MAGNETIC BUBBLE MEMORY

ESTING

by T. Ferrio, R. Keenan, R. Naden

Texas Instruments, Inc.

Magnetic bubble devices are made by growing a magnetic
garnet film on a nonmagnetic garnet substrate. With no ex-
ternal magnetic field, a maze-like pattern of magnetic do-
mains appears in the film such that the entire sample is mag-
netically neutral (Fig 1). In the presence of a perpendicular
external magnetic field (bias field), the regions of polarity
opposite to that of the applied field shrink. A proper bias
field, usually created by small permanent magnets which are
part of the package, forms small cylindrical regions called
bubbles.

The bubbles move in the film under the influence of
small magnetic field parallel to the plane of the film. In pre-
sent devices, a Permalloy pattern deposited on the garnet

film controls this movement (bubble propagation). The bub-

bles move in accord with the changing magnetic poles pro-
duced in the Permalloy pattern by a rotating in-plane mag-
netic field (drive field). Fig 2 shows a common pattern of

alternating T’s and bars and the corresponding bubble move-

ment as the field rotates. Two orthogonal magnetic coils
wound around the device produce the rotating field. The
switching of bubbles between alternate propagation paths,
the generation of bubbles and the replication of bubbles for
a non-destructive read are accomplished by producing local-

ized magnetic fields on the device with current carrying con-

ductor loops. The presence of bubbles is detected by the

magneto-resistive effect of the bubble passing under a con-
ductor carrying a small amount of current. The data in bub-
ble memory devices is represented by the presence or ab-
sence of a bubble in each of the propagation positions. The
presence of a bubble indicates a binary 1 and the absence of
a bubble indicates a binary 0. Access to the device is by ase-
rial data stream.

One common device organization called the major-minor
loop device (Fig 3), consists of a “major’ propagation loop
which provides access to a number of minor loops. The minor
loops contain a large number of propagation elements and
form actual data storage region of the bubble device. The
major loop contains the bubble generation and detection
functions. Data is accessed in a block or page which consists
of one bit position from each of the minor loops. Various
functions are needed to control a bubble device. Transfer
gates are used to transfer bubbles between the major and
minor loops. The generator creates bubbles to form the data
pattern. The replicator element can either make a copy of
the bubble for detection purposes or simply transfer the bub-
ble to the detector area to remove it from the device before
new data are generated.

Many methods are currently used to package bubble mem-
ory devices. To obtain the greatest bit density designers pack-
age several bubble devices within one magnet structure. How-
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Fig 1 Domains in a garnet epitaxial film are visible when
viewed in a polarizing microscope. They appear as alternating
dark and light stripes. In the presence of a perpendicular bias
field, the regions of magnetic polarity opposite to the field
assume a stable cylindrical configuration known as a bubble.
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Fig 2 T-Bar Propagation Circuit. The rotating magnetic field
in the plane of the garnet film induces magnetic poles in the
Permalloy film. The changing magnetic poles cause the bub-

ble to move.
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Fig 3 Major loop contains bubble generation and detection
functions; Minor loops are the storage area of the device.
Transfer gates cause the bubbles to switch between the major
and minor loops. Sequencing for a bubble read function is as
follows: The drive field is started and the bubbles are moved
until the proper block is at the transfer gate. The block is
transferred to the major loop and propagated to the replicator
where a copy is made of each bubble for detection purposes.
The block continues around the major loop until it reaches
the transfer gate again where it is transferred back into the
minor loops. The number of steps in the major loop is ar-
ranged so that the bubbles return to the same position in the
minor loops that they came from. The write operation is
similar except that the replicator transfers the bubbles out
of the major loop and the generator produces a new bubble
data pattern.
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ever, to minimize cost, a single device can be mounted with-
in a small magnetshield arrangement to form a 14-pin dual
inline package. The characteristics of such a module are given
in Table I. For testing purposes the magnetic bias field can
be altered by wrapping a small coil around the magnetic
shield. Drive field coils are operated with a triangular
current waveform. Current in the two coils is 90 degrees

out of phase to produce the rotating field (Fig 4). The bub-
ble motion can be started and stopped by controlling the
drive field as shown in Fig 4. Bubble memories are non-vol-
atile and data can be stored indefinitely since the module
contains protection from stray magnetic fields. Fig 5 sum-
marizes the physical and electrical features of magnetic bub-
ble memory operation.

Table 1
Module Characteristics

Useful capacity 92304 Bits
Useful block size 144  Bits
Minor loop size 641 Bits
Percent redundant storage 8.3 %
Drive field frequency 100 KHz
Data rate 50 Kb/s
Average access time (first bit) 4 ms
Size 10x1.1x04 7
Pin count 14  Pins
Weight 20 gm
Max. external magnetic field 40 Oe
Operating temperature 0to70 °C
Nonvolatile storage temp. 40t0 85 °C

Two factors reflect device performance. The first is the
amount of allowable variation in the magnetic bias field.
This magnetic bias margin and its size indicates how well the
device will work over a range of electrical, mechanical and
environmental variations. The second performance criteria
is the number of bad minor loops. With current device tech-
nology, perfect devices are difficult to produce. To make a
cost effective memory system, 13 of the 157 minor loops on
a 100 kilobit device are allowed to be inoperative.

the test system hardware and software

TI’s computer-based test system consists of a Texas Instru-
ments 990 minicomputer, a microprogrammed bubble mem-
ory controller, and various standard computer peripherals
(Fig 6). In addition, a programmable bias field power supply
and a programmable function amplitude unit are interfaced
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Fig 4 Drive field may be stopped and started as indicated to
provide non-volatile storage. The device is mounted at a slight
angle within the bias magnet structure to provide a small
holding field on the propagation elements.
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Fig 5 Various components needed for bubble memory operation.
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) Fig 7 Bubble memory functions must occur during the
gg;::\%r;r:\ental proper drive cycles (A). The bubble controller contains

counters to keep track of which block is at the transfer gate
| and to count the intervals between functions. During the
e e J drive field cycles when a function is enabled, the function
current must be precisely controlled (B). This is done digit-
ally in the test system controller. Amplitude, duration and
position within the field cycle are all controllable by the test
Fig 6 Block diagram of the bubble memory test system program.
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Fug 8a Exaarpt of output from the charactenzauon test. Thls printer listing is the actual test
result of a 100 Kbit bubble device at -40°C. The test was done with a 200KHz drive field. All

_ bias setting and margins listed are in the units of Oersteds * 10 (thus 25 means 2.5 Oersteds).

~ Function position (LE) and duration (DUR) are given in 64ths of the drive field cycle. Bias

values represent the daviatmn from the parmanent magnet setting and can be either positive
or negative. Function amplitudes are given in miliamporos Readout gives timings of the

~ functions within the drive field cycle. Asterisks represent the portion of the cycle where the

~ MAJOR LOOP ERROR TEST
~ NUMBER OF READS = 20

function is on. Function amplitudes, compensated for temperature, are also listed.
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Fig 8b Bias margin test of the major loop. In this test the bubbles are kept in the major loop

“to eliminate transfer and minor loop errors from the test. The margin can be seen to be

16 Oersteds.

HIGH 110  MARGIN 138
TEMP =44 JODEC76 10356317B1ASs 40
0000 0000 0800 0000 0000 0000 0000 0004 0000 0007 NBIT 2

MA!K BIAS LOW =28
SELF GENERATION TESY
MASK

. ‘Fu 8c The mmut loop mask is domminad This device has 2 bad minor loops over a 13.8

: ‘Ocmed bias range. The bits in tha last wurd of the mask are not from the device since a

block commm 157 bits.
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to the test system. The bubble mem-
ory controller performs all of the bub-
ble memory timing operations. Test pro-
grams, written in a high-level test langu-
age, usually include some degree of data
reduction and often include procedures
to produce graphical output on the
hard-copy terminal or line printer. The
CRT terminal is used for high speed
data display and operator control. A
card reader is used for the system load
and the input of test programs.

The operation of bubble memories
can be broken into two levels of control.
To sequence the bubbles properly, the
control functions must be enabled dur-
ing prescribed cycles of the rotating
drive field. One level of control counts
cycles of the rotating field to access the
required page of data correctly (Fig 7a).
The bubble memory controller contains
a programmable sequencer which per-
forms this operation. The program can
accept commands from the host com-
puter, start the drive field, count the re-
quired intervals for the device architec-
ture and the required page and stop
the drive field when the bubbles have
returned to the minor loops. This pro-
gram can be loaded or modified by the
host computer so that different bubble
device architectures may be tested. An
assembler for the controller was imple-
mented by using the macro capabilities
of the IBM 370 assembler to define the
various controller instructions. An out-
put formatter was written to make the
resultant listing and load deck easier to
use. The microcode for a typical device
architecture consists of about 125 in-
structions. Ease of programmability
using an assembly language has simpli-
fied the system changes required to test
new device architectures.

Each of the function currents must
be accurately timed within the drive
field cycle (Fig 7b). A function timing
RAM divides the drive field cycle into
64 discrete intervals. The function RAM
operates as a recycling shift register with
one track or channel for each of the
bubble functions. Each of the channels
contains a set of logical ones in that
period of the bubble cyclé where the
function is to be turned on. The pro-
grammable portion of the controller
enables the output of the appropriate
channel during the proper field cycle.
The contents of the function timing
RAM may be changed by the test pro-
gram so that timing tolerances may be
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Fig 8d The bias margin of the generate function is shown as the position, duration and
amplitude change. Results are listed in both tabular and graphical form.
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Fig 8f Propagation and composite margins. Each test is repeated 5 times. Minor loop com-
posite includes propagation and all device functions.
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MINP 1 LLLELLLLALLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL a patent report on 14 types of
MAJC 1 LLLLLLLALLLLLLLLLLLLLLLELLLLLLLLLL memory systems other than
MINC 1 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL maanetic bubble

‘l°.’.'l7l..s...3.2.l'°."2"...s-°l7|‘.°.°ll.!.s.'.s' g )
END OF TEST 11102509 TEMP =43 MODULE Bé6=8=9 TPB2S
Fig 89 A summary of the test results giving margin bar graphs for 3 values of each variable
parameter.
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Fig 9 Example — comparison of function bias margins
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Fig 10 Bias field margin as a function of log number of prop-
agation steps can also be interpreted as MTTF at a bias field
setting. (A) A good device has a small longevity slope giving a
large MTTF for much of the bias margin. (B) A poor device
has a steeper longevity slope giving a larger region of poor
MTTF despite a similar bias margin for a short test.
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format. If a hexadecimal format is desired, the operator
#HEX may be used; PRINT #HEX,A.

If a data pattern needs to be printed from an array, the
number of elements will follow the operator; PRINT
#HEX 5, B. The language was thus designed to allow more
complicated statements when added power is needed.

A ‘DEVICE’ statement in the language allows the program
to acquire the device architecture specifications at execution
time so that programs can be written independent of a part-
icular device design. This allows us to test various develop-
mental devices without a full-time test programming effort.
The language contains special statements to perform bubble
1/0. To test the sensitivity of the device to various data pat-
terns, the language contains pattern I/O statements with
automatic data comparison during reading. A method is pro-
vided to test an individual device in a memory subsystem
where the data from many devices is multiplexed together.

Test language programs have been written to provide a
variety of tests; 5 typical programs are;
® Diddle Program is used for module set-up and semi-module
or system checkout. Data is written to and read from the de-
vice and displayed on the CRT screen. Many test parameters
may be controlled to get a ‘feel’ for device performance.
® Characterization Test produces “Schmoo” plots of bias
margin as a function of the amplitude, position and duration
of each device function. Overall device and propagation mar-
gins are also tested (Fig 9).
® Long Term Error Test determines a device mask by doing a
large number of reads of a once-written device. A mask may
be entered and the accuracy of the mask may be checked
over long periods of time.
® General Longevity performs 8 different functional se-
quences, each of which can be repeated 10N times for N be-
tween 1 and 8. The maximum bias margin for data storage
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without error is a function of N for any of the test sequences.
® Radar Longevity determines the bias margin of small sec-
tions of the propagation path for 10M steps where M is be-
tween 1 and 4. The bias field pulse width is 80 microseconds.
The major loop, minor loop or detect path may be tested.

bubble device testing

Because of its importance, much of the current testing pro-
cedure inspects the change in bias margin as some other test-
ing variable changes. If the magnetic bias field is too large,
bubbles will tend to collapse and disappear. If the field is too
small, the bubbles will become too large for one storage lo-
cation and will ‘strip out’ during propagation. For current
devices with a nominal bias field of about 120 Oersteds, the
margin may vary from 8 to 20 Oersteds. To ensure the most
reliable operation of the device, this margin should be as
large as possible. In general, each Permalloy element and each
bubble function has its own operating margin. These margins
do not fully overlap (Fig 9). The overall operating margin is
the intersection of the margins of all of the functions. Ad-
vanced testing techniques such as the Radar Longevity Pro-
gram allow us to test the operating margin of each device
element. Thus we can correct the device design and detect
mask defects as well as identify individual device defects.

The final production test of a bubble memory must deter-
mine which minor loops are defective. The system using the
bubble device will not place bubbles into these minor loops
and data read from the loops is not used. These bad loops
comprise the bubble device redundancy mask. The bubble
system processes all data through a mask operation when
either writing or reading. It is important to determine an
accurate mask so that no additional bad loops will appear
during use. Most of the bad minor loops are easy to detect
by simply writing data into every minor loop and reading
it back. These types of failures have two symptoms: either
data will disappear when written or data will be read when
none is written. Errors associated with pattern sensitivity
and the leaking of bubbles from one minor loop to another
are types of errors that are harder to detect. These types of
problems increase the difficulty of testing and, more import-
antly, the time required to accurately test a device.

Another factor in bubble operation which can affect the
mask determination is the longevity effect. It has been shown
that during propagation a bubble has a finite probability of
self-collapse (disappearing). This probability is near zero at
the midpoint of the bias range and increases as the upper or
lower bias limits are reached (Fig 10). Due to device defects,
this error probability may be increased in a minor loop al-
though that loop is not found to be bad during a short test.
Two actions may need to be taken to minimize any problems
by this effect: First, the operating bias setting must be chosen
at a point which promises the best longevity results, and sec-
ond, a longevity test may have to be performed as a part of
the final test to find loops with a bad longevity curve. The
effects of the longevity curve on long term device operation
and the impact to testing are still being studied (Fig 11).

Although bubble device bias margin is the range of per-
pendicular magnetic field over which the device will operate,
a statement of bias margin must also include data on the
length and nature of the test. A less demanding test will dis-
cover that a device has a wider margin than a longer, more
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complicated test because of a combination of factors includ-
ing longevity effects and bubble-bubble interaction.

Our first testing showed that each minor loop appeared
to have its own bias margin. Most of the loops on the device
will appear quite similar but occasionally some are encoun-
tered with very narrow margins. Thus one problem in assign-
ing a redundancy mask is the interaction of device margin
and the number of loops masked. As we improved processing
and reduced device and mask defects, we were able to ident-
ify several of the bubble functions as being limiting factors
the bias margin. Since the functions use peculiar propagation
elements and entail the alignment of a conductor mask to
carry the function current, this came as little surprise. A con-
centrated effort was begun to characterize the bubble func-
tions (references 5,7). We found that device design changes
and process improvements could increase the function bias
margin and increase the timing and amplitude tolerances. We
also found that several functions would need amplitude com-
pensation to operate reliably over a 0 — 70°C temperature
range.

Bias margin and mask are affected by the data pattern
used in testing. This pattern sensitivity or loading factor is
due to bubble-bubble interaction. In general, about 3 Oer-
steds must be subtraced from a “simply determined” mar-
gin to account for loading effects.

Due to the changes in magnetic properties of the garnet
film the optimal bias field value will change with tempera-
ture (Fig 12), introducing the concept of magnet tracking.
To achieve device operation or even simple data retention
over a range of temperatures, the temperature characteristics

of the bias magnet must match that of the film. For some
garnet material compositions a matching magnet material is
difficult to find. Device/magnet tracking mismatch also adds
to the mask determination problem and places more empha-
sis on maximizing the device bias margin.

The test system approach that we have developed has
proven comprehensive enough for our current laboratory
and production efforts. The information learned from our
characterization effort is being applied to device improve-
ments and refinement of production test techniques. Our
current results show that the time required for production
testing needs to be reduced.
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