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Consider the following situation. K data bits are to be encoded into N > K 
bits and transmitted over a noiseless channel. An intruder can observe a subset 
of his choice of size J.L < N. The encoder is to be designed to maximize the 
intruder's uncertainty about the data given his J.L intercepted channel bits, 
subject to the condition that the intended receiver can recover the K data bits 
perfectly from the N channel bits. The optimal trade-offs among the param
eters K, N, and J.L and the intruder's uncertainty H (H is the "conditional 
entropy" of the data given the J.L intercepted channel bits) were found. In 
particular, it was shown that for J.L = N - K, a system exists with H:::::: K - 1. 
Thus, for example, when N = 2K and J.L = K, it is possible to encode the K 
data bits into 2K channel bits, so that by looking at any K channel bits, the 
intruder obtains no more than one bit of the data. 

I. INTRODUCTION 

In this paper we study a communication system in which an unau
thorized intruder is able to intercept a subset of the transmitted 
symbols, and it is desired to maximize the intruder's uncertainty about 
the data without the use of an encryption key (either public or private). 

Specifically, the encoder associates with the K-bit binary data 
sequence SK an N-bit binary "transmitted" sequence X N, where N> 
K. It is required that a decoder can correctly obtain SK with high 
probability by examining X N. The intruder can examine a subset of 
his choice of size J.L of the N positions in X N

, and the system designer's 
task is to make the intruder's equivocation (uncertainty) about the 
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data as large as possible. The encoder is allowed to introduce random
ness into the transformation SK ~ X N, but we make the assumption 
that the decoder and the intruder must share any information about 
the encoding and the randomness. This assumption precludes the use 
of "key" cryptography, where the decoder has the exclusive possession 
of certain information. 

As an example, suppose that K = 1, N = 2, and J.l = 1. Let the data 
bit be S, and let ~ be a uniform binary random variable that is 
independent of S. Let X 2 = (~, ~ E9 S), where E9 denotes modulo 2 
addition. If the intruder looks at either coordinate of X 2

, he gains no 
information about S, so that the system has perfect secrecy. The 
decoder, however, can obtain S by adding (modulo 2) the two compo
nents of X2. 

Our problem is to replicate this type of performance with large K, 
N, and J.l. In fact, we assume that K ::= RN and J.l ::= aN, where Rand 
a are held fixed and N becomes large. Roughly speaking, we show that 
perfect secrecy is attainable provided that J.l is not too large, specifically 
J.l ::5 N - K or a ::5 1 - R. In Section II we give a precise statement 
and discussion of our problem and results, leaving the proofs for 
Sections III through V. 

This problem is similar to the wire-tap channel problem studied in 
Ref. 1. A special case of the problem studied there allows an intruder 
to examine a subset of the encoder symbols that is chosen at random 
by nature. In the present problem, the system designer must make the 
system secure against a more powerful intruder who can select which 
subset to examine. 

II. FORMAL STATEMENT OF THE PROBLEM AND RESULTS 

In this section we give a precise statement of our problem and state 
the results. 

First a word about notation. Let %' be an arbitrary finite set. Denote 
its cardinality by 1 %' I. Consider %,N, the set of N-vectors with 
components in %'. The members of %,N will be written as 

where subscripted letters denote components and boldface super
scripted letters denote vectors. A similar convention applies to random 
vectors, which are denoted by uppercase letters. When the dimension 
of a vector is clear from the context, we omit the superscript. Finally, 
for random variables X, Y, Z, etc., the notation H(X), H(X 1 Y), 
I(X; Y), etc., denotes the standard information theoretic quantities 
as defined, for example, in Ref. 2. 

We now turn to the description of the communication system. 
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1. The source output is a sequence ISk}i, where the Sk are inde
pendent and identically distributed (i.i.d.) binary random variables 
with uniform distribution. 

2. The encoder with parameters (K, N) is a channel with input 
alphabet 10, I}K, output alphabet 10, I}N, and transition probability 
qE(XN I SK). Let SK and X N be the input and output, respectively, of 
the encoder. 

3. The decoder is a mapping 

In: 10, I}N ~ 10, I}K. 
A A A AN. 

Let S = (Sl, S2, ... , SK) = In (X ). The error rate IS 

1 N A 

Pe = K k~l PriSk ¥ Sk}. 

4. An intruder with parameter /l ::5 N picks a subset Y ~ 11, 2, 
... ,N}, such that I Y I = /l and is allowed to observe X n , n E Yo Let 
ZN = (Zl, ... ,ZN), defined by 

Zn = {~n' ., 
n E Y, 
n $. Y, 

denote the intruder's information. The system designer seeks to max
imize the equivocation 

Ll ~ min H(SK I ZN). 
9':/9'/=1' 

Thus, the designer is assured that no matter what subset Y the 
intruder chooses, the intruder's remaining uncertainty about the 
source vector is at least Ll. When Ll = K, the intruder obtains no 
information about the source, and the system has attained perfect 
secrecy. 

In this paper we study the trade-offs between K, N, Ll, and Pe. As 
we shall see, it will be useful to consider the normalized qualities 
K/N, /lIN, and Ll/K. Thus, K/N is the rate of the encoder equal to the 
number of data bits per encoded bit, /l/ N is the fraction of the encoded 
bits that the intruder is able to observe, and Ll/K is the normalized 
entropy. 

The intruder who observes ZN can reconstruct the data sequence 
SK with a per-bit-error probability of, say, P;. It follows from Fano's 
inequality that h(P;) ~ Ll/K, where h( . ) is the binary entropy function 
defined below eq. (2). Thus, Ll/K:::::: 1 implies that P; :::::: 1/2, which is 
essentially perfect secrecy. 

We will say that the triple (R, a, 0) is achievable if for all f > ° and 
all integers No > 0, there exists an encoder/decoder with parameters 
N ~ No, K ~ (R - f)N, /l ~ (a - f)N, Ll ~ (0 - dN, and Pe ::5 f. We 
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will show in the sequel that (R, a, 0) is achievable for 0 :s R, a :s 1, 
and 

{ 

1, 
o :s 0:S (1 - a) 

R ' 

o :s a :s 1 - R'} 
1-R:Sa:S1. 

A graph of the achievable (a, 0) pairs for fixed R is given in Fig. 1. 

(1) 

The following theorem, a proof of which is given in Section III, is a 
"converse" result that gives a necessary condition on achievable 
codes. 
Theorem 1: If there exists a code with parameters (K, N, Ll, Pe ), then 

Ll < {K, 
- N - J.L + Kh(Pe ), 

o :s J.L :s N - K, 
N - K:s J.L:S N, 

(2) 

where h(A) = -A log A - (1 - A)log(1 - A) is the binary entropy 
function. 

Now if (R, a, 0) is achievable, for arbitrary f> 0, there must be an 
encoder/decoder with parameters N, K ~ (R - f)N, J.L ~ (a - f)N, 
Ll ~ (0 - f)N, Pe :s f. Applying Theorem 1 to this code yields 

0:S (1 - a) 
{ 

1, 

R + O(f) + h(f), 1 -R s ex + 0(.) s 1}' 
which is (1) as f ~ o. Thus conditions (1) are necessary for a triple to 
be achievable. Theorem 2, which is also proved in Section III, implies 
that (R, a, 0) is achievable if (1) is satisfied. 

Theorem 2: Let 1 - R < a < 1. Then, for all f > 0, No ~ 1, there exist 
an N ~ No and an encoder/decoder with parameters K = RN, J.L = aN, 
Ll/K ~ [(1 - a)/R] - f, and Pe = o. 

8 

A 

B 
l-R 1 a 

Fig. I-Achievable (a, 0) for fixed R. 
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The idea behind the proof of Theorem 2 is the following. Parti
tion the set to, I}N into 2K subsets {Am}t with equal cardinality-i.e., 
1 Am 1 = 2N - K. The 2K possible values of SK can be put in 1 to 1 
correspondence with these subsets. When SK corresponds to Am (1 :5 

m:5 2K
), the encoder output is uniformly distributed on Am. Since the 

{Am} are disj<;>int, the decoder can recover SK perfectly and Pe = 0. We 
show (by random coding) that there exists a partition satisfying 
Theorem 2. 

A convenient way to partition to, I}N is to let the sets {Am} be the 
cosets of a group code G with N - K information symbols (so that G 
has 2K cosets). Theorem 3, which is proved in Section IV, asserts that, 
in fact, we can do quite well with codes of this type. 
Theorem 3: If the triple (R, a, 0) satisfies (1), then it is achievable using 
an encoder/decoder derived from a group code. 

The following simple lemma allows us to establish the achievability 
of all triples on the straight line of Fig. 1 connecting points A and B 
by proving only the achievability of point A. 
Lemma 1: Suppose that we are given an encoder/decoder fE, fn with 
parameters N, K, and Pe • Suppose that there are two intruders that 
have parameters J.l = J.l1, J.l2 and il = ill, il2, respectively. Then, if 
J.l2 2: J.lb 

(3) 

Remark: Inequality (3) can be rewritten as 

(!'J.2/K) '" (!'J.,fK) - (lldN
K
7;,fN) , 

from which we conclude that (R, aI, od is achievable implies that 
(R, a2, (2) is achievable where a2 2: a1 and 

02 = 01 _ (a2 ; a} 
In particular, if a1 = 1 - R, 01 = 1, then 

02 = (1 - a2)/R. 
Proof of Lemma 1: Let -Yi ~ ~ ~ {I, 2, ... , N}, where 1 9i 1 = J.lb 

1 -511 = J.l2· Let zf correspond to Sf(i = 1, 2), i.e., Zi = (Zib ... , ZiN) 
and 

Z .. = {Xh 
I] ? . , 

Then, 

j E .51, 
j fE Yi . 

H(SKI Z2) - H(SKI Zd = H(SKI Z2, Zl) - H(SKI Zd 

= -I(SK; Z21 Zd 2: -H(Z21 Zd 2: - (J.l2 - J.lI), 
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where the first equality follows from 9i k .51. Thus 

H(SK I Z2) ~ H(SK I Zd - (/l2 - /ll) 

~ ~1 - (/l2 - /ld (4) 

from the definition of ~. Minimizing (4) over all 92, with I Yz I = /l2, 

yields (3) and the lemma. 0 
Finally, we state a theorem that is a rather surprising strengthening 

of Theorem 2. Its proof is given in Section V. 

Theorem 4: For arbitrary K, N (1 ::5 K::5 N), and /l = N - K, there 
exists an encoder/decoder with P e = ° and 

2.23 
~~K-1-t/N' 

III. PROOF OF THEOREMS 1 AND 2 

Assume that SK, X N, ZN, and S correspond to a source/encoder/ 
decoder as defined in Section II, with parameters K, N, ~, and 
Pe • Then, making repeated use of the identity H(U, V) = H(U) 
+ H(VI U), we obtain 

~ = H(SKI ZN) = H(S, Z) - H(Z) 
= H(S, X, Z) - H(X IS, Z) - H(Z) 
= H(S I X, Z) + H(X, Z) - H(X I s, Z) - H(Z) 
= H(S I X, Z) + H(X I Z) - H(X IS, Z). (5) 

Now 

H(S I X, Z) = H(S I X, z, S) ::5 H(S I S) 
::5 Kh(Pe ), 

where the last inequality follows from Fano's inequality (see Ref. 2). 
Also, since H (X I Z) is the entropy of those N - /l coordinates of X 
not specified by Z, we have H(X I Z) ::5 N - /l. Finally, noting that 
H(X IS, Z) ~ 0, we have from (5) 

~ ::5 N - /l + Kh(Pe ), 

which is Theorem l. 
We now give a proof of Theorem 2, which proceeds along the lines 

suggested in Section II. Let K, N be given, and let {Am}, 1 ::5 m ::5 2K
, 

be a partition of to, 1}N into subsets Am k to, 1}N such that I Am I == 
2N

-
K

• As in Section II, the partition defines a code: to encode message 
m(1 ::5 m ::5 2K

), we let X N be a randomly chosen vector in Am. Since 
the Am are disjoint, P e = ° and H(S I X, Z) = 0. Further, since the 2K 
messages are equally likely and I Am I == 2N

-
K

, X is uniformly distrib
uted on to, 1}N, so that its coordinates are i.i.d. uniform binary random 
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variables. Thus H(XNI ZN) = N - Jl. We conclude from (5) that for 
this encoder 

(6) 

Now let z E 10, 1, ?}N be a possible value for the intruder's infor
mation, and let x E 10, l}N. We say that z is "consistent" with x if z 
can be obtained from x by changing a subset of the coordinates of x 
to ?'s. Next, let L 2= 1 be an integer to be chosen later. We say that a 
partition lAm} is "good" if for all m(l :5 m :5 2K) and all z E 10, 1, ?}N 
with exactly N - Jl?'s, 

cardlx E Am: Z is consistent with x} < L. 

If our encoder corresponds to a good partition for some L, then 

H(XNI SK, ZN) < log L, 

and (6) yields 

~ 2= N - Jl - log L. (7) 

At the end of this section we will prove the following proposition 
about the existence of good partitions. This will lead us directly to 
Theorem 2. 
Lemma 2: Let K, N, and Jl be such that 

N - Jl - K < 0. (8) 

Then, there exists a good partition (with parameters K, N, and Jl) 
provided 

L 
2N + K + 2 log e 

> . 
K+Jl-N 

(9) 

N ow let R, a, f, and No be given as in the hypothesis of Theorem 2. 
Then, using 2 log e :5 3, we write for N 2= 1, 

_N_+_K_+_2_lo....::::g_e 1 + R + 3 Ll B 
< - < 00 

K + Jl - N - a - (1 - R) - . 

Thus, there exists a good partition with L :5 B + 1, and we con
clude from (7) that there exists a code with ~/K 2= [(1 - a)/R] -
I[log(B + l)]/(RN)}. If we choose N 2= No, fR/log(B + 1), then the 
existence of this code establishes Theorem 2. It remains to prove 
Lemma 2. 

Proof of Lemma 2: Let lAm}, 1 :5 m :5 2K
, be a partition of 10, l}N, 

where I Am I == 2N
-

K
• Let 'It(A1 , "', A2K) = ° or 1, depending on 

whether lAm} is good. We write 
2K 

'It (A I, •.. , A2K):5 L L ¢(Am' z), (10) 
m=l z 
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where the inner sum is taken over all z E to, 1, ?}N with exactly 
N - J.L?'s, and ¢(Am' z) = 1 if 

card{x E Am: Z is consistent with x} ~ L, 

and ¢(Am' z) = ° otherwise. 
We now choose the partition at random with uniform distribution 

on the set of partitions of to, l}N into 2K classes of equal size. The 
expectation E'I! satisfies 

(11) 
m z 

The expectation in the right member of (11) is taken, as indicated, 
with z held fixed. Let us define the following quantities: 

Q(z) = {x ~ to, l}N: x is consistent with z}, 
nl = I Q(z) I = 2N

-Il, 

n = I to, l}NI = 2N
, 

r = IAml = 2N -
K

• (12) 

We now compute E<I>(Am, z). The r members of Am are chosen at 
random from to, l}N (without replacement). The probability that 
exactly t members of Am belong to Q(z) is 

To see this, observe that there are (~) ways to choose the set Am. 

The t members of Am that belong to Q(z) can be chosen in (~l) ways, 

and the remaining (r - t) members of Am can be chosen from the 

(
n - nl) complement of Q(z) in r _ t ways . 

.. ' Now 

Also, using (~l) ::5 n~/t!, and 
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we have 

Thus 

(r ~ t) n! 

(~) = (n - r + t)!(r - t)! 

r!(n - r)! 

n! 

r(r - l)(r - 2) ... (r - t + 1) 

(n + t - r)(n + t - r - 1)· .. (n - r + 1) 
rt (r/n)t 

<---
- (n - r)t (1 - r/n)t' 

_ #-K < 00 (n1r/n) t 
E<I>(Am , z) - L 7rt - L '(1 _ / )t· 

t=L t=L t. r: n 

Using (12), we have (n1r/n) = 2 N
-p.-K, (1 - r/n) ~ 1/2, so that 

Substituting into (11) yields 

E'It ::; L L 2(N-p.-K)L+2Ioge 

m z 
::; 2(N-~-K)L+2Ioge+K+2N. 

If L satisfies (9), then E'It < 1. Since 'It is integer valued, there must 
exist a particular partition, say {A!} such that 'It(Ai, ... , A;K) = 0. 
This is our good partition. 0 

IV. GROUP CODES AND THEOREM 3 

In Sections II and III, we discussed how to construct encoder/ 
decoders based on a partition {Am} of to, I}N. In this section we consider 
the special case where the partition {Am} is defined by a group code 
and its cosets. 

Let H be a K X N parity-check matrix, which we assume has rank 
K. Let the partition {Am}, 1 ::; m ::; 2K

, be the code defined by Hand 
its cosets. Thus I Am I == 2

N
-

K
, for 1 ::; m ::; 2K. To encode message 

s = (S1, .•. , SK), the encoder makes a random selection of one of the 
2N

-
K members of the Am corresponding to s. This is equivalent to 

letting X N be a random choice from the 2N
-

K solutions of 

WIRE-TAP CHANNEL 2143 



HXt = st, (13) 

where t denotes matrix transpose. Note that since S is uniformly 
distributed on to, I}K, X N is uniformly distributed on to, I}N, and its 
coordinates Xl, X 2 , ••• ,XN are i.i.d. uniform binary random variables. 

The decoder observes X N and computes HXt, which is the message. 
Thus Pe = 0. We now show how to compute L1 in terms of certain 
distance-like properties of the parity-check matrix. 
Definition: Let CI , C2 , ••• , CN be the columns of H (Cn is a K-vector). 
Let Y!: {I, 2, ... , N} and define D(Y) to be the dimension of the 
subspace spanned by {Cn}, n E Yo For a given K X N parity-check 
matrix H, define for ° ::5 J.l ::5 N, 

D*(J.l) = min D(Y). 
19' I=N-p, 

We now state Lemma 3. 

(14) 

Lemma 3: Let D*(J.l) correspond to the K X N parity-check matrix H. 
Let w, w' be the minimum weight of the code and dual code, respectively, 
defined by H. Then, (a) for N - w + 1 ::5 J.l ::5 N, D*(J.l) = N - J.l; (b) 
for ° ::5 J.l ::5 w' - 1, D*(J.l) = K. 
Proof of Lemma 3: Assertion (a) follows immediately on observing 
that all sets of w - 1 columns of H are linearly independent. Thus 
D( Y) = I Y I, for I Y I ::5 w - 1. If N - w + 1 ::5 J.l ::5 N, then N -
J.l ::5 w - 1, so that 

D*(J.l) = min D(Y) = N - J.l, 
19' I=N-p, 

which is assertion (a). 
Now assertion (b) states that all submatrices fI = (Cit' C i2 ' 

... , C i ) of H have rank K when q 2= N - w' + 1. To establish this 
q A 

assertion, assume that rank H < K. Then there exists a set of linear 
row manipulations which transform fI into a matrix with a row of 
zeros. These same row manipulations will transform H into a matrix 
for which a row has weight ::5 N - q. Since the dual code is the row 
space of H, N - q 2= w' or q ::5 N - w', establishing assertion (b). D 

We now give Lemma 4. 
Lemma 4: When an encoder/decoder is constructed to correspond to the 
parity-check matrix H, then 

L1 = D*(J.l). (15) 

Proof of Lemma 4: Let S, X, Z correspond to an encoder/decoder with 
parameters K, N, L1 and (Pe = 0), derived, as discussed above, from a 
parity-check matrix H = (CI, ... , CN). Since Pe = ° and X N is 
uniformly distributed on to, I}N, eq. (6) applies. Thus, Lemma 4 will 
be established when we show that 
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(16) 

Now suppose that SK = sand ZN = z. Without loss of generality, 
assume that the last J.l coordinates of z are copies of the corresponding 
coordinates ofX. Thus, given SK = S, ZN = z, the remaining unknown 
coordinates of X are precisely the solutions for Xl, ••• , XN-p. of 

(17) 
n=l n=N-p.+1 

Since the number of solutions is N - J.l - rank (C I , ... , CN-p.), and, 
given S = s, Z = z, all these solutions are equally likely, then (16) 
follows; hence the lemma. D 

Before continuing with the proof of Theorem 3, we digress to apply 
Lemma 4 in an example. Let K = 4, N = 8, and construct an encoder/ 
decoder using the self-dual Hamming code with block length 8 and 
four information digits and four check digits. Then, w = w' = 4, so 
that 

{

4 =K 
~ = D*(J.l) = 3, ' 

N-J.l, 

o ::; J.l ::; 3, 
J.l = 4, 
5 ::; J.l ::; 8. 

Thus, the encoder/decoder is optimal for all J.l except J.l = 4, when ~ 
is only one bit less than ideal. 

We will establish Theorem 3 via a random code argument. Towards 
this end, we establish the following lemmas. 
Lemma 5: Let 1 ::; m ::; n, and let the m X n matrix A over GF(2) be 
chosen at random with uniform distribution on the set of 2mn binary 
m X n matrices. Then, for 1 ::; L ::; m, 

Pr{rank A < m - LI ::; 2-(L+1)(n-m)+n. 

Proof of Lemma 5: Let us choose the n columns of A sequentially and 
independently. Let d(j) be the dimension of the linear space spanned 
by the first j columns. Suppose that d(j) = k ::; m. With probability 
2k-m, d(j + 1) = k; and with probability (1 - 2k-m), d(j + 1) = k + 1. 
This sequential choice of the columns is modeled by the Markov chain 
of Fig. 2. 

Fig. 2-Markov chain used in proof of Lemma 5. 

WIRE-TAP CHANNEL 2145 



Begin at state o. With each choice of a column, advance one state if 
and only if this choice increases the dimension of the space spanned 
by the columns chosen so far. The rank of the matrix A is d(n) and is 
equal to the state at which we find ourselves after all n columns are 
chosen. Let r(k) denote the set of paths 7r that start at state 0 and 
terminate at state k(O :s k :s m). Then 

m-L-l 

Pr{rank A < m - L} = L L Pr{7r}. (18) 
k=O 1I"Er(k) 

Now let the path 7r E r(k). This path contains exactly n - k self
loops, each of which has probability :s 2-m+k

• Thus, for 7r E r(k), 

Pr{7r} :s 2(-m+k)(n-k). 

Also, since I r(k) I = (~), eq. (18) yields 

Pr{rank A < m - L} :s m~-l (n) 2-(m-k)(n-k). 

k=O k 

Since the exponent is nondecreasing in k(k :S m:S n), we have 

Pr{rank A < m - L} :S m-i-1 (n) 2-(L+l)(n-m+L+l) 

k=O k 
:S 2 n 2-(L+1)(n-m), 

which is Lemma 5. 0 

Lemma 6: Let 1 :S m :S n, and let the m X n matrix A over GF(2) be 
chosen at random with uniform distribution on the set of 2mn binary 
m X n matrices. Then 

m-l 

Pr{rank A = m} = II (1 - 2 j
-

n
) 

j=O 

{ 
2

m
-

1
-

n
} ( 2

m
-

1
-

n 
) ~ exp ;:- 2 m- 1- n ~ 1 - 1 ~ 2m-1-n • 

Proof of Lemma 6: Choose the rows of A sequentially. As in the proof 
of Lemma 5, the probability that the dimension of the space spanned 
by the first j rows is equal to j is 

The rest of the lemma follows from In(1 - u) ~ -u/(1 - u) and 
e-U ~ 1 - u. 

We now turn to Theorem 3. Let R > 0 be given and held fixed. We 
will show that 0 = 1 and a = 1 - R is achievable, and the remainder 
of the theorem will follow from Lemma 1. Let i > 0 be arbitrary. We 
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will show that there exists an encoder/decoder with parameters N, 
K = RN, f.L = (1 - R - f)N, and Ll ~ K - L, provided that 

L ~. 3/f. (19) 

We proceed as follows. Let H be a K X N parity-check matrix, and 
let L satisfy (19). Let D*(f.L) correspond to H, and define 

'l!(H) = {I, D*(f.L) :c K - L or rank(H) < K, (20) 
0, otherwIse. 

We must show that there exists an H with <I>(H) = o. We can write 

where 

and 

'l!(H) ~ L <I>(H, 51') + <I>o(H), (21a) 
Y~II,ooo,NI 

IYI=" 

<I>o(H) = {I, 
0, 

if>(H, Y') = {~: 

rank(H) < K, 
otherwise, 

D(Y) < K - L, 
otherwise. 

(21b) 

(21c) 

If we choose H = (CI , ... , C N) at random with uniform distribution 
on the set of 2KoN binary K x N matrices, then (21) yields 

E'l!(H) ~ L E<I>(H, 51') + E<I>o(H). (22) 
IYI=" 

Let Y, with 151'1 = f.L, be arbitrary, and let A = (CilC~ ... CiN_), 
where 51'= {iI, ... , iN-ILl. Then, <I>(H, 51') = 1 if and only if rank A < 
K - L, and E<I>(H, 51') = Pr{rank A < K - L}. We can apply Lemma 
5 with n = N - f.L, m = K, to obtain 

E<I>(H, 51') ~ 2-(L+1)(N-rK)+(N-,,). (23) 

Similarly, we can apply Lemma 6 with A = H, n = N, and m = K, to 
obtain 

(24) 

Since there are no more than 2N subsets Y, (22) through (24) yield 
(using N - f.L - K = fN, K = RN) 

K2K - N 
E'l!(H) < 2-(L+1)(N-,,-K)+(N-,,)+N + -----:~ 

- 1 - 2K - N 

RN2-(I-R)N 
< 2-LEN+2N + (25) 
- 1 - 2-(I-R)N· 
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Since L satisfies (19), the first term in the right member of (25) is less 
than 1/2. Furthermore, for N sufficiently large, the second term in 
(25) is also less than 1/2. Thus 

E'l!(H) < 1. 

Since 'l!(.) is an integer-valued function, there must exist a K X N 
matrix Ho such that 'l!(Ho) = 0, so that rank Ho = K and for the 
corresponding encoder/decoder, ~ = D*(J.L) ~ K - L, which is what we 
set out to prove. Thus, we have shown that for arbitrary R > 0, the 
triples (R, ex, 0), where ex :$ 1 - R, 0 :$ 1, are achievable, completing 
the proof of Theorem 3. 

V. PROOF OF THEOREM 4 

We restate Theorem 4 here: 
Theorem 4: For all K, N for which 1 :$ K :$ N, and J.L = N - K there 
exists an encoder/decoder pair for which error-free decoding is possible, 
and 

~ > K - 1 _ 2.23 
- VN' 

In particular, as K and N grow at a fixed ratio (i.e., K = RN as 
N ~ (0), ~ can be made as close as we like to K - 1. 

We shall use a random coding argument to prove Theorem 4. A code 
for this problem is a partition of all 2N sequences into 2K message 
"bins," each of size 2N

-
K

• Each message is transmitted by randomly 
choosing an element of the bin corresponding to the desired message, 
with all elements chosen equally likely. The ensemble of codes is the 
set of all partitions, chosen equally likely. 

We shall obtain a lower bound on ~ as a function of the code selected 
and then show that the average (over the ensemble of codes) of ~ for 
any subset of J.L bits selected is greater than K - 1. We then obtain 
the variance (again, over the ensemble of codes) of the bound. Using 
the variance, we can invoke Chebyshev's inequality to bound the 
probability that the code yields ~ < K - 1 - E for any positive E. Since 
the probability distribution over the code ensemble is uniform, this 
bound is the fraction of the number of all possible codes that fail to 
provide acceptable secrecy for the J.L bits selected. Since there are a 

limited number of sets of J.L bits [(~) to be precise], the total number 

of codes that fail to provide acceptable secrecy for any choice of J.L bits 
can be bounded. The condition that the total number of such codes 
must be less than the number of codes in the ensemble, which guar
antees the existence of a good code, yields the theorem. 
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While the proof as just outlined is conceptually simple, the mechan
ics (primarily the variance computation) are complicated, and are 
outlined in the Appendix. 

We proceed: Let Y be an index set (of size N - K), which is a 
subset of {I, 2, ... , N}. Let Z be the observed vector resulting from 
observations of the positions of transmitted code word X with indices 
in Y, and let S be the message (we omit superscripts). Now 

Ll £ H(S I Z) = H(S) - H(Z) + H(Z IS) (26) 

follows from applying the identities 

H(A, B) = H(B, A) = H(B I A) + H(A). 

By the construction of the code, all values of X are equally likely, so 
that all values of Z are as well, and (26) becomes 

Ll = K - (N - K) + H (Z IS). 

Let n(z, s) be the number of code words corresponding to message 
s that are consistent with z, for each sand z. Then, 

n(z, s) 
Pr[Z = z I S = s] = --2N- K , 

since the total number of code words corresponding to s is 2N
-

K
• 

Therefore, 

s z 

__ ~ ~ n(z, s) ()l n(z, s) 
- L.. L.. 2N - K P S Og2 2N - K 

s z 

1 
= 2N L L n(z, s)[N - K - 10g2 n (z, s)]. 

s z 

Clearly, 

L n(z, s) = 2N
-

K L P(Z = z IS = s) 
z z 

= 2N - K , 

and the number of s is 2K
, so 

1 
H(Z IS) = N - K - 2N L L n(z, s)10g2n(z, s), 

s z 

yielding 

1 
Ll = K - N L L n(z, S)lOg2 n (Z, s). 

2 s z 
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We will lower bound ~ by using 

1 
log2 x = In 2 In x 

= _1_ (In =- + In a) 
In 2 a 

<_1_(=--1+lna) 
-ln2 a ' 

which is true for any positive a. Therefore, 

1 [n(z, s) ] ~ ;::: ~b = K - 2N ln 2 ~ ~ n(z, s) -a- - 1 + In a . 

Since we have just shown that 

L L n(z, s) = 2N
, 

8 Z 

then 

Interpreted as a function of the randomly selected code, ~b is a random 
variable. The expectation n2(z, s) is constant for all z and s by the 
symmetry of the code selection, and 

This bound is maximized by using a = n2(z, s), which yields 

Xb = K - log2n2(z, s). 

The variance of ~b can be written as 

Var(~b) = E[(.:l" - Llb)2) = 22N~n22 [~ ~ n
2
(z, :! -nl (27) 

Denote the four generic (z, s) pairs by (1, 1) (1, 2), (2, 1), and (2, 2). 
Also let 

and 
C = 2N - K • 

Equation (27) can be written as 
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or 

1 
Var(~b) = 2 2 2 [MI + M2 + M3 + M4]. (28) 

(n ) A In 2 

Using the bounds on Mb M 2, M 3, and M4 given in the Appendix gives 

1 1 
Var(~b) :S A In22 (1 + TI)2 

. [5TI + 5Ti + Tf - 2TI - 4Ti - 2Tf + TI + 4Ti] 

1 1 2 3 
A In2 2 (1 + Td2 [8TI + 5TI - T I], 

where TI (defined in the Appendix) is less than or equal to one. 
The right-hand side is maximized (over the allowable range of Td by 
TI = 1, so that 

The mean of ~b is 

3 6.244 
Var(~b) :S A In2 2 ~ A" 

6.244 
=2N' 

Since (see the Appendix) 

- (B - l)(C - 1) 
n2 = 1 + < 2 A-I -, 

then 
Lib ::: K - l. 

Chebyshev's inequality states 

- Var(~b) 
Pr [~b :S ~b - EO] :S 2 • 

EO 

Since ~ ::: ~IJ and Llb ::: K - 1, we have 
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If we define 

Pr [~ ~ K - 1 _ e] ~ Var~~b) 
e 

C = set of all codes, 

6.244 
<-
- e22N ' 

C (Y) = set of codes for which H(S I Z) ~ K - 1 - e, 

and 

I A I = number of elements of A, 

then, since all codes are equally likely, (29) is equivalent to 

I C(Y) I 6.244 
-=------~~<--

I C I - e22N . 

(29) 

Now the set of codes for which H(S I Z) ~ K - 1 - e for some Yis 
UyC(Y), and 

IUyC(Y) I ~ L I C(Y) I· 
y 

Therefore, 

The number of possible Y' s is the number of subsets of the set 

{I, ... , N} of size N - K, given by (N ~ K). Therefore, 

I U y C (Y ) I < ( N ) 6.244 
I C I - N - K e22N ' 

If R = KIN, then 

( N ) < 1 2Nh(R) 

N - K - ~27rR(1 - R)N ' 

where h( .) is the binary entropy function and 

IUyC(Y) I < 6.244 2N (h(R)-1) (30) 
I C I - e2~27rR(1 - R)N . 

As long as the left-hand side of (30) is strictly less than 1, at least 
one code on the ensemble falls outside U y C ( Y ), that is, provides 
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Ll > K - 1 - (; for all Yo This is guaranteed as long as 

6.244 2N (h(R)-1) 2.49 2N (h(R)-1) 
(;2 > ----;===== _____ ~ 

- ~27rR(1 - R) IN ~R(l - R) IN 

Therefore, the existence of codes for which 

~2.49 ~[h(R)-ll 
Ll ~ K - 1 - 22 

~R(l - R)N 

is guaranteed. 
For R = 1/2, the worst case, this becomes 

which is Theorem 4. 
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APPENDIX 

Statistics of Codes Used in Section V 

Here we present the expectations necessary to obtain the variance 
of Llb' which is defined in Section V. 

Let n(l, 1) and n(2, 1) [resp. n(l, 2) and n(2, 2)] be the numbers of 
code words in the bin assigned to message 1 (resp. 2), which are 
consistent with distinct sequences Zl and Z2. Recall that we have 
previously defined: 

A£. 2N 
B £. 2K 
C £. 2N - K • 

Under the assumption that all partitions of the 2N code word 
sequences into 2K message bins are chosen with equal likelihood, then 
the probability of the four-tuple [n(l, 1), n(2, 1), n(l, 2), n(2, 2)] is 
the number of codes with those values divided by the total number of 
codes. 

This last ratio can be reduced to the ratio between (a) a numerator 
consisting of the number of ways that the bins (each of size C) 
corresponding to messages one and two can be assembled to include 
exactly n(l, 1) and n(l, 2) code words consistent with Zl (from a 
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candidate pool of B elements) and exactly n(2, 1) and n(2, 2) code 
words consistent with Z2 (from a disjoint pool of B elements); and (b) 
a denominator consisting of the total number of ways the two bins 
can be assembled. 

The numerator is 

N = [nO, 1)~ n(1, 2)] [n(2, 1)~ n(2, 2)] 

. [ C - n(1, 1) - n(2:1~ 'tt- n(1, 2) - n(2, 2)] , 

which is the product of the number of ways the elements consistent 
with Zl can be drawn, times the number of ways the elements consist
ent with Z2 can be drawn, times the number of ways the elements 
consistent with neither can be drawn. 

The denominator is just 

i.e., the number of ways that two arbitrary sets of size C can be drawn. 
The notation we have used is the standard trinomial coefficient: 

( X) t:1 Xl 
Y, Z = Y!Z!(X - Y - Z)! ' 

defined to be zero when any of Y, Z or Y + Z are greater than X, or 
when any of X, Y, or Z are negative. Defining, for the sake of notational 
compactness, 

then 

a £ n(l, 1) 
fJ £ n(l, 2) 
')' £ n(2, 1) 
o £ n(2, 2), 

(a~ ~)C~ b)(C - a ~ ;, ~B_ ~ - b) 
P(a, fJ, ,)" 0) = ( A ) 

C,C 

The quantities needed for the analysis of Section V are a 2
, 

a\ a 2 fJ2, a 2')'2, and a 2')'2. The actual calculations are involved and 
unenlightening. Everything can be evaluated using the relationships 

L (~)( Y .) = (X + Y) 
i ~ Z-~ Z 
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and 

If we define the auxiliary quantities: 

T. = (B - j)(C - j) 
J A - j , 

and note since BC = A, that To = 1 and Tj +1 < Tj so long as j is less 
than the smaller of Band C, then 

and 

Also, 

22 _ A - C [ 2(C - l)(B - 2) (C - 1)2(B - 2)(B - 3)] 
a {3 - A-I 1 + A - 2 + (A - 2) (A - 3) , 

22 _ A - B [ 2(B - 1)( C - 2) (B - 1)2 (C - 2)( C - 3)] 
a ')' - A-I 1 + A - 2 + (A - 2)(A - 3) , 

and 

~ A [1 2(B - l)(C - 1) (B - 1)2(C - 1)2] 
a u = -- + + ....:......--~.:..--~ 

A-I A - 2 (A - 2)(A - 3) . 

Referring back to the quantities needed in (25), we have 

Ml = a4 - (a2
)2 

= 1 + 7Tl + 6T1 T2 + TIT2T3 - (1 + Td2 

= 5T1 + 6T1 T2 + TIT2 T3 - Ti. 

Since T3 < T2 < T1 , then 

Next 

Ml < 5T1 + 5Ti + Tf. 

M2 = (C - 1)[n2(1, 1)n2(2, 1) - (n2)2] 
= (C - 1)[a2')'2 - (a2)2] 

(C - 1) {~ = ~ [1 + 2(B ~ 1~(~ - 2) 

(B - 1)2(C - 2)(C - 3)] _ ( T )2} 
+ (A - 2)(A - 3) 1 + 1 • 
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Now 
1 (B - I)(C - 2) C - 2 A-I AC - A - C + 2 - A 

- =----= <1 
T1 A - 2 C - 1 A - 2 AC - A - C + 2 - C ' 

since A > C. Similarly, [(B - I)(C - 3)]/(A - 3) < T 1 , so 

[
A - B 2 )2] 

M2 :5 (C - 1) A-I (1 + 2T1 + Td - (1 + T1 

= (C - 1) [(1 + T.)2 (~ = ~ -1)] 
= _ (B -Al~~ - 1) (1 + Td 2 

= -T1 (1 + Td 2
• 

Since a2"(2 is just a 2 {32 with the roles of Band C reversed, M2 and 
M3 are "dual" to each other in this sense. Therefore, M3 satisfies the 
same bound as M 2 : 

The last term needed is 

M4 = (B - I)(C - l)[n2(1, l)n2 (2, 2) - (n2
)2] 

= (B - I)(C - 1) {~[1 + 2(B - I)(C - 1) 
A-I A-2 

(B - 1)2(C - 1)2] 2} 
+ (A - 2)(A - 3) - (1 + Td 

[
A A 

= (B - I)(C - 1) A-I + 2T1 A - 2 

A(A - 1) 2 2] 
+ (A - 2)(A _ 3) T 1 - (1 + Td 

[ 
1 2 

= (B - 1)( C - 1) A-I + 2T1 A - 2 

+ Ti (A ~ (:)(~ 12 3) - 1)] 
[

1 2 2 4A-6 ] 
= (B - 1)( C - 1) A-I + 2T1 A _ 2 + T 1 (A - 2)(A - 3) 

_ T 4T (B - I)(C - 1) 
- 1+ 1 A-2 

4A - 6 
+ Tr (A _ 2)( A _ 3) (B - 1)( C - 1). 

All nontrivial cases of interest have K and N - K ;::= 2, so· that Band 
C are each ;::=4, which implies that 
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(B - l)(C - 1) = BC - B - C + 1 :5 A - 7, 

so that 

(B - l)(C - 1) 
A-3 <1. 

Therefore, 

A-7 4A-6 
M4 :5 Tl + 4Tl A _ 2 + T~ A - 2 

20 24A - 6 
:5 Tl + 4 Tl - A _ 2 Tl + T 1 A _ 2 . 

Since Tl < 1, then Ti < T1 , so 

M4 :5 5T1 + Ti (4A - 6 - ~) 
A-2 A-2 

_ 5T T2 4A - 26 
- 1+ 1 A-2 

< 5T1 + 4Ti. 
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Behaviour Computation via Levinson's Method 
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A model for a finite buffer is described. The equilibrium equations for the 
number in the buffer have Toeplitz form. This enables Levinson's method, 
which is widely used in the computation of optimal linear filters, to be used 
to compute efficiently the distribution of the number in the buffer, for both 
stationary and cyclostationary systems. The method can also be used to 
compute distributions in other, mathematically similar, queueing problems. 
These include the computation of the waiting time distribution in discrete 
time GIG/1 queues. 

I. INTRODUCTION 

Buffer analysis is important in the design of data communication 
systems in which messages are queued whilst awaiting transmission. 
In particular, it is important to be able to choose the capacity of a 
buffer so that the probability of overflow is acceptably small. Methods 
for computing the distribution of the number in a finite buffer con
tinue' therefore, to interest telecommunications engineers. 

Various authors have dealt with computing the distribution of the 
number in a buffer (see, for example, Refs. 1 through 7). These 
references deal with models where the arrival statistics are constant, 
except for Ref. 7, which discusses the case where the distributions of 
successive arrivals at the buffer vary cyclically. This case arises when 
the arrivals are messages from cyclically polled sources, with differing 
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characteristics. In such cases, the equilibrium distribution of the 
number in the buffer varies cyclically, and the behaviour is termed 
cyclostationary. The present paper deals with both stationary and 
cyclostationary systems. 

Dorl and Chu2 studied systems where a single character is removed 
from the buffer at a time. In such cases the distribution of the number 
in the buffer satisfies a linear recurrence relation, from which the 
distribution can be computed directly. Chu3 and Rudin4 dealt with the 
distribution of the number in the buffer in systems where up to N 
characters can be transmitted at a time. Chu used Gaussian elimina
tion for the direct solution of the equilibrium equations for buffer sizes 
of up to 50 or so. Rudin avoided the direct solution of the equilibrium 
equations by dealing with the transient case. By starting with a known 
distribution, such as the one corresponding to an empty system, the 
successive distributions can be computed iteratively. The equilibrium 
distribution can be obtained by continuing the iterations until conver
gence, to within an appropriate criterion, is obtained. Bagchi and 
Templeton5 also applied this approach to the treatment of finite buffer 
problems. The method is applicable to stationary, to cyclostationary, 
and, indeed, to other nonstationary problems. Each iteration involves 
the computation of a discrete convolution. (Later in the paper the 
method is referred to as iterated convolutions.) For systems with a 
high utilization factor and large buffer size, the total volume of 
computation can be immense-even when the convolutions are com
puted efficiently via a fast Fourier transform algorithm. Except for 
this disadvantage, experience shows that the method is a satisfactory 
way of obtaining the equilibrium distribution. 

Leihs and Kobayashi6 avoided the difficulties of exact computation 
by obtaining bounds on buffer overflow probabilities. They exploited 
the similarity between the fundamental equation for the number 
in the buffer and the fundamental equation for the waiting time in a 
GIG/1 queue. From known bounds on the GIG/1 waiting-time distri
bution, they derived bounds on the overflow probability in finite buffer 
systems. 

It seems that the solution of the equilibrium equations for buffer 
sizes such as one hundred to one thousand or more has widely been 
considered impractical. In this paper, it is shown that the matrix of 
the equilibrium equations, for one finite buffer model, has Toeplitz 
form, i.e., the elements on any given diagonal are all equal. This 
enables Levinson's method,8.9 which is widely used to solve Toeplitz 
equations in the design of optimal linear filters, to be used to compute, 
economically, the stationary distribution of the number in the buffer. 
To solve for K unknowns, Levinson's method requires computer time 
proportional to K2, rather than K 3

, as needed by general methods of 
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solving linear equations. The paper also shows that, in the cyclosta
tionary case, the matrix of the equilibrium equations has block Toe
pIitz form, i.e., when partitioned, the submatrices on any given diag
onal are all equal. This enables the extension of Levinson's method to 
the block Toeplitz case, which is used in multichannel linear filter 
design,9.1o to be used to compute, economically, the cyclostationary 
distribution of the number in the buffer. 

One commonly used model for a finite buffer has equilibrium equa
tions for the distribution of the number in the buffer that do not have 
Toeplitz form. However, it is shown that the system can be represented 
as a cyclostationary one, with period two, so that it becomes possible 
to use Levinson's method to solve its equilibrium equations efficiently. 
Finally, the paper points out that Levinson's method can supply 
numerical solutions to other queueing problems whose form is math
ematically similar to the one dealt with here. These problems in
clude the calculation of the waiting time distribution in discrete time 
GIGl1 queues and cyclostationary queueing problems arising in the 
performance analysis of clocked schedules for real-time software. 

II. FORMULATION-STATIONARY CASE 

Time is assumed to be divided into a sequence of intervals. The 
number of units in the buffer just prior to the end of each interval is 
the quantity of prime interest. The units may be bits, characters, 
messages, or other entities, depending on the application. During the 
nth interval, there may be both arrivals and departures. The net 
potential number of units arriving in the interval, a number that can 
be positive or negative, is denoted by X n • The number in the buffer is 
constrained to the range [0, K], so that the number in the buffer at 
the end of the nth interval is given by 

Yn = min[K, (Yn- 1 + Xn)+], (1) 

where (z)+ denotes max(O, z). 
There are various physical interpretations of this formulation. As 

one example, suppose that Vn units arrive during the nth interval and, 
at the end of the interval, as many units as permitted by a packet size 
Wn are removed from the buffer for transmission. Xn in (1) then 
represents the difference Vn - Wn. With this interpretation, the 
number in the buffer during the interval can exceed K. If the limit on 
the number in the buffer were imposed throughout the interval, rather 
than just at its end, the system would be correctly described not by 
(1) but by 

(2) 

The behaviour of this system can differ somewhat from that of (1), 
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such as when a large value of Vn is accompanied by a similar large 
value of Wn • The computation of the distribution of the number in 
the buffer for a system described by (2) is discussed in Section VI. 

Another interpretation of (1) is applicable when units arrive at the 
buffer in batches at purely random instants in continuous time and 
when, also at purely random instants, units are removed, in batches, 
for transmission. With this interpretation, X n , if positive, represents 
the number of units arriving in a group. If Xn is negative, it represents 
the number of units offered transmission at an instant. 

The successive Xn are assumed to be independent and, in the 
stationary case, identically distributed, with distribution (ak}, i.e., 

ak = probability[Xn = k]. 

The cumulative distribution of Yn , with the system in equilibrium, is 
(qk}, i.e., 

qk = probabilitY[Yn :5 k]. 

The cumulative distribution of Yn- I + Xn is, because of the independ
ence of Xn and Yn-b the discrete convolution of (ak} and (qk}. Because 
of this and because Yn is constrained to the range [0, K], the cumulative 
distribution of the number in the buffer can be expressed in terms of 
itself as 

k<O 

O:5k<K 

k~K. 

This leads to the following system of equations for the K unknown 
points in the distribution (qk}: 

do d l d K - I qo bo 

d-I do d K - 2 ql bl 

= 
(3) 

d-(K-I) d-(K-2) do qK-I bK - I 

D~ 
where 

do =l- ao 

k = ±1, ±2, ... , ±(K - 1) 

k = 0, 1, ... , K - 1. 
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The equations in (3) could be solved by the use of a general-purpose 
routine for the solution of linear equations. However, for large K, the 
computer time and storage needed would be impractical. But the 
matrix in (3) is a Toeplitz mat.rix, i.e., one whose elements on any 
given diagonal are all equal. This enables Levinson's method to be 
used for the economical solution for the unknown probabilities. 

III. LEVINSON'S METHOD 

When used to solve a system of Toeplitz equations with K unknowns, 
Levinson's method requires computer time proportional to K2, rather 
than the K3 required by general methods for the solution of linear 
equatio~s. In the process of solving (3) for a buffer size K, it also yields 
the distributions for buffer sizes 2, 3, ... ,K - 1. This is an advantage 
when the purpose of the computation is to determine a suitable buffer 
size for a given application. 

In signal processing applications, the elements of the matrix are 
normally autocorrelation coefficients, for which dk = d_k , a condition 
that normally does not apply in the buffer problem. Computer pro
grams based on Levinson's method for signal processing applications 
are normally written to exploit the symmetry of the autocorrelation 
coefficients. Such programs, therefore, require modification before 
they can be used for the finite buffer problem. 

Levinson's method, in a form suitable for the stationary finite buffer 
problem, is outlined as follows. At the pth stage of the recursion, the 
solution vector* q(p) = [qo(p), ql (p), ... , qp-dp)y has previously 
been obtained, together with two auxiliary solution vectors, x(p) and 
y(p), which satisfy 

[

xo(P)' Xl (p), ... , Xp-l (P)] [ uAp), 0, ... , 0, 0] 
Dp = , (4) 

Yp-dp), Yp-2(P), ... , Yo(p) 0, 0, ... , 0, Uy(p) 

where xo(p) = Yo(p) = 1. The pth stage of the recursion involves two 
steps: 

Step 1. Compute x(p + 1), y(p + 1) from x(p), y(p). 
Step 2. Compute q(p + 1) from q(p) and y(p + 1). 
x(p + 1) and y(p + 1) are formed as linear combinations of x(p) 

and y(p): 

[xo(p + 1), XI(P + 1), ... , xp-dp + 1), xp(p + 1)] 

= [xo(p), Xl (p), ... , Xp-dp), 0] 

+ cx(p + 1)[0, Yp-I(P), ... , Ydp), Yo(p)] (5a) 

* The notation is altered here to denote explicitly the buffer size p to which the 
solution corresponds. 
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[yp(p + 1), Yp-l (p + 1), ... , Ydp + 1), yo(p + 1)] 

= cy(p + l)[xo(p), Xl(P), ... , xp-dp), 0] 

+ [0, Yp-dp), ... , Ydp), Yo(p)]. (5b) 

The coefficients cx(p + 1) and cy(p + 1) are chosen so that the 
computed x(p + 1) and y(p + 1) will satisfy an equation like (4). For 
this, 

where 

and where 

cy(p + 1) = -vy(p)luAp), (6) 

p-l 
vAp) = L xk(p)dk-p 

k=O 

p-l 
vy(p) = L Yk(p)dp- k 

k=O 

p-l 
ux(p) = L xk(p)dk = uAp - 1) + Xp-l (p)dp- 1 

k=O 

p-l 

(7) 

uy(p) = L Yk(p)d-k = uy(p - 1) + Yp-l (p)d1- P ' (8) 
k=O 

The first step in the pth stage of the recursion consists of evaluating, 
in appropriate order, (5) through (8), so that x(p + 1) and y(p + 1) 
are obtained. 

The solution vector q(p + 1) is obtained as a linear combination of 
q(p) and y(p + 1): 

[qo(p + 1), ... , qp-l (p + 1), qp(p + 1)] = [qo(p), ... , qp-l (p), 0] 

+ cq(p + l)[Yp(p + 1), ... , Yl(P + 1), Yo(p + 1)], (9) 

in which the coefficient cq(p + 1) is chosen so that q(p + 1) is a 
correct solution. For this, 

(10) 

where 
p-l 

l'(p) = L qk(p)dk-p. (11) 
k=O 

The evaluation of (9) through (11), in proper order, completes the pth 
stage of the recursions. The recursions are started with xo(l) = Yo(l) 
= 1, vAl) = vy(l) = do and qo(1) = boldo. 

These formulas can be programmed simply; a set of Fortran 
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subroutines to compute the stationary finite buffer solution via Lev
inson's method used a total of 49 lines of code. 

IV. NUMERICAL EXPERIENCE 

Accumulation of computational error is a possibility with recursive 
computations. However, the Levinson method is known to be numer
ically stable,11 and practical experience shows that it can give adequate 
accuracy for buffer analysis. 

The accuracy of results obtained by the use of Levinson's method 
has been checked by comparison with results obtained by iterated 
convolutions and with known analytical solutions. For example, when 
al = 1 - a, a-I = a, ak = 0 otherwise, the distribution of the number 
in the buffer is a truncated geometric distribution, with parameter 
(1 - a)/a. The computations were performed in double precision 
arithmetic on an IBM computer, in which numbers are represented to 
about 17 decimal digits and where chopping arithmetic (rather than 
rounding) is used. The combination of large buffer size and (1 - a)/a 
close to unity is least conducive to accuracy. However, even with a 
buffer size of 1900 and (1 - a)/a = 0.99, results accurate to seven and 
eight decimal places were obtained. A CPU time of 26 seconds on an 
IBM 3081/K was needed to produce the solution for a buffer size of 
one thousand. 

By way of contrast, 126 seconds of execution time was required for 
a 5K VIC-20* computer, programmed in BASIC, to give the solution 
for a buffer size of 48. This was the largest size permitted by the small 
memory of this small machine. The VIC-20 computer gave an accuracy 
of eight decimal places on the various examples that were tried. 
Levinson's method thus makes practical the solution of the equilibrium 
equations, for moderate buffer sizes, even on small personal computers. 

V. THE CYCLOSTATIONARY CASE 

The previous sections discussed stationary systems in which the 
distributions of Xn and Yn are independent of n. However, in some 
situations the distribution of Xn varies cyclically with n. An example 
is where the arrivals come from a set of data sources, having differing 
characteristics, which are polled cyclically. This section discusses 
systems described by the same fundamental equation as before, (1), 
but where the distribution of Xn varies cyclically. This distribution is 
denoted by 

akn = probability[Xn = k]. 

* Registered trademark of Commodore Electronics Ltd. 
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With the system in equilibrium, the distribution of the number in the 
buffer will also vary cyclically. The cumulative distribution of the 
number in the buffer at the end of the nth interval is denoted by 

qkn = probability[Yn ::: k]. 

Because the distributions vary cyclically, it is sufficient to consider 
just one period, e.g., n = 0, 1, ... , N - 1. 

With the system in cyclic equilibrium, the distribution of the number 
in the buffer at the end of the (n + l)th interval can be expressed in 
terms of the distribution at the end of the nth, n being computed 
moduloN. 

0, k<O 

L qmnak-m,n+b O:::k<K 
m=-oo 

1, k~K. 

This leads to a set of equations, for the KN unknown probabili
ties, whose matrix has block Toeplitz form; i.e., when partitioned into 
N X N submatrices, the submatrices on any given diagonal are all 
equal. The equations can be written 

d-(K-I) d-(K-2) do 

where the submatrices and subvectors are given by 

L a-m,O 
m=K-k 

L a-m,l 
m=K-k 

L a-m,N-I 
m=K-k 
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Ok 0 

-a-k,1 Ok 

dk = 

0 0 

0 0 

where 

Ok = {
I, 

0, 

o -a-k,O 

o 0 

k=O 

k ~ O. 

Block Toeplitz equations occur in the formulation of multichannel 
optimal linear filters. Levinson's method was extended to the block 
Toeplitz case for computing the coefficients in such filters.9

,10 For 
block Toeplitz systems the method follows the outline given in Section 
III, but with operations on scalar elements replaced by the correspond
ing operations on subvectors and submatrices and with the matrices 
corresponding to the c's in (6) computed via the solution of linear 
equations. Programs for computing the coefficients of optimal multi
channel linear filters require modification before they can be used for 
the cyclostationary buffer problem. This is because they are normally 
written to exploit the symmetry dk = d~k that exists in the multichan
nel filtering problem but not, generally, in the cyclostationary buffer 
problem. 

VI. CYCLOSTATIONARY REPRESENTATION OF STATIONARY QUEUES 

The description of a finite buffer by (2) corresponds more closely to 
reality, in many cases, than its description by (1). As mentioned before, 
with (2), the number waiting never exceeds the buffer size. However, 
the equilibrium equations for the distribution of y~ in (2) do not have 
Toeplitz form, and so Levinson's method cannot be applied directly 
to their solution. However, Levinson's method can be applied when it 
is recognized that a stationary system described by (2) can be repre
sented by a cyclostationary system, described by (1), having a period 
of two. 

X n , the net arrival size in (1), is identified, alternately, with the 
arrival size and the service size in (2). That is, 

n = 2m 

n = 2m + 1. 

The distribution of Xn alternates between the stationary distributions 
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of V m and W m. The equilibrium distribution of Yn varies cyclically 
and, for even n, is identical to the stationary distribution of Y~. 
Levinson's method can thus be used to obtain the distribution Y~ by 
solving the block Toeplitz equations corresponding to (2) and retaining 
just the distribution for even-indexed Yn • 

In most cases, the behaviour of a system described by (1) is very 
similar to one described by (2). They differ appreciably only in cases 
where there is a significant probability of buffer overflow due to a 
large value of Vm , which is accompanied by a similar value of Wm • As 
an example of a case where the behaviour of the systems differs 
appreciably, results were computed for a buffer size of five where Vn 
and Wn are both geometrically distributed, with parameter 0.5. The 
computed distributions are as follows: 

k 

o 
1 
2 
3 
4 
5 

qk, system described by 
(1) 

0.2500 
0.3750 
0.5000 
0.6250 
0.7500 
1 

VII. OTHER APPLICATIONS 

qk, system described by 
(2) 

0.1429 
0.2857 
0.4286 
0.5714 
0.7143 
1 

It is often necessary in telecommunication system analysis to cal
culate the distribution of the waiting time in a queueing system. A 
stationary GIGll queue-i.e., where the distributions of interarrival 
times and service times are arbitrary-often forms a suitable model of 
the system to be analyzed. The fundamental equation for Tn, the 
waiting time of the nth customer in a GIGll queue, is 

(12) 

where Un- 1 is the difference between the service time for the (n - l)th 
customer and the interarrival time between the nth and the (n - l)th 
customer. When K in (1) is sufficiently large that the probability of 
Yn- 1 + Xn exceeding K is negligible, (1) has, effectively, the same form 
as (2). A method for computing the distribution of the number in a 
system described by (1) can, therefore, also be used to compute the 
distribution of waiting times in a GIGll queue with discrete service 
and interarrival times. Some error is incurred by the use of finite K 
but, by choosing K sufficiently large, this error can be made small 
compared with arithmetic error. 

Many switching systems use a processor whose time is shared among 
different tasks. The tasks have various requirements in terms of the 
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delay that can be tolerated between the demand for the execution of 
a task and the completion of its execution. A commonly used scheme 
for controlling the execution of such tasks is a clocked schedule.12 The 
tasks have different priorities, and the schedule specifies which com
bination of tasks is to be executed in each interval between clock 
instants. Fredericks12 has shown that the resulting multiclass priority 
queueing system is equivalent to a set of single input GIG/1 queueing 
systems. In each of these queues the distribution of the quantity 
corresponding to Un in (12) varies periodically. Fredericks approxi
mated the periodically varying queue by a stationary queue. This gives 
accurate results for long delays but gives no information about the 
short time variation of delays that results from the varying nature of 
the system. Because of the similarity between (1) and (12), Levinson's 
method for solving block Toeplitz systems permits the computation 
of the cyclically varying distribution of the waiting time in a discrete 
GIG/1 queue in which the distribution of Un varies periodically with 
n. The method thus provides a means for the analysis of short-term 
delays in clocked schedule systems, as well as longer delays. 

VIII. CONCLUSION 

Levinson's method provides a practical means for computing the 
equilibrium distribution of the number in a finite buffer, by explicit 
solution of the equilibrium equations. On a mainframe computer, the 
method is practical even with quite large buffer sizes. With moderate 
buffer sizes, it becomes feasible to do the computations even on a 
small personal computer. The method also provides a practical means 
for computing the waiting-time distribution in discrete time GIG/1 
queues. 
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In this paper we analyze the characteristics of a crosscorrelation method 
for measuring the impulse response of an unknown system. This analysis may 
also be of some interest in the area of synchronization of pseudonoise systems. 
In the first part of the paper a closed-form expression for the main component 
of the probing pulse is derived. This result may be used to quickly estimate 
the effect of various system parameters on the measurement's accuracy_ In 
the second part results are presented for two system configurations. 

I. INTRODUCTION 

Among the various methods for measuring the impulse response of 
a linear time-invariant system, a simple and effective method· is to 
excite the system with a white noise-like input and crosscorrelate the 
output with the input. Actually, instead of a random white noise, a 
pseudonoise waveform may be used as an input.1 Such measurement 
systems are designed to produce the same effect as exciting the 
unknown system with a probing pulse having a flat spectrum over the 
entire frequency band of the unknown system. 

For these measurement systems the actual implementation is of 
fundamental importance, and various schemes have been proposed 
depending upon the system to be measured; among others we recall 
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Refs. 2 and 3 (see also the extensive bibliography in Ref. 1). This 
paper presents an analysis of an implementation introduced by D. 
COX,2 which is particularly attractive in radio environments when a 
high-resolution (i.e., wide bandwidth) probing pulse is required. The 
main advantage of this approach is in the hardware implementation, 
since the measurement system requires very little control logic (see 
Ref. 2). 

Information about the effect of actual implementations on the 
accuracy of this measurement technique is scarce. With this analysis 
simple formulas are derived that display the practical effects of the 
various system parameters, thus offering new tools to a system de
signer. 

Section II of this paper reviews some basic concepts on measuring 
the impulse response of a system by using crosscorrelation methods, 
and illustrates Cox's methods from a heuristic point of view. This is 
analyzed in detail in Section III, where a closed form for the probing 
pulse is derived. In Section IV the analysis is particularized to different 
system configurations. Incidentally, we note that this analysis may 
also be of some interest in the area of synchronization of pseudonoise 
systems.5 

II. PRELIMINARIES 

The pseudonoise waveform that is used to excite the system is 
usually obtained by amplitude modulating a pulse g(t) with a pseu
dorandom sequence {an}, n = 0, 1, ... , M - 1; and-I, I} so that the 
autocorrelation sequence 

(1) 

has the form 

{

I, 

ca(h) = _ ~ 

for (k)mod M = ° 
(2) 

otherwise. 

For simplicity of implementation we consider the case where {an} is 
generated by using a shift register with feedback.4 A block diagram of 
the entire system to measure the impulse response of an unknown 
system with impulse response a( t) is illustrated in Fig. 1. If the output 
of the shift register with clock frequency Ie = lito is used to amplitude 
modulate a pulse g ( t), the output of the pseudorandom sequence 
generator r(t) is just the repetition with period T = Mto of the 
pseudorandom waveform s(t) given by 
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t" Fe = lito 

PSEUDORANDOM 
SEQUENCE 

GENERATOR 

Thus 

Fig. I-Schematic diagram of the measuring system. 

M-l 

S(t) = L aig(t - ito). 
i=O 

r(t) = L aig(t - ito) 
i=O 

y(t) 

(3) 

(4) 

with the understanding that ai = aimodM. The autocorrelation function 
of r(t), 

1 itl 
cr(t) :£ lim -2 r(1])r(1] - t)d1] 

tl~oo tl -tl 

1i+! 
= T _! 2 r(1])r(1] - t)d1], (5) 

2 

is periodic with period T. If g(t) has finite support, say g(t) = 0 for 
t < 0 and t> to, then cr(t) has a simple expression given by 

M 

cr(t) = L ca(k)cg(t - kto), for 0 ~ t ~ T, (6) 
k=O 

where 

1 Ito 
cg(t) = - g(1])g(1] - t)d1]. 

to 0 
(7) 

In the particular case where the output of the shift register feeds 
directly the "unknown system," we have that* 

* The function rect( .) is defined as 

t - a 
rect -b- = 

{

I, 

0, 

b b 
for a - - ::::; t ::::; a + -

2 2 

elsewhere. 
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t - to/2 
g(t) = reet . 

to 
(8) 

Then 

Cg(t) = (1 - l!l) reet ~ 
to 2to 

(9) 

and cr(t) has the well-known expression: 

Cr (t) = - ~ + (1 + ~) (1 - l!l) reet ~ 
M M to 2to 

T 
for I tl ~ 2"' (10) 

as shown in Fig. 2. The "temporal resolution" of this pulse is seen to 
be on the order of to. Thus, to improve resolution, one might increase 
the shift register clock frequency. 

For some applications it might be easier to change the pulse shape 
g(.) rather than the shift register clock frequency; Fig. 3 shows cr(t) 
when g(t) = J2 rect[(t - to/4)/(to/2)]. 

Referring again to Fig. 1, the output of the "unknown system" is 
multiplied by a time-shifted version of the input r(t - r) to give p(t). 
This signal is then filtered with a low-pass filter having impulse 
response h(t). If h(t) is an ideal integrator between 0 and T, i.e., 

T 
t --

1 2 
h( t) = T reet -----r- ' 

-4 to -3to -2 to -to 2to 3to 4to 

Fig. 2-Autocorrelation function for g(t) = rect[(t - to/2)/(to)]. 
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Cr(t) 

Fig. 3-Autocorrelation function for g(t) = J2 rect[(t - to/4)/(to/2)]. 

then 

lit 
Yr £ y(t) = -r p(1])d1] 

t-T 

1 it 1+00 

= -r [a(~)r(1] - ~)d~][r(1] - T)]d1] 
t-T 0 

(12) 

i.e., the output has a constant value Yr equal to the convolution of 
a(.) with cr (·) evaluated at T. 

Assuming Ie is larger than the highest frequency component of 
a(·), and M is large enough, we have that Yr is approximately propor
tional to a( T ).3 From (12), cr ( • ) will be referred to as the probing pulse 
in the measurement system. A straightforward implementation of the 
system in Fig. 1 has been presented in Ref. 3. 

An alternative configuration that has the benefit of a simple imple
mentation has been proposed by Cox.2 The baseband equivalent of 
Cox's carrier system scheme is shown in Fig. 4. The only difference 
with respect to the system of Fig. 1 is that the output of the "unknown 
system" is multiplied by a pseudorandom waveform that is identical 
both in character and in timing with the transmitter sequence, but it 
is produced by a different clock frequency I ~ . As in Ref. 2 I ~ is related 
to Ie by 
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PSEUDORANDOM 
SEQUENCE 

GENERATOR 

Fig. 4-Schematic diagram of the measuring system using Cox's method. 

and K will be a parameter of our system. 
In general, consider the function 

1J.T 
cr'r(r) ~ T 0 r'(TJ)r(TJ - r)dTJ, 

y(t) 

(13) 

(14) 

where r is the delay at time t = 0 between the two sequences. As time 
elapses the delay decreases by the amount (t/to Hto - to) = t/K, so 
that 

1 rt 
( t - T) T J

t
-

T 
r'(TJ)r(TJ - r)dTJ ~ Cr'r r - ~ , for t ~ T. (15) 

In (15) the approximation is due to the fact that the integral depends 
on the symbols {an} under integration. Now, if K is large enough we 
can assume that 

Cr'r(t) = cr(t). (16) 

In this case, for an integrate and dump filter, we have that 

y(t) = roo aWe", (1- t -;. T) dl 

'" J.+oo a(l)c, (t -;. T - I) d I (17) 

or 

y(Kt' + T) '" J.oo a(l)c,(t' - l)dj. (18) 

Note that the right-hand side of (18) coincides with (12). Thus if K is 
large enough such that assumptions (15) and (16) hold, this measure
ment system is equivalent to the system of Fig. 1. Unfortunately, K 
cannot be set arbitrarily large, as this would give rise to two conflicts. 
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First, the duration of the experiment [see eq. (18)] would become very 
long, with the consequence that the assumption of a time-invariant 
system may no longer be true. Second, a very large K would imply a 
costly frequency synthesizer from which f~ is derived.2 

In the next section we analyze the conditions under which assump
tions (15) and (16) may be considered valid. We consider also the 
effect of using a low-pass filter as h(t) rather than an ideal integrator 
as in Ref. 2. In general terms we shall see that the probing signal can 
be written as a sum of two terms: a useful term plus noise. A closed
form expression for the useful term is derived for a general filter 
impulse response h(t). Also, the dependence of the noise term upon 
the system parameters will be determined. 

III. PROBING PULSE DERIVATION 

To determine the actual probing pulse for the system of Fig. 4, we 
can consider the output function of the block diagram in Fig. 5. We 
shall determine the conditions on K and filter impulse response h(t) 
such that q(.) approximates cr (·). 

In Appendix A, a general expression for q( t) is derived for an 
arbitrary pulse shape g(t) (which for simplicity we assume to have 
finite support to). It is assumed that h(t) has finite support, i.e., 

h(t) = 0, for t < 0, and t > th (19) 

with 

th :s;; K(M - 2)to. (20) 

As we shall see, this assumption does not impose any serious limitation 
on the filter type for practical purposes. Typically, th will be much less 
than K(M - 2)to, but the analysis applies as long as (20) is satisfied. 
Furthermore, we normalize h( t) such that it has unit area. Let 

h'(t) £ Kh(tK) (21) 

and 

(22) 

r(t-T) 

_-----'~ pi') .1 W) 

q(t) 

• 

r'(t) 

Fig. 5-Equivalent system to derive probing pulse. 
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d(C- T/2K) 

1 
M/K = 0.2-__ 

0.2-_ 

o 
-to o to 

Fig. 6-The d(t) pulse for an integrate-and-dump filter. 

In Appendix A it is shown that q( t) can be written as the sum of two 
terms: 

q(t) = qo(t) + qn(t). (23) 

In particular, when g(t) is given by (8), qo(t) has the form 

qo(t) = - ~ + (~ + 1) d (T - ~), 
t 

for -T + to ~ T - K ~ to. (24) 

For a low-pass filter with th « KT, if K» 1 we have from (19), (21), 
and (22) that d(t) =: cg(t). Comparing to (10) we see that qo(t) coincides 
with Cr[T - (t/K)]. Moreover, if the bandwidth of the filter is small 
enough,* it is seen that the general term of the series (69) which 
defines qn(t), d(m) ·G(m/T) .H[(l/T) - (m)/(KT)], is very small, with 
the result that qn (t) is negligible if K » M (G ([) and H (f) are the 
Fourier transforms of g(t) and h(t), respectively). Thus, if the band-

* In practice, this condition is not in conflict with (19) for K, a large number; i.e., we 
require for a general filter shape T « th « KT. For special filter shapes th may be as 
small as T; e.g., the ideal integrator discussed in the next section. 
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width of H (f) is small enough, and K is large enough, q(t) coincides 
with Cr[T - (t/K)] as desired. A more quantitative analysis will be 
given in the next section for two particular impulse responses h( t). 

IV. EXAMPLES 

For g(t) given by (8), we shall evaluate qo(t) and q(t) for two extreme 
cases: first for an ideal integrate-and-dump filter, then for a single
pole Resistance-Capacitance (RC) filter. 

4.1 Integrate and dump filter 

Here h(t) is given by (11), thus 

h'( ) - !S. t - T/(2K) 
t - T rect T/K (25) 

and for K > M we get 

K (M (1 _ M) _ (i)2) 
MK 4K to' 

M 
for 0 ~ I t I ~ to 2K 

(26) 

0, 

for I t I ;. to (1 + ~) . 
Plotted in Fig. 6 is d (.) for various values of M/K. We note that 
d ( .) depends only on the ratio M/K and already for M/K ~ 0.5 the 
distortion introduced by h' ( .) is very small. For a comparison with 
the ideal case we also present cg(t) as given by (9) (dashed curve in 
Fig. 6). 

With regard to the noisy component qn(t), according to the series 
(69) the main contributions to qn (t) are for l = ±l. In Fig. 7 we plot 
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K m 

-M o M 2M K m 

Fig. 7-Sequence profiles of noisy term qn(t). 

the envelopes of the sequences (lito) I G(mIT) I and I H[(lIT) -
(m)/(KT)] I in (69) for KIM = 6. Since from (52) 

(
1 1 )1/2 

IN(m)l~ M+M2 (27) 

we can say that although qn(t) depends on M, it can be made negligible 
by increasing KIM. 

Thus far, using general properties of a pseudonoise sequence, we 
have determined the exact shape of qo (t) and got a rule of thumb of 
how to make qn(t) negligible. However, if an exact determination of 
qn(t), and therefore q(t), is desired, we need to know the sequence {an}, 
n = 0, 1, ... , M - 1, explicitly. In the following an exact expression 
for q( t) is derived as a function of the system parameters. The output 
of the filter h( t) will be computed only for times corresponding to 
filter integration intervals that begin at integral multiples of the 
receiver sequence r'(·) subintervals to. Since the width of q(t) is 
approximately 2Kto, the computed values will be sufficiently closely 
spaced to completely characterize the output. 

Here we consider only the case K> M; similar expressions hold for 
K~M.Let 

t - to/2 
g' (t) = reet , 

to 
(28) 

[modulating pulse for r' (t)] and 

"( ) t - to 12 g t = reet " , 
to 

(29) 
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where 

tg = T - (T' - to) 
K-M 

= to K . - 1 
(30) 

Thus g"(t) is the pulse that must be added to M - 1 g'(t) pulses to 
provide a total duration of T. Moreover, Cgg,(t) and Cgg,,(t) denote 
correlation functions, defined as 

1 1+00 

Cab(t) = T -00 a(lJ)b(lJ - t)dlJ· 

We introduce the periodic function ZI(lJ) defined as 

1 rT 

ZI(lJ) = T J
o 

r' U·)r(k" - lJ)dk". 

(31) 

(32) 

The subscript I indicates that the sequence {an} in r' (k") starts at k" = 
o with the symbol aI. Substituting (4) for r(.) and similarly for r'(.) 
in (32), ZI(lJ) can be written, for 0 < lJ =::; T, as 

zI(Lto - j) = ! {~~2 a'-L+I aj+l Cgg' Uto - ito + j) 

+ a'-L+l aM-HI cgg.«M - l)to - ito + j)}, 
L = 1, 2, ... , M and 0 < k" =::; to. (33) 

q(x) 

x 

Fig. 8-Probing pulse for an integrate-and-dump filter: M = 511, and K = 1000. 
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Since 

( 
t~ - to) c ' t---

gg 2 

and 

to 
T' 

Hto; to - It l), 

0, 

(
to - to) c" t---gg 2 

to 
T' 

Hto ~ to - It l), 

0, 

for I I to - to t ~-2-

for t~ - to I I t~ + to 
--~ t ~--

2 2 

for I I to + to t >---
=-- 2 (34) 

for I I to - to t ~-2-

for to - to I I to + to 
-2-~ t ~-2-

for I I to + to t ~-2- (35) 

have finite support, we can limit the summation in j to just a few 
terms, namely, 

ZI(Lto - l) = i. {%m a'-L+I aj+I cgg.(jto - ito + \) 

+ a'-L+I aU-1+I cgg"«M - l)to - ito + \)} , (36) 

where 

(37) 

(38) 

[·le and [·lB are the "ceiling" and "floor" functions, respectively. 
Finally, for t = T + It~, I an integer, we have 

( 
t - T) q(t) = Z/ T -'- -K . (39) 

2182 TECHNICAL JOURNAL, DECEMBER 1984 



Plots of q(t) shifted in time by -[(T)/(2K)] [see eq. (26)] and scaled 
by the factor K are reported in Figs. 8 and 9 for M = 511 and two 
values of K. Specifically for x a multiple of to / K we plot 

q(x) = q [K(X + ;)] 

= 2/ (r+ 2~ - X) , 
K 

1= -; x. 
to 

(40) 

From these figures we can see that the noisy term is significant for 
M/K = 0.511. The maximum value of I qn(t) I in Fig. 8 is about -33 
dB. However, for M/K = 0.128 it is reduced to -43 dB (see Fig. 9). 

4.2 Single-pole He filter 

Here, the filter impulse response is 

{

f ~ e-;c 
h(t) = RC ' 

0, 

t~O 
(41) 

t < O. 

Note that in order to guarantee condition (19), (KT)/(RC) must be 
much greater than 1, as will be the case. Let 

(3 = RC . 
K.t{) 

(42) 

q(x) 

7- tO 7 7+ to 

Fig. 9-Probing pulse for an integrate-and-dump filter: M = 511, and K = 4000. 
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Then, from (22), d(t) has the form 

o ~ t ~ to 

d(t) = t ( t/to t/to- I ) 

1 + to + {3 1 - 2e {3 + e {3 , -to ~ t ~ 0 

t/to ( 1 I) 
{3e {3 e{3 - 2 - e (3 , t ~ - to. 

The maximum value of d (t) occurs for 

and 

1 

t = tmax = -to{3 In 2 - e {3 

~ -O.69{3to (for small {3) 

d(tmax) = 1 - {3 In 2 

= 1 - O.69{3. 

d(t-O.9 pto) 

-to to 

Fig. lO-The d(t) pulse for a single-pole RC filter. 
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However, for sufficiently small {3, d ( .) is approximately symmetric 
with respect to the abscissa t = td = -(3to. In Fig. 10 we report 
d(t - 0.9{3to) for three values of (3. The dashed curve in Fig. 10 refers 
to cg(t). It is interesting to note that d(t) is independent of the 
sequence length M and is almost indistinguishable from Cg ( .) for (3 ~ 
0.2. 

The noisy term qn (t) can be treated similarly to the prior case. Here, 
the condition for negligible qn (t) is: 

RC r» 1. (46) 

For an exact evaluation of q( t) a similar procedure as above is used 
(details appear in Appendix B). Figures 11 and 12 show a shifted (by 
0.9 (3to) and scaled (by K) version of q(.), ij(.), for two values of RC 
and the same value of (3. In Figs. 11 and 12 the maximum value of 
I qn(t) I is -34 dB and -44 dB, respectively. 

V. CONCLUSION 

Expressions for the probing pulse in a measurement system have 
been derived. The closed-form expression for the main component is 
particularly simple. This has allowed us to investigate the trade-off 
between the parameter K and the receiver filter complexity. In partic
ular, for the same system configuration as in Ref. 2, we can replace 
the ideal integrate-and-dump filter with a simple RC filter, but K must 

q(x) 

x 

Fig. ll-Prohing pulse for a single-pole RC filter: M = 511, RCjT = 0.978, and {3 = 
0.046. 
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T-tO T T+ to x 

Fig. 12-Probing pulse for a single-pole RC filter. M = 511, RC/T = 4.5, and {3 = 
0.046. 

be increased by more than an order of magnitude in order to maintain 
the same pulse shape and noise level. The larger K requires a more 
precise frequency synthesizer. The increased restrictions imposed by 
the RC filter relative to an ideal integrator may often be accommodated 
without modification of typical system performance capabilities.2 
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APPENDIX A 

Derivation of q(t) 

Since r (t) is a periodic function of period T, we can consider its 
Fourier Series (FS) expansion: 
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+00 j21r!!'t 
r(t) = L .9P(n)e T. (47) 

n=-oo 

If g(t) has finite support to, the Fourier Coefficients (FCs) {.9P(n)} are 
given by 

.9P(n) = Jdf(n)~(n), (48) 

where Jdf(n) is the discrete Fourier Transform (FT) of {an}, n = 0, 1, 
···,M-1: 

(49) 

and ~(n) is proportional to the FT of g(t), G(f), evaluated at f = 

niT, 

~(n) = ! G (!!:.) . 
to T 

(50) 

For later use, two facts follow. First, Jdf(n) is related to the discrete 

FT of {ca(k)}, {.1fa(n)}, by 

.1fa(n) = I Jdf(n) 12 

and from (2) it is shown that 

I ~2' :G'a(n) = 
1 1 
M+ M2' 

for (n) mod M = ° 
otherwise. 

(51) 

(52) 

Second, we note that (11M) 1 ~(n) 12 is just the nth FC in the FS 
expansion of cg(t) [defined in (7)] in the interval [-(TI2), (TI2)]. 
Thus we can write 

Since r' (.) is related to r(.) by the equation 

r'{tl = r (t :~), 

T 
for 1 tl :s:; "2. (53) 

(54) 

r'(t) is also a periodic function but of period T' = Mto = [KI 
(K - l)]T, and its FS has the form: 

+00 j2r!!!"t 
r' (t) = L .9P (n)e T' (55) 

m=-oo 
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Since K and K - 1 are mutually prime numbers, 

p(t) = r' (t)r(t - T) 

is a periodic function of period KT. Its FS has the form 

+00 i27r-..!.....t 
p(t) = L 9(l)e KT. 

1=-00 

Upon substituting (47) and (55) into (56) we have 

p(t) = L 
n=-oo m=-oo 

Comparison of (57) and (58) shows that 9(l) can be written as 

9(l) = 
all (n,m) 

Kn+(K-l)m=1 

(56) 

(57) 

(58) 

(59) 

Making use of assumption (19) we can consider the FS of h(t) in 
the interval [0, KT]; its FCs will be given by 

M'(n) = ;T H(::T)' (60) 

where H(f) is the FT of h(t). 
Finally, since q(t) is the convolution of h(t) with p(t), q(t) is a 

periodic function of period KT and we can write 

+00 i27r-..!.....t 
q(t) = L 9(l)e KT (61) 

1=-00 

where coefficients {9(l)} are given by 

9(l) = KT 1f(l)9(l). (62) 

Substituting (59) and (60) into (62), and this result into (61), we get 

q(t) = KT L 
n=-oo m=-oo 

. Kn+(K-l)m 
J27r t 

.1f(Kn + (K - l)m)e KT (63) 

Let I = n + m; a more convenient expression for q( t) is: 
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+00 +00 

q(t) = KT L L ~(m)~(l - m) 
[=-00 m=-oo 

. fff(Kl _ m)e-j21f[~mT j21f(~-;}. (64) 

In general, q( t) can be separated in a useful component qo (t), given by 
(64) for l = 0, and a noisy component qn(t), i.e., 

q(t) = qo(t) + qn (t), (65) 

where 

+00 "2 m( t) 
qo(t) = KT L ~(m)~(-m)fff(-m)eJ 1fT T-K • (66) 

m=-oo 

A closed-form expression for qo(t) is now derived. Since ~(-m) = 
~*(m), using (48), (51) and (52) we get 

+00 1 " mM( t) 
qo(t) = - L T - I ~(mM) 12Kfff(_mM)eJ21fr T-K 

m=-oo M 

+ (~+ 1) Y T ~ I ~(m) 12Kfff(_m)j21f~(T-~). (67) 
M m=-oo M 

Using general properties of FS, (67) becomes 

1 M-l ( t .) ( 1 ) ( t) qo (t) = - - L d T - - - lt~ + - + 1 d T - -
M i=-(M-l) K M K 

t 
for - T + to ~ T - K ~ to, (68) 

where d(.) is defined in (22). From (65) and (66) the noisy term qn(t) 
has the form: 

( 
l m) j2/-m T j21f(!"_.!!!...)t 

. H - - - e T e T KT (69) 
T KT ' 

where the primed summation excludes the l = 0 term. In the particular 
case when g(.) is given by (8), (68) simplifies into 

qo(t) = - ~ + (~ + 1) d (7 - ~) 
t 

for -T + to ~ T - K ~ to. (70) 
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APPENDIX B 

Derivation of q(x) for a Single-Pole RC Filter 

From Fig. 5, and for h(t) given by (41), we have that 

rt 1 t-t 

q(t) = J-oo RC e RCr'U")r(f - T)df· (71) 

Let z/(7]) [I has the same meaning as in (32)] be a periodic function of 
period T defined as 

l QT 1 QT-t 

z/(7]) = 0 RC e RC r' (f)r(f - 7])df. (72) 

Let 
QT» RC (Q an integer), (73) 

so that the infinite range integral in (71) may be truncated to It -
QT, t}. As in the case of the ideal integrator we evaluate q( t) at discrete 
times: 

t = QT + Ito (I an integer). (74) 

Since 
, to t - QT 

I(to - to) = I K = K ' (75) 

we have for the times given in (74): 

( 
t - QT) q(t) = Z/ T - K . (76) 

The value of Q should be chosen as a compromise between accuracy 
in the results [see eq. (72)] and long computer execution time. For our 
purposes, a choice of Q = 8 was more than adequate. In order to 
simplify matters, we are also going to assume that 

K>MQ. 

Under these conditions, r'(t) can be written as 
MQ-2 

r' (t) = ~ aj+/ g' (t - jto) + aMQ-1+/ g"(t - (MQ - l)to), 
j=o 

(77) 

for 0:::; t :::; QT, (78) 
where 

t - to /2 
g" (t) = rect ---'-

to 
(79) 

and 

" K-MQ 
to = to K . -1 

(80) 
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Also for 0 < 1] ~ T we have 
MQ 

r(t - 1]) = L ai-L+I g(t - ito + f) for 0 < t - 1] ~ QT, (81) 
i=O 

where Land f are related to 1] by 

1] = Lto - f, L = 1,2, "', M, 0< f ~ to. 

Upon substitution of (81) and (78) into (72) we get 

MQ {JM 
zI(Lto - 1]) = i~ j~m ai-L+I aj+I egg,(ito - f, jto) 

(82) 

+ ai-L+I aMQ-1+1 egg"[ito - f, (MQ - l)to], (83) 

where 

J m = min [etOt~ l - It MQ - 2] 
J M = min {Pi + 11./;0 - t, MQ - 2} 

(84) 

(85) 

e, a-- b--(
to to) 

gg 2 ' 2 

= - e -1iC g t - a + ~ g' t - b + ~ dt 1+00 1 QT-t ( t) ( t') 
~ RC 2 2 

_QT-a 

= e RC 

0, 

b-a+t6/2 _ to/2 

e RC - e RC 

tol2 _ to/2 

eRC - e RC 

to/2 b-a-t6/2 

eRC - e RC , 

0, 

b 
to + to -a<---

2 

b 
to + to -a>---

2 
to - to b-a<---

2 

to - to b-a>---
2 

b 
to - to -a<--

2 

b 
to - to -a>--

2 

b to + to -a<--
2 

b 
to + to -a>--

2 

(86) 
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e" a-~ b-~ (
t tIl) 

gg 2 ' 2 

= - e-JiC g t - a + ~ g" t - b + ~ dt 1+
00 

1 QT-t ( t ) ( tIl) 
-00 RC 2 2 

_ QT-b 

= e RC 

0, 

tEJ/2 _ b-a+to/2 

eRC - e RC 

tEJ/2 _tEJ/2 

eRC - e RC 

e 
_b-a-to/2 

RC 

0, 

-e 
_tEJ/2 

RC 

b 
to + to -a<----

2 

b 
to + to -a>----

2 

to - to b-a<---
2 

to - to b-a>---
2 

b 
to - to -a<---

2 

b 
to - to -a>---

2 

b 
to + to -a<---

2 

b 
to + to 

- a >--2-' 

(87) 

Finally, ij(x) as reported in Figs. 11 and 12 is defined only for x 
multiples of to/K as 

ij(x) = q[K(x + 0.9{jto)] 

( 
QT - 0.9K{jto ) 

=Z1 T+ -x 
K ' 
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of Transmission Errors in Logarithmic PCM 

Transmitted Over Rayleigh Fading Channels 
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In this paper we investigate soft decision demodulation applied to wlaw 
Pulse Code Modulated (PCM)-encoded signals transmitted over Rayleigh 
fading channels by means of coherent phase-shift keying modulation. Each 
bit in the W law PCM word is assigned its own soft decision demodulation 
erasure threshold. These thresholds are theoretically determined as a function 
of the input power level, channel sin, and the relative mean square error 
power 0 that occurs because of the replacement by interpolation or prediction 
of those samples discarded in the soft decision demodulation process. We find 
that there is no advantage in applying soft demodulation to more than the 
first 4 bits of the 8-bit wlaw PCM words, J.L = 255. When the input signal 
level was -17 dB (corresponding to peak overall speech sin in the absence of 
transmission errors), the gains in overall speech sin compared to basic wlaw 
PCM and fixed weighted wlaw PCM were 7 and 3.5 dB, respectively, when 
the channel sin was 30 dB. More significantly, when the input signal level 
was reduced to -40 dB, the corresponding gains in overall speech sin were 18 
and 12 dB. Simulations were performed using four concatenated speech 
sentences and a fading channel that was obtained from a mobile radio Rayleigh 
fading hardware simulator. The simulations were in reasonable agreement 
with our theoretical results. 

I. INTRODUCTION 

Digital transmission of logarithmically companded Pulse Code Mod-
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ulation (log-PCM) over Rayleigh fading channels has been studied for 
Coherent Phase-Shift Keying (CPSK) and Noncoherent Frequency
Shift Keying (NCFSK).l The effect of transmission errors on the 
recovered analog signal can be most serious, particularly when the 
more significant magnitude bits are corrupted. To mitigate these 
effects numerous techniques can be employed, such as: channel pro
tection coding,2 bit scrambling prior to transmission in order to combat 
burst errors,! diversity schemes,3,4 weighted PCM,5-7 soft decision 
demodulation,8-1o and so forth. 

In this discourse we will focus on soft decision demodulation, a 
method that is implemented only at the receiver. As a preamble we 
need to distinguish between soft and hard decision demodulation. Let 
us commence with the observation that although the carrier is modu
lated by a binary log-PCM signal for its transmission over a Rayleigh 
fading channel, the demodulation process yields an analog rather than 
a digital signal. This loss of binary status is due to the channel 
imperfections and the noise in the front end of the receiver. The role 
of the regenerator may be viewed as an Analog-to-Digital Converter 
(ADC), identifying the binary signal that lies latent in the demodulated 
radio signal. When hard decision demodulation is employed, the output 
of the ADC is a logical one or a logical zero, the state being dependent 
on which side of the decision boundary the input analog level resides. 
By contrast, soft decision demodulation has more than two output 
states, and the occupancy of any state is associated with a reliability 
number, i.e., a description of our confidence as to whether the trans
mitted bit was a logical one or a logical zero. For the simple soft 
decision demodulator we have three states corresponding to three 
zones. The middle zone extends from -Z to +Z, and is known as an 
erasure zone. As the transmitted binary signal represents logical one 
and logical zero states by equal magnitude positive and negative 
voltages, respectively, a signal level that resides within the erasure 
zone at a sampling instant is deemed unreliable. This unreliable status 
is assigned because the level of the signal is not sufficiently positive 
or negative to warrant our confidence of assigning it as a logical one 
or logical zero. The other two zones stretch for input signal levels that 
are ~Z, and ~-Z, and signal levels at a sampling instant that are in 
these zones are regenerated with relative confidence as bits of logical 
one or logical zero, respectively. 

Various strategies can be employed when the analog input falls into 
the erasure zone. Typically,8-10 if one or more bits in the first M Most 
Significant Bit(s) (MSB) of an N-bit PCM word are deemed to be 
"unreliable", the entire word is rejected. The resulting missing decoded 
sample is replaced by means of interpolation or prediction from 
neighboring decoded samples. The last (N - M) bits of the PCM word 
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are not subjected to soft decision demodulation because an error in 
these bits is decoded into a sample that is often more acceptable than 
a sample that has been imperfectly introduced by interpolation or 
prediction. 

It is our intention here to extend the work on soft decision demod
ulation for the Gaussian channel8-l0 to the case of the Rayleigh fading 
channel. We commence in Section II with a discussion concerning the 
digital noise power in log-PCM where the transmission is over a 
Gaussian channel and soft decision demodulation is employed. The 
problems associated with a Rayleigh fading channel are encountered 
in Section III. Specifically, the conventional fixed-width erasure zone 
is examined in Section 3.1, and in Section 3.2 we optimize a soft 
decision demodulation system where each bit is assigned its unique 
erasure zone. Section IV states our performance criterion, while Sec
tion V is concerned with presenting the theoretical performance of 
our 8-bit JL-Iaw PCM that utilizes an individual bit threshold soft 
decision demodulation system. Computer simulation results for JL-Iaw 
PCM speech transmitted over a mobile radio channel and utilizing 
soft decision demodulation are provided in Section VI. The final 
section summarizes our findings. 

II. BASIC CONCEPTS 

When the log-PCM binary output signal is transmitted in the form 
of antipodal signals over an additive white Gaussian noise channel, 
the digital noise power produced when a soft decision demodulator is 
employed can be shown to be8 

M N 

f~ == PD L Al + P L Al + PROS 2
, (1) 

l=1 l=M+1 

where we have assumed that the bit errors occur independently. The 
first term in this equation is the digital noise power due to the presence 
of only one erroneously regenerated bit in one of the first M bits of 
the N-bit log-PCM words. These bit errors occur because the received 
signal amplitude resides outside the erasure zone at the instant of bit 
regeneration. Consequently, the erroneously regenerated bits are not 
designated as unreliable. The probability of an undetected bit error is 
PD , while Al is called the lth single-error A-factor. For a full description 
of the single-error A-factors the reader is advised to consult Refs. 1, 
2, 5, and 7. Suffice to state here that the definition of Al is 

(2) 

where E i (·) is the expectation of (.), and Xi or Xi,l is the recovered 
speech sample in the absence or presence of transmission errors, 
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respectively, i = 0, 1, ... , 2N
-

1
. The expectation is made over all 

i = 2N quantized levels. Note that for input speech samples x, the 
encoder noise power is given by 

~~ + ~~ = E{ (x - xd 2
}, (3) 

where €~ and ~~ are the quantization and clipping noise power contrib
uted by the encoder, respectively, and the expectation is formed over 
the source statistics. By contrast, Al is the average noise power in the 
decoded output sequence due to the existence of a single error in the 
lth bit of all the transmitted N-bit log-PCM words. Observe that AI, 
A2 , ••• , AN are the first, second, ... , Nth, single-error A-factors, 
respectively, and relate to a single transmission error in the first, 
second, ... ,Nth bits of the log-PCM words, respectively. We assume 
that the regenerated errors are statistically independent. 

The contribution to the total digital noise power due to an error 
occurring in the last (N - M) bits of the log-PCM words is represented 
by the second term in eq. (1). These least significant (N - M) bits are 
not subjected to soft decision demodulation, i.e., they are detected by 
hard decision demodulation. The average bit error probability for the 
hard decision demodulation is P. 

When one or more bits in the first M bits of a log-PCM word are 
deemed unreliable, the complete word is rejected. The probability of 
this event is PRo The noise power due to replacing the original log
PCM words by those determined by interpolation or prediction is 
represented by the final term in eq. (1). Observe that this noise power 
is the product of the input signal power 8 2 and the relative mean 
square error 0 of the correction process, namely, 

082 = E{(x - X)2}, (4) 

multiplied by its probability of occurrence, PRo The value of 0 is 
determined by the quality of the correction process, having a low value 
when the corrections are accurate, and vice versa. For the type of 
correctors that are relatively easy to implement the value of () spans 
the range from 0.4 to 0.01. In eq. (4), x is the input sample, and x is 
the sample at the output of the receiver after the interpolation or 
prediction processes have been applied. We also note that 

(5) 

where Pz is the probability that a matched filter output voltage is 
within the erasure zone ±Z, where 

Z=TJE (6) 

and where T is the soft decision erasure threshold and E is the bit 
energy. When Coherent Phase-Shift Keying (CPSK) modulation is 
used, the probabilities P, Pn , and Pz ares 
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P=Q(WJ (7) 

Pn = Q ( W. (1 + T») (8) 

P2=Q(W.(1-T»)-Q(W.(1+T»). (9) 

where EINo is the channel sin, No is the one-sided spectral density 
function for white Gaussian noise, and 

1 Joo Q(x) = -- e-u2
/
2du. 

J2; x 
(10) 

Threshold optimizations for the Gaussian channel are described in 
Ref. 8. 

III. RAYLEIGH FADING CHANNELS 

When the bits constituting the log-PCM signal are scrambled prior 
to their transmission over a Rayleigh fading channel, the burst errors 
that would have frequently occurred in the regeneration process at the 
receiver appear as random errors. Because of the scrambling process 
we assume that the bit errors are statistically independent. The 
channel sin, 'Y, namely EINo, is a random variable in a Rayleigh 
fading channel, and its Probability Distribution Function (PDF) is 
given by4 

(11) 

where 

r =Eh}. (12) 

The performance of the soft decision demodulation scheme will be 
compared with that of the basic log-PCM transmission system. Ac
cordingly, we note that the digital noise power for the log-PCM system 
is l 

N 

f~ = L pw (1 - p)N-w Sw, (13) 
w=l 

where Sw is the sum of the A-factors associated with the number of 
error patterns containing w bit errors in the N-bit words. If the binary 
log-PCM signal is transmitted using CPSK modulation, the bit error 
probability as a function of channel sin 'Y is l 

DECISION DEMODULATION 2197 



P('Y) = Q( J2;i). (14) 

The average bit error probability for the Rayleigh fading channel is 
given by 

(15) 

and after substituting f('Y) and P('Y) into eq. (15), P is substituted for 
Pin eq. (13) to yield the digital noise power. We do this on the priviso 
that bit errors occur independently, i.e., ideal interleaving is used.1 

3.1 Fixed soft demodulation threshold system 

We now consider the application of soft decision demodulation to 
enhance the performance of log-PCM transmission over a Rayleigh 
fading channel. The soft decision demodulation system to be consid
ered contains a fixed threshold T as described in Section II. We specify 
the value of this threshold as a function of the average sin, r, such 
that the erasure zone width of ±Z, see eq. (6), becomes 

Z = TJE, (16) 

where the average sin, r, is related to E by 

E r = E{'Y} =
No 

(17) 

and No is the one-sided spectral density of the additive white Gaussian 
noise in the Rayleigh fading channel. The average bit error probability 
for CPSK with Rayleigh fading is from eqs. (7) and (11): 

P = 100 

r e-'Y/r Q( J2;i)d'Y 
o r 

1 [ Jr] ="2 1 -Jl+r. (18) 

We now apply the average process to determine the probability Pn 
of occurrence of an undetected bit error. From eqs. (8) and (16) we 
formulate 

Pn('Y) = Q( J2;i + TJ2f), 

whence, with the aid of eq. (11), 

1
00

1 
Pn = 0 r e-'Y/rQ( J2;i + TJ2f)d'Y 

~ -'["1-(.2:...) (TJ2r) = Q(TJ2f - -- e 1+r Q . 
l+r Jl+r 
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The average of Pz is 

I cc 1 
P z = 0 r e--y/rpz('Y)d'Y 

and from eqs. (8) and (9) 

Pz('Y) = Q(J2:Y - T~) - PD('Y) 

and, hence, 

100 1 
P z = - e--y/r Q( J2:Y - TJfif)d'Y - PD. 
. 0 r 

This expression can be simplified to 

P z = 1 - 2Q(TJfif) 

(20) 

(21) 

(22) 

-V r e -r\:r [1 - 2Q ( TJ2r )] . (23) 
l+r Jl+r 

By replacing PD, P, and PR ~ MPz in eq. (1) by the average values 
P D , P, and P z given by eqs. (19), (18), and (23), respectively, we 
formulate the digital noise power as 

Observe that if only hard decision demodulation is used, the digital 
noise power becomes 

~~ = ! (1 - V r ) ~ At. 
2 1 + r t=1 

(25) 

3.2 Individual bit soft demodulation thresholds 

Rather than employ the same threshold T for each of the M first 
bits in the N-bit PCM word, we now consider the case when the first, 
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second, "', Mth bits, are assigned thresholds T1 , T2 , "', TM , 

respectively. When this procedure is adopted, the digital noise power 
of eq. (24) becomes 

M 1( v'6) N M f~ = L Ctl + -2 1 - -1 r L Al + OS2 L f31, 
1=1 + I=M+l 1=1 

(26) 

where 

and 

f31 = 1 - Q(TIJ2r) 

VI : r e-<r [1 - Q (Tlhr VI: r)). (28) 

The terms 

l = 1,2, ... ,M 

are minimized with respect to the soft decision erasure threshold TI 
for a given r. The M values of TI found this way are substituted into 
eqs. (27) and (28) to give Ctl and f31, which in turn are used to estimate 
the minimum digital noise power with the aid of eq. (26). The proce
dure is repeated for different values of r. Thus, for a soft demodulation 
system where each bit is assigned a unique threshold T I , the digital 
noise power, and hence overall sin, is determined as a function of 
channel sin, r. Observe that our optimization process causes the 
individual thresholds TI to be independent of the value of M for a 
given average channel sin, r. For example, if we compare two soft 
demodulation systems having M = 3 and M = 6, we find that they 
have the same T1 , T2 , and T3 • However, the system having M = 3 has 
T4 = T5 = , . , = Ts = 0, whereas the system with M = 6 has only 
T7 = Ts = 0. 

IV. PERFORMANCE CRITERION 

We use as our objective performance criterion the overall sin, 
defined as the power S2 of the input signal to the noise power of the 

overall error signal, viz: 

A S2 
sin = 2 2 2 ' 

fa + fq + fc 
(29) 
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where €~ and €~ are defined in connection with eq. (3), and €~ is the 
digital noise power. Although €~ and €~ are constant for a given log
PCM encoder and for an input signal having a given PDF, €~ is 
dependent on the transmission and reception techniques and on the 
channel. Its value is given by eqs. (24) and (26), and as described in 
Section III. 

v. THEORETICAL PERFORMANCE 

The logarithmic PCM codec considered in our theoretical calcula
tions was 8-bit ~-law PCM, ~ = 255. The binary code employed was 
binary-folded PCM, where the MSB was the polarity bit of the 
quantized sample, and the remaining bits represented the sample 
magnitude. The range of the quantizer was from -1 to + 1, and the 
input signal was assumed to have an exponential PDF, 

1 (J2x) pAx) = sJ2 exp - S ' (30) 

a density function that is known to be representative of the long-term 
PDF of speech signals. We considered two input power levels of -17 
dB and -40 dB, which corresponded to the input signal having a 
standard deviation of J2/10 and 0.01, respectively. The -17 dB was 
the input level to give maximum overall sin in the absence of trans
mission errors, whereas the lower input level of -40 dB had a corre
spondence with low-level input speech signals. The single-error A
factors employed in our calculations were those derived in Ref. 1. The 
digital modulation was CPSK. We emphasize that our results are for 
the Rayleigh fading channel. 

We now present in Section 5.1 a series of tabulated results calculated 
from the equations provided in Sections III and IV. In Section 5.2 we 
provide additional theoretical results, but this time in a graphical 
format. 

5.1 Soft demodulation using individual bit thresholds 

Table I shows the values of the individual thresholds T1 , T2 , , 

Ts, as a function of channel sin, for an input power level of -17 dB 
and a relative mean square error (j of 0.1. This table relates to the 
individual bit soft demodulation threshold scheme described in Section 
3.2. The nature of log-PCM is that the bit that generates the greatest 
digital noise power when it is erroneously received is the most signif
icant magnitude bit. This bit is the second bit in the word, and when 
soft demodulation is applied it has a threshold T2 • Thus, because the 
second MSB is capable of generating the largest error it is assigned 
the largest threshold. In general, the higher the contribution to the 
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t.J 
t.J 

Table I-Individual bit thresholds, To, as a function of channel sIn, r, for input level -17 dB, (5 = 0.1 Q 
t.J 

r Tl T2 T3 T4 Ts Ts T7 Ts 
-l 
m 0 1.398231 1.594590 1.431157 0.687725 0.000000 0.000000 0.000000 0.000000 () 

5 0.637306 0.727069 0.653243 0.313625 0.000001 0.000001 0.000001 0.000001 I 
Z 10 0.327333 0.373505 0.335553 0.161287 0.000001 0.000001 0.000001 0.000001 

n 15 0.178123 0.203837 0.182689 0.087959 0.000003 0.000003 0.000003 0.000003 
» 20 0.099486 0.113294 0.101778 0.048928 0.000001 0.000006 0.000006 0.000001 
r- 25 0.055756 0.063378 0.056953 0.027489 0.000007 0.000007 0.000007 0.000007 
'-- 30 0.031123 0.035811 0.032048 0.015410 0.000001 0.000020 0.000007 0.000006 0 35 0.017558 0.020109 0.017823 0.008295 0.000009 0.000019 0.000020 0.000019 C 
AI 40 0.009995 0.011319 0.011901 0.004986 0.000061 0.000073 0.000071 0.000008 
Z 45 0.005612 0.007441 0.005312 0.002778 0.000035 0.000010 0.000011 0.000015 » 50 0.003194 0.004631 0.002849 0.001673 0.000057 0.000039 0.000035 0.000034 r-, 

55 0.001817 0.001943 0.001618 0.001069 0.000046 0.000494 0.000474 0.000459 
0 60 0.001228 0.000779 0.001206 0.000662 0.000160 0.000109 0.000105 0.000062 
m 
() 
m 
~ Table II-Individual bit thresholds, To, as a function of channel sIn, r, for input level -17 dB, (5 = 0.01 
OJ 
m r Tl T2 T3 T4 Ts Ts T7 Ts AI 

1..0 
0 2.160955 2.327636 2.192461 1.582595 0.980817 0.308022 0.000000 0.000000 

co 5 0.987638 0.901698 0.998271 0.721279 0.447031 0.140304 0.000001 0.000001 
~ 10 0.506489 0.547609 0.514840 0.371179 0.229991 0.072350 0.000001 0.000001 

15 0.275695 0.298701 0.279855 0.202130 0.125606 0.039297 0.000003 0.000003 
20 0.154197 0.166714 0.155108 0.112054 0.069540 0.021877 0.000006 0.000006 
25 0.086858 0.093416 0.086822 0.062541 0.039325 0.012327 0.000007 0.000007 
30 0.048570 0.052675 0.050988 0.035585 0.021794 0.006826 0.000018 0.000008 
35 0.027583 0.029888 0.027333 0.019425 0.012291 0.003812 0.000021 0.000020 
40 0.013697 0.015763 0.016203 0.010958 0.007052 0.002211 0.000066 0.000012 
45 0.012576 0.008794 0.010522 0.007447 0.004531 0.001325 0.000023 0.000005 
50 0.004466 0.004910 0.004599 0.004615 0.002283 0.000647 0.000044 0.000036 
55 0.003976 0.003906 0.002797 0.001813 0.001078 0.000372 0.000423 0.000242 
60 0.002335 0.002483 0.002307 0.000783 0.000809 0.000355 0.000097 0.000098 



digital noise power by an erroneous bit, the wider its erasure zone. We 
see in Table I that the erasure zones for T5 to Ts were very narrow, 
justifying our decision to only perform soft demodulation on the M 
(here 4) most significant bits. For high values of channel sin, r, the 
probability of making an error in the bit regeneration process was 
small. Consequently the erasure zones were narrow for all the N-bits. 
As the channel sin was decreased the erasure zones for the four MSB's 
widened, and for a channel sin of 0 dB we observed that the boundaries 
of the erasure zone exceeded ±.JE. 

When a good corrector was employed such that 0 = 0.01, the 
threshold values increased as shown in Table II, all other parameters 
being those associated with Table I. As the corrections were more 
accurate it was safer to activate the corrector more frequently com
pared to when the corrector having 0 = 0.1 was used, and this activity 
is reflected by the larger threshold values in Table II compared to 
those in Table I. 

A poor corrector was associated with 0 = 0.4, and the application of 
such a corrector was to yield a high amount of "correction noise" 
because the replacement of rejected samples was not very accurate. 
The intervention of the poor corrector was less likely to occur if the 
thresholds were reduced, and this was what happened, as can be seen 
in Table III, where 0 = 0.4. . 

When the input level was reduced to -40 dB, 0 = 0.1, the threshold 
values were increased (except for the polarity bit), as is apparent by 
comparing Tables I and IV. This occurred because, for the same 
magnitude bit in error, more noise tended to be produced when the 
input power was low. We do not present tables for 0 = 0.01 and 0.04 
when the lower input level of -40 dB was used, but the same trends 
observed in Tables I to III for the higher input were evident at this 
lower input power. 

5.2 Graphical results 

We commence our presentation of theoretical graphical results by 
displaying in Fig. 1 the variation of overall sin, namely sIn, as a 
function of channel sin for an input signal level of -17 dB, and soft 
decision demodulation applied to the four MSB's. The curve for the 
basic 8-bit JL-Iaw PCM, i.e., no soft demodulation, provided a reference 
from which the soft demodulation performance can be judged. We also 
display an additional reference curve that relates to a fixed-bit weight
ing strategy applied to JL-Iaw PCM. In this weighting scheme every lth 
bit in the PCM word has its magnitude multiplied by J¢;, l = 1, 2, 
... , N. Reference 5 presents the method for determining J¢z for 
CPSK modulation and a Rayleigh fading channel in order to minimize 
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N 
N Table III-Individual bit thresholds, To, as a function of channel sin, r, for input level -17 dB, 0 = 0.4 Q 
.I:Jo 

I' Tl T2 T3 T4 T5 Ts T7 Ts ...., 
0 0.860252 1.085411 0.900163 0.000000 0.000000 0.000000 0.000000 0.000000 m 

n 5 0.392162 0.494988 9.410554 0.000001 0.000001 0.000001 0.000001 0.000001 
I 10 0.201742 0.254390 0.211293 0.000001 0.000001 0.000001 0.000001 0.000001 
Z 15 0.109656 0.138744 0.115081 0.000003 0.000003 0.000003 0.000003 0.000003 n 20 0.061201 0.077085 0.063834 00.00001 0.000000 0.000000 0.000001 0.000000 » 
r- 25 0.034235 0.043139 0.035805 0.000007 0.000007 0.000007 0.000007 0.000007 

30 0.019297 0.024132 0.020214 0.000002 0.000024 0.000014 0.000026 0.000023 
0 35 0.011055 0.013769 0.011485 0.000052 0.000020 0.000020 0.000019 0.000021 
C 40 0.005944 0.007815 0.006511 0.000061 0.000070 0.000068 0.000014 0.000004 
;;:0 

45 0.003554 0.004531 0.003261 0.000093 0.000022 0.000017 0.000005 0.000014 Z » 50 0.002395 0.002428 0.001588 0.000099 0.000037 0.000035 0.000034 0.000041 .r- 55 0.001068 0.001738 0.001073 0.000106 0.000235 0.000469 0.000477 0.000473 
0 60 0.000619 0.000813 0.000732 0.000118 0.000097 0.000145 0.000098 0.000097 
m 
n 
m 

Table IV-Individual bit thresholds, To, as a function of channel sin, r, for input level -40 dB, 0 = 0.1 ~ 
o::J 
m I' Tl T2 T3 T4 T5 Ts T7 Ts 
;;:0 

0 1.397515 2.799741 1.564703 0.907276 0.074134 0.000000 0.000000 0.000000 
1.0 5 0.637817 1.285825 0.714349 0.413849 0.033814 0.000001 0.000001 0.000001 co .::. 10 0.327897 0.659582 0.366937 0.212889 0.017447 0.000001 0.000001 0.000001 

15 0.178242 0.361774 0.199849 0.115725 0.009486 0.000003 0.000003 0.000003 
20 0.099536 0.198387 0.110899 0.064638 0.005377 0.000001 0.000006 0.000006 
25 0.055780 0.108670 0.062466 0.036221 0.002834 0.000007 0.000007 0.000007 
30 0.013398 0.062405 0.035221 0.020151 0.001512 0.000021 0.000020 0.000021 
35 0.017505 0.038389 0.019635 0.011423 0.000924 0.000020 0.000020 0.000019 
40 0.010103 0.023034 0.011127 0.006421 0.000536 0.000012 0.000069 0.000013 
45 0.004531 0.014624 0.005947 0.003738 0.000420 0.000000 0.000005 0.000006 
50 0.003000 0.005471 0.004557 0.002030 0.000189 0.000048 0.000037 0.000036 
55 0.001844 0.005023 0.001552 0.001066 0.000149 0.000472 0.000484 0.000242 
60 0.001283 0.000775 0.001254 0.000766 0.000245 0.000111 0.000062 0.000097 
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Fig. 1-Variation of overall sin as a function of channel sin for M = 4, input power 
level = -17 dB, 8-bit Jl-Iaw PCM. 

the digital noise power. The curves of Fig. 1 therefore show the gain 
in sIn due to using weighting as compared to the basic ',u-Iaw PCM, 
and the further gains in sIn that soft decision demodulation provide. 

When a poor corrector corresponding to a 0 of 0.4 was used, we 
achieved a marginally better performance using soft demodulation 
than when only a fixed weighting profile was used. Improving the 
corrector, i.e., reducing 0, yielded greater gains in sIn. While 0 = 0.1 
is relatively easy to achieve, values of 0 < 0.01 require complex 
corrector algorithms. We observe that for 0 = 0.1 our soft demodulation 
strategy of individual soft thresholds yielded a gain of 7 dB and 4 dB 
over conventional and fixed weighted ,u-Iaw PCM, respectively, over a 
wide range of channel sin. 

Reducing the input power level to -40 dB resulted in a severe 
reduction in sIn for conventional ,u-Iaw PCM and for fixed-bit 
weighted ,u-Iaw PCM. However, by using soft demodulation the sIn 
was approximately the same as for the -17 dB input level. This can 
be seen in Fig. 2, where M was again 4. For 0 = 0.1 the gains in sIn 
over conventionallog-PCM and fixed weighted log-PCM were 19 dB 
and 13 dB, respectively. Figure 3 shows the effect of varying the 
number M of bits subjected to soft demodulation. The input level was 
-17 dB, and the value of 0 was 0.1. Extending M from 2 to 3 is 
worthwhile, hut there is no advantage in using M in excess of 4. Thus 
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Fig. 2-Variation of overall sin as a function of channel sin for M = 4, input power 
level = -40 dB, 8-bit JL-Iaw PCM. 
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Fig. 4-Variation of overall sin as a function of channel sin for 0 = 0.1, input power 
level = -40 dB, 8-bit JL-Iaw PCM. 

our gain in sin of 7 dB over basic Jl-Iaw PCM was derived from the 
application of individual soft demodulation on the first three MSBs. 
Observe that when soft decision demodulation was applied to only the 
polarity bit, i.e., the case of M = 1, the performance was worse than 
for fixed weighted Jl-Iaw PCM. It is important to provide soft decision 
demodulation on both the polarity and most significant magnitude 
bits (M ~ 2). For the lower input power of -40 dB, the curve for 
M = 1 yielded no gain in sin, compared to conventional Jl-Iaw PCM. 
The value of M was required to be 4, as shown in Fig. 4, to achieve 
the maximum gain in sin. 

VI. COMPUTER SIMULATION RESULTS 

In our simulations we employed four concatenated speech·sentences, 
two spoken by males, two by females, that were bandlimited between 
200 and 3200 Hz, and sampled at 8 kHz. These samples constituted 
our input speech sequence. The speech sequence was 8-bit Jl-Iaw PCM, 
Jl = 255, encoded, and weighted where appropriate; two-level CPSK 
modulation ensued. The modulated signal was subjected to Rayleigh 
fading and contaminated by additive white Gaussian noise. The Ray
leigh fading envelope C (t) was obtained from a hardware simulator of 
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a frequency-selective Rayleigh-fading mobile radio channel.ll Differ
ent envelope functions were available corresponding to different ve
hicular speeds when the propagation frequency was 900 MHz. The 
first M bits in every N bits were initially examined. If the lth bit in 
the kth word satisfied 

C(k)BI(k) + I(k) ~ I Z I, 
the bit was regenerated according to 

A {C(k)BI(k) + I(k) ~ Z; 
Bl(k) = 

C(k)BI(k) + I(k) ~ -Z; 

logical 1 generated 

logical 0 generated 

(31) 

(32) 

for l = 1, 2, ... , M, where I(k) represented the additive interference 
level. If 

C(k)BI(k) + I(k) < I Z I; ERASURE (33) 

and complete word was rejected. If no erasure occurred during the 
examination of the first Mbits, the last (N - M) bits were regenerated 
according to 

A {C(k)BI(k) + I(k) ~ 0; 
Bl(k) = 

C(k)BI(k) + I(k) < 0; 

for i = N - M, ... , N - 1, N. 

logical 1 generated 

logical 0 generated 
(34) 

The bit regenerating process, therefore, examined the first M bits, 
and if the input signal level C(k)BI(k) + I(k) resided outside the 
erasure level for l = 1, 2, ... ,M, the bits were regenerated as prescribed 
by inequalities (32) and (34). Those N-bit words so formulated were 
IL-Iaw PCM decoded into samples. However, when an erasure of one 
of the first M bits in any word occurred, the entire word was rejected, 
and consequently there was no corresponding decoded sample. Sam
ples so discarded by the soft decision demodulation process were 
replaced by means of prediction and/or interpolation using those 
samples that had been JL-Iaw PCM decoded. Various complex predic
tion and interpolation algorithms were available to US,12-14 but we 
opted for a simple scheme. Knowing that interpolation is superior to 
prediction if there are two correctly received samples adjacent to the 
rejected sample, we replaced the discarded sample Xr by means of 
nearest neighbor averaging 

(35) 

where Xr-1 and Xr+1 were the decoded samples in the (r - l)-th and 
(r + l)-th sampling instants, respectively. When the words at both 
the (r - l)-th and (r + l)-th sampling instants were designated to be 
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soft, Xr was generated by prediction from the previously accepted 
correct sample, viz: 

(36) 

where p is the normalized first-order autocorrelation coefficient given 
by 

E{Xr Xr+l} 
p = 8 2 (37) 

Figure 5 shows the variation of overall sin as a function of channel 
sin when 8-bit JL-Iaw PCM encoded speech was conveyed by two-level 
CPSK modulation over a Rayleigh fading mobile radio channel. The 
input speech level was -17 dB. The threshold values used in our 
experiments were the optimal ones, assuming a particular value of 0, 
and a given channel sin. Thus Fig. 5 displays a collection of curves 
that use threshold values associated with 0 = 0.01, 0.02, 0.04, 0.1, 0.2, 
and 004. The curves shown in Figs. 1 and 5 are in close agreement over 
the usable range of channel sin, typically when the channel sin exceeds 
20 dB. Our corrector tends to operate almost exclusively using nearest 
neighbor averaging when the number of rejected samples is small. As 
the channel sin decreases, eq. (36) is utilized more frequently. Thus 
the 0 associated with our corrector increases as the channel sin falls, 
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Fig. 5-Simulation of mobile radio channels with a speech input signal. Variation of 
overall sin lHl a function of channel sin for M = 4, input level of -17 dB. 
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Fig. 6-Simulation of mobile radio channels with a speech input signal. Variation of 
overall sin as a function of channel sin for M = 4, input power level = -40 dB. 

i.e., the quality of the corrector process decreases with decreasing 
channel sin. Figure 6 shows the situation when the input speech level 
is reduced to -40 dB, and again we observe a correspondence between 
the curves in this figure and those in Fig. 2. 

Because our corrector has a value of {j that depends upon the channel 
sin, employing either interpolation [eq. (35)] or prediction [eq. (36)], 
it is difficult to calculate the optimum thresholds Ti • However, over 
the range of channel sin that yield an acceptable overall sin, sIn, it 
appears appropriate to use the values of Ti that correspond to {j of 0.1. 

VII. DISCUSSION 

New theory has been presented for the use of soft decision demod
ulation applied to JL-Iaw PCM signals transmitted over Rayleigh fading 
channels using CPSK modulation. Each bit in the JL-Iaw PCM word 
has been assigned its individual erasure threshold, and these thresh
olds have been calculated for high and low input power levels, as a 
function of the channel sin, and for correctors of differing quality. 
These results are displayed in tabular form in Tables I through IV, 
and in a graphical format in Figs. 1 through 4. In our theory we do 
not specify the corrector algorithms, i.e., those methods of replacing 
samples discarded by the soft decision demodulator, because the num-
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ber of possible correctors is legion. Instead we calculate the individual 
erasure thresholds for specified values of mean square error power () 
that is associated with the correction process. We acknowledge that 
this technique does have disadvantages when the actual correction 
algorithm employed is dynamically dependent on which samples are 
being corrected. In this later case it is desirable to adjust the values of 
the thresholds as the corrector algorithm varies if near optimum 
performance is to be maintained. 

From our theoretical deliberations we observed the following salient 
points: 

1. There is no advantage to be gained by applying soft decision 
demodulation to more than 3 or 4 of the most significant bits of the 
8-bit ~-law PCM, ~ = 255, words (see Figs. 3 and 4). 

2. We used two bench markers to measure the performance of our 
soft decision demodulation scheme. These were the basic ~-law PCM, 
and the fixed-profile weighted ~-law PCM. At the high input power 
level of -17 dB (which corresponded to a peak sIn in the absence of 
transmission errors) the gain in sIn due to soft decision demodulation 
using () = 0.1 over basic ~-law PCM and weighted ~-law PCM was 7 
and 3 dB, respectively, when the channel sin was 30 dB. Observe that 
with the soft decision demodulation the sIn was 30 dB, a value 
commensurate with toll-quality speech. For the lower input level of 
-40 dB, a level that has some correspondence with unvoiced speech, 
the corresponding gains in sIn were 18 and 12 dB, respectively. Figure 
4 shows that soft decision demodulation is particularly important at 
the low input level, achieving an sIn of 28 dB for a channel sin of 30 
dB. Indeed, the sIn deteriorated by only 8 dB, the same value observed 
for the higher input level, when the channel sin decreased from the 
ideal channel condition (::::::60 dB) to the lower channel sin of 30 dB. 

3. Provided M = 4, soft decision demodulation always gave a gain 
in sIn compared to our reference systems, even when () = 0.4. The 
ability that soft decision demodulation has to maintain its performance 
for both high and low input levels is strikingly demonstrated in Figs. 
1 and 2. Observe that improving the corrector's performance by a 
factor of ten compared to () = 0.1 caused the sIn to increase by 5 dB 
when the channel sin was 30 dB. 

4. Four concatenated speech sentences were used in our simulations. 
The speech was ~-law PCM encoded prior to CPSK modulation, and 
the Rayleigh fading channel was obtained from a real-time simulator. 
The results, L.isplayed in Figs. 5 and 6, demonstrate the advantage of 
using soft decision, demodulation. We observed gains in sIn of 6 and 4 
dB compared to the basic ~-law PCM and the fixed weighted ~-law 
PCM, respectively, when the input power was -17 dB and the channel 
sin was 30 dB. The corresponding gains when the input power was 
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-40 dB were 17 and 9 dB, respectively. Although the corrector used 
in our simulations could switch its algorithm [see eqs. (35) and (36)], 
for the gains in sIn quoted above eq. (35) was used most of the time, 
and 0 was approximately O.I. 

From our theoretical results and simulations we conclude that the 
application of soft decision demodulation, where each bit in the J.L-Iaw 
PCM word is assigned its unique threshold value, does offer significant 
advantages in sIn when the transmission is by CPSK modulation over 
Rayleigh fading channels. The gains in sIn are achieved by only a 
marginal increase in complexity at the receiver, while the transmitter 
is unchanged. Careful optimization of a combination of soft decision 
demodulation at the receiver with a weighting strategy at the trans
mitter leads us to expect further improvements in sIn, although at the 
expense of added system complexity. 
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I. INTRODUCTION 

Communications via dually polarized radio channels is an effective 
means of reusing existing bandwidth. It is well known that one can 
transmit and receive two orthogonally polarized waves, e.g., linear, 
circular, or elliptical. Information can be conveyed by independently 
modulating the signals carried by each of these waves. In conventional 
terrestrial microwave radio systems, linear orthogonal polarizations
i.e., horizontal and vertical-are usually employed. 

Digital communications over a single radio channel (single polari
zation) is adversely affected by multipath fading, which causes Inter
symbol Interference (lSI). In dually polarized digital radio communi
cations, one also has to contend with Cross-Polarization Interference 
(CPl). This interference, which is dispersive in general, is due to 
antenna misalignments, imperfect waveguide feeds, fading, and other 
propagation path anomalies. In order to utilize the dually polarized 
radio channels to their maximum capacity, it is necessary to mitigate 
the deleterious effects of lSI and CPI. 

Various approaches to this problem have been suggested.1
-

16 Some 
of them address the problem of CPI cancellation only, some minimize 
CPI and noise, and others treat nondispersive channels only. Often 
these methods are based on cross-channel frequency response esti
mations, thereby facilitating at least a partial cancellation of CPI. The 
chief purpose of this paper is to establish a sound theoretical base for 
realizing effective algorithms and devices for the simultaneous and 
optimal compensation of cross-polarization and intersymbol interfer
ences in the presence of noise. 

The dually polarized channel is modeled as a 2 x 2 complex matrix 
with frequency-dependent elements followed by an additive noise 
vector. The diagonal entries represent the cochannel (in-line) fre
quency transfer characteristics, while the off-diagonal terms represent 
the cross-channel transfer characteristics. The four entries in this 
matrix channel can be viewed as a sample from a random collection 
of frequency functions. The presence of noise implies that each matrix 
channel in the collection is limited to a maximum data rate, for a 
given error rate and specific communication method. Because of the 
random nature of the matrix channel, a meaningful performance 
measure for a particular communication method is the probability 
distribution of data rates that can be supported at a certain error rate 
objective. 

Figure 1 depicts the problem considered. Two data sources are first 
passed through a matrix transmitter filter. The diagonal entries con
trol the cochannel signal shaping, while the off-diagonal terms control 
the cross-channel signal shaping as well as a possible power distribu
tion (transfer) between the two channels. The two emerging output 
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Fig. 1-Dually polarized radio transmission. 

signals, represented by a vector, are then transmitted over the matrix 
channel. At the receiver, independent noise sources are added, and the 
resultant vector signal is processed by a linear matrix fflter, which 
acts as a linear equalizer/canceler. 

We pose these general questions. How does one choose the receiver 
matrix filter so as to minimize a reasonable cost function? Next, how 
does one choose an optimum transmitter matrix filter under a reason
able power constraint? Finally, how does the performance of these 
optimum structures compare with the ultimate performance predicted 
by information theory (Shannon limit)? 

After a discussion of the channel model in the next section, we 
describe the modulation and the transmitter models in Section III. In 
Section IV we discuss the receiver optimization problem, while in 
Section V we derive the theory for joint transmitter-receiver optimi
zation. The Matched Filter (MF) bounds on performance are derived 
in Section VI, and in Section VII the information theory limit is 
developed. Description and discussion of the propagation model ad
vanced in this paper can be found in Section VIII. In Section IX we 
give numerical evaluations and discuss the results. Section X contains 
our summary and conclusions. 

II. THE CHANNEL MODEL 

A general linear, baseband-equivalent, dually polarized transmission 
channel can be characterized by the matrix impulse response 

(1) 

or its Fourier transform 

(2) 
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which is the frequency transfer characteristic of the transmission 
medium. The diagonal entries in the matrix c(t) are the complex
valued impulse responses of the co-polarized channels, while the off
diagonal entries are the complex-valued cross-polarized channel im
pulse responses. To complete the channel characterization, we assume 
that the noises at the two output ports are additive white Gaussian 
processes represented by the complex vector, 

v(t) = (VI (t») , 
V2(t) 

and characterized by the covariance matrix 

E[v(tdvt (t2)] = Noo(ti - t2)I, 

(3) 

(4) 

where VI(t) and V2(t) are baseband-equivalent, zero-mean, complex 
Gaussian processes with common double-sided spectral density, No. 
The notation, E[ . ], stands for mathematical expectation, 0(.) is the 
Dirac delta function, t stands for conjugate transpose, and I is the 
identity matrix. This channel model is illustrated schematically in Fig. 
2. 

III. MODULATION AND TRANSMITTER MODELS 

Our investigation focuses on the class of efficient linear modulation 
methods known as Quadrature Amplitude Modulation (QAM). A 
convenient representation of these modulated signals is 

s(t) = Re{(exp(i21l"/ot) L ang(t - nT)}, (5) 
n 

v, (t) 

(INPUT), (OUTPUT), 

(INPUT)2 
C22 (t)_C22 (w) 1------< 

(OUTPUT)2 

Fig. 2-Linear channel model for dually polarized radio transmission. 
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where Re(·) stands for the "real part" and fo is the carrier frequency. 
The data symbols, {anI, transmitted at T-second intervals take on 
values on a two-dimensional lattice and are therefore complex valued. 
In general, the pulse g( t) is also complex valued. 

In a dually polarized communications system, two independent 
QAM data signals as individually represented in (5) are transmitted, 
one on the horizontal channel and the other on the vertical channel. 
In this situation, the transmitted data signal is modeled as a two
dimensional vector 

(
Vl(t)) { } V(t) = = Re exp(i27rfo t) L p(t - nT)An , 
V2 (t) n 

(6) 

where 

(7) 

is the nth pair of data symbols andp(t) is the transmitter matrix filter 
impulse response, 

(
Pll (t) P21 (t)) 

p(t)= . 
P12(t) P22(t) 

(8) 

The diagonal entries in (8) are cochannel transmitter impulse re
sponses acting as signal shapers, while the off-diagonal impulse re
sponses act as cross-channel signal shapers as well as power distribu
tors. 

For two independent input data streams, the covariance matrix of 
the data symbols is diagonal, 

E[AnA~] = (E 1 a
o

n 12 0) (u~ 0) (9a) 
E 1 bn 12 = 0 u~' 

and E[AnA~] = 0, n ¥- m. For a rectangular lattice consisting of odd 
positive and negative integers, 

(
L2 - 1) 

u~ = 2 --3- , (9b) 

where L 2 is the total number of points in the constellation. We now 
refer to the cochannels as channel "a" and channel "b", respectively. 
By use of (8) and (9), the average transmitted power in each of the 
channels is, by a straightforward calculation, 

2 roo 
Pa = ~ J-oo (I Pll (t) 12 + Ip2dt) 12)dt 
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and 

(10) 

The total average transmitted power is, therefore, 

2 JOO 
Pay = P a + P b = ~ -00 trace[pt (t)p(t)]dt 

2 1 Joo 
= ~ 271" -00 trace[pt(w)P(w)]dw, (11) 

where P(w) is the Fourier transform of p(t). The quantity Pay in (11), 
the total average power, is constrained to be fixed throughout this 
work. 

IV. THE OPTIMUM RECEIVER PROBLEM 

Let H(w) be the overall matrix transfer function of the transmitter 
filter in cascade with the channel C, 

H(w) = C(w)P(w). (12a) 

Consequently, the equivalent baseband signal plus noise vector at the 
receiver can be written 

S(t) = L H(t - nT)An + v(t). (12b) 
n 

If W(t) denotes the impulse response of the receiver matrix filter, as 
shown in Fig. 1, the output vector signal is then represented as 

8 o(t) = ~ J: W(t - r)H(r - nT)Andr 

+ Joo W(t _ T)V(T)dT = (81O(t)) 
-00 820(t) 

(13) 

and the sampled vector output at t = 0 is So(O). This is a representative 
sample since it possesses the same statistics as the nth sample because 
of stationarity. 

Next, we define the error vector E as the difference between So(O) 
and the vector data symbol Ao , 

E = So _ Ao = (810 (0) - ao) , 
820(0) - bo 

and we form the average-squared error matrix, 

~ = E[E€t] } 
MSE = MSE1 + MSE2 = trace ~ . 
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The diagonal elements of ~ are the individual mean-square errors of 
the two channels, MSE1 = E 1 810(0) - ao 12 and MSE2 = E 1 820(0) -
bo 12. Substituting (13) into (14) and making use of (4) and (9), we get 

~ = u~ {f -1: W(-r)H(r)dr -1: [W(-r)H(r)]'dr 

+ ~ 1: W(-r)H(r - nT)dr 1: [W(-r)H(r - nT)]'dr 

+ No 1: W(-r)W'(-r)dr}. (15) 

It should be noted that MSE1 is a function of W11 and W21 only 
while MSE2 is a function of W12 and W22 only. Our objective is to 
minimize MSE, expressed in (14), with respect to the elements of the 
filter matrix W, i.e., to determine the elements Wjl; j, l = 1, 2, which 
minimize MSE in (14). From the previous discussion it is clear that 
MSE1 and MSE2 are independent of one another. Therefore, minimi
zation of (14) is tantamount to the independent minimization of MSE1 

and MSE2 • 

The justification for using the quadratic cost function, MSE, is due 
to its mathematical simplicity and tractability. Moreover, as will be 
seen later, minimizing this cost implies minimizing a reasonable upper 
bound on error rate. Additionally, its use is practically motivated, 
since it lends itself to an easy estimation method often used to update 
adaptive equalizer tap coefficients in practical systems. 

Since trace ~ is a positive quadratic form in W(t), we set its gradient 
equal to zero and are thus guaranteed to obtain a global stationary 
point. Proceeding with the calculus of variation, we replace the matrix 
Wby 

and set 

(

-aa trace ~ 
('11 

a 
-a trace ~ 

('12 

at ('11 = ('21 = ('12 = ('22 = 0. 

(16a) 

a~l trace ~) = (0 0) 
-trace ~ ° ° 
a('22 

(16b) 

After considerable detailed calculations, summarized in Appendix 
A, we get an integral equation for the optimum matrix filter, Wo(t): 
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with 

Un = 1: Wo(-t)H(t - nT)dt, (17b) 

Equation (17) can be interpreted as a representation of the optimum 
filter, Wo(t), by a matrix matched filter, with impulse response Ht (-t), 
followed by a sampler at tn = nT and a matrix transversal filter, or a 
nonrecursive matrix digital filter, with matrix tap coefficients Un. The 
matrix representation in (17) is symbolically similar to the scalar 
case/7 with matrices playing the role of scalars. When the channel 
matrix impulse response (1) is diagonal, i.e., cross-polarization inter
ference is absent, (17) reduces to two scalar equations representing 
the two optimum cochannel equalizers. In the general case, (17) 
represents a cross-coupled transversal structure admitting equaliza
tion as well as cancellation. 

When (17) is postmultiplied by W! (-t), integrated, and then sub
stituted into (15), we get 

~o = u~ [I - 1: Wo(-t)H(t)dt] = uW - Uo) (lSa) 

and 

MSEo = Min trace(~} = trace(~[Wo(t)]} = trace(~o}. (ISb) 
w 

Furthermore, explicit equations for the optimum matrix tap coeffi
cients' Un, are obtained by postmultiplying (17) by H(T - kT), for all 
k, and then integrating. The result is a set of linear equations in the 
matrices Un, 

0"2 Uk = Rk - L UnRk-n, all k, (19) 
n 

where 

The discrete matrix convolution equation (19) has a simple unique 
solution obtained by taking the Fourier series of both sides. Defining 

(
U(W») (Un). - L e-/.WnT 
R(w) n Rn 

(20) 

with 

- -. e'wnTdw (
Un) T 17r/T (U(W») . 
Rn 27r -7r/T R(w) 

(21) 
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and substituting (21) into (19), we obtain 

U(w) = R(W)[0"2 + R(w)r1. (22) 

Again, (19) and (22) are strikingly similar in structure to the case 
obtained in the scalar situation,17 with the proviso that matrices play 
the role of scalars and with the obvious condition that the matrices 
do not necessarily commute. 

We now express (18) more explicitly by obtaining Uo from (21) and 
(22) 

2 T 11rIT [ R(W)]-1 
~o = 0" d -2 I + -2- dw 

~ -1rIT 0" 

and 
MSEo = trace{~o}. (23) 

The connection between R(w), given in (20) and (21), and the matrix 
channel transfer function H(w) is made by equating Rn from (21) to 
the definition in (19), 

100 T 11rIT . 
Rn = Ht(r)H(r - nT)dr = - R(w)e-zwnT dw 

- ~ -~T 

1 100 

• = - Ht(w)H(w)e-zwnT dw 
2~ -00 

= ~ 11rIT L Ht (w - 2~k) H (w _ 2~k) e-iwnT dw. 
2~ -1rIT k T T 

(24) 

Equation (24) implies that 

1 (2~k) ( 2~k) R(w) = T ~ Ht w - T H w - T . (25) 

This is recognized as the aliased, or folded, matrix spectrum about the 
Nyquist frequency ~/T. For the nonexcess bandwidth transmission 
case, i.e., 

H(w) = 0 for Iwl ~ ~/T, 
eq. (25) reduces to 

1 
R(w) = - Ht(w)H(w). 

T 
(26) 

At this point we introduce simplifying normalizations and perform 
some sanity checks. Focusing attention on the nonexcess bandwidth 
case with constant and identical transmitter filters, i.e., 

P(w) = P(z) = (~ ~); 
Iwl ~ ~/T or Izi ~ ~ with H = KC(w), (27) 
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where the normalized frequency variable is 

T 
z = - w = fT 

27l" ' 

we find from (11) that the average power per channel is 

Pa = Pb = K2(J~/T2 = Pav/2. 

The quantity 

(J2T = NoT = NolT K2 = K2 
(J~ Pa p 

(28) 

(29) 

(30) 

where p is the clear air carrier-to-noise ratio (CNR) in each channel, 
being typically 2 X 106

, or 63 dB. Applying the normalization defined 
in (26) through (30), we rewrite (23) as 

and 

~o = (J~ r1

/

2 

[1 + pct (z)C(z)t 1dz J-1/ 2 

1
1/2 

MSEo = (J~ trace[1 + pCt (z)C(z)t 1 dz. 
-1/2 

(31) 

Again, it is evident that when H in (27) is diagonal (no cross
polarization interference), (31) reduces to the scalar case. IS As we 
expected, when (J2 ~ 0, (p ~ 00), MSEo ~ 0; and when (J2 ~ 00, 
(p ~ 0), MSEo ~ 2(J~. 

In the next section we use the closed-form expression for MSEo in 
(31) to optimize the transmitter matrix filter. 

V. THE TRANSMITTER OPTIMIZATION PROBLEM 

For the general transmitter matrix filter, P(w), the optimization 
problem has proved thus far to be intractable. This is in contrast to 
the scalar case where a general solution exists.18 However, for the 
nonexcess bandwidth case [i.e., where there is only one term in the 
sum (25)], we have been able to arrive at a complete solution. 

We begin our analysis by substituting (26) and (28) into (23) to 
obtain 

(32) 

Our problem now IS to minimize MSEo = trace[~o] over all matrices, 
P, in the class of ideally bandlimited filters. More explicitly, we wish 
to determine Po, which minimizes MSEo subject to an average power 
constraint, 
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1
1/2 

MSEop = Min trace(~o[Wo, P])dz 
P -1/2 

11/2 

= trace(~o[Wo, Po])dz 
-1/2 

(33) 

1
1/2 

with trace[pt (z)P(z)]dz = constant 
-1/2 

The search is for Po, the class of filters that optimally distribute the 
fixed available average power between the two channels as well as 
across the frequency band of each channel. 

We observe that (33) in conjunction with (29) and (30) leads to the 
matrix minimization of the functional 

Min[trace{(J + pop te tep)-1 + XptPI1, 
P 

(34) 

where X is a Lagrange multiplier to be determined from the power 
constraint and Po = p/2K2. 

For each value of z, the matrix ete is Hermitian and can be 
diagonalized by a unitary transformation t/;, 

ete = t/;t At/;, 

whose nonnegative eigenvalues are 

Defining 

G= t/;P 
ptt/;t At/;P = Gt AG 

and observing that for 2 x 2 nons in gular matrices 

-1 _ trace [ . ] . 
tracer . ] - det[.] , trace(AB) = trace(BA), 

we express (34) in an equivalent form, 

Min[trace{(J + PoGt AG)-1 + XPoGGtl1 
G 

. [ 2 + trace(QA) ] 
= MIn (Q) d (Q ) + X trace(Q) , 

Q 1 + trace A + et A 

where Q = PoGGt and X = X/Po. 

(35) 

(36) 

(37) 

Careful inspection of (37) reveals that since Q is Hermitian and 
positive definitive, and a nonzero off-diagonal entry in Q affects only 
the determinant and not the traces, the minimizing matrix Q must be 
diagonal. 
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Therefore, denoting 

Q = (qU 0) 
o q22 

with qu ~ 0 and q22 ~ 0, the original minimization problem now 
reduces to a much simpler one, namely, 

Min { 1 + 1 + A(qu + q22)} , (38) 
Qll,q22 Al qu + 1 A2q22 + 1 

Qll,Q22""'O 

which, with the power constraint 2p = trace[J:!f/2 Qdz], immediately 
yields 

ql1 = Max [0, 

q22 = Max [0, 

~-l]/Al 
~-1]/A2 

(39) 

The procedure for obtaining A, qu, and q22 can be found in Appendix 
B. 

We now write the closed-form expression for MSEop of (33) as 

11/2 [1 1] 
MSEop = O"~ + dz. 

-1/2 1 + quAl 1 + q22A2 
(40) 

Recall that Q = PoGGt and G = t/;P. For the optimum Q, we can 
therefore write 

Q = Pot/;PoP~t/;t and PoP~ = t/;t(Ql/2/~)(Ql/2/~)t/;} 

(
.Jq;; 0) . (41) 

Ql/2 = 
o ~ 

Equation (41) yields the functional form of the optimizing transmitter 
matrix filter, Po, given by 

p = ~ .,.tQl/2S· 
o ,-- If' , 

'V Po 
S being any unitary matrix. (42) 

Since S in arbitrary, there is an infinite number of matrices, Po, that 
would give the same MSEop • The particular choice of S would deter
mine MSE I and MSE2, the diagonal entries in ~o( Wo, Po), albeit their 
sum, MSEop , is the same. 

When S = I, pt Ct CP = QA is diagonal and 
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to(Wo, Po) = (M~El M~E2)' 

11/2 dz 
MSE1 = (]"~ . 

-1/2 1 + quAl' 

(43) 

From (18a) we obtain Uoas 

Uo = 1- :d2 to(Wo, Po) = (1 - MoSEd(]"~ 0 ) (44) 
v 1 - MSE2/(]"~ . 

As we shall later see, Uo is an important quantity in the determination 
of the system error rate. 

When S = 1/;, Po is Hermitian. In general, however, 

-1/2 (1 + qu Ad(1 + q22 A2) (45) 
MSE1 = (]"~ 11/2 1 + I Sul

2
qll Al + I S121

2
q22 A2 dz } 

MSE
2 

= (]"~ 11/2 1 + I S2112qll Al + I S221
2

q22 A2 dz 
-1/2 (1 + qu Ad(1 + q22A2) 

are real quantities, and so are the diagonal entries in the matrix Uo • 

The matrices to ( Wo , Po) and Uo will not be diagonal in general. 
An interesting case arises when 

1 (1 i) S = J2 i 1 ; j, l = 1,2, (46) 

since one can associate this matrix with the transmission of circular 
polarization. Consequently, from (45) and (46), MSE1 = MSE2. Thus, 
if we desire to have identical MSEs when the two channels are 
different, a power conditioning filter, 1/; t Q1/2 / ~ in (42), followed by 
a circular polarizer in the transmitter will achieve it. 

It is instructive at this point to investigate certain limiting cases. 
For the no cross-polarization case, 

1/; = I and Ct C = (AI 0) . 
o A2 

From (31), (38), (39), and (40) we can write 

11/2 [1 1] 
MSEo = (]"~ + dz 

-1/2 1 + pAl 1 + PA2 

11/2 [1 1]· 
MSEop = (]"~ + dz 

-1/2 1 + quAl 1 + q22A2 

(47) 

(48) 

It is therefore possible to view qll and q22 as equivalent CNRs in the 
latter case. As long as the Lagrange multiplier A obeys 
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we obtain (see Appendix B) from the power constraint 

1
1/2 

[1/ ~ + 1/ ~]dz 
-1/2 

...fA = 11/2 
2p + [1/~\1 + I/A2]dz 

-1/2 

(49) 

and 

MSEop = lT~ 11/2 . 
2p + (I/Al + I/A2)dz 

-1/2 

{1
1/2 }2 
[1/~ + 1/~]dz -1/2 

(50) 

For nondispersive fades, (48) and (50) reduce to 

(51) 

As can be verified, when p ~ 00, both MSEs ~ o. For identical fades, 
i.e., Al = A2, we get the expected result 

2lT~ 
MSEo = MSEop = 1 A + p 1 

For independent fades with JAI « JA2 and sufficiently large CNR, 
i.e., p ~ 00, the improvement in mean-square errors is 

. MSEo 2/Al 
~ MSEop = I/Al = 2. 

This is due to power transfer from the good channel to the bad one. 
For two identical fading channels, the transmitter optimization is 

tantamount to power redistribution within the individual channels 
without power transfer between the channels. The asymptotic im
provement in MSE, utilizing an optimized transmitter filter, can be 
calculated as 
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1
. MSEo 
Im---

p-+ro MSEop 

2[2
P 

+ 2 (1/2 dZ] (1/2 dz (1/2 dz 
J-1/2 Al J-1/2 1 + PAl J-1/2 ~ 

= ~~ [ (1/2 d ]2 = [ (1/2 ~]2 ;:: 1, 

4 J-1/ 2 i. J-1/ 2 5;. 

by Schwarz's inequality. 

VI. THE MATCHED FILTER BOUND 

A useful bound on the performance of equalizers can be obtained by 
assuming that one can detect each data vector symbol optimally by a 
matched matrix filter without incurring the penalty of intersymbol 
interference. Clearly, it is impossible for any equalizer to perform 
better than this fictional system. 

We begin by noting from eq. (17) that in the absence of intersymbol 
interference the optimum equalizer filter Wo ( -t) satisfies the equation 

1 1 
Wo(-t) = 2 Ht(t) - 2 UoHt(t) 

U U 

1 
= 2 (1 - Uo)Ht (t). 

U 
(52) 

This is recognized as a matched filter followed by a multiplicative 
matrix coefficient. 

The optimum mean-square error matrix is, again, from (18) 

~o = u~ (1 - Uo), 

where in this case, Uo satisfies (19) for k = 0, 

u 2 Uo = (1 - Uo)Ro 

and 

[ ]_1} 2 Ro 
~o = Ud 1 + u 2 • 

MSEo = trace[~o] 

For bandlimited transmission 

L
l/2 

= -T
1 

pt (z)ct (z)C(z)P(z)dz. 
-1/2 
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Consistent with our previous notation in (27) through (30) and the 
definition of Ro in (55), the average-square error matrix ~o is given by 

Writing 

[ ]
1/2 ]-1 

~o = u~ 1 + P ct Cdz . -1/2 

]
1/2 CtCdz = (Mn 

-1/2 M12 

where M12 = M;b we obtain 

~o = u~ [1 + p (Mn M21)]-I. 

M12 M22 

(56) 

(57) 

The individual and the total mean-square errors are thus given by 

As before, it is again possible to optimize the transmitter matrix 
filter P. The problem at hand, while it appears similar to the one 
already solved for the general case of cross-polarization and intersym
bol interferences, is different and cannot be deduced from the general 
solution. Here the problem reduces to determining P such that 

{[ 
1 ]1/2 ]-1} 

u~trace 1 + u 2 T -1/2 pt (z)ct (L)C(z)P(z)dz 

is a minimum, subject to (59) 

trace {]1/2 pt (Z)P(Z)dZ} = constant 
-1/2 

Note that the matrix A = J:!f/2 ptCtCPdz is semidefinite Hermitian, 
and as before, it can be represented as [eq. (36)] 

]
1/2 

A = GtAG dz, 
-1/2 

where G = tf;P. 
As we have already argued in Section V, minimizing (56) is equiva

lent to maximizing 

Max det []1/2 Gt AG dZ] 
P -1/2 

(60) 
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subject to trace f GtG = constant. Since the integrand of A is Hermi
tian and positive, the maximization is equivalent to requiring that the 
off-diagonal terms of f GtAG be zero. This immediately leads to the 
conclusion that both G and Q are diagonal, Q = Gt G. 

Thus, the equivalent minimization problem now reduces to 

[ 11/2 ]-1 
Min trace 1+ ;T QAdz 
Qll,q22 (Y -1/2 

1 o 

= Min trace (61) 
Qll,Q22 

1 

1 11/2 
1 + 2T q22 A2dz 

(Y -1/2 

subject to f:!12/2 (qll + q22)dz = (Pa + Pb)/((Y~/T2) = Pav/((Y~/T2). 
The functions qll (z) and Q22(Z), which minimize (61), would maxi

mize the following integrals: f:!l/2 Qll (z)Adz)dz and f:!12/2 Q22 (Z)A2(Z)dz, 
subject to the same power constraint. This is a straightforward opti
mization problem resulting in 

x, y;;?; 0, (62) 

where ZI and Z2 are the normalized frequencies where the eigenvalues 
Al and A2 attain their respective maximal values, AIm and A2m. Physi
cally, these results imply that power in each band should be concen
trated at the frequency of peak transmission. Again, 0(.) is the Dirac 
delta function and the positive constants x and y have yet to be 
determined. 

Substituting (62) into (61) yields 

Min MSEop = Min (Y~ [ 1 + 1 ] 
x,y~O x,y~O 1 ~ A 1 ~ A + (Y2T 1m + (Y2T 2m 

(63) 

subject to x + y = constant. 
Carrying out the above minimization, we find that 

and 

P2 = ;T = ~ 1 ~ [2pv'A: - (v'A: - ~)/v'AlmA2m]. (64) 
(Y AIm + A2m 
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The quantities PI and P2 can be interpreted as the equivalent CNRs in 
the respective channels. Their sum is constant and equal to 2p. The 
conditions for x and y to be nonnegative can readily be verified to be 

1 1 
2p~;:;::: r;- - r;-' 

'V AIm 'VA2m 

and 

(65) 

Using (61) and the optimized values of x, y given in (64), we finally 
get for the minimum mean -squared errors 

(66) 

As can be seen, for nondispersive fades where there is no intersymbol 
interference (66) is identical to (51). 

VII. INFORMATION THEORY LIMIT 

Here we discuss the information theoretic capacity of dually polar
ized radio channels. This quantity is the maximum number of essen
tially error-free bits per cycle that can be attained for a given matrix 
channel transfer characteristic and a given clear air CNR. The problem 
is to calculate the Shannon capacity of a multi-input, multi-output 
linear dispersive channel with additive Gaussian noise. This general 
problem has been considered by Brandenburg and Wyner.19 Recently, 
Foschini and Vannucci20 called our attention to some technical results 
that make the evaluation of this quantity in our case relatively simple. 

We first recall the capacity formula for a scalar dispersive channel 
with frequency transfer characteristic C(f) 

C = L log2 {1 + ~ ,p(n ,2, CUll'} df, bls, (67) 

where u; is the average signal power at the input to the transmitter 
filter P( f), and No is the double-sided spectral density of the additive 
Gaussian noise. The transmitter filter P( f) is selected to maximize C 
subject to an average transmitted power constraint. 
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In dually polarized communications, the channel frequency charac
teristic is a 2 x 2 complex matrix. To facilitate the calculation of 
capacity, we use the polar factorization theorem2I to represent C(/) 
as 

C(/) = U(/).JCt(/)C(/), (68) 

where U(/) is unitary. (This is the key idea suggested by Foschini 
and Vannucci.20

) Moreover, (35) is used to obtain the representation 

(69) 

where 

Since the product of two unitary transformations is unitary and 
since unitary transformations do not alter either the total average 
transmitted power or the noise power, the original channel can be 
represented mathematically as two parallel channels, each with fre
quency characteristic ~~/2 (I) and M/2 (I), respectively. This is evident 
from the representation expressed in Ref. 69. 

Since the mathematically equivalent representation is comprised of 
two parallel scalar channels, the capacities add and consequently the 
total channel capacity is 

C = In12 i, In {I + ;J.IPl(flI2A1(fl}df 

(70) 

where PI and P 2 are the filter characteristics that optimize C subject 
to a total average power constraint 

Pay = 20"i 1 I PI (I) 12 dl + 20"~ 1 I P2 (/) 12 dl, (71) 
Wi W 2 

where O"i and O"~ are the average input powers to the transmitter 
filters. 

In our applications, the channels are assumed to be strictly band
limited to the band W = (l/T), and therefore, it is convenient to 
normalize the capacity formula by dividing (70) by W. We denote the 
normalized capacity-i.e., the efficiency index, sometimes called the 
Shannon limit-by Is in units of b/s/Hz. 

The total CNR obtained via the constraint (71) is 

2p = P av /2No W, 
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where A is a Lagrange multiplier. Using the calculus of variation on 
(73), we obtain the following two equations 

1 P'(Z) 12 = Max [0. ~i [~- ~J] 
(74) 

IP2 (z)1
2 

= Max [0. ~i [~- ~J] 
The Lagrange multiplier is evaluated from the power constraint in 
(72), 

The iterative procedure outlined in Appendix B can accommodate 
the evaluation of A in this case, and the proper intervals ZI and Z2. 
These are the intervals over which 1 Pdz) 12 > 0 and 1 P 2 (z) 12 > 0, 
respectively. We can now calculate the Shannon limit, Is, from (74) 
and (72) as 

Is = _1 {r In [AI] dz + lin [A2] dZ} . (76) 
In 2 JZ1 A Z2 A 

VIII. PROPAGATION MODEL 

To evaluate the efficacy of the optimized dually polarized data 
communications system, one would require a detailed knowledge of 
the functional and statistical behavior of the complex matrix channel 
characteristics. Since fading events are not very frequent, proper 
complex matrix channel characterization typically requires a few years 
of coherent measurements. Such experiments have not been performed 
to date and only partial data, mainly amplitude characteristics of the 
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in-line channels I Cnl and I C22 1, have been measured over a limited 
number of propagation paths. 

The propagation model that we shall employ incorporates present 
knowledge with suggested extensions for the phase as well as the cross
polarization characteristics. Although this model is incomplete, we 
can still obtain meaningful qualitative results and use them for com
parative evaluations of various equalization methods. 

The behavior of I Cnl and I C22 1, the single channel (in-line) ampli
tude characteristics, are well established and documented.22

-
25 To 

review briefly, the generic form of the single channel characteristic is 

C(z) = a[l - b exp( -27rizT IT)]; 
1 

Izl ~ 2· (77) 

In the above representation T is a fixed parameter (6.3 ns), a is real, 
and b is complex valued, (I b I < 1). The following definitions and 
statistics are usually associated with the parameters in (77), 

A = -20 log a 

B = -20 10g(1 - I b D 
4> = arg(b). (78) 

The parameters Band 4> are taken to be independent random variables 
possessing probability densities 

and 

1 
P(B) = - exp( -BI3.8) 

3.8 

P(4)) = {5/ 6 7r, 
116 7r, 

11>1 ~ 7r/2 
7r 12 ~ I 4> I ~ 7r • 

(79) 

The parameter A is a Gaussian random variable with average value 
dependent on B 

E[A] = 24.6(500 + B 4)/(800 + B4) in dB (80) 

and standard derivation 

<TA = 5 in dB. (81) 

The single channels can be viewed as being in one of two states with 
associated probabilities, 

Pr(unfaded state) = 0.99689 

Pr(faded state) = 0.00311. (82) 

The unfaded state is characterized by C(z) = 1. 
The structure of the off-diagonal terms of the matrix C(z), repre-
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senting the cross-polarization interference, is based upon some exper
imental evidence and heuristic arguments:2S

-
30 

I C12(Z) I = I k1CU(z) + k2C22 (Z) + R31 

I C21(Z) I = I k4CU (z) + k5C22(Z) + Rsl, (83) 

where kI, k2' k4' and k5 are constants that incorporate the nonideal 
properties of the antennas and waveguide feeds at both ends of the 
channel. We assume that dispersion due to multimode conversion, 
propagation, and reflections, in the waveguide feeds, has either been 
eliminated (in the 6-GHz and higher bands) or is nonexistent (in the 
4-GHz band). Typical values of these constants, which vary from one 
hop to another, are in the -35 to -20 dB range. The terms R3 and Rs 
are hypothesized to be independent complex Gaussian random varia
bles. One may view each of these variables as the result of an inde
pendent ray, which would contribute a nondispersive cross-polariza
tion response except for a time delay. Typical values of the variance 
UR, associated with these Rayleigh random variables, is in the -45 to 
-35 dB range. 

Current data27 and previous experience5 indicate that I Cu I and 
I C22 1 are highly correlated, i.e., they practically fade in unison. It has 
been observed in some cases that I Cui and I C22 1 are displaced relative 
to one another across the frequency band. 

Based on the above discussion, we use for our numerical evaluations 
the following extended model (to include amplitude as well as phase 
characteristics) for the dually polarized fading radio channel 

Cu(z) = a[1 - b exp(-27rizT/T)], I z I ~ 1/2 
C22(Z) = a[1 - b exp(-27ri(z - Az)r/T)]; 

Az is uniformly distributed over I Az I ~ AZmax (84) 
C12(Z) = k1CU(z) + k2C22(Z) + R3 exp(-27rizDdT) 
C21 (Z) = k4CU (z) + k5C22(Z) + Rs exp(-27rizD2/T) 

As can be seen, we have also associated different time delays, Dl and 
D2 , with R3 and Rs. Their values and influence will be discussed in a 
later section. We shall use (84) to evaluate the normalized data rates 
of dually polarized radio channels. 

IX. NUMERICAL SIMULATION STUDIES AND RESULTS 

A meaningful performance measure of a particular communication 
technique is the probability distribution of normalized data rate that 
can be supported at a certain error rate objective. The normalized data 
rate is I = (log2L2)/WT in b/s/Hz, where L2 is the total number of 
points in the QAM constellation and WT = 1 in our case. I can be 
obtained from the Chernoff bounds on the probability of error devel-
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oped in Appendix C. For a fixed error rate we determine the maximum 
number ofb/s/Hz supported by the particular channel at a given CNR. 
By computing the maximum number of b/s/Hz supported by each 
member of a large representative population of matrix channels, we 
obtain an estimate of the probability distribution of normalized data 
rates. This distribution is then used to estimate the probability of 
outage. 

More specifically, if F(r) is the probability distribution of normalized 
data rates associated with a particular equalizer/canceler structure 
and an outage objective a is set, then the value r a for which F(r a) = a 
represents the maximum data rate at which it is possible to commu
nicate data and meet the set outage objectives. 

We evaluate, via Monte Carlo simulation, the normalized data rates 
that can be supported by our model of a dually polarized radio channel 
employing various equalization/cancellation structures at a prescribed 
error rate. Initial sanity checks for correlated and independent chan
nels subjected to flat fading were used in the early stages of the 
program debugging. As we intended to simulate a large number 
(25,000) of fading events, we have utilized the CRA Y computer. 

Initial studies were devised to evaluate the sensitivity of the nor
malized mean-square errors, MSEo/O"~ and MSEop/O"~ from (31) and 
(40), to the propagation parameters ~zmax' DdT, and D2/T suggested 
in (84). For a small subset of fading channels, we varied ~zmax from 0 
to 0.3 and DdT and D2/T from 0 up to 3. The results indicated 
that the normalized mean -square errors were not very sensitive to 
these parameters when the other propagation parameters satisfy 
{ I kj I} ~ - 20 dB, j = 1, 2, 4, 5 and O"R < -35 dB. (In the practical case 
of finite tap equalizers, there may be more sensitivity to DdT and 
D2/T.) In the same calculations we have also observed insensitivity to 
the phases associated with {kj } in (84). 

Based upon these observations, we chose the following worst values 
for our subsequent evaluations 

O"R = -35 dB. (85) 

Other parameters were chosen as follows: 

DdT = D2/T = 0.27 and ~zmax = 0.15. 

We have generated two sets of 25,000 simulated frequency charac
teristics, each being obtained via Monte Carlo simulation of the 
random variables A, B, cp, R3 , and Rs in (78) and (84). One set was 
generated for the case of the cross-polarized radio channels as de
scribed in (84). In this case the channels are correlated. The other set 
was generated for the case of a joint fade of two independent channels 
where the A, B, and (/) parameters of Cll and C22 in (84) are chosen 
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independently with identical statistics. The interest in this extremal 
and "nonphysical" dual radio channel case is to demonstrate the 
inherent optimization advantages obtained when the two channels are 
independent. 

For given probabilities of errors, Pel and Pe2, which we had desig
nated as outage thresholds (typically 10-4

), we calculated the various 
normalized channels data rates for each simulated frequency charac
teristic of the appropriate set. This was accomplished by evaluating 
the individual mean-square errors in (31), (43), (58), and (64) and 
inserting them into (116) and (117). As we pointed out in Appendix 
C, these probabilities are upper bounds since exact expressions are 
not possible to obtain. We thus calculated the individual and total 
normalized channels data rates for the optimized receiver and jointly 
optimized transmitter-receiver equalizer/canceler, as well as their 
Matched Filter (MF) bounds, using these estimates. In addition, we 
also calculated the corresponding Shannon (information theoretic) 
limit from (76). The results are presented in the form of curves of 
outage probability versus normalized data rate, in which we incorpo
rated the probabilities of being in a fading state given in (82). In Figs. 
3 and 4, we obtained these curves for various situations, namely, no 
CPI; {hj} = 0 and (JR = -35 dB; and {hj} = 0.1 and (JR = -35 dB. Also 
in Figs. 3 and 4 CNR = 63 dB; T/T = 0.189 (30-MHz bandwidth); 
Dl = D2 = 0.27T and Pel = Pe2 = 10-4

• 

Figures 3a and b exhibit normalized data-rate distributions for 
correlated channels and for both optimized receiver and jointly opti
mized transmitter-receiver, respectively. For the optimized receiver we 
note that, in the absence of CPI (solid curves), there is no significant 
difference between the data rates attained with the equalizer and the 
matched filter bound, about 0.7 b/s/Hz per channel. (When CPI is 
absent and the channels are correlated, the performance-outage 
probability versus normalized data rate-of each individual radio 
channel is identical to that of the single radio channel. 24 We can, 
therefore, assess the penalties associated with dually polarized radio 
transmission from performance degradation relative to the case when 
CPI is absent.) The corresponding combined channels rates are dis
placed by approximately 5 b/s/Hz relative to the Shannon limit. In 
addition, the combined channels rate is twice that of an individual 
channel. When CPI consists of the Rayleigh distributed variables only 
(dashed curves), we note an improvement in the matched filter bound 
and the information theory limit while an individual channel rate with 
the equalizer degrades by about 1.5 b/s/Hz. (This degradation is the 
penalty of dually polarized radio transmission using a linear receiver 
equalizer only. The matched filter bound as well as Shannon's limit 
indicate that CPI can be used to our advantage rather than detriment.) 
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Note that the combined channels data rate is greater than twice the 
individual channel rate, as the combined rate is degraded by only 1.5 
to 2.5 b/s/Hz. The physical interpretation of this phenomenon is that 
the independent CPI components R3 and R6 provide a certain degree 
of diversity that can be exploited to advantage as in the MF bound 
and the Shannon limit, albeit the equalizer in the optimized linear 
receiver is able to utilize it to a very limited extent. 

When we add to the CPI the additional terms {kj } = -20 dB, all the 
curves are only slightly perturbed. This implies that the contribution 
of the antennas and their feeds can be practically neutralized by the 
equalizer. 

Figure 3b demonstrates the performance of the jointly optimized 
transmitter-receiver for the same set of simulated channel frequency 
characteristics used in Fig. 3a. We note an improvement of 2 to 2.5 
b/s/Hz over Fig. 3a in the matched filter bound in the absence of CPI 
(solid curves) while the corresponding improvement in the combined 
rate with the equalizer is under 1 b/s/Hz. The payoff for joint trans
mitter-receiver optimization results when CPI is present (dashed 
curves). As can be seen, about 1 b/s/Hz in individual channel rate and 
2 to 3 b/s/Hz in combined rate are gained over Fig. 3a, in the critical 
region given by probability :s;;; 3 X 10-5

• The differences between the 
rates with and without CPI are much smaller in Fig. 3b, indicating 
barely any penalty for dually polarized transmission with jointly 
optimized equalization. When the data rate is < 8 b/s/Hz, the equalizer 
appears to utilize the CPI to yield a small advantage over the case 
without CPI. We conclude that the joint optimization utilizes the 
diversity, provided by the random components of the CPI, to a much 
greater extent. Note that there is still a 3-b/s/Hz difference relative 
to the matched filter bound in Fig. 3b. Again, the effects of CPI 
contributed by the antennas and their feeds have been eliminated for 
all practical purposes. 

In Fig. 5 we compare the normalized data rates of the correlated 
channels, under severe CPI, for the optimized receiver and jointly 
optimized transmitter receiver. In this figure CNR = 63 dB; T/T = 
0.189 (30-MHz bandwidth); {kj } = -20 dB; (JR = 35 dB; Dl = D2 = 
0.27T; and Pel = P e2 = 10-4

• For an individual channel, an improvement 
of about 1 b/s/Hz can be achieved, in the region of outage probability 
less than 6 X 10-5

, with joint transmitter-receiver optimization. This 
advantage can amount to 50 percent or more of relative improvement 
when outage probability is :s;;; 3 X 10-6

, and diminishes in significance 
as the outage probability increases. Note that the matched filter 
bounds of the individual channel rates are better by 2 to 2.5 b/s/Hz 
relative to their corresponding equalizer rates for outage probability 
< 5 X 10-5

• Such a large relative difference indicates that perhaps 
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other equalization/cancellation methods and/or Viterbi decoding31 

could increase the individual rate of the channels. 
The effects of partial diversity, due to the random component of the 

CPI, where the combined channels rate is more than three times the 
individual rate for the lower values of outage probability can again be 
observed. The total combined rate of the jointly optimized transmitter
receiver equalizer is lower by about 4 b/s/Hz and 7 b/s/Hz relative to 
the matched filter bound and the Shannon limit, respectively. The 
combined channels rate of the optimized receiver equalizer can be 
lower by as much as 5 b/s/Hz relative to its matched filter bound. 
These facts indicate that an additional improvement may be feasible 
by employing Viterbi decoding.31 If higher values of probability of 
outage are acceptable, an optimized receiver equalizer can come rela-
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tively close in performance to a jointly optimized transmitter-receiver 
equalizer. 

Figures 4a and b exhibit the independent channels normalized data
rate distributions for an optimized receiver and jointly optimized 
transmitter-receiver, respectively. In this case there is diversity be
tween the channels, and consequently, the combined channels data 
rate is much higher than twice that of an individual channel. 

Again we note that for the optimized receiver there is no significant 
difference between the data rates supported by the equalizer and the 
matched filter bound in the absence of CPI interference. The total 
data rate is about three to four times that of an individual channel. 
There is, however, a 5-b/s/Hz difference between the Shannon limit 
relative to the correlated channels case of Fig. 3. When CPI is present, 
in the form of Ra and R6 only, (84), we notice a slight degradation in 
the equalized individual channel data rate with a correspondingly 
severe degradation in the total channels data rate. This seemingly 
strange phenomenon can be explained as follows: since the channels 
are independent, the probability of a joint bad fade is very low. Thus, 
in the absence of CPI, we expect one channel to be relatively good
capable of supporting a very high data rate-while the other channel 
is subject to a severe fade. When CPI is introduced, the data rate of 
the good channel degrades at a much faster pace, with the equalizer 
not being able to stem this pace as effectively as it can equalize the 
bad channel. Note that the contribution of the antennas and their 
feed is more noticeable here. 

In Fig. 4b we show the performance of the jointly optimized trans
mitter-receiver for the same set of simulated channel responses as in 
Fig. 4a. We note a 1- to 2-b/s/Hz improvement in the individual 
channel data rate with the equalizer and the matched filter bound in 
the absence of CPI. In this case the total data rate attainable by the 
matched filter bound has improved by about 1 to 1.5 b/s/Hz relative 
to the optimized receiver in the absence of CPI indicated in Fig. 4a. 
On the other hand, the total data rate with the equalizer is slightly 
inferior to the optimized receiver case. This occurs because we have 
minimized the total mean-square error, which is dominated by the bad 
channel in each pair of simulated responses. We thus rob from the 
good channel some power and give it to the bad one. Consequently, 
the data rate of the good channel is decreased by more than the 
improvement obtained from the bad channel. This effect totally dis
appears when CPI is present and the superiority of the joint transmit
ter-receiver optimization can be observed to substantially counteract 
CPI. 

In Fig. 6 we compare the normalized data rates of the independent 
channels with the optimized receiver and jointly optimized transmit-
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ter-receiver equalizers, subject to the same severe CPI as in Fig. 5. In 
Fig. 6 the CNR = 63 dB; T/T = 0.189 (30-MHz bandwidth); {kj} = -20 
dB; (JR = -35 dB; Dl = D2 = 0.27T; Pel = Pe2 = 10-4

• An improvement 
of 1 to 1.5 b/s/Hz can be achieved in the region of outage probability 
< 6 X 10-5 with joint optimization. This improvement is comparable 
to the correlated channels case, Fig. 5, although the rates themselves 
are slightly higher in Fig. 6. For the individual channel rates, we note 
again a 2- to 2.5-b/s/Hz difference between the two equalizers and 
their corresponding match filter bound. 

The rate of the combined channels, being much higher than twice 
the rate of the individual channel, demonstrates the advantages that 
can be obtained by utilizing the diversity of the independent channels. 
Operation at a fixed data rate per channel would not utilize this 
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diversity, and design considerations would be based upon the individ
ual channel performance. If we assume that Viterbi decoding can 
practically realize the matched filter bound, then the corresponding 
single-channel curves in Fig. 6 indicate an approximate 1- to 1.5-b/s/ 
Hz advantage for joint optimization. In Fig. 5 the corresponding curves 
for the correlated channels indicate a marginal advantage for joint 
optimization. Operation at variable data rate, where the rate is ad
justed according to the states of the channels, can result in a manyfold 
increase of total data rate. Judging again by the combined channels 
matched filter bounds in Figs. 5 and 6, we see no substantial advantage 
in employing joint transmitter-receiver optimization. 

In Figs. 7 and 8 we exhibit the sensitivity of the normalized data 
rates to variations in CNR (clear air carrier-to-noise ratio) and Pe 

(threshold error rates) for the correlated radio channels case. In Figs. 
7 and 9 T/T = 0.189; {kj } = -20 dB; lIR = -35 dB; Dl = D2 = 0.27T; 
and Pel = P e2 = 10-4

• In Figs. 8 and 10 CNR = 63 dB; T/T = 0.189; 
{kj I = -20 dB;' lIR = -35 dB; and Dl and D2 = 0.27T. Figures 9 and 10 
indicate the corresponding sensitivity for the independent channels 
case. For the individual channels, these figures indicate that, irrespec
tive of mode of equalization and correlation between channels, a 3-dB 
increase (decrease) in CNR correspond to I-b/s/Hz increase (decrease) 
in data rate. Also, a ten-fold decrease in Pe corresponds to an approx
imate 0.3-b/s/Hz decrease in data rate. These statements hold except 
for very low levels of outage probabilities, < 5 X 10-6

, where less 
sensitivity is observed. These observations are similar to the case of 
single radio channels.24 

x. SUMMARY AND CONCLUSIONS 

We have presented a theory of optimal (in a least-mean-square 
sense) equalization/cancellation in digital data transmission over two 
cross-coupled linear dispersive channels. This research was primarily 
motivated by problems associated with digital data communications 
over dually polarized fading radio channels, and most of our numerical 
work is directed toward this application. 

Viewing the channel as a two-input port, two-output port linear 
network followed by additive noise, we determined the optimum linear 
receiver structure when the transmitted signals are two independent 
quadrature amplitude modulated data waves. The figure of merit used 
in the optimization was the total mean-square error between the 
desired data symbol and the post-filtered signal sample. We found 
that the structure of the optimum filter is comprised of a 2 by 2 matrix 
matched filter followed by a matrix tapped delay line. The tap coeffi
cients are described by a sequence of constant matrices. The utility of 
this structure is that it can be approximated by a finite matrix 

MICROWAVE RADIO TRANSMISSION 2249 



transversal filter whose matrix taps can be adjusted adaptively. For a 
given channel matrix, a transmitter matrix filter and the optimum 
receiver filter, we have derived a closed-form expression for the mini
mum attainable total mean-square error as a functional of the trans
mitter matrix. This also made it possible to optimize the transmitter 
subject to a total average power constraint 

The extensive numerical work exhibited in the various graphs is 
based on our suggested propagation model. This model is rich enough 
to allow meaningful performance comparisons of the various equali
zation/cancellation methods and their ultimate limits. 

Our major conclusions are: 
1. The effects of Cross-Polarization Interference (CPI), contributed 

by the antennas and their feeds, can be practically eliminated by the 
linear equalizer/canceler structures discussed in this paper. This may 
have a significant bearing upon the cross-polarization requirements 
placed on the antennas. 

2. In principle, the random components of CPI can provide partial 
diversity reception. They could be exploited to increase the total data 
rates supported by the channels relative to the case where CPI is 
absent. 

3. A jointly optimized transmitter-receiver equalizer/canceler is 
effective when low outage probabilities are required. At relatively high 
outage probabilities it is. of marginal benefit. 

4. Over a range from 10-6 to 10-5 outage probability, the combined 
channels data rate achieved by the jointly optimized transmitter
receiver equalizer/canceler is 4 b/s/Hz less than its matched filter 
bound. Similarly, when only the receiver is optimized, the difference 
is 5 b/s/Hz. This observation applies to both correlated and independ
ent channels. This significant difference in data rates warrants further 
investigation of other equalization/cancellation methods, such as de
cision feedback18 and/or Viterbi decoding.31 

5. In the same range of outage probability as in 4, the combined 
channels data rate associated with the matched filter bounds differ 
from the Shannon limit by about 3 b/s/Hz when jointly optimized 
transmitter-receiver are used and there is an additional loss of 1 b/s/ 
Hz when only the receiver filter is optimized. This observation is again 
valid for both correlated and independent channels. The only way 
known to recoup some of this loss is by channel coding. 

6. Irrespective of equalization methods and correlation between the 
channels, a 3-dB increase (decrease) in CNR corresponds to 1 b/s/Hz 
increase (decrease) in the achievable data rate of an individual channel. 
Also, a ten-fold decrease in error rate corresponds to an approximate 
0.3-b/s/Hz decrease in individual channel data rate. 
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APPENDIX A 

Integral Equation for Optimum Matrix Filter 

To evaluate (16), express trace ~ explicitly in terms of Wij and hij, i, 
j = 1, 2, the entries of matrices Wand H, respectively: 

trace ~ = 2 - 2Re {f [Wn(-r)hn(r) + W12(-r)h2l(r) 

+ W2I(-r)h 12(r) + W22(-r)h,2(r)]dr} 

+ a2 J [I WH(-T) 12 + 1 W12(T) 12 + 1 W21 (T) 12 + 1 W22(T) 12]dT 

+ ~ 1 f [Wn(-r)hn(r - nT) + W2I(-r)hu(r - nT)]dr 12 

+ ~ 1 f [Wn(-r)h,,(r - nT) + W2I(-r)h,.(r - nT)]dr I' 

+ ~ 1 f [W,,{-r)hn(r - nT) + W22(-r)h12(r - nT)]dr 12 

+ ~ 1 f [Wu(-r)h,,(r - nT) + W,,{-r)h,2(r - nT)]dr 12. (86) 

We proceed as follows. Set the variations 

aWijr trace ~ = 0, i, j = 1, 2 

and 
aWijJ trace ~ = 0, i, j = 1,2, (87) 

where Wijr = Re(Wij ) and Wijy = Im(Wij). The variations expressed 
in (87) imply that aw trace ~ = 0, which is tantamount to equating 

a 
af trace [HW + fOW)] = 0, (88) 

where W + fOW is given in (16a) and the partial derivatives are with 
respect to fij, i = j = 1, 2. Detailed calculations of 

yield the integral equation, 

a 
- trace ~ = ° afn 
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yields 

n 

· J [Wll(-z)hll(z - nT) + W21(-z)h12(Z - nT)]*dz 

+ L h21 (r - nT) 
n 

· J [Wll(-z)h21(Z - nT) + W21(-z)h22(Z - nT)]*dz; (89) 

a 
- trace ~ = 0 af 12 

h21 (r) = (j2W!2(-r) + L hu(r - nT) 

yields 

n 

· J [W..{-z)hll (z - nT) + W22(-z)h..{z - nT)]*dz 

+ L h21(r - nT) 
n 

· J [W12(-Z)h,,1(Z - nT) + Wd-Z)h,,2(Z - nT)]*dz; (90) 

a 
- trace ~ = 0 
af21 

h12(r) = (j2W~1(-r) + L h12(r - nT) 

and 

yields 

n 

. J [Wll(-z)hll (z - nT) + W21(-z)h..{z - nT)]*dz 

+ L h22(r - nT) J [Wll(-Z)h"l(Z - nT) 
n 

(91) 

h22(r) = (j2W~2(-r) + L h12(r - nT) 
n 

. J [W,.{-z)hll(z - nT) + Wd-z)hdz - nT)]*dz 

+ L h22(r - nT) 
n 

. J [W..{-Z)h21(Z - nT) + Wd-z)hdz - nT)]*dz, (92) 
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where * stands for complex conjugate. Equations (89) through (92) 
can be put into a matrix form: 

[
iJ trace ~] = (0 0), 

iJeij ij 0 0 
i, j = 1, 2 

yields 

(
htl(T) ht2(T») = 2 (Wll(-T) W21(-T») 
h~I(T) h~2(T) (j WI2(-T) W22(-T) 

+ L ((X) (Wll(-Z) W21(-Z»)(hll(Z - nT) h21(Z - nT») dz 
n J-oo WI2(-Z) W22(-Z) h12(Z - nT) ~2(Z - nT) 

. (htl(T - nT) ht2(T - nT») 
h~I(T - nT) h~2(T - nT) , 

which is exactly eq. (17,) in the text. 

APPENDIX B 

Determination of the Matrix Q 

In (39) we give the elements of the diagonal matrix Q in terms of 
the eigenvalues Al and A2, and the Lagrange multiplier A. We shall 
evaluate A from the constraint of (38) 

11/2 
2p = [qll(Z) + q22(Z)]dz. 

-1/2 
(93) 

From (39) it is clear that there may be a situation where Al or A2 :s::; A 
over a limited range of the interval I Z I :s::; 1/2. Here we shall develop 
an iterative procedure for determining A and the appropriate subinter
vals of Z over which qll and q22 ~ o. 

In our first iteration, we equate A = A (0) to the smallest eigenvalue 
in the interval, i.e., 

(94) 

This will ensure that qll and q22 in (39) are nonnegative. 
Substituting (39) in (93), we obtain the next iterative value of A: 

[ 

(1/2 dz (1/2 dz ]2 

J-1/ 2 ~ + J-1/ 2 J>:;. ,\(1) _ 

1\ - 11/2 11/2 . dz dz 
2p + -+ -

-1/2 Al -1/2 A2 

(95) 
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If A (1) ~ A (0), then A = A (1) and we can now determine qll and q22 in 
(39). On the other hand, if A(1) > A(O), we have to determine the 
subintervals SPI and SP2 (supports) in I z I ~ 1/2 over which qll and q22 

are respectively nonnegative. We determine these supports from (39). 
The next iterative value of A is now 

(96) 

From A (2) we obtain the new supports SPI and SP2 and continue iterating 
for A (3) and so on until 

0« 1. (97) 

In our subsequent calculations, we used 0 = 0.000001. Typically, we 
obtained A within two iterations. The highest number of iterations 
that we observed was four. 

APPENDIX C 

Upper Bound on Error Rate and Channel Data Rate 

If U(t) is the overall matrix system impulse response with Fourier 
transform TU(w), then the vector signal sample is 

8(0) = L U(-nT)An• 
n 

The sample in "channel a" is 

8(0)a = (aor + iaoy)( Uij~ + iUij~) 
+ L'[(anr + ianY)(U~~ + iU~}) + (bnr + ibnY)(U~~ + iU~~)] 

n 

(98) 

+ (bor + iboy)(U6~ + iU6~) (99) 

and in ·"channel b" 

8(Oh = (bor + iboy)(U~~ + iU~~) 

+ L'[(bnr + ibnY)(U~; + iU~~) + (anr + ianY)(U~; + iU~~)] 
n 

+ (aor + aoy)( Uij~ + iUij~), (100) 

where An = (::) and the complex data symbols are 
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and 

while the complex matrices are denoted 

l, j = 1, 2 

with L' = L. 
n n 

n=O 
Channels a and b have real and imaginary parts corresponding to 

the in-phase and quadrature components in QAM systems. Thus, the 
four data signals are expressed as 

Re[S(O)al = aorU6~ - aOY U6~ 

+ L'[(anrU~~ - anY U~1y) + (bnrU~~ - bny U~1y)l 
n 

Im[S(O)al = aoyU6~ + aorU6~ 
+ L'[(any U~~ + anrU~1y) + (bny U~~ + bnrU~1y)l 

n 

Re[S(O)bl = bor U5; - boy U5~ 

+ L'[(bnrU~; - bny U~~) + (anrU~; - anY U~~)l 
n 

and 

Im[S(Ohl = boy U5; + bOrU5~ 
+ L'[(bny U~; + bnrU~~) + (anY U~; + anrU~~)] 

n 

+ aOY U6; + aorU6~. (104) 

Equations (101) through (104) are the distorted data symbols. In the 
ideal case, when there is no intersymbol and/or cross-polarization 
interference 

(105) 

and, as can be verified, 

Re[S(Ohl = bor and Im[S(O)bl = boJ. 
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We now assume that the data symbols {anr, anY, bnn bn-A take on 
values from the positive and negative integers, ±1 ±3 ± ... ±(L - 1), 
L even. Consequently, we can calculate 

From the noise model described in (3) and (4) in the text we deduce 
that the output noise in channels a and b can be represented, respec
tively, as 

and 

" .. (0) = l: W12(-T)"a(T)dT + l: W22(-T)"b(T)dT. 

Thus, the four noise samples added to (101) through (104) are 
Re[voa(O)], Im[voa(O)], Re[vOb(O)], and Im[vob(O)]. They represent four 
zero-mean Gaussian random variables and the respective variances 
can be readily calculated from (107): 

E[Re{voa(O)}F = E[Im{voa(0)}]2 = 0"5ar 

= U~aJT = ~a [l: (I Wn(t) 12 + 1 W2,(t) 12)dt], (108) 

while 

E[Re{vOb(0)}]2 = E[Im{vob(0)}]2 = 0"5br 

= U~bY' = ~a [l: (I W,,(t) 12 + 1 W,,(t) 12)dtJ. (109) 

In accordance with the definition in (106), which presumes that 
thresholds are set at 0, ±2, ±4, ... , ±(L - 2), an upper bounding on 
the probability of error in each of the four channels can be obtained 
using Chernoff bounding techniques.32

,24 

The resulting bounds are 

1 (Uijl)2 

- 2 No 2 2 0"2 
2T « I Wnl + I W21 1 ») + 2 

(110) 

Pel :s:; exp 

. [ ~' (I U~' 12 + 1 U~' 12) + 1 U~' 12] 
- , 
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and 

Pe2 ~ exp 
1 (U52)2 

- "2 No ( 2 2) ua 
2T ( I W22 1 + I W12 1 ) + 2" 

, (111) 

-[~'<I m" 12 + 1 U~212) + 1 U:212] 

where we used the following notation: 

11/2 

(Wij ) = Wij(z)dz, 
-1/2 

i, j = 1,2. 

Note that since the matrices Un are Hermitian, UA1 and U52 are real 
valued. Also, from (101) through (104) it is clear that the error rate in 
the quadrature component is equal to the in-phase component in each 
of the respective channels. But, clearly, Pel need not equal P e2• 

We now relate the denominator of the exponents in (110) and (111) 
to the individual mean-square errors. Utilizing (17a) and (17b) in (15), 
we obtain for the optimum squared error matrix 

~o = aa [I - Uo - U! + ~ Unu;, + ~ I Wo(Z)W!(Z)dZ]. (112) 

Since the diagonal entries of ~, ~lb and ~22 are equal to MSE1 and 
MSE2, respectively, we reduce (110) and (111) with the aid of (18a) to 

(113) 

(114) 

with 

j = 1, 2. 

As can be seen, when the mean-square errors are very small we get 
the well-known relationship24 

j = 1, 2. (115) 

One can easily ascertain that in all the formulas previously derived, 
~I ua and ~opl ua are independent of ua. Utilizing (106) in (113) and 
(114), we obtain after some manipulations the normalized data rates 
of the two channels, 11 and 12, 

11 = log2(1 + 1.5/ldlln Pel I ) 
I = log (1 + 1.5/l II In P D. 
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These two quantities, sometimes referred to as efficiency indices, 
will be used to compare the performance of the various equalization 
methods. 
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