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AT&T Technical Journal
Vol. 64, No. 6, July-August 1985
Printed in U.S.A.

Digital Transmission Over Cross-Coupled Linear
Channels

By J. SALZ*
(Manuscript received January 14, 1985)

For a multiuser data communications system operating over a mutually
cross-coupled linear channel with additive noise sources, we determine the
following: (1) a linear cross-coupled receiver processor (filter) that yields the
least-mean-squared error between the desired outputs and the actual outputs,
and (2) a cross-coupled transmitting filter that optimally distributes the total
available power among the different users, as well as the total available
frequency spectrum. The structure of the optimizing filters is similar to the
known 2 x 2 case encountered in problems associated with digital transmission
over dually polarized radio channels.

. INTRODUCTION

A variety of communication channels can be modeled as multi-
input, multi-output, mutually cross-coupled linear networks with ad-
ditive noise sources. A few examples of communications systems
operating over such channels are dually polarized radio systems,
frequency/time-division multiplexing with crosstalk, cordless PBXs,
spread-spectrum multiuser systems, and multisensor radar/sonar sys-
tems. In many applications it is beneficial to design cross-coupled
transmitters and receivers that take advantage of the inherent mutual
interferences. The chief purpose of this paper is to explore these issues
from a theoretical point of view.

The general problem we address follows. We consider an N input-

* AT&T Bell Laboratories.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.
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port, N output-port, linear transmission channel characterized by an
N x N complex matrix frequency transfer function, C(w), where the
entries in C(w), Cj(w), i, j = 1... N, represent the transfer character-
istics from input i to output j. Digital data signals Di(t), i=1--- N
are intended for simultaneous transmission over this medium. The
general problem we address is as follows: how does one jointly optimize
the 2N? entries of cross-coupled linear receiving and transmitting
matrix filters when the performance criterion is total Mean-Squared
Error (MSE) subject to a constraint on the total average transmitted
power? The general setup is shown schematically in Fig. 1.

This paper includes generalizations to N(IN = 2) dimensions of
earlier work dealing with digital data transmission over dually polar-
ized radio channels.”” As far as can be determined, these generaliza-
tions have not been reported in the open literature. We found, however,
two early papers®* dealing with multi-input, multi-output, communi-
cations that might be of interest to the reader in connection with our
problem. For additive Gaussian noise sources the Shannon capacity
of the type of channel considered here has also been determined.®

After formulating the problem in the next section, we derive the
optimal matrix receiving filter structure and provide a closed-form
formula for the least MSE, In Section IV we address and solve the
optimum transmitter problem, while the last section has our conclud-
ing remarks.

Il. PROBLEM FORMULATION

Consider a linear communications medium characterized by N* (N
is an arbitrary integer) real impulse response functions,

” . d .
hlj(t) = ‘J:w Hlj(w)ewc '2—3’ l,] = 1, 2... N’ (1)

where Hj(w), I, j = 1 ... N are the complex frequency transfer
characteristics from input [ to output j. The representation in (1)
characterizes a linear medium with N inputs and N outputs where

v (t) SAMPLE
POWER, 1
| — —»@—— —o\lio—— 1
A TRANSMITTER . CHANNEL . RECEIVER .
INPUTS o P{w) . Clw) . wiw) . OUTPUTS
A N XN MATRIX A N XN MATRIX L4 N x N MATRIX .
N N
N s + \(\o—wv
POWERyy
vyt

3 POWER = CONSTANT

Fig. 1—Multi-input, multi-output data communications.
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h;(t) is interpreted as the output of the jth medium when the Ith
input is a unit impulse. More compactly, let h(¢) represent the N x N
impulse response matrix with entries h;(t). Now the diagonal entries
stand for the direct-channel impulse responses, while the off-diagonal
terms are the cross-interference impulse responses.

In the present situation we have in mind that N real data signals,

Dl(t) = 2 aitl)g(t - nT)’ l= 1... N) (2)

where {a’} are the data symbols, are intended for simultaneous
transmission over the N channels. Mutual dispersive cross coupling,
intersymbol interference, and noise distort these signals, and the
purpose here is to devise transmitting and receiving processors to
mitigate against these interferences.

The present model also accommodates bandpass coherent data
signals in which case (2) represents the baseband-equivalent signals
with complex data symbols. In our general formulation, however, we
can get by with only real data symbols since complex numbers are
isomorphic to 2 x 2 real matrices.*

Returning to the general formulation, the N data sequences are now
represented by the column vectors

[af,l)
A, =" , all n,
aM

and the data signal is thus represented by an N-dimensional vector,

D(¢) = X Ang(t — nT). 3

Consequently, the channel output signal can be represented as the
vector time function,

S(t) = ¥ H(t — nT)A,, (4)
where the matrix H(¢) is the convolution

H(t) = J:w &(t — t)h(r)dr, (5)

and the N x N matrix h(t) has entries defined in (1).
For the sake of clarity, we restrict our treatment to N x N trans-
mitter and receiver filters, while we recognize applications where it

* References 1 and 2 exploit this isomorphism effectively in the treatment of quad-
rature amplitude modulated systems over bandpass channels.
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would be necessary to handle nonsquare matrices. This does not,
however, restrict our approach, as will become evident.

Proceeding with the analysis, we presume that a noise vector v(t) is
added to (4) and the sum signal is passed through an N x N matrix
receiver filter denoted by W(t). A representative sample of the output
vector taken at t = 0 (without loss of generality) yields

So = UoAo + Y U,A, + vy, (6)
n#0

where

U, = f W(—n)H(r — nT)dr

and

vy = f W (—7)v(7)d7.

We now regard the vector S, [a suitably quantized version of Sy in
(6)] as an estimate of the data vector Ao Thus the system designer
has the freedom to choose the receiver matrix W(t) and a transmitting
filter (yet unspecified) to make S, as close as possible, in some
reasonable sense, to the desired quantity. While the most objective
sense in which this can be made close to A, is

probability [S, # Ag] < &

for a given 6, it is not a mathematically tractable quantity to work
with, and therefore a simpler cost function is sought. As is well known,
the probability of error cannot be expressed exactly even when the
added noise is assumed to be Gaussian—a difficulty caused by the
presence of intersymbol and cross-channel interference. Here we em-
ploy a simple cost-function, least-mean-squared error between S, and
Ao. This criterion, which lends itself to mathematical analysis, can
also be used to upper bound the probability of error when the added
noise is Gaussian.

Returning to the mathematical problem at hand, we thus define the
error vectors e as the difference between S, eq. (6), and the desired
data vector A,. The total Mean-Squared Error (MSE) then is

MSE = Efe*e} = tr[E{e'}], 7
where
e= Uy — DAy + Y U,A, + »,. (8)
n#0
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In (7) tr stands for the trace of a matrix, T the complex conjugate
transpose, and E(.) the mathematical expectation with respect to all
random variables.

Without loss of generality, we assume that the data symbols as well
as the vector sequences A, are independent and identically distributed,
as are the added noise components in v(t). With these assumptions
the detailed evaluation of (7) becomes
MSE = MSZE = tr[l -2 f W(—7)H(7)dr

0d

+ U2I W(—7)Wi(—=7r)dr

+ J: W(—r)H(r - nT)dTJ: Hf(r — nT)WT(—T)dT:I, 9)

n#0

where
E{AAl} = I1,
Ef(t)'(t)} = Nol,

and

O'2=

a2

Recall that when the data symbols {a} take on values, +1 +3 + ...
+(L - 1), E{a?} = 65 =L*-1/3.

In the next section (9) is first minimized with respect to the class
of all N x N real matrices for a given channel matrix H and parameter
o%, and in Section IV it is further minimized with respect to the
admissible class of transmitter filters.

Ill. THE RECEIVER OPTIMIZATION PROBLEM

It turns out that the mathematical machinery used in the selection
of the optimum N x N, W(t), is the same as that for the 4 x 4 case
developed in Ref. 2, so here we only briefly review the approach.

Proceeding with the optimization problem, replace W(t) by

(WO)U + (fﬂ)u, l’] = 1, MY Ny (10)

where 7; are arbitrary functions of 7, and set

0
3% (MSE) = [0];

at {;=0,i,j=1,-.-,N.
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Now compute

a% (MSE) = tr [—2 f_ n(r)H(r)dr + 20° f_ Wo(—r)ni(r)dr
+2 X f_ Wo(r)H(r — nT)dr f H(r — nT)ﬂ}Oi(T)dT] =0,

n#0
i’j=1""aN’ (11)

where the matrices, 1%, i, j =1, - - -, N have the entry n;(7) in the ijth
position and zero everywhere else. By a direct computation of the trace
in eq. (11), one obtains

- f _H@mg(n)dr + o? f _(W(=)ymy(r)dr

+ Y f [H(r — nT)U})jm;(r)dr = 0, ,j=1,---,N. (12)

n#0

Since eq. (12) must hold for all functions, n;{r), we obtain the matrix
integral equation that must be satisfied by the optimum matrix Wy(7),

*Wo(—7) = H'(+) = ¥ UH'(r = nD), (13)
n:éO
where U, is given in eq. (6) with W(7) replaced by Wy (7). Structurally,
Wo(7) consists of an N x N matrix-matched filter followed by a matrix-
tapped delay line with matrix-tap coefficients U,.
An explicit formula for the least MSE is now possible to obtain by
first post-multiplying eq. (13) by W§(—7), integrating, and then com-
paring the result with eq. (9). The result is

MSE, = tr[I — U], (14)

where U, is obtained by solving a set of infinite linear equations
obtained by first post-multiplying eq. (13) by H(r — kT) and then
integrating. These operations yield the equations

0’2Uk = Rk - E Uan_n, all k

n#0

= Rik, (15)

where

Re = f H'(r)H(r — kT)dr. (16)
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The matrix convolutional equation, (15), is easy to solve by Fourier
series methods. Thus, inserting the solution of Uy, obtained from (15),
into (14), we get

T -1
MSE, = — f tr [I + R(;")] do, (17)
2r J-x o
where
R(w) — 2 RkeiwkT
k
and
R, = —,1—1— R (w)e “*Tdw,
2w J-z/T
=f H (-)H(r — ET)dr (18)

[from (16)].
Now the matrix frequency transfer characteristic is, by definition,

Hw) = f H(t)e™!dt,
and, by Parseval’s theorem, (18) is put into the form

R, = 1 f H' (w)H(w)e “*dw

2
/T
- _2_1_ Y A (w - —Q;k) " (w - —Z;k) e dw.  (19)
T &J—x/T

From this and (18) we determine

R(w) “—ZHT (w —ZLTk)H<w —2iTk>, (20)

which is the matrix-folded, or aliased, channel spectrum.

In the next section we further minimize MSE, eq. (17), with respect
to the transmitter matrix filter.
1IV. TRANSMITTER OPTIMIZATION

The general optimization problem with the inclusion of the aliases,

eq. (20), appears to be extremely complicated to solve,* and therefore

* We refer the interested reader to Ref. 6, where a similar optimization problem is
solved without having to make the bandlimited assumption.

DIGITAL TRANSMISSION 1153



we shall assume that the transmitter filter is strictly bandlimited to
the Nyquist frequency, /T. So, without excess bandwidth, (20) re-
duces to

R(w) = 7 A (), )

and since the transmitter matrix filter is in cascade with the channel
filter, we can write

H(w) = C(w)P(w). (22)

Equation (2) now becomes
R() = 7 PI)C'()C)P(), (23)

where C(w) is the transmission medium frequency transfer character-
istic and P(w) represents the N x N matrix transmitting filter fre-

quency characteristics.
Note that the average total transmitted power is proportional to

=/T
f tr[PY(w) P (w)]dw,
—/T

T,

and therefore the quantity we wish to minimize with respect to P (w)
is, from (17) and (23),
/T

-1
F = tr [I + 02%, Pf(w)C*(w)C(w)P(w):I dw

—x/T

x/T
+ )\f tr[P(w) P (w)]dw, (24)
—x/T

where \ is a Lagrange multiplier to be determined from the power
constraint.

Since for each value of w, C'C is hermitian, nonnegative definite, it
can be diagonalized by a unitary matrix ¢,

C'w)C(w) = Y (@) A()¥(w), (25)

where A(w) is the diagonal matrix with entries, \; - -+ Ay, the eigen-
values of C'C. By letting G = yP, Q = GG', and scaling the eigen-
values by 1/¢2T, (24) is put into the form

/T
F= J: . tr{I + QA)™! + A\Q}dw, (26)

where we have used an innocuous result,
tr[I + AB]™ = tr[I + BA]™,
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for any matrices A and B. (The spectrum of AB is the same as that
of BA.)
We now seek a minimum over all possible matrices Q such that

/T /T
f tr[I + QA] 'dw = min f tr[I + QA 'dw 27
—x/T Q -x/T

subject to [™7 trQdw = constant.
Since A is real and nonnegative we define

M(w) = A"*(w)Q(w)A (), (28)
which is again diagonalized by unitary matrices U(w),
M = Udig(s, --- é5)U", . (29)

where §; - - - 6 are now the eigenvalues of M. Let the diagonal elements
of Mbed; --- dyv. We then obtain from (29)

N
di=Y 6,|Unl2, i=1---N. (30)
n=1

This relationship is now used to prove that (27) is achieved when Q
is diagonal. Since the integrand in (27) is positive, it suffices to
minimize the integral point by point.

Let Sy be the diagonal matrix formed from M by setting all off-
diagonal entries to zero. From the definition of the trace we write

N 1
tr[I + M]™! = El Ty
and
|
tr[I + Syl = ’El Trd

If diagonal Q renders the smallest trace, it must be shown that
N 1 N 1
) =X

! n=11+dn_n=11+5n.

The proof of (31) is facilitated by the observation from (29) and (30)
that

(31)

|Unl 20, i,n=1..-N

and

M=

N
|Uvin|2 = 2_:1 IUin|2 =1

i

These are precisely the necessary and sufficient conditions that 2N
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numbers {d,, §;} be related such that for any continuous convex function
®(x) one has

®(dy) + --- + B(dy) < P(6) + - -+ + P(ow). (32)

(See Theorems 13 and 14 in Ref. 7, pp. 30-1.) Since only the diagonal
entries in Q enter into the constraint, this result proves our assertion.

During the course of this research I discussed this assertion with
my colleague Hans Witsenhausen, who supplied an elegant proof using
Schur transformations. With his permission I reproduce his note to
me in the Appendix.

Once we establish the fact that the optimum matrix Q is diagonal,
we note from the definition that

Q = GG' = yPP™Y' = diagonal, (33)

and since its entries are nonnegative, the form of the optimum trans-
mitter matrix is immediate,

Po(w) = V(Q"w)SW), o] =7
= [0], elsewhere, (34)

where S(w) is an arbitrary unitary matrix. Thus, there are an infinite
number of P(w)’s that yield minimum mean-squared error while yield-
ing a fixed amount of total average transmitted power.

The additional problem of determining the optimum values of the
diagonal elements g, in Q is now easy since (26) can now be written
as

N /T [ 1
F= —_—— 4+ A n(w)] dw, (35)
né:l -=/T 1 + >\n("‘))qn(w) ?
which is easily minimized with respect to the positive quantities {g,(w)}
using standard calculus of variation techniques, and the Lagrange
multiplier is determined from the given power constraint. The min-
imization of (35) follows the same procedure as in the N = 2 case,
treated in detail in Ref. 1.

V. CONCLUSIONS

Fallouts from solving some very special problems associated with
digital communications over dually polarized radio channels yielded
general results applicable to a wide range of communications situa-
tions. It appears that the class of minimization problems encountered
in our formulations are well known to the mathematicians; if the
engineers could only ask the right questions.

From a mathematical point of view, the optimum overall system has
an end-to-end equivalent diagonal characterization. Once this diagonal
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(direct) structure is determined, all other problems reduce to the well-
known scalar case.

From an engineering point of view the optimum filter structures
may provide valuable insights to the design of signal processors in the
multiuser communications environment.
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APPENDIX

Yet Another Trace Minimization Problem
By H. S. Witsenhausen

Let (9, B, 1) be a measure space, and for each w € Q let A(w) be an
N X N diagonal matrix with real positive integrable diagonal entries.

Let Q denote a measurable function from Q to nonnegative definite
hermitian matrices, subject to

f trQ(w) - du(w) = c. * (36)

One seeks the minimum, over all such Q of

f tr(I + Q(w)A(w)) - du(w). 37

This problem is easily handled when Q is diagonal. The purpose of
this Appendix is to show that the minimization can be reduced to this
case.

Let Q% denote the diagonal matrix obtained from Q by replacing all
off-diagonal elements by zero.
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Theorem: If Q(-) satisfies the conditions of the problem, then Q°(-)
also does and gives (37) no higher value.

Proof: Obviously, Q¢ is hermitian, nonnegative definite and gives the
same value in (36). Now (37) can be written

f tr( + M(w)) ! du(w), (38)
where
M(w) = AY*(w)Q(w) A (w) (39)
is hermitian, nonnegative definite.
We have
M4 (0) = AV (w)Q(w) A (w). (40)

Thus it is enough to show that (38) cannot increase when M is replaced
by M¢, which we show for each fixed w.

Let Ay, ---, A\, be the eigenvalues of M, and let d;, - - -, d, be the
diagonal entries of M that are the eigenvalues of M<.

- 1
tr(I + M) = .
r( ) i§1 Y (41)
id 1
+ M9 = . 2
tr(I + M9 2774 (42)
The right side of (41) is a convex symmetric function of (Ay, - -+, A,).

Hence it is Schur convex. (That is, f(SA) < f(M\) for doubly stochastic
S.)

As observed by Schur, from the unitary relationship of M with its
diagonal form

M = U diag(hy, .. ., AU (43)
(see Ref. 8), it follows that
d =S\ (44)
with doubly stochastic S(S; = |u;|?).
Thus,
27 i 4= L1 i N (45)

which was to be proved.

These two quantities, sometimes referred to as efficiency indices,
will be used to compare the performance of the various equalization
methods.
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Tone Location by Cyclotomic Filters

By D. HERTZ* R. P. KURSHAN,' D. MALAH,* and
J. T. PEOPLES?

(Manuscript received July 11, 1984)

In this paper we present a tone location system that estimates the frequency
of an input tone through additions and comparisons alone. The system uses
“cyclotomic” filters (which operate without multiplications), requiring fewer
operations than with a conventional Discrete Fourier Transform (DFT) en-
tailing multiplications. In the system presented here, an input tone is first
transformed to yield two quadrature tones, which are then digitized. Processing
occurs in successive stages at successively reduced sampling rates. During each
decimation stage, the system is configured to provide symmetric coverage of a
subband in which the tone has been located at the previous stage. Simulations
demonstrate that for the case studied, an input signal-to-noise ratio (SNR;)
in excess of 10 dB yields an output signal-to-noise ratio (SNR,) that is close
(within 0.3 dB) to the maximum attainable SNR,, where SNR, is measured
in terms of the reduction in frequency uncertainty. Enhanced resolution is
demonstrated at the expense of the number of computations, while holding
the number of decimation stages constant, by using small DFTs in place of
the cyclotomic filters. This method still utilizes fewer computations than a
conventional DFT (with the same number of frequency cells), with approxi-
mately the same performance in the case of low noise. Thus, this alternative
method is useful when circumstances prohibit using a single, large DFT.

* Technion-Israel Institute of Technology, Haifa, Israel. This paper is derived from
the M.Sc. thesis of D. Hertz, published in 1979, written under the direction of D. Malah
and R. P. Kurshan (while the latter was visiting the Technion in 1976-7). Part of the
work was completed while D. Malah was visiting AT&T Bell Laboratories in 1979-81.
t AT&T Bell Laboratories. ¥ AT&T Bell Laboratories; present affiliation Bell Commu-
nications Research, Inc.
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I. INTRODUCTION

In many diverse applications, it is necessary to detect and locate a
signal appearing within selected frequency bands, particularly a signal
comprised of a single tone. This is tantamount to estimating the
frequency of a tone that may appear randomly in any band. Such
detection and estimation are generally accomplished in conventional
analog systems, using a bank of filters tuned to different, narrowband
portions of the spectrum or using a single filter that is effectively
swept across the bands of interest. Associated with such techniques,
however, are the usual problems of analog processors, including un-
predictability due to inherent variability of system components. A
discrete-time technique is described by Cappelini et al.,? wherein a
given frequency band is partitioned into subbands for detection pur-
poses. The partition into subbands is achieved through a decimation
approach, using a single, fixed, low-pass digital filter at each decima-
tion stage. In a variety of applications, however, when it is known that
the given input signal contains, at most, a single spectral line in the
frequency range of interest (e.g., in M-ary FSK demodulation® and
Touch-Tone telephony?), this method possesses inherent disadvan-
tages. First, since general filtering is effected at each decimation stage,
numerous multiplications and additions must be performed during the
filtering operations of each stage. Second, a large amount of memory
is required to store samples from the geometrically increasing number
of iterated signals. These disadvantages are substantially reduced with
a Cyclotomic Tone Location System (CTLS).5® Only the CTLS of
Ref. 5 is presented here, since it is simpler than the CTLS of Refs. 6
through 8, and we wish to apply this same idea to a DFT Tone
Location System (FTLS) as well, described in Section IV. The FTLS,
as compared with conventional DFT implementations,®!° trades per-
formance in the presence of noise for reduced implementational com-
plexity.

The CTLS incorporates digital filters utilizing additions alone,
thereby eliminating the customary computational load associated with
multiplications. Figure 1 is a block diagram of the CTLS. Referring to
Fig. 1, the input tone, comprising, say, a single frequency located
randomly within a band 0 to f,/4, is first transformed by the Hilbert
network to yield a complex tone composed of two tones in quadrature
relationship. These two tones correspond to phase-shifted versions of
the input tone. The complex tone is initially sampled by the digitizer
at a rate of f; and stored in the buffer. Then, the complex tone and its
frequency-shifted versions, from the frequency-shifting unit, are proc-
essed by the first-order recursive filter unit. The filters are derived
from the set of cyclotomic filters and have only a single resonance in
the frequency range up to one-half the sampling rate. The filters are
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Fig. 1—Block diagram of the CTLS.

arranged so that the resonances associated with the filters and fre-
quency-shifted versions symmetrically cover a band of frequencies
including the input tone frequency. Location of the subband contain-
ing the tone is achieved in the decision unit by comparing the magni-
tudes of the various filter outputs to each other after a fixed number
of samples have been processed.

It is assumed from here on that the tone is known to be present. The
problem of detecting the presence of a tone will be commented on
later in this paper. The CTLS locates the tone using a multistage
process. At the first stage, using the first-order recursive filter unit,
which symmetrically covers the band (0, f,/4), the CTLS unambigu-
ously locates the tone either in (0, f,/8) or in (f,/8, f;/4). Once the
tone has been located within a single subband, sampling rate reduction,
or decimation, by a factor of two is effected.

This particular choice of the sampling rate reduction ratio and
subband width precludes additional spectral lines from appearing
within the subband containing the tone. The filters are now reconfig-
ured at the reduced sampling rate to again achieve symmetrical place-
ment of the filter resonances across the previously isolated subband
of width f,/8 containing the tone. The process of frequency shifting
and filtering by the array is then repeated.

The frequency subbands utilized for resolution at the output of this
second stage are each of width f,/16. Again, the subband containing
the tone is isolated, and another decimation stage is effected. The
processing continues in this manner until the desired frequency reso-
lution has been achieved. Moreover, a minor modification to the CTLS
enables the system to test for a tone in any one of the other three
bands [rather than (0, f/4)], i.e., [kf:/4, (k + 1)f,/4], k =1, 2, 3,
provided & is known to the CTLS.

The FTLS is an extension of the CTLS in the following way.
Basically, the input tone to the FTLS is comprised of a frequency,
located randomly within the band 0 to f,/2, and is converted to a
complex tone. The quadrature tones are both initially sampled at a
rate of f;, and then N samples of the complex tone are processed by
an M-point DFT (M = 2™, N < M is mandatory, and the N samples
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are padded by M — N zeros). The modulus of the M-point DFTs are
further processed. As in the CTLS, the processing is done in successive
stages at successively reduced sampling rates. During each decimation
stage, the system is configured to provide symmetric coverage of a
subband in which the tone has been located in the previous stage.

At each decimation stage the pertinent band is partitioned into
M/2 subbands [with S stages the initial band will be partitioned into
(M/2)" bands]. A minor modification to the FTLS enables the system
to test for a tone in the other band, i.e., (f,/2, f;), provided the FTLS
knows in which of the two subbands the tone is present. For N = 2, 3,
and M = 4 this reduces to a CTLS, except for the sampling rate, which
is now halved.

The organization of the paper is as follows: Section II presents basic
relations and a detailed description of the CTLS; Section III gives
simulation results associated with the CTLS; Section IV presents a
detailed description of the FTLS; and Section V presents the conclu-
sions.

Il. CTLS OPERATION PRINCIPLES

For clarity of exposition, we first present an overview of the prop-
erties of the first-order recursive filters utilized here. Next, we discuss
in detail the time-domain and frequency-domain characteristics of one
first-order filter (designated C,), treated as exemplary of the remaining
filters of interest (designated C,, Cy,, and C,,,), to illustrate funda-
mental concepts helpful to fully comprehend the overall CTLS. Fi-
nally, we describe the technique for exploiting the properties of the
individual filters to form a composite tone detection system.

2.1 Cyclotomic filters

The properties of the cyclotomic filters discussed herein are pre-
sented in greater detail in Kurshan and Gopinath!! and Hertz.2 Cyclo-
tomic filters are a class of digital filters having only poles in the
transfer function and, moreover, each pole lies on the unit circle. This
means that the filters are inherently unstable and are not suitable for
conventional filtering operations, which require the processing of
numerous sequential samples. In fact, these filters behave more like
resonators and it is this property that can be beneficially utilized for
tone detection. The salient advantage of this type of resonating filter
is that the filters of primary interest exhibit nonzero coefficient values
(£1, £j) having a modulus of one. This implies that multiplications
of samples by filter coefficients reduce to simple addition, subtraction,
and signal interchange operations and, significantly, arithmetic errors
such as round-off and truncation errors are eliminated.

A cyclotomic filter may be described in terms of a linear recursion
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Fig. 2—Cyclotomic digital filter C, in block diagram form.

relation whose characteristic polynomial is a cyclotomic polynomial.
For example, for a first-order digital filter represented by the Linear
Difference Equation (LDE)

yi(n + 1) = yi(n) + x(n), (1)

where x;(n) and y;(n) are inphase input and output sequence ele-
ments, respectively, corresponding to the nth sample, then the char-
acteristic equation is given by the polynomial A — 1 (as derived from
yi(n + 1) — y;(n) = 0). This polynomial is cyclotomic and has the
designation C;(\) (or C, for simplicity): C;(A) = A — 1. Similarly, the
cyclotomic polynomial Co(\) = A + 1 yields a digital filter described
by the LDE

yi{n + 1) = —yi(n) + x(n). (2)

Other filters of special interest include two first-order, complex fil-
ters derived as the roots of the second-order cyclotomic polynomial
Ci(\) = A2 + 1. These filters also have roots on the unit circle and are
given by (with j = v=1) C4,(\) = A — j and Cs,,(A) = A + j; they have
the following LDE representations, respectively:

yi(n + 1) = jyi(n) + x1(n) (3)
and
yi(n + 1) = —jyi(n) + x1(n). (4)

Figure 2 depicts the C; digital filter in block diagram form. Similar
block diagrams can be derived for the other first-order filters.

2.2 Filter characteristics

To elucidate the desired characteristics obtained by combining
cyclotomic-derived filters into a system architecture, we first present
the response of a general filter to an input tone having a randomly
distributed phase component. The input tone is presumed to have the
analog form Acos(2~ ft + ¥), where ¥ is the random phase variable, A
is the amplitude, and f is the tone frequency.

The impulse response sequence of the general recursive filter is
represented by {h(k)}, where k = 0. The output sequence elements
may then be obtained from the convolutional relationship
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n

yi(n) = ¥ x(k)h(n — k), (5)

k=0

where {x;(k)} is the input tone sequence obtained by sampling
Acos(2wft + ¥), t = 0, at the rate f;, that is,

x;(k) = Acos(kv + ¥), k=0, (6)
where
v =27 f/fs. @)
Substituting (6) into (5) gives
yi(n) = Vol + Bicos [tan‘1 <%) + <P], (8)
where
an = Re [i Ae’*"h(n - k)], 9)
k=0
B, = Imag [i Ae*h(n — k)] , (10)
k=0

and the operators denoted “Re” and “Imag” produce the real and
imaginary parts of the bracketed part of egs. (9) and (10), respectively.

Since ¥ occurs randomly within the interval (0, 2x), comparison of
| ¥1(n) | to a threshold may yield deleterious results due to the depend-
ence of y, on ¥. However, by utilizing the first-order filters in pairs
(either actually or on a time-shared basis), the undesirable modulation
effects of the random phase component may be eliminated.

This is achieved by forming a new sample sequence {xq(k)}, found
by sampling the quadrature tone Asin(2« ft + ¥), which may be derived
through a Hilbert transform operation on the original or inphase input
tone. The new sequence elements are given by

xq(k) = Asin(kv + ), k= 0. (11)

If {xq(k)} is processed by a recursive filter identical to the one that

processes {x;(k)}, then the new output sequence {yq(n)} has elements

vq(n) = vai + Bisin [tan‘1 <&> + 90] . (12)

(24

A squaring operation on both egs. (8) and (12), followed by a sum-

mation and square-root operation, yields an output Va2 + £2, which
is independent of ¥.

For future discussion, it is convenient, as exemplified by the form

of egs. (9) and (10), to define a complex input tone having sample
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values Ae/™*) and a corresponding output sequence {z,} having
complex element values

2= Y Ae!®™p(n — k). (13)

k=0

The magnitude or modulus of each element of {z,} is then given by
lzn] = | ¥ Ae’™h(n — k)| = Vai + 65 (14)
£=0

As hereinafter utilized, the two-filter device characterized by substan-
tially identical filters C{(i = 1, 2, 4p or 4m), which processes inphase
and quadrature samples of an input signal in pairs, is a basic or
fundamental element of the CTLS.

Whereas the above discussion has focused primarily on sequence
domain manipulations, it is helpful to visualize these manipulations
in the frequency domain. Moreover, whereas the discussion was
couched in terms of generalized impulse responses, particularly perti-
nent to the subsequent discussion are the frequency domain responses
of filters Cy, C,, Cyp, and Cyp,. The filter C;, having impulse elements
h(n) =1, n =0, is treated as exemplary.

Utilizing now the notation z(Cy, n, ») to distinguish sequence ele-
ments of {z,} so as to explicitly set forth the dependence upon C,, n
and v, we obtain the following by substituting h(n) = 1 into eq. (14):

Iz(Cl’ n, V)l =A | Z ejk”|
k=0

or
. (n+1
an (21),
12(Cy, n,v)| = A v (15)
sin o
In addition, because the impulse response of C; is (—1)™, n = 0,
|2(Cy, 1, )| = |2(Cy, n, v + 7)|. (16)

Figure 3 shows plots of | z(Cy, n, v) | and |z(Cs, n, v) | over the range
(0 to 7) for n = 3, that is, four samples corresponding to n =0, 1, 2,
and 3 have been processed. The resonating feature of the filters is
apparent. Filter C; is symmetric with respect to v = 0, whereas C; is
symmetric about v = w, and both are periodic with period 27. Since
v=2xf/fs, v = 7 corresponds to a frequency f, which is one-half the
sampling rate. Although the filter response has been illustrated with
four samples, the filter may also be operated with two, three, five, six,
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Fig. 3—Responses of filter pairs C, and C,, each processing real and imaginary
sampled tones in parallel, over the range from 0 to one-half of the sampling rate with
N = 4 samples.

or seven samples. If more than seven samples are used, the main lobes
of adjacent filter responses do not intersect. In fact, simulations reveal
some enhancement in the signal-to-noise performance when more
than four (but fewer than seven) samples are processed.

In a similar manner, the following relations may also be derived:

. n+l .
Sin B v 9
|2(Csp, n,v)| = A amn
_T
79
sin 2
and
n+1 + ™
sin 9 14 2
|Z(C4m’ n: V)I = A . (18)
(V + g)
sin ——2—

Because of the manner in which C,, and C,, are related to C,,

™ ™
Z<C4p, n,v+§) 2(04,,” n,V—§>
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Figure 4 shows plots of | z2(Cyp, n, v)| and |2(Cym, n, v — )| for the
same parameters as Fig. 3. Since cyclotomic filters have poles on the
unit circle, their responses blow up. However, they can be used only
because the input signal is time limited, hence the composite response
due to the sinusoidal input can be examined and leads to egs. (15)
through (18).

From the plots of Figs. 3 and 4, we conclude that the filter response
from each two-filter device comprising identical filters C;(i = 1, 2, 4p
or 4m) has only a single resonance in the frequency range up to one-
half of the sampling frequency. The CTLS exploits these filter pairs
by covering the frequency band from 0 to f,/2 (v from 0 to =) in
symmetric fashion. Such an arrangement is depicted in Fig. 5a. Since
Cyp and Cy,, are merely frequency-shifted versions of C; and it appears
that C,, and C;, require complex manipulations, it is important to
determine if a modified, real sequence can serve as an input to a C,;
filter to produce an output equivalent to a Cy,, or Cyy, filter output.

Phase shifting by +7/2 in the frequency domain is equivalent to
introducing modulation factors in the sequence (sampled time) domain
of the form {e*/**/2}. Thus, if the complex input sequence is modified
by the modulation sequence, a new sequence having element values

Aej[k(u:w/2)+¢] (20)

gives rise to an output corresponding to C,, or Cy,,, as appropriate.
The inphase and quadrature sequences associated with this complex
input sequence become, respectively,

MAGNITUDE
5A
Py
CaplB)
Iz(C, n, 8| Camtl-m)
|
- ~7/2 0 g T

~f5/2 ~fol4 f £/2

Fig. 4—Responses of complex, recursive filter pairs Csp and Cyn, in the same scale
and over the same range of frequency as in Fig. 3.
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Fig. 5—(a) Arrangement of three first-order recursive filters that cover the frequency
band from 0 to one-half of the sampling rate. (b) Arrangement of four recursive filters
that cover the band from 0 to one-half of the initial sampling rate and are symmetric
over the four subbands shown in Fig. 5a. (¢) Arrangement of eight recursive filters that
cover the band from 0 to one-half of the initial sampling rate and are symmetric over
the eight subbands shown in Fig. 5b.

Acos(kv + P)cos(knr/2) F Asin(kv + ©)sin(kw/2)

and

Asin(kv + ¥P)cos(kn/2) = Acos(kv + P)sin(kw/2).

(21)

(22)

Since k is a nonnegative integer, the shifted inphase sequence reduces
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to a sequence that is periodic of period four having element values for
k=0,1, 2 and 3 of [from eq. (21)]:

Acos(ky + ¥®); F Asin(kv + ¥);
— Acos(ky + ©); =+ Asin(kv + ). (23)

Similarly, the shifted quadrature sequence has elements for £ = 0, 1,
2, 3 [from eq. (22)] of:

Asin(kv + ¥); =+ Acos(kv + ©@);
— Asin(kv + ¥); F Acos(kv + ). (24)

Examination of eqgs. (23) and (24) suggests that the operation of
normalized frequency shifting by £7/2, rather than occurring through
frequency-domain manipulations, may be straightforwardly imple-
mented in the sequence or sample domain merely by interchanging
and changing signs of the inphase and quadrature inputs to a filter
pair, when appropriate. Because of the form ofeq. (20), such an
implementation may be referred to as a modulus-one multiplier (j**)
or frequency shifter.

Figure 6 is a block diagram of the modulus-one multiplier for the
case of a —w/2 frequency shift (Cyy). The inputs to this unit are the
original inphase and quadrature sequence elements. The operations of
sign changing and line interchanging occur within this unit, as depicted
fork=0,1,...,4,....Thefrequency-shifted, inphase, and quadrature
sequence elements, respectively, are fed to two identical C, filters
whose outputs are squared, summed, and square rooted. Finally, this
unit provides the response described above by Cy; ip- Note that the
operations needed to compute the modulus vx% + y* can be simplified

A cos(kf + )
———————— =04 1 et =t O t——— (12
1 T
I
; |
5. X '
-‘ -
-1 |
26... 1
1 :
9 1
Asin(k 6 +) R
———————— r=37... >< 1 =T = Gy ——f ()2

Fig. 6—Block diagram of a modulus-one multiplier for the case of a —7/2 frequency
shift (Cyp).
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by using known approximations to the modulus (see Refs. 12 through
14). An example is the one given by

va? + y* = Max(| x|, |¥]) + « Min(| x|, |y ). (25)

o 1s a scalar multiplier. In Refs. 5 through 7 we used o = 0.25, so that
multiplication by a corresponds to two shift operations. The choice of
a = 0.25 causes only a small degradation in performance, as has been
noted in simulations.

Figures 5b and 5c¢ depict how each of the two subbands in the range
0 to w/2 of Fig. 5a may be further partitioned to isolate the tone of
interest. Basically, the subbands are subdivided into second-stage
subbands by reducing the sampling rate and reconfiguring the filter
array within each subband of interest. For instance, the first-stage
subband labeled C; in Fig. 5a has been subdivided by reducing the
sampling rate by a factor of two and covering the old subband by C,,
C4p, which effects two second-stage subbands symmetrically dispersed
across the original subband. Further sampling rate reduction by a
factor of two results in the partition of Fig. 5c. The configuration and
covering of Fig. 5b occurs within each subband during each stage of
decimation after the first stage.

To understand how the given input tone can be isolated by process-
ing with consecutive stages of decimation, the steps in processing a
single tone of frequency f, are now considered. For the complex tone
initially sampled at a rate f;, spectral lines occur in the digital spectrum
at fo + kf,, k = 0, £1, .... The sampling rate is chosen so that the
tone falls within the range 0 to f,/4 (0 < fo < f;/4); thus the tone may
be unambiguously determined to fall within one of the subbands or
cells (0, f;/8) or (f./8, fs/4), by processing the outputs from the filter
array or bank configured as C,, C,,. This is basically accomplished by
comparing each filter output to another.

If the complex tone samples are now decimated by a factor of two,
that is, only every second value from the original set of samples is
retained, then spectral lines appear at fy, + kf./2, k = 0, =1, .... By
selecting the 2:1 ratio between initial sampling rate and reduced
sampling rate, and by selecting cell widths of f,/8 for the first stage of
sampling, no additional spectral components fall within the original
subband containing baseband spectral line f,. This is true, even though
aliasing occurs, because the judicious selection of cell width and
reduced sampling rate precludes aliased spectral lines from appearing
in the subband containing the spectral line of interest.

The process described with respect to the decimation by a factor of
two may continue until the desired resolution (final cell width) is
achieved. In Figs. 5a through c three stages of processing are exempli-
fied. The tone will thus be resolved to a cell of width £,/32.
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For example, say that 2(f,/32) < fo < 3(f;/32) (see also the arrows
in Figs. 5a through c). At the first stage (Fig. 5a), the output of C, is
compared to the output of Cy,; since “|C;| > | Cy,|” it is concluded
that the tone is located in 0 < f, =< £,/8. At the second stage (F'ig. 5b),
the output of C; is compared to the output of C,,,, and since “|C;| <
| Cspl|” it is concluded that the tone is in f,/4 < fo < f,/8. At the final
stage, stage three (Fig. 5¢), the output of C, , is compared to the output
of Cy, and since “|Cyp[ > |C;|” it is concluded that the tone is in
fs/16 < fo < 3f,/32, which is the correct presumed tone’s location.

From the description with respect to the band from 0 to f,/4, it is
also apparent that a tone in the bands (kf,/4, (k + 1)f,/4),k=1,2,3
could be processed in an analogous manner, provided & is known to
the CTLS and only a single tone is present.

Hl. CTLS PERFORMANCE

In the previous section only the principles of operation of the CTLS
were presented, and no consideration was given to the presence of
noise in which the tone is usually embedded.

To combat the noise we propose two methods, based on soft decision
and hard decision, respectively. To examine the performance of the
CTLS, computer simulations were performed. In the simulations the
location of the tone was initially set in the interval (0, f,/4) and was
resolved by the CTLS into one of 64 cells. In each experiment 256
complex data words were processed. At each stage, the filters were
operated for a small number of samples (2 < N < 7) as compared with
the number of data words (256). Therefore, the filter operation was
repeated at each stage (without overlapping the data), exhausting the
data.

A cos(aok +¢)
/L\
ny (k)
Z-39 1
"2
FINITE
IMPULSE
g RESPONSE T0
—*"| LOW-PASS 0<O,<m2 CTLS
FILTER
0<f<7/2
79-TAP
FINITE IMPULSE | 7ak)  + /"N
RESPONSE —{ X
HILBERT FILTER 7

A sin(Bpk +¢p)

Fig. 7—Block diagram of the configuration for generating the input noisy tone to the
LS.
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Fig. 8—Probability of correct tone location vs. number of samples; the filters are
operated at different input SNR; values.

With the hard-decision method, the CTLS uses (at each stage) the
maximal output of the filters (over all repetitions). With the soft-
decision method, the average (over all repetitions) of the filter’s output
at each stage is used.

Figure 7 is a block diagram of the operations carried out to generate
the noisy complex digital tone that was fed to the CTLS. {n,} is a zero
mean white (E{nxn;} = ¢%0x;) Gaussian sequence, which was low-pass
filtered to eliminate out-of-band noise.

The simulations were carried out for different values of SNR;(6, 8,
10, 12 dB):

A2
E{ni(k) + nj(R)}’

where E denotes the expectation operator. Figure 8(a through d)
presents simulation results for the probability of locating the input
tone in the correct cell as a function of the number of samples for
which the filters are operated (2 < N < 7).

Another performance measure used in our simulations is the output
signal-to-noise ratio (SNR,), which gives the reduction in frequency
uncertainty,® that is,

SNR; A (26)
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SNR, = —Y2x() 27)

" var(v, — )
In (27) v, denotes the uniformly distributed input-normalized fre-
quency (in the range 0 to 7/2), and », is its estimate at cell width.

It is known’ that when no errors are made in assigning the input
signal to a cell, then

max SNR, = (N, — 1)% (28)

which gives 36.12 dB for N, = 64, that is, 64 cells. Figure 9(a through
d) shows the computer simulation results obtained for SNR, as a
function of the number of samples at which the filters were operated
(2 = N =7), at different SNR; values (in the range of 6 to 12 dB).
From the simulation results in Figs. 8 and 9, we conclude the
following:
1. The soft-decision method is superior to the hard-decision method.
2. The filters should operate with N = 6 samples.

37

max SNRp=36.12 a8 (3) max SNAy=36.12d8 (D)
BB - - T T = - - - -
°
sl - e o o
[ ]
° ® °
34} ° & ° L 1;
33| 8 -
o .
SNR; =6 dB SNR;=8 dB
w 32 s L
'
w
s 4
S 31 o | | | | | { 1 ! L
[a]
= 37
~ ( d
§° max SNR, = 36.12 dB () max SNR, = 36.12 dB (@
g ———————— w8 —
8 8 3 ©
o o °
s o ° - ®
. o
7Y S -
SNRj=10 dB SNR;=12 dB
a3l —
® SOFT DECISION
2 - O HARD DECISION
31 ! 1 1 L L | | | L |
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Fig. 9—Output signal to noise ratio (SNR,) vs. number of samples; the filters are
operated at different input SNR; values.
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3. For SNR; = 10 dB and in conjunction with (1) and (2), the
probability of locating the tone in the correct cell is in excess of 95
percent, and SNR, is smaller than max SNR, by less than 0.3 dB.

‘IV. DFT TONE LOCATION SYSTEM

In this section we present the DFT Tone Location System (FTLS).
Let {x;}¥5! be N samples of the complex tone; then

Noo gy
X, = DFT{x;} = Eo xie M, (29)
e, x;=0fori=N,N+1,...,M— 1(M > N is mandatory), and
Ay = | X4, k=0,1,..., M — 1. (30)
It can be easily demonstrated that
A = |yn-1(R) [, (31)

where

2
yin(k) = e My (k) + x,
y.(k) =0, l=0,1,..., N—1. (32)

Therefore, z(C;, N —1,v),i =1, 2, 4p, 4m [see egs. (15) through (18)]
are merely particular samples of A, i.e., Ao, Ao, Anrya, Azpse- Similar
to the derivations of (15) through (18), we get

k= Sinl g7_rk ’ (33)
o\" " M

where A and v are the tone’s amplitude and normalized frequency,
respectively.

The operation principles of the FTLS are now explained. The input
tone, which is comprised of a frequency located randomly within the
band 0 to f,/2, is converted into a complex tone. The quadrature tones
are both initially sampled at a rate of f; and then N samples of the
complex tone are processed by an M-point DFT (M =2™, N < M, and
the N samples are padded by M — N zeros). The modulus of the M-
point DFTs are further processed so that the resonances associated
with the DFT cover a band of frequencies, including the tone fre-
quency, in symmetric fashion. Location of the subband containing
the tone is achieved by finding the maximal modulus of the first
(M/2) + 1 even (counting from zero) DFT points, Az, say, and then,
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if 2k # 0, M/2, comparing As,—; and Agp41. The technique is exempli-
fied in Figs. 10a and b for M = 8 and N = 4.

In the FTLS the above procedure (at stage 1) partitions the initial
band (0, f,/2) to M/2 subbands, each of width (f./2)/(M/2), and the
tone lies unambiguously within one of the M/2 subbands because of
oversampling. Once a tone has been located within the confines of a
subband, sampling rate reduction or decimation by a factor of M/2 is
effected. Although the tone is now undersampled, judicious choice of
sampling rate reduction ratio and subband width precludes additional
spectral lines from appearing within the subband containing the tone.
At the reduced sampling rate again (as before), N samples of the
complex tone are processed by an M-point DFT. The moduli of the
M-point DFT are further processed to again achieve a symmetrical
placement of the DFT’s resonances across the subband of width
(fs/2)/(M/2) containing the tone. Now, if in the previous stage the
tone has been located in an even subband (starting with the zeroth

cell), find the maximal value of {Ay, A, ..., Ay}; otherwise, find the
maximal value of {Apye, Apyo+a, -« -, Ar—2, Ao}, say Agg, and compare
Ag A Ay Az Ag
] | 1 |
¥
1 I | :
I |
I i
| | i i
| I ! :
| | | |
| l [ |
| | | |
0 /4 /2 4 T
#/8 1,/4 f f,/2

(b)
Fig. 10—Operation of the FTLS for M-8, N-4: (a) first stage, and (b) second stage.

TONE LOCATION 1177



Agj—1 with Az (provided that k # 0, M/2, for both cases). Now (after
stage 2) the tone is located in a subband of width (f,/2)/(M/2)% This
process may be repeated until, finally, at the last stage, say S, the
frequency subbands utilized for resolving the tone are each of width
(f:/2)/(M/2)5. Note that at each stage only the even DFT coefficients
and two odd DFT coefficients are needed. Moreover, a minor modifi-
cation to the FTLS enables the system to test for a tone in the other
band, i.e., (f./2, f;), provided the FTLS knows in which of the two
subbands the single tone is present. Also, for N =2, 3 and M = 4 we
have a FTLS that resembles the CTLS, except for the sampling rate,
which is now halved.

It should be noted that the relation M > N is mandatory, and
ensures that comparisons between the pertinent A,’s will be within
their main lobes. Note that the ideas to combat noise presented in
Section III for the CTLS pertain as well to the FTLS.

Now the FTLS is exemplified by choosing M = 8 and N = 4.
Referring to Fig. 10, A, through A; are obtained from four samples of
the complex tone [see (30)]. Dividing the band 0 to = into four
subbands is carried out as follows:

1. The maximal value of {A,, Ay, A4 is computed. From the re-
sult we decide in which of the three subbands (0, =/4), [r/4, (37)/4],
[(37)/4, «] the tone is present. If the tone is not in the subband
[7/4, (37)/4], we continue to the next stage (Fig. 10b); otherwise we

2. Compare A; and A, and accordingly find in which of the
two subbands, (x/4, 7/2) or [x/2, (3w)/4], comprising the subband
[w/4, (37)/4] the tone is present. Now Fig. 10b depicts how each of
the four subbands in the range 0 to 7 of Fig. 10a may be further parti-
tioned to isolate the tone of interest. Basically the subbands are sub-
divided into second-stage subbands by reducing the sampling rate by
a factor of M/2 = 4. Now if the tone is present in an even (counting
from 0) subband, (0, 7v/4) or [x/2, (37)/4], find the maximal value
of {Ao, As, A4). Otherwise (i.e., the tone is present in one of the
odd subbands (7/4, n/2) or [(37)/4, 7]), find the maximal value of
{A4, Ag, Ao). If the even or odd subband output amplitude A, or A, is
maximal, then continue to stage 3. If the maximal value is A, (even
case) or Ag (odd case), then compare A; with Az or A5 with A,,
respectively. Now the tone has been located within a subband of width
(£./2)/(8/2)* = f,/32, and the processing continues in this manner
until the desired frequency resolution is achieved.

V. CONCLUSION

We have presented two methods of tone location (CTLS and FTLS)
as an alternative to conventional DFT. For a given requirement of N¢
frequency resolution cells, a conventional DFT, which is a maximum-
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likelihood estimator, uses a single transform of size N¢ requiring
(Nc¢/2)logo(Nc) multiplications, which are the main computational
burden. The associated complexity of such multiplication is eliminated
in the CTLS, using a decimation scheme involving filters that have
coefficients +1, +j, i.e., multiplier-less digital filters. For the same
number of resolution cells, computational complexity is significantly
reduced, at the expense of increased frequency uncertainty as a func-
tion of increasing noise. This uncertainty is decreased in the FTLS,
where the cyclotomic filters of the CTLS are replaced with small DFT's
(which can be repeated several times at each decimation stage). While
this improved performance is at the expense of increased computa-
tional complexity (compared to the CTLS), and the resulting system
does not have the optimal performance of a single DFT, the FTLS
can nonetheless be preferable over a single DFT when the size of the
latter makes it impractical to implement. To obtain N¢ frequency
resolution cells by using the FTLS in S stages, one M-point DFT is
sufficient at each stage, and we have the relationship Nc = (M/2)5.
Hence, using the FTLS, M = 2 §/ZTC, and S(M/2)logs(M) multiplica-
tions are sufficient for locating the tone. For example, suppose
N¢ = 4096 and S = 4; then M = 16, and the conventional DFT requires
24,576 multiplications, whereas the FTLS requires only 128 multipli-
cations.

It follows from the simulations of the CTLS that the soft-decision
method should be preferred and the filters should be operated for
N = 6 samples. For input signal-to-noise ratios in excess of 10 dB the
output signal-to-noise ratios differ from the maximal output signal-
to-noise ratio by less than 0.3 dB. Finally, note that tone presence can
be determined by comparing the filter outputs in the first stage to an
appropriate threshold value (see Refs. 11 and 15 and the references
therein).
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In this work we have considered direct-sequence spread-spectrum transmis-
sion for indoor wireless communications. We have modeled the indoor com-
munications medium, which is a multipath fading channel, by a discrete set
of Rayleigh faded paths. We have proposed new analytical techniques to
evaluate the probability of error for the receiver terminals studied in this
work. Numerical results reveal that, for the nondiversity receivers considered
here, Rayleigh fading is very hostile to this form of modulation/multiple-
access technique. The results also indicate that either some form of operation
to prevent Rayleigh fading or diversity operation to counteract Rayleigh fading
is required.

I. INTRODUCTION

A principal purpose of this paper is to evaluate the performance of
a direct-sequence Spread-Spectrum Multiple-Access (SSMA) system
using Binary Phase Shift Keying (BPSK) modulation for Indoor
Wireless Communications (IWC).

In the past decade there has been increased interest in a class of
multiple-access techniques known as Code Division Multiple Access
(CDMA) in which the mode of access is due primarily to coding by
spread-spectrum sequences. In contrast with traditional time- and
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frequency-division multiple access, these techniques do not require
accurate time or frequency coordination among the transmitters in
the system. This feature makes CDMA very attractive for IWC appli-
cations, because, as described later, an IWC takes place in a severe
multipath fading environment. However, the cost of the ease of access
is the increased channel bandwidth required by spread-spectrum codes.
The bandwidth spreading leads to a low spectral energy density level,
which is an advantage in military communications in hostile environ-
ments. It also offers the possibility of reusing overcrowded radio
frequency bands, as recently studied by the Federal Communications
Commission.!

SSMA is a common form of CDMA in which every user is assigned
a code sequence modulated onto a carrier signal according to the user’s
digital information. A high-rate code, that is, many code chips per
data bit, spreads the bandwidth of the information signal. Frequency-
hopped?™* and phase-modulated SSMA?® are two forms of SSMA. The
latter, also known as direct-sequence spread-spectrum multiple access,
is what we concern ourselves with in this work, for its multiple-access
capability and ease of implementation.

Since in direct-sequence SSMA the entire channel bandwidth is
available to all users of the system at all times, the code sequence
applied by each user in spreading the information band must have low
cross-correlation properties in order to achieve a low level of mutual
interference among the users. Several classes of code sequences suit-
able for this application have been presented by Sarwate and Pursely.®
A class of these codes that are employed in our work is the well-known
Gold sequences, which possess the low cross-correlation properties
required in multiple-access applications.

The chief purpose of this paper is to assess the communication
performance of a direct-sequence SSMA system in the presence of
multipath fading that is a characteristic of IWC. Our criterion of merit
is average probability of error as a function of signal-to-noise ratio.

There is a sizable literature relating to the effects of multiple-access
interference on the performance of a direct-sequence SSMA, among
which are Refs. 7 through 12. All of these consider the communication
channel to be a single path with no fading. In IWC applications,
because of the existence of many reflectors and scatterers, multipath
fading is severe. Preliminary impulse response measurements inside
office buildings indicate the severity of multipath fades.’®* Hence, the
attempt in this work is to incorporate multipath fading effects in the
analysis of average probability of error of direct-sequence SSMA.
Among the limited number of articles relating to the effects of multi-
path fading on the performance of direct-sequence SSMA is the work
by G. Turin'® that examines the structure of a number of receivers for
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mobile digital radio. However, the computer simulation results in Ref.
15 are restricted to the behavior of a single transmitter-receiver pair,
and therefore, no multiple-access interference is taken into account.
References 16 through 18 consider fading links, although Ref. 17
specifies single-tone, rather than multiple-access, interference. How-
ever, almost all studies have used measures other than average error
rate in their evaluation. Reference 18 presents a simplified analysis
by invoking the Gaussian assumption for the composite multiple-
access interference distribution previously addressed in papers by Yao®
and Mazo.!® We avoid any argument about the validity and range of
accuracy of the Gaussian assumption. In this work, unlike in Ref. 18,
we make no assumption about the distribution of the composite
multiple-access interference. By employing moment-generating tech-
niques, we evaluate the average probability of error in the presence of
multipath fading. In this evaluation we apply the numerical Gauss
quadrature integration.!® Specifically, our work extends the work in
Ref. 12 to channels with multipath fading.

In Section II we begin with a description of the SSMA system and
the channel model. We then derive the conditional error probability.
Evaluation of average error probability by the moment-generating
approach is described in Section III. Numerical results are discussed
in Section IV. Finally, a summary and conclusions are presented in
the last section of the paper.

II. THE MODEL AND THEORETICAL DEVELOPMENTS
2.1 System model

Consider the direct-sequence SSMA transmission system model for
K users depicted in Fig. 1. The kth user’s information signal b,(t) is a
sequence of rectangular pulses taking on values from the set {1} over
a T-seconds time interval. Hence,

bi(t) = ¥ b} Pr(t —jT), (1)
oo
where bj? represents the kth user data at the jth timing interval and
Pr(-) is a rectangular waveform of T-seconds duration. The kth user
is assigned a code waveform a,(t) that consists of a periodic sequence
of rectangular chips taking on values from the set {+1} each of duration
T. seconds. If a* represents the ith-chip value of the kth user, then,

alt) = 3 *Pr(t - iT.). @

i=—00

We assume each user code sequence has a period of N = T/T.. That
is, there is one period of code sequence per data bit.
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After spreading the information bandwidth to N times its original
value, by modulo-2 adding the direct-sequence code to the data sig-
nal and biphase modulating the result onto the carrier signal,
Acos(w.t + 0,)— where A is the carrier level, w, is the nominal carrier
frequency, and 6, is the carrier phase that is assumed to be uniformly
distributed between 0 and 2r—the transmitted signal of the kth user
becomes

Sk(t) = Aan(t)br(t)cos(wet + 6), k=12, ---, K (3)

2.2 Transmission channel model

In spread-spectrum transmission over multipath fading channels, if
the spread bandwidth of the transmitted signal exceeds the coherence
bandwidth of the channel, where the latter is proportional to the
inverse of the channel maximum multipath delay spread, the multipath
components can be resolved into a discrete number of Rayleigh faded
paths. The number of resolved paths depends on the channel multipath
spread and the spreading bandwidth of the signal, as discussed by
Proakis.? We assume that the IWC channel for the desired transmitter
and receiver (k = 1) depicted in Fig. 1 can be represented by an L-
paths Rayleigh fading model where a single transmitted pulse is
received via L-paths at the random time instants ¢, [=1, ..., L. We
assume t; is uniformly distributed over one bit period, i.e., over (0, T').
This is ensured by signaling at baseband at a rate less than the channel
coherence bandwidth. Hence, intersymbol interference is negligible

arl0) Acos(w,t +6;) ) a0 cos(:t)ct+(P1)
; ¢
b L T bylr)
1(t) P /¢98(t—t9l odt Lo ~——o— J,— it
2=1
THRESHOLD
DETECTOR
82(1’ Acos{wet + 02)
by (t}
2 Vy 8(t-75)
° .
L] L]
[ ]
a0 Acos(w,t + O}
by (t)
K Vi 8lt-7x)

Fig. 1—System model.
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here. Therefore, the low-pass equivalent impulse response of the
passband channel, h(t), can be represented by

L
h(t) = X Bib(t — ti)e’, (4)
=1
where 6(-) is the Kronecker delta, 8, is a Rayleigh distributed random
path gain, and ¢, is the random path phase, uniformly distributed
between 0 and 27. It is further assumed that all the parameters of all
paths are identically distributed over their specified range. These
assumptions are also related to G. Turin’s'® description of a discrete
multipath fading environment. As stated earlier, the L-paths model
stems from the fact that spread-spectrum signaling with a transmitted
signal bandwidth much wider than the coherence bandwidth of the
multipath fading channel enables the multipath components to be
resolved. Therefore, the channel seems to be fading-frequency selective
to the signal. In eq. (4) all the variables are time invariant.

To keep the analysis tractable we further assume that the kth
interfering user of the multiple-access system is linked to the receiver
of Fig. 1 via a single Rayleigh fading path with a uniformly distributed
random delay 7, ranging from zero to one bit period, T. The conclusions
will reveal that there is no loss in generality in making such an
assumption. Since our chief aim is to show what is not possible, more
elaborate models incorporating more noise sources could only
strengthen our conclusions.

Since 7, and t; are independent, the model results in a Rayleigh
faded interfering user sequence being received asynchronously com-
pared with the desired user sequence at the receiver in Fig. 1. In our
formulation we specify the Rayleigh distributed path gain of the
interfering users by Vi, k =2, ..., K. Therefore, as depicted in Fig.
1, the received signal for the fading model described above is given by

L
r(t) =AY Biai(t — t)bi(t — t)cos(wet — wety + ¢1 + 61)
=1

K
+ A 2 Viear(t — 71)br(t — 11)cos(wet — werr + Or) + n(t), (5)
k=2
where n(t) is white Gaussian noise with double-sided spectral density
of Ny/2 level and #, can be assumed to be zero with no loss of generality.
The desired receiver is assumed to coherently recover the carrier
phase and delay lock to the first arriving desired signal. Therefore,
after (1) the correlation operation that collapses the wideband coded
signal into a narrowband modulated signal and (2) the demodulation
process, a signal sample at the receiver low-pass filter output can be
expressed as

INDOOR WIRELESS COMMUNICATIONS 1185



T
£ = fo r(t)a;(t)cos(w.t)dt; (6)

or, using eq. (5) we have

T
) B fo ai(t = t)bi(¢ — t)ar(t)cos(¥i)dt

K T
2 j; ar(t = 72)br(t — 7x)as(t)cos(@r)dt + n, (7)

where 7 is a sample of the Gaussian noise with zero mean and
(NoT')/4 variance, ¥; = ¢; — w.t; and O = O — wTp.
2.3 Detection problem and average error probability

The assumption of phase and delay locking of the receiver to the
first desired modulated signal that is received enables one to rewrite
eq. (7) as

T
t=52 [ aomwar
0

LA T
‘2‘ ; B J; ar(t — t)by(t — t)as(t)cos(Y)dt
AKX T
+ E § Vk ‘J.: ak(t - Tk)bk(t - Tk)al(t)COS(@k)dt + n. (8)
We notice that from eq. (1),
bi(t) = 3 blPr(t - JT), (©)
j=—0

and therefore, eq. (8) can be expressed as

L
£= 5150+ 5 T AL Rua(e) + bhss()leos)

+ % k}l Vi[b%1Ri 1 (r4) + bERk(74)]cos(O) + 0, (10)
where b} represents the information bit being detected and b1, is the
preceding bit, which, due to the channel delay spread, affects the
detection of b} received on the first path between the desired trans-
mitter and receiver.

In eq. (10),

Ry () = J;[ ai(t — t)ai(t)de (11)
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and

T
Rii(t) = j; a:(t — t)a.(t)dt

are partial autocorrelation functions of the regenerated desired code
at the receiver, that is, a,(¢) with its delayed version received via the
Ith Rayleigh faded path, namely, a;(t — ¢;). We note that the coded
sequence received via the first path between the transmitter and
receiver of Fig. 1 is fully correlated with the regenerated sequence
a:(t), owing to the delay locking operation introduced at the receiver.
Also, due to the asynchronous arrival of the interfering user’s code,
eq. (10) contains partial cross correlations of the regenerated sequence,
a;(t), and a delayed version of the interfering codes defined by

Rpi(7p) = J; ar(t — 7r)a:(t)de (12)

and

A

T
Rii(7) = f ar(t — 7r)aL(t)dt.

Tk

In the second term of eq. (10), if the polarity of the two adjacent data
bits b1, and b} happens to be the same, the sum of the two partial
autocorrelations turns into a full autocorrelation with the same polar-
ity as b}. This could have been useful if the path phase were known.
However, due to the random path phase, the second term in eq. (10)
only adds to the channel noise. In general, signals delayed by amounts
outside +7, seconds about a correlation peak in the correlation of
a;(t) are attenuated by an amount determined by the processing gain
of the code, that is, N = T/T.. To assess the degree of degradation
that is due to modulated partial correlation, in a separate case, we
postulate having off periods of a T-second period between information
bits, which forces to zero the undesired term containing b, in eq. (10).
Analysis of this case is presented in Appendix A, and associated
numerical results are given in Section 4.2.

For now, we return to our normal transmission policy, where no off
period is allowed between adjacent information bits.

The objective of the detector is to compare the received sample in
eq. (10) with a preset threshold in order to make a decision on the
polarity of the data bit being detected, that is, b}.

Now the detector makes a wrong decision if £ is negative while bj =
+1, or if £ is positive and bj = —1. We note that during the detection
interval of b} the other three data bits in eq. (10), namely, b%,, b%,,
and b§, k # 1, can independently take on {£1}. Hence, the conditional
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probability of error is expressed by

Pelﬂx,xl,xz,z =

{B1£+£(X1+2)+ﬂ<0|b0 }

1,
2

where
L

X
! EZT

L

2= ET

{bLiR1(8) + Rl 1{t)}cos(), (14)

{bLiR11 () — Rl,l(tl)}cosw/l), (15)

and

K
z—ZVk

{01 Ry (1) + kakl(Tk)}cos(ek)~ (16)
= T

We can rewrite eq. (13) as

AT AT
1 b+ (ut2)
Peigxn. = = |erfc
4 U@
AT AT
IS5 > "3 (%2 + 2)
+ erfc , (17)
a\/§
where
erfe(p) = 2 f ) e™dy (18)
N

and ¢ is the standard deviation of the Gaussian noise. We notice that
variables x; and x, in eq. (17) are in a conjugate form and have
identical even moments. This is because the data symbols have zero
mean; therefore, all the odd moments of x; and x, are zero. As a result,
all the cross-product terms in the derivation of the even moments
become zero. It is then easy to see that the even moments of x; and x,
are identical. Now, to evaluate the average error probability—as will
be explained in the next section—we apply the moments of the
interference terms along with the numerical Gauss quadrature inte-
gration.! It is not too difficult, then, to observe that instead of using
eq. (17) we can use the following:
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AT
1 ry 81— (x + 2)]
= erfc , (19)
2 o2
where x in this equation can be either x; or x;. In other words, both
egs. (17) and (19) will result in the same average error probability

under evaluation by moment-generating functions.
Also, recalling

P e|Byx.z

VN, T
o= (20)
2
and observing the bit energy,
2
B=42, (21)

we can express eq. (19) as

P = % erfe { %’; (8 — (x + z)]}. (22)

If instead of a sample value of a Rayleigh random variable in eq. (22)
we had a constant value of dy, then eq. (22) would become

P,..= % erfc { % [do — (x + z)]} . (23)

Now, in the absence of any multipath fading and multiple-access
interference, do = 1, and this equation becomes

P, = 5 erfc ( No) , (24)

which is the well-known®® performance of a coherently demodulated
BPSK signal.

In the Rayleigh fading case the actual received signal-to-noise ratio
is

E,
= 2 2
Y ﬂl N0 ’ (25)
and its average is
E,
= 2y 22
= BBl 5 (26)
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where Ef-} denotes the expected value. Since 8, is Rayleigh distributed,
v has an exponential density. Hence,

Pelx.z = J(: Pelﬁl,x,zp (v)dy, 27)
where
1
ply) = — e~/ (28)
Yo

and

Pe|x,z=if erfc \/;—- \/E’(x+z) e gy, (29)
270 Yo Ny

This may be integrated by parts if we apply the following change of

variable:
— Eb .
t= vy \/; —O(x + 2);

and after some manipulations it results in

Pelx,z = ';‘ {erfc I:— \/I_EV_I;'(x + 2)]

Vvo E,
-erfc [— — (x + 2) 1_\/';:|} . (30)

Interested readers are referred to Appendix B for a detailed derivation
of eq. (30) (also see Ref. 21). We notice that in the absence of multiple-
access interference and a single-path fading of the desired signal, eq.
(30) becomes

=
’Yo+1 ’

which is the ideal performance of a single-path Rayleigh fading chan-
nel.?

Now using Gauss Quadrature integration!® the average probability
of error can be obtained numerically, by averaging the conditional

1
P, = E [1 - (31)
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probability of eq. (30) over the interference term, x + 2. This is
accomplished by first evaluating the N,, = 2N, + 1 moments of x + 2,
which are applied in evaluation of the N, weights and nodes of the
Quadrature Rule.'® Hence, the average probability of error is

_E_'l g-?
Vro N, ™ E, Vo
———exp |- erfc \ — §; —, (32)
Vyo +1 Yo+l N\/'yO+1
where W;’s and {j’s are the N. weights and nodes of the Quadrature

Rule.”® A detailed formulation of this is given in Appendix C. By the
same token, the average probability of error in eq. (23) becomes

e | \/2
e o E g erfc { 1\—,0 (do - f,)} . (33)

lIl. MOMENT-GENERATING APPROACH

The average probability of error expression in eqs. (32) and (33)
assumes 2N, + 1 moments of random variable (x + 2), which is a
function of independent random parameters: 8, t;, T, Y1, O, and bf.

Furthermore, x and z are independent and symmetrically distrib-
uted; hence the odd moments of (x + z) are all zero. Therefore, having
the even moments of x and z, one can determine the moments of
(x + z) using the simple binomial rule, that is,

m

Efx+2)" =3 (’f) E{x'}-E{z). (34)

=0

In this section we derive the moments of z, and by similarity we
deduce the moments of x.

Since

K

zZ= 2 2k

E=2

where
2r = —k {b’ile,l(Tk)v"' bng,l(Tk)}cos ®k7
T
then,
Efzi™) = sz E{Vi™}-E((cos O™ [b%:1Rux(r4) + biRia(r)F™).  (35)
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To evaluate the second expectation of the right-hand side of eq. (35),
since O is an independent random variable, we can deal with it
separately.

That is, we first can evaluate

(o)
m
4m
and then find the second expectation of eq. (35) as

&
e

T
T'J; [b%1 Ry (12) + bERw1(72)]*"d7s,

E{[cos 0,)*™} =

21Re1 (7)) + b(’;Rk,l(Tk)lzm}

where the expectation in H is over the random delay 7.
Now we can expand the latter integral over N chips period. Hence,

2m
(m) 1 N‘ (T,
H= am [b%:Rei(72) + bRk ()] dre.
n—O

We can then use the standard notations of Pursley’ to evaluate the
correlation functions. This is accomplished by assuming rectangular
chips and noting that for any 0 < nT. < 7 < (n + 1)T, = T, as shown
by Pursley,’

{Rk,l(r) A, T. + B, (r — nT.)

Rui(r) = A, T. + B, (+ — nT.)’ (86)
where
A,,, = Cpy(n — N)
Bn, = Cri(n + 1 = N) — Cpi(n = N),
An,=Cu(n) k=12 .--,K
B,,k’1 = Cpi(n + 1) — Cpy(n) 37)

where the discrete aperiodic cross-correlation term Cp;(.) is related
to chip sequences af and aj via
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[ N-1-n
Y aa,, O0sns=N-1
j=0
9 N-1+n
Cri(n) = Y a,ad —-(N-1)=ns=s0o. (38)
Jj=0
0 else

Therefore, H becomes

(n+1)T,
. f [An,, T. + By, (r — nT)]”

TL‘

JAn. T, + B, (tx = nT)P" dr,.  (39)

LS Mgy

Notice that in deriving eq. (39), because of the even moments, b*,
and b§ are averaged to one. Now in eq. (39), by changing 7. — nT. to
WT., H becomes

H=

2m
T3m+1 (m) N-1 m < )

T n=0 r=0

{ fo [An,, + Bn, WI*-[A,,, + B, W]Z""‘”dW}. (40)

Therefore, to determine H we have to solve
1
I""y’r" = f [A"“ + Bnkl W]2r [Ankl nk,l W]Q(m-r)dW- (41)
0

This can be done recursively, using integration by parts, and the result

is
(%)
3 i (Bn,,l)i 1 i
Ton= X CV g S Gr ) (im0 i+
i+1 _
{(An,, + n“)z’" (Anm + Bnk,l)z(m—r)+i+1

- (A )2r—i. (A"k,l)2(m—r)+i+l}. (42)

A detailed derivation of Ty, ., is included in Appendix D. For H in eq.
(40) we now have

LC 31
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2m
T3m+l ( m)
T 4m n=0
and for E{z3™} in eq. (35),

H=

2m
N-1 m
E{szm} = <m> E{v%m}. 1 2 Z (22’;1> Fm,r,n- (43)

4m N2m+1 o =0
We notice that for a Rayleigh distributed V;,*
E{Vi™} = 2™.05.(m)), (44)

where v, = E { Vi/2} is the average strength of the Rayleigh faded path
associated with the kth interfering user. Note that assuming equal
average strength cochannel interferers under a fixed total interference
power corresponds to a maximum average probability of error in digital
communications. Therefore, the results are conservative with respect
to this assumption.
To find the moments of
K
2= Y 2,

k=2
we can use a three-step method prescribed in Ref. 12, where from the
cumulants of random variable z;, v,(2:), the moments of z are arrived
at. This simple algorithm is outlined below.

The first step is to find
M,,, = E{zi™}
and then
m—1
'Ym-&-l(zk) = Mm+1(zk) - Z (’;L) 'Yr+1(zk)'Mm—r(zk)
r=0
with
‘Yl(Zk) = M,(zx) = 0. (45)

The second step is to find
K

Ym(2) = X Ym(2e). (46)

k=2

The third step is to find

Mm+l(z) = 7m+l(z) + mi (':L) 7r+l(z)'Mm—r(z)

r=0
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with
M, (2) = v1(2). (47)

As stated earlier, we can use a similar method to find the moments
of x. Recall that

L
x= Y x,
=2
where

5= % (bLi Ry (r)) + bbRus(r)lcos(¥)

and that use of the technique given above to find the moments of z

yields
2
(r? ) sim). Nil g 48
- 4m N2m+1 m,r,n, ( )

E X7
n=0 r=0
where
2 - (B, 1
Am,r,n = 2 (_1)' _‘_—IT,_I'__*
& VBT D
(%)
i {(A )2r—1
2m —r) + i+ 1) ma + Boy
i+1
. (Anm + B‘nl’l)Z(m—r)ﬂH’l _ (Anl’l)Zr—i. (Anm)Z(m—r)-H}l} (49)
and

E{pi™} = 27l - (ml),

where po; is the average strength of the /th path. Again, as stated
earlier, equal partitioning of interferers’ strength for a fixed total
cochannel interference power corresponds to a maximum average error
probability.

Having the moments of x; we can find the moments of x by a similar
method, as described for z. Once the moments of x and z are available,
we can use their independence property and solve for the moments of
(x + 2).

IV. DISCUSSION OF NUMERICAL RESULTS

In this section the average probability of error as a function of
signal-to-noise ratio is evaluated for various channel configurations.
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We will first discuss our spread-spectrum code-generation method,
and then we will exhibit and discuss the behavior of the average
probability of error.

4.1 Code-generation method

Pseudonoise (PN) sequence codes applied in our numerical evalua-
tions are Gold sequences® obtained from multiplying two primitive
polynomials,

hx)=x"+2*+1 (50)
and
ho(x) =x" + ® + x> + x + 1, (51)

represented by octal numbers 211 and 217, respectively. Hence, the
resulting sequence is

hx)=ax"+x°+ 28+ 5+ +x* + 22 +x+1, (52)

represented by 41567, in octal notation.

The number of shift register stages required to generate the codes
from h,(x) and hy(x) is n = 7, and the codes periodis N =2"—1 =
127.

To find the actual codes, we used initial loadings of Ref. 23. These
initial loadings are shown to generate a class of Gold codes known as
Auto-Optimal with Least Sidelobe Energy (AO/LSE). In general, with
a generator polynomial of the form

h(x) = hox™ + hyx" '+ «.. + hyyx + h,
and for an initial loading of
Qo = (o0, 1, -, 0tn-1),
we can use the following recursive formula to generate the codes:
Qjsn = B1Qjin-1 D -+« © hyyaj1 © hpay, j=0, (53)

where @ stands for modulo-2 addition. Notice that in eq. (53) for
simplicity we have represented the chips by « instead of a¥ as intro-
duced in eq. (2). The generated codes have three-valued autocorrela-
tion function sidelobes and a three-valued cross correlation taking on
values from the set {+15, —1, —17}.

In our numerical evaluation we used ten initial loadings.?? Hence,
this covers generating ten periodic code sequences for a hypothetical
community of users sharing the common channel band on a spread-
spectrum multiple-access basis. Once the code sequences are obtained,
we compute the partial correlation coefficients of eq. (37), which are
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used in conjunction with egs. (35) and (48) in finding the moments of
x and z as described in Section 3.1.

4.2 Numerical results

In what follows we assume the signal communicated between the
desired transmitter/receiver pair is received via up to ten distinguish-
able paths, that is, L in eq. (4) is assumed to be deterministic and at
most equal to ten. Also, unless otherwise specified, we assume the
transmitters maintain some form of average power control so that the
signals from different transmitters arrive at the receivers with the
same average power. This kind of average power control in a wireless
PBX application is not too difficult, because the users are connected
via a star network.

We consider two separate cases:

Case 1—Suppose a terminal in the IWC environment can be moved
slightly so that in the case of strong fading of the acquired path,
another path, hopefully stronger, can be acquired and then the ter-
minal remains stationary. In this case, if there is not much movement
in the channel environment, one may assume g, is fixed and perhaps
set 8, to some constant value, dy, and use eq. (33) to evaluate the error
probability.

Case 2—All the desired signals arriving via different paths at the
receiver have Rayleigh distributed random gains. This is a scenario in
which the transmitter terminals are mobile and multipath gains are
Rayleigh with respect to geographic position of the terminals. There-
fore we have to use eq. (32) to compute the average error probability.

In all our computations 15 moments of (x + z) were found to be
quite adequate in accurately computing the average error probability.
All the average path gains between the desired transmitter and re-
ceiver, po’s, were assumed to be equal. This assumption also applies
to the average path gain of the links between the K — 1 interfering
transmitters and the receiver, »,’s. As stated earlier, this assumption
will result in conservative average error probability values for a fixed
total interference power.

Figure 2 depicts the average error probability as a function of both
average faded and unfaded signal-to-noise ratio corresponding to Case
1. In the same figure, performance of an ideal coherent BPSK demod-
ulator is shown. In Fig. 2 we observe two sets of results of eq. (33)
corresponding to two different values of dy. Note that all the interferers
are Rayleigh faded with a hypothetical average strength of —14 dB.
For dy = 1, that is, when the desired signal is 14 dB stronger than each
interfering signal, the solid curves in Fig. 2 exhibit the performance.
The difference in the average strength can be provided by “capture.”
That is, it can be due to a shorter distance or a higher transmitted
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10 d2 =-14 dB
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Fig. 2—Error rate performance for a fixed acquired path gain and Rayleigh
interferers.

power. As can be observed, the multiple-access interference for at least
up to 10 active users can be tolerated, and at an average error
probability of 107° only about 2-dB signal-to-noise ratio degradation
is experienced relative to the ideal situation. Therefore the receiver
offers an acceptable performance as long as it is operated with capture.
Next we demonstrate the performance for when the desired signal is
also 14-dB faded, as the interferers are. This is shown by the dashed
curve in Fig. 2. As observed, the performance in this scenario is
unacceptable.
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_ Fig.3—FError rate performance for Rayleigh acquired path gain and Rayleigh
interferers.

We now consider Case 2, where the terminals are to be mobile and
the receiver is to cope with the first received Rayleigh faded path it
acquires. The average probability of error as a function of faded and
unfaded signal-to-noise ratio is depicted in Fig. 3. Again the hypo-
thetical average path strength on all the Rayleigh faded paths was
taken to be —14 dB. As can be observed, a simple correlation receiver
that is not equipped with any diversity means or error correction
capability exhibits a poor performance for the Gold sequences adopted
in this work. Needless to say, the ideal performance of such a receiver
in the absence of any multiple-access interference—but with a single
Rayleigh faded path—is poor to begin with, as depicted in Fig. 3.
Comparing the dashed curve of Fig. 2 and the curve in Fig. 3 corre-
sponding to the same parameters reveals that the performance in the
latter case is much worse than the former because of the Rayleigh
gain of the acquired path, as expected. In a multiple-access environ-
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ment when a transmitter and a receiver are communicating, as soon
as a second transmitted signal comes on the air, the Rayleigh faded
path between the interfering transmitter and the desired receiver can
be stronger than the one between this receiver and the desired trans-
mitter. This creates a near-far situation owing to the Rayleigh fading
channel model. We notice that the degradation between the case of
having only 2 or 10 active users is insignificant in this case, since the
initial jump in error probability is large with just two users. Such a
large jump, as will be seen later, is due to the insufficient processing
gain provided by the N = 127 period codes for a Rayleigh channel. To
improve this situation, longer sequences and/or diversity means are
desired. The aforementioned numerical results assume L = 10 fading
paths of equal average strength between the desired transmitter and
receiver. Evidently, the finite cross correlation among the codes,
although small in magnitude, can cause cochannel interference limi-
tation due to the Rayleigh fading nature of the environment. There-
fore, as the thermal noise tends to zero, the average error probability
saturates to an unacceptable value. To gain some insight into this
problem, we consider the following example.

Assume that we have a system of two users where there is a single
Rayleigh faded path between the desired transmitter/receiver pair and
that there is also a single Rayleigh faded path between the interfering
transmitter and the desired receiver. A sample of the received signal
after correlation and filtering is

AT
s=pSl o+ A2 2 21 Roa (1) + B ()eos(0) + 7, (54)

where 8 and v are Rayleigh gains of the desired and interfering paths,
7 is the relative uniform delay experienced by the interferer, and 0 is

the relative interferer path phase uniformly distributed over 0 and 2.
Denote

u= %‘1 [b2_1R2,1 (T) + b%RZl (T)]COS(O)' (55)

From eq. (30) the average error probability conditioned on u and v is
_E ulv?
1 \/E V7o No
P,y == Yerfc | —uv — | —-———exp |———
2 N() ’/70 +1 Yo + 1

-erfc _—'YOTluU No , (56)
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where

E,
— 2
70 E{ﬁ } NO M
Let
E,
— 2,2
¥ =u‘v No'
Then,

%=Mﬂﬂﬁ%-

We assume that v and 8 have the same mean-square value, that is,

vo = Elw?) 12
and
Yo = voE{u®. (57)
Denote
e = E{u?,

and average the conditional error probability of eq. (56) with respect
to v. That is, evaluate

1 o0
Pelu = f Pe|u,ue_(‘b)/(¢0)dll/- (58)
Yo Yo

This amounts to

po 1,1 Vv Vr(e+1)
22 T a, frtrtl

Vyolyo + 1) €Yo
5 - . (59)
2o+ 70+ 1) VEYvE + evo + 10 + 1
Notice that when ¢ = 0, that is, when there is no interferer, this is the

standard Rayleigh faded channel performance.
If we average eq. (59) with respect to © and 7 and let vy — o, we get

N-1
Lim P, = @ Y [Cl(n+ 1= N)+ C(n— N)
Yo~ ® n=0

+ Ci2(n + 1 = N)Ci2(n — N) + Ciz(n + 1)
+ Cis(n) + Cia(n + 1)Ciz(n)], (60)
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where C;,(-) represents the aperiodic cross correlation of eq. (38).
The sum in eq. (60) has been approximated by Pursely.” When we use
his approximation the saturation level of the probability of error in
the absence of thermal noise is

. 1

M P =N
where N is the period of Gold sequences applied here. Therefore, as
observed earlier, we can reduce the saturation level by increasing N.
In Fig. 4 the average probability of error is depicted for the case in
this example. As one can observe, the moment approach yields the
same saturation level in the probability of error as predicted by eq.
(61).

Finally, as discussed earlier in Section 2.3, we consider the case of
having an off period of a T-second period between the adjacent
information intervals in order to avoid partial correlation interference
from an adjacent bit. In terms of efficiency this is obviously equivalent
to reducing the data rate by a factor of 2. The formulation for this
case is in Appendix A, and the results for Case 2, where there is no
unfaded path available between the transmitter and the receiver, is
depicted in Fig. 5. As observed, the return in performance is negligible
compared with the results in Fig. 3. To be more specific, the average

(61)

L =NUMBER OF PATHS
K =NUMBER OF USERS

AVERAGE ERROR PROBABILITY, P,
g 3
w N
| !

107 | | ] | |
10 20 30 40 50 60
E,INg
1 I 1 I L ] i
0 6 16 26 36 46
Yo

SIGNAL-TO-NOISE RATIO IN DECIBELS

Fig. 4—Error rate performance of two-users system example.
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Fig. 5—Error rate performance without adjacent bit overlap.

error probability at large signal-to-noise ratios improves almost by a
factor of 2. This improvement can intuitively be predicted considering
that the cause, that is, partial correlation interference, is only due to
an adjacent bit overlap.

Again the average path strength of all the Rayleigh faded paths in
Figs. 4 and 5 was assumed to be —14 dB.

Therefore, without some form of diversity or error-correction coding,
the situation as described in Case 2 is hopeless. Of course, other
multiple-access fading environments would suffer similar penalties in
performance if the access orthogonality could not be maintained. For
example, in Frequency-Division Multiple Access (FDMA), any spec-
tral overlap caused by imperfect filtering of adjacent frequency slots
can create a similar situation. The same can be said about Time-
Division Multiple Access (TDMA), if burst modems used in this
application introduce any interburst interference. Consequently, re-
gardless of the mode of access, to overcome the Rayleigh fading in
IWC applications a diversity of some form seems necessary.

V. SUMMARY AND CONCLUSIONS

Current work reported herein extends previous results”® in the
following respects. Analysis of the average error probability for Direct-
Sequence Spread-Spectrum Multiple Access (DS-SSMA) is extended
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to include the effects of multipath fading, typically experienced in an
IWC environment.

For spread-spectrum transmission the IWC environment may be
modeled by a discrete number of resolved paths with each path having
a Rayleigh distributed gain, a uniformly distributed phase, and a
uniformly distributed delay that can vary from zero to one information
symbol period. The latter assumption is made to ensure having a
negligible amount of intersymbol interference. We assume a coherent
receiver that uses no diversity information to detect the transmitted
symbol. We use average probability of error in our performance
evaluation. The method of moments is applied to multipath and
multiple-access interference, and Gauss quadrature integration is used
in the error probability evaluation.

From our numerical work, exhibited in a sequence of graphs, we
draw the following conclusions:

1. If a non-Rayleigh faded path exists in an IWC environment, a
simple receiver can operate with DS-SSMA in a capture mode with a
graceful performance degradation caused by multiple-access interfer-
ence.

2. If all the discrete paths have Rayleigh gains and guaranteed low
average error probability is expected at all times, the simple non-
diversity coherent receiver considered in this work will not be able to
cope with the Rayleigh channel fading with spread-spectrum codes of
period N = 127. Therefore some form of diversity seems absolutely
necessary. Otherwise, very long code sequences are needed to decrease
the error probability of the interference-limited system.

3. The results of this work indicate that in the absence of diversity
even small amounts of multiple-access interference can be harmful in
a Rayleigh fading IWC environment. Therefore, if a channelized access
such as frequency-division or time-division multiple access is to be
employed, then careful channelization, that is, tight filtering in the
case of FDMA and isolated transmitted bursts in the TDMA case, is
necessary to maintain a low probability of error, given that the
synchronization problem of a channelized access in a multipath envi-
ronment can be solved.
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APPENDIX A

Performance Evaluation in the Absence of Partial Correlation

Consider the case of having T-seconds off periods between adjacent
information bits. The decision variable of eq. (10) is changed to
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e=m A0+ A0 z B bR ()cos)
K
+ AL 5 Vi bERy. (71)cos(0:) + . (62)
2 54T
So now
< B
x = 2 7. 11(t)cos(¥) (63)
and
K Vk R
z= ) — Rp1(74)cos(6y). (64)
=2 T

To find the moments of x and z we follow a method similar to the

one in Section III:
(2m>
(n+1)T,

%T(tl)dth (65)

E{x[?m} T2m+1 (2m)(p0‘

n=0 nT,
where
= 2 bt (tcostwn) (66)
and
Rii(t) = A, T. + B, (t — nT.). (67)
After proper change of variables we can define
N-1 1
T2m+1 2 [Anu n” ]2mdx (68)
n=0
1 A "
“em+ D o Al + Ba, P = (A P, (69)
Lo}
Hence,
(m)
m 1 N
E{x?m} i 2m.p8:(m!).—4—m—w n§0 I‘m,m
where
1 «
Fm,n ﬁ__i, B {[Anl . "1 l]2m+1 [Anu]2m+1}; (70)

LOBY

from here on the problem is identical to the one solved in Section III.
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APPENDIX B
Integration of Conditional Error Probability

Denote
To = —(x + 2) VE»/No
and
I= 1 erfc(s/'? + To)e " ody.
270 Jo

Letting vy + I'c = t we have

I=-— 1 f —2(t — To) erfe(t)e~V/0¢-To gy,
2 Jr, Yo

Now we integrate by parts in eq. (73) to get
I= 1 erfe(Ty) — = f‘” e~ W) t=To’ =2 gy
2 Jr vYro )

Furthermore,

00
- T2 —
f e~ W/r0)(E-To%y ‘2dt
To

o0
= e“'%/(“/a"'l) f e—l[(mﬁ/\/‘v_o)tl—ll‘o/\/m]lzdt,
To

and making the change of variable

x = \ /’Yo+1t_ FQ
Yo Vyo(vo + 1)

in the integral in eq. 75, we get

_‘/E e~ To/(vot+1) jg__ erfc (FO __’YO_.) .
2 W V 3o+

Using this result in eq. (76) in the second term in eq. (74) gives

v
I= 1 {erfc(l‘o) N
2 V‘)’o + 1

o

'S vy
.exp | — erfc (T — ) ¢,
: Yo +1 V’YO +1

which is the desired result in eq. (30).
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APPENDIX C
Formulation of Gauss Quadrature Rules From the Moments of (x + z)
Denote the first N,, = 2N, + 1 moments of (x + z) by the sequence
{un),n=0,1,2, ..., 2N,. In the problem at hand the random variables
are evenly distributed. Therefore, as previously stated, the odd mo-
ments are all zero.
Let M =[m;], i, =1,2, --- 2N, + 1, be the Gram matrix of the
system with

mij = pisj-2. (78)
Thus,
1 0 oo - . . un, |
O M2 0 . . . . O
w2 0 pe - - - - unae
M= Do @
L ,'LN“ . . . - . - #ZNC

where uo = 1. Also, let M = R”R be the Cholesky decomposition of
M, where T represents the transpose matrix with

i-1 1/2
ry = (mii - 2 r%i) (80)

k=1

-1
rij = (mi,- - Z rkirkj>/r,~,~, l<] (81)

k=1

and

Because all the odd moments are zero, it follows that r;; = 0 when
(i +j) is odd. We now have an upper triangular matrix R = [r;],

,j=1,2, ... N.+ 1. The matrix is used to calculate a set of numbers
{6;,7=1,2, ---, N, where
5 = Tixijh . (82)
! Tjj
Now we construct a tridiagonal matrix J as follows:
[0 & 0 . . . 0 ]
6 0 & - - . 0
0 6 0 . . . 0
e : (83)
ON~1
N P | ]
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where J is an N, X N, matrix.

By finding the eigenvalues and eigenvectors of the matrix J, it is
possible to arrive at the weights and nodes of the quadrature rule. Let
the eigenvalue equation be

Jg; = Ng;. (84)
Then the quadrature rule for the sequence (W, {;) in eq. (32) is given
by the set of numbers {g};, \;},i =1, 2, --- N,., where g}, is the square
of the first element of the eigenvector g;, and ); is an eigenvalue in eq.

(84). Hence, if the first 2N, + 1 moments are calculated, then the
resulting quadrature rule will contain N, weights and nodes.

APPENDIX D
Evaluation of Even Moments

Consider the integral

1
Iy = J(: (a + bx)"-(c + dx)"dx. (85)

This integral can be expanded to

I _ (a+b)n(c+d)m+1 3 ancm+1
o~ d(m + 1) d(m + 1)

nb 1 n-1 m+
S d(m+1) fo (@ +bx)"™"-(c + dx)™"'dx, (86)

where we now have to solve for

1
IL = f (a + bx)" (¢ + dx)™*idx. (87
1]

If we integrate by parts in eq. (87) and substitute the result into eq.
(86), we find that

~ ;)
fo=2 (-1 %’(i i 1) (m +li + 1>
i+1
[(a + b)"i(c + d)™+t — g ie™i*]. (88)
In the problem considered in the main body of the paper,
a=A4,, b=18B,, ¢c=A, and d=B8,.

Thus, I, takes the form
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, ' (2r)

_ o3 i Ba) 1 L

IO = Pm,r,n ‘Z‘a ( 1) (Bn)i+1 (l + 1) (2(m — r) + 1+ 1)
i+ 1

{(An + Bn)2r—i_(An + Bn)z(m—r)+i+l _ A%r-i-z‘i?,(m_')+i+1}. (89)
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In this paper we extend previous work on isolated-word recognition based
on hidden Markov models by replacing the discrete symbol representation of
the speech signal with a continuous Gaussian mixture density. In this manner
the inherent quantization error introduced by the discrete representation is
essentially eliminated. The resulting recognizer was tested on a vocabulary of
the ten digits across a wide range of talkers and test conditions and shown to
have an error rate comparable to that of the best template recognizers and
significantly lower than that of the discrete symbol hidden Markov model
system. We discuss several issues involved in the training of the continuous
density models and in the implementation of the recognizer.

I. INTRODUCTION

In the literature a wide variety of approaches have been proposed
to recognize isolated words, based on standard statistical-pattern-
recognition techniques.!® The most successful of these has been the
template-based recognizer approach, which uses Dynamic Program-
ming (DP) as the method for comparing patterns. Although the
template-based approach using DP has been very successful, alterna-
tive recognition strategies have been studied because of

* Authors are employees of AT&T Bell Laboratories.
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1. The high computational cost of the DP approach;

2. The difficulties in extending the DP recognition paradigm to
more difficult problems—e.g., connected words, continuous speech;

3. The desire to use a robust parametric model, rather than the
nonparametric template, to represent the speech;

4. The desire to use speech units other than words in some circum-
stances—e.g., syllables, demisyllables, phonemes.

For one or more of the above reasons, several different approaches
have been proposed, such as using Vector Quantization (VQ) in the
DP computation,* using word-based vector quantization to eliminate
the DP processing,’ using VQ as a front-end preprocessor,” and using
Hidden Markov Models (HMMs) to represent the speech signal.®%!
Although the VQ-based recognizers have performed very well in iso-
lated-word recognition tasks, and have significantly reduced the com-
putational costs, they have done very little to alleviate the difficulties
in extending template-based approaches to large vocabulary connected
and continuous speech recognition applications. As such, the HMM
recognizer has been and will continue to be of great interest both
because of its potential low cost, and because it is a parametric model
of the speech signal that can model various events (phonemes, sylla-
bles, etc.) in the speech signal.

Although HMMs have been used in a wide variety of speech sys-
tems,*®!! our experience with their application to speech recognition
systems has been considerably less than with that of template-based
approaches. Hence each new experiment using HMMs gives us a
better understanding of the strengths and weaknesses of such models
as applied to different speech recognition tasks. In particular, in our
own work, we have been studying how to apply HMMs in isolated-
word, speaker-independent speech recognition applications over
dialed-up telephone lines. In a previous investigation,® we studied
HMMs based on observations consisting of discrete symbols from a
finite alphabet (i.e., vector-quantized LPC vectors from a fixed-size
code book). Work performed at IBM,'? CMU,® and more recently at
Phillips™ has used continuous HMMs where it was assumed that all
parameters of interest had Gaussian distributions.

The HMMs to be discussed in this paper are based on continuous,
mixture density models of the distribution of Linear Predictive Coef-
ficient (LPC)-derived parameter vectors (e.g., cepstral vectors, log-
area ratio vectors, etc.). We have devised training procedures for
obtaining maximum-likelihood estimates of the parameters of the
mixture distribution. We have applied the models to the problem of
recognizing isolated digits. Our results show that the average error
rates of such HMM recognizers are essentially identical to those of
the best template approaches using DP methods, and considerably
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lower than those of an HMM recognizer with a discrete symbol VQ
front end.

This paper is organized as follows. In Section II we present the
continuous mixture density model. We show how we obtain the max-
imum-likelihood estimates of the model parameters from a training
set of data, and how the overall recognition system is implemented. In
Section III we describe a series of experimental evolutions of the
recognizer and present results on HMM systems with several different
sets of parameters. In Section IV we discuss the results and relate
them to earlier work with template-based approaches. We also discuss
computational aspects of the system in this section. Finally, in Section
V we summarize our results.

II. THE CONTINUOUS MIXTURE DENSITY HMM

Figure 1 shows the type of HMM we are considering here. It is
based upon a left-to-right Markov chain that starts in state 1 and ends
in state N. The observed signal is assumed to be a stochastic function
of the state sequence of the Markov chain. The state sequence itself
is unobservable (hidden). The goal is to choose the parameters of the
HMM to optimally match the observed characteristics of a given
signal.

The parameters that characterize the HMM of Fig. 1 are

1. N, the number of states in the model.

2. A = [a;],1 =1,j = N, the state transition matrix, where a; is the
probability of making a transition from state i to state j. As shown in
Fig. 1b, for left-to-right models we use the constraint a; = 0,j <1i,j >
I+2.

3. B, the observation probability function.

If we assume that the signal to be represented by the HMM consists
of a sequence of observation vectors O = {0, O, - - - , Or}, where each
0; is a vector that characterizes the signal at time ¢ = i, then we can
consider two types of observation probability functions, namely, dis-
crete and continuous. For the discrete type we replace O; by one of M

a a9 33 a4 agg = 1.0

a a. a
STATE 13 24 35
DENSITY:
byix) by (x) bylx) by(x) bg(x)

Fig. 1—Representation of a left-to-right hidden Markov model with five states.

DIGIT RECOGNITION 1213



possible symbols (via some type of VQ) such that the distortion
in quantizing O; is minimum. Let j be the state at time ¢. Then B =
[bir], 1 =j = N, 1 =<k =< M is the probability of observing symbol k,
in state j.

In the continuous case we have the probability density function
B={b;(x)}, 1 =j < N, where b, (x)dx is the probability that the
vector O, lies between x and x + dx. The types of density functions
allowed for b;(x), for which a reestimation algorithm exists, include
strictly log-concave densities,* elliptically symmetric densities,'® and,
more recently, mixtures of strictly log-concave or elliptically symme-
tric densities.’® In this paper we will consider Gaussian mixture
densities of the form

M
bj(x) = kzl Cie A (X, pir, Ujp), (1)

where _#'(x, u, U) denotes a D-dimensional normal density function
of mean vector p and covariance matrix U.

To summarize the discussion above, a complete specification of a
continuous mixture density HMM requires choosing values (and/or
parameter estimates) for the following:

N-—number of states in the model

M—number of mixtures

D—number of dimensions in each vector

A =[a;]—state transition matrix

C=[cj.]—mixture gain matrix

1= [pjra]—means of the mixture components

U = [ Ujge] —covariance matrices of the mixture components.

For the work to be presented here, we have chosen N = 5 states on
the basis of previous studies with discrete symbol models.® Also, our
signal observation vectors (e.g., cepstral vectors, log-area ratios, etc.)
are derived from the LPC vector of an eighth-order model of the
speech signal.

2.1 Training the HMM

- For each word, v, in a vocabulary of V words (V = 10 for the digits),
an HMM is designed; i.e., the set of parameters above is estimated
from a training set of data representing multiple occurrences of the
vocabulary word by a wide range of talkers. Since a convergent
reestimation procedure exists for the continuous mixture model,'® it
is, in theory, possible to randomly choose initial values for each of the
model parameters (subject to the stochastic constraints) and let the
reestimation procedure determine the optimum (maximum-likelihood)
values. However, experience with the reestimation procedure'” has
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MODEL
INITIALIZATION

A

STATE SEQUENCE
SEGMENTATION

CONVERGENCE
?

ESTIMATE PARAMETERS
OF B(e)
TRAINING VIA SEGMENTAL
K-MEANS MODEL
DATA = PARAMETERS
A

MODEL
REESTIMATION

Fig. 2—The training procedure used to estimate parameter values for the optimal
continuous mixture density fit to a finite number of observation sequences.

shown that the maximum-likelihood estimates of the means, u, are
quite sensitive to the initial estimate. Hence a procedure for providing
good initial estimates of u for each mixture and each state was required.

Based on previous experience with a K-means iterative procedure
for clustering data,'® a procedure for obtaining model parameter esti-
mates was devised and is shown in Fig. 2. (The analysis used to give
the LPC-derived vectors is reviewed in Section 2.2.) We assume a
training set of data consisting of @ sequences of observations, where
each sequence, O° = {0}, 05, - .-, O}, 1 <i < Q, is the set of vectors
(observations) constituting a single occurrence of the word. The total
observation vector is O = {0*0? . .. O?). The first step in the training
procedure is to choose an initial model estimate. This initial estimate
(unlike the one required for reestimation) can be chosen randomly, or
on the basis of any good initial guess. (The procedure to be described
here works well for a wide range of initial guesses.)

We denote the N states in the HMM as ¢;, 1 < ¢ < N. The second
step in the training procedure is to segment each word occurrence, O},
into states based on the current model, A. This segmentation is
achieved by finding the optimum state sequence, via the Viterbi
algorithm, and then backtracking along the optimal path. This pro-
cedure is illustrated in Fig. 3, which shows a log-energy plot, an
accumulated log-likelihood plot, and a state segmentation for one
occurrence of the digit six. Figure 3 shows that the states correspond
roughly to the sounds in the word six.

The result of segmenting each of the @ training sequences is, for
each of the N states, a set of the observations that occur within each
state g; according to the current model. Since the assumed distribution
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Fig. 3—Plots of (a) log energy, (b) accumulated log likelihood, and (c) state assign-
ment for one occurrence of the word six.

of the observations, within the jth state, is b;(x), a comparison can be
made of the marginal distributions b;(X) |x=(...x,...; against a histogram
of the actual observations (i.e., vectors assigned to that state). Such a
comparison is given in Fig. 4 for a D = 9 dimensional representation
with M = 5 mixtures. (The covariance matrices are assumed to be
diagonal in this example.) The nine dimensions consist of the eight
dimensions of a cepstral representation, and the normalized log energy
as the ninth parameter. The results in Fig. 4 are for the first state of
the digit 0. The need for values of M > 1 is seen in the histogram of
the first parameter (the first cepstral component), which is inherently
multimodal; similarly, the second, fourth, and eighth cepstral param-
eters show the need for more than a single Gaussian to provide good
fits. Many of the other parameters appear to be well fitted by a single
Gaussian curve; however, in some cases even M = 5 mixtures do not
provide a very good fit.

Following the segmentation into states of all € training sequences,
a segmental K-means procedure is used to cluster the vectors in each
state, q;, into a set of M clusters (to do this we use a Euclidean
distortion metric and a V@Q design algorithm). From the clustering, an
updated set of model parameters is derived as follows:

¢ = Number of vectors classified in cluster k of the jth state
divided by the number of vectors in state j

Lira = dth component of the sample mean of the vectors classified
in cluster k of state j
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WORD/ZERO/, STATE 1

L 1 F_ c2
S T O O T I O
—1.286 1.161 —1.113 0.254 —0.364 0.797
c4 L c5 L c6
L L
[ — f—
zZ
z C [
(o] f— —
(8] [ —
I I I = [ AL L1
—0.527 0.435 —0.55 0.223 —0.579 0.272
c7 c8 L LOGE
L ply I O I I O
—~0.435 0.366 —0.483 0.375 -44.20 —4.112

PARAMETER RANGE

Fig. 4—Comparison of estimated density (jagged contour) and model density (smooth
contour) for each of the nine components of the representation vector (eight cepstral
components, one log-energy component) for state 1 of the digit zero.

[7,~k,s = (r, s)th component of the sample covariance matrix of the
vectors classified in cluster & of state j.

The state transition matrix coefficients, a;, are not changed according
to this procedure. The new model A= (A, B, i, U), is obtained from
the updated estimates B, i1, and U, and the original A matrix. At this
point the formal reestimation procedure is used to reestimate optimal
values (in a maximum-likelihood sense) of all model parameters. The
resulting model is then compared to the previous model (by computing
a distance score that reflects the statistical similarity of the HMMs'®).
If the model distance score exceeds a threshold, then the old model, A,
is replaced by the new model, A (the result of reestimation), and the
overall training loop is repeated. If the model distance score falls below
the threshold, then model convergence is assumed and the final model
parameters are saved.

As an alternative to using the sample means, s, and sample
covariance matrix, U,k,s (which are the maximum-likelihood estimates
for a Gaussian distribution), we also investigated a method of fitting
a single Gaussian distribution to an observed histogram within each
cluster of each state. For the case when U is diagonal, a histogram
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with NB bins is made for each component of the vector, and the model
parameters (i.e., x and ¢) are chosen so as to minimize the cost function
NB (. _ 1.2
p=§ b

i=1 i

where h; is the observed frequency of occurrence in the ith bin, and A;
is the corresponding model estimate for that bin. The minimization
for the two-parameter case (i.e., ¢ and ¢) can be trivially carried out
by several different procedures.

For the case when U is a full covariance matrix, the histogram-
fitting procedure could, in principle, be extended to D-dimensional
histograms with correlated components. However, the amount of
training data available was insufficient for the number of parameters
being fitted. Instead, the histogram-fitting procedure that we used was
as follows. The sample covariance matrix, U, was estimated from the
training data (as above), and decomposed as

U=T'AT,

where A is a diagonal matrix. The original vectors, ¢, were transformed
by the relation w = Tc. In this manner the components of w were
uncorrelated with diagonal correlation matrix A; hence the histogram-
fitting procedure, described above, could be used along each trans-
formed dimension separately. In practice we have found that the
transformation to uncorrelated components and the Gaussian fitting
gave somewhat better model parameter estimates than the sample
estimates for the full covariance case.

Since the steps of segmenting the training sequences into states and
clustering the vectors via a VQ clustering procedure are relatively
inexpensive (in a computational sense), and reestimation is an exceed-
ingly costly procedure, a practical implementation of the training
procedure of Fig. 2 is to bypass the step of model reestimation until
local model convergence is obtained, and then apply the reestimation
procedure at the final step. This procedure works well in practice,
particularly when used for left-to-right models where the sequential
characteristics of the process are of vital importance.

2.2 The HMM recognizer

Once the HMMs have been trained on each vocabulary word, the
recognition strategy is straightforward. Figure 5 shows a block diagram
of the recognizer. The speech signal, s(n), for the unknown word is
first analyzed using an eighth-order LPC analysis. The speech sam-
pling rate is 6.67 kHz, and overlapping sections of 45 ms of speech are
analyzed every 15 ms to give a set of eight LPC coefficients. An LPC
transformation algorithm is used to convert the LPC representation
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Fig. 5—Block diagram of the HMM recognizer based on continuous mixture densities.

to the desired one for the recognizer. In particular we have considered
the following possibilities:

1. LPC-derived cepstrum of eighth-order (the zeroth-order term is

not used)

2. LPC-derived log-area ratios

3. Autocorrelation coefficients normalized by energy

4. Residual normalized autocorrelation coefficients

5. Autocorrelation of LPC coefficients.

The vector representation used in training is the one used in the
recognizer.

The next step in recognition is to find the optimum state sequence
corresponding to the HMM for each vocabulary word, \’, 1l = v <V,
and compute the log-likelihood score for the optimal path. The decision
rule assigns the unknown word to the vocabulary word whose model
has the highest log-likelihood score.

The optimum path is obtained by the well-known Viterbi algo-
rithm,?® which can be compactly stated as:

1. Initialization—é,(1) = log[5:(0y)]

8,(i) = —0 [#1
2. Recursion —4,(j) = max {6.-1(i) + log a;} + log[b;(O,)],

Jj—2=i<j
2=<t=T, l1=j=<N
3. Termination —log f = é7(N).

2.3 Incorporation of duration into the recognizer

Inherently, each state in the HMM has a geometric duration prob-
ability. Thus, a state j, with a probability a; of returning to itself, has
a state duration probability of

pi(©) = (1 - ajj)al{f_l’

where # is the number of frames occurring in state j. Experience has
shown that exponentials are not good models for state duration prob-
abilities. Thus, we have considered two alternative ways of incorpo-
rating state duration information in the recognizer, namely, modifi-
cation of the scoring procedure to include an internal duration model,
and application of a post-processing duration model on the maximum-
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likelihood state sequence as determined by the Viterbi algorithm. In
either case, in the training phase, we estimate a state duration prob-
ability of the form

pi(4/T) = probability of being in state j for exactly (£/T) of the
word, where T is the number of frames in the word and
/ is the number of frames spent in state j.

The quantity //T, which ranges from 0 to 1, is the normalized duration
within a given state. For each word, and for each state, the quantity
p;i(4T) is estimated (via a simple counting procedure on the training
sequences) for 25 values of /T from O to 1.

The state duration probability, [p;(#) or p;(#/T)], is not estimated
as part of the training procedure, but instead is computed directly
from the training sequences based on the models obtained from the
training procedure. Hence the estimates of p;(#/T') are strictly heuristic
ones, not maximum-likelihood estimates. Unfortunately, direct rees-
timation of the maximum-likelihood estimate of p;(//T) is, at present,
totally impractical both because of the excessive computation required,
and because of the sparsity of training data for estimating the in-
creased number of model parameters.

A typical set of histograms of p;(#/T) for a five-state model for the
word six is shown in Fig. 6. Although the states are hidden, examina-
tion of the results of segmentation of typical utterances (of the word
six) into states shows that the first two states are essentially the initial
/s/, the third state is a transition to the vowel /i/, the fourth state is
the vowel, and the fifth state is the stop and the final fricative /s/. As
seen from Fig. 6, the average duration of the first state is generally
very brief; the second and third states have somewhat longer average
durations; the fourth state has a well-defined peak in the density with
an average duration of about 20 percent of the word; the final state
- (the stop plus the fricative) has an average duration of about 50
percent of the word.

For scoring a given observation sequence using the internal duration
model, the recursion step of the Viterbi procedure is modified to the
form

60,(j) = max max {5,_,(i) + log aj

Jj—2=i<j-1 0=4T=<1.0

+ alog pi(4T) + X log[bj(Ot_T)]}. (2)

T=1
Note that in eq. (2) the duration term appears only when the state
changes. Furthermore, a multiplier factor « on the log-duration prob-
ability is used to adjust the importance of the duration part of the
scoring.
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_ Fig. 6—Histograms of the normalized duration density for the five states of the digit
six.

The implementation of the recursion of eq. (2) is considerably more
costly than the implementation of the standard Viterbi recursion,
since the values §,_(i) must be retained for a large range of # values,
and since the ¥ log[b;(0.-,)] computation must be repeatedly done
during each iteration. In practice we have measured an increase of 15
to 20 times in computation for the internal duration model over the
standard Viterbi algorithm. For these reasons we have also considered
a much simpler post-processor duration model in which the original
Viterbi alignment is performed, the maximum-likelihood state se-
quence is determined, and the duration of each state is obtained via a
backtracking procedure. The post-processor then increments the log-
likelihood score by the log-duration probabilities (suitably weighted
again) to give:

N
log f =log f + a ¥ log[p;(4/T)], ®3)
. j=1
where Z/T is the normalized time spent in state j along the optimal
alignment path.

The incremental cost of the computation for the post-processor
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duration model is essentially negligible, and we will see in Section III
that it works as well or better than the internal duration model
discussed above.

IHl. EXPERIMENTAL EVALUATION

To evaluate the performance of the HMM recognizer with the
mixture density representation, a series of experiments were run in
which several parameters of the models were varied. All evaluations
were performed on a database of isolated digits recorded over standard
dialed-up telephone lines. Four sets of spoken digits were used. These
consisted of the following:

DIG 1—100 talkers (50 male, 50 female), one replication of each
digit by each talker.?! These recordings have been used as a training
set in a wide variety of evaluations of isolated-word recognizers at
AT&T Bell Laboratories. The nominal bandwidth of these recordings
was 100 to 3200 Hz.

DIG 2—Same 100 talkers and recording conditions as DIG 1; re-
cordings made several weeks later than those of DIG 1.

DIG 3—100 new talkers (50 male, 50 female), one averaged occur-
rence of each digit by each talker obtained from averaging a pair of
robust tokens of the digit.?*?* The transmission conditions (i.e., analog
front end, filter cutoff frequencies, etc.) differed slightly from those
used in recording the DIG 1 and DIG 2 databases.

DIG 4—A second group of 100 new talkers (50 male, 50 female), 20
recordings of each digit by each talker.** A random sampling of one of
the recordings of each digit by each talker was used. The transmission
conditions differed substantially from those used in recording the
other databases. The nominal bandwidth of these recordings was 200
to 3200 Hz.

Thus, each of the four sets of digits contained 1000 digits. For training
the models, only the digits in set DIG 1 or set DIG 4 were used; for
testing and evaluating the performance of the recognizer, each of the
four sets of digits was used.

3.1 Pilot recognition experiments to determine representation

A series of pilot experiments was run to determine a good set of
parameters for use in the HMM recognizer. The five parameter sets
(transformations of the LPC parameters) mentioned in Section 2.2
were studied. Results indicated that the best performance was obtained
from the cepstral parameters; however, almost the same performance
was obtained from the log-area ratio parameters. The remaining three
parameter sets—i.e., energy-normalized autocorrelations, residual-
normalized autocorrelations, and autocorrelation of LPC coeffi-
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cients—all gave significantly poorer performance. This was due to the
use of a Euclidean distance metric in the clustering part of the training
procedure. Each of the poor representations had the property that one
or more of the coefficients in the vector contributed significantly more
variance in the distance calculation than the remaining coefficients;
hence a large sensitivity to the details of the training set resulted, and
very poor estimates of the means and covariances of the parameters
were obtained. Such problems could have been alleviated by replacing
the Euclidean distance metric with a covariance weighted metric;
however, we did not do this because of the greatly increased compu-
tational burden.

As a result of the pilot experiment, the parameter set chosen was
an eighth-order cepstral vector with the option of appending a peak-
normalized log energy as a ninth component of the vector.

3.2 Diagonal versus full covariance matrices

Two forms for the U matrices of eq. (1) were considered, namely,
diagonal matrices (with assumed zero correlation between components
of the representation), and full covariance matrices. The advantage of
the diagonal covariance matrix is that the computation of b;(x) reduces
to a simple sum of products of Gaussians, whereas for a full covariance
matrix the computation of b;(x) requires a matrix multiply. The
disadvantage of the diagonal covariance matrix representation is that,
in general, for correlated vector components, a larger value of M (the
number of mixtures) is needed to give an adequate model than for a
full covariance matrix representation. Neither representation has any
particular advantage in terms of ease of making initial estimates or
ease of reestimation.

A series of recognition tests was run with diagonal covariance
matrices using M = 1, 3, and 5, and full covariance matrices using
M =1 only. The results showed that performance with the full covar-
iance matrix with M = 1 was better than that obtained using only the
diagonal covariance matrix with M = 1 and 3, and comparable to the
performance with M = 5. Hence, in all subsequent recognition tests
we will consider both diagonal and full covariance models.

3.3 Applicability of word clustering to model generation

In the model training procedure all 100 tokens of each word were
used to derive a single HMM for the word. In earlier work, with
template-based approaches,? it was shown how word clustering tech-
niques could be used to design a set of templates to represent a broad
population of talkers. Thus, one question of interest was whether the
word clustering procedure could be combined with the model genera-
tion technique to give more than one HMM per word with better
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performance than the single HMM system. This idea was tested as
follows. First, a single HMM per word was created on training set
DIG 1; next the two-cluster-per-word template set was used to parti-
tion the 100-token training set into two groups. For each group a
single HMM was created; hence a total of two HMMSs per word was
used in the performance evaluation. The potential disadvantage of
this procedure should be clear, namely, that the training data per
model available for estimating HMM parameters is half that used for
the single model case. Hence there is a good possibility of obtaining
less reliable estimates of the model parameters.

This procedure could be continued as above for three or more
template solutions; however, experience indicated that a two-model
solution was about the limit for 100 training tokens. Beyond this point
the unreliability of the estimates was the dominant factor.

Results of a formal series of experiments with each of the four test
sets and with one and two models per word are given in Table I, which
shows average digit error rates for both diagonal covariance models
(part a), and full covariance models (part b) using normalized log-
energy and cepstral coefficients, and with the post-processor duration
model. For the diagonal covariance models, the results show that
for the reference set (DIG 1), the average error rate was essentially 0
for both one- and two-model-per-word systems. For the test set DIG 2
the average error rate for the two-model-per-word system was slightly
smaller (by 0.4 percent) than for the one-model-per-word system. For
the test sets DIG 3 and DIG 4, the average error rate for the two-
model-per-word system was 1 percent smaller than for the one-model-
per-word system. Overall, averaged across the three independent test
sets, the two-model-per-word system had a 0.7 percent smaller error
rate than the one-template-per-word system. This difference, although
small, is significant at the 95-percent level for a test with 4000 digits.

Table [—Comparison of performance of HMM recognizer
with one and two models per word*

L E R
Number of Average Digit Error Rate (%)

Models per Test Set
Word DIG 1 DIG 2 DIG 3 DIG 4 Average

(a) Diagonal covariance models, M = 5 mixtures

1 0.2 1.1 3.9 5.2 34
2 0.1 0.7 2.8 4.2 2.67
(b) Full covariance models, M = 1 mixture
1 0.2 0.9 2.9 4.7 2.83
2 0.2 0.6 2.2 4.7 2.5
* Both energy and duration were used in the evaluation. The training set
was DIG 1.
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For the full covariance models, the improvement in performance in
going from one to two models per digit was smaller than that obtained
in the diagonal covariance case. On average, the improvement in error
rate was only 0.33 percent, and for two of the four sets (the training
set DIG 1, and the testing set DIG 4) there was no improvement in
performance with two models per digit. Thus, for the full covariance
models a single model per word was adequate for the data.

3.4 Effects of different number of mixtures

Using the two-model-per-word system for the diagonal covariance
case, the number of mixtures, M, was varied from 1 to 7, in steps of
two, to see the effects on recognition performance. The results of these
tests on the four-digit databases are given in Table IIa. The results
show an improvement in performance from an average test set digit
error rate of 3.57 percent for M = 1 down to an average test set digit
error rate of 2.57 percent for M = 5; results for M = 7 show a slight
increase in average test set digit error rate to 2.97 percent. This
increase in error rate for the M = 7 case is primarily due to a 0.8-
percent increase in error rate for test set DIG 4. This result seems to
indicate that no real improvement in modeling the statistics of the
observations is obtained with M = 7; instead, a somewhat broader
range for fitting incorrect words is achieved, thereby raising the error
rate on DIG 4. Based on the results of Table II, a value of M = 5 was
deemed most appropriate for the recognizer.

Another test was run for the diagonal covariance case, in which the
value of M was made variable with each state of the model. The chosen
value was based on the average distortion in the initial modeling
section of the training loop. Thus, large values of M (on the order of

Table ll—Comparison of performance of HMM
recognizer with different values of M*

Average Digit Error Rate (%)

Test Set
M DIG 1 DIG 2 DIG 3 DIG 4 Average
(a) Results on diagonal covariance models for two models per digit
1 1.1 1.3 3.2 6.2 3.57
3 0.2 1.1 4.1 5.2 3.47
5 0.1 0.7 2.8 4.2 2,57
7 0.0 0.8 3.1 5.0 2,97
(b) Results on full covariance models for one model per digit
1 0.2 0.9 29 4.7 2.83
2 0.0 1.2 6.0 5.3 4.17
* Both energy and duration were used in the evaluation. Training set

was DIG 1.
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10 to 15) were required for some states, whereas very small values of
M (1to 2) were required for others. Recognition tests using the variable
M models gave very poor results (i.e., error rates considerably higher
than those for fixed M models). An analysis of the errors showed a
greater increase in the likelihood for incorrect models than for the
correct model. Hence we concluded that variable M models were not
a viable alternative for HMM recognizers.

Using the one-model-per-word system for the full covariance case,
a similar test was performed in which values of 1 and 2 were used for
M. The results, listed in Table IIb, show a degradation in performance
from an average test set digit error rate of 2.83 percent for M = 1 to
an average test set digit error rate of 4.17 percent for M = 2. Most of
the increase in error rate occurs for test set DIG 3, where the error
rate increases by 3.1 percent. This result again indicates that a single
full covariance matrix provides an adequate fit to the training data,
and that increases in M primarily decrease the amount of training
data per model and therefore lead to poorer parameter estimates and
worse recognition performance.

3.5 Effects of energy and duration

To study the effects of including energy in the signal representation,
and of including the duration model in the testing, a series of recog-
nition runs were made with the M = 5, diagonal covariance, two-
model-per-word system, and the M = 1, full covariance, two-model-
per-word system. The results of these recognition tests are given in
Table III. The duration model was implemented as a post-processor
computation in all cases.

Table 1ll—Comparison of performance of HMM recognizer with and
without energy and with and without duration model
{training set was DIG 1)

Average Digit Error Rate (%)

Test Set
Condition DIG1 DIG2 DIG3 DIG4 Average
(a) Results on diagonal covariance models, M = 5, with two models per digit
No energy, no duration model 0.3 2.5 4.3 8.0 4.93
Energy, no duration model 0.3 0.9 2.5 5.5 2.97
No energy, duration model 0.1 1.3 3.3 54 3.33
Energy, duration model 0.1 0.7 2.8 4.2 2.57
(b) Results on full covariance models, M = 1, with two models per digit
No energy, no duration model 0.2 2.0 2.8 7.0 3.93
Energy, no duration model 0.2 1.2 2.1 44 2.57
No energy, duration model 0.3 1.3 3.0 5.9 34
Energy, duration model ' 0.2 0.6 2.2 4.7 2.5
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The results show clearly that the addition of either energy or
duration uniformly improves the performance of the HMM recognizer,
although energy is more important than duration for the full covari-
ance models. Furthermore, the combination of both energy and dura-
tion model yields better performance than either factor individually.
The biggest improvements in performance were obtained for test sets
DIG 3 and DIG 4, where the transmission characteristics of the speech
were different from those of DIG 1 and DIG 2. In these cases the
addition of energy and duration model makes the system more robust
because these features are, for the most part, insensitive to differences
in transmission conditions.

3.6 Comparison of internal duration model and post-processor duration
model

The next set of experiments compared the two different implemen-
tations of the duration model, namely, the internal duration model
and the post-processor duration model. In both cases the same
(suboptimal) state-duration probability density function was used,
with a multiplier of « = 3.0. (This factor was optimized based on
preliminary experimentation.) The results of the two runs are given
in Table IV. '

The results show that the performance of the HMM recognizer with
the post-processor duration model was uniformly slightly better than
for the recognizer with the internal duration model. Across the three
test sets the improvement in performance was about 0.9 percent, and
for the two data sets with different transmission conditions (DIG 3
and DIG 4), the improvement was 0.9 percent and 1.7 percent, respec-
tively. In addition, the computational load was between one and two
orders of magnitude lower for the post-processor duration model than
for the internal duration model. Hence the results given in Table IV
strongly justify the use of the “suboptimal” post-processor duration
model as an alternative to using the inherent exponential distributions
for each state. The major problem with the use of any duration model
is the difficulty of making reliable estimates of the density function

Table IV—Comparison of performance of HMM recognizer with two
types of duration models*

Average Digit Error Rate (%)

Test Set
Duration Model DIG1 DIG2 DIG3 DIG4 Average
Internal in Viterbi search 0.2 0.9 3.7 5.9 3.5
Post-processor 0.1 0.7 2.8 4.2 2.57

* Results given on diagonal covariance models, M = 5, with two models per digit, and
with energy used as a feature. Training set was DIG 1.
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from a finite training set of observations (as is invariably the case for
most speech processing applications). However, the improvements in
performance obtained from using the duration model more than justify
its use in the HMM recognizer.

3.7 Effects of different training sets

The last set of experiments investigated the effects of different
training sets on the overall recognizer performance. The results of
these experiments are given in Table V, which shows average test set
digit error rate as a function of training set, model type, and number
of models per digit. (All models used both energy and the post-
processor duration model.) The results of Table V show that when the
set DIG 4 was used as the training set, the performance among all
four test sets was more uniform than when the set DIG 1 was used as
the training set. The results also show that with a single model per
digit, the performance with the DIG 4 training models was comparable
or better than the performance of the DIG 1 training models with two
models per digit. Thus the use of the slightly narrower bandwidth
training data led to models that were more robust to small differences
in recording conditions than those obtained from the broader band-
width training data.

IV. DISCUSSION
4.1 General results

In the previous sections we have proposed and tested an HMM
isolated-word recognizer that uses a continuous mixture density model
for the probability densities of the feature vector. Based on experi-
mentation with the recognizer, in a speaker-independent mode, using
a vocabulary of ten digits, the following general results were obtained:

1. The proposed model training procedure, with an iterative K-
means loop for estimating initial values for the means and covariances

Table V—Comparison of performance of the recognizer as a
function of the training set, model type, and
number of models per digit*

Number Average Digit Error Rate (%)
of
Training Models Test Set

Set Model Type per Digit DIG1 DIG2 DIG3 DIG4 Average
DIG 1 Diagonal covariance 2 0.1 0.7 2.8 4.2 2.57
DIG 1 Full covariance 2 0.2 0.6 2.2 4.7 2.5
DIG 4 Diagonal covariance 1 2.5 24 2.8 0.5 2.57
DIG 4 Full covariance 1 2.5 1.7 2.1 0.8 2.1
DIG 4 Full covariance 2 2.3 2.2 2.1 0.5 2.2

* All models used both energy and the post-processor duration model.
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of the components of the mixture model, works extremely well in
practice and was able to converge to a local maximum of the likelihood
function in a small number of iterations (typically 2 to 4 in most
cases).

2. Several speech parameters (most notably the set of cepstral
parameters and the set of log-area ratios) are well represented by the
continuous mixture density, and give good recognition performance in
the HMM recognizer. Other speech parameters (e.g., energy-normal-
ized autocorrelation parameters, residual-normalized autocorrelation
parameters, etc.) are not well represented by the continuous mixture
density, and give relatively poor performance in the HMM recognizer
when a Euclidean distance measure was used.

3. Mixture models with diagonal covariance matrices need a some-
what larger number of mixtures (typically, M = 3 to 5) than mixture
models with full covariance matrices (M = 1) in order to give the same
performance.

4. Combining the techniques of clustering and HMM model building
can lead to small improvements in the performance of the HMM
recognizer.

5. The addition of a word-normalized energy contour (as an extra
dimension to the feature vector) uniformly improves performance of
the HMM recognizer and makes it more robust to differences in talker
populations and transmission conditions.

6. The addition of duration information, on a state-by-state basis,
into the HMM recognizer uniformly improves performance and in-
creases robustness of the recognizer to different talkers and transmis-
sion conditions.

7. The combination of normalized energy and duration information
works better than either factor alone in the HMM recognizer.

8. Word models with variable number of mixture densities per state
(based on clustering distortion statistics) yield significantly worse
performance than models with a fixed number of mixture densities
per state.

9. The duration model of the HMM recognizer can be conveniently
(and suboptimally) implemented as a post-processor to the Viterbi
decoding procedure. In practice the performance of this system is
actually better (somewhat) than the recognizer with the duration
model built into the Viterbi decoding procedure.

The above results are one measure of the success achieved by the
continuous mixture density HMM recognizer. Another way of mea-
suring the success is to compare the current performance results with
those of alternative recognition systems based on templates* and
based on discrete densities (i.e., VQ symbols).® Such a comparison is
given in Table VI for the case when the data of set DIG 1 was used as
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Table VI—Comparison of performance of three types of recognizers
on the digits database*

Average Digit Error Rate (%)

Test Set
Type of Recognizer DIG1 DIG2 DIG3 DIG4 Average
HMM—Continuous density 0.1 0.7 2.8 4.2 2.57
HMM —Discrete density — 2.9 — — —
DTW—Templates 0.0 0.6 2.7 39 2.4

* Training set was DIG 1.

the training set. For the discrete density HMM recognizer, results are
given only for the DIG 2 data set where the performance is significantly
worse than that of the HMM recognizer with a continuous mixture
density. For the template-based Dynamic Time Warping (DTW)
recognizer, the results, based on the latest clustering procedure,® are
comparable to those of the continuous density HMM recognizer. Since
the template-based DTW recognizer has been studied for about ten
years and has been highly optimized in its performance, the equality
between the HMM recognizer and the DTW recognizer, at least for
the digits vocabulary, is highly significant.

4.2 Computational considerations

To calculate the computation required in the HMM recognizer, and
to contrast it with that required by the DTW recognizer, we must
define the following:

N = Number of states in HMM model
= Number of mixture densities per state
= Dimensionality of vectors in signal representation
Average number of frames (ohservations) per word
= Number of HMMs per word
= Number of words in vocabulary
= Number of templates per word in DTW system
= Order of LPC analysis.

The computation for the HMM recognizer, in the Viterbi decoding
algorithm, is

TO<NNTE

Cv=R-V.N-T-C,,

where C; is the computation required to evaluate the mixture density
bj(x). Assuming that multiplications, divisions, exponentiation, and
logarithms all take a single multiply-add time (somewhat optimistic
calculations), then

Cy, = 3DM =, + (diagonal covariance)
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or
C, = D?M «, + (full covariance)

and
Cyv=38D-M-R-V.N.T *, + (diagonal covariance)
C,=D>M-R.-V-N.T «, + (full covariance).
The standard DTW recognizer requires

T2
Corw = Q-V-: 3 (p+ 1)+ +.

or

Hence the ratio of Cy to Cprw is

RATIO = Cv = SDMRN (diagonal covariance)
CDTW T
Q 3 (p+1)
or
2
Ratio = M]—V— (full covariance).
T
Q 3 (p+1)

If we choose typical values f N=5 M =5 D=9, T=40,R = 2,
V=10, @ = 12, p = 8, for the diagonal covariance case, we get

RATIO = 15/186,

and using R = 1, M = 1 for the full covariance case we get
RATIO = 9/32,

i.e., the computation of the HMM recognizer is essentially that of the
DTW recognizer for the diagonal covariance case, and about one-
quarter that of the DT'W recognizer for the full covariance case. This
situation is very different from the discrete symbol HMM recognizer,
where the computation was an order of magnitude smaller than that
of the DTW recognizer. The problem with the continuous mixture
density recognizer is the b;(x) computation, which is extremely expen-
sive, especially for values of M > 1.

V. SUMMARY

In this paper we have extended our experimental investigations of
HMM recognizers to include the case where the density function for
the observations in each state is represented by a continuous mixture
of Gaussian variables. We have shown how the parameters of such a
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signal representation can be optimally estimated (in a maximum-
likelihood sense) from a finite training set of data, and have given a
simple way of implementing the training procedure based on a K-
means iteration. We have tested the HMM recognizer, in a speaker-
independent mode, on a vocabulary of the ten digits, and shown that
the error rate of the system is smaller than that obtained from the
discrete density (VQ-based) HMM recognizer, and comparable to that
of the multiple template-based DTW recognizer.
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In this paper we discuss parameter estimation by means of the reestimation
algorithm for a class of multivariate mixture density functions of Markov
chains. The scope of the original reestimation algorithm is expanded and the
previous assumptions of log concavity or ellipsoidal symmetry are obviated,
thereby enhancing the modeling capability of the technique. Reestimation
formulas in terms of the well-known forward-backward inductive procedure
are also derived.

I. INTRODUCTION

Hidden Markov models, which use probabilistic functions of Markov
chains to model random processes, have been found to be extremely
useful for stock market behavior, ecology,’ and more recently, speech
recognition.?> The effectiveness of this model class lies in its ability
to deal with nonstationarity that often appears in the observed data
sequences. The general structure of such a class of models may be
briefly described as follows.

Consider a first-order N-state Markov chain governed by an N X N
transition probability matrix A = [a;], and an initial probability vector
u’ = [uu, - -- uy]. Obviously, ¥ ¥, a;=1foranyi=1,2, ---, N,
and ¥ Y, u; = 1. a; is the probability of making a transition from state
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i to state j given that the current state is i. For any integer state
sequence © = (0o, 0y, 05, - - - O7), where 6, € {1, 2, - - . , N}, the probability
of © being generated by the Markov source can be easily calculated by

PI’(@|A, u) = Ug,Qgy0, * * * Qop_ 0 (1)

Now, suppose @ cannot be directly observed. Instead, we assume that
what we observe is a stochastic process S = (sy, S, - - - , S7), produced
by an underlying (stochastic) state sequence (6, 62, --- 6r). Each
state, say 1, manifests itself through a probability density function
fi(s), [ fi(s)ds = 1. We use F = {f;(-)} to denote such a set of density
functions. The probability density of S =S & (s, 82, -+ , s7), given a
specific state sequence O generated by the Markov chain with transi-
tion probability matrix A, and initial probability vector u is thus

T
f(S | 9’ A7 u, F) = tl-_-ll fﬂ,(st)- (2)

It then follows that the density of S, given A, u and F, is

T
f(SIA, u, F) = > Ug, H aa,_ls,fot(st)- (3)

alle t=1

The triple (A, u, F) & X is called a (hidden) Markov model source and
we write f(S|A) & f(S| A, u, F), for simplicity.

Given an observation sequence S, the objective in maximum-likeli-
hood estimation is thus to maximize f(S|A) over all parameters in A.
Such a maximization problem is clearly nontrivial. To solve this
problem, a reestimation algorithm—developed by Baum et al.! in
1970—that guarantees monotonic increase in the likelihood as the
algorithm iterates, is often used. An auxiliary function, based upon
the Kullback-Leibler number,® serves as the basis of Baum’s optimi-
zation procedure, in which parameter estimates are characterized as
the critical point of the auxiliary function. However, the development
in Ref. 1 encounters difficulties when the densities {f,(-)} are not log
concave. The Cauchy density f(s) = = (1 + s?)7!, which is only
concave for 3s% < 1, was cited as one such problematic example.

More than a decade later, in an effort to obviate the log-concavity
limitation in Baum’s algorithm, Liporace’ invoked a representation
theorem by Fan® to redefine the auxiliary function and then success-
fully extended the reestimation algorithm to accommodate a class of
elliptically symmetric, multivariate distributions. As a result, each
fi(s) € F is allowed to assume the form

| R:|72hi(gi(s)), 4)
where g;(s) is positive definite quadratic,

&i(s) = (s — n)*Ri (s — ny).
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The asterisk denotes the transpose of a vector or matrix as we,
following Liporace, will be dealing with vector observations from this
point on. The matrix R; is positive definite and symmetric, and the
location vector 7; is an arbitrary point in the observation space that is
d-dimensional Euclidean.

While Liporace’s results are significant in expanding the scope of
the reestimation algorithm, the requirements that the observation
densities be elliptically symmetric are in many real situations still very
restrictive. In particular, useful parametrizations of speech signals,
such as reflection coefficients and autocorrelation, have been shown
by Gray and Markel® and Rabiner et al.,'° respectively, not to exhibit
the desired symmetry. This lack of symmetry is often observed even
within each state because of the arbitrariness in choosing the number
of states for modeling the given process. It is thus the purpose of this
paper to further obviate the ellipsoidal symmetry assumption so that
an even more versatile statistical modeling technique than the previous
ones is obtainable. Levinson also reported the same effort.!!

The class of densities F = {f; (-)} we consider in this paper is the
class of mixtures of general, strictly log-concave, and/or elliptically
symmetric densities, having the form

M
fi(s) = El cirbir(s), (5)

where b;(s) is general strictly log concave and/or elliptically symme-
tric and c;, satisfies

M
Ecik=1 for i=1,2,'--,N. (6)
k=1

As required in Liporace’s results,” one extra assumption for elliptically
symmetric b;(s) is necessary: the density b;.(s) also satisfies the
consistency conditions of Kolmogorov (see Ref. 12, p. 10) so that
bi(-) has the representation

bir(s) = J(: (s ni, YRi)dG(v) (7

for some probability distribution G on [0, «). In (7), the expression
_#(s; i, YRiz) 1s the multivariate Gaussian density with mean vector
7 and covariance matrix vR;. Clearly, {fi(s)}, as expressed in (5), is
very general and may serve better in the modeling of many complex
but realistic observations than unimodal, symmetric density functions.

This paper is organized as follows. The main body of the theory is
presented in Section II, where the auxiliary function is redefined and
the reestimation formula for all the parameters is derived. In Section
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III, applications of the theory to familiar probability densities are
discussed. Furthermore, for computational convenience, parameter
reestimation using the forward-backward inductive procedure is also
provided.

Il. REESTIMATION
2.1 Joint density

For mathematical clarity, the following definitions are necessary.

Let A be an open subset of Euclidean p space. A hidden Markov
model A is a point in A and to each A € A we have a smooth assignment
A —= (A(N), u(h), F(N). One trivial assignment is that dimensions in
A are one-to-one, corresponding to the parameters defining the triple
(A, u, F), and thus p is the total number of model parameters.

Define the state alphabet Q, & {1, 2, ..., N}. Let QT*' be the
(T + 1)th Cartesian product of Q.. The state sequence space is de-
noted by Q7*!, and © € Q7*! means © = (6, 0y, - - - , 07), where every
0, € Qs.

We further define the branch alphabet Q, 2 {1,2, ... , M}. Similarly,
Q7 is the set of all T-tuples K = (ky, ks, - - - , kr), where every k, € Qs.
K is called a branch sequence.

The global density function of (3) with state density defined by (5)
can be written as

T M
f(SIN) = 2 Ug, H |:ao,_10,' ‘El co,kb(},k(st)]- (8)

alleeqJ+1 t=1

The summand in (8) over all ® € Q7! is, in fact, the joint density
f(S, ©]\), which can be expressed as

f(S, ©X)

T M
Ug, c_Hl o5, kg,l Co,kbor(se)

M M M T
= E z E [uoo H aa,_lo,ba,k,(st)]
k=1 ky=1 kr=1 t=1
*Co.kyCosky * * * Corhpe 9
We further define
T
f(S, 0, K|\ = Ug, H aa,_,o,batk,(st)co,k,- (10)
t=1
Therefore, the joint density of the truncated stochastic process S is
fSIN =% ¥ f(S, 6, K|N. (11)
ecoT* keol
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An interpretation of (11) is that there are N7*! possible stochastic
state sequences that may lead to the observation S, with each possible
state sequence being a superposition of M T branch layers.

2.2 Auxiliary function and an inequality

For more general theoretical interest, let @ = Q7! X Qf be a totally
finite measure space with measure u(0, K). The joint density of (11)
then has the following general form:

f(SIN) =f9f(S, 0, K| M)du(0, K).

Following the concept of the Kullback-Leibler statistic, we define an
auxiliary function @(X, \’) of two model points, A and \’, in A, given
an observation S:

QA \) & J;f(S, 0, K|Nlog f(S, ©, K|\')du(®, K). (12)

We now have the following theorem:

Theorem 1: If Q(\, N') = Q(M\, \) then f(S|N') = f(S|N). The inequality
is strict unless f(S, 0, K|X) = f(S, 0, K|\') almost everywhere
du(0, K).

Proof: Similar to Baum et al.,! log x is strictly concave for x > 0.
Hence,

(mm JWS@de@K)

TIPY 78T

£(S, 8, K|\) £(S, 6, K|\

lg J, " Fisn O K h5e kN
£(S, 0, KIN [, £(S, 6, KI\)

o FGIN P ﬂ&&Km]“@K’

=[fSINITQNN) = QA N] =0

by hypothesis. The inequality above is due to Jensen’s inequality for
the measure d{(0, K[\) = f(S, ©, K|\)du(©, K)/f(S|A). This ine-
quality is strict unless f(S, 0, K| X')/f(S, ©, K| \) is constant almost
everywhere d{(©, K|\), hence unless f(S, 0, K|)X') = (S, 0, K|})
almost everywhere du(0, K).

The significance of Theorem 1 will be discussed below. For simplic-
ity, we often use the expression of (11) for the joint density and define
the auxiliary function as
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QM N) = X 21 f(S, ©, K| Mlog f(S, ©, K|N')  (13)

ocaf* Keq

as long as the key result of Theorem 1 is held valid.

2.3 Reestimation algorithm

Theorem 1 is one of the bases of Baum’s reestimation algorithm
that is sketched below for self-containedness. For a given observation
S, the reestimation algorithm starts with an initial guess of the model
A. The parameter reestimates are then defined to be those that
maximize Q(A, \’) as a function of N’; that is, the modelAreesti-
mate \ stemming from the current model A is X = J(\) € {A € A|
Q(\, A) = maxyes Q(\, \')}. The transformation Z:A — A is called
the reestimation transformation. If @ has a unique global maximum
as a function of \’, the set {A} has only one element X. Then X plays
the role of A as before and new reestimates are determined. The
procedure iterates until some criterion is met.

Due to Theorem 1 and the following theorem, the above iterative
procedure produces a sequence of reestimates that guarantee mono-
tonic increase in the likelihood (S | A) unless it reaches a critical point
of the likelihood.

Theorem 2: Let f(S, ©, K|\) be continuously differentiable in \ for
almost all (0, K) € Q. Let 7 be a continuous map of A — A such that
for each fixed \, X = F()\) is a critical point of Q(\, \’) as a function of
M. Then all fixed points of the reestimation transformation 7 are
critical points of f(S|\), and if f(S|X) > f(S|\), unless X = \, all limit
points of T™(N) & T(T(T -+ (T (N))) - --) are fixed points of T
for any N\ € A.

Proof: Let V, be the gradient vector.

Vi (SIN |x = Vi J;f(S, 0, K|N)du(e, K)
= Lvlf(sy 97 KI )\)dﬂ(@, K)

= J;f(SG),KU\)[% log f(S, &, K| M)]du(®, K)

= V)\'Q(xy (}\, A’) I A=A
Thus VAf(S|N\)|a=x = 0 if and only if VAx@(\, A')|x=x = 0 at
A = \. The rest of the proof follows Baum et al.!
Theorems 1 and 2 thus guarantee that after each iteration, the new

reestimate A improves the likelihood, i.e., f(S|X) > f(S|\), unless X
is a fixed point of the transformation. On the other hand, the trans-
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formation will converge to a fixed point, or equivalently, a critical
point of the likelihood, if an increase in the likelihood is maintained
after each iteration and if the limit lim,_.. Z"()\) exists, regardless
of what the initial guess Ao(€ A) is. If f(S| A) has finitely many critical
points, 7 "(\o) approaches a critical point of f(S|A) that is at least a
local maximum.

The transformation as previously defined requires maximization of
the auxiliary function. Difficulties encountered in the maximization
process would directly translate into difficulties in obtaining the
maximum-likelihood estimate. We next show that if every b;(-),
i=1,2,-.-,Nandj=1,2, ..., Misstrictly log concave or elliptically
symmetric with the representation (7), @ (A, A’) has a unique global
maximum as a function of \’, and thus the transformation exists and
is single valued. The reestimation algorithm is thus guaranteed to
work for the joint density of (8).

2.4 Maximization of the auxiliary function

The auxiliary function for the joint density (8) with mixture densi-
ties is defined in (12). The following decomposition can be easily seen:

log f(S, ©, K[\')
T T T
= log ps, + X log a5, + X log bje(se) + X log cop,. (14)
t=1 t=1 t=1

The next theorem suggests that maximization of the likelihood by way
of reestimation can be accomplished on individual parameter sets due
to the separability shown in (14), if the following assumptions hold.
Suppose for almost all (8, K), log f(S, 0, K|\) = Y%, log f9(S, 0,
K| \;), where for each i and almost all (0, K) log f)(S, ©, K| \;) has a
unique global maximum as a function of A\;. Note that A = {\;} and ¢
is the number of parameter sets after separation. Define @;(), \/) by

Q:(\ N) = J;f(S, 0, K| Mlog f(S, 0, K| M)du(0, K). (15)

Then for A fixed, @;(\, A\/) as a function of A/ has a unique global
maximum A; that is a critical point of @;(\, A/). The reestimation
transformation .7 is thus defined as 7:A — X\ = {\;}. We further
define Ti: A —Xi={A, Ay +++, Aiy <o+ 5 Agh

Theorem 3: Under the above assumptions, for all A € A, and every
I, f(S] G(N) = f(S| ) with equality if and only if \; is a critical point
of f(S|\) with respect to \; or, equivalently, \; is a fixed point of F; and
furthermore, f(S| Z(\)) = f(S|\) with equality if and only if X is a
critical point of f(S| \) or, equivalently, a fixed point of 7.
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Proof:

QO ) = 3 GOV M) + QO 1)

= ;1 Qj()\, >\1) = Q(}\’ >\)r

so Theorem 1 implies f(S|X;) = f(S|\). Since Q:(A, A has a unique
global maximum as a function of A/, the inequality QN N) =Q(\ N
is strict unless A\; = A;. Furthermore,

q q

Q(>" -X) = 21 Qi(>\: )\l) = 21 Qi(xa Al) = Q(>\7 A)’
= =

the second half of the theorem is thus true.

The separation of (14) is seen to be the key to the increased
versatility of the reestimation algorithm in accommodating mixture-
observation densities. Let b, be the parameter set defining the density
bir(s). Obviously, if bjx(s) is multivariate Gaussian, by = (9, Rj),
where 7;; is the mean vector and Ry is the covariance matrix. We now
write the auxiliary function in a separated form using the simplified
expression of (13) without loss of generality.

QA N) & E ;f(& 8, K|M)log f(S, ©, K|\')

T
Y X f(S, 0, KIN {log ug, + % log ag_y,
6 K t=1

T T
+ Y log by, (s:) + 21 log Cé,k,}
t=

t=1

N
= Q0 w) + 3 @l faj}n]

N M N
+ 2 % @\ bi) + % Q[N {chitla],  (16)

=1

[

where

I

Qu(X, u’) § %f(S, 0, K| M)log ug,

M=z

Y f(S, 6 = i, K| \)log u! (17
K

W
-
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Qa [>\ {a,,}, 1] = % f(S, 0, K|X) 2 log as,_,6,6(0:—1 — i)
N T
Z z 2 f(S’ Ht—l = i’ 0!‘ =j, KI >\)10g at{j (18)
Jj=1 t=1 K
Qb()\y bj!k) = § %f(sy 0) Kl A)
T
) log by, (s:)6(0: — j)o(k: — k)

o~

=1

(S, 6c = j, ke = k| Nlog bjx(s), (19)

M~3

-~
[l

1

and

T
ch()\, {cj’klﬁl) 2 z S 07 Kl A) g lOg Cf;,k,a(at - ])

K

[«

M T
kZ Z f(S, 6: = j, ke = k| N)log cj. (20)
=1 t=
The above expression §(-) is the Kronecker delta function.
Individual maximization of @, Q. and @, fori=1,2, - - - , N subject
to the constraints

N
1.Zuj=1, u,-?O

=1

N
2. Ya;=1, a;=0 for all appropriate i and j

M
3. 2 ¢ =1, cij = 0, (21)
j=1

respectively, is well known.’®!* These individual auxiliary functions
have the same form Y, w;log y;, which as a function of {y;}¥,, subject
to the constraints 3%, y; = 1 and y; = 0, attains a global maximum at
the single point

wj .
yij_j' J=1:2,"'3N- (22)

Z‘ 12
i=1

The result has been proved in many ways.*

When b;x(s) is strictly log concave in by and lim)y, | log bjx(s) =
—oo, it is easily seen that for A fixed Q,(\, bj) has a unique global
maximum that is a critical point of @,(A, bjz). When bjx(s) is elliptically
symmetric, the following theorem due to Liporace’ is applicable.

Theorem 4: If (i) bj.(s) has the representation of eq. (7), and (ii) there
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are among sy, Sa, - -+ , S1, d + 1 observations, any d (the dimension of
each observation vector) of which are linearly independent, for fixed X,
Q(\, bj) has a unique global maximum as a function of bj. = (nj,
R}), and this maximum is the one and only critical point of Q»(\, bj).

Proof of this theorem is easily obtained by following the Appendix

in Ref. 7.
The reestimation algorithm has thus been extended to accommodate

the hidden Markov joint density (8) with mixture observation densi-
ties.

IIl. APPLICATIONS

We now explicitly derive the reestlmatlon transformation. By ap-
plying eq. (22), we can easily calculate @, A, and {ci}M, fori =1, 2,
.., n, the reestimates that for fixed >\ maximize @Q.(\, u’),
Qu(\, {af}X1) and Q. (A, {ch}iLy) fori =1, 2, , N, as a function of
u’, {af}X; and {ch},, respectively.

1. Initial probability:

Tz

Qu(\ u’) & E (S, 60 = i, K| Mlog uj.
K

-~

Hence, fori=1,2, ..., N,

I

i Zf(SHo—tKIA) Zf(SKIA)

Keal

I

f(S, 8o = LI N/F(S|N). (23)

2. Transition probability:
Foreveryi=1,2, ..., N,
N T

Q. faf}l) =3 X %f(S, 0e-1 = i, 6, = J, K|N)log aj.

<
il
-
-
-

Therefore, for i,j=12,.
Z 2 f(S, b =14, 0:—J,KI>\)/

t=1 K

T
2 Zf(S, 0¢—1=l,K|>\)

t=1 K

T T
= 21 f(S, s =10, 0. =Jj|)) Z‘,l f(8S, 01 =1|N). (24)

3. Branch probability:
Foreveryi=1,2, ..., N,
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M T
Q. (N, {eidtl) = X X f(S, 0, = i, k. = k[ N)log ci.

k=1 t=

Then obviously, fori=1,2, .-- ,N,k=1,2, ... | M,

-

T T
c=2X f(S, 0=1ik=kIN / X f(S 0. =1iN. (25

4. Branch density:
Foreveryi=1,2,-.. ,N,andk=1,2, --. , M,

Qs(A, bi) = Z f(S, 0: = 1, k. = k| N)log bix(s).

Maximization of @,(\, b};) with respect to b/, is well known for many
familiar density functlons The solution to the maximization problem
is, in general, obtained through dlfferentlatlon, i.e., we find b; that
satisfies

Vi, @(X, bik) b} = by

Vi, bik(se)

T
= El f(Sy at =1, kt = kl >‘) bl{k(st) bz/k = Bik

= 0. (26)

For strictly log concave b;(s), the solution can be easily found. For
elliptically symmetric b;(s),

bi(s) = | Rie |7 *ha(ga(s)),
where
gin(s) = (s — na)*RiE' (s — na),

with representation (7), Liporace’s results apply.” In particular, the
solution to (26), i.e., reestimates 7;, and Ry, is given by

T
2 f(S 0;— l, kt— kl}\) =S¢
T =~z 27
E f(87 0t= i: kt= klk)
t=1
T
E f(S, 0. =1, ke = k|N)-(sc — nin)(s: — min)*
Ri. = = © (28)

T
Y f(S, 0. =1, ke = k|\)
t=1
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Note that if b;.(s) is multivariate Gaussian, the reestimates 7, and

R above are readily applicable. It is also easy to see that each Ry, is
positive definite. If s is any d-dimensional vector,

T
s*Rie s = X xan(t)[s*(s: — )] = 0, (29)
t=1
where
T
xx(t) = f(S, 8. =i, ke = k| \) ¥ f(S, 0, =1, k.= Ek|\)
=1

= 0.

The inequality (29) is strict provided for any 5 the vectors {s, — 7}
span the d-dimensional observation space, i.e., the observation process
S =(sy, S, - - - , S7) satisfies the condition laid out in Theorem 4.

The above reestimates can be conveniently calculated with the
forward-backward inductive procedure. Define “forward probabilities”
a(l)=u;,i=1,2,.-.-.,N,and

at(i) = f(sl, Sg, *tty Sp et = "l)\)
N
= =Zl ai-1(])ajifi(se), (30)

fori=1,2,---,Nandt =1, 2, --., T. Branch densities f;(s) are
defined in (5). Similarly, define “backward probabilities”

6t(i) = f(st+17 Se+2, 0 sTl Ht = i: A)
N
= §1 6t+1(j)aijfj(3t+1), (31)

and B87(;) =1,for:=1,2, ..-, Nandt=T-1,T -2, ---, 0.
Further define “branch probability” v.(i, k)

'Yt(iy k) =f(31, 82, + 4 St 0t= i’ kt': k|>‘)
N

= X a1())aiciubi(sy), (32)
j=1
fori=1,2,.-.- ,Nk=1,2,... ,M,andt=1,2, ..., T. Then,
f(S, 0: = 1| \) = (i) B:(2), (33)
which leads to
N
f(SIN) = 21 (1) B:(1), (34)
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and in particular at t = T,

N
FSIN = X ani). (35)
Furthermore,
f(S, 01 = i, 0; =j|)\)
= at—l(i)aijfj(st)ﬁt(j)
M
= az—l(i)aij [ kgl Cjkbjh(st)] B:(j), (36)
and

f(S, 0, =1, ke =Fk|\)
= (i, k)B:(i)
N
= 21 a-1()) ajicinbir(s:) Be(1). (37)
=
As a result, the reestimates are expressed in terms of the forward and

backward probabilities:
1. Initial Probability:

N
; = oo(1)Bo(i) ;1 ao(j)Bo(J)

N
= (1) Bo(i) ;1 ar(j) (38)

2. Transition probability:

M

T
E at—l(i)aij [ E cjkbjk(st)] B:(j)
t=1 k=1

= = (39)
3 aca(i)Bir(i)

3. Branch probability:

T N
Z 2 a:—l(j)Gjicikbik(sz)ﬁt(i)

o= T (40)
2 a(i)B(i)

t=1

4. Branch density:
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M

Y a1 J)ajicibin(se) Be(D) - se

Nir = t=1Tj=1 (41)
21 2 1) ajicinbin(5:) B (i)
and
T N
> 2 ar-1(J) ajicikbin(se) Be(1) - (5 — min) (s — mir)*

I
o
i
A
o
i
)

Ry = (42)

T N
21 2 a1 aicinbin(s) Be(i)
t=1 j=1

Note that the results of (41) and (42) apply to the case of mixture of
elliptically symmetric densities with the representation (7). Mixtures
of multivariate Gaussian densities, of course, fall into such a category.
For other strictly log-concave densities, (26) applies.

Note that the above results can be easily applied to conventional
parametric estimation of mixture distributions by setting the number
of states, N, to unity.

IV. CONCLUSIONS

We have extended the reestimation algorithm to accommodate a
broad class of mixtures of strictly log-concave or elliptically symmetric
multivariate distributions. The algorithm is particularly useful in
modeling nonstationary stochastic processes with multimodal non-
symmetric probabilistic functions of Markov chains that could not be
dealt with previously. Explicit reestimates in terms of the well-known
forward-backward inductive probabilities are derived for computa-
tional ease. Due to the greatly expanded capability of the reestimation
method, more accurate modeling of sophisticated signals and thus
improvements in various applications such as speech recognition are
expected.
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Many signals can be modeled as probabilistic functions of Markov chains
in which the observed signal is a random vector whose probability density
function (pdf) depends on the current state of an underlying Markov chain.
Such models are called Hidden Markov Models (HMMs) and are useful
representations for speech signals in terms of some convenient observations
(e.g., cepstral coefficients or pseudolog area ratios). One method of estimating
parameters of HMMs is the well-known Baum-Welch reestimation method.
For continuous pdf’s, the method was known to work only for elliptically
symmetric densities. We have recently shown that the method can be gener-
alized to handle mixtures of elliptically symmetric pdf’s. Any continuous pdf
can be approximated to any desired accuracy by such mixtures, in particular,
by mixtures of multivariate Gaussian pdf’s. To effectively make use of this
method of parameter estimation, it is necessary to understand how it is affected
by the amount of training data available, the number of states in the Markov
chain, the dimensionality of the signal, etc. To study these issues, Markov
chains and random vector generators were simulated to generate training
sequences from “toy” models. The model parameters were estimated from
these training sequences and compared to the “true” parameters by means of
an appropriate distance measure. The results of several such experiments
show the strong sensitivity of the method to some (but not all) of the model
parameters. A procedure for getting good initial parameter estimates is,
therefore, of considerable importance.
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1. INTRODUCTION

The theory of signal representation based on Hidden Markov
Models (HMMs) is well established and has been applied to text
analysis,’ coding theory,? ecology,® and most recently, speech process-
ing.*® The form of the HMM that we are considering is sketched in
Fig. 1. The Markov chain has N states, and transitions between states
are governed by a stochastic transition matrix, A, with elements a;;,
where

a; = probability of making a transition to state j,
given currently in state i.

In a given state, j, the observed output of the model is a random vector
with a probability density function (pdf) b;.

Given the model of Fig. 1, it is necessary to be able to estimate the
model parameters (i.e., the transition matrix, A, and the pdf’s b;) from
training data consisting of observations of output sequences generated
by the model. One very useful method of parameter estimation for
HMMs is the Baum-Welch reestimation procedure.” For the case of
continuous pdf’s of interest here, the method was originally shown to
be valid for log-concave densities.” This restriction was relaxed by
Liporace,® who extended the applicability of the method to elliptically
symmetric densities. However, this class of densities is still too restric-
tive for many interesting problems (e.g., measured densities of various

NN

Fig. 1—Markov model with N states.
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speech parameters). Therefore, we consider a more general represen-
tation of the density—a finite mixture of the form

M
b}(x) = Z ij./’/[x, MHjm s Ujm] ] = 1, N: (1)
m=1

where .# may be any log-concave or elliptically symmetric density,
and is assumed to be Gaussian in our present study. The vector x is
the observation vector. The vector g;» and the matrix U;,, are, respec-
tively, the mean vector and the covariance matrix for the mth mixture
component in state j. The coefficients, ¢;,, are the mixture gains, and
satisfy the stochastic constraint

M
2 Cm =1, ¢m = 0, (2)
m=1

so that

J: bj(x)dx =1, j=1, N. 3)

The representation of eq. (1) can be used to approximate arbitrarily
closely any finite, continuous density function; hence its appropriate-
ness to a wide range of problems. It has recently been shown® that the
reestimation procedure of Refs. 7 and 8 can be extended to cover the
mixture representation of eq. (1).

To understand the properties of such HMMs, and to study the
sensitivity of the parameter estimates to the details of the estimation
procedure, we have simulated several “toy” models and examined the
effects of sample size, initial parameter estimates, model inconsisten-
cies, etc., on the corresponding estimated models. In this paper we
present the results of our simulations. Since we have studied only a
few, carefully selected cases, we make no claims about specific sample
sizes, range of initial parameter values, etc. Instead, it is intended that
the examples presented allow the reader to understand the nature of
the representation, and thereby use it appropriately for his or her
particular application.

The outline of this paper is as follows. In Section I we show how a
toy model or HMM sequence generator can be implemented to provide
appropriate training sequences for estimating model parameters. In
Section II we review the continuous density HMM. In Section III we
describe a series of experiments designed to study the sensitivities and
properties of the HMM signal representation. Finally, in Section IV
we review the key results and discuss their implications for practical
problems.
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II. REVIEW OF THE CONTINUOUS HMM

Consider an N-state Markov chain where we label the states ¢, g2,

-, gn. The Markov chain is characterized by its state transition
matrix A = [a;]. Each state g; is characterized by a continuous
multivariate, probability density function b;(x), where x is a K-
dimensional observation vector.

Given a sequence of observations, O = Oy, Qs, - .., Or, where each
O, is a K-dimensional vector, we can calculate the likelihood of O,
given a model M. We denote the likelihood as .#(0 | M). Following
Baum,'® we can define a set of forward and backward likelihoods, a.(i)
and B,(j) respectively, where, for1<i,j<=N,and1<t=<T,

(i) = L0y, Os, -+, O, and ¢; at time t| M) (4)
and
B:(j) = £(0t4102 - -- Orlg; at time t and M). (5)

Baum has shown that «,(i) and 3;(j) can be computed recursively.
Assuming that we start in ¢,, whereby (1) = 1, ap (i) = 0, 2 =
i=N,andBr(j)=1,1=<j< N, thenforl <t= T we get

N
Olt(j) = [21 at—l(i)aij]bj(ot)’ (6)
andfor T—1=t=0,
N
Bt(l) = ;1 aijbj(0t+1)6t+1(j)' (7)

Thus, .#(0 | M) can be efficiently evaluated as

N N
Z(0|M) = El 21 @t (1)a;b; (0p41) B (7)), (8)
=1 j=
for 0 = t = T — 1. The parameters of the HMM are estimated by
finding some M that is a local maximum of Z(0|M) for a given
observation sequence O.
Using the mixture density of eq. (1) as the parameterized pdf’s
b;(x), the model M is specified by the following:

number of states in the model

number of mixture densities for each distribution

number of dimensions of each observation vector

[a;] = state transition matrix

{cjm], where ¢, = mixture gains for mth mixture in state j
[jme], where pjmr = the kth component of the mean vector yjm
for mth mixture in state j

I

FAOPXRRZ
i
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U = [Ujmu), where Ujn, = the (k, [)th entry of the covariance matrix
for the mth mixture in state j.

Given the values chosen for N, M, and K, and a set of initial guesses
for A, C, g, and U, a set of reestimation formulas is available® for
optimizing #(0 | M), for a given training set of observations O.

There are two general cases of the model that are of interest, namely
the ergodic case in which the Markov chain is ergodic (i.e., all states
are aperiodic and recurrent nonnull) and the left-to-right case in which
a transition from state g; to state g; is possible only if j = i (i.e., there
is a sequential progression through states of the model). Both general
cases are of interest for real-world applications.

2.1 Toy Markov model generator

In order to investigate the behavior of the parameter estimation
algorithms for the continuous HMM, a toy Markov model generator
was implemented. Its function was to generate an observation sequence
(for the ergodic case), or a set of observation sequences (for the left-
to-right case), for an input model specification M;,. Each observation
generated by the model was a K-dimensional vector according to the
probability density b;(x) for the jth state.

The algorithm used to generate the observation sequences is the
following:

1. Set the state index, j = 1 and the time index, t = 1.

2. Partition the unit interval proportionally to ¢, 1 =< m = M.
Generate x, a random number uniform on [0, 1]. Select the mixture
density, [, according to the subinterval in which x falls.

3. Decompose Uj; into QAQ’, where Q is the matrix of eigenvectors
of Uj,; and A is the diagonal matrix of eigenvalues of Uj,.

4. Generate a K-dimensional normal deviate, y, of zero mean and
covariance A.

5. Set 0, =Qy + Hii-

6. Partition the unit interval proportionally to gz, 1 = k < N.
Generate x, a random deviate uniform on [0, 1] and select the next
state, i, according to the subinterval in which x falls.

7. Increment ¢.

8. If t = T go to 2; else, stop.

The Markov model generator was specified by a model M;,,, and by
a limit on the number of observations T, or on the number of sequences
Q (for the left-to-right case). Each individual sequence, in the left-to-
right case, started in state ¢; (at observation 1) and terminated in
state gy (at observation T'), with the property that it had to have been
in state gy for at least L observations. (Typically L was 5 to 10.)
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IIl. EXPERIMENTAL EVALUATION OF THE REESTIMATION PROCEDURE

A series of experimental evaluations of the reestimation procedure
were made to determine the sensitivities of the algorithm—and hence
the resulting HMMs—to aspects of the observation sequence used to
train the model. Using the toy Markov model generators, several input
source models were defined (i.e., the model parameters were specified)
and several sets of observation sequences were generated from the
models. For each input source model, the reestimation algorithm was
used to obtain locally optimal model parameters based on the gener-
ated sequences and initial estimates. The resulting model M was
compared with the source model using a probabilistic distance
measure!! of the form

log[-Z(Ons,, | Min)] — log[-#(Ong, | M)]

D(Mis, M) = T

©

where Oy, was a set of observations generated by the toy model Mi,,
and T}, was-the total number of observations in this set. The distance
measure of eq. (9) gives the normalized difference in log likelihoods of
the observation sequence coming from the true toy model, and of the
likelihood of its coming from the estimated model, where the normal-
ization is the number of observations in Oy, . Previous experience

with D has shown that this measure is very effective for comparing
HMMs. !

3.1 Correlation of model distance to changes in model parameters

Before investigating the sensitivities of the reestimation procedure
to various model parameters and initial conditions, a preliminary
experiment was run to measure the correlation of model distance to
changes in model parameters. For this experiment, the initial (ergodic)
model had the specifications

M=N=K=2
_[o8 02 _[o15 025
A= 0.3 0.7]’ C= [0.35 0.65]
_[1 s _[5 o
M=l 4]0 BT 2
4 2 7 3 10 2
Ull.. - -2 4] y U21.. - |:3 7] ) Ul2.. - |:2 10]
_[8 1
U22.. - L]. 8:| .
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A new model was created in which all model parameters remained the
same except for one set, in which the columns of the corresponding
matrix or matrices were reversed, i.e., a; became aj;, or c;, became c,,,
etc. In this manner we could study the effects of changing only a single
parameter set on the model distance. A smooth interpolation between
the parameter set for the initial model and the reversed parameter set
was made by changing the parameter set in steps, and then measuring
model distance at each step. In particular, if we denote the matrix in
the initial model by X and the reversed matrix in the new model by
X', the intermediate matrices X" were formed by
1 5 o
ST xti X0
where the deviation factor 6 = ¢, 2¢, - - - , 2% and ¢ = 0.016.

The results of this preliminary experiment are shown in Fig. 2,
which gives a series of plots of model distance D, versus signal-to-
noise ratio v, defined as

XII

_ X
v = 10 logyo ———-—"X X
where || - | denotes matrix norm (|| X||I* = X; ¥; % for X = [x;]) for

changes in A, C, and g. (Curves similar to that for u can be obtained
for changes in U.) It can be seen that perturbed models are far more

0.25
0O M VARIABLE
® A VARIABLE
A C VARIABLE
w
(&]
=z
<
tz, 0.10
o
ok
~0.02 L
0 30 40

SIGNAL-TO-NOISE RATIO IN DECIBELS

Fig. 2—Distance as a function of parameter deviation for changes in g, A, and C.
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distant (in the probabilistic distance sense) from the initial models
when pu is perturbed than when the transition probability or the
mixture gain parameters are perturbed. In general, the HMMs are
indeed much more sensitive to small errors in p values than to small
errors in C or A values unless the variances are extremely large. The
exact sensitivity will depend on the precise relationships among means
and the associated variances.

The effects of the detailed relationships among means and the
associated variances can be seen from the nonmonotonic behavior of
the distance curve pertaining to g in Fig. 2. In this particular case, the
mean vectors moved from (1,5) to (5,1), (3,4) to (4,3), (5,9) to (9,5),
and (8,2) to (2,8) as the signal-to-noise ratio decreased from about
38.6 dB to 2.6 dB. Thus, as seen in Fig. 2, when v drops below 8 dB,
the probabilistic distance for u deviations actually decreases. One may
observe that in some section along the perturbation path from (8,2) to
(2,8), the perturbed mean moves closer to the original mean locations
(1,5) and (3,4), and thus results in a decrease rather than increase in
the probabilistic distance.

We should point out that if we arbitrarily increase the number of
mixture components in modeling a given density, then, with proper
choice of the initial estimate, the obtained mixture weights become
proportional to sample values of the density function at the mean
locations of the mixtures. When this happens, the variance in each
mixture density, as well as the spacing of the means, decreases and,
asymptotically, the observation density is mainly characterized by the
mixture gains and the mean vectors. Thus, there is a continuum in
the observation of relative model sensitivities as the number of mixture
terms varies.

3.2 Sensitivities of the reestimation procedure to parameter inaccuracies
and to the training sequence

Based on the results given in the previous section, a series of
experiments were performed to investigate the sensitivities of the
reestimation procedure to initial parameter estimates and to the length
of the training sequence.

The first experiment used a left-to-right source model with the
characteristics

N =35, M=3, K=5

8 .15 .05 0 O g g i

0 8 .15 05 0O ‘6 '3 '1
A=]0 0 .8 .15 .05}, C=|, "5~
6 3 .1

0 0 0 8 .2 6 3 .1

0 0 0 0 1 6 3 1
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101 01 1 1] 3 3 3 3 3
p=|15 15 1.5 15 15|, . =|35 35 35 35 35|,
4 4 4 4 4

ps.=|55 55 55 55 55
6 6 6 6 6

77 7 7 1 9 9 9 9 9
pe =175 75 75 15 15|, pu. =195 95 95 95 95
(8 8 8 8 8. 10 10 10 10 10
Sm=1
Umner =12m=2 for k=1,2,..-,5, and
Am=3

Ujmu = 0.01 for all k#1L

The initial guess of the model parameters was random for A and C,
and identity matrices for U. For u, the initial guess had the form

p=(1-2zap, (10)

where « is a random variable uniformly distributed on (0,2), and z is
a user-specified error bound, which limits the maximum possible
deviation of g’ from u in the source model.

The source generated @ random sequences according to the specified
model, where @ varied from 10 to 100 (in steps of 10) and initial
estimates with values of z = 0.0, 0.2, 0.4, and 0.6 were used. For each
set of observations, and for each initial estimate, the reestimation
procedure was iterated until a stationary point was found. At this
point, both the average (negative) log likelihood for the estimated
model M and the model distance (from the source to the estimated
model) were calculated. Figure 3 shows a series of plots of the average
(negative) log likelihood, and the model distance, as a function of the
total number of observations in the @ training sequences, for the four
values of z. For values of z = 0 and 0.2, for sufficiently long training
sequences (i.e., 20 sets of observations or about 400 observations), the
model distances were reasonably small (less than 0.25). As z got bigger,
thereby making the initial estimates of u poorer, the resulting models
had distances on the order of 0.4 or larger. It is clearly shown that the
accuracy of the estimated model depends on the initial estimate from
which the iterative reestimation procedure starts. A converged model
estimate is only a local optimum and, in general, has a lower likelihood
than the global optimum.

Figure 3 also shows the correlation between the log likelihood and
the model distance. For sufficiently long observations, the model
distance is a good predictor of the relative log likelihood for the
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Fig. 3—(a) Distance and (b) average log likelihood as a function of the number of
observations in the training sequence, and as a function of the initial estimation
deviation, z.

estimated model. When a smaller number of observations is generated
for estimation, the statistical characteristics of the source become less
well represented in the generated observation sequences, and hence,
the estimated model is more data specific, resulting in greater varia-
tions in the log likelihood. This can be more easily seen from the
behavior of distance for a specific set of training sequences as the
reestimation procedure iterates to a stable solution. Such a plot is
given in Fig. 4 for Q = 20 sequences (part a) and for @ = 50 sequences
(part b). (Note that these two curves show the distance behavior of
the model reestimate as it converges to the solution corresponding to
the two particular points, P, and P., in the upper curve of Fig. 3,
respectively.) For @ = 20 sequences, the training set does not provide
a good characterization of the source model—it is too short; hence the
model distance decreases for a couple of iterations and then increases
as the local estimated parameters are adjusted to match those of the
specific observation sequence rather than those of the true generating
model. For @ = 50 sequences, the distance between the estimated
model and the true source model steadily decreases.

3.3 Sensitivity of model reestimation to evaluation of the density function

Because of the wide dynamic range of the density function, b;(x), of
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Fig. 4—(a) Distance for @ = 20 sequences training and (b) @ = 50 sequences training
as a function of the iteration number.

eq. (1)—especially when the estimates of g and U are in error—a
minimum value clipping level, fcrip, is usually required to avoid poten-
tial underflow and singularity problems. In our study, whenever b;(x)
was less than 107cw®, it was artificially clamped at 107/cu; otherwise
bj(x) was kept as computed. This, in effect, injects certain noise
components into the observations. To understand the effect of ferp
on the resulting model estimates, a left-to-right, four-state, one-mix-
ture, two-dimensional model was used, with the specification

N =4, M=1, K=2

8 15 .05 0 1
o 8 .15 .05 |1
A=lo o 8 2|0 ©71
0 0 0 .1 1
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The value of foip was varied from 70—which is essentially full
precision on the Data General MV8000 32-bit computer—down to
10—severe clipping—and initial estimates of u’ were generated as in
eq. (10). For each value of fcrp and z, the distance between the model
resulting from the reestimation procedure and the original source
model was computed, and the results are plotted in Fig. 5. For all runs,
the number of observation sequences used in training was 50; hence
there was an adequate number of observations for the parameter
estimates to converge to the true model. The results given in Fig. 5
show that for z = 0 the distance is insensitive to values of fcrp over
the entire range. For z = 0.2, the distance is much larger for forip = 10
than for all other values of forp. The differences in distance between
the results for z = 0.2 and those for z = 0.0 are insignificant except
for those at fcrip = 10. For z = 0.4, the model estimates yield larger
distances than for z = 0 or z = 0.2 for all values of fcr1p. The differences
for forip values of less than 50 are primarily due to the sensitivity of
the reestimation procedure to the initial u estimates as discussed
previously. The differences for fcLp in the range 10 to 40 are due to
sensitivities of the reestimation procedure to the clipping itself. To
understand this sensitivity, consider Fig. 6, which shows a Gaussian
with a clipping threshold 10~fcue, In the case that initial estimates of
u (and U) are very close to the true value, the density function will
rarely, if ever, be clipped; hence until 1077w approaches the peak of
the density function, the clipping has little effect on the model esti-
mate. In the case where initial estimates of u are far from the true
value, a large percentage of the density computations will be clipped
and the reestimation procedure will be unable to improve the param-
eter estimates because the density function is essentially flat in the
region of the clipping. For such cases, very poor estimates of u result
and large model distances are obtained. The results point out an
important consideration in practical implementations of the estima-
tion algorithm, where finite precision is inevitable.

3.4 Modeling correlated processes by mixtures of uncorrelated processes

The mixture form of eq. (1) is a very versatile and flexible represen-
tation of the pdf in each state. For example, a complicated multivariate
pdf may be approximated by a mixture of Gaussian multivariate
densities with full covariance matrices, or, by increasing the number
of mixture components, a mixture of Gaussian multivariate densities
with only diagonal covariance matrices (i.e., vector elements are un-
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Fig. 5—Distance as a function of the density clipping threshold for z = 0, 0.2, and
04.

correlated). To better understand this concept, we studied the trade-
off between the degree of correlation and the number of mixture
components in the representation by modeling correlated multivariate
densities with different numbers of uncorrelated multivariate densities
using the HMM framework.

The source model used for these studies had the following specifi-
cations:

MARKOV MODELS 1263



N = 4, M=1, K=2

8 15 05 0 1
0 8 .15 .05 |1
A=lo o 8 2| ©7|1
0 0 0 10 1

p.=1[0 0], p=1[4 4], . =1[8 8], p.=[12 12]

1, k=1
Ujlkl_ {p’ k?él,

where p varied from 0 to 0.9 (in steps of 0.1). Thus, the source model
had a full two-dimensional covariance matrix with correlation p be-
tween components of each vector.

We considered two separate HMMs for matching the observation
sequences of the full covariance source model. The first model used
an M = 1 (a single) mixture with a diagonal covariance matrix; the
second model used an M = 5 mixture, where each component density
again had a diagonal covariance matrix. Since we were interested only
in the capabilities of the models—and not in the concomitant problems

VERY GOOD u
ESTIMA'TE (z=0)

|
\

CLOSE pt
ESTIMATE
z=02)

BAD
ESTIMATE

_-10-fcLp

b/ ranind

Fig. 6—Explanation of the sensitivity of the reestimation algorithm to the density
clipping threshold for different values of z.
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of reestimation—the initial estimates of the model parameters were
selected to optimize the match. Thus for the M = 1 model, the initial
estimates were identical to those of the source, except the off-diagonal
covariance terms were set to 0. For the M = 5 model, the initial
estimates of g and U were adjusted in order to best match the full
covariance with correlation p by the M = 5 mixtures. The procedure
used is illustrated in Fig. 7, which shows a K equals a two-dimensional
correlation in the (x;, x;) plane (part a), and a one-dimensional slice
(part b). The initial estimates of u for the M = 5 case are shown by
the center dots of the five circles in part a. The mixture gains and the
mixture covariances were chosen to provide good initial fits to the
correlated covariance as shown in both parts a and b.

The results of estimating optimum models for the M =1 and M =
5 cases are shown in Fig. 8, which gives plots of model distance versus
p. For M = 1, the model fits have distances less than or equal to 0.1
only for p < 0.35, and have distances less than or equal to 0.2 for p <
0.5. For M = 5, the model fits have distances less than or equal to 0.1
for p < 0.7, and have distances less than or equal to 0.2 for p up to 0.9.
Thus, for this case, the M = 5 mixture models without correlations
provide excellent approximations to models with correlated random
variables up to correlations of 0.9.

The results presented above show that it is possible to model a K-
dimensional (K = 2) correlated random process by a mixture of M-
uncorrelated, K-dimensional, Gaussian random processes. The ques-
tion that remains is why one would be interested in using such an
approximation. There are two possible reasons that readily come to
mind. First, there is the possibility that more reliable estimates can
be made of the set of 2M - K means and variances for the M-mixture
uncorrelated processes case, than for the set of K(K + 3)/2 means and
correlations for the one-mixture correlated process. If this is the case
the trade-off is between the increased error in the approximation
process and the increased reliability in the estimation process. The
second possible reason for using the M-mixture uncorrelated process
instead of the one-mixture correlated process is the potential for a
decrease in the number of parameters that need to be estimated. To
see when this can occur, we define P, as the number of parameters for
the one-mixture correlated density, and P, as the number of parame-
ters in the M-mixture uncorrelated density case. Then, assuming K-
dimensional vectors, we get

p. = K(K + 3)
2
and
P, = MQ2K + 1).
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For P, < P. we require
K(K + 3)
2K+ 1)’

Thus, for K < 5, the largest M can be is 1, for 9 = K = 6, the largest
M can be is 2, and for 13 = K = 10, the largest M can be is 3 to realize

M=

(a)

Fig. 7—(a) Observation region in the (x;, x;) plane for highly correlated vector
components along with initial estimates of g for M = 5 model; (b) interpretation of
initial estimates along a one-dimensional projection of the (x;, x2) plane.
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Fig. 8—Distance versus p for M = 1 and M = 5 mixture fits using diagonal covariance
matrices.

any reduction in the number of variables to be estimated. For speech-
recognition applications, we generally use K = 10; hence values of
M < 3 could be considered. Whether or not the model is adequately
represented with this many diagonal mixtures depends heavily on the
specific application. The purpose of the above discussion is to point
out the possibilities of the alternative method.

IV. DISCUSSION
The results presented in the previous section have shown the follow-
ing:
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1. Continuous HMMs characterized by mixture densities are most
sensitive to estimation errors in the locations of the means of each
mixture density. If the error in the initial estimate of the mean becomes
sufficiently large, then the reestimation procedure has very little
chance of giving good model parameter estimates.

2. The sensitivity of the models to errors in initial covariance
estimates is less than that due to errors in the initial mean estimates.

3. The sensitivity of the models to errors in either transition matrix
coefficients, or mixture gains, is low. Hence, good model estimates can
be obtained even with poor initial estimates of these parameters, as
long as the distribution does not contain singularities.

4. We have found that observations on the order of 500 to 1000 are
adequate for models that are typical of many applications in speech
processing (e.g., models with N = 10, K = 10, M = 3).

5. Good initial parameter estimates become critical in the reesti-
mation procedure when word precision for the evaluation of the density
function is limited—an inevitable situation in practical implementa-
tions.

6. Mixture density models with diagonal covariance matrices for
each mixture can be used to approximate full covariance models.

The most important conclusion from our experiments is that it is
absolutely mandatory to have a good initial guess of the means of the
density functions to obtain good HMMs. With a good initial guess of
the means, the parameter reestimation procedure is capable of yielding
good models even if other model parameters have poor intial estimates.

V. SUMMARY

Several interesting properties of continuous density HMMs have
been discussed. These include model sensitivity to initial parameter
estimates, to evaluation of the density function, and to size and type
of training sequence. We have shown how a mixture density of uncor-
related variables can successfully represent a model with highly cor-
related variables, as long as enough mixtures are used. The results
presented here can be applied to a variety of real-world problems.
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