

High-temperature, rad-hard op amps

Encryption ICs
Designer's Guide to
EDIF-Part 1
Technical-article database index

Diversity complicates capacitor selection

LET WESTCOR POWER YOUR SYSTEM INTO THE 21ST CENTURY.

Westcor VI-100 ${ }^{\text {TM }}$ DC-DC converters put you ahead in the space race by putting more power - up to 200 watts - into a remarkably compact $2.4 \times 4.6 \times$.47 inch 6 oz . modular package. Patented megahertz operation, the key to attaining such stellar power density, also reduces output noise and ripple. Booster modules provide kilowatts of power by simple, one wire, Gating Pin Paralleling with current sharing.

VI-100 converters support input voltages from 10 to 425 VDC and isolated outputs from 2 to 48 VDC . That means there's a Westcor converter for almost every system need in the galaxy, including military and telecommunications applications. And Westcor
offers UL, CSA and VDE (TUV)-approved models for distributed power or other 110/220 off-line systems. All VI-100s are encapsulated and built to take it - their MIL 810 and MIL217D specs illustrate it and our minimum two-year warranty guarantees it.

Industrial and Military grade modules with 3 and 5 year warranties and special testing are also available.

Find out more about Westcor Megahertz DC-DC
 converters and how they can power your system designs to new dimensions. Call us at 408-395-7050, TWX 910-240-2108.

If you need smooth, fast frequency shifting, our synthesizers can dish it out.

Today's sophisticated radar and communications systems can call for 10 MHz frequency changes at the drop of a microsecond.

Wavetek's Model 5135A can do it, and with practically no close-in phase noise or hopping spurs. As a frequency-agile local oscillator, it's so fast it can make scrambled communications almost impossible to decode and can greatly improve the accuracy and dynamic range of radar. In the lab or in the field, it can duplicate frequency hopping, FM or sweeping under computer control.

Close behind is our own Model 5130A, with switching time of 3 to 20 microseconds. Like the Model 5135A, it has
> our patented* Direct Digital Synthesis for phasecontinuous switching. Both models offer a 100 KHz to 160 MHz frequency range with .001 Hz resolution.

> They also offer the element of surprise, with prices far below what you'd expect to pay. To find out more, please call Applications Engineering at [619] 279-2200, Ext. 303. Or write Wavetek San Diego, Inc., 9045 Balboa
> Ave., P.O. Box 85265,
> San Diego, CA 92138.
> TWX 910-335-2007.

> Circle 3 for Demonstration

Circle 42 for Literature

ALLOTHERS PALE BEFORE US

No other color graphics terminal can compare to the GR-1105. In fact, you'd have to spend an extra five or ten thousand dollars to get something even close.

The GR-1105's screen is brighter than anything else in its price class. It's also sharper. With three times the resolution of similarly priced terminals. And sixty times more addressable points ($32 \mathrm{~K} \times 32 \mathrm{~K}$).

Plus the GR-1105 is perfect for people who hate to wait. It's twice as fast as its price competitors. And updates over one and a half times more data.
So look into the GR-1105. You'll see it's the one terminal that makes all others look pale.

> Call Martin Nelson at (408) 943-9100 today.

N S T R U M E N T S © 1986 Seiko Instruments USA, Inc.

CIRCLE NO 153

On the cover: You can bypass a variety of problems by populating your pc boards with capacitors, but selecting the best capacitor type for a given application isn't a trivial task. See pg 116. (Photo by Visual Conspiracy, courtesy AVX Corp)

DESIGN FEATURES

Special Report: Capacitors
Choosing capacitors often involves a tradeoff among cost, performance, and mounting considerations. This report discusses the parametric and physical aspects of several types of capacitors that are suitable for soldering to pc boards, and it presents a representative sampling of recently introduced devices.-Bill Travis, Senior Editor

Composite amplifiers yield high speed and low offset

You can find an op-amp technology that excels in any one performance area, but today's applications often demand high performance in several areas. You must therefore employ some ingenious circuitdesign techniques to circumvent the limitations.-Jim Williams, Linear Technology Corp

Designer's Guide to EDIF-Part 1

The existence of a standard data format would help design engineers transfer data easily between CAE/CAD systems, or to and from a device manufacturer. The Electronic Design Interchange Format (EDIF) proposes to be such a standard. - Esther Marx, Hart Switzer, and Mike Waters, Motorola Inc

ISDN terminals simplify data transmissions

The Integrated Services Digital Network (ISDN) digitizes voice signals to provide a complete digital link from end user to end user. The result is a common communication link-the telephone systemthat provides access to all forms of communication. A recently introduced IC set can simplify the implementation of ISDN ter-minals.-Tony O'Toole, Advanced Micro Devices

Flexible PGA designs require few components

Programmable-gain amplifiers (PGAs) add great flexibility to dataacquisition systems yet require only a few components. You can use PGAs in your circuits to amplify low-level signals precisely, to reduce common-mode signals, to limit signal bandwidth, and to minimize amplifier offset effects.-Akavia Kaniel, Intech Inc

EDN Technical-Article Database Index

EDN's semiannual database index lists articles published from May through October 1986 in EDN, Electronic Design, Electronics, Electronic Products, Computer Design, and Digital Design.-EDN Staff

Continued on page 7

[^0]
The test system for people short on time and space.

Get a head start with Fluke's 1752A Data Acquisition System.

You could spend a lot of time and energy designing a system from a pile of hardware. And then face the task of configuring the software to make it work. Or you could just slide the 1752A into your system. We've integrated the measurement and stimulus capabilities and the computing power, so you don't have to waste time putting the pieces together yourself.

What's more, we help you get your system up and running with application
assistance, training and consulting. You can count on Fluke's world-wide service, too.

And if you're building a system for resale, we can save you money and headaches. Competitive OEM discounts and high-quality manufacturing help make your business a success.

Get your test system off to a fast start with the fully integrated 1752A Data Acquisition System. Contact your local Fluke Sales Engineer, or call 1-800-426-0361.

SPECIFICATIONS
MEASUREMENT AND CONTROL OPTIONS: analog input, analog output, status $1 / 0$, counterflotalizer, sequence-of-events ANALOG MEASUREMENT SPEED: $1,000 / \mathrm{s}$
SIGNAL CONDITIONING: dc and ac voltage, current, thermocouple, RTD, strain
STORAGE: 400 Kbytes floppy disk, 3 Mbytes RAM, 2 Mbytes non volatile RAM
INTERFACES: RS-232-C, RS-422, IEEE-488, paralle|
TOUCH-SENSITIVE DISPLAY: 640×224 dots, 60 touchkeys
SOFTWARE: BASIC, FORTRAN, Flare application packages

If you're designing a system that will bandle sensitive data, you might require a cryptographic means of protecting the data against unauthorized access. To help you implement such a scheme, you can select one of several ICs (pg 63).

TECHNOLOGY UPDATE

Availability of cryptographic ICs augurs the increasing use of data encryption

As the need for data encryption becomes increasingly evident because of the increase in traffic over satellite and microwave links, cryptographic schemes must be commercially available and economically feasible.-Chris Terry, Associate Editor

Specially processed operational amplifiers 75 meet rad-hard and high-temperature needs

Military and aerospace applications have placed severe environmental demands upon analog components for some time, but don't overlook the possibility of using the parts specially processed to meet those demands for your own, more terrestrial, and in some cases even subterranean, applications.-Jim Wiegand, Associate Editor

PRODUCT UPDATE

CMOS dynamic-RAM-controller ICs 85
Self-calibrating l6-bit A/D converter 88
Handheld calculator 92
Scanning head 94

DESIGN IDEAS

Heater controller uses inexpensive parts 241
LCD drivers minimize component space 242
Transistor array squares control current 244
Sampling phase detector simplifies a PLL 246
Programmable integrator has 6-decade range 250
Continued on page 9

THE DIFFERENCE IS TELESIS.

Imagine facing the routing assignment at left. Almost nine thousand connections. 1318 EICs at .38 density. And a project schedule to meet. It's a task you wouldn't begin without careful planning and an expert dedicated to the task.

That's why we developed INSIGHT-a new, AI router that makes every PCB designer an expert designer. INSIGHT is based on the cumulative knowledge gained by routing hundreds of board designs. All you need to do is describe the board and the desired design rules, and INSIGHT automatically maps out an optimized routing strategy for that board. The result: high completion rates and high quality layouts.

In addition to virtually assuring routing performance, INSIGHT delivers speed. In competitive tests, INSIGHT completed boards up to ten times faster. With all that performance and speed, you'll consistently meet your design schedules.

Want some expert information on

(1-800) 343-2048, In MA, (617) 256-2300

VP/Publisher
F Warren Dickson
VP/Associate Publisher/Editorial Director Roy Forsberg Editor
Jonathan Titus
Managing Editor Rick Nelson
Assistant Managing Editor Joan Morrow
Special Projects Gary Legg
Home Office Editorial Staff 275 Washington St, Newton, MA 02158 (617) 964-3030

Tom Ormond, Senior Editor Bill Travis, Senior Editor Deborah Asbrand, Associate Editor Joanne Clay, Associate Editor
Tarlton Fleming, Associate Editor Eva Freeman, Associate Editor Clare Mansfield, Associate Editor Charles Small, Associate Editor George Stubbs, Associate Editor Chris Terry, Associate Editor Jim Wiegand, Associate Editor
Valerie Lauzon, Staff Editor
Helen McElwee, Staff Editor
Cynthia B Rettig, Staff Editor Steven Paul, Production Editor

Editorial Field Offices
Margery S Conner, Regional Editor Newbury Park, CA: (805) 499-7901
Bob Cushman, Special Features Editor
Port Washington, NY: (516) 944-6524
Chris Everett, Regional Editor San Jose, CA: (408) 296-0868
Steven H Leibson, Regional Editor Boulder, CO: (303) 494-2233
J D Mosley, Regional Editor Arlington, TX: (817) 465-4961
David Shear, Regional Editor San Jose, CA: (408) 296-0868
Maury Wright, Regional Editor
San Diego, CA: (619) 748-6785
Peter Harold, European Editor 0603-630782
(St Francis House, Queens Rd, Norwich, Norfolk NR1 3PN, UK)

Contributing Editors
Robert Pease, Bob Peterson, Don Powers
Editorial Services
Kathy Leonard, Office Manager
Loretta Curcio, Nancy Weiland, Sharon Gildea Art Staff
Kathleen Ruhl, Art Director Roseanne D Coveney, Graphic Designer Chin-Soo Chung, Graphic Designer Deborah Queally, Graphic Designer Production/Manufacturing Staff William Tomaselli, Production Supervisor Donna Pono, Production Manager Jane W Sullivan, Production Manager Beth Ann Cooper, Production Assistant

Diane Malone, Composition
Graphics Director Norman Graf
VP/Production/Manufacturing Wayne Hulitzky
Director of Production/Manufacturing John R Sanders

VP/Research Ira Siegel
Director of Marketing Communications Deborah Virtue
Marketing Communications Jennifer Ware, Communications Manager Corie Rand, Promotion Coordinator

EDITORIAL

Though it's meant to help US IC makers, the US-Japan Semiconductor Trade Agreement is filling Japanese coffers and driving US manufacturing offshore.

NEW PRODUCTS

Integrated Circuits . 257
Computers \& Peripherals
266
Components \& Power Supplies . 270
Test \& Measurement Instruments . 278
CAE \& Software Development Tools . 283
PROFESSIONAL ISSUES
303
Laid-off engineers find the experience painful but survivable.-Deborah Asbrand, Associate Editor

LOOKING AHEAD

Market for optical computers to be worth \$1B by 2000
reaches factory floor: Market to top $\$ 1.7 \mathrm{~B}$ by ' 90 .

DEPARTMENTS

News Breaks 19
News Breaks International 22
Signals \& Noise 30
Calendar 46
Readers' Choice 98
Leadtime Index 112
Literature 296
New Books 299
Business/Corporate Staff 301
Career Opportunities 308
Advertisers Index 323

[^1]

It's no secret-there's a lot of uncertainty in the marketplace. You never know if the company you're dealing with today will still be around to service you tomorrow. And that's a chance you can't take-especially in the military market.

With INMOS, you're not taking any chances. We have a seven-year history of supporting all major military defense programs with static and dynamic RAMs. Our fabrication facilities are fully compliant with MIL-STD-883C; with military burn-in, performance testing and quality assurance conducted in Colorado Springs.

We have your future in mind with our new CMOS military SRAMs (with performance to 35 ns over the full military temperature range) and military low power battery backup CMOS SRAM products. We're the only company in the world to produce 64 K and 256 K DRAMs with RAS access times down to 80 ns , and we're going to keep on producing and servicing innovative military products year after year.

For military products you can depend on, count on INMOS-the beginning of a very good memory.

16K SRAMs		
Device	Process	Access Times
IMS1400M (x1)	NMOS	$45,55,70 \mathrm{~ns}$
IMS1420M (x4)	NMOS	$45,55,70 \mathrm{~ns}$
IMS1403M (x1)*	CMOS	$35,45,55 \mathrm{~ns}$
IMS1423M (x4)	CMOS	$35,45,55 \mathrm{~ns}$

64K CMOS SRAMs	
Device	Access Times
IMS1600M $(\times 1)^{*}$	$45,55,70 \mathrm{~ns}$
IMS1620M $(\times 4)^{*}$	$45,55,70 \mathrm{~ns}$
IMS1624M $(\mathrm{OE}, \times 4)^{*}$	$45,55,70 \mathrm{~ns}$
IMS1630M $(\times 8)^{*}$	$45,55,70 \mathrm{~ns}$

MILITARY DRAMs		
Device	Process	RAS Access Times
IMS2600M (64Kxl)	NMOS	$100,120,150 \mathrm{~ns}$
IMS2800M (256Kx1)	CMOS	$80,100,120,150 \mathrm{~ns}$
IMS2801M (256Kxl)	CMOS	$80,100,120,150 \mathrm{~ns}$

*Also available os Low Power Battery Backup CMOS SRAMs with Idr of $10 \mu \mathrm{~A}$ (typical lcc at 2 V at 25° centigrade)
inmos, and IMS are trademarks of the INMOS Group of Companies.

TOSHIBA.THE POWER

AREA SALES OFFICES: CENTRAL AREA, Toshiba America, Inc., (312) 945-1500; EASTERN AREA, Toshiba America, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America, Inc., (408) 244-4070; SOUTHWESTERN REGION, Toshiba America, Inc., (714) 752-0373; SOUTH CENTRAL REGION, TOSniba America, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (404) 493-4401; MAJOR ACCOUNT OFFICE, POUGHKEEPSII, NEW YORK, Toshiba America, Inc., $9144462-5710$; MAJOA ACCOUNT OFFICE, BOCA RATON, FLOAIDA, TOshiba America, Inc.,(305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, MOntgomery Marketing, Inc.
 $712-0011$, (714) 957-3367, (San Diego County), Eagle Technical Sales, (619) 743-6550; COLORADO, Straube Associates Mountain States, Inc., (303) 426-0890; CONNECTICUT, Datcom, Inc., (203) 288-7005; DISTRICT OF COLUMBA, A1soo M. DeVoe Company, (317) 842-3245; LOUISIANA, MIL-REP ASSociates, (713) 444-2557; MAINE, Datcom, Inc., (617) 891-4600; MARYLAND, AboTek, (301) 825-0775; MASSACHUSEITS, Datcom, Inc. (647) 891-4600; MICHIGAN,

We are the leader in 1Mb DRAMs. In 256K static RAMs, CMOS EPROMs and 1 Mb ROMs. Yet, people still think of us only as the world leader in CMOS and NMOS static RAMs.

We are the world leader in CMOS and NMOS static RAMs, in $16 \mathrm{~K}, 64 \mathrm{~K}$ and 256 K byte wide memory products. We make the fastest $2 \mathrm{~K} \times 8$ at 35 ns and also a $4 \mathrm{~K} \times 4$ static RAM at 35 ns . We pioneered the $8 \mathrm{~K} \times 8$ CMOS static RAM and are now offering a $64 \mathrm{~K} \times 1$ (55 ns) and $32 \mathrm{~K} \times 8$ CMOS static RAM.

But we make more than static RAMs. As you can see from the chart, we have a complete line of DRAMs, CMOS, and NMOS ROMs, EPROMs, and one time programmables. And they are all in volume production today.

Tradition of being first.

We were also the first to introduce the 1 Mb DRAM and we're now the market leader. We were one of the first suppliers of the 256 K CMOS static RAM. We were a leader with the 256 K ROM and within a year of introduction, we shipped more than all other suppliers combined. And we are matching that with our 1 Mb CMOS mask ROM.

So you can see that we have the capability to supply the memory products you want-when you want them.

That's memory power; that's Toshiba.

TOSHIBA MEMORY PRODUCT SUMMARY									
Part no.	ORG.	Process	samples	Prod.	SPEED	sorts	S availlab	BLE (ns)	PACKAGE OPTIONS
DYNAMIC RAMS									
TMM41256P	256KX1	NMOS	YES	YES	120	150			P / T
TMM41257P	256 KXI	NMOS	YES	YES	120	150			P / T
TMM41464P	64 KX 4	NMOS	YES	YES	120	150			P
TC511000P/J	$1 \mathrm{MbX1}$	CMOS	YES	2Q'86	100	120			P/J
TC511001P/J	$1 \mathrm{MbX1}$	CMOS	YES	2Q'86	100	120			P/J
TC511002P/J	$1 \mathrm{MbX1}$	CMOS	YES	2Q'86	100	120			P/J
TC514256P/J	256 KX 4	CMOS	YES	2Q'86	100	120			P/J
TC514258P/J	256 KX 4	CMOS	YES	2Q'86	100	120			P/J
STATIC RAMS									
TMM2016AP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2016BP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2015AP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2015BP	2KX8	NMOS	YES	YES	90	100	120	150	P
TMM2064P	8KX8	NMOS	YES	YES	100	120	150		P
TMM2063P	$8 \mathrm{KX8}$	NMOS	YES	YES	100	120	150		P
TC5504AP	4 KXI	CMOS	YES	YES	200	300			P
TC5514AP	$1 \mathrm{KX4}$	CMOS	YES	YES	200	300			P
TC5516/17AP	2KX8	CMOS	YES	YES	200	250			PFY
TC5517/18BP	2 KXX 8	CMOS	YES	YES	200	250			PFY
TC5517/18CP	2KX8	CMOS	YES	YES	150	200			PFY
TC5565P	8KX8	*CMOS	YES	YES	120	150			PFY
TC5565AP	8KX8	* CMOS	2Q'86	2Q'86	100	120			PFY
TC5563AP	8KX8	* CMOS	2Q'86	2Q'86	100	120			PFY
TC5564P	$8 \mathrm{KX8}$	CMOS	YES	YES	150	200			PY
TC55257P	32KX8	*CMOS	YES	YES	100	120	150		P
HIGH SPEED STATIC RAMS									
TMM2018D	$2 \mathrm{KX8}$	NMOS	YES	YES	35	45	55		D
TMM2068D	4KX4	NMOS	YES	YES	35	45	55		D
TMM2078D	4KX4	NMOS	YES	YES	35	45	55		D
TC5561P	$64 \mathrm{KX1}$	* CMOS	YES	YES	70				P
TC5562P	$64 \mathrm{KX1}$	*CMOS	YES	YES	45	55			P
EPROMS									
TMM2764DI	$8 \mathrm{KX8}$	NMOS	YES	YES	150	200	250		D
TMM 2764 AD	$8 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM27128D	$16 \mathrm{KX8}$	NMOS	YES	YES	150	200	250		D
TMM27128DI	$16 \mathrm{KX8} 8$	NMOS	YES	YES	150	200	250		D
TMM27128AD	16 KXX	NMOS	YES	YES	150	200			D
TMM 27256 D	$32 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM 27256 DI	$32 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TMM 72525 AD	$32 \mathrm{KX8}$	NMOS	YES	YES	150	200			D
TC57256D	$32 \mathrm{KX8}$	CMOS	YES	YES		200	250		D
TMM27512D	$64 \mathrm{KX8}$	NMOS	YES	YES		200	250		D
ONE TIME PROGRAMMABLES									
TMM2464AP	$8 \mathrm{KX8}$	NMOS	YES	YES	200				PF
TMM24128AP	16KX8	NMOS	YES	YES	200				PF
TMM24256AP	$32 \mathrm{KX8}$	NMOS	YES	YES	200				PF
TMM24512P	$64 \mathrm{KX8}$	NMOS	2Q'86	2Q'86	250				PF
MASK ROMS									
TMM23256P	$32 \mathrm{KX8}$	NMOS	YES	YES	150				P28
TC53257P	$32 \mathrm{KX8}$	CMOS	YES	YES	200				FP28
TC53512P	$64 \mathrm{KX8}$	CMOS	YES	2Q'86	200				P28
TC531000P	128 KXX 8	CMOS	YES	YES	200				P28
TC532000P	$256 \mathrm{KX8}$	CMOS	YES	2Q'86	200				P32
P-PLASTIC C-CERAMIC F-FLAT PACK *CMOS $=4$ TRANSISTOR CELL LOW POWER					D.CERDIP		-DIE	T-PLCC	J.SOJ

TOSHIBA. THE POWER IN MEMORIES.

TOSHIBA AMERICA, INC.

[^2]

The difference between a few more tweaks and a few more weeks.

Introducing the CIDS method from Applied Microsystems. The first painless way to assemble
the debug environment you really need.
You could spend weeks looking for the right tools, plus months trying to make them work together, and still not have a system that was truly integrated. That's why Applied Microsystems has developed the CIDS method.
CIDS stands for Customer Integrated Development Systems and the concept is simple. You choose your hardware and software tools. Applied Microsystems makes sure they work together seamlessly.

An overview of Customer Integrated Development Systems.
Whether you're working on an 8 -bit, 16 -bit or even a 32 -bit design, we let you tailor the emulation and debug tools you need. Everything from symbolic and source-level debuggers to assemblers, cross-compilers and utilities. The chart gives you some idea of the power and convenience of the CIDS method, but it can only hint at the control and visibility you will enjoy.

Validate" links emulation with source-level debugging.
When your software engineers only speak C and your emulator

HOSTS	OPERATING SYSTEMS	TARGETS	LANGUAGES	TOOLS
VAX	VMS	8048 family	C	Assemblers
Microvax	ULTRIX	8080, 8085,	Pascal	Linkers
UNIX-oriented workstations - Apollo - Sun - IBM AT	UNIX XENIX MS-DOS	8086/88, 80186/188	FORTRAN	Locaters
		and 80286	PL/M	Compilers
		$68 \mathrm{HCl1}$,	Assembler	Symbolic deburgers
		6800/2/8,		debuggers
MS-DOS workstations - PC - PC XT - PC AT		$\begin{aligned} & 6809 / 9 \mathrm{E}, \\ & 68000 / 8 / 10 \end{aligned}$		Source-level debuggers
		and 68020		Emulators
		Z80, MK388 and Z8001/2		
		NSC-800		

only speaks assembler, your tools are worthless. Or if your function is in assembler and your debugger only speaks C, it's the same dead end.
The power of the Validate environment is that it works equally in high level languages and in assembler. You don't sacrifice any power or comfort.

Real-time emulation for the 68020 and 80286.

Applied Microsystems lets you emulate high performance targets at top speed. Up to 16.6 MHz for the 68020 . And 12.5 MHz for our new 80286 with full function implementation. Free access to the virtual protect mode makes transparent emulation possible using logical or physical addresses.

Call toll-free and ask for the proof.

Discover why the CIDS method is the fastest, easiest way to start and finish a design project. For technical and application details call 1-800-426-3925. In Washington state call (206) 882-2000.
Or write Applied Microsystems Corporation, P.O. Box 97002 , Redmond, WA 98073-9702.

In Europe: Applied Microsystems, Brooke House, Market Square, Aylesbury, Buckinghamshire, HP20 ISN, England. Tel: 44 (0296) 34822.

|||||||||
 |||||||||

Applied Microsystems Corporation

CIRCLE NO 154

Replacement JAN Specification Part \#

Small 20 Combinatorial	PAL10H8MJ883B PAL10H8ML883B PAL10H8MF883B PAL12H6MJ883B PAL12H6ML883B PAL12H6MF883B PAL14H4MJ883B PAL14H4ML883B PAL14H4MF883B PAL16H2MJ883B PAL16H2ML883B PAL16H2MF883B PAL16C1MJ883B PAL16C1ML883B PAL16C1MF883B PAL10L8MJ883B PAL10L8ML883B PAL10L8MF883B PAL12L6MJ883B PAL12L6ML883B PAL12L6MF883B PAL14L4MJ883B PAL14L4ML883B PAL14L4MF883B PAL16L2MJ883B PAL16L2ML883B PAL16L2MF883B	8103501RA 81035012 C 8103501SC 8103502RA 81035022C 8103502SC 8103503RA 81035032C 8103503SC 8103504RA 81035042C 8103504SC 8103505RA 81035052 C 81035055 C 8103506RA 81035062C 8103506SC 8103507RA 81035072C 8103507 SC 8103508RA 81035085 C 8103509RA 81035092 C 8103509SC	M38510/50301BRXA M38510/50301B2XC M38510/50302BRXA M38510/50302B2XC M38510/50303BRX M38510/50303B2X M38510/50304BRX M38510/50304B2X M38510/50305BRX M38510/50305B2X M38510/50306BRX M38510/50306B2X M38510/50307BRX M38510/50307B2X M38510/50308BRX M38510/50308B2X M38510/50309BRX M38510/50309B2X
Medium 20A	PAL16L8AMJ883B PAL16L8AML883B PAL16L8AMW883B PAL16R8AMJ883B PAL16R8AML883B PAL16R8AMW883B PAL16R6AMJ883B PAL16R6AML883B PAL16R6AMW883B PAL16R4AMJ883B PAL16R4AML883B PAL16R4AMW883B	8103607RA 81036072C 8103607 SA 8103608RA 81036082C 8103608SA 8103609RA 81036092C 8103609SA 8103610RA 81036102C 8103610SA	M38510/50401BRX M38510/50401B2X M38510/50402BRX M38510/50402B2X M38510/50403BRX M38510/50403B2X M38510/50404BRX M38510/50404B2X
Medium 20A-2 $1 / 2$ Power	PAL16L8A-2MJ883B PAL16L8A-2ML883B PAL16L8A-2MW883B PAL16R8A-2MJ883B PAL16R8A-2ML883B PAL16R8A-2MW883B PAL16R6A-2MJ883B PAL16R6A-2ML883B PAL16R6A-2MW883B PAL16R4A-2MJ883B PAL16R4A-2ML883B PAL16R4A-2MW883B	8103611RA $81036112 C$ 8103611 SA $8103612 R A$ $81036122 C$ $8103612 S A$ $8103613 R A$ $81036132 C$ $8103613 S A$ $8103614 R A$ $81036142 C$ $8103614 S A$	M38510/50407BRX M38510/50407B2X M38510/50408BRX M38510/50408B2X M38510/50409BRX M38510/50409B2X M38510/50410BRX M38510/50410B2X

-Line
$3=28$ Terminal 450×450 Leadless Chip Carrier

MMI Package Designators:
$\mathrm{J}=$ Ceramic DIP
zed Flatpack
L = Leadless Chip Carrier

Now that the DOD is rethinking the order of its mil spec standards, which one should you shoot for?

Well, when it comes to military PAL ${ }^{*}$ devices, you can't miss. Simply set your sights on Monolithic Memories.

You see, we have more PAL devices qualified to the highest military standards, JAN38510 and the Standard Military Drawing Program, than anybody else. (See list below.)

Even our newest PAL devices, from highspeed ECL to low-power CMOS, are already slated for Standard Military Drawing release. So whether the DOD moves its standards
or leaves them right where they are, you'll be right on target.

For a copy of our new Military Products Short Form Catalog, call your local Monolithic Memories representative or qualified military distributor.

Monolithic Memories, Military Products Division, 2175 Mission College Blvd., Santa Clara, CA 95054. (800) 222-9323.
PAL Family Generic Part Number Std MIL Drawing Specification Part \#

Medium 24A	PAL20L8AMJS883B PAL20L8AML883B PAL20L8AMW883B PAL20R8AMJS883B PAL20R8AML883B PAL20R8AMW883B PAL20R6AMJS883B PAL20R6AML883B PAL20R6AMW883B PAL20R4AMJS883B PAL20R4AML883B PAL20R4AMW883B	8412901LA 84129013C 8412901KA 8412902LA 84129023C 8412902KA 8412903LA 84129033 C 8412903KA 8412904 LA 84129043C 8412904KA	M38510/50501BJX M38510/50501B3X M38510/50502BJX M38510/50502B3X M38510/50503BJX M38510/50503B3X M38510/50504BJX M38510/50504B3X
Medium 24XA Exclusive OR	PAL20L10AMJS883B PAL20L10AML883B PAL20X8AMJS883B PAL20X8AML883B PAL20X10AMJS883B PAL20X10AML883B PAL20X4AMJ883B PAL20X4AML883B	8412905LA 84129053C 8412906LA 84129063C 8412907LA 84129073C 8412908LA 84129083C	$\begin{aligned} & \bar{Z} \\ & \bar{Z} \\ & \bar{Z} \\ & \bar{Z} \end{aligned}$
Medium 20A-4 $1 / 4$ Power	PAL16L8A-4MJ883B PAL16L8A-4ML883B PAL16R8A-4MJ883B PAL16R8A-4ML883B PAL16R6A-4MJ883B PAL16R6A-4ML883B PAL16R4A-4MJ883B PAL16R4A-4ML883B	8506501RA 85065012C 8506502RA 85065022C 8506503RA 85065032C 8506504RA 85065042C	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { - } \\ & \text { I } \end{aligned}$
Medium 208	PAL16L8BMJ883B PAL16L8BML883B PAL16R8BMJ883B PAL16R8BML883B PAL16R6BMJ883B PAL16R6BML883B PAL16R4BMJ883B PAL16R4BML883B	8515501RA 85155012C 8515502RA 85155022C 8515503RA 85155032C 8515504RA 85155042C	$\begin{aligned} & = \\ & \bar{Z} \\ & \overline{-} \\ & = \end{aligned}$
Medium 20B-2 $1 / 2$ Power	PAL16L8B-2MJ883B PAL16L8B-2ML883B PAL16R8B-2MJ883B PAL16R8B-2ML883B PAL16R6B-2MJ883B PAL16R6B-2ML883B PAL16R4B-2MJ883B PAL16R4B-2ML883B	8515505RA 85155052C 8515506RA 85155062C 8515507RA 85155072C 8515508RA 8515508SA	

[^3]

If you've ever felt cornered by the lack of choice in gang or set programming, Stag has the answer.

The PP40, PP41 and PP42 are stand-alone, low-cost, high speed programmers with fast programming algorithms that can meet virtually any requirement.

24 \& 28-pin Eproms and EEproms can be programmed, with extensive self-test and faultfinder software built-in.

Parameter storage is non-volatile and there are bi-coloured 'Socket Status' LEDs and a large 16-character alphanumeric display. Together, these enable extensive error reporting.

Plug-in modules for future hardware expansion will handle new package styles - including leadless devices.

Plug-in modules will handle leadless devices.

PP40 Ideal for the production environment - robust and simple to use. Capable of programming a gang of eight devices, it'll solve all your copying problems in one single-key operation - and at a price you'll appreciate.

PP41 All of the PP40's advantages, but useable too for development purposes thanks to its built-in RAM, a powerful editor and dual RS232C I/O ports.

PP42 The top of the range. This includes the important feature of Set Programming, for design development. The 'Interlace' concept enables fast handling of 8,16 and 32 -bit data, with a 2 megabit RAM as standard.

The Stag PP40 Series. With our choice, you need look no further.

Sophisticated systems for the discerning engineer.

For more information call:
1-800-227-8836-Stag Western region
1-800-222-STAG-Stag Eastern region

NEWS BREAKS

COMPLIANT PINS ELIMINATE SOLDER IN PC-BOARD ASSEMBLY

If you want to avoid soldering to attach edge connectors to multilayer pc boards, consider a compliant-pin edge connector from Viking Connectors Co (Chatsworth, CA, (818) $342-4330$). Because the connection is mechanical rather than soldered, you eliminate solder touch-up from the assembly process. In addition, heat associated with solder is not concentrated in a small board area. The compliant section of the pin, which resembles the eye of a needle, provides a gas-tight joint without causing damage to the plated-through hole; individual pins can be removed and replaced several times. The technology is approved for military applications (MIL-STD-2166). Price is \$0.03 per contact (10,000).-Margery S Conner

2-CHIP MODEM OPERATES TO 2400 BPS

The 89024 integrated chip set from Intel (Santa Clara, CA) consists of the 89026 processor and the 89027 analog front end. The chip set supports full-duplex operation for data speeds of 0 to 2400 bps and conforms to Bell 103 and 212A and CCITT V.21, V.22 A \& B, and V.22 bis. The 89024 also includes the complete Hayes command set and can be used as a stand-alone modem without an external microcontroller. Samples are available now; production shipments are scheduled for the second quarter. The chip set costs $\$ 35(25,000)$.-David Shear

SERVO CHIP SET INCLUDES ANALOG AND DIGITAL CIRCUITS

By using Silicon Systems' (Tustin, CA, (714) 731-7110) 3-chip set, which includes the SSI 567 servo demodulator, SSI 568 servo controller, and SSI 569 servo motor driver, you need only add a $\mu \mathrm{P}$ and passive components for a complete disk-drive servo-control system. Servo systems such as those used to control disk-drive head movement have typically required a pc board full of discrete components. The demodulator IC specifically targets dibit quadrature Winchester-disk servo applications, but the controller and motor driver chips will fit general-purpose servo systems for applications such as robotics. In Winchester-disk applications, the chip set targets designs that pack 1500 tpi max and operate at less than 20 msec average seek time. The company plans to ship samples of the chip set in the first quarter and production quantities in the second quarter. The 3 -chip set will cost less than $\$ 35(10,000)$.-Maury Wright

DESIGNER'S KIT EASES BUILDING-BLOCK DSP EVALUATION

Logic Devices Inc's (Sunnyvale, CA, (408) 720-8630) Designer Chips tool kit includes an application note and 11 high-performance devices and sockets that allow the engineer experimenting in digital-signal processing to create a high-performance FFT subsystem. You can then design a complete system that should sample at 2 MHz and perform a 1024-point complex FFT in 0.5 msec . The kit costs $\$ 264$, which is 40% less than the cost of the individual components.-David Shear

BOARD SIMPLIFIES IEFE-488 INSTRUMENT-CONTROL PROGRAMMING

Operating as an intelligent IEEE multicontroller, the 500-IEEE from Keithley Instruments Inc (Cleveland, OH, (216) 248-0400) is an instrument-control card that lets you simplify the programming needed to control as many as 14 IEEE-488 instruments. Sporting its own μ P, the $\$ 650$ board integrates high-level IEEE control into single-line commands, resulting in programs that are easy to read and write. The 500-IEEE plugs into a Keithley Series 500 scientific workstation or a Keithley System 570 data-acquisition workstation, instead of monopolizing a slot in your personal com-
puter. You can use the board to implement serial and parallel polling, provide low-level bus control, and handle the input and output of strings, numeric data, and arrays. Software-programmable terminators guarantee compatibility with all IEEE in-struments.-J D Mosley

SOFTWARE OPTIONS SOLVE 16-BIT- μ P TRIGGER PROBLEMS

Two software options for the Echo development system from Arium Corp (Anaheim, CA, (714) 978-9531), Firmbreak and Stacktop, solve triggering problems for 16 -bit microprocessor-based designs. With the Firmbreak software addition to the Echo μ P development system, you can insert a firmware-based trap point to debug software for 16 -bit $\mu \mathrm{P}$-based designs. Unlike hardware-based traps, which can be confused by a word that's prefetched but not executed, Firmbreak can recognize an instruction's execution; it then overlays the instruction with a software interrupt that vectors the program to debug code.

Because a 16-bit microprocessor doesn't determine a stack-relative variable's address until execution time, you can have trouble triggering on the variable or its value. (These variables make up 30 to 40% of program variables in C language.) Stacktop determines the dynamically allocated address, allowing you to trigger on the variable as it executes. Echo systems sold until March 15 will include the options in the price of $\$ 12,980$; after that date, the options alone will cost $\$ 895$. - Margery S Conner

PERIPHERAL-CONTROLLER CHIP TARGETS FMBEDDED APPLICATIONS

Adaptec (Milpitas, CA, (408) 432-8600) now offers a peripheral-controller IC that includes a programmable storage controller, a dual-port buffer controller, and buffer addressing logic. The IC, Model AIC-610, targets manufacturers embedding a system-bus (IBM PC, VME Bus, etc) or SCSI-bus interface on a controller board. Designis that use the controller IC will support a $15-\mathrm{MHz}$ data-transfer rate at the device and 1.5 M byte/sec bus transfers. You can program the chip to work with disk and tape encoding schemes such as 2,7 RLL; 1,7 RLL; and MFM. The IC performs 48 -bit ECC and will correct errors 19 bits long. A $10-\mathrm{MHz}$ version costs $\$ 23$ (1000). Expect shipment of the $\$ 34.50$ (1000) $15-\mathrm{MHz}$ part in the second quarter.-Maury Wright

SFCOND-SOURCE AGREEMENT COVERS CUSTOM GaAs

Ford Microelectronics Inc (Colorado Springs, CO) and Vitesse Electronics Corp (Camarillo, CA) have announced an agreement to provide alternate sourcing for foundry production of custom LSI gallium arsenide ICs. This agreement begins at the design-rule level of the enhancement/depletion self-aligned gate process, allowing customers to have their circuits produced by either of the two suppliers.-David Shear

There's more here than just specs.TRW LSI, the leader in high-performance A/D converters, gives you leading-edge technology, performance, reliability, value and field support.
Whether your needs are for medical, seismic, radar, image processing, or general data conversion applications, TRW LSI's leading-edge technology provides A/D converters for your specific digital signal processing function, word size and speed requirements.
Resolutions from 4 to 9 bits provide flexibility for any of your data conversion needs. Our A/D converters will accurately sample and convert high-frequency input signals without sample-and-hold circuitry. And most of our converters are available with evaluation boards which allow for quick and convenient operation of the device.

Available in a variety of packages, our A/D converters provide significant cost advantages in their function and performance. And you're always supported by our extensive network of inhouse and field application engineers, application notes and data sheets. We give you more than just a full line of products. TRW LSI gives you the most advanced and best supported A/D converters on the market today.
Remember, you always get

FULL SPEC PERFORMANCE

 fromTRW LSI.Our A/D converters are available off the shelf from Arrow Electronics, Hall-Mark and Hamilton/Avnet.
For your free copy of our VLSI DATA BOOK or for data sheets on any of our A/D converters, call or write our Literature Service Department:

LSI Products Division, TRW Electronic Components Group, P. O. Box 2472, La Jolla, CA 92038, 619.457.1000

In Europe, call or write:
TRW LSI Products,
Konrad-Celtis-Strasse 81,
8000 Muenchen 70, W. Germany, 089.7103 .115

In the Orient, phone:
Hong Kong, 3.856199;
Tokyo, 03.461.5121; Taipei, 751.2062
TRW inc. 1985 - TRS 5100

LSI Products Division
TRW Electronic Components Group

TWO COMPANIES TO INTRODUCE 1M-BIT EPROMS, DEVELOP 4M-BIT DEVICES

Thomson Semiconducteurs (Paris, France, TLX 204780) and SGS-Microelettronica SpA (Agrate Brianza, Italy, TLX 330131) both plan to introduce lM-bit CMOS EPROMs this year. Thomson Semiconducteurs will present its $64 \mathrm{k} \times 16$-bit 40-pin 27 Cl 1024 and the $128 \mathrm{k} \times 8$-bit 32 -pin 27 ClOO . Both devices, which are expected to sell at around $\$ 25$ (1000), will feature a $150-\mathrm{nsec}$ access time and an operating current of approximately 50 mA . You can expect to see SGS-Microelettronica's lM-bit EPROM offerings during the second or third quarter of 198%.

In addition, the two companies have entered into an agreement, as part of the European Eureka project, to jointly develop 4M-bit CMOS EPROMs using $0.8-\mu \mathrm{m}$ design rules. They will also study the feasibility of 16 M -bit devices using design rules below $0.5 \mu \mathrm{~m}$. The development project, which is expected to run for five years, will cost each company around \$200 million.-Peter Harold

JAPANESE GOVERNMENT TO ESTABLISH SOFTWARE REGISTRY

In an effort to stem piracy and protect the rights of software developers, the Ministry of International Trade and Industry and the Education Ministry will set up an organization for registering computer software. Scheduled to begin operation in April, the Software Information Center has approximately 60 companies and computer-related organizations as sponsors. The center will register and store applications programs and operating systems on microfiche for 50 years, a duration stipulated by a recent copyright law. The center will also study and collect data on how other countries handle software-piracy disputes.-Joan Morrow

VME BUS CPU CARD FEATURES 80386μ P

Based around a $16-\mathrm{MHz} 80386 \mu \mathrm{P}$, the CPU-386 VME Bus CPU board from Force Computers GmbH (Ottobrunn, West Germany, TLX 524190) allows you to implement 8086 -family operating systems in a VME Bus hardware environment. The processor has zero-wait-state access to 2 M bytes of onboard RAM and zero-wait-state access to additional off-board RAM via a local memory-expansion bus. The board also includes sockets for as much as 512k bytes of EPROM and an 80387 math coprocessor. Its VME Bus interface is VME Bus Rev.Cl compatible and provides slot-1 functions, which include SYSCLK generation, a 4 -level bus arbiter, and bus time-outs. It supports 8-, $16-$, 24-, and 32-bit VME Bus transfers including unaligned transfers and dynamic bus sizing. The CPU-386 costs DM 14,950.-Peter Harold

16-BIT HOME COMPUTER USES THE MC68000 $\mu \mathbf{P}$

The X68000 home computer from Sharp Corp is based on Motorola's 68000 and features 1 M byte of memory (12M bytes max). The $¥ 369,000$ ($\$ 2237$) system uses a proprietary operating system and comes with a standard 512×512-dot display. The computer uses the virtual-screen method to allow expanding images to four times their normal size. It can also accommodate video digitizers and three-dimensional image adapters.-Joan Morrow

64k-BIT CMOS STATIC RAM HAS 25-nSEC MAX ACCESS TIME

The M5M5187AP Series 64k-bit CMOS static RAM features a 25-nsec max access time and is organized as 64 k words $\times 1$ bit. The device, which is housed in a 300 -mil, 22 -pin standard package, provides separate pins for input and output. The $3.69 \times 6.35-\mathrm{mm}$ chip samples for approximately $¥ 4800$ (\$29).-Joan Morrow

The Acquisition.

With sweep speeds from days to nanoseconds and
 resolution up to 15 bits, the 4094 digital 'scope can capture the most elusive signals. Every plug-in has 16K of memory, viewable trigger set-up and independent pre- or post-trigger delay on each channel. Signal averaging is standard and our

Using the latest automated production and test equipment available, Mini-Circuits stress tests each individual component before assembly and then subjects each assembled SBL-1 to 17 grueling tests before acceptance, date coding and close checking for unit-to-unit repeatability.
The SBL-1 does have one drawback however. It only covers 1 to 500 MHz . That's why we've expanded the product family with additional models to cover 25 KHz to 1000 MHz . The new units are assembled with the same production and test expertise as the SBL-1; that's why we can offer 0.1\% AQL on all SBL models . . . no rejects, not a single one, on every order shipped. So don't compromise your design or settle for a poor imitation. Specify Mini-Circuits SBL Mixers.
For full specifications call or write for latest RF/IF
Signal Processing Handbook or refer to EEM, Gold Book, or Microwaves Directory.

SBL SPECIFICATIONS (typ.)

		Isolation,dB			Price
Model	Freq. (MHz)	Conv. Loss	L-R	L-I	$\mathbf{(1 0 - 4 9)}$
SBL-1	$1-500$	5.5	45	40	$\$ 4.50$
* SBL-1X	$10-1000$	6.0	40	40	$\$ 5.95$
SBL-1Z	$10-1000$	6.5	35	25	$\$ 6.95$
SBL-1-1	$0.1-400$	5.5	35	40	$\$ 6.50$
SBL-3	$0.25-200$	5.5	45	40	$\$ 7.50$

* If not DC coupled.
finding new ways.
setting higher standards
\square Mini-Circuits
A Division of Scientific Components Corporation

dc to 3 GHz

- less than 1dB insertion loss over entire passband
- greater than 40dB stopband rejection
finding new ways.
- 5 section, 30dB per octave roll-off
- VSWR less than 1.7 (typ)
- over 100 models, immediate delivery
- meets MIL-STD-202
- rugged hermetically sealed package ($0.4 \times 0.8 \times 0.4 \mathrm{in}$.)
\square Mini-Circuits
P.O. Box 166, Brooklyn New York 11235 (718) 934-4500 Domestic and International Telexes: 6852844 or 620156

CIRCLE NO 155

- BNC, Type N, SMA available

| LOW PASS Model *LP- | $\mathbf{1 0 . 7}$ | $\mathbf{5 0}$ | $\mathbf{7 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{4 5 0}$ | $\mathbf{5 5 0}$ | $\mathbf{6 0 0}$ | $\mathbf{7 5 0}$ | $\mathbf{8 5 0}$ | $\mathbf{1 0 0 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min. Pass Band (MHz) DC to | 10.7 | 48 | 60 | 98 | 140 | 190 | 270 | 400 | 520 | 580 | 700 | 780 | 900 |
| Max. 20dB Stop Frequency (MHz) | 19 | 70 | 90 | 147 | 210 | 290 | 410 | 580 | 750 | 840 | 1000 | 1100 | 1340 |

Prices (ea.): $P \$ 9.95$ (6-49), B $\$ 24.95$ (1-49), $N \$ 27.95(1-49), S \$ 26.95(1-49)$

HIGH PASS	Model *HP-	50	100	150	200	300	400	500	600	700	800	900	1000
	start, max.	41	90	133	185	290	395	500	600	700	780	910	1000
	end, min.	200	400	600	800	1200	1600	1600	1600	1800	2000	2100	2200
Min. 20dB Stop	equency (MHz)	26	55	95	116	190	290	365	460	520	570	660	720

Prices (ea.): P \$12.95(6-49), B \$27.95(1-49), N \$30.95(1-49), S \$29.95(1-49)
*Prefix P for pins, B for BNC, N for Type N, S for SMA

Five good

reasons to choose Micro-Rel for full custom hi-rel ICs

1 Our experience. We've been in 1. the business of producing highreliability electronic components for 14 years. In that time we've developed more than 20 capabilities including full custom bipolar IC designs since 1975, custom bipolar wafer fabrication since 1976 and linear CMOS IC custom designs since 1980. Since 1984 we've added precision thin film resistors, DI design and fab, double layer metal and rad-hardened ICs, to name just a few recent landmarks.
Our military certification. In 2. addition to MIL-STD-883C, we were one of the first 12 companies to attain certification to MIL-STD-1772 by DESC; we expect to have full 1772 qualification by mid-1987. And we're the only company with multilayer cofired ceramics capabilities.
3 Our technologies. Our CMOS 3. IC technology includes a 3 micron and 5 micron process. Each has linear and digital standard cells available. Our bipolar technology includes $20 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V processes. Each can utilize dielectrically isolated wafers to eliminate parasitic interaction between devices. Often our ICs can replace many components, reducing manufacturing cost and overall size and weight while
increasing performance and reliability.
1 Our resources. We have 10,000 4. square feet of Class 100 or better wafer fab clean room and 5,000 square feet of Class 100,000 microelectronic assembly clean room, housed in our 180,000 square foot facility. Of our 600 employees, 50 are devoted exclusively to Quality Assurance and 150 are engineers experienced in producing custom designs to customers' applications.
5 Our critical applications back-
0. ground. Although we are heavily involved in the most current military applications, we earned our spurs as the design and production division of Medtronic, Inc. As such, Micro-Rel is the leading designer and producer of cardiac pacemaker electronics. You can depend on a company that's used to delivering the highest levels of quality and performance.

Of course there are many more reasons to choose Micro-Rel for your custom military ICs. But we hope these five will convince you that Micro-Rel is fully capable of satisfying your most demanding requirements. Reliably - and on time.
Write or call today for our technical bulletins. For good reason.

Division of Medtronic, Inc. 2343 West Tenth Place, Tempe, Arizona 85281 (602) $968-6411$ • TWX: 910-950-1941 • FAX: 602-968-9691

VMEbus has always provided performance, reliability and quality. Now add flexibility from Force.

80386 or 68020 on VMEbus. We give you the choice. You make the best decision.

Upgrade the performance of your software

Bring 32 bit 80386 power to your existing software. Or upgrade your 68000 designs to 25 MHz speeds. Both with no-wait-states. You now have the choice between the two most powerful 32 bit micros on the industry leading VMEbus.
Check the best product for your application.

Force 32 bit CPU Availability						
	CPU-20	CPU-21	CPU-24	CPU-25	CPU-386A	CPU-386B
Processor	68020*	68020*	68020*	68020*	80386*	80386*
Available frequencies	$\begin{gathered} 12.5 / 16.7 / \\ 20 / 25 \end{gathered}$	$\begin{gathered} 12.5 / 16.7 / \\ 20 / 25 \end{gathered}$	$\begin{gathered} 12.5 / 16.7 / \\ 20 \end{gathered}$	$\begin{gathered} 12.5 / 16.7 / \\ 20 \end{gathered}$	12/16/20	12/16/20
Number of wait states	0	0	1	1	0 (1 at 20 MHz)	
FPU	no	yes	no	yes	no	yes
MMU	no	no	yes	yes	yes	yes
Memory capacity	$\begin{gathered} 0.5 \text { to } \\ \text { 4MBSRAM } \end{gathered}$		$\begin{gathered} 0.5 \text { to } \\ \text { 4MBSRAM } \end{gathered}$		$\begin{gathered} \text { 2 to } \\ \text { 8MBDRAM } \end{gathered}$	
EPROM capacity	512 KB	512 KB	64 KB	64 KB	256 KB	256 KB
Serial I/O channels	3	3	3	3	3	3

Force as the largest independent VMEbus supplier in the world gives you choices and tools including development systems, comprehensive design literature, 50 hardware products, 20 software products, in-plant seminars and prompt support. Industry leading quality levels are assured through functional and incircuit testing and a 48 hour operating burn-in on all products.

Flexibility, Performance, Quality and Support from Force. Today with 1300 customers in 30 countries, Force is your best choice in VME.

Free! Call 1-800-BEST VME

(or 1-800 237-8862 in California) for our new 380 page VME data book and for rapid applications support.

80386 is a trademark of Intel Corp.
trademark of Intel Corp.

AMERICA'S BEST PROGRAMMERS

Z-1000B UNIVERSAL PROGRAMMER

- Over 600 PLDs, EPROMs, EEPROMs, Bipolar PROMs and INTEL MCUs.
- Separate D/A channels for each pin.
- Upgradeable PROM based software.
- Stand alone or PC/XT/AT operation.
- Two independent RS-232 ports.
- 64 K or 256 K bytes of DATA RAM.
- EXATRON handler interface is standard.

Z-3000 HIGH VOLUME GANG/SET PROGRAMMER

- 14,000 27256s programmed per day.
- 32 EPROMs simultaneously with 1 to 8 DATA BLOCKS.
- 16 Intel or Motorola MCUs at a time.
- 64 K to 256 K bytes of DATA RAM.

Z-1200B TWELVE SOCKET

 GANG/SET PROGRAMMER- 2716 - 27512,1 to 4 DATA BLOCKS.
- 64 K to 256 K bytes of DATA RAM.
- Software personality. No plug-ins.

[^4]ZAP SERIES engineering and field service programmers for EPROMs to 27C1024, Intel and Motorola microcomputers.
Z-400 economical bipolar PROM and EPROM programmer.

SUNRISE ELECTRONICS, INC.

 524 South Vermont Avenue Glendora, California 91740 (818) 914-1926
OEMs can't design with vaporware

Dear Editor:
Please accept my compliments on your editorial in the May 1, 1986, issue of EDN (pg 49). I copied and circulated it throughout our company and received nothing but positive feedback on it.

Because we use a tremendous number of electronic components but do not manufacture any, we must rely entirely on component manufacturers for these parts. We put a lot of R\&D into a product or product improvement, and to be competitive, we must get the product to the marketplace in a timely manner. We cannot incorporate "to-be-introduced" components in a design.

Your survey results accurately represent our interest curve. Our specifying curve amounts to this: If a component manufacturer doesn't have a part in hand, we don't want it. As for long-term planning, the situation is as you stated-it's feasible to look at new ideas as long as you're in the formative stages.

A situation similar to the one you describe occurs when a company promotes a nonexistent product to suppress competition, yet never delivers that product. We have been faced with that problem many times. Again, many thanks for an excellent article.
Sincerely yours,
Craig Nelson
Applications Engineer
Multi-Amp Corp
Dallas, TX

Tips on designing

 with the $8035 \mu \mathrm{C}$Dear Editor:
I read the article "Use CMOS DACs to generate sine waves" (EDN, August $21, \mathrm{pg} 167$) with great interest, but the article seems to be incomplete. I would like to offer some tips or comments that might help someone who decides to build the 8035
microcontroller circuit described in the article.

First, from the article one would assume that the actual software generation necessary to facilitate constant look-up is an exercise left to the reader. It would have been more prudent to include a flowchart, at worst, or a simple ma-chine-language program in binary or mnemonic form, at best.

Because the 8035 uses quasi-bidirectional port structure, bank switching, and other unusual features, a good book for the would-be 8035 programmer is Intel's MCS-48 Family of Single Chip Microcomputers User's Manual, which helps you understand the processor.

Because the 2732 is easier to obtain, it should be used in lieu of the 2716. The 8035 can address 2 k bytes of memory directly or 4 k bytes by using memory-bank switching instructions (select memory bank 0 or 1).
The 8212 latch constitutes overkill for a simple system; the 74LS373 octal latch is a cost-effective and functional alternative.
Port pins 27 to 32 use $50 \mathrm{k} \Omega$ of internal pullups, making any external resistors unnecessary.
The instruction cycle is the useful clock sequence for this system and is the external crystal frequency di-

"BUT BOB, THIS IS 1987...YOU DON'T JUST BLURT OUT, 'THE LINES BROKE DOWN.' YOU'VE GOT TO USE THE CONTEMPORARY, 'THE INTEGRITY OF THE SYSTEM WAS VIOLATED'!"

 MOLDED P ASTIC-CA SF MOLDED PLASIC-CASE mombe
 and low inductance. Polarity-keyed four-terminal packages ideal for PC board mounting. Internal bus bar design withstands high ripple current. Single-section capacitors in two case sizes: $1.625^{\prime \prime} \times 1.625^{\prime \prime} \times 0.690^{\prime \prime}$ or $1.181^{\prime \prime}$. Ratings from $47,000 \mu \mathrm{~F}, 3$ WVDC to $56 \mu \mathrm{~F}, 450$ WVDC. Dual-section capacitors in case size $1.625^{\prime \prime} \times 1.625^{\prime \prime} \times 1.576^{\prime \prime}$. Capacitance values from $330 \mu \mathrm{~F}$ to $680 \mu \mathrm{~F}$; voltage ratings 200 WVDC and 250 WVDC. Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Sprague Electric Company, a Penn Central unit. For applications assistance call your local Sprague sales office or representative. For Data Sheet 3161, write to Technical Literature Service, Sprague Electric Co., P.O. Box 9102, Mansfield, MA 02048-9102.

With its 150 MHz bandwidth, $5 \mathrm{~ns} /$ div maximum sweep speed and 2 -channel simultaneous acquisition, the 2430 displays TTL and ECL signals for risetime and coincidence measurements. (Above) The scope is used in 50 ohm input termination with a 500 ohm probe for an accurate measurement of propagation delay through an ECL inverter.

How long does it take a transformer to reach operating voltage? Using DELAY BY EVENTS, the 2430 lets you select the 254th (or any other) switching event of the pulse-width modulator in a high-efficiency power supply.

A new Tek patented feature, SAVE ON DELTA instructs the 2430 to compare incoming acquisitions against a user defined reference and save it in the event of a difference. You can catch intermittent failures automatically and implement automatic tests with improved repeatability.

Tektronix 2430 seritiosame 0

TEK'S NEW 2430. THE REVOLUTIONARY DIGITAL SCOPE YOU ALREADY KNOW HOW TO USE.

We've expanded the best features of our familiar, industry-standard 2400 Series in a new portable scope that sets some standards of its own. Start with a 150 MHz bandwidth and a $100 \mathrm{MS} / \mathrm{sec}$ digitizing rate plus dual channel simultaneous acquisition. It's a powerful combination that enables you to digitize, view and store fast and complex signals.

Add 8-bit vertical resolution, 1 K record length per channel and a 0.01% crystal-controlled timebase for making accurate measurements with ease.

The result: an advanced measurement package with many sophisticated capabilities built in especially for solving tough product design problems.

All-purpose high performance at its affordable best! The 2430 not only handily meets your general purpose measurement needs, it gives you a lot more. With digital

DAC glitches won't escape you with the 2430's enhanced ENVELOPE function. The peak-detecting ENVELOPE mode enables you to catch events as narrow as 2 ns , even with a single acquisition, at any sweep speed.
capabilities come powerful waveform manipulation functions ranging from waveform multiplication to highresolution averaging.
It is also fully programmable via the GPIB. Complete talk/listen capabilities extend the scope's power and make it a valuable systems component for making automatic measurements. You can develop test procedures that can be used later on the manufacturing floor. Plus, the time-consuming task of waveform characterization, analysis and logging is simplified.

In addition, the 2430 can store waveforms and front panel setups in nonvolatile memory.
The 2430 exhibits unusual power as a troubleshooting tool. The patented peak detection circuit lets you capture glitches as narrow as 2 ns at any sweep speed with confidence - a level of performance available until now in only the most expensive instruments.
The 2430's envelope mode, which automatically captures and updates signal minimums and maximums, allows you to conveniently study signal variations such as jitter, drift and stability. It also monitors signal excursions outside user-defined limits.
Plus, a broad range of pretrigger selections available in all modes makes it possible to examine conditions leading up to an event. The crystal-controlled timebase allows you to delay by time and/or events for precise timing measurements in complex triggering modes. You can even trigger on digital words.

Best of all, we've kept the 2430 easy to use. From the simple, onelevel menus for standard functions to the comfortable grouping of the front panel controls, the 2430 was designed to drive like the scopes you already use.

With full programmability you can improve repeatability and throughput-and reduce operator interface requirements.

The enhanced capabilities of the 2430's time and voltage cursors are another convenience, enabling you to make accurate measurements of all essential parameters.
The reliability of the $\mathbf{2 4 3 0}$ is underwritten with a 3 -year warranty. A variety of low-cost service plans can extend this coverage even further.
Now! See the features you've been looking for in a priced-right, digital scope. Call your Tek sales engineer for a demo. For literature, or to find our sales office nearest you, call the Tek National Marketing Center toll-free, 1-800-426-2200. In Oregon call collect, (503) 627-9000.
vided by 3 , then divided again by 5 . This instruction cycle is used in soft-ware-generated nested loops for time delays, etc.
I hope these tips will help in the design of a practical circuit.
Sincerely yours,
Joseph G Bogar
Teledyne Microelectronics
Los Angeles, CA

MIL-STD-883 S/R converters

Dear Editor:

The last sentence of the Technology Update article entitled "Synchro/resolver converters bring low cost and small size to motion-control systems" (EDN, October 30, pg 61) implies that Analog Devices and Natel Engineering are eligible to
 ... For Every Application and More

Unquestioned value, high quality and customer satisfaction have made Behlman the fastest growing manufacturer in the $A C$ power industry.

Whether you have a simple, complex or out of the ordinary application, we approach your requirements with genuine interest and professionalism. When you win, we win is our straight forward business approach to success. Let us demonstrate how our high quality and customer satisfaction can be a winner for you too.

AFiskars Company

AC Power Sources The widest range of manual and programmable AC Power Sources in the world.

Uninterruptible Power Systems New and revolutionary UPS concepts guarantee the ultimate control of all powerline problems.

We sell solutions to AC Power problems. Call or write today for more AC power information.

1142 Mark Avenue Carpinteria, California 93013
(805) 684-8311

CALL COLLECT
supply hybrid synchro converters screened per MIL-STD-883.

In fact, Analog Devices' synchro/ resolver converters are manufactured by its Memory Devices Div in the UK, but only the company's Wilmington, MA, and Greensborough, NC, facilities have been certified and scheduled for qualification. Natel Engineering is not certified or qualified, and as of October 2,1986 , the company has not even been scheduled for the initial audit.

According to the Defense Electronics Supply Center (DESC) list of companies involved in the MIL-STD-1772 program, ILC Data Device Corp is the only synchro/resolv-er-converter manufacturer that is permitted to supply MIL-STD-883 hybrids.
Sincerely yours,
Steve Muth, VP
ILC Data Device Corp
Bohemia, NY

Oops

Readers of EDN's standard-cell directory (October 2, 1986, pg 63) who thought that SLOA and SLOB were rather uncomplimentary names for standard-cell products (see pg 78) weren't alone. In fact, the product lines, from Siemens AG, are called SCOA and SCOB.

Also, Table 1 in EDN's recent Technology Update on high-density EPROMs (October 2, pg 91) should have had the following head: "Representative 5 V high-density UVEPROMs." Whatever " μ-EPROMs" may be, EDN will be there to give you pertinent design information when they finally appear.

WRITE IN

Send your letters to the Signals and Noise Editor, 275 Washington St, Newton, MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity.

The world, as cyeryone knows, is analog.

Unless, of course, ti's digital.

Anything's possible with Great Engineering.

A complete product family that's easy to get along with.

As we said, we're going to meet all the designer's needs. Obviously, that means we'll need new DSP products.

So we'll be introducing a family of ten new DSP parts in the months ahead. And we'll be bumping up the speed and resolution of our data converters, too.

Thanks to a $\$ 40$ million GE investment in our fabs, these will be the most complex ICs in our history.

Using our new 1.3-micron AVLSI capability, we'll integrate over 100,000 transistors. And meet the toughest military standards with four DESCcertified fab lines.

One of our first new DSP parts is a CMOS FIR Filter, the IM29C128. And we're pretty proud of it.

It delivers ten times the performance of alternative products, and consumes less power.

Most remarkable, however, is how easy it is to work with.

Because along with the chip, we're releasing a new FIR Filter Development System. With it, and your IBM $^{\circledR}$-compatible PC , you can design a digital filter in a matter of hours.

Even if you have absolutely no digital experience.

This should give you an idea of the DSP excitement that you can expect from Intersil. To learn more call

1-800-443-7364, ext. 777.

 (In NY State, 1-800-243-7364, ext. 777.)And be sure to ask about what else we've got coming. You'll find it's quite a bit of everything, from A to DSP.

For free on-line information dial 1-800-345-7335 (203-852-9201 in Connecticut) and follow the On-Line Instructions printed on the back.

Seeing it both ways is the beauty of Intersil DSP.

Should they happen upon a perfect rose, most people will wisely stop, sample its beauty, and move on.

But there's a certain breed of engineer who won't let it go at that. They'll find themselves overwhelmed by the desire to "process" the experience.

In an instant, they'll have labeled the rich color and velvet texture as "analog signals."

From there, it's just a matter of time before they've transformed the rose into a repeatable, verifiable stream of digital bits.

They can then commit this information to the perfect memory of a digital computer. From which it can be recalled, and its image replicated, on a high resolution color monitor.

The engineer can now enhance the flower's image. Perhaps try a different color. Or add a few petals. He might even use his new database to create a species of his own. All these fantastic calculations and transformations are one
example of the imaginative world of digital processing, or DSP.

In the last few years DSP has blossomed into one of the most exciting system design tools.

By moving from analog to digital processing of analog signals, engineers can overcome the drifts that plague analog circuitry. They can manipulate empirical data and explore engineering tradeoffs. And they can erect elaborate models using computer simulation.

But to do any of this effectively, the designer needs a DSP supplier who is comfortable in both the analog and digital worlds.

With over 17 years of analog leadership, and 20 years of corporate experience in DSP to draw upon, Intersil is uniquely qualified to work with the DSP engineer.

On the pages that follow, you'll see that Intersil, by taking an integrated approach to the DSP marketplace, has created your best, single source of complete DSP system solutions.

Intersil. Everything from Ato DSP.

Given our history, you might also have expected that the DSP marketplace is very important to us.

After all, we've always worked in analog signal conditioning, data acquisition and data conversion. And we've integrated analog and digital functions on the same chip. A case in point is our monolithic $40-\mu$ SEC 14 -bit ICL7115 A/D Converter.

So today, when our traditional analog customers are moving into DSP, it just makes sense for us to help them bridge the gap.

A new DSP company with 20 years of DSP experience.

Going into DSP, we had a lot more than our own experience to draw on. Our parent company,General Electric, is a world leader in DSP research and development.

The GE Aerospace Group has spent tens of millions of dollars perfecting very high speed, very fine line geometry, digital ICs. And for 20 years,GE divisions have been working in all the classic DSP disciplines. Including radar, sonar and medical imaging.

So when we went into DSP, we didn't go it alone. We were in good company.

Intersil.The DSPhouse built on asolid, analog foundation.

ICL7115 14-Bit High Speed CMOS MicroprocessorCompatible A/D Converter
The ICL7115 is the first monolithic 14-bit resolution, fast successive approximation A / D converter. It uses thin film resistors and CMOS circuitry combined with an on-chip EPROM calibration table to achieve 13-bit linearity without laser trimming. Special design techniques used in the DAC and comparator result in high speed operation, while the fully static silicon-gate CMOS circuitry keeps the power dissipation very low.

ICL7151 10-Bit A/D Converter with Track and Hold

The ICL7151 is a 10 -bit A / D converter that achieves throughput rates of 60 kHz with Two-Step Flash algorithm. A pipelined operation has been achieved with a switched capacitor technique that allows the device to sample new input voltages while a conversion is taking place. The ICL7151 requires a single reference input of +2.5 V , which is internally inverted to -2.5 V , thereby allowing an input range of -2.5 V to +2.5 V . The reference input to the device is internally buffered by a high speed CMOS amplifier, which greatly simplifies the external analog drive requirements for the device. A track and hold amplifier has been fully integrated on the front end of the A / D converter. The timing signals for the track and hold amplifier are generated internally, and are also provided externally for synchronization purposes. The ICL7152 is a faster version of the ICL7151; it has a throughput rate of 200 kHz .

IM29C128 Finite Impulse Response Filter Controller

 The 16 -bit FIR Filter Controller (FFC) provides all the data history, storage and programmable filter cycle control logic required to implement FIR filters of up to 128 filter points. When used in conjunction with an external filter coefficient memory, of up to 128 words by 16 bits, and an industry standard 16 -bit MultiplierAccumulator (MAC), the FFC provides the system designer with the ability to implement a powerful FIR filter with only three ICs. The FFC provides all the control signals required to operate the MAC and the coefficient memory as tristateable devices, allowing multiplexed usage of these resources.
IM29C510 CMOS $16 \times$ 16-Bit Multiplier-

Accumulator

The IM29C510 is a high speed 16×16-Bit Parallel Multiplier-Accumulator that operates at a 65 ns clock rate (more than 15 MHz MultiplyAccumulate rate). The two input registers accept an x operand and a y operand and yield a full precision product. Built with Intersil's AVLSI 1.3-micron CMOS process, the IM29C510 16×16-Bit Multiplier-Accumulator is pin and function compatible with the same speed, at one-sixth or less power dissipation, as bipolar versions.

ICL7134 14-Bit Multiplying MicroprocessorCompatible D/A Converter

 The ICL7134 combines a four-quadrant multiplying DAC using thin film resistor and CMOS circuitry with an on-chip EPROM-controlled correction circuit to achieve true 14 -bit linearity without laser trimming.Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. Two input buffer registers are separately loaded with the 8 least significant bits (LS register) and the 6 most significant bits (MS register). Their contents are then transferred to the 14-bit DAC register, which controls the output switches. The DAC register can also be loaded directly from the data inputs, in which case the registers are transparent. The ICL7134 is supplied in two versions. The ICL7134U is programmed for unipolar operation while the ICL7134B is programmed for bipolar applications.

ICL7121 16-Bit Multiplying

Microprocessor-

Compatible D/A Converter The ICL7121 achieves 0.0003% linearity without laser trimming by combining a fourquadrant multiplying DAC using thin film resistors with an on-chip EPROM-controlled correction circuit.Silicon-gate CMOS circuitry keeps the power dissipation very low. Microprocessor bus interfacing is eased by standard memory WRite cycle timing
and control signal use. The input buffer register is loaded with the 16 -bit input and directly controls the output switches. The register is transparent if WR and CS are held low.

EVK-128 Data Conversion

 and FIR Filtering System The Intersil EVK-128 provides a moderate speed data acquisition, conversion and high speed digital filtering system for the IBM PC and most compatibles. Consisting of a board that occupies a single slot in the PC, the card digitally filters data with a filter length of 0 (unfiltered) to 128 taps, utilizing the Intersil IM29C128 Finite Impulse Response Filter Controller (FFC) and 29C510 16-bit multiplier-accumulator (MAC). Throughput is a function of required filter length, with an 80 ns per tap processing rate. Included is a floppy disk with an easy-touse menu-driven FIR filter design program for the PC, including coefficient calculations, time and frequency calculations and plotting capabilities and prompts for controlling the different modes of operation of the board. The package contains complete documentation, including detailed schematics, printed circuit layout, parts list, timing diagrams and applications literature. The user may copy any of this for his own system design, if desired.[^5]
MILPOWER SOURCE

YOUR STANDARD AND CUSTOM DESIGN HOUSE FOR MILITARY AND AVIONIC POWER SUPPLIES
 MINIATURE, VERY HIGH DENSITY CONVERTER

FEATURES

- MINIATURE SIZE
- HIGH EFFICIENCY
- VERY HIGH POWER DENSITY
- MIL-TYPE COMPONENTS
- REPAIRABLE/NOT ENCAPSULATED
- OUTPUT CONNECTOR
- 28 VDC INPUT PER MIL-STD-704A/D, \& MIL-STD-1275A(AT) ${ }^{(1)}$
- 155 VDC, 270 VDC, 115 VAC INPUTS PER MIL-STD-704A/D
- INPUT/OUTPUT ISOLATION
- ENVIRONMENT PER MIL-STD-810C
- EMI/RFI PER MIL-STD-461A/462
- TEMPERATURE: $-55^{\circ} \mathrm{TO}+90^{\circ} \mathrm{C}$ OPERATING (BASEPLATE)
- CONVERSION FREQUENCY: 500 KHZ (2)
- LOGIC INHIBIT
- 5-YEAR WARRANTY
(1) OPTIONAL: FROM 6 TO 100 VDC INPUT.
(2) OPTIONAL: EXTERNAL FREQUENCY SYNCHRONIZATION

INPUT	OUTPUT SELECTION	SIZE
	$\frac{\text { SINGLE }(100 \mathrm{~W})}{5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}, 28 \mathrm{~V}}$	$4.6 \times 2.8 \times 0.8$
	$\frac{\text { SINGLE }(150 \mathrm{~W})}{5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}, 28 \mathrm{~V}}$	$5.6 \times 3.5 \times 0.8$
	$\mathrm{DUAL}(50 \mathrm{~W}+50 \mathrm{~W})$ $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 24 \mathrm{~V}, \pm 28 \mathrm{~V}$ $($ MAY BE	$5.9 \times 2.8 \times 0.8$
	SERIES-CONNECTED $)$	

INPUT	OUTPUT SELECTION	SIZE
	$\frac{\text { SINGLE }(100 \mathrm{~W})}{5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}, 28 \mathrm{~V}}$	$6.5 \times 2.5 \times 0.8$
	$\frac{\text { SINGLE }(250 \mathrm{~W})}{5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}, 28 \mathrm{~V}}$	$6.5 \times 2.5 \times 0.8$
115 VAC $3 \Phi, 400 \mathrm{HZ}$	$\frac{\operatorname{SINGLE}}{5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}, 28 \mathrm{~V}}$	$6.5 \times 6 \times 1.6$

SCSI DAYS

Life before the SCSI Development System.

Now there's a sure way to see if your SCSI controllers and peripherals meet the full SCSI spec.

Presenting the SCSI Development System. It's from Adaptec, the creators of SCSI. And it can help you debug, test and verify your new SCSI designs, faster and easier.

Or, if you're looking for the best SCSI devices to buy, the SCSI Development System is perfect for qualifying SCSI controllers. Either way, you can get to market with a higherquality product that much quicker. Just as we've done time after time at Adaptec.

You see, we use the SCSI Development System ourselves to design the highest-quality, highest-performance SCSI controllers around.

And now scores of our customers are using it, too. Including a rather influential group you may have heard of. The National Bureau
 of Standards. Which makes the SCSI Development System the standard by which all others will be judged.

For a free brochure on the system, call Adaptec at 408-432-8600, ext. 400. Or write our Marketing Dept.(TH) at 580 Cottonwood Drive, Milpitas, CA 95035.

Because, after all, deciding on your next SCSI design shouldn't be a toss up.

adaptec

WIDE INPUT SWITCHING POWER SUPPLIES...A GOOD IDEA THAT WORKS WITHOUT MODIFICATION

A good idea is a powerful thing. It drives ordinary technology to the extraordinary. At Converter Concepts, ideas make our technology superior and our power supplies more reliable.

We specialize in wide-input $A C / D C$ and DC/DC, high efficiency switching power supplies for worldwide OEM use. That means your product can operate anywhere in the world without modification.

Think about that for a moment.
Too good to believe? Well, believe it. Because only Converter Concepts' power supplies operate on any

IDEAS

THAT POWER

TECHNOLOGY

voltage in the world WITHOUT SWITCHES, JUMPERS, TAPS OR OTHER MODIFICATIONS. This exciting technology is made possible due to the work and dedication of our people.

Our people are thinkers as well as doerspushing ordinary flyback technology beyond previous limitations. That's why we're an industry leader.

Since 1976, Converter Concepts has designed, manufactured and marketed power supplies which are revered for their quality and reliability.

Find out what we can do for you. Contact the Converter Concepts' representative nearest you or call us directly. You'll discover that at Converter Concepts, the difference is people with ideas.

Industrial Parkway • Pardeeville, WI 53954 (608) 429-2144 • TWX: 910-280-2630 Toll-Free 800/253-5227

CALENDAR

Modern Electronic Packaging, Orlando, FL. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. February 9 to 11.

Invitational Computer Conference/Computer Graphics Series, San Jose, CA. B J Johnson \& Associates, 3151 Airway Ave, \#C-2, Costa Mesa, CA 92626. (714) 9570171. February 10.

Principles of Pulse Doppler Radar: High, Medium, and Low PRF (short course), Atlanta, GA. Georgia Institute of Technology, Department of Continuing Education, Atlanta, GA 30332. (404) 8942547. February 10 to 12.

Invitational Computer Conference, Raleigh, NC. B J Johnson \& Associates, 3151 Airway Ave, \#C-2, Costa Mesa, CA 92626. (714) 9570171. February 19.

Third Annual Symposium on Reliability, Santa Clara, CA. Steve Cox, Reliability Inc, 710 Lakeway Dr, Suite 165, Sunnyvale, CA 94086. (408) 732-2394. February 19.

Invitational Computer Conference/Computer Graphics Series, Dallas, TX. B J Johnson \& Associates, 3151 Airway Ave, \#C-2, Costa Mesa, CA 92626. (714) 957-0171. February 24.

Nepcon West, Anaheim, CA. CEG, Box 5060, Des Plaines, IL 60017. (312) 299-9311. February 24 to 26.

ISSCC (International Solid-State Circuits Conference), New York, NY. Lewis Winner, 301 Almeria Ave, Coral Gables, FL 33134. (305) 446-8193. February 25 to 27.

West Lightwave Expo, San Jose, CA. Lightwave, 235 Bear Hill Rd, Waltham, MA 02154. (617) 890-2700. February 25 to 27.

Spring National Design Engineering Show and Conference, Chica-

FASTEST REAL-TIME CMOS PRDCESSOR

Using 0.8μ PACE Technology, ${ }^{\text {TM }}$ Performance Semiconductor has done what no others could do: produced a single-chip, CMOS implementation of the 1750A military standard-with almost 200,000 transistors in a chip less than $1 / 4^{\prime \prime}$ square. This real-time, 40 MHz chip performs integer processing at 5 MIPS and features:

- 32-bit and 48-bit floating point
- 2.6 MIPS at 40 MHz for DAIS floating point instruction mix; 1.6 million Whetstones/sec.
- 20 Mbytes/sec. I/O bandwidth
- Industry's lowest power dissipation: less than 1 watt at 40 MHz
- Memory Management Unit (MMU) that provides a protected memory expansion to 2 MBytes at 40 MHz with no wait states
- Supported by ultra-fast64KCMOS Static RAMs:

Commt $t_{\text {AA }}$ Mil $_{\text {AA }}$
P4C188 16Kx4 20ns 25ns
P4C187 64Kx1 15ns 20ns

P4C164 8Kx8 20ns 25ns
Put real-time performance to work for you. Call or send the coupon to:

Tom Longo, President: "This chip will be the fastest, smallest, single-chip implementation of the 1750A instruction set-with the lowest power dissipation." And it is.

1986 Performance Semiconductor Corporation. PACE Technology is a trademark of Performance Semiconductor Corporation

610 E. Weddell Drive, Sunnyvale, CA 94089 Telephone: 408-734-9000 Telex: 6502715784

NAME
TITLE
COMPANY \qquad
ADDRESS \qquad
CITY/ST/ZIP \qquad
PHONE \qquad

Send me information on:

- PACE 1750A and Component Support
_ PACE Bus Interface Octals
_ PACE CMOS Static RAMs

My need is:
_ Immediate _ 6 Months _ Longer

BImeans custom microcircuits.

We offer twenty years experience in thick and thin film hybrid design and manufacturing to the highest military reliability levels. When you design in Beckman Industrial Corp., you get the responsiveness and quality that's made us an important element in a wide variety of highly successful programs such as Standard Missile II, Captor, Stinger, Harpoon and

For applications assistance or our Microelectronics capability brochure, call
(714) 447-2333.

Fax 714-447-2400.

Beckrtart Inductrial ${ }^{\text {n }}$

4141 Palm St.. Fullerton, CA 92635
CIRCLE NO 8

- Low Profile of 580 " seated height saves space behind the panel and on the PC board
- Exceptionally Bright LED backlighted nomenclature is readable from almost any angle
- Long Life sealed construction eliminates dust and moisture contamination, ensuring trouble-free switch operation
- Available off the shelf from Mepco/Centralab or authorized Distributors at competitive prices

ACTUAL SIZE
go, IL. CEG, 999 Summer St, Stamford, CT 06905. (203) 964-0000. March 2 to 5.

IEEE Applied Power Electronics Conference and Expo, San Diego, CA. Melissa Widerkehr, APEC '87, 655 15th St NW, Suite 300, Washington, DC 20005. (202) 347-5900. March 2 to 6.

Invitational Computer Conference, Austin, TX. B J Johnson \& Associates, 3151 Airway Ave, \#C-2, Costa Mesa, CA 92626. (714) 9570171. March 3.

Comdex in Japan, Tokyo, Japan. Interface Group, 300 First Ave, Needham, MA 02194. (617) 4496600. March 3 to 5.

Dexpo Europe (European DECCompatible Exhibition and Conference), London, UK. Expoconsul International, 3 Independence Way, Princeton, NJ 08540. (609) 9879400. March 3 to 5.

Fourth Topical Meeting on Optical Data Storage, Lake Tahoe, NV. Optical Society of America, 1816 Jefferson Pl NW, Washington, DC 20036. (202) 223-0920. March 11 to 13 .

Northeast Bioengineering Conference, Philadelphia, PA. IEEE, 6411 Chillum Pl NW, Washington, DC 20012. (202) 785-0017. March 12 to 13 .

Modern Electronic Packaging, Torrance, CA. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. March 16 to 18 .

International Military Fiber Optic and Communications Exposition, Washington, DC. Information Gatekeepers, 214 Harvard Ave, Boston, MA 02134. (617) 232-3111. March 16 to 19 .

FEB. 1985:

NOV. 1986:

MULTIBUS II is here!

Barely two years after introduction of the first MULTIBUS* II board, this advanced bus architecture is enjoying support unequalled by any multiprocessor bus ever.

Already, more than 75 manufacturers-including all these-are delivering or developing MULTIBUS II products.

CPU, Memory, I/O, Peripheral and Graphics boards. Plus packaging products and software. Everything you need to build advanced $16 / 32$-bit multiprocessor systems now.

And the list grows almost daily.
What it means to you is MULTIBUS II is no longer the advanced bus of tomorrow. It's the advanced bus of today.

For your free copy of the new MULTIBUS II Product Directory detailing 125 products, use the reader service card or send your business card to: MMG, P.O. Box 6208, Aloha, OR 97007.

There's no need to wait any longer.
MULTIBUS II is here.

mULTIBUS MANUFACTURERS GROUP
COMMITMENT • INNOVATION • QUALITY

[^6]Only one ASIC company has gone to such extremes.

From 200 to 20,000 gates. And on to standard cells.

That's our track record.
Not just talk. But technology that's been put to work. To put working parts in your hands.

Quite simply, this means you'll be hard pressed to surprise us. No matter how unique your application. You'll create larger designs with confident ease. And know a package awaits your circuit.

We also hasten to add that no one else in the entire industry has produced as many designs as we have. Over 7,000 to date. Not just design starts or prototypes, mind you. But finished products. Shipped in production quantities.

Plus once you start with us, you can stay with us. Because our standard cell experience lets you create more complex designs. Still knowing you'll get working products. In less time. For less money. Without having to learn a new vendor's methodologies.

So why take any unnecessary risks? Call us today at (800) 556-1234, Ext. 82. In California, (800) 441-2345.

We'll go to extremes to get you into production.

FUJITSU MICROELECTRONICS. INC.

Technology that works.

Take PLLD/PROM Design ConceptsTo Programmed Results

(For PC Based PLD/PROM Programmer \& Software Design Tools)

Vista \Rightarrow

Graphic Design Software

Vista turns your PC into a Graphic Work Station for PLD design using your preferred choice of Gate Level Schematic entry, State Machine Diagrams, or Boolean Equations.

Vista reduces the likelihood of errors that may occur during the design input process. You can mix State Machine, Gate Level Schematic, and Boolean Equations in the same design. Then pass this information to the VDS Perfect compiler.

Perfect

Compiler/Minimizer/ Simulator

Perfect accepts input from text files containing State Machine Syntax, Truth Table, Vista Net-List, or Boolean Equations. After compiling and minimizing, it outputs JEDEC Fuse Files, Net-Lists, and other support documentation.

Other powerful features include: Timing Simulation, and Back Annotation - from JEDEC Fuse Files to Boolean Equations.

YOS160

Logic \& Memory Programmer

PLD and PROM Programming from the original software controlled PROM programmer manufacturer. The VDS160 menu-driven programming software presents an easy-to-learn interface for the user.

Features include: Concurrent Operation of VDS160 and PC programs, Pop-Up Menus, Editor for Fuse/Data Files. New Device Support is easily accomplished via floppy diskette updates.

Cancel US-Japan Semiconductor pact

It's hard to believe, but economic suicide is the official policy of the US government and our native semiconductor industry. It's embodied in the US-Japan Semiconductor Trade Agreement. The government, as well as US chip manufacturers, want you to pay extra for Japanese ICs, and they want you to help Japanese semiconductor manufacturers make a profit.

Here's how this scheme works. Before the agreement, a Japanese company bent on selling chips in the US could sell an IC at less than cost. As a consequence, OEMs got bargains by paying less than the usual price for chips. Each purchase also caused a net loss for Japanese manufacturers. Because US chip manufacturers couldn't compete with the imported chips' low prices, the Japanese dominated the market even as they lost money. To protect domestic markets from what they call unfair foreign competition, US manufacturers asked for protection from the cheap chips that the Japanese were selling in the US. As a result, the US and the Japanese governments negotiated an agreement that sets an artificially high price for such chips.

In effect, the trade agreement sets up a semiconductor cartel; no manufacturer charges less than a minimum price for certain chips. OEMs who were happily paying $\$ 0.75$ for a chip must now pay a minimum price of, say, $\$ 2.75$. Instead of protecting the US semiconductor industry, the agreement angers OEMs and their customers, and it hoists the US semiconductor industry with its own petard. Because the agreement sets high prices for chips-beyond what the market would pay-Japanese suppliers go from losing money to reaping windfall profits from US buyers. Some of those profits fund research into new Japanese semiconductors for sale in the US.

The agreement doesn't address the glut of Japanese chips, nor does it cover sales outside Japan and the US. So, in that part of the rest of world where free market conditions exist, you can still buy cheap chips. It won't be long before US manufacturers shift production offshore to avoid the fixed high prices of imported Japanese chips.

It may be necessary to protect an industry for a short time, but such protection shouldn't fatten foreign competitors, and it shouldn't spur a drive to manufacture products outside the US. It's time to dump the US-Japan Semiconductor Trade Agreement and get back to head-to-head competition in the semiconductor industry. Some businesses will fail while others merge or take on foreign partners. Such is life in the competitive free market.

The right vendor can put ASIC in a whole new light.

Only the right Application Specific IC (ASIC) will make your project shine. Getting it takes the right vendor.

What makes a vendor stand out? The right vendor offers total ASIC capability: to handle every need from programmable logic to gate arrays, standard cells to custom design. Experience: to solve any design or manufacturing problem And design and manufacturing resources: sufficient to keep you ahead of the competition.

A vendor is a long-term partner. Gould AMI's ASIC capability was built over 20 years, not overnight. That's why you'll find the whole range of ASIC approaches. E^{2} programmable logic devices using PEEL" technology. Both 2μ and $3 \mu \mathrm{HCMOS}$ gate array and standard cell families. And cell-based custom ICs with analog as well as digital capability.

A full range of design support gives you total control. Extensive cell libraries for workstations and PC-
based design systems. Gould's own low-cost Sceptre II design software for your PC. And cell compilers to provide a virtually unlimited library.

And at Gould AMI, implementation of Statistical Process Control (SPC) throughout the company builds quality in, at every stage.

If that's your idea of the right ASIC vendor, too, let's talk.

We'd like to share more ideas.
For details and our informative

High Performance Solutions in Factory Automation, Computers, Instrumentation, Defense and Semiconductors.

new booklet, "How to Choose An ASIC Solution," simply call (408) 554-2311. Or write: Gould Inc. Semiconductor Division, manufacturer of Gould AMI semiconductors, 3800 Homestead Road, Santa Clara, CA 95051

We'll shed new light on ASICs.

PEEL ${ }^{w}$ is a trademark of International CMOS Technology, Inc.

Gould AMI ASIC: Depend on it.

At last, the ordinary microprocessor can toke its rightful place in history

Ithad to happen-the conventional microprocessor has had its day. Relegated to the ranks of yesterday's devices by the new transputer family from INMOS. It's history in the making.

The IMS T414 transputer is a fast, easy-to-use VLSI component, integrating a 32-bit processor, four intertransputer communication links, 2 K bytes Static RAM, 32-bit memory interface and DRAM controller. All on a single CMOS chip-offering execution rates up to 10 MIPs .

While transputers excel in single-processor systems, their real power can be unleashed by connecting any number of transputers together via the high-speed serial links. Multi-transputer systems can deliver the performance you need today, and can be easily expanded in the future as your processing requirements increase.

And there's more. Programming multiprocessor systems has never been easier. The Transputer Development System (TDS) supports C, Fortran, Pascal and OCCAM, providing a complete software development environment, and is available for a number of popular hosts. Software developed on the TDS can be executed on one or more transputers, enabling cost-performance tradeoffs to be made.

INMOS transputers are available now and have already found their way into companies who are evaluating, prototyping and manufacturing transputerbased systems. Applications include supercomputers, DSP, graphics, robotics, AI, distributed control systems, PC's, engineering workstations and many others.

Write or phone for more information on the transputer family and start making history yourself.

TRANSPUTER PRODUCTS	
IMS T414 IMS T212 IMS M212	32 bit Transputer-2Kbyte -4 links 16 bit Transputer-2Kbyte - 4 links 16 bitDiscProcessor- 1 Kbyte- 2 links
DEVELOPMENTTOOLS	
$\begin{aligned} & \text { IMS D701-2 } \\ & \text { IMS D600 } \\ & \hline \end{aligned}$	IBM PC - Transputer Development System. VAX/VMS-Transputer Development System.
EVALUATION BOARDS	
IMS B002-2 IMS B003-1 IMS B004-2 IMS B006-2 IMS B007-1	Double Eurocard + IMS T414 + 2Mbyte DRAM $+2 \times$ RS232. Double Eurocard $+4 \times$ IMS T414 $+4 \times 256$ Kbyte DRAM. IBM PC Format + IMS T414 +2 Mbyte DRAM. Double Eurocard $+9 \times$ IMS T212 +128 Kbyte SRAM. Double Eurocard + IMS T414 + 0.5Mbyte DRAM + 0.5Mbyte Video RAM
HIGH PERFORMANCE VLSI MEMORIES	
	16 K CMOS SRAM, $25-45 \mathrm{~ns}$, 64 K CMOS SRAM, $35-70 \mathrm{~ns}$ 256 K CMOS DRAM, $60-100 \mathrm{~ns}$

THETMAFSFUTET

INMOS, P.O. Box 16000, Colorado Springs, CO 80935, Tel. (303) 630-4000; Bristol, England, Tel. 454-616616; Paris, France, Tel. (14) 687-2201; Munich, Germany, Tel. (089) 319-1028; Tokyo, Japan, Tel. 03-505-2840.
(A) MOTOROLA

Emulate in real time. Debug in record time.

Supercharge your system design with industry's most powerful development system.

If you've just designed-in the industryleading MC68000/010/020 family of 16/ 32-bit processors, we can help you slash development time and get your product to market in record time.

The new Motorola HDS-300 ${ }^{\text {TM }}$ Hardware/Software Development Station can give you this important edge. It simplifies and speeds up debugging and testing of your MPU hardware and software. When used with an appropriate host, the HDS-300 station can also provide the new source-level debug to reduce development time still further.

8 -, 16- and 32-bit emulation \& analysis

The HDS-300 development station is your ultimate emulation and analysis tool for system designs based upon Motorola's 8-, 16- and 32-bit families. It supports development of systems based on the MC68020, MC68010, MC68000, and MC68008 as well as the MC6801/03, MC6809, $\mathrm{MC} 68 \mathrm{HC} 05 \mathrm{C} 4 / \mathrm{C} 8$ and MC68HC11 microprocessors.

Cost efficiency is achieved with a modular approach which permits you to utilize the basic HDS-300 station with any in a series of available emulator modules.
An array of labor-saving features includes real-time emulation to 25 MHz , coprocessor support, system performance analysis, and the unique ability to perform " C " language source-level debugging.
Powerful analysis/debugging capabilities, precise duplication of the application system configuration, and accurate, realtime, zero wait-state emulation generate great system-development versatility.

Source-level approach enables high-level language debug.

HDS-300 source-level debug capability allows debugging of user code at the " C " statement level rather than the machine or assembly language level. And, debugging is enhanced with break-

HDS-300, PC/68000 and SYSTEM V/68 are trademarks of Motorola, Inc

UNDX is a registered trademark of AT\&T.
points and other references made using labels, variable names, or statement numbers of the source code. Debugging is faster, since the familiar name of the variable can be used and the value of the variable is presented in the same type as the variable is declared. The emulator in mixed mode can also break "C" statements down to assembly language for even closer code inspection and debug.

Host options are available.

The complete HDS-300 system includes a host, system hardwaredevelopment station and an emulator for the specific M68000 family processor in your target system. Available options include:

- PC/68000 ${ }^{\text {TM }}$ Coprocessor A coprocessor board with UNIX® SYSTEM V/68 ${ }^{\mathrm{TM}}$ system software which plugs directly into an IBM-PC (or true hardware equivalent).
- VMEsystem $1131^{\text {TM }}$ DVLP

A 32-bit microcomputer and software package based on VMEbus architecture and UNIX SYSTEM V/68, suitable for up to 8 users.

Host-independent

instrumentation.
The HDS-300 station looks like a simple asynchronous ASCII terminal to the host computer when in stand-alone operation, so the connection is common and convenient for most host systems. The HDS-300 control station provides a host-independent vehicle to support the
emulator and provide a common user debug interface. This same friendly interface is provided across the complete family of emulators. The time you save here, alone, can substantially reduce time-to-market for your new design.
UNIX SYSTEM Vhosted support.

Motorola provides a variety of crosssupport software operating under the SYSTEM V/68 operating system. The supported hosts currently include the IBM-PC using our PC/68000 coprocessor module and the new SYS1131DVLP VME-based system.

One-on-one design-in help.

Get an engineer-to-engineer update on the HDS-300 Hardware/Software Development Station. Call toll-free,

1-800-521-6274

any weekday, from 8:00 a.m. to 4:30 p.m. MST from anywhere in the U.S. or Canada.

Or, for additional information, fill out the coupon and send it to Motorola
Semiconductor Products, Inc., P. O. Box 20912, Phoenix, Arizona 85036.

MOTOROLA

to program anuthing
that is
programmable
is obsession

DIGIAL MEDIA OBSGSSION

Availability of cryptographic ICs augurs the increasing use of data encryption

Chris Terry, Associate Editor

As the need for data encryption becomes increasingly evident because of the increase in traffic over satellite and microwave links, cryptographic schemes must be commercially available and economically feasible. Perhaps surprisingly, the government may provide the impetus for the increase in the use of cryptographic protection.

If you're designing a computer or telecommunications system that will handle sensitive data, your customer may require that you incorporate a cryptographic means of protecting the data against unauthorized access. Although you may be accustomed to thinking of cryptography as only necessary for government agencies with very large computer systems, cryptographic schemes for workstations and microcomputers are necessary, too.

Consider, for example, how commonplace distributed processing has become in the banking industry (especially where automatic tellers are in use). Also, the number of LANs is increasing. A growing number of local-area networks in small and me-dium-sized businesses handle data that certainly needs to be kept private; for instance, payroll documentation, personnel records, and new product designs require safeguards (not to mention the financial transactions that could give a clue to a company's stability or future plans).

Such data is, to some extent, protected against unauthorized access by the multilevel security precautions built into most large operating systems. These precautions are not always adequate, though. As long as the data stays within the system,

This data-encryption processor, the AMD 9578/Z8068, is a variation of the 9568 chip and is designed for interfacing to AMD's 2900 bit-slice CPUs and to Zilog's Z80000 μ Ps.
and as long as the passwords that allow the reading, creation, and modification of files are frequently changed and are properly managed, the data is safe against casual snoopers.
However, these same passwords must reside somewhere in the system, and a technically sophisticated snooper may be able to find and use them to read sensitive files that are stored in standard formats or to modify or erase these files. Thus, for complete security, the files themselves need to be stored in a form that is unreadable to a snooper, even if he has the passwords that allow access.
Finally, telephone lines constitute the medium for transferring data
from one node of a network to another or from one site to anotherno matter what type of data it happens to be. Because phone lines are vulnerable to wiretapping and other interception techniques, sensitive data passing over them should first be scrambled in such a way that only the intended recipient can unscramble it.
The process of turning clear (plain-language) text into cipher (scrambled) text is called encryption; decryption is the opposite process of unscrambling cipher text into clear text. Cryptology is the general term that embraces both cryptography (the designing of encryption/decryption schemes) and cryptanalysis (the process of break-
$\$$ Creative solutions from the General.

WHODELIVERS PWMS IN CERAMIC, PLASTIC AND SURFACE MOUNT?

THE GENERAL DOES.

Isn't that just what you would expect from the inventor of the pulse width modulator?
Now we are in the third generation of PWM's with a truly broad line. Fourth generation parts are on their way.

The General processes PWM's to 883B, Rev. C and Class S. All standard package types are offered including SOIC, LCC, and PLCC.

All parts are available on short lead times. Sample quantities for evaluation purposes can be shipped immediately.

Built in QPL Plant.

You are assured quality. MIL-M-38510 approval has been granted for our plant to produce JAN parts. JAN products include the MIL-M-38510/10103 BGA and the MIL-M-38510/13001 BEA.

A PRODUCT MATRIX TO BUILD BY.

Military Temp Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$	Commercial Temp Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Voltage Mode	
SG1524J	SG3524N
SG1524BJ	SG3524BN
SG1525AJ	SG3525AN
SG1526]	SG3522N
SG1527AJ	SG3527AN
SG1840AJ	SG3840AN
Current Mode	
SG1842J	SG3842N
SG1843]	SG3843N
SG1846]	SG3846N
SG1847J	SG3847N

Procedures developed by Silicon General to achieve this status include quality assurance, testing, burn-in, careful assembly and fabrication programs and other elements of high reliability manufacturing technology. New catalog available.

Ask for your free copy, please address Silicon General, 11861 Western Ave., Garden Grove, CA 92641. Phone (714) 898-8121. TWX 910-596-1804. FAX (714) 893-2570.

TECHNOLOGY UPDATE

```
A 3CDEFGHIJKLMNOPQRSTUVW XYZ
XYZABCDEFGHIJKLMNOPQRSTUVW
CLEAR TEXT: MEET ME AT MIDNIGHT
CIPHER TEXT: JBBO JB XQ JFAKEDEQ
```

Fig 1-The Caesar cipher is a single-alphabet substitution method. The cipher alphabet is displaced from the clear alphabet and wraps around to the beginning, as shown here.
ing a cryptographic scheme so that you can recover messages not intended for your eyes).
Encryption (and by inference, decryption) uses either or both of two basic methods: substitution, in which each character of the clear text is represented by a different character or symbol (which may not appear at all in the clear text); and transposition, in which the cipher text contains exactly the same characters as the clear text, but in a different order-that is, the encrypted text is an anagram of the clear text.
The simplest examples of each of these methods are the Caesar cipher (Fig 1,) which Julius Caesar devised; and the Playfair cipher (Fig 2), which protected low-level communications during World War I. All of the cryptographic schemes available today rely on some sophisticated combination of substitution and transposition.
A person can quickly break a simple substitution scheme by comparing the characters contained in the cipher text with a frequency table, which shows the letters, digraphs, and trigraphs that appear most often in a particular language. Given time and skill, a person can manually break transposition ciphers; with the aid of a computer, such codes are easily decipherable. Thus, much more sophisticated cryptographic schemes are required in order to prevent computer-aided cryptanalysis.

Probably the most widely known scheme in use today, and one that is available in the form of an integrated circuit, is the Data Encryption Standard (DES). IBM developed the DES between 1973 and 1977,
and the National Standards Laboratory approved it for commercial and sensitive data in 1977.

At least two IC manufacturers are currently delivering production quantities of encryption devices that use the DES algorithms. The AT\&T T7000 digital encryption processor and the AMD 9568 data ciphering processor are 40-pin DIP ICs that you can include in a microcomputer without much difficulty. In addition, the AMD chip is specifically designed to interface to the IBM PC bus. The AMD IC costs $\$ 29.17$ (100); the AT\&T chip sells for $\$ 43$ (1000).
The DES specifies that both the

KEY: HECTOR
ORDER: 321645
CLEAR TEXT: M E E TM E ATMIDN I G H T J J

CIPHER TEXT:

EMH ETG MAI MDJ ENJ

Fig 2-The Playfair cipher is a columnar transposition method. The clear text appears in horizontal rows the same length as the key, with padding $(J J)$ to fill the rectangle. The cipher text is taken from the vertical columns in the numeric order determined by the order of occurrence of the key letters within the normal alphabet.
encryptor and the decryptor of a message must use the same key; the question that then arises is how to distribute this key securely. Actually, you need two keys: a master key that you change relatively infrequently (daily or weekly perhaps); and a session key, which you can change as often as you wish for

Companies participating in Project Overtake

For more information on any of the cryptographic products associated with the National Security Agency's Project Overtake, contact the individual acting as liaison listed after each manufacturer.

AT\&T Technologies
Guilford Center
Box 25000
Greensboro, NC 27420
Burnley L Miles
(919) 279-7122

GTE Corp
Communications Systems Div
100 First Ave, Bldg 1
Waltham, MA 02254
Frank Dolan
(617) 466-3907

Harris Corp
Government Communications Systems Div
Box 91000
Melbourne, FL 32902
Jack Raymond
(305) 729-2308

Honeywell Inc
Box 391
Annapolis, MD 21404
Jack 0 McCorkle
(301) 266-1716

Hughes Aircraft Co
Box 3310
Fullerton, CA 92634
Chuck McLoon (Bldg 688/L106)
(213) 802-4338

IBM Corp

Federal Systems Div
9500 Godwin Dr
Manassas, VA 22110
A Louis Medin
(703) 367-4930

Intel Corp

7833 Walker Dr, Ste 550
Greenbelt, MD 20770
J Daniel Magnes
(301) 441-1020

Motorola Inc

Box 1417
Scottsdale, AZ 85252
David Kohler
(602) 949-2755

RCA Corp

Government Communications Systems Div
Front \& Cooper Sts
Camden, NJ 08102
David Miller (MS 10-3-1)
(609) 338-2621

Rockwell International Corp
Box 11963
Santa Ana, CA 92711
Jerome Gilmore
(714) 850-2677
outgoing messages and which can be different for every incoming message.

When you want to send a message to a remote station equipped with DES devices, you first encrypt the session key, using the master key, and send the session key over the line ahead of the message. The remote equipment decrypts the session key and stores the clear key in a register.

Every key consists of eight bytes, each having seven data bits and a parity bit (the LSB); the hardware does not check the parity of encrypted session-key bytes but does check the parity of the decrypted session-key bytes. The parity circuits activate a status line that tells you whether or not the session key
was correctly transmitted and loaded. The AT\&T and AMD ICs have two session-key registers, and thus you can load your own session key in one register for encrypting outgoing messages and use the other register to hold the session key received with an incoming message.

There is some controversy as to whether or not this method of distributing keys is secure. On the one hand, sending the session key over a telephone line (even in encrypted form) is hazardous.

On the other hand, you can change the session key as often as you wish, and the receiver of a message doesn't need to know the contents of the key he'll use for decrypting the message because the
equipment will decrypt and load this key for use automatically. These precautions limit the number of people who know the key and that in turn increases security. However, it's difficult for two strangers who are unable to meet to set up a secure DES communications link because there's no secure way for them to agree on a key.

Three modes are possible

The DES specifies three operating modes: electronic code book (ECB); cipher-block chaining (CBC); and cipher feedback (CFB); both AT\&T's T7000 and AMD's 9568 chips provide all three modes. In the ECB mode, for any given key, encrypting the same 64 -bit block of clear text multiple times will always

Public-key/private-key scheme hasn't been broken

An alternative cryptographic scheme, and one that offers the advantage of providing unquestionable authentication of the originator, is the public-key/ private-key scheme of Diffie and Helman (Ref 1), proposed in 1976. In 1978, Rivest, Shamir, and Adelman, professors at MIT, published the RSA implementation of the public-key/private-key scheme (Ref 2). To date, the RSA algorithm has not yet been broken.

The public-key/private-key scheme uses a key computed from two very large prime numbers (greater than 10^{100}). Two of the key's factors constitute the public and private portions, respectively. The public portion resides in a public directory; each private portion remains known only to the individual who uses it.

If user X wishes to send a message to user Y , he first encrypts the text using his private key; he then looks up the public key and uses this to encrypt the signature portion of the message. User Y, upon receiving the encrypted message, uses his private key to decrypt the signature portion; then he looks up the public key of the sender and uses that to decrypt the text.

The security of this system derives from the certainty that factoring a very large number is a huge task requiring immense amounts of time-one estimation is about 4 billion years of Cray supercomputer time to factor a 200 -digit number.

Another advantage is that any two persons listed
in the directory can establish secure communications without having to arrange for secure distribution of a key (as would be the case if they used the DES). They could, in fact, use an electronic mail system (such as MCI mail).

Of course, the use of such large numbers has drawbacks as well as advantages. Because the algorithm is based on the multiple-precision processing of large numbers, it would be very expensive (and perhaps impossible, at present) to implement in hardware, and the software implementation is much slower than the inexpensive hardware implementations of the DES.

A successful implementation of the RSA algorithm has been done on an IBM PC; because the implementation is slow, however, you have to collect the entire outgoing cipher text in a disk file or memory buffer before passing it to a $1200-\mathrm{bps}$ modem and, by the same token, you have to buffer incoming cipher text before decrypting it.

References

1. Diffie, W and E Hellman, "New Directions in Cryptography," IEEE Transaction on Information Theory IT-22, November, 1976, pg 644.
2. Rivest R L, A Shamir, and L Adelman, "A Method for Obtaining Digital Signatures and Public Key Crypto System," Communications of the ACM, February, 1978, pgs 120-126.

You've got to be pretty dense to send your PCB design to Forest Grove.

If you're working with high circuit densities, you need the exceptional prototype capabilities of our new Forest Grove, Oregon plant. We specialize in dense multi-layer and surface mount PCBs, using technologies refined and perfected by our own engineers.

Your blind and buried vias, fine line circuits, all your space-saving concepts will be faithfully
translated through our highly automated and rigorously controlled processes.

We also know all the ways to close the space between you and us. Our computer interface to your CAD system gets us off to a fast start. And from there, we go out of our way to make sure you get your prototype in a hurry - no matter where you are.

When it comes to PCB designs, it's smart to be dense. And we have the technology to prove it. So send your most sophisticated design to Forest Grove today. When you see your prototype tomorrow, you'll know it was well worth the trip Call 1-800-222-2600 ext. 216 in the U.S., or 1-800-338-8800
ext. 216 in Canada.

TECHNOLOGY UPDATE

For more information

For more information on the cryptographic ICs described in this article, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service Card.

```
Advanced Micro Devices
Box }345
Sunnyvale, CA }940
(408) 732-2400
Circle No 708
```

AT\&T Technologies 1 Oak Way, Rm 2WC-106 Berkeley Heights, NJ 07922 (800) 372-2447

Circle No 709

Harris Custom Integrated Circuits Div Box 883, MS 53-175 Melbourne, FL 32902
(305) 729-5757

Circle No 710
result in the same 64 -bit block of cipher-text output. Although this mode violates a basic rule of cryp-tography-never encrypt the same message in the same way twice because doing so makes code-breaking easier-it does offer an advantage for intrasystem use in disk file encryption: You can read a file back one sector at a time.

In the CBC mode, the cipher output of each block modifies the encryption of succeeding blocks, so that successive encryptions of the same clear text block will produce different cipher text each time. This mode is inconvenient for encrypting a disk file because you have to read the whole file in order to examine one sector. However, two attributes make it ideal for synchronous-block data transmissions over phone lines: Security is intrinsically high, and any attempt by a snooper to intercept and modify the message during transmission corrupts the entire message and makes it indecipherable, thereby alerting the recipient to the interception attempt.

The CFB mode is similar to the CBC in that each block affects the encryption of subsequent blocks. However, the CFB mode is optimized for 8 -bit data blocks instead of the CBC's (and ECB's) 64-bit blocks and thus is highly suitable for character-by-character asynchronous data links.

Although the DES provides a reasonably secure means, capable of implementation in fast hardware, of encrypting data and transmitting it over telephone and network lines at speeds as high as 1.5 M bytes/sec, master key distribution is still a
problem. If there are n users on a network, each of whom desires secure communications with the other $\mathrm{n}-1$ users, then the network administrator has to arrange for the secure distribution of $n(n-1) / 2$ master keys each time a key change is necessary. An alternative scheme that solves this problem does exist but is not available in IC form (see box, "Public-key/private-key scheme hasn't been broken").

Also, not everyone believes that the DES's security is sufficient. Recently the National Security Agency (NSA) stated that it won't approve the DES when it becomes due for review as a federal standard in 1988. The reason, according to the agency, is that potential enemies have had 10 years in which to study and analyze intercepted communications that use the DES, and therefore they can longer guarantee the security of the standard.
The NSA's National Security Decision Directive (NSDD) 145, which President Reagan signed in 1984, provided the agency with the authority to develop new encryption standards for unclassified government data and to promote the adoption of the new standards by the private sector.

In March 1985, the NSA established the DCECP (Development Center for Embedded Comsec Products) with a charter to design embeddable Comsec modules that will help to secure communications. In conjunction with the 10 participating companies, the center has embarked on Project Overtake, a cooperative effort to standardize Comsec modules both for Type I data (classi-
fied) and Type II data (sensitive but unclassified government or govern-ment-derived). Off-the-shelf devices associated with Project Overtake include such products as a series of voice- and low-speed-data encryption devices, a series of data-encryption devices for computers, and a series of high-speed digital-data-encryption devices for mainframe, satellite, and microwave communication links.

OEMs intent on purchasing Comsec encryption modules have to qualify with the NSA on a need-toknow basis. You can obtain information and guidance on the most suitable modules for a given application and on qualification requirements from the liaison personnel at each participating company (see box, "Companies participating in Project Overtake").

Tradeoffs exist, as always

No matter what the future holds, when deciding on cryptographic alternatives for your particular application you'll have to consider the inevitable tradeoffs. If you're dealing with sensitive data at governmental levels, you'll have to use NSA-approved devices such as the Harris HS3447 Cipher-I IC for serial communications ($\$ 137$ in quantities of 500) or one of the Comsec modules, regardless of cost. If you need the security of large keys and can tolerate relatively slow operation, a public-key/private-key implementation might suffice. If you need to bring a product to market quickly and inexpensively, though, then incorporating one of the DES cryptographic processors into your system is probably the best approach. EDN

Article Interest Quotient
(Circle One)
High 503 Medium 504 Low 505

W/ANMDD cyPitry

Our NSA-endorsed encryption chip: more speed, less space than DES.

Now the high-speed data encryption chip once reserved for protecting America's defense secrets is available to communications equipment makers to protect sensitive but unclassified government or governmentderived information, the loss of which could adversely affect the national security interest.

The Harris CYPHER- ${ }^{\text {TM }}$ circuit is embeddable and built with our proven low-power CMOS process. Compared with the decade-old DES chip, CYPHER-1 ${ }^{\text {TM }}$ is nearly 50% faster (20 megabits/second) -and its smaller size (16 pins versus DES' 40) makes it flexible enough to interface with almost any communications channel.

You'll find the CYPHER- ${ }^{T M}$ is the perfect encryption circuit in EDP applications-computer-to-computer links, telecommunications, satellite communications and local area networks.

The CYPHER-1 ${ }^{\text {TM }}$ circuit encrypts/decrypts via a serial data stream, rather than using the slower traditional block cypher process. In addition to cryptosecurity, the CYPHER-1 ${ }^{\text {TM }}$ chip is also perfect in systems using spread spectrum transmissions. Use it to build-in immunity to frequency jamming and signal interception in electronic warfare applications.

It's available in production quantities now.
DES is yesterday's technology. CYPHER- $\mathrm{T}^{\text {TM }}$ is tomorrow's. Call Harris today.

For a data sheet and application information, call (305) 729-5757. Or write: Harris Custom Integrated Circuits Division, P.O. Box 883,
MS 53-175,
Melbourne, Florida
32902-0883.

CIRCLE NO 151

14 ways to change yourmind, not your inventory:

 PIDCPOGTO 24-Pin Generic Programmoble Logic Device $25 \pi 555 \mathrm{~mA}$
 CY7C261 8192×8 Power Down PROM 35ns 100 mA $\left(l_{s B}=30 \mathrm{~mA}\right)$
 FFFFAASS. EPLD \&

PAIC16R4L 20-Pin CMOS PAL Device $25 n s 45 \mathrm{~mA}$

ітсмоs
 RPROM.

The speed and power specs at the left are an indication of the high performance and low power you get with our CMOS PROM and PLD parts.

Now consider reprogrammability.
In engineering, it means you can try out ideas without blowing an expensive part with every iteration. And without worrying about using up your last part.

In production, it often is more economical to stock reprogrammable parts - even at a slightly higher unit cost-and program on demand. (For volume production, parts are available in low-cost plastic packaging.)

Try our windowed parts yourself, and see just how the ability to change your mind with impunity can take headaches out of design and production.

New: Turn your PC into a foundry with our $\$ 995$ QuickPro ${ }^{\text {TM }}$ programmer card.

 Program ALL Cypress Semiconductor PLD and PROM parts with this flexible, handy system. It works with your favorite programming software (like ABEL, ${ }^{\mathrm{TM}}$ CUPL, ${ }^{\text {TM }}$ or PALASM. ${ }^{\text {TM }}$)
You will find that QuickPro in your $\mathrm{IBM}^{\otimes} \mathrm{PC}^{\circledR}$ or compatible gives you the easiest, cheapest solution for a quality programmer in every design lab, so you can take advantage of all these new programmable parts.

All our parts work with industry standard programming tools, too.

Now, consider the rest of our MIPS CHIPS family:

CMOS High Speed Logic Family
In addition to the world's fastest 16 -bit slice (30 ns) and our 4 -bit slice (23 ns) microprocessors, we offer the world's fastest 12-bit controllers, fast

sequencers, 16×16 multipliers and multiplier/accumulators, plus many more high-speed CMOS circuits. Also, the fastest 64×4-bit and 64×5-bit cascadeable FIFOs (25 MHz commercial AND military performance). All very low power.

CMOS High Speed SRAM Family

Featuring the fastest (15 ns) 4 K Static TTL-compatible RAMs you can buy, fabricated in our 0.8 micron CMOS process. Plus a variety of $15 \mathrm{~ns}, 25 \mathrm{~ns}, 35 \mathrm{~ns}$, and 45 ns parts, too. Nibble-wide, bitwide, byte-wide, ranging from 64 -bits through 64 K -bits. Low active power. Low standby power-many parts include auto-power-down when deselected.

CMOS High Speed PROM Family

Surpassing bipolar with fast registered PROMs at $1 / 2$ bipolar power, or less. Parts feature speeds to 25 ns set-up, 12 ns clock-to-output. Byte-wide family available in $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}, 64 \mathrm{~K}$ and 64 K diagnostic densities. Also 64K Power Down ($\mathrm{I}_{\mathrm{SB}}=30 \mathrm{~mA}$), $8 \mathrm{~K}, 16 \mathrm{~K}, 64 \mathrm{~K}$ nonregistered available. 100% testing of data bits before packaging means optimum programming yields.

CMOS High Speed PLD Family

Featuring 25ns HALF-power 90 mA windowed 22 VI 0 EPLD - the new highspeed re-programmable PLD standard. Also, quarter-power 45 mA PAL C 20 parts, and the 55 mA 20 G 10 Generic 24pin PLD - both available at 25 ns speeds and with windows. Military: 20ns, 70 mA PAL C 20 , and 25 ns , 120 mA PAL 22 VI 0 also available. All cells 100% functionally tested. Free QuickPro datasheet and CMOS dafa book! LITERATURE HOTLINE: 1-800-952-6300, BIGCER AND Ask for Dept. C16 BETIER 1-800-423-4440 (In CA), Ask for Dept. C16 (32) 2-672-2220 (In Europe). (416) 475-3922 (In Canada).

CYPRESS
 SEMICONDUCTOR

JUST LIKE THE OP－07．
 BUT 2．5 TIMES
 THE MAX400 VS．EVERYTHING ELSE．

	$\begin{gathered} \text { Vos (MAX) } \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { Vos (MAX) } \\ & \text { Over Temp } \end{aligned}$	DRIFT（MAX）	$\begin{gathered} \text { GAIN (MIN) } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { CMRR (MIN) } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { PRICE } \\ \text { (100 up) } \end{gathered}$
	$\mu \mathbf{V}$	$\mu \mathbf{V}$	$\mu \mathbf{V} /{ }^{\circ} \mathbf{C}$	V／mV	dB	\＄
MAX400M	10	40	0.3	500	114	17.00
MAX400C	15	40	0.3	500	114	6.00
LT1001AM	15	60	0.6	450	114	49.00
LT1001AC	25	60	0.6	450	114	6.43
OP07A	25	60	0.6	300	110	16.25
OP77A	25	60	0.3	5000	120	18.00
OP77E	25	45	0.3	5000	120	3.00
OP07E	75	130	1.3	200	106	2.50

OUR OP－07 IS BETTER，TOO．

The table tells you everything you need to know about Maxim＇s MAX400．What it doesn＇t tell you about is our OP－07．

It＇s up to 30 times more reliable than everybody else＇s．That＇s because our OP－07，like the MAX400，is burned in at $150^{\circ} \mathrm{C}$ for at least 24 hours（the equivalent of 4,000 hours at $70^{\circ} \mathrm{C}$ ）．Absolutely free to you．

So for the best op amps your money（or anybody else＇s）can buy，call your Maxim representative or distributor today．

Maxim Integrated Products， 510 N．Pastoria Avenue，Sunnyvale， CA 94086，（408）737－7600．

[^7]
Specially processed operational amplifiers meet rad-hard and high-temperature needs

Jim Wiegand, Associate Editor

Military and aerospace applications have placed severe environmental demands upon analog components for some time, but don't overlook the possibility of using the parts specially processed to meet those demands for your own, more terrestrial, and in some cases even subterranean, applications. The requirements of radiation hardening and high-temperature operation found in these environments are echoed in nuclear power stations and fuel-reprocessing plants, in high-temperature industrial control, in measurements of jet-engine parameters, and in down-hole measurements for oil exploration. Among the parts specially processed for such harsh treatment are a small number of operational amplifiers-some mature and some recently introduced.
Some of these op amps are better suited to high-radiation environments, and some are specifically for high-temperature settings. Some op amps blur the distinction, taking advantage of fabrication processes that address the problems associated with both high temperatures and high doses of radiation.

Different types of radiation, through their own mechanisms, adversely affect ICs in a variety of ways (see box, "A hardened IC is good to find"). In particular, exposure to radiation can degrade such op-amp parameters as open-loop gain, input bias current, input offset current, input offset voltage, slew rate, bandwidth, input impedance, and output power. IC manufacturers have devised ways of ameliorating the effects of radiation, and they can provide you with rad-hardened op amps for use in such environ-

An impressive unity-gain stability spec of 150 MHz is the noteworthy feature of the AOP1510 op amp from Anadigics Corp. The op amp is fabricated with an inherently rad-hard GaAs process.
ments as nuclear power plants and unshielded industrial x-ray equipment.

Rad-hardened op amps

Anadigics Corp employs gallium arsenide in the manufacture of its AOP1510 op amp. GaAs is inherently rad-hard because of its semi-insulating substrate. Anadigics cooperates with customers in radiation testing of its devices, which occurs at third-party facilities (companies or national laboratories), but the company does not have radiation hardness data available.

In addition to exhibiting the radhard advantages of GaAs devices, the AOP1510, as you might imagine, sports some impressive speed specifications. The device operates with unity-gain stability to 150 MHz . The open-loop gain is 70 dB , and the slew rate is $500 \mathrm{~V} / \mu \mathrm{sec}$. The settling time to within 1% is 30 nsec typ (when the sense resistance and the feedback resistance are both $1 \mathrm{k} \Omega$). The AOP1510 costs $\$ 29$ (this and all other prices cited in the article are for quantities of 100).

Burr-Brown Corp employs its
proprietary DIFET dielectric-isolation (DI) process in the manufacture of its op amps. The DI process counteracts the tendency of CMOS ICs to form leakage paths when subjected to radiation. Although the DI process typically doubles the number of steps involved in the production of ICs, and although this twofold increase in manufacturing steps results in nearly an order of magnitude increase in wafer costs, the process pays off in radiation hardness. The OPA111 op amp has been tested by the Jet Propulsion Laboratory and found to be rad-hard at the $1 \times 10^{7}-\mathrm{rad}(\mathrm{Si})$ level, using co-balt-60 (Co60) and $2.5-\mathrm{MeV}$ electrons as sources for irradiation. The parts also operate to the limit of their functionality, but with minor degradation, after being exposed to a fluence of $5 \times 10^{13} \mathrm{~N} / \mathrm{cm}^{2}$ of $1-\mathrm{MeV}$ equivalent neutrons.
(Just to lend a little perspective to these figures, the Galileo spacecraft, which will be exposed to a constant stream of radiation during its long journey to Jupiter, and to even higher levels as it comes in close to the giant planet, will be subjected to something less than 3×10^{5} rads.)
The OPA111 operates with an input bias current of $1 \mathrm{pA}, 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ of offset-voltage drift, $1 \mu \mathrm{~V} \mathrm{rms}$ of noise between 10 Hz and 10 kHz , an open-loop gain of 120 dB , and com-mon-mode rejection of 100 dB min . The part costs $\$ 9.75$.

Duals and quads

Also manufactured with the DIFET process, the $\$ 15.25$ OPA156A provides a $4-\mathrm{MHz} \min$ gain-bandwidth product, a $10 \mathrm{~V} /$ μ sec slew rate, and a settling time to within 0.01% of $4 \mu \mathrm{sec}$ typ. Burr-

Brown also offers the $\$ 15.65$ dual OPA2111 and the $\$ 11.85$ quad OPA404 op amps with DIFET processing.

For applications requiring high slew rates, you can use Elantec's 2500 or 2600 Series of DI-processed op amps. The $\$ 24.64$ EHA2-2520-8 op amp, for example, specs a slew rate of $100 \mathrm{~V} / \mu \mathrm{sec}$. Like Burr-Brown and Anadigics, Elantec doesn't have
in-house radiation test facilities. The company works with you to obtain the required testing at an off-site test facility, such as the JPL or Sandia National Laboratories.

Programmable, wideband parts

The Custom Integrated Circuits Division of Harris Corp has provided rad-hardened ICs using the DI process for a number of
years. It currently offers the HS3516RH wideband op amp, the HS3530RH low-power programmable op amp, and the HS5104RH quad op amp. Each of the op amps delivers 10 mA of drive current, and all feature a $1 \mathrm{~V} / \mu \mathrm{sec}$ slew rate and a $15-\mathrm{kHz}$ full-power bandwidth.

The $\$ 220$ HS3516RH provides unity-gain stability at frequencies greater than 10 MHz . It specs a

A hardened IC is good to find

The two major types of damage to which an IC can fall victim are displacement damage and ionization damage. Displacement damage is caused by neutrons or heavy, charged particles, which interact with the lattice of the irradiated semiconductor material. As its name implies, displacement damage is marked by vacancies in the lattice structure or by interstitial atoms-that is, extra atoms forced between lattice sites. This type of damage is particularly harmful to bipolar ICs, because these defects decrease minority-carrier lifetime and carrier concentration, which in turn leads to beta degradation and increased reverse leakage currents across device junctions. In an op amp, the openloop gain, input bias current, input offset current, input offset voltage, and slew rate are all adversely affected.

Gamma (photon) radiation is the primary source of ionizing radiation. Ionizing radiation produces its most noticeable effects in the gate and field oxides of CMOS ICs. The net effect is a threshold voltage shift and degradation in channel mobility. Photocurrents generated by ionizing radiation can also activate a low-impedance, high-current path from $V_{D D}$ to ground in CMOS devices. This condition is known as latch-up, and it can destroy the device. Manufacturers now grow an additional epitaxial layer over the starting material of the bulkCMOS wafer to eliminate latch-up.

An untoward transformation

There's another problem caused by ionizing radiation. Immediately after ionization, recombination begins, but due to the applied electric fields, so does electron transport. Because electron mobility is roughly six orders of magnitude greater than hole mobility, the electrons will be swept out much sooner than the holes, leaving the holes behind to begin a transport process to the interface between
the silicon and silicon-dioxide layers. Some holes will pass into the silicon, while others will be trapped at defect centers near the interface. This buildup of positive charge will make it easier to create the n-channel (inversion layer), thus lowering the threshold voltage in an n-channel device; in the extreme, the n-channel device may even be transformed into a depletion-mode device.

On the other hand, a p-channel device becomes more difficult to turn on. The two main effects of ionizing radiation, then, are an increase in leakage current and a shift in threshold voltages, both of which are related to the radiation-induced inversion layer. Designers can counteract the increase in leakage current by forming guard bands around each n-channel device. They can also harden the gate and field oxides to lessen the shifts in threshold levels. Other semiconductor technologies-notably gallium arsenide and silicon on saphire (SOS)are inherently more resistant to the effects of radiation, and some parts using these technologies are beginning to work their way out of the lab.

Measuring and testing rad-hardness

In order to evaluate the radiation hardness of a part, you need to know how to measure the radiation dosage and how to test the part in question for hardness. The energy transferred to a material by ionizing radiation is measured in terms of rads. One rad is equal to 100 ergs absorbed per gram of material. The total absorbed dose is called the gamma, and the dose rate, called the gamma-dot, is measured in rads $(\mathrm{Si}) / \mathrm{sec}$. Particles are referred to in terms of flux, the concentration of particulate flow is measured in particles $/ \mathrm{cm}^{2} / \mathrm{sec}$, and fluence is the time integral of flux in particles $/ \mathrm{cm}^{2}$.

You can perform radiation testing with widely varying dose rates. According to MIL-STD-883C, method 1019 , dose rates may vary between 1.67
slew rate of $22 \mathrm{~V} / \mu \mathrm{sec}$ and a settling time of 450 nsec to within 5% of the settled value. The $\$ 155$ HS3530RH operates with little variation in operating characteristics as the supply voltage ranges from 3 to 15 V . The device operates from a supply current of $15 \mu \mathrm{~A} \max$ (assuming a load resistance of $75 \mathrm{k} \Omega$ and a set current of $1.5 \mu \mathrm{~A}$). You can program such parameters as power dissipa-
tion, slew rate, bandwidth, noise, and input dc specs via your selection of an external resistor or current source. The $\$ 220$ HR5104RH provides, in a quad-op-amp configuration, all the benefits of close parametric matching that normally come with monolithic construction.

Harris Corp subjects samples of these devices to a total-dose radiation level of $1 \times 10^{6} \operatorname{rads}(\mathrm{Si}), \pm 10 \%$,
from a gamma-cell-220, Co60 source or the equivalent. The test applies a supply voltage of $\pm 15 \mathrm{~V}$ to the devices and irradiates them at a rate of 50 to $200 \mathrm{rads} / \mathrm{sec}$. Harris then performs parametric tests upon the devices within one hour after irradiation. Key parameters measured include open-loop gain, input offset voltage, and bias current.

The lot will be accepted only if the
rads $/ \mathrm{sec}$ and $2500 \mathrm{rads} / \mathrm{sec}$. (For greater precision, the requirements are currently being amended to $200 \pm 100 \mathrm{rads} / \mathrm{sec}$.) A cobalt-60 (Co60) chamber subjects a sample to 10^{5} rads/hour, which is closer to the irradiation of a nuclear blast than to that of a space environment. The rate of exposure is significant because of the annealing, or self-healing, effect exhibited by ICs. High dose rates don't allow annealing to take place. The manner of testingparametric vs functional, in situ vs extrachamber, continuous vs intermittent measurement-as well as time delays between the exposure and the measurement will all have an effect upon results. You must address different radiation environments with appropriate system design techniques.

Better in lead than dead

High-radiation environments of concern fall into three basic categories: nuclear event, space, and nuclear power or fuel-reprocessing plants. The most serious, "nuclear events," are characterized by high levels of x-rays or gamma rays and neutron flux for a very short period of time-typically 10^{-9} to $10^{-6} \mathrm{sec}$. The intense levels of x-rays can melt the gold metallization or gold bond used to attach the chip to the header. Because the flux from the blast drops off in a manner inversely proportional to the square of the distance from the blast center, the best way to avoid damage is to be far away from the blast.

If you don't have the luxury of locating your circuitry far from the nuclear blast, the next best thing you can do is shield your circuitry with lead, other conditions permitting. If the intensity of the radiation is not sufficient to melt the metallization, you must still take into account the ionizing effects in your system design. If the photocurrents are great enough, parasitic pnpn structures in your op amp may be triggered, and at extreme dose levels,
an excessive carrier population can momentarily approach the doping levels of the semiconductor material, transforming the semiconductor into a resistive element and allowing large, potentially destructive currents to flow.

Linear bipolar elements are most susceptible to this sort of catastrophic failure, and what you as a system designer need to do to prevent damage is to provide external current limiting. In addition, you should select high-frequency parts to allow for bandwidth degradation, and select capacitor values that will store no more than $10 \mu \mathrm{~J}$ of energy to prevent them from supplying large currents to the op amp during periods of IC saturation.

The tangible effects of damage

Neutron-bombardment damage manifests itself in the degradation of a number of performance aspects (mentioned in the main text), and you must make appropriate adjustments in your designs. In addition, electromagnetic pulse (EMP) is a phenomenon associated with a nuclear blast and consequently a cause of concern for system designers. Design precautions for EMP are the same as those for electrostatic discharge (ESD) protection-that is, electromagnetic shielding and resistor-diode networks.

Total-dose radiation is an accumulation of lowlevel x-ray and gamma radiation that is typically encountered by spacecraft. CMOS parts have traditionally been more susceptible to this sort of radiation than have bipolar parts, because trapped charges in the gate and field oxides cause a shift in thresholds and in transconductances. Offset voltage, bias current, offset current, and open-loop gain will suffer the effects, and your design must take these effects into account.
sample meets specified limits on these parameters. For example, the HS3516RH must exhibit an openloop gain that's greater than or equal to 80 dB , the input offset voltage must be less than 5 mV , and the bias current must be less than 400 nA at room temperature. The radiation environment for which the devices are suitable is one where the total neutron fluence $(\mathrm{E}>10 \mathrm{keV})$ is $5 \times 10^{12} \mathrm{~N} / \mathrm{cm}^{2}$, the gamma rate is $1 \times 10^{9} \mathrm{rads}(\mathrm{Si}) / \mathrm{sec}$, and the total gamma dose is 1×10^{6} rads(Si) $\left(1 \times 10^{5} \operatorname{rads}(\mathrm{Si})\right.$ for the HS5104RH).

National Semiconductor, in concert with the JPL, has developed rad-hard op amps for the Galileo spacecraft. The $\$ 200$ LM101A is a general-purpose op amp that features a guaranteed open-loop gain of 88 dB min. The $\$ 220 \mathrm{LM} 108 \mathrm{~A}$ is a precision op amp with a guaranteed offset voltage of less than 0.5 mV . The parts were designed to withstand a total dose of $3 \times 10^{5} \mathrm{rads}(\mathrm{Si})$. National participates in a monitored line program (a production-line inspection plan whereby samples of a product run are extracted and tested), and it has its own gamma cell for in-house radiation testing.

Precision Monolithics Inc offers three op amps that operate at totaldose radiation levels greater than

Fully characterized for operation over 0 to $250^{\circ} \mathrm{C}$, the HA-2620-1 from Harris is an extended-temperature version of a device that specs a $100-\mathrm{MHz}$ gain-bandwidth product at $25^{\circ} \mathrm{C}$ and a $500-\mathrm{M} \Omega$ input impedance.
$1 \times 10^{6} \operatorname{rads}(\mathrm{Si})$. The OP-15, -16 , and -17 are high-speed, FET-input devices. They cost $\$ 6.50$.

The dielectric-isolation process, which helps harden ICs against ra-diation-induced damage, also exhibits excellent high-voltage (to 500 V) and high-temperature $\left(200^{\circ} \mathrm{C}\right)$ operating characteristics. Telephone companies employ the process in their switching circuitry because of the high voltages in telephony.

DI-processed op amps are used in such high-temperature applications as "down-hole" sensing in oil-well

For more information

For more information on the rad-hardened and high-temperature op amps described in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

Anadigics
35 Technology Dr
Warren, NJ 07060
(201) 668-5000
Circle No 701
Burr-Brown Corp
Box 11400
Tuscon, AZ 85734
(602) 746-1111
Circle No 702
Elantec Inc
1996 Tarob Ct
Milpitas, CA 95035
(408) 945-1323
Circle No 703

Harris Semiconductor Corp	National Semiconductor Corp Box 883
Melbourne, FL 32901	Santa Clara, CA 95051
(305) 724-7407	(408) 721-5000
Circle No 704	Circle No 706
Linear Technology Corp	Precision Monolithics Inc
1630 McCarthy Blvd	1500 Space Park Dr
Milpitas, CA 95035	Santa Clara, CA 95050
(408) 942-0810	(408) 727-9222
Circle No 005	Circle No 707

drilling, where the measurement of such parameters as density, pressure, and sound travel reveal clues to the nature of surrounding formations. In order to have signal conditioning as close to the sensors as possible, the op amps are sent down the hole with the drill, where temperatures reach $200^{\circ} \mathrm{C}$.
Jet-engine manufacturers use these op amps to monitor critical performance parameters in engines. The manufacturing environment creates many high-temperature pro-cess-control situations, where ex-tended-temperature op amps could be put to use. Clearly, then, if your application requires the increased accuracy that you can achieve by locating your circuitry at the source of your signals, you needn't be daunted by a $200^{\circ} \mathrm{C}$ environment.

Play it safe

Although many of the previously mentioned rad-hardened parts are used in extended-temperature applications, they are often used with the knowledge that they are being operated outside the specified temperature range. For those who prefer a more conservative approach to circuit design, a number of op amps are specified and fully characterized for operation at temperatures as high as $250^{\circ} \mathrm{C}$.

As is the case in highly irradiated environments, leakage currents are the bane of IC operation at high temperatures. In fact, junction leakage has a major effect on the performance of analog ICs at $200^{\circ} \mathrm{C}$ and above. Because leakage currents double with every $10^{\circ} \mathrm{C}$ rise in temperature, a junction that leaks just 50 pA at $25^{\circ} \mathrm{C}$ will leak $9 \mu \mathrm{~A}$ at $200^{\circ} \mathrm{C}$. Linear-IC manufacturers can make adjustments for some of this increase in leakage currents by closely matching transistors (DI processing itself serves to lessen the overall leakage current). If, for example, leakage currents affect two sides of a differential stage, then the difference in leakages is all that degrades circuit performance; if the

The only software program to combine the flexibility of a blackboard, the simplicity of a calculator, and the power of a personal computer.

Now you can write calculations on your PC in standard math nota-tion-mixing text, formulas and graphics with the same free-form ease you have on a blackboard or scratchpad.
No new languages to learn. Simply type equations anywhere on the screen and MathCAD automatically calculates and displays
your results as numbers or graphsexactly as you want to see them. Change anything, and MathCAD instantly recalculates the results. Add text at any point to support your work. Then print and save your entire calculation as an integrated document.

Powerful built-in functions.

 MathCAD handles both real and complex numbers and does automatic unit conversion and dimensional analysis. It has a full range of built-in functions including integration, differentiation, fft's and cubic splines. Or you can define your own. No wonder thousands of engineers use MathCAD every day, for everything from roboticsto signal processing and thermodynamics to fluid mechanics.
Call us today.
We're convinced that MathCAD belongs on every engineer's desk. At $\$ 249$, with our no-risk, 30-day money-back guarantee, you really can't afford not to try it. To place your order or to request further information, call us now at:

1-800-MathCAD

(in Massachusetts: 617-577-1017)
MathCAD. Once you've tried it, you'll wonder what you ever did without it. Order today.
 Machines Corporation. MathCAD ${ }^{\text {T }}$ MathSoft, Inc.

CIRCLE NO 10

"By using a hybrid microcircuit, we got a 20 -to-1 size reduction and an improvement in reliability, too".

Boeing Electronics Company

Reliability By Design
P.O. Box 24969 , M/S 9N-41, Seattle, WA 98124-6269, (206) 657-7474.

UPDATE

pair is closely matched, the difference in leakage current will remain small even when the absolute volume of leakage current increases markedly.

Spec'd to $225^{\circ} \mathrm{C}$

Linear Technology offers four op amps that specify a maximum operating temperature of $225^{\circ} \mathrm{C}$. For applications in which you must keep noise levels low, you can use the $\$ 31.25$ LT1007XH, which is a direct replacement for the OP-27. The $\$ 22.75$ LT1001XH precision op amp features a $100-\mathrm{dB}$ CMRR and a $95-\mathrm{dB}$ PSRR at $200^{\circ} \mathrm{C}$. The bias current for the device increases from 8 nA max at $125^{\circ} \mathrm{C}$ to 100 nA \max at $200^{\circ} \mathrm{C}$. You can fulfill your high-speed, high-temperature needs with the $\$ 18.60$ LM118XH. At $200^{\circ} \mathrm{C}$, the device's slew rate is 18V/usec. For your less stringent applications, the $\$ 11.40$ LM101AXH general-purpose op amp is fully characterized at $200^{\circ} \mathrm{C}$.
Harris Corp offers two op amps that are characterized to $250^{\circ} \mathrm{C}$ and guaranteed for operation at $200^{\circ} \mathrm{C}$. The HA-2620 is a wideband ($100-$ MHz gain-bandwidth product at $25^{\circ} \mathrm{C}$), high-input-impedance (500 $\mathrm{M} \Omega$) device specified for operation between 0 and $200^{\circ} \mathrm{C}$. It costs $\$ 54.35$. The $\$ 59.75$ HA $2600-1$ has very similar specs, with the exception that its operating temperature range is 0 to $250^{\circ} \mathrm{C}$.
Burr-Brown Corp offers a trio of op amps-the OPA111HT, OPA27HT, and OPA 37 HT -that are specified for operation from -55 to $+200^{\circ} \mathrm{C}$. The $\$ 59.90$ OPA27HT and -37 HT come with a mere $250-\mu \mathrm{V}$ input offset voltage at $200^{\circ} \mathrm{C}$ and an average drift of $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The $\$ 37$ OPA111HT specs a $65-\mathrm{nA}$ bias current at $200^{\circ} \mathrm{C}$ and features the same pinout as the ubiquitous 741 op amp .

EDN

Article Interest Quotient
(Circle One)
High 500 Medium 501 Low 502

MIL-M-38510.

4SS-5139F2
Sprague Power Integrated Circuits are processed on a DESC certified production line © of MIL-STD-883C. These high-voltage and high-current power ICs provide excellent answers as peripheral power drivers for displays,
FOR POWER ICS. motors, solenoids, relays, printers, and heaters. Long recognized as the leader in power ICs, Sprague will continue to supply selected components on the Qualified Parts List. Sprague Electric Company, a Penn Central unit, World Hdqtrs., Lexington, MA. For applications assistance, call Walter Sullivan at 617/853-5000. For Brochures WR-192 and WR-198, write to Technical Literature Service, Sprague Electric Company, 41 Hampden Road, P.O. Box 9102, Mansfield, MA 02048-9102.

Cadnetix the standard C

Finally, full-function CAE for your standard IBM PC.

For a long time, full-function CAE and a standard IBM PC couldn't be mentioned together in the same breath. The Cadnetix PC System has changed all that.

Finally, an experienced CAE vendor has outfitted an unmodified IBM PC/AT ${ }^{T w}$ or XT ${ }^{\text {tw }}$ with the same excellent hierarchical schematic capture tools included on our high-end workstations. We've given you immediate access to real CAE component and semicustom libraries via Ethernet." ${ }^{\text {T }}$ And, we've made your PC a "window on the network,' linking it to powerful Cadnetix engines for simulation, physical modeling and physical layout. All this without expensive alterations or add-on hardware. The Cadnetix PC System is a complete CAE resource that hasn't been converted into a high-cost hybrid.

The super-computer power of Cadnetix Engines, directly available to your PC's.

With Cadnetix, your IBM PC becomes much more than a normal entry-level CAE workstation. For fast analysis of your largest designs, Cadnetix gives you direct access from your PC to our full line of CAE Engines.

You'll develop designs on the PC, then compile and analyze them on high-performance engines tailored for accelerated compilation, simulation, physical modeling and database management. And Cadnetix has integrated all of these functions into a single network resource featuring both a RISC processor and a bit-slice processor to accelerate various applications tasks.

Our Analysis Engine is a versatile processing node offering you the choice of configurations you need for your design analysis environment. With up to 280 Mb of disk, mass storage for database management is essentially unlimited. Options include:

- Bit-Slice Engine with Simulation: This bit-slice application-specific accelerator speeds through logic simulations at 200,000 evaluations per second - 200 times faster than typical workstations. Worst-case analysis tools are standard. GP Engine: A general purpose engine providing accelerated compilation and SPICE. Based on a RISC architecture chip set, it has an effective operating rate of 10 million instructions per second. In addition, a compiler and debugger tool set allow you to accelerate ' C ' programs which you develop.
- Physical Modeling Engine: This engine simulates

introduces AE workstation.

VLSI chips at vector rates of up to 16 MHz and accommodates devices with up to 364 inputs and 384 outputs. Vector storage of $512 \mathrm{~K} \times 91$ bits provides for longer simulations and simultaneous analysis of up to 30 devices.
Powerful Cadnetix engines complement PC capabilities, achieving top efficiency in compute-intensive design tasks while supporting lowest-cost per engineer for routine access.

Now your PC has the capability of an entire design network.

The Cadnetix PC System is not just another PC software package. It is your window to complete, supported solutions for electronic systems design.

The NFS ${ }^{*}$ protocol, a powerful networking standard, provides immediate and transparent remote file access to our full range of design tools: PC's for engineering design, high-performance workstations

The Americanized VME Card Cage. We Stand On Our Reputation.

One reason Electronic Solutions became the world's leading supplier of Multibus card cages is that five generations of improvement gave our cages a reputation for indestructibility second only to a rock.

So when we decided to build an Americanized version of the VME card cage it was only natural that we would want to build it the same way. Because European kit-style cages don't measure up when it comes to strength.

Introducing Electronic Solutions V-800 Series VME Card Cages. We took a stand for ruggedness and rigidity. Right on top of them - to prove that a V-800 card cage could maintain its precise card alignment through thick and thin.

Rigidity gives your VME cards less room to flex and that means less room for things to go wrong. Connectors stay connected. And so do printed circuits. So when your system is shipped, moved, or dropped from a forklift the odds are a lot better that it will remain functionally intact.
But that's not the only part of our reputation we built into our VME card cages.
Our V-800 Series cages feature advanced, low-noise, high-performance backplanes designed for the fastest VMEbus signals. You can mount our new cages on any axis. And you can use our exclusive center adapter to convert any double slot to two singles or any triple size slot to a double and a single.
Electronic Solutions V-800 Series VME card cages. Step up to the best there is.
Call toll free or write for complete information today.

Electronic Solutions
 UNIT OF ZERO CORPORATION

PRODUCT UPDATE

CMOS dynamic-RAM-controller ICs support 256 k -, 1 M -, and 4 M -bit devices

Capable of addressing a 64M-byte array made up of 4M-bit dynamic RAMs, the DP8422V dynamic-RAM controller includes all the latches and drive circuitry necessary to provide a single-chip interface between a μP and a dynamic $R A M$. On-chip dual-port capabilities ease the integration of the DP8422V in DMA, LAN, graphics, and multiprocessor applications.

The DP8420V/21V/22V family of CMOS dynamic-RAM-controller/ driver ICs supports $256 \mathrm{k}-$, 1M-, and 4 M -bit memory chips. You can program the controllers to access dynamic RAMs in a variety of modes. In addition, the ICs include single-
chip interfaces for popular 8 -, 16 -, and 32 -bit μ Ps. The controllers generate all access-control-signal timing, and they automatically refresh the dynamic RAMs.
The controller/driver family comprises the DP8420V, the DP8421V,
and the DP8422V, which support 256 k -, 1M-, and 4M-bit dynamic RAMs, respectively. The three chips directly address and drive dy-namic-RAM arrays as large as 4 M bytes, 16 M bytes, and 64 M bytes, respectively. The DP 8420 V and

DP8421V control single-port dynamic RAMs, and the DP8422V can handle single- or dual-port devices.

The products provide a singlechip interface between $\mu \mathrm{Ps}$ and dynamic RAMs. Because they're programmable, the controllers allow you to alter their control-logic configuration. This programmability allows the ICs to interface directly to any $\mu \mathrm{P}$ in the $32000,68000,8086$, Z8000, 32100, and Clipper families, and it eliminates the need for external support circuits.

You can also program the dynam-ic-RAM controllers' memory-access mode. For example, the chips support burst/nibble, page, and staticcolumn memory-access modes. All of these modes serve to reduce a memory system's effective access time. To eliminate delays caused by precharge time, you can interleave $\mu \mathrm{P}$ access to different memory banks.

The DP8422/21/20 controllers include four RAS (row-address strobe) drivers, four CAS (columnaddress strobe) drivers, a writeenable driver, and address drivers on chip. You can adjust the chips' control-signal pulse widths to facilitate interfacing the controllers to μ Ps that run at different frequencies. The chips support μ Ps having operating frequencies greater than 20 MHz .

The ICs' programmable row-ad-dress-hold and column-address-setup times allow you to use the controller family with dynamic RAMs independently of the RAMs' specified access times. You can also program the chips' RAS-low time during refresh, the refresh time, the RAS-precharge time, and the RAS/ CAS configuration. The controllers automatically perform either staggered or burst refresh, both of which operations are transparent to
the system.
The controllers provide zero-waitstate operation at frequencies of 10 MHz and above. They also include programmable wait-state logic, which automatically inserts wait states in a CPU cycle. For systems requiring error detection and correction, the controllers perform error scrubbing during the refresh cycle.

The DP8420V/21V/22V chips are fabricated in $2-\mu \mathrm{m}$ CMOS. The DP8422V comes in an 84-pin plastic chip carrier; the DP8421V and -20 V come in 68-pin plastic chip carriers. DP8422V, $\$ 25$; DP8421V, $\$ 20$; and DP8420V, $\$ 17$ (1000). The company plans to ship production quantities this quarter.-Maury Wright

National Semiconductor Corp, 2900 Semiconductor Dr, Santa Clara, CA 95052. Phone (408) 7215000.

Circle No 728

$$
\begin{aligned}
& \text { Where tofind almostany } \\
& \text { testenvironment onEarth. } \\
& \text { Plus a few that aren't. }
\end{aligned}
$$

Lockheed's Environmental Test Laboratory provides complete environmental, electromagnetic interference/compatibility and stress screening services on a 24-hour-per-day basis. All at one location.

We have 26 years' experience testing all types of equipment under carefully controlled laboratory conditions. Whether your specifica-
tions are military or commercial, we're fully equipped to handle your climatic/atmospheric simulation, structural, enclosure or noise testing, and much more.

Call Jack Glavine at (201) 757-1600 Extension 2267 or 2227 with your equipment test specifications. However impossible they may seem.

Our 20MIHz 8-bit MCU

 shows you incredifle performance. Now show us what YOU can do with it.| D | E | S | I | G | N | C | O | N | T | E | S | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\$ 10,000$ in cash prizes - a lot to work for.
There will be 8 big winners in Zilog's Super8 Design Contest. The Super8 design judged best overall will be awarded $\$ 5,000$, with $\$ 2,000$ going to the Second Place winner, and $\$ 1,000$ to the Third Place entry. Plus, 5 other designs will receive Honorable Mention awards of $\$ 400$ each.
Super8 - a lot to work with.
Designs will be judged on their innovative use of the Super8's unmatched combination of performance and flexibility features: 20 MHz speed; 600-nanosecond interrupt mode; 40 interrupt sources, with 16 vectors and 8 programmable priority levels; on-chip full duplex UART; full DMA; 3 16-bit Counter/Timers; 40 programmable I/O lines, with 2 handshake channels; 272 general purpose registers; and more.
Winners to be featured in EDN.
The winning Super8 designs will be deter-
mined by an impartial panel of judges from EDN. And EDN will announce the contest winners in the Fall of 1987.

How to enter.
First, purchase your Super8 Design Kit for \$88* from your local Hall-Mark distributor between January 15 and May 15,1987 . Second, using the materials provided in your Kit, develop and debug your design. Third, send your Super8 design entry-including the appropriate documentation-to Zilog.
How to get started.
For further information, or to order your Super8 Design Kit, call your local Hall-Mark distributor. And do it today. The sooner you get going on your Super8 design, the closer you are to your share of $\$ 10,000$.

Void where prohibited by law. All entries become the property of Zilog, Inc. Zilog, Hall-Mark employees and members of their immediate families are ineligible. *plus tax, if applicable.

PRODUCT UPDATE

Self-calibrating l6-bit A/D converter guarantees no missing codes to 50 kHz

The CS5016 CMOS A/D converter provides a true 16 -bit digital representation of a bipolar or unipolar analog signal in $16 \mu \mathrm{sec}$ at sampling rates reaching 50 kHz . The converter also features a self-calibration circuit that ensures maximum nonlinearity of $\pm 0.001 \%$ of full-scale range over temperature. It specs no missing codes at 16 bits. Offset and
full-scale errors are $\pm 3 / 4 \mathrm{LSB}$ max, so you don't need to perform any manual calibration.
The monolithic CS5016 contains a D/A converter, a conversion and calibration microcontroller, a clock, a comparator, control-I/O lines, and self-calibration circuitry. The converter dissipates 150 mW .
You can configure, control, and
monitor the CS5016 via its on-chip $\mu \mathrm{P}$ interface, or you can operate the chip independently of intelligent control. An input track/hold function that's inherent in the device's sampling architecture acquires an analog signal within $4 \mu \mathrm{sec}$ after each conversion, so the converter provides throughput rates as high as 50 kHz .

Maintaining offset and full-scale errors within $\pm 3 / 4 \operatorname{LSB}(\max)$, the CS5016 A/D converter provides true 16 -bit precision over temperature and a $16-\mu \mathrm{sec}$ conversion time at a throughput rate reaching 50 kHz .

Take Control! Chart your own course in CMOS system power and performance.

FREEWATTS

 220 WATT DC-DC CONVERTORS

 220 WATT DC-DC CONVERTORS AT LESS COST/SMALLER SIZE AT LESS COST/SMALLER SIZE THAN OTHER 150 WATT CONVERTORS

 THAN OTHER 150 WATT CONVERTORS}INDEPENDENTLY REGULATED ADJUSTABLE QUAD OUTPUT 100 kHz SWITCHING FREQUENCY
COMPACT SIZE: $9.00 \times 4.88 \times 2.20$
OPTIONS \& MODIFICATIONS AVAILABLE FULL LINE OF DC-DC AND AC-DC CONVERTORS OVER 25 YEARS EXPERIENCE IN STANDARD AND CUSTOM POWER SUPPLIES CALL TODAY WITH YOUR REQUIREMENTS

EWALKERPOWERINC.

 Mill Street / Warner, New Hampshire 03278 / (603) 456-3111CIRCLE NO 12

Be An Author!

When you write for EDN, you earn professional recognition. And you earn $\$ 75$ per published magazine page.

EDN publishes how-to design application information that is read by more than 137,000 electronics engineers and engineering managers worldwide. That's an audience that could belong to you

If you have an appropriate article idea, please phone Eva Freeman, Associate Editor, at (617) 964-3030, or send a proposal and outline to her at 275 Washington Street, Newton, MA 02158 - 1630. For a FREE EDN Writer's Guide-which includes tips on how to write for EDN and other technical publications-please circle number 800 on the Information Retrieval Service Card.

First in Readership among Design Engineers and Engineering Managers in Electronics

The converter uses the succes-sive-approximation technique. However, the IC's charge-redistribution architecture improves on the succes-sive-approximation technique, the manufacturer claims. The DAC is an array of binarily weighted capacitors that share a common node at the comparator's input. The conversion consists of manipulating the free plates of the capacitor array to either $\mathrm{V}_{\text {REF }}$ or AGND, so as to arrive at a binary fraction of capacitance that represents the converter's digital output.

This ADC lets you digitally select unipolar or bipolar input ranges. The self-calibration circuitry can operate under intelligent control or in a transparent mode. You can initiate calibration in one of three ways: You can do it arbitrarily after any reset, you can append a single calibration experiment to each conversion cycle, or you can allow the IC to execute a number of calibration cycles whenever the $\mu \mathrm{P}$ finds some free time between conversions. Even though the CS5016 performs calibration operations between conversions, it adjusts its transfer function only after completing the entire sequence of 72,192 operations.

A 14 -bit version of the chip, the CS5014, specs maximum nonlinearity of $\pm 0.003 \%$ of full-scale range, over temperature, at throughput rates reaching 50 kHz . The CS5014 maintains offset and full-scale errors within $\pm 1 / 2$ LSB (max). The CS5014 and CS5016 both come in versions specified for use over 0 to $70^{\circ} \mathrm{C},-40$ to $+85^{\circ} \mathrm{C}$, and -55 to $+125^{\circ} \mathrm{C}$. The CS5014, which starts at $\$ 45(100)$, is available now in production quantities. Samples of the CS5016, which starts at $\$ 140$ (100), are available now; production quantities will be available at the end of the 1st qtr of 1987.
-J D Mosley
Crystal Semiconductor Corp, Box 17847, Austin, TX 78760. Phone (512) 445-7222. TWX 910-874-1352.

Circle No 726

If reliable computers are important to you, imagine what they mean to him.

Our new 6-transistor 883 C compliant $8 \mathrm{~K} \times 8$ static RAMs.

Commodity-quality static RAMs can't cut it in the military, but now there's a static CMOS RAM that can: Harris' HM-65642.
It's a monolithic 883C certified RAM available in volume off-the-shelf, with impressive performance features...
-6-T memory cell for improved cell stability, low-temperature data retention and radiation tolerance over our competitors' 4T designs.

- Low-power CMOS benefits, including $100 / 250 \mu \mathrm{~A}$ standby current (ICCSB)
- High speed: 150 ns access time
- Packaged in 28-pin ceramic DIP or 32 -pad leadless chip carrier (LCC)
Our HM-65642 is bred for reliable performance in your toughest micro-based systems...in missiles, field-deployed PBXs, guidance systems, aircraft computers. Available soon in a military drawing. To build more reliable systems, start with our HM-65642. For samples or a data sheet, call 1-800-4-HARRIS, Ext. 1986 (inCanada, 1-800-344-2444, Ext. 1986). Or write: Harris Semiconductor Products Division, P.O. Box 883, MS 53-035, Melbourne, Florida 32902-0883.

FOR YOUR INFORMATION, OUR NAME IS

Harris Semiconductor: Analog - CMOS Digital
Gallium Arsenide - Semicustom - Custom 4 HARRIS
"Here we are, riding treetops, doin' 5-g turns, spins, stalls... what a control system.'

NEW + $5 \mathrm{~V} / 40 \mathrm{~mW}$ 1200 BPS SINGIE-SUPPIY ONE-CHIP MODEM

FEATURES

- Single +5 V power supply, 40 mW max power
- Integrates both Bell 212A/103 and CIT V. 22 /V. 21 1200/300 bps standards
- Offers all synchronous and asynchronous modes including 600 bps operation
- Interfaces directly with industry standard $\mu \mathrm{Ps}(8051 / 8048)$
- Provides wide dynamic range of 45 db , exceeding Bell specs
- Fully compatible with other SSI K-Series l-chip modems for easy upgrades

Silicon Systems now offers the industry's only +5 V single-supply, low-power modem IC family. The new SSI K222L modem IC adds its +5 V single-supply capability to the K-Series family of products first introduced in 1985. The K222L integrates both the U.S Bell 212A/103 and the CCITT V.22/V. 21 1200/300 bps standards into one software configurable chip. This will permit users to build low-cost modems that can operate anywhere in the world
Silicon Systems' K-Series modem family IC's are fully compatible, allowing 1200 bps modem designs to utilize any K-Series family member to meet different operating standards. In the same way, 2400 bps operation can be added using future SSI K -Series products
Some of the SSI K-Series benefits to the user include: field upgradeability of the product, preservation of the user's hardware/ software investments, reduction of user documentation requirements, and a general acceleration of the process of getting the end-user's product to the market foster.

For more information on the SSI K222L and the evolving SSI K-Series modem IC family, contact: Silicon Systems, 14351 Myford Road, Justin, CA 92680. (714) 731-7110, Ext. 575.

92
CIRCLE NO 13

Calculator symbolically manipulates equations

The HP-28C is the first electronic calculator that's capable of performing symbolic mathematics, according to the manufacturer. In addition to the expected numeric and mathfunction keys, the calculator sports an alphanumeric keyboard that ineludes an equals sign. The calculator needs an equals sign because you can enter equations in standard, algebraic order as well as in the company's reverse Polish notation (RPN).
The calculator uses algebraically entered equations in several ways. You can assign a name to each equalton and execute the equation simply by invoking the name. Further, you can solve an equation for any symbolic variable after you enter values for the remaining symbolic variables in the equation. You can also apply algebraic manipulation to reduce or reformulate an equation. The unit handles calculations with complex numbers and matrices ex-
actly as it handles real numbers.
The calculator's 4-line, 23-character LCD can show stack entries, menu selections, and user-entered functions. You can edit incorrect entries instead of rekeying them.

The calculator has 128 k bytes of RAM. It has no provision for off-line program storage or remote data entry. It does, however, have an unusual printer port that employs an infrared, wireless link to a companion printer.
The unit can print a graph of any single-valued function, and it can plot statistical data on its screen or on the printer. When open, the calculator's rigid plastic case measures $7.5 \times 6.25 \times 0.5 \mathrm{in}$. The calculator weighs 8 oz . HP-28C, $\$ 235$; printer, \$135.-Charles H Small

Hewlett-Packard Co, Inquiries Manager, 1820 Embarcadero $R d$, Pablo Alto, CA 94303. Phone local office or (800) 367-4772.

Circle No 725

Menu selections displayed on a 4-line LCD on the HP-28C scientific calculator replace many of the special-function keys found on other calculators.

SIICON SYSIEMS FIRST ACAINWIIH THE ONLY + 5V SWCIE-SUPPLY LOW-POWER MODEM IC FAMLY

Now, Silicon Systems has achieved a major technological breakthrough with the SSI K222L. This high-performance 1200 bps, single-chip modem IC requires only a single +5 volt supply and dissipates less than 40 mW of power.

The K222L adds its +5 V low-power capability to Silicon Systems' K-Series family of single-chip modem IC's without compromising the high standards of performance for which these products are noted. It integrates the Bell 212A/103 and the CCITT V.22/V. 21 data communications capability into one compact CMOS chip and includes all features needed for easy
use in intelligent modem applications. This advanced integrated circuit reduces the power required for the modem function by an order of magnitude below other IC solutions, and eliminates the requirement for higher voltages or a separate negative power supply.

The K222L makes possible a variety of new applications. It is ideal for low-power, low-voltage modems; battery-powered, portable modems; power-sensitive laptop PC's; and telephone-line-powered modems - or any application where space and power is at a premium.

Best of all: the K222L is part of the

K-Series family, so all existing 1200 bps modems designed with the Silicon Systems K212L or K221L can be easily upgraded by plugging the K222L into the same socket. And in the future - all modems designed with the K222L can be further upgraded to 2400 bps operation with the Silicon Systems K224L.

For more information on the K222L, or the other K-Series modem IC's, contact: Silicon Systems, 14351 Myford Road, Tustin, California 92680, phone: (714) 731-7110, Ext. 575.

Scanning head lets a plotter digitize drawings

For $\$ 2995$, you can add a scanning input device, Scan-CAD (Model 128), to the manufacturer's DMP-50 Series drafting plotter. This scanning head will let you digitize drawings as large as $36 \times 48 \mathrm{in}$. for storage in your IBM PC/XT, PC/AT, or compatible computer.
The scanning head converts an original hand-drawn or machinegenerated hard-copy image to a raster data file that you can manipulate with a variety of software packages. By reading the raster file with AutoDesk's CAD/camera software, you can convert the file to vector data that's suitable for use with AutoCAD and other CAD software programs.

Installation of the input device takes only a few minutes; the scanning head snaps onto your plotter without modification of the plotter. The scanning head's cable plugs into a controller card that you install in scanning width on each pass is 0.6 in. The unit scans $1.2 \mathrm{in}^{2} / \mathrm{sec}$ and offers 16 levels of gray scale. A replaceable incandescent lamp provides uniform lighting for the scanning unit.

Scan-CAD includes the snap-on one of your PC's full-length expansion slots. The Scan-CAD software interface provides step-by-step help lines to guide you through the scanning process and speed your familiarization with the system.

The device's scanning resolution is 200 dpi. The scanning head can detect lines as fine as 0.007 in . on media such as paper, vellum, acetate film, or blueline. Although the scanning time depends on the complexity of the drawing, the device can scan a D-size drawing in about 12 minutes and an E-size drawing in about 24 minutes.

The Scan-CAD digitizing input device snaps onto DMP-50 Series pen plotters. The scanning head lets you digitize drawings as large as 36×48 in. for storage in your IBM PC/XT, PC/AT, or compatible computer.

The scanning head measures $2.8 \times 2 \times 1.4 \mathrm{in}$. and weighs 8 oz . The scanning head, 12 ft of cable, a ca-ble-support assembly that clamps to the plotter's end cap, the scannercontroller card, scanning software, a document carrier, and an operation manual. To use Scan-CAD, you need an IBM PC/XT or compatible computer with at least 640 k bytes of RAM and a hard-disk capacity of 10M bytes. However, the manufacturer recommends using an IBM $\mathrm{PC} / \mathrm{AT}$ or compatible computer with 640 k bytes of RAM, a 20 M - to $40 \mathrm{M}-$ byte hard-disk drive, and a Hercules monochrome graphics card. You also need a Houston Instrument DMP-51/52, DMP-51/52 MP, DMP-56, or DMP-56A pen plotter.

- J D Mosley

Houston Instrument, 8500 Cameron Rd, Austin, TX 78753. Phone (800) 531-5205; in TX, (512) 835-0900.

Circle No 727

YOUR LOCAL GRAYHILL SOURCE:

NEW MEXICO

International Electronics Walker Electronic Supply NEW YORK BuffaloSummit Distributors, Inc New York City/ Long Island area-Car-Lac Electronic Industr
Sales. Inc.
Electronic Equipment Co Electronic Equipment Co. Rochester-
Pioneer Electronics Sincona Electronics Co
Rome-
Rome Electronics, Inc. Rome Electronics, In
NORTH CAROLINA NORTH CAROLINA Charione-
Pioneer/Carolina Electronics Cary- Powell Electronics Greensboroonics inc.
$\underset{\substack{\text { OHIO } \\ \text { Cincinnati area } \\ \text { Advacom, Inc. }}}{ }$ Advacom. Inc.
Hughes-Peters, Inc. Hughes-Peters, Inc
URI Electronics ClevelandPioneer/Cleveland
Columbus-Hughes-Peter
DaytonPioneer/Daytor Stotts-Friedman OKLAHOMA Kkiahoma City-
Electro Enterprises. Inc. Tulsa-
Norvell Electronics OREGON Portland areaComponent Resources. Inc PENNSYLVANIA Erie area-
Advacom Advacom, Inc.
REM Electronics Supply Co. Inc.
Harrisburg-
Cumberiand Electronics. Inc.
Philadelphia-
Almo Electroni Almo Electronics Corporation
Herbach \& Rademan Powell Electronics. Inc.
Pittsburgh-

Pioneer/Pittsburgh PIONeer/Pittsburg San JuanElectronic Technical RHODE ISLAND RHODE ISLAND | Major Edwards Electronics |
| :--- | SOUTH CAROLINA

ColumbiaDixie Electronics. Inc Emsco TENNESSEE MemphisBluff City Electronics
Dallas/Ft. Worth area Associated Aircraft
 Harrison Equipment Company Newark Electronics Norvell Electronics, Inc El PasoHouston areaHaston area-
Harrison Equipment Co Southwest Electronics. Inc UTAH Standard Supply Company VIRGINIA Richmond-
Sterling Electronics, Inc WASHINGTON eattle areaComponent Resources Radar Electric Co.. Inc.
wISCONSIN MilwaukeeMarsh Electronics CANADA SALBERTATCHEWAN
CalgarySaynor Varah, Inc EdmontonCardinal Industrial BRITISH COLUMBIA Vancouver areaRAE Industrial Electronics LId MANITOBA Saynor Varah, Inc ONTARIO Ottawa-
Wackid Radio TV Labs Oronto/Hamilton area Electro Sonic Inc.
Saynor Electron Saynor Electronics LId. QUEBEC
Electronic Wholesalers

GRAYHILL MINIATURE PUSHBUTTONS: ALL THE FEATURES YOU WANT.
 SOME YOU PROBABLY HAVEN'T THOUGHT OF\&

39 SERIES
tiny but tough

- SPST
- N.O. or N.C.
- molded-in terminals
- impervious to flux
contamination
-water seal and over-travel available

46 SERIES

LONG WIPE SWITCH

- Rated at 250,000
operations
- SPDT and DPDT
- momentary or alternate action
- shaft and panel
seal or total environmental protection

SEALING

FOR ENVIRONMENTAL PROTECTION

- Encapsulated switches provide full environmental protection. Water tight seals for front panels.

30 SERIES
VERSATILE INDUSTRY
WORK HORSE

- 1 amp rated for

1,000,000 cycles
-U.L. rated @ 5 amp

- overtravel or positive feel available
- N.O. or N.C.
- with or without shaft and panel seal
10 SERIES
OUR HIGHEST RATED
WIPING ACTION SWITCH
-100,000 operations
- U.L. rated
- wiping contact provides
self-cleaning action
- N.O. or N.C.

PANEL MOUNT

DRESS UP YOUR PANEL

- Sleek, black matte finish plastic bezel snaps into panel to frame button cap
- Six bold colors
- SPST. SPDT and DPDT circuitry

39-251
FOR PC MOUNTING

- Fully protected during flux cleaning operation
- SPDT, 2 circuit,
N.O. and N.C. sections
-terminals on DIP
centers
- low profile

7 SERIES

RUGGED!
EXTREMELY FAST
MAKE AND BREAK!

- Power rated, 10 amp

SPST or SPDT

- snap-action
- audible click
U.L. LISTED
at no extra charge
- U.L. listings for both butt and wiping action contact systems at no extra charge. 3 amp and 5 amp versions, N.O. and N.C.

It takes 24 pages to describe the broad Grayhill line of miniature pushbutton switches. We've highlighted a few series here, all characterized by high reliability over a long life span ...some units rated up to $1,000,000$ operations!

From off-the-shelf to off-the-wall

Standard switches are available off-the-shelf from Grayhill or its stocking distributors. Grayhill also offers a superior custom design capability when you have unusual circuitry, environmental usage, or size requirements. Need a pendant housing for remote switch operations? Or, recessed button guard to deter accidental actuation? Grayhill can customize a switch to your wildest application!

Get the switch specifier's bible:

The Grayhill Engineering Catalog No. 1 with detailed data on these and many more pushbutton switches, plus 172 more pages on rotaries, DIP's, keyboards, etc. Send today for your free copy

561 Hillgrove Ave., La Grange, IL 60525
Phone (312) 354-1040 • TWX 910-683-1850

It can happen whether you're a 10-ton lizard or a high-volume manufacturer of state-of-the-art business equipment.

No matter how well your design has performed in the past, it's always in danger of being crowded out of existence by a newcomer.

One that's even better suited to the environment than you are.

The Sensor Consultants can help you survive.
Working together, we can improve your product design with sensors, switches, and manual controls that provide new ways to satisfy customers for less money.

And the earlier you involve us in your design process, the better we can help.

Lower your total cost.
Our in-house test labs,custom manufacturing capabilities, and Honeywell's vast technology network enable us to work with you to develop components that reduce costs without hurting product performance.

Whether it's a value-added subassembly that saves you manu-

facturing steps. Or an off-the-shelf sensor that's been redesigned to lower component costs.

Specialized support for high-volume needs.

As market conditions change, you can react quickly with special MICRO SWITCH services such as fast prototype delivery, statistical process control, and JIT or dock-
to-stock shipments.
All backed by a reputation for quality that's made our products the industry standards for over 50 years.

Let's work together.
For a free booklet that describes how we've helped other companies thrive in a competitive environment, write the Sensor

Consultants at MICRO SWITCH,
Freeport, IL 61032. Or call us at 815-235-6600, ext. 606.

Together, we can find the answers.
MICRO SWITCH
aHoneywell Division

READERS' CHOICE

Of all the new products covered in EDN's November 13, 1986, issue, the ones reprinted here generated the most reader requests for additional information. In case you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, or refer to the indicated pages in our November 13, 1986, issue.

A CCD CAMERA

This charge-coupled-device (CCD) camera has 8-bit gray-scale capability and is compatible with the RS-170 signal standard for image processing (pg 319).
Sierra Scientific.
Circle No 715

\triangle CMOS IC
The Am79C12 incorporates a UART, a Bell 212A-compatible modem, and a 4 - to 2 -wire telephone hybrid on one CMOS IC (pg 110).
Advanced Micro Devices Inc. Circle No 716

AI LANGUAGE

The Smalltalk/V programming language transforms an IBM PC or compatible computer into a programming environment similar to a dedicated AI workstation (pg 404).
Digitalk Inc.
Circle No 712

A FRAME GRABBER

The PC-1500 frame-grabber board lets your IBM PC or compatible computer acquire images in real computer acquire images in real
time by capturing a video image in $1 / 30$ of a second (pg 355).
Chorus Data Systems.
Circle No 713

DC/DC
 CONVERTERS

The NM0505i, NM1212i, and NM1515i de/de converters are capable of delivering as much as 750 mW and produce outputs of $\pm 5, \pm 12$, and $\pm 15 \mathrm{~V}$, respectively, from a 5 V supply (pg 385).

Newport Components
Ltd.
Circle No 711

LED DISPLAYS

The LR2351E and LR2352E LED displays feature 7 -segment, 2.3-in. high-resolution red characters (pg 331). IEE Inc. Circle No 714

You've made power supplies smaller, lighter and quieter with a harmonica?

Harmonic resonant, as a technology for our new line of power supplies, is practically as significant as going from linear to switching.

So, why did we develop it? It lets us make open frame switchers almost half the size of industry standards. Therefore, lighter. And quieter from a conductive noise standpoint. All for the same price you're paying now.

Of course, like all our power supplies introduced since 1983, this new 9S Harmonic Resonant line meets VDE, UL and CSA for safety. And VDE, FCC and IEC for conducted noise.

For more information on our new 9S Harmonic Resonant line (or where to get a nice harmonica), contact us today. Sierra Power Systems (formerly Sierracin), 20500 Plummer Street, Chatsworth, California 91311. Call toll-free (800) 423-5569. In California, (818)
998-9873.

Sierra Power Systems
Division of Valor Electronics, Inc.

The GE/RCA ASIC cell library:

where best-sellers begin.

With one of the largest standard cell and gate array libraries, and a first-time success rate of virtually 100\%, GE/RCA has all the tools you need to design leading-edge products.

The GE/RCA library of hundreds of verified cells and functions is one of the broadest in the industry.

We have cells with effective gate length as small as 1.5μ (. 9μ coming soon). And double-level metal for higher-density chips that handle higher clock speeds.

You can choose from a wide range of Supercells, including core micros, RAMs, analog functions and bit-slice processors. Right now, we're working on new editions, including Advanced CMOS Logic, EPROMs and high-voltage cells. Additionally, we can generate custom cells to meet your requirements.

So you can easily reduce an entire system onto a single ASIC chip, and get the ASIC benefits of smaller power supplies, lower system cost and higher reliability.

Plus a full library of gate arrays.
If your design calls for gate arrays, you can select from a broad line with up to 13,000 gates. With alternate sourcing on the LSI/Toshiba series.

GE/RCA gate arrays have effective gate lengths as small as 1.2μ. And they're compatible with the industry standard.

Writing made easy.
We've made it easy for you to write your best-selling design.

Our designer-friendly software gets you up to speed in as little as the three days required for our training course.

And our software supports the major workstations in the industry, including Daisy, ${ }^{\text {TM }}$ Mentor Graphics, ${ }^{\text {TM }}$ Valid, ${ }^{\text {TM }}$ P-CAD ${ }^{\circledR}$
and FutureNet. ${ }^{\text {® }}$
Through the use of Twins, our transparent workstation interface system, you can complete or revise your design at practically any workstation.

We're also in the forefront of silicon compiler technology. So we can offer you the ability to create designs that are heavily BUS-structured, with your ROMs, RAMs, PLAs and ALUs compiled right into the design.

The best editors in the business.
We know how important accurate performance modeling is to you. That's why we've developed the industry's most advanced simulation and parasitic extraction programs, which make it easy to create designs that work. In fact, our first-time success rate is virtually 100%.

And you can count on our ASICs specialists for technical support from design through production. One other thing you can count on with GE/RCA: there are no hidden charges in addition to your NRE.

On the best-seller list for years.
GE/RCA has been the CMOS company since the day we invented the technology. We've produced one best-selling CMOS circuit after another. And built the industry's broadest line of High-Rel CMOS parts, including super radiation-hardened Silicon-on-Sapphire.

With all this behind you, think how easy it could be to design a best-seller.

For more information, call toll-free 800-443-7364, ext. 14. Or contact your local GE/RCA sales office or distributor.

Freon ${ }^{\circ}$ Flux Removers

Formulated for removal of all types of organic flux from PCB's and other electronic assemblies. Add our unique Cobra® Solvent Spray Brush to convert the aerosols into efficient spot-cleaning systems.

Conformal Coatings

Since coating requirements are not the same for all applications, we offer you a choice of silicone, urethane, acrylic or varnish conformal coatings. All of our coatings provide excellent electrical insulation and moisture resistance. Available in convenient aerosol form.

Miller-Stephenson Chemical Co., Inc.

Use convenient Wet Pad ${ }^{\text {M }}$ high-purity pre-moistened solvent wipes. Freon ${ }^{\circledR}$ based cleaning solvents, CRT cleaners, and contac \dagger cleaners/lubricants are a few of the chemicals offered in Wet Pads ${ }^{\text {TM }}$.

Aero-Duster

A dry, non-toxic, non-flammable gas for removing microscopic dust and oxide particles from tape heads, PCB's, optics and electronic assemblies.

Conformal Coating Strippers

Specially formulated for the removal of M-S coatings. Safely dissolves acrylic, urethane, silicone and varnish coatings without damage to most electronic components. We also offer strippers for epoxy systems.

Danbury George Washington Hwy., Danbury, Conn., 06810 (203) 743-4447 Toronto 514 Carlingview Dr., Rexdale, Ontario M9W 5 R3 (416) 675-3204

Freon ${ }^{\circ}$ Solvents

Choose quart, gallon or 5-gallon sizes from our complete range of highpurity Freonº solvents for ultrasonic or bulk degreasing procedures. Residues are as low as 2 ppm .

Contact/ Connector Cleaners

Safely remove dirt and oxide build-up on tape heads, gold fingers and connectors. Choose Magnetic Tape Head Cleaner or Contact $\mathrm{Re}-\mathrm{Nu}^{\oplus}$ in convenient aerosol or Wet Pad ${ }^{\text {™ }}$. Also available with protective lubricants.

Fluorocarbon Release Agents

Select a fluorocarbon release agent for room temperature processing or heated molding application. These Teflon ${ }^{\ominus}$ type release agents contain no silicone oils and do not noticeably transfer to molded parts. Available in convenient aerosol or bulk packaging.

Freezing/Fault Isolation Products

Use our high-purity Quik-Freeze ${ }^{\ominus}$ for fault isolation, low temperature testing and component protection during soldering/desoldering. Also available in anti-static form for use on sensitive micro-circuits.

© Freon is DuPont's registered trademark for its fluorocarbon compounds. © Teflon is a registered trademark of Du Pont. © Registered trademark of Miller-Stephenson Chemical Co.. Inc.

TRY IT.

We're certain that once you try our high-purity chemicals, you'll want to keep using them. For complete product literature and free samples, please fill out the coupon or call 203-743-4447. For technical service call 800-992-2424.
8-4 Eastern Time.© Solvent Cleaners
\square Wet Pads ${ }^{\text {™ }}$
\square Freon ${ }^{\circledR}$ Solvents
\square Contact/Connector Cleaners
\square Freon ${ }^{\circledR}$ Flux Removers
\square Aero-DustereFreezing/Fault Isolation ProductsFluorocarbon Release Agents
\square Conformal CoatingsConformal Coating Strippers

MAIL TO: Miller-Stephenson Chemical Co., Inc.
George Washington Highway
Danbury, Connecticut 06810
EDNIF
NAME \qquad
TITLE/DEPT. \qquad
COMPANY \qquad
ADDRESS \qquad

Los Angeles 12261 Foothill Boulevard, SyImar, CA 91342 (818) 896-4714
Chicago 6348 Oakton Street, Morton Grove, IL 60053 (312) $966-2022$
Danbury George Washington Highway, Danbury, Conn. 06810 (203) 743-4447
Toronto 514 Carlingview Drive, Rexdale, Ontario M9W 5R3 (416) 675-3204

Dedicated to your

 future.

Ziltek continues to meet the growing needs of technology with the ICE-ENGINE/bx-8, a new generation of real-time In-Circuit Emulators.

The ICE-ENGINE/bx-8 completely supports 8-bit microprocessor's hardware/software development and includes the EPROM programmer, eraser, and the pod of your choice. Additional features Include:

- Compatible with IBM PC and dumb terminals.
- With appropriate pods, supports Z80 (A, B, H), 6809, 8048, 8051, 8085, and Z80 CMOS series $\mu \mathrm{Ps}$.
- Full symbolic debugging.
- Powerful and easy-to-use Debug Command Language.
- Single, sequential and delayed triggers.
- Unique register trace.
- More than 50 commands keep you in complete control.
- "Help" menus always available instantly.
- All other standard emulator features.

Call or write today for complete information.

7- ㄷ․ CORPORATION

A subsidiary of Adtek System Science Co., Ltd. 1651 E. Edinger Ave., Santa Ana, CA 92705
CIRCLE NO 76

LEADTIME INDEX

Percentage of respondents

PRINTED CIRCUIT BOARDS

Single-sided	0	50	45	5	0	0	5.4	4.9
Double-sided	0	62	38	0	0	0	4.3	5.1
Multilayer	0	30	57	13	0	0	7.2	7.1
Prototype	0	89	11	0	0	0	2.7	2.2

RESISTORS Carbon film								

WIRE AND CABLE

Coaxial	44	22	28	6	0	0	3.6	1.9
Flat ribbon	30	44	22	0	4	0	3.6	2.5
Multiconductor	23	53	18	0	6	0	4.0	1.6
Hookup	48	42	10	0	0	0	1.7	1.5
Wire wrap	40	33	27	0	0	0	2.8	2.1
Power cords	25	36	32	7	0	0	4.4	3.5
Other	0	80	20	0	0	0	3.2	5.3

POWER SUPPLIES

Switching	0	25	50	20	5	0	9.0
5.2							
Linear	11	22	44	17	6	0	8.1

CIRCUIT BREAKERS

$$
\begin{array}{llllllll}
17 & 31 & 35 & 13 & 4 & 0 & 6.6 & 5.7 \\
\hline
\end{array}
$$

HEAT SINKS

24	40	28	8	0	0	4.3	3.5

ITEM

RELAYS

General purpose	23	27	31	15	4	0	6.5	5.5
PC board	14	27	27	27	5	0	8.3	7.1
Dry reed	18	9	37	27	9	0	10.0	8.7
Mercury	11	22	22	34	0	11	11.0	6.0
Solid state	17	33	17	28	0	5	8.2	7.6

DISCRETE SEMICONDUCTORS

Diode	39	21	32	5	3	0	4.5	3.4
Zener	30	28	30	12	0	0	4.9	5.0
Thyristor	19	38	25	12	6	0	6.4	4.5
Small signal transistor	35	15	25	20	0	5	7.1	5.1
FET, MOS	5	45	30	10	5	5	7.8	7.1
Power, bipolar	31	25	38	6	0	0	4.5	6.7

INTEGRATED CIRCUITS, DIGITAL

CMOS	11	33	34	15	7	0	7.6	4.5
TTL	36	24	32	4	4	0	4.7	4.5
LS	29	26	37	4	4	0	5.0	4.3

INTEGRATED CIRCUITS, LINEAR

Communication/circcuit	14	14	58	7	7	0	7.9	4.0
OP amplifier	11	31	31	23	0	4	8.0	6.5
Voltage regulator	19	35	23	19	0	4	6.8	4.5

MEMORY CIRCUITS

RAM 16k	17	25	33	17	0	8	8.4	4.6
RAM 64k	19	38	25	12	0	6	6.7	4.5
RAM 256k	23	12	47	12	0	6	7.7	5.8
ROM/PROM	25	8	50	8	0	9	8.0	7.2
EPROM	13	33	33	17	0	4	7.3	5.5
EEPROM	19	19	37	19	0	6	8.3	7.8
DISPLAYS								
Panel meters	13	40	40	0	7	0	5.7	5.6
Fluorescent	20	10	30	30	10	0	10.0	8.5
Incandescent	25	0	50	12	13	0	9.3	8.4
LED	14	36	39	7	4	0	5.9	4.9
Liquid crystal	7	7	66	20	0	0	8.7	7.8

MICROPROCESSOR ICs

FUNCTION PACKAGES

Amplifier	28	18	27	18	0	9	8.3	6.0
Converter, analog to digital	0	37	18	36	0	9	10.8	10.2
Converter, digital to analog	0	20	50	20	0	10	10.7	11.3
LINE FILTERS								
	9	36	37	9	9	0	7.5	5.3
CAPACITORS Ceramic								
Ceramic monolithic	12	38	42	8	0	0	5.4	5.5
Ceramic disc	17	42	29	8	4	0	5.6	4.3
Film	19	27	31	23	0	0	6.7	4.4
Electrolytic	17	34	31	14	4		6.3	6.3
Tantalum	19	23	36	19	3	0	7.2	6.3

[^8]
Hitachi MOS Memory Leadership Has Been Earned

The stag faces constant challenges from aspiring leaders of his herd. He maintains his leadership only by winning those battles-over and over again. Similarly, in the highly competitive MOS memory market, leadership must be earned .. not just claimed.

Hitachi's MOS memory leadership is well documented. For example:

1983 Hitachi is ranked the number one CMOS RAM manufacturer by engineers in Electronic Design's Audit of Brand Recognition.

1984 Hitachi again is rated the leading CMOS RAM manufacturer in Electronic Design's study.

1985 Hitachi again is rated number one in CMOS RAMs, in ED's Brand Recognition Study.

1986 Hitachi is the first manufacturer that purchasing agents consider when buying CMOS RAMs, as reported by Electronic Buyers' News, Buyers' Preference Study.
1986 Hitachi rated the most preferred CMOS RAM vendor in EBN's Japanese Semiconductor Manufacturers' Benchmark Study. First in quality, customer service, technical assistance, trust, ease of doing business . . . and first in eight additional categories.

Marketplace recognition has been building over the years. This is due, in part, to our uncompromising QA programs, which have given our memory products a legendary reputation for quality and reliability. Our long-range investment in production technology is also important to our customers. It means that our products are in constant, dependable supply.

Supremacy Achieved

Hitachi's technology pushes MOS memory to new levels of performance. The new HM62256 is the latest achievement. At 85 ns , it's the fastest 32 Kx 8 SRAM you can buy, yet it draws only 40 mW power. And, you can choose either a standard 28-pin DIP, or Hitachi's new surface mount SOP (Small Outline Package). This packaging innovation permits double-sided surface mounting for board densities five times greater than standard DIPs . . . another Hitachi plus.

So, the next time someone claims they're "number one" in MOS memories, consider the facts. If you're like the survey participants mentioned above, you'll call Hitachi first.
Contact us through your local Hitachi Sales Representative or Distributor Sales Office today.

Fast Action: To obtain product literature immediately, CALL TOLL FREE,
1-800-842-9000, Ext. 6809. Ask for literature number R16.

Hitachi America, Ltd.

Semiconductor and IC Division
2210 O'Toole Avenue, San Jose, CA 95131
Telephone 1-408/435-8300

(0) HITACHI

We make things possible

It's not a trivial task to select the best type of capacitor for a given application. The choice was once much simpler-for example, you'd be constrained to use an electrolytic type when you needed high capacitance. Now you can obtain multilayer-ceramic capacitors (MLCs) having capacitance values that rival those of tantalum or aluminum electrolytic units. So to select the optimum type for your system, you must weigh
the various types' advantages and shortcomings, from the points of view of cost, performance, and physical configuration.

Since their introduction in the 1950s, multilayer-ceramic capacitors have made enormous progress in spec parameters, volumetric efficiency, and market acceptance. In fact, they're by far the first choice of system designers for local bypassing and decoupling ("local" in this sense

Special Report

means adjacent to an IC). Their multilayer construction allows the devices to exhibit much greater capacitance per unit volume than do older, single-layer ceramic capacitors.
Advantages of MLCs over other capacitor types include lower effective series resistance (ESR) and effective series inductance (ESL) and much lower leakage currents. Fig 1 shows ESR vs frequency for $24-\mu \mathrm{F}$ aluminum-electrolytic, tantalum, and multilayer-ceramic capacitors. At 100 kHz , the MLC's ESR is about 1000 times lower than that of the aluminum electrolytic and about 50 times lower than that of the tantalum device. Low ESR is, of course, a desirable attribute for a switch-mode power supply's filter capacitors, and you can see from Fig 1's curves that the MLC holds a strong advantage over the other two types for high-frequency switchers.
In terms of leakage currents, aluminum-electrolytic and tantalum capacitors are veritable de conductors when compared with multilayer-ceramic units. Consider, for example, some high-value MLCs suitable for switch-mode power-supply applications: For two MLC formulations, guaranteed insulation resistance is 100 k $\mathrm{M} \Omega$; for a third formulation, it's $10 \mathrm{k} \mathrm{M} \Omega$. (However, both specs add the qualification "or $1000 \mathrm{M} \Omega \cdot \mu \mathrm{F}$, whichever is less." So, for a $100-\mu \mathrm{F}$ capacitor, you'd divide the $1000 \mathrm{M} \Omega \cdot \mu \mathrm{F}$ by 100 and obtain $10 \mathrm{M} \Omega$.)
Now consider the insulation resistance for aluminumelectrolytic and tantalum types. The equivalent spec for these types is expressed in terms of dc leakage current.

[^9]

Fig 1-Electrolytics and tantalums are no match for MLCs at high frequencies, as these curves show. The MLCs' superiority in applications needing low series resistance is especially evident at frequencies of 100 kHz and higher. The low-ESR attribute is especially attractive in switch-mode power supplies that use high switching rates. (Courtesy AVX Corp)

For example, a typical $220-\mu \mathrm{F}, 20 \mathrm{~V}$ aluminum type has a maximum leakage current (in microamperes) of 0.01 CV , where C is the capacitance in microfarads and V is the applied voltage. The leakage current is thus $44 \mu \mathrm{~A}$, for an effective insulation resistance of less than $500 \mathrm{k} \Omega$. Tantalum types have similar leakage-current specs.

As their dielectric medium, MLCs use various formulations of barium-titanate ceramic. The different formulations yield varying dielectric constants. A capacitor's dielectric constant determines how much capacitance is obtainable in a given volume for a given number of layers. As in most choices, your selection of an MLC's formulation entails compromises. The higher the dielectric constant (and hence the higher the capacitor's volumetric efficiency), the greater the capacitor's dissipation factor, temperature coefficient, and aging rate.
The most popular temperature characteristics for multilayer-ceramic capacitors are NP0 (also known as C0G), X7R, and Z5U. NP0 units have the lowest dielectric constant and spec a temperature coefficient of $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max from -55 to $+125^{\circ} \mathrm{C}$. X7R devices have capacitance values that vary no more than $\pm 15 \%$ over the same range. Z 5 U units have values that can vary by $+22,-56 \%$ from 10 to $85^{\circ} \mathrm{C}$. For X7R units, an additional characteristic called "BX" imposes a voltage coefficient on the capacitors. X7R devices having the BX characteristic can exhibit capacitance changes of $+15,-25 \%$ from -55 to $+125^{\circ} \mathrm{C}$ when full rated voltage is applied.

NP0 capacitors are suited for such stability-demanding applications as oscillators and timers. X7R and Z5U devices have much higher values and are therefore useful for bypassing, decoupling, and filtering. The higher values don't come without penalties, though. Dissipation factors (ESR divided by capacitive reactance) for X7R and Z5U units are 2.5 and 3% max,

Resembling diodes in all but their function, these multilayerceramic capacitors from Unitrode Corp come mounted in tape reels that allow you to take advantage of automatic-insertion machinery.
respectively, vs 0.15% max for NP0. Another parameter that gets worse as the dielectric factor increases is the aging rate.

Aging is the loss in capacitance per decade multiple of time. When you heat an X7R or Z5U capacitor to a temperature greater than its Curie temperature, the crystals in the capacitor's ceramic assume a certain orientation. You then measure the unit's value at $25^{\circ} \mathrm{C}$ and remeasure the value periodically. The crystal orientation then changes progressively. After one day, the value drops by an amount equal to the device's aging rate. After each decade interval- $10,100,1000$ days, and so on-the unit's value decreases by the aging-rate figure. An NP0 capacitor has zero aging rate; for X7R and Z5U units, the rates are 1.5 to 2% and 4 to 5% per decade, respectively.

Bring on the bypasses

In any good system design, you shouldn't treat bypass capacitors in an "oh, by the way" fashion. This rule holds true for all systems-linear, digital, or mixed. In analog systems, any ripple on the powersupply lines can find its way to amplifiers' outputs because of the amplifiers' finite power-supply rejection ratios. This feedthrough can be particularly insidious at high frequencies, because PSRR for almost all amplifiers diminishes as frequency increases. In digital systems, large switching currents generated by fast transitions in memory chips and other digital ICs can produce intolerable glitches in the power-supply lines
that feed the ICs. These glitches can produce false triggering and other undesirable effects in susceptible ICs.
So it's a good idea to bypass your ICs locally-right at the package. The bypass (decoupling) capacitors quash the analog ripple signals and sink and source the switching currents that, in the absence of bypassing, would disrupt the operation of your system. As an example of a commonly employed bypassing technique, you'll find a multilayer-ceramic bypass capacitor next to each dynamic RAM in all memory systems.

To determine the value of a bypass capacitor needed in a particular situation, remember the simple equation $\mathrm{i}=\mathrm{CdV} / \mathrm{dt}$. C is thus equal to idt/dV. Determine how much current (i) your bypass device must absorb during a time interval (dt) and how much voltage change (dV) the IC can tolerate at the capacitor's terminals. The traditional value for 64 k -bit dynamic RAMs is $0.22 \mu \mathrm{~F}$; for 256 k -bit RAMs, it's $0.33 \mu \mathrm{~F}$. Thanks to smaller geometries and lower storage-capacitor values in 1 M -bit RAMs, the $0.33-\mu \mathrm{F}$ value will be valid for these memory chips, too.

Bypass choices abound

In selecting a bypass capacitor to mate with an IC, you have a plethora of packaging-style choices. The choices include bare chips, 2-leaded DIPs, axial cylindrical units, under-the-IC styles, and surface-mount devices. Almost all MLC manufacturers offer bare-chip versions of their capacitors. To gain a feel for the sizes and value ranges available in unencapsulated chips,

Ideal for switch-mode power supplies and as entry-level decouplers for pe boards, the SupraCap multilayer-ceramic capacitors from AVX Corp offer capacitance values previously attainable only from electrolytic units.

> In terms of leakage currents, aluminumelectrolytic and tantalum capacitors are veritable de conductors when compared with multilayer-ceramic units.

The use of a tantalum-base metal case in these wet-tantalum capacitors from Tansitor Electronics Inc eliminates metal-migration problems inherent in designs that use a silver case.

Low ESR and high ripple-handling capability are the hallmarks of these aluminumelectrolytic capacitors from Sprague. Electrolytic devices offer very high capacitance values per unit volume (and per dollar).

Unlike most capacitors, these units from Rifa have a high ESR, which provides arc suppression for contacts in relays and switches. The devices are, in effect, a form of snubber.
consider the units offered by two typical MLC manufacturers: Murata Erie North America Inc and Kyocera International Inc.
Chip-form MLCs from Murata Erie come in nine sizes. Seven of the sizes follow industry standards for MLC chips, and the numbering system adopted by Murata (and the industry) for these sizes is eminently logical. The first two digits, if you'll imagine a decimal point before them, denote the chip's length in inches; the last two, the width: A device designated 0805 measures 80×50 mils. Murata's seven industry-standard sizes are $0805,1005,1206,1210,1805,1808$, and 1812. The two nonstandard sizes are 60×30 and 220×200.
Ranges of available values for Murata's chips depend on the devices' voltage rating and temperature characteristic. The available working-voltage ratings for NP0 and X7R chips are $25,50,100$, and 200 V . Ratings are limited to 100 V for Z5U devices. For the NP0 and X7R units, the capacitance values available are the same for 25 and 50 V units; the Z5U chips offer slightly higher limits for the 25 V capacitors.

For NP0 units having Murata's smallest chip size (60×30), the $25 / 50 \mathrm{~V}$ units offer values ranging from 0.5 to $120 \mathrm{pF} ; 100 \mathrm{~V}$ devices range from 0.5 to 82 pF .200 V chips are not available in this small size. For the largest chip size (220×200), values for $25 / 50 \mathrm{~V}$ and 100 V chips range from 910 to $10,000 \mathrm{pF} ; 200 \mathrm{~V}$ capacitors range from 910 to 2200 pF . X7R chips rated at $25 / 50 \mathrm{~V}$ have values ranging from 220 to 4700 pF in the smallest size and from 0.022 to $0.56 \mu \mathrm{~F}$ in the largest.
Units having the Z5U temperature characteristic, naturally, offer the highest capacitance values. The dielectric constant for the Z5U ceramic formulation is three to five times higher than that used for X7R
capacitors. For Murata's 60×30 chips, 25 V devices offer values from 1000 to $15,000 \mathrm{pF} ; 50 \mathrm{~V}$ units, from 1000 to $10,000 \mathrm{pF}$; and 100 V units, from 1000 to 3300 pF . In a notable display of volumetric efficiency, 25 V and 50 V units measuring 220×200 have values from 0.82 to 1.5 $\mu \mathrm{F} ; 100 \mathrm{~V}$ capacitors range from 0.22 to $0.39 \mu \mathrm{~F}$.

Chip sizes proliferate

Murata isn't the only company offering both indus-try-standard and proprietary chip sizes; Kyocera also does. The company's standard sizes are 0504, 0805, $1005,0907,1206,1209,1706,1808,1812,1825,2018$, and 2225 . In addition, the company manufactures 0704 , $1505,1805,2708$, and 2321 nonstandard sizes. Thickness for all sizes can range from 40 to 80 mils max. In addition, Kyocera offers a family of low-profile chips for height-critical applications; the thickness for these devices, available in all industry-standard sizes, is 30 mils max.

For Kyocera's 50 V units having the NP0 temperature characteristic, values range from 1 to 390 pF for the smallest chip and from 2200 to $33,000 \mathrm{pF}$ for the largest. NP0 devices having a 100 V rating offer values from 1 to 270 pF for the smallest size and from 2200 to $22,000 \mathrm{pF}$ for the largest. X7R chips rated at 50 V offer values from 470 to $15,000 \mathrm{pF}$ for the smallest size and from 0.1 to $1.2 \mu \mathrm{~F}$ for the largest. X7R devices rated at 100 V spec values of 470 to 5600 pF for the smallest chip and 0.1 to $0.56 \mu \mathrm{~F}$ for the largest. The 50 and 100 V units having the Z 5 U temperature characteristic offer values ranging from 0.1 to $3.9 \mu \mathrm{~F}$ and 5600 pF to $1.2 \mu \mathrm{~F}$, respectively.

The most recent addition to Kyocera's chip-capacitor family is a device dubbed "the Suppressor." This capacitor is a Z5U chip that measures 125×100 mils in area

Packing a great deal of capacitance in a small volume, these surface-mountable multilayer-ceramic capacitors from Tokin America Inc use a ceramic material having an extremely high dielectric constant.
and 26 mils in thickness. The unit's capacitance is 0.33 $\mu \mathrm{F}$, the value universally accepted as the optimum one for noise suppression in 256 k -bit dynamic RAMs. The chip's minimal thickness allows you to mount it directly underneath the RAM. The Z5U characteristic is not noted for temperature stability: For example, the specs guarantee a capacitance of $0.42 \mu \mathrm{~F}$ min at $25^{\circ} \mathrm{C}$ with 5 V applied, and this value drops to $0.2 \mu \mathrm{~F}$ min over 0 to $85^{\circ} \mathrm{C}$. However, the value is still $0.3 \mu \mathrm{~F} \min$ at $60^{\circ} \mathrm{C}$, so the stability is perfectly adequate in most computersystem environments.

More MLC configurations

Chip-type multilayer-ceramic capacitors, like the ones discussed so far, are ideal for hybrid-circuit applications and, often, for direct mounting to pe boards. However, in situations that impose large operat-ing-temperature excursions, vibration, and mechanical shock, differences between the chips' coefficient of expansion and that of the medium they're mounted on can contribute to defective solder joints and electrical connections. A family of leaded, surface-mount MLCs from AVX Corp aims to eliminate the possibility of such defects.

The MLC chips, dubbed "Planar," carry tabs (Fig

These 500V multilayer-ceramic chips from Johanson Dielectrics Inc are available with NP0 or $X 7 R$ temperature characteristics and offer a variety of chip dimensions. You can choose palladium or solder coating as the terminations.

2a) or ribbon leads (Fig 2b) that provide stress relief. The tabs connect to both metallized faces of the MLC chip: one tab to each face for 0805 and 1808 chip sizes and two tabs to each face for the larger 2225 size. A right-angle bend makes the tabs' soldering surface flush with the chip's bottom side. Depending on whether you plan to use thermocompression bonding or reflow soldering for attachment, you can specify gold or tin/ lead-solder plating on the tabs.

Tabbed units having the NP0 temperature characteristic are available in values of 680 to $22,000 \mathrm{pF}$ for a 50 V rating and in values of 560 to $10,000 \mathrm{pF}$ for a 100 V rating. Values for X7R devices range from $10,000 \mathrm{pF}$ to $0.47 \mu \mathrm{~F}$ for a 50 V rating and from 4700 pF to $0.15 \mu \mathrm{~F}$ for 100 V units. For the Z5U characteristic, 50 V capacitors offer values from $22,000 \mathrm{pF}$ to $0.56 \mu \mathrm{~F}$, and 100 V versions offer values from 6800 pF to $0.27 \mu \mathrm{~F}$.

Ribbon-leaded units provide low inductance in highfrequency systems. Compare, for example, the added inductance of an MLC chip that has 93×4-mil ribbons with that of radial- or axial-leaded MLCs. For this comparison, assume 60-mil lead length (per lead) for the radial unit, 135 mils for the axial device, and 50 mils per ribbon for the ribbon-leaded chip. The resulting inductances contributed by the mounting leads are 1.5, 2.4, and 0.6 nH , respectively. The available values for the three temperature characteristics are the same for ribbon-leaded units as those described for the tabbed devices.

A popular configuration for multilayer-ceramic capacitors is the axial-leaded, cylindrical format. The main reason for the popularity of these devices is the large installed base of automatic pc-board stuffers; much like diodes and resistors, the axial units are available in tape-and-reel packaging form to accommodate the auto-matic-insertion machinery. Axial capacitors come in three packaging styles: conformal epoxy coating, molded epoxy, and diode-type glass packaging.

Glass packaging (Fig 3) is the housing method adopted by Unitrode Corp. The plugs contacting the silver terminations on the MLC chip use a borate/oxidecoated, copper-clad, nickel-iron material. Upon sealing under pressure and high temperature, two bonds emerge. The first, coming from a diffusion of the copper into the silver, is between the copper-clad plug and the chip termination. The second, hermetic bond is between the glass and the plug.

NP0 and X7R units offer voltage ratings of 50, 100, and 200 V ; Z5U devices come with 50 and 100 V ratings. The units come in physical sizes ranging from 170 mils

Fig 2-Designed to relieve stress from dissimilar expansion coefficients, tab (a) and ribbon (b) leads on multilayer-ceramic capacitors can reduce failure rates in systems that experience large temperature excursions. As you can see, these units from AVX Corp are available in a variety of termination configurations.
long, 100 mils in diameter to 400 mils long, 150 mils in diameter. NP0 capacitors in the smallest package have values from 10 to 680 pF ; in the largest size, values range from 1500 to $10,000 \mathrm{pF}$. For the smallest and largest sizes, X7R devices have values of 390 to 1800 pF and 0.068 to $0.27 \mu \mathrm{~F}$, respectively. The value ranges for the smallest and largest Z5U units are 1000 to 18,000 pF and 0.15 to $1 \mu \mathrm{~F}$, respectively. A $0.33-\mu \mathrm{F}$ Z5U capacitor suitable for decoupling 256 k -bit dynamic RAMs comes in a package that's 170 mils long. The unit costs $\$ 0.055$ (OEM qty).

Welcome to Flatland

When you use a capacitor to decouple an IC, you want the capacitor to be as close to the IC as possible, and you want the MLC's leads to be as short as possible. The Kyocera chip already described offers one way to achieve this close proximity. Another method uses a concept called "Bitguard," developed by AVX Corp. This technique involves incorporating the MLC chip directly inside the IC package. Another way to achieve proximity and short leads is to use a flat, under-the-IC decoupling capacitor called "Micro/Q," manufactured by Rogers Corp.
These molded, flat units share the pc-board holes with the leads of the ICs they're bypassing. Available for several logic ICs and $\mu \mathrm{P}$ and $\mu \mathrm{P}$-peripheral families, the $\$ 0.45$ (1000) units conform to the environmental and

The most popular temperature characteristics for multilayer-ceramic capacitors are NPO (also known as C0G), X7R, and Z5U.

Fig 3-Is it a diode? No, it's a capacitor. Glass-encased multilayerceramic capacitors from Unitrode Corp are suitable for placement by the same automatic-insertion machinery used for other axial-leaded, cylindrical components.
general specs of MIL-C-39014D and MIL-STD-202F. The latest additions to the series, called Micro/Q II, are available with X7R ($\pm 15 \%$ max capacitance change over -55 to $\left.+125^{\circ} \mathrm{C}\right)$ and Y5U ($+22,-56 \%$ max change over -30 to $+85^{\circ} \mathrm{C}$) characteristics.
Micro/Q II X7R units offer $0.01-$ to $0.1-\mu \mathrm{F}$ values; Y5U devices provide 0.05 to $0.3 \mu \mathrm{~F}$. The devices fit under 14 -, 16 -, 18 -, and 20 -pin, 300 -mil DIPs. Capacitance ranges are the same for all sizes. The capacitancevalue tolerance is $\pm 20 \%$ for X 7 R units and $+80,-25 \%$ for Y5U devices. The dissipation factors for X7R and Y5U capacitors are 3.5 and 4% max, respectively; both types spec a 50 V rating. Micro/Q II devices cost $\$ 0.67$ (1000).

Arrays integrate capacitors

If it makes sense to integrate many semiconductor devices on a piece of silicon, then the same multipledevice concept might make sense for multilayer-ceramic capacitors. Sprague Electric Co is betting that multi-ple-MLC arrays make eminent sense. The company has set up a facility to manufacture substrates called Multilythics. These substrates can include a variety of capacitors, ground planes, and interconnection schemes. You can consider the Multilythic devices as applicationspecific substrates. Sprague seeks to enter into mutual development projects with customers seeking solutions for specific application needs.

Following the lead of semiconductor integration, Multilythic application-specific substrates from Sprague Electric Co incorporate NPO or X7R multilayer capacitors and tailor-made interconnection patterns. You can also expect a family of off-the-shelf capacitor networks having both temperature characteristics.

You can also expect a line of standard devices that use the Multilythic technology. The first of these off-theshelf units is the 806 C small-outline capacitor array, a network carrying eight capacitors of the same rating. Capacitance values for the NP0 characteristic range from 27 to 2000 pF ; for X7R capacitors, the values span 2000 to $47,000 \mathrm{pF}$. Operating voltage is 100 V dc to $85^{\circ} \mathrm{C}$ and 50 V dc at $125^{\circ} \mathrm{C}$. The units cost $\$ 1.50(10,000)$; a kit that includes five $100-\mathrm{pF}$ and five $10,000-\mathrm{pF}$ capacitor arrays costs $\$ 50$.

Smoothing the switchers

At first glance, the use of ever higher switching frequencies in switch-mode power supplies seems both desirable and straightforward. The higher frequencies should allow the use of magnetic devices that are smaller and lighter and filter capacitors that have lower values. However, problems arise when you use capacitors (and magnetic components, for that matter) in high-frequency circuits.

Aluminum-electrolytic and tantalum capacitors both suffer from high ESR and ESL, as compared with multilayer-ceramic devices, as Fig 1 shows. For highfrequency switchers, the inductive effect becomes predominant in determining the capacitor's impedance. The classic solution for reducing the filter capacitors' impedance in high-frequency switchers is to connect several electrolytic or tantalum units in parallel. You might find it more economical, however, to use highvalue, multilayer-ceramic capacitors instead.

A line of capacitors called "SupraCap" from AVX Corp comes in DIP-style packages and offers capacitance values that are suitable for filtering high-frequency, switch-mode supplies. Each of the five package sizes- $2.1 \times 0.5,1.6 \times 0.95,1.1 \times 0.5,0.43 \times 0.41$, and $0.28 \times 0.27 \mathrm{in}$. -contains five MLC chips in parallel. You have a choice of four voltage ratings - $50,100,200$, and 500 V -and the three popular temperature characteristics: NP0, X7R, and Z5U (200 V limit). For NP0 ver-
sions, the maximum capacitance is $5 \mu \mathrm{~F}$ for the largest package and $0.28 \mu \mathrm{~F}$ for the smallest. The corresponding maximum capacitances for X7R units are 110 and 6 $\mu \mathrm{F}$; for Z5U types, they're 450 and $25 \mu \mathrm{~F}$.

In a radical departure from classic multilayer-ceramic technology, a recently introduced series of high-value MLCs from Marcon America Corp (a member of the Toshiba group) uses a ceramic material based on niobium oxide. The company claims the material has twice the dielectric constant attainable from conventional dielectrics (that is, barium titanate). Values and voltage ratings range from 0.1 to $47 \mu \mathrm{~F}$ and 50 to 400 V , respectively. Devices having CV products as high as 2350 are available.
To gain a feel for the volumetric efficiency of the niobium-based MLCs, consider the size of a $47-\mu \mathrm{F}, 50 \mathrm{~V}$ unit: $28 \times 10 \times 7.5 \mathrm{~mm}(1.3 \times 0.39 \times 0.3 \mathrm{in}$.). The devices' temperature characteristics correspond to $\mathrm{X} 7 \mathrm{~V}(+22$, -82% max value change over -55 to $+125^{\circ} \mathrm{C}$) or Y5U $\left(+22,-56 \%\right.$ max change over -30 to $\left.+85^{\circ} \mathrm{C}\right)$. Capacitance tolerances are $\pm 20 \%$ and $+80,-20 \%$. A $10-\mu \mathrm{F}$, 50 V capacitor costs $\$ 2.30$ (OEM qty).

More high-CV MLCs from Asia

While you're considering the Marcon-Toshiba highCV MLCs, you can continue looking toward the East for yet another source of multilayer-ceramic devices that pack astounding amounts of capacitance per unit volume. A recent line of surface-mount MLCs from Tokin America Inc uses very thin layers and a ceramic material that boasts a dielectric constant of 20,000 , vs the 4000 to 11,000 of other MLC manufacturers' Z5U ceramics.
In addition to having extremely high CV products10 to $100 \mu \mathrm{~F}$ at 25 V working voltage-Tokin's surfacemount capacitors promise to be economical in highvolume applications. The manufacturer claims to use low-cost electrode materials (a silver-palladium mix), rather than the more costly pure palladium used in

The traditional bypass value for $64 k$-bit dynamic RAMs is $0.22 \mu \mathrm{~F}$; for 256 k -bit RAMs, it's $0.33 \mu F$.
other MLCs. Sample prices are $\$ 2.70$ to $\$ 8.90$ for 10 - to $100-\mu \mathrm{F}, 25 \mathrm{~V}$ devices; $\$ 3.80$ to $\$ 6.70$ for $10-$ to $33-\mu \mathrm{F}$, 50 V units; and $\$ 4.90$ to $\$ 5.70$ for $10-$ and $15-\mu \mathrm{F}, 75 \mathrm{~V}$ capacitors.

Multilayer-ceramic capacitors' attractive specs notwithstanding, the fact remains that for certain applications, aluminum-electrolytic or tantalum capacitors represent the optimum choice. For high capacitance values, aluminum and tantalum units pack more microfarads per unit volume-and per dollar-than multilay-er-ceramic capacitors can.

Some aluminum electrolytics from Sprague Electric Co serve to exemplify the high CV products and low prices possible with electrolytic units. Series 678D miniature aluminum electrolytics have about twice the ripple-handling capabilities available from other Al devices (for example, Sprague's 672D family). Low ESR is the key to their ripple-handling ability. For example, a $1000-\mu \mathrm{F}, 16 \mathrm{~V}$ capacitor has a maximum ESR of $66 \mathrm{~m} \Omega$ at 40 kHz and $25^{\circ} \mathrm{C}$. Typical of the low prices of aluminum electrolytics, this $1000-\mu \mathrm{F}, 16 \mathrm{~V}$ capacitor costs $\$ 0.232(10,000)$. 678 D units come in eight voltage ratings from 6.3 to 63 V dc; the maximum capacitance values for the lowest and highest voltage ratings are 6800 and $680 \mu \mathrm{~F}$, respectively.

Instead of aluminum electrolytics, you might consider using solid-tantalum capacitors in applications that demand a lot of capacitance in a small package. Solid-

Mounting solid-tantalum capacitors is easy if you use devices like these SM units from Mepco/Centralab. The capacitors are suitable for mounting on pc boards, as well as for use in hybrid circuits.
tantalum units from several manufacturers come in a chip format that lends itself to easy surface mounting. For example, a recent family called the 293D from Sprague Electric Co conforms to IEC QC300801/001, the new EIA industry spec for standard capacitancerange devices.

Models in the 293D Series (dubbed "Domino") come in four package sizes. They offer voltage ratings from 4 to 50 V dc and capacitances from 0.1 to $100 \mu \mathrm{~F}$. The capacitors' operating-temperature range is -55 to $+85^{\circ} \mathrm{C}$; linear derating to 67% of rated voltage permits operation to $+125^{\circ} \mathrm{C}$. The company supplies the tantalums taped on 8 - or $12-\mathrm{mm}$ reels in conformance with EIA 481A for use with automatic-placement machinery. A $1-\mu \mathrm{F} \pm 20 \%, 35 \mathrm{~V}$ unit costs $\$ 0.21$ (1000).

Surface-mountable solid-tantalum capacitors are a specialty of Mepco/Centralab Inc. For example, the company's 49MC family of SM devices comes in four case sizes that conform to the EIA's proposed standard IS-28 for tantalum chip capacitors. Packaged in 8- and $12-\mathrm{mm}$ carrier tape widths, the units offer values from 0.1 to $68 \mu \mathrm{~F}$ and voltage ratings from 4 to 35 V dc. The electroplated tin/lead terminations make the capacitors suitable for most solder-reflow applications. The typical price (for a $\pm 10 \%$ capacitor rated at 35 V) is $\$ 0.32$ (1000).

Another solid-tantalum chip series from Mepco/ Centralab is the 49SC family. These units are similar to the 49MC devices but come in five case sizes and offer higher CV products: 0.47 to $100 \mu \mathrm{~F}$ at 4 to 50 V dc. The devices are pad compatible with MIL-C-55365/4

High insulation resistance and pulse strength and low dissipation factors are inherent in these surface-mountable, stacked-film capacitors from Siemens Corp. They're available in 12-mm tape format to accommodate automatic-placement machinery.

Closeness is the key word in bypassing ICs. These flat decoupling capacitors from Rogers Corp mount directly underneath the ICs they're decoupling, and they even share the pc board's holes with the ICs' leads.
(CWR-06) capacitors. Typical pricing for the 49SC Series (10% tolerance, 35 V) is $\$ 0.70$ (1000). The company's 49BC family, dubbed "Blue Chip," is available in industrial or in established-reliability models. The latter devices are qualified to MIL-C-55365/4, style CWR-06, established-reliability failure-rate R. The chips come in eight case sizes and have ratings of 0.1 to $100 \mu \mathrm{~F}$ at 4 to 50 V dc. Typical prices for industrial and MIL-grade capacitors are $\$ 2.21$ and $\$ 4.81$ (1000), respectively.
Another specialist in surface-mountable solid-tantalum chips is Tansitor Electronics Inc. The company's SM family of solderable chips comes in six case sizes and ratings of 0.1 to $100 \mu \mathrm{~F}$ at 4 to 50 V dc. You have a choice of terminations for the SM Series devices: gold for conductive-adhesive bonding or 60/40 tin/lead solder for solder reflow, wave soldering, or vapor-phase soldering. The chips are packaged on 8 - or $12-\mathrm{mm}$ tape reels. Typical pricing (in 100 s) for $\pm 20 \%$ units ranges from

Much as a fly lures an unsuspecting trout, these multilayer-ceramic chips from Corning Glass Works trap and kill glitches and ripple in electronic systems. If you provide the proper pads, the units are easy to mount on pc boards and in hybrid circuits.
$\$ 0.50$ in case-size 1 to $\$ 1.40$ in case-size 6.
If you need higher CV products than you can obtain from the solid-tantalum capacitors described so far, consider wet-tantalum devices, which use a sinteredanode, gelled-electrolyte design. Recent offerings from Sprague and Tansitor serve as good examples of what's available in wet tantalums.
A series of units from Sprague meets the requirements of MIL-C-39006/26; MIL-qualified (CLR75) devices are available. Ratings for the capacitors, designated 238D, range from $2200 \mu \mathrm{~F}$ at 6 V de to $39 \mu \mathrm{~F}$ at 150 V dc; available tolerances are ± 10 or $\pm 20 \%$. The manufacturer claims that the use of a tantalum-based metal case (vs the traditional silver case) eliminates the metal-migration problems inherent in older designs. The 238D capacitors withstand 1 V reverse voltage, vs the 0.5 V usually specified for wet-tantalum devices. A $56-\mu \mathrm{F}, 75 \mathrm{~V}$ capacitor costs $\$ 6.55$ (1000).

Recent wet-tantalum units from Tansitor also use a tantalum-based case. The company's AR units conform to MIL-C-39006/25, type CLR81. The all-tantalum devices replace the silver-cased units that conform to MIL-C-39006/21, type CLR69. Four case sizes are available; capacitance values and working voltages span 6.8 to $2200 \mu \mathrm{~F}$ and 6 to 125 V dc. The devices withstand 3 V reverse voltage. Typical prices for ± 20-tolerance CLR81 units that satisfy failure-rate level M range from $\$ 8.95$ (100) in case-size 1 to $\$ 16.80$ (100) in casesize 4.

Another recent series of CLR81 devices that come in tantalum-based cases is Mallory Capacitor Co's CLR81 family. These capacitors, like Tansitor's, can withstand 3 V reverse voltage. The company claims the units' low ESR allows them to withstand as much as three times the ripple current that similar silver-cased devices can handle. Prices for the established-reliability, DESCapproved devices range from $\$ 13.57$ to $\$ 19.38$ (1000).

Use MLCs for high voltages

High capacitance, low leakage, and small size are difficult parameters to obtain in capacitors needed for high-voltage applications. A number of multilayer-ceramic capacitors from several manufacturers offer the CV-product advantages of MLCs and often eliminate the need to use older, "doorknob" devices that are heavy, bulky, and difficult to mount. A family of chips from AVX Corp illustrates the capabilities of MLCs in high-voltage systems.
The bare chips come in NP0 and X7R formulations and in sizes ranging from $1808(180 \times 80$ mils) to 3640

Fluke breaks the old mold.

The Fluke 37. A bold new shape emerges with more features for the money than any other bench DMM. Period.

Dollar for dollar, the new Fluke 37 is unbeatable. In addition to its breakthrough design - with built-in handle and storage compartment - it has all the high-performance features of the world's best, most reliable $31 / 2$ digit DMMs.

Autoranging, to eliminate guesswork. Audible Continuity, so you don't have to look at the display. An exclusive analog and digital display, for the best view of the signal being measured. Superior EMI shielding. And user-friendly features like auto self-test, auto battery test and autopolarity. All this, plus a two-year warranty.

And, how many other $\$ 229$ bench meters give you these features? Min-Max recording, for monitoring signals. 38 components dedicated exclusively to input protection. Relative mode, to help you calculate changes in readings. And Fluke's patented Touch Hold, to give you an extra set of hands when you're taking critical measurements.
None. Not at \$229. Not at any price.
For your nearest distributor or a free brochure, call toll-free anytime 1-800-227-3800, Ext. 229. (Outside the U.S., call 1-402-496-1350, Ex. 229.)

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 37

\$229*	
Analog/Digital Display	
Volts, Ohms, Amps, Diode Test	
30 kHz AC bandwidth	
Fused 10A Range	
	Integral handle, storage compartment
	2 -year warranty

* Suggested U.S. list price, effective June 1, 1986
(360×400 mils). NP0 devices have voltage ratings from 1000 to 5000 V . Depending on chip size, the 1000 V units offer capacitance values from 100 to $33,000 \mathrm{pF} ; 5000 \mathrm{~V}$ devices have capacitances from 100 to 330 pF . You can obtain X7R capacitors having voltage ratings from 600 to 2500 V . Capacitance values for 600 V devices range from 560 pF to $1 \mu \mathrm{~F}$; for 2500 V units, capacitance ranges from 100 to 4700 pF .

You can obtain an even wider range of ratings and bare-chip sizes from Centre Engineering. This company's high-voltage MLCs come in sizes ranging from 2518 (250×180 mils) to 6765 (670×650 mils); these units, too, offer NP0 or X7R temperature characteristics. NP0 capacitors rated at 500 V range from 10 to 39,000 $\mathrm{pF} ; 5000 \mathrm{~V}$ devices have values ranging from 56 to 470 pF . For 500 V X7R units, values range from 470 pF to 1 $\mu \mathrm{F}$; values for 5000 V capacitors range from 1500 to $10,000 \mathrm{pF}$. A typical price for a $5000 \mathrm{~V}, 10 \% \mathrm{X} 7 \mathrm{R}$ unit is $\$ 0.95$ (1000).

Finally, consider a series of 500 V MLCs from Johanson Dielectrics Inc. Available in bare-chip sizes $1206,1210,1812$, and 2221 , the devices also offer NP0 or X7R temperature characteristics; their capacitance values range from 470 pF to $0.15 \mu \mathrm{~F}$. The units come with terminations of palladium or nickel-barrier solder coating. Prices range from $\$ 0.29$ to $\$ 1.89$ (1000), depending on chip size and value.

High frequencies: Tough on caps

High levels of integration, coupled with the very high speeds of modern silicon and gallium-arsenide ICs, impose special demands on the high-frequency performance of capacitors. The most crucial need in these applications, of course, is for low inductance. Chip capacitors from several sources satisfy the low-ESL requirement.

Consider, for example, a series of low-ESL chips from AVX Corp. Designed for VLSI- and VHSIC-IC decoupling, the chips have aspect ratios and sizes that reduce series inductance from the 2 nH you'd usually encounter in MLCs to less than 0.5 nH . Fig 4 shows the result of applying a $200-\mathrm{mA} / \mathrm{nsec}$ current front to a standard $10-\mathrm{nF}$ chip (a) and to a low-inductance chip of the same rating (b). The devices come with X7R or Z5U temperature characteristics and in case sizes of 0508 , 0510 , and 0612. In addition, AVX offers capacitors having a special temperature-characteristic formulation; the capacitance value for these devices peaks at $60^{\circ} \mathrm{C}$. These devices have voltage ratings of 25 or 50 V and capacitance values from 10 to 82 nF .

Differences between chip capacitors' coefficient of expansion and that of the medium they're mounted on can contribute to defective solder joints.

Fig 4-Henries and farads sometimes don't mix, as these traces show. The voltages in the traces are the result of applying a 200-mA/nsec current front to a standard 10-nF MLC (a), and to a low-inductance chip of the same rating (b). (Courtesy AVX Corp)

For extremely high frequencies, a line of NP0 chips and leaded units from Murata offers specified Q vs frequency. They come in two sizes: Model MA50 measures $55 \times 55 \times 55$ mils, and Model MA60 measures $110 \times 110 \times 100 \mathrm{mils}$. The devices satisfy the tenets of MIL-C-55681B and come in 50 to 500 V ratings. Capacitance values range from 0.3 to 2200 pF . A typical $100-\mathrm{pF}$ device has a Q of 1000 at 100 MHz .

In the lofty gigahertz range, you have recourse to a series of single-layer ceramic capacitors from Dielectric Laboratories Inc. Designed for applications using frequencies from 100 MHz to 40 GHz , these devices come with width/length dimensions ranging from 5 to 60 mils. The chips' electrodes serve as terminations; a nickel-barrier electrode is suitable for soldering, and gold termination is available for die attachment and wire bonding. Voltage ratings are 50 and 100 V , and

SCHLOSS

IRCIS BACKI

Yes, we're the same IRC you've been turning to for top-quality, state-of-the-art resistive devices for over 60 years.

The plain fact is, we've never really been away.
For the past two decades, we were part of TRW Electronic Components Group. But you didn't forget us. You still demanded "TRWIIRC" resistors for your most critical circuit designs. (And we appreciate it!)

Now, we're again using our original name IRC - for our broad line of resistive products. Which makes it easier for you to specify superior-quality resistors. And makes it simpler for your overworked purchasing agent to order from us.

For the most reliable source, just say: IRC. We have the total backing of the Crystalate Group, one of the U.K. and Europe's finest producers of electronic components and high-tech
products. Plus the technological support of a sister company - Welwyn Electronics, the U.K.'s largest manufacturer of resistive products and hybrid circuits since 1937.

IRC. Remember our name. We're destined to be a major factor in the success of your future circuit designs. With axial and radial leaded parts, plus space-saving, surface-mounted resistors of every description. Flat and cylindrical chips. Unique SMD power wirewounds. Small-outline leadless networks. TaNFilm ${ }^{\circledR}$ flat-pack networks. Chip carrier networks. And custom thin-film and thick-film hybrid circuits to meet your cost-reduction and size-reduction goals.

For all your resistive products and hybrid circuit requirements, let us share our technical innovation and combined century-plus of experience with you. Write to: IRC, Inc., Greenway Road, P.O. Box 1860, Boone, NC 28607. Or phone: (704) 264-8861.

You'll like the way we do business. Besides, our name is easy to spell. compatible with the large installed base of automatic pc-board stuffers.

Suitable for surface-mounting techniques, these solid-tantalum chips from Tansitor Electronics Inc offer you a choice of solder or gold terminations. They're available in six case sizes.
capacitance values range from 68 to 1500 pF .
Advances in multilayer-ceramic capacitors' CV products and SM-packaging convenience notwithstanding, devices using a metallized-plastic dielectric remain economical and otherwise advantageous in many applications. For example, the film units have a self-healing property-if a punch-through short circuit occurs because of the application of excessive voltage, the short circuit disappears (heals itself) upon removal of the overvoltage condition. Further, many film units are available in the same convenient SM packages offered by MLCs.

Some metallized-polyester capacitors recently introduced by Siemens Corp illustrate the capabilities of film devices. The company's MKT Series B32595 uses a stacked-film construction; the surface-mountable capacitors measure about $7 \times 5.2 \times 3 \mathrm{~mm}$. They're available in 50 V ratings ranging from 0.01 to $0.22 \mu \mathrm{~F}$. Offered in $12-\mathrm{mm}$ tape format, the devices cost about $\$ 0.30$ (1000). A series of flame-retardant polypropylene-film capacitors from Siemens comes in an axial-leaded, cylindrical format. Model B33074-a $\$ 0.20$ (1000), 2200-pF device rated at 100 V -operates from -40 to $+85^{\circ} \mathrm{C}$ and finds use as a resonant-circuit capacitor in RF and IF applications.

Identical in size with 2225 multilayer-ceramic capacitors, MKS 01-SMD Series metallized-polyester devices
from the Wima Div of the Inter-Technical Group Inc have totally metallized ends for convenient soldering. The 50 V dc units come in values ranging from 10 to 100 nF and are available on $12-\mathrm{mm}$ tape reels. The devices, offered in ± 10 and $\pm 20 \%$ tolerances, operate from -55 to $+100^{\circ} \mathrm{C}$. If you need tighter tolerances, consider the FKC22 Series of polycarbonate-film units from Wima. These plastic-encased radial devices have a $5-\mathrm{mm}$ (200mil) lead spacing and offer values from 100 pF to 0.015 $\mu \mathrm{F}$ at 63 V dc. They're available in tolerances of ± 10, ± 5, and $\pm 2.5 \%$. Prices for the MSK 01-SMD Series start at $\$ 0.16(1000)$; the FKC22 Series begins at $\$ 0.10$ (1000).

In addition to the general-purpose bypass, filtering, and resonant-circuit capacitors mentioned so far, you can obtain capacitors that satisfy special requirements. A couple of examples are a line of high-temperature devices from Corning Glass Works and some units having a deliberately inserted series resistance from the Rifa Div of World Products Inc.
Corning's high-temperature glass-dielectric capacitors come in axial- and radial-leaded cases; these units are suitable for oil-well logging systems, semiconductor burn-in testing, geophysical probes, and other harshenvironment applications. One series, dubbed "GlassK ," operates over -75 to $+200^{\circ} \mathrm{C}$ and offers values ranging from 270 pF to $0.1 \mu \mathrm{~F}$. According to curves in the data sheets, the devices offer three temperature characteristics; the three types lose about 20,30 , and 40% of their $25^{\circ} \mathrm{C}$ value at $200^{\circ} \mathrm{C}$. Other high-temperature devices from Corning offer values ranging from 0.5 to $10,000 \mathrm{pF}$ and operate from -60 to $+200^{\circ} \mathrm{C}$. These devices have a capacitance change of $+4 \%$ at $200^{\circ} \mathrm{C}$.
Finally, a series of metallized-paper capacitors from Rifa incorporates a series resistance for transient suppression in various applications. The PMR209 Series is available in capacitance values from 0.047 to $0.47 \mu \mathrm{~F}$ and incorporates a 47 or 100Ω resistor, according to your choice. The units are rated at 630 V dc, 250 V ac. Another line, the PMR210 family, is designed for click suppression; these units come in values ranging from 0.022 to $0.1 \mu \mathrm{~F}$, and they incorporate a 100Ω series resistance. Prices for the PMR209 and PMR210 units start at $\$ 0.63$ and $\$ 0.73$ (OEM qty), respectively. EDN

Manufacturers box begins on pg 130

Article Interest Quotient (Circle One) High 470 Medium 471 Low 472

Here are all of the Multi-layer Ceramic Capacitors that can deliver 47uF at 50Vdc.

Marcon now stands alone in delivering high-CV, multi-layer ceramic caps. In fact, nobody even comes close!
Our new TCD Series offers you capacitance from 0.1 to 47 uF and voltage ranges from 25 to 400 Vdc . But that's just the beginning.

Our patented niobium oxide X7V dielectric affords excellent temperature stability. Where other caps can lose up to 90% of capacitance, ours maintain a stable capacitance
value as operating temperatures increase.

And, there's more. Like small DC bias voltage dependency, an aging rate of less than 2\% per decade, and less than 1% dissipation factor at $25^{\circ} \mathrm{C}$.

For the ultimate in performance, reliability and service life, specify the multi-layer ceramic caps in a class by themselves. Marcon TCD Series.

Nothing even comes close!

MARCON
MARCON AMERICA CORP./TOSHIBA GROUP 310 Era Dr., Northbrook, IL 60062 312/564-2820
Telex: 206351 MARCONAME NBRK Fax: 312/564-1150 GIII

marcon
 - Capacitors
 - Varistors

- Humidity

Sensors

Manufacturers of pc-board-mountable capacitors

For more information on capacitors such as those discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

Acushnet Capacitor Co Inc	Centre Engineering	Elmag	Kahgan Electronics
Box 972	2820 E College Ave	54 Clark St	605 Peninsula Blvd
New Bedford, MA 02741	State College, PA 16801	Newark, NJ 07104	Hempstead, NY 11550
(617) 999-3291	(814) 237-0321	(201) 481-1600	(516) 538-2300
Circle No 601	Circle No 614	Circle No 627	Circle No 640
Aerovox Inc	Ceramite Corp	Elna America Inc	KCK America Inc
740 Bellville Ave	1327 6th Ave	163 E Selandia Lane	1245 Forest Ave
New Bedford, MA 02745	Grafton, WI 53024	Carson, CA 90746	Des Plaines, IL 60018
(617) 994-9661	(414) 337-3500	(213) 327-6090	(312) 297-5435
Circle No 602	Circle No 615	Circle No 628	Circle No 641
All-Tronics Inc	Chicago Condenser Corp	Elpac Components	KD Components
45 Bond St	2900 W Chicago Ave	3131 S Standard Ave	3016 S Orange Ave
Westbury, NY 11590	Chicago, IL 60622	Santa Ana, CA 92705	Santa Ana, CA 92707
(516) 333-3090	(312) 227-7070	(714) 979-4440	(714) 545-7108
Circle No 603	Circle No 616	Circle No 629	Circle No 642
American Radionic Co Inc	Compex	F-Dyne Electronics	KDI Pyrofilm
51 Austin St	238 Taunton Blvd	449 Howard Ave	60 S Jefferson Rd
Danbury, CT 06810	Medford, NJ 08055	Bridgeport, CT 06605	Whippany, NJ 07981
(203) 743-6308	(609) 667-9388	(203) 367-6431	(201) 887-8100
Circle No 604	Circle No 617	Circle No 630	Circle No 643
American Technical Ceramics	Component Research	Film Capacitors Inc	Kyocera International Inc
1 Norden Lane	1655 26th St	174 Polify	Box 85542
Huntington Station, NY 11746	Santa Monica, CA 90404	Hackensack, NJ 07601	San Diego, CA 92138
(516) 271-9600	(213) 829-3615	(201) 646-1040	(619) 454-1800
Circle No 605	Circle No 618	Circle No 631	Circle No 644
Arco Electronics Inc	Condenser Products Corp	General Electric Co	3 M Co
400 Moorehead Dr	Box 997	Electronic Component Sales	Technical Ceramics Products
Commack, NY 11725	Brooksville, FL 33512	Electronics Park	3M Center, 225-4W
(516) 864-7000	(904) 796-3561	Syracuse, NY 13201	St Paul, MN 55101
Circle No 606	Circle No 619	Phone local office	(612) 733-1110
Assembly Specialists Inc	Cornell Dubilier Electronics	Circle No 632	Circle No 645
914 Main St	Wayne Interchange Plaza 1	Hunter Stanley Electronics	Maida Development Co
Acton, MA 01720	Wayne, NJ 07470	1813 Church St	20 S Libby St
(617) 263-9100	(201) 256-2000	Nashville, TN 37203	Hampton, VA 23663
Circle No 607	Circle No 620	(615) 321-0500	(804) 723-0785
		Circle No 633	Circle No 646
AVX Corp	Corning Glass Works		
Olean Advanced Products Div	Corning, NY 14831	Illinois Capacitor Inc	Mallory Capacitor Co
Box 493	(607) 974-9000	3757 W Touhy Ave	3029 E Washington St
Olean, NY 14760	Circle No 621	Lincolnwood, IL 60645	Indianapolis, IN 46206
(716) 372-6611		(312) 675-1760	(317) 636-5353
Circle No 608	CSI Capacitors 810 Rancheros Dr	Circle No 634	Circle No 647
Axel Electronics	San Marcos, CA 92069	International Components Corp	Marcon America Corp
134-20 Jamaica Ave	(619) 747-4000	105 Maxes Rd	310 Era Dr
Jamaica, NY 11418	Circle No 622	Melville, NY 11746	Northbrook, IL 60062
(212) 718-3900		(516) 293-1500	(312) 564-2820
Circle No 609	Custom Electronics Inc Browne St	Circle No 635	Circle No 648
Capar Components Corp	Oneonta, NY 13820	Inter-Technical Group Inc	Matsuo Electronics
11 Marcus Dr	(607) 432-3880	Wima Div	2134 Main St
Melville, NY 11747	Circle No 623	Box 23	Huntington Beach, CA 92648
(516) 454-6390		Irvington, NY 10533	(714) 969-2491
Circle No 610	Del Electronics Corp	(914) 591-8822	Circle No 649
	250 E Sanford Blvd	Circle No 636	
Capco	Mount Vernon, NY 10550		Maxwell Labs
Box 1028	(914) 699-2000	ITT Components	8888 Balboa Ave
Grand Junction, CO 81502	Circle No 624	1201 E McFadden	San Diego, CA 92123
(303) 243-8750		Santa Ana, CA 92705	(714) 279-5100
Circle No 611	Dielectric Labs	(714) 836-0351	Circle No 650
	Rte 20 E	Circle No 637	
Capcon	Cazenovia, NY 13035		Mepco/Centralab Inc
147 W 25th St	(315) 655-8710	ITW Paktron	5900 Australian Ave
New York, NY 10001	Circle No 625	1205 McConville Rd	West Palm Beach, FL 33407
(212) 243-6275		Lynchburg, VA 24502	(305) 863-1800
Circle No 612	Electrocube Inc	(804) 239-6941	Circle No 651
	1710 S Del Mar Ave	Circle No 638	
Centralab Ine	San Gabriel, CA 91776		Metuchen Capacitors Inc
5855 N Glen Park Rd	(818) 573-3300	Johanson Dielectrics Inc	420 Park Ave
Milwaukee, WI 53209	Circle No 626	2220 Screenland Dr	Perth Amboy, NJ 08861
(414) 228-7380		Burbank, CA 91505	(201) 442-0500
Circle No 613		(213) 848-4465	Circle No 652
		Circle No 639	

605 Peninsula Blv
Hempstead, NY 11550
(516) 538-2300

Circle No 640
KCK America Inc
Des Plaines, IL 60018
(312) 297-5435

Circle No 641
KD Components
3016 S Orange Ave
Ana, CA 92707
(14) 545-7108

KDI Pyrofilm
Sofferson Rd
Whippany, NJ 07981
Circle

Kyocera International Inc
Box 85542

Circle No 644

3M Co
Technical Ceramics Products
3M Center, 225-1W
(612) 733-1110

Circle No 645
Maida Development Co
20 S Libby St
VA 23663
Cin

Mallory Capacitor Co 3029 E Washington St Indianapolis, IN 46206

Circle No 647
Marcon America Corp
310 Era Dr
Northbrook, IL 60062
312) 564-2820

Matsuo Electronics
2134 Main St
Huntington Beach, CA 92648
(14)

Maxwell Labs
8 Balooa Ave
San Diego, CA 92123
Circle No 650
Mepco/Centralab Inc
5900 Australian Ave
West Palm Beach, FL 33407
(305) 863-1800

Metuchen Capacitors Inc
420 Park Ave
Perth Amboy, NJ 08861
Circle No 65
Circle No 652

SMT STANDARDS.

4SW-6127R1

©DR ATH Sprague Type 195D and 293D solid tantalum chips meet the brand new EIA size and packaging standards for surface mount capacitors. These miniature components

 (Nonacitors meet EIA specifications for A A A A A Pminals and the highest capacitance in the smallest packages available \checkmark in the industry. Rugged, fully molded Type 293D TANTAMOUNT ${ }^{\circledR}$ capacitors conform to EIA specifications Standard Capacitance Range devices. These "machine-friendly" tantalum chips are compatible with all automatic placement equipment. Both types are supplied taped and reeled per EIA 481A. Standard ratings: 0.10 to $100 \mu \mathrm{~F}, 4$ to 50 WVDC . Sprague Electric Company, a Penn Central unit. For Data Sheets 3539C and 3549, write to: Marketing Communications, Sprague Electric Company, 41 Hampden Rd., P.O. Box 9102, Mansfield, MA 02048-9102. For applications assistance, call our Customer Service Center at Concord, NH at 603/224-1961.
Manufacturers of pc-board-mountable capacitors (Continued)

Midwec
Box 417G
Scottsbluff, NE 69361
(308) 632-4127

Circle No 653
Monolithic Components Corp
11772 Sorrento Valley Rd
San Diego, CA 92121
(619) 457-1727

Circle No 654
Mouser Electronics
Box 839
Mansfield, TX 76063
(817) 483-4422

Circle No 655
Multi Products International Box 238
Cedar Grove, NJ 07009
(201) 239-8183

Circle No 656
Murata Erie N America Inc
2200 Lake Park Dr
Smyrna, GA 30080
(814) 237-1431

Circle No 657
Mu-Tronics Corp
Box 142
Kenilworth, NJ 07033
(201) 272-9262

Circle No 658
National Micronetics
Box 188
West Hurley, NY 12136
(914) 338-7714

Circle No 659
NEC Electronics Inc
401 Ellis St
Mountain View, CA 94039
(415) 965-6000

Circle No 660
Nichicon America Inc
927 E State Parkway
Schaumberg, IL 60195
(312) 843-7500

Circle No 661
Oneida Electronics
Box 678
Meadville, PA 16335
(814) $336-2125$

Circle No 662

Paccom

3928 148th NE
Redmond, WA 98052
(206) 883-9200

Circle No 663
Panasonic Industrial Co
1 Panasonic Way
Secaucus, NJ 07094
(201) 348-5266
Circle No 664
Plastic Capacitors Inc
2623 N Pulaski Rd
Chicago, IL 60639
(312) 489-2229
Circle No 665
Presidio Components
7185 Construction Ct
San Diego, CA 92121
(619) 578-9390
Circle No 666
Republic Electronics Corp
176 E 7th St
Paterson, NJ 07524
(201) 279-0300
Circle No 667
Rogers Corp
Circuit Components Div
2800 S Roosevelt St
Tempe, AZ 85282
(602) 967-0624
Circle No 668
S\&El Manufacturing
1800 Parthenia St
Northridge, CA 91324
(818) 349-4111
Circle No 669

San Fernando Electric Mfg Co 1501 1st St
San Fernando, CA 91341
(213) 365-9411

Circle No 670
Sangamo Weston
Capacitor Div
Box 128
Pickens, SC 29671
(803) 878-6311

Circle No 671
Seacor Inc
123 Woodland Ave
Westwood, NJ 07675
(201) 666-5600

Circle No 672
Semtech Corp
652 Mitchell Rd
Newbury Park, CA 91320
(805) 498-2111

Circle No 673
Siemens Corp
186 Wood Ave S
Iselin, NJ 08830
(201) 321-3400

Circle No 674

Spectrum Control Inc	Tusonix
2185 W 8th St	Box 37144
Erie, PA 16505	Tucson, AZ 85740
(814) 455-0966	(602) 744-0400
Circle No 675	Circle No 686
Sprague Electric Co	Union Carbide Corp
Box 9102	Components Div
Mansfield, MA 02048	Box 5928
(617) 339-8900	Greenville, SC 29606
Circle No 676	(803) 963-6348
	Circle No 687
Standard Condenser Corp	
1065 W Addison St	United Chemicon
Chicago, IL 60613	9801 W Higgins Rd
(312) 327-5440	Rosemont, IL 60018
Circle No 677	(312) 696-2000
	Circle No 688
Tansitor Electronics Inc	
West Rd	Unitrode Corp
Bennington, VT 05201	Capacitor Div
(802) 442-5473	11494 Sorrento Valley Rd
Circle No 678	San Diego, CA 92121 (619) 453-8020
TDK Corp of America	Circle No 689
4711 Golf Rd	
Skokie, IL 60076	Viclan Inc
(312) 679-8200	7373A Engineers Rd
Circle No 679	San Diego, CA 92138 (714) 292-1411
Tecate Industries	Circle No 690
Box 12829	
El Cajon, CA 92022	Vitramon North America Inc
(619) 448-4811	Box 544
Circle No 680	Bridgeport, CT 06601 (203) 268-6261
Thomson-Mostek	Circle No 691
Passive Components Div	
6203 Variel Ave	Wesco Electrical Co
Woodland Hills, CA 91367	201 Munson St
(818) 887-1010	Greenfield, MA 01301
Circle No 681	(413) 774-4358
	Circle No 692
Tobe Deutschman Labs Inc	
550 Turnpike St	Westlake Capacitors Inc
Canton, MA 02021	5334 Sterling Center Dr
(617) 828-3366	Westlake Village, CA 91361
Circle No 682	(818) 889-4120
	Circle No 693
Tokin America Inc	
2261 Fortune Dr	World Products Inc
San Jose, CA 95131	Rifa Div
(408) 946-4887	Box 517
Circle No 683	Sonoma, CA 95476 (707) 996-5201
Tran-Spectra	Circle No 694
Box 27A	
Greenfield, TN 38230	Wright Capacitors
(901) 235-2218	3000 S Orange Ave
Circle No 684	Santa Ana, CA 92707 (714) 546-2490
TRW/Capacitors	Circle No 695
301 West O St	
Ogallala, NE 69153	
(308) 284-3611	
Circle No 685	

IE Capacitors...

MORE THAN FIFTY YEARS OF TRADITION-

 meeting your needs for quality capacitors

OfCO A PROGRAMMA

You've known it all along.
Now, the ideal logic device is finally here: Real gate array density. Real gate array architecture.Real gate array flexibility. And fully user programmable.

It's called, logically enough, the Logic Cell"'Array and its from Xilinx.

AGATE ARRAY.ONLY BETTER.

The Logic Cell Array offers all the advantages-but none of the disadvantages-of conventional gate arrays. Unlike them, the Logic Cell Array ${ }^{\text {m isn't custom manufactured. }}$ Merely programmed. And you can reprogram it an unlimited number of times. Even while it's in the system.

That means turnaround time on design revs can be measured in hours, not months.Time-to-market can be reduced accordingly. And non-recurring engineering charges are non-existent.

Since you program it yourself, the Logic Cell Array shortens design verification and prototyping to almost nothing, and completely eliminates manufacturing delays. That means youll get into production about 5 1/2 months soomer. And once in production with the Logic Cell Array, itll save you there, too. Because if you need to change it, you don't have to shut down the whole company. Just reprogram it. Take you a whole afternoom.

Logic Cell Arrays are also standard parts. So we can test every one of them 100%, down to the last transistor, before you ever get them. It also means that, unlike gate arrays, you can get Logic Cell Arrays off-the-shelf, through distribution.

And the specs just keep getting better.

Were already at 50 MHz with 1200 gates. Well be at 1800 gates by October. And thanks to a CMOS memory-based architecture with plenty of headroom, you'll see our family of Logic Cell Arrays growing to 5000 honest, usable gates by next spring.

LOGICTHATWORKS

 LIKE A MICROPROCESSOR.The problem with VLSI logic devices,gate arrays in particular, is that theyre hard-wired. So your design is literally cast in silicon.

Itmightaswell becastincement. Imagine, though, how much simpler your life would be if your logic device had the flexibility of a microprocessor.Well, the Logic Cell Array has that flexibility.

URSE BLE GATE ARRAY.

Because it works very much like a microprocessor

At power up, the Logic Cell Array automatically loads its internal CMOS memory.This memory, in turn, configures the logic functions and interconnections within the Logic Cell Array to build your logic circuit.

As for the advantages of such an approach,just go ask the microprocessor guys.

As for the advantages of a memory-based architecture, talk to those who work with memory about how much they like parts that continually drop in price while increasing in density and performance.

Because the Logic Cell Array is doing just that.

AFULL ARRAY OF DEVELOPMENT SYSTEM SUPPORT.

You don't have to be an expert in semiconductor manufacturing to use the Logic Cell Array.You just have to know logic design.

And you don't have to be a programming expert to use any part of our integrated development system, either

Theres an interactive,graphicsbased, mouse-and-menu-driven design editor that you can learn in an atternoon. A simulator An incircuit emulator that runs real I/0 and real software in real time for complete and positive design verification. Plus documentation at the touch of a button and a host do one thing, the Logic Cell Array is one gate array that can do everything. Including cut your inventory risk tozero, let you make field upgrades, and eliminate NRE.

a lot more about it. Don't hesitate a moment. Our applications engineers are in the field, so theyrre ready to be more than just a voice on the phone.

And when youre ready to try
of other why-didn't-somebody-think-of-that-before facilities.

Best of all, it runs on an IBM^{*} PC XT,"'AT" ${ }^{\text {T }}$ or clone. And you can get started for the modest price of just $\$ 3600$.

THE ANSWER TO YOUR PRAYERS. AND YOUR QUESTIONS.
Now that you know the Logic Cell Array is just what youve always wanted, you probably want to know

out the Logic Cell Array firsthand, theres our Evaluation Kit (otherwise known as EK-01, shown here). It's just $\$ 250$ and it includes enough software and documentation to evaluate your application on a Logic Cell Array, and see if it performs up to snuff. We'll also credit your $\$ 250$ towards the purchase of our XACT"'development system.

So call us.
Toll-free at (800) 255-7778.
In California, (408) 559-7778.
Or contact your local Xilinx sales representative or Hamilton/ Avnet distributor.

Immediately, if not sooner
Now that the ideal logic device is here, isn't this the ideal time to use it?

E.XILINX

The Programmable Gate Array Company."

TANIALUM CHIPS: KOVITM SThesance

New, High-Production T491 Molded Chip Design: Positive Placement.SimplerSoldering.

Take a close look at the unique, production-boosting features of the new T491 Series surface mount capacitor from KEMET. It's an excitingly different molded tantalum chip design that can increase your production efficiency as it boosts your product reliability:

- Greater yield - Designed for high-speed, automatic placement and high-integrity connections.
- Compatible with all solder reflow methods - Withstands $260^{\circ} \mathrm{C}$ for 20 seconds.
- Meets EIA standards - Meets or exceeds all IECQ specifications, including QC $300801 /$ US0001.
- Wide selection - Capacitances from $0.1 \mu \mathrm{~F}$ to $68.0 \mu \mathrm{~F}$, and working voltages from 6 to 50 VDC ; in case sizes A through D.

They're built to KEMET's unexcelled quality standards with delivery to meet your needs.
For ordering assistance, ask your local KEMET sales office for a T491 Molded Tantalum Chip specification sheet. You'll find it's easy to do business with KEMET!

Sales Offices and Distributors Worldwide
 In U.S.A: (803) 963-6348; Telex 57-0496.

In Europe: 41-22-396512, Telex 845-911302. In Asia: 852-372-31211; Telex 780-45162.

UNION ELECTRONICS DIVISION
CANIBIDE ELECTRONICS DIVISION
COMPONENTS DEPARIMENT

component reliability begins here

When you need Axial Leaded Tubular Capacitors with Single Layer Construction and Inductors...you want reliability and price. Taiyo Yuden provides both. And what's more, axial leaded components from Taiyo Yuden are available in three sizes with lead spacing as close as 200 -mils. Now manufactured in southern California to give you instant delivery, Taiyo Yuden components are specifically designed and sold for use in automatic insertion equipment.
No matter what your specs, Taiyo Yuden offers you the broadest range of product...axial leaded inductors from 0.22 to $1000 \mu \mathrm{~h}$...Axial Leaded Tubular Ceramic Capacitors from 1 to $33,000 \mathrm{pF}$ \& 12 to $50 \cdot \mathrm{~V}$... Melf (Metal Electrode Face-bonding) Leadless Tubular Ceramic Capacitors from 1 to $22,000 \mathrm{pF}$ \& from 16 to 50 -v. Taiyo Yuden...where experience and reliability means quality. To find out more about Taiyo Yuden components, write or call today:
TAIYO YUDEN (U.S.A.) INC.
714 West Algonquin Road
Arlington Heights, IL 60005
Tel.: 1-312-364-6104
Telex: 910-687-0378 TAIYO U.S.A. ARHT

Inductors

TAIYO YUDEN (U.SA.) INC. CIRCLE NO 72 AIYO U.S.A.ARHT

Put us

Introducing the HP 6621A-6624A system DC power supply family.

You'll save space, time, and money with HP's new 6621A, 6622A, 6623 A , and 6624 A multiple-output system power supplies,

They offer you up to four low-noise DC outputs, 160 watts total, in one box requiring just $51 / 4$ ' of rack space. Each combines the functions of several power supplies and programmers, a scanner, current shunts, and a DVM in one self-contained package with a common HP-IB address. Outputs to 50 volts or 10 amps are available.

It's easy for you to program outputs directly in both volts and amps instead of cryptic mnemonics or percentages. Measure and read back actual voltage and current. Display messages on an LCD. Set overvoltage and overcurrent limits. Even connect outputs in series or parallel for higher-output applications.

The bottom line?
More capability in less space. Faster setup. Less cabling. And low cost of ownership at all stages of system development.

Call HP today!

Put us on the rack starting today...all models are in stock now! For more information and

HP-IB: Not just IEEE-488, but the hardware, documentation and support that delivers the shortest path to a measurement system. our DC Power Supply Catalog, contact your local HP sales office listed in the telephone directory white pages. Ask for the electronic instruments department.

Composite amplifiers yield high speed and low offset

You can find an op-amp technology that excels in any one performance area, but today's applications often demand high performance in several areas. You must therefore employ some ingenious circuit-design techniques to circumvent the limitations.

Jim Williams, Linear Technology Corp

Amplifier design is a study in compromise: A single device can't achieve optimal speed, drift, bias-current, noise, and output-power specs. Various families emphasizing one or more of these areas have evolved, but you might find that your application requires performance figures that can only be obtained with dedicated designs. If a single device can't provide the desired characteristics (high speed and dc precision, for example), you can configure a composite amplifier to do the job. Composite designs combine the best features of two or more amplifiers to achieve a level of performance unobtainable in a single device.
Fig 1 shows a composite amplifier made up of an LT1012 low-drift device and an LT1022 high-speed device. The overall circuit is a unity-gain inverter whose summing node is located at the junction of the three $10-\mathrm{k} \Omega$ resistors. The LT1012 monitors this summing node, compares it to ground, and drives the

Fig 1-This composite circuit combines low-drift and high-gain devices to form a unity-gain inverter. The LT1022 handles highfrequency inputs, while the LT1012 stabilizes the dc operating point.

LT1022's positive input, completing a dc-stabilizing loop around the LT1022. The $10-\mathrm{k} \Omega / 300-\mathrm{pF}$ network allows the LT1012 to respond only to low-frequency signals; the LT1022 handles high-frequency inputs while the LT1012 stabilizes the de operating point.
The $4.7-\mathrm{k} \Omega / 220 \Omega$ divider at the noninverting input of the LT1022 prevents excessive input overdrive during start-up. The circuit's performance combines the LT1012's $35-\mu \mathrm{V}$ offset and $1.5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift with the LT1022's $23 \mathrm{~V} / \mu$ sec slew rate and $300-\mathrm{kHz}$ full-power bandwidth. The bias current is approximately 100 pA .
Fig 2's circuit is similar to Fig 1's, but the former employs discrete FETs to more than triple the speed. In the circuit, IC_{1} 's inputs are tied to the negative rail,
thereby turning IC's input stage off. The differentially connected FETs bias the second stage via IC_{1} 's offset pins. This connection replaces IC_{1} 's input stage, reducing bias current and increasing speed.

FET mismatch would normally result in excessive offset and drift, but IC_{2} corrects this problem by monitoring the summing point (the junction of the two $4.7-\mathrm{k} \Omega$ resistors) and forcing Q2's gate to eliminate the overall offset. The $10-\mathrm{k} \Omega / 1000-\mathrm{pF}$ network inhibits IC_{2} 's response to low frequencies, and the $1-\mathrm{k} \Omega$ divider chain prevents overdrive to Q_{2} on start-up. The $1-\mathrm{k} \Omega / 10-\mathrm{pF}$ damper network at the summing node helps ensure high-frequency stability. Fig $\mathbf{2 b}$ shows the pulse response; trace A is the input, and trace B is the output.

The slew rate exceeds $100 \mathrm{~V} / \mu \mathrm{sec}$ with clean damping. The full-power bandwidth is about 1 MHz , and the input bias current is approximately 100 pA . DC offset and drift specs are similar to those of the Fig 1 circuit.

Unity-gain buffer for high impedance

Fig 3 shows a highly stable unity-gain buffer with good speed and high input impedance. Q_{1} and Q_{2} constitute a simple high-speed FET-input buffer. Q_{1} functions as a source follower, with the Q_{2} current-source load setting the drain-source channel current. The LT1010 buffer can drive cables or other loads.

Normally, this open-loop configuration would be quite drifty because of the lack of dc feedback. The LTC1052 contributes the needed stability by comparing the filtered circuit output with a similarly filtered version of the input signal. The amplified difference between these signals sets Q_{2} 's bias and hence Q_{1} 's channel current, which in turn forces Q_{1} 's V_{GS} to the level required to match the circuit's input and output potentials. The $2000-\mathrm{pF}$ capacitor at IC_{1} provides stable loop compensation. The RC network at IC_{1} 's output prevents that output from seeing high-speed edges coupled through Q_{2} 's collector-base junction. IC_{2} 's output is also fed back to the shield around Q_{1} 's gate lead, bootstrapping the circuit's effective input capacitance down to less than 1 pF .

The LT1010's $15-\mathrm{MHz}$ bandwidth and $100 \mathrm{~V} / \mu$ sec slew rate, combined with its $150-\mathrm{mA}$ output capability, ensure that the circuit in Fig 3a is fast enough for most applications. For applications requiring very fast performance, the alternate discrete-component buffer in Fig 3b should prove useful. Although its output is current-limited at 75 mA , the gigahertz-range transistors that the buffer employs provide an exceptionally wide bandwidth, fast slewing, and very little delay. Fig

3c shows the LTC1052-stabilized buffer circuit's response using the discrete stage: The response is clean and quick; the delay is less than 4 nsec; the slew rate exceeds $2000 \mathrm{~V} / \mu$ sec; and the full-power bandwidth approaches 50 MHz . Note in Fig 3cthat the rise time is limited by the pulse generator, not by the circuit. The offset, with or without the discrete-component stage, is set at $5 \mu \mathrm{~V}$ by the LTC1052; the gain is about 0.95 .

This last spec points out a factor that could lead to potential difficulty with the Fig 3 circuits: The gain is not quite unity. The circuit in Fig 4 maintains a high speed and low bias current while achieving a true unity-gain transfer function.

Fig 2-Otherwise similar to the Fig 1 circuit, this composite amplifier (a) employs discrete FETs to achieve a threefold speed improvement. The scope photo (b) illustrates the circuit's pulse response.

Abstract

The use of discrete FETs can effect a threefold improvement in a composite amplifier's speed.

In Fig 4's circuit, IC_{2} provides dc stability for the I/O path, and IC_{1} provides drive capability. Feedback is to Q2's emitter from IC_{1} 's output. The $1-\mathrm{k} \Omega$ adjustment allows precise setting of the gain to unity. With the LT1010 serving as the final output stage, the slew rate is $100 \mathrm{~V} / \mu \mathrm{sec}$ and the full-power bandwidth ($1 \mathrm{~V} \mathrm{p-p}$) is 10 MHz . The $-3-\mathrm{dB}$ bandwidth exceeds 35 MHz . For a gain of $A=10$ (that is, when the $1-\mathrm{k} \Omega$ variable resistor is set at 50Ω), the full-power bandwidth remains at 10 MHz , but the $-3-\mathrm{dB}$ bandwidth falls to 22 MHz .

If you include the optional discrete stage, the slew rate exceeds $1000 \mathrm{~V} / \mu \mathrm{sec}$, the full-power bandwidth extends to 18 MHz , and the $-3-\mathrm{dB}$ bandwidth reaches 58 MHz . For $\mathrm{A}=10$, full power is available to 10 MHz ; the $-3-\mathrm{dB}$ point becomes 36 MHz . In Fig 4c, traces A
and B show the input and output without the discrete stage; traces C and D show the input and output with the discrete stage. With or without the discrete stage, the circuit should be more than adequate for driving video cables or data converters; the LT1012 maintains de stability under all conditions.

Fast amplifier delivers 1 V p-p

Fig 5 shows another dc-stabilized fast amplifier that functions over a wide range of gains (typically from 1 to 10). It combines the LT1010 and a fast discrete stage within LT1008-based stabilizing loop. Q_{1} and Q_{2} form a differential stage that provides a single-ended input into the LT1010. The circuit delivers 1 V p-p into a typical 75Ω video load. At $\mathrm{A}=2$, the gain is within 0.5

Fig 3-A FET input stage ensures high input impedance for this not-quite-unity-gain buffer (a). The LTC1052 contributes stability. A discrete-component output stage (b) increases the circuit's already impressive speed. The response is clean and quick (c).

Fig 4-This circuit (a) is somewhat similar to Fig 3's, but it has the additional advantage of achieving a true unity-gain transfer function. The optional discrete stage (b) extends the full-power bandwidth from 10 to 18 MHz . In the scope photos (c), traces A and B show the input and output without the discrete stage; traces C and D show the input and output with the discrete stage.

One composite amplifier's IV p-p output works nicely for video circuits; providing additional output swing requires more circuitry.
dB to 10 MHz ; the $-3-\mathrm{dB}$ point occurs at 8 MHz . You should optimize the peaking adjustment under loaded output conditions.
Normally, the $\mathrm{Q}_{1}-\mathrm{Q}_{2}$ pair would be quite drifty, but the LT1008 provides the necessary correction. The correction stage in Fig 5 is similar to the ones in the circuits of Figs 3 and 4, except that Fig 5's version takes the feedback from a divided-down sample of the fast amplifier. You should set the divider's ratio to the same value as the circuit's open-loop gain. The frequency roll-off of this stage is set by the $1-\mathrm{M} \Omega / 0.22-\mu \mathrm{F}$ filters in the LT1008's input lines. The $0.22-\mu$ F capacitor at the amplifier eliminates oscillations. The dc servo loop controls drift by biasing the dc operating point of Q2's collector to force zero error between the LT1008's inputs.
The Fig 5 circuit is a simple stage for fast applications requiring relatively low output swings. Its 1 V p-p output works nicely for video circuits. A possible problem is the relatively high bias current-typically $10 \mu \mathrm{~A}$. You need more circuitry to provide additional output swing.

Trade speed for output swing

The circuit shown in Fig 6 is an attempt to remedy this situation. It trades speed for output swing and reduced bias current. As in the circuit just discussed, a separate loop maintains de stability. Fig 6's circuit is a good example of an approach made practical by composite techniques; without the separate stabilizing loop, the de imbalances in the signal path would preclude any level of operation.
The Fig 6 circuit adds a pnp level-shifting stage (Q_{4}) to the Fig 5 circuit to increase available skewing at the LT1010 output. This improvement comes at the expense of available bandwidth and amplifier stability. The $33-\mathrm{pF}$ capacitor from Q_{4} 's collector to the circuit's summing node (Q 's gate) affords stable loop compensation. Q_{3}, a FET source-follower, eliminates the biascurrent errors present in Fig 5's circuit by buffering the summing point from the relatively high bias current that Q_{2} requires.

DC loop cuts offset

Normally, such a configuration would cause several volts of offset because of Q^{3} 's gate-source voltage, but here IC_{1} closes a dc restoration loop, forcing Q_{1} 's base to whatever point is required to compensate the offset. Consequently, IC_{1} 's operation not only provides dc error but helps form a simple approach to minimizing

Fig 5-A discrete differential input stage that drives a single-ended LT1010 combines with an LT1008-based dc stabilizing loop to yield a fast amplifier that functions over a wide range of gains.
summing-point bias current. Fig $\mathbf{6}$ b shows the operating waveforms for a 10 V output (traces A and B are the input and output, respectively). The slew rate is about $100 \mathrm{~V} / \mu \mathrm{sec}$, and the full-power bandwidth is 1 MHz . The LT1010 can furnish $100-\mathrm{mA}$ outputs, making highspeed cable driving possible.

Circuit uses current-mode feedback

Fig 7 shows another fast stage with a wide output swing. The circuit is a noninverting one and has a higher input impedance than Fig 6's circuit. In addition, its operation employs an arrangement commonly called "current-mode feedback." This technique, well established in RF design and also employed in some monolithic instrumentation amplifiers, allows the circuit to maintain a fixed bandwidth over a wide range of closed-loop gain. The technique contrasts with normal feedback schemes, in which the bandwidth degrades as the closed-loop gain increases.
The overall amplifier comprises two LT1010 buffers and a gain stage (Q_{1} and Q_{2}). IC_{3} acts as a dc restoration loop. The 33Ω resistors sense IC_{1} 's operating current and bias Q_{1} and Q_{2}. These transistors in turn furnish

Fig 6-This circuit (a) offers wide output swing and low bias current, but it sacrifices speed. The photo (b) shows the response (trace B) to a pulse input (trace A).

> A current-mode feedback arrangement allows a circuit to maintain a fixed bandwidth over a wide range of closed-loop gain.
complementary voltage gain to IC_{2}, which provides the circuit's output. The feedback is from IC_{2} 's output to IC_{1} 's output, which is a low-impedance point.

Skewing ensures adequate loop capture

IC_{3} 's stabilizing loop compensates large offsets in the signal path, which are dominated by a mismatch in Q_{1} and $Q_{2} . Q_{3}$ shunts Q_{2} 's base bias resistor to correct for these offsets. Deliberate skewing of Q_{1} 's operating point by the 330Ω resistor ensures an adequate loop capture range. The $9-\mathrm{k} \Omega / 1-\mathrm{k} \Omega$ divider network that provides feedback to IC_{3} determines the gain ratio of the circuit-in this case 10.

The feedback scheme makes IC_{1} 's output look like the negative input of the amplifier, with the closed-loop
gain set by the ratio of the 470Ω and 51Ω resistors. The outstanding feature of this connection is that bandwidth becomes relatively independent of closed-loop gain over a reasonable range. For this circuit, the full-power bandwidth remains at 1 MHz for gains ranging from 1 to about 20 . The loop is quite stable, and the $15-\mathrm{pF}$ value at IC_{2} 's input provides good damping over a wide range of gains. The LT1010 buffers limit bandwidth in this circuit.

Discrete stage eliminates IC buffers

In the Fig 8 circuit, discrete stages replace the LT1010s to provide a dramatic speed improvement. Although this arrangement is substantially more complex, it realizes an amplifier of extraordinarily wide

Fig 7-This noninverting amplifier circuit employs current-mode feedback, which allows it to offer a 1-MHz full-power bandwidth for gains ranging from 1 to about 20 .

Fig 8-Discrete transistors replace the LT1010 buffers in this variation (a) of the circuit shown in Fig 7. In response to a pulse input, a $\pm 12 V$ pulse output exhibits only about 6 nsec of delay (b).

> Improvement in speed and offset specs constitutes the most common reason for employing composite techniques, but circuits excelling in other areas are also possible.
bandwidth. This composite design comprises three amplifiers: the discrete wideband stage, a quiescent current-control amplifier, and an offset servo. Q_{1} through Q_{4} replace $\operatorname{Fig} 7$'s IC_{1}, although a complementary voltage gain is taken at the collectors of Q_{3} and Q_{4}. Q_{5} and Q_{6} provide additional gain, as do Q_{1} and Q_{2} in $F i g$ 7's circuit. Q_{7} through Q_{10} form the output-buffer stage.

The feedback scheme is identical to Fig 7's, with summing action occurring at the $Q_{3}-Q_{4}$ emitter connection. To obtain the maximum bandwidth, the circuit must maintain a high quiescent current. Without closed-loop control, the circuit would quickly go into thermal runaway and destroy itself. $\mathrm{IC}_{1 \mathrm{~A}}$ provides the required servo control of the quiescent current by sampling a resistively divided version of the voltage across Q_{5} 's emitter resistor and comparing it to a reference derived from the power supply. $\mathrm{IC}_{1 \mathrm{~A}}$'s output biases Q_{4}, completing a loop that forces fixed current
through Q_{5}. This action effectively controls overall quiescent current in the discrete stage.

Simultaneously, $\mathrm{IC}_{1 \mathrm{~B}}$ corrects for offset by forcing Q's base to equalize the dc input and output values at the discrete stage. Because the closed-loop gain is set at 10 (by the 470Ω and 51Ω resistors), $\mathrm{IC}_{1 \mathrm{~B}}$ samples the output via the $10: 1$ divider. Both $\mathrm{IC}_{1 A}$ and $\mathrm{IC}_{1 \mathrm{~B}}$ have local roll-off, attenuating their response to high frequencies. Casual consideration of $\mathrm{IC}_{1 A}$'s and $\mathrm{IC}_{1 B}$'s operation might raise concern about interaction, but detailed analysis shows that the offset and quiescent-current loops do not influence each other's operation.

-3-dB bandwidth extends beyond 110 MHz

When this circuit is constructed using high-frequency layout techniques and a ground plane, the performance is quite impressive. For gains ranging from 1 to 20, the

Fig 9—Composite amplifiers aren't limited to combinations of low-offset and high-speed stages. This circuit (a) offers low noise performance (b) as well as low drift.

You can build a circuit that uses a composite of paralleled buffers to create a simple high-current stage.
full-power bandwidth remains at 25 MHz , and the $-3-\mathrm{dB}$ point extends beyond 110 MHz . The slew rate exceeds $3000 \mathrm{~V} / \mu$ sec. The use of RF transistors can improve these specs, although the transistors shown are inexpensive. Fig 8 b shows the circuit's $\pm 12 \mathrm{~V}$ output (trace B) in response to a pulse input (trace A) for a circuit gain of 10 . The delay is about 6 nsec ; the rise time is limited by the input pulse generator. The $10-\mathrm{pF}$ trimmer at the $Q_{5}-Q_{6}$ connection optimizes damping.
To use this circuit, adjust the I_{Q} level to 80 mA immediately after turn-on. Next, set $\mathrm{IC}_{1 \mathrm{~B}}$'s input resistor divider to a ratio appropriate to the closed-loop circuit gain. Finally, adjust the $10-\mathrm{pF}$ trimmer for the best response. Note that, in the interest of achieving high speeds, this circuit has no output protection.

Composites cut drift and noise

Although improvement in speed and offset specs constitutes the most common reason for employing composite techniques, you can also build composite
circuits that excel in other areas. For example, Fig 9 shows a combination of a low-drift chopper-stabilized amplifier and an ultralow-noise bipolar amplifier. In the circuit, the LTC1052 measures the dc error at the LT1028's input terminals and biases its offset pins to force the offset to a few microvolts. The IN758 zener diodes allow the LTC1052 to function from $\pm 15 \mathrm{~V}$ rails. The offset-pin biasing at the LT1028 is arranged so that the LTC1052 will always be able to find a servo point. The $0.01-\mu \mathrm{F}$ capacitor rolls off the LTC1052 at a low frequency, and the LT1028 handles the high-frequency signals. The combined characteristics of the amplifiers yield the following performance:

- Offset voltage $=5 \mu \mathrm{~V}$ max
- Offset drift $=50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ max
- Noise $=1.1 \mathrm{nV} / \sqrt{\mathrm{Hz}} \max$.

Fig 9b plots the noise amplitude over time within a 0.1to $10-\mathrm{Hz}$ bandwidth.

Fig 10 uses multiple LT1028 low-noise amplifiers to implement a statistical noise-reduction technique. The

Fig 10—This multiple-amplifier design makes use of a statistical technique to reduce noise. The decrease in noise is proportional to the \sqrt{N}, where N is the number of devices in parallel.

NOW GET SCOPE, COUNTER AND DMM INPUT ÁLL AT ONCE THROUGH ONE PROBE!

Gated frequency measurement. B sweep triggering during the intensified portion of the A sweep Intensified portion frequency is measured with the counter/timer/ DMM.

Delay time measurement. Delay time from the start of A sweep to the start of the B sweep is measured with crystal accuracy.

Channel 1 dc volts measurement. The average dc component of a waveform is measured directly through channel 1 with direct digital fluorescent readout.

The Tek 2236 combines 100 MHz , dual timebase scope capability with counter/timer/DMM functions integrated into its vertical, horizontal and trigger systems. For the same effort it takes to display a waveform you can obtain digital readout of frequency, period, width, totalized events, delay time and Δ-time to accuracies of 0.001%.
The same probe is used to provide input for the CRT display and the digital measurement system, resulting in easy set-up, greater measurement confidence and reduced circuit loading. Probe tip volts can also be measured through the Ch 1 input.
Precision measurements at the touch of a button.
Auto-ranging frequency, period, width and gated measurements are push-button-simple. And the 2236 offers an independent floating 5000 count, auto-ranging multimeter with side inputs for DC voltage mea-

surements to 0.1\%. A built-in, auto-ranging ohmmeter provides resistance measurements from 0.01Ω to $2 G \Omega$-as well as audible continuity. Automatic diode/junction detection and operator prompts serve to simplify set-up and enhance confidence in your measurements.

The 2236: scope, counter, timer, DMM plus a 3-year warranty —all for just \$2,650.

Bandwidth	100 MHz
No of Channels	$2+$ Trig. View
Max. Sweep Speed	$5 \mathrm{~ns} / \mathrm{div}$
Digital Readout Features	Direct Ch 1 Voltage Meas. 0.5\% DC; 2.0\% AC RMS Resistance: $.01 \Omega$ to $200 \mathrm{Meg} \Omega$ Continuity/Temp: Audible/C응 ${ }^{\circ} \mathrm{F}^{\circ}$ Totalizing Counter: -1 counts to $8,000,000$ Direct Freq. Meas: 100 MHz to 0.001% acc. Period, Width Meas: 10 ns with 10 ps max. resolution
Timing Meas. Accuracy	.001\% (delay and Δ-time with readout)
Trigger Modes	P-P Auto, Norm, TV Field, TV Line, Single Sweep
Weight	7.3 kg (16.2 lb)
Price	\$2650
Warranty	3 -year including CRT (plus optional service plans to 5 years)

Contact your nearest distributor or call Tek toll-free. Technical personnel on our direct-line will answer your questions and expedite delivery. Orders include probes, 30-day free trial and service worldwide.

Call Tek direct:

1-800-433-2323 for video tape or literature, 1-800-426-2200 for application assistance or ordering information.
In Oregon, call collect: 1-627-2200

Fig 11-Paralleled LT1010 buffers create a simple high-current stage. You can parallel any number of LT1010s as long as you take into account the increased dissipation within individual units that results from mismatches in output resistance and offset voltage.
circuit is based on the fact that noise changes in inverse proportion to the $\sqrt{\mathrm{N}}$, where N is the number of devices in parallel. For example, for nine amplifiers in parallel, the noise would decrease by a factor of three, to about $0.33 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz . A potential difficulty is that, with such a configuration, the input-current noise increases with $\sqrt{\mathrm{N}}$.

Paralleled buffers increase drive

A final circuit, shown in Fig 11, uses a composite of paralleled LT1010 buffers to create a simple, highcurrent stage. Parallel operation provides reduced output impedance, more drive capability, and improved frequency response under load. You can directly parallel any number of LT1010s as long as you take into account the increased dissipation in individual units caused by mismatches of output resistance and offset voltage.

When the inputs and outputs of two buffers are connected together, a current ($\Delta \mathrm{I}_{\text {out }}$) flows between the outputs:

$$
\Delta \mathrm{I}_{\mathrm{OUT}}=\frac{\mathrm{V}_{\text {OS } 1}-\mathrm{V}_{\text {oS } 2}}{\mathrm{R}_{\text {OUT } 1}+\mathrm{R}_{\text {OUT } 2}},
$$

Parallel connection might require some increased attention to heat sinking.
where $V_{\text {os }}$ and $R_{\text {out }}$ are the offset voltages and output resistances of the respective buffers.
Normally, the negative supply current of one unit will increase and that of the other unit will decrease, with the positive supply current staying the same. You may assume that the worst-case increase in standby dissipation (that is, when $\mathrm{V}_{\text {IN }}$ approaches V^{+}) is $\Delta \mathrm{I}_{\text {out }} \mathrm{V}_{\mathrm{T}}$, where V_{T} is the total supply voltage.

The offset voltage for LT1010s is specified for the worst case over a range of supply voltages, input voltage, and temperature. It would be unrealistic to use these worst-case numbers for the Fig 11 circuit, because the paralleled units are operating under identical conditions. The offset voltage specified for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ will suffice for a worst-case condition.

Use $25^{\circ} \mathrm{C}$ for worst-case calculations

The circuit divides the output load current according to the output resistance of the individual buffers. Therefore, the available output current will not quite be doubled unless the output resistances are matched. As for the offset voltage above, you should use the $25^{\circ} \mathrm{C}$ limits for worst-case calculations. Parallel operation is not thermally unstable. Should one unit get hotter than its mates, its share of the output and its standby dissipation will decrease.

As a practical matter, parallel connection requires only some increased attention to heat sinking. In some applications, a few ohms of equalization resistance in each output might be wise. Only the most demanding applications require matching, and then just of output resistance at $25^{\circ} \mathrm{C}$.

Author's biography

Jim Williams, staff scientist at Linear Technology Corp (Milpitas, CA), specializes in analog-circuit and -instrumentation design. He has served in similar capacities at National Semiconductor Corp, Arthur D Little Inc, and the Instrumentation Development Lab at MIT. Jim is a former student of psychology at Wayne State University, and he enjoys tennis, art, and collecting antique scientific instruments.

Article Interest Quotient (Circle One)
High 479 Medium 480 Low 481

Matched parameters with unmatchable performance.

B́lantec's 350 MHzz quad PNP transistor arrays.

When your designs require current sources, current mirrors, multipliers or other multiple transistor applications - Elantec's EP2015 quad PNP transistor array is right on target.

It's the only solution available that combines high speed, F_{t} of 350 MHz ; high gain, $\mathrm{H}_{\mathrm{fe}}>150$; and tight parametric matching, $\Delta V_{\text {be }}$ of 1 mV max-all crucial to design predictability. And the single chip configuration assures excellent thermal tracking, high density and easy handling.

The EP2015 is the first monolithic quad array with matched PNP transistors that are dielectrically isolated (DI) from one another by a layer of glass. This results in low collector-to-substrate capacitance that allows high speed performance and complete DC isolation. In addition, SCR effects have been removed and crosstalk virtually eliminated compared to junction isolated arrays. And voltage breakdown ($\mathrm{BV}_{\text {ceo }}$) is 40 V minimum.

The EP2015 is pin compatible with the TPQ3906 and MPQ3906 and available in 14 pin plastic and CERDIP, as well as in die form for use in hybrid applications. With prices as low as
$\$ 1.40$ in quantities of 100 . Military and commercial versions are both available. And a complementary NPN array, the EN2016, is coming soon and will be followed by other array products.

We aim to please. And to prove it we offer the industry's only two-for-one guarantee on all our devices.

To find out more about our arrow-dynamic EP2015 quad PNP transistor array - contact Elantec. Where élan is more than just a name. 1996 Tarob Court, Milpitas, CA, (800) 821-7429. In California, (408) 945-1323.

Now theres a 96MB drive with something extra:

Seagate quality.
If you're putting together multiuser or other high-end systems, Seagate has the manufacturing experience to deliver dependable, high-capacity $51 / 4^{\prime \prime}$ drives whether you need 10 or 10,000 .

Through precision production, our ST4096 hard dise drive provides 80 MB of formatted capacity and stands up to rugged industrial environments as well as dataintensive office use.

For frequent and rapid data retrieval, the ST4096 has 28 ms average access time and 78,336 bytes per cylinder. Integration is handled through a standard ST412 interface, and a linear voice coil actuator ensures precise recording performance.

Each drive is built with the same skill and reliability that have made Seagate the world's leading supplier of $51 / 4 / 4$ hard dise drives. People who demand performance have bought more than 4 million of our drives for small computer applications.

If you want Seagate quality in a high-capacity drive, call Hamilton/Avnet at 1-800-4-HAMILTON. Or call Seagate at 800-468-DISC. In California, 800-468-DISK.

EDIF format brings uniformity to CAE/CAD data

The existence of a standard data format would help design engineers transfer data easily between CAE/ CAD systems, or to and from a device manufacturer. The Electronic Design Interchange Format (EDIF) proposes to be such a standard. This article, the first of a series, presents the basic EDIF syntax and structure. Subsequent articles will take you through the creation of EDIF libraries, test patterns, and interfaces.

Esther Marx, Hart Switzer, and Mike Waters, Motorola Inc

The Electronic Design Interchange Format (EDIF) is a public-domain data format that presents and orders schematics, symbolic and physical layouts, interconnections, and textual information pertaining to the design of digital and analog circuits. By using a standard data format like EDIF, you can transfer design data among incompatible CAE/CAD systems. You can also receive designs from and transfer data to ASIC foundries and pc-board fabricators.
Assuming the popularity of EDIF gains momentum, it can prevent a CAE vendor from locking you into its system; using EDIF, you can transfer your database to any CAE/CAD system that accepts this format. ASIC manufacturers will be able to use EDIF to supply libraries of their components to a variety of CAE packages.
The format lets you transfer all levels of electronicdesign information. As Fig 1 shows, EDIF is the only electronic-design format that can transfer information about libraries, schematic capture, behavior, functional
and logical structure, circuits, geometric layout, and test definition, generation, and simulation.
EDIF allows you to describe library and cell organizations, cell interfaces, cell details, and processing technologies. The cell-interface description includes logic symbols, ports, parameters, boundaries, port-toport timing, feedthroughs, and functional-test patterns, and it tells you whether you can permute logical ports. The cell-detail description includes net lists, schematic diagrams, geometric layouts, gate arrays, logic models, symbolic layouts, and simulation parameters. The processing-technology description includes layer definitions, device-size scaling information, and simulation values.
To use EDIF, you must understand its structure and syntax. You can't execute EDIF as you would a pro-

Fig 1-Although CAE/CAD vendors have developed a number of data formats, only EDIF lets you transfer every aspect of a design.

EDIF provides a standard format that lets you transfer all levels of electronic-design information.

Fig 2-The hierarchical structure of EDIF reflects the natural structure of design data, from the cell library down to the devices and interconnections within each cell.
gram. It is neither a programming language nor a database system. An EDIF file is a character stream.

The hierarchy of EDIF files is based on the structure of the Lisp programming language. To write EDIF files, you don't need to be a Lisp programmer, but you do need to understand the structure of EDIF.

EDIF, like Lisp, has a tree-like structure. The fundamental objects in an EDIF file are called atoms. Groups of zero or more atoms form lists, which are separated by parentheses. Groups of lists form high-level lists, which ultimately form a file. An EDIF file, then, is a list that comprises several sublists. For example, the list (A, (B,C,B),(),C) contains four elements (that is, atoms and sublists): the atom A ; the list ($\mathrm{B}, \mathrm{C}, \mathrm{B}$); an empty list; and the atom C.

To access and manipulate an EDIF file, you must develop a list handler. Depending on your application, you need a reader, a writer, or both. The reader must be able to access and retrieve lists. The writer must include such list-building features as creation, insertion, and concatenation.

Any language can handle EDIF files

You can use the list-processing features of Lisp to create and to gain access to data in an EDIF file. Remember, however, that even though EDIF has a Lisp-like structure, any programming language can manipulate EDIF files. Even if you use Lisp, you need only the data-manipulation functions; you don't carry out any computations.

The recursion features of computer languages like

Lisp, C, and Pascal make these languages particularly suitable for developing EDIF software. However, you can write list handlers in a language that lacks recursive capabilities. A Fortran G program, for example, can read and write EDIF files.

The first element of any EDIF list is a keyword, which functions as an atom in an EDIF list, along with other EDIF-specific words and your own data. Fig 2 shows how these keywords define the hierarchy of an EDIF file.

The topmost level of an EDIF file ("EDIF" in the figure) simply identifies the file. The next level consists of four sections. The keywords that describe these sections are "status," "design," "library," and "userdata."

The status section controls your use of a file. This section includes such information as the name of the person who created the data, the name of the program that translates the data, the site where the data was created, the program version, and the version number of the data. The status section is particularly important when you are working with libraries that you didn't create, where you need to keep track of new revisions as simply as possible.

The design section is the starting point of an EDIF description. This section provides a pointer to the initial cell or design within a particular library. The library section consists of one technology section and one or more cell sections. Because this section requires only one entry for a characteristic that is common to all the cells in a library, it uses less disk space than a flat library, which repeats the common characteristic in every cell description. The userdata section lets you add extensions to the standard EDIF specification. You can also use this section to experiment with forms that will appear in later releases of EDIF.

The most important part of an EDIF file is the library section, which contains cell descriptions. A cell in a library can contain zero or more "views," and each view describes a different aspect of the cell. EDIF currently offers seven types of view, called "masklayout," "schematic," "symbolic," "netlist," "behavior," "document," and "stranger."

The masklayout view describes such physical data as mask layers and colors for plots. This view can, for example, contain descriptions of geometric figures for mask layouts. In addition to EDIF, the masklayout view accepts the public-domain California Intermediate Format (CIF).

The schematic view describes logic diagrams. This
view defines interconnections and logical elements. The symbolic view describes symbolic layouts for placing and routing a design. You can specify such data as protection frames and layout interconnections.

The netlist view lists interconnections among the components of a design. In EDIF, net lists are net oriented. In a net-oriented file, each net contains the parts that are attached to that net. In contrast, a part-oriented Spice file lists a part and then gives the nets that are connected to that part. Fortunately, the conversion between part-oriented and net-oriented files is easy and fast.

The behavior view provides basic models of simulator primitives. This view also describes cells in terms of their logic values. The behavioral descriptions let you define logical cells such as inverters and latches. The behavior view also includes a list of the logic states that you are using. For example, to use the behavior view, you need to specify how your design arbitrates wired functions and the value you wish to assign to any unconnected ports.

The document view contains diagrams and text for your design. EDIF lets you add headings, illustrations, and other documents to your text. Finally, the stranger

TABLE 1-LEGAL CONSTRUCTS FOR EDIF VIEWS

INTERFACE SECTION

	NETLIST	SCHEMATIC	SYMBOLIC	MASKLAYOUT	BEHAVIOR	DOCUMENT	StRANGER
PORTIMPLEMENTATION	-	-	-	-	-		-
UNUSED	-	-	-	-	-		-
BODY	-	-	-	-	-		-
ARRAYRELATEDINFO			-	-			-
Joined	-	-	-	-	-		-
MUSTJOIN	-	-	-	-	-		-
WEAKJOINED	-	-	-	-	-		.
PERMUTABLE	-	-	-	-	-		-
DEFINE	-	-	-	-	-		-
TIMING	-	-	-	-	-		-
SIMULATE	-	-	-	-	-		-
COMMENT	-	-	-	-	-	-	-
USERDATA	-	-	-	-	-	-	-

CONTENTS SECTION

DEFINE	-	-	-	\bullet	-		\bullet
UNUSED	\bullet	\bullet	\bullet	\bullet			\bullet
GLOBAL	-	-	\bullet	\bullet			\bullet
INSTANCE	-	-	\cdots	\bullet		-	\bullet
FIGUREGROUP				\bullet			\bullet
JOINED	-	-	-	\bullet			\bullet
MUSTJOIN	\bullet	-	-	\bullet			\bullet
ANNOTATE		-	\bullet				\bullet
WIRE		\bullet	\bullet				\bullet
SECTION						-	\bullet
CRITICALSIGNAL	-	-	\bullet				-
REQUIRED	\bullet	\bullet	\bullet				\bullet
MEASURED	\bullet	\bullet	\bullet				\bullet
LOGICMODEL					-		-
COMMENT	\bullet	\bullet	\cdots	\bullet	\bullet	-	-
USERDATA	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-

Fig 3-Even describing a component as simple as this 4-input OR/NOR macrocell isn't easy. Listing 3 is only part of the EDIF listing that describes this cell.
view handles cells that don't fit into the current EDIF specification. You can transfer a stranger view file to another EDIF user only if you make prior arrangements with that user.

At the cell level, cell views relate to one another by means of "instances" or "viewmaps." Instances associate several cells or cell views that have something in common. Listing 1 shows how to use an instance to express the relationship between a symbolic view and a masklayout view (the listings begin on page 157). A viewmap expresses the relationships among objects of the same type in different views of a cell.

In a viewmap, you can use "portmaps" and "instancemaps." A portmap lets you associate ports in different cell views. The association can be a one-to-one or a one-to-many relationship. An instancemap identifies instances in different views that describe the same object. Listing 2 shows the use of a viewmap to describe the relationship between port A in a schematic view and ports A top_of cell and A bottom of cell in a symbolic view.

Maintain several versions of a cell

Each view has its own name, and you can create several versions of a view. For example, you can create separate military and industrial specification versions of a cell. Each view also contains "interface" and "contents" sections. The interface describes the external characteristics of a cell. It details, for example, which ports of a cell are connected within the cell and which ports are designated as interchangeable. The contents section of each cell view simply tells what devices and connections are in the cell.

You must use several keywords to define the interface and the contents of each cell. However, not all of these keywords are legal for every view type. Table 1 lists the
keywords that are legal in the interface and contents sections of each EDIF view type.

Using these EDIF keywords, you can describe discrete devices or components in ASIC libraries. For example, you can use EDIF to create a model of the M201 bipolar 4-input OR/NOR macrocell in Fig 3.

Listing 3 lists a part of the macrocell's EDIF file. (Ellipses mark missing portions of the file.) This file describes the schematic view for the cell. An interface section defines the external symbol, and a contents section describes the internal behavior of the macrocell. The file also includes a status section, which gives the originator and the time of origination of the cell.

The remaining articles in this series will show you how to create component libraries, how to create and transfer test patterns, and how to develop EDIF interfaces for your own CAD operation. In the meantime, if you want more information about EDIF or copies of the specification, contact the EDIF User Group, 2222 S Dobson Rd, Bldg 5, Mesa, AZ 85202.

EDN

Authors' biographies

Esther Marx is a senior software engineer in Motorola Semiconductor Product Sector's ASIC Division (Mesa, $A Z)$. She received an MS from George Washington University and a BA from Oberlin College. Before joining Motorola, Esther served five years in the Air Force. She enjoys writing science fiction and collecting Star Trek memorabilia.

Hart Switzer is a software engineer with Motorola Semiconductor Products, where she designs and implements EDIF software. She received a BS from Stanford University. Hart enjoys gardening and collecting antiques.

Mike Waters is a principal engineer and EDIF project manager at Motorola Semiconductor Products. He received a BS in computer science from Regent's College in New York. Mike likes to exchange ideas with other EDN readers via his ham radio (license $A A 4 M W$) or his amateur packet radio.

Article Interest Quotient (Circle One) High 473 Medium 474 Low 475

LISTING 1—EDIF INSTANCE

(CELL EXAMPLE_CELL
(VIEW MASKLAYOUT EXAMPLE1
(COMMENT "RELATING TWO VIEWS TOGETHER'")))
(CELL EXAMPLE_CELL_2
(VIEW SYMBOLIC EXAMPLE2 (COMMENT "INSTANTIATING MASKLAYOUT VIEW IN CELL EXAMPLE__CELL_1") (CONTENTS
(INSTANCE EXAMPLE_CELL_1 EXAMPLE1 ID1))))
LISTING 2-EDIF VIEW MAP
(CELL EXAMPLE_CELL
(VIEWMAP
(PORTMAP
(QUALIFY SYMBOLICLAYOUT A _TOP__OF__CELL)
(QUALIFY SYMBOLICLAYOUT A__BOTTOM__OF__CELL)
(QUALIFY SCHEMATIC__REP A)))
(VIEW SCHEMATIC SCHEMATIC__REP
(INTERFACE
(DEFINE INPUT PORT A)))
(VIEW SYMBOLIC SYMBOLICLAYOUT (INTERFACE
(DEFINE INPUT PORT
(MULTIPLE A TOP_OF__CELL A __BOTTOM__OF__CELL))
(PORTIMPLEMENTATION A_TOP__OF__CELL
(FIGUREGROUP METAL
(RECTANGLE
(POINT 10 11)
(POINT 11 12))))
(PORTIMPLEMENTATION A_BOTTOM__OF__CELL
(FIGUREGROUP METAL
(RECTANGLE
(POINT 100)
(POINT 11 1))))
(JOINED A__TOP__OF__CELL A __BOTTOM__OF__CELL))))
LISTING 3-EDIF FILE FOR M201 MACROCELL
(EDIF M2500__SYMBOL_LIBRARY
(STATUS (EDIFVERSION 100)(EDIFLEVEL 0)
(WRITTEN (TIMESTAMP 19864142315 32)))
(LIBRARY M2500__ECL
(TECHNOLOGY M2500_ECL
(NUMBERDEFINITION ENGLISH (SCALE DISTANCE 1 (E $1-4)$))
(COMMENT "EDIF UNIT IS ONE TENTH OF A MIL")
(NUMBERDEFINITION SI
(USERDATA POWERDEFINITION (SCALE POWER 1 (E 1 - 3))))
(COMMENT "EDIF UNIT IS ONE MILLIWATT'’))
(CELL M201
(STATUS (EDIFVERSION 100)(EDIFLEVEL 0)
(WRITTEN (TIMESTAMP 1986411154954 46)
(ACCOUNTING PROGRAM "SYM2EDIF V2.00')
(ACCOUNTING AUTHOR "MOTOROLA SEMI-CUSTOM"')))
(VIEW SCHEMATIC MACRO__SCHEMATIC
(INTERFACE
(USERDATA PAGESIZE (POINT - 125000 - 125000)(POINT 125000 125000))
(USERDATA PINSPACING 2500)(DEFINE UNSPECIFIED PORT YD)
(PORTIMPLEMENTATION YD
(FIGUREGROUP SYMBOL__PIN (DOT (POINT 20000 0))) (USERDATA ATTRIBUTE
(PROPERTY MAMP 1
(PROPERTY DISPLAYAT (POINT 18250 500)(POINT 19500 1750))
(PROPERTY JUSTIFY LOWERLEFT)))

```
LISTING 3—EDIF FILE FOR M201 MACROCELL
    (USERDATA ATTRIBUTE
        (PROPERTY OUTPUTTYPE "MOUT"' (PROPERTY VISIBLE FALSE)
        (PROPERTY DISPLAY AT (POINT 21250 750)(POINT 23250 1250))
        (PROPERTY JUSTIFY LOWERLEFT)))
    (USERDATA ATTRIBUTE
        (PROPERTY PINNAME "YD"
        (PROPERTY DISPLAYAT (POINT 15750 500)(POINT 18750 2000))
        (PROPERTY JUSTIFY LOWERRIGHT)))(DEFINE OUTPUT PORT YC)
        (PORTIMPLEMENTATION YC . . . )(DEFINE OUTPUT PORT YB)
        (PORTIMPLEMENTATION YB . . . )(DEFINE OUTPUT PORT YA)
        (PORTIMPLEMENTATION YA . . .)(DEFINE INPUT PORT D)
        (PORTIMPLEMENTATION D . . . )(DEFINE INPUT PORT C)
        (PORTIMPLEMENTATION C . . . )(DEFINE INPUT PORT B)
        (PORTIMPLEMENTATION B . . . )(DEFINE INPUT PORT A)
        (PORTIMPLEMENTATION A . . )
        (BODY
        (FIGUREGROUP SCHEMATIC_SYMBOL (FILLPATTERN 11 '0')
        (SHAPE
            (ARC (POINT }6750\mathrm{ 2000)(POINT }7500\mathrm{ 3750)(POINT }6750\mathrm{ 5500)))
        (PATH (POINT }6750\mathrm{ 2000)(POINT }9000\mathrm{ 2000))
        (PATH (POINT 9000 5500)(POINT }6750\mathrm{ 5500)) . . . )
        (USERDATA BORDER MACRO BORDER
        (FIGUREGROUP BORDER (BORDERPATTERN 6 "001111')
            (RECTANGLE (POINT 2500-2500)(POINT 17500 10000))))
    (USERDATA ATTRIBUTE
        (PROPERTY COMPSIZE }
            (PROPERTY DISPLAYAT (POINT 7500 - 2000)(POINT 9000 -500))
            (PROPERTY JUSTIFY LOWERLEFT))
    (USERDATA ATTRIBUTE
        (PROPERTY MACRONAME ''M201'
            (PROPERTY DISPLAYAT (POINT 16750 - 2000)(POINT 22750 - 500))
            (PROPERTY JUSTIFY LOWERRIGHT))))\))))
```


DIONICS
65 Rushmore Street, Westbury, NY 11590 (516) 997-7474 • Outside N.Y. 1-(800) DIONICS

HIGH REL
 POWER TRANSISTORS

Teledyne Crystalonics offers a line of high reliability power transistors and darlingtons designed to meet aerospace screening and burn-in requirements assuring performance and delivery.
The transistors are processed in our new wafer fab clean rooms using the latest processing techniques and equipment with state-of-the-art process controls and monitoring.
Geometries currently in production cover NPN/PNP complementary transistors and darlingtons with ratings from 2 to 50 Amps and 40 to 500 Volts. Some standard types are 2N3719, 2N3720, 2N3766, 2N3767, 2N3867, 2N3868, 2N5329, 2N5330, 2N5678, 2N6032, 2N6033, 2N6274 to 2N6287, 2N6303, 2N6350 to 2N6353, 2N6377 to 2N6379, CMJ10004 and C'MJ10005.

FTTELEDYNE CRYSTALONICS

147 Sherman Street, Cambridge, MA 02140 Tel (617) 491-1670, TWX 710-320-1196

For more confidence in your scope measurements...

Explore HP
 Digitizing Oscilloscopes.

Digitizing technology provides a highly accurate display of your signal.

Unlike their conventional analog counterparts, digitizing oscilloscopes are quantitative measurement instruments that capture and quantize input signal information. This gives a more accurate picture of a signal than an analog scope's trace. While analog scopes provide a good qualitative look at signal behavior, digitizing scopes do more . . . letting you pinpoint causes of the behavior and more precisely measure and analyze captured information.

Display accuracy comes of age.

HP designed the HP 54000 series digitizing oscilloscopes for greatest possible accuracy of displayed information. So you can use them with confidence, even in measurement reference applications. That's because nonlinearity, distortion, drift, and jitter common to analog scopes aren't a problem with our digitizing scopes. Neither is blooming or fading of traces. What you see on the display is the clearest, most accurate representation of your signal.

Elusive glitches easy to find.

Finding infrequent, fast glitches in digital circuits is tough enough. When the glitch is superimposed on normal data with a high duty cycle, it's nearly impossible. HP's new digitizing scopes solve this problem by letting you retain glitches, worst-case conditions, or metastable states on the screen indefinitely and view them
 right along with normal trace data.

Events that would be hard or impossible to find with an analog scope can be isolated and retained

[^10]
while you're away from your digitizing scope; precisely quantified; saved in memory for later analysis; or recorded on a printer or plotter.

Capture pre-trigger events.

With digitizing scopes, you can see events before as well as after the trigger. This is highly useful in finding the cause of undesired or unusual events in various types of circuits-and absolutely critical when measuring setup time on logic ICs.

Find signals buried in noise.

Digitizing scopes let you take signals from uncorrelated noise and measure them accurately. Analog scopes can sometimes reduce noise, but not without removing high-frequency information and adding phase shift. The averaging function in HP digitizing scopes won't distort the signal, or remove or add any information.

Color enhances confidence.

The multiple-color capability found in the HP 54110D and the HP 54111D digitizing oscilloscopes makes using your displayed information easier. For instance, you can clearly distinguish channel one information from that of channel two, even when your signals overlap and both have multiple levels, jitter, and noise.

Call today for our free display confidence videotape and mini-brochure.

Explore HP digitizing oscilloscopes. Get a free VHS videotape and mini-brochure by calling 1-800-558-3077.

[^11]
FLOPPY AND WINCHESTER CONTROLS

Thought conversion . . . the right way from Cherry Semiconductor.

Since 1982, CSC has designed and shipped custom, semicustom, and standard integrated circuits for Winchester and floppy disk drive control, incorporating the most advanced technology. Continuing this commitment, Cherry Semiconductor is developing innovative new, low-noise chips for thin-film heads, read data processors, and other Winchester applications.

Winchester Disk

CS-117 Winchester Read/Write Circuit (2-, 4-, and 6-CH)
CS-101A Servo Preamp
CS-116 Low-Noise Servo Preamp
CS-3609 Micro Power Winchester 4-CH Read Preamp/ Write Driver
CS-3220 Spindle Motor Controller
CS-3221 Spindle Motor Controller
CS-4002 Burst Servo Controller

Floppy Disk
CS-279 Logic Circuit and Stepper Motor Driver
CS-283 Write Control/Head Driver
CS-570 2-Channel Read/Write
CS-3470A Read Amplifier System
CS-3471 Write Control

THREE REASONS YOU SHOULD SEE A PERSONAL LOGICIAN CAE WORKSTATION DEMO:

1. You'll see the PC-AT, transformed into a full-blown CAE workstation.

Daisy's Personal Logician starts with the IBM ${ }^{\circledR}$ PC-AT ${ }^{\text {ru }}$ platform. Here's what makes that platform a superb CAE workstation:

- High resolution, high performance workstation graphics.
- Multi-window,multi-tasking UNIX ${ }^{\text {TM }}$-based DAISY-DNIX operating environment.
- Expanded memory - up to 6.5 Mb RAM, 140 Mb disk - enough capacity for large designs.
- Optional Physical Modeling, to plug actual chips into system simulations.
- The broadest range of CAE/CAD software available, including: Design Entry; Digital and Analog Simulation; Verification; Test.
- Plus these new additions: Personal Boardmaster for PCB design; Personal Gatemaster for Gate Array Design; Personal Chipmaster for Custom IC Editing.

The result: A professional CAE/CAD workstation, at prices you can afford. For system design. For ASIC design. For custom IC editing.

2. You'll see the power of transparent network access and control.

Beyond transparent access to files on the network, only the Personal Logician gives you transparent control of network resources, right from your desktop.

Just open a window, and control operations on other network resources - even hardware accelerators. That window displays-interactively - the remote process as it executes on another network resource or node.

Access and control accelerators for simulation. File server nodes for design data bases. Application nodes for layout verification. All transparently. The power of the Personal Logician gives you true CAE. A networked Personal Logician gives you the full power of CAE resources in a desktop system. By itself, a tool to accelerate the engineer. Networked, a tool to accelerate engineering teams, large or small.

Trademarks: DAISY-DNIX, Personal Boardmaster, Personal Gatemaster, Personal ChiPMASTER - Daisy Systems Corp; AT - International Business Machines; UNIX - Bell Laboratories, Inc.; VAX - Digital Equipment Corp. Registered Trademarks: IBM - International Business Machines Corp; Daisy, Personal Logician - Daisy Systems Corp.

3. Free Demonstration Video * makes seeing easy:

This videotape will show you the power of the Personal Logician. And how transparent network access and control can be. Daisy Literature Line:
1-800-556-6661, ask for Dept. D 75 1-800-824-2385, (In CA) ask for Dept. D 75

WRITE FASTER IN ANY LANGUAGE.

ASM $86,96,51$

PL/M
386, 286, 186, $86,96,51$
intel

Fortran 186,86
intel

If you develop software for any product based on an Intel microcontroller or microprocessor, including the 80386, the unique debug hooks in the Intel languages will help get the job done faster.

In fact, when used with Intel debuggers and emulators, Intel development languages can provide more debug data than any other high-level language. Debug hooks let you
symbolically debug in the same high-level language you wrote in without having to deal with machine or hex code.Which means 80.386 reads as 80.386, not 5062 D0 C5.

Because the location of both code and data are easily specified with our locator, it is easier for you to develop ROM-based firmware.
Since Intel languages
produce identical object code regardless of the host, you can write code at a PC running DOS, a VAX*/ VMS terminal, or an Intel Development System.

Pascal
${ }_{236,18,8,96}$

Software Debuggers PMON 386, Pscope 86
intel

Different

members
of the same design team can therefore choose the most effective combination of languages and systems to get the job done faster.

Intel post-sales support can also help you get the job done faster. We invented the microprocessor. We know microprocessors and languages for Intel architectures better than anyone else.

When you buy an Intel language, you have access to our customer hotline. So if you ever have a question you can talk directly to a trained

Utilities

Relocator, Linker, Librarian

AEDIT Frowammes Editor

intel

intel

applications specialist who understands our products. And can give you the right answers. Faster.

To order today, or get more information-including a free catalog of our development tools-call toll-free 1-800-87-INTEL.

The sooner you call, the faster you'll get the job done.
intlel

With a Planar light-emitting electroluminescent flat panel display, you could use the rest of this space for anything you like. Call either $503-690-1100$ or 503-690-1102, or write for a brochure PLANAR SYSTEMS, INC. 1400 N.W. Compton Drive Beaverton, Oregon 97006.

ISDN terminals simplify data transmissions

> The Integrated Services Digital Network (ISDN) digitizes voice signals to provide a complete digital link from end user to end user. The result is a common communication link-the telephone system - that provides access to all forms of communication. A recently introduced IC set can simplify the implementation of ISDN terminals.

Tony O'Toole, Advanced Micro Devices

Converting digital data to an analog signal is an inefficient and expensive proposition. The conversion often garbles the data, and because it limits transfer speed, it always increases telephone charges. The increased use of computer-based systems has compounded the problem by increasing the amount of data being transferred over long distances.
The solution to this problem is the Integrated Services Digital Network (ISDN), a technique for using phone lines to transmit digital data instead of the analog data they transmit now. The ISDN will also digitize voice signals, so that the same lines will carry voice, facsimile, data, and telex-type transmissions. Furthermore, because this technique doesn't require
you to convert your data transmission to analog signals to send it over the phone lines, your transmission will be faster. You can configure an ISDN terminal by using a recently introduced chip set that contains most of the functional blocks required for implementing the ISDN protocols.

Before designing an ISDN terminal, however, you must understand the electrical, data-interchange, and call-rate control protocols recommended by the CCITT (International Consultative Committee for Telegraphy and Telephony) for ISDN devices. These protocols will allow independently designed ISDN devices to communicate with one another.

The basic access interface is the connection point on the ISDN for user terminals. Fig 1 shows a functional model of the elements forming this interface. The S interface supports terminal connections in either a point-to-point (for maximum range) or a point-tomultipoint environment. ISDN terminal equipment (TE1) connects to the S interface to form the user's access point. Non-ISDN terminal equipment (TE2) connects to an R interface first, and then to the S interface through a terminal adapter (TA). The R interface can accommodate any communication protocol (RS-232C, X.21, etc), but the TA must convert these protocols so that they're compatible with the S interface. The network termination (NT2) converts the point-to-multipoint S interface to a point-to-point T interface.

The 2 -wire U interface can extend the range of the

> The Integrated Services Digital Network (ISDN) is a technique for using phone lines to transmit digital data instead of the analog data they transmit now.
basic access interface in a point-to-point configuration. Unfortunately, no international standard exists for implementing a U interface, so the companies that produce ISDN products each have different versions of it. The exchange termination (ET) forms the interface between the local exchange and the basic access interface. Its function depends on the architecture of individual exchanges.

In an ISDN network, the basic access information rate for terminal equipment in each transmit and receive direction is 144 k bps. Each user-designated B data channel (B1 and B2) requires 64 k bps, and the D channel uses the remaining 16 k bps to carry signaling information for B-channel call control. You can also use the D channel for a packet-switched data connection, or for maintenance purposes.

The S interface provides a 4 -wire connection between the TE and the NT2. Data transfers every $250 \mu \mathrm{sec}$ in 48-bit frames (Fig 2). The data rate in both directions is 192 k bps: 144 k bps for the B and D channels and 48 k bps for framing control, de balancing, and the D-channel access protocol.

The CCITT recommendations for terminal-to-network signaling communication are based on layered protocol levels specified by the International Standards Organization (ISO). The use of a layered protocol divides the communication operation into separate functions. Each protocol layer in a terminal performs its intended function by interacting with its peer in the network via a virtual connection (Fig 3). Sets of primitives that allow adjacent layers in the protocol to
communicate with each other maintain the virtual connections. Keeping these primitives simple ensures that boundaries between layers are well defined, and these established boundaries allow the layers to function independently.

Special considerations in terminal design

The intelligence requirement for a basic call is the major difference between a conventional phone and an ISDN terminal. The conventional phone merely translates a given key operation into a line signal. The ISDN terminal must interpret inputs, basing its interpretation on the current progress state of a given call. For example, the terminal may have to generate a message and invoke the level 2 procedure to ensure correct transfer to the exchange. To do so, it must first handle incoming messages at level 2 , use their level 3 content to provide feedback to the user, and change the current call status.

Traditional phones are line-powered devices, so they can work when local power is lost and the exchange is operating on a backup supply. It's relatively simple for the conventional phone to function on backup power, because the phone's circuitry is not very complex and its power drain is minimal. The power drain of an ISDN terminal is much higher; an ISDN terminal requires additional circuitry to digitize the voice channel and handle the signaling protocol.

Most ISDN terminals incorporate a display that provides the extensive call information (the calling number, call state, etc) that an ISDN user needs. ISDN

Fig 1-The connection point on the ISDN for user terminals is the basic access interface.
terminals must also provide the user with the ring signal and with call-progress tones that are not necessarily available from the network. Furthermore, no ringing voltage can be present on the digital interface; the terminal must provide an alert tone via a loudspeaker.

Your terminal should also allow you to alter the volume, pitch, and pattern of the tones to indicate different incoming-call conditions-internal/external call, emergency call, etc. Call-progress tones, which are normally provided by the network, may not necessarily be available either to the local exchange or to an ISDN terminal; to carry a call-progress tone, both these systems would need to have a B channel allocated. If the local exchange and terminal can carry a call-progress tone, the local exchange may specify the actual frequency and cadence of the tones, so the terminal must have software control over the tone generation.

When an ISDN network makes a call to a conventional network, the ISDN terminal may have to provide DTMF tones. Existing analog services such as home banking rely on the user to provide DTMF tones during the data-transfer phase of a call, so any ISDN terminal you build now will have to provide these DTMF tones to maintain compatibility with the conventional equipment. Providing these tones will ensure that existing user services are maintained while the communications networks make the transition to a complete digital system.

The two 64 k -bit B channels on the S interface are not dedicated to a particular function-you can use them

Fig 3-To perform its intended function, a layer in the terminal interacts with its peer in the network via a virtual connection. Sets of primitives maintain the virtual connections.
for voice or data. Therefore, the terminal must be able to route each B channel to either its voice or its data endpoint.

ICs simplify terminal design

Fig 4 illustrates an ISDN terminal design based on the Am79C30 digital subscriber controller (DSC) and the Am7936 subscriber power controller (SPC). An 80C51 microcontroller, configured in the expanded mode to accommodate an external EPROM/ROM for continued program-memory expansion, controls the terminal. The external RAM stores data, and the liquid-crystal display, keypad, and telephone handset form the user interface. The Am79C30 connects the handset to the S interface. The 80C51 accesses the Am79C30, keypad, and display as external memory; port 1 of the 80 C 51 provides display reset and keypad scanning functions. The Am79C30 is transformer coupled (in both the transmit and receive directions) to the S interface, so it provides access for all information transfer.

The Am79C30 is mapped into eight bytes of the

Fig 2-The S interface provides a 4-wire connection between the TE and the NT2. Data transfers every 250μ sec in 48-bit frames.

A look at an ISDN chip set

The Am79C30 Digital Subscriber Controller is a CMOS device that contains most of the functional blocks required by an ISDN terminal. The Line Interface Unit (LIU) connects directly to the Sinterface transmit and receive transformers and handles the level 1 protocol for framing, activation/deactivation, and D-channel access.

The Main Audio Processor (MAP) connects to two sets of audio transducers. It uses digital signal processing to perform all the normal codec filter functions, and it provides transmit and receive gain and response adjustments, as well as side-tone control. The MAP also contains two tone generators that users can configure three different ways to produce call-progress tones, a ringing tone, and multifrequency (MF) tones.

The Data Link Controller (DLC) processes the D channel as far as an intermediate stage of the LAPD protocol, performing flag insertion and deletion, zero insertion and deletion, CRC generation and checking, address recognition, and messagelength checking. The 8 -bit Microprocessor Interface (MPI), which allows external control of all the internal blocks, maintains control. The Multiplexer (MUX) enables the B channels for internal routing between the MAP, LIU, MPI, and the serial port. The port, which has a 192 k -bit capacity, can accommodate as many as three external 64 k -bit channels.

The Am7936 is a bipolar switched-mode power controller aimed specifically at ISDN applications. It functions in either galvanically isolated or nonisolated configurations to provide a programmable or fixed 5 V output from an input of 15 to 65 V . The low-power-detection circuit
allows users to select a variable minimum operating voltage. The circuit also drives an on-chip reset circuit that's suitable for terminal initialization at power up. The low-power-detection circuit also indicates the emergency power state (reverse voltage on
the S interface). To accommodate the presence of analog circuitry in the terminal, a sync input allows you to synchronize the Am7936 to the analog processing circuit, thereby reducing the effects of supply interference on signal-to-noise performance.

A CMOS device containing most of an ISDN terminal's functional blocks, the Am79C30 (a) handles the level 1 protocol. The Am7936 (b) is a bipolar switched-mode power controller aimed specifically at ISDN applications.

To keep all the data between a terminal and exchange in digital form, the terminal must digitize voice signals before they get to the exchange.

80C51's external memory space. The 80C51 accesses the Am79C30's most frequently used registers directly and uses the Am 79 C 30 's register-pointer mechanism to access the less frequently used registers. The MCLK output of the Am79C30, derived from a crystal oscillator circuit, supplies the system clock to the 80C51. In normal operation, a single interrupt connection between the Am 79 C 30 and the 80 C 51 is activated by a change of state in the D channel, in hookswitch operation, or in the S-channel protocol.

The LCD displays call-progress and user-to-user information. The 80C51 accesses the display as two bytes of external memory-one for command inputs, such as cursor control, and one as an ASCII data input. The keypad consists of a simple switch matrix that's
read via an octal buffer and scanned via a series of I/O pins on the 80 C 51 . As each I/O line is successively strobed, the 80 C 51 reads the buffer to determine whether any key is depressed.

The Am7936 SPC-a switched-mode power converter compatible with the S-interface requirements-supplies power to the terminal circuits. Here, the SPC is configured as a step-down converter that supplies a regulated 5 V output from an input of 15 to 65 V . A diode bridge ensures that the terminal will operate during emergency power conditions, under which the powerfeed polarity is reversed to deactivate nonessential equipment. Connecting the serial clock from the Am79C30 to the Sync pin of the SPC synchronizes the converter. This scheme minimizes noise caused by

Fig 4-To simplify the implementation of an ISDN terminal, you can combine the 79C30 digital subscriber controller with the Am7936 subscriber power controller. An 80C51 controls the terminal.

Before the network can transfer signaling information, it must establish the level 2 mode of operation.
power-supply ripple on the analog voice channel.
The 80C51 scans the keypad, displays information, and controls channel B in the Am79C30. It also has routines for performing the level 2 and level 3 protocols on the D channel. The 80C51's timers provide a realtime clock for scheduling the above tasks and a cadence control for tone generation.

On power up, the reset output from the Am7936 initializes the terminal. The terminal must now negotiate several logical states before it can generate calls. Under the control of the 80C51, the Line Interface Unit (LIU) in the Am79C30 connects the terminal to the interface. If no signal is present on the network side, the LIU signals an activation request by transmitting the INFO1 signal. Once the terminal detects an activation frame (INFO2), it enters the activated state and the D channel is available for data transfer.

Next, the terminal acquires or validates the Terminal Endpoint Identifier (TEI). TEIs can be hardwired into the terminal or allocated by the network. Each of the negotiation messages that the D channel transfers includes a Management Entity Identifier (MEI) header. The terminal can request a TEI value by sending an Identity Request. This request contains a message type and a 16 -bit random number. The network uses the random numbers, which are generated by a random-number-generator register (RNG) in the DSC, to evaluate simultaneous requests from multiple terminals. The network responds to the terminals by transmitting an Identity Assigned message. This message contains the original random number and the allocated TEI, which will be used for all future transactions.

After this sequence, the network can issue an Identify Check Request. This message contains no random number. However, the terminal must reply by transmitting a new random number, the identity of the the TEI it is currently using, and an Identify Check Response message. This procedure allows the network to resolve situations in which two terminals are responding to the same TEI value. The Service Access Point Indicator (SAPI) forms the other half of the level 2 address field. The SAPI defines the makeup of the required information transfer.

Before the network can transfer signaling information, it must establish the level 2 mode of operation. To achieve data security, level 2 appends a sequence number (either modulo 8 or modulo 128) to each information field it transmits. To select modulo 128 operation, the terminal sends a Set Asynchronous Balance Mode Extended (SABME) signal to the connecting level 2 inter-
face. If the interface can support modulo 128 operation, it returns an Unnumbered Acknowledgment (UA) frame to the terminal. To select modulo 8 operation, the terminal sends a Set Asynchronous Balance Mode (SABM) signal and receives a UA frame. Regardless of the operating mode, the level 2 variables are initialized, and secure data transfer can proceed.

To understand how the terminal implements the protocol to establish communication links, consider the progress of a simple voice call. You initiate a call by taking the terminal off hook. The Am79C30 detects this action and interrupts the 80C51, which interprets the off-hook as a request for service and generates a local dial tone. The 80 C 51 generates this tone by setting the required frequency register (FTG) and amplitude register (ATG) in the Am79C30's Main Audio Processor (MAP) and routing the output back to the phone handset. The dial tone is only local at this point because a B traffic channel may not be available, and the subsequent operation may be a facility that doesn't require a traffic channel.

You now use the keypad to enter the destination number. The display echoes this operation. The tone generator in the MAP provides positive feedback for the caller by sending MF tones to the handset. The call-processing routines now format a level 3 Setup message in memory. This message contains a new-call reference value, the destination number, and the bearer capability. All future messages relating to this call will contain the call reference value, thus distinguishing this call from any others. The bearer-capability information in the Setup message determines the type of data that the B channel must transfer.

The level 3 Setup message now passes to the level 2 (LAPD) processing routines as a DL-DATA primitive. To ensure reliable transmission to the next layer entity, the layer processor appends appropriate information to the message. This information includes the next $N(S)$ value (to establish message-train sequence), the current value of $N(R)$ (to update transfer handshake in the opposite direction), and the message type and address. The message now passes to level 1 for actual transmission. The memory stores the data in case an error occurs and it becomes necessary to retransmit a level 2 message.

You now program the length of the required transmit message into the transmit count register (TCR) of the data-link controller (DLC) in the Am79C30. The first byte transfers to the transmit data register (TDR), enabling transmission. Once the D channel has been

Basic ISDN operation

To understand ISDN messagetransfer techniques, consider a simple call from one terminal to another in the same exchange. A terminal initiates a call when the user takes the terminal off hook and keys in digits via a keypad. To initiate a call, level 3 in the terminal always generates a Setup message. The terminal selects a call-reference value and uses this value in all subsequent messages relating to this call between the originating terminal and the exchange.

The Setup message must contain the bearer capability-information that details the type of data to be transmitted on the traffic channel. For this sample call, a normal off-hook condition indicates a voice connection coded in A or μ law. For a data call, the Setup message would indicate the format and data rate. The keyed digits form the destination-address field. If any digits are unknown at the start of the sequence, the terminal supplies them in subsequent Information messages.

When the exchange receives the Setup message, it replies with a Setup Acknowledge, designating the traffic channel (B1 or B2) to be used for the call. The exchange then routes the call and designates a call reference value for all message transfers to and from the destination terminal. Next, the exchange sends a Setup message to the destination terminal. This message contains the originating bearer capabilities, the trafficchannel information, and the
destination and origination addresses. The destination address is not redundant information, because a terminal may have several addresses in a network, or the exchange may have rerouted the call.
The destination terminal checks the validity of the bearer capability and replies with an Alerting message if the bearer capability is valid. The destination terminal then alerts its user to the incoming call by generating a ring signal. When the destination terminal goes off hook, it sends a Connect message through the exchange to the originating terminal. The call is now in the voice-transfer state.
Either user can terminate the
call by putting the terminal on hook. This action generates a Disconnect message, which breaks down the call in the exchange and then gets passed to the other terminal. Note that a normal termination, such as this, is not the only cause of a Disconnect. A Disconnect could also be the result of network congestion, incompatible bearer capabilities, or other problems.

After the Disconnect, the Release and Release Complete sequence completes the callteardown procedure between each terminal and the exchange. The exchange then releases the call reference values associated with the call on both data links.

For a call within the same exchange, an ISDN terminal initiates a call when the user takes it off hook and keys in digits via a keypad.

Abstract

Once the exchange signals that it has received a suitable level 2 response, the terminal's memory can discard the transmitted message.

idle for the appropriate number of bits, transmission starts, and the DLC generates an opening flag. Transmission then continues; the Am 79 C 30 generates interrupts to the 80 C 51 as new bytes are required. When the required number of bytes has been transmitted, the DLC appends a cyclic redundancy check (CRC) and a closing flag to the outgoing message.
If the DLC does not receive the appropriate number of bytes, it generates a transmit-underrun error and does not append a CRC to the frame. If a conflict should occur on the D channel, the E channel echoes the data that has been accepted. The LIU in the Am79C30 monitors the E channel. If it detects an error, it aborts transmission and generates an interrupt for the 80 C 51 . When the D channel is free, the transmit process must begin again from the start of the message. Because the E channel's abort mechanism produces an immediate response, one terminal's data will always transfer correctly when a conflict occurs.

Once the exchange signals that it has received a suitable level 2 response, the terminal's memory can discard the transmitted message. If the exchange doesn't signal a response, the terminal retransmits the message after a level 2 timeout. When a message from the D channel arrives at the DLC, the DLC detects any flags present and checks the SAPI and TEI addresses to determine whether they apply to this terminal. Once there's an address match, the Am79C30 generates an interrupt for the 80 C 51 , indicating the start of a new message. The 80 C 51 then assembles the message in terminal RAM. If the message should be longer than the one programmed into the maximum-receive-length register (MCR), the DSC generates an error interrupt.

On the other hand, a correct transmission and the presence of a validated CRC generates an end-of-frame interrupt, making message available for the level 2 processing routines. The level 2 processor extracts the LAPD variables so that it can respond to any retransmission, acknowledgment, or peer-busy information. If an information field is present, the processor checks the forward sequence number, $\mathrm{N}(\mathrm{S})$. If $\mathrm{N}(\mathrm{S})$ is valid, the level 2 processor passes the information field to the level 3 processor as a DL-DATA primitive.

If the local exchange accepts the call, it sends the terminal a level 3 Setup Acknowledge (SETUP ACK) message, which designates the B channel to be used for the call. The multiplexer in the Am79C30 can now make the appropriate connection, on the Line Interface Unit (LIU), between the MAP and the selected B channel.

The local exchange also forwards a SETUP message
to the destination terminal. If the destination terminal is deactivated, the network must first activate it by sending INFO2 frames, which are level 2 parameters that must be negotiated. The level 2 parameters at each terminal don't have to be identical. Nor does the SETUP message received by the destination terminal have to match the originating message-parameters such as the selected B channel are unique to the local interface. If the originating terminal receives no response to the initial SETUP message, it will make another attempt to initiate the call.

If the destination terminal is free, it responds to the SETUP message with a Call Proceeding (CALL PRO) message. The called terminal then generates local ringing to its loudspeaker, and displays an incoming-call message that includes the number of the originating terminal. The calling terminal generates distant ringing to its handset. The local Am79C30's tone generators produce both of these ring tones.

A handset-off-hook condition at the called terminal stops the generation of the local tone and sends a Connect (CONN) message. When the originating terminal receives the CONN message, remote ring-tone generation stops; the call is now in the connect phase.
A handset-on-hook condition at either terminal ends the call. The on-hook condition generates a Disconnect (DISC) message, which in turn deletes the connection across the network. The terminals and local exchanges complete the sequence with a Release (REL) and Release Complete (REL COM) message, which terminate the entire call procedure in the terminals and local exchanges. At this point, any off-hook condition at a terminal initiates a new call, and the system enters the dial-tone state.

EDN

> Author's biography
> Anthony O'Toole, now a senior design engineer at Cirrus Logic (Milpitas, CA), was a senior product-planning engineer in the Voice Communications division of Advanced Micro Devices (Sunnyvale, CA) when he wrote this article. In this capacity, he was responsible for ISDN product planning. Tony holds a BSc degree from the University of Exeter in the United Kingdom, and he has been granted one patent.

Article Interest Quotient (Circle One) High 482 Medium 483 Low 484

Three Keys to Successful TDM or Statistical Multiplexing

Three keys! They're all you need to configure Universal Data Systems' new multiport V. 33 modem/multiplexer combination. Separate versions offer either six-channel TDM or eight-channel statistical multiplexing capability.

In either configuration, the device is trellis coded at its basic 14.4 kbps operating speed and has alternate data rates of 12 or 9.6 kbps . If your system utilizes TDM, you may also choose between asynchronous and synchronous operation and you can have V. 29 operation at 9.6 kbps .

The three-pushbutton/LCD control panel allows configuration choices (with different data rates for each channel if you desire), "soft strap" settings and easy review of both multiplexer and modem status.

The entire set-up and review process is menu-driven; the user need only answer a series of questions by pressing the appropriate YES or NO switch. When the process is complete, a

QUANTITY ONE PRICES V. 33 with six-channel V .33 with eight-channel Time Division Mux Statistical Mux \$3495
\$3995
push on the HOME switch returns the device to the communications mode.

Diagnostics on both versions of the V. 33 multiplexer/modem include local and remote digital loopback on each channel as well as local and remote analog loopback. All test features are compatible with CCITT V. 52 and V. 54 recommendations.

YES, you can now have TDM or stat mux capability in a single package with a 14.4 kbps trellis coded modem.

NO, these devices are not expensive to buy or difficult to apply.

HOME of the new V. 33 multiplexer/ modem is Universal Data Systems, 5000 Bradford Drive, Huntsville, AL 35805. Telephone 205/721-8000; Telex 752602 UDS HTV. Ask for detailed specs and quantity prices.

圆 Universal Data Systems

(A) MOTOROLA INC.

Information Systems Group

UDS modems are offered nationally by leading distributors. Call the nearest UDS office for distributor listings in your area. DISTRICT OFFICES: Apple Valley, MN, $6121432-2344 \cdot$ Atlanta, GA, 404/998-2715 • Aurora, CO, $303 / 368-9000$ • Blue Bell, PA, 215/643-2336 • Boston, MA, $617 / 875-8868 \cdot$ Columbus, OH, 614/895-3025 • East Brunswick, NJ, 201/238-1515 • Glenview, IL, 312/998-8180 • Houston, TX, 713/988-5506 • Huntsville, AL, 205/721-8000 • Issaquah, WA, 206/392-9600 • Livonia, MI, 313/522-4750 • Mesa, AZ, 602/820-6611 • Milwaukee, WI, 414/273-8743 - Mission Viejo, CA, 714/770-4555 • Mountain View, CA, 415/969-3323 • Richardson, TX, 214/680-0002 • St. Louis, MO, 314/434-4919 • Silver Spring, MD, 301/942-8558 • Tampa, FL, 813/684-0615 • Uniondale, NY, 516/222-0918 • Van Nuys, CA, 818/891-3282 • Willowdale, Ont, Can, 416/495-0008

32-BIT
 RAPID DEPLOYMENT FORCE.

Intel's new military MG80386 microprocessor is now ready for immediate deployment.
We mean right away. Right off-the-shelf. Which means you can quickly get your design
into production with all the benefits of Intel's world-class manufacturing capability.
Including our 1.5 micron CHMOS III process. The technology that provides both low power consumption and high total dose radiation tolerance (in excess of 100 K RADS Si). Allowing you to build high performance, high radiationtolerant systems that save space, weight and power.
Best of all, you get steady continuity of supply. Because CHMOS III is a proven technology that's delivered hundreds of thousands of successful products for years.
But continuity of supply is only half the story.
Consider that the MG80386 is the only 32-bit chip to provide complete hardware support for multitasking on-chip. Included in the CPU is a Memory Management Unit that provides support for virtual memory opera-
tions, optional on-chip paging and four levels of software protection.
Which makes it ideal for military applications that require a high degree of security and lightning-fast speed.
Military designers

VHSIC	MG80386
- Functional Tbroughput Rate	$3.0 \times 10^{12} \frac{\text { Gates }^{\bullet} \mathrm{Hz}}{\mathrm{CM}^{2}}$
- Radiation Tolerance (Total Dose)	$>10^{5}$ RADS (Si)
- Input Clock Frequency	32 MHz
- Chip Density	Approx: 90,000 Gates (275,000 transistors)

The MG80386 gives you a blazing 3.5 to 4 MIPS with a functional throughput that exceeds VHSIC product performance requirements.
will also appreciate all the development support available for the MG80386. Like Fortran, C and Intel's own ADA" language compiler. Which provides the most useful and most used language on easy-to-use development systems.

For more information on the MG80386, call Intel toll-free: (800) 548-4725. Or write Intel Corporation, Lit. Dept. W-324, 3065 Bowers Ave., Santa Clara, CA 95051.

And get our rapid deployment force fighting on your side.

How toget AMP reliability faster than ever: more sources than ever.

The secret behind high-quality AMP cable assemblies: control.

We make the connectors, and the cable, and the tooling, so you can count on complete compatibility wherever you buy our cable assemblies.

Now we've structured a distribution system to make sure you get whatever you need, fast-from complex, small job lots to standard assemblies by the thousands.

We've provided our advanced tooling to cable co-operatives, valueadded distributors, and custom assemblers for fast response as well as prototype help. And AMP can accommodate very high volume needs direct, or supply the machinery and components you need to do it yourself.

And still get AMP quality throughout.

For full information call (717) 780-4400 and ask for the AMP Cable Assemblies Desk. Or write AMP Incorporated, Harrisburg, PA 17105-3608.

AMA - Interconnecting ideas

Multi-sourced cable assemblies-including MIL-Spec versions-are available in a wide range of styles and configurations.

Flat shielded cable assemblies offer EMI protection. Available with a variety of connector types, including . $100^{\prime \prime}$ grid AMPLATCH connectors and subminiature D styles.

PMI Presents: PRECISION PERFORMANCE AT $20 \mu \mathrm{~A}$ MAX.

$$
\begin{array}{rl}
\\
V \text { SV }= & +1.6 \mathrm{~V} \text { TO }+36 \mathrm{~V} \\
\text { OR } \pm 0.8 \mathrm{~V} T O \pm 18 \mathrm{~V} \\
V O S & 150 \mu \mathrm{~V} \text { MAX } \\
\text { VCVOS }=2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { MAX }
\end{array}
$$

Introducing PMI's micropower OP-90, featuring OP-07 precision at $1 / 200$ the power.
Input and output ranges include ground, allowing zero-in, zero-out capability in single-supply applications.
The OP-90 delivers 5 mA , but draws only $20 \mu \mathrm{~A}$ quiescent current. Eliminate power-hungry op amps and still get the DC performance you require.

Flexible PGA designs require few components

> Programmable-gain amplifiers (PGAs) add great flexibility to data-acquisition systems yet require only a few components. You can use PGAs in your circuits to amplify low-level signals precisely, to reduce common-mode signals, to limit signal bandwidth, and to minimize amplifer offset effects.

Akavia Kaniel, Intech Inc

Because the dynamic range of signals from many transducers is so large (say, 80 dB), a data-acquisition system with a 12 -bit resolution (a $72-\mathrm{dB}$ dynamic range) can't accurately measure all input levels. To overcome the mismatch between the output voltages of a sensor and the input range of a data-acquisition system, you can use a programmable-gain amplifier, or PGA. The PGA accurately amplifies the transducer's low-level output signals so that a modest A/D converter can measure them with reasonable accuracy. A PGA with TTL- or CMOS-compatible control inputs lets you use your computer system to select the gain that the
data-acquisition system applies to input signals before they reach the ADC. Thus, the PGA scales all the incoming signals-under software control-so that they fall within the useful range of the ADC.

Keep it simple

You can choose from several types of single-ended PGAs (Fig 1), each of which presents its own design tradeoffs. For example, the first circuit (Fig 1a) lets you select one of eight gain settings that range from $1 \times$ to $128 \times$ in integer powers of $2\left(2^{0}, 2^{1}, 2^{2}, 2^{3}\right.$, and so on). The circuit requires a single amplifier, an 8-to-1 analog multiplexer, and eight resistors. Because the circuit contains preset resistance values, the multiplexer can change only the ratio of the resistance between the op amp's output and its inverting input (R_{1}) to the resistance between its inverting input and ground $\left(\mathrm{R}_{2}\right)$. The gain settings are not continuously variable.
To calculate a gain value, you determine the resistance in the op amp's feedback path $\left(\mathrm{R}_{1}\right)$ and the resistance between the inverting input and ground (R_{2}). The formula $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {IN }}\left[1+\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\right]$ then yields the gain for the PGA. You can also perform the reverse calculation to determine a resistance ratio for a particular gain. In the example in Fig 1a, R_{1} equals $112 \mathrm{k} \Omega$ and R_{2} equals $16 \mathrm{k} \Omega$. The gain for the PGA is 8 , therefore. Because the analog multiplexer's switch is in series with the op amp's high-impedance noninverting input,

Fig 1-Single-ended programmable-gain amplifiers (PGAs) require an op amp, an analog multiplexer, and resistors. The simplest PGA (a) supplies a feedback resistor and a resistor between the amplifier's output and ground. A second circuit (b) supplies individual resistor networks that minimize the effects of leakage currents in the multiplexer. An $R-2 R$ resistor ladder (c) minimizes both resistor errors and temperature-tracking effects.

Fig 2-A differential PGA amplifies low-level signals while rejecting common-mode voltage and noise. You have a choice between two circuits that perform the same function. The first circuit (a) requires more components than does the second (b).
the switch's impedance doesn't affect the PGA's net gain.

The leakage current through each switch can induce significant errors in the amplifier's output, however. Such errors arise because the leakage path through an open switch completes a high-impedance connection to ground through the resistor network. A second singleended PGA (Fig 1b) uses almost twice as many resistors as the first PGA circuit does. However, the overall circuit is less affected by the leakage current in the multiplexer's switches. In the second circuit, the leakage takes place through a much lower impedance, namely the $1-\mathrm{k} \Omega$ resistor in each pair that goes to ground. Leakage current in the analog multiplexer is approximately 300 pA at room temperature.

Both circuits suffer from having high resistance ratios ($127 \mathrm{k}: 1 \mathrm{k}$, or $127: 1$) in their gain-determining networks. Higher gain settings would require an even larger range of resistor values-for example, 1024:1. You could use discrete resistors, but poor temperature tracking and parasitic impedances become problems in gain-determining networks that employ high resistance ratios. Such large resistance ratios are impractical for thin- or thick-film networks in hybrid circuits.

A third single-ended PGA (Fig 1c) also requires a 14-resistor network. However, instead of specifying a wide range of resistance values, you can construct a ladder network from a set of resistors that maintain a $2: 1$ resistance ratio. The use of resistors with R and $2 R$ values in a ladder configuration improves the tempera-ture-tracking characteristics of the network. Such precision resistor networks are readily available and are

"This isnt going to be easy."

"And because we bad the edge from the very beginning."

> "The important ones never are. But that's why we won the bid because we can make the tough decisions."
"You mean the Military Series 32000?"
"Who else offers a true 32-bit microprocessor supporting Ada over the full temp range with rad bardening?"
"No one. That's why National was the easiest part of the decision."

Military Series 32000. When theres more at stake than the fate of your product.

The Military Series 32000^{*} is the only complete 32-bit military solution. It offers you a rad-hard, JAN, high-performance engine with a full complement of design tools and highlevel language support.

Each CPU in the family is 100% compatible with all the other members, so you can migrate your designs to higher performance levels while protecting your software investment.

Each CPU also supports separate floating-point, timing-control, and interrupt-control operations, so you can design exactly the type of advanced system you need.

In today's defense environment, you need the full range of capabilities offered by the Military Series 32000:

Rad-Hard. Sandia National Laboratories selected the Series 32000 over all other 32-bit microprocessors to develop a special CMOS 10^{6} radiationhardened cluster.

Ada. ${ }^{\text {m }}$ The Verdix Ada Development System (VADS ${ }^{m}$) supports the Series 32000 , making it a complete hardware and software package for military applications.

883C. The Series 32000 microprocessor family is designed to comply with MIL-STD-883 Rev. C, including the full temp range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with low-power advanced CMOS fabrication. And, for early prototyping, National has implemented its unique Military Screening Program (MSP), a rigorous new-device testing program that ensures you of fast delivery of high-pedigree devices.
38510. The Series 32000 is also the only 32-bit microprocessor to be selected under a contract from RADC to Boeing Aerospace for characterization of MIL-M-38510 JAN slash sheets.

Which means that every 32-bit microprocessor intended for military applications will have to measure up to the Series 32000 .

So why trust your design to a microprocessor that has to meet the standard - rather than the one that has set the standard?

You can't afford to settle for less than the Series 32000 . Because the fate of your product - and possibly the fate of a lot more than your product - is resting on your decision.

So make the right one. Contact National Semiconductor today.
National Semiconductor
Series 32000, MS 23-200
P. 0. Box 58090

Santa Clara, CA 95052-8090

Fig 3-A constant-bandwidth PGA lets you attenuate high-frequency signals that might add aliasing errors to your sampled signals. The amplifier above offers gains of 10, 20, 40, or 80.
routinely fabricated for use in hybrid circuits.
In situations in which low-level transducer signals contain common-mode voltage or noise, consider using a differential-input PGA (Fig 2). For instance, you can use such a PGA with an iron constantan type-J thermocouple that generates only $95 \mu \mathrm{~V} /{ }^{\circ} \mathrm{F}$ at room temperature. Before such a low-level signal reaches your data-
acquisition system, a differential PGA helps eliminate the common-mode voltage and noise that have become part of the thermocouple output.

If you add a PGA to a data-conversion system, remember that you can recover an original signal from a sampled signal as long as the sampling rate is at least $2 f$ samples/sec and the original signal contains no frequency component above $f \mathrm{~Hz}$. If the signal contains frequency components above the f - Hz limit, you may observe aliasing errors. To eliminate aliasing errors, therefore, the PGA must attenuate signals above the $f-\mathrm{Hz}$ limit for all its gain settings. For example, if the ADC operates at 30 k samples/sec, the PGA that precedes it must maintain a constant $15-\mathrm{kHz}$ bandwidth for all gain settings (Fig 3).

You can configure a single amplifier as a constantbandwidth PGA as long as gain and bandwidth are relatively low. However, if you continue to increase a circuit's gain, you will ultimately reduce its bandwidth because the amplifier's gain-bandwidth product is constant. You can get around the gain-bandwidth product limitation and achieve a higher bandwidth by employing a multistage PGA. Each stage provides a low gain and a high bandwidth. By combining the low-gain and high-bandwidth stages, you obtain a high-gain, highbandwidth output. The overall bandwidth (f_{H}) for an amplifier with n equivalent stages is

Fig 4-By adding a capacitor between the stages of a multistage PGA, you can form a samplelhold circuit. The capacitor stores the offset voltage from the input amplifier and automatically sets it to zero when switches S_{1} and S_{2} are in their amplify positions, thus preventing the offset voltage of the preceding amplifier from saturating the following amplifier.

> A basic programmable-gain amplifier requires only an op amp, an analog multiplexer, and resistors.

OVERALL BANDWIDTH (f^{*}) $=$

$\operatorname{SINGLE-STAGE~BANDWIDTH}\left(\mathrm{f}_{\mathrm{H}}\right) \cdot \sqrt{2^{\frac{1}{n}}-1}$,
where n is the number of amplifier stages.
In a multistage PGA, however, you can set a different gain, and thus a different bandwidth, for each stage. To compute the overall bandwidth for an amplifier with nonequivalent stages requires a more complex equation. The equation requires that you supply the singlestage bandwidth value for each amplifier:

$$
\begin{aligned}
& \frac{1}{\sqrt{1+\left(\mathrm{f}_{\mathrm{H}}^{*} / \mathrm{f}_{\mathrm{H} 1}\right)^{2}}} \cdot \frac{1}{\sqrt{1+\left(\mathrm{f}_{\mathrm{H}}^{*} / \mathrm{f}_{\mathrm{H} 2}\right)^{2}}} \cdots \\
& \frac{1}{\sqrt{1+\left(\mathrm{f}_{\mathrm{H}}^{*} / \mathrm{f}_{\mathrm{Hn}}\right)^{2}}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Reduce offset voltage

Multistage PGAs have a drawback: The offset voltage of a preceding amplifier might saturate the amplifier that follows it. By inserting a capacitor between the stages (Fig 4), you form a sample/hold (S/H) stage. By periodically activating grounding switches S_{1} and S_{2}, the S/H circuit cancels the first amp's offset voltage.

To optimize the performance of the S / H circuit, you must use a good-quality capacitor with a Teflon, a polystyrene, or a polypropylene dielectric, all of which minimize dielectric absorption effects. A low-biascurrent amplifier as well as low-leakage switches and a low-leakage capacitor minimize voltage droop in the S/H circuit. Proper circuit compensation and a good DMOS switch, such as the SD210, will minimize the charge transferred from the switch's gate to the hold capacitor. Keep in mind that the sample time must be sufficiently long to acquire the offset voltage.

Consider using hybrid PGAs

Hybrid-circuit technology excels in the production of accurate and stable PGAs. To make such a PGA, a manufacturer assembles and interconnects an accurate $\mathrm{R}-2 \mathrm{R}$ resistor network, a CMOS multiplexer, an op amp , and discrete components on an alumina substrate. Because you select the circuit elements separately in this process, you can choose the best element for each intended function. For example, the resistor network can be either a thick- or a thin-film configuration that has been laser-trimmed so that it achieves 0.01% accuracy and a gain drift of $<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Such a hybrid-
circuit configuration also lets you trim the op amp's input offset voltage and common-mode rejection ratio (CMRR) to produce a PGA that needs no adjustment.

Finally, note that a CMOS analog multiplexer for use in a PGA must provide switches that have low leakage currents in both their on and off states. In general, CMOS switches change channels smoothly and thus shorten the settling time associated with each gainswitching operation.

EDN

Author's biography

Akavia Kaniel worked as a design engineering manager at the microcircuits division of Intech Inc (Santa Clara, CA) when he wrote this article. His work involved supervising the development of electronic components and subsystems. Aki is the author of many technical articles, and he has a patent that covers analog measuring systems.
 He received a BSEE and MSEE from Columbia University and an MBA from the University of Santa Clara. During his leisure time, he enjoys sailing and flying.

Article Interest Quotient (Circle One)
High 476 Medium 477 Low 478

行
 National
 Semiconductor

Introducing the no-compromise microcontroller.

NATIONAL'S $17 \mathrm{MHz} \mathrm{HPC}^{\mathrm{m}}$, THE WORLD'S FASTEST MICROCONTROLLER, LETS YOU DESIGN THE WAY YOU WANT TO. NOT THE WAY YOU HAVE TO

Think of those designs that could have led to higher sales, if only your microcontroller had been faster. . . had used less power...or had come with a family of on-board functions to fit your application.

Remember the performance compromises you made because that microcontroller didn't exist.

It does now.... for a lot less than you would expect to pay for such performance.

THE FASTEST EXECUTION TIME YET

At a clock rate of $17 \mathrm{MHz}, \mathrm{HPC}$ offers a 240 -nanosecond instruction cycle, the fastest on the market. It also has a powerful instruction set, with 16x16-bit multiply and 32×16-bit divide. Which means you'll get the high throughput necessary for today's compute-intensive controller applications.

THE HIGHEST LEVEL

 OF INTEGRATIONYour system will need fewer components, operate at higher speeds and be more reliable with on-board functions, such as: software programmable UART; high-speed input/outputs (52 general-purpose I/0 lines/68-pin package); 16-bit timers, including six PWMs and a watchdog timer; input capture registers; ROM and RAM;

The first 16 -bit CMOS High Performance microController family is available now.
and MICROWIRE/Plus, ${ }^{\text {T }}$ a three-wire, synchronous interface, connecting HPC to proprietary and standard peripherals.

AN EXPANDING PRODUCT LINE

HPC's modular common-processor core and memory-mapped architecture gives us the flexibility to introduce many new parts in the family. Choose from memory and on-board peripherals, and, soon EEPROM, A/D, HDLC protocol controllers, DMAs and gate arrays to create a powerful microcontroller for your automotive, telecom, data processing, military, medical, factory automation or industrial control application.

THE BENEFITS OF ADVANCED CMOS

HPC employs National's double-metal advanced CMOS process technology. The device uses very little operating power and is designed for low power consumption in HALT and IDLE modes. In addition, it operates over a wide range of supply voltages, from 3 to 5.5 V , and temperatures from -55° to $+125^{\circ} \mathrm{C}$.

LOW-COST, COMPREHENSIVE SUPPORT

Our Microcontroller On-Line Emulator (MOLE ${ }^{\text {M }}$) provides low-cost support from initial software development to final hardware emulation and ROM pattern submission. It works with any IBM PC or com-
patible and has high-level language support, including a C compiler.

Plus, you'll get fast, expert help when you need it through "Dial-A-Helper," our exclusive on-line application assistance program. Available 24 hours a day. Free of charge.

BACKED BY AN ON-GOING COMMITMENT

We've developed the broadest family of 4;8- and 16 -bit microcontrollers of any U.S. based manufacturer. That commitment continues as we expand the family at our world-class six-inch wafer fabrication facility dedicated to advanced CMOS process technology. Today, at 2 microns, 17 MHz . Tomorrow: 1.5 microns, 20 MHz and above.

COMPARE THE HPC TO THE COMPETITION

DONT SETTLE FOR A COMPROMISE

We have HPCs available now: HPC16030, HPC16040, HPC16073 and HPC16083.
Available in various mil-temp ranges and package options, including PLCCs. For more information, contact us today.
National Semiconductor
MS 23-205
P. O. Box 58090

Santa Clara, CA 95052-8090
National
Semiconductor

NOW YOUR TWO FAVORITE TABLOIDS COME TOGETHER

Seminar Service Helps ${ }^{2}$ Riding the Fust-Growth Express EEs Cope With Technology Explosion

INONE HOT NEWSPAPER... EDN NEWS

Cutler-Hammer aerospace switches thrive on punishment.

Pick an application-your toughest application. That's where you'll want to use one of these remarkably rugged Mil-Spec switches.
From applications on business/commercial aircraft, heavy-duty vehicles and construction equipment, to a wide variety of military applications-these switches survive the harshest environments.
Choose from a broad line of sealed and unsealed switch

types. Each backed by extensive R\&D and supported by a solid, service-oriented sales and distributor network.
$\square_{\text {zoe }}^{\text {za }}$ For more information contact your CutlerHammer Sales Office or Distributor. Or send for our complete catalog. Eaton Corporation, Aerospace \& Commercial Controls Division, 4201 N. 27th St., Milwaukee, WI 53216. Or call 414-449-7487.

Aerospace, Commercial, Miniature, Illuminated Switches and Relays.

1986

Technical-Article Database Index

(May through October 1986)

Including EDN, Electronic Design, Electronics, Electronic
Products, Computer Design, and Digital Design
With compliments from EDN

To use this database

(Photo courtesy Motorola Inc, Austin, TX)
. . . Look for the topic of interest in the keyword index. If your topic isn't one of the keywords, try a related, but less specific topic. Then go to the appropriate page in the database and scan the article titles, which are listed alphabetically within each keyword category. Information provided in each listing includes article title, author, company, magazine name, issue date, starting page number, and article length.
For more information on the articles listed, please contact each magazine directly.

EDN

Cahners Bldg 275 Washington St Newton, MA 02158 (617) 964-3030

Computer Design
119 Russell St
Littleton, MA 01460
(617) 486-9501

Digital Design
1050 Commonwealth Ave
Boston, MA 02215
(617) 277-1120

Electronic Design

10 Mulholland Dr
Hasbrouck Heights, NJ 07604 (201) 393-6000

Electronic Products

645 Stewart Ave Garden City, NY 11530
(516) 227-1300

Electronics

McGraw-Hill Bldg 1221 Avenue of the Americas New York, NY 10020
(212) 512-2000

Technical-Article Database Index

(May through October 1986)

Keyword Index

hesives	
Alarm/lock/security circ	
Amplifiers	197
Analog-I/O boards	7
Analog processors	
Analog signal processing	7
Analog switches	7
Arithmetic chips/circuits	
Artificial intelligence	197
Artwork generation/plotting equipment (ICs)	
Audio	7
Automatic test equipment/techniques	
Avionics	197
Backplanes	197
Batteries	
Board-level computers	
Bonders, die/wire/tab	8
Bridge circuits	
Business/legal/professio	
CMOS logic	198
CMOS technology	
Cabinets/enclosure	
Cable assembly	8
Capacitors	8
Charge-coupled devices	
Circuit packages	8
Circuit protection	
Clock circuits	
Communications ICs	198
Comparators	
Computer applications	
Computer languages/compilers/interprete	
Computer operating systems/ system software	
Computer security \& crime	
Computer software, application generator	
Computer software, communications/networking	
Computer software, data/file management	
Computer software, design applications	1
Computer software, graphics	
Computer software, other	
Computer software, performance measurement	
Computer software, program develop	
Computer software, utility	2
Computer subsystems/peripherals, other	
Computer systems/system design, othe	
Computer-aided design/ engineering (CAD/CAE)	
Computer-aided manufacturing	
testing (CAM/CAT)	5
Conferences/conventions/show	05
Connectors	
Consumer electronics	
Corporate appointments/ development/strategies	206
Current sources	206
Data-acquisition systems/techniques	206
Data-communications systems/technique	206
Data converters	206
Data encryption/decryption/verification	209
Decoders	209
Desktop computers	209
Development systems	209
Digital gain sets	09
Digital multimeters (DMMs)	9
Digital signal processing	209
Digital voltmeters (DVMs)	209
Digitizers	9
Disk controllers	209
Disk encoders	209
Display drivers	

Displays.. 209
Distributed processing
Employment/abor relations/
personnel/recruitment......................... . 210
210
Energy storage/generation, other 210
Engineering workstations 210
Etching systems/techniques 210
Eurocards . 210

Fans/blowers . 210
Fiber optics . 210
Filter circuits . 210
Finance . 210
Flip flops . 210
Floppy-disk drives . 210
Function generators/generation 210
Fuses . 210
GPIB instruments . 210
GaAs technology 215
Gate arrays . 215
Government 215
Graphics boards . 215
Graphics circuits 215
Graphics systems................................ . . . 215
Heat sinks/cooling devices 216
Hybrid circuits. 216
Imports/exports . 216
Inductors. 216
Industrial electronics . 216
Inspection . 216
Instrumentation/design aids \&

Integrated circuits/semiconductor
devices/circuit design, other 216
Intelligent instruments. 216
Interconnection systems 216
Keyboards . 216
Leadless chip carriers. 216
Legal issues 216
Linear circuits . 216
Local-area network architecture/
design/design standards 217
Logic analyzers/analysis . 217
Logic arrays/systems . 217
Mainframe computers . 217
Management . 217
Mask-aligning/exposure equipment 217
Materials research/development 217
Materials/resources, other 220
Memory controllers . 220
Memory devices
Microcomputer buses/interfacing
Microcomputers .
2.2
. . . 223
. 223
Microprocessor support chips 223
Microprocessors . 224
Microwave . 224
Military electronics . 224
Minicomputers
Modems
Motor control circuits
Motors/motor controllers
Mouse devices
Multipliers
Multiprocessing
Multiuser computer systems
Network analyzers/analysis .
Network architecture/design/
design standards (nonlocal)
Network management/operations
Networking ICs
Noise-limiting circuits
Office automation

Op amps

.228

Optical storage ... 228

Optoelectronics

Oscillators

Oscilloscopes.

PROM programmers/programming

Packaging/encapsulation/sealing 228

Parallel processing. 231

Parametric/functional testing 231

Personal computers 231

Phase-locked loops . 231

Plotters . 231

Portable/laptop computers 231

Power converters . 231

Power semiconductors . 231

Power supplies . 232

Prescalers . 232

Printed circuits 232

Printers
Processors, special-purpose
(array, front-end, etc) . 232
Production/manufacturing/testing, other........ 232
Professional associations/issues 232
Programming . 232
Prototyping boards/systems 232
Pulse generators/generation/detection.......... 232
Pulse-width modulators 235
Regulators. 235
Research . 235
Resistors . 235
Rigid-disk drives . 235
Robotics. 235
Satellites . 235
Schmitt triggers 235
Scientific computer systems 235
Scribing/dicing/sawing equipment 235
Semicustom/custom ICs . 235
Sensors/transducers . 236
Signal sources/generation. 236
Signature analyzers/analysis 236
Simulators/simulation . 236
Sockets . 236
Software copying/copyrighting/
piracy/security . 236

piracy/security 236

Solar converters . 236
Soldering equipment . 236
Spectrum analyzers/analysis 236
Speech synthesis/recognition. 236
Standards 239
Surface-mounting devices/techniques 239
Switching circuits . 239
Sync separators . 239

TTL logic . 239

Tape drives . 239

Technology/research, other 239
Telecommunications . 239
Temperature measurement 239
Terminal controllers . 239
Terminals . 239
Text fixtures/probes . 239
Thin-film equipment, chemical 239
Thyristors 239
Timer ICs/circuits . 239
Touch-screen devices . 240
Training . 240
Transmitter/receiver circuits 240
Transmitters/receivers . 240
Trigger circuits 240
Video . 240
Vision systems . 240
Voltage converters................................ . . . 240
Waveform analyzers/analysis 240

Total Integration. From Concept to Prototype.

P-CAD's newest generation

 CAE/CAD design tools can take you all the way from concept to finished design on one system. That's why it's the Benchmark against which other design automation products are being judged.
First, Compare Function.

P-CAD provides a true end-toend PCB design solution. From interactive schematic capture, through automatic component placement and routing of trace interconnections and beyond, to paper tapes for NC drilling machines. All the way from concept to prototype on a single, integrated system.

Next, Compare Price.

P-CAD's modular PCB design software runs on a standard IBM

PC-XT, AT, ${ }^{T M}$ or compatible computer. So you get the functionality of a high priced workstation at a fraction of the cost.

Then, Compare Our Features With Everyone Eise.

Other CAE/CAD systems give you some of P-CAD's features. Only P-CAD has them all. PLD and semicustom IC design, in-circuit simulation, and comprehensive libraries are all available on a single P-CAD PC-based system.

NOW, COMPARE COMPANIES.

P-CAD's customer commitment doesn't stop once your system is delivered. Our comprehensive product documentation, customer service hotline, on-site and localized training programs, active user's group,
electronic bulletin board, quarterly newsletter, and 75 -office worldwide network make us the benchmark in customer support.

For more information, or a product demonstration, call P-CAD toll-free at (800) 628-8748 (in CA: (800) 523-5207; Internationally: (408) 971-1300). Or write: Personal CAD Systems Inc., 1290 Parkmoor Ave., San Jose, CA 95126. TELEX 3717199. ($\mathrm{P}-\mathrm{CAD}$ products also available for rent or lease from US Instrument Rentals.)

And put the benchmark to work for you.
(C) 1986, Personal CAD Systems, Inc. IBM, PC, XT, and AT are registered trademarks of Intemational Business Machines Corp.

p-cad

THE BENCHMARK

A

Adhesives
Focus on conductive epoxies. Costlow, Terry, Field Editor Electronic Design, 05/15/86, pg 181, 4.5 pgs.

Alarm/lock/security circuits

Annunciator gives audible pulse count. Mitchell, Charles, Elcotel; $E D N, 06 / 12 / 86, p g$ 209, 1 pg.

Amplifiers

High-gain amp yields low de output offset. Paul, Christopher, Coherent Comm Systems; Burgner, Leslie, Coherent Comm Systems; EDN, 08/21/86, pg 186, 1 pg.
Hybrid IC operational amplifiers achieve higher power, voltage and speed. Fleming, Tarlton, Associate Editor; EDN, 09/18l 86, pg 59, 7 pgs.
IF chip forms audio decibel-level detector. Zavrel, Robert J, Signetics; EDN, 05/01/86, pg 261, 1 pg.
Isolation amplifiers get better as their sizes and costs shrink. Heftman, Gene, Electronic Design, 05/01/86, pg 101, 4.5 pgs.
Port technique allows complex-impedance emulation and scaling Sinberg, Howard, Aptek Microsystems; EDN, 05/01/86, pg 205, 8.5 pgs.
Video buffer amplifiers get faster and lower in distortion. Panasuk, Curtis, Field Editor; Electronic Design, 05/29/86, pg 89, 4.5 pgs.

Analog-I/O boards

Analog-I/O boards and software for IBM PCs. Conner, Margery S, Regional Editor; EDN, 06/12/86, pg 116, 16 pgs.
Low-cost buses add industrial I/O to VME, Multibus II. Harold, Peter, European Editor; EDN, 05/01/86, pg 175, 19 pgs.
Use a PC to generate analog output signals. Croteau, John, Analog Devices; Grant, Doug, Analog Devices; EDN, 05/15) 86, pg 131, 10 pgs.
Versatile add-in boards acquire and process video images and graphics in real time. Titus, Jon, Senior Editor; EDN, 08/07/86, pg 103, 6 pgs.

Analog processors

Transducer converters ease industrial measurements. Denaro, Daniel, Analog Devices; Electronic Design, 09/04/86, pg 118, 4 pgs.
Analog signal processing
Programmable switched-capacitor filter ICs cut component count in many filter types. Cormier, Denny, Regional Editor; $E D N, 06 / 26 / 86, p g 71,6$ pgs.

Analog switches

Circuit offers precision chopper control. Silard, Andrei, Polytechnic Institute; Kosa, Barna, Polytechnic Institute; EDN, 07/10/86, pg 260, 1 pg
High-voltage circuits use mixed processes, fulfill diverse roles. Travis, Bill, Senior Editor; EDN, 07/10/86, pg 74, 10 pgs.

Arithmetic chips/circuits

32-bit MAC chip boosts precision of DSP. El Gamal, Abbas, LSI Logic, et al; Electronic Design, 07/10/86, pg 91, 3.5 pgs.
32-bit data-path chip heralds next generation of floating-point tasks. Sing, Y W, Weitek, et al; Electronic Design, 05/29/86, pg 187, 5.5 pgs .
DSP tackles floating-point arithmetic. Ferro, Frank, AT\&T, Computer Design, 08/15/86, pg 53, 4 pgs.
Design precautions ensure the benefits of using floating-point coprocessors. Titus, Jon, Senior Editor; EDN, 06/12/86, pg 57, 4.5 pgs.
Floating-point coprocessor IC spearheads software portability. Shahan, Van, Motorola; Johnson, Tom, Motorola; Electronic Products, 07/01/86, pg 37, 4.5 pgs.
Floating-point devices integrate it all. Wilson, Dave, Executive Editor; Digital Design, 07/86, pg 21, 1 pg.
Interface chip links floating-point coprocessors to host to form supermini look-alike. Hildebrandt, Eric, Weitek, et al; Electronic Design, 05/01/86, pg 213, 5 pgs.
Liberty chips harbor aboard 32-bit boards. Wilson, Andrew, Senior Technical Editor; Digital Design, 08/86, pg 25, 1 pg
Microprocessor brings floating-point capability to 32 -bit market. Marrin, Ken, Senior Editor; Computer Design, 05/01/86, pg 31, 2.5 pgs .
Artificial intelligence
A new tool that may help stop Chernobyl-like accidents. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 05/

26/86, pg 14, 1.5 pgs .
AI emerges as design automation force. Porter, Ed, AIDA, Digital Design, 06/86, pg 48, 3.5 pgs .
AI wars: garbage collection gets serious. Meng, Brita, Technical Editor; Digital Design, 10/86, pg 48, 4 pgs.
Artificial intelligence basics: hardware follows software. Morley, Richard E, Taylor, William A; Digital Design, 05/86, pg 54, 7 pgs .
Artificial intelligence eases board layout. Collett, Ronald, Senior Technical Editor; Digital Design, 09/86, pg 58, 2 pgs.
Children's computer brings AI into the home. Cohen, Charles L, Tokyo Editor; Electronics, 07/24/86, pg 30, 1 pg.
DSP boards help tackle a tough class of AI tasks. Staff; Electronics, 08121/86, pg 64, 3 pgs.
Expert systems give pilots a helping hand. Lineback, J Robert, Dallas Editor; Electronics, 10/02/86, pg 31, 1 pg.
Expert systems leverage designer's knowledge. Aseo, Joseph, West Coast Technical Editor; Digital Design, 08186, pg 39, 4 pgs.
Expert systems move fast in medical analysis. Gallagher, Robert T, Paris Editor; Electronics, 05/05/86, pg 21, 1 pg.
How AI will add brains to office automation. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 10/30/86, pg 63, 4 pgs.
IBM finally jumps into AI with both feet. Manuel, Tom, Managing Editor; Wolfe, Alexander, Software/Microsystems Editor; Electronics, 08/21/86, pg 30, 1 pg.
Inference's strategy to speed things up. Staff; Electronics, 08/07/86, pg 66, 4 pgs.
NTT builds a Lisp machine for Japan. Berger, Michael, World News Chief; Electronics, 10/30/86, pg 44, 0.5 pgs.
No longer novelties, expert systems find practical applications. Suydam, Jr, William E, Contributing Editor; Computer Design, 08/01/86, pg 36, 3.5 pgs.
Programming gets object oriented. Meng, Brita, Technical Editor; Digital Design, 09/86, pg 28, 4 pgs.
Symbolics: fighting off the AI invaders. Rose, Craig D, Boston Editor; Electronics, 05/26/86, pg 48, 2 pgs.
The ATE-AI partnership is hitting its stride. McLeod, Jonah, Managing Editor; Electronics, 09/04/86, pg 104, 2 pgs.
The military reconnoiters neural systems. Chester, Michael, Southwestern Editor; Electronic Products, 10/15/86, pg 78, 3.5 pgs.

What's holding back expert systems? Manuel, Tom, Managing Editor; Electronics, 08/07/86, pg 59, 7 pgs.
Why bother with expert systems? Morley, Richard E, Taylor, William A; Digital Design, 07/86, pg 47, 2.5 pgs .
Artwork generation/plotting equipment (ICs)
Deep-uv stepper prints 0.25 -micron structures. Naegele, Tobias, New York Editor; Electronics, 05/19/86, pg 21, 1 pg.
Audio
Zenith TV sounds better with folded waveguide. Rosenberg, Robert, Communications Editor; Electronics, 08/21/86, pg 40, 1 pg

Automatic test equipment/techniques

ATE makers eye ISDN as new market. Rose, Craig D, Boston Editor; Electronics, 09/04/86, pg 37, 0.5 pgs.
An ATE system that cuts the cost of ASIC testing. Staff; Electronics, 09/04/86, pg 81, 3 pgs.
Is the ATE market headed for a shakeout? Waller, Larry, Los Angeles Editor; Electronics, 10/16/86, pg 111, 2 pgs.
The ATE-AI partnership is hitting its stride. McLeod, Jonah, Managing Editor; Electronics, 09/04/86, pg 104, 2 pgs.

Avionics

Computers save weight in fly-by-wire airliner. Gallagher, Robert T, Paris Editor; Electronics, 08/07/86, pg 42, 1 pg.

Backplanes
Backplanes play a crucial role in high-speed systems. Ormond, Tom, Senior Editor; EDN, 07/10/86, pg 222, 6 pgs.

Batteries

Backup batteries. Small, Charles H, Associate Editor; EDN, 10/30/86, pg 132, 13.5 pgs.

Board-level computers

Board-level computers boast rugged features and big system power. Hindin, Harvey J, Special Features Editor; Comput-

EDN TECHNICAL-ARTICLE DATABASE

er Design, 10/01/86, pg 67, 10 pgs
Breaking the speed barrier on the VMEbus. Staff; Electronics, 07/10/86, pg 58, 3 pgs.
High-performance buses. Lieberman, David, Associate Editor; Electronic Products, 06/16/86, pg 48, 8 pgs.
Low-cost buses add industrial I/O to VME, Multibus II. Harold, Peter, European Editor; EDN, 05/01/86, pg 175, 19 pgs.
Multibus II heads for the fast track. Rosenberg, Robert, Communications Editor; Electronics, 07/10/86, pg 116, 2 pgs.
STD bus is a quality industrial solution. Lee, Edwin, Pro-Log; Computer Design, 10/01/86, pg 64, 2 pgs.
Single-board computers support PC and PC/AT bus. Conner, Margery S, Regional Editor; EDN, 07/24/86, pg 64, 7.5 pgs.
Speedier CMOS ICs beget all-CMOS boards. Walthers von Alten, Judith, Northwestern Editor; Electronic Products, 05/01/86, pg 43, 6 pgs.
Bonders, die/wire/tab
Wire-bonding chips to boards may speed surface mounting. Staff; Electronics, 05/12/86, pg 33, 2 pgs.
Bridge circuits
LVDT interface chip's functional blocks offer versatility. Rahim, Zahid, Signetics; EDN, 05/29/86, pg 159, 9 pgs.
Business/legal/professional, other
A glossary of design-automation terminology. Gabay, Jon, Associate Editor; Electronic Products, 05/01/86, pg 87, 5.5 pgs.
In the U.S., electronics can prevent a Chernobyl. Wolff, Howard, Associate Managing Editor; Electronics, 05/i2/86, pg 53, 2 pgs.

CMOS logic
Design low-power, rad-hardened satellite systems. Pearson, Bob, Harris Semiconductor; EDN, $08 / 21 / 86, p g 145,4.5 \mathrm{pgs}$. High-speed logic ICs. Cormier, Denny, Regional Editor; EDN, 08/21/86, pg 112, 9 pgs.
Interface CMOS: the missing system link. Aseo, Joseph, West Coast Technical Editor; Digital Design, 06/86, pg 21, 1 pg.
Speedier CMOS ICs beget all-CMOS boards. Walthers von Alten, Judith, Northwestern Editor; Electronic Products, 05/01/86, pg 43, 6 pgs.
Test the latch-up tendency of CMOS devices. Harman, Harvey L, Burroughs; EDN, 08/07/86, pg 201, 1 pg.
Use CMOS DACs to generate sine waves. Wynne, John, Analog Devices Semiconductor; Byrne, Mike, Analog Devices Semiconductor; EDN, 08/21/86, pg 167, 7.5 pgs.

CMOS technology

Don't change logic pinout standards. Pond, Kirk, Fairchild Semiconductor; Electronics, 09/18/86, pg 83, 1 pg.
It's time for a new logic pinout. Watson, James F, Texas Instruments; Electronics, 09/18/86, pg 82, 1 pg.
TI's blazing-fast CMOS logic takes on Schottky bipolar. Staff; Electronics, 09/18/86, pg 78, 4 pgs.
The fast static ram moves into the mainstream. Lineback, J Robert, Dallas Editor; Electronics, 08/07/86, pg 121, 3 pgs.

Cabinets/enclosures

Eurocard packaging suits a wide range of plug-in modules. Harold, Peter, European Editor; EDN, o7/24/86, pg 163, 9 pgs.
Keeping the PC cool. Chin, Spencer, Associate Editor; Electronic Products, 09/16/86, pg 47, 3.5 pgs.
Packaging supermicros for office applications. Orr, Tom, Digital Equipment; Computer Design, 08/01/86, pg 117, 5 pgs.
Cable assembly
Simple circuit tests twisted-pair cables. Braunstein, Mark D, Contel Information Systems; EDN, 05/29/86, pg 229, 1 pg.

Capacitors

Embedding capacitors saves chip real estate. Rose, Craig D, Boston Editor; Electronics, 05/12/86, pg 24, 1 pg.
Focus on surface-mounted electrolytic capacitors. Winard, Harold, Electronic Design, 08/07/86, pg 155, 4 pgs.

Charge-coupled devices

Solid-state area-scan image sensors vie for machine-vision applications. Harold, Peter, European Editor; EDN, 05/15/ 86, pg 55, 6 pgs.

Circuit packages

Choosing packages wisely pays off in I/O, speed, space. Waltersdorf, Harvey R, Thomas \& Betts; Electronic Design, 06/19/86, pg 107, 4.5 pgs.
Embedding ICs in plastic cuts interconnect space. Cohen, Charles L, Tokyo Editor; Electronics, 06/09/86, pg 17, 1 pg.
Good interconnect design optimizes IC performance. Johnston, Joseph E, Rogers; Computer Design, 10/01/86, pg 91, 5 pgs.
Implosion packaging speeds diode production. Gosch, John, Frankfurt Editor; Electronics, 08/21/86, pg 37, 1 pg.
It's an all-out fight over pinouts for fast CMOS S logic. Lineback, J Robert, Dallas Editor; Electronics, 08/07/86, pg 29, 1 pg.
The chip carrier's checkered progress. Chin, Spencer, Associate Editor; Electronic Products, 07/15/86, pg 42, 7 pgs.

Circuit protection

AC circuit breaker has adjustable threshold. French, Kurt, C F Electronics; EDN, 06/12/86, pg 211, 1 pg.

Clock circuits

Circuit generates frequency difference. Momii, Steve, Univ of Washington; EDN, 06/26/86, pg 228, 0.5 pgs.
Clock/calendar chips add system features; hybrid versions vie for memory sockets. Leibson, Steven H, Regional Editor; EDN, 06/12/86, pg 73, 5 pgs.

Communications ICs

AGC circuit uses an analog multiplier. Lubs, Steve, Dept of Defense; EDN, 09/04/86, pg 210, 1 pg.
At last, it's easy to design RS-232-C modems. Staff; Electronics, $07 / 24 / 86, p g 89,4$ pgs.
Bullish on ISDN, Intel launches its chip set. Staff; Electronics, 10/02/86, pg 59, 5 pgs.
CMOS RS-232-C interface chip packs in three driver/receivers. Tussing, Tanya, Motorola; Bauer, Valerie, Motorola; Electronic Products, 05/01/86, pg 81,5 pgs.
Chip adds signals for phone conferencing. Gallagher, Robert T, Paris Editor; Electronics, 06/02/86, pg 25, 0.5 pgs.
Chip set speeds up British local-area net. Boothroyd, David, Electronics, 05/26/86, pg 20, 0.5 pgs.
Communications processor exploits Multibus II bandwidth. Scholhamer, George, Central Data; Digital Design, 05/86, pg 61, 3 pgs.
Cypher chip makes key distribution a snap. Barney, Clifford, San Mateo Editor; Electronics, 08/07/86, pg 30, 1 pg.
Fast modem designs benefit from DSP chip's versatility. Roesgen, John, Analog Devices; Electronic Design, 06/12/86, pg 123, 5.5 pgs .
IF chip forms audio decibel-level detector. Zavrel, Robert J, Signetics; EDN, 05/01/86, pg 261, 1 pg.
ISDN chip sets: users face a risky choice. Rosenberg, Robert, Communications Editor; Electronics, 10/02/86, pg 55, 4 pgs.
Low-power RS-232C driver operates from 5V. Walczak, Mark, Microcontrol Pty Ltd; EDN, 07/10/86, pg $262,1 \mathrm{pg}$.
Modem ICs increase speed and functionality. Cashen, Frank, Contributing Editor; Computer Design, 09/01/86, pg 25, 8 pgs.
New standards, silicon chips nudge ISDNs closer to reality. Allan, Roger, Associate Managing Editor; Electronic Design, 07/24/86, pg 88, 7 pgs.
TI pares chip set for IBM token ring. Lineback, J Robert, Dallas Editor; Electronics, 10/02/86, pg 33, 1 pg.
T-carrier chip set adapts to changing network needs. Merritt, John, Dallas Semiconductor; Computer Design, 06/01/86, pg 79, 4.5 pgs.
With carrier-band chips, MAP will soon cost less. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 09/ 04/86, pg 32, 1 pg.

Comparators

Digital window comparator is programmable. Kraft, Mark T, Baker Instruments; EDN, 10/30/86, pg 201, 1 pg .

Computer applications

Computers save weight in fly-by-wire airliner. Gallagher, Robert T, Paris Editor; Electronics, 08/07/86, pg 42, 1 pg.

Computer languages/compilers/interpreters

Ada development gets a lift from an intelligent tool set. Booch, Grady, Rational; Electronic Design, 08/07/86, pg 111, 4 pgs.
Attention to basics reduces risk in Ada compiler choice. Sherman, Bruce, Telesoft; Computer Design, 06/15/86, pg 87, 4 pgs.
Designers choose from software-development environments. Hindin, Harvey J, Special Features Editor; Computer Design, 09/01/86, pg 47, 4 pgs.

50 watts minimum is a lot of rf power throughout a bandwidth of 1 to 1000 MHz . But that's what our new Model 50W1000 delivers for all your broadband test needs.

As your hunger for power plus bandwidth grows, this year and next, our all-solid-state "W" series
of $100-\mathrm{kHz}-\mathrm{to}-1000-\mathrm{MHz}$ linear amplifiers should become more and more important in your plans. Today you may need only 1 watt (the little portable on the top of the pile), or 5 , or 10-all with that fantastic bandwidth instantly available without tuning or bandswitching-the kind
of bandwidth that lets you sweep clean through with no pausing for adjustment.

And next year?

But chances are good that next year you'll be moving up into higherpower work in the same bandwidth. Then you'll be glad you have a 50W, the only rf power amplifier in its power-to-bandwidth class. At that point, your smaller "W" series amplifiers can be freed for lowerpower work around your lab. What you can't see in the performance curves shown below is the unconditional stability of all Amplifier Research amplifiers -immunity to even the worstcase load mismatch or shorted or open cable with no fear of damage or system shutdown.

The "W" series is part of a complete line of amplifiers offering if power up to 10,000 watts cw, for such diverse applications as plasma/fusion research, NMR, RFI susceptibility testing, and a host of other test situations that demand the very finest in broadband rf power.

Send for our free booklet, "Your guide to broadband power amplifiers."

mL.Spec. Cotesowurn

SAVE SPACE AND BEAT NOISE, HUMIDITY, HEAT, COLD

New MICRO/Q II decoupling capacitors. Reduce IC noise, even in extremes of heat, cold and humidity. These rugged new capacitors from Rogers reduce voltage noise spikes, often by as much as a factor of ten. Check these key advantages:

- Capacitance levels from $.01 \mu \mathrm{~F}$ to $.30 \mu \mathrm{~F}$.
- Conformance with MIL-C-39014D, STD 202F.
- Molded packages seal out moisture and humidity.
- Reliable performance from $-55^{\circ} \mathrm{C}$ through $+125^{\circ} \mathrm{C}$
- Save board space-up to 30\%-by mounting beneath DIP IC's.
Get the full story on how MICRO/Q II capacitors beat noise, humidity, heat, cold and space-and a free sample. Call a Rogers MICRO/Q Product Specialist today, at (602) 967-0624.

(1) ROGERS

Circuit Components Division 2400 South Roosevelt Street
Tempe, AZ 85282
Distributed in Europe by Mektron NV, Ghent, Belgium.

EDN TECHNICAL-ARTICLE DATABASE

Forth takes aim at real-time applications. Rather, Elizabeth D, Forth; Computer Design, 10/15/86, pg 85, 6 pgs.
Gate-array compiler cuts big designs down to size. Well, Steven, FutureNet Division, Data I/O, et al; Electronic Design, 06/26/86, pg 101, 5.5 pgs.
Improved C compilers boost system throughput. Hindin, Harvey J, Special Features Editor; Computer Design, 09/15/86, pg 54, 5.5 pgs .
Inference's strategy to speed things up. Staff; Electronics, 08/07/86, pg 66, 4 pgs.
Integrating CAE, CAD and CASE. Marshall, John, HewlettPackard; Van Dyne, Denese, Hewlett-Packard; Digital Design, 06/86, pg 40, 4.5 pgs .
Intelligent tools automate high-level language programming. Hindin, Harvey J, Special Features Editor; Computer Design, 05/15/86, pg 45, 12 pgs.
Matching hardware to Lisp yields peak performance. Matthews, Gene, Texas Instruments, Symbolic Computing Lab, et al; Computer Design, 05/01/86, pg 95, 4 pgs.
New languages help create and test systems with no need for breadboards. Schindler, Max, Technology Editor; Electronic Design, 10/02/86, pg 90, 8 pgs.
No longer novelties, expert systems find practical applications. Suydam, Jr, William E, Contributing Editor; Computer Design, 08/01/86, pg 36, 3.5 pgs.
Non-von Neumann architectures, Part II: softness in software. Meng, Brita, Technical Editor; Digital Design, 05/86, pg 43, 4.5 pgs.

PC-based compilers offer low-cost Ada. Suydam, William, Contributing Editor; Computer Design, 10/15/86, pg 44, 5 pgs.
Pictures propel programming to a new plane. Schindler, Max, Technology Editor; Electronic Design, 08/21/86, pg 94, 8 pgs.
Silicon compilers travel rough roads to acceptance. Schindler, Max, Technology Editor; Electronic Design, 05/01/86, pg 156, 8 pgs.
Silicon compilers and macrocells give designers the best of both worlds. Bursky, Dave, Associate Managing Editor; Electronic Design, 10/16/86, pg 82, 6 pgs.
Standards converge for CAE/CAD data and languages. Goering, Richard, Field Editor; Computer Design, 07/86, pg 36, 3.5 $p g s$.
Turning a PC into a silicon compiler. Staff; Electronics, 06/16/86, pg 37, 4 pgs.
Unix muscles into minicomputer market. Hindin, Harvey J, Special Features Editor; Computer Design, 06/01/86, pg 36, 2.5 pgs.

What's holding back expert systems? Manuel, Tom, Managing Editor; Electronics, 08/07/86, pg 59, 7 pgs.
Why silicon compilers are starting to take off. McLeod, Jonah, Managing Editor; Electronics, 07/24/86, pg 72, 6 pgs.

Computer operating systems/system software

A modular approach to real-time software. Chao, Alfred, Software Components Grp; Computer Design, 10/01/86, pg 85, 4 $p g s$.
Assuring UNIX standardization: the System V verification suite. Ackerman, Jr, Robert R, UniSoft Systems; Digital Design, 10/86, pg 53, 2.5 pgs.
Europeans are counting on Unix to fight IBM. Gallagher, Robert T, Paris Editor; Electronics, 07/10/86, pg 121, 2 pgs.
Motorola targets MS-DOS markets. Lineback, J Robert, Dallas Editor; Electronics, 07/24/86, pg 31, 0.5 pgs.
Powerful Unix-based workstations take on minicomputers, mainframes. Weiss, Ray, Field Editor; Electronic Design, 05/15/ 86, pg 75, 4.5 pgs.
Task partitioning eases concurrent programming. Brubaker, David, Brubaker Elec Consultants; Case, Don, Dest; Computer Design, 09/15/86, pg 83, 5 pgs.
The IEEE-488 bus links to Unix. Purvis, John R, National Instruments; Nowlin, Bill, National Instruments; Computer Design, 10/01/86, pg 101, 3 pgs.
UNIX V gets locking, streams. Meng, Brita, Technical Editor; Digital Design, 08/86, pg 29, 1.5 pgs.
Whose operating system will run the 386 -based PCs? Wolfe, Alexander, Software/Microsystems Editor; Electronics, 09/ 18/86, pg 91, 2 pgs.

Computer security \& crime

A new way to tighten security in PC networks. Lineback, J Robert, Dallas Editor; Electronics, 10/30/86, pg 32, 1 pg.
Bootlegging on satellites turns out to be real problem. Barney, Clifford, San Mateo Editor; Electronics, 05/05/86, pg 14, 1.5 pgs.

Computer software, application generator
The case for CASE. Meng, Brita, Technical Editor; Digital Design, 06/86, pg 77, 4 pgs.

Computer software, communications/networking

Software makes nets transparent to users. Rosenberg, Robert, Communications Editor; Electronics, 10/30/86, pg 36, 1 pg.

Computer software, data/file management

Second-generation CAE tools learn to share one data base. Sullivan, Jerry S, Tektronix; Rummler, David C, Tektronix; Electronic Design, 07/10/86, pg 121, 5 pgs.

Computer software, design applications

A modular approach to real-time software. Chao, Alfred, Software Components Grp; Computer Design, 10/01/86, pg 85, 4 pgs.
Analog-I/O boards and software for IBM PCs. Conner, Margery S, Regional Editor; EDN, 06/12/86, pg 116, 16 pgs
Automating logic design with Socrates. Gregory, David, Calma; et al, Digital Design, 10/86, pg 44, 3 pgs.
Autorouters use sophisticated algorithms to lay out complex, multilayer pe boards. Freeman, Eva, Associate Editor; EDN, 08/07/86, pg 67, 6 pgs.
Basic program eases analysis of phase-locked loops. Rippy, Ron, $E D N, 06 / 26 / 86, p g 157,6$ pgs.
C compilers speed single-chip $-\mu \mathrm{P}$ development. Satten, Corey, John Fluke Manufacturing; EDN, 06/26/86, pg 213, 9.5 pgs.
CRT display circuit eliminates need for controller chip. Davidian, David, NEC Electronics; EDN, 06/26/86, pg 185, 11.5 pgs .

DSP-filter software offers design help to novices. Cushman, Robert H, Special Features Editor; EDN, 07/10/86, pg 152, 11 pgs.
Design tools combine expert and algorithmic software. Falk, Howard, Contributing Editor; Computer Design, 09/15/86, pg 35, 4.5 pgs.
High-level software simplifies use of PC-based instrument modules and systems. Everett, Chris, Regional Editor; EDN, 10/16/86, pg 61, 5.5 pgs .
IBM PC-based software for CAE and CAD. Freeman, Eva, Associate Editor; EDN, 09/18/86, pg 162, 12.5 pgs.
Low-cost PCs and software analyze analog circuits. Travis, Bill, Senior Editor; EDN, 10/02/86, pg 163, 13 pgs.
Optimizing and verifying software in embedded systems. Gary, Ted, Northwest Instrument Systems; Digital Design, 08/86, $p g 58,4 p g s$.
Performance analysis tightens code. Whalley, Ray, New Micro; Digital Design, 05/86, pg 79, 2.5 pgs .
Pictures propel programming to a new plane. Schindler, Max, Technology Editor; Electronic Design, 08/21/86, pg 94, 8 pgs.
Printed circuit board autorouters gain speed and intelligence. Goering, Richard, Senior Editor; Computer Design, 10/01/ 86, pg 33, 4 pgs.
Programmable logic devices. Smith, David, Associate Editor; $E D N, 05 / 15 / 86, p g 94,13$ pgs.
Saber cuts spice out of analog simulation. Staff; Electronics, 10/30/86, pg 80, 3 pgs.
Safeguarding analog designs against disaster. Crosby, Brian C, Analog Design Tools; Wong, Ken, Analog Design Tools; Electronic Products, 06/16/86, pg 39, 6 pgs.
Silicon compilers and macrocells give designers the best of both worlds. Bursky, Dave, Associate Managing Editor; Electronic Design, 10/16/86, pg 82, 6 pgs.
Software packages for standard 32-bit CAE/CAD workstations. Freeman, Eva, Associate Editor; EDN, 06/26/86, pg 134, 12 pgs.
Software packs power designs into analog CAE tool set. Crosby, Brian C, Analog Design Tools; Tabrizi, Mehrdad, Analog Design Tools; Electronic Design, 09/04/86, pg 133, 3.5 pgs.
Spice improvements ease analog simulation. LeBrun, JeanNoel, Daisy Systems; Goshen, Raffy, Daisy Systems; Computer Design, 08/01/86, pg 97, 5 pgs.
Tester mockups and device libraries bring CAE to analog pc-board design. Freeman, Eva, Associate Editor; EDN, 05/29/86, pg 49, 5 pgs.
The case for CASE. Meng, Brita, Technical Editor; Digital Design, 06/86, pg 77, 4 pgs.
Third-party software aids data management in CAE systems. Goering, Richard, Senior Editor; Computer Design, 05/01/ 86, pg 40, 2 pgs.
Tools provide integration, measure performance. Aseo, Joseph, West Coast Technical Editor; Digital Design, 09/86, pg 61, 2 $p g s$.

EDN TECHNICAL-ARTICLE DATABASE

Computer software, graphics

Color cell compression reduces images to 2 bits/pixel. Wilson, Andrew, Senior Technical Editor; Digital Design, 10186, pg 23, 1 pg.
DGIS links PC-DOS to high-performance graphics. Williams, Tom, Western Managing Editor; Computer Design, 05/15/ 86, pg 32, 1.5 pgs.
Euroboards propel GKS into real world. Dowdell, Casey, Omnicomp Graphics; Masraff, Anthony, Omnicomp Graphics; Digital Design, 07/86, pg 58, 4 pgs.
Graphics boards tackle imaging. Wilson, Andrew C, Senior Technical Editor; Digital Design, 06/86, pg 84, 4 pgs.
Graphics software rides a wave of silicon advances. Williams, Tom, Western Managing Editor; Computer Design, 10/01/ 86, pg 38, 6 pgs.
Hardware advances fuel graphics standards controversy. Williams, Tom, Western Managing Editor; Computer Design, 08/15/86, pg 28, 4 pgs.
How silicon ICs are reshaping the graphics picture. Ohr, Stephan, Technology Editor; Electronic Design, 06/26/86, pg 72, 6 pgs.
Interface standard promotes device-independent graphics. Vanderschel, David J, Nova Graphics Int'l; Digital Design, $07 / 86, p g 62$, 3 pgs.
Large-kernel convolutions in image processing. Hall, Gene, Datacube; Digital Design, 08/86, pg 46, 3 pgs.
PC imaging software packs floating-point punch. Molinari, John, Data Translation; Mulligan, John, Data Translation; Digital Design, 07/86, pg 50, 4.5 pgs.
Software is the challenge now in better graphics. Manuel, Tom, Managing Editor; Electronics, 09/04/86, pg 95, 4 pgs.
Standard is sparking new graphics products. Lineback, J Robert, Dallas Editor; Electronics, 08/21/86, pg 31, 1 pg.

Computer software, other

Analog-I/ 0 boards and software for IBM PCs. Conner, Margery S, Regional Editor; EDN, 06/12/86, pg 116, 16 pgs.
Pictures propel programming to a new plane. Schindler, Max, Technology Editor; Electronic Design, 08/21/86, pg 94, 8 pgs.
Software. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 10/16/86, pg 74, 2 pgs.
Computer software, performance measurement
Reliability and data management top SDI software concerns. Hindin, Harvey, Special Features Editor; Computer Design, $07 / 86, p g 128,1$ pg.
Test hardware helps pinpoint software bugs. Blakeslee, Thomas R, Orion Instruments; James, John S, Orion Instruments; EDN, 09/04/86, pg 169, 7 pgs.
Computer software, program development
C compilers speed single-chip- $\mu \mathrm{P}$ development. Satten, Corey, John Fluke Manufacturing; EDN, 06/26/86, pg 213, 9.5 pgs.
DSP-filter software offers design help to novices. Cushman, Robert H, Special Features Editor; EDN, 07/10/86, pg 152, 11 pgs.
Defensive programming simplifies program maintenance. Staff; EDN, 08/07/86, pg 157, 4 pgs.
Development tools and VLSI chips help you design to military standards. Terry, Chris, Associate Editor; EDN, 06/26/86, pg 87, 5 pgs.
Software productivity moves upstream. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 07/10/86, pg 80, 7 pgs.
Computer software, utility
Algorithm generates a list of combinations. Capps, Charles P, General Motors; EDN, 05/15/86, pg 184, 0.5 pgs.
Emerging computer tools speed up software design. Wolfe, Alexander, Software/Microsystems Editor; McLeod, Jonah, Managing Editor; Electronics, 07/24/86, pg 106, 2 pgs.
Program computes log magnitude and phase. Hack, Thomas, Master Designers; EDN, 08/07/86, pg 206, 2.5 pgs.
Routine nests interrupts for the 8048. Apte, P, Digital Innovations Pvt Ltd; EDN, 05/29/86, pg 234, 1 pg.
Software provides indirect call for $\mu \mathrm{C}$. Moore, Allen, Sunstrand Data Control; EDN, 05/15/86, pg 188, 0.5 pgs.
Software provides rapid parity check. Thompson, Jerold R, Sperry; EDN, 09/18/86, pg 316, 1 pg.
Software turns PC into IEEE-488 bus monitor. Lineback, J Robert, Dallas Editor; Electronics, 09/04/86, pg 42, 0.5 pgs.
Tools provide integration, measure performance. Aseo, Joseph, West Coast Technical Editor; Digital Design, 09/86, pg 61, 2 pgs.

Computer subsystems/peripherals, other
Clock/calendar chips add system features; hybrid versions vie for memory sockets. Leibson, Steven H, Regional Editor; EDN, 06/12/86, pg 73, 5 pgs.

Computer systems/system design, other

Bit-slice architecture tackles the 32 -bit world. Cole, Bernard C, Managing Editor; Wolfe, Alexander, Software/Microsystems Editor; Electronics, 09/04/86, pg 64, 6 pgs.
Computers. Manuel, Tom, Managing Editor; Electronics, 101 16/86, pg 68, 4 pgs.

Computer-aided design/engineering (CAD/CAE)

A new tool lays out complex ASIC designs fast. Staff; Electronics, 05/05/86, pg 37, 3 pgs.
AI-based CAE brings spreadsheet IC design. Collett, Ronald E, Senior Technical Editor; Digital Design, 10/86, pg 26, 1 pg.
ASIC design tools duplicate circuit boards in silicon. O'Donnell, Daniel J, RCA Solid State; Electronic Design, 10/16/86, pg 133, 3.5 pgs.
Add-ons bring new power to PC-based design. Goering, Richard, Field Editor; Computer Design, 08/01/86, pg 73, 13.5 pgs.
Advanced algorithms enhance board layout. Khokhani, Kanti, Mentor Graphics, et al; Digital Design, 06/86, pg 56, 3.5 pgs.
Advanced $\mu \mathrm{Ps}$ are broadening PC AT presence on desktops of CAE users. Weiss, Ray, Field Editor; Electronic Design, 10/02/86, pg 78, 7 pgs.
As CAE penetrates analog design, you gain speed and accuracy without the legwork. Goodenough, Frank, Senior Editor; Electronic Design, 08/07/86, pg 76, 9 pgs.
Automatic chip generation not possible . . yet. Aseo, Joseph, West Coast Technical Editor; Digital Design, 09/86, pg 54, 2.5 pgs.

Automating logic design with Socrates. Gregory, David, Calma, et al; Digital Design, 10186, pg 44, 3 pgs.
Benchmarking steers logic simulation selection. Tang, Ben, Valid Logic Systems; Munich, Steve, Valid Logic Systems; Computer Design, 05/15/86, pg 69, 4.5 pgs.
Bridging the gap between VLSI design and test. Lai, KwokWoon Larry, SDA Systems; Digital Design, 06/86, pg 61, 3.5 pgs.
CAD data makes inspection flexible. Rose, Craig D, Boston Editor; Electronics, 06/16/86, pg 27, 0.5 pgs.
CAD tools detect EM emissions and heat. Wilson, Dave, Executive Editor; Digital Design, 06/86, pg 19, 1 pg.
CAE could be just as big as ATE for Teradyne. Rose, Craig D, Boston Editor; Electronics, 06/09/86, pg 37, 2 pgs.
CAE software crosses computing-level boundaries. Kerns, Kevin, Case Technology; Electronic Design, 07/10/86, pg 111, 4 pgs.
CAE tools finally bring hardware design up to speed. Sapiro, Steve, Tektronix; Electronic Design, 08/07/86, pg 139, 5 pgs.
CAE/CAD makers strive for integration and throughput. Collett, Ronald, Senior Technical Editor; Digital Design, 09/86, pg 48, 4 pgs.
CAE/CAD platforms, plateaus and promises. Collett, Ronald, Senior Technical Editor; Digital Design, 10/86, pg 34, 6 pgs.
Can Intergraph catch IBM in CAD/CAM market? Leopold, George, Government \& Military Editor; Electronics, 05/05/ 86, pg 48, 1.5 pgs.
Computer-aided design \& engineering. McLeod, Jonah, Managing Editor; Electronics, 10/16/86, pg 94, 4 pgs.
Customizing a gate array, Part 2: verifying and laying out the design. Gabay, Jon, Associate Editor; Electronic Products, 06/02/86, pg 50, 9 pgs.
Customizing a gate array, Part 3: along the road to final silicon. Gabay, Jon, Associate Editor; Electronic Products, 07/15/86, pg 52, 5 pgs.
Design and simulate semicustom ICs on low-cost IBM PC-based design systems. Smith, David, Associate Editor; EDN, 06/26/86, pg 51, 6.5 pgs.
Design automation: past, present and future. Collett, Ronald, Senior Technical Editor; Digital Design, 09/86, pg 47, 1 pg.
Design current-mode switching supply on analog workstation. Walker, Norman C, Walker Electronics; Walker, Martin G, Analog Design Tools; EDN, 06/12/86, pg 195, 6 pgs.
Design tools combine expert and algorithmic software. Falk, Howard, Contributing Editor; Computer Design, 09/15/86, pg 35, 4.5 pgs.
Documentation tools provide design cycle management. Needham, Paul, Context; Computer Design, 10/15/86, pg 79, 4.5 pgs.

The CLC940 Flash-Track ${ }^{\text {TM }}$ track and hold amplifier lets you combine high speed with high accuracy in your flash A/D system.

This ultra-high-speed track and hold doesn't sacrifice total performance for one or two good switching specs. It faithfully delivers great specs across the board. Guaranteed.

You get hold-to-track acquisition times of 10ns (to 1.0%) and 16 ns (to 0.1%). Track-to-hold settling time of 12 ns (to 1 mV). Bandwidth (-3 dB) of 150 MHz . And super supporting specs as well, such as feedthrough
rejection of 74 dB (at 20 MHz) and aperture jitter of 1ps (1.6ps max).

Yet for all this performance, you pay substantially less than you would for other high-speed track and holds. And get outstanding applications assistance as well. Choose from industrial and screened Hi -Rel versions. And for a limited time you'll receive a FREE evaluation board with your order.

Call today for details on the track and hold you can trust. Comlinear Corporation, 4800 Wheaton Drive, Fort Collins, Colorado 80525, (303) 226-0500.

Comlinear Corporation

The not so difiérent power supply that's really

Your system needs a 40 Watt power supply. Or 60 Watts. Or 135 Watts.
And your budget needs the power supply to be inexpensive.
But your need for quality and reliability is non negotiable. Now, for the first time, you can spec an inexpensive, reliable, quality power supply in the 40-135 Watt range. It's the new way to spec 40-135 Watts. Spec acdc electronics.
You've recognized acdc electronics as the top quality producer of power supplies from 200-1500 Watts.
Our 25 year reputation for uncompromised design and workmanship now applies to 40-135 Watts. That's what makes this series of power supplies different. It's an inexpensive series. It's low power.
But . . . it's acdc electronics quality.
And that standard never varies!
Special features include:
-0° to $50^{\circ} \mathrm{C}$ full power operation - Internal EMI Filter (which meets FCC 20780 Class B /VDE 0871 Class B)

- International Safety Specs
- UL Recognized, CSA Certified
- MTBF: $50,000 \mathrm{Hr}$. Min.
- Each unit Burned-in at Full Load with AC cycling @ $40^{\circ} \mathrm{C}$
- Final Test Data Sheet furnished with each unit

Product offering chart

MODEL	CASE POWER	MAIN	$\begin{aligned} & \text { 2nd } \\ & 0 U T \end{aligned}$	$\begin{aligned} & 3 \mathrm{rd} \\ & \text { OUT } \end{aligned}$	$\frac{4 t h}{\partial U T}$	STYLE	DIM.
RBT41	40W	+5V 2.5A	+12V 2.0A	-.12V 0.1A	-	PCB	$3.9 \times 6.3 \times 1.8$
RBT61	60W	+5V 5A	+12V 2.5A	-12V 0.5A	-	PCB	$3.9 \times 6.3 \times 1.8$
RBQ71	70W	+5V 6A	+12V 2.5A	-12V 0.7A	-5V 0.7A	PCB	$4.3 \times 8.3 \times 2.5$
RBO131	135W	+5V 15A	+12V 4A	12V 0.7A	-5V 0.7A	(L)	$5.0 \times 10.5 \times 2.5$
RBQ132	135W	+5V 15A	+15V 3.2A	-15V 0.7A	-5V 0.7A	(L)	$5.0 \times 10.5 \times 2.5$
RBQ133	135W	+5V 15A	+12V 3A	-12V 0.7A	$+24 \mathrm{~V} 1.5 \mathrm{~A}$	(L)	$5.0 \times 10.5 \times 2.5$
RBQ134	135W	+5 V 15A	$+15 \mathrm{~V} 2.4 \mathrm{~A}$	-15V 0.7A	+24V 1.5A	(L)	$5.0 \times 10.5 \times 2.5$

And . . . you can have the power supply you need. Immediately from a Nationwide Distribution Network. Open Frame, Switch Mode, PCB and L-Bracket power supplies.
Call for a Distributor listing, literature or more specific product information today at (619) 439-4200.

405 Jones Road, Oceanside, CA 92054
Tel: 619/757-1880. TLX: 350227
CIRCLE NO 100

EDN TECHNICAL-ARTICLE DATABASE

EEPROM-based ASIC propels programmable logic to new levels of complexity. Goetting, Erich, Exel Microelectronics; Electronic Design, 05/01/86, pg 201, 5 pgs.
European CAE developers embrace high-level language entry. Ohr, Stephan, Technology Editor; Electronic Design, 08/07/ 86, pg 47, 2 pgs.
Europeans set their sites on the latest vision, CAE problems. Beedie, Mitch, Field Editor; Electronic Design, 09/18/86, pg 47, 3 pgs.
Fault simulation rates effectiveness of test patterns. Indrajo, Geoffrey, Daisy Systems; Wang, Laung-Terng, Daisy Systems; EDN, 09/04/86, pg 181, 7 pgs.
Front-end tools ease test-generation chores. Vendl, Dean, NCR Microelectronics; Gearhardt, Kevin, NCR Microelectronics; Computer Design, 06/15/86, pg 97, 4 pgs.
HP adds more fuel to its strategy of design integration. Goering, Richard, Field Editor; Computer Design, 06/01/86, pg 32, 2 pgs.
Has CAE lived up to its promise? McLeod, Jonah, Test \& Measurement Editor; Electronics, 06/09/86, pg 25, 8 pgs.
How designers can save time in laying out a sea of gates. Staff; Electronics, 10/30/86, pg 77, 3 pgs.
IBM PC-based software for CAE and CAD. Freeman, Eva, Associate Editor; EDN, 09/18/86, pg 162, 12.5 pgs.
Integrating CAE, CAD and CASE. Marshall, John, HewlettPackard; Van Dyne, Denese, Hewlett-Packard; Digital Design, 06/86, pg 40, 4.5 pgs.
Mathematical proof verifies error-free processor design. Staff; Electronics, 05/26/86, pg 36, 2 pgs.
More processing punch revs up CAE workstations as they take on more design tasks. Ohr, Stephan, Technology Editor; Electronic Design, 10/02/86, pg 68, 6 pgs.
New languages help create and test systems with no need for breadboards. Schindler, Max, Technology Editor; Electronic Design, 10/02/86, pg 90, 8 pgs.
New simulation engines take aim at Zycad. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 06/16/86, pg 21, 1 pg .
Now 3-d CAD images can be moved in real time. Staff; Electronics, 08/07/86, pg 97, 4 pgs.
Saber cuts spice out of analog simulation. Staff; Electronics, 10/30/86, pg 80, 3 pgs.
Safeguarding analog designs against disaster. Crosby, Brian C, Analog Design Tools; Wong, Ken, Analog Design Tools; Electronic Products, 06/16/86, pg 39, 6 pgs.
Second-generation CAE tools learn to share one data base. Sullivan, Jerry S, Tektronix; Rummler, David C, Tektronix; Electronic Design, 07/10/86, pg 121, 5 pgs.
Silicon compilers ease complex VLSI design. Pollack, Steve, Silicon Compilers, et al; Computer Design, 09/15/86, pg 79, 4 pgs.
Silicon compilers travel rough roads to acceptance. Schindler, Max, Technology Editor; Electronic Design, 05/01/86, pg $156,8 \mathrm{pgs}$.
Simulation challenges breadboarding for design verification. Goering, Richard, Field Editor; Computer Design, 06/15/86, $p g$ 63, 14 pgs.
Smart schematic capture systems catch mistakes before simulation. Bloom, Michael, Contributing Editor; Computer Design, 06/15/86, pg 44, 3 pgs.
Software packages for standard 32-bit CAE/CAD workstations. Freeman, Eva, Associate Editor; EDN, 06/26/86, pg 134, 12 pgs.
Software packs power designs into analog CAE tool set. Crosby, Brian C, Analog Design Tools; Tabrizi, Mehrdad, Analog Design Tools; Electronic Design, 09/04/86, pg 133, 3.5 pgs .
Solids modeling: hardware grabs the spotlight. Vaughan, Jack, Managing Editor; Digital Design, 08/86, pg 50, 3 pgs.
Standards converge for CAE/CAD data and languages. Goering, Richard, Field Editor; Computer Design, 07/86, pg 36, 3.5 pgs.
Symbolic layout software accelerates IC design. Liao, Yuh-Zen, Ecad, et al; Electronic Design, 06/12/86, pg 89, 5.5 pgs.
Tailored designs match workstations to applications. Killmon, Peg, Senior Editor; Computer Design, 06/01/86, pg 49, 13 pgs.
Test engineering: another chore for today's designers. Yates, Warren, Associate Editor; Electronic Products, 10/01/86, pg 47, 8 pgs.
Tester mockups and device libraries bring CAE to analog pc-board design. Freeman, Eva, Associate Editor; EDN, 05/29/86, pg 49, 5 pgs.
Thanks to tile arrays' versatility, analog design is burgeoning.

Goodenough, Frank, Senior Editor; Electronic Design, $10 /$ 16/86, pg 68, 8 pgs.
Third-party software aids data management in CAE systems. Goering, Richard, Senior Editor; Computer Design, 05/01/ 86, pg 40, 2 pgs.
Uniting the worlds of design and test. Staff; Electronics, 06/09/ 86, pg 34, 3 pgs.
When CAE takes on testing, design data enters the loop. Larison, Larry, Tektronix, et al; Electronic Design, 08/21/ 86, pg 132, 4 pgs.
Computer-aided manufacturing/testing (CAM/CAT)
Automation industry faces a shrinking market. Rose, Craig D, Boston Editor; Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 08/21/86, pg 29, 1 pg.
CIM starts to change the factory landscape. Lyman, Jerry, Government \& Military Editor; Electronics, 10/02/86, pg 76, 5 pgs.
DOD's rescreening of chips stirs controversy. Chester, Michael, Southwestern Editor; Electronic Products, 10/15/86, pg 83, 3 pgs.
Digital analysis system wears many hats. Bennett, David L, Tektronix; Electronic Products, 07/15/86, pg 58, 8 pgs.
Factory communication: MAP promises to pull the pieces together. Allan, Roger, Associate Managing Editor; Electronic Design, 05/15/86, pg 102, 8 pgs.
Factory data gathering that runs on a PC. Waller, Larry, Los Angeles Editor; Electronics, 08/21/86, pg 35, 1 pg.
MAP picks up more support but products slow to appear. Shapiro, Sydney F, Managing Editor; Computer Design, 09/15/86, pg 49, 5 pgs.
Test engineering: another chore for today's designers. Yates, Warren, Associate Editor; Electronic Products, 10/01/86, pg 47, 8 pgs.
Versatile, programmable switch slashes ATE costs. Jessen, Kenneth, Hewlett-Packard; Electronic Products, 09/02/86, pg 60, 7 pgs.

Conferences/conventions/shows

ADEE East ' 86 sessions, courses, workshops stress practical CAD/CAE applications. Leibson, Steven H, Regional Editor; EDN, 09/04/86, pg 93, 2.5 pgs.
ASIC issues-design centers and semicustom techniques-heat up Electro/86 program. Gold, Martin, Managing Editor; Electronic Design, 05/01/86, pg 117, 4.5 pgs.
Custom IC meeting is turning into new product showcase. Cole, Bernard C, Semiconductors Editor; Electronics, 05/12/86, pg 48, 2 pgs.
Electro/86. Small, Charles H, Associate Editor; EDN, 05/01/86, pg 123, 3 pgs.
Electronica 86 conferences cover topics from VLSI devices to power semiconductors. Harold, Peter, European Editor; EDN, 10/30/86, pg 87, 1.5 pgs.
Munich's microelectronics conference takes a new tack. Gosch, John, Frankfurt Editor; Electronics, 10/30/86, pg 83, 2 pgs.
NCC '86. Wright, Maury, Regional Editor; EDN, 06/12/86, pg 141, 10 pgs.
NCC preview. Gold, Martin, Managing Editor; Electronic Design, 05/29/86, pg 103, 2 pgs.
What's new in imaging at EI '86. Wilson, Andrew C, Senior Technical Editor; Digital Design, 10/86, pg 57, 3 pgs.

Connectors

Connectors help the three services get it together. Biancomano, Vincent, Technology Editor; Electronic Design, 09/18/86, pg 128, 6 pgs.
Focus on ZIF and LIF connectors. Michaels, Ian, Electronic Design, 05/29/86, pg 213, 6 pgs.
Low-loss fiber-optic connectors take to simple field installation. Winard, Harold, Electronic Design, 06/19/86, pg 45, 2.5 pgs.
The ideal connector for flat-panel displays remains elusive. Chin, Spencer, Associate Editor; Electronic Products, 05/15/ 86, pg 54, 4 pgs.

Consumer electronics

Canon grabs the lead in electronic cameras. Naegele, Tobias, New York Editor; Electronics, 06/23/86, pg 20, 0.5 pgs.
Children's computer brings AI into the home. Cohen, Charles L, Tokyo Editor; Electronics, 07/24/86, pg 30, 1 pg.
Consumer. Weber, Samuel, Executive Editor; Electronics, 10/ 16/86, pg 107, 2 pgs.
French spark home-net standardization effort. Gallagher, Robert T, Paris Editor; Electronics, 07/10/86, pg 38, 1 pg.
Here comes a better way to wire up an auto. Staff; Electronics, 08/21/86, pg 67, 3 pgs.

In 1,500 centuries, this clock will lose 1 second. Gosch, John, Frankfurt Editor; Electronics, 10/30/86, pg 38, 1 pg
Plessey chips will run wristwatch pager. Waller, Larry, Los Angeles Editor; Electronics, 09/18/86, pg 42, 0.5 pgs
The fight over formats will be fierce at CES. Iversen, Wesley, Industrial \& Consumer Editor; Electronics, 06/02/86, pg 44, 2 pgs.
The next big auto market: the multiplexed data bus. Naegele, Tobias, New York Editor; Electronics, 08/21/86, pg 81, 2 pgs
Zenith TV sounds better with folded waveguide. Rosenberg, Robert, Communications Editor; Electronics, 08/21/86, pg 40, 1 pg.

Corporate appointments/development/strategies

A three-way tug of war hits the 32 -bit micro business. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 05/ 05/86, pg 40, 2 pgs.
AMD trims sails as slump hits home. Barney, Clifford, San Mateo Editor; Electronics, 08/21/86, pg 31, 1 pg.
Bullish on ISDN, Intel launches its chip set. Staff; Electronics, 10/02/86, pg 59, 5 pgs.
Can Intergraph catch IBM in CAD/CAM market? Leopold, George, Government \& Military Editor; Electronics, 05/05 86, pg 48, 1.5 pgs .
Can Japan catch up in 32-bit microprocessors? Cole, Bernard C, Semiconductors Editor; Cohen, Charles L, Tokyo Editor; Electronics, 05/12/86, pg 41, 5 pgs.
Can Toshiba make it big in information systems? Berger, Michael, World News Chief; Electronics, 07/24/86, pg 109, 4 pgs.
Can Zilog-AT\&T team score in the 32-bit race? Erikson, Arthur L, Executive Editor; Electronics, 05/19/86, pg 19, 1 pg.
Convex has a master plan to be king of the hill. Lineback, J Robert, Dallas Editor; Electronics, 10/30/86, pg 59, 2 pgs.
DOD spurs VHSIC efforts with 'advance agreements.' Waller, Larry, Los Angeles Editor; Electronics, 09/04/86, pg 29, 1.5 $p g s$.
First it was the Yugo, now it's the Iskra VME. Rosenberg, Robert, Communications Editor; Electronics, 05/05/86, pg 49, 0.5 pgs.
High noon for Fujitsu. Berger, Michael, Tokyo Editor; Electronics, 05/26/86, pg 40, 4 pgs.
How IBM is shaking up the disk-drive business. Manuel, Tom, Assistant Managing Editor; Waller, Larry, Los Angeles Editor; Electronics, 06/23/86, pg 18, 1.5 pgs.
How storage technology engineered its recovery. Lineback, J Robert, Dallas Editor; Electronics, 06/16/86, pg 56, 2 pgs.
IBM finally jumps into AI with both feet. Manuel, Tom, Managing Editor; Wolfe, Alexander, Software/Microsystems Editor; Electronics, 08/21/86, pg 30, 1 pg
Industry splits on what Computer III adds up to. Leopold, George, Government \& Military Editor; Electronics, 05/26/ 86, pg 18, 1 pg.
Intel pumps new life into Multibus I line. Rose, Craig, Boston Editor; McLeod, Jonah, Managing Editor; Electronics, 10/ 16/86, pg 34, 0.5 pgs.
Intel swaps 386 rights for IBM ASICs. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 10/16/86, pg 32, 1 pg .
Is the ATE market headed for a shakeout? Waller, Larry, Los Angeles Editor; Electronics, 10/16/86, pg 111, 2 pgs.
Motorola targets MS-DOS markets. Lineback, J Robert, Dallas Editor; Electronics, 07/24/86, pg 31, 0.5 pgs.
National's big gamble in automated packaging. Lyman, Jerry, Packaging/Production Editor; Electronics, 08/21/86, pg 74, 3 pgs.
Opportunities outweigh perils of the market for engineers at fledgling workstation maker. Asbrand, Deborah, Staff Editor; EDN, 10/30/86, pg 289, 5 pgs.
RCA Solid State pushes to reassure customers. Staff; Electronics, 06/09/86, pg 23, 1 pg.
SGS picks itself up and gets going again. Gallagher, Robert T, Paris Editor; Electronics, 06/16/86, pg 60, 1.5 pgs.
Siemens: changing from a tortoise to a hare. Gosch, John, Frankfurt Editor; Electronics, 06/02/86, pg 38, 6 pgs.
Symbolies: fighting off the AI invaders. Rose, Craig D, Boston Editor; Electronics, 05/26/86, pg 48, 2 pgs.
The scramble to win in graphics chips. Lineback, J Robert, Dallas Editor; Electronics, 05/19/86, pg 64, 2 pgs
The toughest fight yet for Monolithic Memories. Kozma, Robert J, Business Editor; Electronics, 05/19/86, pg 68, 1 pg.
This could be the year that the clones outsell IBM. Naegele, Tobias, New York Editor; Electronics, 06/09/86, pg 45, 2 pgs.
VMX girds for a fight in market it pioneered. Lineback, J Robert, Dallas Editor; Electronics, 05/12/86, pg 55, 1.5 pgs.

What will GE do with RCA Solid State? Naegele, Tobias, New York Editor; Electronics, 05/26/86, pg 44, 2 pgs.
What's behind the IBM product blitz. Manuel, Tom, Assistant Managing Editor; Electronics, 06/23/86, pg 50, 3 pgs.

Current sources

Current-mirror FETs cut costs and sensing losses. Fay, Gary, Motorola Semiconductor; EDN, 09/04/86, pg 193, 6.5 pgs .

D

Data-acquisition systems/techniques

Analog-I/O boards and software for IBM PCs. Conner, Margery S, Regional Editor; EDN, 06/12/86, pg 116, 16 pgs.
Digital gain control streamlines signal-acquisition systems. Graeme, Jerald, Burr-Brown; EDN, 05/29/86, pg 171, 9 pgs.
Low-cost buses add industrial I/O to VME, Multibus II. Harold, Peter, European Editor; EDN, 05/01/86, pg 175, 19 pgs.

Data-communications systems/techniques

Board-level modems boast higher speeds, more features and lower cost. Cashen, Frank, Contributing Editor; Computer Design, 07/86, pg 40, 4.5 pgs .
Communications board speeds network integration. Lafreniere, Bernard, Systech; Computer Design, 05/01/86, pg 89, 4.5 pgs.
Correct modem choice requires knowledge of communication needs. Douglass, Jack, Universal Data Systems; EDN, 09/18/86, pg 299, 10 pgs.
Data communications. Rosenberg, Robert, Communications Ed itor; Electronics, 10/16/86, pg 88, 2 pgs.
High-performance chips drive optical fibers to their limit. Spadaro, Joseph J, Associate Editor; Electronic Products, 06/02/86, pg 63, 4 pgs.
Intelligent modem ICs integrate functions, simplify design of communications circuitry. Wright, Maury, Regional Editor; $E D N, 08 / 07 / 86, p g 85,6.5 \mathrm{pgs}$.
VAX-to-AT link speeds image processing. Wilson, Andrew, Senior Technical Editor; Digital Design, 08/86, pg 23, 1 pg.
VMEbus boards handle X.25-based packet-switched communications. Mitch Beedie, Field Editor; Electronic Design, 06/ 12/86, pg 57, 4 pgs.

Data converters

ADC chips leap ahead both in speed and accuracy. Goodenough, Frank, Senior Editor; Electronic Design, 09/04/86, pg 90, 8 $p g s$.
A / Ds and $\mathrm{D} /$ As team to make adaptive filters. Byrne, Mike, Analog Devices; Minogue, Paschal, Analog Devices; Electronic Products, 09/02/86, pg 53, 5.5 pgs.
An ASIC design system takes linear circuits in its stride. Holt, Jim, Fairchild Camera \& Instrument; Electronic Design, 09/04/86, pg 110, 4 pgs.
Analog/digital and digital/analog data converters. Fleming, Tarlton, Associate Editor; EDN, 05/29/86, pg 102, 17 pgs.
Autocalibration cements 16 -bit performance. Croteau, John, Crystal Semiconductor, et al; Electronic Design, 09/04/86, pg 101, 5 pgs.
Choose the right 8 -bit DAC from in-circuit tests, not settling specs. Bernhard, Robert, Electronic Design, 09/11/86, pg 29, 4 pgs.
Circuit converts voltage ratio to frequency. Daniel, Bobirca Florin, Electronic Research Institute; EDN , 10/02/86, pg 203, 1 pg.
Flash converters move up in performance but still lag behind hybrids. Bloom, Michael, Contributing Editor; Computer Design, 09/15/86, pg 23, 5 pgs.
Generate scaled inverse of input squared. Douglas, Phillip N, Telex; EDN, 09/18/86, pg 315, 1 pg.
Multiplexer limits complement data. Murugesan, S, ISRO Satellite Centre; EDN, 10/30/86, pg 202, 1 pg.
Octal DAC chip's interface meets processor bus directly. Teza, Jeff, Brooktree, et al; Electronic Design, 09/04/86, pg 139, 5 pgs.
Op amp improves V/F converter's input. Graeme, Jerry, BurrBrown; EDN, 05/15/86, pg 181, 1 pg.
Precision circuit increases ADC resolution. Bryant, James M, Analog Devices; EDN, 06/12/86, pg 216, 1 pg.
Serial 8-bit A/D interfaces easily to most μ Ps. Davoody, Harry, Texas Instruments; Electronic Products, 05/15/86, pg 37, 5.5 pgs.
Synchronous V/F converter aids linearity in data acquisition. DeVito, Larry, Analog Devices Semiconductor; EDN, 10/16/ 86, pg 183, 6 pgs.

Type T912 / T914 Ultra-Precision Resistor Networks from CADDOCK provide Ratio TCs to 2 PPM/ ${ }^{\circ} \mathrm{C}$ and Ratio Tolerances to $\pm \mathbf{0 . 0 1 \%}$ for precision analog designs.

Type T912 Ultra-Precision Resistor Network 'Pairs'

Type T914 Ultra-Precision Resistor Network 'Quads'

Type T 912 / T 914 Ultra-Precision
 Resistor Networks are constructed with Caddock's Tetrinox ${ }^{\text {TM }}$ resistance films to achieve all of these high performance characteristics:

- Absolute Tolerance: 0.1% for all resistors.
- Ratio Tolerances: From $\pm 0.1 \%$ to $\pm 0.01 \%$.
- Ratio Temperature Coefficients: From $10 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ to $2 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.
- Absolute Temperature Coefficient: $\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, referenced to $+25^{\circ} \mathrm{C}$.
- Ratio Stability of Resistance at Full Load for 2000 Hours: Within $\pm 0.01 \%$.
- Shelf Life Stability of Ratio for Six Months: Within $\pm 0.005 \%$.
This exceptional combination of performance specifications - and the compact, plug-in configuration of the Type T912/T914 precision resistor 'pairs' and 'quads' - provide the single-package

matched resistor characteristics and stability required by high-accuracy analog circuits, including -
- Precision analog amplifiers.
- Voltage reference circuits.
- Instrumentation bridge circuits.
- Voltage and current comparison circuits.

Standard models of Type T912 / T914 precision resistor 'pairs' and 'quads' include 14 off-the-shelf resistor values with a wide choice of Ratio Tolerances, Ratio TCs and Resistance Ratios:

This standard part number provides a selection of over 500 in-production models of Type T912/T914 precision resistor 'pairs' and 'quads':

As an example of the price/performance advantages of this advanced resistor technology, the Model T912-A1 K-010-10 shown here provides a $1 \mathrm{~K}-10 \mathrm{~K}$ resistor 'pair' with a ratio tolerance of $\pm 0.01 \%$ and a ratio temperature coefficient of $10 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ at a 1000 -lot unit price under $\$ 2.66$. The same resistor 'pair' with a ratio tolerance of $\pm 0.1 \%$ delivers at a 1000 -lot unit price under \$1.52!

Type T1794 Custom Precision Resistor Networks meet special circuit and packaging requirements:

The Type T1794 custom precision resistor networks provide a unique range of flexibility:

- From 2 to 15 resistors per assembly.
- Absolute tolerances from 1.0% to 0.05%
- Custom voltage and power ratings.
- Resistance values from 500 ohms to 10 Megohms
- Absolute TC from $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ to $25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.
- Ratio TC from $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ to $5 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.
- Variations in pin configurations and package size as required to meet performance and existing circuit-board arrangements.

[^12]
Our BI displays perform best where you need Bi most:

If you need genuine, full-military electroluminescent (EL) displays, you are reading the right ad. Every display we offer is designed from the ground up to meet the toughest military specifications such as MIL STD 810C, etc.
Key features are shallow depth, complete on-board electronics and power converter,
multiple interfaces and options such as touch entry, enclosures, etc. Custom sizes and interfaces can be supplied to meet your specific application.
If you don't need full military temperature ranges, we can reduce the cost of the display-yet retain a high level of ruggedness and performance-by substituting some components with selected commercial parts.

Need "front line" keyboards too? We've got 'em. Custom military TEMPEST keyboards.

- Full-travel
- Nuclear hardened
- Submersible
- Multiple interface options

For more information on these products, contact your local IEE representative now or call Stuart Siegel at (818) 787-0311, Ext. 237.

Our 40th year of supplying tough products for tough customers!

EDN TECHNICAL-ARTICLE DATABASE

Synchro/resolver converters bring low cost and small size to motion-control systems. Fleming, Tarlton, Associate Editor; EDN, 10/30/86, pg 61, 6 pgs.
Use CMOS DACs to generate sine waves. Wynne, John, Analog Devices Semiconductor; Byrne, Mike, Analog Devices Semiconductor; EDN, 08/21/86, pg 167, 7.5 pgs.
Data encryption/decryption/verification
Cypher chip makes key distribution a snap. Barney, Clifford, San Mateo Editor; Electronics, 08/07/86, pg 30, 1 pg.

Decoders

ASICs optimize chip-select decoding functions. Williams, David G, Harris Semiconductor; EDN, 10/02/86, pg 195, 5 pgs.

Desktop computers

Single-board computers support PC and PC/AT bus. Conner, Margery S, Regional Editor; EDN, 07/24/86, pg 64, 7.5 pgs.
Software packages for standard 32-bit CAE/CAD workstations. Freeman, Eva, Associate Editor; EDN, 06/26/86, pg 134, 12 pgs.

Development systems

Microprocessor development systems. Winard, Harold, Electronic Design, 06/19/86, pg 139, 6 pgs.
Test engineering: another chore for today's designers. Yates, Warren, Associate Editor; Electronic Products, 10/01/86, pg 47, 8 pgs.
Timing analyzers keep pace with high-speed logic. Everett, Chris, Regional Editor; EDN, 07/24/86, pg 118, 9 pgs.

Digital gain sets

ASICs: take your pick. Collett, Ronald, Senior Technical Editor; Digital Design, 06/86, pg 29, 5 pgs.
Digital gain control streamlines signal-acquisition systems. Graeme, Jerald, Burr-Brown; EDN, 05/29/86, pg 171, 9 pgs.

Digital multimeters (DMMs)

DMMs, on rerouted design path, push resolution, stability, and ease of user calibration. Panasuk, Curtis, Field Editor; Electronic Design, 09/11/86, pg 72, 7 pgs.
Increased scale lengths, math functions make handheld DMMs general-purpose R\&D tools. Harold, Peter, European Editor; EDN, 09/04/86, pg 61, 7 pgs.
Digital signal processing
32 -bit MAC chip boosts precision of DSP. El Gamal, Abbas, LSI Logic, et al; Electronic Design, 07/10/86, pg 91, 3.5 pgs.
A new class of DSP chip: the Vector Signal Processor. Staff; Electronics, 07/24/86, pg 59, 8 pgs.
A split decision: speech chips vs. DSP. Chester, Michael, Southwestern Editor; Electronic Products, 09/02/86, pg 41, 6.5 pgs .

AT\&T enters market with floating-point DSP chip. Marrin, Ken, Senior Editor; Computer Design, 05/15/86, pg 28, 1 pg.
Analog filters come as gate arrays or standard ICs. Roche, Jean-Pierre, Thomson Semiconducteurs; Caillon, Christian, Thomson Semiconducteurs; Electronic Design, 10/16/ 86, pg 143, 5 pgs.
Application-specific architectures target DSP. Wilson, David, Executive Editor; Digital Design, 07/86, pg 69, 3.5 pgs.
Application-specific processor brings high performance to DSP. Marrin, Ken, Senior Editor; Computer Design, 08/01/86, pg 30, 2 pgs.
Array processing on board and chip. Staff; Electronic Products, 07/01/86, pg 48, 3 pgs.
Controller chip builds flexible FIR filters. Bursky, Dave, Associate Managing Editor; Electronic Design, 09/18/86, pg 61, 3 pgs.
DSP ICs. Titus, Jon, Senior Editor; EDN, 10/16/86, pg 162, 12.5 $p g s$.
DSP boards help tackle a tough class of AI tasks. Staff; Electronics, 08/21/86, pg 64, 3 pgs.
DSP poaches on analog conferencing. Lineback, J Robert, Dallas Editor; Electronics, 07/10/86, pg 32, 1 pg.
DSP tackles floating-point arithmetic. Ferro, Frank, AT\&T; Computer Design, 08/15/86, pg 53, 4 pgs.
DSP-filter software offers design help to novices. Cushman, Robert H, Special Features Editor; EDN, 07/10/86, pg 152, 11 pgs.
EPROMs simplify TMS32010 memory system. Brown, A DE, British Aerospace; EDN, 06/26/86, pg 230, 1 pg.
Fast modem designs benefit from DSP chip's versatility. Roesgen, John, Analog Devices; Electronic Design, 06/12/86, pg 123, 5.5 pgs .
Holographic filter spots images from any angle. Barney, Clifford, San Mateo Editor; Electronics, 09/04/86, pg 37, 1 pg.

Large-kernel convolutions in image processing. Hall, Gene, Datacube; Digital Design, 08/86, pg 46, 3 pgs.
Novel IC shuffles parallel-processing data. Niehaus, Jeff, Texas Instruments; Fleck, Bob, Texas Instruments; Electronic Products, 08/01/86, pg 42, 9 pgs.
Programmable filter chip and its PC-based tools offer new analog solutions. Dille, Thomas, Crystal Semiconductor, et al; Electronic Design, 05/29/86, pg 147, 5.5 pgs.
Simulation helps designers pick best DSP number format. Williams, Fred, TRW-LSI Products; Electronic Design, 09/18/86, pg 161, 4 pgs.
Surveying the array-processor landscape. Chester, Michael, Southwestern Editor; Electronic Products, 07/01/86, pg 42, 6 pgs.
Targeted for speed, triple-bus DSP IC dispatches real numbers at 6.25 MIPS. Martin, Daniel F, Thomson Semiconducteurs, et al; Electronic Design, 05/01/86, pg 189, 5 pgs.

Digital voltmeters (DVMs)

DMMs, on rerouted design path, push resolution, stability, and ease of user calibration. Panasuk, Curtis, Field Editor; Electronic Design, 09/11/86, pg 72, 7 pgs.

Digitizers

Graphics boards tackle imaging. Wilson, Andrew C, Senior Technical Editor; Digital Design, 06/86, pg 84, 4 pgs.
Graphics tablet tries to compete with mouse. Naegele, Tobias, New York Editor; Electronics, 10/02/86, pg 44, 1 pg.

Disk controllers

Controllers drive performance up to meet system demands. Killmon, Peg, Senior Editor; Computer Design, 05/01/86, pg 50, 4 pgs.
Floppy disk controllers feature some important extras. Martin, Steven L, Contributing Editor; Computer Design, 08/15/86, $p g 22,4$ pgs.
Hard controllers marked by bewildering variety. Martin, Steven L, Contributing Editor; Computer Design, 10/15/86, pg 39, 4 pgs.
Optical disk drives promise to revolutionize computer use. Killmon, Peg, Senior Editor; Computer Design, 08/01/86, pg 56, 5 pgs.
PLDs implement encoder/decoder for disk drives. Khu, Arthur, Advanced Micro Devices; Sterner, Rudy, Advanced Micro Devices; EDN, 09/18/86, pg 285, 8.5 pgs.
SCSI grows up. Lieberman, David, Associate Editor; Electronic Products, 09/16/86, pg 41, 4.5 pgs.
VMEbus and high-performance disks. Vincent, Douglas, Mini Computer Technology; Digital Design, 09/86, pg 119, 2.5 pgs.

Disk encoders

4-chip controller is key to SCSI hard disk drive. Lineback, J Robert, Dallas Editor; Electronics, 06/02/86, pg 20, 1 pg.
Embedded controllers yield "standard" disk drives. Williams, Tom, Western Managing Editor; Computer Design, 09/15/86, pg 41, 4 pgs.
Hard controllers marked by bewildering variety. Martin, Steven L, Contributing Editor; Computer Design, 10/15/86, $p g 39,4$ pgs.

Display drivers

Process techniques promise price cuts for plasma- and ELdisplay drivers. Mosley, J D, Texas Editor; EDN, 05/01/86, pg 57, 6.5 pgs .
Simple hardware drives multiple displays. Jayapal, R, Bharat Heavy Electricals; EDN, 09/18/86, pg 320, 2 pgs.
VFD drivers offer more smarts, more drives and higher voltages. Martin, Steven, Contributing Editor; Computer Design, 05/15/86, pg 29, 2.5 pgs .
Displays
Advances in flat-panel-display technology improve display features and cut prices. Mosley, J D, Regional Editor; EDN, 09/04/86, pg 79, 5 pgs.
Flat-panel display built that could compete with CRTs. Gallagher, Robert T, Paris Editor; Electronics, 06/16/86, pg 18, 1 pg.
How Data General improved its laptop display. Staff; Electronics, 05/12/86, pg 35, 2 pgs.
Large-screen displays get bigger and brighter. Leaf, Jesse J, News Editor; Electronics, 05/12/86, pg 46, 2 pgs.
Liquid crystal displays take a new twist. Lieberman, David, Associate Editor; Electronic Products, 08/15/86, pg 58, 4.5 $p g s$.
Prolonging the life of thin-film el flat panels. Staff; Electronics, 10/02/86, pg 84, 4 pgs.
SRI has hot plans for its cold cathodes. Barney, Clifford, San Mateo Editor; Electronics, 06/16/86, pg 19, 0.5 pgs.

EDN TECHNICAL-ARTICLE DATABASE

Smart compass pilots a car to its destination. Gosch, John, Frankfurt Editor; Electronics, 05/26/86, pg 20, 1 pg.
The ideal connector for flat-panel displays remains elusive. Chin, Spencer, Associate Editor; Electronic Products, 05/15/ 86, pg 54, 4 pgs
Would you believe LED brake lights? Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 09/18/86, pg 36, 1 pg.

Distributed processing

Hypercube architecture leads the way for commercial supercomputers in scientific applications. Mokhoff, Nicolas, Senior Editor; Computer Design, 05/01/86, pg 28, 3 pgs.

E

Employment/labor relations/personnel/recruitment

Efforts to draw minorities to engineering make progress but still face obstacles. Asbrand, Deborah, Staff Editor; EDN, 05/29/86, pg 259, 5 pgs.
Engineering students name companies for which they'd most like to work. Asbrand, Deborah, Staff Editor; EDN, 06/12/ 86, pg 290, 2 pgs.
Engineers move out of the design lab and into manufacturing and production. Asbrand, Deborah, Staff Editor; EDN, 09/18/86, pg 383, 2 pgs.
Industry needs design-automation experts to unleash the power of supercomputers. Stubbs, George, Staff Editor; EDN, 08/07/86, pg 259, 4 pgs.
US, European, and Japanese managers grapple with the same EE career concerns. Asbrand, Deborah, Staff Editor; EDN, 05/01/86, pg 365, 3 pgs.
Women in engineering serve as role models to fight image of male-dominated profession. Asbrand, Deborah, Staff Editor; EDN, 05/15/86, pg 271, 5 pgs.
Energy storage/generation, other
Lab/benchtop power supplies offer a wide range of functions. Mosley, J D, Regional Editor; EDN, o7/10/86, pg 186, 8 pgs.
Engineering workstations
Autorouters use sophisticated algorithms to lay out complex, multilayer pc boards. Freeman, Eva, Associate Editor; EDN, 08/07/86, pg 67, 6 pgs.
Front-end tools ease test-generation chores. Vendl, Dean, NCR Microelectronics; Gearhardt, Kevin, NCR Microelectronics; Computer Design, 06/15/86, pg 97, 4 pgs.
MIPS battle heats up in workstation segment. Collett, Ronald E, Senior Technical Editor; Digital Design, 08/86, pg 19, 2 pgs.
Powerful Unix-based workstations take on minicomputers, mainframes. Weiss, Ray, Field Editor; Electronic Design, 05/15/ 86, pg 75, 4.5 pgs.
Safeguarding analog designs against disaster. Crosby, Brian C, Analog Design Tools; Wong, Ken, Analog Design Tools; Electronic Products, 06/16/86, pg 39, 6 pgs.
Software packages for standard 32-bit CAE/CAD workstations. Freeman, Eva, Associate Editor; EDN, 06/26/86, pg 134, 12 pgs.
Solids modeling: hardware grabs the spotlight. Vaughan, Jack, Managing Editor; Digital Design, 08/86, pg 50, 3 pgs.
Standalone imagers focus on workstation segment. Wilson, Andrew, Senior Technical Editor; Digital Design, 05/86, pg 17, 2 pgs.
Tailored designs match workstations to applications. Killmon, Peg, Senior Editor; Computer Design, 06/01/86, pg 49, 13 pgs.

Etching systems/techniques

Ion-beam lithography: a way to produce ULSI? Gosch, John, Frankfurt Editor; Electronics, 05/12/86, pg 22, 1 pg.

Eurocards

Eurocard packaging suits a wide range of plug-in modules. Harold, Peter, European Editor; EDN, 07/24/86, pg 163, 9 $p g s$.

Facsimile

Compressing data conserves memory in bit-mapped displays. Fuchs, Peter M, Advanced Micro Devices; EDN, 10/30/86, pg 173, 7 pgs.

Compression/expansion chip eases electronic document processing. Landau, John, Advanced Micro Devices, et al; Digital Design, 09/86, pg 43, 2 pgs.

Fans/blowers

Keeping the PC cool. Chin, Spencer, Associate Editor; Elec* tronic Products, 09/16/86, pg 47, 3.5 pgs.

Fiber optics

A low-cost way to build a fiber-optic local-area net. Staff; Electronics, 06/02/86, pg 36, 2 pgs.
Fiber optics. Biancomano, Vincent, Technology Editor; Electronic Design, 07/10/86, pg 74, 5.5 pgs .
Fiber optics points way to speed divergent networks. Mokhoff, Nicolas, Senior Editor; Computer Design, 08/01/86, pg 48, 2 pgs.
French find easier way to build fast photodiode. Gallagher, Robert T, Paris Editor; Electronics, 06/02/86, pg 15, 0.5 pgs.
High-performance chips drive optical fibers to their limit. Spadaro, Joseph J, Associate Editor; Electronic Products, 06/02/86, pg 63, 4 pgs.
The next step for MAP: fiber-optic networks. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 10/02/86, pg 36, 0.5 pgs .

Time-domain reflectometers tackle fiber-optic cabling. Michaels, Ian, Electronic Design, 08/07/86, pg 59, 3 pgs.
Filter circuits
A/Ds and D/As team to make adaptive filters. Byrne, Mike, Analog Devices; Minogue, Paschal, Analog Devices; Electronic Products, 09/02/86, pg 53, 5.5 pgs.
Analog filters come as gate arrays or standard ICs. Roche, Jean-Pierre, Thomson Semiconducteurs; Caillon, Christian, Thomson Semiconducteurs; Electronic Design, 10/16/ 86, pg 143, 5 pgs.
Chopper amp provides low-offset filter. Hoskins, Kevin, National Semiconductor; EDN, 08/07/86, pg 204, 1 pg .
Controller chip builds flexible FIR filters. Bursky, Dave, Associate Managing Editor; Electronic Design, 09/18/86, pg 61, 3 $p g s$.
DSP-filter software offers design help to novices. Cushman, Robert H, Special Features Editor; EDN, 07/10/86, pg 152, 11 pgs.
Filter IC performs signal demuliplexing. Denton, Smaragda, National Semiconductor; EDN, 10/16/86, pg 226, 1 pg.
Programmable filter chip and its PC-based tools offer new analog solutions. Dille, Thomas, Crystal Semiconductor, et al; Electronic Design, 05/29/86, pg 147, 5.5 pgs.
Programmable switched-capacitor filter ICs cut component count in many filter types. Cormier, Denny, Regional Editor; $E D N, 06 / 26 / 86, p g 71,6$ pgs.

Finance

Despite doubts, industry backs Senate tax bill. Leopold, George, Government \& Military Editor; Electronics, 05/19/86, pg 19, . 5 pg .
U.S. midyear market report. Barney, Clifford, San Mateo Editor, et al; Electronics, 07/10/86, pg 105, 7 pgs.

Flip flops

IC forms an edge-sensitive R-S flip-flop. Murugesan, $S, I S R O$ Satellite Ctr; EDN, 10/02/86, pg 204, 0.5 pgs.
Floppy-disk drives
Analog testing and PC hosts boost the capabilities of Winchester disk testers. Leibson, Steven H, Southwestern Editor; EDN, 05/01/86, pg 71, 4.5 pgs.
Half-height rigid disk drives fill the void. Aseo, Joseph, West Coast Technical Editor; Digital Design, 09/86, pg 20, 1 pg.
IBM lights a fire under the $3^{1 / 2}-\mathrm{in}$. disk. Naegele, Tobias, New York Editor; Electronics, 05/05/86, pg 15, 0.5 pgs.
Function generators/generation
Use a PC to generate analog output signals. Croteau, John, Analog Devices; Grant, Doug, Analog Devices; EDN, 05/15/ 86, pg 131, 10 pgs.
Fuses
AC circuit breaker has adjustable threshold. French, Kurt, C F Electronics; EDN, 06/12/86, pg 211, 1 pg.

GPIB instruments
Lab/benchtop power supplies offer a wide range of functions. Text continued on pg 215

Omron switches are sightly unconventional

Omron responds to your application needs by adding innovation to even the most basic switch. Automated assembly and 100\% quality assurance are just the beginning of our attention to detail; we take pride in designing the "fine points" that distinguish an Omron switch from the others.

Internal Seals Reduce Soldering and Cleaning Time

Our internally-sealed DIP switches, basic switches and mechanical keyswitches are immersible for cleaning without a time-consuming taping operation. Sealed construction also prevents flux entry during automatic flow soldering. Designed for efficiency, our top-actuated DIP switches are also auto-insertable for quick assembly.

Advanced Computer Design Maximizes Performance

Omron's extensive line of pushbutton and lighted pushbutton switches are designed with the operator in mind. Using advanced computer techniques, we've designed a unique "triangle structure" actuator which provides constant force and ideal operating feel for maximum performance. Omron lighted pushbutton switches also feature uniform color illumination to add a quality appearance to your control panels.
machine tool and other harsh industrial applications.

Unconventional Switches for Exceptional Performance

Remember Omron when your switch application requires more than just standard performance. We'll work with you to develop solutions to your specific application problems, if we haven't developed one already. When it comes to photomicrosensors (optical), thumbwheel, basic snap action, keyswitches, DIP, or pushbutton switches, we don't mind being a little unconventional.

1-800-62-OMRON

SIEMENS

INNOVATION!
 it all started here...

When it comes to claims about advanced opto displays...don't be fooled! There's just no substitute for experience. And Siemens has it. More than anyone else in the industry! After all, we pioneered Intelligent Display ${ }^{\circledR}$ technology back in 1977 ...and we've been continually refining and expanding our Intelligent Display and Programmable Display ${ }^{\text {TM }}$ family ever since.
No one else offers you more than Siemens...in technological expertise; in long-term reliability and quality performance; in the number of device types
available; or in dependable on-time deliveries. In fact, no one even comes close. And you don't pay more to get the best!
So, for advanced opto display technology that's second to none, you can't go wrong with the intelligent choice...the broad, innovative line of Intelligent Display and Programmable Display devices from Siemens. Once you compare "us" against "them"...you'll find that Siemens has the most to offer.

and our lead grows stronger!

Siemens ("us")

10 years experience
Continual product refinement and evolution
Over 10 million unit hours of testing

YES
YES
YES
100\% burn-in (standard) YES
Choice of 32 different devices YES
Dot matrix font YES
Choice of colors YES
History of volume on-time deliveries

YES
YES
YES
New software-programmable displays
Custom capabilities
"them" not even close NO

NO
NO Only 3 types

NO
NO
NO

Siemens optoelectronics... Leaders in Intelligent Display and Programmable Display Devices.

Siemens Components, Inc.,
Optoelectronics Division, 19000 Homestead Road, Cupertino, CA 95014. (408) 257-7910.

Franchised Stocking Distributors: Advent, Hall-Mark, Marshall.

MICRO-LOGIC III': The CAE tool with a a0,000-gate digital simulator for your PC. MICRO-LOGIC II."' The CAE tool with a 10,000-gate digital simulator for your PC. MICRO-LOGIC III': The CAE tool with a a0,000-gate digital simulator for your PC.

Spectrum Software's MICRO-LOGIC II® puts you on top of the most complex logic design problems. With a powerful total capacity of 10,000 gates, MICRO-LOGIC II helps engineers tackle tough design and simulation problems right at their PCs.
MICRO-LOGIC II, which is based on our original MICRO-LOGIC software, is a fieldproven, second-generation program. It has a high-speed event-driven simulator which is significantly faster than the earlier version.

Timing Simulator
The program provides you with a top-notch interactive drawing and analysis environment. You can create logic diagrams of up to 64 pages with ease. The software features a sophisticated schematic editor with pan and zoom capabilities.

Shape Editor
A 200 -type library of standard parts is at your fingertips. And for a new high in flexibility, a built-in shape editor lets you create unique or custom shapes.
MICRO-LOGIC II is available for the IBM ${ }^{\circledR}$ PC. It is CGA, EGA, and Hercules ${ }^{\circledR}$ compatible and costs only $\$ 895$ complete. An evaluation version is available for $\$ 100$. Call or write today for our free brochure and demo disk. We'd like to put you in touch with a top digital solution.

- Total capacity of 10,000 gates
- Integrated schematic editor
- Fast assembly language routines
- Standard parts library of 200 types
- Event-driven timing simulator
- Built-in shape editor
- Multiple delay models
- Printer and plotter hard copy

Schematic Editor

드ㄹㅡㅡㅌㅡ․․․․․․․․
1021 S. Wolfe Road, Dept. E
Sunnyvale, CA 94087
(408) 738-4387

MICRO-LOGIC II is a registered trademark
of Spectrum Software.
Hercules is a registered trademark
of Hercules Computer Technology
IBM is a registered trademark
of International Business Machines, Ine

EDN TECHNICAL-ARTICLE DATABASE

Mosley, J D, Regional Editor; EDN, 07/10/86, pg 186, 8 pgs.

GaAs technology

Bit-slice ICs kick off era of commercial GaAs LSI. Staff; Electronics, 09/18/86, pg 61, 4 pgs.
Controllers turn to GaAs for 2048×2048 displays. Wilson, Andrew, Senior Technical Editor; Digital Design, 09/86, pg 23, 1 pg .
Examine and verify GaAs IC performance. Pengue, Louis, TriQuint Semiconductor; Walters, Eldon, Tektronix; EDN, 08/21/86, pg 127, 9.5 pgs.
GaAs LSI goes commercial. Cole, Bernard C , Managing Editor; Electronics, 09/18/86, pg 57, 4 pgs.
GaAs RISC processor is in the works. Lineback, J Robert, Dallas Editor; Electronics, 06/09/86, pg 21, 1.5 pgs.
GaAs gains ground against CMOS and bipolar techniques. Marrin, Ken, Senior Editor; Computer Design, 07/86, pg 131, 3.5 pgs.
GaAs pushes bit slice to new performance levels. Kates, Geoffrey, Contributing Editor; Computer Design, 08/15/86, pg 26, ${ }_{2} 2 p g s$.
Gallium Arsenide-a semicustom approach. Wilson, David, Executive Editor; Digital Design, 06/86, pg 89, 3 pgs.
High-speed logic ICs. Cormier, Denny, Regional Editor; EDN, 08/21/86, pg 112, 9 pgs.
Microwave and digital circuits are combined on one GaAs chip. Waller, Larry, Los Angeles Editor; Electronics, 10/02/86, pg 31, 1 pg .
Subnanosecond silicon ECL gate arrays face challenge from GaAs and CMOS. Bursky, Dave, Associate Managing Editor; Electronic Design, 06/12/86, pg 74, 8 pgs.
TI builds 1 -K static ram in GaAs-on-silicon. Lineback, J Robert, Dallas Editor; Electronics, 09/18/86, pg 31, 1.5 pgs.
The race is on to develop microwave GaAs ICs for DOD. Waller, Larry, Los Angeles Editor; Electronics, 10/30/86, pg 29, 1 $p g$.

Gate arrays

A bipolar gate array that runs fast on low power. Staff; Electronics, 10/02/86, pg 68, 4 pgs.
A new, easy way to design ASICs. Staff; Electronics, 10/16/86, pg 53, 5 pgs.
Checking out VLSI with standard test gear. Staff; Electronics, 05/26/86, pg 33, 3 pgs.
Customizing a gate array, Part 2: verifying and laying out the design. Gabay, Jon, Associate Editor; Electronic Products, 06/02/86, pg 50, 9 pgs.
Customizing a gate array, Part 3: along the road to final silicon. Gabay, Jon, Associate Editor; Electronic Products, 07/15/86, pg 52, 5 pgs.
Digital analysis system wears many hats. Bennett, David L, Tektronix; Electronic Products, 07/15/86, pg 58, 8 pgs.
ECL gate arrays emerge as speed and density contenders. Marrin, Ken, Senior Editor; Computer Design, 10/15/86, pg 31, 7 pgs.
From testable, soft macrocells springs an 8000 -gate array. Wick, David G, Honeywell Digital Products Center, et al; Electronic Design, 10/16/86, pg 155, 3.5 pgs.
Gate arrays make an end run around military red tape. Waller, Larry, Los Angeles Editor; Electronics, 10166/86, pg 31, i $p g$.
Gate-array compiler cuts big designs down to size. Well, Steven, FutureNet Division, Data I/O, et al; Electronic Design, 06/26/86, pg 101, 5.5 pgs .
How designers can save time in laying out a sea of gates. Staff; Electronics, 10/30/86, pg 77, 3 pgs .
How Motorola moved BiMOS up to VLSI levels. Staff; Electronics, 07/10/86, pg 67, 4 pgs.
IC emulates many types of logic gates. Christner, Kurt W, $E D N, 09 / 04 / 86, p g 212,1.5 \mathrm{pgs}$.
Laser-customized gate arrays in 24 hours. Collett, Ronald E, Senior Technical Editor; Digital Design, 05/86, pg 24, 2 pgs.
Linear and digital ASICs converge on same silicon chips. Leonard, Milt, Northwestern Editor; Electronic Products, 05/01/ 86, pg 50, 5 pgs.
New test tools help solve prototype verification problems. Goering, Richard, Senior Editor; Compiter Design, 10/15/ 86, pg 61, 13 pgs.
Novel architectures give these chips new speed and capacity. Panasuk, Curtis, Field Editor; Electronic Design, 10/16/86, pg 94, 6 pgs.
PAL devices help smooth design of gate array's macrocells. Jaeger, Kent, Monolithic Memories; Electronic Design, 10/16/86, pg 123, 4.5 pgs.
Sea-of-gates array puts 75% of its gates to use. Cole, Bernard,

Managing Editor; Electronics, 10116/86, pg 38, 0.5 pgs.
Sierra's new simulator speeds up ASIC design. Staff; Electronics, 10/16/86, pg 60, 3 pgs.
Standard-cell libraries expand. Winard, Harold, Electronic Design, 09/11/86, pg 179, 6 pgs.
Stretching the limits of ASIC software. Cole, Bernard C, Semiconductors Editor; Electronics, 06/23/86, pg 34, 5 pgs.
Subnanosecond silicon ECL gate arrays face challenge from GaAs and CMOS. Bursky, Dave, Associate Managing Editor; Electronic Design, 06/12/86, pg 74, 8 pgs.
Timing verification predicts performance of logic arrays. Franz, Michael, Applied Micro Circuits; EDN, 06/12/86, pg 161, 8.5 pgs.
Vendors stock standard-cell libraries with linear and LSI-level functions. Smith, David, Associate Editor; EDN, 10/02/86, pg 63, 7.5 pgs .
Why silicon compilers are starting to take off. McLeod, Jonah, Managing Editor; Electronics, 07/24/86, pg 72, 6 pgs.

Government

Scots, Irish no longer court just any firm. Waller, Larry, Los Angeles Editor; Electronics, 05/05/86, pg 24, 1 pg.
Trade pact hits fast as prices soar on some Japanese ICs. Barney, Clifford, San Mateo Editor; Berger, Michael, World News Chief; Electronics, 08/21/86, pg 79, 2 pgs.

Graphics boards

Boards that meet EGA spec bring flexible graphics capability to IBM PC workstations. Conner, Margery S, Regional Editor; EDN, 09/18/86, pg 75, 6 pgs.
CRT display circuit eliminates need for controller chip. Davidian, David, NEC Electronics; EDN, 06/26/86, pg 185, 11.5 pgs.

IBM graphics add-ons-emulating a cameleon. Wilson, Andrew, Senior Technical Editor; Digital Design, 07/86, pg27, 2 pgs.
Image-processing boards boost real-time performance. Molinari, John, Data Translation; Direnzo, Anthony, Data Translation; Computer Design, 05/15/86, pg 75, 5 pgs.
Livelier graphics-the bit-slice bonus. Kondraske, George V, University of Texas at Arlington, et al; Electronic Products, 09/16/86, pg 54, 8 pgs.

Graphics circuits

CRT display circuit eliminates need for controller chip. Davidian, David, NEC Electronics; EDN, 06/26/86, pg 185, 11.5 pgs.

Graphics IC simplifies design, boosts performance. Randall, Martin, Intel; Computer Design, 06/01/86, pg 73, 4.5 pgs.
Graphics coprocessor chip gives small systems a look at the big picture. Randall, Martin, Intel; Johary, Arun, Intel; Electronic Design, 05/29/86, pg 159, 6 pgs.
How silicon ICs are reshaping the graphics picture. $O h r$, Stephan, Technology Editor; Electronic Design, 06/26/86, pg 72, 6 pgs.
Intel designs a graphics chip for both CAD and business use. Staff; Electronics, 05/19/86, pg 57, 4 pgs.
Livelier graphics-the bit-slice bonus. Kondraske, George V, University of Texas at Arlington, et al; Electronic Products, 09/16/86, pg 54, 8 pgs.
NCR aims its graphics chips at PC instead of work station. Staff; Electronics, 05/19/86, pg 61, 3 pgs.
Powerful support chips simplify graphics design. Raghavan, Mike, Hitachi America; Wheeler, P Kim, Hitachi America; Electronic Design, 08/21/86, pg 123, 5 pgs.
Racehorse RAM spurs sharper color graphics. Teza, Jeff, Brooktree; Plummer Sr, Wylie, Brooktree; Electronic Products, 09/16/86, pg 68, 5 pgs.
Super chips bring unprecedented power to graphics display control. Williams, Tom, Western Managing Editor; Computer Design, 05/01/86, pg 65, 13 pgs.
The scramble to win in graphics chips. Lineback, J Robert, Dallas Editor; Electronics, 05/19/86, pg 64, 2 pgs.

Graphics systems

Advances in flat-panel-display technology improve display features and cut prices. Mosley, J D, Regional Editor; EDN, 09/04/86, pg 79, 5 pgs.
Boards that meet EGA spec bring flexible graphics capability to IBM PC workstations. Conner, Margery S, Regional Editor; EDN, 09/18/86, pg 75, 6 pgs .
Compressing data conserves memory in bit-mapped displays. Fuchs, Peter M, Advanced Micro Devices; EDN, 10/30/86, pg 173, 7 pgs .
Designers want realism and real-time interactivity in graphics systems. Williams, Tom, Western Managing Editor; Computer Design, 07/86, pg 62, 2 pgs.

Frame-grabber boards acquire and process images in real time. Preston, Craig, Data Translation; Molinari, John, Data Translation; EDN, 09/18/86, pg 273, 6 pgs.
Graphics pixel processing sizzles with smart frame buffer. Williams, Tom, Western Managing Editor; Computer Design, 10/01/86, pg 46, 1.5 pgs .
PC onslaught leads to lower-cost graphics. Wilson, Andrew, Senior Technical Editor; Digital Design, 10/86, pg 21, 1 pg.
PC-based graphics take on work stations. Rubinger, David, Electronics, 07/24/86, pg 38, 1 pg .
Pixel-plane machine debuts at SIGGRAPH. Wilson, Andrew, Senior Technical Editor; Digital Design, 09/86, pg 24, 2 pgs.
Smart buffer speeds 3-d graphics. Rose, Craig D, Boston Editor; Electronics, 08/21/86, pg 36, 1 pg.
Versatile add-in boards acquire and process video images and graphics in real time. Titus, Jon, Senior Editor; EDN, 08/07/86, pg 103, 6 pgs.
What's new in imaging at EI '86. Wilson, Andrew C, Senior Technical Editor; Digital Design, 10/86, pg 57, 3 pgs.

H

Heat sinks/cooling devices

Tiny channels take heat from multichip modules. Lyman, Jerry, Packaging/Production Editor; Electronics, 05/12/86, pg 28, 0.5 pgs.

Hybrid circuits

Careful design takes the heat out of hybrid power op amps. Scofield, Granger, Apex Microtechnology; Electronic Design, 09/11/86, pg 115, 5 pgs.
High-power hybrid op amp dissipates up to 500 W and guards against burnout. Scofield, Granger, Apex Microtechnology; Electronic Design, 05/15/86, pg 129, 5 pgs.
Hybrid IC operational amplifiers achieve higher power, voltage, and speed. Fleming, Tarlton, Associate Editor; EDN, 09/18/ 86, pg 59, 7 pgs.
Hybrid circuits: meeting tough challenges in tough environments. Mennie, Don, Electronic Design, 06/19/86, pg 64, 8 $p g s$.
Hybrid makers balk at MIL-STD obstacle course. Dixon, Thomas, Midwestern Editor; Electronic Products, 10/15/86, pg 68, 5 pgs.
Isolation amplifiers get better as their sizes and costs shrink. Heftman, Gene, Electronic Design, 05/01/86, pg 101, 4.5 pgs.
Motorola makes a run at the hybrid market. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 10/16/86, pg 34, 1 pg .
Synchro/resolver converters bring low cost and small size to motion-control systems. Fleming, Tarlton, Associate Editor; EDN, 10/30/86, pg 61, 6 pgs.
Thick and thin films battle for growing hybrid market. Lyman, Jerry, Packaging/Production Editor; Electronics, 08/07/86, pg 88, 5 pgs.

Imports/exports
Now there's a U.S. champion for Japanese chip makers. Waller, Larry, Los Angeles Editor; Electronics, 05/19/86, pg 16, 1.5 pgs.

Inductors

Lack of standards breeds diversity in SMD inductors. Leibson, Steven H, Regional Editor; EDN, 07/24/86, pg 189, 6 pgs.

Industrial electronics

Getting the most out of today's technology. Shapiro, Sydney, Managing Editor; Computer Design, 07/86, pg 76, 12 pgs.

Inspection

CAD data makes inspection flexible. Rose, Craig D, Boston Editor; Electronics, 06/16/86, pg 27, 0.5 pgs.
Instrumentation/design aids \& services/measurement, other
Analog testing and PC hosts boost the capabilities of Winchester disk testers. Leibson, Steven H, Southwestern Editor; EDN, 05/01/86, pg 71, 4.5 pgs.
Increased use of radiation-hardened ICs calls for more careful interpretation of test claims. Bloom, Michael, Contributing Editor; Computer Design, 07/86, pg 26, 5 pgs.
Test \& measurement. McLeod, Jonah, Managing Editor; Elec-
tronics, 10116/86, pg 98, 2 pgs.
Tester guarantees ASIC performance. Lindsay, Ken, Integrated Measurement Systems; Miller, John, Integrated Measurement Systems; Digital Design, 05/86, pg 73, 4 pgs.
Time-domain reflectometers tackle fiber-optic cabling. Michaels, Ian, Electronic Design, 08/07/86, pg 59, 3 pgs.

Insurance

Consulting engineers pay a high price while fighting for liability law reform. Asbrand, Deborah, Staff Editor; EDN, 08/21/86, pg 275, 1.5 pgs.
Integrated circuits/semiconductor devices/circuit design, other
Bipolar comes alive again as development speeds up. Cole, Bernard C, Managing Editor; Electronics, 09/04/86, pg 100, 2 pgs.
Fairchild's radical process for building bipolar VLSI. Staff; Electronics, 09/04/86, pg 55, 5 pgs.
ICs outspeed software in doing text searches. Manuel, Tom, Managing Editor; Electronics, 07/24/86, pg 32, 1 pg.
Methodology speeds VLSI circuit design cycles. Feller, Albert, RCA, Aerospace \& Defense Division; EDN, 05/15/86, pg 151, 7.5 pgs.

Pressure sensors and transducers. Ormond, Tom, Senior Editor; $E D N, 05 / 01 / 86, p g 100,11.5 \mathrm{pgs}$.
Revived transistor structure lowers cost of bipolar VLSI. Gosch, John, Frankfurt Editor; Electronics, 07/24/86, pg 29, 1 pg.
The chip carrier's checkered progress. Chin, Spencer, Associate Editor; Electronic Products, 07/15/86, pg 42, 7 pgs.

Intelligent instruments

Digital analysis system wears many hats. Bennett, David L, Tektronix; Electronic Products, 07/15/86, pg 58, 8 pgs.
High-level software simplifies use of PC-based instrument modules and systems. Everett, Chris, Regional Editor; EDN, 10/16/86, pg 61, 5.5 pgs.
Timing analyzers keep pace with high-speed logic. Everett, Chris, Regional Editor; EDN, 07/24/86, pg 118, 9 pgs.

Interconnection systems

Backplanes play a crucial role in high-speed systems. Ormond, Tom, Senior Editor; EDN, 07/10/86, pg 222, 6 pgs.
New technologies crowding automated-wiring leader. Lyman, Jerry, Packaging/Production Editor; Electronics, 06/16/86, pg 54, 2 pgs.
Professional wire-wrapping services ease prototype-circuit assembly tasks. Ormond, Tom, Senior Editor; EDN, 09/18/86, pg 115, 5 pgs.

K

Keyboards
Film cuts cost up to 90% for capacitive keyboard. Gallagher, Robert T, Paris Editor; Electronics, 07/24/86, pg 44, 1 pg.
Keyboards get smart and evolve into multifunction input devices. Shereff, Jesse, Electronic Design, 06/19/86, pg 81, 6 $p g s$.

L

Leadless chip carriers

Choosing packages wisely pays off in I/O, speed, space. Waltersdorf, Harvey R, Thomas \& Betts; Electronic Design, 06/19/86, pg 107, 4.5 pgs.
Good interconnect design optimizes IC performance. Johnston, Joseph E, Rogers; Computer Design, 10/01/86, pg 91, 5 pgs.

Legal issues

Software users and vendors square off over the issue of product responsibility. Beutel, Richard, EDN, 06/26/86, pg 277, 2 pgs.

Linear circuits

Boost op-amp output without sacrificing drift and gain specs. Williams, Jim, Linear Technology; EDN, 05/29/86, pg 131, 14 pgs.
Design current-mode switching supply on analog workstation. Walker, Norman C, Walker Electronics; Walker, Martin G, Analog Design Tools; EDN, 06/12/86, pg 195, 6 pgs.
Digital gain control streamlines signal-acquisition systems. Graeme, Jerald, Burr-Brown; EDN, 05/29/86, pg 171,9 pgs.

EDN TECHNICAL-ARTICLE DATABASE

High-power op amp provides diverse circuit functions. Widlar Robert, National Semiconductor; Yamatake, Mineo, National Semiconductor; EDN, 05/29/86, pg 185, 13 pgs.
High-precision CMOS op amps accommodate $\pm 15 \mathrm{~V}$ supplies. Sherman, Leonard, Maxim Integrated Products; EDN, 05/ 29/86, pg 149, 9 pgs.
High-voltage circuits use mixed processes, fulfill diverse roles. Travis, Bill, Senior Editor; EDN, 07/10/86, pg 74, 10 pgs.
Solve oscillation problems when implementing op-amp powerbooster stages. Williams, Jim, Linear Technology; EDN, 06/12/86, pg 203, 5 pgs.
Local-area network architecture/design/design standards
A low-cost way to build a fiber-optic local-area net. Staff; Electronics, 06/02/86, pg 36, 2 pgs.
Card is interim solution for modem in MAP nets. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 10/ 02/86, pg 36, 0.5 pgs.
Factory data gathering that runs on a PC. Waller, Larry, Los Angeles Editor; Electronics, 08/21/86, pg 35, 1 pg.
Fiber optics points way to speed divergent networks. Mokhoff, Nicolas, Senior Editor; Computer Design, 08/01/86, pg 48, 2 pgs.
Here comes a better way to wire up an auto. Staff; Electronics, 08/21/86, pg 67, 3 pgs.
LAN standards breed a multitude of smart boards. Mokhoff, Nicolas, Senior Editor; Computer Design, 05/15/86, pg 34, 3 pgs.
Low-speed LANs check in at $\$ 100$ per connection. Barney Clifford, San Mateo Editor; Electronics, 07/10/86, pg 29, 1
pg. Mfg. Automation Editor; Electronic Products, 08/15/86, pg 46, 8 pgs.
MAP picks up more support but products slow to appear. Shapiro, Sydney F, Managing Editor; Computer Design, 09/15/86, pg 49, 5 pgs.
PCs and LANs revolutionize the office. Mokhoff, Nicolas, Senior Editor; Computer Design, 07/86, pg 104, 7.5 pgs.
Server-based net designs proliferate. Vaughan, Jack, Managing Editor; Digital Design, 10/86, pg 22, 1 pg.
Starlan ICs arrive, standard nears. Barney, Clifford, San Mateo Editor; Electronics, 06/09/86, pg 20, 1 pg.
TI pares chip set for IBM token ring. Lineback, J Robert, Dallas Editor; Electronics, 10/02/86, pg 33, 1 pg .
The next big auto market: the multiplexed data bus. Naegele, Tobias, New York Editor; Electronics, 08/21/86, pg 81, 2 pgs.
The next step for MAP: fiber-optic networks. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 10/02/86, pg 36, 0.5 pgs .

With carrier-band chips, MAP will soon cost less. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 09) 04/86, pg 32, 1 pg.
Logic analyzers/analysis
Ground-noise probe is battery powered. Darjany, John, Griffin Technology; EDN, 10/16/86, pg 228, 1 pg.
Logic analyzer vendors focus on integration and flexibility. Goering, Richard, Senior Editor; Computer Design, 09/01/ 86, pg 39, 4 pgs
Logic analyzers: prized tools in hardware and software design. McGill, Boyce, Electronic Design, 06/19/86, pg 37, 3 pgs.
Logic timing analyzer has $100-\mathrm{ps}$ resolution. Staff; Electronics, 10/30/86, pg 72, 3 pgs.
Test hardware helps pinpoint software bugs. Blakeslee, Thomas R, Orion Instruments; James, John S, Orion Instruments; EDN, 09/04/86, pg 169, 7 pgs
Timing analyzers keep pace with high-speed logic. Everett, Chris, Regional Editor; EDN, 07/24/86, pg 118, 9 pgs.
Word generators bring order to logic testing. Delp, Robert, Dolch Logic Instruments; Kleindienst, Peter, Dolch Logic Instruments; EDN, 09/04/86, pg 159, 3 pgs.

Logic arrays/systems

ASICs optimize chip-select decoding functions. Williams, David G, Harris Semiconductor; EDN, 10/02/86, pg 195, 5 pgs.
Crosspoint switch: a PLD approach. Donnell, Jim, Intel; Digital Design, 07/86, pg 40, 3.5 pgs.
Design and simulate semicustom ICs on low-cost IBM PC-based design systems. Smith, David, Associate Editor; EDN, 06/26/86, pg 51, 6.5 pgs .
EEPROM-based ASIC propels programmable logic to new levels of complexity. Goetting, Erich, Exel Microelectronics; Electronic Design, 05/01/86, pg 201, 5 pgs.
Electrically erasable CMOS PLDs conquer tradeoff dilemmas.

Jigour, Robin J, International CMOS Technology, et al; Electronic Products, 08/01/86, pg 33, 6 pgs.
Erasable PLDs and software help forge state machines. Darbonne, Thomas, Altera; Electronic Design, 08/21/86, pg 140, 5 pgs.
FPCs and PLDs simplify VME Bus control. Khu, Arthur, Advanced Micro Devices; EDN, 10/02/86, pg 187, 6 pgs.
FPCs and PLDs implement VME Bus slave controllers. Khu, Arthur, Advanced Micro Devices; EDN, 10/16/86, pg 211, 7.5 pgs.
Finite differences simplify look-up table. Richard, Sylvio, Univ of Sherbrooke; EDN, 07/10/86, pg 258, 1 pg.
High-speed logic ICs. Cormier, Denny, Regional Editor; EDN, 08/21/86, pg 112, 9 pgs.
In-circuit logic device can be reprogrammed on the fly. McMorrow, Scott, Lattice Semiconductor; Electronic Design, 08/07/86, pg 94, 4 pgs.
It's an all-out fight over pinouts for fast CMOS logic. Lineback, J Robert, Dallas Editor; Electronics, 08/07/86, pg 29, 1 pg.
Latch array provides bank of control words. Grill, William, Martin Marietta; EDN, 09/04/86, pg 207, 1 pg.
New memory-cell design may lower EPLD costs. Cohen, Charles L, Tokyo Editor; Electronics, 09/04/86, pg 30, 1 pg.
PAL device buries registers, brings state machines to life. Agrawal, Om, Shankar, Kapil, Advanced Micro Devices; Electronic Design, 07/24/86, pg 101, 5 pgs.
PAL devices help smooth design of gate array's macrocells. Jaeger, Kent, Monolithic Memories; Electronic Design, 10/ 16/86, pg 123, 4.5 pgs .
PLD provides chip select and wait states. Dujari, Vineet, Advanced Micro Devices; EDN, 08/21/86, pg 184, 2 pgs.
PLDs implement encoder/decoder for disk drives. Khu, Arthur, Advanced Micro Devices; Sterner, Rudy, Advanced Micro Devices; EDN, 09/18/86, pg 285, 8.5 pgs .
Programmable logic declares war on gate arrays. Collett, Ronald, Senior Technical Editor; Digital Design, 07/86, pg 32, 5.5 pgs .
Programmable logic devices. Smith, David, Associate Editor; $E D N, 05 / 15 / 86, p g 94,13$ pgs.
Programmable logic vendors clash over functionality. Collett, Ronald E, Senior Technical Editor; Digital Design, 10/86, pg 28, 2 pgs.
Programmable transistor array boasts 100% utilization. Collett, Ronald E, Senior Technical Editor; Digital Design, 07/86, pg 17, 2 pgs .
Smart tools ease PLD design. Holley, Michael, Data I/O; Digital Design, 06/86, pg 72, 4 pgs.
When bit slices team up with ECL, 32-bit computers rise to superpower status. DeMonico, Chris, Texas Instruments; Laczko, Frank, Texas Instruments; Electronic Design, 05/ 15/86, pg 117, 4.5 pgs.

M

Mainframe computers
IBM's 370 architecture finally goes midrange. Elliot, Rick, Assistant News Editor; Electronics, 10/16/86, pg 33, 0.5 pgs .
RISC design did not delay spectrum. Barney, Clifford, San Mateo Editor; Electronics, 10/16/86, pg 42, 1 pg.
Supermicro look-alikes differ below the surface in processing power. Mokhoff, Nicolas, Senior Editor; Computer Design, 09/01/86, pg 57, 13 pgs.
This minisuper is aimed at parallel processing. Staff; Electronics, 10/30/86, pg 56, 3 pgs.
This supercomputer also runs VAX/VMS programs. Staff; Electronics, 09/04/86, pg 74, 3 pgs.

Management

US, European, and Japanese managers grapple with the same EE career concerns. Asbrand, Deborah, Staff Editor; EDN, 05/01/86, pg 365, 3 pgs.

Mask-aligning/exposure equipment

Realigning bond pads hikes chip reliability. Naegele, Tobias, New York Editor; Electronics, 05/26/86, pg 17, 1 pg.
X-ray lithography gets closer. Lyman, Jerry, Packaging/Production Editor; Electronics, 05/26/86, pg 15, 1 pg.

Materials research/development

Alvey research program breaks new ground in U.K. Gold, Martin, Managing Editor; Electronic Design, 07/10/86, pg 34, 2 pgs.
PtSi: a new contender for IR sensors. Waller, Larry, Los Text continued on pg 220

BEFORE THEF TRNVEL LT MACH 1.7. THEY TRAVEL III HRROLGG COITTAIIERSS.

For several current aircraft and missile programs, the sensitive guidance systems and other electronic components are stored and shipped in Hardigg containers. So, before they travel on their own, they travel with us.

EDN TECHNICAL-ARTICLE DATABASE

Angeles Editor; Electronics, 09/18/86, pg 38, 1 pg.
Materials/resources, other
A bruised NASA hangs in with space-factory program. Leopold, George, Government \& Military Editor; Electronics, 05/05/ 86, pg 44, 2 pgs.

Memory controllers

$100-\mathrm{MHz}$ DRAM controller sparks multiprocessor designs. Siddique, Naseer, Signetics; Electronic Design, 09/18/86, pg 138, 4 pgs.
1-Mbit DRAM controller shuns complex timing and protocol to streamline high-speed systems. Amitai, Zwie, Monolithic Memories; Electronic Design, 05/01/86, pg 239, 5 pgs.
32 -bit micros advance art of memory management. Bond, John, Contributing Editor; Computer Design, 10/15/86, pg 21, 6 pgs.
A closer look at MC68030 memory management. Parrott, Cliff, Motorola; Moyer, Bill, Motorola; Digital Design, 10186, pg 72, 3 pgs.
Cache memory means faster access, multiple microprocessors. Sweazey, Paul, MIPS Computer Systems; Electronic Design, 09/11/86, pg 137, 4 pgs.
Enlarge Z80 memory space to 512k bytes. Vazach, Joseph G, Allen-Bradley; EDN, 06/12/86, pg 212, 1 pg .
FIFO registers waste no time refereeing data transfers. O’Brien, John, Plessey Semiconductors, et al; Electronic Design, 08/07/86, pg 104, 5 pgs.
Memory management chip for 68020 translates addresses in less than a clock cycle. Cruess, Michael W, Motorola; Electronic Design, 05/15/86, pg 151, 7 pgs.
Special report: The options multiply in mass storage. Staff; Electronics, 05/19/86, pg 28, 7 pgs.
Static RAM uses smarts to control dual-port access. Cantrell, Tom, Hitachi Microsystems International; Electronic Design, 06/26/86, pg 115, 4.5 pgs.

Memory devices

1-Mbit DRAM controller shuns complex timing and protocol to streamline high-speed systems. Amitai, Z wie, Monolithic Memories; Electronic Design, 05/01/86, pg 239, 5 pgs.
32 -bit micros advance art of memory management. Bond, John, Contributing Editor; Computer Design, 10/15/86, pg 21, 6 pgs.
Building fast SRAMs with no process 'tricks.' Staff; Electronics, 08/07/86, pg 81, 3 pgs.
Complex factors underlie universal-programmer selection. Negrin, Alan E, Elan Digital Systems; EDN, 05/15/86, pg 167, 5 pgs.
Dual-port RAM facilitates multiprocessor communication. $W u$, B Frank, Motorola; Borgstahl, Ron, Motorola; Electronic Products, 06/02/86, pg 70, 5 pgs.
ECL static RAMs gaining higher visibility. Leonard, Milt, Western Editor; Electronic Products, 10/01/86, pg 41, 3.5 pgs.
EEPROMs move into standard cell libraries. Twaddell, William, Contributing Editor; Computer Design, 05/01/86, pg 34, 2.5 pgs.
EPROM competition heats up. Wilson, Dave, Editor; Digital Design, 09/86, pg 19, 1 pg.
EPROMs simplify TMS32010 memory system. Brown, A D E, British Aerospace; EDN, 06/26/86, pg 230, 1 pg.
Electrically erasable CMOS PLDs conquer tradeoff dilemmas. Jigour, Robin J, International CMOS Technology, et al; Electronic Products, 08/01/86, pg 33, 6 pgs.
FIFO RAM controller tackles deep data buffering. Pai, Tom, Monolithic Memories; Computer Design, 08/01/86, pg 109, 3.5 pgs.

FIFO registers waste no time refereeing data transfers. O'Brien, John, Plessey Semiconductors, et al; Electronic Design, 08/07/86, pg 104, 5 pgs.
Finite differences simplify look-up table. Richard, Sylvio, Univ of Sherbrooke; EDN, 07/10/86, pg 258, 1 pg.
Forestalling software skullduggery. Letham, Lawrence, Intel; Electronic Products, 06/16/86, pg 88, 4.5 pgs .
Four approaches to nonvolatile memory open to designers. Marrin, Ken, Senior Editor; Computer Design, 09/15/86, pg 30, 2.5 pgs.
Hierarchical memory features multilevel access paths. Bagnall, Peter, VISIC; Furnweger, Charles, VISIC; Digital Design, 05/86, pg 67, 3 pgs.
High-density EPROMs expand code space while standard footprints ease retrofits. Cormier, Denny, Regional Editor; EDN, 10/02/86, pg 91, 6.5 pgs .
High-speed memory takes fast chips and little delay. Altnether,

Joseph P, Intel; Electronic Design, 07110186, pg 135, 4.5 pgs. How Seeq is pushing EEPROMs to $1-\mathrm{Mb}$ densities. Staff; Electronics, 08/21/86, pg 53, 4 pgs.
In pursuit of the ideal op amp. Spadaro, Joseph, Associate Editor; Electronic Products, 08/01/86, pg 55, 4 pgs.
Memory management chip for 68020 translates addresses in less than a clock cycle. Cruess, Michael W, Motorola; Electronic Design, 05/15/86, pg 151, 7 pgs.
Multiprocessor systems power demand for dual-port SRAMs. Marrin, Ken, Senior Editor; Computer Design, 06/01/86, pg 23, 1.5 pgs.
New memory-cell design may lower EPLD costs. Cohen, Charles L, Tokyo Editor; Electronics, 09/04/86, pg 30, 1 pg. Programming schemes change applications role of EPROMs. Slocombe, Denise, Data I/O; EDN, 10/30/86, pg 191, 5 pgs. Racehorse RAM spurs sharper color graphics. Teza, Jeff, Brooktree; Plummer Sr, Wylie, Brooktree; Electronic Products, 09/16/86, pg 68, 5 pgs.
SRAM vendors battle for niche applications. Marrin, Ken, Senior Editor; Computer Design, 08115/86, pg 43, 10 pgs.
Single chip combines bit slice and EPROM. Everett, Darryl, Waferscale Integration; Thorpe, Roger, Consultant; Computer Design, 08/15/86, pg 61, 4 pgs.
Special report: The options multiply in mass storage. Staff; Electronics, 05/19/86, pg 28, 7 pgs.
Static RAM uses smarts to control dual-port access. Cantrell, Tom, Hitachi Microsystems International; Electronic Design, 06/26/86, pg 115, 4.5 pgs.
Static RAMs buck dynamics aside. Weiser, Chuck, Motorola; Crutchfield, Bob, Motorola, Electronic Products, 10/01/86, pg 55, 5.5 pgs.
TI builds 1-K static ram in GaAs-on-silicon. Lineback, J Robert, Dallas Editor; Electronics, 09/18/86, pg 31, 1.5 pgs.
The exploding role of nonvolatile memory. Cole, Bernard C, Managing Editor; Electronics, 08/21/86, pg 47, 6 pgs.
The fast static ram moves into the mainstream. Lineback, J Robert, Dallas Editor; Electronics, 08/07/86, pg 121, 3 pgs.
Thick oxide beats thin film in building big EEPROMs. Staff; Electronics, 05/12/86, pg 30, 3 pgs.

Microcomputer buses/interfacing

8 - and 16-bit buses battle for supremacy in industrial arena. Marrin, Ken, Senior Editor; Computer Design, 06/15/86, pg 29, 4 pgs.
$\mu \mathrm{P}$-based control scheme can enhance printer performance. Dempsey, Don, Xerox; EDN, 08/07/86, pg 165, 3 pgs.
Battle of the buses-Can we talk? Wilson, Dave, Editor; Digital Design, 08/86, pg 34, 4 pgs.
Breaking the speed barrier on the VMEbus. Staff; Electronics, 07/10/86, pg 58, 3 pgs.
Communications processor exploits Multibus II bandwidth. Scholhamer, George, Central Data; Digital Design, 05/86, pg 61, 3 pgs.
DMA, data acquisition and the personal computer. Porter, Rick, Burr-Brown; Digital Design, 09/86, pg 33, 4 pgs.
Dynamically map the $68008 \mu \mathrm{P}$'s memory. Wood, Rodney E, Interac; EDN, 10/02/86, pg 210, 1.5 pgs.
FPCs and PLDs simplify VME Bus control. Khu, Arthur, Advanced Micro Devices; EDN, 10/02/86, pg 187, 6 pgs.
FPCs and PLDs implement VME Bus slave controllers. Khu, Arthur, Advanced Micro Devices; EDN, 10/16/86, pg 211, 7.5 pgs.
Finally, a SCSI standard; but there are still loose ends. Caruso, Denise, Electronics, 05/26/86, pg 46, 2 pgs.
High-density interfaces aren't superfluous anymore. Chan, Kenneth, Monolithic Memories; Computer Design, 09/01/86, pg 87, 5 pgs.
High-performance buses. Lieberman, David, Associate Editor; Electronic Products, 06/16/86, pg 48, 8 pgs.
Intel pumps new life into Multibus I line. Rose, Craig, Boston Editor; McLeod, Jonah, Managing Editor; Electronics, 10/ 16/86, pg 34, 0.5 pgs.
Multibus II heads for the fast track. Rosenberg, Robert, Communications Editor; Electronics, 07/10/86, pg 116, 2
pgs.
Multiplexers expand 8051 's data/code space. Nicoll, A J, Intel; EDN, 09/04/86, pg 208, 1 pg.
One chip SCSI drives buses, fights high-current glitches. Clare, Steve R, Ferranti Computer Systems; Gregory, Robert K, Ferranti Computer Systems; Electronic Design, 10/02/86, pg 106, 4 pgs.
Peripheral-controller IC helps processors handle I/O tasks. Stith, Calvin, Intel; Scott, Christopher, Intel; Electronic Design, 09/18/86, pg 146, 5 pgs.

Maglatch TO-5. The world's smallest relay with indestructible memory.

Our little magnetic latching TO-5 relay simply never forgets. Once it's set with a short pulse of coil voltage, Teledyne's Maglatch TO- 5 will retain its state until reset. Even if system power fails or is shut off.
Because holding power is not required, the Maglatch TO-5 uses less energy than any other relay you can buy. This makes it ideal for any situation where power drain is critical. And its tiny footprint makes it ideal for high density printed circuit boards.

For RF switching applications, the Maglatch's low intercontact capacitance and contact circuit losses provide high isolation and low insertion loss up through UHF
The Maglatch TO-5 is available in SPDT and DPDT styles. And it comes in commercial/industrial versions as well as military versions qualified to "L," "M," and " P " levels of MIL-R-39016.

Teledyne is an industry leader. We have been for over twenty years.

We've used our technical and manufacturing know-how to create the world's best subminiature electromechanical and solid state relays.

If you'd like complete technical information about our Maglatch TO-5 relay, or applications assistance, please call or write today. We're here to help you.

ヘTELEDYNE RELAYS

Innovations In Switching Technology

A
unique, versatile and economical system which allows you to choose your board and connector type.
This system has been designed to accept three types of circuit boards and connectors.
Commercial Boards. These off-the-shelf boards are readily available and most commonly used with MIL-C-21097 type edge connectors.
Eurocards. The Mod-U-Flex System is designed to accept Eurocards to DIN 41494 and Euroconnectors to DIN 41612 specifications.

Bud Boards. These standard rectan-gular-shaped boards, which are commonly used with Bud modular connectors, provide the maximum number of contacts.

Mod-U-Flex allows you the flexibility to design your own system using standard off-the-shelf parts. The system comes in kit form and all components are fabricated to exacting standards. And, all are in stock for immediate delivery.

Bud East, Inc.
4605 East 355th Street
P.O. Box 431

Willoughby, Ohio 44094
(216)946-3200

TWX 810-427-2604
Bud West, Inc.
7733 West Olive Avenue
P.O. Box 1029

Peoria, Arizona 85345-0350
(602) 979-0300

TWX 910-951-4217

EDN TECHNICAL-ARTICLE DATABASE

Reset circuit solves brownout problems. Bonicatto, Damian G, Hibbing Electronics; EDN, 10/16/86, pg 236, 0.5 pgs.
SCSI ICs simplify I/O-bus configurations, but options entail extra design effort. Wright, Maury, Regional Editor; EDN, 09/18/86, pg 97, 8 pgs.
SCSI grows up. Lieberman, David, Associate Editor; Electronic Products, 09/16/86, pg 41, 4.5 pgs .
SCSI host-adapter boards meet the needs of Multibus and VME Bus computer systems. Wright, Maury, Regional Editor; EDN, 10/16/86, pg 81, 6 pgs.
SCSI speeds in-circuit emulation. Bursky, Dave, Associate Managing Editor; Electronic Design, 09/18/86, pg 67, 2 pgs.
Single-board computers support PC and PC/AT bus. Conner, Margery S, Regional Editor; EDN, 07/24/86, pg 64, 7.5 pgs.
Single-port MAC speeds 68000 matrix products. Fair, David, Analog Devices; EDN, 10/30/86, pg 155, 10.5 pgs .
Software turns PC into IEEE-488 bus monitor. Lineback, J Robert, Dallas Editor; Electronics, 09/04/86, pg 42, 0.5 pgs.
The IEEE-488 bus links to Unix. Purvis, John R, National Instruments; Nowlin, Bill, National Instruments; Computer Design, 10/01/86, pg 101, 3 pgs.
Voltage-supervisor IC provides $\mu \mathrm{P}$ reset. Wheeler, Peter C, Texas Instruments; Wieczorek, John P, Rising Edge Technologies; $E D N, 10 / 02 / 86, p g 204,1.5$ pgs.
Microcomputers
8 - and 16 -bit buses battle for supremacy in industrial arena. Marrin, Ken, Senior Editor; Computer Design, 06/15/86, pg 29, 4 pgs.
Clock/calendar chips add system features; hybrid versions vie for memory sockets. Leibson, Steven H, Regional Editor; EDN, 06/12/86, pg 73, 5 pgs.
Control Data launches CMOS/SOS space computer. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 07/ 10/86, pg 27, 1.5 pg .
Design precautions ensure the benefits of using floating-point coprocessors. Titus, Jon, Senior Editor; EDN, 06/12/86, pg 57, 4.5 pgs .
Design tools move toward the 21st century. Killmon, Peg, Senior Editor; Computer Design, 07/86, pg 50, 10 pgs.
Development tools and VLSI chips help you design to military standards. Terry, Chris, Associate Editor; EDN, 06/26/86, pg 87, 5 pgs.
Enlarge Z80 memory space to 512 k bytes. Vazach, Joseph G, Allen-Bradley; EDN, 06/12/86, pg 212, 1 pg.
Low-cost buses add industrial I/O to VME, Multibus II. Harold, Peter, European Editor; EDN, 05/01/86, pg 175, 19 pgs.
Matching hardware to Lisp yields peak performance. Matthews, Gene, Texas Instruments, Symbolic Computing Lab, et al; Computer Design, 05/01/86, pg 95, 4 pgs.
Single-board computers support PC and PC/AT bus. Conner, Margery S, Regional Editor; EDN, 07/24/86, pg 64, 7.5 pgs.
Software packages for standard 32-bit CAE/CAD workstations. Freeman, Eva, Associate Editor; EDN, 06/26/86, pg 134, 12 $p g s$.
The compleat multiprocessor system. Philips, David, Zilog; Electronic Products, 09/16/86, pg 75, 7 pgs.
Versatile add-in boards acquire and process video images and graphics in real time. Titus, Jon, Senior Editor; EDN, 08/07/86, pg 103, 6 pgs.

Microprocessor buses

A communications processor for the VAXBI. McIntyre, Kenneth, Simpact Associates; Digital Design, 09/86, pg 100, 4 pgs.
A processor card for the IBM RT/PC. Waldecker, $D E, I B M$, et al; Digital Design, 09/86, pg 94, 3 pgs.
Array processors tap performance benefits of BI bus architecture. Alexander, Peter, Numerix; Digital Design, 09/86, pg 114, 4.5 pgs.
Battle of the buses. Cope, Michael, Interphase; Digital Design, 09/86, pg 99, 1 pg.
Bus interface on a chip streamlines system building. Landreth, Timothy E, Digital Equipment; Mandry, James E, Digital Equipment; Digital Design, 10/86, pg 64, 4 pgs.
Choosing between an 8088 and a Z80 for real-time control. Finster, Ken, Microlsys; Digital Design, 09/86, pg 88, 2 pgs.
Intelligent caching controller streamlines Multibus II. Moren, Bill, Ciprico; Digital Design, 09/86, pg 108̇, 3.5 pgs.
Is customization the key to survival? Ramunni, Joseph S, Heurikon; Digital Design, 09/86, pg 87, 1 pg.
Low-cost buses add industrial I/O to VME, Multibus II. Harold, Peter, European Editor; EDN, 05/01/86, pg 175, 19 pgs.
STD bus is a quality industrial solution. Lee, Edwin, Pro-Log; Computer Design, 10/01/86, pg 64, 2 pgs.

Standards, innovation and survival. Lee, Ed, Pro-Log; Digital Design, 09/86, pg 105, 1 pg.
Switching transients in microcomputer system buses. Rothe, Rick, Honeywell Test Instruments Division; Patton, Mark, Honeywell Test Instruments Division; Digital Design, 09/86, pg 81, 3 pgs.
System design considerations for multiprocessing. Regula, Jack, Ironics; Digital Design, 09/86, pg 67, 3.5 pgs.
Using the G-64 bus in midrange industrial applications. Pabouctsidis, Cosma, Gespac; Digital Design, 09/86, pg 91, 3.5 pgs.

VMEbus and high-performance disks. Vincent, Douglas, Mini Computer Technology; Digital Design, 09/86, pg 119, 2.5 pgs.
VSB: a sophisticated subsystem bus. Pri-Tal, Shlomo, Motorola Microsystems; Kraft, Doug, Motorola Microsystems; Digital Design, 09/86, pg 73, 4 pgs.

Microprocessor support chips

$100-\mathrm{MHz}$ DRAM controller sparks multiprocessor designs. Siddique, Naseer, Signetics; Electronic Design, 09/18/86, pg 138, 4 pgs.
32-bit data-path chip heralds next generation of floating-point tasks. Sing, Y W, Weitek, et al; Electronic Design, 05/29/86, pg 187, 5.5 pgs.
32 -bit micros advance art of memory management. Bond, John, Contributing Editor; Computer Design, 10/15/86, pg 21, 6 pgs.
68000-type microprocessor packing peripheral subsystems smooths workstation design. Braune, Dirk, Philips International BV, et al; Electronic Design, 05/01/86, pg 229, 5 pgs.
$\mu \mathrm{P}$-based control scheme can enhance printer performance. Dempsey, Don, Xerox; EDN, 08/07/86, pg 165, 3 pgs.
A closer look at MC68030 memory management. Parrott, Cliff, Motorola; Moyer, Bill, Motorola; Digital Design, 10/86, pg 72, 3 pgs.
Cache memory means faster access, multiple microprocessors. Sweazey, Paul, MIPS Computer Systems; Electronic Design, 09/11/86, pg 137, 4 pgs.
'Chip' makers cut cost of PCs and peripherals. Kates, Geoffrey R, Contributing Editor; Computer Design, 10/01/86, pg 29, 4 pgs.
Clock/calendar chips add system features; hybrid versions vie for memory sockets. Leibson, Steven H, Regional Editor; EDN, 06/12/86, pg 73, 5 pgs.
Compression/expansion chip eases electronic document processing. Landau, John, Advanced Micro Devices, et al; Digital Design, 09/86, pg 43, 2 pgs.
Design precautions ensure the benefits of using floating-point coprocessors. Titus, Jon, Senior Editor; EDN, 06/12/86, pg 57, 4.5 pgs .
Enlarge Z80 memory space to 512 k bytes. Vazach, Joseph G, Allen-Bradley; EDN, 06/12/86, pg 212, 1 pg.
Floating-point coprocessor IC spearheads software portability. Shahan, Van, Motorola; Johnson, Tom, Motorola; Electronic Products, 07/01/86, pg 37, 4.5 pgs.
Four approaches to nonvolatile memory open to designers. Marrin, Ken, Senior Editor; Computer Design, 09/15/86, pg 30, 2.5 pgs.
Graphics coprocessor chip gives small systems a look at the big picture. Randall, Martin, Intel; Johary, Arun, Intel; Electronic Design, 05/29/86, pg 159, 6 pgs.
Hardware sorting chip steps up software pace. Segal, Moshe, Advanced Micro Devices; Electronic Design, 06/26/86, pg 85, 5.5 pgs.

How silicon ICs are reshaping the graphics picture. Ohr, Stephan, Technology Editor; Electronic Design, 06/26/86, pg 72, 6 pgs.
ICs outspeed software in doing text searches. Manuel, Tom, Managing Editor; Electronics, 07/24/86, pg 32, 1 pg.
In-circuit logic device can be reprogrammed on the fly. McMorrow, Scott, Lattice Semiconductor; Electronic Design, 08/07/86, pg 94, 4 pgs.
Intelligent modem ICs integrate functions, simplify design of communications circuitry. Wright, Maury, Regional Editor; EDN, 08/07/86, pg 85, 6.5 pgs.
Large-scale ASIC library merges microprocessor peripherals. Haines, Andrew, VLSI Technology; Electronic Design, 06/ 12/86, pg 115, 4 pgs.
Memory management chip for 68020 translates addresses in less than a clock cycle. Cruess, Michael W, Motorola, Electronic Design, 05/15/86, pg 151, 7 pgs.
Motor control system pulls host out of the loop. Yeaple, David, Hewlett-Packard; Electronic Design, 09/04/86, pg 145, 5 pgs.
Multiplexers expand 8051's data/code space. Nicoll, A J, Intel;

EDN TECHNICAL-ARTICLE DATABASE

EDN, 09/04/86, pg 208, 1 pg.
Novel IC shuffles parallel-processing data. Niehaus, Jeff, Texas Instruments; Fleck, Bob, Texas Instruments; Electronic Products, 08/01/86, pg 42, 9 pgs.
On-chip peripherals boost 8 -bit controller performance. Fawcett, Bradly K, Zilog; Electronic Design, o7/24/86, pg 117, 5 pgs.
One chip SCSI drives buses, fights high-current glitches. Clare, Steve R, Ferranti Computer Systems; Gregory, Robert K, Ferranti Computer Systems; Electronic Design, 10/02/86, pg 106, 4 pgs.
Peripheral-controller IC helps processors handle I/O tasks. Stith, Calvin, Intel; Scott, Christopher, Intel; Electronic Design, 09/18/86, pg 146, 5 pgs.
Powerful support chips simplify graphics design. Raghavan, Mike, Hitachi America; Wheeler, P Kim, Hitachi America; Electronic Design, 08/21/86, pg 123, 5 pgs.
SCSI ICs simplify I/O-bus configurations, but options entail extra design effort. Wright, Maury, Regional Editor; EDN, 09/18/86, pg 97, 8 pgs.
Serial 8-bit A/D interfaces easily to most μ Ps. Davoody, Harry, Texas Instruments; Electronic Products, 05/15/86, pg 37, 5.5 pgs.
Static RAM uses smarts to control dual-port access. Cantrell, Tom, Hitachi Microsystems International; Electronic Design, 06/26/86, pg 115, 4.5 pgs.
The compleat multiprocessor system. Philips, David, Zilog; Electronic Products, 09/16/86, pg 75, 7 pgs.
Z $80 \mu \mathrm{P}$ system utilizes an 8259 PIC. Constantinescu, Cristian, Polytechnic Institute; EDN, 08/21/86, pg 188, 1.5 pgs.

Microprocessors

32-bit RISC processor executes at full throttle. Stockton, John F, VLSI Technology; Farrell III, James J, VLSI Technology; Electronic Products, 05/15/86, pg 44, 7.5 pgs.
32 -bit building blocks catch fire. Lineback, J Robert, Dallas Editor; Electronics, 06/16/86, pg 20, 1 pg.
68000-type microprocessor packing peripheral subsystems smooths workstation design. Braune, Dirk, Philips International BV, et al; Electronic Design, 05/01/86, pg 229, 5 pgs.
A three-way tug of war hits the 32 -bit micro business. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 051 05/86, pg 40, 2 pgs.
Bit-slice ICs kick off era of commercial GaAs LSI. Staff; Electronics, 09/18/86, pg 61, 4 pgs.
Bit-slice architecture tackles the 32 -bit world. Cole, Bernard C, Managing Editor; Wolfe, Alexander, Software/Microsystems Editor; Electronics, 09/04/86, pg 64, 6 pgs.
Bit-slice processors blend flexibility and performance. Aseo, Joseph, West Coast Technical Editor; Dígital Design, 08/86, pg 54, 3.5 pgs.
C compilers speed single-chip- $\mu \mathrm{P}$ development. Satten, Corey, John Fluke Manufacturing; EDN, 06/26/86, pg 213, 9.5 pgs.
Can Japan catch up in 32 -bit microprocessors? Cole, Bernard C, Semiconductors Editor; Cohen, Charles L, Tokyo Editor; Electronics, 05/12/86, pg 41, 5 pgs.
Can Zilog-AT\&T team score in the 32-bit race? Erikson, Arthur L, Executive Editor; Electronics, 05/19/86, pg 19, 1 pg.
'Chip' makers cut cost of PCs and peripherals. Kates, Geoffrey R, Cortributing Editor; Computer Design, 10/01/86, pg 29, 4
pgs.
DSP ICs. Titus, Jon, Senior Editor; EDN, 10/16/86, pg 162, 12.5 pgs.
DSP-filter software offers design help to novices. Cushman, Robert H, Special Features Editor; EDN, 07/10/86, pg 152, 11 pgs.
Extra functions and higher speed push microprocessor to top. Reinhart, James T, Motorola; Electronic Products, 10/01/86, pg 34, 6 pgs.
First look at Motorola's latest 32 -bit processor. Staff; Electronics, 09/18/86, pg 71, 5 pgs.
GaAs RISC processor is in the works. Lineback, J Robert, Dallas Editor; Electronics, 06/09/86, pg 21, 1.5 pgs.
GaAs pushes bit slice to new performance levels. Kates, Geoffrey, Contributing Editor; Computer Design, 08/15/86, pg 26, 2 pgs.
High-density chip set trims PC AT for industrial tasks. Owen, Jeff, Chips \& Technologies; Electronic Design, 10/02/86, pg 131, 5 pgs.
Hitachi develops its own 32 -bit chip. Cohen, Charles L, Tokyo Editor; Electronics, 10/16/86, pg 39, 1 pg.
Interface chip links floating-point coprocessors to host to form supermini look-alike. Hildebrandt, Eric, Weitek, et al; Electronic Design, 05/01/86, pg 213, 5 pgs.
Mathematical proof verifies error-free processor design. Staff;

Electronics, 05/26/86, pg 36, 2 pgs.
Microprocessor brings floating-point capability to 32-bit market. Marrin, Ken, Senior Editor; Computer Design, 05/01/86, pg 31, 2.5 pgs.
Modified Harvard architecture doubles performance of 68020. Marrin, Ken, Senior Editor; Computer Design, 10/01/86, pg 26, 3 pgs.
NEC's changing 32-bit strategy. Joseph, Jonathan, Tokyo Editor; Electronics, 05/12/86, pg 21, 1 pg.
On-chip peripherals boost 8-bit controller performance. Fawcett, Bradly K, Zilog; Electronic Design, o7/24/86, pg 117, 5 pgs. One chip SCSI drives buses, fights high-current glitches. Clare, Steve R, Ferranti Computer Systems; Gregory, Robert K, Ferranti Computer Systems; Electronic Design, 10/02/86, pg 106, 4 pgs.
Parallel design gives oomph to a 32 -bit slice. Staff; Electronics, 10/30/86, pg 51, 4 pgs.
Problems delay wedding of Ada and 1750A chip. Meng, Brita, Technical Editor; Digital Design, 05/86, pg 21, 1 pg.
Processors take a RISC. Wilson, Dave, Executive Editor; Digital Design, 05/86, pg 22, 2 pgs.
Putting 16-bit controllers in uniform. Kath, Jim, Fairchild Semiconductor; Electronic Products, 10/15/86, pg 59, 7 pgs.
Serial port provides interrupt for 8051μ C. Svelund, Larry, IBM; EDN, 09/18/86, pg 324, 0.5 pgs.
Single chip combines bit slice and EPROM. Everett, Darryl, Waferscale Integration; Thorpe, Roger, Consultant; Computer Design, 08/15/86, pg 61, 4 pgs.
TRW's superchip passes first milestone. Staff; Electronics, 07/10/86, pg 49, 6 pgs.
Targeted for speed, triple-bus DSP IC dispatches real numbers at 6.25 MIPS. Martin, Daniel F, Thomson Semiconducteurs, et al; Electronic Design, 05/01/86, pg 189, 5 pgs.
Veteran 16-bit microprocessors still battling for designers' favor. Bernhard, Robert, Electronic Design, 06/19/86, pg 27, 4 pgs.
When bit slices team up with ECL, 32 -bit computers rise to superpower status. DeMonico, Chris, Texas Instruments; Laczko, Frank, Texas Instruments; Electronic Design, 05/ 15/86, pg 117, 4.5 pgs.

Microwave

AT\&T doubles microwave data rate. Rose, Craig D, Boston Editor; Electronics, 09/18/86, pg 44, 0.5 pgs.
Microwave and digital circuits are combined on one GaAs chip. Waller, Larry, Los Angeles Editor; Electronics, 10/02/86, pg 31, 1 pg.
Preeision components let you build effective EW radars. McCrea, John, Waveline; Schumann, Charlie, Waveline; EDN, 08/21/86, pg 157, 5.5 pgs.
The race is on to develop microwave GaAs ICs for DOD. Waller, Larry, Los Angeles Editor; Electronics, 10/30/86, pg 29, 1 $p g$.

Military electronics

Airborne architecture standard holds on. Meng, Brita, Technical Editor; Digital Design, 10186, pg 24, 2 pgs.
Can DOD coexist with open systems? Barney, Clifford, San Mateo Editor; Electronics, 09/04/86, pg 31, 1 pg.
Connectors help the three services get it together. Biancomano, Vincent, Technology Editor; Electronic Design, 09/18/86, pg 128, 6 pgs.
Control Data launches CMOS/SOS space computer. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, oz/ 10/86, pg $27,1.5$ pgs.
DOD spurs VHSIC efforts with 'advance agreements.' Waller, Larry, Los Angeles Editor; Electronics, 09/04/86, pg 29, 1.5 pgs.
DOD's rescreening of chips stirs controversy. Chester, Michael, Southwestern Editor; Electronic Products, 10/15/86, pg 83, 3 pgs.
Defense systems-the high road of SDI. Williams, Tom, Western Managing Editor; Computer Design, 07/86, pg 122, 5.5 pgs.
Design low-power, rad-hardened satellite systems. Pearson, Bob, Harris Semiconductor; EDN, 08/21/86, pg 145, 4.5 pgs.
Designing chips that march the Pentagon's way. Bernhard, Bob, Electronic Design, 09/18/86, pg 108, 8 pgs.
Development tools and VLSI chips help you design to military standards. Terry, Chris, Associate Editor; EDN, 06/26/86, pg 87, 5 pgs.
High pin-count ASICs may get new Jedec package. Naegele, Tobias, New York Editor; Electronics, 10/30/86, pg 36, 1 pg.
How reliable are military components? Swanson, Thomas $\stackrel{\rightharpoonup}{R}$, OMNI Technology; Electronic Products, 10/15/86, pg 49, 7 pgs.

THE BEST OF BOTH WORLDS

T HE BEST QUALITY PRODUCTS. MADE IN AMERICA.

Beginning in 1984, our Roseville, California fabrication and manufacturing facility developed a new standard for comparison: 50 failed parts per million (ppm), or less.

Currently building high-volume, 1.5 -microntechnology memories, digital signal processors, and microcomputers, NEC Electronics reaches a new level of commitment for traditional Japanese quality made in America. With highly automated fabrication, assembly, and test, we meet your just-in-time delivery requirements with the best quality products to give you an uncomplicated source.

Improving Customer Service

The next phase of development at Roseville includes a complete gate array capability that will give you even better turnaround time and control of your customer-specific ICs. Combined with existing and new design centers in major technology areas, NEC Electronics offers complete customer service that takes you from design to high production with the leader in worldwide capacity of high-technology products.

The Uncomplicated Choice

Because of the commitment made in 1981, NEC Electronics now offers you an uncomplicated choice to meet all your semiconductor requirements. For the best of both worlds call 1-800-632-3531. In California, call 1-800-632-3532. Or write to NEC Electronics Inc., 401 Ellis Street, P.O. Box 7241, Mountain View, CA 94039.
${ }^{\circ}$ Copyright 1987 by NEC Electronics Inc.

NEC Electronics' 170,000 square foot fabrication and manufacturing facility in Roseville, California

At Mepco/Centralab, custom passives are standard.

EDN TECHNICAL-ARTICLE DATABASE

Hybrid makers balk at MIL-STD obstacle course. Dixon, Thomas, Midwestern Editor; Electronic Products, 10/15/86, pg 68, 5 pgs.
IBM hits 1-micron level on Phase 2 VHSIC chips. Naegele, Tobias, New York Editor; Electronics, 10/30/86, pg 30, 0.5 pgs.
Increased use of radiation-hardened ICs calls for more careful interpretation of test claims. Bloom, Michael, Contributing Editor; Computer Design, 07/86, pg 26, 5 pgs.
Military chip standards face sweeping overhaul. Naegele, Tobias, New York Editor; Electronics, 10/16/86, pg 32, 0.5 pgs.
Military imaging systems find new targets. Wilson, Andrew, Senior Technical Editor; Digital Design, 06/86, pg 25, 1 pg.
Military moves headlong into surface mounting. Lyman, Jerry, Packaging/Production Editor; Electronics, 07/10/86, pg 93, 6 $p g s$.
Precision components let you build effective EW radars. McCrea, John, Waveline; Schumann, Charlie, Waveline; EDN, 08/21/86, pg 157, 5.5 pgs .
Problems delay wedding of Ada and 1750A chip. Meng, Brita, Technical Editor; Digital Design, 05/86, pg 21, 1 pg.
Putting 16-bit controllers in uniform. Kath, Jim, Fairchild Semiconductor; Electronic Products, 10/15/86, pg 59, 7 pgs.
TRW's superchip passes first milestone. Staff; Electronics, 07/10/86, pg 49, 6 pgs.
Technology shoots for an automated battle line. Allan, Roger, Associate Managing Editor; Electronic Design, 09/18/86, pg 86, 12 pgs.
The military reconnoiters neural systems. Chester, Michael, Southwestern Editor; Electronic Products, 10/15/86, pg 78, 3.5 pg s.

The race is on to develop microwave GaAs ICs for DOD. Waller, Larry, Los Angeles Editor; Electronics, 10/30/86, pg 29, 1 $p g$.
Uncooled IR sensors shrink scopes. Leopold, George, Government \& Military Editor; Electronics, 05/19/86, pg 21, 0.5 pgs.
When a fighter flies itself in a low-altitude attack. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 05/ 19/86, pg 66, 2 pgs.
Why giants are going after an obscure avionics product. Waller, Larry, Los Angeles Editor; Electronics, 05/12/86, pg 18, 1 $p g$.
Why the Pentagon will speed up IR-sensor work. Waller, Larry, Los Angeles Editor; Electronics, 06/09/86, pg 40, 2 pgs.

Minicomputers

65,000 parallel processors tackle the biggest data jobs. Staff; Electronics, 06/23/86, pg 45, 3 pgs.
Design tools move toward the 21st century. Killmon, Peg, Senior Editor; Computer Design, 07/86, pg 50, 10 pgs.
Microsystems. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 10/16/86, pg 72, 2 pgs.
Multiprocessor computers execute tasks in parallel for faster performance. Terry, Chris, Associate Editor; EDN, 08/21/ 86, pg 75, 4.5 pgs .
RISC: Is it a good idea or just another hype? Barney, Clifford, San Mateo Editor; Manuel, Tom, Assistant Managing Editor; Electronics, 05/05/86, pg 28, 4 pgs.
The minicomputer is dead! Long live the minicomputer! Manuel, Tom, Assistant Managing Editor; Electronics, 06/16/86, pg 49, 5 pgs.
West Germans shoot for world speed record. Gosch, John, Frankfurt Editor; Electronics, 05/19/86, pg 20, 1 pg.

Modems

Board-level modems boast higher speeds, more features and lower cost. Cashen, Frank, Contributing Editor; Computer Design, 07/86, pg 40, 4.5 pgs.
Card is interim solution for modem in MAP nets. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, $10 /$ 02/86, pg 36, 0.5 pgs .
Correct modem choice requires knowledge of communication needs. Douglass, Jack, Universal Data Systems; EDN, 09/18/86, pg 299, 10 pgs.
Intelligent modem ICs integrate functions, simplify design of communications circuitry. Wright, Maury, Regional Editor; $E D N, 08 / 07 / 86, p g 85,6.5 \mathrm{pgs}$.
Low-cost modem IC plugs into power lines, ignores noise. Hariton, Dan I, Signetics; Patterson, Paul F, Signetics; Electronic Design, 10/02/86, pg 114, 6 pgs.
Modem ICs increase speed and functionality. Cashen, Frank, Contributing Editor; Computer Design, 09/01/86, pg 25, 8 $p g s$.

Motor control circuits

Constant-current chopper drive ups stepper-motor performance. Zanelli, Ezio, SGS Microelettronica; Electronic Products, 07/01/86, pg 53, 4 pgs.
Motor control system pulls host out of the loop. Yeaple, David, Hewlett-Packard; Electronic Design, 09/04/86, pg 145, 5 pgs.

Motors/motor controllers

Constant-current chopper drive ups stepper-motor performance. Zanelli, Ezio, SGS Microelettronica; Electronic Products, 07/01/86, pg 53, 4 pgs.

Mouse devices

Graphics tablet tries to compete with mouse. Naegele, Tobias, New York Editor; Electronics, 10/02/86, pg 44, 1 pg.

Multipliers

AGC circuit uses an analog multiplier. Lubs, Steve, Dept of Defense; EDN, 09/04/86, pg 210, 1 pg.
Single-port MAC speeds 68000 matrix products. Fair, David, Analog Devices; EDN, 10/30/86, pg 155, 10.5 pgs.

Multiprocessing

128-processor system hits 97% linearity. Waller, Larry, Los Angeles Editor; Electronics, 06/09/86, pg 22, 1 pg.
A 1-bips system takes new tack in parallelism. Rose, Craig D, Boston Editor; Electronics, 05/05/86, pg 16, 1 pg.
Cache memory means faster access, multiple microprocessors. Sweazey, Paul, MIPS Computer Systems; Electronic Design, 09/11/86, pg 137, 4 pgs.
Dual-port RAM facilitates multiprocessor communication. Wu, B Frank, Motorola; Borgstahl, Ron, Motorola; Electronic Products, 06/02/86, pg 70, 5 pgs.
Hypercube architecture leads the way for commercial supercomputers in scientific applications. Mokhoff, Nicolas, Senior Editor; Computer Design, 05/01/86, pg 28, 3 pgs.
Multiprocessor computers execute tasks in parallel for faster performance. Terry, Chris, Associate Editor; EDN, 08/21/ 86, pg 75, 4.5 pgs.
Packet-switched communications extend multiprocessor's range. Marrin, Ken, Senior Editor; Computer Design, 09/ 01/86, pg 20, 4 pgs.
System design considerations for multiprocessing. Regula, Jack, Ironics; Digital Design, 09/86, pg 67, 3.5 pgs.

Multiuser computer systems

Design tools move toward the 21st century. Killmon, Peg, Senior Editor; Computer Design, 07/86, pg 50, 10 pgs.
Supermicro look-alikes differ below the surface in processing power. Mokhoff, Nicolas, Senior Editor; Computer Design, 09/01/86, pg 57, 13 pgs.

Network analyzers/analysis
Comprehensive analyzers ease the pain of LAN performance testing. Mayer, John H, Associate Editor; Computer Design, 05/01/86, pg 44, 1.5 pgs.
Protocol analyzers tackle SNA and ISDN. Mokhoff, Nicolas, Senior Editor; Computer Design, 10/15/86, pg 53, 2 pgs.
Network architecture/design/design standards (nonlocal)
Factory communication: MAP promises to pull the pieces together. Allan, Roger, Associate Managing Editor; Electronic Design, 05/15/86, pg 102, 8 pgs.
Jumping on the MAP bandwagon: How soon and how far. Shapiro, Sydney F, Managing Editor; Computer Design, 08/15/86, pg 16, 6 pgs.
T-carrier chip set adapts to changing network needs. Merritt, John, Dallas Semiconductor; Computer Design, 06/01/86, pg 79, 4.5 pgs .
The digital phone net finally starts taking off. Rosenberg, Robert, Communications Editor; Electronics, 08/21/86, pg 57, 5 pgs.
VMEbus boards handle X.25-based packet-switched communications. Beedie, Mitch, Field Editor; Electronic Design, 06/12/86, pg 57, 4 pgs.

Network management/operations

Can DOD coexist with open systems? Barney, Clifford, San Mateo Editor; Electronics, 09/04/86, pg 31, 1 pg.

Networking ICs

Chip set speeds up British local-area net. Boothroyd, David, Electronics, 05/26/86, pg 20, 0.5 pgs.
TI pares chip set for IBM token ring. Lineback, J Robert, Dallas

EDN TECHNICAL-ARTICLE DATABASE

Editor; Electronics, 10/02/86, pg 33, 1 pg

Noise limiting circuits

Reduce noise in a serial bit stream. Strom, Stephen, National Semiconductor; EDN, 05/01/86, pg 266, 1 pg.

0

Office automation

How AI will add brains to office automation. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 10130186, pg 63, 4 pgs.

Op amps

$200-\mathrm{MHz}$ pnp transistors spawn fast analog chips. Monticelli, Dennis, National Semiconductor, et al; Electronic Design, 08/21/86, pg 111, 5 pgs.
Boost op-amp output without sacrificing drift and gain specs. Williams, Jim, Linear Technology; EDN, 05/29/86, pg 131, 14 pgs.
Careful design takes the heat out of hybrid power op amps. Scofield, Granger, Apex Microtechnology; Electronic Design, 09/11/86, pg 115, 5 pgs.
Circuit provides controllable resistance. Eck, H H, Pulse Electronics; EDN, 08/21/86, pg 183, 1 pg.
DAC lends digital control to phase-shifter. Pease, Robert A, National Semiconductor; EDN, 05/29/86, pg 233, 1 pg.
Designing video amplifiers is a step-by-step affair. Sherwin, Jim, National Semiconductor; Electronic Design, 09/11/86, pg 157, 5 pgs.
Digital gain control streamlines signal-acquisition systems. Graeme, Jerald, Burr-Brown; EDN, 05/29/86, pg 171, 9 pgs.
Dual op amp forms RS-232C driver/receiver. Lambrechts, JeanPaul, National Semiconductor; EDN, 05/15/86, pg 182, 1 pg.
High-power hybrid op amp dissipates up to 500 W and guards against burnout. Scofield, Granger, Apex Microtechnology; Electronic Design, 05/15/86, pg 129, 5 pgs .
High-power op amp provides diverse circuit functions. Widlar, Robert, National Semiconductor; Yamatake, Mineo, National Semiconductor; EDN, 05/29/86, pg 185, 13 pgs
High-precision CMOS op amps accommodate $\pm 15 \mathrm{~V}$ supplies. Sherman, Leonard, Maxim Integrated Products; EDN, 05/ 29/86, pg 149, 9 pgs.
Hybrid IC operational amplifiers achieve higher power, voltage, and speed. Fleming, Tarlton, Associate Editor; EDN, 09/18/ 86, pg 59, 7 pgs.
Isolation amplifiers get better as their sizes and costs shrink. Heftman, Gene, Electronic Design, 05/01/86, pg 101, 4.5 pgs.
Junction-isolation process yields 50 -fA op amp. Close, JoAnn P, Analog Devices; Counts, Lewis W, Analog Devices; Electronic Design, 07/10/86, pg 99, 4.5 pgs.
Micropower ICs conserve power in linear systems. Proctor, John J, National Semiconductor; Electronic Design, 06/19/86, pg 129, 4.5 pgs .
Op amp improves V/F converter's input. Graeme, Jerry, BurrBrown; EDN, 05/15/86, pg 181, 1 pg.
Op amp provides de bias for transistor. Hill, Norman M, Zetron; EDN, 06/12/86, pg 214, 1 pg.
Overcome electrical, thermal problems in high-power op amps. Widlar, Robert, National Semiconductor; Yamatake, Mineo, National Semiconductor; EDN, 05/15/86, pg 117, 9 pgs.
Port technique allows complex-impedance emulation and scaling. Sinberg, Howard, Aptek Microsystems; EDN, 05/01/86, pg 205, 8.5 pgs
Solve oscillation problems when implementing op-amp powerbooster stages. Williams, Jim, Linear Technology; EDN, 06/12/86, pg 203, 5 pgs.
Temperature measurements gain from advances in high-precision op amps. Wong, James, Precision Monolithics; Electronic Design, 05/15/86, pg 167, 4 pgs.
With input bias current of 40 fA , op amp IC makes low-level measurements. Kaller, Roy, Burr-Brown; Electronic Design, 05/15/86, pg 141, 4 pgs.

Optical storage

Device promises denser optical disks. Cohen, Charles L, Tokyo Editor; Electronics, 07/10/86, pg 36, 0.5 pgs.
Dual-film disk hikes magneto-optic density. Cohen, Charles L, Tokyo Editor; Electronics, 06/23/86, pg 24, 1 pg.
Optical disk drives promise to revolutionize computer use. Killmon, Peg, Senior Editor; Computer Design, 08/01/86, pg 56, 5 pgs

Optical systems erode mass storage barriers. Robinson, John, Image Management Systems; Computer Design, 05/01/86, pg 101, 4 pgs.
Searching for CD-ROM file formats. Meng, Brita, Technical Editor; Digital Design, 07/86, pg 24, 1 pg.

Optoelectronics

A low-cost way to build a fiber-optic local-area net. Staff; Electronics, 06/02/86, pg 36, 2 pgs.
Device promises denser optical disks. Cohen, Charles L, Tokyo Editor; Electronics, 07/10/86, pg 36, 0.5 pgs
Edge-emitting EL devices could cut printer cost. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 05/ 05/86, pg 15, 1 pg.
Fiber optics. Biancomano, Vincent, Technology Editor; Electronic Design, 07/10186, pg 74, 5.5 pgs.
French find easier way to build fast photodiode. Gallagher, Robert T, Paris Editor; Electronics, 06/02/86, pg 15, 0.5 pgs.
French take big step forward in optics. Gallagher, Robert T, Paris Editor; Electronics, 05/12/86, pg 23, 1 pg.
IR detector array 'sees' better and farther. Waller, Larry, Los Angeles Editor; Electronics, 05/05/86, pg 20, 1 pg.
Low-loss fiber-optic connectors take to simple field installation. Winard, Harold, Electronic Design, 06/19/86, pg 45, 2.5 pgs.
Optics open up roles for associative memory. Waller, Larry, Los Angeles Editor; Electronics, 08/07/86, pg 32, 1 pg.
Optoelectronics builds viable neural-net memory. Staff; Electronics, 06/16/86, pg 41, 4 pgs.
Solid-state area-scan image sensors vie for machine-vision applications. Harold, Peter, European Editor; EDN, 05/15/ 86, pg 55, 6 pgs.
Switch may speed optical computing. Naegele, Tobias, New York Editor; Electronics, 06/16/86, pg 26, 1 pg.
Technology shoots for an automated battle line. Allan, Roger, Associate Managing Editor; Electronic Design, 09/18/86, pg 86, 12 pgs.
Why the Pentagon will speed up IR-sensor work. Waller, Larry, Los Angeles Editor; Electronics, 06/09/86, pg 40, 2 pgs.

Oscillators

Oscillator generates discrete sequence. Barnett, T G, London Hospital Medical College; EDN, 08/07/86, pg 202, 1 pg
Phase-locked loops and frequency dividers handle higher-speed circuit functions. Travis, Bill, Senior Editor; EDN, 08/21/86, pg 53, 9 pgs.
Program a sine-wave oscillator's frequency. Gershon, Shvalbe, EDN, 05/01/86, pg 266, 1 pg.
VCO generates frequencies above 40 MHz . Farrar, Doug, Apple Computer; EDN, 10/30/86, pg 208, 1 pg.
Versatile ramp generator uses 1k-bit RAM. Martinez, J, ETS Ing Telecomunicacion; Sandoval, F, ETS Ing Telecomunicacion; EDN, 10/16/86, pg 225, 1 pg.

Oscilloscopes

Digital scopes making waves in test, measurement worlds. Schade, Sylvia, Hewlett-Packard; Kushnir, Ray, HewlettPackard; Electronic Design, 06/19/86, pg 117, 6 pgs.
Digitizing oscilloscopes: facts, fears, fictions. Wilson, John, Hewlett-Packard; Electronic Products, 08/01/86, pg 61, 5 pgs.
Examine and verify GaAs IC performance. Pengue, Louis, TriQuint Semiconductor; Walters, Eldon, Tektronix; EDN, 08/21/86, pg 127, 9.5 pgs.
High-performance oscilloscopes. Everett, Chris, Regional Editor; $E D N, 09 / 04 / 86, p g 134,13$ pgs.
Touch-screen scopes ease complex measurements. Rogers, Greg, Tektronix, et al; Electronic Design, 10/16/86, pg 109, 6.5 pgs.

PROM programmers/programming
Complex factors underlie universal-programmer selection. Negrin, Alan E, Elan Digital Systems; EDN, 05/15/86, pg 167, 5 pgs .
Packaging/encapsulation/sealing
Amp's new VLSI package squeezes in 320 leads. Lyman, Jerry, Government \& Military Editor; Electronics, 09/18/86, pg 46, 0.5 pgs.

High pin-count ASICs may get new Jedec package. Naegele, Tobias, New York Editor; Electronics, 10/30/86, pg 36, 1 pg.
National's big gamble in automated packaging. Lyman, Jerry, Packaging/Production Editor; Electronics, 08/21/86, pg 74, 3 pgs.

CALCOMP ELECTROSTATIC PLOTTERS. FOUND IN ALL THE RIGHT PLACES.

Most companies know us for our solid reputation in pen plotters. Yet many leading corporations all around the world also know CalComp for electrostatic plotters.
And they select CalComp for good reasons.
CalComp offers a full family of color and monochrome electrostatic plotters with high resolution image quality-up to 400 dots-per-inch. Our 5700 and 5800 series plotters are self-contained plotting systems without the need or expense of any add-on controllers.

Also, many Fortune 500 companies are already familiar with our high quality products, responsive sales support and worldwide field service network. After all, we've been in the computer graphics business for over 25 years.

So if you're shopping for the right electrostatic plotter, check the ones found in all the right places. Call 1-800-CALCOMP. Or write CalComp, P.O. Box 3250 , Anaheim, California 92803.

The Power Technology Group of Inland
Motor continues to advance the technology
in high density Military power conversion.
We have improved our benchmark 1 MHz , zero current switching forward converters for even more demanding applications. We call our new line the RC/RB series of converters and power boosters. This new line now offers as standard features:

- All hermetically sealed semiconductors
- 28 VDC input per MIL-STD-704D \& MIL-STD-1275A
- 270 VDC input per MIL-STD-704D
- Vacuum molded case for higher stress levels of MIL-E-5400, MIL-S-901, MIL-STD-202 \& MIL-STD-810
- Improved thermal characteristics for $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation
- Environmental Stress Screening including power ageing the thermal cycling
Have we had to sacrifice size to achieve these improvements? Not at all. In fact we have actually reduced the module envelope. Now a full 100W of regulated and isolated DC power is available in only $4 \mathrm{in}^{3}{ }^{3}\left(4.6^{\prime \prime} \mathrm{L} \times 2.0^{\prime \prime} \mathrm{W}\right.$ $x 0.485{ }^{\prime \prime} H$). Join the growing list of users who have given their military systems the competitive advantage of Inland's 1 MHz power technology. Find out what Inland can do for you by calling (602) 459-1150.

EDN TECHNICAL-ARTICLE DATABASE

New TI substrate aimed at mounting flip chips. Lyman, Jerry, Government/Military Editor; Electronics, 10/16/86, pg 39, 0.5 pgs.

Packaging. Lyman, Jerry, Packaging/Production Editor; Electronics, 10/16/86, pg 102, 3 pgs.

Parallel processing

65,000 parallel processors tackle the biggest data jobs. Staff; Electronics, 06/23/86, pg 45, 3 pgs.
Parallel computer architectures of the ' 90 s will provide solutions en masse. Mokhoff, Nicolas, Senior Editor; Computer Design, 07/86, pg 64, 5.5 pgs.
Parallel processing: the pace quickens. Manuel, Tom, Managing Editor; Electronics, 09/18/86, pg 86, 4 pgs.

Parametric/functional testing

A faster way to debug ASICs with high pin counts. Staff; Electronics, 06/23/86, pg 39, 3 pgs.
A faster way to open up plastic packages. Gosch, John, Frankfurt Editor; Electronics, 07/10/86, pg 40, 1 pg.
How Genrad's new tester copes with VHSIC chips. Staff; Electronics, 05/19/86, pg 49, 4 pgs.
Now a universal system that runs all VLSI tests. Staff; Electronics, 06/02/86, pg 31, 3 pgs.
Timing, not speed, counts the most when testing fast VLSI ICs. Milne, Bob, Senior Editor; Electronic Design, 05/29/86, pg 132, 8 pgs.

Personal computers

A processor card for the IBM RT/PC. Waldecker, D E,IBM, et al; Digital Design, 09/86, pg 94, 3 pgs.
Add-ons bring new power to PC-based design. Goering, Richard, Field Editor; Computer Design, 08/01/86, pg 73, 13.5 pgs.
Advanced $\mu \mathrm{Ps}$ are broadening PC AT presence on desktops of CAE users. Weiss, Ray, Field Editor; Electronic Design, 10/02/86, pg 78, 7 pgs.
Apple finally gives up; adds MS-DOS to Mac. Caruso, Denise, Electronics, 05/12/86, pg 24, 1 pg.
'Chip' makers cut cost of PCs and peripherals. Kates, Geoffrey R, Contributing Editor; Computer Design, 10/01/86, pg 29, 4 pgs.
Design and simulate semicustom ICs on low-cost IBM PC-based design systems. Smith, David, Associate Editor; EDN, 06/26/86, pg 51, 6.5 pgs
Fortified PC AT poised for shaded solids modeling. Chou, Horng-Yee, Weitek, et al; Electronic Design, 06/19/86, pg 95, 4.5 pgs.

Global accelerators shorten design cycles. Butts, Michael, Mentor Graphics; Computer Design, 06/01/86, pg 85, 4 pgs.
Graphics pixel processing sizzles with smart frame buffer. Williams, Tom, Western Managing Editor; Computer Design, 10/01/86, pg 46, 1.5 pgs .
High-level software simplifies use of PC-based instrument modules and systems. Everett, Chris, Regional Editor; EDN, 10/16/86, pg 61, 5.5 pgs.
How IBM designed its RISC-technology PC. Staff; Electronics, 05/05/86, pg 34, 3 pgs.
Image-processing boards boost real-time performance. Molinari, John, Data Translation; Direnzo, Anthony, Data Translation; Computer Design, 05/15/86, pg 75, 5 pgs.
Low-cost PCs and software analyze analog circuits. Travis, Bill, Senior Editor; EDN, 10/02/86, pg 163, 13 pgs.
Microsystems. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 10/16/86, pg 72, 2 pgs.
More processing punch revs up CAE workstations as they take on more design tasks. Ohr, Stephan, Technology Editor; Electronic Design, 10/02/86, pg 68, 6 pgs.
Now $\$ 505$ buys an IBM PC/XT clone. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 05/26/86, pg 19, 1 pg .
Now it's easy to process Chinese characters. Naegele, Tobias, New York Editor; Electronics, 07/24/86, pg 40, 0.5 pgs.
PC hard-disk drives on cards fit neatly, draw little power. Shereff, Jesse, Electronic Design, 09/04/86, pg 77, 5.5 pgs.
PC-based compilers offer low-cost Ada. Suydam, William, Contributing Editor; Computer Design, 10/15/86, pg 44, 5 $p g s$.
PC-in-a-box gives Mac a push into engineering. Lineback, J Robert, Dallas Editor; Electronics, 05/19/86, pg 25, 1 pg.
Personal computers expand in functionality and applications. Mokhoff, Nicolas, Senior Editor; Computer Design, 08/15/ 86, pg 34, 2.5 pgs.
Plotters keep up with IC and PC-board advances. Cashen, Frank, Contributing Editor; Computer Design, 10/01/86, pg

49, 6 pgs.
SCSI' speeds in-circuit emulation. Bursky, Dave, Associate Managing Editor; Electronic Design, 09/18/86, pg 67, 2 pgs.
Single-board computers support PC and PC/AT bus. Conner, Margery S, Regional Editor; EDN, 07/24/86, pg 64, 7.5 pgs.
Software turns PC into IEEE-488 bus monitor. Lineback, J Robert, Dallas Editor; Electronics, 09/04/86, pg 42, 0.5 pgs.
Supercomputing goes desktop. Manuel, Tom, Assistant Managing Editor; Electronics, 05/05/86, pg 17, 1 pg.
The Apple II: teaching an old dog new tricks. Staff; Electronics, 10/02/86, pg 92, 3 pgs.
The move to PC-based image storage. Rose, Craig D, Boston Editor; Electronics, 05/12/86, pg 19, 1 pg.
This could be the year that the clones outsell IBM. Naegele, Tobias, New York Editor; Electronics, 06/09/86, pg 45, 2 pgs.
Turning a PC into a silicon compiler. Staff; Electronics, 06/16/86, pg 37, 4 pgs.
What makes Compaq's new PC so important. Staff; Electronics, 09/18/86, pg 66, 5 pgs.
Phase-locked loops
Basic program eases analysis of phase-locked loops. Rippy, Ron, $E D N, 06 / 26 / 86, p g 157,6$ pgs.
Phase-locked loops and frequency dividers handle higher-speed circuit functions. Travis, Bill, Senior Editor; EDN, 08/21/86, $p g 53,9$ pgs.

Plotters

Plotters keep up with IC and PC-board advances. Cashen, Frank, Contributing Editor; Computer Design, 10/01/86, pg 49, 6 pgs.

Portable/laptop computers

Liquid crystal displays take a new twist. Lieberman, David, Associate Editor; Electronic Products, 08/15/86, pg 58, 4.5 pgs.
The laptop makers are sharpening their claws. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 06/16/86, pg 26, 0.5 pgs .

Power converters

Focus on dc-dc converters. Newhart, Milton, Electronic Design, 09/11/86, pg 169, 4.5 pgs .
Low-cost regulator converts V^{+}to -5 V . Lashley, Ron, ITT Courier; EDN, 10/02/86, pg 208, 1 pg.
The new look in power supplies. Yates, Warren, Associate Editor; Electronic Products, 06/02/86, pg 40, 5 pgs.
Power semiconductors
Boost op-amp output without sacrificing drift and gain specs. Williams, Jim, Linear Technology; EDN, 05/29/86, pg 131, 14 pgs.
Careful design takes the heat out of hybrid power op amps. Scofield, Granger, Apex Microtechnology; Electronic Design, 09/11/86, pg 115, 5 pgs.
Circuit offers precision chopper control. Silard, Andrei, Polytechnic Institute; Kosa, Barna, Polytechnic Institute; EDN, 07/10/86, pg 260, 1 pg .
Current-mirror FETs cut costs and sensing losses. Fay, Gary, Motorola Semiconductor; EDN, 09/04/86, pg 193, 6.5 pgs.
Digital power controller handles 1 kW . Haase, John A, Colorado State University; EDN, 05/15/86, pg 184, 2 pgs.
High-power op amp provides diverse circuit functions. Widlar, Robert, National Semiconductor; Yamatake, Mineo, National Semiconductor; EDN, 05/29/86, pg 185, 13 pgs.
High-voltage circuits use mixed processes, fulfill diverse roles Travis, Bill, Senior Editor; EDN, 07/10/86, pg 74, 10 pgs.
Low cost, low noise, and design simplicity keep linear voltage regulators competitive. Everett, Chris, Regional Editor; EDN, 05/29/86, pg 65, 5 pgs.
MOSFET circuits yield higher $\mathrm{BV}_{\mathrm{DSS}}$. Mizuno, Tosh, Dalmo Victor; EDN, 08/07/86, pg 209, 1 pg.
Memory-driver chip controls MOSFET gate. Morey, Mangala A, Picker International; EDN, 05/29/86, pg 230, 1 pg.
Mostek turns to power MOS FETs. Lineback, J Robert, Dallas Editor; Electronics, 06/23/86, pg 21, 1 pg.
Power MOS FETs find their way into cars. Waller, Larry, Los Angeles Editor; Electronics, 06/02/86, pg 16, 1 pg.
Sense-cell MOSFET eliminates losses in source circuit. Schultz, Warren, Motorola; EDN, 06/26/86, pg 169, 7.5 pgs.
Solve oscillation problems when implementing op-amp powerbooster stages. Williams, Jim, Linear Technology; EDN, 06/12/86, pg 203, 5 pgs.
The boom starts in smart power products. Zollo, Steve, New Products Editor; Electronics, 07/24/86, pg 97, 5 pgs.
This smart power chip breaks the $100-\mathrm{V}$ barrier. Staff; Electron-

EDN TECHNICAL-ARTICLE DATABASE

ics, 10/02/86, pg 89, 3 pgs.
VLSI density comes to power MOS FETs. Staff; Electronics, 07/24/86, pg 81, 4 pgs.

Power supplies

Design current-mode switching supply on analog workstation. Walker, Norman C, Walker Electronics; Walker, Martin G, Analog Design Tools; EDN, 06/12/86, pg 195, 6 pgs.
Innovative designs yield small, efficient switchers. Banfalvi, Stephen S, Bell Northern Research; EDN, 05/01/86, pg 223, 7 pgs.
Lab/benchtop power supplies offer a wide range of functions. Mosley, J D, Regional Editor; EDN, 07/10/86, pg 186, 8 pgs.
Low cost, low noise, and design simplicity keep linear voltage regulators competitive. Everett, Chris, Regional Editor; EDN, 05/29/86, pg 65, 5 pgs.
Power supplies for CRTs show some new trends, diverse features. Newhart, Milton, Electronic Design, 09/11/86, pg 90, 7 pgs.
Regulator tracks 3 outputs, monitors controlling μ P's pulses. Wolff, Andrew, National Semiconductor; Electronic Design, $07 / 24 / 86$, pg 109, 4.5 pgs .
The new look in power supplies. Yates, Warren, Associate Editor; Electronic Products, 06/02/86, pg 40, 5 pgs.

Prescalers

Connect PROM as a ring counter. Tran, Tan; Tran, Tien; EDN, 05/29/86, pg 232, 1 pg.

Printed circuits

Advanced algorithms enhance board layout. Khokhani, Kanti, Mentor Graphics, et al; Digital Design, 06/86, pg 56, 3.5 pgs.
Autorouters use sophisticated algorithms to lay out complex, multilayer pc boards. Freeman, Eva, Associate Editor; EDN, 08/07/86, pg 67, 6 pgs.
DMMs, on rerouted design path, push resolution, stability, and ease of user calibration. Panasuk, Curtis, Field Editor; Electronic Design, 09/11/86, pg 72, 7 pgs.
Lack of standards breeds diversity in SMD inductors. Leibson, Steven H, Regional Editor; EDN, oy/24/86, pg 189, 6 pgs.
Printed circuit board autorouters gain speed and intelligence. Goering, Richard, Senior Editor; Computer Design, 10/01/ 86, pg 33, 4 pgs.
Tester mockups and device libraries bring CAE to analog pe-board design. Freeman, Eva, Associate Editor; EDN, 05/29/86, pg 49, 5 pgs.
Using Gore-Tex reduces signal delay in PC board. Naegele, Tobias, New York Editor; Electronics, 06/02/86, pg 21, 1 pg.

Printers

Edge-emitting EL devices could cut printer cost. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, $05 /$ 05/86, pg 15, 1 pg.
Image hardcopy moves forward bit by bit. Wilson, Andrew C, Senior Technical Editor; Digital Design, 10/86, pg 61, 2.5 pgs.
Processors, special-purpose (array, front-end, etc)
Accelerators break bottlenecks in logic and fault simulation. Bloom, Michael, Contributing Editor; Computer Design, 05/15/86, pg 22, 4.5 pgs.
Advanced $\mu \mathrm{Ps}$ are broadening PC AT presence on desktops of CAE users. Weiss, Ray, Field Editor; Electronic Design, 10/02/86, pg 78, 7 pgs.
Array processing on board and chip. Staff; Electronic Products, 0च゙/01/86, pg 48, 3 pgs.
Array processor shrinks to chip set. Mattedi, Bruno, Analogic; Digital Design, 07/86, pg 74, 4 pgs.
Array processors tap performance benefits of BI bus architecture. Alexander, Peter, Numerix; Digital Design, 09186, pg 114, 4.5 pgs.
Design precautions ensure the benefits of using floating-point coprocessors. Titus, Jon, Senior Editor; EDN, 06/12/86, pg 57, 4.5 pgs.
Fortified PC AT poised for shaded solids modeling. Chou, Horng-Yee, Weitek, et al; Electronic Design, 06/19/86, pg 95, 4.5 pgs .

Global accelerators shorten design cycles. Butts, Michael, Mentor Graphics; Computer Design, 06/01/86, pg 85, 4 pgs.
Hardware sorting chip steps up software pace. Segal, Moshe, Advanced Micro Devices; Electronic Design, 06/26/86, pg 85, 5.5 pgs.

How IBM designed its RISC-technology PC. Staff; Electronics, 05/05/86, pg 34, 3 pgs.
How Weitek's chips run Fortran at 25 megaflops. Staff; Electronics, 10/30/86, pg 69, 3 pgs.

Interface chip links floating-point coprocessors to host to form supermini look-alike. Hildebrandt, Eric, Weitek, et al; Electronic Design, 05/01/86, pg 213, 5 pgs.
Novel IC shuffles parallel-processing data. Niehaus, Jeff, Texas Instruments; Fleck, Bob, Texas Instruments; Electronic Products, 08/01/86, pg 42, 9 pgs.
RISC: Is it a good idea or just another hype? Barney, Clifford, San Mateo Editor; Manuel, Tom, Assistant Managing Editor; Electronics, 05/05/86, pg 28, 4 pgs.
Reaping the rewards of vector processing. Bouchier, Charles M, Honeywell; Computer Design, 09/01/86, pg 79, 4.5 pgs.
Supercomputing goes desktop. Manuel, Tom, Assistant Managing Editor; Electronics, 05/05/86, pg 17, 1 pg.
Surveying the array-processor landscape. Chester, Michael, Southwestern Editor; Electronic Products, 07/01/86, pg 42, 6 pgs.

Production/manufacturing/testing, other

Chip processing. Lyman, Jerry, Packaging/Production Editor; Electronics, 10/16/86, pg 84, 1 pg.
Cut-and-patch lasers speed chip repairs. Waller, Larry, Los Angeles Editor; Electronics, 06/16/86, pg 19, 1 pg .
IBM hits 1 -micron level on Phase 2 VHSIC chips. Naegele, Tobias, New York Editor; Electronics, 10/30/86, pg 30, 0.5 pgs.
Japan kicks off x-ray fab project. Cohen, Charles L, Tokyo Editor; Electronics, 08/07/86, pg 44, 0.5 pgs.
Laser writing takes a step forward. Rose, Craig D, Boston Editor; Electronics, 06/09/86, pg 15, 0.5 pgs.
Manufacturing. Lyman, Jerry, Government \& Military Editor; Electronics, 10/16/86, pg 105, 2 pgs.
System combines ion, e-beam steps. Cohen, Charles L, Tokyo Editor; Electronics, 06/16/86, pg 28, 1 pg.
Wisconsin ring shines for X-ray work. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 06/23186, pg 19, 1 pg .
X rays fabricate $1.2-\mathrm{GHz}$ MOS FETs. Gosch, John, Frankfurt Editor; Electronics, 06/02/86, pg 17, 1.5 pgs.

Professional associations/issues

As engineers' social consciousness matures, concerned groups act as the guiding light. Asbrand, Deborah, Staff Editor; EDN, 07/10/86, pg 293, 4 pgs.
Efforts to draw minorities to engineering make progress but still face obstacles. Asbrand, Deborah, Staff Editor; EDN, 05/29/86, pg 259, 5 pgs.
Learning to write well helps engineers overcome anxieties about communicating. Asbrand, Deborah, Staff Editor; EDN, 07/ 24/86, pg 263, 1.5 pgs.
Remember to vote in the IEEE election. Asbrand, Deborah, Staff Editor; EDN, 09/04/86, pg 294, 4 pgs.
Support organizations for inventors take the loneliness out of creating. Asbrand, Deborah, Staff Editor; EDN, 10/16/86, pg 281, 4 pgs.
Women in engineering serve as role models to fight image of male-dominated profession. Asbrand, Deborah, Staff Editor; EDN, 05/15/86, pg 271, 5 pgs .

Programming

Defensive programming simplifies program maintenance. Staff; EDN, 08/07/86, pg 157, 4 pgs.
Emerging computer tools speed up software design. Wolfe, Alexander, Software/Microsystems Editor; McLeod, Jonah, Managing Editor; Electronics, 07/24/86, pg 106, 2 pgs.
Inference's strategy to speed things up. Staff; Electronics, 08/07/86, pg 66, 4 pgs.
Integrating CAE, CAD and CASE. Marshall, John, HewlettPackard; Van Dyne, Denese, Hewlett-Packard; Digital Design, 06/86, pg 40, 4.5 pgs.
Software productivity moves upstream. Wolfe, Alexander, Software/Microsystems Editor; Electronics, 07/10/86, pg 80, ${ }^{7}$ pgs.
Task partitioning eases concurrent programming. Brubaker, David, Brubaker Elec Consultants; Case, Don, Dest; Computer Design, 09/15/86, pg 83, 5 pgs.

Prototyping boards/systems

New technologies crowding automated-wiring leader. Lyman, Jerry, Packaging/Production Editor; Electronics, 06/16/86, pg 54, 2 pgs.
Professional wire-wrapping services ease prototype-circuit assembly tasks. Ormond, Tom, Senior Editor; EDN, 09/18/86, pg 115, 5 pgs.

Pulse generators/generation/detection

Bidirectional tachometer offers low error. Dave, $R L, P D O$;

You need speed plus precision to push the limits.

Datel's 500nSec 12-bit A/D converter.

It's high-speed performance plus true 12-bit precision. It's the new ADC-500 from Datel. And it gives you a combination of speed, accuracy, low power, and compact size that no other A/D converter can match.

Very fast. The 500 nSec maximum conversion time speeds throughput, boosts performance.

Very accurate. The ADC-500 offers true 12-bit precision. So you don't have to sacrifice performance for speed.

Very cool. Power is less than 1.7 W for cool operation, with no need for heatsinks or restricted temperature ranges.

Very compact. The ADC-500's 32-pin hybrid package and built-in functionality save space and minimize the need for additional components.

What's more, the ADC-500 offers some
special application-based features: a sample/ hold trigger pin, complementary output pin, and an overflow pin that shows when signals are above or below full scale. And MIN/MAX specifications over operating temperature and power supply ranges give you a worst case design analysis - and help prevent surprises. With this innovative new converter, you can push design limits in both military and commercial applications.

Find out more about what our great new performer can do for you. Call (617) 339-9341, extension 241 to discuss your application and request additional information on the ADC-500.

LEADERS IN DATA CONVERSION TECHNOLOGY 11 Cabot Boulevard, Mansfield, MA 02048 (617) 339-9341

SMD / AUTO INSERTABLE DIP SWITCHES
ALCOSWITCH offers auto-insertable and surface mountable DIP/SIP switches, including the Hybrid 'family' with resistors, diodes or attenuator circuits. Flush, extended and piano actuator versions are available in 2 to 10 positions (SIP switches available in 8 positions only), as well as rotary encoded DIPs available in 10 or 16 positions. The rotary encoded DIP switches come with four different actuator styles, vertical and right angle-mount versions. CALL TODAY for applications help or request your FREE catalog. ALCOSWITCH, Dept. EDN, 1551 Osgood Street, North Andover, MA 01845 (617) 685-4371

SUBMINIATURE PUSHWHEEL SWITCHES

The PICO family offers the smallest panelmounted pushwheel code switches in the industry. The dependable pushbutton action allows narrow 0.3 inch width on panel. Changes to higher or lower settings are accomplished rapidly by successive operation of the appropriate buttons. Operation is positive. The featherweight PICO is less than 0.6 inch high, yet rugged enough for hand-held and portable instruments. Heavy gold plating on wiping contacts affords low contact resistance for reliable operation over long periods of service. Easy-toread characters are viewed through dust-sealed window. CALL TODAY for applications help or request your FREE catalog. (617) 685-4371, ALCOSWITCH , Dept EDN, 1551 Osgood Street, North Andover, MA 01845

ROTARY SWITCHES

MRS Series miniature rotary switches are available with shaft knob or key actuation and feature as many as three poles and 12 positions. All models have either fixed or adjustable stops. You can order straight or right angle versions with either lug-type or printed-circuit terminals and gold or silver contacts. The switches have splashproof, environmentally sealed bodies. The life expectancy of the switch exceeds 10,000 cycles; contacts are rated for 150 mA at 115 VAC . CALL TODAY for applications help or request your FREE catalog. (617) 685-4371, ALCOSWITCH Dept. EDN, 1551 Osgood Street, North Andover, MA 01845

EDN TECHNICAL-ARTICLE DATABASE

EDN, 10/30/86, pg 204, 2 pgs.

Pulse-width modulators

Generator varies pulse delay and duration. Jain, Dil Sukh, National Remote Sensing; EDN, 06/26/86, pg 225, 1 pg.
PWM motor controller uses two ICs. Sarns, Steven, Vesta Technology; EDN, 10/30/86, pg 208, 1 pg.

R

Regulators
Low cost, low noise, and design simplicity keep linear voltage regulators competitive. Everett, Chris, Regional Editor; EDN, 05/29/86, pg 65, 5 pgs.
Research
Pulling space R\&D down to earth. Waller, Larry, Los Angeles Editor; Electronics, 07/10/86, pg 28, 1 pg.

Resistors

Power resistors hang on to niches in a low-power world. Winard, Harold, Electronic Design, 09/11/86, pg 38, 3 pgs.
Resistor chips, networks, and discrete resistors. Fleming, Tarlton, Associate Editor; EDN, 08/07/86, pg 140, 9 pgs.

Rigid-disk drives

4-chip controller is key to SCSI hard disk drive. Lineback, J Robert, Dallas Editor; Electronics, 06/02/86, pg 20, 1 pg.
$5^{1 / 4} \mathrm{in}$. Winchesters near gigabyte capacities. Ohr, Stephan, Technology Editor; Electronic Design, 09/18/86, pg 55, 2.5 pgs.
Embedded controllers yield "standard" disk drives. Williams, Tom, Western Managing Editor; Computer Design, 09/15/86, pg 41, 4 pgs.
How IBM is shaking up the disk-drive business. Manuel, Tom, Assistant Managing Editor; Waller, Larry, Los Angeles Editor; Electronics, 06/23/86, pg 18, 1.5 pgs .
PC hard-disk drives on cards fit neatly, draw little power. Shereff, Jesse, Electronic Design, 09/04/86, pg 77, 5.5 pgs.
Small drives catch up with bigger cousins. Aseo, Joseph, West Coast Technical Editor; Digital Design, 08186, pg 27, 1 pg.
Special report: The options multiply in mass storage. Staff; Electronics, 05/19/86, pg 28, 7 pgs.

Robotics

Automation industry faces a shrinking market. Rose, Craig D, Boston Editor; Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 08/21/86, pg 29, 1 pg.

Satellites
Bootlegging on satellites turns out to be real problem. Barney, Clifford, San Mateo Editor; Electronics, 05/05/86, pg 14, 1.5 pgs.
Can the U.S. continue as No. 1 in space communications? Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 10/02/86, pg 95, 2 pgs .
Design low-power, rad-hardened satellite systems. Pearson, Bob, Harris Semiconductor; EDN, 08/21/86, pg 145, 4.5 pgs.
FCC stalls satellite mobile radio service. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 08/07/86, pg 31, 1 pg .
Satellite system to cut marine telecom costs. Staff; Electronics, 09/18/86, pg 38, 2 pgs.
Which band is right for bypass satellites? Staff; Electronics, 07/24/86, pg 93, 4 pgs.

Schmitt triggers

Adjustable Schmitt trigger uses one IC. Butler, Gregg A, Analog Devices; EDN, 05/01/86, pg 262, 1 pg.
Scientific computer systems
Autosequencer speeds decoding of DNA chains. Barney, Clifford, San Mateo Editor; Electronics, 06/23/86, pg 28, 0.5 pgs.
Reaping the rewards of vector processing. Bouchier, Charles M, Honeywell; Computer Design, 09/01/86, pg 79, 4.5 pgs.
This minisuper is aimed at parallel processing. Staff; Electronics, 10/30/86, pg 56, 3 pgs.
This supercomputer also runs VAX/VMS programs. Staff; Electronics, 09/04/86, pg 74, 3 pgs.

West Germans shoot for world speed record. Gosch, John, Frankfurt Editor; Electronics, 05/19/86, pg 20, 1 pg.

Scribing/dicing/sawing equipment

Using lasers to cut chip turnaround to hours. Naegele, Tobias, New York Editor; Electronics, 05/12/86, pg 20, 0.5 pgs.

Semicustom/custom ICs

$6-\mathrm{GHz}$ analog transistors, ECL team up in versatile array. Sparkes, Robert, Tektronix; Gross, Winthrop, Tektronix; Electronic Design, 06/12/86, pg 105, 5 pgs.
A new, easy way to design ASICs. Staff; Electronics, 10/16/86, $p g 53,5 \mathrm{pgs}$.
A new tool lays out complex ASIC designs fast. Staff; Electronics, 05/05/86, pg 37, 3 pgs.
ASIC design tools duplicate circuit boards in silicon. O'Donnell, Daniel J, RCA Solid State; Electronic Design, 10/16/86, pg 133, 3.5 pgs.
ASICs: take your pick. Collett, Ronald, Senior Technical Editor; Digital Design, 06/86, pg 29, 5 pgs.
An ASIC design system takes linear circuits in its stride. Holt, Jim, Fairchild Camera \& Instrument; Electronic Design, 09/04/86, pg 110, 4 pgs.
Analog filters come as gate arrays or standard ICs. Roche, Jean-Pierre, Thomson Semiconducteurs; Caillon, Christian, Thomson Semiconducteurs; Electronic Design, 10/16/ $86, p g 143,5 \mathrm{pgs}$.
Application-specific ICs: comparing techniques for designing. Chakravarty, Dev, Motorola; Electronic Products, 05/01/86, $p g 77,3$ pgs.
Array IC presents new ways to customize analog circuits without wasting silicon. Giannella, Giovanni, Exar; Electronic Design, 05/01/86, pg 171, 6 pgs.
Automatic chip generation not possible . . . yet. Aseo, Joseph, West Coast Technical Editor; Digital Design, 09/86, pg 54, 2.5 pgs.

Design and simulate semicustom ICs on low-cost IBM PC-based design systems. Smith, David, Associate Editor; EDN, 06/26/86, pg 51, 6.5 pgs .
Digital analysis system wears many hats. Bennett, David L, Tektronix; Electronic Products, 07/15/86, pg 58, 8 pgs.
EEPROMs move into standard cell libraries. Twaddell, William, Contributing Editor; Computer Design, 05/01/86, pg 34, 2.5 pgs.
Front-end tools ease test-generation chores. Vendl, Dean, NCR Microelectronics; Gearhardt, Kevin, NCR Microelectronics; Computer Design, 06/15/86, pg 97, 4 pgs.
High-density interfaces aren't superfluous anymore. Chan, Kenneth, Monolithic Memories; Computer Design, 09/01/86, pg 87, 5 pgs.
High-voltage circuits use mixed processes, fulfill diverse roles. Travis, Bill, Senior Editor; EDN, 07/10/86, pg 74, 10 pgs.
Hiking the active areas in dense semicustom ICs. Cole, Bernard C, Semiconductors Editor; Electronics, 05/19/86, pg 17, 1 pg.
Interactive methods ease analog/digital design. Seidel, Durbin, NCR Microelectronics; Computer Design, 05/15/86, pg 63, 3.5 pgs .

Large-scale ASIC library merges microprocessor peripherals. Haines, Andrew, VLSI Technology; Electronic Design, 06/ 12/86, pg 115, 4 pgs.
Linear and digital ASICs converge on same silicon chips. Leonard, Milt, Northwestern Editor; Electronic Products, 05/01/ 86, pg 50, 5 pgs.
Master slice has bipolar functions, CMOS logic. Cohen, Charles L, Tokyo Editor; Electronics, 08/21/86, pg 34, 1 pg.
New test tools help solve prototype verification problems. Goering, Richard, Senior Editor; Computer Design, 10/15/ 86, pg 61, 13 pgs.
Novel architectures give these chips new speed and capacity. Panasuk, Curtis, Field Editor; Electronic Design, 10/16/86, pg 94, 6 pgs.
Paper and pencil help guide initial calculations in move to standard-cell ICs. Pozadzides, John, Texas Instruments; Electronic Design, 05/29/86, pg 199, 5.5 pgs .
Prototype verification completes ASIC design. Morris, Steve, IMS; Chapman, Dave, IMS; Computer Design, 08/15/86, pg 67, 5 pgs.
Scan techniques aid testing of small systems. Niehaus, Jeff, Texas Instruments; Hefner, Charles, Texas Instruments; Computer Design, 09/01/86, pg 95, 3 pgs.
Semicustom IC offers new possibilities for software protection. Lautzenheiser, David P, Xilinx; EDN, 06/12/86, pg 177, 4 pgs.
Semicustom approach to mixed analog/digital ICs stresses analog performance. Marrin, Ken, Senior Editor; Computer

EDN TECHNICAL-ARTICLE DATABASE

Design, 06/01/86, pg 22, 1.5 pgs.
Sierra's new simulator speeds up ASIC design. Staff; Electronics, 10/16/86, pg 60, 3 pgs.
Silicon compilers and macrocells give designers the best of both worlds. Bursky, Dave, Associate Managing Editor; Electronic Design, 10/16/86, pg 82, 6 pgs.
Silicon compilers ease complex VLSI design. Pollack, Steve, Silicon Compilers, et al; Computer Design, 09/15/86, pg 79, 4 pgs.
Silicon compilers travel rough roads to acceptance. Schindler, Max, Technology Editor; Electronic Design, 05/01/86, pg 156, 8 pgs.
Simulation challenges breadboarding for design verification. Goering, Richard, Field Editor; Computer Design, 06/15/86, pg 63, 14 pgs.
Speeding up placement and routing. Naegele, Tobias, New York Editor; Electronics, 07/10/86, pg 30, 1 pg .
Stimulus accelerator speeds ASIC functional verification. Goering, Richard, Field Editor; Computer Design, 06/15/86, pg 42, 2 pgs.
Stimulus/simulation accelerator verifies ASIC design. Collett, Ronald E, Senior Technical Editor; Digital Design, 06/86, pg 23, 1 pg.
Stretching the limits of ASIC software. Cole, Bernard C, Semiconductors Editor; Electronics, 06/23/86, pg 34, 5 pgs.
Symbolic layout software accelerates IC design. Liao, Yuh-Zen, Ecad, et al; Electronic Design, 06/12/86, pg 89, 5.5 pgs.
Testability system reduces scan path penalty. Goering, Richard, Senior Editor; Computer Design, 08/15/86, pg 33, 1.5 pgs.
Tester guarantees ASIC performance. Lindsay, Ken, Integrated Measurement Systems; Miller, John, Integrated Measurement Systems; Digital Design, 05/86, pg 73, 4 pgs.
Thanks to tile arrays' versatility, analog design is burgeoning. Goodenough, Frank, Senior Editor; Electronic Design, 10/ 16/86, pg 68, 8 pgs.
Timing verification predicts performance of logic arrays. Franz, Michael, Applied Micro Circuits; EDN, 06/12/86, pg 161, 8.5 pgs.
Vendors stock standard-cell libraries with linear and LSI-level functions. Smith, David, Associate Editor; EDN, 10/02/86, pg 63, 7.5 pgs.
Versatile bipolar master chip lets analog designers reap the benefits of LSI circuits. Shier, John S, VTC; Hester, Richard E, VTC; Electronic Design, 05/29/86, pg 171, 4.5 pgs.
Why silicon compilers are starting to take off. McLeod, Jonah, Managing Editor; Electronics, 07/24/86, pg 72, 6 pgs.

Sensors/transducers

LVDT interface chip's functional blocks offer versatility. Rahim, Zahid, Signetics; EDN, 05/29/86, pg 159, 9 pgs.
MIT ice detector taxis for takeoff. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 07/24/86, pg 36, 1 pg.
Pressure sensors and transducers. Orm nd, Tom, Senior Editor; EDN, 05/01/86, pg 100, 11.5 pgs.
PtSi: a new contender for IR sensors. Waller, Larry, Los Angeles Editor; Electronics, 09/18/86, pg 38, 1 pg .
Sensors tap IC technology to add more functions. Eleccion, Marce, Electronics, 06/02/86, pg 26, 4 pgs.
Silicon ICs warm to thermal sensing. Mabrey, Tom, Micro Switch; Electronic Products, 08/15/86, pg 55, 3 pgs.
Transducer converters ease industrial measurements. Denaro, Daniel, Analog Devices; Electronic Design, 09/04/86, pg 118, 4 pgs.
Why the Pentagon will speed up IR-sensor work. Waller, Larry, Los Angeles Editor; Electronics, 06/09/86, pg 40, 2 pgs.

Signal sources/generation

Three ICs form portable RF burst generator. Rickman, Steve, GE Medical Systems; EDN, 07/10/86, pg 256, 1 pg.
Use a PC to generate analog output signals. Croteau, John, Analog Devices; Grant, Doug, Analog Devices; EDN, 05/15/ 86, pg 131, 10 pgs.
Signature analyzers/analysis
Word generators bring order to logic testing. Delp, Robert, Dolch Logic Instruments; Kleindienst, Peter, Dolch Logic Instruments; EDN, 09/04/86, pg 159, 3 pgs.

Simulators/simulation

A new way to speed up circuit simulation. Staff; Electronics, 08/07/86, pg 71, 4 pgs.
Accelerators break bottlenecks in logic and fault simulation. Bloom, Michael, Contributing Editor; Computer Design, 05/15/86, pg 22, 4.5 pgs .
Analyzers aid in the design of closed-loop systems. Asbjornsen,

Steve, Hewlett-Packard; Brown, Owen, Hewlett-Packard, EDN, 05/01/86, pg 239, 11.5 pgs.
Benchmarking steers logic simulation selection. Tang, Ben, Valid Logic Systems; Munich, Steve, Valid Logic Systems; Computer Design, 05/15/86, pg 69, 4.5 pgs.
Bridging the gap between VLSI design and test. Lai, KwokWoon Larry, SDA Systems; Digital Design, 06/86, pg 61, 3.5 pgs.
Fault simulation rates effectiveness of test patterns. Indrajo, Geoffrey, Daisy Systems; Wang, Laung-Terng, Daisy Systems; EDN, 09/04/86, pg 181, 7 pgs.
Has CAE lived up to its promise? McLeod, Jonah, Test \& Measurement Editor; Electronics, 06/09/86, pg 25, 8 pgs.
Low-cost PCs and software analyze analog circuits. Travis, Bill, Senior Editor; EDN, 10/02/86, pg 163, 13 pgs.
Sierra's new simulator speeds up ASIC design. Staff; Electronics, 10/16/86, pg 60, 3 pgs.
Simulation challenges breadboarding for design verification. Goering, Richard, Field Editor; Computer Design, 06/15/86, pg 63, 14 pgs.
Spice improvements ease analog simulation. LeBrun, JeanNoel, Daisy Systems; Goshen, Raffy, Daisy Systems; Computer Design, 08/01/86, pg 97, 5 pgs.
Stimulus accelerator speeds ASIC functional verification. Goering, Richard, Field Editor; Computer Design, 06/15/86, pg 42, 2 pgs.
Stimulus/simulation accelerator verifies ASIC design. Collett, Ronald E, Senior Technical Editor; Digital Design, 06/86, pg 23, 1 pg .

Sockets

How surface mounting is changing interconnection. Lyman, Jerry, Packaging/Production Editor; Electronics, 05/26/86, pg 24, 4 pgs.

Software copying/copyrighting/piracy/security

Access control plus data encryption adds up to system security. Williams, Tom, Western Managing Editor; Computer Design, 08/01/86, pg 44, 2 pgs.
Forestalling software skullduggery. Letham, Lawrence, Intel; Electronic Products, 06/16/86, pg 88, 4.5 pgs.
Local net encrypts all data, enforces security clearances. Leopold, George, Government \& Military Editor; Electronics, 06/02/86, pg 14, 1 pg.
Semicustom IC offers new possibilities for software protection. Lautzenheiser, David P, Xilinx; EDN, 06/12/86, pg 177, 4 pgs.
Software users and vendors square off over the issue of product responsibility. Beutel, Richard, EDN, 06/26/86, pg 277, 2 pgs.

Software documentation

Documentation tools provide design cycle management. Needham, Paul, Context; Computer Design, 10/15/86, pg 79, 4.5 pgs.

Solar converters

A better way to build efficient solar cells. Gosch, John, Frankfurt Editor; Electronics, 08/07/86, pg 38, 0.5 pgs.

Soldering equipment

Intelligence comes to laser soldering. Staff; Electronics, 07/10/ 86, pg 75, 3 pgs.

Spectrum analyzers/analysis

Fast fourier transform speeds signal-to-noise analysis for A/D converters. Pinkowitz, David, ILC Data Device; Digital Design, 05/86, pg 64, 3 pgs.

Speech synthesis/recognition

A split decision: speech chips vs. DSP. Chester, Michael, Southwestern Editor; Electronic Products, 09/02/86, pg 41, 6.5 pgs .

AI fine-tunes speech recognition. Gallagher, Robert T, Paris Editor; Electronics, 05/19/86, pg 24, 1 pg.
Annunciator gives audible pulse count. Mitchell, Charles, Elcotel; EDN, 06/12/86, pg 209, 1 pg.
Difficult speech-recognition technology shows signs of maturity. Martin, Steven L, Contributing Editor; Computer Design, 08/01/86, pg 23, 6 pgs.
Scoring 98.6% in speech recognition. Rose, Craig D, Boston Editor; Electronics, 10/02/86, pg 41, 1 pg.
Speech-recognition advancements bring cybernetics to the boardroom. Killmon, Peg, Senior Editor; Computer Design, 07/86, pg 114, 1.5 pgs.
Speech-synthesis chips make a comeback. Martin, Steven L, Contributing Editor; Computer Design, 06/15/86, pg 36, 2.5 pgs.

IBM PC/XT/ATs Apple Ils and Compatibles

Touch...Everyone wants to be in touch these days, and why not? Touch is the easiest, most natural way of telling a computer what to do. It's immediate and interactive. Touch offers the ultimate in user friendliness, accessibility and systems security.

Until now, getting in touch was an expensive, perplexing proposition (from the hardware side) with applications development or software conversion taking months. It's been a costly and risky business. No more! Personal Touch can put you in touch...safely...inexpensively.

Extensive, Proven Product Line

We offer an extensive line of reliable touch monitors, touch screens, touch panels, electronic components and development software you can count on.

- TurboTouch Color Monitors
- Monochrome TouchMonitors
- TouchWindows
- Curved and Flat Panels
- RS-232 and Analog Electronics
- TurboTouch Programmer's Toolkit

All our products feature our tough, non-drifting TouchWindow - a resistive screen membrane. Our MTBF exceeds one million hours of operation. Our reliability guarantees over one million hits per point, and one billion hits total. Our electronics are compact, fast, stable and low cost.

So whether you need a fully integrated, touch input system or touch components, weve got what you need.

We're Supportive...And Conscious of Your Profit Margins Too!
Touch is our only business, and we intend to stay in touch. It takes more than good hardware to be in touch, however. Excellent software drivers and tools plus a responsive staff that wants to help are part of the Personal Touch. And our no-questions-asked, one year warranty means we stand behind our products...and you.
Our price/performance simply can't be beat!
Less development time, reliable technology, and a reasonable cost add up to more profit for you and a quicker return on your investment. We think of it as offering your company...the Midas touch!

NEW
TurboTouch ${ }^{\text {M }}$
Color Monitors
SONY w/integrated touch screen
$\$ 799^{00}$ Qty 1

TouchMonitor ${ }^{\text {™ }}$

14
Monochrome w/integrated touch screen

Introducing

Our NEW 19" color TouchMonitor Call or write for details!

ersonal

Personal Touch Corporation 4320 Stevens Creek Blvd., Suite 290, San Jose, CA 95129 (408) 246-8822
Yes! I want to be in touch. Send me more information on Personal Touch Corporations:
\square Midas Touch Special
\square Product Line Literature
\square Call me! I've a hot project that could benefit from touch.
Name
Title
Company
Address
City State Zip
Telephone (

New Product File

Flat-Pak DIP\&SVDFuses

- Slo-Blo" design: 250 Volts, 1 thru 5 Amperes, Stamped "T" and color-coded blue. \bullet Fast-Acting design: 250 Volts, $1 / 16$ thru 5 Amperes, Stamped "F" and color-coded red. \bullet New low profile rectangular shape ($.346^{\prime \prime}(\mathrm{L}) \times .245^{\prime \prime}(\mathrm{W}) \times .160^{\prime \prime}(\mathrm{H})$) for easy fuse identification. - U.L. Recognized and C.SA. Certified.
- Visible element for blown fuse indication. \bullet Available with DIP or surface mount styles. • Unique DIP design and magazine cartridge packaging make Flat-Pak" ideal for high speed automatic insertion.

Patent Number: 4,563,666

Call your Littelfuse representative, distributor or (312) 824-1188 for Flat-Pak Product Bulletins 1025 and 1026, samples, pricing and delivery dates.

Making good ideas work for you.

EDN TECHNICAL-ARTICLE DATABASE

Subroutines handle speech companding. Garrick, R, Logistic Software Group; Siil, K, Logistic Software Group; EDN, 08/21/86, pg 191, 2.5 pgs .

Standards

Standards, innovation and survival. Lee, Ed, Pro-Log; Digital Design, 09/86, pg 105, 1 pg.

Surface-mounting devices/techniques

Choosing packages wisely pays off in I/O, speed, space. Waltersdorf, Harvey R, Thomas \& Betts; Electronic Design, 06/19/86, pg 107, 4.5 pgs.
Focus on surface-mounted electrolytic capacitors. Winard, Harold, Electronic Design, 08/07/86, pg 155, 4 pgs.
How surface mounting is changing interconnection. Lyman, Jerry, Packaging/Production Editor; Electronics, 05/26/86, pg 24, 4 pgs.
Image-processing board makes good use of SMT. Perl, Julius, Imaging Technology; Paiva, Richard, Imaging Technology; Electronic Products, 06/16/86, pg 75, 2 pgs.
Lack of standards breeds diversity in SMD inductors. Leibson, Steven H, Regional Editor; EDN, 07/24/86, pg 189, 6 pgs.
Military moves headlong into surface mounting. Lyman, Jerry, Packaging/Production Editor; Electronics, 07/10/86, pg 93, 6 pgs.
Surface mounting meets mixed assembly needs. Johnson, Carl M, Computer Products Inc; Electronic Products, 06/16/86, pg 73, 2 pgs.
Surface-mount devices move into mainstream design activity. Mayer, John H, Associate Editor; Computer Design, 09/15/ 86, pg 67, 10 pgs.
Surface-mount technology. Leibson, Steven H, Regional Editor; $E D N, 10 / 02 / 86, p g 135,14.5 \mathrm{pgs}$.
Two users find SMT a smooth ride. Chin, Spencer, Associate Editor; Electronic Products, 06/16/86, pg 72, 1 pg.
Wire-bonding chips to boards may speed surface mounting. Staff; Electronics, 05/12/86, pg 33, 2 pgs.

Switching circuits

Circuit gates data channels. Rizzotti, Al, Ward Leonard Electric; $E D N, 05 / 01 / 86, p g 264,1$ pg.
Solid-state switch offers fast interrupt. Drummond, Geoffrey N, Hughes Aircraft; EDN, 06/26/86, pg 226, 1.5 pgs.

Sync separators

Syne separator flags odd fields. Lin, Luen-Yuan, DRS, Precision Echo; EDN, 10/16/86, pg 233, 2 pgs.

T

TTL logic

Circuit generates frequency difference. Momii, Steve, Univ of Washington; EDN, 06/26/86, pg 228, 0.5 pgs.
Connect PROM as a ring counter. Tran, Tan, Tran, Tien, EDN, 05/29/86, pg 232, 1 pg.
Latch array provides bank of control words. Grill, William, Martin Marietta; EDN, 09/04/86, pg 207, 1 pg.
Multiplexer limits complement data. Murugesan, S, ISRO Satellite Centre; EDN, 10/30186, pg 202, 1 pg.
TI's blazing-fast CMOS logic takes on Schottky bipolar. Staff; Electronics, 09/18/86, pg 78, 4 pgs.
Versatile ramp generator uses 1 k -bit RAM. Martinez, J, ETS Ing Telecomunicacion; Sandoval, F, ETS Ing Telecomunicacion; EDN, 10/16/86, pg 225, 1 pg.
Tape drives
Cartridge interchangeability ensures reliable data swaps. Esboldt, Richard J, 3M; Computer Design, 06/15/86, pg 103, 4.5 pgs .

Cartridge tape drives serve up more memory in less space. Cashen, Frank, Contributing Editor; Computer Design, 06/15/86, pg 50, 5 pgs.
Cartridge tape scrambles to match disk capabilities. Aseo, Joseph, West Coast Technical Editor; Digital Design, 07/86, $p g 23,1 p g$.
Half-inch cartridge drives transforming tape storage. Heftman, Gene, Electronic Design, 07/10/86, pg 59, 3 pgs.

Technology/research, other

Computers. Manuel, Tom, Managing Editor; Electronics, $10 /$ 16/86, pg 68, 4 pgs.
Japanese HEMT ICs run at room temperature. Cohen, Charles L, Tokyo Editor; Electronics, 10/02/86, pg 32, 0.5 pgs.
Microsystems. Wolfe, Alexander, Software/Microsystems Edi-
tor; Electronics, 10/16/86, pg 72, 2 pgs
Semiconductors. Cole, Bernard C, Managing Editor; Electronics, 10/16/86, pg 80, 4 pgs.

Telecommunications

ATE makers eye ISDN as new market. Rose, Craig D, Boston Editor; Electronics, 09/04/86, pg 37, 0.5 pgs.
AT\&T doubles microwave data rate. Rose, Craig D, Boston Editor; Electronics, 09/18/86, pg 44, 0.5 pgs.
Bullish on ISDN, Intel launches its chip set. Staff; Electronics, 10/02/86, pg 59, 5 pgs .
Chip adds signals for phone conferencing. Gallagher, Robert T, Paris Editor; Electronics, 06/02/86, pg 25, 0.5 pgs.
DSP poaches on analog conferencing. Lineback, J Robert, Dallas Editor; Electronics, 07/10/86, pg 32, 1 pg.
Encryption foils cellular snooping. Naegele, Tobias, New York Editor; Electronics, 06/23/86, pg 20, 0.5 pgs .
FCC stalls satellite mobile radio service. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 08/07/86, pg 31, 1 pg.
ISDN chip sets: users face a risky choice. Rosenberg, Robert, Communications Editor; Electronics, 10/02/86, pg 55, 4 pgs.
ISDN standard is spawning incompatible telecom chips. Lineback, J Robert, Dallas Editor; Electronics, 06/09/86, pg $14,1 \mathrm{pg}$.
Japan finally gets an easy way to talk via computers. Cohen, Charles L, Tokyo Editor; Electronics, 10/16/86, pg 113, 2 pgs.
Low-cost modem IC plugs into power lines, ignores noise. Hariton, Dan I, Signetics; Patterson, Paul F, Signetics; Electronic Design, 10/02/86, pg 114, 6 pgs .
Module adds smarts to Minitel terminal. Schenker, Jennifer L, Electronics, 09/04/86, pg 44, 0.5 pgs.
New standards, silicon chips nudge ISDNs closer to reality. Allan, Roger, Associate Managing Editor; Electronic Design, 07/24/86, pg 88, 7 pgs .
Packet-switched communications extend multiprocessor's range. Marrin, Ken, Senior Editor; Computer Design, 09/ 01/86, pg 20, 4 pgs.
Production deficiencies may slow East Germans. Gosch, John, Frankfurt Editor; Electronics, 05/05/86, pg 22, 1 pg.
Quality speech rides $8-\mathrm{kb} / \mathrm{s}$ channel. Rose, Craig D, Boston Editor; Electronics, 08/07/86, pg 36, 1 pg.
Satellite system to cut marine telecom costs. Staff; Electronics, 09/18/86, pg 38, 2 pgs.
Telecommunications. Rosenberg, Robert, Communications Editor; Electronics, 10/16/86, pg 85, 3 pgs.
The digital phone net finally starts taking off. Rosenberg, Robert, Communications Editor; Electronics, 08/21/86, pg 57, 5 pgs.
The French move to open telecom market. Gallagher, Robert T, Paris Editor; Electronics, 05/26/86, pg 19, 1 pg.

Temperature measurement

Temperature measurements gain from advances in high-precision op amps. Wong, James, Precision Monolithics; Electronic Design, 05/15/86, pg 167, 4 pgs.

Terminal controllers

High-density chip set trims PC AT for industrial tasks. Owen, Jeff, Chips \& Technologies; Electronic Design, 10/02/86, pg 131, 5 pgs.
Terminal controllers cut UNIX host interruptions. Aseo, Joseph, West Coast Technical Editor; Digital Design, 05/86, pg 27, 1 pg.
Terminals add PC features to fulfill multiuser system demands. Killmon, Peg, Senior Editor; Computer Design, 05/01/86, pg 46, 1.5 pgs .

Terminals

Advances in flat-panel-display technology improve display features and cut prices. Mosley, J D, Regional Editor; EDN, 09/04/86, pg 79, 5 pgs .

Test fixtures/probes

How Genrad's new tester copes with VHSIC chips. Staff; Electronics, 05/19/86, pg 49, 4 pgs.
Thin-film equipment, chemical vapor deposition
Tools make thin films predictable. Rose, Craig D, Boston Editor; Electronics, 05/26/86, pg 16, 1 pg.

Thyristors

Transistor provides thyristor control. Zannis, James, Renishaw Metrology Ltd; EDN, 06/26/86, pg 233, 1 pg.

Timer ICs/circuits

Digital-delay circuit is programmable. Embler, Gary, Tall Tree

EDN TECHNICAL-ARTICLE DATABASE

Systems; EDN, 09/04/86, pg 214, 1.5 pgs.
PLD provides chip select and wait states. Dujari, Vineet, Advanced Micro Devices; EDN, 08/21/86, pg 184, 2 pgs.
Programmable event generator conquers timing restraints Threewitt, Bruce, Advanced Micro Devices; Electronic Products, 07/01/86, pg 60, 5 pgs .
Sequential timer uses three chips. Kuber, V B, Motwane Mfg Co Private Ltd; EDN, 09/18/86, pg 318, 1 pg
Timer IC provides low-power voltage monitor. O'Farrell, John J, Tran-Trol; EDN, 07/10/86, pg 262, 1.5 pgs.

Touch-screen devices

A new cost contender in touch-sensitive screens. Rose, Craig D, Boston Editor; Electronics, 07/24/86, pg 38, 1 pg.
Can touch-screen technology move beyond special uses? Naegele, Tobias, New York Editor; Electronics, 05/05/86, pg 42, 2 pgs.
Touchscreen displays suit multifarious applications. Javetski, John, EDN, 10/16/86, pg 195, 8 pgs.
Touch-screen scopes ease complex measurements. Rogers, Greg, Tektronix, et al; Electronic Design, 10/16/86, pg 109, 6.5 pgs.
Training
EE students learn the newest technologies but some are opting for non-design jobs. Asbrand, Deborah, Staff Editor; EDN, 10/02/86, pg 285, 2.5 pgs.
To Bales, training is the way to beat Japanese. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 05/12/86, pg 58, 0.5 pgs .
Transmitter/receiver circuits
CMOS RS-232-C interface chip packs in three driver/receivers. Tussing, Tanya, Motorola; Bauer, Valerie, Motorola; Electronic Products, 05/01/86, pg 81, 5 pgs.

Transmitters/receivers

At last, it's easy to design RS-232-C modems. Staff; Electronics, 07/24/86, pg 89, 4 pgs.
Dual op amp forms RS-232C driver/receiver. Lambrechts, JeanPaul, National Semiconductor; EDN, 05/15/86, pg 182, 1 pg.

Trigger circuits

Programmable event generator conquers timing restraints. Threewitt, Bruce, Advanced Micro Devices; Electronic Products, 07/01/86, pg 60, 5 pgs.

Video
AT\&T makes the right choice for imaging support. Wilson, Andrew C, Senior Technical Editor; Digital Design, 09/86, pg 40, 2.5 pgs.
Disputes may stall HDTV standard for two years. Leopold, George, Government \& Military Editor; Gallagher, Robert, Paris Editor; Electronics, 05/12/86, pg 19, 1 pg.
Frame memory adds new TV features. Cohen, Charles L, Tokyo Editor; Electronics, 06/02/86, pg 24, 1 pg.
How image enhancement is taking a giant leap. Waller, Larry, Los Angeles Editor; Electronics, 07/24/86, pg 30, 0.5 pgs.
Image sensors reach megapixel mark. Wilson, Andrew, Senior Technical Editor; Digital Design, 07/86, pg 25, 1 pg.
Large-screen displays get bigger and brighter. Leaf, Jesse J, News Editor; Electronics, 05/12/86, pg 46, 2 pgs.
Now 3-d CAD images can be moved in real time. Staff; Electronics, 08/07/86, pg 97, 4 pgs.
Scanner handles text, images simultaneously. Barney, Clifford, San Mateo Editor; Electronics, 05/19/86, pg 18, 1 pg.
Siemens fits digital TV into $2-\mathrm{Mb} / \mathrm{s}$ data stream. Gosch, John, Frankfurt Editor; Electronics, 10/02/86, pg 40, 1 pg.
Solid-state area-scan image sensors vie for machine-vision applications. Harold, Peter, European Editor; EDN, 05/15/ 86, pg 55, 6 pgs.
The fight over formats will be fierce at CES. Iversen, Wesley, Industrial \& Consumer Editor; Electronics, 06/02186, pg 44, 2 pgs.
The move to PC-based image storage. Rose, Craig D, Boston Editor; Electronics, 05/12/86, pg 19, 1 pg.
Video buffer amplifiers get faster and lower in distortion. Panasuk, Curtis, Field Editor; Electronic Design, 05/29/86, pg 89, 4.5 pgs .
Vision systems
A new way to probe submicron details. Staff; Electronics, 09/04/86, pg 88, 3 pgs.

AT\&T makes the right choice for imaging support. Wilson, Andrew C, Senior Technical Editor; Digital Design, 09/86, pg 40, 2.5 pgs.
Board-level image processors enter desktop arena. Williams, Tom, Western Managing Editor; Computer Design, 06/01/86, pg 25, 4 pgs.
CCD cameras reflect emphasis on size and sharpness. Shapiro, Sydney F, Managing Editor; Computer Design, 06/01/86, pg 41, 3 pgs.
Fault imaging moves from lab to fab. Barney, Clifford, San Mateo Editor; Electronics, 10/02/86, pg 37, 1 pg.
Frame-grabber boards acquire and process images in real time. Preston, Craig, Data Translation; Molinari, John, Data Translation; EDN, 09/18/86, pg 273, 6 pgs.
Holographic filter spots images from any angle. Barney, Clifford, San Mateo Editor; Electronics, 09/04/86, pg 37, 1 $p g$.
Image sensors reach megapixel mark. Wilson, Andrew, Senior Technical Editor; Digital Design, 07/86, pg 25, 1 pg.
Image-processing boards boost real-time performance. Molinari, John, Data Translation; Direnzo, Anthony, Data Translation; Computer Design, 05/15/86, pg 75, 5 pgs.
Machine vision guides robots and inspection. Williams, Tom, Western Managing Editor; Computer Design, 07/86, pg 92, 2 pgs.
Military imaging systems find new targets. Wilson, Andrew, Senior Technical Editor; Digital Design, 06/86, pg 25, 1 pg.
Pyramid processing redefines machine vision. Davis, Andrew W, Recognition Technology; Khan, Imran, Recognition Technology; Digital Design, 05/86, pg 34, 5 pgs.
Solid-state area-scan image sensors vie for machine-vision applications. Harold, Peter, European Editor; EDN, 05/15/ 86, pg 55, 6 pgs.
Standalone imagers focus on workstation segment. Wilson, Andrew, Senior Technical Editor; Digital Design, 05/86, pg 17, 2 pgs.
Uncooled IR sensors shrink scopes. Leopold, George, Government \& Military Editor; Electronics, 05/19/86, pg 21, 0.5 pgs.
VME imaging boards target machine vision. Birenbaum, Robert I, Imaging Technology; King, David R, Imaging Technology; Digital Design, 05/86, pg 28, 4 pgs.

Voltage converters

Focus on de-dc converters. Newhart, Milton, Electronic Design, 09/11/86, pg 169, 4.5 pgs.

Waveform analyzers/analysis
Use a PC to generate analog output signals. Croteau, John, Analog Devices; Grant, Doug, Analog Devices; EDN, 05/15/ 86, pg 131, 10 pgs.

Heater controller uses inexpensive parts

Thomas George Barnett
The London Hospital Medical College, London, UK

The heater-control circuit of Fig 1 operates from 32 to $42^{\circ} \mathrm{C}$ and delivers as much as 18 W to the heating element. Moreover, the circuit controls temperature within $\pm 0.2^{\circ} \mathrm{C}$ and is simple to calibrate and use.

For temperature sensing, it uses a half-bridge consisting of a $7-\mathrm{k} \Omega$ resistor and a UUA41J1 thermistor, energized by a 1.26 V bandgap reference $\left(\mathrm{IC}_{2}\right)$. Op amps $\mathrm{IC}_{1 \mathrm{~A}}$ and $\mathrm{IC}_{1 \mathrm{~B}}$ form a high-input-impedance differential amplifier with a gain of 9.2 that amplifies the bridge output and drives the 20 V digital panel meter (DPM).

To calibrate the DPM, substitute a decade resistance box for the thermistor and simulate temperatures of 32 , 37 , and $42^{\circ} \mathrm{C}$ by setting the box to 7403,6017 , and 4917Ω, respectively. (Corresponding DPM input voltages will be $3.2,3.7$, and 4.2 V . See the Fenwal data sheet for full details.) Adjust R_{1} so that the DPM reads these temperatures correctly; you can use the meter's gain control for fine adjustment. All the resistors in this part of the circuit should have tight tolerance and low

TC to maintain measurement accuracy.
Op amps $\mathrm{IC}_{1 \mathrm{C}}$ and $\mathrm{IC}_{1 \mathrm{D}}$ form a second high-inputimpedance differential amplifier with a gain of 11 that drives transistor Q_{1} through a $100-\mathrm{k} \Omega$ resistor. This action controls the voltage output of the positive, varia-ble-voltage regulator $\left(\mathrm{IC}_{3}\right)$ by lowering resistance between the regulator's adjust pin and ground. The regulator can supply as much as 1.5 A to the heater.

You can change the circuit's damping as required by varying the $\mathrm{IC}_{10}-\mathrm{IC}_{1 \mathrm{D}}$ amplifier's gain and Q_{1} 's base resistor value. Because the thermistor has a time constant of several seconds, however, this circuit is adequately damped using the component values shown; it does not operate in the bang-bang mode.
R_{2} is the set-point potentiometer. To calibrate, note the temperature achieved at different settings and mark the dial accordingly, allowing time for stabilization at each setting. The 5 V supply must be well stabilized; other supply voltages are less critical. EDN

Fig 1-This simple, low-power heater controller maintains temperature within $\pm 0.2^{\circ} \mathrm{C}$ from 32 to $42^{\circ} \mathrm{C}$.

DESIGN IDEAS

LCD drivers minimize component space

Ravindra Karnad and Nimisha Mahuvakar
Centre for Development of Telematics, Bangalore, India

Although you can obtain multicharacter IC drivers for LCDs, an alternative circuit (Fig 1) offers advantages. The circuit uses processor time in lieu of external
hardware for timing and decoding. The $\mu \mathrm{P}$ spends only $100 \mu \mathrm{sec}$ or so out of every 15 msec to update the display, issuing approximately one data byte per displayed character. To display more information, you add one 16 -pin DIP per additional character. Furthermore, the wiring between the display and processor boards comprises just six wires, including V_{CC} and ground.

Fig 1-This interface circuit between a μP and an LCD display lets you tailor the parts count to the number of characters in the display.

YESGain system reliability and improved performance using Mini-Circuits' low-cost,
DC to 1500 MHz attenuators. Minimize interaction between subsystems (for example, mixer and amplifier) and eliminate spurious signals and oscillation by proper input/output matching. And only $\$ 1.95$ (AT-Series, 1000 qty.)
Choose from over a dozen models (1 to 40 dB) in the compact AT-Series ($0.8 \times 0.21 \times 0.2 \mathrm{in}$.) or tiny MAT-Series ($0.5 \times 0.21 \times 0.25 \mathrm{in}$.) housed in a rugged, hermetically-sealed metal case meeting MIL-STD-202. VSWR is less than $1.2: 1$ (typ.), frequency response is flat $\pm 0.3 \mathrm{~dB}$ (typ.), and nominal attenuation is within $\pm 0.3 \mathrm{~dB}$ (typ.). Exceptional repeatability is achieved by laser trimming internal resistors.

No waiting, immediate delivery. One-year guarantee. Call or write for 64-page catalog or see our catalog in the Gold Book, EBG, EEM or Microwave Directory.
$\left.\begin{array}{lcc}\text { AT } & \text { MAT } & \begin{array}{c}\text { Attenuation } \\ \text { Series }\end{array} \\ \text { AT-1 } & \text { Series }\end{array}\right)$

DESIGNERS KIT AVAILABLE:
KAT-1 $\ldots 4$ of each AT ($3,6,10,20 \mathrm{~dB}$), only \$39.95
KMAT-1 $\ldots 2$ of each MAT ($3,6,9,10,12,15,20 \mathrm{~dB}$), only $\$ 39.95$
finding new ways
setting higher standards
\square 뮤Nini-Circuits
P.O. Box 166, Brooklyn, New York 11235 (718) 934-4500 Domestic and International Telexes: 6852844 or 620156

DESIGN IDEAS

Every 15 msec , the $\mu \mathrm{P}$ routes n bytes of data from memory to the parallel-in/serial-out shift register IC_{1}. The 4-bit counter IC_{2} causes the register to shift out this data in 8 -pulse bursts. The data bytes allow the latched shift registers $\left(\mathrm{IC}_{3}, \mathrm{IC}_{4}\right.$, etc) to produce the required segment and common-plane (CP) waveforms (Fig 2).

When the CP signal is a logic 1, all on segments are logic 0 and all off segments are logic 1. This relationship between the CP and segment signals remains in effect even though, on alternate I/O cycles, the $\mu \mathrm{P}$ complements all data bytes fetched from memory. The resident software makes necessary changes in the stored data when the display is updated.

The Clock input frequency must provide at least eight periods between successive IOSELECT pulses from the $\mu \mathrm{P}$. Note also that the 74 HC 595 outputs will change while the chips are receiving serial data unless you place the outputs in a high-impedance state by driving DISPDIS high (pin 13).

EDN

To Vote For This Design, Circle No 749

Fig 2-These waveforms show the polarity and time relationships for typical LCD-drive signals.

Transistor array squares control current

Burkhard Braach
Wandel \& Goltermann, Eningen, West Germany

A simple 5-transistor array and a resistor (Fig 1) generate a square-law relationship between I_{IN} and $\mathrm{I}_{\text {out }}$. The circuit is useful in PLL frequency synthesizers and other closed-loop systems requiring square-law amplification in the feedback path.

Assume that the transistor base currents are negligible and that $Q_{1-}-Q_{2}$ and $Q_{4}-Q_{5}$ have negligible baseemitter offset voltages. These transistor pairs then form ideal current mirrors, and their collector currents equal the input current:

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{4}=\mathrm{I}_{5}=\mathrm{I}_{\mathrm{IN}} . \tag{1}
\end{equation*}
$$

The Q_{1} and Q_{3} collector currents are

$$
\mathrm{I}_{1}=\mathrm{I}_{\mathrm{S}} \mathrm{e}^{\frac{q V_{B E 1}}{\mathrm{KT}}} \text { and } \mathrm{I}_{3}=\mathrm{I}_{\mathrm{S}} \mathrm{e}^{\frac{q V_{B E} \mathrm{~V}_{B T}}{\mathrm{KT}}} \text {, }
$$

respectively, and their ratio is

Fig 1-This transistor-array circuit performs square-law amplification of $I_{I N}$.

Now MIL-Qualified; Bendix Brush Connectors

©1986 Allied-Signal Inc.

B^{3} connectors are available in 2,3 and 4 row configurations with 10 to 100 contacts per row in mother board, daughter board, PC and I/O versions.

Bendix B ${ }^{3}$ connectors are first to meet MIL-C-55302 with only 1.5 ounce mating force per contact.

Now you can specify PCB connectors qualified to MIL-C-55302 that minimize the risk of connector or PC board damage during mating or unmating.

Bendix Bristle Brush Bunch ${ }^{\text {TM }}\left(\mathrm{B}^{3}\right)$ connectors, which are covered on slash sheets M55302/166 through /172, reduce mating forces by 70 to 90% versus conventional pin and socket contacts.

Unique B^{3} contacts are made with bundles of high tensile wires that intermesh to form a gas tight electrical connection with redundant current paths, minimal constrictive resistance and uniform current densities.

They maintain their electrical integrity over 20,000 mating cycles and provide mechanical strength that meets the special requirements for gunfire level random vibration tests specified on slash sheets 166 and 170.

For more information contact your nearest Amphenol Products sales office, Bendix distributor, or:

Call (607) 563-5324

In Canada, (416) 291-4401
Amphenol Products, Lisle, IL 60532

Amphenol Products

DESIGN IDEAS

$$
\begin{equation*}
\frac{I_{3}}{I_{1}}=e^{\frac{q\left(V_{\mathrm{BE}_{3} 3}-V_{\left.\mathrm{BE}_{1}\right)}\right.}{\mathrm{KT}}} \tag{2}
\end{equation*}
$$

where $I_{S}=$ saturation current, $q=$ electron charge, $\mathrm{K}=$ Boltzmann's constant, $\mathrm{T}=$ absolute temperature, and $\mathrm{V}_{\text {be1 }}$ and $\mathrm{V}_{\text {be3 }}$ are the base-emitter voltages for transistors Q_{1} and Q_{3}.

Because $\mathrm{V}_{\text {BE3 }}=\mathrm{V}_{\text {BE1 }}+\mathrm{R}_{1}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$, you can write Eq 2 as

$$
I_{3}=I_{1} e^{\frac{q\left(I_{1}+I_{2}\right) R_{1}}{K T}} .
$$

Substituting $\mathrm{I}_{\text {IN }}$ from Eq 1 yields

$$
\mathrm{I}_{3}=\mathrm{I}_{\mathrm{IN}} \mathrm{e}^{\frac{2 \mathrm{q}_{1} \mathrm{I}_{\mathrm{N}} \mathrm{R}_{1}}{\mathrm{KT}}} .
$$

Thus, transistor Q_{3} provides an exponential function that you can expand as a power series in the form of $\mathrm{e}^{\mathrm{x}}=1+\mathrm{x} / 1!+\mathrm{x}^{2} / 2!+\mathrm{x}^{3} / 3!+\ldots$ to yield

$$
\begin{gather*}
\mathrm{I}_{3}=\mathrm{I}_{\mathrm{IN}}\left[1+\frac{2 q \mathrm{I}_{\mathrm{IN}} \mathrm{R}_{1}}{\mathrm{KT}}+\left(\frac{2 q \mathrm{I}_{\mathrm{IN}} \mathrm{R}_{1}}{\mathrm{KT}}\right)^{2} / 2+\right. \\
\left.\left(\frac{2 q \mathrm{I}_{\mathrm{IN}} \mathrm{R}_{1}}{\mathrm{KT}}\right)^{3} / 6+\cdots\right] . \tag{3}
\end{gather*}
$$

The output current is $\mathrm{I}_{\text {out }}=\mathrm{I}_{3}-\mathrm{I}_{5}=\mathrm{I}_{3}-\mathrm{I}_{\text {IN }}$. Substituting for $\mathrm{I}_{3}(\mathbf{E q} 3)$ eliminates the linear term, so the series begins with the quadratic term:
$\mathrm{I}_{\text {out }}=\left(\frac{2 q R_{1}}{\mathrm{KT}}\right) \mathrm{I}_{\mathrm{IN}}^{2}+\left(\frac{2 \mathrm{qR}_{1}}{\mathrm{KT}}\right)^{2} \mathrm{I}_{\mathrm{IN}}^{3} / 2+\left(\frac{2 \mathrm{qR}_{1}}{\mathrm{KT}}\right)^{3} \mathrm{I}_{\mathrm{IN}}^{4} / 6+\ldots$.
In short, the circuit produces a useful squaring characteristic for low $2 \mathrm{qR}_{1} / \mathrm{KT}$ ratios and low input currents. Fig 2 shows the measured and calculated results for a CA3096 transistor array and a 27Ω resistor. You can extend the 20:1 output-current range by using transistor pairs with tighter V_{BE} matching and

Fig 2-These curves illustrate the performance of Fig 1's circuit. The curve labeled A represents the ideal squaring function, the curve labeled B shows the calculated function, and the two curves labeled C form an envelope for the results obtained using five different CA3096 arrays.
higher betas. If desired, you can reverse the outputcurrent polarity by inserting a resistor with a value $2 \mathrm{R}_{1}$ in the emitter of Q_{4} (remove the $Q_{1}-Q_{2}$ emitter resistor in this case).

EDN

To Vote For This Design, Circle No 746

Sampling phase detector simplifies a PLL

Russell Kautz
Texas Instruments, Plano, TX

Phase-locked loops can include an analog frequencymixing circuit (Fig 1a) or a digital divider (Fig 1b) to
accomplish synchronous down-conversion of the reference and input frequencies. An alternative, the sampling system in Fig 1c, reduces parts count and cost by a factor of eight. Moreover, the sampling approach removes frequency-conversion circuitry from the signal

The wait is over. You can evaluate this $1 / 2^{\prime \prime}$ cartridge tape drive today.

Fujitsu delivers products, not just promises.

It's here-a high-performance $1 / 2^{\prime \prime}$ cartridge tape drive, in a $51 / 4 "$ form factor.

Fujitsu America has it. We're ready today with evaluation units. And we have a product that performs.

Our M2451A cartridge tape drive gives you up to 120 MB of formatted storage capacity. It runs in both streaming and start/stop modes, at streaming speeds of 75 and 50 ips , so it fits almost any application. Its ESDI interface assures easy, cost-effective system integration.

And for your SCSI system, the optional high-performance M1008A SCSI controller is now available.

Most importantly, these cartridge tape drives are already proven and working in systems today. And with second sources available for both drives and media, you can be sure of protecting your investment in this technology.

For more information about Fujitsu's $1 / 2^{\prime \prime}$ cartridge, or other tape drives, call (408) 946-8777. Or write Fujitsu America, Inc., Storage Products Division, 3055 Orchard Drive, San Jose, CA 95134-2017.

Fujitsu tape drives meet the quality standards and technical requirements that have made this one of the world's leading companies. That's leadership you can depend on to develop the technology you need. And deliver it.

We're developing technology for you.

For data integrity and ease of use, fully enclosed $1 / 2^{\prime \prime}$ media is packed in a single reel, in a compact plastic enclosure.

UJITSU AMERICA

DESIGN IDEAS

path, which provides improved short-term stability for the local oscillator, excellent temperature stability, and a thirtyfold decrease in lock-in time.

Fig 2 demonstrates a sampling phase-detector loop that locks the output of a crystal oscillator to that of a rubidium standard. First, the zero-crossing detectors

Fig 1-Some phase-locked loops use analog frequency-mixing techniques (a), and some divide both inputs to the phase comparator using digital dividers (b). The sampling phase comparator (c) achieves advantages by eliminating down-conversion circuitry from the signal paths.

Fig 2-This sampling phase-locked loop generates a voltage output whose polarity and magnitude represent the local oscillator's phase error.

LOW COST - HIGH PERFORMANCE - MONEY-BACK GUARANTEE

D
Design Computation's integrated CAE/CAD design tools provide an end-to-end solution for PCB design The DRAFTSMAN-EE graphics editor is a full-function schematic capture and printed circuit board layout editor. DC/CHECK+ offers valuable printed circuit board design tools. And DC/AUTOROUTER II is a complete, high-end autorouter at an unbelievable price. IBM and ATET PC compatible, this impressive package couples lowcost with high performance, explaining why more and more users are choosing Design Computation. In addition to a long list of advanced features, this software is unconditionally guaranteed with a 60-day money-back guarantee.

DRAFTSMAN-EE VERSION 2.0

DRAFTSMAN-EE 2.0 offers the power and capabilities you would expect in $\$ 4000$ schematic capture software, plus some: features like unlimited zoom, nested symbols, orthogonal and diagonal rubber-banding, easy manipulation of any screen regionnot just rectangular regions, open architecture, and virtually no limits on drawing size or complexity. DRAFTSMAN-EE 2.0 comes complete with a symbol library and parts list and bill of materials report generators.
With Version 2.0, DRAFTSMAN-EE boasts outstanding rubber-banding performance, high-speed drawing, and totally new capabilities such as
rotate and flip of the complete drawing, incremental jump, and split wire/route. DRAFTSMAN-EE 2.0 is powerful, flexible and fast! DRAFTSMAN-EE-only $\$ 749.00$.

DC/CHECK + VERSION 2.1

DC/CHECK + manual routing option provides sophisticated checking for fast, accurate PCB design. It is an ideal, economical package for analog designers and other users who want total control of the routing process.

DC/CHECK+ includes automatic netlist and rat's nest creation, PCB-toschematic netlist comparison, and design rule checking, allowing verification and refinement of both component placement and routing. Along with art master files for trace and common plane layers, DC/CHECK+ produces drill hole, silk screen and solder mask art master files.
Increase your manual routing productivity with DRAFTSMAN-EE and the DC/CHECK+ manual routing option. DC/CHECK+-only $\$ 398.00$.

DC/AUTOROUTER II VERSION 2.1

DC/AUTOROUTER II is a high-end, PC-based autorouter that is winning benchmark after benchmark. With its low-cost, true diagonal autorouting, high completion rates, and professional results, DC/AUTOROUTER II is the package you'll want at your workstation. DC/AUTOROUTER II uses fine grid, 1 mil placement and routing. It handles boards as large as 32 "x 32 ", with 400 IC's per board, two to 16 trace layers, and up to 20 common plane layers. Exclusion areas and irregularly-shaped boards are no problem. You can even interrupt and restart DC/AUTOROUTER II with no loss of work.

Other features include variable trace, pad, and through-hole sizes, multipass routing, automatic removal of unnecessary bends and through-holes and much more. Choose a winner: DC/AUTOROUTER II-only \$2,450.00

FREE DEMO

Free DC/AUTOROUTER II demo and complete low-cost evaluation kit are available. Call for details.

DDESIGN COMPUTATION

Design Computation, Inc.
Ten Frederick Avenue Neptune, NJ 07753 Call today for more info: (201) 922-4111 TWX: 510-601-8352

DESIGN IDEAS

IC_{1} and IC_{2} convert the reference and local-oscillator (LO) frequencies to digital signals. The 2 -to-4-line demultiplexer IC_{3} then samples these frequencies at 800 Hz (every 1.25 msec). The reference and LO frequencies may differ, but each must be an integral multiple of the sampling rate if the system is to achieve lock.
To set the sampling period, $\mathrm{IC}_{4 \mathrm{~A}}$ and $\mathrm{IC}_{4 \mathrm{~B}}$ wait for the output 110000110101 (count of 3125) from the 12 -bit counter IC_{5}. When that output occurs, $\mathrm{IC}_{4 \mathrm{C}}$ issues a brief positive pulse that resets the counter and toggles the flip-flop IC_{6}.
Fig 3 illustrates the digital phase detection that the IC_{3} demultiplexer performs. The presence of Y_{1} indicates a phase lead between the LO and reference frequencies, and the duration of Y_{1} indicates the
amount of phase lead. Similarly, Y_{2} indicates phase lag. Y_{3} goes high when both inputs are high, which ends the sample period by setting the flip-flop.

Note that in Fig $2 \mathrm{C}_{1}$ and C_{2} convert the Y_{1} and Y_{2} pulses to voltage inputs for the differential amplifier IC_{8}. The amplifier in turn produces a de voltage representing polarity and magnitude of the local oscillator's phase error. When locked, the loop produces narrow Y_{1} and Y_{2} pulses (less than 1 nsec) of equal magnitude and duration. The amplifier rejects common-mode signals such as digital noise from the demultiplexer.

EDN

To Vote For This Design, Circle No 747

Fig 3-These waveforms depict Fig 2's operation for the cases of leading phase (a) and lagging phase (b).

Programmable integrator has 6-decade range

Mike Chang
Amber Electro Design Inc, Montreal, Quebec, Canada

The voltage-controlled integrator of Fig 1 provides a programmable time constant for use in applications
such as programmable oscillators and programmable filters. Compared with designs based on OTAs (operational transconductance amplifiers) and monolithic multipliers, this circuit offers lower distortion, lower noise gain vs frequency, and better dynamic range. Furthermore, the circuit provides continuous remote tuning

DATA 2020 Waveform Generator

Coming...

The DATA 6000 Universal Waveform Analyzer offers the ultimate in signal acquisition and on-board waveform analysis in one unit-without programming. Front panel commands are available for complex waveform operations, such as FFT and Correlation as well as scalar parameters such as Max., Min., Width, Rise, or PK-PK, using the display cursor and crosshair. For specialized measurements, the 6000 can also store analytical routines internally.

- Digitizing Plug-Ins from millihertz to 100 MHz sample rates.
- An ultra-high dynamic range digitizing plug-in: 1 MHz at 16 bits.
- Simultaneous multi-channel sampling with pre- and posttrigger transient capture.
- FFT (Magnitude and Phase), Convolution, Correlation, Waveform Average, Amplituide Histogram, etc.
- Direct plotter drive for HP-GL compatible plotters.
- Companion Model 681 Flexible Disk Drive for waveform and program storage.
- Full Programmability for ATE via IEEE-488 or RS-232 interface.

Combining the DATA 2020 and DATA 6000 yields an unbeatable system for signal acquisition, analysis and regeneration. Capture actual signals with the DATA 6000. They can then be modified or combined with other waveforms and down-loaded into the 2020 for regeneration. What was transient can become repetitive, available on call. Shown above, from top to bottom, are the 681 Flexible Disk, the DATA 2020, DATA 6000 and D-1000 Pre-Amplifier: products which give you the power to rule the waves both coming and going.

ANALDGC.

or Going.

The DATA 2020 Polynomial Waveform Synthesizer* provides an unprecedented ability to emulate real world signals, creating desired waveforms from mathematical definitions. Modify the ideal waveforms to add distortion, noise or glitches. Simulate degraded rise times, phase shifts . . . test the limits. Your systems and products must live in the real world. Emulate it with the 2020.

- Direct front panel or remote entry of mathematical equations of the form $Y=f(t)$.
- High-speed waveform generationup to 25 megapoints per second at 12 bits (100 megapoints at 12 bits, optional).
- Large waveform output memoryup to 512 K points, combined with non-volatile storage of hundreds of waveform equations.
- Standard Functions-sine, square, triangle with variable symmetry, plus white noise which can be summed with any signal.
- Arbitrary Mode including point entry, scope draw, and downloading of the waveform memory.
- Full Programmability for ATE via IEEE-488 or RS-232 interface.
*Patents pending

DESIGN IDEAS

and incurs minimal noise-gain problems during tuning. A 1- to $100-\mathrm{kHz}$ oscillator based on state-variable-filter topology, for example, produces -80 dB of distortion at 100 kHz and -95 dB at 1 kHz (THD plus wideband noise).

The differential control voltage CV sets the time constant of this noninverting integrator. The resulting output is

$$
\mathrm{V}_{\text {OUT }}=\int_{0}^{\mathrm{t}} \mathrm{~V}_{\text {IN }} \mathrm{dt}\left[\log ^{-1}\left(\log \mathrm{~V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{C}}\right)\right]
$$

where

$$
\mathrm{V}_{\mathrm{C}}=\frac{200 \mathrm{CV}^{+}}{\mathrm{R}_{\mathrm{X}}+100}
$$

Fig 1-This noninverting integrator has a voltage-programmable time constant that you can adjust over six decades by varying the differential control voltage CV.

Fig 2-This 0.1- to 100-kHz filter uses two of Fig 1's integrator circuits and includes an LM-335A temperature sensor to compensate for the transistor array's $3300-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. You set the filter's cutoff frequency by adjusting the $10-\mathrm{k} \Omega$ potentiometer.

MORE ON MULTIBUS.

 MATROX DELIVERS MORE SPEED,MORE POWER AND MORE VALUE.
COLOR DISPLAY PROCESSORS FOR THE MULTIBUS AND MULTIBUS II.

Your system design deserves the solutions offered by our new, high-performance, single-slot graphics boards. Whether your application is process control, instrumentation, CAD/CAM/CAE, simulation, or C^{3} I, Matrox's latest generation of color graphics processors will provide everything you would expect from our commitment to the Multibus. And more.

More for Multibus. The MG-1280. More for Multibus II. The MMG-640.

- 35,000 vectors/second
- 35,000 vectors/second
- $640 \times 480 \times 8$ resolution
- Dual video outputs
- 13,000,000 pixels/second BITBLT
- iRMX driver

And more to come.
Let us give you the complete picture. Call today.

TV

I-800-36|-4903

RAPHICS
See us at Beoth 5523

Design Entry Blank

\$75 Cash Award for all entries selected by editors. An additional \$100 Cash Award for winning design each issue, determined by vote of readers. Additional $\$ 1500$ Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor
EDN
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my entry for
EDN's Design Ideas program.
Name

\longrightarrow
\qquad

Social Security No
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date
Your vote determines this issue's winner. All designs published win $\$ 75$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize.

Vote now, by circling the appropriate number on the reader inquiry card.

Submit your own design, too. Mail entries to Design Ideas Editor, EDN, 275 Washington St, Newton, MA 02158.

The integrator includes an 8-transistor array connected as a complementary, cross-balanced, log-antilog multiplier. Resistors R_{2} and R_{3} set a $4-\mathrm{mA}$ bias for the multiplier that allows low-distortion operation for inputs as high as 5 V rms and 100 kHz . You trim the circuit for minimum second-harmonic distortion by adjusting R_{5} at the highest operating frequency ($\mathrm{CV}=0 \mathrm{~V}$). Then, use R_{4} to adjust for minimum distortion at the lowest operating frequency.
You scale the differential control voltage $\mathrm{CV}^{+} / \mathrm{CV}^{-}$by selecting R_{X} (two resistors) to provide the desired internal voltage range (a differential of 120 mV at the top of the 100Ω resistors causes one decade of frequency change). $\mathrm{CV}=0 \mathrm{~V}$ produces the highest operating frequency allowed by the integrator components R_{1} and C_{1}, which is 100 kHz for this circuit.
The matched pair of JFET source followers (Q_{1}) buffers the input bias currents of op amp IC_{2} and reduces output noise within the integrator's $120-\mathrm{dB}$ operating range. $\mathrm{Q}_{2}, \mathrm{Q}_{3}$, and R_{6} buffer IC_{2} 's output, allowing the integrator to maintain low distortion while driving capacitor C_{1} and the output load.
Feedforward compensation (the connection from Q_{1} to the virtual ground of IC_{1}) achieves a threefold increase in Q as compared to that of a simple Miller integrator. In addition, feedforward compensation counters the unwelcome Q enhancement that would otherwise occur in this circuit when used in topologies such as state-variable filters.
The transistor array exhibits a TC of $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, for which a thermistor (for example, Tel Labs' Q-81 or EQ) usually provides compensation. However, the thermistor's nonlinear TC and the difficulty of achieving tight thermal coupling between the thermistor and the array make the use of a thermistor troublesome. You can achieve more precise compensation by using an LM-335A temperature sensor as shown in Fig 2. The sensor's $2-\mathrm{mA}$ bias generates the same self-heating effect as that experienced by the array. Compensation is quite effective if you protect the sensor from air currents and provide good thermal contact between the sensor and the array.

EDN

To Vote For This Design, Circle No 748

Systems Design \&

 Integration Problems Solved Here!
Santa Clara Convention Center February 10-12, 1987

Systems Design \& Integration Conference ${ }^{\text {TM }}$

A DYNAMIC CONFERENCE PROGRAM

- Solving Problems with Local Area Networks
- Systems Design with 32-Bit Microprocessors
- Fiber Optics Systems
- Impact of GaAs on Systems Design
- Storage Trends (Optical, Magnetic, Compact Disk)
- Output Devices for Hard Copy
- Display Subsystems
- File Servers and Hosts
- System Design - Methodology and Tools
- 32-Bit Bus - Trends and Choices
- Architectures for Computer Graphics
- Data \& Voice Integration - ISDN
- Commercial Artificial Intelligence/Expert Systems
- Multi-Vendor Hardware Integration
- MAP - The Key to an Integrated Factory
- Software Design and Integration for 32-Bit Microprocessors
- Robotic Systems Integration
- Solutions for Managing Engineering CAD/CAE Databases and the Design Process
- EXHIBITS AND MORE!

CIRCLE NO 127
Sponsored by Los Angeles Council and San Francisco Bay Area Council, IEEE

Southern and Northern California Chapters, ERA elD

Please send me more information
Name \qquad Company \qquad
Address \qquad
City, State, Zip \qquad
Mail this coupon to SDIC, Deanna Myerson, P.O. Box 92275 WPC, Los Angeles, CA 90009-2275

DIXY'S PLASMA DELIGHTS.

Our competitors think our new C and D Series plasma displays revolutionary. At DIXY, we consider them merely evolutionary. But then, we're known for our high-performance, cost-effective plasma panels with top-of-the-line specifications.
WHAT STAYED THE SAME

- Our exclusive thick film technology. It lets our customers offer sharp, brilliant graphics and precise, high-resolution alphanumerics in eye-soothing, flicker-free, jitter-free neon orange.
- The high 640×400 dot density ($0.3 \mathrm{~mm} \times 0.3 \mathrm{~mm}$ dot-pitch).
- Full graphics display capability.
- Wide viewing angle: 115° (left-right) and 140° (up-down). Distortion free screen.
- Ability to display 4,000 high-clarity alphanumerics on the screen at one time.
- Full CRT (non interlace type) interfacing.
- Series or parallel operation (RS232C and other composite interfaces).
- Touch screen entry.
- Simple installation. The overall mounting area, including the drive electronics, is small.
- The other DIXY benefits. Responsiveness to your needs. WHAT CHANGED
- Thinner and simpler design (new C and D Series units), 19mm at the periphery, 38 mm at the center.
- Adjustable brightness control.
- Lower power consumption.
- Value-added engineering for extra reliability and durability. dimensions

MODEL	SCREEN SIZE	WIDTH	HEIGHT		
SC. SD	$9^{\prime \prime}$	276 mm	197 mm	38 mm	
LC.LD	$10^{\prime \prime}$	276 mm	213 mm	38 mm	
AC.AD	$12^{\prime \prime}$	325 mm	216 mm	38 mm	

OP AMPS

- Available in small-outline packages
- Cut required board space by 50%

Models OPA121U, OPA27/37U, and INA105U amplifiers are small-outline (SO) versions of the manufacturer's DIP-encased devices of the same part numbers (less the U suffix). The ICs measure approximately $0.2 \times 0.15 \times 0.1 \mathrm{in}$., depending on the model, and have eight 50 -milcenter leads having a gull-wing configuration. The OPA121U is a FETinput unit that specs $10-\mathrm{pA}$ max bias

POWER-MONITOR IC

- Monitors four supply voltages simultaneously
- Detects overvoltage and undervoltage faults
A quad power-fault monitor, Model SG1548J, keeps watch on as many as four de-supply voltages simultaneously. The device includes a 2.5 V , $\pm 1 \%$ reference; an external divider network connected to the reference allows you to program fault-toler-
current, $3-\mathrm{mV}$ max offset voltage, and $3-\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ drift. Models OPA27U and OPA37U are the SO versions of the manufacturer's low-noise 3.2 $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz op amps. Model INA105U is a unity-gain differential amplifier that specs 0.001% max nonlinearity, 0.025% max gain error, and $72-\mathrm{dB}$ min common-mode rejection over temperature. OPA $121 \mathrm{U}, \$ 3.05$; OPA $27 / 37 \mathrm{U}, \$ 3.25$; INA1050, $\$ 3.80$ (100).
Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 7461111. TWX 910-952-1111.

Circle No 351

ance windows from ± 5 to $\pm 40 \%$. An external capacitor sets the fault-indication delay, thereby eliminating false outputs that could arise from switching noise, logic-transition current spikes, and short-term acline interruptions. An additional comparator that uses the 2.5 V reference allows you to monitor the ac line for undervoltage conditions or for generating a clock. The device is available in a 16 -pin plastic or ceramic DIP, or in a 16 -pin SO pack-
age. $\$ 2.05$ (1000).
Silicon General, 11861 Western Ave, Garden Grove, CA 92641. Phone (714) 898-8121. TWX 910-596-1804.

Circle No 352

PC/AT CHIP SET

- Replaces $>^{1 / 2}$ of mother board's devices
- Uses $1.8-\mu m$ standard cells

A 2-chip set called Poach (PC on a chip) replaces more than half the devices found on a PC/AT's mother board. Nine of the replaced devices are major 80286 -family peripheral ICs. The two $1.8-\mu \mathrm{m}$ CMOS chips are housed in 84 -pin PLCCs. Using readily available 120 -nsec RAMs, the chip set can achieve no-waitstate operation at a $10-\mathrm{MHz}$ clock rate. The chip set costs $\$ 45$ (OEM qty); for demonstration as a design aid, the company also offers a PC/AT mother board that incorporates the chip set.

Zymos Corp, 477 N Mathilda Ave, Sunnyvale, CA 94086. Phone (408) 730-5400.

Circle No 353

ANALOG SWITCHES

- Offer $\pm 50 \mathrm{~V}$ operation, low onresistance
- Guarantee latch-up-free operation
A family of high-voltage CMOS/ DMOS analog switches operates from split supplies of ± 20 to $\pm 50 \mathrm{~V}$ or a single supply of 20 to 60 V .

Mitsubishi Enhances Single-Chip Solutions.

Series 740 MCU's (Partial Listing)
 gets your designs to market quicker than you ever thought possible.

Mitsubishi's Series 740 single-chip MCUs for telecommunications, office and factory automation, commuter peripherals and consumer applications.

Over two dozen Series 740 devices offer combinations of powerful onchip features:
\square Up to 10 K bytes on-chip ROM,
512 bytes RAMUp to 56 I/ OsUARA-D/D-A convertersPulse width modulation (PWM) functionsPower-down mode for low-power, battery back-up (3V) operation

The Series 740 is supported with comprehensive development systems, including software that runs on MS/ DOS-based computers (IBM-PC/ $\mathrm{AT} / \mathrm{XT}^{\mathrm{TM}}$) and $\mathrm{CP} / \mathrm{M}^{\mathrm{TM}}$ systems.

In-circuit emulator (ICE) boards, EPROM development chips (with up to 8 K bytes on-board EPROM) and
debugging systems provide fast, easy design. Plus, you can shorten your product introduction cycles with one-time-programmable (OTP) versions.

Upward compatible with the 6502 instruction set, the Series 740 offers 13 extra instructions and augmented addressing modes.
For single-chip solutions, backed by extensive MCU experience and leadership, call or write Mitsubishi Electronics America, Inc., Semiconductor Division, 1050 East Arques Avenue, Sunnyvale, CA 94086. (408) 730-5900, Ext. 2314.

Quality Trough Comnitonat

Solution: On-Board LCD Controller.

From medical instrumentation to portable computers. They're the perfect single-chip solution. Mitsubishi's 8-bit CMOS MCUs, the M50930FP, M50931FP and M50932FP MCUs. They offer more ROM, RAM, timers and $/ / O s$, plus easy LCD driver control up to 128 segments and low-power battery back-up (3V) operation. Ideal for portable applications.

All the subsystems you need in one 80 -pin flat package for quick, costeffective, space-saving system design.

	M50930FP	M50931FP	M50932 FP*
LCD Driving Control	4×32		
Duty Cycle	$1 / 2 / 2,1 / 3,1 / 4$		
ROM (bytes)	4 K		8 K
RAM (bytes)	128	512	
Memory Limit	$16 \mathrm{~K} \times 8$		
I/O Ports	32, plus 32 LCD segments		
Minimum Instruction	$2 \mu \mathrm{sec}$		

*Under development
For single-chip solutions, call or write Mitsubishi Electronics America, Inc., Semiconductor Division, 1050 E. Arques Avenue, Sunnyvale, CA 94086. (408) 730-5900, Ext. 2314.

Models MAX341/343/345 have an on-resistance of 80Ω typ, 110Ω max; MAX348 specs an on-resistance of 35Ω typ, 55Ω max. Drawing less than $20-\mathrm{mW}$ of operating power, the switches offer operation that's latch-up free. You can cascade the devices to switch currents as high as 500 mA . The switches' control input accepts 15 V CMOS or other highlevel drive signals. The ICs' specs guarantee make-before-break operation. Turn-on and -off times are 1 $\mu \mathrm{sec}$ max and 750 nsec max, respectively. Models MAX341 and MAX348 are dual spst devices; the MAX343 is a dual spdt unit, and the MAX345 is a dual dpst switch. All models are available in commercial, industrial, and military temperature ranges. Prices for the MAX341, MAX343/345, and the MAX348 start at $\$ 5.95, \$ 9.95$, and $\$ 8.95$ (100), respectively.

Maxim Integrated Products, 510 N Pastoria Ave, Sunnyvale, CA 94086. Phone (408) 737-7600.

Circle No 354

A/D CONVERTER

- Uses delta-sigma modulation
- Has 16-bit resolution, 84-dB dynamic range
Using an oversampling technique called delta-sigma modulation, Model CS5316 A/D converter provides 16 -bit resolution, $84-\mathrm{dB}$ dynamic range, and full-scale signal-to-total harmonic distortion exceeding -72 dB . The converter samples input signals at a $2-\mathrm{MHz}$ rate to digitize signals whose frequencies range from 0 to 4 kHz . A delta-sigma modulation loop then processes the resulting input samples to obtain a 1-bit digital-data
stream. An internal linear-phase digital filter refines the $2-\mathrm{MHz}$ data stream. The resulting $16-\mathrm{kHz}$ data stream of 16 -bit words then emerges from the IC through a codec-like serial interface. The converter operates from 5 V power supplies and dissipates less than 200 mW . Housed in an 18-pin plastic DIP, the CS5316 costs $\$ 30$ (1000).

Crystal Semiconductor Corp, Box 17847, Austin, TX 78760. Phone (512) 445-7222. TLX 910-8741352.

Circle No 355

STATIC RAMs

- Have access and cycle times as low as 20 nsec
- Available in $2 k \times 8$ - and $4 k \times 4$-bit versions
These six CMOS-processed, 16 k -bit static RAMs spec access and cycle times as low as 20 nsec. Models VT20C18 and VT20C19 are organized as 2048×8 bits; Models VT20C68/69/78/79 are organized as 4096×4 bits. In addition to their $20-\mathrm{nsec}$ access and cycle times, models VT20C19/69/79 have a fast-chipenable option that provides data access in as little as 10 nsec . Models VT20C18/19/78/79 also have a fast-output-enable control function. Active power consumption is typically 550 mW ; models VT20C18/68/78 reduce power consumption further by providing an automatic power-down feature that reduces standby power consumption to 35 mW in the presence of TTL inputs. For CMOS inputs, standby current consumption is 10 nA max. Models VT20C18/19 come in 24 -pin, side-brazed ceramic DIPs; the VT20C68/69, in 20-pin, side-brazed DIPs; and the

Access Dales Mill Arsenal.

VT20C78/79 in 22-pin, side-brazed DIPs. The $20-$-nsec versions of the VT20C18/19, $\$ 21.24$; of the VT20C68/69/78/79, \$14.28 (1000).

VLSI Technology Inc, 1109 McKay Dr, San Jose, CA 95131. Phone (408) 434-3000. TLX 278807.

Circle No 356

SAR CHIP

- Directly replaces 2504 and 25L04 bipolar ICs
- Consumes <4 mA at 25 MHz

This CMOS-processed, high-speed successive-approximation register, Model Zy25HCT04, is a direct replacement for 2504 and 25 L 04 bipolar devices. The device draws less than 4 mA of supply current at its guaranteed maximum operating frequency of 25 MHz . At a $1-\mathrm{MHz}$ clock rate, the IC draws less than $100 \mu \mathrm{~A}$ from its 5 V supply. The device is fabricated with a $1.5-\mu \mathrm{m}$, n-well CMOS process and is available in chip form or in a plastic DIP. Chips, $\$ 4.80$; DIP units, $\$ 5.50$ (100).

Zyrel Inc, 1900 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 433-0488.

Circle No 357

SINGLE-CHIP $\mu \mathrm{Cs}$

- Software compatible with the 8086 and 8088
- Reduce power requirements

Two CMOS-processed 1-chip microcomputers combine 8086/8088 compatibility with internal peripheral features. The μ PD70320 and
μ PD70322, members of the manufacturer's V25 Series, provide serial and parallel I/O ports, a comparator, timers, a DMA controller, and 256 bytes of RAM. These peripheral functions previously required chips external to the $8086 / 8088 \mu \mathrm{P}$. Other features include a $16 / 32$-bit temporary register/shifter, a 16 -bit loop counter, a program counter and prefetch pointer, and a dual data bus that allows fetching two operands simultaneously. The μ PD70322 differs from the μ PD70320 in that it contains 16 k bytes of mask-programmable ROM. In 80-pin plastic miniflat packages or 84 -pin plastic LCCs, each device costs $\$ 25$ (OEM qty).

NEC Electronics Inc, Litera-ture-MS4580, 401 Ellis St, Mountain View, CA 94039. Phone (415) 965-6144. TWX 910-379-6985.

Circle No 358

LEVEL TRANSLATOR

- A 1-chip low-to-high-voltage translator
- Drives n - and p-channel pushpull outputs
Claimed by its manufacturer to be the industry's first monolithic low-to-high-voltage translator, Model HT01 is an 8-channel device that provides 0 to 300 V outputs. This high-voltage capability allows the device to drive n - and p -channel complementary-output devices connected in a push-pull configuration. Containing eight channels that have separate inputs and outputs, the HT01 has output-source and -sink capabilities of 200 and $100 \mu \mathrm{~A}$, respectively. Logic inputs to the device can range from 5 to 15 V . The

REAL TIME HARDWARE

PC-PAL ${ }^{\text {™ }}$
PROGRAMMER
The simple, fast and inexpensive way to program PALs in your PC or AT. Works with virtually all 20 and 24 pin devices from MMI, TI and NSC. Includes all the software needed to read, write and verify PALs. Works with JEDEC files and includes a compiler for MMI standard PAL types
\$395
NUMBER
SMASHER/ECM ${ }^{*}$
Triples the speed of CAE and all applications on IBM PC, XT and compatibles!
From \$599

12 MHz Accelerator Plus A Megabyte for DOS!
PC Magazine Editor's Choice FastCACHE-286 ${ }^{\text {m" }}$
Runs the 80286 at 8.5 or 11 MHz and the 80287 at 5,6 or 11 MHz . Includes 8 kbytes of 55 ns CACHE. Compatible with more PCs than any other accelerator, including Leading Edge Model D, Compaq, and Turbo motherboards. Includes 8088 Reboot Switch, DCache and Diagnostics.

From \$449

Real Time Software

RTOS ${ }^{\text {™ }}$ A multi-user, multi-tasking, Real-Time operating system. Includes a configured version of Intel's iRMX-86, LINK-86, LOC-86, LIB-86, OH-86 and MicroWay's 87 DEBUG. Runs on the IBM-PC, XT, PC-AT and COMPAQ
\$600
87 SFL $^{\text {T }}$ Very accurate and fast Scientific Function Libraries. 145 functions: 34 Elementary functions, 18 Probability and Statistical functions, 15 Random Number Generators and many more. Callable from FORTRAN, Pascal, BASIC and C.
First module.
\$250
Each additional unit
\$100
DCACHE ${ }^{\text {T }}$ Disk caching software that speeds up your I/O by storing repetitively used tracks in memory. The amount of memory used can be selected in 64 kbyte banks.
$\$ 49$

CIRCLE NO 16

LOW INSERTION FORCE (LIF) CONNECTORS BEAT ZERO INSERTION FORCE (ZIF) CONNECTORS 3 TIMES:

1. WIPE: contact wipe eliminates corrosion and disconnects caused by cable weight.
2. COST: jack screw coupling costs less than cam actuated coupling.
3. RELIABILITY: jack screw coupling eliminates intermittent contact.

The Hypertronics N -series of connectors eliminate the common problems of comparable ZIF connectors. They provide lower cost in high pin count models and applications flexibility:

- 70 to 700 contact positions
- Rack and panel, cable to chassis, cable to cable models
- 5 Amp and 9 Amp contacts
- Crimp, solder cup, wire wrap, ${ }^{\circledR}$ and dip solder termination.

The N -series utilize the Hypertac ${ }^{\text {® }}$ contact which provides:

- Extremely low contact insertion/extraction force (as low as $1 / 2$ ounce)
- Electrical continuity under extremes of shock and vibration (tested below 10 nanoseconds)
- Contact life exceeding 100,000 with excellent electrical repeatability
- Contact resistance under 5 milliohms.

To learn more about these versatile connectors and which configurations are right for you, call us toll-free 1-800-225-9228 or write for a copy of our complete 1987 catalog.

HYPERTRONICS CORPORATION

"New Horizons in Connectors"
16 Brent Drive, Hudson, MA 01749-2904
Toll free: 1-800-225-9228 Fax: (617) 568-0680 MA \& Canada Tel: (617) 568-0451 Tlx: 951152

CIRCLE NO 17

Be An Author!

When you write for EDN, you earn professional recognition. And you earn $\$ 75$ per published magazine page. EDN publishes how-to design application information that is read by more than 137,000 electronics engineers and engineering managers worldwide. That's an audience that could belong to you.

If you have an appropriate article idea, please phone Eva Freeman, Associate Editor, at (617) 964-3030, or send a proposal and outline to her at 275 Washington Street,
Newton, MA 02158-1630. For a FREE EDN Writer's
Guide-which includes tips on how to write for EDN and other technical
publications-please circle number 800 on the Informa tion Retrieval Service Card.

First in Readership among Design Engineers and Engineering Managers in Electronics

INTEGRATED CIRCUITS

high-voltage-referenced logic outputs swing to 14 V less than the high-voltage rail. Housed in a 20 -pin plastic DIP, the HT01 costs $\$ 3.42$ (1000).

Supertex Inc, Box 3607, Sunnyvale, CA 94089. Phone (408) 7440100. TLX 6839143.

Circle No 359

ANALOG SWITCH

- Improves on dc parameters and speed
- Many previously untestable specs 100% tested
Model DPG201A quad spst analog switch specs source and drain leakage currents of 250 pA at $25^{\circ} \mathrm{C}$ and 1 nA over -40 to $+85^{\circ} \mathrm{C}$, a supply range of 10.8 to 22 V , a tested charge transfer of 50 pC , and guaranteed maximum variations in on-resistance and switching times between any two channels. Available in plastic and ceramic 16 -pin DIPs as well as a 16 -pin narrow-body plastic small-outline package, the device comes in models that operate over the military or industrial ranges. $\$ 4.74$ to $\$ 17.51$ (100).
Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 970-2045.

Circle No 360

BUFFER AMP

- Has matched vertical pnp and npn transistors
- Draws 10 mA from $\pm 15 \mathrm{~V}$ supplies
Drop-in-compatible with models HA3-5033-5 and HA3-5002-5, the EL2033CN is a high-speed, unitygain buffer amplifier that uses the dielectric-isolation process to produce vertical pnp and npn transistors having virtually identical ac and de characteristics. The device draws only 10 mA typ from its $\pm 15 \mathrm{~V}$ supplies, as compared with the 21 mA typ drawn by the HA3-

Includes Pseudo Random Noise Generator/DAC. For the IBM-PC, XT and AT.
\$1,295
AFM-50 ${ }^{\text {™ }}$ Programmable, low pass filter module for signal conditioning. .
\$225
TransVIEW ${ }^{\text {Tu }}$ A menu driven FFT spectrum/transfer analyzer which takes advantage of the special features of A2D-160. TransVIEW's commands emulate Microsoft Word for easy learning and a minimum of keystrokes.
\$250

Data Analysis \& Controls Software

DAL ${ }^{\text {w }}$ Data Analysis Language. A new scientific/engineering design and analysis software package. Performs matrix, statistical and data analysis along with signal processing and digital filter design. . . \$395
CONTROL-X ${ }^{\text {w" }}$ Controls Analysis \& Design Language. This systems language is a superset of DAL specifically intended for Systems Control Design. It offers the same features as VAX Controls language at $1 / 20$ the price!
\$595
87 FFT $^{\text {wu }}$ Written in assembly language, 87FFT performs forward and inverse FFTs on real and complex arrays occupying up to 512 K of RAM. Callable from most 8087 compatible compilers. The fastest PC FFT package available! \$200 87FFT-2 ${ }^{\text {w }}$ For two dimensional FFTs........................... \$100 LABTECH NOTEBOOK ${ }^{\text {" }}$ A menu driven, Real-Time data control system. Does analysis, display and streaming to disk of data from A/D boards......................... $\$ 745$
UNKELSCOPE ${ }^{\text {w }}$ Turns your A2D-160 into a digital oscilloscope and data-logger.
\$549

Value for Value

We've found a way to help you make your products performance stand out.

"Value" is more than a word at Nichicon. It's even much more than a belief or commitment to provide our customers with the highest quality products and services, at the fairest possible price.

The "value" of Nichicon depends on how you, the capacitor or hybrid IC specifier, think about our products and people. It's how you feel about the ways we've helped you keep your commitments. And it's the result of how our products enhance the value of your products.

That's why we've designed and manufactured our capacitors and hybrid ICs, not just to meet, but to exceed your needs. After all, any product that fails you at incoming inspection or out in the field, was not

of much value-no matter how little you paid for it.

That's why we listen and respond. With a nationwide network of representatives and distributors. Plus, U.S. engineering support, and both OEM and distributor customer service departments to answer your questions on product availability and order status.

So go ahead. Compare Nichicon with your present capacitor or hybrid IC supplier. From service before the sale to our senvice after your order has been delivered... and everything in between.

Call your local Nichicon representative or distributor or call us and ask for your free full-line catalog. Then compare us, value for value.

5033-5. The EL2033CN operates over -25 to $+85^{\circ} \mathrm{C}$ and offers shortcircuit protection. The IC has a $100-$ MHz bandwidth and provides at least 100 mA of output current. $\$ 5$ (100).

Elantec Inc, 1996 Tarob Court, Milpitas, CA 95035. Phone (408) 945-1323.

Circle No 361

STEPPER-MOTOR ICs

- Sense and control current in motors
- Operate in tandem with a power stage
Models L6505 and L6506 operate in combination with such power stages as the L293, L298, or L7180 to provide a constant-current drive for inductive loads. Each combination also performs all interface functions, from the control logic through the power stage. The two ICs differ only in the logic used to implement the chopping for the current load. Model L6505 includes exclusive-OR gates in the chopping section, and you can use it with the L298 for 2-phase bipolar motors, in either full- or half-step drives. Model L6506 uses AND gates in the chopping control; you can use the IC in either 2-phase bipolar or 4-phase unipolar configurations. The TTL devices are rated at 10 V ; they have a 1 W power-dissipation capability. \$1.41 (1000).

SGS Semiconductor Corp, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. TLX 249976. Circle No 362

16×16-BIT MACs

- Breaks the $\$ 10$ price barrier
- Offered in 45-nsec version

These 16×16-bit multiplier/accumulator ICs come in two versions: Model LMA1010PC breaks the traditional $\$ 10$ price barrier for 16×16 bit devices; Model LMA1010PC-45 features 45-nsec operation time. Pin

and function compatible with TMC2010 and Am29510 MACs, both devices perform 16×16-bit multiplication and 35 -bit accumulation, as well as subtraction and rounding, using 2 s-complement and unsignedmagnitude operands. Available with MIL-STD screening, the MACs come in ceramic DIPs, pingrid arrays, and plastic LCCs. LMA1010PC, $\$ 9.95$; LMA1010PC45, \$17.93 (1000).

Logic Devices Inc, 628 E Evelyn Ave, Sunnyvale, CA 94086. Phone (408) 720-8630.

Circle No 363

CMOS PLDs

- First MIL-STD, CMOS 20-nsec reprogrammable PLD
- Saves $>60 \%$ power vs bipolar designs
A family of 20 -pin reprogrammable CMOS PLDs meets MIL-STD-883 and specs 20 -nsec propagation delays. Models PALC16L8/R8/R6/R4 use a floating-gate EPROM technology. Specs include $20-$ nsec propagation delay and setup time, $15-$ nsec clock-to-output time, $\quad 28.5-\mathrm{MHz}$ operating frequency, and $70-\mathrm{mA}$ active current. The units accommodate CUPL and ABEL programming software. Prices for MIL-grade, 20 -nsec versions in opaque DIPs, windowed DIPs, and LCCs are $\$ 15, \$ 27$, and $\$ 48(100)$, respectively.

Cypress Semiconductor Corp, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2666.

Circle No 364

REAL TIME SERVICE

reasons: one, they work and two, we
reat support our products with one of the best technical support teams in the industry. Join those who know! Buy your 8087 support from MicroWay.
287 TurboPLUS ${ }^{*}$ Speeds up your IBM AT!

An adjustable oscillator lets you increase your AT's
80286 speed in. 5 MHz increments. Includes a 10 or 12 MHz 80287 clock and a system reset button.
Board only.
\$149
With 80287-10
\$549
With 80287-12 \$629
Optional 80286-10 \$175

8087 Upgrades

8087	5 MHz	$\$ 114$
$8087-2$	8 MHz	$\$ 149$
$80287-3$	5 MHz	$\$ 179$
$80287-6$	6 MHz	$\$ 199$
$80287-8$	8 MHz	$\$ 259$
$80287-10$	10 MHz	$\$ 395$
NEC V20-8	8 MHz	$\$ 16$
NEC V30-10	10 MHz	$\$ 30$
64K RAM set	150 ns	$\$ 10$
256K RAM set	150 ns	$\$ 27$
256K RAM set	120 ns	$\$ 39$
128K RAM set	PC AT	$\$ 49$

8087 Software

87 BASIC $^{\text {w }}$ A patch to the IBM Basic or MS QuickBASIC compiler that provides fast, USER TRANSPARENT 8087 support $\$ 150$
MATRIXPAK ${ }^{\text {ww }}$ A run-time package written in assembly language which accurately manipulates large matrices at very fast speeds. Includes matrix inversion and the solution of simultaneous linear equations. Callable from RM, IBM or MS FORTRAN, MS Assembler or 87 BASIC. \$99
87 Verify" For users that have to be absolutely sure of their results! This background task periodically performs an 8087 accuracy and stress test.
$\$ 49$

P.O. Box 79

Kingston, Mass.
02364 USA
(617) 746-7341

SEQUENCE GENERATOR

- Features parallel interface to drive frequency hopper
- Includes pseudonoise generator

The PNG-100 is a pseudorandom sequence generator on a $12 \times 9.5-\mathrm{in}$. pc board. It is designed for use in the development and test of both spread-spectrum and conventional data-communication systems. The board includes a pseudonoise gener-
ator, which is basically a high-speed shift register with linear feedback. You select the desired sequence by setting the feedback pattern, the initial contents of the 16 -bit shift register, and the length of the sequence. You can also alter these three parameters on the fly and thus generate highly complex sequences. You can also generate linear recursive sequences by using the board's built-in XOR feedback logic or by inserting your own custom feedback logic. The maximum clock rate is 25 MHz . The board operates in burst, staggered, BPSK, QPSK, or GOLD/JPL modes. You control the generator via clock, data, and start/stop signals. Outputs include a buffered clock, sequence strobes, I and Q direct sequences, and a parallel in-
terface to drive a frequency hopper. $\$ 3500$. Delivery, stock to 60 days.
New Wave Instruments, 3760 Masters Ct, San Jose, CA 95111. Phone (408) 629-3105.

Circle No 365

PUBLISHING CARD

- Desktop publishing board for the IBM PC/AT
- Doubles the resolution of some laser printers
The Conovision 2800 board for the IBM PC/XT and PC/AT features a high-resolution monochrome graphics adapter and is optionally available with a raster image processor. The combination doubles the resolution of laser printers that use the Canon LPB-CX engine. For exam-

Now, implement GPIB systems

 faster. If you're putting together GPIB systems based on PCs, here's good news. Now you can interconnect any of the over 4,000 IEEE 488compatible devices faster than ever before. With hardware controllers that transfer data at 450 Kbytes/ second, and complete development support from Ziatech.To get your application up and running in record time, we offer an extensive set of software tools. These include directly linkable device drivers for efficient, high-speed operation. Installable drivers that use PC-DOS to link application programs and devices. Plus talker/ listener drivers that allow the PC to control up to 15 devices or act
as a device being controlled. Then to save programming time, we provide a variety of application-level utility routines for typical instrumentation tasks. And a full complement of highlevel programming languages.

You also have access to applications support that's second to none. With complete, up-to-date hardware/software documentation.

ZIATECH CONTROL: FROM

ple, the board increases the resolution of the HP Laserjet printer to $600 \times 300 \mathrm{dpi}$. The 2880×1024-pixel resolution of the graphics adapter delivers the WYSIWYG (what you see is what you get) capability essential to desktop publishing. A preview capability details graphics and actual typefaces at small point sizes. Screen drivers enable any software that runs under Microsoft Windows to run with this board. Hardware is included for pan and zoom. The optional raster image processor prints a formatted page at the rate of 8
sec/page. Using your application software, you can select between this Conovision image processor and the printer's native image processor. The board boots up in a Hercules-compatible mode. \$1985, including the raster image processor; without image processor, \$1325.
Conographic Corp, 17841 Fitch, Irvine, CA 92714. Phone (714) 4741188. TLX 755453.

Circle No 366

POWER-LINE LAN

- Delivers data at $19.2 k$ bps
- Can support 255 master and slave units
The AN192 power-line network communicatons module provides LAN communications at 19.2 k bps over a building's power lines. It uses modulation, demodulation, and er-ror-control coding methods de-

signed specifically for power lines, where noise and signal distortion demand less traditional techniques for data communication. The device supports as many as 255 master and slave units; all master and slave units use identical AN192 modules. The module allows you to configure a LAN as a bus equipped with one or more central controller master units and with or without token passing. $\$ 97$ (1000).
Adaptive Networks Inc, Box 1020, Cambridge, MA 02142. Phone (617) 497-5150.

Circle No 367

Local technical seminars. And a technical support hotline direct to factory applications engineers, for immediate answers.

Get fast turn-around on all orders. We ship all GPIB controller orders promptly. By meeting tight deadlines ourselves, we can help you meet yours.

For product and pricing details

on Ziatech IEEE 488 interfaces for PC BUS-as well as STD Bus or MULTIBUS ${ }^{\text {™ }}$ - call (805) 541-0488 today.

三 $|||\mid \angle 1 A$ CORPORATION

3433 Roberto Court, San Luis Obispo, CA 93401
Telex: 4992316 MULTIBUS is a trademark of Intel Corporation

VIDEO DIGITIZER

- Designed for IBM PC
- Provides 256 gray levels

The PCVisionplus frame grabber occupies a single slot in an IBM PC or compatible computer and provides 8 -bit A/D conversion, which translates into 256 gray levels per pixel. The frame grabber's use of a phase-locked loop guarantees stable synchronization with VCRs, according to the manufacturer. The digitizer's offset and gain are program-
mable, and the $1024 \times 512 \times 8$-bit memory can store multiple images. Pan, zoom, and scroll are implemented in hardware. You can writeprotect each of the eight bit planes individually. The video interface accepts RS-170-, RS-330-, NTSC- (luminance only), and CCIR-formatted signals. You can access the frame memory in Z-mode (all eight bits of each pixel), X-mode (eight horizontally adjacent pixels within a single bit plane), or block-move mode (which transfers eight 8-bit pixels in a single host operation). Twelve 8 -bit registers, which are mapped into the PC's I/O space, control all the functions of the board. The frame memory is mapped into the PC's memory space in 64 k -byte blocks. $\$ 1995$.

Imaging Technology Inc, 600 W Cummings Park, Woburn, MA 01801. Phone (800) 532-3500; in MA, (617) 938-8444. TLX 948263.

Circle No 368

SMART CARD

- Cards come with $64 k$, $256 k$, or $1 M$ bits of memory
- No exposed electrical contacts

The LSI Card is an external memory card that features noncontact data transfer at a rate of 500 k bps. The card and its associated reader work with programmable controllers in computer timesharing and access-control applications. The card comes with either $64 \mathrm{k}, 256 \mathrm{k}$, or 1M bits of CMOS static RAM and is powered by a lithium battery. The method of data transfer is magnetic coupling. The card is about the size

NATIONAL HEADQUARTERS

 FOR CMOS BOARD LEVEL PRODUCTS *IBM PC BUSNONVOLATILE RAM DISK BOARDS
from \$523 SMART COMMUNICATION BOARDS from $\$ 453$ *MULTIBUS
CPU BOARDS from $\$ 711$ STATIC RAM BOARDS from $\$ 371$ SBX EXP. BOARDS from $\$ 176$ EPROM EXP. BOARDS from $\$ 176$ VMEBUS
STATIC RAM BOARDS from $\$ 431$ *Q-BUS STATIC RAM BOARDS from $\$ 300$ *IBM is a trademark of IBM Inc; MULTIBUS is a trademark of Intel Corp.: Q-BUS is a trademark of Digital Equipment Corp.

Robotics, Industrial Drives, Railways, U.P.S., Welding Machines COUNT on LEM MODULES

Manufactured by Liaisons Electroniques Mecaniques, SA.; Switzerland.
REKCO
P.O. Box 162

New Berlin, Wisconsin 53151
414/784-3430 • TWX 910-262-3005
of a credit card; the nonvolatile RAM and the read/write coils inside the card are resistant to moisture, dirt, and oils because they are embedded in plastic. An evaluation kit with two 16k-bit memory cards, card-reader board, and documentation costs $\$ 995$.

Orientation Inc, 101 Coolidge St, Hudson, MA 01749. Phone (617) 568-0509.

Circle No 369

COLOR DISPLAY

- High-resolution color monitor
- Offers variable scan rates

The 7241 19-in. in-line CRT offers 1080×1024-pixel resolution and a 0.31 -dot pitch. The color monitor provides a $40-\mathrm{MHz}$ video bandwidth, user-selected scan rates that range from 15.75 to 45 kHz , and an* autoscan option. It is compatible with the IBM professional graphics adapter (PGA) and is available in cabinet, chassis, and rack-mount configurations. \$2995.

Conrac Display Products Group, 600 N Rimsdale Ave, Covina, CA 91722. Phone (818) 966-3511.

Circle No 370

HARD-DISK DRIVE

- Version offers as much as 235M bytes of storage
- For the Macintosh Plus and Macintosh 512K E

The MagicDrive hard-disk drive for the Macintosh Plus and the Macintosh 512 K E is available in 20 M -, $30 \mathrm{M}-, 65 \mathrm{M}$-, and 235 M -byte versions. Features include automatic
error detection and correction, automatic head parking, print spooling, password security, and backup utilities. The drives are equipped with the Small Computer Systems Interface, and you can daisy-chain as many as seven other SCSI devices. The drives operate under Apple's hierarchical file system (HFS) and have a data-transfer rate of 5 M
bps. The operating temperature spans -40 to $+140^{\circ} \mathrm{F}$. The package measures $14.5 \times 9.75 \times 3.5 \mathrm{in}$. and weighs 11.5 lbs. Magic20, $\$ 699$; Magic30, \$899; Magic65, \$1299; Magic235, \$3399.

Rabbit Industries, 4505 Spicewood Springs Rd, Suite 304, Austin, TX 78759. Phone (512) 343-0781.

Circle No 371

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

CONVERTERS

- Available as single- or tripleoutput modules
- All units feature 2\% line and load regulation

PC-board-mountable and available as single- or triple-output modules, the KZ-100, $-200,-300$ and -400 are rated at $15,25,40$, and 100 W , respectively. All four power ranges
are available as a 5 V dc output, or as 5,12 , and -12 V dc outputs. In addition, the KZ-200C offers 5,15 , and -15 V dc outputs. All units are fully isolated, protected against a variety of faults, feature 2% line/ load regulation, and have efficiencies of $75 \% \mathrm{~min}$ at full load. The KZ-400 employs a 6 -sided, aluminum enclosure, which serves as an RFI shield, and also an integral, large-surface heat sink. Standard units are specified for a nominal 48 V dc input, but versions are available that accept 24 or 12 V dc as an option. $\$ 54$ to $\$ 150$ (100). Delivery, four to six weeks ARO.

Intronics Inc, 57 Chapel St, Newton, MA 02158. Phone (617) 964-4000. TWX 710-335-6835.

Circle No 372

MOTOR CONTROLLER

- Controls both the position and velocity of dc motors
- Resonance-free operation at speeds to 600,000 pulses / sec

Using incremental-encoder feedback, the PIC-850 Series controller/ driver controls both the position and velocity of a de motor. It sends motion commands to the controller

dryfitthe cycling battery.

You sell a quality product. But if the batteries don't last - you're the one who looks bad. So your tough cycling application deserves the battery that can stand up; the one that delivers thousands of hours of operation. Your product deserves dryfit!

The dryfit A200 batteries can be charged, discharged and deep cycled nearly twice as much as competitive products. No wonder major manufacturers of UPS, wheelchairs, medical equipment and electric powered golf caddies are switching to dryfit. And no wonder more than

20 million dryfit batteries have been sold worldwide!
dryfit is the original gelled electrolyte, sealed lead-acid battery the only one with patented advantages for extended cycle life and the one that doesn't leak.

Let us prove to you what dryfit can do for your product credibility!

1-800-4dryfit

P.O. Box 339

300 East Johnson Avenue
Cheshire, CT 06410
(203) 271-0091

Exclusive Conadian Agent: Duracell, Inc., Mississauga

PACKAGE DESIIN ENGIIIEERS:

 You can't do it aloneProducing high quality electronic products is a team effort. An important synergy of effort by specialists in circuit design systems packaging, p.c. fabrication, assembly, and testing. To stay competitive, you have to keep up with changes in your discipline and stay current with new advances in the total design and manufacturing process. You can't do it alone.

NEPCON West ' 87 is there.

Come to the premier conference and exhibition that focuses on the synergy among engineering disciplines. At NEPCON West ' 87 you'll find over 1,000 companies demonstrating the latest materials, components, devices, equipment, technologies, and techniques to help you do a better job.

Learn how to improve quality, cut costs, and explore key industry developments at the NEPCON Conference Program where over 140 engineering specialists share their knowledge and experience with you.

Plan now to attend.
Free Admission to the exhibits when you complete and return the Advance Registration Form below.

February 24-26, 1987 Anaheim Convention Center Anaheim, Calıtornia
Cut out and mail to: Cahners Exposition Group, Cahners Plaza, 1350 East Touhy Avenue, P.O. Box 5060, Des Plaines, IL 60017-9990

BLILEY WROTE THE BOOK ON HIGH REL CRYSTALS AND OSCILLATORS. AND YOU CAN HAVE A COPY. FREE!

New 1987 Catalog. Complete data for full line quartz crystals and crystal oscillators, including:

- Surface Mount and SCCut crystals
- OCXO and TCVCXO oscillators

Phone or send for your copy now.

BLILEY ELECTRIC COMPANY

2545 West Grandview Blvd. P.O. Box 3428, Erie, PA 16508
(814) 838-3571 TWX 510-696-6886

CIRCLE NO 22

DID YOU KNOW?

Half of all EDN's articles are staff-written.

EDN

COMPONENTS \& POWER SUPPLIES

in the form of pulses; a separate direction line controls the direction of motion. By varying the input. pulse frequency, the unit can specify the motor velocity and produce complex velocity profiles. It can control motors with a rating as high as 3 hp . Other features include reso-nance-free operation at speeds from 0 to 600,000 pulses per second, tolerance of position errors ranging to 32,767 counts, and an onboard 13 -bit D/A converter. $\$ 995$ to $\$ 1550$.
Galil Motion Control, 1928-A Old Middlefield Way, Mountain View, CA 94043. Phone (415) 9646494. TLX 171409.

Circle No 373

CONTROLLER

- Reads out voltages in engineering units
- Either 4 or 4122 digits of LED display, readable at 30 ft

By varying the reference voltage, you can scale the display of the Series 200B panel-mounted voltmeter controller to read out a voltage in engineering units. It has dualalarm setpoints and either 4 or $4^{1 / 2}$ digits of display with polarity. The unit has a front-panel status indicator to let you know if the parameter being monitored is below, between, or above the alarm setpoints. Standard input-voltage ranges are 0 to 200 mV and 0 to 10 V . Outputs include form-C relay closure for each limit, logic-level outputs for Low, In, and High, and optional optically isolated BCD lines. The display features $0.6-\mathrm{in}$., high-efficiency-red LEDs with sculptured corners for easy reading at 30 ft . Designed for
industrial environments, the unit has a heavy-duty aluminum case, UL-listed pc-board materials, and gold-plated I/O contacts for high reliability. From \$299. Delivery, four to six weeks ARO.

DCI Inc, Box 215, Olathe, KS 66061. Phone (913) 782-5672.

Circle No 374

FILTER

- Rejects second harmonic of land mobile transmitters
- Power handling specs at 375W

The Model 5201 lowpass filter's 147to $174-\mathrm{MHz}$ passband rejects the second harmonic of land mobile transmitters to eliminate interference with other off-air systems. Maximum loss and VSWR spec at 0.5 dB and 1.5:1, respectively. The harmonic rejection over a 294 - to $1000-\mathrm{MHz}$ range specs at 50 dB min, and power-handling capability measures 375 W . The filter measures $1.6 \times 2.05 \times 5.75$ in., has a $50 \Omega \mathrm{im}$ pedance, and comes with type-N female connectors. $\$ 160$.

Microwave Filter Co Inc, 6743 Kinne St, East Syracuse, NY 13057. Phone (800) 448-1666; in NY, HI, AK, and Canada, collect (315) 4373953.

Circle No 375

OPTOCOUPLERS

- Operate over a -55 to $+125^{\circ} \mathrm{C}$ range
- Accommodate supply voltages of 4.5 to 20 V

HCPL-52XX Series logic-gate optocouplers are available in singlechannel (HCPL-5200) and dualchannel (HCPL-5230) designs, as well as versions tested for MIL-

STD-883 Class B compliance (HCPL-5201 and -5231). All can operate over a -55 to $+125^{\circ} \mathrm{C}$ range. These hermetically sealed units accommodate supply voltages of 4.5 to 20 V . They have low supply-current requirements of 6 mA at 5 V to 7.5 mA at 20 V . The HCPL-5200 and -5230 devices exhibit a guaranteed CMR of $1000 \mathrm{~V} / \mu \mathrm{sec}$ at $25^{\circ} \mathrm{C}$. The

HCPL-5200 and -5230 also have a guaranteed propagation delay of 300 nsec over the full operating temperature range. All four units are housed in 8-pin DIPs. $\$ 33.30$ to $\$ 82.95$ (100).

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 376

If you're looking for excellence in Ceramic Trimmer Capacitors...

Tusonix has the product versatility, QPL approvals and delivers what you want, when you want it
We have the most complete line of precision Ceramic Trimmer Capacitors in the world, and it's all backed by more than 40 years experience in perfecting our trimmer line.

From trimmer assemblies down to our ultraminiature styles, Tusonix offers many formulations . . . and hundreds of mechanical variations.

Come to Tusonix first as your source for excellence in Ceramic Trimmer Capacitors. Write for Catalog 500 TODAY . . . or please call us at 602-744-0400.

DID YOU KNOW?

EDN is distributed

 at every major electronics/computer show in the U.S., France, and Germany.versions. They feature crimped tails that hold the sockets in place during the soldering process. The dual-face-wipe contact design provides two points of contact with the IC lead. A 43° target angle allows easy, damage-free entry of device leads. The bottom of the socket is closed to eliminate solder wicking. A variety of contact materials and platings are available to meet specific application needs. A 16 -position socket with phosphor-bronze, tinplated contacts, $\$ 0.068$ (OEM qty).

Wells Electronics Inc, 1701 S Main, South Bend, IN 46613. Phone (219) 287-5941.

Circle No 378

OSCILLATOR

- Specifications guaranteed over -54 to $+85^{\circ} \mathrm{C}$
- 10-dBm min output power

The LNO-550 varactor-tuned oscillator is designed specifically for lownoise performance in the 550- to $775-\mathrm{MHz}$ frequency range. Typical phase noise specs $-112 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz from the carrier and -128 $\mathrm{dBc} / \mathrm{Hz}$ at 1 MHz from the carrier. Minimum output power specs at 10 dBm . The oscillator requires only 50 mA at 12 V dc and is packaged in a hermetically sealed TO-8V transistor case. All specifications are guaranteed over a -54 to $+85^{\circ} \mathrm{C}$ range. $\$ 325$.

Avantek Inc, 3175 Bowers Ave, Santa Clara, CA 95054. Phone (408) 970-2583.

Circle No 379

CHIP CAPACITORS

- Operate over -55 to $+85^{\circ} \mathrm{C}$ range
- Conform to IEC QC300801/001 specification

Designed for surface-mount applications, Type 293D molded-case, sol-id-electrolyte Tantalex chip capacitors conform to IEC QC300801/001, the new EIA industry specification

for devices having standard capacitance values. The capacitors are available in four package sizes. Voltage ratings range from 4 to 50 WV dc, and capacitance values span a 0.01 to $100 \mu \mathrm{~F}$ range. Operation spans -55 to $+85^{\circ} \mathrm{C}$ with no derating (to $+125^{\circ} \mathrm{C}$ with derating). The capacitors come taped on 8- or $12-\mathrm{mm}$ reels, per EIA 481A, for use

These days, our MIL-C-38999 can do about anything.

If this connector doesnit look like your typical MIL.C-38999 Series III, it isn't.

This is an ITT Cannon 38999 Special whose shell has been modified to accept printed circuit board contacts for computer system and black box applications.

Future possibilities are endless. If you have a custom application for the MIL-C-38999 connector, were the Specials expert. The complete lines of our standard Series I, II and III are also available by calling Cannon direct.

Contact ITT Cannon Military/Aerospace, a unit of ITT Corporation, 666 E. Dyer Road, Santa Ana, CA 92702. Or call 714/557-4700.

ITTCannon
Were making progress.
Not excuses.

Greenlee Tools' expanded line of five electronic connector panel punches provides a quick, clean and accurate cut-out for $9,15,25,37$ and 50 -pin connectors.
Greenlee electronic connector punches provide these outstanding features:

- Fast, accurate panel punching; no sawing or filing required.
- Drill only one 7/16" pilot hole.
- Cut-out and mounting slots are punched in one operation.
- Use either manual wrench or hydraulic punch driver methods.
- Universal size punch for front or back mount of TRW cinch and ITT Cannon-type or equivalent D-subminiature connectors.
See your nearby Greenlee Tool Distributor for the full story on all of the Greenlee Panel Punches including round, square, rectangular, " D ", Double " D ", "Key" and "Keyway" shaped punches.
Greenlee Tool also offers a full line of time-saving hydraulic and ratchet punch drivers for meeting your punching needs.
with automatic placement equipment. $\$ 0.21$ (1000) for a $35 \mathrm{~V}, \pm 20 \%$ tolerance $1-\mu \mathrm{F}$ unit. Delivery, 8 to 12 weeks ARO.
Sprague Electric Co, Box 9102, Mansfield, MA 02048. Phone (603) 224-1961.

Circle No 380

VFD BAR GRAPHS

- Spec 1\% accuracy
- Offer two optional setpoints

The 9280 Verigraph Series of bar graphs includes 100 -segment vacu-um-fluorescent displays that feature 1% accuracy. The 9280 is a singledisplay element offering two optional setpoints (either high/low, high/ high, or low/low). Model 9281 offers 9280 capability plus a 3 -digit, builtin display to provide 0.1% digital accuracy and full bar-graph/alarm capability. The 9282 comprises two 9280s in a single package. Each has its own display and its own input; optional alarm circuitry is available. From $\$ 250$.

International Instruments, Box 185, North Branford, CT 06471. Phone (203) 481-3450.

Circle No 381

TRANSFORMERS

- Couple any Manchester-encoded data transmission
- Unaffected by electromagnetic interference

These StarLAN local-area network transformers, the 8631 and 8632, are for coupling Manchester-encoded data at $1-\mathrm{MHz}$ data rates to a 92Ω twisted-pair bus conforming to the IEEE 802.3 1BASE5 standard for LANs. Available in single- and
dual-transformer versions, the devices will handle loads of approximately 100Ω over a range of 250 kHz to 2 MHz . In the transmitting mode, an RS-485 driver, which has pulse shaping to reduce the rise and fall times, drives the transformer so that the transmitted pulse approximates a sine wave. In the receive circuit, the limited bandwidth of the
transformer helps reduce high-frequency noise. The transformers are unaffected by interference from adjacent transformers or other sources. Dual and single versions, $\$ 5.85$ and $\$ 3.25$ (1000), respectively.

AIE Magnetics, 701 Murfreesboro Rd, Nashville, TN 37210. Phone (615) 244-9024.

Circle No 382

NEW PRODUCTS

TEST \& MEASUREMENT INSTRUMENTS

PHASE STANDARD

- Provides two synthesized sine waves
- Phase-angle resolution specs 1 millidegree
The Model 5000 phase-angle standard provides two digitally synthesized sine waves whose phase you can control from -999.999 to $+999.999^{\circ}$. The instrument's phaseangle resolution is 1 millidegree over its frequency range of 1 Hz to 100 kHz . Each sine wave is individually adjustable from 100 mV to
11.9V. Phase accuracy from 1 Hz to 1 kHz is $\pm 0.003^{\circ}$ typ, decreasing to $\pm 0.05^{\circ}$ at higher frequencies. The unit is fully programmable over the IEEE-488 bus. The sine-wave outputs have $-74-\mathrm{dB}$ max total distortion. $\$ 9400$.

Clarke-Hess Communication Research Corp, 220 W 19th St, New York, NY 10011. Phone (212) 255-2940.

Circle No 383

VLSI DEVICE ATE

- Operates two test heads simultaneously
- Each I/O channel has a test vector and a timing generator

The J953 VSLI tester can test two devices at $50-\mathrm{MHz}$ rates $(100-\mathrm{MHz}$

multiplexed). Its pattern generator backs up each test channel with 4 M bytes of test-vector memory. Each of the tester's two test heads includes 256 I/O channels and has its own parametric measurement unit (PMU). Each pin also has a timing generator that can generate 5 -nsec pulses having $100-$ psec timing resolution. Each 50Ω channel has 30 pF of capacitance. The tester's wave-form-edge placement accuracy is ± 250 psec max. You program the tester with the company's proprietary, C-based language. $\$ 1,100,000$

A $N E W$ TERMIFLEX TERMINAL FOR $\$ 195$.

ST/32 -

INDUSTRIAL QUALITY

- 32 Character LCD
- Compact
- RS232C Interface
- 30 Alphanumeric Keys
- Custom Graphics Available

Termiflex has taken its years of experience and leadership in control/display units (CDU) and produced the $S T / 32$. This rugged, versatile CDU is available for overnight delivery.

TERMIFLEX CORPORATION 316 Daniel Webster Highway Merrimack, NH 03054
(603) 424-3700

- ERG DC-DC CONVERTERS.

Inputs from 5 to 48 VDC. Outputs from 5 VDC to 1500 VDC. Single, dual, center-tap $(+1-)$ outputs. Regulated and unregulated. Ask about our New Step-Down converters for battery-powered logic and other applications!

- SMART FORCE"N INVERTERS FOR EL LAMPS! Smart Force DC-AC Inverters extend the useful life of Electroluminescent lamps. Power EL to backlight LCDs and membrane switches, and morel Ask about our New miniaturized P Package Inverters!
Call today for complete product information and pricing:

Copyright 1986 Endicott Aeseareh Group Inc.
to $\$ 2,500,000$. Delivery, 32 to 36 weeks ARO.

Teradyne Inc, Inquiry Systems, 25 Drydock Ave, Boston, MA 02210. Phone (818) 888-4850.

Circle No 384

OPTICAL METER

- Measures power of both long and short wavelengths
- Portable unit runs from battery or ac
The AQ-2101 optical-power meter consists of a main unit and one of three sensors. The AQ-2703 sensor, for large-diameter cable, covers wavelengths from 0.8 to $1.7 \mu \mathrm{~m}$; the AQ-2702, for connector inputs, and the AQ-2704, for nonconnector applications, measure $0.4-$ to $1.1-\mu \mathrm{m}$ wavelengths. The main unit's 4 -digit LCD shows readings in $d B, d B m$, $\mathrm{mW}, \mu \mathrm{W}$, and nW . Depending on the sensor used, the instrument can measure optical power from 1 nW to 100 mW without an attenuator. The 5 -oz unit measures $6 \times 3 \times 0.4 \mathrm{in}$. AQ2101, $\$ 480$; AQ-2702 sensor, $\$ 260$; AQ-2703 sensor, $\$ 1830$; AQ-2704 sensor, \$340.
Ando Corp, 7617 Standish Pl, Rockville, MD 20855. Phone (301) 294-3365.

Circle No 385

MIXED ATE

- Handles chips that have both analog and digital functions
- Runs at 128 M samples/sec with a 128-MHz analog bandwidth
The HP 9480 mixed-signal IC ATE handles such devices as a flash converter, a DAC, and DSP chips. The 128 -pin tester supplies eight chan-

nels of dc stimulus from $100 \mu \mathrm{~V}$ to 100 V at 1 pA to 100 mA . The ac waveform generator supplies 128 MHz sine waves or $32-\mathrm{MHz}$ arbitrary waveforms. The tester's waveform digitizer samples to 16 bits at 1 MHz and to 12 bits at 20 MHz . Its digital pattern generator and pattern analyzer both have 16 k sample memories and run at 128 M samples/

Fast Quad FET Op Amp Settles to $0.01 \% \ln 1.5 \mu \mathrm{~s}$

 op amp. And it's pin-compatible with most popular quads so you can upgrade your designs quickly and easily. Compare these specs:

Settling to $0.01 \% \ldots \ldots . .1 .5 \mu \mathrm{~s}$
Slew rate 35V/ $\mu \mathrm{s}$
Bandwidth 6.4 MHz
Offset voltage $\ldots . . \pm 750 \mu \mathrm{~V}$ max Bias current........ $\pm 4 \mathrm{pA}$ max Noise at $10 \mathrm{kHz} \ldots \ldots .12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Price ... from \$8.95 U.S. (100s)
Ask your Burr-Brown sales representative for full details.
Or contact Applications
Engineering, 602/746-1111.

Burr-Brown Corporation, P.O. Box 11400, Tucson, AZ 85734.

BURR-BROWN

sec. The tester runs Unix System V with real-time extensions. You program it in a proprietary language that the company claims is somewhat like Pascal. Approximately $\$ 650,000$. Delivery, 14 weeks ARO.
Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 386

INTERFACES

- Provide a variety of control lines for $B C D$ instruments
- Available as either RS-232C or IEEE-488 interfaces

The Digital232 and Digital488 interface boxes provide RS-232C and IEEE-488 interfaces, respectively, to 40 TTL-level I/O lines. The 40

lines divide into five 8 -bit ports. You can set up each line as an input or an output under computer control. In addition, the interfaces have handshake and control lines that can interface with a variety of digital and BCD devices. These lines provide trigger, clear, inhibit, latch, and service-request functions. Each model costs $\$ 595$.

IOtech Inc, 23400 Aurora Rd, Cleveland, OH 44146. Phone (216) 439-4091.

Circle No 387

WORD GENERATOR

- Executes algorithmic patterns
- Has 40-MHz clock rate

The PG4064 digital word generator works with the company's logic analyzers. The unit generates data words that are as much as 64 channels wide and 4 k words deep, or as little as 2 channels wide by 128 k words deep in the serial mode. It supports algorithmic pattern generation in accordance with data tables and 3-level-deep nested loops. It has a $40-\mathrm{MHz}$ (max) clock rate and generates 25 -nsec pulses. $\$ 19,100$. Delivery, 60 days ARO.

Gould Design \& Test Systems Div, 19050 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 5389320; in CA, (408) 988-6800. TWX 910-338-0509.

Circle No 388

BENCHTOP ATE

- Has as many as 1000 analog or 320 digital test points
- Fits in the space of an office copier

The Checkmate benchtop ATE system performs digital and analog

For winning 8051 family designs that meet your time-to-market deadline and engineering budgetyou'll need development tools, particularly In-Circuit Emulation.

The price of your success? From $\$ 1,500$ to $\$ 5,000$ with MetaLink's PC-hosted 8051 -family of development tools and add-ons!

With our MetaICE-52 tool for example, you can add real time, transparent 8052 -family In-Circuit Emulation to your lab PC for $\$ 3,295-$ a fraction of the cost of large, dedicated development stations.

All MetalCE units plug in to your IBM or compatible PC via a standard RS-232 serial port. In one compact box, you get full symbolic debug, 16,000 hardware break points, 16 K of both program and external data memories, 12 break conditions, all microcontroller modes supported-and much more.

With our menu-driven software, telephone support and patentpending 8051 family design-you can go to work instantly on a wide range of 8051 microcontrollerdriven products.

All MetaICE units are afforda-ble-like our $\$ 2,895$ MetaICE-51 for 8051 emulation, the MetaICE31 for 8031 support ($\$ 1,495$) and our 80515 unit, the MetaICE80515 , just $\$ 4,995$.

MetaICE units are available for the full range of 8051 family devices:

805180528044
$8031 \quad 8032 \quad 8344$ $80515 \quad 805358053$

And, if you add our optional MetaICE-CHEST feature (included in MetaICE-80515), you can reach a full 64 K of program and external data memories, 128,000 hardware breakpoints, 4 K trace buffer and 15 break/trace conditions-for an additional $\$ 1,495$.
"Who are these guys?" you ask. MetaLink is the leader in PChosted 8051 In-Circuit Emulation products. Nobody knows 8051 architecture, applications and software inside and out like we do. Need 8051 emulation solutions? Call MetaLink...the ICE-House ${ }^{\text {TM }}$: 1-800-METAICE.

" $1 /$ Meralink

33 West Boxelder Place, Suite 110 Chandler, AZ 85224
Call (800)638-2423 or (602)926-0797
Telex: 4998050 MTLNK
IBM is a registered trademark of IBM Corporation (All prices are USA list)

PC-hosted 8052 ICE for under \$3500!

functional tests as well as in-circuit tests. It fits into the space needed for the average office copier. The instrument accepts as many as 21 measurement or function pc boards: a counter/timer, function generator, digital multimeter, logic analyzer, $\mu \mathrm{P}$ emulator, voltage source, gener-al-purpose I/O board, and IEEE488 interface. For digital tests, you

can equip the unit with 320 input channels and 20 output channels, or you can equip it as a 64-channel, $100-\mathrm{MHz}$ logic analyzer. You can measure digital parameters with 25 nsec accuracy and 5-nsec resolution. For analog tests, the unit offers 6 -wire, guarded measurements and can have as many as 1000 test points. It includes a color monitor and two $31 / 2$-in. floppy disks. $\$ 25,000$ to $\$ 50,000$.

Marconi Instruments, 3 Pearl Ct, Allendale, NJ 07401. Phone (800) 233-2955; in NJ, (201) 9349050.

Circle No 389

LCD SCOPE/METER

- Combines digital scope and multimeter
- Folds up into carrying case

The Iskrascope LCD combines the functions of a digital oscilloscope, a signal averager, and a digital multimeter. Its pop-up LCD shows 120×200 points (half the vertical resolution of the unit's single-channel, 8-bit digitizer). The instrument's horizontal sweep speeds range from $5 \mu \mathrm{sec}$ to 3.5 hrs . In addition to a 512 -sample dynamic memory, the instrument has ten 200 -sample static memories. You can do simple signal processing on live and captured signals. The instrument also functions as a $3^{1 / 2-}$ digit multimeter having statistical capabilities. It has a membrane keyboard and weighs 8 lbs. $\$ 1500$. Delivery, 12 to 14 weeks ARO.

Iskra, 222 Sherwood Ave, Farmingdale, NY 11735. Phone (800) 862-2101; in NY, (516) 7530400. TLX 221257.

Circle No 390

CAE \& SOFTWARE DEVELOPMENT TOOLS

MATH LIBRARY

- Contains more than 400 routines
- Optimized for use with 8087 and 80287 math coprocessors

Optimized for use with the 8087 and 80287 math coprocessors in IBM PC, PC/XT, PC/AT, and compatible machines, Mathpac is a library of more than 400 routines that are written in ANSI 77 Fortran and assembly language. All the routines perform their computations with extended 80 -bit precision and make their results available, with either 32 -bit or 64 -bit precision, in IEEEstandard floating-point format. The routines can operate on both real and complex numbers. You can link these routines to application programs involving computer graphics,
scientific computing, numerical analysis, statistical analysis, signal processing, image processing, process control, and simulation. You can plot as many as 16 variables on the same graph, and you can choose monochrome or color graphics. The routines include vector operations, matrix operations, FFTs, 2D and 3 D image rotation, predictor-corrector and integration operations, and various forms of numerical optimization. Because the calling sequences are standardized, you can add your own routines to the library. $\$ 495$.
Systolic Systems Inc, 1065 E Brokaw Rd, San Jose, CA 95131. Phone (408) 286-0421. TWX 910-338-2290.

DATA ACQUISITION

- Features menu selection of setup and sampling functions
- Provides sampling rates as high as 62,000 samples/sec

Stream-16 is a software routine that lets you store A / D conversions, ac-

For real time control on the factory line, 80% of the largest industrial automation companies are choosing VRTX, Hunter \& Ready's real time multitasking operating system.
VRTX provides 37\% faster task-switching times than the nearest competitor for critical tasks and is proven in thousands of installations.
And VRTX is taking years off the real time development cycle. It's available with a completely integrated real time C development environment for VAX and PC hosts.

To get your ducks lined up for your next real time project, call toll free. Ask for a free copy of our Real Time Applications Handbook.
800-228-1249. In Texas, call 214-661-9526
Now available with high performance features for $80286,80386,68020$ and 32000 .

We Respond.

VRTX is a registered trademark of Hunter \& Ready, Inc. VAX is a trademark of Digital Equipment Corp.

TODAY'S MILITARY ELECTRONICS HAVE CHOMERICS WRITTEN ALL OVER THEM.

Our Molded-inplace EMI/EMP cover seals combine design freedom with serviceability and cost effectiveness.

Our custom engineered laminates: multilayered conductive/ non-conductive materials including ground-straps, cable and PC board shields.

Chomerics' shielded windows and optical filters provide EMI shielding and reduce glare.

For today's demanding, high-rel military/aerospace electronic systems, nothing less than fail-safe performance will do.

At Chomerics, we realize Design Engineers responsible for packaging these critical systems need suppliers with correspondingly high performance products.

Over the past 25 years our full line of materials and product forms has been specified for such programs as the Apollo lunar modules, F-16
and F-14 fighter jets, AWACS aircraft, Poseidon, Sea Sparrow, TOW and Harpoon missiles.
To help guarantee the performance, integrity and survivability of your next $\mathrm{C}^{3} \mathrm{I}$ design, make sure your EMI/ EMP shielding, sealing, bonding, grounding and heat transfer components have Chomerics written all over them.

Circle the number or call (617) 935-4850 for additional information.

THE LEADER IN SHIELDING INNOVATION, DESIGN, AND TESTING TECHNOLOGY.

77 Dragon Court
Woburn, MA 01888
TEL: (617) 935-4850
TWX: 710-393-0173
Chomerics Europe, Inc.
First Avenue
Globe Park Estate
Marlow, Bucks
SL7 1YA ENGLAND
TEL: (06284) 6030
quired from the vendor's DAS-16 or DAS-16F boards, to a hard-disk file at sampling rates as high as 62,000 samples/sec. Using the DAS-16's DMA feature, the program transfers the samples initially to a circular memory buffer. As soon as data enters the buffer, the program starts writing it to the disk. Pointers keep track of the as-yet-unwritten data. The program is menu driven; from the menu, you can select the channels to scan, the trigger mode, the sampling rate, the file name, and other options. Comprehensive error-checking routines warn you of probable errors in the data stream. The vendor's DAS-16 and DAS-16F boards (formerly called DASH-16 and DASH-16F) can scan eight differential or 16 singleended analog channels and provide 12 -bit A/D conversions at rates as high as 50,000 samples/sec (DAS-16) and $100,000 \mathrm{samples} / \mathrm{sec}(\mathrm{DAS}-16 \mathrm{~F})$. Stream-16, \$250.

Metrabyte Corp, 440 Myles Standish Blvd, Taunton, MA 02780. Phone (617) 880-3000. TLX 503989.

Circle No 392

ADA FOR 1750A $\mu \mathrm{Ps}$

- Lets you develop Ada software for MIL-STD-1750A machines
- Provides Ada Programming Support Environment (Apse)
Running on a VAX/VMS host, the Telegen2 1750A development system lets you develop software targeted for embedded computers based on the MIL-STD-1750A architecture. The development system includes an Ada cross-compiler and a set of object tools consisting of an Ada linker, a library manager, a library tool set, and an Ada runtime library. The cross-compiler comes with a number of tools, including a source-level debugger and
language tools. The combination of this software and the VAX/VMS operating system provides programmers with an Ada Programming Support Environment (Apse). The package complies fully with MIL-STD-1815A specifications and will be submitted for validation in the first quarter of 1987. License fees, $\$ 17,000$ to $\$ 86,000$, depending on the hardware configuration and the number of tools licensed.

Telesoft, 10639 Roselle St, San Diego, CA 92121. Phone (619) 457 2700. TLX 855300.

Circle No 393

ASIC SIMULATOR

- Runs on the IBM PC/AT and compatibles
- Simulates networks of standard cells

ZyPsim-AT is an ASIC-simulator package that runs on the IBM

Hunter \& Readys real time is making network news.

Companies that develop networking applications are choosing VRTX, Hunter \& Ready's real time multi-tasking operating system, to help solve their networking problems.

VRTX is the real time kernel cations in Motorola MAP engineering workstations and in major office sysand in major office sys- tems. Network developers prefer VRTX because it provides 33\% greater throughput than the nearest competitor. More good news: VRTX development on a PC or a VAX can save a year or more in network
for communiboards, leading including Apollo, VRTX is a registered trademark of Hunter \& Ready, Inc.

Get the the people who Hunter \& Ready news on real time from and ask for a copy toll free today and ask for a copy of our Real Time Applications Handbook. 800-228-1249. In Texas, call 214-661-9526

> Now available with high performance features for $80286,80386,68020$ and 32000 .
$\mathrm{PC} / \mathrm{AT}$ and compatible machines. Its simulations of standard-cell networks take into consideration some characteristics of actual cell performance. By specifying the upper and lower limits of circuit operating conditions, you can adjust the timing within the cell modules for voltage, temperature, and processing effects. The simulator obtains its cell
models from the vendor's stand-ard-cell libraries and allows you to use the same regular, analog, cluster, and telescoping macros that you would use on the mainframe version (which runs on Prime computers). You specify the network, the cell list, the number of cells in the design, and the process technology to be used for fabrication, and the sim-
 supplies.

Now The Choice is Really Yours.

PSI 175 . . . A significant advance in fully configured, multiple-output switching power supplies. And the versatility of the standard PSI 175 module with its available options enables you to obtain a "custom" power supply without the lead time or development costs associated with custom products.

PSI $175 \ldots$ the 175-watt, convection-cooled, quad output power supply. Standard features with many applications: 115/230 VAC, 47-440 Hz , full power rating at $50^{\circ} \mathrm{C} \ldots$ all in the smallest package available. Up to four fully regulated voltage combinations on all outputs. L- brackets for special mounting, and autoranging on input available, plus many other options.

If you previously required custom power supplies, it's time for you to reconsider your concept of standard switchers and specify PSI 175. And remember, if we're unable to meet your needs with a standard unit, we will do a custom design.
Write us today for detailed specifications, complete options, and prices.

Power Systems, Inc.

45 Griffin Road South, Bloomfield, CT 06002 (203) 726-1300 TWX: 710-425-8778 Fax: (203) 726-1495
ulator then predicts the final die size of your ASIC chip. Because of the memory limitations of the PC/AT, you may have to divide a complex chip into sections and perform a preliminary simulation of each one separately. However, you can upload the sections to the vendor's mainframe to recombine the sections and perform a full simulation. $\$ 2500$.

ZyMOS Corp, 477 N Mathilda Ave, Sunnyvale, CA 94086. Phone (408) 730-5400.

Circle No 394

COMPILER

- Translates ISO data structures to C structures
- Facilitates upgrading of MAP/ TOP systems
The ASN. 1 compiler is based on CCITT standard X.409; it accepts protocol data units (PDUs) defined in ASN. 1 (Abstract Syntax Notation One) and generates the corresponding C language structures for manipulation by upper-layer protocols. Thus, in developing an application program, you don't have to recode the PDUs manually from the complex ASN. 1 syntax. The compiler is particularly valuable when you're upgrading ISO applicationand presentation-layer protocols to conform to the MAP (manufacturing automation protocol) 3.0 and TOP (technical and office protocol) 3.0 standards. The compiler is available only as part of the vendor's ISO Upper Layer Protocol Package, which includes C source code for the File Transfer and Management and Common Application Services Elements kernel application-layer protocols. License fee, $\$ 19,750$; percopy royalties are additional; current licensees of either package will receive the compiler at no charge.

Communication Machinery

 Corp, 1421 State St, Santa Barbara, CA 93101. Phone (805) 963-9471.Circle No 395

CAD FILE TRANSFER

- Transfers drawings from PCbased station to CAD system
- Can transfer plot files to any

PCI-format plotter on a network
Cadvance 25, version 2.0, now lets you transfer 2-dimensional drawings generated on a PC-based workstation to the vendor's System 25 high-end CAD system. The program is menu-driven and allows use of mice and digitizers. It also lets you use nested commands and macros, and it provides facilities for extracting symbols from a database. Status prompts and case-sensitive on-line help screens aid the user in the creation of drawings. Included in the enhancements is a translator that converts the drawing files to a format that can be read by the vendor's System 25 multiuser computer. A LAN version allows you to transfer converted files directly to the host computer over the network.

Cadvance 25, \$500; LAN version, $\$ 1500$; telecommunications package, $\$ 500$.

CalComp, 2411 W La Palma Ave, Anaheim, CA 92801. Phone (714) 821-2142.

Circle No 396

C LIBRARY

- Provides all C functions needed for measurement and control
- Lets you use an IBM PC for program development
The AD1836 run-time library of C routines allows you to program the vendor's μ MAC- 5000 measuremen ${ }^{+}$ and control system in C. The library includes program-development tools; real-time interrupt-service routines; analog and digital I/O routines; and routines for counting, communications timing, and failure detection. If you use an IBM PC as a development system, you can use a
library routine to download the executable code to the μ MAC-5000. You should use the Aztec C compiler (versions 3.2 D and 3.2 E only) from Manx Software Systems (Shrewsbury, NJ). $\$ 495$ for the PROM containing the AD1836 library, an IBM PC-compatible disk containing an I/O library, a public-domain file transfer program to work with the downloading routines in the PROM, and a manual.

Analog Devices, Literature Ctr, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 329-4700.

Circle No 397

TEST SOFTWARE

- For vector-network-analyzer data
- For use with active and passive devices

Anacat is a software package for the calibration, measurement, and man-

Hunter \& Ready doesint take shortcuts on real time. But you can.

Our customers are taking years off the real time development cycle and so can you.
Fill out and send to Hunter \& Ready, P.O. Box 61029, Palo Alto, CA 94306-9991.
Or call toll free, 800-228-1249. In Texas, call 214-661-9526

Please send info on Hunter \& Ready's VRTX, the real time multitasking operating system. Also send info about IOX, the input/output executive and FMX, the PC/DOS compatible file manager.
My target microprocessor(s):

— 1750 A	$-8086 / 186 / 188$	$-68000 / 10$
$-80286 / 386$	-32000	- 68020

Send info on the following development tools:

- RTC, the Real Time C compiler and tool set
- Tracer, the multitask debugger
- High level language interface libraries

My development host(s):

- VAX - MicroVAX _ IBM/PC
- Send a free copy of the Real Time Applications Handbook
_ Please have a Field Sales Engineer call me
MY NAME TITLE
COMPANY NAME
STREET OR P.O. BOX CITY
STATE ZIP PHONE ()
HUNTER
- READY

E.C.D.C.

Now you can specify the fans of tomorrow today. The Custom Division of EG\&G Rotron, the world leader in high-reliability fans, blowers and motors, announces a new era in maintenance-free, long life, low power consumption, low EMI/RFI airmovers: the E.C.D.C.'s. Rotron's E.C.D.C line includes
standard in-stock models designed to deliver outstanding
 performance using electronically commutated brushless d.c. permanent

OLetters

The
life expectancy equal the Custom Division's famous AC airmovers. The Rotron E.C.D.C.'s employ the same bearing and lubricant systems that have made

Bthe Rotron AC's the fans of choice when reliable performance is a must. All Rotron
 E.C.D.C.'s are QPL
eligible and meet the most rigorous Military Standards. They are, simply, the best-made, most thoroughly tested E.C.D.C. fans in the world.

And best of all, the Custom Division can build any of its airmovers using E.C.D.C. technology. The Custom Division
of EG\&G Rotron: where reliability is a way of life.

Custom Division

Hasbrouck Lane, Woodstock, N.Y. 12498

For our new E.C.D.C. catalog call (800) 431-6033. In NY State and for technical assistance, call (914) 679-5201.
agement of vector-network-analyzer data. You can use the program with both active and passive devices, and it also operates with automatic network analyzers such as the HP 8510, 8753 , and others. The pop-up menus, mouse control, and interactive screen displays help the user in each step of the test process. The measurement database stores data (particularly S-parameter measurements) retrieved directly from the associated network analyzer, and it lets you examine and manipulate the data. The database manager can create and manage a large number of measurement files (limited only by disk space); you can add, modify, or delete test data from the keyboard. The built-in graphics features let you present test data in a wide variety of formats such as customized graphs and tables; in addition you can transfer test data between Anacat and spreadsheet and database programs such as Lotus 1-2-3 and dBASE. The program allows you to calculate error coefficients and store them on disk for use in future calculations. It runs on the IBM PC/XT, PC/AT, and compatible machines. From $\$ 5000$, depending on the options supplied.

EESof Inc, 31194 La Baya* Dr, Westlake Village, CA 91362. Phone (818) 991-7530.

Circle No 398

ISIS FOR THE PC/AT

- Provides a software-development system for 8 -bit $\mu P s$
- Lets you run all Isis softwaredevelopment tools

You can use the Access-II card to develop software for Intel's 8-bit $8080,8048,8051$, and $8085 \mu \mathrm{Ps}$ on an IBM PC, PC/XT, PC/AT, or compatible machine. The card also provides a hardware-software replacement for Intel's Series II MDS (Microprocessor Development System). The card contains a $\mathrm{Z} 80 \mu \mathrm{P}$ running at $8 \mathrm{MHz}, 64 \mathrm{k}$ bytes of RAM, and separate I/O ports, so it won't conflict with the PC's hard-
ware and add-ons (such as an EGA board). You can access the memory of the card through the card's I/O ports. You can run PL/M-80, ASM-80, PL/M-51, and Intel's linking and locating utilities, as well as all Intel development tools for 8080, 8048 , 8051, and $8085 \mu \mathrm{Ps}$. The development package includes the plug-in card, Isis emulation soft-
ware, and the vendor's data link for transferring source and object files between the IBM PC and a target machine or Intel development system. $\$ 1195 ; \$ 500$ with trade-in of Access-I card.

Genesis Microsystems Corp, 196
Castro St, Mountain View, CA 94041. Phone (415) 964-9001.

Circle No 399

Save Space, Time and Trouble.

With NEC's Chip Tantalum Capacitors.

Now you save three ways with NEC's chip tantalum capacitors. First, our surface mount packages save valuable board space. Second, our chips cut assembly time because they come in standard 8 or 12 mm tape supply formats designed for automatic placement. And finally, NEC caps are 100% burned-in to minimize reliability problems while increasing MTBF.

NEC offers 96 different types of chip tantalum caps. With capacitance ranging from 0.01 to $68 \mu \mathrm{~F}$ and working voltage from 4 to 35VDC. They're all available for immediate shipment.

Contact your local NEC representative today and discover 96 ways to save space with surfacemount tantalum caps.

${ }_{\mu \mathrm{F}} \backslash$	4	6.3	10	16	20	25	35
0.01							A
0.015							A
0.022							A
0.033							A
0.047							A
0.068							A
0.1							A
0.15							A
0.22							A
0.33						A	A
0.47					A	A	B•B2
0.68				A	A		B•B2
1			A	A			B•B2
1.5		A	A	A		B•B2	C
2.2	A	A	A	B	B•B2		C
3.3	A	A	B	B•B2		C	C-D
4.7	A	B	B•B2	C	C	C	D•D2
6.8	B	B•B2	C	C	C	D•D2	D•D2
10	B•B2	C	C	C.D	D2	D•D2	
15	C	C	C•D	D2	D•D2		
22	C	C	D•D2	D•D2			
33	C	D•D2	D•D2				
47	D•D2	D•D2					
68	D•D2						

	w	L	
A case	$\begin{aligned} & 1.6 \\ & (.063) \end{aligned}$	$\begin{gathered} 3.2 \\ (126) \end{gathered}$	$\begin{aligned} & 1.6 \\ & (.063) \end{aligned}$
B2 case	$\begin{aligned} & 2.8 \\ & (.110) \end{aligned}$	$\begin{gathered} 3.5 \\ (.138) \end{gathered}$	$\begin{aligned} & 1.9 \\ & (.075) \end{aligned}$
B case	$\begin{aligned} & 2.6 \\ & (.102) \end{aligned}$	$\begin{aligned} & 4.7 \\ & (.185) \end{aligned}$	$\begin{aligned} & 2.1 \\ & (.083) \end{aligned}$
C case	$\begin{aligned} & 3.2 \\ & (.126) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (236) \end{aligned}$	$\begin{aligned} & 2.5 \\ & (.098) \end{aligned}$
D case	$\begin{gathered} 4.3 \\ (.169) \end{gathered}$	$\begin{aligned} & 7.3 \\ & (.287) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (.110) \end{aligned}$
D2 case	$\begin{aligned} & 4.6 \\ & (.181) \end{aligned}$	$\begin{gathered} 5.8 \\ (.288) \end{gathered}$	$\begin{aligned} & 3.2 \\ & (.126) \end{aligned}$

For further information, please contact:

- USA Tel:415-960-6000. TWX: 910-379-6985
- Europe W. Germany

Tel:0211-650302. Telex:8589960 NE D.
The Netherlands
Tel:040-445-845. Telex:51923 NEC B NL.
Sweden
Tel:08-732-8200. Telex:13839 NECSCAN.

France

Tel:1-3946-9617. Telex:699499 NEC EF.
Italy
Tel:02-6709108. Telex:315355 NEC EIT I UK
Tel:0908-691133. Telex:826791 NEC UK G.

- Asia Hong Kong

Tel:3-755-9008. Telex:54561 HK NEC HX. Taiwan
Tel:02-522-4192. Telex:22372 HK NEC TP.
Singapore
Tel:4819881. Telex:39726 NECSIN RS.
Oceania Australia
Tel:03-267-6355. Telex:AA38343 NEC BCD.

high voltage diodes, cartridges and assemblies

Standard recovery diodes - to 15,000 PRV, to 6 . Fast recovery diodes - 30 PRV, to 5A. Recovery times to 50 ns . Television and CRT diodes - to 30 KV , to 2.5 mA , to 50 ns recovery. Cartridges - 8 to 50 KV . Packs -5 to 250 KV ; to 25 A. Standard and fast recovery to 50 ns . Custom designs. Delivery from stock. Reasonable costs. Write for catalog. Test and evaluation samples available.
Buy from the specialist.

electronic devices
21 Gray Oaks Avenue,
Yonkers, N.Y. 10710
(914) 965-4400. Telex 681-8047

CIRCLE NO 200

Yours Free

our newest LVDT design guide and catalog.

At last, a complete compendium of LVDT working parameters. Call us now for fast solutions to your OEM requirements.

$$
800-323-7115
$$

Robinson-Halpérn

CAEICADC,XT or AT \$0
At only $\$ 975$, no electrical engineer can afford to be without this end-to-end circuit design, simulation and PCB layout tool. You can pay up to 15 times more and still not get all the features offered by EE Designer-Schematic Capture . . .Circuit Simulation. . . PCB Layout. 30 day money back guarantee. Full purchase price refunded if not completely satisfied. Call 1-800-225-5669 today to order your package. Bank cards welcome.

STD BUS USERS!

The 890 Z80A Multifunction CPU card is an integrated hardware/software solution for industrial control applications.

Call 303-426-8540 For Immediate Response
OCTAGON SYSTEMS
CORPORATION Westminster, CO 80030 CIRCLE NO 201
Multibus ${ }^{\text {TM }}$ Users don't be caged in!

The 796 Bus Repeater ${ }^{\text {TM }}$ is opening new horizons
If you have a Multibus system with limited card cage space, you can now expand without a hacksaw. Just find a convenient place to put another card cage and hook it up with the 796 Bus Repeater!
procise
P.O. Box 1011

Issaquah, Washington 98027 (206) 392-0270

Multibus is a trademark of Intel Corporation 769 BUS REPEATER is a trademark of PROCISE CORPORATION CIRCLE NO 204

คดกิก Software Development Tools

Quelo Assembler Packages are Motorola compatible. Each package includes a macro assembler, linker/ ocator, object librarian, utilities for producing ROMable code, extensive indexed typeset manuals and produces S-records, Intel hex, extended TEK hex, UNIX COFF and symbol cross references. Portable source written in " C " is available. It has been ported to a variety of mainframes and minis including VAX.

68020 Assembler Package For CP/M-86, -68K and MSIPC-DOS
68000/68010 Assembler Package For CP/M-80, $-86,-68 \mathrm{~K}$ and MS/PC-DOS \$ 595

68000 "C" Cross Compiler
For MS/PC-DOS by Lattice, Inc.
With Quelo 68000/68010 Assembler Package \$1095 With Quelo 68020 Assembler Package $\$ 1250$

Call Patrick Adams today:
2464 Quelo, Inc. Set 33rd W. Suite \#173 Seattle, WA USA 98199 Phone 206/285-2528
COD, Visa, MasterCard Telex 910-333-8171
Trademarks: CPIM, Digital Research; MS, Microsoft Corporation: Quelo, Trademarks:
Quelo, inc.

LIKE-NEW INSTRUMENTS

 FOR SALE!Thousands of bargain-priced electronic instru ments - with warranties available now. Analyzers, PROM program-
 mers, oscilloscopes, printers, recorders, terminals...much more. Call for free catalog: Eastern Time Zone (including Miss, Tenn, Ala) (800) 225-1008, in Mass (800) 643-1011. All other locations (800) 227-8409, in Cal (800) 331-3440.
Genstar REI Sales Company CIRCLE NO 202

CIRCLE NO 205

ELIMINATE DECOUPLING CAPACITORS

CAP-BUS® CAPACITOR/BUS BAR
Eliminate the decoupling capacitors and the power and ground traces from your PCB for more reliability. CAP-BUS® has a distributed capacitance of . 05 micro-farads per lin. in., at 50 VDC with low inductance and low impedance. The capacitor and the bus bar have been joined together for CAP-BUS®; a more efficient capacitive decoupled power distribution system, increasing IC density on a two sided board.

ELIDRE COMPONENTS, INC. 1500 Jefferson Rd. Rochester. NY 14623 (716) 427-7280

CIRCLE NO 208

WAVEFORM SYNTHESIZER

- For IBM-PCIXT/AT and compatibles
- Generates user-definable signal
- Up to 2000 points per envelope

$\$ 795.00$

QUA TECH, INC.
478 E. Exchange St. Akron OH 44304 (216) 434-3154 TLX: 5101012726

CIRCLE NO 209
DISTRIBUTE YOUR LITERATURE AND CATALOGUES THROUGH THIS SPACE FOR ONLY \$725

CIRCLE NO 211

SOLVE DECOUPLING PROBLEMS
MICRO/Q capacitors with special pinout configurations give superior noise suppression, design ease. Solve special decoupling, routing problems for 8-, 16-, or 32-bit microprocessors, ECL devices, and many other devices where power and ground are not at conventional positions. Rogers Corp., 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624

CIRCLE NO 214

THEBEST

- Runs on IBM PC/XT/AT or compatible, supporting most common graphic boards, printers and plotters
- Over 2000 unique library parts
- Part rotation ε mirroring
- Rubberbanding of wires \mathcal{E} buses when objects are moved
- Supports A through E size sheets
- Visible grids. 5 zoom levels
- Color \mathcal{E} monochrome graphics
- Draws non-orthogonal wires \mathcal{E} buses
- Step \mathcal{E} repeat with auto increment/decrement of labels
- Powerful keyboard macros \mathcal{E} auto panning
- Net/wire list, BOM, design check \& library creation utilities

OrCAD gives you so many features, nothing else even comes close. Why settle for anything less? At only $\$ 495$ you will discover that OrCAD/SDT is the most powerful and cost effective schematic design tool available ... at any price!
Call today for your Free Demo Disk and brochure. All orders are shipped from stock for immediate delivery!

OrCAD Systems Corporation
1049 S.W. Baseline, St., Suite 500 Hillsboro, OR 97123 (503) 640-5007

Frequency synthesizers produce precision frequencies, governed by a high-stability frequency standard. With easy, fast remote programming, they are vital in advanced measurement or production systems and serve as standmeasurement or production systems and serve as stand-
alone test equipment. Properties, specs, applications + alone test equipment. Properties, specs, applications +
prices of the PTS $040,160,250+500$ are given. Data sheets on 2 new units, the PTS 120 and 160/250 Delta are included. Programmed Test Sources, Inc., 9 Beaver Brook Rd., P.0. Box 517, Littleton, MA 01460 (617-486-3008)

CIRCLE NO 212

Send for our FREE Design Ideas portfolio and find out how fast you can have guaranteed double-sided wiring boards. We're one of the larger producers-and ready to help you maintain high quality with Statistical Process Control.

Basler Electric
Highland, IL 62249 618-654-2341 TW 5 510-100-3841 CIRCLE NO 215

CIRCLE NO 210

HF and VHF

Sprague-Goodman / JFD Glass Pistoncap ${ }^{\text {® }}$ Trimmer Capacitors
The world's largest selection of glass and quartz dielectrics from the industry's leaders since 1951. All feature high Q, great tuning linearity and extreme stability.

Sprague-Goodman Electronies, Inc. SPRAGUE (An aftiliate of the Sprague Electric Company) SpRague
coooman
544 Fulton Ave, Garden City Park, NY 11040 couoman 516-746-1385 - TLX: 14-4533

CIRCLE NO 213
LCD MODULFS with
LEDBACKIGHIS

- portable, independent, easy-to-use development system works under MS-DOS, PC-DOS, VMS, Micro-VMS, UNIX, and XENIX
- SLICE - source langage in-circuit emulation - nonintrusive symbolic de-bug package for C and assembly level code.
- universal - supports various families: 8086,8088 , 80186, 80286, 68000, 68010, 68020, 68008.
- extremely powerful breakpoints, triggering, and trace capabilities on C, assembly, and bus cycles.
- on-line HELP available.

It's the world's best microprocessor development system Challenge us to prove it. Call 1-800-435-5001 or 617-7692980.

EMULOGIC
One Edgewater Drive, Brookside Park Norwood, MA 02062 CIRCLE NO 218

New Samtec Pin Grid Array Sockets
New pin grid array sockets from 8×8 arrays to 20×20 arrays in over 150 standard patterns are available from Samtec. Custom patterns available from 2×2 to 20×20 arrays. Solid body and open designs. Selection of low insertion force lead sockets. Surface mount, low profile, solder and wrap pin terminations. Delivery from stock. Write Samtec, Inc., P.O. Box 1147, New Albany, IN 47150. Phone: (812) 944-6733. TWX: 810-540-4095. FAX: 812-948-5047.

CIRCLE NO 221

EPROM PROGRAMMER

 \$349

The EP-1 is a great value, here's why:

- IBM PC Sottware included or RS-232 to any computer - ASCCII Command driven operation, All intelligence in unit - Optional intel microcontroller programming head - Menu-driven Chip Selection; No Personality Modules - Fast, Slow, Quick--Pulse Programming Algorithms - Intel (8080 888086 . Motorolat Teknex Straight Hex Files - Spilis Files by Base Address and Odd/Even (16 bi systems) - Generate \& Set Checksums -5.125.2.1.25v Programming - Over-Current Protection - U.V. Erasers from 534.95 - 8 Baud Aates 300 to 38 ,400 Same Day Shipment

BP MICROSYSTEMS
10681 Haddington, \#190 / Houston, TX 77043 (713) 461-9430 (800) 225-2102

6809

Single Board Computer

 ERROM, reol-time clock, watshclag fimer, 44bin
$4.5^{\circ} \times 6.5^{\prime} \mathrm{PCB}$
EXPANSION MODULES: RAM, EPROM, CMOS RAM/ battery, analog I/O, serial I/O, parallel I/O, counter/ timer, IEEE-488, EPROM programmer, floppy disks,

CIRCLE NO 219

CIRCLE NO 222

FREE DEMO DISK
SCHEMA is a complete, integrated schematic drawing software package for IBM Personal Computers. Use SCHEMA with your PC to draw schematics and automatically generate design documentation such as Wire and Net Lists, Bills of Materials, Design Rule Checks, etc. SCHEMA is $\$ 495$ and supports most common PC hardware configurations. Call or write today for a free demo disk and brochure.

OMATION INC.
1701 N. Greenville Ave., Suite 809
Richardson, TX 75081
(214) 231.5167

Handbook is source of
data on signal filtering
The Application of Filters to Analog \& Digital Signal Processing is a design handbook for both inexperienced and seasoned engineers. It's a useful primer for those unfamiliar with the concepts and applications of filters in signal-processing systems, and it's a solution-oriented technical reference for signal-proc-
essing problems. The book begins with fundamental ideas and gradually introduces more-advanced concepts. Topics include analog signals and their spectra; noise; signal filtering at the input and at the output; sampling signals; and types and characteristics of filters, programmable filters, and ATE system applications. Illustrations complement the text.
Wavetek San Diego Inc, Box 85265, San Diego, CA 92138.

Circle No 400

Book documents

 telecommunications servicesThis year's edition of the North American Telecommunications Association's source book includes, as usual, a directory, a buyer's guide, and market overviews on telecommunications services and products. This year, the book contains several
new sections: listings that cross-reference vendors' and manufacturers' product lines; and charts that tell which companies offer which busi-ness-communication systems according to line size. It also includes product guides to PBX and key systems and related business-equipment technologies, as well as narrative reviews of industry trends. The $413-\mathrm{pg}$ book costs $\$ 45$ for NATA members; $\$ 75$ for nonmembers.
North American Telecommunications Association, 2000 M St NW, Suite 550, Washington, DC 20036.

INQUIRE DIRECT

App note addresses amplifier measurements

This application note (345-1) describes gain, gain-compression, isolation, and return-loss and SWR measurements using the HP 8757A scalar network analyzer and the HP

Then EDN wants you, providing you also have an EE degree and at least two years' circuit-design experience. We seek individuals who want to be Boston-based technical editors for this top electronics publication.

To qualified individuals, EDN offers an attractive salary, industry-wide recognition, high job satisfaction, and the ability to keep abreast of..

- Advanced Technology
- Exciting New Products
- State-of-the-art circuit and system-design techniques
If you thrive on meeting challenges head-on.
If you are an effective, technical communicator...then send your resume and salary requirements in strict confidence to: Roy Forsberg, Editorial Director, EDN, Cahners Building
275 Washington St., Newton, MA 02158-1630, 617/964-3030

8350B sweep oscillator. The $16-\mathrm{pg}$ document also includes definitions of those five parameters, as well as measurement sequences for each. The 3-hole-punched note concludes with two appendixes: one addressing the choice of detection modes available for the scalar network analyzer, and the other describing the sweep oscillator. A list of references is also included.

Hewlett-Packard, Box 10301, Palo Alto, CA 94303.

Circle No 402

Library of handbooks

This company's 1987 technical library of process-measurement handbooks consists of five books that address pressure, strain, and force; temperature; flow and level; pH and conductivity; and test instrumentation and tools. Each book contains specification information, reference sources, technical guidance, and pricing.

Omega Engineering Inc, Box 4047, Stamford, CT 06907.

Circle No 403

Guide helps when selecting CAE/CAD for PCs

Organized into 13 categories relevant to the selection of a PC-based CAD/CAE system, this buyer's guide poses questions you should ask yourself when considering such a system. The 13 categories are hardware configuration, software maturity, schematic capture, schematic libraries, schematic design tools, output-file utilities, pc-board design, pc-board libraries, pc-board design tools, manufacturing-data output, database management, support and maintenance, and price.

Aptos Systems, 4113 Scotts Valley Dr, Scotts Valley, CA 95066.

Circle No 404

App note demonstrates A/D conversion scheme

This application note, Analog-toDigital Conversion Using Voltage-to-Frequency Converters, demon-
strates several methods of using V/F converters as building blocks in an A/D conversion scheme. For instance, the document diagrams and discusses pulse-counting and peri-od-timing techniques for interfacing with a 1-chip microcomputer. It also suggests possible sources of errors and solutions. Illustrations include the AD651 as a 16-bit-resolution

Start with "THE RIGHT STUFF"-

 E-T-A CIRCUIT BREAKERSBlowing a fuse is a small matter but not when it affects your product's performance, causing inconvenience, downtime and replacement costs. E-T-A Circuit Breakers provide dependable protection. These manual reset Circuit Breakers do eliminate fuse replacement.
E-T-A has "THE RIGHT STUFF"-it is the same concept as a magnetic circuit breaker. It can handle high inrush currents without nuisance trips. And, it is not shock or vibration sensitive. 100% of E-T-A's Circuit Breakers are calibrated and
 Breakers are calibrated and
tested. They not only meet requirements for, but carry 91 (5A VDE and other worldwide approvals.
Ideally suited for a wide variety of applications, E-T-A Circuit Breakers are used in equipment such as Data Processing. Medical Instruments, Communication, Power Supplies, Marine and Automotive.

Get all "THE RIGHT STUFF"-Better Protection, Economical Prices and Dependable Delivery. Call (312) 647-8303 or write.

setting the pacefor circuit protection
7400 North Croname Road, Chicago IL 60648 312/647-8303 • TELEX $253780 \cdot$ FAX:312/647-7494 CIRCLE NO 37
SAVE BIG
ON HEWLETT-PACKARD CALCULATORS

The NEW HP 28C

STATE OF THE ART Scientific Calculator from Hewlett-Packard

Features

- Built-in advanced math functions:
Symbolic algebra
Symbolic calculus
Matrix/vector arithmetic
Complex number arithmetic
Binary math and conversions
- Equation solver
- Advanced statistics
- Menu labels and softkeys
- Programming features
- Unit conversions with 120 built-in units
- 250 programmable commands and functions
- 60 direct keyboard commands
- 64 user flags
- Enhanced RPN that allows algebraic equation entry
- Separate alpha and numeric keyboards
- Four-line LCD display
- Infrared printer interface
- Folding "clamshell" case
- Battery power (3 "N" cells) Mfr. Sugg. Ret. \$235
HP 822404 Infrared Printer
Mfr. Sugg. Ret. \$135
\$100

- HP11C Scientific	$\$ 41$
- HP15C Adv. Scientific	$\$ 72$
- HP16C Programmer	$\$ 86$
- HP41CV Adv. Programmable	$\$ 126$
- HP41CX Adv. Programmable	$\$ 179$
- HP82104A Card Reader	$\$ 139$
- HP82143A Thermal Printer	$\$ 275$
- HP2225 ThinkJet Printer (All)	$\$ 350$
All HP Accessories Discounted Too!	

HEWLETT PACKARD
LaserJet Toner Cartridges Mir. Sugg. Ret. $\$ 115$ $\$ 84$

HEWLETT Authorized PEWLET Hewlett-Packar
 CALL TOLL FREE 800-621-1269 EXCEPT ILLNOIS, ALASKA

CANADIAN TOLL FREE 800-458-9133
Corporate Accts. Invited. Min. Ord. $\mathbf{\$ 1 5 . 0 0}$. Visa or MasterCard by Mail or Phone, Mail Cashier's Check, Mon. Ord., Personal Check (2 wks. to clear) Add $\$ 4.00$ ist item. (AK, HI, P.R., Canada add $\$ 10.00$ first item) $\$ 1.00$ ea. add'I shpg, \& handI. Shipments to IL address add 7\% tax. Prices subj. to change. WRITE for free cataiog. RETURN POLICY: Defectives Only:
Mosi products replaced within 30 days of purchase with identical merchandise only. Computer and large peripherals replaced only when defective on arrival (within 3 work days of delivery). Other problems covered by mif. warranty. ALL ELEK-TEK MERCHANDISE IS BRAND NEW, FIRST QUALITY AND COMPLETE. Immediate delivery on all above items. DUNS \#09.718-0517

6557 N. Lincoln Ave., Chicago, IL 60645 312-677-7660

LITERATURE

A/D system.
Analog Devices, Literature Ctr, 70 Shawmut Rd, Canton, MA 02021.

Circle No 405

Brochures characterize white-noise test sets

These two brochures present information on the manufacturer's two white-noise test sets. One of the brochures, consisting of eight pages, describes Model 2090B, which measures noise and intermodulation on wideband, multichannel telecommunications systems. The brochure provides details, block diagrams, and specifications. The other, a $12-\mathrm{pg}$ pamphlet, details Model 2090C, an automatic whitenoise test set.

Marconi Instruments, 3 Pearl Ct, Allendale, NJ 07401.

Circle No 406

Catalog presents coaxial products

This $25-\mathrm{pg}$ catalog (\#187) contains pricing information on the company's coaxial adapters, connectors, attenuators, and terminations as well as its coaxial cable assemblies (flexible and semirigid). In addition, the catalog covers twin-axial adapters and connectors.

Pasternack Enterprises, Box 16759, Irvine, CA 92713.

Circle No 407

Whether you're using Futaba, ISE or NEC vacuum fluorescent displays, Toko CPS senies DC to DC Converters are the power solution to provide grid, anode and filament voltages - with high reliability and cost savings. They also provide stable power for modems, RS-232 interfaces and other subsystems requiring mixed operating voltages, at prices much lower than other power alternatives. Contact us to be sure you're not over specifying your DC to DC Converter needs.
High performance characteristics:
\square Stable output levels for flicker-free displays
\square High switching frequency and ceramic substrate design combined with SMT for high power and very compact size
\square Full metallic shielding and matched external filtering prevents EMI problems
\square Delivers rated performance from -20 to $+65^{\circ} \mathrm{C}$ at 10 to 85% RH
The CPS series is available in power outputs to 2.4 watts, with input voltages of 1.7 to 30 VDC and output voltages ± 5 to $\pm 50 \mathrm{VDC}$ or 1 to 10 VRMS AC. For more details and application assistance, contac \dagger Toko America today.

[? TOKO

TOKO AMERICA, INC.

1250 Feehanville Drive
Mount Prospect, Illinois 60056 (312) 297-0070, TELEX: 724372

FAX (GIII): (312) 699-7864

Standard Handbook for Electrical Engineers, edited by Donald G Fink and H Wayne Beaty. 2248 pgs; $\$ 72.50$ until January $31 ; \$ 86.50$ after that date; McGraw-Hill Book Co, New York, NY, 1986.

This book is the twelfth edition of a standard reference created by over 100 experts who have contributed material on their engineering specialties. The book devotes full coverage to the generation, transmission, distribution, control, conservation, and application of electric power. Included are discussions of the impact on nuclear energy caused by the Three Mile Island nuclear plant accident, as well as the growing importance of alternative energy sources such as wind power, solar power, and magnetohydrodynamics. A list of standards completes the treatment.

Transducers in Mechanical and Electronic Design, by Harry L Trietley. 392 pgs; $\$ 59.75$; Marcel Dekker Inc, New York, NY, 1986.

This book provides detailed information on the operation, features, circuits, and applications of a variety of transducers, including resistive, magnetic, capacitive, self-generating, electrochemical, and semiconductor transducers, as well as potentiometers and variable-resistance sensors. Measurement applications include temperature, pressure, position, flow, vibration, shock, acceleration, conductivity, pH , and more. For each, typical circuitry is discussed. The book focuses on how to select the right sensor for your application.

What Every Engineer Should Know About Engineering Workstations, by Justin E Harlow III. 147 pgs; $\$ 24.75$; Marcel Dekker Inc, New York, NY, 1986.

The purpose of this book is to survey the types of hardware and software that characterize engi-
neering workstations and that differentiate them from traditional CAD/CAM systems. It identifies the appropriate applications for engineering workstations as well as points out some applications for which engineering workstations may well be the wrong answer. It explains some justifications for buying a workstation.

Low-Temperature Electronics, edited by Randall K Kirschman. 491 pgs; \$63.50; IEEE Press, New York, NY, 1986.
This book provides a survey of the characteristics and applications of electronic devices at low temperatures for both digital and analog uses. The book includes 72 reprinted papers on materials, sys-

Voss Drain-Source Voltage (volts)	Io Drain Current (amps)	Ros Drain-Source Max. Resist. (ohms)	GENTRON PART NO.
100	27	0.09	CM07
200	18	0.18	CM05
400	10	0.55	CM03
500	8	0.85	CM01

To find out more about Gentron's transistor series, contact:

Gentron Corporation
6667 North Sidney Place, Milwaukee, WI 53209
(414) 351-1660

Telex: 26881
tems, switching, noise, FETs, mod-ulation-doped devices, bipolars, microwave applications, commercial devices, semiconductor lasers, and charged-coupled devices.

Random Signals Estimation and Identification, by Nirode Mohanty. 626 pgs; \$59.95; Van Nostrand Reinhold, New York, NY, 1986.

Covering both analog and digital signal processing, this book offers a computational approach to estimation, detection, spectrum estimation, recursive filtering, smoothing, prediction, and identification. Two hundred and fifty examples illustrate how to apply these methods in such fields as communications, radar and electro-optical engineering, and physical science. Among the topics the book examines are linear-systems analysis; ergodicity and entropy; and band-limited, nonlinear, and adaptive systems.

The Effects of Radiation on Electronic Systems, by George C Messenger and Milton S Ash. 587 pgs; \$54.95; Van Nostrand Reinhold, New York, NY, 1986.

This book, written by radiationeffects specialists, describes the pertinent radiation types and the corresponding damage to electronic components, circuits, and systems. It covers such topics as radiationsusceptible physical and electrical properties of semiconductors; nuclear radiation environments and corresponding modern simulation sources; new radiation-hard systems; modern dosimetric methods; statistical analysis for hardness design; and hardness assurance. It explains how to incorporate rad-hard systems into all phases of construction of electronic systems, as well as how to implant them into systems already built. Other topics include post-radiation annealing of semiconductors, single-event upset, electro-
magnetic pulse, and gallium arsenide and new radiation-resistant devices. Charts, graphs, and tables are included showing damage to modern semiconductor types caused by various kinds of radiation.

Undersea Lightwave Communications, edited by Peter K Runge and Patrick R Trischitta. 621 pgs; $\$ 60.80$; IEEE Press, New York, NY, 1986.

This book describes recent progress in undersea light-wave technology for transoceanic communications systems. It contains 43 chapters, grouped into 10 parts; each part begins with background information about previous undersea systems and ends with a look at the technological options for the next generation of undersea lightwave systems.

Software Portability, by Olivier Lecarme and Mireille Pellissier Gart. 219 pgs; \$29.95; McGraw-Hill Book Co, New York, NY, 1986.

The essential techniques that are necessary to understand and achieve software portability are presented in this book. The authors explain how to develop a program that will not only meet current job requirements, but that can be transported to a different system for future projects. A series of case studies about language processors and operating and programming systems demonstrates portability in specific situations. The manual discusses the major problems in software portability, the software tools of transport, the linguistic means of transport, and language-implementation methods. It also explains how to cut the cost of software development and increase the life span of a program's effectiveness and how to produce software that is more efficient and more broadly applicable.

Warren Dickson
Vice President/Publisher
Newton, MA 02158
(617) 964-3030

Telex 940573
Diann Siegel, Assistant
Peter D Coley
Associate Publisher/
Advertising Sales Director
(617) 964-3030

Stacey Vorias, Assistant
NEW ENGLAND
Bob Sommer, Regional Manager
275 Washington St
Newton, MA 02158
(617) 964-3030

STAMFORD 06904
George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

ROSELAND, NJ 07068
Daniel J Rowland, Regional Manager
Chris Platt, Regional Manager
103 Eisenhower Parkway
(201) 228-8619
(201) 228-8620

PHILADELPHIA AREA
Steve Farkas, Regional Manager
999 Old Eagle School Rd
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager
Randolph D King, Regional Manager
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60018
(312) 635-8800

DENVER 80206
John Huff, Regional Manager
270 St Paul St
(303) 388-4511

DALLAS 75234
Don Ward, Regional Manager
13740 Midway, Suite 515
(214) 980-0318

SAN JOSE 95128
Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
Mark Holdreith, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Regional Manager
12233 W Olympic Blvd
(213) 826-5818

ORANGE COUNTY/
SAN DIEGO 92715
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone, Regional Manager
1750 SW Skyline BIvd, Box 6
(503) 297-3382

UNITED KINGDOM,
THE NETHERLANDS,
SCANDINAVIA
Jan Dawson, Regional Manager
39A Bowling Green Lane
44-1-278-2152
Telex: 28339
BELGIUM/FRANCE
Robert Broekman
American Publishers Representatives
4 Rue Robert de Flers
75015 Paris, France
33-1-46099595
Telex: 270560
GERMANY/SWITZERLAND
Wolfgang Richter
Sudring 53
240 Horb/Necka
Nest Germany
49-7451-7828; TX: 765450

AUSTRIA

Elan Marketing Group
Neutor g 2, Box 84
1013 Vienna, Austria
43222-663012, 638461

SOUTHERN EUROPE
Igal Elan
Elan Marketing Group
13 Haifa St, Box 33439
Tel-Aviv, Israel
Tel: 972-3-268020
TX: 341667

FAR EAST

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: (03) 366-830
Telex: J2322609 DYNACO

TAIWAN

Owen Wang, Gen Mg
Ace Marketing Inc
Box 26-578 Taipei, Taiwan
Republic of China
86-2-703-4272
Telex: 14142

KOREA

Korea Media Inc
Rm 110, A-11 Bldg 49-4,
Hoihyundong $2-\mathrm{Ka}$, Chung-Ku
CPO Box 2314, Seoul, Korea
Tel: 82-2-755-9880
Telex: K26249

SINGAPORE

Cheny Tan Associates
1 Goldhill Plaza
Nowton
Singapore 1130
Singapore 1130
Telex: RS 35983 CTAL
PRODUCT MART
Joanne Dorian, Manager
475 Park Avenue South
New York, NY 10016
(212) $576-8015$

CAREER OPPORTUNITIES/
CAREER NEWS
Roberta Renard
National Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8610

Dan Brink
Western Sales Manager
2041 Business Center D
Suite 109
Irvine, CA 92715
(714) 851-9422

Diann Siegel
Boston Sales Representative
Newton, MA 02158
(617) 964-3030

Maria Cubas
Production Assistant
(201) 228-8608

[^13]Reprints of EDN articles are available on a custom prin ting basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R Westphal, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box

DELIVERY-STOCK TO ONE WEEK!

PICO's high reliability DC-DC Converters are produced in an ultra-miniature encapsulated package.
Over 80 different models operating over the temperature range of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ without derating.

- Up to 250V DC Output
- Up to 1.25 watt output at $70^{\circ} \mathrm{C}$ ambient
- Ultra-miniature size (0.3" Height)
- 5 input voltage ranges 5, 12, 24, 28 and 48 V DC
- 28 V Input/Output now standard
- Input/output isolation

100 megohm @ 500V DC

- Single and dual output
- No heat sink required

Over 300 miniature low profile standard models deliver up to 12 watts power.

PICO also manufactures over 2500 standard ultra-miniature transformers and inductors.
 one week

Only the Teddy Bear Can't Use Our Help ...Yet

Priced as low as $\$ 1.30$ each, Avantek's silicon MMIC amplifiers and frequency converters provide outstanding gain-bandwidth per dollar.

Design engineers can simplify circuit designs, improve performance and lower overall system costs, as MODAMP ${ }^{\text {Tm }}$ MSAseries amplifiers and MSF-series frequency converters provide improved gain and bandwidth over hybrid components for less. These Monolithic Microwave Integrated Circuit (MMIC) components are designed for use in applications that listen, watch or talk ... from satellites, G.P.S. navigation receivers and fiber optic systems ... to police radar detectors, medical equipment and ... even toys.

A Growing Family of MMICs to Meet System Designer's Needs

Since 1982, Avantek's silicon MMIC product family has grown to include more than 50 different models covering the fre-
quency spectrum from DC to 8 GHz , with gains as high as 33 dB , noise figures as low as 2.5 dB and power outputs as high as $20 \mathrm{dBm}(@ 100 \mathrm{MHz}$). The MSA- and MSF-series of products are available in a range of packages, from low-cost plastic to high-rel metal/ceramic.

Selected MSA \& MSF Components
(Performance @ 1.0 GHz)

Model	Max. Useable Frequency (GHz)	Gain (dB, (typ.)	Noise Figure (db,typ.)	$\begin{gathered} { }^{\rho} 1 \mathrm{~dB} \\ (\mathrm{dBm}, \\ \text { (yp.). } \end{gathered}$	Package Type	$\begin{aligned} & 1000 \\ & \text { Piece } \\ & \text { Price } \\ & \$ \$ 8 \end{aligned}$
MSA-0170	4.5	17.0	5.5	1.5	A	12.35
MSA. 0204	4.0	11.0	6.5	4.0	B	1.90
MSA.0370	4.5	12.5	5.5	10.0	A	16.10
MSA.0420	35	8.5	7.0	15.0	c	18.45
MSA 0685	4.0	16.5	3.0	1.5	,	1.30
MSA-0835	6.0	23.5	3.0	12.5	E	7.80
MSF-8835	8.0	20.0	NA	9.0	E	12.40

A) 70 mil stripline B) 145 mil plastic C) 200 mil BEO
D) 85 mil plastic E) 100 mil ceramic

Avantek is a recognized leader in advanced, high-performance microwave semiconductors and MMICs for space and military applications. And, we deliver in quantity ... last year Avantek shipped more than $1,000,000$ MMICs and built over

800,000 complex microwave components for more than 3,000 customers. So, when you need high performance low-cost MMICs - whether your system listens, watches or talks - you know Avantek can deliver ... in volume. Contact your nearest Avantek Distributor for additional information.

Avantek Distributors

East
Applied Specialities, Inc., Baltimore, MD (301) 792-2211 Applied Specialities of Florida, Largo, FL (813) 531-2099 Component Distributors, Inc., Allanta, GA (404) 441-3320 Sickles Distribution Sales, Lexington, MA (617) 862.5100 TMA/RF, Teterboro, NJ (201) 393-9330 Central
Penstock Midwest, Palatine, IL (312) 9343700
Thorson Distributing Co., Dallas, TX (214) 233-5744
West
Penstock, Inc., Los Altos, CA (415) 948-6552
Sertek, Inc., Westlake Village, CA (818) $707-2872$

QaVANTEK

3175 Bowers Ave, Santa Clara, CA 95054-3292

PROFESSIONAL ISSUES

Laid-off engineers find the experience painful but survivable

Deborah Asbrand, Associate Editor

In 1985, Steven Soltz knew that his employer, Foxboro Co, was going through difficult financial times. Among the company's products were pro-cess-control systems for oil refineries, and when falling oil prices disrupted business for the company's Saudi Arabian clients, Foxboro felt the pinch, too. For the previous two years, the company had been regularly laying off employees. Rumors usually circulated about which employees would be the next to go, but Soltz didn't initially take them seriously: He thought that his five years with the company provided him an extra measure of security.
In the summer of 1985, though, Soltz began hearing his own name among those rumored to be laid off next. In December, the 29 -year-old systems engineer received the news: "My boss told me in a
backhanded way, 'you'd better start looking for work.'"
Soltz is among thousands of electronics-industry employees who have lost their jobs to layoffs and plant closings. The exact number is unknown because until this year the US Bureau of Labor Statistics (BLS), the national keeper of unemployment statistics, hasn't kept track of the number of Americans who are unemployed because of layoffs. This year, however, Title 3 of the Job Training Partnership Act will require the government to initiate a program to compile layoff statistics, and beginning in April, the BLS will issue regular reports on national layoff and plant-closing figures.
Some states, however, do track the number of laid-off individuals among their unemployed, and the
numbers do not bode well for the electronics sector. For example, in Massachusetts in 1985, a year in which that state's healthy economy kept its unemployment rate at 3.9%, more than 18,000 workers were laid off. The American Electronics Association (AEA) estimates that 12,000 of those jobs were cut from the electronics sector. The AEA also reports that 20,000 electronics jobs in California were eliminated in 1985. Layoffs continued in 1986, as employees at such companies as Tektronix, Texas Instruments, and AMD received pink slips.

For whatever reasons they are let go, however, employees are left with the same array of aftereffects: emotions that include anger, embarrassment, fear, and self-doubt; concern about their personal finances; hours of unfilled time; and, most important, the search for a new job.

Receiving the news

For some engineers, like Soltz, being laid off caps several months of speculation about their futures with their present employers. "After a while it became a joke," Soltz recalls. "During the summer, a bunch of us started making plans to do things together because we'd heard there was a layoff coming up and we were part of it."

For others, job termination comes swiftly and unexpectedly. Productsupport engineer Les Davis had been working for NCR in San Diego, CA, when a recruiter contacted him about an opening at nearby Metacomp, a maker of intelligent I/O controllers. After 10 years of work for such large employers as E-Systems, Texas Instruments, and NCR, Davis decided to interview for the position and was offered the job. Six months after joining the company, Davis was among 25 employees who were called into the cafeteria and informed that they were being let go as of that day. "I was in shock," he says. "I couldn't believe the way
they handled it." He received one week's salary as severance pay.

William Cain remembers his first reaction when his boss at GE-Datel (Mansfield, MA) told him he would be laid off in April of last year. "I was livid," the 46 -year-old instrumentation engineer remembers. "I knew the [profitable] circumstances under which my group was operating. It took me a couple of days to cool down and realize it was a business decision." GE-Datel had decided to cut back on development of the small-size limit controllers on which Cain was working.
Even more powerful than the sense of anger that a dismissed employee feels, however, can be the sense of embarrassment, especially for those working with classified or proprietary materials. Employers "aren't going to ask you to be out in an hour, but they want you out as soon as possible," Cain says. "That's part of the trauma. Someone who's been a trusted employee suddenly comes under suspicion. Cleaning out your desk is done under guard and you walk out under scrutiny. It's

embarrassing. But you learn to be stoic." Cain speaks from experience: The layoff from GE-Datel was his second. In 1971, he was laid off from an engineering position at RCA.

Laid-off employees say that the extra time they have to themselves can be a mixed blessing. "You can use the time to get close to your family and catch up on things," Cain says. "I was able to exercise more regularly, watch my diet better, and get my garden in early." Davis, laid off in October, chose to wait until after the Thanksgiving and Christmas holidays to begin looking for a new job. Among the first decisions he and his wife made was to take their 3 -year-old son out of the day-care center in which he was enrolled. "One occupational hazard for men," Davis says, "is that as fathers they don't get to know their kids." Over the next six months, Davis cared for their son while his wife went to her job as a program analyst at NCR.

Although the extra time allows laid-off employees to catch up on family matters and household projects, it can also become an enemysometimes there's too much time in which to contemplate financial strain, loss of self-esteem, and lingering self-doubt.

Rick Aseltine's layoff in June 1986, couldn't have come at a worse time for him. Aseltine, a medicalinstrumentation engineer, and his wife were in the process of applying for a mortgage for the 7-room house they planned to build. Aseltine's biggest fear was that his layoff would jeopardize the couple's chance to obtain the loan and maybe even cost them the deposit they had put on the house. But assisted by an understanding loan officer, they got the loan and moved into their house later that summer.

Even Aseltine, busy as he was meeting bank appointments and packing his family's possessions for the move, found he had extra time on his hands. With his wife gone to work and his son at a day-care cen-

PROFESSIONAL ISSUES

ter, the 33-year-old engineer found the days became long. "There were times when I had nothing to do all day," he recalls.

During his first few months of unemployment, Dan Hagget, a 32-year-old hardware engineer, devoted his time to volunteer work and to helping his family sell a hotel they owned in northern Maine. But as his months of unemployment stretched into a year, he began running out of projects-and money. Having spent most of his personal savings, Hagget went to work part time for a friend who owned a com-mercial-cleaning business. "At least you could see your accomplishments," he says wryly.

In fact, the long stretches of time away from work can deliver a damaging blow to a dismissed employee's often already fragile self-esteem. The laid-off employee must work hard to keep the potentially serious consequences of a layoff at bay. "I've seen friends completely devastated," Davis says. "I've seen marriages break up over it." Says Soltz: "The first conversation you have when you meet someone is usually 'what do you do?' When I told people I was laid off, they gave me a funny look."

Davis believes he weathered unemployment better than some people because his family, not his job, is the center of his life. "You can't blame the industry for your situation. If a company's profits are going downhill and they're not making money, you should expect you're going to have a good chance of being laid off. Their number one goal is to make a profit." Yet even he admits that he had to battle to maintain his self-esteem.

Overriding any concerns about personal finances and the struggle to maintain a positive self-image is an engineer's need to find a new job. Some companies give laid-off employees a hand in finding new employment. They allow ex-employees to use their telephones and typing services. Other employers hire job-
placement specialists to assist their laid-off employees in securing new jobs. Most ex-employees, however, find that unemployment means a lone campaign of sending out scores of résumés, placing telephone calls to prospective employers, attending job fairs, and going on interviews.

A job hunt that stretches over several months can be one of the

500 résumés, he remembers. Companies might interview more than 100 applicants for a single job. "There were so many engineers out of work, it was a struggle. I was considering leaving the profession. I even took salesmen's exams with insurance companies. That was the most desperate time for me."

Making Cain's 1971 job hunt more
> "Cleaning out your desk is done under guard and you walk out under scrutiny. It's embarrassing. But you learn to be stoic."
most depressing work-related experiences. Davis, who had moved to Massachusetts with his family, says he went on 25 interviews and discovered that in more than a few cases, the companies did not have actual openings but had called him in for an "informational" interview. Job fairs, too, were depressing, he says. Many of those in attendance had been out of work for a long time, and many company representatives were there more to collect résumés than to interview for actual jobs. "If you're unemployed and have the time, it's worth a try," says Cain. "But I went to two or three and always went in and out in 15 minutes."

Cain viewed his earlier layoff as an advantage in handling the experience this time. Having learned that the experience was difficult but survivable, he had an added degree of confidence when he looked for work this time.

In fact, looking for an engineering job in Massachusetts in 1971 was much more difficult than his most recent job search, Cain says. "Back in the 1970s, everyone was touched by layoffs in some way. Those were bad times when a lot of engineers got out of the business. It was a very low ebb for the profession." An advertised position in the Route 128 area's largest newspaper, The Boston Globe, might draw more than
frustrating was the fact that, at RCA, he had worked as a manufacturing engineer. His engineering experience prior to that had been in design. But when he interviewed for design positions after his layoff, he found that interviewers reacted coolly to his time in manufacturing. "The perception in industry was that I had abdicated my design role," he says. Cain considers that premise to be unfounded. "It's absurd when you look back. Design skills don't dissolve in two years. But I've been leery of taking a manufacturing job ever since."

Opportunity for change

Unlike Cain, Soltz did decide to leave engineering. "Engineering is very competitive," he says. "Every year the kids coming out of school are getting better. Unless you really stay up on it, you fall behind quickly." He also felt that there might be other professions more suitable for him. "I wasn't as good at engineering as I wanted to be, and I wasn't really interested enough to invest the time to get better."

He had always been interested in sales, however, so he decided to apply for sales positions. He sent hundreds of inquiries-and got hundreds of rejection letters. Self-doubt began to gnaw at him. After two months of unemployment, job interviewers began asking Soltz why he
 PROFESSIONAL ISSUES
had been out of work for so long. His disposition changed, and he became morose and ill-tempered. "It was a depressing time," he remembers. "You start thinking, 'I'm no good, no one wants me.'" At one point, he threw a party to pick up his spirits, and, in a lighthearted moment, burned all of his rejection letters.
"When I was going through my most depressing time, I wasn't that excited about going back to work," says Soltz, who eventually got a job as a salesman for Astromed, a West Warwick, RI, maker of recorders for the aerospace and medical industries. "You get into a routine, and you don't want to break it." Happily, he found that once he went back to work, he felt as though he'd never been away.
Luck was an integral factor in helping Rick Aseltine obtain his job as engineering manager for C R Bard's Instrumentation Division in Danvers, MA. Anxious to secure a job and increase his chances of getting a mortgage, Aseltine was close to accepting a job that would mean a round-trip daily commute of more than two hours. But before accepting the offer, he decided to interview for one more job-a qualityanalysis position that would have been an unusual choice for someone with his medical-instrumentation background. After reviewing his résumé, his interviewer turned to him and asked him flatly, "Why are you here?" Aseltine admitted the financial bind he was in. The interviewer knew of an opening for an engineering manager at the company and suggested that Aseltine interview for it. He did, and later was offered the job.

William Cain now works as director of engineering at LFE Corp's Instruments Div in Clinton, MA, where he supervises the design and development of single-loop PID (proportional-integral-differential) controllers. Like other engineers who have been laid off, he says the experience has permanently affected his attitude toward his em-
ployer. "It was a hardening experience to me. It taught me that no matter what level of engineering or management you're at, you never want to give up your basic design skills . . . Even though I'm director of engineering, I still spend a portion of my day with engineers to make darn sure I stay technical. If

Engineers who have been laid off say the experience permanently affects their attitudes toward their employers.

you've been laid off, you develop a mild paranoia."
Aseltine, too, sees changes in the way he views his employer. "It affects the way I look at things around me." He now feels much more protective of his career. "I'm much more cautious now about decisions I make," he says. Davis, now a systems support specialist for Apollo Computer (Chelmsford, MA), says the lesson he learned is "don't be confident in hiring on with a company that is doing well. You could be here today and gone tomorrow. That's not sarcasm. It's a realistic point of view."
For some, the aftereffects of a layoff include a continuing sense of loss about the potential that a former job held. Aseltine says he has watched the market grow for the emergency-communication device he worked on for his former employer. "Being laid off is more discouraging now because the product I was working on is finding more interest.

I knew this was an area we should pursue. Looking at the interest in the product now, [I realize] we could've been on the leading edge."

EDN

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

ADEE is the only conference/exhibition on the west coast that focuses on the real, practical applications of Computer Aided Engineering (CAE) and Design (CAD) for the design of electronic circuitry.

The major vendors of CAE/CAD technology will be on hand-all of them presenting their latest innovations and all of them concentrating on real tools you can put to work right now.

Whether you design logic, IC, or printed circuitry or systems, you'll soon need to acquire or expand your use of this powerful technology. That is, if you want to stay competitive.

- Because you'll have a chance to meet with the leading suppliers of CAE/CAD technology and see their products in action.
- Because you'll have a chance to compare and evaluate hundreds of systems.
- And because of "CIRCUITPATH." It's a working, multicompany demonstration that addresses the challenge of integration. "CIRCUITPATH" will take you, step-by-step, through a typical design cycle showing how each element in this integrated CAE/CAD system contributes to the design of a single product. It proves the challenge can be met and conquered with existing technology.
- You can also take advantage of technical presentationsa user-oriented program tied closely to the exhibition to make the real technology as accessible and manageable as possible for you.

CAREER OPPORTUNITIES

$\begin{aligned} & \text { Issue } \\ & \text { Date } \end{aligned}$	Recruitment	1987 Editorial Calendar and Planning Guide \square Editorial Emphasis	EDN News
Feb. 19	Jan. 29	Analog IC s; Arificial Inelligence; CAE	
Mar. 4	Feb. 12	Computer Graphics; Communications ICs; Test \& Measurement	Mailing. Fet
Mar. 18	Feb. 26	CAE; ASICs; Electro '87; Show \& Product Preview	Closing: Feb, 20
Mar. 31	Mar. 10	Electro ${ }^{\text {'87 }}$ Show Issue; Design \& Development Tools; ICs \& Semiconductors	
Apr. 15	Mar. 26	Microprocesor Technology: Sofiware Development; Digital ICs	Clo
Apr. 30	Apr. 9	Communications Special Issu; ASICs; Test \& Measurement	
May 14	Apr. 23	Analog Technology Special Issue; ICs; Test \& Measurement	Closing
May 28	May 7	Computer Peripherals; Software; Power Sources/ Devices	
June 11	May 21	Mart ICs; CAE; Computers	Closing. May 28 Maling. Jun 18
June 25	June 4	ASIC (Semicustom ICs) Directory; Analog ICs; Surface-Mount Technology	
July 9	June 18	Product Showcese-Volume 1; ICs \& Semiconductors; Software	
July 23	July 2	Product Showcase-Volume II; Computers \& Peripherals; Test \& Measurement Instruments	Mailing July 16

DECADE TWO AT ASC... AND ACCELERATING.
 In Engineering, Telecommunications, Intelligence, Training, Systems Analysis, and Systems Integration.

Our Divisions have been responsible for over 11 years of successful growth for ASC. We span the gamut of systems engineering and information processing ranging from highly complex systems and networks to logistics and advanced training programs.
SYSTEMS DIVISION: Providing engineering and technical assistance for the planning, development, acquisition and deployment of major weapons systems, computer-driven training systems, and intelligence gathering systems for the United States Government. Also, focusing on local and wide area network activities, we develop customized products for highly specialized applications in government and private industry.
SPECIAL PROGRAMS DIVISION: Involved in providing system design, development, integration and fielding of Special Intelligence systems to the U.S. military and DoD agencies. As a developer, the Division provides hardware and software engineering for complex computer-based collection and processing systems.
AMERICAN COMMUNICATIONS COMPANY: Participates in major in stallations for telecommunications

Other ASC facilities in Crystal City, VA: Newport, RI Groton, CT; Silverdale, WA: Norfolk, VA; Orlando. FL; Kings Bay, GA; and Ogden, UT.
companies including sophisticated application of broadband, conduit, micro wave and fiber optics.
All of our Divisions have enjoyed rapid growth rates and this trend is continuing. Our expansion has opened up promising new opportunities for: HARDWARE ENGINEERS (NTDS) SOFTWARE DESIGN ENGINEERS (INTEL) SOFTWARE ANALYST ENGINEER (TRICCSMA) TECHNICAL ENGINEER WRITERS ENGINEERS ICTTACNAV PROGRAMMERS (FORTRAN, ASSEMBLY, CMS-2) SUBCOM ELECTRICAL ENGINEERS ANALYSTS (NVM) LOGISTICIANS/ CONFIGURATION MANAGEMENT

To explore the many fine opportunities at ASC, please send your résumé in confidence to:
American Systems Corporation, 7535 Little River Turnpike, Department 210,
Annandale, VA 22003. U.S. citizenship required. An Equal Opportunity Employer M/F/H/V.

THE CHALLENGE

A Career as a SECURITY ENGINEER

in the UNITED STATES FOREIGN SERVICE

An extraordinary opportunity for service in electronic surveillance countermeasures, security systems, computer security, and technical administration. Locations include the Washington, D.C. area and embassies and consulates throughout the world. Starting salary range $\$ 20,142$ - $\$ 40,834$.
Further information and applications may be obtained by writing to:
Professional Policies and Programs or CALL COLLECT: Bureau of Diplomatic Security DS/PLD/PRP, Room 2426
(703) 235-2291
U.S. Department of State

Washington, D.C. 20520
An Equal Opportunity Employer

VISIBILITY: ZERO

And vertigo is affecting the pilot's judgement. Design a flight control system to control the situation and ensure the pilot's safety.

This is just one of the challenges faced and overcome by the engineering teams at Lear Siegler Astronics Division, the Free World's largest supplier of military flight controls.
As the developer of equipment that controls some of the world's most sophisticated aircraft, we are pioneers in the newest "safety-of-flight" technologies, which protect the pilot under hostile conditions. We're also involved in a wide range of other microprocessor-based applications, in the areas of Advanced Avionics, Remotely Piloted Vehicles, and Self-Repairing Flight Controls.

The challenge. The reward. The future. At LSI Astronics, it's yours in one of the following positions.

FLIGHT CONTROL SYSTEMS ENGINEER

Requires degree in EE, CS, Math or Physics and design experience including Digital Systems hardware and software architecture, redundancy management, and system integration and test. AFCS background needed.

ENGINEERING PROJECT MANAGER

Will direct military avionic hardware development, to include overseeing design team, handling budget and scheduling responsibilities, and coordinating manufacturing and quality functions. Requires BSEE and $7-10$ years military electronics experience, preferably to include flight control systems.

MARKETING MANAGER

Will be responsible for new product marketing. Requires 5 years experience with DoD acquisition procedures in avionic electronic systems.

RADAR SYSTEMS DESIGN ENGINEERS

Will define systems requirements for new ground-based radar technologies, interface with Army development labs and provide technical support. Will also apply ECM/ECCM and high speed digital signal processing techniques for radar systems design, simulation and analysis. Requires BSEE and $5+$ years relevant experience.

REAL-TIME SOFTWARE ENGINEERS

Requires BS in EE, CS or Math and $3+$ years in avionics software including Minicomputer/Microprocessor Systems, Real-time and Assembly/higher languages for military applications.
In addition to a competitive compensation package, LSI Astronics offers an attractive Southern California location and professional relocation assistance. For consideration, send resume and salary history to: Chuck Doyle, Dept. F04, Lear Siegler Astronics Division, 3400 Airport Ave., Santa Monica, CA 90406. (213) 452-6745. Equal Opportunity Employer/U.S. Citizenship Required.

Quick. Who's Creating Sophisticated Gravity Sensing Systems?

BELL AEROSPACE. WE'LLSURPRISE YOU.

We're in the forefront again, successfully creating highly sophisticated Gravity Sensing Systems for the Navy's most advanced navigation equipment. We've been there before, doing the "can't be done" without a lot of fanfare but with great success for over 50 years. We built the first American jet. We built the X-7 Rocket Plane, the first to break Mach I and fly at 126,000 feet. And, we built the X-2 that flew at $2,148 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. We built the Lunar Landing Training Vehicles. We built the first Post Boost Propulsion System. (It's still in service on the Minuteman Rocket). The list of Bell Aerospace firsts is a long one. After all, our business is technology.
We're still on the cutting edge, developing and perfecting Gravity Sensing Systems, working on High Energy Chemical Laser Systems and Beam Generators, leading the way in the development of Air Cushion, Amphibious Vehicles, creating a new generation of Liquid Propellant Thrusters. So, the next time someone asks, "Quick. Who did it first?" and the answer is Bell Aerospace, you may be surprised. But you should have known.
We're looking for people who can help us shape tomorrow's technology. Opportunities are exceptional for Engineers with a BS or MS degree and at least two years experience in one of the technical areas listed.

Electronic encinerrs
-Microwave RF, Antennas, Radar, Microprocessors, A/D Circuit Design, Control Systems, Signal Processing, Inertial Instruments.

PROGRAM MANAGERS

-Electronics
SENIOR IIS ENGINEER

ELECTRONICS QUALITY MANAGER

ELECTRONICS DESIGNERS

QUALITY CONTROL ENGINEERS

-Military Electronics

Another Surprise... Buffalo

The Niagara Frontier is one of the great places to live in the U.S., rated in the top 15 areas in Rand McNally's "Places Rated Almanac." Housing costs are very reasonable, well below those of most comparable areas. Along with SUNY Buffalo, the largest educational facility in New York State, there are 17 colleges and universities and excellent elementary and secondary school systems. You'll find extensive medical facilities and health care costs are lower than any other metro area in the U.S. And there's lots to do. Enough restaurants to keep you visiting a new one every night for the next five years; plenty of major league and college action for sports fans; over 500 parks, playgrounds and 20 skiing areas within a 90 mile radius; and the Niagara River has more species of fresh water fish than any other in the U.S. The area is known for its excellent recreational activities.
We offer competitive salaries and generous benefits that include stock savings, health insurance, retirement program, liberal vacations and scholastic assistance. Get in touch with us, we have a great many pleasant surprises in store for you. Send your resume in confidence to: D.W. Pearl, Dept. EDN-M-122, Bell Aerospace Textron, P.O. Box One, Buffalo, NY 14240.

Bell Aerospace TIXTRON

You Are Fundamental To Our Drive For Quality.

At the Missile Systems Division of Fortune-100 Raytheon Company, our goal is clear and well-defined: to achieve the highest level of quality in all areas of our involvement. Over the course of our history, we have consistently reached that goal by perfecting the basics, the fundamentals, and then extending excellence throughout the organization. Today, our ongoing drive for quality is evident in every advanced program we undertake, in each relevant technology, in all applicable disciplines.
Our intensive efforts to constantly enhance our well-known and well-respected reputation for quality naturally demand top-level technical professionals to implement, direct, and embody them. That's why we continue to seek more of the best-people like you-to add your fundamental commitment to excellence to ours.
Located in the center of technological innovation and excellence of the Route 128 area and only minutes from the unmatched educational, cultural, and recreational resources of Boston, Raytheon's Missile Systems Division also offers access to the exceptional quality of life of Massachusetts and the entire New England Region.
Quality: we've based an exceptional organization on it. Now, we invite you to build your future on it.
Current opportunities exist for qualified engineers in the following applications:
\square RF/Microwave Systems Design \square Digital Systems Design
\square Real-Time Software Systems Design \square Guidance and Control Design \square Test Systems Design \square Radar Systems \square Reliability/Quality Assurance \square Electro-Optics Design \square Missile Guidance Design
Engineering positions require a minimum BS degree in Electrical or Computer Engineering, Physics or Mathematics and at least 3-5 years' experience with real-time command and control systems, radars, missile guidance and digital equipment.
Raytheon offers excellent salaries and many company-paid benefits as well as Stock Ownership and Savings and Investment Plans and liberal relocation assistance. Please send resume with salary requirements to:
Stephen E. King, Raytheon Company, Missile Systems Division, Hartwell Rd., Bedford, MA 01730. U.S. Citizenship required. An Equal Opportunity Employer.

New 1987 Survey explores the latest trends in engineering salaries, technology and career opportunities

You know how quickly technology can change. But, do you know how much salaries change...or how much difference there is in compensation levels for engineering professionals who perform comparable functions...or how much salaries vary by industry or geographic location?

Comprehensive review of salaries, trends and demand

The new 1987 Engineering Salary Survey and Career Planning Guide is based on information from thousands of engineers and firms that hire them from coast to coast. Salaries for twenty-seven position titles are reviewed including those in design and development, manufacturing, test, quality control, technical support and engineering sales and marketing. You'll learn if your compensation is keeping pace with your peers and what you can expect to earn as you advance in your career.

Charts, exhibits and graphs to assess your progress

Included in the new Survey are a series of charts, exhibits and graphs to help you get a clearer picture of the profession and how to advance. Proven methods for setting your career objectives, implementing strategies, monitoring your progress and then taking corrective action (when and if needed) are defined. Five documented case studies on professional growth are also provided to point out typical mistakes so that you can avoid them to stay in the mainstream of your career.

Free to engineering professionals

This valuable 16-page Survey is available without charge. You owe it to yourself to be informed. Call us today.

Call the office nearest you today
To get your free copy of the
1987 Engineering Salary Survey
and Career Planning Guide, call
the Source Engineering office nearest
you. We'll mail you a copy in strict
confidence and without obligation.
California
Irvine 714/553-8711
Palo Alto415/856-3711
San Diego619/278-0200
Sunnyvale408/738-8440
Colorado
Englewood........... 303/773-3700
Connecticut
Stratford203/378-9400

Oregon
Portland 503/222-5130
Texas
Dallas 214/239-9010
Washington, D.C.
Tysons Corner, VA . . . 703/790-5560

New York	
Albany	518/482-2035
Binghamton	. 607/722-1345
Buffalo	. 716/855-0800
Hauppauge	516/360-0755
Rochester	. 716/262-4380
Syosset, L.I.	516/496-7030
Syracuse	315/422-2032

Syracuse 315/422-2032

A leading recruiting firm devoted exclusively to the engineering profession.
Client companies assume our charges.

New Jersey

Edison \qquad
Paramus
...
201/246-0480
Princeton
Wayne

201/587-1771
609/799.7229
201/628-7220

Illinois	
Rolling Meadows	312/870-0505
Massachusetts	
Burlington	617/272-5000
Wellesley	617/431-1080
Westborough	.617/366-2600
New Hampshire	
Nashua	603/888-3931
New Jersey	
Edison	201/246-0480
Paramus	201/587-1771
Princeton	609/799-7229
Wayne	201/628-7220

4

XETRON

A Cincinnati high-tech leader is expanding at the rate of 35% compound growth per year. Due to our continued growth we have immediate openings in the following areas:

RF/ANALOG ENGINEER

BSEE with 4+ years of design experience required. Will be involved in the design, development and manufacturing of HF/VHF/UHF microwave receiver and transmitter equipment. Candidates should have design experience with tunable filters, VCO^{\prime} 's, synthesizers, demodulator and modulator (PSK, QAM, etc.). IF circuitry and audio circuitry.

ANTENNA DESIGN ENGINEER

BSEE with 2+ years experience in all types of antenna design, frequency range from VLF through MW. Must have both hands-on design experience and analysis background.

RF DESIGN ENGINEER

You will need a BSEE plus 4 years RF design experience, leading to product development in a military defense electronics environment. You will be involved in receiver design, frequency synthesizers and demodulator development.

RF SYSTEMS ENGINEER

A BSEE plus 5 years experience in receiver design and analysis in a military defense electronics environment are required. You will work it the conceptual design, fabrication and testing of receiver systems for EW applications. Working knowledge of system architecture signal processing, intercept, compressive, channelized techniques desirable.

QA ENGINEER
With an in-depth knowledge of military specifications, particularly Q-9858, MIL-1-45208A, STD-45662 and STD-105D along with a working knowledge of manufacturing processes associated with printed circuit board assembly.

Xetron Corporation
 40 West Crescentville Road Dept. EDN 01/22
 Cincinnati, Ohio 45246
 Call Ernie Prater collect at: (513) 671-5220

Freeworld leader
 in electronics fuzing. We're state-of-the-art and world class.'. Ralph Love Manager, Fuze Systems Office

The professionals of Motorola's Government Electronics Group (GEG) have much to say about their company because GEG is a place where innovative ideas are put into action. The result is leadership in the research, development and manufacture of electronic hardware for our country's defense, national security and space programs. If you have the imagination and skill required to extend our technical frontiers, consider the opportunities now available.

Electrical Engineers

Develop software to control a data correction and data analysis system. Must have experience utilizing HP9817 or HP9836 hardware in instrument controller applications. Knowledge of BASIC, PASCAL and structured design and programming techniques is required. Experience with statistical methods SDDL and FORTRAN also desired. Prefer BSEE and 3-5 years experience. Contact Tony Benavidez.

Principal Electrical Engineer

Responsible for maintaining, modifying and executing high level language computer simulation models of advanced missile system. Will also conduct parametric studies of factors related to accuracy. Must be able to interface internally with system engineers, subsystem designers and externally with customer representatives. Programming experience related to missile systems, antennas and guidance systems required. Prefer BSEE and 9-11 years experience. Contact Tony Benavidez.

System Program Managers
 Seeking individuals with demonstrated knowledge

 of production program management in a DoD related electronics environment. The successful candidate's background will include experience in manufacturing, project leadership and familiarity with the government acquisition process. Prefer a technical BS and 10 years related work experience. Contact Tony Benavidez.
Senior Design Engineers

Positions require individuals whose backgrounds include experience with the following technologies: doppler ranging and FM-CW doppler ranging radars, analog and digital radar signal processing, proposal preparation and customer briefings. Requires the ability to provide technical direction to engineers and technicians.
Experience with missile fuzing is highly desirable. Prefer BSEE and 7 years related experience. Contact Tony Benavidez.

C3I Systems Engineers

Perform operational analysis, requirements analysis, architectural studies and top-level H/W and S/W designs. Experience in AI, image processing or top-down S/W design preferred. May assist in new business acquisition. Contact Jerry Chadwick.

QA Test Engineers

Monitor the QA and reliability aspects of production testing and inspection performance. Responsible for failure data collection, analysis of trends and predictions, formal report writing and project coordination of Failure Review Boards. Responsibilities include supervision of technical personnel, project scheduling and budgeting. Previous experience with statistical analysis software is desirable. Prefer BSEE with 7 years experience. Contact Bob Eddy.

Reliability \& Components Engineers

Current experience in maintainability design, analysis modeling and prediction, bit and self-test effectivity/efficiency analysis, system safety/ hazard analysis, safety fault free analysis and FMEA. Sneak circuit analysis, plus automated production experience highly desirable. Prefer BSEE with 7 years experience in maintainability and safety engineering. Contact Bob Eddy.

Senior Engineering Writers
 Develop depot-level maintenance manuals on

 computer-controlled satellite and ground-based digital communications systems. Will write and produce technical manuals on equipment. The writer will perform in an R\&D environment. Requires strong analytical and communications skills to develop theory and maintenance procedures to the piece-part level using commercial and unique computerized setup equipment. Prefer an active secret clearance. Contact Bob Eddy.Join the people of Motorola's Government Electronics Group. The benefits are many, including sunny Arizona - a land as beautiful as it is abundant with recreation and culture.

For prompt consideration, forward your resume in confidence to the appropriate technical recruiter at Motorola Government Electronics Group, 8201 E. McDowell Rd., Dept. B755, Scottsdale, AZ 85252; (602) 949-3759. An Equal Opportunity/Affirmative Action Employer. U.S. Citizenship Required.

The Mind to Imagine THESMLILTOO

MOTOROLA INC.

Government Electronics Group

Advanced electronics for a more productive world.

Capture the future at SRL

Systems Research Laboratories Inc., is a growing high technology, engineering research and development company. Because of our continued expansion into new areas of technology, we have the following career opportunites available at our Dayton, Ohio, headquarters:

Software Development Manager

Must have experience with operational flight programs for airborne systems. Requires programming experience in J-73 or Pascal plus ability to analyze software and appropriate documentation. Supervise staff of software engineers during program development phase. BSCS or BSEE and 5-8 years experience with MIL-STD-1750A required.

Environmental Test Manager

Responsible for setup and management of new environmental test facility for engineering assessment testing, qualification testing and environmental stress screening. Advise design groups, prepare environmental test procedures and plan, schedule
and manage environmental testing for military projects. BSME, $3-5$ years environmental testing experience and familiarity with MIL-STD-810 required. Additional requirements include vibration structure design analysis skills, familiarity with environmental design and test specifications and knowledge of computer-controlled environmental test chambers and fixtures.

Quality Assurance Engineer -
 Software

Responsible for development, implementation and maintenance of quality assurance plans for electronic graphic display products. BSEE and 3 or more years experience developing and monitoring quality programs in high technology product development environment required. Direct product development, design experience and knowledge of appropriate MIL-SPECs preferred.
Senior Digital Systems Engineer Avionics
Responsible for digital hardware development and systems integration for military avionics, EW and display systems. BSEE and 5-10 years experience in digital hardware development required.

Programmer/Analyst

Design and develop real-time software for scientific applications in human/machine integration. Requires BSCS with 2 or more years experience in FORTRAN, BASIC and C, using UNIX-based systems on variety of computers such as VAX/VMS, PDP-11 systems, 1750A/1533 bus system.

Systems Analyst

Design, plan and develop real-time software from top-down systems description for advanced generic crew station simulator. Lead software team. Requires BSCS with 5-8 years experience in a VAX/VMS environment and working knowledge of UNIX, C, FORTRAN, Ethernet and computer graphics software. Experience with aircraft dynamics and flight simulation desired.

SRL offers an excellent compensation and benefits package and a working atmosphere that encourages personal career growth. Qualified candidates should send their resume in confidence to Dept. 12, Systems Research Laboratories, Inc.

EOE/MFHV
Principals only
5a

THE MITEL TEAM IS LOOKING FOR A KEY PLAYER

The Datacom division of Mitel, Inc. is searching for a seasoned professional with experience in one or more of the following areas.
HI speed Digital communications. Telephone/Network Interfaces, Modem Technology, Assembly Language Programming (6800 family), High Level C, Forth, Pascal, Analog/Digital Design Experience.
The successful candidate will be a "Highly Motivated", selfstarter accustomed to being involved in a project from conception to production release. Outstanding opportunity for personal expression and high visibility within the organization.
BSEE, MSEE or equivalent experience required.
We offer a competitive salary and a comprehensive benefit package, plus relocation assistance to our beautiful rural community on the banks of the St. Lawrence River. For consideration and a chance to join a winner, send your resume to:

John C. Valentine
Manager, Human Resources
Mitel, Inc.

EDN CAREER OPPORTUNITIES

Engineers: Pan Am World Services, Inc. provides exactly the range that brilliant careers require.

One range is geographical

World Services is prime contractor to the U.S. Air Force for the planning, engineering and operation of the Eastern Test Range. It stretches 10,000 miles from Cape Canaveral to Pretoria, South Africa, and includes some 1,800 ship and land based tracking units.

Another is professional

We have long been involved with the entire space program. Missiles. Satellites. Space Shuttle. You name it. Depending on orientation, you'll be seeing, and contributing to, the last word in radar, optical instrumentation, telemetry, communications, data handling, C^{2}, statistical data reduction, meteorology, timing/firing, frequency control, shipboard instrumentation . . . and related technologies.

The third range is choice

Following is a diverse array of engineering opportunities. Each requires an appropriate degree and at least 5 years relevant experience.

TELEMETRY SYSTEMS ENGINEER

 Will accomplish design, acquisition, installation and evaluation of antennas, preamplifiers, mixers, down-converters, filters, demodulators, decommutators and computer interfaces for large aperture S-band telemetry antenna systems. Must perform hardware design and system analysis.
DATA SYSTEMS ENGINEER

Will accomplish design, acquisition, installation and evaluation of data acquisition, transmission, processing and display systems for distributed instrumentation complexes. Must have substantial experience in system/subsystem design, test and evaluation

RADAR SYSTEMS ENGINEER

Will perform design, acquisition, installation and evaluation of high power transmitters, solid-state receivers, and digital range machines, and preparation of specifications for new land and shipboard radar used in tracking and signature

data collection. Must be experienced in system/ subsystem design, test and evaluation.

OPTICAL SYSTEMS ENGINEER

Will perform system design, installation, modification and evaluation of manned and unmanned optical tracker and camera systems.

COMMUNICATIONS SYSTEMS

ENGINEER

Will accomplish design, acquisition, installation and evaluation of subsystem equipment and systems to support communications and timing requirements. ETR Communications Systems include analog and digital communications systems, red and black switching systems, long and short haul data transmission over HF, Microwave, Satellite and Cable (copper and fiber optics) Systems and Electronic Security Systems. Timing includes state-of-the-art PTTI systems.

Other attractions

Florida at its best . . . specifically, the Cocoa Beach area, excellent salaries, extensive benefits, stimulating associates, excellent career prospects, and eligibility for 75\% discount travel on Pan Am for yourself and each eligible family member. Learn more. Contact Don Mosby at (305) 494-7322, or send your resume indicating position of interest to him at Pan Am World Services, Inc., Ref. 87-25, P.O. Box 4608, Building 423, MU 100, Patrick Air Force Base, Florida 32925.

Pan Am World Services,Inc.

Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Servicas, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutaly free. There are no fees or charges.

IDENTITY

- The computer never forgets. When your type of job comes up, It remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and It's affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewed with you by a PSL professional placement person.
We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you know about it. That's why it makes sense for you to register with the EDN Databank. To do so, Just mall the complated form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

PRESENT OR MOST RECENT EMPLOYER

POSITIONDESIRED

| EMPERRERNCE | Present or Most
 Recent Position | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Duties and Accomplishments: | Industry of Current Employer: | To: | Tite: |

PREVIOUS POSITION:

Job Title:
Employer: __ From: \quad Type of Industry: \quad To:___ City: ___ Stalary: ___
Division:

Duties and Accomplishments:

ENGINEERING (HW/SW)

Top Producer in the largest personnel network system currently has openings for ALL Engineering and computer professionals. Over 200 offices through the U.S. and Canada. All fees, interview and relocation expenses are borne by our client companies. Please call or submit your resume to:

RIKER PERSONNEL
8790 Purdue Road, Suite E Indianapolis, IN 46268
(317) 875-9911

Southeast \& National

We have current openings in Huntsville, AL., Pittsburg, PA. San Diego, CA., Ft-Walton Beach., and many other locations for degreed engineers/U.S. Citizens with experience in such engineering specialities as:

- 6-DOF Simulation
- C^{3}
- Interceptor Design
- FLIR
- RF Design
- Antenna Design
- Electro-Optics
- Warhead/fusing
- Al
- MMIC
- Future Aerospace Vehicals - Scientific mission/Payload Research
- Propulsion/Hypersonic Aircraft
- Planetery Spacecraft

Careers Unlimited, Inc.
908 Merchants Walk
Huntsville, Alabama 35801
(205) 539-4151 Mr. Scott McKechnie

DEFENSE ELECTRONICS

We represent the recruiting needs of over 200 clients in the Northeast and Mid-Atlantic regions.
Engineers and scientists with 2 or more years experience in any of the following are encouraged to respond:

- Digital Communications
- Antenna Design
- C 3 /ASW/ECM
- Embedded Systems
- RF/Microwave Design
- Signal Processing
- Infrared Imaging
- EMI/EMC Engineering

Clients assume our fees. U.S. citizenship required. For immediate consideration, call or forward your resume to Robert T. Crotinger.
Cochran, Cochran \& Yale
945 e hentietto rd. rochester, ny 14623
phone (716) 424.6060

ELECTRONIC SECURITYI AUDIO SYSTEMS ENGINEER

HOLMES \& NARVER, INC., is seeking an engineer with general technical knowledge of security and/or audio system design. Experience with intrusion detection, OCTV alarm assessment, alarm monitoring, intercom and public address systems integration along with noise control engineering is desirable. Job requires Project Management abilities and interaction with client. BSEE I I required. One year of design experience and professional registra-
tion is desired.
Qualified applicants should forward their resume in confidence to:

Tessie Landez
HOLMES \& NARVER, INC.

> | Dept. 36 |
| :---: |
| P.O. Box 1434 |

S. CITIZENSHIP REQUIRED An Equal Opportunity/Affirmative Action Employer

The Defense Intelligence Agency (DIA) is the major intelligence organization within the Department of Defense. Our mission is to collect, analyze, interpret, and disseminate foreign military intelligence vital to the formulation and execution of national security policy
Because the DIA is in the business of advanced finished intelligence, we are committed to using the latest and best technology available. To meet the global challenge of the future, we require the resources of high-tech professionals who are capable of expanding intelligence techniques beyond the state of the art.
At the DIA, you will have the exclusive opportunity to work on large-scale projects within the national intelligence community. You will interact with policy makers at all levels in your efforts to support national security. It's a chance that only a small percentage of scientific and technical professionals ever have during entire careers in private industry or government.
We currently seek professionals skilled in the following areas:
Electronics Engineer (Aerodynamic Avionics)
To serve as a technical expert for the assessment of advanced avionics integrated into aerodynamic weapon systems. Experience with and knowledge of avionics tech nologies and their application to aerodynamic systems is required. A related degree and $3-5$ years of experience is required. (VA \#85-299)
Electronics Engineer (Electronic Warfare)
To serve as a senior Electronic Warfare expert 'and program manager in the Department of Defense Intelligence community. Extensive experience with foreign Electronic Warfare capabilities to include ESM, ECM, ECCM, and passive techniques is required. A related degree and 5-6 years of experience is required. (VA \#86-347)
Electronics Engineer (Radar)
To serve as a technical expert for matters regarding strategic SAM electronics, experience and knowledge of foreign radar and electronics related to SAMs is required. A related degree and $3-5$ years experience is required. (VA \#86-55)
Electronics Engineer (Radar)
To serve as a technical authority on foreign radar and weapons systems. Expert knowledge and extensive experience with radars and weapons systems design is required. A related degree and 5-6 years experience is required. (VA \#86-454)
Electronics Engineer (Radar)
To serve as a technical expert and program manager responsible for tactical SAM electronics. In depth knowledge of foreign radar and electronics related to tactical SAMs is required. A related degree and $3-4$ years of experience is required. (VA \#84-578)
DIA hires applicants direct; civil service status is not required. All applicants must be U.S. citizens and are subject to thorough background inquiry prior to employment. DIA is an equal opportunity employer
For more information regarding specific vacancies, call (202) 373-2700 or write to the address below. To apply, send your resume including the appropriate department code and your salary history or SF-171 to: Defense Intelligence Agency, Civilian Staffing, Operations Division, Dept. BA, Washington, D.C. 20340-3042

You are only nine chapters away from understanding Semicustom IC design

Learn how to design a semicustom IC with A Designer's Guide to Semicustom Integrated Circuits. Based on EDN's own design experience, this nine-chapter booklet outlines the complete procedure used to design, fabricate, and test EDN 1, a chip with a 1200 equivalent-gate complexity. You'll not only learn the steps to take when creating ICs, but also the design/cost analyses and vendor-interface methods that lead to successful semicustom chips.

Mail coupon to:
Semicustom IC Reprints
EDN Magazine
Cahners Building 275 Washington Street Newton, MA 02158-1630
Please send \qquad copies of
A Designer's Guide to Semicustom Integrated Circuits (96 pages)
$\$ 6.95$ UPS $\$ 8.96$ non USA
(Bank draft only)
Check or money order made out to EDN REPRINTS must accompany each order. No COD. Mass residents add 5% sales tax.
Please print clearly. This is your mailing label.

NAME \qquad

TITLE \qquad

COMPANY \qquad

ADDRESS \qquad

CITY \qquad STATE \qquad ZIP EDN12287

ACCELTechnologies Inc	291
ACDC Electronics	204
Adaptec Inc	42-43
Advanced Microcomputer	
Systems Inc	295
Alco Electronic Products Inc	234
American Photonics Inc	289
AMP Inc	178-179
Amphenol Products, An Allied Co	245
Amplifier Research	99
Applied Microsystems Corp	14-15
Avantek	302
Basler Electric	293
B \& C Microsystems	291
Beckman Industrial Corp	48
Behlman Engineering Corp	4
Bliley Electric Co	272
Boeing Electronics Co	80
BP Microsystems	294
Bubbl-Tec	295
Bud Industries Inc*	222
Burr-Brown Corp	279
B V Engineering	294
Caddock Electronics Inc	207
Cadnetix Corp	82-83
Cahners Exposition	
Group 240A-D,	271, 307
Calcomp	229
Canon USA Inc	282
Capitol Equipment Corp	294
Centralab Inc	48
Cherry Semiconductor	
Products Corp	161
Chomerics Inc	284
Comlinear Corp	203
Converter Concepts Inc	44-45
Corning Electronics	46
Cybernetic Micro Systems	295
Cypress Semiconductor	72-73
Daisy Systems Corp	. 162-163
Dale Electronics Inc	260
Data I/O Corp	C4
Data Precision Corp	251
Datel	233
Densitron Corp	293
Design Computation Inc	249
Digital Media Inc	62
Dionics Inc	158
Diversified Technology	268
Dixy Corp	256
Eaton Corp	192
Edmund Scientific Co	296
E G \& G Rotron	288
Elantec Inc	151
Eldre Components Inc	292, 300
Electronic Conventions Inc	255
Electronic Devices	292
Electronic Solutions	84
Elek-Tek	298
Emcor Products	280
Emulation Technology Inc	295
Emulogic Inc	294
Endicott Research Group	278
E-T-A Circuit Breakers	297
Ferranti Integrated Circuits**	211
Force Computers Inc	28-29
Fujitsu America Inc/	
Storage Products	247
Fujitsu Components of America Inc^{*}	218
Fujitsu Microelectronics Inc*	52-53
GE/Intersil	35-40
Genstar REI Sales Co	292
Gentron Corp	299

uld Semico	56-57
Grayhill Inc	94-95
Greenlee Tool Co	6
Hardigg Industries Inc	218-219
Harris Semiconductor	69, 89, 91
Hewlett-Packard Co . . . 70-71	70-71, 138, 159-160
Hitachi America Ltd*	114-115
Hunter and Ready 2	283, 285, 287
Hypertronics	262
IEE	208
nois Capacitor	33
Inland Motors	230
Inmos Corp	58-59
Innovative Software Systems	ms 291
Intel Corp 164	164-165, 176-177
International Rectifier	C3
IRC Inc	127
ITT Cannon	273, 275, 277
John Fluke Manufacturing Co In	g Co Inc . . . 6, 125
Kask Labs	
Kepco Inc	105-110
ittlefuse Inc	23
Live Wire Software	295
Lockheed Electronics/	
Environmental Test Labs	
Logical Devices Inc	
Marcon America Corp	
MathSoft Inc	
Matrox Electronic Systems Ltd	s Ltd 253
Maxim Integrated Products	
Mepco/Centralab	
MetaLink Corp	28
Micro Rel	26-27
Micro Switch*	96-97
MicroWay 2	261, 263, 265
Miller-Stephenson Chemical	
Co Inc	-10
Milpower Source	
Mini-Circuits Laboratories	24-25, 243
Mitsubishi Electronics America	merica Inc/
Semiconductor Div	58-259
Monolithic Memories Inc	-17
Motorola Semiconductor Produc Inc	Products 60-61
Multibus Manufacturers Group	Group . . 49, 50-51
MuShield/Bomco	
National Semiconductor	
Corp 184-1	184-185, 188-189
NEC Corp	
NEC Electronics Europe**	97, 213
EC Electronics Inc	
Nichicon (America) Corp	
Nicolet Test Instruments Division	Division 23
North American Mica Inc	
Octagon Systems	
Omation Inc	
Omron Electronics Inc*	
OrCAD Systems Corp	293
Pearson Electronics	
Personal CAD Systems Inc	c 196
Personal Touch	
Philips Elcoma Div**	192 A-D
Philips Test \& Measuring Instruments Inc**	
Pico Electronics Inc	
Planar Systems	166
Precision Monolithics Inc	
Procise Corp	2
Programmed Test Sources Inc	s Inc 293
Pro-Lib Inc	
Qua Tech Inc	
uelo Inc	

Ziltek Corp

Recruitment Advertising

American Systems Corp 308
Bell Aerospace/Textron 312
California Eastern Labs 318
Cochran, Cochran, and Yale 321
Defense Intelligence Agency 321
Holmes and Narver 321
Kollsman . 309
Lear Seigler . 311
Martin Marietta/Baltimore 314
Mitel Inc . 318
Motorola Government 317
Pan Am World Services 319
Raytheon Missiles Systems 313
Riker Personnel . 321
Source Engineering 315
Systems Research Labs 318
US Dept of State 310
Xetron Corp . 316
*Advertiser in US edition
**Advertiser in International edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

LOOKING AHEAD

EDITED BY GEORGE STUBBS

TIMETABLE FOR PROGRESS IN OPTICAL-COMPUTING RESEARCH

1986	PROTOTYPE OF GENERAL-PURPOSE OPTICAL COMPUTER
1987	PROTOTYPE OF OPTICAL SUPERCOMPUTER, WITH SPECIFICATIONS EXCEEDING THOSE OF ELECTRONIC SUPERCOMPUTERS
1988	INEXPENSIVE OPTICAL MEMORY; CASCADED, PROGRAMMABLE, OPTICALLY ADDRESSED DIGITAL OPTICAL LOGIC ARRAYS
1989	FAST, HIGH-RESOLUTION, COMMERCIAL-QUALITY SPATIAL LIGHT MODULATOR
1990	INTEGRATION OF BISTABLE DEVICES ON CHIP; OPTICAL ASSOCIATIVE MEMORY; COMMERCIAL OPTICAL ARRAY PROCESOR AND HYBRID ELEC- TRICAL/OPTICAL COMPUTER
1991	PRACTICAL OPTICAL INTERCONNECTS FOR SILICON CHIPS
1995	THE FIRST FULLY OPTICAL COMPUTER; COMMERCIAL OPTICAL BISTABLE DEVICES; COMMERCIAL OPTICAL ASSOCIATIVE MEMORIES

(SOURCE: SEAI TECHNICAL PUBLICATIONS)

Market for optical computers to be worth $\$ 1 \mathrm{~B}$ by 2000
Even as university and corporate researchers plumb the limits of parallel processing and supercomputing, others are exploring the next step beyond-optical computers. According to SEAI Technical Publications, a Madison, GA-based publisher of technical reports, computers that process information encoded in the form of light beams will make steady advances over the next 10 to 15 years, surpass the current perceivable limits of electronic computing, and constitute a $\$ 1$ billion market by the year 2000 .

There are several types of optical computers, reports SEAI. Digital optical computers use nonlinear or bistable optical materials in a manner similar to the use of the transistor in an electronic computer. The analog optical computer applies the ability of a lens to perform a Fourier transform, and of a convolution to perform advanced mathematical operations, such as matrix-to-matrix multiplication in linear algebra. Some designs use systolic arrays to allow analog processing of digital data. Optical pattern-recognition systems also employ the inherent ability of optical systems to perform transforms.

The advantages of optical computing go beyond the familiar virtue
of great speed that lightwave technology affords. Optical lenses can perform mathematical calculations that are very difficult to perform using digital circuitry. Also, optical holography will be able to achieve high-density, 3-D information storage. Finally, says SEAI, optical technology confers space advantages and eliminates the clock skew of circuit-wire interconnections.
SEAI believes that, within a few years, an electronic computer with an optical array processor will equal today's supercomputers in speed for selected operations, while offering vast improvements in cost, size, weight, power consumption, and reliability. It is almost certain, says SEAI, that algebraic optical computers will be successful technically and commercially, and that they will be a driving force in the muchneeded improvements of optoelectronic components and devices.

A number of companies and organizations are pursuing research into optical computers. The Optical Circuit Cooperative at the University of Arizona has a number of companies as members. A major research program is underway at Bell Laboratories, and the Defense Advanced Research Projects Agency (Darpa) has made a major committment to the development of optical computers, optical interconnects in VLSI, and
high-performance spatial light modulators. Companies like Texas Instruments, Harris Corp, Hughes, Honeywell, Westinghouse, Grumman, and General Dynamics are reported to have begun significant research into optical computing.

AI reaches factory floor: Market to top $\$ 1.7 \mathrm{~B}$ by ${ }^{\mathbf{9}} \mathbf{9 0}$

If computers were smart, they'd get into management. So say analysts at the market-research company Frost \& Sullivan Inc (New York, NY), who note that computers are doing just that-finding their way to the factory floor and helping to make complex, management-like decisions. These artificial-intelligence (AI) systems, say F\&S researchers, will form a $\$ 1.7$ billion commercial market in 1990, of which $\$ 700$ million will be devoted to software and hardware used in factories.

F\&S estimates the dollar value of in-place factory AI systems at $\$ 145$ million for 1986. Such systems include Westinghouse's ISIS-II, a work-order system that produces prioritized schedules, computes permissible worker overtime, and performs other functions. Another AI system, Digital Equipment Corp's ZCON, generates plans for combining the components for customized superminicomputers; the system reportedly can make substitutions or additions of components while ensuring the lowest possible cost to the customer.

For the $\$ 425$ million 1986 market for AI goods to make its predicted fourfold increase by 1990, F\&S admits, some technological advances must occur. In 1990, factory purchases of AI systems and equipment will be greatest for unbundled software, symbolic computers, engineering workstations, and expertsystem development tools and applications.

TO-220 look-alikes in a military package

M-Pak TXET

Designing our new hermetic M-Pak HEXFET power MOSFET like the TO-220 makes it one of the most efficient fully-isolated packaging alternatives for solving critical space and weight requirements.
For example, the M-Pak can be used to replace TO-3s, TO-61s, TO-66s, and power hybrids. There's no need for isolation mounting hardware. And installation time is drastically reduced.
Inside the M-Pak is a copper base brazed to a steel alloy with the chip mounted on a beryllium-oxide isolation pad for maximum power handling.
It's these and other features, like goldplating, that also enhance the hi-rel performance of M-Pak HEXFETs and power hybrids for severe environments.
M-Pak HEXFETs range up to 500 volts, with Rds(on) values subject to die size. For complete data, call (213) 607-8887. Today.

Call now for your free copy of our new 1987 Mil-Qualified/Hi-Rel Products Catalog

Number 1 in power MOSFETs

> International IepR Rectifier

WE SUPPORT OUR PRODUCTS FOR LIFE.

OUR SERVICE MAKES A WORLD OF

DIFFERENCE. You come to Data I/O® Corporation for products of the highest quality and performance. We help you maintain that quality with complete customer support. Once you've seen the difference our service can make, you'll understand why we keep our customers for life.

From updates, to repairs, to training and technical assistance, we'll help you get the most from our products. Our Customer Support Services can extend the life of your Datal/O programmer or FutureNet ${ }^{\circledR}$ CAE workstation, and keep you on the leading edge of technology.

WORLDWIDE SUPPORT FOR

 MINIMAL DOWNTIME. For prompt, reliable service and repairs, we have service centers located throughout the world. You can expect fast turnaround from our team of skilled technicians - as fast as 24 hours. For added convenience, we also make repairs on-site
TECHNICAL ASSISTANCE IS JUST A

PHONE CALL AWAY. Training and

technical assistance are tailored to meet your individual needs. For free assistance with your design and manufacturing applications, simply call our Customer Resource Centers You can depend on each center's team of experts for immediate solutions

STAY ABREAST OF TECHNOLOGY, AUTOMATICALIY. With an Update

 Agreement from Data I/O. Corporation, you'll automatically receive programming support for new devices released by the major semiconductor manufacturers. And soft ware updates ensure you'll always have the most powerful CAE tools
PROTECT YOUR INVESTMENT IN

QUALITY. From now until March 1 1987, you can get a 25% discount on a two-year Data I/O Programmer Update Agreement or FutureNet

Software Agreement. Call

1-800-237-3798 or complete the coupon below for more information Find out why we keep our customers for life.

25\% OFF UPDATE SERVICES.

Yes! I am interested in saving 25% on update services.

Name
Title
Company
Address \qquad

Phone $\begin{aligned} & \text { EDN } 1 / 22\end{aligned}$

SEND TO:

Data I/O Corporation
Attn: N. Maul
10525 Willows Rd. N.E
P.O. Box 97046

Redmond, WA 98073-9746

[^0]: EDN (ISSN 0012-7515) is published biweekly with one additional issue in January, February, and March, and two additional issues in April through December by Cahners Publishing Co, a Division of Reed Publishing ViSA, 275 dent; Jerry D Neth, Vice President of Publishing Operations; J J Walsh, Financial Vice President/Magazine Divident; Jerry D Neth, Vice President of Publishing Operations; J J Walsh, Financial Vice President/Magazine Divi1986 by Reed Publishing USA, a division of Reed Holdings Inc; Saul Goldweitz, Chairman; Ronald G Segel, Presi1986 by Reed Publishing USA, a division of Reed Holdings inc; Saul Goldweitz, Chairman; Ronald G Segel, President and Chief Executive Officer. Circulation records maintained at Cahners Publishing Co, 270 St Paul St, Denver dress changes to EDN, 270 St Paul St, Denver, CO 80206.

[^1]: Cahners Publishing Company \square A Division of Reed Publishing USA \square Specialized Business and Consumer Magazines for Building \& Construction \square Interior Design \square Electronics \& Computers \square Foodservice \& Lodging \square Manufacturing \square Book Publishing \& Libraries \square Medical \& Health Care \square Child Care/Development

[^2]: Action Components Sales, (313) 349-3940; MINNESOTA, Electric Component Sales, (612) 933-2594; MISSISSIPP1, Montgomery Marketing, Inc., (205) 830-0498; MISSOURI, D. LE. Electronics, (316) 744-1229; MONTANA, Components West, (206) 885-5880; NEVADA, Elrepco, Inc., (415) 962-0660; NEW ENGLAND, Datcom, Inc., (617) 891-4600; NEW HAMPSHIRE, Datcom, Inc., (617) 891-4600; NEW MEXICO, Summit Sales, (602) 998-4850; NEW YORK, Nexus Technology, (201) 947-0151; PI-tronics, (315) 455-7346; NORTH CAROLINA/SOUTH CAROLINA, Montgomery Marketing, Inc., (919) 467-6319; NORTH DAKOTAUSOUTH DAKOTA, Electric Component Sales, (612) 933-2594; OHIO, Steffen \& Associates, (216) 461-8333; (419) 884-2313, (513) 293-3145; OKLAHOMA, MIL-REP Associates, (214) 644-6731; OREGON, Components West, (503) 684-1671; PENNSYLVANIA, Nexus Technology, (215) 295-6549, Steffen \& Associates, (412) 276-7366; RHODEISLAND, Datcom, Inc., (617) 891-4600; TENNESSEE, Montgomery Marketing, Inc., (615) 984-7080; TEXAS, MIL-REP Associates, (512) 459-8602, (713) 444-2557, (214) 644-6731; UTAH, Straube Associates Mountain States, Inc., (801) 263-2640; VERMONT, Datcom, Inc., (617) 891-4600; VIRGINIA, ArboTek, (301) 825-0775; WEST VIRGINIA, Steffen \& Associates, (419) 884-2313; WASHINGTON, Components West, (206)
 $885-5880, ~(509) ~ 255-6224 ; ~ W I S C O N S I N, ~ C a r l s o n ~ E l e c t r o n i c s, ~(414) ~ 476-2790, ~ E l e c t r i c ~ C o m p o n e n t ~ S a l e s, ~(612) ~ 933-2594 ; ~ W Y O M I N G, ~ S t r a u b e ~ A s s o c i a t e s ~ M o u n t a i n ~ S t a t e s, ~ I n c ., ~(303) ~ 426-0890 ; ~ C A N A D A, ~ B R I T I S H ~ C O L U M B I A, ~$ 885-5880, (509) 255-6224; WISCONSIN, Carlson Electronics, (414) 476-2790, Electric Component Sa
 Components West, (206) 885-5880; ONTARIO, Electro Source, Inc., (416) 675-4490, (613) 726-1452.

[^3]: PAL is a registered trademark of Monolithic Memories.
 © 1987, Monolithic Memories.

[^4]: Z-2500B IN-CIRCUIT MEMORY CARD PROGRAMMER

 - Programs up to 32 memory cards with EPROMs or microcomputers at a time.
 - Two 1.2 Mbyte DSDD floppy disk drives. Optional 20 Mbyte hard disk.
 - Turnkey systems include programmer, terminal, custom interface hardware and software.
 - Simple menu driven operation.

[^5]: On-Line Instructions
 Dial 1-800-345-7335 (in CT 203-852-9201). On any ASCII terminal or PC with a 300 or 1200-baud modem (EVEN or IGNORE parity, 7 data bits, 1 stop bit). At "Enter Response Code", type GEIATDSP.

[^6]: \dagger SOURCE: Technical Publishing $\mathrm{C} a$ buyer's guides and various VME directories.

 * MULTIBUS is a registered trademark of Intel Corp.

 Copyright 1986 Multibus Manufacturing Group.

[^7]: Distributed by Hall－Mark，Pioneer，Graham，Diplomat and Bell．Authorized Maxim Representatives：Alabama，（205）536－3044；Arizona，（602）860－2702；
 California，（408）727－8753，（619）279－0420，（714）739－8891；Colorado，（303）841－4888；Connecticut，（203）269－7964；Georgia，（404）448－1215；Idaho，（503）620－1931；Illinois， （312）956－8240；Indiana，（317）849－4260；lowa，（319）377－8275；Kansas，（316）838－0884；Maryland，（301）583－1360；Massachusetts，（617）444－8071；Michigan，（313）499－0188； Minnesota，（612）941－7181；Missouri，（314）291－4777，（816）356－6340；Montana，（503）620－1931；New Hampshire，（603）772－3300；New Jersey，（609） $933-2600$ ；New Mexico， （505）884－2256；New York，（516）543－0510，（716）385－7744；North Carolina，（919）847－8800；Ohio，（216）659－9224，（513）278－0714，（614）895－1447；Oklahoma，（918）664－0186 Oregon，（503）620－1931；Eastern Pennsylvania，（609）933－2600；Western Pennsylvania，（513）278－0714；South Carolina，（803）233－4637／8；Texas，（214）647－8225， （512）331－7251，（713）537－7717；Utah，（801）266－9939；Washington，（206）453－8881；Wisconsin，（414）476－2790．Canada，（416）238－0366．
 International Representatives／Distributors：Australia，R\＆D Electronics Pty．Ltd．，61－3－288－8233／62，61－2－439－5488；Austria，Transistor Vertreibsges M．B．H．，（0222） 82－9451；Belgium，MCA Tronix，041／674208；Denmark，Nordisk Elektronik A／S，02－84－2000；Finland，Turion，（90）372－144；France，Valdix，（6）920－26－06；Hong Kong， Tektron Elect（HK Ltd．），3－856199；India，Mahlar Corp．，Bangalore，564464；Israel，Unitec Universal Tech．Ltd．，052－555053；Italy，Micro Elit S．R．L．，46－90－444，Esco Italiana S．P．A．，（02）2409241／51；Japan，Maxim Japan Co．，Ltd．，（03）232－6141，Microtek Inc．，（03）363－2317，Dai－Nichi Seigyo Kiki Co．，Ltd．，（03）265－7381，Maruei Shoji Co．，Ltd． （03）0422 54－6800，Sil－Walker，Inc．，（03）341－3651，Internix，（03）369－1101；Korea，Dow Technology，82－2－556－5063；Netherlands，Techmation Elect．B．V．，04189－2222 Norway，Nordisk Elektronic（Norge）A／S，（02）846210；South Africa，South Continental Devices（PTY）Ltd．，789－2400；Spain，Anatronic，S．A．，242－44－55，242－55－66； Sweden，Scancopter AB，08－761－78－20；Switzerland，Laser \＆Electronic Equipment，01－55－33－30，022－425－677；Taiwan，World Peace，（2）7212154／5／6；United Kingdom， Maxim UK Ltd．，07－357－5255，Dialogue Distribution，Ltd．，0276－682001，Thame Components，Ltd．，084－421－4561，STC Electronic Services，02－792－6777；West Germany， Spezial－Electronic KG 05722／2030，089／429333，07961／4047，SemTech GMBH，0911－831003．
 © 1986，Maxim Integrated Products．Maxim is a registered trademark of Maxim Integrated Products．

[^8]: Source: Electronics Purchasing magazine's survey of buyers

[^9]: Designing-in a capacitor involves much more than simply drawing the schematic symbol and scribbling a capacitance and voltage value next to it. When it comes to choosing actual devices, you'll face an array of products ranging from multilayer ceramics to aluminum electrolytics. Selecting the ones that best suit your application will involve subtle tradeoffs among price, performance, and physical configuration.(Photo on facing page, courtesy Sprague Electric Co)

[^10]: Dis Sianeo fong $\begin{aligned} & \text { HP-IB: Not just IEEE-488, but the hardware, documentation and support that } \\ & \text { delivers the shortest path to a measurement system. }\end{aligned}$ $\underset{\text { SYSTEMS }}{\text { HP-18 }}$ delivers the shortest path to a measurement system.

[^11]: * Offer expires May 1, 1987

[^12]: Discover how easily these problem-solving resistors can improve the performance and reliability of your equipment, too.
 For your copy of the latest edition of the Caddock 28 page General Catalog, and specific technical data on any of the more than 200 models of the 19 standard types of Caddock High Performance Film Resistors and Precision Resistor Networks, just call or write to -

[^13]: Cahners Magazine Division
 William Platt, President
 Terry McDermott, Executive Vice President
 Tom Dellamaria, VP/Production \& Manufacturing

 ## Circulation

 Denver, CO: (303) 388-4511
 Sherri Gronli, Group Manage
 Eric Schmierer, Manager

