TTHIE vou e no. 10, pasr 2
BELL SYSTEM
TECHNICAL JOURNAL

COMPUTING SCIENCE AND SYSTEMS

Theory of Program Testing—An Overview 3073
R. E. Prather
Parallel Fault Simulation Using Distributed Processing 3107

Y. H. Levendel, P. R. Menon, and S. H. Patel

Two New Kinds of Biased Search Trees 3139
J. Feigenbaum and R. E. Tarjan

An Algebraic Theory of Relational Databases 3159
T.T. Lee

Generation of Syntax-Directed Editors With Text-Oriented 3205

Features

B. A. Bottos and C. M. R. Kintala

Performance Analysis of a Preemptive Priority Queue With 3225
Applications to Packet Communication Systems
M. G. Hluchyj, C. D. Tsao, and R. R. Boorstyn

THE BELL SYSTEM TECHNICAL JOURNAL

ADVISORY BOARD

D. E. PROCKNOW, President, Western Electric Company
I. M. ROSS, President, Bell Telephone Laboratories, Incorporated
W. M. ELLINGHAUS, President, American Telephone and Telegraph Company

EDITORIAL COMMITTEE

A. A. PENZIAS, Chairman, M. M. BUCHNER, JR., R. P. CLAGETT, B. R. DARNALL,
B. P. DONOHUE, lil, |. DORROS, S. HORING, R. A. KELLEY, R. W. LUCKY, R. L. MARTIN,
J. S. NOWAK, G. SPIRO, and J. W. TIMKO

TECHNICAL EDITORIAL BOARD

M. D. McILROY, Technical Editor, A. V. AHO, D. L. BAYER, W. FICHTNER, L. E. GALLAHER,
R. W. GRAVES, M. G. GRISHAM, B. W. KERNIGHAN, Y. E. LIEN, S. G. WASILEw, and s. J. YuILL

EDITORIAL STAFF

B. G. KING, Editor, PIERCE WHEELER, Managing Editor, LOUISE s. GOLLER, Assistant Editor,
H. M. PURVIANCE, Art Editor, and B. G. GRUBER, Circulation

THE BELL SYSTEM TECHNICAL JOURNAL (ISSN0005-8580) is published by the American
Telephone and Telegraph Company; 195 Broadway, N.Y., N.Y. 10007, C. L. Brown, Chairman
and Chief Executive Officer; W. M. Ellinghaus, President; V. A. Dwyer, Vice President and
Treasurer; T. O. Davis, Secretary.

The Journal is published in three parts. Part 1, general subjects, is published ten times each
year. Part 2, Computing Science and Systems, and Part 3, single-subject issues, are published
with Part 1 as the papers become available.

The subscription price includes all three parts. Subscriptions: United States—1 year $35; 2 years
$63; 3 years $84; foreign—1 year $45; 2 years $73; 3 years $94. Subscriptions to Part 2 only are
$10 ($11 foreign). Single copies of the journal are available at $5 ($6 foreign). Payment for
foreign subscriptions or single copies must be made in United States funds, or by check drawn
on a United States bank and made payable to The Bell System Technical journal and sent to
Bell Laboratories, Circulation Dept., Room 1E-335, 101 J. F. Kennedy Parkway, Short Hills, N. J.
07078.

Single copies of material from this issue of The Bell System Technical Journal may be reproduced
for personal, noncommercial use. Permission to make multiple copies must be obtained from
the editor.

Comments on the technical content of any article or brief are welcome. These and other
editorial inquiries should be addressed to the Editor, The Bell System Technical Journal, Bell
Laboratories, Room 1J-319, 101 J. F. Kennedy Parkway, Short Hills, N.]J. 07078. Comments and
inquiries, whether or not published, shall not be regarded as confidential or otherwise restricted
in use and will become the property of the American Telephone and Telegraph Company.
Comments selected for publication may be edited for brevity, subject to author approval.

Printed in U.S.A. Second-class postage paid at Short Hills, N.). 07078 and additional mailing
offices. Postmaster: Send address changes to The Bell System Technical Journal, Room 1E-335,
101 J. F. Kennedy Parkway, Short Hills, N. J. 07078.

®© 1983 American Telephone and Telegraph Company.

THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF COMPUTING

Volume 62 December 1983 Number 10, Part 2

Theory of Program Testing—An Overview

By R. E. PRATHER*
(Manuscript received January 18, 1983)

In this paper, we provide a detailed survey of the various approaches to
program testing that have been proposed in recent years. Particular attention
is given to a discussion of the developing theory of program testing and to the
decomposition of the testing problem into the program graph construction,
test path selection, and test case generation phases. Examples are included to
illustrate the different testing strategies. Comparisons are made from one
method to another, all in a uniform terminology and notation, to facilitate an
understanding of various combinations of strategies that might lead to a more
workable testing methodology.

I. INTRODUCTION

The general goal of software testing is to affirm the quality of a
program through systematic exercising of the code in a carefully
controlled environment. The execution of a program test scheme
should validate an expected prespecified behavior, ideally serving to
demonstrate the absence of program errors. Considering the difficulty
of obtaining actual proofs of program correctness, program testing

* University of Denver, Colorado.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro-
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa-
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3073

may be the only effective means for assuring the quality of software
systems of nontrivial complexity.

The state of the art in software testing as of a decade ago is broadly
surveyed in the book by Hetzel,' representing an ad hoc approach at
best. During the intervening years, computer programming method-
ology has made great strides toward improving the quality of our
product. And yet, software testing has remained a kind of “black art”,
only vaguely understood by its practitioners. Happily, this situation is
changing. The development of the beginnings of a theory of testing
are well under way, and the more recent literature shows great promise
for brighter days ahead. Some of these ideas are discussed in a new
book by Myers,2 and further elaboration can be found in the survey
papers by Miller.%¢

In this overview, we summarize in detail the more recent literature
on software testing and present the more important results in a
uniform framework, style, and notation. We hope that this perspective
will help to focus attention on the more viable alternatives and to
point the way toward the most promising directions for future research
and development.

Il. GENERAL THEORY—THE FUNCTIONAL APPROACH

The first attempt to describe a generalized theory of testing is found
in the work of Goodenough and Gerhart,”® A related study is that of
Hamlet.? In the former, a program is viewed as a function F:D — R
over an input domain D with values in an output range R. The program
specification can also be viewed as a function G:D — R, whether
completely specified or not. For testing purposes, we must compare
F(d) with G(d) for selected inputs d in D. Though such an exhaustive
test is not feasible in general, we say that the program F is correct if
we have

F(d) = G(d) (for all d in D),

recognizing that this is simply a theoretical notion, one not necessarily
capable of direction verification.

In any practical setting, we will only be able to examine the behavior
of the program for a few selected input values. Realizing this, we say
that a test for the program F is a (finite) subset T of D. Recalling the
‘goal of software testing,” T is said to be an ideal test (for F) if

success(T') = correct(F),

1.e., if F(t) = G(¢) for t in T implies the same for all ¢ in D. Note that
the successful execution of an ideal test would constitute a proof of
correctness. Given the difficulty in finding proofs of correctness,
however, we should not be surprised to learn that ideal tests, in this

3074 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

sense, are difficult to discover. (We note that the ‘trivial’ ideal test,
the exhaustive one with T = D, though easily stated is ordinarily
unmanageable in size.)

As a matter of fact, we would prefer not to ‘discover’ our tests at all,
but to have them ‘selected’ on the basis of some sensible criterion.
Formally, a test selection criterion (for a program F) is a (true-false)
predicate C over the subsets of D. Following Goodenough and Gerhart
once again, such a criterion C is reliable (for F) if

C(T1) and C(T2) = success(T'1) = success(T2),
and, on the other hand, C is said to be valid (for F) if
~correct(F) = ~success(T)

for some T satisfying C(T'). In general, reliability refers to the con-
sistency with which results will be produced within the selection
criterion, whereas validity refers to the ability to produce meaningful
results, regardless of their consistency.

It is clear that these notions of reliability and consistency are quite
strong. Perhaps the most convincing statement to this effect is given
by the following:

Theorem (Goodenough and Gerhart): If C is reliable and valid, then
C(T) implies that T is an ideal test.

On the other hand, Weyuker and Ostrand!® have argued that these
notions are not strong enough, referring as they do to a particular
program. If the same ideas are extended, however, so as to apply
“uniformly” over all programs F, then one obtains the following:
Theorem (Weyuker and Ostrand): If C is uniformly reliable and uni-
formly valid, then C(T) implies that T'= D, i.e., T is an exhaustive test.
Surely this carries the original ideas too far. And in fact, the theorem
can be understood to say, “If nothing is known about the errors in the
program, a test criterion is guaranteed ideal (in the sense of Gooden-
ough and Gerhart) if and only if it selects the entire input domain.”
What is probably needed to arrive at a more practical alternative is a
weakening of the Goodenough and Gerhart theory. This is the general
thrust of Hamlet’s work, but results along these lines thus far are less
than satisfactory, showing perhaps more promise toward applications
to program maintenance than to testing. The interested reader should
consult Ref. 9 for details.

A test selection criterion C should outline the properties of a
program that must be exercised to constitute a “thorough” test, ideally
one whose successful execution implies an error-free program. Follow-
ing Goodenough and Gerhart once again, we may suppose that C is
described as a finite set {c} of test predicates (i.e., logical conditions on

PROGRAM TESTING 3075

the input data), and we then choose T subject to the condition(s):

for all ¢ in C, there is t in T with c(t)

CT) = for all t in T, there is ¢ in C with c(t). (x)

In words, every test predicate belonging to C should be satisfied by at
least one test datum ¢ in 7, and conversely, every ¢t in T must satisfy
at least one test predicate.

It is suggested that the test predicates be derived from the program
specifications—this is the essence of the functional approach (or “black
box” approach) to testing. But the claim is made’ that to have a
reasonable chance of constituting a reliable criterion, C must be
composed of test predicates satisfying (at least) the following set of
conditions:

Condition 1: Every individual branching condition in the program
must be represented by an equivalent test predicate.

Condition 2: Every potential termination condition (e.g., error,
overflow, etc.) must be represented by a corresponding test predicate.

Condition 3: The range of every variable appearing in a test predi-
cate must be partitioned into classes that are “treated in the same
way” by the program.

Condition 4: Every condition relevant to the proper functioning of
the program that is implicit in the program specification or of one’s
knowledge of the program must be represented by a corresponding
test predicate.

Condition 5: The test predicates must be “independent,” in that all

data satisfying a particular test predicate must exercise the same path
in the program and must test the same branch conditions.
We note that only the second and fourth of these conditions are of a
“functional” nature. The others are “structural,” that is, relating more
to the topology of the underlying flowchart. It would seem, therefore,
that any reasonable testing strategy should address both points of
view.

Consider the following example, the often cited problem of classi-
fying triangles:

Specification:

Input: Three positive integers a = b = c.

Output: An indication as to whether:

1. They do not represent the sides of a triangle

2. They are the sides of an equilateral triangle

3. They are the sides of an isosceles triangle

4. They are the sides of a scalene right triangle

5. They are the sides of a scalene obtuse triangle

6. They are the sides of a scalene acute triangle.

This problem is especially well suited to the “functional” approach.

3076 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Since the whole purpose of the problem is to classify its input
domain, there is an obvious specification-based derivation of test
predicates. We may first divide the universe of triples (a, b, ¢) into
legal and illegal forms:

(a = b) and (b = ¢)
N
legal cl: illegal

For the legal entries, we may further distinguish two cases:
(a=b)and (b=c)

T
azb+c
¥ N
¢2: not-a triangle triangle

and the triangles may then be subdivided into six subclasses:

¢3:(a=0>b)and (b=c) equilateral

cd:(a=>b)and (b>c) isosceles

¢h:(a>b)yand (b=c) and (a <b+ c) 1isosceles

¢6: (a>b) and (b > ¢) and (axa = b=b + cxc) right scalene

¢7:(a>b) and (b > ¢) and (a*a < bxb + c*¢) acute scalene

c8:(a>b) and (b > c) and (a*a > bxb + cx+c) and (e < b + ¢)
obtuse scalene.

If we set C = {c(i) : i = 1 to 8} and choose one triple from each input
subdomain, we may obtain the test set:

tl=(1,23)
t2 = (14, 6, 4)
t3=(1,1,1)
th=(2,21)
t5=(3,22)
6 = (5, 4, 3)
t7 = (6,5, 4)
t8 = (4, 3, 2)

Such a test set will automatically satisfy () and the test selection
criteria will more than likely meet Conditions 2 and 4 above. But we
have no guarantee that the “structural” conditions 1, 3, 5 will be met,
since we haven’t looked at the program!

PROGRAM TESTING 3077

Weyuker and Ostrand'®!* have made the cogent suggestion that the
input domain be partitioned both on the basis of the specification-
driven, program-independent properties mentioned above, and on the
structural properties of the program as well. It seems that this is the
only way to meet all five of the Goodenough and Gerhart conditions,
and to thus have a chance of approaching a reliable test selection
criterion C = {c} defined by a set of test predicates.

Suppose we add a sixth (implicit) condition to the five that are
outlined above, namely:

Condition 6: The test predicates must be “complete” in that every
input of the domain D must satisfy (exactly—see condition 5) one of
the test predicates.

Then Conditions 5 and 6 ensure that C = {c} defines a partition
« = {C}

on the input domain. When we concentrate only on the problem
specifications, as above, we obtain the problem partition consisting of
problem domains C. Having a completed version of the program in
hand, we may speak as well of a path partition

m = {P}

of the same domain D, where each path domain P comprises a class of
inputs that traverse the same path through the program. Thus, the
path partition separates D into classes of inputs that are treated the
same way by the program, whereas the problem partition separates D
into classes that should be treated the same.

There is no assurance that these two partitions will coincide, nor is
it necessary that they do. But ultimately (or at least, hopefully), the
program and its algorithm all derive from the original problem speci-
fication, so we should not expect the two paritions to differ markedly.
On the other hand, those differences that do exist are fruitful places
to look for errors! Recognizing this, Weyuker and Ostrand have
suggested that the problem and path partitions be intersected, yielding
a finer partition

c=k ANxm={CNP}=1{S}

of nonoverlapping subdomains S of the domain D, and they further
suggest that this be used as the ultimate test selection criterion,
choosing one test case from each subdomain as before.

In the terminology of Weyuker and Ostrand,'®!! a subdomain S of
D is said to be revealing (of errors) if

success(s in S) = correct(F, S),

i.e., if the successful execution of any input from S implies correctness

3078 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

of the program over the whole subdomain. Since the inputs of a
subdomain S (in the intersection above) should be and in fact are
treated the same by the program, the hope is extended that these are,
in essence, the revealing subdomains. A successful execution of one
test datum from each of the subdomains S then implies (or at least
suggests) the correctness of the program over the whole domain.
Consider the “triangle classification problem” once again, and sup-
pose we are presented with the program (flowchart) of Fig. 1 as

(a=b) A (b=c)

“ILLEGAL"”

“EQUILATERAL" *ISOSCELES”

“OBTUSE”

Fig. 1—Flowchart for classifying triangles.

PROGRAM TESTING 3079

representing a solution to the problem. There are six paths through
the program, as described by the conjunctions of branch conditions
defined by each path, as follows:

pl:~[(azb)and (b=c)]=(a<b)or(b<c)

p2:{(a>b>c)and (axa = bxb + cxc)

p3:(a>b>c)and (axa < bxb + cxc)

p4:(a>b>c)and (axa > b=b + cxc)

pb:(@aZb=c)and [(a=0b)or (b= c)] and ~[(a = b) and (b = ¢)]

=(a=b>c)or(a>b=c)

p6:a=b=c.
Intersecting the six corresponding path domains P[i] (i = 1 to 6) with
the eight earlier problem domains C[i] results in a partition {S} of
nine subdomains characterized as follows:

S1=C1=Ci1NPl:(a<b)or(b<c)
S2=C2NP4: (a>b>c)and(a=b+¢)
S3=C2NP5: (b=c)and(a=b +¢)
S4=C3=C3NP6:a=b=c
S5=C4=C4NP5:a=b>c
S6=C5=C5NP5:(a>b=c)and (a<b+¢)
S7=06=C6 NP2 : (a>b>c)and (axa = b=b + cxc)
S8=C7=C7NP3:(a>b>c)and (axa < bxb + cxc)
S9=C8=C8 N P4 : (a>b>c)and (axa > b=b + cxc)
and (a<b+¢)

in very close agreement with the problem partition {C} obtained
earlier.

The problem we are discussing has a rather precise functional
specification so that we would expect that the problem and path
partitions might nearly coincide. Nevertheless, there is a slight dis-
crepancy, and in place of the test datum ¢2 = (14, 6, 4) we would now
have to choose two, say (14, 6, 4) and (3, 1, 1). A test of the resulting
nine data points would then reveal two errors, as shown in Table I
below.

Table [—Test of nine data points

Domain Test Data Correct Output Actual Output
S1 (1, 2, 3) Illegal illegal
S2 (14, 6, 4) Not a triangle obtuse
S3 Not a triangle isosceles

3,1,1) . .
S4 Equilateral equilateral
S5 1,1, 1) Isosceles isosceles
S6 2,2, 1) Isosceles isosceles
S7 3, 2,2 Right right
S8 (5, 4, 3) Acute acute
S9 ®. 5. 4) Obtuse obtuse

4, 3, 2)

3080 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

The programmer has failed to take account of those situations where
a Z b + ¢ (not a triangle). And our test criteria are able to detect such
errors. In fact, so detailed is the specification for this example that a
test set based on the problem partition alone would have served equally
well.

In spite of the obvious relevance of the ideas presented here, partic-
ularly those of Weyuker and Ostrand, a good deal of work remains to
be done to apply the theory to a wide class of programs. One of the
more important tasks is to find more systematic methods for con-
structing the problem partition. This will not be easy, since finding a
good problem partition is quite similar to the task of creating the
program itself. It is suggested, however, that the development of formal
specification languages would be helpful here, particularly if such
developments are made with a specification-driven testing methodol-
ogy in mind, along the lines presented here.

An equally important consideration when thinking of applying the
above theory to larger programs is that of obtaining the domains of
the path partition. How are the paths to be described, generated, and
selected with programs of increasing size and complexity? It is cer-
tainly clear that our one example is misleading in this respect. We
had only a small number of paths to consider, whereas a typical
program of any size will have a very large number of paths, most likely
an infinity of paths, owing to the presence of loops. If our test is still
to be finite, how do we then choose paths judiciously? How are they
described? And most importantly, how do we generate test cases that
will traverse these paths, if indeed this is possible? These are some of
the questions that we begin to address in the following sections.

IIl. GENERAL THEORY—THE STRUCTURAL APPROACH

In a structural approach to the theory of testing, a program F' is
represented by a “skeleton” of its underlying flowchart, a directed
graph symbolizing the flow of control. This point of view is advanced
most effectively in the extremely lucid survey paper by Huang.'? We
should keep in mind, however, that the flowchart graph must be an
accurate representation of the program flow in the code itself. Ordi-
narily, this is ensured through the use of a “tool” that automatically
generates the flowgraph from the source program listing.

Using Huang’s terminology,'>* a program block is a maximal se-
quence of program statements having the property that if the first
member of the sequence is executed, then all other statements in the
sequence will also be executed. A program graph F = (V, E) is then a
directed graph with vertex set V and edge set E, where each vertex is
associated with a program block and in which there are pairs of edges:

(i, j) labeled by the condition C
(i, k) labeled by the condition ~C

PROGRAM TESTING 3081

according as the flowchart segment:
T F

encountered for blocks Bi, Bj, and Bk. (For convenience, we permit an
empty block as a vertex in good standing, e.g., for treating an “if - - -
then . ..” statement with vacuous “else” clause.) It is further assumed
that the graph has a single entry point, the start vertex, and a single
exit point, the stop vertex, and that every vertex lies on some path
from ‘start’ to ‘stop.’

A path in a (program) graph is defined in the usual way, as a
sequence of edges

p=el,e2 ... ,en,

though we ordinarily assume as well that we begin the sequence at
‘start’ and end at ‘stop.” Each such path has an associated path
predicate

P=P1A... A\NPn

written as a conjunction of the individual interpreted branch condition
labels on the edges e, as discussed below (see Section V). The path
predicates P are to be identified in one-to-one correspondence with
the path domains of the previous section. Thus we may write (some-
what ambiguously):

D=UP for P={din D:P(d)}

so that the program function F: D — R is a union of functions F(P) :
P — R restricting F to the individual path domains P.

In structured testing, we examine the program (as a digraph) and
we seek to choose a finite set of paths that will cover the program with
a certain degree of thoroughness. It is then hoped that test data
causing the program to be successfully executed when traversing these
paths are sufficient to warrant our confidence in the program’s cor-
rectness. The theoretical underpinnings of such a testing plan have
been studied by Howden,®'® who relates his work to the earlier study
by Goodenough and Gerhart.” Rather than speaking of a “test criteria,”
however, Howden refers to a testing strategy, as a uniform computable
function

(F:D — R) B (T, subset of D)

3082 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

that associates with each program F a finite test set T of D. H is said
to be an ideal strategy if each T' = H(F) is an ideal test (for every
program F'). As is so often the case with testing theory, the first result
is of a negative character:

Theorem (Howden): An ideal testing strategy does not exist.

Nevertheless, Howden was able to show that “path testing” can be
a reliable approach, at least for detecting certain types of errors. He
takes the view that the program being treated is a member of a class
of programs differing only as to whether they are correct, and for
which the incorrect programs have errors of various (known) types.
His objective was then to find, if possible, a restricted set of programs
for which certain forms of structured testing (i.e., path testing) would
be reliable. Typical of Howden’s results is that which assumes that
the error in a program does not change its control flow, i.e., that the
set of path domains is not affected.

Theorem (Howden): Path testing is a reliable method for distinguishing
correct from incorrect programs, as long as the errors of incorrect
programs do not affect the path partition.

Of course, there are theoretical limitations in applying results such
as this, since Howden has in mind our choosing one test datum from
each path domain P, and these may be infinite in number. On the
other hand, he has also devised a classification of error types that can
be expected to lead to new insights into the testing problem generally.
The reader should consult Howden’s work (particularly Refs. 16 and
17) for further detail.

In a practical test setting, we require that the subset T' of D be
finite. Moreover, if we are speaking of a “path testing strategy,” the
above schema will be decomposed into the three-stage process,

(F:D--»R)— — — — —(Tof D)
program graphl '[test case
construction generation

F=(V,E)—— (P}

test path
selection

summarized as follows:

1. Program graph construction

2. Test path selection

3. Test case generation.
The first phase of the process, to construct the program graph from a
source code listing, is fairly straightforward, and for most of the
conventional programming languages, e.g.,, FORTRAN, Pascal, etc.,
such implementations are already in existence.

PROGRAM TESTING 3083

As a matter of fact, implementations of testing tools are in various
stages of development for treating the entire process outlined above
(e.g., see Clarke'®). But, as we shall see, there are serious problems
associated with the latter stages of any proposed implementation along
these lines. There are many alternative strategies to choose from, and
seemingly, none of these is best for all situations. All we can do at this
point is to outline the several alternatives and comment on their
general suitability. We begin by introducing the various path selection
criteria, continuing this discussion in the next section. The last, and
perhaps the most difficult, of our three subprocesses, the generation
of test data, is treated in Section V.

There are, as we have indicated, a number of path selection criteria
that can be used in attempting to devise a testing strategy that will
provide a reasonable coverage of a program graph. Among these criteria
are:

1. Statement coverage: Execute all statements (blocks) in the graph.

2. Node coverage: Encounter all decision node entry points in the
graph.

3. Branch coverage: Encounter all exit branches of each decision
node in the graph.

4. Multiple condition coverage: Achieve all possible combinations of
condition outcomes at each decision node of the graph.

5. Path coverage: Traverse all paths in the graph.

These five strategies are related in their strength of coverage as shown
below:

path coverage multiple condition coverage
branch coverage

node coverage statement coverage

with the weaker criteria at the bottom and the stronger criteria at the
top.

As an example illustrating the differing requirements of these cri-
teria, consider the flowchart segment (program graph) shown in Fig.
2. In order to achieve node coverage, the single test:

abe:A=2,B=1,X=1

will suffice (but it will not achieve statement coverage because the
assignment X «— X/A will not have been executed). On the other hand,
the single test:

ace: A=2,B=0,X=3
will be sufficient for complete statement coverage (and node coverage

3084 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

c
b
Xe—X/A
|
L (A=2)v (X >1) E
e d
X=X+
L

.

Fig. 2—Flowchart segment illustrating coverage criteria.

as well). For branch coverage, however, at least two tests would be
required, e.g.,

acd: A=3,B=0,X=3
abe: A—2,B=1,X=1.

In the multiple condition coverage criterion, there are 2+2 + 2+2 or 8
outcomes to achieve in combination for the two simple conditions at
each decision node. These may be satisfied, for example, by the
selection of four separate tests, e.g.,

ace: A=2,B=0,X=4
abe: A=2,B=1,X=1
abe: A=1,B=0,X=2
abd: A=1,B=1X=1

The first test satisfies the conditions A > 1, B = 0 in the first decision
and A = 2, X > 1 in the second decision. The second test ensures that
A > 1, B # 0 for the first decision and A = 2, X = 1 for the second
decision. Further analysis shows that all eight combinations are
achieved. For the path coverage criterion to be met, we again require
four tests, e.g.,

ace: A=2,B=0,X=4
acd: A=3,B=0,X=3
abe: A=1,B=0,X=2
abd:A=1,B=1,X=1
Note, however, that this test set would not satisfy the multiple con-

dition coverage criterion.

PROGRAM TESTING 3085

It is clear that “statement coverage” and “node coverage” are in
themselves rather weak strategies for testing, representing necessary
but by no means sufficient criteria for a reasonable structural test.
The “branch coverage” criterion, however, implies the other two (as
seen in the diagram above) and has come to be regarded as a minimal
standard of achievement in structure-based testing. The stronger
criteria of “multiple condition coverage” and “path coverage” are
difficult to achieve in a program of any complexity. In fact, the path
testing criterion is usually relaxed to the extent that only “equivalence
classes” of paths are represented. In a program of any size, particularly
in the presence of program loops, there is a virtual infinity of paths
through the program graph. Two paths are then considered “equiva-
lent” if they differ only in their number of loop traversals. One then
chooses only one representative from each such equivalence class in
devising a test set. But still, this modified path coverage criterion is
difficult to achieve in practice.

A survey of the literature shows that there is little common agree-
ment as to what would be considered as an ‘adequate’ structural test
criterion. As we have noted, the “branch coverage” criterion has been
widely recognized as a basic measure of testing thoroughness. This is
evidenced by the fact that most of the major software testing tools in
existence or in development do indeed include some provision for
achieving this particular test goal. The disagreement seems to be in
deciding how much more (or less) is needed beyond this basic require-
ment to entitle a structural testing strategy to be considered adequate.

If total branch coverage is indeed used as a measure of testing
thoroughness, a simple calibration scheme can be invoked, using a set
of software counters. One “prepares” the program for testing by in-
serting counters at appropriate points in a modified copy of the
program, and after running through the test set, one can determine
the degree of thoroughness from a listing of the resulting counter
values. This is the method of test instrumentation. We first define a
decision to decision (DD) path of a program to be a sequence of a
statements leading from a decision box (or the “start” node) to a
decision box (or the “stop” node), having no intervening decisions. To
determine whether every branch of our program has been encountered
at least once (branch coverage) in our testing, it is sufficient to insert
a counter at the ‘head’ of each DD path.

Consider the classical flowchart solution (Fig. 3) to the problem of
computing z = “x to the power y”. Here, there are five DD paths:

abe, d, efhi, gfhi, jk
and we therefore insert our software counters at the points q, d, e, g,

3086 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Gt 0
@ T

y MOD 2=1

ZW=Z kX I z l

Fig. 3—Flowchart for computing x°.

J, as shown. If we have run two test cases as shown in the table below,

x oy a d e g]
10 0 1 0 0 0 1
20 1 1 1 1 0 1

we would find that ‘counter g’ has not yet been activated. Inspection
of the flowchart then shows that we need a test to traverse the path
a, b, ¢, d, g, etc., requiring y # 0, y mod 2 # 1. So we may use
x =24 and y = 2, say, as an additional test case, thus ensuring complete
branch coverage. Ideally, this latter phase, directing the tester to the
area of untested code, would also be automated.

Of course, we would like to automate as much of the testing meth-
odology as possible, recalling the three-stage process mentioned earlier.
On the other hand, in lieu of a complete mechanization, the testing

PROGRAM TESTING 3087

instrumentation scheme presented here can be of great help in isolat-
ing areas in need of further testing. Furthermore, it can be argued that
for the little extra cost entailed, it is a worthwhile investment in any
testing process, fully automated or not. [Parenthetically, we might
note as an indication of the expense associated with the development
of testing tools generally, that a package that does little more than
“test instrumentation,” as described here, has been announced recently
(Computer, May 1982) by Management and Computer Services, selling
for $12,000.00!.] It may be that some other criterion than “branch
coverage” is being used as a measure of test thoroughness. It is still
good practice to be concerned as to what extent this standard measure
is being met. Moreover, it is reasonable to suppose that the “instru-
mentation concept,” as exemplified here, might generalize to settings
where other thoroughness criteria are being used.

IV. TEST PATH SELECTION

As we have indicated, there are a number of criteria that can be
used in selecting program paths to achieve an adequate testing cover-
age. But the question then becomes: How do we automatically generate
a collection of paths meeting a given criterion? The literature is
somewhat “hazy” on this point. Perhaps the most explicit treatment
of the problem is that of Paige,?’-?2 in reference to programs built up
from a strict adherence to the structured programming methodology.
In fact, we know of no more general approach to the problem, one
that would handle structured or unstructured code in relation to the
whole spectrum of path selection criteria.

Recall that a structured program F is one that has been built up
inductively from certain “simple statements” as a base (typically, the
assignment, input and output statements, and procedure calls), using
only the three familiar constructs:

1. Sequence: begin P1; P2; --- ; Pn end

2. Selection: if C then P else @

3. Repetition: while C do P
for structured (but possibly themselves compound) statements Pi, P,
Q, respectively. The resulting program graph F = (V, E) is then of a
correspondingly restricted form, greatly facilitating the path analysis
problem. Perhaps collapsing sequences of simple statements to a single
block (graph node), one may then use a “regular expression” r(F) to
characterize the program flow, associating

1. The ’-’ operator to sequences

2. The '+’ operator to selections

3. The (Kleene) '*’ operator to repetitions,
respectively.

For example, if F is the (structured) program graph shown in Fig.

3088 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

4, we have
r(F) = a(b(d + e)(k + 1) + c(f + g(h(i + j))*m))

as the corresponding regular expression. Note the loop (h(i + j))*
resulting from a “while” statement.

We have mentioned earlier, in reference to the modified path cov-
erage criterion, how an equivalence relation is often used to obtain a
finite representation of the path alternatives in the presence of loops.
Accordingly, if we make the substitution x* = x + 1 (1 = null) in the
regular expression r(F), we acknowledge that a loop is either executed
or not. Multiplying out so as to obtain a “sum of products” expression,
one then obtains the desired collection of paths satisfying the modified
path coverage criterion, e.g.,

abdk acf
abdl acghim
abek acghjm
abel acgm

in reference to the program graph of Fig. 4. On the other hand, it does
not appear that this technique can be extended to handle unstructured
programs.

But if we continue to deal with a structured program graph, we can
describe a method for deriving a minimum number of paths sufficient
to meet the “branch coverage” criterion. We assign a set of paths S(r)
to each regular expression r = r(F) inductively, as follows. We let
S(a) = {a} for each simple statement a, and then, assuming that S(r)

Fig. 4—Structured program graph illustrating modified path coverage criterion.

PROGRAM TESTING 3089

and S(t) have been defined, for regular expressions r and £, we set:
1. S(r-t) = S(r)-S(@)
2. S(r+1t)=S(@r)U S(t)
3. S(r*) = S(r)*.
Here, S(r)* is the singleton set obtained by concatenating (in any
order) all of the paths in S(r), and similarly, the set product S(r)-S(¢)
is obtained by concatenating paths in S(r) with those in S(¢)—but
retaining only enough products so that each of the factors from S(r)
and S(t) are represented. It follows that
1. |S(r-t)| = max{|S(r)], |S®)]}
2. IS(r+ 9| =15+ |S®|
3. |S(r*)| =1.
By way of illustration, in considering once again the example from
Fig. 4, we may compute:
S +)) =i, Jj}
S(h(@ + j)) = {hi, hj}
S((hG + j))*) = {hihj}
S(g(h@ + j))*m) = {ghilym],

ete., and finally,
S(r) = {abdk, abel, acf, acghihjm},

yielding four paths that together cover all of the branches of the
program. ,

Once again, as in the case of the previous algorithm, there seems to
be no easy extension of this technique that would handle unstructured
programs as well. However, a general upper bound is readily available
regarding the number of paths necessary for total branch coverage.
Whether our program is structured or not, we make the observation
that if a test path reaches a particular node of the program graph,
then it must exit this node through one of the (two) branches leaving
the node. If the graph F has e edges and n nodes, it follows that

vF)=e—(n—2)=e—n+2

is an upper bound on the number of paths necessary to achieve total
branch coverage. Coincidentally, this is the formula for McCabe’s
cyclomatic complexity measure,” a figure that has proved to be useful
in estimating overall “program complexity”. At the same time, the
graph theoretic derivation of a program’s “independent” circuits
(paths) yields a branch covering of paths, v(F) in number—though
generally somewhat in excess of the minimum number of paths that
would be required. In the context of our running example, we have

3090 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

v(F) =13 — 8 + 2 = 7 and a corresponding set of basis paths:

acf acgm
abdk acghim
abek acghjm.
abel

Note that the single path abdl from our “path coverage” list that is
not present here is itself a linear combination of paths already listed.
Note as well that we obtain seven paths here, whereas we know from
the preceding analysis that four paths will suffice (for branch cover-
age).

The whole notion that McCabe’s basis of program paths should
constitute a goal of program testing has attracted considerable atten-
tion, and we feel obliged to comment on this point. Perhaps this is
best done by listing what we think are the pros and cons to the
approach. On the positive side, we cite the following:

1. The method is sufficiently general as to be applicable to both
structured and unstructured programs.

2. The resulting “basis” does indeed ensure total branch coverage.

3. The paths of a basis are feasibly computable, using standard
graph theoretic techniques.

On the other hand, these aspects must be counterbalanced with the
following:

1. A single basis is not uniquely determined—there are many, and
we must make a choice.

2. The number v(F) of paths in a basis can greatly exceed the
minimum number of paths required to achieve branch coverage.

3. The notion that, in some sense, every path in the program graph
is accounted for by our having selected a basis is somewhat specious.
Note that we do not comment here on the inadequacies of McCabe’s
v(F) as a measure of overall program complexity—we leave this
discussion to a separate.paper. On the other hand, the arguments for
and against the use of the associated “basis of program paths” as a
testing. strategy are inconclusive at best, particularly in comparison
with the “level paths” of Paige??* that we now describe. :

In a program graph F = (V, E), a level-0 path is a simple (acyclic)
path from “start” to “stop”. In effect, these paths trace the “fall
through” conditions in the program. Then, inductively, a level-i path
(i > 0) is a simple path (perhaps a circuit) that begins and ends on
nodes of a path of lower level, but has none of its other nodes previously
appearing on paths of a lower level. Intuitively, the level-i paths for
i > 0 account for program loops of increasing nesting level and for
feedback paths, etc., in the case of an unstructured program.

Considering our earlier structured program graph (Fig. 4) and the

PROGRAM TESTING 3091

unstructured program graph of Fig. 5, we tabulate the respective level-
i paths as shown in Tables IT and III.

In any case, we are able to say that a given level-(i + 1) path is
“associated with” a certain level-i path according as the given path
begins and ends on nodes of the parent path. This relationship orders
the level paths in a tree-like structure, in such a way that one can
readily construct test paths that again effect a total branch coverage.
In so doing, only level paths that associate can be combined to form a
program test path. Thus, for example, in the case of the program graph
of Fig. 4 above, we may construct the path acghihjm as the linear
combination:

acghihjm = (6) + (7) + (8)

using the notation in Table II.
It is clear that the level paths of a program graph span the space of

Fig. 5—Unstructured program graph.

Table ll—Level-i paths for structured program graph
(see Fig. 4)
Level Level Paths VI[i] Eli]
-1 {1, 8 0

(1) abdk
(2) abdl
0 (3) abek {23 3’ 4’ 5’ 6} {a) b’ ¢, d’ e, f» & ky l, m}
(4) abel
(5) acf
(6) acgm

1 (7) hi {7} {h, i, j}
(8) hj

Note: The sets V[i] and E[i] of vertices and edges at level-i are useful in the
computation of the level-(i + 1) paths.

3092 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Table Ill—Level-i paths for unstructured program graph
(see Fig. 5)
Level Level Paths VIi] E[i]
-1 1,7 0
(1) acgjl
(2) acgkl
(3) abfgjl
0 (4) abfgkl {2,3,4, 5, 6} {a,b,¢,f, 8 hj, k1]
(5) ach
(6) abfh

1 (8) e 0 {d, e, i}

Note: The sets V{i] and E[i] of vertices and edges at level-i are useful in
the computation of the level-(i + 1) paths.

program paths. But taken together, they do not usually constitute a
basis. Thus, again in Fig. 4 above, we have eight-level paths, whereas
we know from our previous analysis that this graph has rank v = 7.
On the other hand, Paige’s level paths have a definite uniqueness, an
advantage over the notion of a basis as developed by McCabe, and
leading to a graduated level path testing strategy as follows:

1. First test all level-0 paths—in effect, keeping all loops in the
“nonexecuting” mode.

2. Next test all level-1 paths, reaching them through their associated
level-0 paths, etc.

The result is a highly structured testing strategy where segments of
the program are treated in successive layers of nesting depth.

The level path testing strategy provides for a rather exhaustive
treatment of a program’s path structure at successive depths of nesting.
In this sense, the approach has a potential thoroughness rivaling that
of the “modified path coverage” criterion. On the other hand, Paige’s
strategy is readily applicable to both structured and unstructured
programs. At the same time, his method lends itself to a convenient
algorithmic solution,?® though one must be prepared to compute all
simple paths (or circuits) between various identified pairs of nodes,
along edges not previously used—most likely requiring the use of a
“depth first search” strategy. Except for this computational difficulty,
the approach is quite orderly; it provides for a more thorough testing
than simple branch coverage, and it compares favorably against
McCabe’s “basis of program paths” in that:

1. The level paths are uniquely determined.

2. The number of level paths will exceed v(F).

3. The notion that somehow every path in the program graph is
accounted for by our successive treatment of its levels has a good deal
more credibility.

PROGRAM TESTING 3093

In conclusion, it must be noted that all of the methods we have
discussed for selecting program test paths are subject to one overriding
criticism. There is absolutely no assurance that the paths selected will
be feasible, i.e., executable with an appropriate choice of input data.
We suggest that this problem becomes more serious (and is surely
more difficult to analyze) in the case of paths selected in an attempt
to minimize the number required for branch coverage. Paige’s “level
path” strategy would seem to be easier to handle in this respect, since
we build up paths from the simple to the more complex, starting with
those that are more likely to be feasible.

V. TEST CASE GENERATION

The whole question of path feasibility is related to the “test case
generation” problem. This is the one remaining phase to be discussed
of the three that were outlined in the rectangular problem-decompo-
sition paradigm of Section III. Considering the question of feasibility,
however, we can see that it is difficult to so trichotomize the automa-
tion of the overall testing program. Though useful as a paradigm, we
must admit that this partition of the problem is overly idealistic in
relation to the real world of program testing that we are likely to
encounter.

Suppose we have selected a set of program paths because they meet
one or another of the test coverage criteria, or for whatever reason.
There still remains the problem of generating corresponding test cases
that will drive the program through the indicated paths. This again
turns out to be a nontrivial (and in some cases, unsolvable) problem.
All we can do at this point is to summarize the approaches that have
been taken by researchers in the field and to give a few suggestions
that might aid in developing a workable methodology.

Perhaps the most comprehensive treatment of the problem is that
of Clarke.'®?*? Consider a single path p from “start” to “stop” through
a program F = (V, E), again viewed as a directed graph. We intend to
show how p may be characterized as a path predicate, i.e., a logical
condition

P=P1AP2A...\Pn
expressed as a conjunction of “interpreted” branch conditions derived
from the labels on the edges of F. Inductively, we may think of p as
having developed as a sequence of “partial paths:”
P(k) = (U[O] = start, U[].],) U[k])

leading from “start” to some intermediate vertex v(k) on the way to

3094 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

“stop”. Correspondingly, we may give an inductive derivation of the
path predicate, writing P(0) = true and

P(k) = P(k — 1) A ibp(v[k — 1], v[E]),

where the latter conjunct is the interpreted branch predicate associated
with the transition from vertex v[k — 1] to v[k]. More precisely, ibp(e)
for an edge e labeled with the Boolean condition C will be computed
by substituting (in C) the current “symbolic values” of all variables
according to their updating along the partial path p(k).

For example, consider the flowchart solution (Fig. 6) for estimating
the point where a function f takes on its maximum value. For the path

m-a=(a+b)/2 l

Fig. 6—Flowchart for estimating the point where a function is maximized.

PROGRAM TESTING 3095

p = abclmn, we compute

P(0) = true

P(1) = P(0) A true = true

P(2) = P(1) A true = true
PB)y=P2)ANb—-—a=c)=0b—-a=c)
P(4) =P@B) Atrue=(b—-a=c)

and finally,
P=P5B)=P4)ANtrue=b-—a=c),

noting that it was necessary to substitute a — b for w in the condition
for traversing edge 1 because of the earlier assignment statement.

In general, this process of continually updating the symbolic values
of program variables as we proceed along a path is called symbolic
execution (or symbolic evaluation). The data descriptions generated in
symbolic execution provide a precise representation of the changing
program state. Initially, the program state is the three-place vector:

state = [start, values (start), pathpred (start)]
= (start, (L, L, ---, 1), true),

where “values” tabulates the symbolic values of all program variables
(L = undefined), and “pathpred” stores the inductively generated path
predicate P as described earlier. Symbolic names are assigned (in
“values”) to input variables whenever a read statement is encountered
on the program path. Throughout the symbolic evaluation, all symbolic
representations of variable and branch predicate values are then
expressed in terms of these symbolic names, as representatives of
input values. In particular, as one encounters an assignment statement
(v « e), the symbolic value of the program variable v is updated (as
in the example above) through substitution of the symbolic value of
the expression e. In this way, “state” and especially the “values” vector
will provide a continually updated snapshot of the program’s devel-
opment along the path. Moreover, the final value of the “pathpred”
component of “state” provides the logical conjunction described above.

This path predicate P defines a corresponding (path) subdomain of
the input space D, and by the nature of the symbolic evaluation
technique, P is expressed as a set of conditions on the input variables
alone. To generate a test case (of input data) that will cause the
program to traverse the path p, it is then only necessary to find input
values that satisfy all of these conditions. As we might expect, however,
this is often easier said than done.

3096 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Before discussing this problem in any detail, it is better that we first
describe an alternative to the above approach, one that proceeds in
reverse—from the end of the path to its beginning. This technique,
known appropriately as backward substitution, is best described in the
survey paper by Huang.!? To traverse a path p, certain conditions
must be met, i.e., the set of branch conditions (C or ~C) along the
path must be satisfied as they are encountered. On the other hand,
suppose that an assignment statement (v <— e) intervenes, between
“start” and the predicate @, the latter representing a given branch
condition (though modified by “partial backward substitution” as we
are now describing). In the following flowchart segment:

TR

Ve¢e

ton)

if we want Q to be true after the assignment (v <— e) has been executed,
then the predicate Q(v < e) must be satisfied prior to its execution.
Here, Q(v « e) is the predicate obtained by substituting the expression
e for each occurrence of v in @ [and we speak of Q(v « e) as the
predicate obtained by dragging @ backward through the indicated
assignment statement]. It follows that the conjunction

RAQu<«e)

is necessary for our passage along the edge with condition R (through
the assignment) and then to satisfy Q.

Altogether, if we want the specific path p to be traversed in a
program’s execution, then we must drag each of its edge conditions
backward to “start”, and the conjunction of all resulting predicates
must be satisfied by the corresponding test case of input data. Note
once again that we obtain in this way a corresponding path predicate:

P=P1AP2A... A Pn,

i.e., a conjunction of modified branch conditions, each expressed in
terms of the input variables to the program.

Consider once again the example of Fig. 6, and suppose we wish to
traverse the path abcdefghikelmn. The listing shown below traces the
dragging of the three necessary branch conditions backward along this

PROGRAM TESTING 3097

ko]
9]
ot
=

Il wse

¢c w=c¢

k b—a=c

I b—p=c u<v

h b—p=c u<v

g§ b—p=c u<flq)

f b—p=c u<flb—w/3)

e b—p=c fp) <f(b— w/3)

d b—(a+w/3)=c fla+ w/3) < f(b — w/3) ~(w=c)
c b—(a+w/3)=c fla+ w/3) < f(b—w/3) ~(w=c)
b b—a-b-a)/3=c fla+ b-a)/3)<fb—(b—-a)/3)~(w=rc)
a b—a—b-a)/3=c fla+(b—0a)/3)<fb—(b—a)/3)~(w=c)

One finally obtains the conjunction of three predicates:

Pl:b—a—-(b-a)/3=c
P2:f(a+ (b—a)/3) <f(b—(b—a)/3)
P3:~Mb—-a=¢

all expressed in terms of the inputs a, b, ¢ (and the “called” function
f). For purposes of comparison, the reader may try to compute an
equivalent predicate using the symbolic execution method.

In an overall comparison of these two methods, one can identify an
obvious “trade-off.” With backward substitution, we avoid the costly
storage facility needed for the continuous updating of all the symbolic
program variable values. On the other hand, an important advantage
accrues to the symbolic execution method, one that is not available
for the backward substitution technique. Namely, we are more easily
able to determine whether a given path is (or will be) feasible. And we
can make the determination early in the symbolic evaluation. We need
only check that the inductively generated predicates P(k) are noncon-
tradictory, as far as they go. We begin with P(0) = true—certainly
there is no contradiction here. Then, in the expression for P(k) in
terms of P(k — 1), we have only to see whether ibp(v[k — 1], U[R])
contradicts P(k — 1). If so, P(k) and hence P itself is contradictory,
and the path p is infeasible. Otherwise, we keep going. Note, in
comparison, that with the backward substitution method, we wouldn’t
know whether a path was feasible until all of the calculation (of P)
was completed—a definite disadvantage.

One must note, however, that all such “logical satisfiability” prob-
lems as we are now beginning to consider are exceedingly difficult to
handle in practice. We include here the satisfiability question that
results from the use of the “backward substitution” technique or the
forward “symbolic evaluation” method, whichever is used. At the

3098 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

conclusion of the backward substitution, we have a system of con-
straints on the inputs to the problem, and unless these constraints
can be “solved” for the input data, we don’t have a test case at all.
The same may be said for the forward symbolic execution, except for
the slight advantage that we can be determining the satisfiability (or
lack thereof) as we go.

Huang, in his survey paper,'? presents a systematic approach for
handling the satisfiability problem, and we now outline the major
features of his plan. The simplifying assumption is made that the path
predicate takes the form:

P=P1AP2A ... A\ Pn,
where the Pi are nonnegated atomic expressions:
dRe

with d, e arithmetic expressions in the input variables and R one of
the six relational operators: <, =, =, (), =, >. Such a system of atomic
logical expressions can readily be rewritten in the prenex normal form:

(Ex1){(Ex2) --- (Exn)(xl =¢el) A (x2=e2) A ... A (xn = en),

where the E’s are “existential quantifiers” on auxiliary variable x’s,
and the new expressions (the e’s) are differences of d, e above, sufficient
to transform any inequalities to equalities. The inequalities are, in
effect, shifted to the auxiliary variables, thereby serving to normalize
the solution space. Thus, in place of the inequality 2(b — a)/3 = ¢
at the end of the table above, we would have (Ex1 = 0)[x1 = ¢ —
2(b — a)/3]. Altogether, the three inequalities of that problem are
similarly transformed, and we have instead the prenex normal form:

(Ex1 2 0)(Ex2 = 0)(Ex3 > 0)

x1=¢c—2(b—0a)/3
x2=b+2a—-6
x83=b—a-c

one that is somewhat easier to handle.

From this point, standard techniques of linear algebra can be used
to further transform the system into one where a minimum number
of variables are involved. Thus, in the case of our running example,
we can simplify the system so as to finally obtain:

(Ex1 2 0)(Ex2 = 0)(Ex3 > 0)
3x1 —x2 + 3x3 =6 — 3a.

From here, one may “guess” a solution, e.g., x1 = x2 = 0 and x3 = 0.1

PROGRAM TESTING 3099

say. One thereby obtains:

a=19
b=22
c = 0.2,

an input set that will cause the program to traverse the path abcdef-
ghikclmn in Fig. 6, as originally required.

If we are going to have to “guess” a solution to the feasibility
question in the end, however, the outright “trial and error” approach
of Ramamoorthy et al.?® offers an attractive alternative. One makes
the assumption, as before, that the path predicate P is expressed as a
logical conjunction:

P=P1ANP2A ... APn,

where each of the Pi is a constraint on the program’s input variables.
Moreover, it is assumed that the input variables have been ordered as
v[1], v[2], - -, v[m]. With each variable v[i], we associate a set S[i]
of conjuncts from P, namely:

S[i] = {Pj : only v[1], - - - , v[i] occur in Pj}

and these sets are then used as the basis for the “trial and error”
algorithm shown in Fig. 7.

Assuming that values have been found for v[1], ---, v[i — 1]
satisfying all the conjuncts in S[1], --., S[i — 1], we either solve for
v[i] or randomly choose v[i], depending on whether the set S[i]
contains an equality relation in v[i]. We then substitute this value in
the conjuncts of S[i] . Should we thereby arrive at a contradiction, we
“backtrack” to the iteration i — 1, generating a different value for
v[i — 1]. Otherwise, we go ahead to the iteration i + 1. If the complete
iteration on i concludes successfully, we arrive thereby at a “satisfia-
ble” test case for the input variables of the program; otherwise we do
not. Note that the “key” to the method is the fact that at each stage
i, only the variable v[i] has not yet been resolved. Note, however, that
the loop at the right of Fig. 7 must include some criterion for deciding
that “enough” random numbers have been tried in the current itera-
tion. But however this is decided, it must be conceded that such an
approach as presented here has much to offer in its favor, particularly
considering the difficulty of the “satisfiability” question in general.

The authors?® provide an example of the use of their algorithm on
the “triangle classification problem” considered earlier. More gener-
ally, they suggest that the method has proven to be successful in
treating a much wider class of problems. We would note further that
the method could conceivably be applied to the “running satisfiability”
questions that arise in the use of the “symbolic execution” technique.

3100 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

’_P<-p1 APyA veanPy —l

S;j=e=(Pj: ONLY v4, ++ v; OCCUR IN £})

FOR j=e=/tom do

NO
DATA
T
() F T TEST
=0 r DATA
F
—CEQUAUTY RELATION IN 5,) £
| .
| SUBSTITUTE NS | | SUBSTITUTE|NS, |
T NONCONTRADICTORY NONCONTRADICTORY
ENOUGH
L /<-l+| =i | 1<—/+| - i

Fig. 7—Trial and error algorithm for solving the satisfiability problem.

In fact, it seems that this “trial and error” approach has a definite
place—at least as a method of last resort, to be used as a component
of any overall testing methodology.

Without some technique such as this, we are forced to rely on the
extremely costly and not wholly reliable methods of “mathematical
programming,” particularly those routines that are designed to gen-
erate solutions to systems of inequalities. We cannot always assume
that our systems are linear, in spite of the assumptions made by some
authors. And in the absence of such an assumption, the problem is
quite a difficult one, generally beyond the capability of the packages
that are currently available.

PROGRAM TESTING 3101

Recognizing this, a most unusual and quite promising approach has
been suggested by Kundu.?” The idea is to combine the “test path
selection” and “test case generation” phases of the solution, using
the previous test case(s) ¢[k] to help in determining the next test case
t[k + 1]. The result is a sequence of determinations:

(t[0]~)p[0}—t[1]-p[1]— - - -

starting from an initial test case ¢[0], chosen at random. The method
is as follows:

1. Analyze t[k]: Execute the program with input ¢[k], and determine
its execution path p[k]. Then perform a (partial) symbolic execution
of p[k], so as to determine (an approximation to) its path predicate
P[R].

2. Select next test case: Determine the next test case t[k + 1] so
that it violates at least one constraint in each of the path predicates
P[j], forj<k.

We are thus assured that each new test care t[k + 1] causes the
program to traverse a genuinely new path, different from all those
previously chosen.

In comparison with the previous methods we have discussed, Kundu
reverses the roles of the test paths and the test data. The path p[k] is
determined from £[k] in order to guide the next test case t[k + 1]
away from previous paths. That is, p[k] is not used for finding an
input that corresponds to that path itself. Therein lies the novelty of
the approach.

Moreover, Kundu’s method is definitely not designed with any
specific measure of test thoroughness in mind. (He asserts that no
good measures of testedness are available, anyway.) It is clear, how-
ever, that one could easily augment his procedure with test instrumen-
tation devices, as discussed earlier, for the purpose of assuring that
some standard test coverage criterion (e.g., branch coverage) has been
met.

The primary advantage of Kundu’s method is easily understood.
Consider the constraint on ¢[k + 1] as described in (2) above, i.e.,

t[k + 1] not in P[1] U P[2] U --- U P[k].

It is clear that the “forbidden region” for ¢[k + 1] thus represents only
a small portion of the total input domain D (see Fig. 8). This is so
because the number of test cases generated in the testing activity is
very small compared with the total number of executable paths in the
program. Intuitively, the determination of the required ¢t[% + 1] should
thus be relatively easy. And for the same reason, the determination of
a test datum in a given path domain (as is required in the usual
strategy) should be more difficult. Kundu (see Ref. 27, pp. 176-177)

3102 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Fig. 8—Illustration of the forbidden region for selecting test cases.

gives a more detailed account of this reasoning, and the thrust of his
argument is quite compelling. The reader may wish to consult Kundu’s
article for these additional details.

VI. CONCLUDING REMARKS

We have attempted to describe the many interesting and varied
approaches to the program testing problem. Whereas no single ap-
proach to the problem may hold all the answers, it seems that there
are enough good ideas around as to suggest the feasibility of a workable
methodology, based on one or another combination of the strategies
that have been advanced to date.

It must be remembered, however, that the thrust of our presentation,
and, indeed, the main thrust in the literature has been toward the
“unit test” level, where smaller programs are encountered. Thus, the
ideas we have presented are, at the present time, feasible only in the
case of programs of limited size. To think that we are nearing the
point where we are ready to apply all of these techniques to the testing
of an entire operating system or a compiler would be to miss the point
completely. Nevertheless, our study has shown that indeed a start has
been made.

We have tried to present a reasonably balanced survey of the recent
contributions to the research literature on software testing method-
ology. It is perhaps likely that one or more worthwhile studies have
escaped the author’s attention, and therefore, their omission from this
survey should not reflect on their importance to the development of
the field. Moreover, the author can only hope that the studies that
have been cited here have been presented in their best light. Limita-

PROGRAM TESTING 3103

tions of time and space have prevented a more complete treatment of
these works, and for this, apologies to the authors are in order. At the
same time, this author would like to acknowledge the use of the many
cogent examples from the literature cited, hoping as well that these
and other contributions have been faithfully reported.

In conclusion, the author would like to thank W. H. Leung, K. A.
Gluck, and N. H. Petschenik for their most helpful comments in
reviewing an earlier draft of the manuscript.

REFERENCES
1. W. g Hetzel (ed.), Program Test Methods, Englewood Cliffs, NJ: Prentice Hall,
1973

G. J. Myers, The Art of Software Testing, New York: John Wiley and Sons, 1979.

E. F. Miller, “Program Testing: Art Meets Theory,” Tutorial: Software Testing and
Validation Techniques, Miller and Howden (eds.), New York: IEEE, 1978, pp.
390-8.

. E. F. Miller, “Program Testing Technology in the 1980’s,” Tutorial: Software Testing
and Validation Techniques, Miller and Howden (eds.), New York: IEEE, 1978,
pp. 399-406.

5. E. F. Miller, “Introduction to Software Testing Technology,” Tutorial: Software
’I;;zsting and Validation Techniques, Miller and Howden (eds.), New York: IEEE,
1978, pp. 3-14.

. E.F. Miller, M. R. Paige, J. P. Benson, and W. R. Wisehart, “Structural Techniques
of Program Validation,” Tutorial: Software Testing and Validation Techniques,
Miller and Howden (eds.), New York: IEEE, 1978, pp. 262-5.

. J. B. Goodenough and S. L. Gerhart, “Toward a Theory of Test Data Selection,”
IEEE Trans. on Software Eng., SE-1, No. 2 (June 1975), pp. 156-73.

. J. B. Goodenough, “A Survey of Program Testing Issues,” in Research Directions in

gfétware Technology, P. Wegner (ed.), Cambridge, MA: MIT Press, 1979, pp.
-40.

R. G. Hamlet, “Test Reliability and Software Maintenance,” Proc. Computer
Software and Applications Conf. COMPSAC 78, November 13-16, 1978, Chicago,
IL, New York: IEEE, 1978, pp. 315-20.

10. E. J. Weyuker and T. J. Ostrand, “Theories of Program Testing and the Application

of Revealing Subdomains,” IEEE Trans. Software Eng., SE-6, No. 3 (May 1980),
pp. 236-46.

11. E. J. Weyuker and T. J. Ostrand, “Current Directions in the Theory of Testing,”
Proc. Computer Software and Applications Conf., COMPSAC 80, October 27-31,
1980, Chicago, IL, New York: IEEE, 1980, pp. 386-9.

12. J. C. Huang, “An Approach to Program Testing,” Computing Surveys, 7, No. 3
(September 1975), ppl. 114-28.

13. J. C. Huang, “Program Instrumentation and Software Testing,” Computer, 11, No.
4 (April 1978), pp. 25-32.

14. J. C. Huang, “Program Instrumentation: A Tool for Software Testing,” INFOTECH
State of the Art Report, Software Testing, Infotech Intl. Ltd. (1979), pp. 149-59.

15. W. E. Howden, “Methodology for the Generation of Program Test Data,” IEEE
Trans. Computers, C-24, No. 5 (May 1975), pp. 554-9.

16. W. E. Howden, “Reliability of the Path Analysis Testing Strategy,” IEEE Trans,
Software Eng., SE-2, No. 3 (September 1976), pp. 208-15.

17. W. E. Howden, “Introduction to the Theory of Testing,” in Tutorial: Software
Tgsting and Validation, Miller and Howden (eds.), New York: IEEE, 1978, pp.
16-19.

18. W. E. Howden, “A Survey of Dynamic Analysis Methods,” in Tutorial: Software
ggziting and Validation, Miller and Howden (eds.), New York: IEEE, 1978, pp.

~206.-

19. L. A. Clarke, “Automatic Test Data Selection Techniques,” INFOTECH State of
the Art Report, Software Testing, Infotech Intl. Ltd., 1979, pp. 43-63.

20. M. R. Paige, “On Sizing Software Testing for Structured Programs,” Intl. Symp. on
Fault Tolerant Computing, New York: IEEE, June 1977, p. 212.

21. M. R. Paige, “An Analytical Approach to Software Testing,” Proc. Computer

w0

>

[=2]

[* <IN

©

3104 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Software and Applications Conf., COMPSAC 78, November 13-16, 1978, Chicago,
IL, New York: IEEE, 1978, pp. 527-31.

22. M. R. Paige, “Program Graphs, an Algebra, and Their Implication for Program-
ming,” IEEE Trans. Software Eng., SE-1, No. 3 (September 1975), pp. 286-91.

23. T. J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng., SE-2, No. 4
(December 1976), pp. 308-19.

24. L. A. Clarke and D. J. Richardson, “Symbolic Evaluation Methods for Program
Analysis,” in Program Flow Analysis, Muchnick and Jones (eds.), Englewood
Cliffs, NJ: Prentice Hall, 1981, pp. 264-300.

25. L. A. Clarke, “A System to Generate Test Data and Symbolically Execute Pro-
grams,” IEEE Trans. Software Eng., SE-2, No. 3 (September 1976), pp. 215-22.

26. C. V. Ramamoorthy, S. B. Ho, and W, T. Chen, “On the Automated Generation of
Progg%m3Test Data,” IEEE Trans. Software Eng., SE-2, No. 4 (December 1976),
pp. 293-300.

27. S. Kundu, “SETAR—A New Approach to Test Case Generation,” INFOTECH
State of the Art Report, Software Testing, Infotech Intl. Ltd., 1979, pp. 163-86.

AUTHOR

Ronald E. Prather, B.S. and M.S. (Electrical Engineering), 1955 and 1958,
respectively; M.A. (Mathematics), 1966, University of California, Berkeley;
Ph.D. (Mathematics), 1969, Syracuse University. Dr. Prather is a Professor
of Mathematics and Computer Science at the University of Denver. He spent
the 1982-1983 academic year on sabbatical leave with the Software Quality
Analysis group at Bell Laboratories in Denver. He is the author of Discrete
Mathematical Structures for Computer Science (Houghton Mifflin, 1976) and
Problem Solving Principles: Programming With Pascal (Prentice Hall, 1982).

PROGRAM TESTING 3105

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

Parallel Fault Simulation Using Distributed
Processing*

By Y. H. LEVENDEL,' P. R. MENON,! and S. H. PATEL!
(Manuscript received June 3, 1983)

This paper presents a method of performing fault simulation of digital logic
circuits using a special-purpose computer with distributed processing. The
architecture for true value simulation presented in an earlier paper can also
be used for parallel fault simulation. The special-purpose computer consists
of inexpensive microprocessors interconnected by either a time-shared parallel
bus or a cross-point matrix. The cross-point matrix provides higher perform-
ance than the time-shared parallel bus. The performance of the proposed
simulator is better by over two orders of magnitude than traditional logic fault
simulation performed on a general-purpose computer. The power of the
simulator is proportional to the number of microprocessors over a certain
range.

1. INTRODUCTION

Fault simulation is an important part of the logic circuit design
process. It is a means of determining the behavior of a logic circuit in
the presence of each one of a predefined set of faults.

One of the most common uses of fault simulation is in determining
the set of faults detected by a proposed test sequence, i.e., its fault
coverage. Adequate fault coverage (usually greater than 90 percent of
single stuck faults) is necessary to guarantee that the test sequence
will detect most of the manufacturing defects.

* This paper is based upon material to be submitted by S. H. Patel in partial
fulfillment of the requirements for the Ph.D. in Electrical Engineering at the
Illinois Institute of Technology. ' Bell Laboratories.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro-
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa-
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3107

In test pattern generation, fault simulation is used to determine the
faults that are detected by the tests already generated so they can be
removed from consideration. A yet undetected fault is then selected
as a target for the next test. Additional faults detected by a newly
generated test may be determined by simulation. Thus, fault simula-
tion is used frequently as a part of the test generation process.

Fault simulation is also used to construct fault dictionaries for fault
isolation. Other uses of fault simulation include the evaluation of test
point effectiveness and the evaluation of self-checking circuitry. Ef-
fective test points are essential for factory testing. It is much cheaper
and easier to locate and repair failures during manufacture than it is
in the field. Also, good self-checking circuitry makes it easier to isolate
faults in the field.

Currently, fault simulation is carried out on large general-purpose
computers. This method has seen some use in large-scale integrated
(LSI)* designs, but suffers from excessive run time at current levels
of integration. Its applicability to very large-scale integration (VLSI)
is doubtful, at least in the manner that it is currently used.’ There is
a need for more sophisticated and cost-effective fault simulators as
very large simulation time and costs will result when dealing with
circuits of VLSI complexity (more than 100,000 gates on a single chip).

II. PARALLEL FAULT SIMULATION

A number of different algorithms have been developed for perform-
ing fault simulation efficiently on general-purpose computers. Among
these the best known and widely used are the parallel,? deductive,?
and concurrent! methods. All these methods attempt to simulate the
effects of a number of individual faults simultaneously. This paper
will consider the use of the parallel fault simulation algorithm in the
special-purpose simulation hardware architecture developed in Ref. 5.

In parallel fault simulation the fault-free circuit and several different
faulty circuits are processed simultaneously. The number of faulty
circuits simulated in parallel is normally constrained by the number
of bits in the host computer word. One bit of the computer word
represents the signal value on a line in the fault-free circuit, while the
remaining bits represent values on the same line in the presence of
different single faults. Word-oriented operations performed on the
host computer imply that the fault-free and faulty circuits are handled
simultaneously and in exactly the same manner.

The output fault word of a gate is computed by simple word-oriented
logic operations on the input fault words. The logic operations per-
formed on the fault words correspond to the logic operation performed

* Acronyms and abbreviations are defined in the Glossary at the back of this article.

3108 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

by the gate. Faults are injected using predefined masks. A stuck at 1
fault on a lead is injected by ORing the fault word with a mask
containing a 1 in the bit position for the faulty value and 0’s elsewhere.
Similarly, a stuck at 0 fault can be injected by ANDing the fault word
with a mask containing a 0 in the bit position for the faulty value and
1’s elsewhere.

Two logic values are not sufficient for accurate logic simulation.
Since each bit position in the computer word can represent only a
logical 0 or 1, more than one bit per signal is required for multiple-
value simulation.® In this case more than one word is required. For
three-value representation two bits are required to represent each
signal and, therefore, two computer words are required for representing
a set of fault-free and faulty values. Since a pair of words are used to
represent a signal, some sort of coding method is required to implement
parallel simulation. A commonly used method of coding denotes one
of the words as the 0-word and the other word as a 1-word. Let i,
represent the ith bit in the 0-word and i, represent the ith bit in the
1-word. Then the iyi;, = 01 combination represents a logical 1, the
Iol; = 10 combination represents a logical 0, the iyi; = 00 combination
represents an unknown, and the iyi; = 11 combination is unused.
Simple word-oriented operations are still sufficient for performing the
parallel simulation. This coding is the same as that in Ref. 7. Faults
are injected in the 0-word and the 1-word using a 0-mask and a 1-
mask, respectively. This injection is also done using simple logic
operations. The method for simulating three logic values can be
extended to any number of logic values by coding them using a
sufficient number of bits.? Only three-valued simulation is considered
in this paper.

The most widely used method of parallel simulation is the event-
driven method. Event-driven simulation means that an element is not
simulated unless there is a change in one of its input fault words. The
main operations performed in an event-driven simulation are process-
ing of active elements and scheduling changes to occur in future. The
scheduling is done on a timing wheel. A timing wheel is a list structure
in which events are chained together in the order they are to occur. In
parallel fault simulation an element is considered to be active if the
fault word associated with its output changes. The fault word is
considered changed even if only one of its bits changes. All the values
(i.e., the whole fault word) are propagated even if only one of the
values changes.

Since the number of faults simulated at one time is restricted by
the length of the host computer word, multiple passes through the
simulator are necessary to simulate a large number of faults. It is
possible to reduce the number of passes by using extra computer words

FAULT SIMULATION 3109

and simulating more faults during one pass. For example, 64 computer
words can be used to simulate (two-value simulation) 1024 faults on a
computer with a word size of 16 bits. The string of values in the set of
computer words representing the fault-free and faulty signal values on
a line will be called the value vector. The configuration of the value
vector is shown in Fig. 1. The value vector consists of L, word pairs
for three-value simulation. Two bits at the same position in the two
words of a pair represent the signal value of one faulty circuit.
Simulating L, word pairs at a time is better than making L, passes
through the simulator since the overhead involved in the fanout search
associated with each pass is saved. (However, as we will see in Section
6.1, some of these savings are lost due to increased activity as the
number of faults per pass increases.) The number of words used in the
value vector is usually constrained by the space requirements of the
computer.

During simulation, operations are performed on value vectors by
considering word pairs. Thus, the time required to perform an opera-
tion on the value vector is proportional to the number of word pairs
used in the value vector. For example, if there are several word pairs
in a value vector, then faults are injected one word pair at a time.

The whole value vector is considered active if any of the values in
the vector changes. Furthermore, all the word pairs are propagated
even if only one word pair changes. An element is considered active if
the value vector associated with its output is active.

11l. CONCURRENCY IN FAULT SIMULATION

At least three types of concurrencies exist in fault simulation of
logic circuits. The first type of concurrency occurs in the actual
simulated hardware, the second type occurs in the simulation algo-

__ SIGNAL VALUES FOR
ONE -7 ONE FAULTY CIRCUIT

KTCOCMRﬂ |][|
_<{ | [l

FIRST WORD PAIR \/ Lpth WORD PAIR

TWO WORDS
OF AWORD PAIR

-

TWO SETS OF
WORDS FOR THREE-
VALUE SIMULATION

Fig. 1—Value vector configuration.

3110 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

rithm, and the third type occurs in the form of fault activity. The first
two types of concurrencies also occur in true value simulation of logic
circuits and have been discussed in an earlier paper.’

The concurrency occurring in the actual simulated hardware can be
called logic circuit concurrency. Utilizing this type of concurrency leads
to distributed processing with identical processors performing identical
tasks. The architecture for true-value simulation developed by Lev-
endel et al.® and Denneau et al.®' takes advantage of this type of
concurrency.

The concurrency occurring in the simulation algorithm can be called
algorithm concurrency. This concurrency is indirectly due to the con-
currency occurring in the actual simulated hardware. Since several
elements can be simultaneously active and a sequence of steps is to be
performed for each active element, they can be processed in a pipeline
fashion. Utilizing this type of concurrency leads to functional parti-
tioning of tasks among several processors and a pipelined architecture.
The architecture for true-value simulation developed by Barto and
Szygenda'? and Abramovici et al.'® takes advantage of this type of
concurrency.

For efficient fault simulation, a number of faults are simulated
simultaneously in software-based simulators. This leads to fault activ-
ity concurrency, which can be utilized in special-purpose hardware for
fault simulation.

This paper extends the architecture for true-value simulation de-
scribed in Ref. 5 to fault simulation using the parallel method. The
architecture takes advantage of the parallelism due to logic circuit
concurrency and fault activity concurrency. The main difference be-
tween true-value simulation and fault simulation is in the algorithm
executed by the individual processing units.

IV. SPECIAL-PURPOSE ARCHITECTURE

The simulator consists of one master and a number of slaves
(processors) interconnected by a communication structure (Fig. 2).
The communication structure is used as a medium for transferring
data between the slaves and between the slaves and the master. The
communication structure can be either a time-shared parallel bus or a
cross-point matrix. The circuit to be simulated is partitioned into
subcircuits and each subcircuit is simulated in a separate processor.
Subcircuits in different processors become active as signal values
proceed from the primary inputs to primary outputs. As simulation
progresses, data are transferred between subcircuits as the logic values
on the signal connections between two subcircuits change. These data
are transported across the communication structure. Typical data sent
across the data path consist of element information and changed value

FAULT SIMULATION 3111

GENERAL- DISPLAY,
PURPOSE |-e—s KEYPAD,
COMPUTER SECONDARY STORAGE

START t——rq
{TO SLAVE UNITS) MASTER
DONE =t

Y

ey

SLAVE [
PROCESSOR

1 —e]

———

D

COMMUNICATION

SLAVE
(TO MASTER) PROCESSOR MEDILUM
START DONE
L
L4
.
1 .
.
ors | ons~1
b SLAVE [
(waTlH PROCESSOR
LOCAL ___—l r I—
MEMORY)
II 1FB I IDS
IDS — INPUT DATA SEQUENCER
IFB — INPUT FIFO BUFFER

0ODS — OUTPUT DATA SEQUENCER
OFB— OUTPUT FIFO BUFFER
PU — PROCESSING UNIT

Fig. 2—Multiprocessor-based digital logic simulator.

vectors. The architecture of the simulator has been described in detail
in the previous paper.® A summary of the architecture description is
presented in Appendix A for completeness.

The overall architecture for true-value simulation is applicable to
fault simulation since the algorithms for the two types of simulations
are the same except that fault simulation requires:

1. Carrying of faulty signal values in addition to true-value signals
(more than one word may be used to allow representation of a larger
number of faulty signals)

2. Fault injection using masks

3. Multiple passes if the fault set is large.

The processing time per pass will be higher for fault simulation due
to the extra processing required for injecting faults and manipulating
multiple-word pairs in a value vector. The latter requirement applies
only when the value vector contains more than one word pair. As far
as communication between the processors is concerned, the data

3112 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

transferred between the processors are greater than those transferred
for true-value simulation, since the signal values require one or more
complete words in addition to a word for the element number.

V. ARCHITECTURE EVALUATION

The processing time per simulation cycle and the communication
times using a time-shared parallel bus and a cross-point matrix are
estimated first. These results are then used for selecting the commu-
nication structure. A multiple-bus communication structure is also
discussed in this section.

5.1 Processing time ¢,

The average number of active elements per processor during a
simulation cycle for true-value simulation is given by kN/n, where N
is the average number of active elements per simulation cycle during
true-value simulation, n is the number of processors in the multi-
processor simulator, and & is the average unbalance factor representing
the extra active elements per processor during a simulation cycle due
to nonideal partitioning.® Ideal partitioning will cause an equal number
of elements to be active in all the processors during all simulation
cycles. However, because of some imbalance such as the fanout of all
active elements during one simulation cycle not feeding equally into
all the processors, some processors will have more active elements
than the others during some simulation cycles. The average number
of active elements per processor during a fault simulation cycle can be
written as kN;/n, where N; is the average number of active elements
per simulation cycle in one pass during fault simulation. The value of
Ny is expected to be larger than N. Indeed, experimental runs on the
Logic Analyzer for Maintenance Planning (LAMP) simulator'* show
that the overall activity (total number of active elements) during
parallel fault simulation increases by a factor of about 2 for 16 faults
per pass and by about 3.5 for 1024 faults per pass compared to true-
value simulation. These results are averaged over several runs made
using both combinational and sequential circuits with sizes ranging
from 420 gates to 1912 gates. The number of faults simulated ranged
from 1020 faults for the 420-gate circuit to 5046 faults for the 1912-
gate circuit. The LAMP simulator is based on the deductive method.
A mapping mechanism from deductive simulation activity to parallel
simulation activity was implemented to predict the results for parallel
simulation.

During one simulation cycle the following major operations occur
in the given order:

1. Using the current list of events, list L; of the timing wheel (Fig.

FAULT SIMULATION 3113

11 in Appendix B), update, and find fanout of the elements whose
outputs changed during the current simulation cycle.

2. Using the next list L; of the timing wheel, prepare external
events to be transmitted to other processors for the next time interval.

3. From data in the Input FIFO Buffer (IFB) (sent by other proces-
sors), update and find fanout of the elements active during the current
simulation cycle.

4. Evaluate the fanout of active elements (this includes fault injec-
tion).

5. Schedule on timing wheel elements whose output changes.
The detailed algorithm is given in Appendix C.

Let ¢, be the time required to process one active element. The
average processing time per processor during one simulation cycle is
then given by:

ty = — ta

Assume a microprogrammable microprocessor (e.g., Am2900 series)
for each slave unit processing unit (PU) and the following operation
times (150 ns cycle time): memory-to-memory move = 1.2 us, memory-
to-register move = 0.6 us, and memory-to-memory logical AND/OR
operation = 1.5 us. Using these major microprocessor operations, the
execution time for each operation in the parallel simulation algorithm
described in Appendix C can be estimated. For example, obtaining
each fanout of an updated element (after the fanout list has been
accessed) takes one memory-to-register instruction and moving the
element number to the Output FIFO Buffer (OFB) takes one memory-
to-memory instruction. The processing times per active element for
the various steps of the algorithm are shown in Table I, where f; is the
average fan-in, f, is the average fan-out, and L, is the number of word
pairs in the value vector.

The total processing time per element during one simulation cycle
is the sum of all the expressions in Table I:

(24 + 72L,)
T n

Taking typical values of f; and f, to be 2 and an unbalance factor of
k = 1.1, the processing time for a simulation cycle becomes:

ta=9.6 + 8.7L, + 3f, + 3£.L,

N
t, = (15.8 + 12.2L,) —;‘ us. (1)

5.2 Communication time t.

The value of ¢, will depend on the type of communication structure.

3114 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Table |—Simulation cycle timings for parallel simulation

Step Expression (us)
1.8 + 2.4f,
Update data from timing wheel (—f——f—)
o — 1)(6.6 + 3.6
Prepare external events for next time interval (f N F Ly)
b — 1)(1.2 + 3f, + 3.
Update data from IFB (f N P fo + 36L)
3.6
Evaluate schedule 24 + 15L, + 3f.L, + f_
_ _ — —=—ELEMENTS
- - 4
s /

1 ‘ 2 ‘ 3 \ oo ¢ 1,

Fig. 3—An element string.

The two types of communication structures discussed in Ref. 5, namely
the time-shared parallel bus and the cross-point matrix, will be con-
sidered here also. The partitioning algorithm discussed in the previous
paper® partitions a circuit along its depth rather than its breadth.
Since the signals in a circuit propagate in parallel, this places concur-
rent activities in different blocks. The same partitioning algorithm
will be assumed here, since during fault simulation the signals still
propagate in the same manner. The logic circuit to be simulated is
partitioned into elements strings (see Fig. 3). The average number of
communication events generated by one active element during a
simulation cycle that have to be sent over the communication structure
is:

Lot e = D= 1)

c

where f, is the average fanout and c is the average number of elements
in one element string. The typical value of f, can be taken as 2, and
for large circuits c¢ is expected to be greater than 10. For f, = 2 and
¢ = 10, e will be equal to 1.1.

5.2.1 Time-shared parallel bus

The total communication time during a simulation cycle for true-
value simulation is given by®

FAULT SIMULATION 3115

tc(bus) = (n + 200)N€ ns

This expression assumes one word of data to be transferred per active
element. For fault simulation with w words of data to be transferred
per active element the expression becomes:

tewus) = (n + 200) Nrew ns.
The number of words to be transferred is given by:
w=1+ 2L,

where L, is the number of word pairs per value vector used in
simulation. One word is required to carry the element number and the
2L, words carry the value vector. Taking the value of e = 1.1:

tewusy = (1.1n + 220)(1 + 2L,) Nt ns. 2)

5.2.2 Cross-point matrix

In a cross-point matrix-based communication structure several
processors can be simultaneously sending data to other processors.
The total communication time during a simulation cycle for true value
simulation is given by®:

200Nke

c(matrix) — + 50] ns,

where j is the number of events for which the destination processor is
found busy, i.e., the destination processor is communicating with some
other processor. Once again this expression assumes one word of data
transferred per active element. For w words of data to be transferred,
the expression for fault simulation becomes:

tc(matrix) = m + 50]w ns.

Fork=11,e=11, w =1+ 2L,, and j = 0.1 N¢/n (the channel is
found busy for 10 percent of the transfer requests), the above expres-
sion can be rewritten as:

te(matrix) = (247 + 494Lp) 'l;\l,—f ns. (3)

5.3 Choice of communication structure

The expressions for the processing time per simulation cycle per
active element and the communication times per simulation cycle per
active element for the bus and matrix structures are plotted in Fig. 4.
The expressions are plotted for value vector length of one word (16
bits/word), i.e., L, = 1.

3116 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

10

I _ fe(bus) 078 36 te(bus)
— % ——=0.78pus,n= c(bus'
/W Ny
/ Ng
1 —

g t
= OPTIMUM OPERATION P
S POINT WITH PARALLEL e
% BUS; OPTIMUM SIMULATION f

3 CYCLE TIME =0.78 ps.
£
o1 |
g
E)
=]
5
2
‘_‘D.
001 |-
Tc(matrix)
Ne
Lp =1 (16 faults/pass)
0.001 1 | ! | | L 1 ! L !
0 20 30 40 50 60 70 80 90 100

NUMBER OF PROCESSORS (n)

Fig. 4—Variation in processing and communication time.

The curves for the processing time and bus communication time for
the parallel bus intersect at n = 36. The processing time is greater
than the bus communication time for n < 36. Thus the processing
time is the bottleneck. The processing time decreases as the value of
n increases. For n > 36 the bus communication time becomes larger
than the processing time and the bus communication time becomes
the bottleneck. Therefore, using more processors than n = 36 will not
speed up the simulation. For optimum performance n = 36, and the
length of the simulation cycle per active element becomes t,, = 0.78
us. Based on the parallel simulation algorithm given in Appendix C,
the actual simulation cycle length per active element for a single
processor can be estimated as ¢; = 24 us. The multiprocessor fault

FAULT SIMULATION 3117

simulator with a bus-based communication structure provides a speed-
up of 31 over the traditional single-processor logic fault simulator.

For further speedup a faster communication structure must be used.
Figure 4 also shows the curve for the matrix communication time.
This curve does not intersect with the curve for the processing time,
and the communication time is always less than the processing time.
The communication time will therefore never be a bottleneck. More
processors can be added to speed up the simulator. For example, for
n = 100 the speedup compared to the traditional single-processor logic
fault simulator is 86 and for n = 256 the speedup is 220. The speedup
of simulation is expected to be greater than two orders of magnitude
for n > 120.

5.4 Multiple-bus communication structure

The results of the previous section show that for a given number of
faults per pass, the time-shared parallel bus is useful only for up to a
fixed value of n. For further speedup the cross-point matrix has to be
used. However, the cross-point is not used up to its maximum capa-
bility. For example, at 16 faults per pass and n = 100, the simulation
cycle length is 280 N; ns while the communication cycle length is 7.4 N;
ns, i.e., the communication structure is used less than 3 percent of the
time. A communication structure that is slower and cheaper than the
cross-point matrix might prove more cost-effective. This will be true
especially since the control for the cross-point is very complex and
thus expensive.

A communication structure that provides a capacity in between that
of the time-shared parallel bus and the cross-point matrix is the
multiple-bus structure. It consists of a bus arbitrator and several
parallel buses. The configuration of the multiple-bus structure and its
interface to the Output Data Sequencers (ODSs) and Input Data
Sequencers (IDSs) of the slave units are given in Fig. 5. When the
ODS needs to send data, it sets the Request To Send (RTS) line high
and puts the destination address on the address lines. The requesting
ODS keeps the RTS line high until granted a bus. The bus arbitrator
grants it the use of the communication medium when it finds an
unused bus and determines that the requested destination is not busy.
The bus arbitrator grants the bus by setting the Bus Grant line high.
The data are switched through the bus selector switch to the available
bus. At the other end of the bus there is a line selector from which the
data are sent to the destination processor. The ODS sends out all the
data present in its Output FIFO Buffer (OFB). The data received by
the IDS of the destination unit are put in its Input FIFO Buffer (IFB).
The ODS then sets the RTS line low. This releases the bus, which is

3118 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

COMMUNICATION STRUCTURE

REQUEST TO SEND (RTS)
BUS GRANT
RTS FOR MASTER (RTSM) BUS
ADDRESS ARBITRATOR
OUTPUT
DATA .
SEQUENCER :
(PART OF
SLAVE {FROM OTHER
UNIT) PROCESSORS)
.
.
DATA ¢
BUS
ENABLES
MULTIPLE PARALLEL
BUSES CARRYING — |1 2| eee b
DATA
DATA READY
INPUT
DATA DATA LINE
SEQUENCER ENABLES *
(PART OF
SLAVE .
UNIT) :
(FROM OTHER
PROCESSORS)

Fig. 5—Configuration of multiple-bus structure.

then granted by the bus control to another requesting slave or the
master. All units have equal priority. The ODS will set the Request
To Send line high again if it gets more data to transfer in the OFB.

The data sent out to a slave unit from another slave unit or the
master consist of element information and changed value vectors. The
data sent to a master consist of the address of the sending slave,
element number (primary output or monitored point), and value
vector. A separate line Request to Send to Master (RTSM) is used to
address the master. When the destination is the master, the address
lines from the ODS contain the sending slave unit address. This
address together with the element number and value vector is stored
in the master IFB by the master IDS.

To obtain an expression for the communication time for the multi-
ple-bus structure, consider first of all the bus structure with only a

FAULT SIMULATION 3119

single bus. For this case, the communication time will consist of the
same components as that for time-shared parallel bus®

teqmbus) = (forg + tas + Laa + tor) (1 + 2L,)(Nye,

where t, is the bus request and grant time, t,, is the address and data
setup time, tg, is the data acknowledge, and &, is the bus release time.
For the multiple-bus structure the bus request and grant time, tyyg, will
be greater than in the parallel bus since extra checking has to be done
before a bus is granted. The bus arbitrator will have to determine if a
bus is available and if available then it has to further determine if the
requested destination is busy. Assuming these extra actions double the
time required for the bus request and grant time and the other times
remain the same: t,, = 200 ns, tgs = n ns, tg, = 50 ns, &, = 50 ns, and
e = 1.1. Each transaction across the multiple-bus has to wait for a bus
to be granted. As more buses are added, the transactions can occur in
parallel. Assuming the number of parallel buses is much smaller than
the number of processors, the probability of the destination processor
being busy will be small. The decrease in the total communication
time will then be proportional to the number of buses. The expression
for the total communication time for the multiple-bus communication
structure becomes:

1.1n + 330)(1 + 2L,)N;
tc(mbus) = (n ;)(p) fr (4)

where b is the number of parallel buses.

Let n, be the number of processors at the optimum operation point,
where &, = tembus- If the simulator operates with the number of
processors not equal to n,, then the speed of simulation will be lower.
An expression for n, can be derived by equating egs. (1) and (4):

0.49L, + 0.64\\"°
o= —1 pubiinhten) LIt
n, 50 + 150(1 + b(oL, + 1))

This expression is plotted for various values of b with L, = 1 in Fig.
6. It can be seen that higher performance is available with the multiple-
bus structure compared to the single time-shared parallel bus for
b=2.

The implementation of the multiple-bus structure is expected to be
less expensive than that of the cross-point matrix. The complexity of
the communication structures and thus their cost is proportional to
the number of switch points. For the cross-point matrix, the number
of cross-points is proportional to the square of the inputs, i.e., n% For
the multiple-bus structure two points have to be connected to establish
a connection and thus the number of switch points is 2bn. The cost of
the multiple-bus structure will be less than that of the cross-point

3120 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

220

200 —

180 —

160 —

140 —

120

100 —

OPTIMUM NUMBER OF PROCESSORS (n,)

60

no =36, OPTIMUM NUMBER OF
(O <«—————— PROCESSORS FOR SINGLE TIME-
SHARED PARALLEL BUS STRUCTURE

40 |-

20 —

0 | I I ! L | ! | I I 1 1
o 1+ 2 3 4 5 6 7 8 9 10 1 12 13

NUMBER OF PARALLEL BUSES (b)

Fig. 6—Variation in the optimum number of processors with the number of parallel
buses.

matrix as long as 2b < n. As we saw in the analysis done earlier this
will always be the case. For b = 5 and n, = 105, the cost of the
multiple-bus structure will be an order of magnitude lower than that
of the cross-point matrix. Furthermore, it must also be noted that
physical switching is not necessary in the case of the multiple-bus
structure; it is cheaper to use logic enables for connecting an ODS and
an IDS to a bus. This will result in even lower cost when compared
with the cross-point matrix.

VI. EFFECT OF NUMBER OF FAULTS PER PASS

When simulating a large number of faults per pass in parallel
simulation, several pairs of words carrying the true and faulty values
(L,) must be manipulated per active element. All the faulty values in
the words can be considered together as a vector. All the faulty values
are evaluated even if only one faulty value is active.

The behavior of the multiprocessor fault simulator, using the par-
allel fault simulation algorithm, will be investigated for variations in
the number of faults simulated per pass. Comparisons will be made

FAULT SIMULATION 3121

between 16, 32, 64, 256, and 1024 faults per pass, assuming a processor
word length of 16 in all the cases.

Only the time-shared parallel bus and the cross-point matrix are
discussed. The communication structure with multiple buses is not
considered since the results for the time-shared parallel bus will apply,
except for a scaling factor.

6.1 Simulator with time-shared parallel bus

The expressions for processing time per simulation cycle, t,, and the
parallel bus communication time per simulation cycle, tpus), derived
earlier in egs. (1) and (2) are used to analyze the effects of variations
in the number of faults per pass. It was seen earlier that the optimum
operation point for the simulator occurs when the processing time and
communication time are equal, i.e., {, = fcus)- An expression for the
number of processors required to meet this condition for a given length
of value vector (L,) can be derived by equating the expressions for ¢,
and t.gus)- Let n, be the number of processors at the optimum operation
point and ¢, be the length of the processing and communication cycles
at the optimum operation point. Values of n smaller than the optimum
n, cause the processing to be a bottleneck, while larger values of n
cause communication to be a bottleneck. Equating egs. (1) and (2)
yields the following expression for n,, the number of processors re-
quired for optimum operation:

0.5
ne = —100 + 100(311 + 2:44
9L, + 1

Let « be the number of faults per pass. Then « = 16L, assuming 16
bits per word. The above expression for n, can be rewritten as a
function of the number of the faults «, as:

0.5
0.19a + 2.44) 5)

no(a) = =100 + 100(01%m + 1

For n = ny(a), the processing time per simulation cycle and the bus
communication time per simulation cycle both reduce to:

Ni(a)
no(a) '

For a simulator with optimum number of processors, n.{«), the total
time required to simulate a fixed number of faults is obtained by
multiplying the time required for processing one active element (¢,(«)/
Ni(a)) by the total number of active elements during the simulation
(N1(a)):

to(a) = (15.8 + 0.76c) (6)

3122 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

_ tole)
@) = Nt

The total number of active elements during simulation is given by:

Nr(a).

Nr(a) = Nfa) X (number of simulation cycles per pass)
X (number of passes).

Substituting the expression for t,(«) given in eq. (6):

T(a) = (15.8 + 0.76a)M. (7
no(a)

Define the simulation time ratio as the ratio of the total time required
to simulate a set of faults with « faults per pass to the total time
required to simulate the given set of faults with 16 faults per pass, i.e.,
T(a)/T(16). Using a value of n,(16) = 36 {eq. 5), the expression for
the simulation time ratio is given by:

T(a) _ (20.3 + 0.98a) Nr(a)
T(16) no(a) Nr(16)

The values of the simulation ratio are first calculated theoretically
and then compared with the experimental results.

(8)

6.1.1 Theoretical simulation time ratio

Let simulation activity, N1(a), refer to the number of active elements
during all passes of a simulation. The simulation activity can be
expected to be inversely proportional to the number of faults per pass:

NT(Ol) _ 1_6
Nt(16)

For example, the expected simulation activity at 32 faults per pass
will be half the simulation activity of 16 faults per pass since the
number of passes needed will be halved. The theoretical expression
for the simulation time ratio becomes:

T(e) _ (203 + 0.982) 16
T(16) nolc) a

Note that the theoretical simulation time ratio is independent of the
simulation activity. Table II gives the variation of the optimum
number of processors, n,, and the variation of the simulation time
ratio as a function of the number of faults per pass, a. The theoretical
results show that the simulation time ratio, and thus the total simu-
lation time, decreases as the number of faults per pass increases.
Also, it is interesting to note that for 16 faults per pass the operation

&)

FAULT SIMULATION 3123

Table Il—Theoretical simulation
time ratio

Optimum Simulation
Number of Time Ratio,

Faults per Processors, T(x)
Pass, « n, T(16)
16 36 1.0
32 32 0.81
64 29 0.72
256 26 0.65
1024 25 0.64
Table Ill—Experimental simulation time
ratio

Optimum Simulation
Simulation Number of Time Ratio,

Faults per Activity, Processors, T(a)

Pass, o Ni(a) n, T(16)
16 17586 36 1.0

32 9374 32 0.86

64 5204 29 0.84

256 1787 26 1.06
1024 689 25 1.6

peaks at 36 processors, while for 1024 faults per pass the operation
peaks at 25 processors. As the number faults per pass increases, the
point of optimum operation occurs for a slightly smaller number of
processors. This is because the time required to transfer the increased
data is more than the time required to process the increased data.

6.1.2 Experimental simulation time ratio

The values of Nt(«) averaged over several experimental runs made
on the LAMP simulator'® (with a mapping algorithm from deductive
simulation to parallel simulation as discussed in Section 5.1) are given
in Table III. Also shown in Table III are values for the simulation
time ratio derived from eq. (8).

The experimental simulation time ratio, T(a)/T(16), is plotted
together with the theoretical simulation time ratio in Fig. 7.

It is interesting to note that as the number of faults per pass
increases, the experimental simulation time ratio falls below 1.0 ini-
tially, i.e., the simulation speeds up. After a certain point, the simu-
lation time ratio then starts increasing and goes above 1.0. The fastest
simulator is a 64 faults per pass simulator with 29 processors. On the
other hand, the theoretical simulation time ratio always stays below
1.0 and keeps decreasing as the number of faults per pass increases.
The difference in the experimental and theoretical results can be

3124 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

18
16— EXPERIMENTAL
-
Zle
SR b
Q
=
<
L]
w
=
~
& 1
=
<<
-
2
S o8
@
06l THEORETICAL
04] | | | |

16 32 64 256 1024
FAULTS PER PASS (a)

Fig. 7—Experimental and theoretical simulation time ratio for variation in number
of faults per pass—a time-shared parallel bus.

explained by examining the variation in simulation activity as the
number of faults per pass changes.

The curve for the theoretical simulation time ratio in Fig. 7 shows
that the simulation speed increases as the number of faults per pass
increases. This is as expected, since increasing the number of faults
per pass decreases the number of passes and thus the fanout search
and related processing time. In practice, however, there is extra
simulation activity due to longer value vectors and this tends to
increase the processing time. As more faults are simulated per vector,
i.e., as the value of « gets larger, the simulation activity during the
simulation will be higher than the theoretical. For example, as shown
earlier, the theoretical activity at 32 faults per pass will be half the
simulation activity at 16 faults per pass. However, the experimental
simulation activity at 32 faults per pass will be more than the expected
half. This is because the active faults in two value vectors at 16 faults
per pass will not always directly map into one value vector at 32 faults
per pass. Any active fault in the value vector will cause simulation
activity even if the good value does not change. The effect of this is to
cause extra schedulings. This increase in schedulings can be repre-
sented by an effective increase in the length of the simulation cycle
and the number of simulation cycles. The runs made on the LAMP
simulator show that most of the increase is in the length of the
simulation cycle (i.e., more computation during the simulation cycle).
The expected simulation activity and the actual simulation activity

FAULT SIMULATION 3125

obtained from runs made using the LAMP simulator are given in
Table IV.

For 32 faults per pass, the simulation activity is only 1.07 times that
theoretically expected. Thus the increase in processing time due to
this extra activity is not substantial and the overall speed of simulation
is higher due to the greater savings in the fanout search processing.
For 1024 faults per pass, the simulation activity is 2.51 times that
theoretically expected. In this case, the increase in processing time
due to the extra activity is substantial compared to the savings
obtained in the fanout search processing. This results in lowering the
overall speed of simulation when compared with 16 faults per pass.

In summary, for the multiprocessor fault simulator with a parallel-
bus-based communication structure, the fastest simulation speed oc-
curs for 64 faults per pass and 29 processors. Note, however, that the
number of processors required for 64 faults per pass is greater than
the number of processors for 1024 faults per pass. Decreasing the
number of processors for 64 faults per pass to 25 yields the total
simulation time of 13,413 us. This still favors the 64 fault per pass
simulator over the 1024 fault per pass simulator.

6.2 Simulator with cross-point matrix

The expressions for the processing time per simulation cycle, t,, and
the cross-point matrix communication time per simulation cycle,
te(matrixy, derived earlier in egs. (1) and (3) are applicable to variations
in the number of faults per pass. The increase in simulation activity
caused by simulating more faults per pass will increase both the
processing time and the communication time for the cross-point
matrix. However, adding one word pair to the value vector will cause
an increase in the communication time that is only 4 percent of the
increase in the processing time. Thus, the communication time will
always be less than the processing time. The cross-point matrix
provides sufficient communication capacity for the parallel fault sim-

Table IV—Effect of multiple
passes on simulation activity

Experimental Theoretical
Simulation Simulation

Faults per Activity, Activity,
Pass, a Nr(a) Nr(a)
16 17,586 17,586
32 9374 8793
64 5204 4396
256 1787 1099
1024 689 275

3126 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

ulator and does not cause a communication bottleneck. For faster fault
simulation, more processors can be added.

The variation of the simulation time ratio as a function of the
number of faults per pass will be investigated to obtain the optimum
number of faults per pass. Since the processing time dominates, the
total time required to simulate a set of faults with « faults will be
equal to the total processing time. Using eq. (1):

T(a) = (15.8 + 0. 76a)N r(@)

The simulation time ratio is given by:

T(e) Nr(a)
Titg) = (0-56 + 0.027a) .

The experimental and theoretical simulation time ratios are plotted
in Fig. 8. As was the case for the time-shared parallel bus, the
experimental simulation time ratio increases after 64 faults per pass.
This is because the time required to process the increased simulation
activity is greater than the time saved in the fanout search overhead
associated with each pass. For the multiprocessor fault simulator with
a cross-point-matrix-based communication structure, the optimum
number of faults per pass is 64. Using a different value for the number
of faults per pass will decrease the speed of simulation. Note that the

(10)

16
141
—
3le
": P
k121
e EXPERIMENTAL
g
'3 1
w
=
[
2 —
3 0.8
=
<
3 o0s
= U
w
TH:ORETICAL
0.4|-
|]] | |
0.2 16 32 64 256 1024

FAULTS PER PASS ()

Fig. 8—Experimental and theoretical simulation time ratio for variation in number
of faults per pass—cross-point matrix.

FAULT SIMULATION 3127

number of processors, n, does not affect the simulation time ratio.
More processors can be added to obtain greater speed.

When compared with the parallel bus the cross-point matrix pro-
vides greater