Thomson Components-Mostek*	156-157
Tokin Corp	323
Torin Engineered Blowers	206
Toshiba America Inc	60-61
Toshiba America Inc/ Memory Div	. $42-43$
Toshiba Corp	302
TRW/LSI Products Div	23
TRW/RF Devices Div	174
Union Carbide Corp/ Electronics Div	
Universal Data Systems	231
US Instrument Rentals	303
Valid Logic Systems Inc	18-19
Versatec, A Xerox Co	. 159
Video Monitors Inc	. 294
VideoLog Communications	. 283
Visionics Corp	. 155
VTC Inc	. . 2
Wavetek Indiana Inc	. 261
Wavetek San Diego Inc	
WinSystems Inc...	. 307
Wintek Corp	304, 306
Xylinx Inc . .	. 152-153
Zilog Inc	

Recruitment Advertising

Bell Aerospace/Textron 329
Dunhill of Indianapolis 326
EG\&G Special Projects 326
Ford Aerospace 328
GE Military Electronics 327
Harris Corp Product Div 331
Micropolis 326
Omni Data326
326
*Advertiser in US edition
**Advertiser in International edition保

World electronics market to grow nearly $\mathbf{7 \%}$ annually

The world market for electronic equipment and components is expected to grow at a 6.9% rate in 1987 and at an average annual rate of 6.6% throughout the remainder of the 1980 s, according to the electron-ics-market research company Benn Electronics Publications Ltd (Luton, UK). The total dollar value of this market will be $\$ 413$ billion in 1987 and $\$ 500$ billion in 1990 (US dollars).

The "world," according to Benn Electronics, comprises the nations of Western Europe, North America, and the "Asia-Pacific" region-that is, the dominant free-market economies. In the United States, the 1986 market for electronic equipment and components grew at only a 0.9% rate, but the research company believes that that growth rate will be 5.7% in 1987. By contrast, the 1987 growth rates for Japan and Western European nations will be 8.2% and 7.5%, respectively. The remaining countries will see nearly 9% growth in 1987, with India showing the
highest rate- 18%.
Benn Electronics predicts that growth in the production of electronics equipment and components will be marginally higher than growth in consumption in the US and Western Europe. Far Eastern nations will be the chief beneficiaries of Japan's 1986 drop in production, which is traced to the appreciation of the yen and the consequent restrictions on exports. In South Korea, Singapore, Indonesia, Malaysia, and the Philippines, production growth will exceed 20%, and these countries will devote significant amounts of that productivity to exports. India will also experience an increase in production, but that increase will be largely stimulated by internal demand.

Benn Electronics divides the market into electronic-data-processing (EDP) equipment, consumer products, telecommunications products, military and related communications equipment, active and passive components, office equipment, control and instrumentation equipment, and medical and industrial
equipment. The three largest market segments in 1987 will be components (25.2\%), EDP (22.2\%), and the military (15.3%).

Market for logic synthesis to boom in next few years

Logic synthesis-the automatic conversion of behavioral specifications into structural circuit descriptions -will offer the next major opportunity in the market for electronicdesign tools, reports the Technology Research Group, a Boston-based consulting and market research company. The market for logic-synthesis tools is expected to grow from virtually nothing in 1986 to $\$ 200$ million in 1990.

The group regards logic synthesis as the next logical step in design automation and the final step in bridging the gap between concept and design. "We expect logic synthesis will increase productivity more than any other electronic design tool in today's market," says Andrew S Rappaport, president of the research firm. "And where there's productivity, there's money. For 1987, we expect [that] logic synthesis will generate about $\$ 5$ million in revenues as a handful of companies begin to offer products."

Logic synthesis will allow designers to experiment simply and quickly with different ways of improving a system's design, says Rappaport. The tool will eliminate much of the time-consuming drudgery involved in producing a detailed structural description for each new design. "The first customers for logic synthesis are already doing a primitive form of it-in developing programmable logic devices," Rappaport observes. "Logic-synthesis tools will offer a similar process, but they'll be able to handle much greater complexity, and more kinds of circuits, including gate arrays and other user-specific chips."

dc to 2000 MHz amplifier series

SPECIFICATIONS

Model	Frequency MHz	Gain, dB $(\mathbf{m i n})$.	Max. Power dBm (typ)	NF dB (typ)	Price \$	
Ea.						

designers amplifier kit, DAK-1

5 of each model, total 30 amplifiers
only \$49.99

Unbelievable, until now. ..tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.plastic-packaged units are 50ohm input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer from 7 to 21 dB gain, 0 to +11 dBm output, noise figure as low as 3.5 dB (5.5 dB typical), and up to DC-2000MHz bandwidth.
*3:1 load VSWR for the MAR-8
Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each*

$\begin{aligned} & \text { Size } \\ & \text { (mils) } \end{aligned}$	Tolerance	Temperature Characteristic	Value
80×50	5\%	NPO	10, 22, 47, 68, 100, 470,680, 1000 pf
80×50	10\%	X7R	2200, 4700, 6800, 10,000 pf
120×60	10\%	X7R	.022, .047, .068, 1 的

Typical Biasing Configuration

뮨Mini-Circuits
P.O. Box 350166, Brooklyn. New York 11235-0003 (718) 934-4500

Domestic and International Telexes: 6852844 or 620156

WORLD HEADQUARTERS: 233 KANSAS ST.. EL SEGUNDO, CA 90245, U. S.A. (213) 772-2000. TWX 910-348-6291, TELEX 472-0403
EUROPEAN HEADQUARTERS: HURST GREEN, OXTED, SURREY RH8 9BB, ENGLAND TELEPHONE (0883) 713215. TELEX 95219

WHAT COULD YOU DO WITH A FUTURENET WORKSTATION?

From design entry to simulation and circuit board layout, your applications are virtually unlimited with a FutureNet ${ }^{\circledR}$ Workstation.

DESIGN ENTRY. FutureNet raises design entry to a higher level. Create your design with either behavioral or structural descriptions, using any com bination of equations, truth tables, state diagrams or schematics. The system automatically performs logic synthesis, converting your descriptions into a master schematic.
ASIC DEVELOPMENT. Develop programmable logic devices (PLDs), gate arrays or other complex semicustom devices with your FutureNet Workstation. Our high-speed simulation capabilities help you debug, refine and test.

ANALOG DESIGN. FutureNet handles analog circuits with equal ease. Advanced simulation techniques and highly accurate libraries help you improve reliability and predict manufacturing yield before you build hardware. PCB LAYOUT. Lay out circuit boards up to 32×32 inches and 10 layers deep in a fraction of the time it takes manually. A multi-strategy auto-rơuting system offers a choice of several sophisticated routines for optimizing boards.
NETWORKING. Network several workstations together with our high performance file server, and create a complete engineering environment that permits file and peripheral sharing and links to existing VAX systems.

Call us today and get serious CAE software tools right on your desk. Once you've used a FutureNet Workstation, you'll wonder how you ever got along without it.

1-800-547-4000 Dept. 700
In Oregon, call 1-503-684-3000.

WHAT WOULD YOU DO WITHOUT IT?

[^22]
FutureNet

A Data I/O Company

[^0]: Advertising and editorial offices: 275 Washington St, Newton, MA 02158. Phone (617) 964-3030. Subscription offices: 270 St Paul St, Denver, CO 80206. Phone (303) 388-4511. EDN is circulated without charge to those qualified Subscription to others: US, \$95/year, \$6/copy; Canada and Mexico, \$10/year, \$8/copy, Europe Air Manl, \$135/year, $\$ 10 / c o p y$, all other nations surface mail, $\$ 135 / y e a r$, \$10/copy; all other nations Air Mail, $\$ 200 / y e a r$. Special issue prices © 1987 by Reed Publishing USA, Division of Reed Holdings Inc. All rights reserved.

[^1]: Cahners Publishing Company \square A Division of Reed Publishing USA Specialized Business and Consumer Magazines for Building \& Construction \square Interior Design \square Electronics \& Computers \square Foodservice \& Lodging \square Manufacturing \square Book Publishing \& Libraries \square Medical \& Health Care \square Child Care/Development

[^2]: Europe: RIVA Terminals Ltd., England, Phone: 04862-71001, Telex: 859502 / Australla: Entertainment Audio Pty. Ltd., Phone: (08) 363-0454 or (008) $888444 /$ Brazil: Comicro informatica E Tecnologia Ltda., Phone: (044) 224-5646

[^3]: *PDOS is a trademark of Eyring Research Institute, Inc
 UNIX is a trademark of AT\&T Bell Laboratories

[^4]: MONTANA, Components West, (206) 885-5880; NEVADA, Elrepco, Inc., (415) 962-0660; NEW ENGLAND, Datcom, Inc., (617) 891-4600; NEW HAMPSHIRE, Datcom, Inc., (617) 891-4600; NEW JERSEY, Nexus-Technology, 201) 947-0151; NEW MEXICO, Summit Sales, (602) 998-4850; NEW YORK, Nexus Technology, (201) 947-0151; PI-tronics, (315) 455-7346; NORTH CAROLINA/SOUTH CAROLINA, Montgomery Marketing, Inc. (919) 467-6319; NORTH DAKOTA/SOUTH DAKOTA, Electric Component Sales, (612) 933-2594; OHIO, Steffen \& Associates, (216) 461-8333; (419) 884-2313, (513) 293-3145; OKLAHOMA, MIL-REP AsSociates, (214) 644-6731; OREGON, Components West, (503) 684-1671; PENNSYLVANIA, Steffen \& Associates, (412) 276-7366; RHODE ISLAND, Datcom, Inc., (617) 891-4600; TENNESSEE, Montgomery Marketing, Inc., (205) 830-0498; TEXAS, WEST VIRGINIA, Steffen \& Associates, (419) 884-2313; WASHINGTON, Components West, (206) 885-5880, (509) 922-2412; WISCONSIN, Carlson Electronics, (414) 476-2790, Electric Component Sales, (612) 933-2594; WYOMING, Straube Associates Mountain States, Inc., (303) 426-0890; CANADA, BRITISH COLUMBIA, Components West, (206) 885-5880; ONTARIO, Electro Source, Inc., (416) 675-4490, (613) 726-1452; QUEBEC, Electro WYOMING, Straube Associat
 Source, Inc., (514) 694-0404

[^5]: Distributed by Hall-Mark, Pioneer, Graham, Diplomat and Bell. Authorized Maxim Representatives: Alabama, (205) 830-4030; Arizona, (602) 860-2702; California, (408) 727-8753, (619) 546-1933; (714) 739-8891; Colorado, (303) 841-4888; Connecticut, (203) 775-0494; Florida, (305) 365-3283; Georgia, (404) 992-7240; Idaho, (503) 620-1931; Illinois, (312) 956-8240; Indiana, (317) 849-4260; Iowa, (319) 377-8275; Kansas, (316) 838-0884; Maryland, (301) 583-1360; Massachusetts, (617) 449-7400; Michigan, (313) 499-0188; Minnesota, (612) 944-8545; Missouri, (314) 291-4777, (816) 356-6340; Montana, (503) 620-1931; New Hampshire, (617) 449-7400; New Jersey, (609) 933-2600; New Mexico, (505) 884-2256; New York, (516) 543-0510, (315) 437-8343; North Carolina, (919) 846-6888; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (918) 832-7747; Oregon, (503) 620-1931; South Carolina, (704) 365-0547; Texas, (214) 386-4888, (512) 451-2757, (713) 778-0392; Utah, (801) 266-9939; Virginia, (703) 255-5556; Washington, (206) 453-8881; Wisconsin, (414) 476-2790. Canada, (416) 238-0366, (604) 439-1373, (613) 726-9562, (514) $337-7540$.

 United Kingdom, Maxim UK Ltd., 0735-75255, Dialogue Distribution, Ltd., 0276-682001, Thame Components, Ltd., 084-421-4561, STC Electronic Services, 02-792-6777. Maxim is a registered trademark of Maxim Integrated Products. © 1987 Maxim Integrated Products.

[^6]: ${ }^{\text {r"W Trademark of Texas Instruments Incorporated }}$ © 1987 TI.

[^7]: *UNIX is a trademark of AT\&T. **Ethernet is a trademark of Xerox Corporation.

[^8]: A 20-MHz $80386 \boldsymbol{\mu} \mathbf{P}$ and its three $\mathbf{1 6 - M H z}$ support peripherals form the core of a 32-bit computer. The support chips use the same microinstruction set that the μP uses.

[^9]: The Type 1787 Current Shunt Resistor Networks achieve the combination of performance requirements necessary to meet the demands of precision current measurement circuits, including laboratory and bench-type instrumentation

[^10]: CIRCUIT BREAKERS

 | 15 | 31 | 39 | 15 | 0 | 0 | 6.4 | 5.4 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 HEAT SINKS

 | 26 | 63 | 11 | 0 | 0 | 0 | 2.7 | 6.0 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^11]: Source: Electronics Purchasing magazine's survey of buyers

[^12]: FOR FREE ON-LINE INFORMATION, dial
 1-800-345-7335 with any 80-column ASCII terminal or PC and a 300 or 1200 baud modem (EVEN or IGNORE parity, 7 data bits, 1 stop bit). At "Enter Response Code," type TIGRAFX. In Conn. dial (203) 852-9201.
 ${ }^{\text {TM }}$ MegaChip is a trademark of Texas Instruments Incorporated. CGA, EGA, and PGC are trademarks of International Business Machines Corporation. DGIS is a trademark of Graphic Software Systems, Inc. MS. Windows and MS-DOS are trademarks of Microsoft Corporation. VAX is a trademark of Digital Equipment Corporation
 (8) IBM is a registered trademark of International Business Machines Corporation.
 26.4537
 (C) 1987 TI

[^13]: WorkSystem, DDSC, TekWriter are trademarks of Tektronix, Inc. HILO is a registered trademark of GenRad, Inc.
 SPICE is based on Berkeley SPICE, University of California at Berkeley Interleaf is a trademark of Interleaf, Inc.
 Apollo is a registered trademark of Apollo Computers, Inc. DEC is a trademark of Digital Equipment Corporation

[^14]: *Mounted only on one side of board.

 * Mounted on both sides of board.

[^15]: *Source: Infocorp 1987
 ** For IBM PC/XTS, PC/ATs, and compatibles. Standard PCs need to be upgraded with a hard disk (10 Mbyte, minimum) and a larger power supply.
 Series 32000 is a registered trademark of National Semiconductor Corporation.

[^16]: PC ADD-IN COMPANIES USING SERIES 32000
 Selected OEMs
 Aeon Technologies, Vail, C0 (303) 986-3599
 Cybertool Systems USA, San Jose, CA (408) 263-1700
 Definicon Systems, CA (818) 889-1646
 DFE Electronic Data Systems, CA (415) 829-3925
 Hightec EDV Systems, Saarbrücken, Germany
 Matrox Electronic Systems, Quebec, (514) 685-2630
 Opus Systems, Cupertino, CA (408) 446-2110
 Sritek, Cleveland, 0 OH (216) 526-9433
 Zaiaz, Huntsville, AL (205) 881-2200
 Selected VARs
 Analog Design Tools Lattice Logic USA
 Auto-Trol Technology Cambridge Graphics Computervision Oasys Hightec EDV Systems

[^17]: IBM is a registered trademark of International Business Machines Corporation
 (C) 1987 National Semiconductor

[^18]: Series 32000 is a registered trademark of
 National Semiconductor Corporation.
 © 1987 National Semiconductor Corporation.

[^19]: Casio, Inc. Consumer Products Division: 15 Gardner Road, Fairfield, NJ 07006 New Jersey (201) 882-1493, Los Angeles (213) 803-3411

[^20]: Acquistion and Arbitry

[^21]: 130 to 4000 Watts • SELV Magnetics • 2 to 48 Volts • Made in USA • Rugged Packaging • Fully Regulated • Up to 400 Amps
 Thermal Protection - Short Circuit Proof - 50 Degree C Power Rating • 3750 VRMS I/O Isolation - Optimum Price/Performance

 TWX 5102201528

[^22]: Data I/O Corporation 10525 Willows Road N.E., PO: Box 97046. Redmond. WA 98073-9746, U.S. A. (206) 881-6444/Telex 15-2167 FutureNet 9310 Topanga Canyon Boulevard, Chatsworth, CA $91311-7528$ (818) 700 -0691/Telex $910-494$-2681
 Data I/O Canada 6725 Airport Road, Suite 3C2, Mississauga, Ontario L4V 1V2 (416) $678-0761$ /Telex 06968133
 Data I/O Europe World Trade Center, Strawinskylaan 633, 1077 XX A Amsterdam, The Netherlands (20) 222866 /Telex 16616 DATIO NL Data 1/O Japan Sumitomoseimei Higashishinbashi Bldg., 8F, 2-1.7. Higashi-Shinbashi, Minato-ku, Tokyo 105, Japan

