
ilrLn rL DECEMBER 1983
U u-u Lb VOL. 62, NO. 10, PART 2

[BS[E[UL §Y§1frEM
1f[E(([J=[]N ~([A[L B(Q)(urRNAJL

COMPUTING SCIENCE AND SYSTEMS

Theory of Program Testing-An Overview 3073
I{. E. Prather

Parallel Fault Simulation Using Distributed Processing 3107
Y. H. Levendel, P. R. Menon, and s. H. Patel

Two New Kinds of Biased Search Trees 3139
J. Feigenbaum and R. E. Tarjan

An Algebraic Theory of Relational Databases 3159
T. T. Lee

Generation of Syntax-Directed Editors With Text-Oriented 3205
Features

B. A. Bottos and C. M. R. Kintala

Performance Analysis of a Preemptive Priority Queue With 3225
Applications to Packet Communication Systems

M. G. Hluchyj, C. D. Tsao, and R. R. Boorstyn

THE BEll SYSTEM TECHNICAL JOURNAL

ADVISORY BOARD

D. E. PROCKNOW, President,

I. M. ROSS, President,

w. M. ElLiNGHAUS, President,

EDITORIAL COMMITTEE

Western Electric Company

Bell Telephone Laboratories, Incorporated

American Telephone and Telegraph Company

A. A. PENZIAS, Chairman, M. M. BUCHNER, JR., R. P. CLAGETT, B. R. DARNALL,

B. P. DONOHUE, III, I. DORROS, S. HORING, R. A. KELLEY, R. W. LUCKY, R. L. MARTIN,

J. S. NOWAK, G. SPIRO, and J. W. TIMKO

TECHNICAL EDITORIAL BOARD

M. D. MCILROY, Technical Editor, A. v. AHO, D. L. BAYER, W. FICHTNER, L. E. GALLAHER,

R. W. GRAVES, M. G. GRISHAM, B. W. KERNIGHAN, Y. E. LIEN, S. G. WASILEW, and s. J. YUILL

EDITORIAL STAFF

B. G. KING, Editor, PIERCE WHEELER, Managing Editor, LOUISE S. GOllER, Assistant Editor,

H. M. PURVIANCE, Art Editor, and B. G. GRUBER, Circulation

THE BELL SYSTEM TECHNICAL JOURNAL (ISSNOCXJ5-8580) is published by the American

Telephone and Telegraph Company; 195 Broadway, N.Y., N.Y. 1OCXJ7, C. L. Brown, Chairman

and Chief Executive Officer; W. M. Ellinghaus, President; V. A. Dwyer, Vice President and

Treasurer; T. O. Davis, Secretary.

The Journal is published in three parts. Part 1, general subjects, is published ten times each

year. Part 2, Computing Science and Systems, and Part 3, single-subject issues, are published

with Part 1 as the papers become available.

The subscription price includes all three parts. Subscriptions: United States-1 year $35; 2 years

$63; 3 years $84; foreign-1 year $45; 2 years $73; 3 years $94. Subscriptions to Part 2 only are

$10 ($11 foreign). Single copies of the journal are available at $5 ($6 foreign). Payment for

foreign subscriptions or single copies must be made in United States funds, or by check drawn

on a United States bank and made payable to The Bell System Technical Journal and sent to

Bell Laboratories, Circulation Dept., Room 1E-335, 101 J. F. Kennedy Parkway, Short Hills, N. J.

07078.

Single copies of material from this issue of The Bell System Technical Journal may be reproduced

for personal, noncommercial use. Permission to make multiple copies must be obtained from

the editor.

Comments on the technical content of any article or brief are welcome. These and other

editorial inquiries should be addressed to the Editor, The Bell System Technical Journal, Bell

Laboratories, Room 1J-319, 101 J. F. Kennedy Parkway, Short Hills, N. J. 07078. Comments and

inquiries, whether or not published, shall not be regarded as confidential or otherwise restricted

in use and will become the property of the American Telephone and Telegraph Company.

Comments selected for publication may be edited for brevity, subject to author approval.

Printed in U.S.A. Second-class postage paid at Short Hills, N. J. 07078 and additional mailing

offices. Postmaster: Send address changes to The Bell System Technical Journal, Room 1 E-335,

101 J. F. Kennedy Parkway, Short Hills, N. J. 07078.

© 1983 American Telephone and Telegraph Company.

Volume 62

TIHlIE BlElLlL SYSTEM
TlECIHIN~CAlL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING

ASPECTS OF COMPUTING

December 1983 Number 10, Part 2

Theory of Program Testing-An Overview

By R. E. PRATHER*

(Manuscript received January 18, 1983)

In this paper, we provide a detailed survey of the various approaches to
program testing that have been proposed in recent years. Particular attention
is given to a discussion of the developing theory of program testing and to the
decomposition of the testing problem into the program graph construction,
test path selection, and test case generation phases. Examples are included to
illustrate the different testing strategies. Comparisons are made from one
method to another, all in a uniform terminology and notation, to facilitate an
understanding of various combinations of strategies that might lead to a more
workable testing methodology.

I. INTRODUCTION

The general goal of software testing is to affirm the quality of a
program through systematic exercising of the code in a carefully
controlled environment. The execution of a program test scheme
should validate an expected prespecified behavior, ideally serving to
demonstrate the absence of program errors. Considering the difficulty
of obtaining actual proofs of program correctness, program testing

* University of Denver, Colorado.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro­
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa­
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3073

may be the only effective means for assuring the quality of software
systems of nontrivial complexity.

The state of the art in software testing as of a decade ago is broadly
surveyed in the book by Hetzel, l representing an ad hoc approach at
best. During the intervening years, computer programming method-
0logy has made great strides toward improving the quality of our
product. And yet, software testing has remained a kind of "black art",
only vaguely understood by its practitioners. Happily, this situation is
changing. The development of the beginnings of a theory of testing
are well under way, and the more recent literature shows great promise
for brighter days ahead. Some of these ideas are discussed in a new
book by Myers,2 and further elaboration can be found in the survey
papers by Miller.3

-
6

In this overview, we summarize in detail the more recent literature
on software testing and present the more important results in a
uniform framework, style, and notation. We hope that this perspective
will help to focus attention on the more viable alternatives and to
point the way toward the most promising directions for future research
and development.

II. GENERAL THEORY-THE FUNCTIONAL APPROACH

The first attempt to describe a generalized theory of testing is found
in the work of Goodenough and Gerhart,7,8 A related study is that of
Hamlet.9 In the former, a program is viewed as a function F:D ~ R
over an input domain D with values in an output range R. The program
specification can also be viewed as a function G:D ~ R, whether
completely specified or not. For testing purposes, we must compare
F(d) with G(d) for selected inputs d in D. Though such an exhaustive
test is not feasible in general, we say that the program F is correct if
we have

F(d) = G(d) (for all d in D),

recognizing that this is simply a theoretical notion, one not necessarily
capable of direction verification.

In any practical setting, we will only be able to examine the behavior
of the program for a few selected input values. Realizing this, we say
that a test for the program F is a (finite) subset T of D. Recalling the
'goal of software testing,' T is said to be an ideal test (for F) if

success(T) ~ correct(F),

i.e., if F(t) = G(t) for tin T implies the same for all tin D. Note that
the successful execution of an ideal test would constitute a proof of
correctness. Given the difficulty in finding proofs of correctness,
however, we should not be surprised to learn that ideal tests, in this

3074 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

sense, are difficult to discover. (We note that the 'trivial' ideal test,
the exhaustive one with T = D, though easily stated is ordinarily
unmanageable in size.)

As a matter of fact, we would prefer not to 'discover' our tests at all,
but to have them 'selected' on the basis of some sensible criterion.
Formally, a test selection criterion (for a program F) is a (true-false)
predicate C over the subsets of D. Following Goodenough and Gerhart
once again, such a criterion C is reliable (for F) if

C(Tl) and C(T2) ~ success(Tl) = success(T2),

and, on the other hand, C is said to be valid (for F) if

'-'correct(F) ~ '-'success(T)

for some T satisfying C(T). In general, reliability refers to the con­
sistency with which results will be produced within the selection
criterion, whereas validity refers to the ability to produce meaningful
results, regardless of their consistency.

It is clear that these notions of reliability and consistency are quite
strong. Perhaps the most convincing statement to this effect is given
by the following:
Theorem (Goodenough and Gerhart): If C is reliable and valid, then
C(T) implies that T is an ideal test.

On the other hand, Weyuker and OstrandlO have argued that these
notions are not strong enough, referring as they do to a particular
program. If the same ideas are extended, however, so as to apply
"uniformly" over all programs F, then one obtains the following:
Theorem (Weyuker and Ostrand): If C is uniformly reliable and uni­
formly valid, then CrT) implies that T = D, i.e., T is an exhaustive test.
Surely this carries the original ideas too far. And in fact, the theorem
can be understood to say, "If nothing is known about the errors in the
program, a test criterion is guaranteed ideal (in the sense of Gooden-
0ugh and Gerhart) if and only if it selects the entire input domain."
What is probably needed to arrive at a more practical alternative is a
weakening of the Goodenough and Gerhart theory. This is the general
thrust of Hamlet's work, but results along these lines thus far are less
than satisfactory, showing perhaps more promise toward applications
to program maintenance than to testing. The interested reader should
consult Ref. 9 for details.

A test selection criterion C should outline the properties of a
program that must be exercised to constitute a "thorough" test, ideally
one whose successful execution implies an error-free program. Follow­
ing Goodenough and Gerhart once again, we may suppose that C is
described as a finite set {c} of test predicates (i.e., logical conditions on

PROGRAM TESTING 3075

the input data), and we then choose T subject to the condition(s):

C(T) for all c in C, there is t in T with c(t)
<=> for all t in T, there is c in C with c(t).

In words, every test predicate belonging to C should be satisfied by at
least one test datum tin T, and conversely, every t in T must satisfy
at least one test predicate.

It is suggested that the test predicates be derived from the program
specifications-this is the essence of the functional approach (or "black
box" approach) to testing. But the claim is made 7 that to have a
reasonable chance of constituting a· reliable criterion, C must be
composed of test predicates satisfying (at least) the following set of
conditions:

Condition 1: Every individual branching condition in the program
must be represented by an equivalent test predicate.

Condition 2: Every potential termination condition (e.g., error,
overflow, etc.) must be represented by a corresponding test predicate.

Condition 3: The range of every variable appearing in a test predi­
cate must be partitioned into classes that are "treated in the same
way" by the program.

Condition 4: Every condition relevant to the proper functioning of
the program that is implicit in the program specification or of one's
knowledge of the program must be represented by a corresponding
test predicate.

Condition 5: The test predicates must be "independent," in that all
data satisfying a particular test predicate must exercise the same path
in the program and must test the same branch conditions.
We note that only the second and fourth of these conditions are of a
"functional" nature. The others are "structural," that is, relating more
t~ the topology of the underlying flowchart. It would seem, therefore,
that any reasonable testing strategy should address both points of
view.

Consider the following example, the often cited problem of classi-
fying triangles:

Specification:
Input: Three positive integers a ~ b ~ c.
Output: An indication as to whether:
1. They do not reptesent the sides of a triangle
2. They are the sides of an equilateral triangle
3. They are the sides of an isosceles triangle
4. They are the sides of a scalene right triangle
5. They are the sides of a scalene obtuse triangle
6. They are the sides of a scalene acute triangle.

This problem is especially well suited to the "functional" approach.

3076 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Since the whole purpose of the problem is to classify its input
domain, there is an obvious specification-based derivation of test
predicates. We may first divide the universe of triples (a, b, e) into
legal and illegal forms:

(a ~ b) and (b ~ e)

;/ ~
legal e1: illegal

For the legal entries, we may further distinguish two cases:

(a ~ b) and (b ~ e) y
a~b+e

y ~
e2: not- a triangle triangle

and the triangles may then be subdivided into six subclasses:

e3: (a = b) and (b = e) equilateral
e4: (a = b) and (b > e) isosceles
e5: (a> b) and (b = e) and (a < b + e) isosceles
e6: (a> b) and (b > e) and (a*a = b*b + e*e) right scalene
e7: (a> b) and (b > e) and (a*a < b*b + e*e) acute scalene
e8: (a> b) and (b > e) and (a*a > b*b + e*e) and (a < b + e)

obtuse scalene.

If we set C = {e(i) : i = 1 to 8} and choose one triple from each input
subdomain, we may obtain the test set:

t1 = (1, 2, 3)
t2 = (14, 6, 4)
t3 = (1, 1, 1)
t4 = (2, 2, 1)
t5 = (3, 2, 2)
t6 = (5, 4, 3)
t7 = (6, 5, 4)
t8 = (4, 3, 2).

Such a test set will automatically satisfy (*) and the test selection
criteria will more than likely meet Conditions 2 and 4 above. But we
have no guarantee that the "structural" conditions 1, 3, 5 will be met,
since we haven't looked at the program!

PROGRAM TESTING 3077

Weyuker and Ostrand10,11 have made the cogent suggestion that the
input domain be partitioned both on the basis of the specification­
driven, program-independent properties mentioned above, and on the
structural properties of the program as well. It seems that this is the
only way to meet all five of the Goodenough and Gerhart conditions,
and to thus have a chance of approaching a reliable test selection
criterion C = {c} defined by a set of test predicates.

Suppose we add a sixth (implicit) condition to the five that are
outlined above, namely:

Condition 6: The test predicates must be "complete" in that every
input of the domain D must satisfy (exactly-see condition 5) one of
the test predicates.
Then Conditions 5 and 6 ensure that C = {c} defines a partition

K = {C}

on the input domain. When we concentrate only on the problem
specifications, as above, we obtain the problem partition consisting of
problem domains C. Having a completed version of the program in
hand, we may speak as well of a path partition

7r = {PI

of the same domain D, where each path domain P comprises a class of
inputs that traverse the same path through the program. Thus, the
path partition separates D into classes of inputs that are treated the
same way by the program, whereas the problem partition separates D
into classes that should be treated the same.

There is no assurance that these two partitions will coincide, nor is
it necessary that they do. But ultimately (or at least, hopefully), the
program and its algorithm all derive from the original problem speci­
fication, so we should not expect the two paritions to differ markedly.
On the other hand, those differences that do exist are fruitful places
to look for errors! Recognizing this, Weyuker and Ostrand have
suggested that the problem and path partitions be intersected, yielding
a finer partition

(J = K 1\ 7r = {C n P} = IS}

of nonoverlapping subdomains S of the domain D, and they further
suggest that this be used as the ultimate test selection criterion,
choosing one test case from each subdomain as before.

In the terminology of Weyuker and Ostrand,lo,11 a subdomain S of
D is said to be revealing (of errors) if

success(s in S) ~ correct(F, S),

i.e., if the successful execution of any input from S implies correctness

3078 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

of the program over the whole subdomain. Since the inputs of a
subdomain S (in the intersection above) should be and in fact are
treated the same by the program, the hope is extended that these are,
in essence, the revealing subdomains. A successful execution of one
test datum from each of the sub domains S then implies (or at least
suggests) the correctness of the program over the whole domain.

Consider the "triangle classification problem" once again, and sup­
pose we are presented with the program (flowchart) of Fig. 1 as

F

F

Fig. 1-Flowchart for classifying triangles.

PROGRAM TESTING 3079

representing a solution to the problem. There are six paths through
the program, as described by the conjunctions of branch conditions
defined by each path, as follows:

pI: -[(a ~ b) and (b ~ c)] = (a < b) or (b < c)
p2: (a> b > c) and (a*a = b*b + c*c)
p3: (a> b > c) and (a*a < b*b + c*c)
p4: (a> b > c) and (a*a > b*b + c*c)
p5 : (a ~ b ~ c) and [(a = b) or (b = c)] and -[(a = b) and (b = c)]

= (a = b> c) or (a> b = c)
p6: a = b = c.

Intersecting the six corresponding path domains P[i] (i = 1 to 6) with
the eight earlier problem domains C[i] results in a partition {8} of
nine subdomains characterized as follows:

81 = Cl = Cl n PI : (a < b) or (b < c)
82 = C2 n P4 : (a > b > c) and (a ~ b + c)
83 = C2 n P5 : (b = c) and (a ~ b + c)
84 = C3 = C3 n P6 : a = b = c
85 = C4 = C4 n P5 : a = b > c
86 = C5 = C5 n P5 : (a> b = c) and (a < b + c)
87 = C6 = C6 n P2 : (a> b > c) and (a*a = b*b + c*c)
88 = C7 = C7 n P3 : (a> b > c) and (a*a < b*b + c*c)
89 = C8 = C8 n P4 : (a> b > c) and (a*a > b*b + c*c)

and (a < b + c)

in very close agreement with the problem partition {C} obtained
earlier.

The problem we are discussing has a rather precise functional
specification so that we would expect that the problem and path
partitions might nearly coincide. Nevertheless, there is a slight dis­
crepancy, and in place of the test datum t2 = (14,6,4) we would now
have to choose two, say (14, 6, 4) and (3, 1, 1). A test of the resulting
nine data points would then reveal two errors, as shown in Table I
below.

Domain

81
82
83
84
85
86
87
88
89

Table I-Test of nine data points

Test Data

(1, 2, 3)
(14, 6, 4)

(3, 1, 1)
(1, 1, 1)
(2,2,1)
(3,2,2)
(5,4,3)
(6, 5, 4)
(4, 3, 2)

Correct Output

Illegal
Not a triangle
Not a triangle

Equilateral
Isosceles
Isosceles

Right
Acute
Obtuse

Actual Output

illegal
obtuse

isosceles
equilateral
isosceles
isosceles

right
acute

obtuse

3080 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

The programmer has failed to take account of those situations where
a ~ b + c (not a triangle). And our test criteria are able to detect such
errors. In fact, so detailed is the specification for this example that a
test set based on the problem partition alone would have served equally
well.

In spite of the obvious relevance of the ideas presented here, partic­
ularly those of Weyuker and Ostrand, a good deal of work remains to
be done to apply the theory to a wide class of programs. One of the
more important tasks is to find more systematic methods for con­
structing the problem partition. This will not be easy, since finding a
good problem partition is quite similar to the task of creating the
program itself. It is suggested, however, that the development of formal
specification languages would be helpful here, particularly if such
developments are made with a specification-driven testing methodol­
ogy in mind, along the lines presented here.

An equally important consideration when thinking of applying the
above theory to larger programs is that of obtaining the domains of
the path partition. How are the paths to be described, generated, and
selected with programs of increasing size and complexity? It is cer­
tainly clear that our one example is misleading in this respect. We
had only a small number of paths to consider, whereas a typical
program of any size will have a very large number of paths, most likely
an infinity of paths, owing to the presence of loops. If our test is still
to be finite, how do we then choose paths judiciously? How are they
described? And most importantly, how do we generate test cases that
will traverse these paths, if indeed this is possible? These are some of
the questions that we begin to address in the following sections.

III. GENERAL THEORY-THE STRUCTURAL APPROACH
In a structural approach to the theory of testing, a program F is

represented by a "skeleton" of its underlying flowchart, a directed
graph symbolizing the flow of control. This point of view is advanced
most effectively in the extremely lucid survey paper by Huang.12 We
should keep in mind, however, that the flowchart graph must be an
accurate representation of the program flow in the code itself. Ordi­
narily, this is ensured through the use of a "tool" that automatically
generates the flowgraph from the source program listing.

Using Huang's terminology/2-14 a program bloch is a maximal se­
quence of program statements having the property that if the first
member of the sequence is executed, then all other statements in the
sequence will also be executed. A program graph F = (V, E) is then a
directed graph with vertex set V and edge set E, where each vertex is
associated with a program block and in which there are pairs of edges:

(i, j) labeled by the condition C
(i, h) labeled by the condition """C

PROGRAM TESTING 3081

according as the flowchart segment:

encountered for blocks Bi, Bj, and Bk. (For convenience, we permit an
empty block as a vertex in good standing, e.g., for treating an "if ...
then ... " statement with vacuous "else" clause.) It is further assumed
that the graph has a single entry point, the start vertex, and a single
exit point, the stop vertex, and that every vertex lies on some path
from 'start' to 'stop.'

A path in a (program) graph is defined in the usual way, as a
sequence of edges

p = el, e2, ... ,en,

though we ordinarily assume as well that we begin the sequence at
'start' and end at 'stop.' Each such path has an associated path
predicate

P = PI 1\ ... 1\ Pn

written as a conjunction of the individual interpreted branch condition
labels on the edges e, as discussed below (see Section V). The path
predicates P are to be identified in one-to-one correspondence with
the path domains of the previous section. Thus we may write (some­
what ambiguously):

D = U P for P = (d in D: P(d)}

so that the program function F: D ~ R is a union of functions F(P) :
P ~ R restricting F to the individual path domains P.

In structured testing, we examine the program (as a digraph) and
we seek to choose a finite set of paths that will cover the program with
a certain degree of thoroughness. It is then hoped that test data
causing the program to be successfully executed when traversing these
paths are sufficient to warrant our confidence in the program's cor­
rectness. The theoretical underpinnings of such a testing plan have
been studied by Howden,15-18 who relates his work to the earlier study
by Goodenough and Gerhart.7 Rather than speaking of a "test criteria,"
however, Howden refers to a testing strategy, as a uniform computable
function

(F: D ~ R) ~ (T, subset of D)

3082 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

that associates with each program F a finite test set T of D. H is said
to be an ideal strategy if each T = H(F) is an ideal test (for every
program F). As is so often the case with testing theory, the first result
is of a negative character:
Theorem (Howden): An ideal testing strategy does not exist.

Nevertheless, Howden was able to show that "path testing" can be
a reliable approach, at least for detecting certain types of errors. He
takes the view that the program being treated is a member of a class
of programs differing only as to whether they are correct, and for
which the incorrect programs have errors of various (known) types.
His objective was then to find, if possible, a restricted set of programs
for which certain forms of structured testing (i.e., path testing) would
be reliable. Typical of Howden's results is that which assumes that
the error in a program does not change its control flow, i.e., that the
set of path domains is not affected.
Theorem (Howden): Path testing is a reliable method for distinguishing
correct from incorrect programs, as long as the errors of incorrect
programs do not affect the path partition.

Of course, there are theoretical limitations in applying results such
as this, since Howden has in mind our choosing one test datum from
each path domain P, and these may be infinite in number. On the
other hand, he has also devised a classification of error types that can
be expected to lead to new insights into the testing problem generally.
The reader should consult Howden's work (particularly Refs. 16 and
17) for further detail.

In a practical test setting, we require that the subset T of D be
finite. Moreover, if we are speaking of a "path testing strategy," the
above schema will be decomposed into the three-stage process,

(F:D --~R) - - - - ~(Tof D)

program graph 1 r test case
construction generation

F= (V, E)) {PI

summarized as follows:

test path
selection

1. Program graph construction
2. Test path selection
3. Test case generation.

The first phase of the process, to construct the program graph from a
source code listing, is fairly straightforward, and for most of the
conventional programming languages, e.g., FORTRAN, Pascal, etc.,
such implementations are already in existence.

PROGRAM TESTING 3083

As a matter of fact, implementations of testing tools are in various
stages of development for treating the entire process outlined above
(e.g., see Clarke19

). But, as we shall see, there are serious problems
associated with the latter stages of any proposed implementation along
these lines. There are many alternative strategies to choose from, and
seemingly, none of these is best for all situations. All we can do at this
point is to outline the several alternatives and comment on their
general suitability. We begin by introducing the various path selection
criteria, continuing this discussion in the next section. The last, and
perhaps the most difficult, of our three subprocesses, the generation
of test data, is treated in Section V.

There are, as we have indicated, a number of path selection criteria
that can be used in attempting to devise a testing strategy that will
provide a reasonable coverage of a program graph. Among these criteria
are:

1. Statement coverage: Execute all statements (blocks) in the graph.
2. Node coverage: Encounter all decision node entry points in the

graph.
3. Branch coverage: Encounter all exit branches of each decision

node in the graph.
4. Multiple condition coverage: Achieve all possible combinations of

condition outcomes at each decision node of the graph.
5. Path coverage: Traverse all paths in the graph.

These five strategies are related in their strength of coverage as shown
below:

path coverage multiple condition coverage

"'" / branch coverage

/' ~
node coverage statement coverage

with the weaker criteria at the bottom and the stronger criteria at the
top.

As an example illustrating the differing requirements of these cri­
teria, consider the flowchart segment (program graph) shown in Fig.
2. In order to achieve node coverage, the single test:

abe: A = 2, B = 1, X = 1

will suffice (but it will not achieve statement coverage because the
assignment X ~ XI A will not have been executed). On the other hand,
the single test:

ace: A = 2, B = 0, X = 3

will be sufficient for complete statement coverage (and node coverage

3084 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

b

Fig. 2-Flowchart segment illustrating coverage criteria.

as well}. For branch coverage, however, at least two tests would be
required, e.g.,

acd: A = 3, B = 0, X = 3
abe: A - 2, B = 1, X = 1.

In the multiple condition coverage criterion, there are 2*2 + 2*2 or 8
outcomes to achieve in combination for the two simple conditions at
each decision node. These may be satisfied, for example, by the
selection of four separate tests, e.g.,

ace: A = 2, B = 0, X = 4
abe: A = 2, B = 1, X = 1
abe: A = 1, B = 0, X = 2
abd: A = 1, B = 1, X = 1.

The first test satisfies the conditions A> 1, B = ° in the first decision
and A = 2, X > 1 in the second decision. The second test ensures that
A > 1, B =1= ° for the first decision and A = 2, X ~ 1 for the second
decision. Further analysis shows that all eight combinations are
achieved. For the path coverage criterion to be met, we again require
four tests, e.g.,

ace: A = 2, B = 0, X = 4
acd: A = 3, B = 0, X = 3
abe: A = 1, B = 0, X = 2
abd: A = 1, B = 1, X = 1.

Note, however, that this test set would not satisfy the multiple con­
dition coverage criterion.

PROGRAM TESTING 3085

It is clear that "statement coverage" and "node coverage" are in
themselves rather weak strategies for testing, representing necessary
but by no means sufficient criteria for a reasonable structural test.
The "branch coverage" criterion, however, implies the other two (as
seen in the diagram above) and has come to be regarded as a minimal
standard of achievement in structure-based testing. The stronger
criteria of "multiple condition coverage" and "path coverage" are
difficult to achieve in a program of any complexity. In fact, the path
testing criterion is usually relaxed to the extent that only "equivalence
classes" of paths are represented. In a program of any size, particularly
in the presence of program loops, there is a virtual infinity of paths
through the program graph. Two paths are then considered "equiva­
lent" if they differ only in their number of loop traversals. One then
chooses only one representative from each such equivalence class in
devising a test set. But still, this modified path coverage criterion is
difficult to achieve in practice.

A survey of the literature shows that there is little common agree­
ment as to what would be considered as an 'adequate' structural test
criterion. As we have noted, the "branch coverage" criterion has been
widely recognized as a basic measure of testing thoroughness. This is
evidenced by the fact that most of the major software testing tools in
existence or in development do indeed include some provision for
achieving this particular test goal. The disagreement seems to be in
deciding how much more (or less) is needed beyond this basic require­
ment to entitle a structural testing strategy to be considered adequate.

If total branch coverage is indeed used as a measure of testing
thoroughness, a simple calibration scheme can be invoked, using a set
of software counters. One "prepares" the program for testing by in­
serting counters at appropriate points in a modified copy of the
program, and after running through the test set, one can determine
the degree of thoroughness from a listing of the resulting counter
values. This is the method of test instrumentation. We first define a
decision to decision (DD) path of a program to be a sequence of a
statements leading from a decision box (or the "start" node) to a
decision box (or the "stop" node), having no intervening decisions. To
determine whether every branch of our program has been encountered
at least once (branch coverage) in our testing, it is sufficient to insert
a counter at the 'head' of each DD path.

Consider the classical flowchart solution (Fig. 3) to the problem of
computing z = "x to the power y". Here, there are five DD paths:

abc, d, efhi, gfhi, jk

and we therefore insert our software counters at the points a, d, e, g,

3086 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

1--------., (j)

o

k

Fig. 3-Flowchart for computing xY.

j, as shown. If we have run two test cases as shown in the table below,

x Y
10 0
20 1

a d
1 0
1 1

e g J
001
101

we would find that 'counter g' has not yet been activated. Inspection
of the flowchart then shows that we need a test to traverse the path
a, b, c, d, g, etc., requiring y =1= 0, Y mod 2 =1= 1. So we may use
x = 24 andy = 2, say, as an additional test case, thus ensuring complete
branch coverage. Ideally, this latter phase, directing the tester to the
area of untested code, would also be automated.

Of course, we would like to automate as much of the testing meth­
odology as possible, recalling the three-stage process mentioned earlier.
On the other hand, in lieu of a complete mechanization, the testing

PROGRAM TESTING 3087

instrumentation scheme presented here can be of great help in isolat­
ing areas in need of further testing. Furthermore, it can be argued that
for the little extra cost entailed, it is a worthwhile investment in any
testing process, fully automated or not. [Parenthetically, we might
note as an indication of the expense associated with the development
of testing tools generally, that a package that does little more than
"test instrumentation," as described here, has been announced recently
(Computer, May 1982) by Management and Computer Services, selling
for $12,000.00!.] It may be that some other criterion than "branch
coverage" is being used as a measure of test thoroughness. It is still
good practice to be concerned as to what extent this standard measure
is being met. Moreover, it is reasonable to suppose that the "instru­
mentation concept," as exemplified here, might generalize to settings
where other thoroughness criteria are being used.

IV. TEST PATH SELECTION

As we have indicated, there are a number of criteria that can be
used in selecting program paths to achieve an adequate testing cover­
age. But the question then becomes: How do we automatically generate
a collection of paths meeting a given criterion? The literature is
somewhat "hazy" on this point. Perhaps the most explicit treatment
of the problem is that of Paige,20-22 in reference to programs built up
from a strict adherence to the structured programming methodology.
In fact, we know of no more general approach to the problem, one
that would handle structured or unstructured code in relation to the
whole spectrum of path selection criteria.

Recall that a structured program F is one that has been built up
inductively from certain "simple statements" as a base (typically, the
assignment, input and output statements, and procedure calls), using
only the three familiar constructs:

1. Sequence: begin PI; P2; ... ; Pn end
2. Selection: if C then P else Q
3. Repetition: while C do P

for structured (but possibly themselves compound) statements Pi, P,
Q, respectively. The resulting program graph F = (V, E) is then of a
correspondingly restricted form, greatly facilitating the path analysis
problem. Perhaps collapsing sequences of simple statements to a single
block (graph node), one may then use a "regular expression" r(F) to
characterize the program flow, associating

1. The ' .' operator to sequences
2. The '+' operator to selections
3. The (Kleene) ,*, operator to repetitions,

respectively.
For example, if F is the (structured) program graph shown in Fig.

3088 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

4, we have

r(F) = a(b(d + e)(k + 1) + c(f + g(h(i + j))*m))

as the corresponding regular expression. Note the loop (h(i + j))*
resulting from a "while" statement.

We have mentioned earlier, in reference to the modified path cov­
erage criterion, how an equivalence relation is often used to obtain a
finite representation of the path alternatives in the presence of loops.
Accordingly, if we make the substitution x* = x + 1 (1 = null) in the
regular expression r(F), we acknowledge that a loop is either executed
or not. Multiplying out so as to obtain a "sum of products" expression,
one then obtains the desired collection of paths satisfying the modified
path coverage criterion, e.g.,

abdk act
abdl acghim
abek acghjm
abel acgm

in reference to the program graph of Fig. 4. On the other hand, it does
not appear that this technique can be extended to handle unstructured
programs.

But if we continue to deal with a structured program graph, we can
describe a method for deriving a minimum number of paths sufficient
to meet the "branch coverage" criterion. We assign a set of paths S(r)
to each regular expression r = r(F) inductively, as follows. We let
S(a) = {a} for each simple statement a, and then, assuming that S(r)

d

k

Fig. 4-Structured program graph illustrating modified path coverage criterion.

PROGRAM TESTING 3089

and S(t) have been defined, for regular expressions rand t, we set:
1. S(r. t) = S(r) .S(t)
2. S(r + t) = S(r) U S(t)
3. S(r*) = S(r)*.

Here, S(r)* is the singleton set obtained by concatenating (in any
order) all of the paths in S(r), and similarly, the set product S(r)·S(t)
is obtained by concatenating paths in S(r) with those in S(t)-but
retaining only enough products so that each of the factors from S(r)
and S(t) are represented. It follows that

1. I S (r. t) I = max { I S (r) I, I S (t) I }
2. I S(r + t) I = I S(r) I + I S(t) I
3. I S(r*) I = 1.

By way of illustration, in considering once again the example from
Fig. 4, we may compute:

etc., and finally,

S(i + j) = Ii, j}
S(h(i + j)) = {hi, hj}
S«h(i + j))*) = {hihj}
S(g(h(i + j))*m) = {ghihjm},

S(r) = {abdk, abel, act, acghihjm},

yielding four paths that together cover all of the branches of the
program.

Once again, as in the case of the previous algorithm, there seems to
be no easy extension of this technique that would handle unstructured
programs as well. However, a general upper bound is readily available
regarding the number of paths necessary for total branch coverage.
Whether our program is structured or not, we make the observation
that if a test path reaches a particular node of the program graph,
then it must exit this node through one of the (two) branches leaving
the node. If the graph F has e edges and n nodes, it follows that

v(F) = e - (n - 2) = e - n + 2

is an upper bound on the number of paths necessary to achieve total
branch coverage. Coincidentally, this is the formula for McCabe's
cyclomatic complexity measure,23 a figure that has proved to be useful
in estimating overall "program complexity". At the same time, the
graph theoretic derivation of a program's "independent" circuits
(paths) yields a branch covering of paths, v(F) in number-though
generally somewhat in excess of the minimum number of paths that
would be required. In the context of our running example, we have

3090 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

v(F) = 13 - 8 + 2 = 7 and a corresponding set of basis paths:

acf acgm
abdk acghim
abek acghjm.
abel

Note that the single path abdl from our "path coverage" list that is
not present here is itself a linear combination of paths already listed.
Note as well that we obtain seven paths here, whereas we know from
the preceding analysis that four paths will suffice (for branch cover­
age).

The whole notion that McCabe's basis of program paths should
constitute a goal of program testing has attracted considerable atten­
tion' and we feel obliged to comment on this point. Perhaps this is
best done by listing what we think are the pros and cons to the
approach. On the positive side, we cite the following:

1. The method is sufficiently general as to be applicable to both
structured and unstructured programs.

2. The resulting "basis" does indeed ensure total branch coverage.
3. The paths of a basis are feasibly computable, using standard

graph theoretic techniques.
On the other hand, these aspects must be counterbalanced with the
following:

1. A single basis is not uniquely determined-there are many, and
we must make a choice.

2. The number v(F) of paths in a basis can greatly exceed the
minimum number of paths required to achieve branch coverage.

3. The notion that, in some sense, every path in the program graph
is accounted for by our having selected a basis is somewhat specious.
Note that we do not comment here on the inadequacies of McCabe's
v(F) as a measure of overall program complexity-we leave this
discussion to a separate, paper. On the other hand, the arguments for
and against the use of the associated "basis of program paths" as a
testing strategy are inconclusive at best, particularly in comparison
with the "level paths" of Paige21

,22 that we now describe.
In a program graph F = (V, E), a level-O path is a simple (acyclic)

path from "start" to "stop". In effect, these paths trace the "fall
through" conditions in the program. Then, inductively, a level-i path
(i > 0) is a simple path (perhaps a circuit) that begins and ends on
nodes of a path of lower level, but has none of its other nodes previously
appearing on paths of a lower level. Intuitively, the level-i paths for
i > 0 account for program loops of increasing nesting level and for
feedback paths, etc., in the case of an unstructured program.

Considering our earlier structured program graph (Fig. 4) and the

PROGRAM TESTING 3091

unstructured program graph of Fig. 5, we tabulate the respective level­
i paths as shown in Tables II and III.

In any case, we are able to say that a given level-(i + 1) path is
"associated with" a certain level-i path according as the given path
begins and ends on nodes of the parent path. This relationship orders
the level paths in a tree-like structure, in such a way that one can
readily construct test paths that again effect a total branch coverage.
In so doing, only level paths that associate can be combined to form a
program test path. Thus, for example, in the case of the program graph
of Fig. 4 above, we may construct the path acghihjm as the linear
combination:

acghihjm = (6) + (7) + (8)

using the notation in Table II.
It is clear that the level paths of a program graph span the space of

Fig. 5-Unstructured program graph.

Table II-Level-i ·paths for structured program graph
(see Fig. 4)

Level Level Paths V[i] E[i]

-1 11,8) 0

(1) abdk
(2) abdl

0 (3) abek 12, 3, 4, 5, 6) la, b, c, d, e, t, g, k, l, m)
(4) abel
(5) act
(6) acgm

1 (7) hi 17) Ih, i,j)
(8) hj

Note: The sets V[i] and E[i] of vertices and edges at level-i are useful in the
computation of the level-(i + 1) paths.

3092 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Table Ill-Level-i paths for unstructured program graph
(see Fig. 5)

Level Level Paths V[i] E[i]

-1 11,71 0
(1) acgjl
(2) acgkl
(3) abfgjl

0 (4) abfgkl
(5) ach

12, 3,4, 5, 61 la, b, c, f, g, h, j, k, lj

(6) abfh

(7) d
1 (8) e 0 Id, e, il

(9) i

Note: The sets V[i] and E[i] of vertices and edges at level-i are useful in
the computation of the level-(i + 1) paths.

program paths. But taken together, they do not usually constitute a
basis. Thus, again in Fig. 4 above, we have eight-level paths, whereas
we know from our previous analysis that this graph has rank v = 7.
On the other hand, Paige's level paths have a definite uniqueness, an
advantage over the notion of a basis as developed by McCabe, and
leading to a graduated level path testing strategy as follows:

1. First test all level-O paths-in effect, keeping all loops in the
"nonexecuting" mode.

2. Next test all level-l paths, reaching them through their associated
level-O paths, etc.
The result is a highly structured testing strategy where segments of
the program are treated in successive layers of nesting depth.

The level path testing strategy provides for a rather exhaustive
treatment of a program's path structure at successive depths of nesting.
In this sense, the approach has a potential thoroughness rivaling that
of the "modified path coverage" criterion. On the other hand, Paige's
strategy is readily applicable to both structured and unstructured
programs. At the same time, his method lends itself to a convenient
algorithmic solution,22 though one must be prepared to compute all
simple paths (or circuits) between various identified pairs of nodes,
along edges not previously used-most likely requiring the use of a
"depth first search" strategy. Except for this computational difficulty,
the approach is quite orderly; it provides for a more thorough testing
than simple branch coverage, and it compares favorably against
McCabe's "basis of program paths" in that:

1. The level paths are uniquely determined.
2. The number of level paths will exceed v(F).
3. The notion that somehow every path in the program graph is

accounted for by our successive treatment of its levels has a good deal
more credibility.

PROGRAM TESTING 3093

In conclusion, it must be noted that all of the methods we have
discussed for selecting program test paths are subject to one overriding
criticism. There is absolutely no assurance that the paths selected will
be feasible, i.e., executable with an appropriate choice of input data.
We suggest that this problem becomes more serious (and is surely
more difficult to analyze) in the case of paths selected in an attempt
to minimize the number required for branch coverage. Paige's "level
path" strategy would seem to be easier to handle in this respect, since
we build up paths from the simple to the more complex, starting with
those that are more likely to be feasible.

v. TEST CASE GENERATION

The whole question of path feasibility is related to the "test case
generation" problem. This is the one remaining phase to be discussed
of the three that were outlined in the rectangular problem-decompo­
sition paradigm of Section III. Considering the question of feasibility,
however, we can see that it is difficult to so trichotomize the automa­
tion of the overall testing program. Though useful as a paradigm, we
must admit that this partition of the problem is overly idealistic in
relation to the real world of program testing that we are likely to
encounter.

Suppose we have selected a set of program paths because they meet
one or another of the test coverage criteria, or for whatever reason.
There still remains the problem of generating corresponding test cases
that will drive the program through the indicated paths. This again
turns out to be a nontrivial (and in some cases, unsolvable) problem.
All we can do at this point is to summarize the approaches that have
been taken by researchers in the field and to give a few suggestions
that might aid in developing a workable methodology.

Perhaps the most comprehensive treatment of the problem is that
of Clarke.19

,24,25 Consider a single path p from "start" to "stop" through
a program F = (V, E), again viewed as a directed graph. We intend to
show how p may be characterized as a path predicate, i.e., a logical
condition

P = PI 1\ P2 1\ ... 1\ Pn

expressed as a conjunction of "interpreted" branch conditions derived
from the labels on the edges of F. Inductively, we may think of p as
having developed as a sequence of "partial paths:"

p(k) = (u[O] = start, u[I], ... , u[kD

leading from "start" to some intermediate vertex u(k) on the way to

3094 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

"stop". Correspondingly, we may give an inductive derivation of the
path predicate, writing P(O) = true and

P(k) = P(k - 1) /\ ibp(u[k - 1], u[k]),

where the latter conjunct is the interpreted branch predicate associated
with the transition from vertex u[k - 1] to u[k]. More precisely, ibp(e)
for an edge e labeled with the Boolean condition C will be computed
by substituting (in C) the current "symbolic values" of all variables
according to their updating along the partial path p(k).

For example, consider the flowchart solution (Fig. 6) for estimating
the point where a function f takes on its maximum value. For the path

r--------t b

k

n

Fig. 6-Flowchart for estimating the point where a function is maximized.

PROGRAM TESTING 3095

p = abclmn, we compute

and finally,

P(O) = true
P(l) = P(O) 1\ true = true
P(2) = P(l) 1\ true = true
P(3) = P(2) 1\ (b - a ~ c) = (b - a ~ c)
P(4) = P(3) 1\ true = (b - a ~ c)

P = P(5) = P(4) 1\ true = (b - a ~ c),

noting that it was necessary to substitute a - b for w in the condition
for traversing edge 1 because of the earlier assignment statement.

In general, this process of continually updating the symbolic values
of program variables as we proceed along a path is called symbolic
execution (or symbolic evaluation). The data descriptions generated in
symbolic execution provide a precise representation of the changing
program state. Initially, the program state is the three-place vector:

state = [start, values (start), pathpred (start)]
= (start, (.1, .1, ... , .1), true),

where "values" tabulates the symbolic values of all program variables
(.1 = undefined), and "pathpred" stores the inductively generated path
predicate P as described earlier. Symbolic names are assigned (in
"values") to input variables whenever a read statement is encountered
on the program path. Throughout the symbolic evaluation, all symbolic
representations of variable and branch predicate values are then
expressed in terms of these symbolic names, as representatives of
input values. In particular, as one encounters an assignment statement
(v ~ e), the symbolic value of the program variable v is updated (as
in the example above) through substitution of the symbolic value of
the expression e. In this way, "state" and especially the "values" vector
will provide a continually updated snapshot of the program's devel­
opment along the path. Moreover, the final value of the "pathpred"
component of "state" provides the logical conjunction described above.

This path predicate P defines a corresponding (path) subdomain of
the input space D, and by the nature of the symbolic evaluation
technique, P is expressed as a set of conditions on the input variables
alone. To generate a test case (of input data) that will cause the
program to traverse the path p, it is then only necessary to find input
values that satisfy all of these conditions. As we might expect, however,
this is often easier said than done.

3096 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Before discussing this problem in any detail, it is better that we first
describe an alternative to the above approach, one that proceeds in
reverse-from the end of the path to its beginning. This technique,
known appropriately as backward substitution, is best described in the
survey paper by Huang.12 To traverse a path p, certain conditions
must be met, i.e., the set of branch conditions (C or --C) along the
path must be satisfied as they are encountered. On the other hand,
suppose that an assignment statement (v ~ e) intervenes, between
"start" and the predicate Q, the latter representing a given branch
condition (though modified by "partial backward substitution" as we
are now describing). In the following flowchart segment:

if we want Q to be true after the assignment (v ~ e) has been executed,
then the predicate Q(v ~ e) must be satisfied prior to its execution.
Here, Q(v ~ e) is the predicate obtained by substituting the expression
e for each occurrence of v in Q [and we speak of Q(v ~ e) as the
predicate obtained by dragging Q backward through the indicated
assignment statement]. It follows that the conjunction

R 1\ Q(v ~ e)

is necessary for our passage along the edge with condition R (through
the assignment) and then to satisfy Q.

Altogether, if we want the specific path p to be traversed in a
program's execution, then we must drag each of its edge conditions
backward to "start", and the conjunction of all resulting predicates
must be satisfied by the corresponding test case of input data. Note
once again that we obtain in this way a corresponding path predicate:

P = PI 1\ P2 1\ ... 1\ Pn,

i.e., a conjunction of modified branch conditions, each expressed in
terms of the input variables to the program.

Consider once again the example of Fig. 6, and suppose we wish to
traverse the path abcdefghikclmn. The listing shown below traces the
dragging of the three necessary branch conditions backward along this

PROGRAM TESTING 3097

path:

w ~ c
c w ~ c
k b-a~c
l b-p~c u<v
h b-p~c u<v
g b - p ~ c u < f(q)
f b - p ~ c u < f(b - w/3)
e b - p ~ c f(P) < f(b - w/3)
d b - (a + w/3) ~ c f(a + w/3) < f(b - w/3) -(w ~ c)
c b - (a + w/3) ~ c f(a + w/3) < f(b - w/3) -(w ~ c)
b b - a - (b - a)/3 ~ c f(a + (b - a)/3) <f(b - (b - a)/3)-(w ~ c)
a b - a - (b - a)/3 ~ c f(a + (b - a)/3) <f(b - (b - a)/3)-(w ~ c)

One finally obtains the conjunction of three predicates:

PI : b - a - (b - a)/3 ~ c
P2 : f(a + (b - a)/3) < f(b - (b - a)/3)
P3 : -- (b - a ~ c)

all expressed in terms of the inputs a, b, c (and the "called" function
f). For purposes of comparison, the reader may try to compute an
equivalent predicate using the symbolic execution method.

In an overall comparison of these two methods, one can identify an
obvious "trade-off." With backward substitution, we avoid the costly
storage facility needed for the continuous updating of all the symbolic
program variable values. On the other hand, an important advantage
accrues to the symbolic execution method, one that is not available
for the backward substitution technique. Namely, we are more easily
able to determine whether a given path is (or will be) feasible. And we
can make the determination early in the symbolic evaluation. We need
only check that the inductively generated predicates P(k) are noncon­
tradictory, as far as they go. We begin with P(O) = true-certainly
there is no contradiction here. Then, in the expression for P(k) in
terms of P(k - 1), we have only to see whether ibp(v[k - 1], v[k])
contradicts P(k - 1). If so, P(k) and hence P itself is contradictory,
and the path p is infeasible. Otherwise, we keep going. Note, in
comparison, that with the backward substitution method, we wouldn't
know whether a path was feasible until all of the calculation (of P)
was completed-a definite disadvantage.

One must note, however, that all such "logical satisfiability" prob­
lems as we are now beginning to consider are exceedingly difficult to
handle in practice. We include here the satisfiability question that
results from the use of the "backward substitution" technique or the
forward "symbolic evaluation" method, whichever is used. At the

3098 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

conclusion of the backward substitution, we have a system of con­
straints on the inputs to the problem, and unless these constraints
can be "solved" for the input data, we don't have a test case at all.
The same may be said for the forward symbolic execution, except for
the slight advantage that we can be determining the satisfiability (or
lack thereof) as we go.

Huang, in his survey paper,12 presents a systematic approach for
handling the satisfiability problem, and we now outline the major
features of his plan. The simplifying assumption is made that the path
predicate takes the form:

P = PI 1\ P2 1\ ... 1\ Pn,

where the Pi are nonnegated atomic expressions:

dRe

with d, e arithmetic expressions in the input variables and R one of
the six relational operators: <, ~, =, 0, ~,>. Such a system of atomic
logical expressions can readily be rewritten in the prenex normal form:

(Exl)(Ex2) ... (Exn)(xl = el) 1\ (x2 = e2) 1\ ... A (xn = en),

where the E's are "existential quantifiers" on auxiliary variable x's,
and the new expressions (the e's) are differences of d, e above, sufficient
to transform any inequalities to equalities. The inequalities are, in
effect, shifted to the auxiliary variables, thereby serving to normalize
the solution space. Thus, in place of the inequality 2(b - a)/3 ~ c
at the end of the table above, we would have (Exl ~ O)[xl = c -
2(b - a)/3]. Altogether, the three inequalities of that problem are
similarly transformed, and we have instead the prenex normal form:

(Exl ~ 0)(Ex2 ~ 0)(Ex3 > 0)

xl = c - 2(b - a)/3
x2 = b + 2a - 6
x3 = b - a - c,

one that is somewhat easier to handle.
From this point, standard techniques of linear algebra can be used

to further transform the system into one where a minimum number
of variables are involved. Thus, in the case of our running example,
we can simplify the system so as to finally obtain:

(Exl ~ 0)(Ex2 ~ 0)(Ex3 > 0)
3xl -x2 + 3x3 = 6 - 3a.

From here, one may "guess" a solution, e.g., xl = x2 = 0 and x3 = 0.1

PROGRAM TESTING 3099

say. One thereby obtains:

a = 1.9
b = 2.2
c = 0.2,

an input set that will cause the program to traverse the path abcdef­
ghikclmn in Fig. 6, as originally required.

If we are going to have to "guess" a solution to the feasibility
question in the end, however, the outright "trial and error" approach
of Ramamoorthy et al.26 offers an attractive alternative. One makes
the assumption, as before, that the path predicate P is expressed as a
logical conjunction:

P = PI /\ P2 /\ ... /\ Pn,

where each of the Pi is a constraint on the program's input variables.
Moreover, it is assumed that the input variables have been ordered as
v[l], v[2], ... , v[m]. With each variable v[i], we associate a set S[i]
of conjuncts from P, namely:

S[i] = {Pj: only v[l], ... , v[i] occur in Pj}

and these sets are then used as the basis for the "trial and error"
algorithm shown in Fig. 7.

Assuming that values have been found for v [1], "', v [i - 1]
satisfying all the conjuncts in S [1], "', S [i - 1], we either solve for
v [i] or randomly choose v [i], depending on whether the set S [i]
contains an equality relation in v [i]. We then substitute this value in
the conjuncts of S [i] . Should we thereby arrive at a contradiction, we
"backtrack" to the iteration i-I, generating a different value for
v [i - 1]. Otherwise, we go ahead to the iteration i + 1. If the complete
iteration on i concludes successfully, we arrive thereby at a "satisfia­
ble" test case for the input variables of the program; otherwise we do
not. Note that the "key" to the method is the fact that at each stage
i, only the variable v [i] has not yet been resolved. Note, however, that
the loop at the right of Fig. 7 must include some criterion for deciding
that "enough" random numbers have been tried in the current itera­
tion. But however this is decided, it must be conceded that such an
approach as presented here has much to offer in its favor, particularly
considering the difficulty of the "satisfiability" question in general.

The authors26 provide an example of the use of their algorithm on
the "triangle classification problem" considered earlier. More gener­
ally, they suggest that the method has proven to be successful in
treating a much wider class of problems. We would note further that
the method could conceivably be applied to the "running satisfiability"
questions that arise in the use of the "symbolic execution" technique.

3100 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

NO
DATA

T TEST
__ ~ __ ~~--------------~~ __ ~-/~------------------~DATA

F

T NONCONTRADICTORY F

Fig. 7-Trial and error algorithm for solving the satisfiability problem.

In fact, it seems that this "trial and error" approach has a definite
place-at least as a method of last resort, to be used as a component
of any overall testing methodology.

Without some technique such as this, we are forced to rely on the
extremely costly and not wholly reliable methods of "mathematical
programming," particularly those routines that are designed to gen­
erate solutions to systems of inequalities. We cannot always assume
that our systems are linear, in spite of the assumptions made by some
authors. And in the absence of such an assumption, the problem is
quite a difficult one, generally beyond the capability of the packages
that are currently available.

PROGRAM TESTING 3101

Recognizing this, a most unusual and quite promising approach has
been suggested by Kundu.27 The idea is to combine the "test path
selection" and "test case generation" phases of the solution, using
the previous test case(s) t[k] to help in determining the next test case
t [k + 1]. The result is a sequence of determinations:

(t[O]~)p[O]~t[l]~p[l]~ ...

starting from an initial test case t[O], chosen at random. The method
is as follows:

1. Analyze t [k]: Execute the program with input t [k], and determine
its execution path p [k]. Then perform a (partial) symbolic execution
of p [k], so as to determine (an approximation to) its path predicate
P[k].

2. Select next test case: Determine the next test case t[k + 1] so
that it violates at least one constraint in each of the path predicates
P[j], for j < k.
Weare thus assured that each new test care t [k + 1] causes the
program to traverse a genuinely new path, different from all those
previously chosen.

In comparison with the previous methods we have discussed, Kundu
reverses the roles of the test paths and the test data. The path p [k] is
determined from t [k] in order to guide the next test case t [k + 1]
away from previous paths. That is, p [k] is not used for finding an
input that corresponds to that path itself. Therein lies the novelty of
the approach.

Moreover, Kundu's method is definitely not designed with any
specific measure of test thoroughness in mind. (He asserts that no
good measures of testedness are available, anyway.) It is clear, how­
ever, that one could easily augment his procedure with test instrumen­
tation devices, as discussed earlier, for the purpose of assuring that
some standard test coverage criterion (e.g., branch coverage) has been
met.

The primary advantage of Kundu's method is easily understood.
Consider the constraint on t[k + 1] as described in (2) above, i.e.,

t[k + 1] not in P[l] U P[2] U ... U P[k].

It is clear that the "forbidden region" for t[k + 1] thus represents only
a small portion of the total input domain D (see Fig. 8). This is so
because the number of test cases generated in the testing activity is
very small compared with the total number of executable paths in the
program. Intuitively, the determination of the required t[k + 1] should
thus be relatively easy. And for the same reason, the determination of
a test datum in a given path domain (as is required in the usual
strategy) should be more difficult. Kundu (see Ref. 27, pp. 176-177)

3102 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Fig. 8-Illustration of the forbidden region for selecting test cases.

gives a more detailed account of this reasoning, and the thrust of his
argument is quite compelling. The reader may wish to consult Kundu's
article for these additional details.

VI. CONCLUDING REMARKS

We have attempted to describe the many interesting and varied
approaches to the program testing problem. Whereas no single ap­
proach to the problem may hold all the answers, it seems that there
are enough good ideas around as to suggest the feasibility of a workable
methodology, based on one or another combination of the strategies
that have been advanced to date.

It must be remembered, however, that the thrust of our presentation,
and, indeed, the main thrust in the literature has been toward the
"unit test" level, where smaller programs are encountered. Thus, the
ideas we have presented are, at the present time, feasible only in the
case of programs of limited size. To think that we are nearing the
point where we are ready to apply all of these techniques to the testing
of an entire operating system or a compiler would be to miss the point
completely. Nevertheless, our study has shown that indeed a start has
been made.

We have tried to present a reasonably balanced survey of the recent
contributions to the research literature on software testing method­
ology. It is perhaps likely that one or more worthwhile studies have
escaped the author's attention, and therefore, their omission from this
survey should not reflect on their importance to the development of
the field. Moreover, the author can only hope that the studies that
have been cited here have been presented in their best light. Limita-

PROGRAM TESTING 3103

tions of time and space have prevented a more complete treatment of
these works, and for this, apologies to the authors are in order. At the
same time, this author would like to acknowledge the use of the many
cogent examples from the literature cited, hoping as well that these
and other contributions have been faithfully reported.

In conclusion, the author would like to thank W. H. Leung, K. A.
Gluck, and N. H. Petschenik for their most helpful comments in
reviewing an earlier draft of the manuscript.

REFERENCES

1. W. C. Hetzel (ed.), Program Test Methods, Englewood Cliffs, NJ: Prentice Hall,
1973.

2. G. J. Myers, The Art of Software Testing, New York: John Wiley and Sons, 1979.
3. E. F. Miller, "Program Testing: Art Meets Theory," Tutorial: Software Testing and

Validation Techniques, Miller and Howden (eds.), New York: IEEE, 1978, pp.
390-8.

4. E. F. Miller, "Program Testing Technology in the 1980's," Tutorial: Software Testing
and Validation Techniques, Miller and Howden (eds.), New York: IEEE, 1978,
pp. 399-406.

5. E. F. Miller, "Introduction to Software Testing Technology," Tutorial: Software
Testing and Validation Techniques, Miller and Howden (eds.), New York: IEEE,
1978, pp. 3-14.

6. E. F. Miller, M. R. Paige, J. P. Benson, and W. R. Wisehart, "Structural Techniques
of Program Validation," Tutorial: Software Testing and Validation Techniques,
Miller and Howden (eds.), New York: IEEE, 1978, pp. 262-5.

7. J~ B. Goodenough and S. L. Gerhart, "Toward a Theory of Test Data Selection,"
IEEE Trans. on Software Eng., SE-l, No.2 (June 1975), pp. 156-73.

8. J. B. Goodenough, "A Survey of Program Testinglssues," in Research Directions in
Software Technology, P. Wegner (ed.), Cambridge, MA: MIT Press, 1979, pp.
316-40.

9. R. G. Hamlet, "Test Reliability and Software Maintenance," Proc. Computer
Software and Applications Conf. COMPSAC 78, November 13-16, 1978, Chicago,
IL, New York: IEEE, 1978, pp. 315-20.

10. E. J. Weyuker and T. J. Ostrand, "Theories of Program Testing and the Application
of Revealing Subdomains," IEEE Trans. Software Eng., SE-6, No.3 (May 1980),
pp.236-46.

11. E. J. Weyuker and T. J. Ostrand, "Current Directions in the Theory of Testing,"
Proc. Computer Software and Applications Conf., COMPSAC 80, October 27-31,
1980, Chicago, IL, New York: IEEE, 1980, pp. 386-9.

12. J. C. Huang, "An Approach to Program Testing," Computing Surveys, 7, No.3
(September 1975), ppI. 114-28.

13. J. C. Huang, "Program Instrumentation and Software Testing," Computer, 11, No.
4 (April 1978), pp. 25-'32.

14. J. C. Huang, "Program Instrumentation: A Tool for Software Testing," INFOTECH
State of the Art Report, Software Testing, Infotech IntI. Ltd. (1979), pp. 149-59.

15. W. E. Howden, "Methodology for the Generation of Program Test Data," IEEE
Trans. Computers,. C-24, No.5 (May 1975), pp. 554-9.

16. W. E. Howden, "Reliability of the Path Analysis Testing Strategy," IEEE Trans.
Software Eng., SE-2, No.3 (September 1976), pp. 208-15.

17. W. E. Howden, "Introduction to. the Theory of Testing," in Tutorial: Software
Testing and Validation, Miller and Howden (eds.), New York: IEEE, 1978, pp.
16-19.

18. W. E. Howden, "A Survey of Dynamic Analysis Methods," in Tutorial: Software
Testing and Validation, Miller and Howden (eds.), New York: IEEE, 1978, pp.
184-206.

19. L. A. Clarke, "Automatic Test Data Selection Techniques," INFOTECH State of
the Art Report, Software Testing, Infotech IntI. Ltd., 1979, pp. 43-63.

20. M. R. Paige, "On Sizing Software Testing for Structured Programs," IntI. Symp. on
Fault Tolerant Computing, New York: IEEE, June 1977, p. 212.

21. M. R. Paige, "An Analytical Approach to Software Testing," Proc. Computer

3104 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Software and Applications Conf., COMPSAC 78, November 13-16,1978, Chicago,
IL, New York: IEEE, 1978, pp. 527-31.

22. M. R. Paige, "Program Graphs, an Algebra, and Their Implication for Program­
ming," IEEE Trans. Software Eng., SE-l, No.3 (September 1975), pp. 286-91.

23. T. J. McCabe, "A Complexity Measure," IEEE Trans. Software Eng., SE-2, No.4
(December 1976), pp. 308-19.

24. L. A. Clarke and D. J. Richardson, "Symbolic Evaluation Methods for Program
Analysis," in Program Flow Analysis, Muchnick and Jones (eds.), Englewood
Cliffs, NJ: Prentice Hall, 1981, pp. 264-300.

25. L. A. Clarke, "A System to Generate Test Data and Symbolically Execute Pro­
grams," IEEE Trans. Software Eng., SE-2, No.3 (September 1976), pp. 215-22.

26. C. V. Ramamoorthy, S. B. Ho, and W. T. Chen, "On the Automated Generation of
Program Test Data," IEEE Trans. Software Eng., SE-2, No.4 (December 1976),
pp. 293-300.

27. S. Kundu, "SETAR-A New Approach to Test Case Generation," INFOTECH
State of the Art Report, Software Testing, Infotech IntI. Ltd., 1979, pp. 163-86.

AUTHOR

Ronald E. Prather, B.S. and M.S. (Electrical Engineering), 1955 and 1958,
respectively; M.A. (Mathematics), 1966, University of California, Berkeley;
Ph.D. (Mathematics), 1969, Syracuse University. Dr. Prather is a Professor
of Mathematics and Computer Science at the University of Denver. He spent
the 1982-1983 academic year on sabbatical leave with the Software Quality
Analysis group at Bell Laboratories in Denver. He is the author of Discrete
Mathematical Structures for Computer Science (Houghton Mifflin, 1976) and
Problem Solving Principles: Programming With Pascal (Prentice Hall, 1982).

PROGRAM TESTING 3105

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

Parallel Fault Simulation Using Distributed
Processing*

By Y. H. LEVENDEL,t P. R. MENON,t and S. H. PATELt

(Manuscript received June 3, 1983)

This paper presents a method of performing fault simulation of digital logic
circuits using a special-purpose computer with distributed processing. The
architecture for true value simulation presented in an earlier paper can also
be used for parallel fault simulation. The special-purpose computer consists
of inexpensive microprocessors interconnected by either a time-shared parallel
bus or a cross-point matrix. The cross-point matrix provides higher perform­
ance than the time-shared parallel bus. The performance of the proposed
simulator is better by over two orders of magnitude than traditional logic fault
simulation performed on a general-purpose computer. The power of the
simulator is proportional to the number of microprocessors over a certain
range.

I. INTRODUCTION

Fault simulation is an important part of the logic circuit design
process. It is a means of determining the behavior of a logic circuit in
the presence of each one of a predefined set of faults.

One of the most common uses of fault simulation is in determining
the set of faults detected by a proposed test sequence, i.e., its fault
coverage. Adequate fault coverage (usually greater than 90 percent of
single stuck faults) is necessary to guarantee that the test sequence
will detect most of the manufacturing defects.

* This paper is based upon material to be submitted by S. H. Patel in partial
fulfillment of the requirements for the Ph.D. in Electrical Engineering at the
Illinois Institute of Techn<?logy. t Bell Laboratories.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro­
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa­
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3107

In test pattern generation, fault simulation is used to determine the
faults that are detected by the tests already generated so they can be
removed from consideration. A yet undetected fault is then selected
as a target for the next test. Additional faults detected by a newly
generated test may be determined by simulation. Thus, fault simula­
tion is used frequently as a part of the test generation process.

Fault simulation is also used to construct fault dictionaries for fault
isolation. Other uses of fault simulation include the evaluation of test
point effectiveness and the evaluation of self-checking circuitry. Ef­
fective test points are essential for factory testing. It is much cheaper
and easier to locate and repair failures during manufacture than it is
in the field. Also, good self-checking circuitry makes it easier to isolate
faults in the field.

Currently, fault simulation is carried out on large general-purpose
computers. This method has seen some use in large-scale integrated
(LSI)* designs, but suffers from excessive run time at current levels
of integration. Its applicability to very large-scale integration (VLSI)
is doubtful, at least in the manner that it is currently used.1 There is
a need for more sophisticated and cost-effective fault simulators as
very large simulation time and costs will result when dealing with
circuits ofVLSI complexity (more than 100,000 gates on a single chip).

II. PARALLEL FAULT SIMULATION

A number of different algorithms have been developed for perform­
ing fault simulation efficiently on general-purpose computers. Among
these the best known and widely used are the parallel,2 deductive,3
and concurrent4 methods. All these methods attempt to simulate the
effects of a number of individual faults simultaneously. This paper
will consider the use of the parallel fault simulation algorithm in the
special-purpose simulation hardware architecture developed in Ref. 5.

In parallel fault simulation the fault-free circuit and several different
faulty circuits are processed simultaneously. The number of faulty
circuits simulated in parallel is normally constrained by the number
of bits in the host computer word. One bit of the computer word
represents the signal value on a line in the fault-free circuit, while the
remaining bits represent values on the same line in the presence of
different single faults. Word-oriented operations performed on the
host computer imply that the fault-free and faulty circuits are handled
simultaneously and in exactly the same manner.

The output fault word of a gate is computed by simple word-oriented
logic operations on the input fault words. The logic operations per­
formed on the fault words correspond to the logic operation performed

* Acronyms and abbreviations are defined in the Glossary at the back of this article.

3108 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

by the gate. Faults are injected using predefined masks. A stuck at 1
fault on a lead is injected by ORing the fault word with a mask
containing a 1 in the bit position for the faulty value and O's elsewhere.
Similarly, a stuck at 0 fault can be injected by ANDing the fault word
with a mask containing a 0 in the bit position for the faulty value and
l's elsewhere.

Two logic values are not sufficient for accurate logic simulation.
Since each bit position in the computer word can represent only a
logical 0 or 1, more than one bit per signal is required for multiple­
value simulation.6 In this case more than one word is required. For
three-value representation two bits are required to represent each
signal and, therefore, two computer words are required for representing
a set of fault-free and faulty values. Since a pair of words are used to
represent a signal, some sort of coding method is required to implement
parallel simulation. A commonly used method of coding denotes one
of the words as the O-word and the other word as a I-word. Let io
represent the ith bit in the O-word and i1 represent the ith bit in the
I-word. Then the ioil = 01 combination represents a logical 1, the
ioil = 10 combination represents a logical 0, the ioil = 00 combination
represents an unknown, and the ioil = 11 combination is unused.
Simple word-oriented operations are still sufficient for performing the
parallel simulation. This coding is the same as that in Ref. 7. Faults
are injected in the O-word and the I-word using a O-mask and a 1-
mask, respectively. This injection is also done using simple logic
operations. The method for simulating three logic values can be
extended to any number of logic values by coding them using a
sufficient number of bits.8 Only three-valued simulation is considered
in this paper.

The most widely used method of parallel simulation is the event­
driven method. Event-driven simulation means that an element is not
simulated unless there is a change in one of its input fault words. The
main operations performed in an event-driven simulation are process­
ing of active elements and scheduling changes to occur in future. The
scheduling is done on a timing wheel. A timing wheel is a list structure
in which events are chained together in the order they are to occur. In
parallel fault simulation an element is considered to be active if the
fault word associated with its output changes. The fault word is
considered changed even if only one of its bits changes. All the values
(i.e., the whole fault word) are propagated even if only one of the
values changes.

Since the number of faults simulated at one time is restricted by
the length of the host computer word, multiple passes through the
simulator are necessary to simulate a large number of faults. It is
possible to reduce the number of passes by using extra computer words

FAULT SIMULATION 3109

and simulating more faults during one pass. For example, 64 computer
words can be used to simulate (two-value simulation) 1024 faults on a
computer with a word size of 16 bits. The string of values in the set of
computer words representing the fault-free and faulty signal values on
a line will be called the value vector. The configuration of the value
vector is shown in Fig. 1. The value vector consists of Lp word pairs
for three-value simulation. Two bits at the same position in the two
words of a pair represent the signal value of one faulty circuit.
Simulating Lp word pairs at a time is better than making Lp passes
through the simulator since the overhead involved in the fanout search
associated with each pass is saved. (However, as we will see in Section
6.1, some of these savings are lost due to increased activity as the
number of faults per pass increases.) The number of words used in the
value vector is usually constrained by the space requirements of the
computer.

During simulation, operations are performed on value vectors by
considering word pairs. Thus, the time required to perform an opera­
tion on the value vector is proportional to the number of word pairs
used in the value vector. For example, if there are several word pairs
in a value vector, then faults are injected one word pair at a time.

The whole value vector is considered active if any of the values in
the vector changes. Furthermore, all the word pairs are propagated
even if only one word pair changes. An element is considered active if
the value vector associated with its output is active.

III. CONCURRENCY IN FAULT SIMULATION

At least three types of concurrencies exist in fault simulation of
logic circuits. The first type of concurrency occurs in the actual
simulated hardware, the second type occurs in the simulation algo-

SIGNAL VALUES FOR
//- ONE FAULTY CIRCUIT

L-------'----------I-+--~--t__--' ••• L-I -------'

L------'---+---+-------'----t---+-----' • .. IL--__ -----'
FIRST WORD PAIR

TWO SETSOF
'---- WORDS FOR THREE­

VALUE SIMULATION

TWO WORDS
OF A WORD PAIR

Fig. 1-Value vector configuration.

Lpth WORD PAIR

3110 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

rithm, and the third type occurs in the form of fault activity. The first
two types of concurrencies also occur in true value simulation of logic
circuits and have been discussed in an earlier paper.5

The concurrency occurring in the actual simulated hardware can be
called logic circuit concurrency. Utilizing this type of concurrency leads
to distributed processing with identical processors performing identical
tasks. The architecture for true-value simulation developed by Lev­
endel et a1.5 and Denneau et a1.9

-
11 takes advantage of this type of

concurrency.
The concurrency occurring in the simulation algorithm can be called

algorithm concurrency. This concurrency is indirectly due to the con­
currency occurring in the actual simulated hardware. Since several
elements can be simultaneously active and a sequence of steps is to be
performed for each active element, they can be processed in a pipeline
fashion. Utilizing this type of concurrency leads to functional parti­
tioning of tasks among several processors and a pipelined architecture.
The architecture for true-value simulation developed by Barto and
Szygenda12 and Abramovici et aP3 takes advantage of this type of
concurrency.

For efficient fault simulation, a number of faults are simulated
simultaneously in software-based simulators. This leads to fault activ­
ity concurrency, which can be utilized in special-purpose hardware for
fault simulation.

This paper extends the architecture for true-value simulation de­
scribed in Ref. 5 to fault simulation using the parallel method. The
architecture takes advantage of the parallelism due to logic circuit
concurrency and fault activity concurrency. The main difference be­
tween true-value simulation and fault simulation is in the algorithm
executed by the individual processing units.

IV. SPECIAL-PURPOSE ARCHITECTURE

The simulator consists of one master and a number of slaves
(processors) interconnected by a communication structure (Fig. 2).
The communication structure is used as a medium for transferring
data between the slaves and between the slaves and the master. The
communication structure can be either a time-shared parallel bus or a
cross-point matrix. The circuit to be simulated is partitioned into
sub circuits and each subcircuit is simulated in a separate processor.
Subcircuits in different processors become active as signal values
proceed from the primary inputs to primary outputs. As simulation
progresses, data are transferred between sub circuits as the logic values
on the signal connections between two subcircuits change. These data
are transported across the communication structure. Typical data sent
across the data path consist of element information and changed value

FAULT SIMULATION 3111

PU
(WITH
LOCAL

MEMORY)

(TO SLAVE UNITS)

(TO MASTER)

START

MASTER
DONE

DISPLAY,
--- KEYPAD,

SECQNDARYSTORAGE

START__ I
L-__ ---'

DONE

COMMUNICATION
MEDIUM

IDS - INPUT DATA SEQUENCER
IFB - INPUT FIFO BUFFER
ODS- OUTPUT DATA SEQUENCER
OFB- OUTPUT FIFO BUFFER
PU - PROCESSING UNIT

Fig. 2-Multiprocessor-based digital logic simulator.

vectors. The architecture of the simulator has been described in detail
in the previous paper.5 A summary of the architecture description is
presented in Appendix A for completeness.

The overall architecture for true-value simulation is applicable to
fault simulation since the algorithms for the two types of simulations
are the same except that fault simulation requires:

1. Carrying of faulty signal values in addition to true-value signals
(more than one word may be used to allow representation of a larger
number of faulty signals)

2. Fault injection using masks
3. Multiple passes if the fault set is large.

The processing time per pass will be higher for fault simulation due
to the extra processing required for injecting faults and manipulating
multiple-word pairs in a value vector. The latter requirement applies
only when the value vector contains more than one word pair. As far
as communication between the processors is concerned, the data

3112 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

transferred between the processors are greater than those transferred
for true-value simulation, since the signal values require one or more
complete words in addition to a word for the element number.

V. ARCHITECTURE EVALUATION

The processing time per simulation cycle and the communication
times using a time-shared parallel bus and a cross-point matrix are
estimated first. These results are then used for selecting the commu­
nication structure. A multiple-bus communication structure is also
discussed in this section.

5.1 Processing time tp

The average number of active elements per processor during a
simulation cycle for true-value simulation is given by kN/n, where N
is the average number of active elements per simulation cycle during
true-value simulation, n is the number of processors in the multi­
processor simulator, and k is the average unbalance factor representing
the extra active elements per processor during a simulation cycle due
to nonideal partitioning.5 Ideal partitioning will cause an equal number
of elements to be active in all the processors during all simulation
cycles. However, because of some imbalance such as the fanout of all
active elements during one simulation cycle not feeding equally into
all the processors, some processors will have more active elements
than the others during some simulation cycles. The average number
of active elements per processor during a fault simulation cycle can be
written as kNcln, where Nf is the average number of active elements
per simulation cycle in one pass during fault simulation. The value of
Nf is expected to be larger than N. Indeed, experimental runs on the
Logic Analyzer for Maintenance Planning (LAMP) simulator14 show
that the overall activity (total number of active elements) during
parallel fault simulation increases by a factor of about 2 for 16 faults
per pass and by about 3.5 for 1024 faults per pass compared to true­
value simulation. These results are averaged over several runs made
using both combinational and sequential circuits with sizes ranging
from 420 gates to 1912 gates. The number of faults simulated ranged
from 1020 faults for the 420-gate circuit to 5046 faults for the 1912-
gate circuit. The LAMP simulator is based on the deductive method.
A mapping mechanism from deductive simulation activity to parallel
simulation activity was implemented to predict the results for parallel
simulation.

During one simulation cycle the following major operations occur
in the given order:

1. Using the current list of events, list L t of the timing wheel (Fig.

FAULT SIMULATION 3113

11 in Appendix B), update, and find fanout of the elements whose
outputs changed during the current simulation cycle.

2. Using the next list Lt+l of the timing wheel, prepare external
events to be transmitted to other processors for the next time interval.

3. From data in the Input FIFO Buffer (IFB) (sent by other proces­
sors), update and find fanout of the elements active during the current
simulation cycle.

4. Evaluate the fanout of active elements (this includes fault injec­
tion).

5. Schedule on timing wheel elements whose output changes.
The detailed algorithm is given in Appendix C.

Let ta be the time required to process one active element. The
average processing time per processor during one simulation cycle is
then given by:

Assume a microprogrammable microprocessor (e.g., Am2900 series)
for each slave unit processing unit (PU) and the following operation
times (150 ns cycle time): memory-to-memory move = 1.2 /lS, memory­
to-register move = 0.6 /lS, and memory-to-memory logical AND/OR
operation = 1.5 /lS. Using these major microprocessor operations, the
execution time for each operation in the parallel simulation algorithm
described in Appendix C can be estimated. For example, obtaining
each fanout of an updated element (after the fanout list has been
accessed) takes one memory-to-register instruction and moving the
element number to the Output FIFO Buffer (OFB) takes one memory­
to-memory instruction. The processing times per active element for
the various steps of the algorithm are shown in Table I, where Ii is the
average fan-in, 10 is the average fan-out, and Lp is the number of word
pairs in the value vector.

The total processing time per element during one simulation cycle
is the sum of all the expressions in Table I:

(2.4 + 7.24)
ta = 9.6 + 8.74 + 3/0 + 3/i4 - 10 /lS.

Taking typical values of Ii and 10 to be 2 and an unbalance factor of
k = 1.1, the processing time for a simulation cycle becomes:

N r
tp = (15.8 + 12.24) - /lS.

n

5.2 Communication time te

(1)

The value of tc will depend on the type of communication structure.

3114 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Table I-Simulation cycle timings for parallel simulation
Step

Update data from timing wheel

Prepare external events for next time interval

Update data from IFB

Evaluate schedule

Expression (p,s)

(1.8 + 2.4fo)

fo
(fo - 1)(6.6 + 3.64)

fo
(fo - 1)(1.2 + 3fo + 3.64)

fo

(
3.6) 2.4 + 1.5Lp + 3fi4 + To

Fig. 3-An element string.

The two types of communication structures discussed in Ref. 5, namely
the time-shared parallel bus and the cross-point matrix, will be con­
sidered here also. The partitioning algorithm discussed in the previous
paper5 partitions a circuit along its depth rather than its breadth.
Since the signals in a circuit propagate in parallel, this places concur­
rent activities in different blocks. The same partitioning algorithm
will be assumed here, since during fault simulation the signals still
propagate in the same manner. The logic circuit to be simulated is
partitioned into elements strings (see Fig. 3). The average number of
communication events generated by one active element during a
simulation cycle that have to be sent over the communication structure
IS:

[to + (c - 1)([0 - 1)]
e = =---------~----~

c

where to is the average fanout and c is the average number of elements
in one element string. The typical value of to can be taken as 2, and
for large circuits c is expected to be greater than 10. For to = 2 and
c = 10, e will be equal to 1.1.

5.2.1 Time-shared parallel bus

The total communication time during a simulation cycle for true­
value simulation is given by5:

FAULT SIMULATION 3115

tc(bus) = (n + 200)Ne ns

This expression assumes one word of data to be transferred per active
element. For fault simulation with w words of data to be transferred
per active element the expression becomes:

tc(bus) = (n + 200) Nfew ns.

The number of words to be transferred is given by:

w = 1 + 2Lp ,

where Lp is the number of word pairs per value vector used in
simulation. One word is required to carry the element number and the
2Lp words carry the value vector. Taking the value of e = 1.1:

tc(bus) = (1.1n + 220)(1 + 2Lp)Nf ns. (2)

5.2.2 Cross-point matrix

In a cross-point matrix-based communication structure several
processors can be simultaneously sending data to other processors.
The total communication time during a simulation cycle for true value
simulation is given by5:

200Nke 50.
tc(matrix) = + '1 ns,

n

where j is the number of events for which the destination processor is
found busy, i.e., the destination processor is communicating with some
other processor. Once again this expression assumes one word of data
transferred per active element. For w words of data to be transferred,
the expression for fault simulation becomes:

200 (Nf) kew .
tc(matrix) = + 50Jw ns.

n

For k = 1.1, e = 1.1, w = 1 + 2Lp, and j = O.INf/n (the channel is
found busy for 10 percent of the transfer requests), the above expres­
sion can be rewritten as:

Nf
tc(matrix) = (247 + 494Lp) - ns.

n

5.3 Choice of communication structure

(3)

The expressions for the processing time per simulation cycle per
active element and the communication times per simulation cycle per
active element for the bus and matrix structures are plotted in Fig. 4.
The expressions are plotted for value vector length of one word (16
bits/word), i.e., Lp = 1.

3116 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

10

0.01

tp = tc(bus)
/ - --= 0.78ps,n=36

/ Nf Nf
/

I
\

\
"-

OPTIMUM OPERATION
POINT WITH PARALLEL

BUS; OPTIMUM SIMULATION
CYCLE TIME = 0.78 ps.

Lp = 1 (16 faults/pass)

tc(bus)

tc(matrix)

Nf

0.001 L----::::------=:-----:~-~-____:l::__-_L..._---L----1--~--L---.J
80 90 100

NUMBER OF PROCESSORS (n)

Fig. 4-Variation in processing and communication time.

The curves for the processing time and bus communication time for
the p~rallel bus intersect at n = 36. The processing time is greater
than the bus communication time for n < 36. Thus the processing
time is the bottleneck. The processing time decreases as the value of
n increases. For n > 36 the bus communication time becomes larger
than the processing time and the bus communication time becomes
the bottleneck. Therefore, using more processors than n = 36 will not
speed up the simulation. For optimum performance n = 36, and the
length of the simulation cycle per active element becomes tm = 0.78
JLS. Based on the parallel simulation algorithm given in Appendix C,
the actual simulation cycle length per active element for a single
processor can he estimated as tl = 24 JLS. The multiprocessor fault

FAULT SIMULATION 3117

simulator with a bus-based communication structure provides a speed­
up of 31 over the traditional single-processor logic fault simulator.

For further speedup a faster communication structure must be used.
Figure 4 also shows the curve for the matrix communication time.
This curve does not intersect with the curve for the processing time,
and the communication time is always less than the processing time.
The communication time will therefore never be a bottleneck. More
processors can be added to speed up the simulator. For example, for
n = 100 the speedup compared to the traditional single-processor logic
fault simulator is 86 and for n = 256 the speedup is 220. The speedup
of simulation is expected to be greater than two orders of magnitude
for n> 120.

5.4 Multiple-bus communication structure

The results of the previous section show that for a given number of
faults per pass, the time-shared parallel bus is useful only for up to a
fixed value of n. For further speedup the cross-point matrix has to be
used. However, the cross-point is not used up to its maximum capa­
bility. For example, at 16 faults per pass and n = 100, the simulation
cycle length is 280Nf ns while the communication cycle length is 7.4Nf
ns, i.e., the communication structure is used less than 3 percent of the
time. A communication structure that is slower and cheaper than the
cross-point matrix might prove more cost-effective. This will be true
especially since the control for the cross-point is very complex and
thus expensive.

A communication structure that provides a capacity in between that
of the time-shared parallel bus and the cross-point matrix is the
multiple-bus structure. It consists of a bus arbitrator and several
parallel buses. The configuration of the multiple-bus structure and its
interface to the Output Data Sequencers (ODSs) and Input Data
Sequencers (lDSs) of the slave units are given in Fig. 5. When the
ODS needs to send data, it sets the Request To Send (RTS) line high
and puts the destination address on the address lines. The requesting
ODS keeps the RTS line high until granted a bus. The bus arbitrator
grants it the use of the communication medium when it finds an
unused bus and determines that the requested destination is not busy.
The bus arbitrator grants the bus by setting the Bus Grant line high.
The data are switched through the bus selector switch to the available
bus. At the other end of the bus there is a line selector from which the
data are sent to the destination processor. The ODS sends out all the
data present in its Output FIFO Buffer (OFB). The data received by
the IDS of the destination unit are put in its Input FIFO Buffer (lFB).
The ODS then sets the RTS line low. This releases the bus, which is

3118 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

COMMUNICATION STRUCTURE

REQUEST TO SEND (RTS)

BUS GRANT

RTS FOR MASTER (RTSM) BUS
ARBITRATOR

f--

ADDRESS
OUTPUT

DATA · SEQUENCER · (pART OF ·
SLAVE (FROM OTHER 1 UNIT) PROCESSORS)

· · DATA · BUS
ENABLES

MULTIPLE PARALLEL
BUSES CARRYING 1 2 ... b

DATA

DATA READY
INPUT
DATA DATA LINE -SEQUENCER ENABLES

(PARTOF · SLAVE · UNIT) ·
(FROM OTHER
PROCESSORS)

Fig. 5-Configuration of multiple-bus structure.

then granted by the bus control to another requesting slave or the
master. All units have equal priority. The ODS will set the Request
To Send line high again if it gets more data to transfer in the OFB.

The data sent out to a slave unit from another slave unit or the
master consist of element information and changed value vectors. The
data sent to a master consist of the address of the sending slave,
element number (primary output or monitored point), and value
vector. A separate line Request to Send to Master (RTSM) is used to
address the master. When the destination is the master, the address
lines from the ODS contain the sending slave unit address. This
address together with the element number and value vector is stored
in the master IFB by the master IDS.

To obtain an expression for the communication time for the multi­
ple-bus structure, consider first of all the bus structure with only a

FAULT SIMULATION 3119

single bus. For this case, the communication time will consist of the
same components as that for time-shared parallel bus5

:

tc(mbus) = (tbrg + tds + tda + tbr)(1 + 2Lp)(Nf)e,

where tbrg is the bus request and grant time, tds is the address and data
setup time, tda is the data acknowledge, and tbr is the bus release time.
For the multiple-bus structure the bus request and grant time, tbrg, will
be greater than in the parallel bus since extra checking has to be done
before a bus is granted. The bus arbitrator will have to determine if a
bus is available and if available then it has to further determine if the
requested destination is busy. Assuming these extra actions double the
time required for the bus request and grant time and the other times
remain the same: tbrg = 200 ns, tds = n ns, tda = 50 ns, tbr = 50 ns, and
e = 1.1. Each transaction across the multiple-bus has to wait for a bus
to be granted. As more buses are added, the transactions can occur in
parallel. Assuming the number of parallel buses is much smaller than
the number of processors, the probability of the destination processor
being busy will be small. The decrease in the total communication
time will then be proportional to the number of buses. The expression
for the total communication time for the multiple-bus communication
structure becomes:

(LIn + 330)(1 + 2Lp)Nf
tc(mbus) = b ' (4)

where b is the number of parallel buses.
Let no be the number of processors at the optimum operation point,

where tp = tc(mbus)' If the simulator operates with the number of
processors not equal to no, then the speed of simulation will be lower.
An expression for no can be derived by equating eqs. (1) and (4):

no = -150 + 150(1 + b(O.4:t: ~.64)r.
This expression is plotted for various values of b with Lp = 1 in Fig.
6. It can be seen that higher performance is available with the multiple­
bus structure compared to the single time-shared parallel bus for
b ~ 2.

The implementation of the multiple-bus structure is expected to be
less expensive than that of the cross-point matrix. The complexity of
the communication structures and thus their cost is proportional to
the number of switch points. For the cross-point matrix, the number
of cross-points is proportional to the square of the inputs, i.e., n2

• For
the multiple-bus structure two points have to be connected to establish
a connection and thus the number of switch points is 2bn. The cost of
the multiple-bus structure will be less than that of the cross-point

3120 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

220

200

180

0

..s
Ul 160
c:::
0
Ul
Ul
w

140 u
0
c:::
a.
u..

120 0
c:::
w
OJ
~

100 ::>
z
~
::>
~ 80
f=
a.
0

60

40

20

0
0

no = 36, OPTIMUM NUMBER OF
---PROCESSORS FOR SINGLE TIME­0-

SHARED PARALLEL BUS STRUCTURE

2

NUMBER OF PARALLEL BUSES (b)

13

Fig. 6-Variation in the optimum number of processors with the number of parallel
buses.

matrix as long as 2b < n. As we saw in the analysis done earlier this
will always be the case. For b = 5 and no = 105, the cost of the
multiple-bus structure will be an order of magnitude lower than that
of the cross-point matrix. Furthermore, it must also be noted that
physical switching is not necessary in the case of the multiple-bus
structure; it is cheaper to use logic enables for connecting an ODS and
an IDS to a bus. This will result in even lower cost when compared
with the cross-point matrix.

VI. EFFECT OF NUMBER OF FAULTS PER PASS

When simulating a large number of faults per pass in parallel
simulation, several pairs of words carrying the true and faulty values
(Lp) must be manipulated per active element. All the faulty values in
the words can be considered together as a vector. All the faulty values
are evaluated even if only one faulty value is active.

The behavior of the multiprocessor fault simulator, using the par­
allel fault simulation algorithm, will be investigated for variations in
the number of faults simulated per pass. Comparisons will be made

FAULT SIMULATION 3121

between 16, 32;64, 256, and 1024 faults per pass, assuming a processor
word length of 16 in all the cases.

Only the time-shared parallel bus and the cross-point matrix are
discussed. The communication structure with multiple buses is not
considered since the results for the time-shared parallel bus will apply,
except for a scaling factor.

6.1 Simulator with time-shared parallel bus

The expressions for processing time per simulation cycle, tp , and the
parallel bus communication time per simulation cycle, tc(bus)' derived
earlier in eqs. (1) and (2) are used to analyze the effects of variations
in the number of faults per pass. It was seen earlier that the optimum
operation point for the simulator occurs when the processing time and
communication time are equal, i.e., tp = tc(bus)' An expression for the
number of processors required to meet this condition for a given length
of value vector (Lp) can be derived by equating the expressions for tp
and tc(bus)' Let no be the number of processors at the optimum operation
point and to be the length of the processing and communication cycles
at the optimum operation point. Values of n smaller than the optimum
no cause the processing to be a bottleneck, while larger values of n
cause communication to be a bottleneck. Equating eqs. (1) and (2)
yields the following expression for no, the number of processors re­
quired for optimum operation:

= -100 00(3.11Lp + 2.44)°·5
no + 1 24 + 1 .

Let a be the number of faults per pass. Then a = 164 assuming 16
bits per word. The above expression for no can be rewritten as a
function of the number of the faults a, as:

",,(al = -100 + 100(0~~~;5: !.~4r. (5)

For n = no(a), the processing time per simulation cycle and the bus
communication time per simulation cycle both reduce to:

Nc(a)
to(a) = (15.8 + 0.76a)-(-)'

no a
(6)

For a simulator with optimum number of processors, no(a), the total
time required to simulate a fixed number of faults is obtained by
multiplying the time required for processing one active element (to(a)/
Nc(a» by the total number of active elements during the simulation
(NT(a»:

3122 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

to(a)
T(a) = Nf(a) NT(a).

The total number of active elements during simulation is given by:

NT(a) = Nf(a) X (number of simulation cycles per pass)

X (number of passes).

Substituting the expression for to(a) given in eq. (6):

NT(a)
T(a) = (15.8 + 0.76a)-(-) .

no a
(7)

Define the simulation time ratio as the ratio of the total time required
to simulate a set of faults with a faults per pass to the total time
required to simulate the given set of faults with 16 faults per pass, i.e.,
T(a)/T(16). Using a value of no(16) = 36 (eq. 5), the expression for
the simulation time ratio is given by:

T(a) (20.3 + 0.98a) NT(a)
--=
T(16) no(a) N T (16)·

(8)

The values of the simulation ratio are first calculated theoretically
and then compared with the experimental results.

6.1.1 Theoretical simulation time ratio

Let simulation activity, NT(a), refer to the number of active elements
during all passes of a simulation. The simulation activity can be
expected to be inversely proportional to the number of faults per pass:

NT(a) 16

N T (16) a

For example, the expected simulation activity at 32 faults per pass
will be half the simulation activity of 16 faults per pass since the
number of passes needed will be halved. The theoretical expression
for the simulation time ratio becomes:

T(a)

T(16)
(20.3 + 0.98a) 16

no(a) a
(9)

Note that the theoretical simulation time ratio is independent of the
simulation activity. Table II gives the variation of the optimum
number of processors, no, and the variation of the simulation time
ratio as a function of the number of faults per pass, a. The theoretical
results show that the simulation time ratio, and thus the total simu­
lation time, decreases as the number of faults per pass increases.

Also, it is interesting to note that for 16 faults per pass the operation

FAULT SIMULATION 3123

Table II-Theoretical simulation
time ratio

Optimum Simulation
Number of Time Ratio,

Faults per Processors, T(a)

Pass, a no T(16)

16 36 1.0
32 32 0.81
64 29 0.72

256 26 0.65
1024 25 0.64

Table III-Experimental simulation time
ratio

Faults per
Pass, a

16
32
64

256
1024

Simulation
Activity,
NT(a)
17586
9374
5204
1787
689

Optimum Simulation
Number of Time Ratio,
Processors, T(a)

no T(16)

36 1.0
32 0.86
29 0.84
26 1.06
25 1.6

peaks at 36 processors, while for 1024 faults per pass the operation
peaks at 25 processors. As the number faults per pass increases, the
point of optimum operation occurs for a slightly smaller number of
processors. This is because the time required to transfer the increased
data is more than the time required to process the increased data.

6.1.2 Experimental simulation time ratio

The values of NT(a) averaged over several experimental runs made
on the LAMP simulator13 (with a mapping algorithm from deductive
simulation to parallel simulation as discussed in Section 5.1) are given
in Table III. Also shown in Table III are values for the simulation
time ratio derived from eq. (8).

The experimental simulation time ratio, T(a)/T(16), is plotted
together with the theoretical simulation time ratio in Fig. 7.

It is interesting to note that as the number of faults per pass
increases, the experimental simulation time ratio falls below 1.0 ini­
tially, i.e., the simulation speeds up. After a certain point, the simu­
lation time ratio then starts increasing and goes above 1.0. The fastest
simulator is a 64 faults per pass simulator with 29 processors. On the
other hand, the theoretical simulation time ratio always stays below
1.0 and keeps decreasing as the number of faults per pass increases.
The difference in the experimental and theoretical results can be

3124 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

1.8r--------------------------,

1.6

TI~
~1.4

o
~
<I:
a: 1.2
w
:2:
~
z
o
~
<I:
--l
:J
:2: 0.8
in

0.6

EXPERIMENTAL

r-------t"\ THEORETICAL

0.4 '----1..J...6---:L32--....L64:------2---l5-6-----10L24:-----------l

FAULTS PER PASS (al

Fig. 7-Experimental and theoretical simulation time ratio for variation in number
of faults per pass-a time-shared parallel bus.

explained by examining the variation in simulation activity as the
number of faults per pass changes.

The curve for the theoretical simulation time ratio in Fig. 7 shows
that the simulation speed increases as the number of faults per pass
increases. This is as expected, since increasing the number of faults
per pass decreases the number of passes and thus the fanout search
and related processing time. In practice, however, there is extra
simulation activity due to longer value vectors and this tends to
increase the processing time. As more faults are simulated per vector,
i.e., as the value of a gets larger, the simulation activity during the
simulation will be higher than the theoretical. For example, as shown
earlier, the theoretical activity at 32 faults per pass will be half the
simulation activity at 16 faults per pass. However, the experimental
simulation activity at 32 faults per pass will be more than the expected
half. This is because the active faults in two value vectors at 16 faults
per pass will not always directly map into one value vector at 32 faults
per pass. Any active fault in the value vector will cause simulation
activity even if the good value does not change. The effect of this is to
cause extra schedulings. This increase in schedulings can be repre­
sented by an effective increase in the length of the simulation cycle
and the number of simulation cycles. The runs made on the LAMP
simulator show that most of the increase is in the length of the
simulation cycle (i.e., more computation during the simulation cycle).
The expected simulation activity and the actual simulation activity

FAULT SIMULATION 3125

obtained from runs made using the LAMP simulator are given in
Table IV.

For 32 faults per pass, the simulation activity is only 1.07 times that
theoretically expected. Thus the increase in processing time due to
this extra activity is not substantial and the overall speed of simulation
is higher due to the greater savings in the fanout search processing.
For 1024 faults per pass, the simulation activity is 2.51 times that
theoretically expected. In this case, the increase in processing time
due to the extra activity is substantial compared to the savings
obtained in the fanout search processing. This results in lowering the
overall speed of simulation when compared with 16 faults per pass.

In summary, for the multiprocessor fault simulator with a parallel­
bus-based communication structure, the fastest simulation speed oc­
curs for 64 faults per pass and 29 processors. Note, however, that the
number of processors required for 64 faults per pass is greater than
the number of processors for 1024 faults per pass. Decreasing the
number of processors for 64 faults per pass to 25 yields the total
simulation time of 13,413 p,s. This still favors the 64 fault per pass
simulator over the 1024 fault per pass simulator.

6.2 Simulator with cross-point matrix

The expressions for the processing time per simulation cycle, tp , and
the cross-point matrix communication time per simulation cycle,
tc(matrix), derived earlier in eqs. (1) and (3) are applicable to variations
in the number of faults per pass. The increase in simulation activity
caused by simulating more faults per pass will increase both the
processing time and the communication time for the cross-point
matrix. However, adding one word pair to the value vector will cause
an increase in the communication time that is only 4 percent of the
increase in the processing time. Thus, the communication time will
always be less than the processing time. The cross-point matrix
provides sufficient communication capacity for the parallel fault sim-

Table IV-Effect of multiple
passes on simulation activity

Faults per
Pass, a

16
32
64

256
1024

Experimental
Simulation

Activity,
NT(a)

17,586
9374
5204
1787
689

Theoretical
Simulation

Activity,
NT(a)

17,586
8793
4396
1099
275

3126 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

ulator and does not cause a communication bottleneck. For faster fault
simulation, more processors can be added.

The variation of the simulation time ratio as a function of the
number of faults per pass will be investigated to obtain the optimum
number of faults per pass. Since the processing time dominates, the
total time required to simulate a set of faults with a faults will be
equal to the total processing time. Using eq. (1):

T(a) = (15.8 + 0.76a)NT(a).
n

The simulation time ratio is given by:

T(a) NT(a)
T(16) = (0.56 + 0.027a) N

T
(16)" (10)

The experimental and theoretical simulation time ra'tios are plotted
in Fig. 8. As was the case for the time-shared parallel bus, the
experimental simulation time ratio increases after 64 faults per pass.
This is because the time required to process the increased simulation
activity is greater than the time saved in the fanout search overhead
associated with each pass. For the multiprocessor fault simulator with
a cross-point-matrix-based communication structure, the optimum
number of faults per pass is 64. Using a different value for the number
of faults per pass will decrease the speed of simulation. Note that the

1.6

1.4

iI? ..:....s 1.2

0 EXPERIMENTAL
i=
<!
a::
w
:2:
i=
z
0

0.8

i=
<!
--I
::::> 0.6
:2:
ii)

\J----_-....r"I TH':ORETICAL
0.4

0.2
16 32 64 256 1024

FAULTS PER PASS (exl

Fig.8-Experimental and theoretical simulation time ratio for variation in number
of faults per pass-cross-point matrix.

FAULT SIMULATION 3127

number of processors, n, does not affect the simulation time ratio.
More processors can be added to obtain greater speed.

When compared with the parallel bus the cross-point matrix pro­
vides greater speed for any value of n greater than the optimum n for
the parallel bus. For example, for 64 faults per pass, the cross-point
matrix can be made faster than the parallel bus by selecting n > 29.

VII. SUMMARY

In this paper we presented a special-purpose logic fault simulator
based on the parallel simulation method. The simulator is expected to
be two orders of magnitude faster than traditional logic fault simula­
tors implemented on general-purpose computers. For both the time­
shared parallel bus and the cross-point matrix, the simulator performs
the best at 64 faults per pass. Decreasing the number of faults per
pass slows down the simulation due to fanout search and other
overhead required for every pass. Increasing the number of faults per
pass also slows down the simulation due to the increase of simulation
activity.

When the parallel bus is used, the power of the simulator can be
increased over a certain range by increasing the number of slaves. The
power of the simulator can be further increased by using the cross­
point matrix.

The application of the special-purpose simulator to other fault
simulation methods is being investigated currently.

REFERENCES

1. D. F. Barbe (ed.), "Very Large Scale Integration (VLSI), Fundamentals and Appli­
cations," Berlin, Germany: Spr~nger-Verlag, 1980.

2. E. W. Thompson and S. A. Szygenda, "Digital Logic Simulation in a Time-Based,
Table-Driven Environment: Part 2. Parallel Fault Simulation," Computer, 8-3
(March 1975), pp. 38-49.

3. D. B. Armstrong, "A Deductive Method for Simulating Faults in Logic Circuits,"
IEEE Trans. Computers, C-21, No.5 (May 1972), pp. 464-71.

4. E. G. Ulrich and T. G. Baker, "Concurrent Simulation of Nearly Identical Net­
works," Computer, 7-4 (April 1974), pp. 39-44.

5. Y. H. Levendel, P. R. Menon, and S. H. Patel, "Special-Purpose Logic Simulator
Using Distributed Processing," B.S.T.J., 61, No. 10, Part 1 (December 1982), pp.
2873-2909.

6. M. A. Breuer, "A Note on Three Valued Logic Simulation," IEEE Trans. Computers,
C-21, No.4 (April 1972), pp. 399-402.

7. S. G. Chappell, "Automatic Test Generation for Asynchronous Digital Circuits,"
B.S.T.J., 53, No.8 (October 1974), pp. 1477-1503.

8. Y. H. Levendel and P. R. Menon, "Fault Simulation Methods-Extensions and
Comparison," B.S.T.J., 60, No.9 (November 1981), pp. 2235-58.

9. M. M. Denneau, "The Yorktown Simulation Engine," 19th Design Automation
Conference, Las Vegas, Nevada, June 14-16, 1982, pp. 55-9.

10. E. Kronstadt and G. Pfister, "Software Support for the Yorktown Simulation
Engine," 19th Design Automation Conference, Las Vegas, Nevada, June 14-16,
1982, pp. 60-4.

11. G. Pfister, "The Yorktown Simulation Engine: Introduction," 19th Design Auto­
mation Conference, Las Vegas, Nevada, June 14-16, 1982, pp. 51-4.

3128 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

12. R. Barto and S. A. Szygenda, "A Computer Architecture for Digital Logic Simula­
tion," Electronic Engineering, September 1980, pp. 35-66.

13. M. Abramovici, Y. H. Levendel, and P. R. Menon, "A Logic Simulation Machine,"
19th Design Automation Conference, Las Vegas, Nevada, June 14-16, 1982, pp.
65-73.

14. S. G Chappell, C. H. Elemendorf, and L. D. Schmidt, "LAMP: Logic Circuit
Simulators" B.S.T.J., 53, No.8 (October 1974), pp. 1451-76.

15. N. D. Phillips and J. G. Tellier, "Efficient Event Manipulation, A Key to Large
Scale Simulation," IEEE 1978 Semiconductor Test Conference, Cherry Hill, New
Jersey, October 31-November 2, 1978, pp. 266-73.

16. J. G. Vaucher and P. Duval, "A Comparison of Simulation Event List Algorithms,"
Comm. ACM, 18-4 (April 1975), pp. 233-30.

APPENDIX A

Architecture Description

A.1 Introduction

The simulator consists of one master and a multiplicity of slaves
(processors) interconnected by a communication structure (see Fig.
2). The communication structure can be either shared or dedicated.
The circuit to be simulated is partitioned into subcircuits and each
subcircuit is simulated in a separate processor. The partitioning is
such that the number of simultaneously active subcircuits (processors)
is maximum and the number of simultaneously active elements in
each subcircuit (processor) is minimum while keeping the communi­
cation from being a bottleneck.

The circuit to be simulated is initially modeled in the general­
purpose computer, partitioned and loaded into the slave memories.
The general-purpose computer performs all functions of input, output,
and user interactions. The simulation is carried out in the multi­
processor simulator.

The simulator can be programmed to output intermediate results to
the general-purpose computer. It also can be interrupted by the gen­
eral-purpose computer for intermediate results. The user can ask for
information about a simulation run while it is in progress (e.g., the
status of a variable) and make certain run-time decisions like contin­
uing simulation, applying extra input vectors, or stopping. After sim­
ulating each vector input, the simulation results and any other user
requested information are sent to the general-purpose computer. User­
requested information typically includes output values of elements
(monitored points) at specific simulated times or under some other
specified conditions. The general-purpose computer formats this in­
formation for suitable presentation to the user.

A.2 Multiprocessor operation

At the beginning of each simulation cycle the master sends primary
input values (if any) to the appropriate slaves using the communication
structure. The master then issues a start signal to the slaves. This

FAULT SIMULATION 3129

signal informs the slaves to start processing for the next simulation
cycle. During the processing of a simulation cycle a slave unit may
generate data for the other slaves or the master. The data are sent to
the destination slave or the master using the communication structure.
Only data for the subsequent time interval are transferred between
the slaves to reduce the amount of information sent over the commu­
nication structure, thus minimizing the communication overhead.
Therefore, the scheduled time is not sent.

Each slave informs the master when it has finished processing and
transferring data for the current simulation cycle. When all slaves
have informed the master about their completion of processing for the
current simulated time interval, and also the master has finished
transferring any primary input values scheduled for the next simulated
time interval to the slaves, the master issues a start signal to the slaves
for the next simulation cycle.

There are two signal lines between each slave unit and the master.
The master signals the slaves using a START signal and the slaves
signal the master using the DONE line. The START line from the
master initiates processing for the next simulation cycle. The DONE
line will become one when all the slaves have finished processing for
the current simulation cycle.

A.3 Slave unit

Each slave unit consists of a processing unit (PU), an input FIFO
buffer (IFB), an output FIFO buffer (OFB), an input data sequencer
(IDS), and an output data sequencer (ODS).

The slave unit PUs perform the actual fault simulation. The PU
stores any data it has for other PUs or the master in the OFB. The
ODS makes a request for the communication structure if there are
any data to be transferred from the OFB. The ODS of the slave, if
granted the use of the communication structure, takes data from the
OFB and sends it over the communication structure to other slaves or
the master. The data are received by the IDS of the destination slave
or the master. Any data received by an IDS are put in its IFB. End of
Data (EOD) flags are used to separate data streams since a PU can be
writing new data to the OFB before its ODS has finished transferring
current data, and similarly, an IDS can be receiving new data in the
IFB before its PU has finished reading current data.

The slave unit PU operation can be described in terms of two
essentially concurrent processes, namely the simulation cycle (execu­
tion of simulation algorithm) and the communication cycle (commu­
nication of events). Data generated during a simulation cycle are
transferred as they are generated in a corresponding communication
cycle (see Fig. 5). The algorithm executed by the Slave Unit PU is

3130 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

similar to the traditional parallel simulation algorithm used on gen­
eral-purpose computers except that it is modified to operate on a data
structure distributed over several processors (see Appendix C).

A communication cycle is the period in between two START com­
mands issued from the master. This cycle is phased with respect to
the simulation cycle as shown in Fig. 9.

A.4 Master processor

The master processor is the interface between the general-purpose
computer and the simulator. Its main functions are to keep track of
simulated time, keep the slaves in synchronism, supply the slaves with
primary input values, and gather the primary output values from the
slaves. The configuration of the master is similar to that of a slave
unit and is shown in Fig. 10. It consists of a central processing unit
(CPU) with some local memory, an IFB, an OFB, an IDS, and an
ODS.

A.S Communication structure

The communication structure is used as a medium for transferring
data between the slaves and between the slaves and the master. Either
a shared or a dedicated structure can be used for the multiprocessor

TB (t-1) COMMUNICATION CYCLE, TB (t)
..

r-!
GJ 0 G G 0

PROCESS PROCESS PROCESS EVALUATE/SCHEDULE END
DATA EXTERNAL DATA CYCLE 8 0 0 FROM DATA FROM
TIMING FOR IFB
WHEEL NEXT

TIME
INTERVAL

t ! t
EOD FROM EODTO EOD FROM

IFB OFB IFB

SIMULATION CYCLE, TA (t) TA (t+ 1)

• • ..
NOTE: DATA GENErll\TED DUrliNG SLOTS r;l AND I.;l OF

TA IS TRANSMITTED DUlliNG TB, LJ L.:J
Fig. 9-Rclatioll!lhip between a simulation cycle and communication cycle.

FAULT SIMULATION 3131

TO GENERAL-PURPOSE
COMPUTER

ST ART __ --+----4--+---i PU
[WITH
LOCAL

MEMORY) DONE

(TO SLAVE
UNITS)

Fig. lO-Master configuration.

simulator. The details of a communication structure based on time­
shared parallel bus and the cross-point matrix are discussed in detail
in Ref. 5.

APPENDIX B

Data Structure for Parallel Method

The following data tables are used by each PU for its operation (see
also Fig. 11):

1. Element table-This table contains the interconnection data and
signal values for the circuit. For each element it contains the value
vector, type, delay, fan-in list pointer and corresponding fan-in list,
internal fanout list pointer and fanout list, external fanout list pointer
and external fanout list. The value vector consists of a word pair. The
first bit of each word of the word pair represents the good machine,
while the remaining bits represent faulty machines. Three values can
be represented: 0, 1, and X. If multiword parallel simulation is required,
then additional word pairs are used to represent more faulty machines.
The internal fanout list pointer and corresponding fanout lists give
the fanout that remains in the subcircuit. The external fanout list
pointer and corresponding fanout lists give fanout that goes to subcir­
cuits located in other slaves. An element may have only internal
fanout, only external fanout, or both internal and external fanout.
Note that storing the external fanout takes up more space than storing
an internal fanout, since both the destination processor address and
element index have to be stored for the external fanout.

2. Activity list-This list is ~sed to keep track of active elements
during a simulation time interval. These elements are to be evaluated.

3132 THE BELL ·SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

ELEMENT TABLE

INDEX VALUE TYPE DELAY FAN-IN
VECTOR LIST
POINTER POINTER

/

/ II VALUE VECTOR I FAN-IN
LIST

~ VALUEVECTOR

TIMING WHEEL

o

· · ·
.1
I - rY · · "-·

L t = CURRENT LIST OF TIMING WHEEL
Lt + 1 = NEXT LIST OF TIMING WHEEL

INTERNAL EXTERNAL
FANOUT FANOUT

LIST LIST
POINTER POINTER

I I
I'NTERNAL I

FANOUT I EXTERNALII EXTE
LIST FANOUT FAN

RNAL
OUT
ST LIST LI

BEGIN

!
CURRENT END

! !
· · · -l,--------,r- .. • -l,--------,
.. · -1 ~ .. · ~'____------'
------~----------~/

I
EVENT LISTS

Fig. II-Data tables for PU operation (parallel simulation).

3. Timing wheel-This data area contains the events that are
scheduled in the future. A large amount of work has been done in this
area.15,16

APPENDIX C

Parallel Simulation Algorithm

1. Update data from timing wheel

for each event in list Lt of timing wheel
begin

update value vector pointer in Element Table;
for each fanout f of updated element

if activity flag of f not set {
set activity flag;

FAULT SIMULATION 3133

put f on activity list;
}

end
deallocate space on Timing Wheel;

2. Prepare external events for next time interval

for each event in list Lt+l of Timing Wheel
begin

if element has external fanout I

}
end

for each external fanout I
move destination processor address to OFB;
move element number to OFB;
for each word of value vector associated with event

move word to OFB;

if element does not have internal fanout also
deallocate space on Timing Wheel;

3. Update data from IFB

enable interrupts from IFB;
for each interrupt received from IFB

begin
if event is not EOD flag I

}

for each word of value vector associated with event
move word to Element Table;

for each fanout f of updated element
if activity flag of f not set I

set activity flag;
put f on activity list;

else I

}
end

disable interrupts from IFB;
reset activity flags in Element Table;
go to step 4 (Evaluate/Schedule);

(The EOD flag signifies end of data present in the IFB for the
current simulation cycle. The EOD flag is loaded by the IDS
when it receives a START signal from the master.)

4. Evaluate/schedule

for each entry in activity list
begin

-3134 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

}
end

inject faults, if any, on inputs;
for each set of words associated with input value vectors
of element

begin
calculate corresponding output word;
if output word changed from previous value

set change flag;
end

inject faults, if any, on outputs;
if change flag set or faults injected {

schedule event on Timing wheel;
if (element delay is 1 && element has external fanout)

for each external fanout {
move destination processor address to OFB;

move element number to OFB;
for each word of value vector associated with event

move word to OFB;

5. End cycle

store EOD flag in OFB;
increment t;
go to STEP 1.

APPENDIX D

Glossary

BIU-bus interface unit
CPU-central processing unit (part of a master unit)
EOD-end of data (flag)
IDS-input data sequencer
IFB-input first in first out (FIFO) buffer

Lp-number of word pairs used in parallel simulation
LAMP-logic analyzer for maintenance planning

LSI-large-scale integration
Lt-current list of timing wheel
N-average number of active elements per simulation cycle in

true value simulation
NT-total number of active elements during all passes of a simu­

lation
Nr-average number of active elements per simulation cycle in

fault simulation with 16 faults per pass
ODS-output data sequencer

FAULT SIMULATION 3135

OFB-output FIFO buffer
PU-processing unit (part of a slave unit)

T -time required to simulate a given set of faults
c-average number of elements in an element string
Ii-average fan-in of an element
lo-average fanout of an element
j-number of events for which the channel is found busy in

cross-point matrix
k-imbalance factor due to nonideal partitioning
n-number of processors in the multiprocessor simulator

no-number of processors required for optimum operation of
multiprocessor simulator

tl-Iength of simulation cycle for a single processor simulator
ta-time required to process one active element

tbr-bus release time for a parallel bus structure
tbrg-bUS request and grant time for a parallel bus structure

tc-total communication time during one simulation cycle
tc(bus)-total communication time during one simulation cycle for a

single parallel bus structure
tc(matrix)-total communication time during one simulation cycle for a

matrix structure
tc(mbus)-total communication time during one simulation cycle for a

multiple parallel bus structure
tda-data acknowledge time for a parallel bus structure
tds-address and data setup time for a parallel bus structure
tm-Iength of simulation cycle for a multiprocessor simulator
to-average processing time, tp , for number of processors n = no
tp-average processing time per processor during one simulation

cycle, where average processing time consists of the time
required to process all active elements and schedule resulting
events

VLSI -very large-scale integration
w-number of words to be transferred across the communication

structure for one active event

AUTHORS

Ytzhak H. Levendel, B.S.E.E., 1971, Technion-Israel; M.S.C.S., 1974, The
Weitzman Institute of Science; Ph.D., 1976, University of Southern California;
Bell Laboratories, 1976-. Mr. Levendel has done research in fault diagnosis
and until lately was involved in the development of a logic and test design aid
system. He is now a Supervisor in 5ESS.TM Member, IEEE, Eta Kappa Nu.

Premachandran R. Menon, B.S. (Electrical Engineering), 1954, Banaras
Hindu University; Ph.D. (Electrical Engineering), 1962, University of Wash­
ington; Bell Laboratories, 1963-. Mr. Menon has done research in switching

3136 THE BELL SYSTEM TECHNICAL JOURNAL, D~CEMBER 1983

theory and fault diagnosis and is currently involved in the development of a
logic simulation system. Recipient of the Distinguished Technical Staff Award;
member, IEEE.

Suresh H. Patel, B.E. (Electrical), 1975, University of Zambia; M.S.E.E.,
1976, Illinois Institute of Technology; Association of American Railroads,
1977-1981; Bell Laboratories, 1981-. At the Association of American Rail­
roads Mr. Patel was involved in hardware/software design, development and
testing of a multi-microcomputer-based instrumentation system for freight
trains. He was also involved in development of analytical and computer models
on track circuit. At Bell Laboratories he is a member of the Processor Design
Department. Mr. Patel was a part-time instructor at Illinois Institute of
Technology during 1977-1978.

FAULT SIMULATION 3137

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

Two New Kinds of Biased Search Trees

By 1. FEIGENBAUM* and R. E. TARJANt

(Manuscript received May 20, 1983)

In this paper, we introduce two new kinds of biased search trees: biased, a,
b trees and pseudo-weight-balanced trees. A biased search tree is a data
structure for storing a sorted set in which the access time for an item depends
on its estimated access frequency in such a way that the average access time
is small. Bent, Sleator, and Tarjan were the first to describe classes of biased
search trees that are easy to update; such trees have applications not only in
efficient table storage but also in various network optimization algorithms.
Our biased a, b trees generalize the biased 2, b trees of Bent, Sleator, and
Tarjan. They provide a biased generalization of B-trees and are suitable for
use in paged external memory, whereas previous kinds of biased trees are
suitable for internal memory. Our pseudo-weight-balanced trees are a biased
version of weight-balanced trees much simpler than Bent's version. Weight
balance is the natural kind of balance to use in designing biased trees; pseudo­
weight-balanced trees are especially easy to implement and analyze.

I. INTRODUCTION

The following problem, which we shall call the dictionary problem,
occurs frequently in computer science. Given a totally ordered universe
U, we wish to maintain one or more subsets of U under the following
operations, where Rand S denote any subsets of U and i denotes any
item in U:

access (i, S)-If item i is in S, return a pointer to its location.
Otherwise, return a special null pointer.

* Research done partly while a summer employee of Bell Laboratories and
partly while a graduate student supported by Air Force grant AFOSR-80-042.

t Bell Laboratories.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro­
duction is done without alteration and that the Journal reference and copyright notice
are included on the finit page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa­
tion-service systemH without further permission. Permission to reproduce or republish
any other portion of thiH paper must be obtained from the Editor.

3139

insert (i, S)-Insert i in S, assuming it is not previously there.
delete (i, S)-Delete i from S.
join (R, S) (two-way join)-Return the set consisting of the union

of Rand S, assuming that every item in R precedes every item in S.
This operation destroys Rand S, and can be regarded as a concaten­
ation of Rand S.

split (i, S)-Split S into three sets L, I, and R, where Land Rare
the sets of items strictly smaller and strictly larger than i, respectively,
and I = {i} if i is in S (three-way split), 1= 0 if i is not in S (two-way
split).

One way to solve the dictionary problem is to store the items of
each set in the external nodes of a search tree in left-to-right order,
one item per external node. To guide the operations, the search tree
also contains auxiliary items, called keys, in the internal nodes. The
worst-case access time in a search tree is proportional to the depth of
the tree. By imposing anyone of a number of well-known balance
conditions on the tree, we can guarantee that its depth is O(log n),
where n is the number of items it contains. Such a balance condition
can be maintained during update operations by performing appropriate
local rearrangements of the tree. With balanced search trees, each of
the dictionary operations has an O(log n) time bound. Examples of
balanced trees include height-balanced (AVL) trees,! 2, 3 trees,2 B­
trees,3 and trees of bounded balance.4

In many applications of search trees the access frequencies of
different items are different, and we would like our data structure to
take this into account. To deal with this problem formally we assume
that each item i has a known weight Wi providing an estimate of the
access frequency. The biased dictionary problem is that of implement­
ing the dictionary operations so that operations on heavier items are
faster than those on lighter items. In particular, when representing a
set S as a search tree, we wish to bias the tree so as to approximately
minimize its total weighted depth LiES widi, where di is the depth of
the external node containing item i, while preserving the ability to
update the tree rapidly. In addition to the five dictionary operations,
we allow the following operation for changing the weight of an item:

reweight (i, w, S)-Redefine the weight of item i in set S to be w.
The following theorem, due to Shannon, gives a lower bound on the

total weighted depth of a search tree:
Theorem 1:5 If T is a search tree for a set S and every node of T has no
more than b children, then

where W = LiES Wi is the total weight of the items in S.

3140 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

In light of Theorem 1, our goal is to devise classes of search trees
that are easy to update and have di = o (lOgb W/Wi) for every item i.
We call o (lOgb W /Wi) the ideal access time of item i.

Bent, Sleator, and Tarjan6
-
8 have devised several kinds of such

biased search trees. Our work is an extension of theirs. A thorough
discussion of previous work by others on the biased dictionary problem
may be found in Ref. 8.

In their running time analyses, Bent, Sleator, and Tarjan used a
technique called amortization, which we shall also use. The idea of
amortization is to average the running time of individual operations
over a (worst-case) sequence of operations. As a tool in deriving
amortized time bounds we use credits. A credit will pay for one unit of
computing time. To each operation we allocate a certain number of
credits, called the credit time or amortized time of the operation. If a
given operation does not need all its credits, we can save them for use
in later operations; if an operation needs more than its share of credits
we can use those previously saved. In any analysis using credits, the
objective is to prove that an arbitrary sequence of operations can be
performed without running out of credits.

Three points about amortization using credits are worth making.
First, credits are a way of charging earlier operations for later ones. If
a credit analysis is successful, we can assert that any sequence of
operations requires an amount of actual time that is at most a constant
multiplied by the sum of the credit times of the individual operations;
slow operations are only possible if there are corresponding earlier
fast ones. Second, although the word "average" appears in the descrip­
tion of the technique, it is not the usual kind of average-case analysis,
and in particular we make no probabilistic assumptions; we obtain
worst-case bounds holding for any sequence of operations. Third,
credits serve as a kind of "potential energy": we place them in regions
of search trees that may cause abnormally long update operations.
This idea may illuminate the credit invariants we define below.

The remainder of the paper consists of three sections. In Sections
II and III, we define and analyze biased a, b trees, which generalize
the biased 2, b trees of Ref. 8 and provide a biased version of B-trees.
Biased a, b trees are a form of biased tree appropriate for paged
external memory; earlier forms of biased trees are more appropriate
for internal memory. In Section IV we introduce pseudo-weight­
balanced trees, which give a biased version of weight-balanced trees
much simpler than Bent's earlier version.6 Weight balance is the
natural kind of balance to use in designing a biased search tree; pseudo­
weight-balanced trees are especially easy to implement and analyze.

We shall assume that the reader is familiar with search trees. In
particular we shall not discuss the use and updating of keys, and we

BIASED SEARCH TREES 3141

shall draw freely on the results and techniques of Ref. 8. We shall use
the terminology of Ref. 8 except that we use "external node" in place
of "leaf". When appropriate we shall regard a node x of a search tree
as denoting the entire subtree rooted at x, with the context resolving
whether a node or a tree is meant. The null node denotes the empty
search tree. We denote the parent of a node x by p(x}; p(x} = null if
x is a tree root.

II. LOCALLY BIASED a, b TREES

Our first class of biased trees uses height balance to guarantee fast
access and variable node size to allow easy updating. The class is
parameterized by two positive integer constants a and b such that 2 :s
a :s r b/21. The integer b specifies the maximum allowed number of
children of an internal node. If an internal node has at least a children,
we say it is filled; otherwise it is underfilled. (An external node is
always filled.) Ideally, we would like every node to have at least a
children; since in our scheme this is impossible to achieve, we allow
underfilled nodes but treat them specially .

.If x is a node in a search tree, we define its weight w(x} to be the
sum of the weights of all items in descendants of x. (We use the
convention that every node is a descendant of itself.) We define the
rank s(x} of x recursively by s(x} = Llogaw(x}J if x is an external node,
s(x} = 1 + max{s(Y}lp(y} = xl if x is an internal node. A node x is
minor if x is not a root and either s (x) < s (p (x)) - 1 or x is underfilled.
All other nodes are major. A locally biased a, b tree is a search tree
with the following properties (see Fig. I):

1. Every internal node has at least two and at most b children;

Fig. I-A biased 3, b tree. The numbers in nodes are ranks, and the numbers beside
nodes are credits for the credit invariant.

3142 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

2. If x is a minor node, any adjacent sibling of x is both major and
external. When a node x has this property, we say the tree is locally
biased at x.

We call two nodes r-compatible if they can be adjacent children of
a node of rank r in a biased a, b tree. That is, two nodes are r­
compatible if both have rank at most r - 1 and either at least one has
rank r - 1 and is external or both have rank r - 1 and at least a
children each.

If a = 2 we obtain exactly the biased 2, b trees of Bent, Sleator, and
Tarjan. Our main new idea is in the definition and handling of
underfilled nodes. Our first theorem guarantees that a, b trees have
ideal access time if b is chosen appropriately.
Lemma 1: Consider any biased a, b tree. If x is an external node,
as(x) ::; w(x) < as(x)+1. If x is an internal node with at least one minor
child, as(x)-l::5 w(x). If x is an internal node with k children,
k'as(x)-2::5 w(x), where k' = m{k, a}.

Proof: The first part of the lemma is immediate from the definition of
rank. The second part follows from the first part and property 2: if x
has a minor child, it must have another child that is major and
external. We prove the third part by induction on the height of x. If x
has a minor child, then k' as(x)-2 ::5 as(x)-l ::5 w (x) by the second part
of the lemma. Otherwise, all children of x are major. Let y be a child
of x. If y is external, or internal with a minor child, then as (x)-2 =

as(y)-l ::5 w(y). Otherwise, y has at least a major children, and by the
induction hypothesis as (X)-2 = a·as(y)-2 ::5 w(y). Summing over the k
children of x gives kas(x)-2 ::5 w(x). D

Lemma 2: If x is an external node in a biased a, b tree of total weight
W, the depth of x is at most loga W/(w(x)) + 3.
Proof; Let r be the root of the tree and d the depth of x. Since the
rank increases by at least one from child to parent, d ::5 s(r) - s(x).
Lemma 1 implies logaw(x) ::5 s(x) + 1 and loga W = logaw(r) ;::: s(r) -
2. Combining inequalities gives the lemma. D
Theorem 2: A biased a, b tree has ideal access time, with a constant
factor proportional to logab.
Proof: Immediate from Lemma 2. D

According to Theorem 2, to minimize the access time in a, b trees,
we should choose b as small as possible. The requirement b ;::: 2 a-I
is necessary to allow efficient updating. The best choice of b seems to
be 2a - 1 or 2a. The choice b = 2a allows purely up-down updates
(see the end of Section III). The choice b = 2a - 1 gives a biased
version of ordinary B-trees.3 Any other choice gives a biased version
of "hysterical" or "weak" B-trees.9

-
U Note also that Theorem 2 gives

a worst-case example, not an amortized bound on the access time.

BIASED SEARCH TREES 3143

As Ref. 8 shows, all the update operations on search trees can be
carried out using one or more joins. Our next task is thus to define a
join algorithm for biased a, b trees.

Algorithm 1: local join (x, y). Join two locally biased a, b trees with
roots x and y, assuming that all items in tree x precede all items in
tree y.

Case O-x = null or y = null. If x = null, return y; if y = null,
return x.

Case I-s(x) ~ s(y) andx andy are (s(x) + I)-compatible, or s(x)
::5 s(y) and x andy are (s(y) + I)-compatible. Create a new node with
x and y as its children and return the new node.

Case 2-s(x) = s(y) and x andy are not (s(x) + 1) compatible. Let
u be the rightmost child of x and v the leftmost child of y (see Fig.
2a). Perform join(u, v), letting w be the root of the resulting tree. If
s (w) < s (x), construct a node z whose children are those of x not
including u, the node w, and the children of y not including v. If s (w)=
s(x), construct a node z whose children are those of x not including u,
those of w, and those of y not including v (see Fig. 2b). In either case,
if z has more than b children, split it into two nodes z' and z" with z
as parent, dividing the old children of z as evenly as possible between
z' and z" (see Fig. 2c). Return z.

Case 3-s (x) > s (y) and x and yare not (s (x) + 1) -compatible. Let
u be the rightmost child of x (see Fig. 2d). Perform join (u, y), letting
v be the root of the resulting tree. If s (v) < s (x), replace u as a child
of x by v. If s(v) = s(x), replace u as a child of x by the set of children
of v. If x now has more than b children, split it into two nodes x' and
x" with x as parent, dividing the old children of x as evenly as possible
between x' and x". Return x.

Case 4-s(x) < s(y) and x and yare (s(y) + I)-compatible. Sym­
metric to Case 3.

Theorem 3: Given two biased a, b trees with roots x and y, the join
algorithm produces a biased a, b tree whose root has rank max{s(x),
s(y)l or max{s(x), s(y)} + 1. In the latter case, the root of the new tree
has exactly two children.

Proof: An easy induction on rank shows that the root of the tree
produced by the join has rank max{s(x), s(y)} or max{s(x), s(y)l + 1
and that in the latter case the root has exactly two children. Further­
more, it is clear that every internal node in the new tree has at least
two and at most b children. All that remains is to show that any two
adjacent siblings in the new tree are allowed to be adjacent by property
2. We prove this by induction on rank, using the same cases as in the
algorithm.

Case I-Assume without loss of generality that s(x) ~ s(y). Since

3144 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

(a)

(b)

(c)

sIx) > sty)

(d)

Fig.2-Cases of the join algorithm. (a) Situation at the beginning of Case 2. (b)
Recursive call join (u, v) produces a tree of rank s(x) with root w. (c) Division of an
overfilled root. (d) Case 3.

x and yare (s(x) + I)-compatible, the new tree is locally biased at x
andy.

Case 2-For the moment, ignore the split of z if it takes place. Since
x andy are not (s(x)+ I)-compatible, neither x nor y is external, and
u and v exist. Suppose the left sibling of u, say q, is minor. Then U is
major and external, which means that the join of u and v will imme­
diately terminate in Case 1, and the new right sibling of q will be u.
The symmetric statement holds for the right sibling of v. Finally,
suppose w is minor, i.e., s(w) < s(x) - 1 or w has fewer than a
children. Then both u and v must be minor as children of x and y,
respectively, and both adjacent siblings of w in the new tree will be
major and external. Thus the tree before the split has property 2.

BIASED SEARCH TREES 3145

Splitting z preserves property 2 since both new children of z will have
at least a children of their own (this is where we use b > 2a - 1) and
each will have rank s(x). (Property 2 implies that before the split, of
any two adjacent children of z, at least one has rank s(z) - 1).

Case 3-Similar to but simpler than Case 2. Case 4 is symmetric. D
To make our timing analysis as similar as possible to the one in

Ref. 8 for biased 2, b trees, we shall assume that credits can be divided
in half, and that half a credit will pay for the work in one call of join,
not counting the work in the recursive call. We use the following credit
invariant: A nonroot node x holds s(p(x)) - s(x) - 1 credits, plus an
additional half credit if x is underfilled.
Theorem 4: The join algorithm runs in O(ls(x) - s(y) I) amortized
time. Specifically, carrying out the join while preserving the invariant
takes Is(x) - s(y)1 + 1 credits in Case 1 or 2, Is(x) - s(y)1 + 1/2
credits in Case 3 or 4.

Proof: We use induction on rank and a surprisingly complicated case
analysis.

Case I-Assume without loss of generality that s(x) ::: s(y) and
that if s(x) = s(y), then x is external or filled. We need half a credit
for the work in the join and at most s (x) - s (y) + 1/2 credits to place
on y, for a total of s(x) - s(y) + 1.

Case 2-The split of z, if it occurs, does not affect the credit
invariant; therefore we ignore it. Assume without loss of generality
that s (u) ::: s (v). There are three subcases:

Subcase 2a -s (w) = s (x) and join (u, v) is a Case 1 join. The credits
originally on u and v suffice to maintain the credit invariant on u
and v after the join of x and y is completed. We have one credit on
hand to join x and y; we spend half for the work in the outer call
and half for the work in the inner call.
Subcase 2b-s (w) = s (x) and join (u,· v) is not 'a Case 1 join. To
perform the join of x and y we are given one credit and can obtain
at least 2s(x) - s(u) - s(v) - 2 from u and v, for a total of 2s(x)
- s (u) - s (v) - 1. We need half a credit for the work in the outer­
most call and at most s (u) - s (v) + 1 for the recursive call, for a
total of at most s (u) - s (v) + 3/2. The difference between what we
have and what we need is 2(s(x) - s(u)) - 5/2. Since s(x) - s(u)
::: 1, we must find at most an additional half credit to spend.

If join (u, v) is a Case 2 join, and s(x) - s(u) = 1, then either u
or v is underfilled and yields an extra half credit. If join (u, v) is a
Case 3 join, we save half a credit on the join. Thus, in any case we
can obtain the needed half credit.
Subcase 2c-s(w) < s(x). As in Subcase 2b we have at least 2s(x)
- s (u) - s (v) - 1 credits to perform the join of x and y. We need

3146 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

one half for the work in the outermost call, at most s (u) - s (v) +
1 for the recursive call, and at most s (x) - s (w) - 1/2 to place on
w, for a total of at most s(x) + s(u) - s(v) - s(w) + 1. The
difference between what we have and what we need is s(x) - s(u)
+ s(w) - s(u) - 2. Since s(x) - s(u) ;::= 1 and s(w) ;::= s(u), we have
enough credits unless s(x) - s(u) = 1 and s(w) = s(u), in which
case we must find an extra credit.

Suppose s(x) - s(u) = 1 and s(w) = s(u). Since s(w) = s(u),
join (u, v) is not a Case 1 join, and u is internal. If join (u, v) is a
Case 2 join, then both u and v are internal. Either both u and v are
underfilled, giving us two additional half credits, or one of u and v
is underfilled and w is filled, giving us an extra half credit from u or
v and saving a half credit that does not need to go on w. The only
other possibility is that join (u, v) is a Case 3 join, which saves us
half a credit.
Furthermore in this case either u is underfilled or w is filled, either
giving us an extra half credit from u or saving us a half credit on w.
Thus in all cases we obtain the necessary extra credit.
Case 3-W e ignore the possible split of x, which does not affect the

credit invariant. There are two subcases:
Subcase 3a-s(v) = s(x). To perform the join we are given s(x) -
s (y) + 1/2 credits and can obtain at least s (x) - s (u) - 1 more
from u, for a total of 2s(x) - s(u) - s(y) - 1/2. We need one half
for the outermost call and at most I s (u) - s (y) I + 1 for the recursive
call, for a total of Is (u) - s (y) I + 3/2. The difference between what
we need and what we have is 2(s(x) - max{s(u), s(y)}) - 2 ;::= O.
Subcase 3b-s (v) < s (x). To perform the join we have at least 2s (x)
- s(u) - s(y) - 1/2 credits. We need Is(u) - s(y)1 + 3/2 for the
outermost and recursive calls, plus at most s (x) - s (v) - 1/2 to
place on v, for a total of s(x) + Is(u) - s(y)1 - s(v) + 1. The
difference between what we have and what we need is s(x) -
max{s,(u), s(y)} + s(v) - max{s(u), s(y)} - 3/2. We have enough
credits unless s(x) - max{s(u), s(y)} = 1 and s(v) = max{s(u),
s (y)}, in which case we need an extra half credit.

Suppose s(x) - max{s(u), s(y)} = 1 and s(v) = max{s(u), s(y)}.
Then join (u, y) is not a Case 1 join. If it is a Case 2 join, then
either u is underfilled, giving us an extra half credit, or v is filled,
saving us a half credit on v. If it is a Case 3 join, we save half a
credit on the join. Thus in all cases we obtain the necessary half
credit.
Case 4-Symmetric to Case 3. D
It is useful to restate Theorem 4 as follows. We say a biased a, b

tree with root x is cast to rank k if it satisfies the credit invariant and
has k - s(x) credits on its root. Theorem 4 implies that if x and yare

BIASED SEARCH TREES 3147

the roots of two biased a, b trees cast to a rank k > max { s (x), s (y) },
then they can be joined, without using additional credits, to produce a
tree cast to rank k.

We can implement a split as a sequence of joins, exactly as described
in Ref. 8. The following algorithm splits at an item i in the tree:
Algorithm 2: split (i, r). Split the biased a, b tree with root r at item i,
assumed to be in the tree.

Locate the node x containing item i. Initialize the current node to
be p (x) and the previous node to be x. Initialize the left and right trees
to empty; they will contain the items smaller than and larger than i,
respectively. Repeat the following step until the current node is null
(the previous node is the root of the tree):

Split Step-Delete every child of the current node to the left of the
previous node. If there is one such child, join it to the left tree; if there
are two or more such children, give them a common parent and join
the resulting tree to the left tree. Repeat this process with the children
to the right of the previous node, joining the resulting tree to the right
tree. Remove the previous node as a child of the current node and
destroy it if it is not x. Make the current node the new previous node
and its parent the new current node.
TheoreT!! 5: The split algorithm is correct and takes O(s(r) - s(x»
credit time, where x is the node containing item i.
Proof: Correctness follows immediately from the correctness of the
join algorithm. The time bound follows -as in Ref. 8; we shall sketch
the idea. Let cur, prev, left, and right be the current node, the previous
node, and the roots of the left and right trees, respectively. An
induction shows that s (prev) === max {s (left), s (right)} just before each
split step. Another induction shows that by allocating O(s(cur) -
s (prev » credits to a split step, we can carry out the step while
preserving the invariant that the left and right trees are cast to a rank
of s (prev) + 1. That is, the amortized time associated with a single
step of the split is proportional to the rank difference of two consec­
utive nodes along the split path. If we sum over all split steps, then
the sum telescopes, and we obtain the time bound in the statement of
the theorem. 0

Splitting at an item not in the tree is just like splitting at an item
in the tree, except that the initialization is different. Let r be the root
of the tree, i the item at which the split is to take place, i- and i+ the
largest item in the tree less than i and the smallest item in the tree
greater than i, respectively, and x the handle of i, defined to be the
nearest common ancestor of the external nodes containing i- and i+.
We can locate x by searching down the path from r to x if appropriate
keys are stored in the tree (see Ref. 8). To carry out the split, we
combine all children of x whose descendants contain items less than i

3148 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

to form the initial left tree and all other children of i to form the
initial right tree. Then we initialize the previous and current nodes to
be x and p(x), respectively, and repeat the split step until the current
node is null. Such a split also runs in O(s(r) - s(x» credit time.

We can implement insert, delete, and reweight as combinations of
splits and joins: an insertion is a two-way split followed by two joins,
a deletion is a three-way split followed by one join, and a weight
change is a three-way split followed by two joins. Using the same kind
of analysis as in Ref. 8, we obtain the following credit times for these
three operations (we have stated the bounds in terms of weights rather
than ranks):

. (.) 0(1 (w(x) + Wi)) Insert l, x : oga . I l ' mIn Wi- + Wi+, Wif

where i- and i+ are as defined above.

. ((W(X»)) delete (l, x): 0 loga ---;;- .

.. ((max{w(x), WI)) rewelght (l, W, x): 0 loga . { . l '
mIn W" Wf

where w(x) and Wi are as defined before the weight change.
Remark: In all the time bounds derived in this section and the next
the constant factor is proportional to b. 0

III. GLOBALLY BIASED a, b TREES

Local bias is sufficient to guarantee good amortized but not good
worst-case running times for the dictionary operations. If it is impor­
tant that every single operation be fast, we need a stronger balance
condition. Figure 3 shows how a split can take more actual time than

Fig. 3-Locally biased a, b tree that cannot be split at x in actual time 0 (s (r) -
s(x}}. Not all children of y, Z, and v are shown. Join of u and v can take an unbounded
amount of time.

BIASED SEARCH TREES 3149

its credit time, and illustrates why local bias is not enough: a minor
node that is the leftmost child of its parent has a constraint on its
right but not on its left side, and symmetrically for a minor node that
is the rightmost child of its parent. To overcome this problem we
introduce globally biased a, b trees.

If x is a node in a search tree, we define x + to be the external node
containing the smallest item greater than the largest item in a descen­
dant of x. Symmetrically, x- is the external node containing the largest
item less than the smallest item in a descendant of x. If x is on the
rightmost path of the tree, x+ is undefined; if x is on the leftmost path,
x- is undefined. A globally biased a, b tree is a search tree with two
properties (see Fig. 4):

1. Every internal node has at least two and at most b children.
2. If x is a minor nonroot node and x+ is defined, s(x+) ~ s(p(x))

- 1; if x- is defined, s(x-) ~ s(p(x)) - 1. When a node x has this
property, we say the tree is globally biased at x.

Global bias implies local bias. Thus globally biased a, b trees have
ideal access time. We can join two globally biased a, b trees using
almost the same join algorithm as in Section II; the only difference is
that the conditions determininng the cases are different. We shall call
the algorithm in Section II local join to distinguish it from the following
global join algorithm:

Algorithm 3: global join (x, y). Join two globally biased a, b trees with
roots x and y, assuming that all items in tree x precede all items in
tree y.

In each case, proceed as in the corresponding case of the local join
algorithm:

Case O-x = null or y = null.

(a) (b)

Fig. 4-Two biased 2, 3 trees with the same external nodes. Numbers in nodes are
ranks. (a) Locally biased tree. (b) Globally biased tree.

3150 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Case l-s(x) 2: s(y) and x is external, or s(x) ::5 s(y) and y is
external.

Case 2-s (x) = s (y) and both x and yare internal.
Case 3-s(x) > s(y) and x is internal.
Case 4-s(x) < s(y) and y is internal.
The only difference between this and the local join algorithm is that

if x and y have the same rank and both are internal with at least a
children, we apply Case 2 instead of Case 1. The algorithm is identical
to the join algorithm for globally biased 2, b trees given in Ref. 8.

Theorem 6: The global join algorithm is correct.

Proof: As in the proof of Theorem 3, we use induction on rank and a
case analysis.

Case I-Immediate.
Case 2-Ignore the split of z if it takes place. Let q be the left sibling

of u (recall that u is the rightmost child of x). Suppose q or one of the
nodes on the rightmost path descending from q is minor. Let this
minor node be r. The join changes neither p(r) nor r+ and thus
preserves global bias at r. The symmetric statement holds for the right
sibling of v (recall that v is the leftmost child of y). Suppose w (the
join of u and v) or one of the nodes on the leftmost path descending
from w is minor. Let this minor node be r. There must be a correspond­
ing minor node r' on the leftmost path descending from u, such that
s (p (r» ::5 s (p (r'». Since the original tree is globally regular at r' , the
new tree must be globally regular at r. The symmetric statement holds
for the rightmost path descending from w. Thus the new tree is globally
biased before the split. The split preserves global bias.

Case 3-Similar to but simpler than Case 2. Case 4 is symmetric. D

Theorem 7: The worst-case running time of the global join algorithm is
O(max{s(x), s(y)} - max{s(u), s(v)}), where u is the rightmost exter­
nal descendant of x and v is the leftmost external descendant of y.

Proof: The global join algorithm descends rank by rank concurrently
along the rightmost path descending from x and the leftmost path
descending from y, until reaching a leaf; then it ascends. The theorem
follows. D

We split a globally biased a, b tree in exactly the same way as a
locally biased a, b tree, using local rather than global joins. This method
not only produces globally biased trees, it has a worst-case time bound
equal to the amortized bound given in Theorem 5.

Theorem 8: Algorithm 2 (or its variant for an item not in the tree)
correctly splits a globally biased a, b tree with root r at a node x in
O(s(r) - s(x» worst-case time.

Proof: The proof is the same as the corresponding proof for globally

BIASED SEARCH TREES 3151

biased 2, b trees given in Ref. 8. For completeness, we sketch it here.
Let XI, X2, "', Xk be the roots of the trees joined to form the final left
tree. Let YI = Xl and for i = 2, "', k let Yi be the root of the tree
formed by executing join (Xi, Yi-l)' With this definition Yk is the final
left tree. Each node Xi is either a child of an ancestor of X, say ai, in
the original tree, or the newly constructed parent of a set of children
of such a node ai; furthermore ai+l is a proper ancestor of ai for i = 1,
.. " k - 1. Consider a node Xi for i ~ 2. If Xi is a child of ai, global bias
implies Xi is a major child, for otherwise its right sibling is external,
which is impossible since this right sibling has Xl or its children as
ancestors. Thus s(xJ = s(ai) - 1. If Xi is the new parent of children
of ai, then S(Xi) = s(ai). It follows that S(Xi) ::; S(Xi+1) for i = 1, "',
k - 1. As noted in the proof of Theorem 5, an induction shows that
s(yJ ::; s(aJ for i = 1, "', k; if i ~ 2 and S(Xi) = s(ai), Xi has at most
b - 1 children, and the join of Xi and Yi-l cannot split Xi. Thus if i ~ 2,
s(ai) - 1 ::; s(xd ::; S(Yi) ::; s(ai).

Consider the join of Xi+l and Yi. The join will descend rank by rank
along the rightmost path from Xi+1 and the leftmost path from Yi.
Global bias in the original tree implies that if the descent from Xi+l
encounters a minor node z (other than the root of Xi+1), the leftmost
external node OfYi will have rank at least s(p(z)) - 1 and the join will
immediately terminate. Thus the join either terminates by reaching
an external descendant of Xi+1 of rank at least S(Yi), in which case the
global bias of the joined tree is immediate, or it reaches an internal
descendant, say z, of Xi+1 of rank exactly S(Yi). Now we need a similar
but more complicated statement about the leftmost path from Yi.
There are several cases.

Case l-s (Xi) < s (ai) and Xi is minor in the original tree. This can
only happen if i = 1, i.e., Xi = Yi. Global bias implies that the rightmost
external descendant of Xi+l has rank at least s(ai) - 1. The join
descends along the path from Xi+ I to this external node and then
ascends.

Case 2-S(Xi) < s(ai), Xi is major, and S(Xi) < S(Yi). In this case Yi
is also major and the leftmost paths descending from Xi and Yi, not
including Xi and Yi themselves, are identical. If z is underfilled, Yi is
external, and the join terminates in Case 1. If z is filled, Yi is either
external or filled, and the join also terminates in Case 1.

Case 3-S(Xi) < s(ai), Xi is major, and S(Xi) < s(yJ. In this case the
left child of Yi is major and the join stops descending either at rank
S(Yi) (if Yi is external or filled) or at rank S(Yi) - 1 (if Y is internal).

Case 4-s (Xi) = S (ai). In this case the leftmost paths descending
from Xi and Yi, not including Xi and Yi themselves, are identical. If Yi is
external or filled, the join will stop descending at rank S(Yi). If Yi is
underfilled, the join will stop at rank S (Yi-d; either the rightmost child

3152 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

of z or the leftmost child of Yi is external of rank S(Yi-l), or both are
filled and of rank s(Yi-d.

In all cases the global bias of the original tree implies that the joined
tree is globally biased. This means that the final left tree is globally
biased. Furthermore, the time required for joining Xi+1 and Yi is
O(s(ai+1) - s(ai)) in all cases. Summing over all joins gives a time
bound of O(s(r) - s(x)) to form the final left tree. A symmetric
argument applies to the right tree. D

If we implement insertion, deletion, and weight change as described
in Section II, we obtain the following worst-case time bounds for the
various operations on globally biased a, b trees (see Ref. 8):

split (i, r): O(IOga (w~»))
if i is in the tree, or

if i is not in the tree, where i- and i+ are the items before and after i
in the tree, respectively.

. (.) o(w(x) w(x) + Wi) Insert l, x: loga + loga .
Wl- + Wi+ Wi

. (W(X) w') delete (l, x): 0 loga -- + loga ,
Wi Wi- + Wi+

where W' is the weight of the tree root after the deletion.

reweight (i, w, x): O(lOga w(x) + loga W'),
Wi W

where w(x) and Wi are as defined before the weight change, and W' is
the weight of the tree root after the change.

As compared with the amortized time bounds for locally biased a, b
trees, the worst-case bounds for globally biased a, b trees are larger for
join and delete and the same for the other operations.

We conclude our discussion of biased a, b trees with two remarks.
First, if b 2: 2a we can implement either local or global join in an
iterative, purely top-down fashion by preemptively splitting nodes
with b children as they are encountered. By extending this idea we
can implement all the operations top-down. This is a reason to choose
b = 2a over b = 2a - l.

Second, for appropriate large values of a and b, biased a, b trees
offer a biased alternative to B-trees. One of the advantages of B-trees
is that there are no underfilled nodes except tree roots; thus if nodes

BIASED SEARCH TREES 3153

are stored one node per page in fixed-size pages, the storage efficiency
is at least 50 percent, not counting root pages. Biased a, b trees do not
share this property. We leave open the problem of devising a space­
efficient version of biased a, b trees.

IV. PSEUDO-WEIGHT -BALANCED TREES

In biased a, b trees, we maintain balance through a height constraint.
However, there are other possible balance constraints, such as weight
balance. Nievergelt and Reingold4 defined trees of bounded balance by
imposing upper and lower bounds on the ratio leftweight/rightweight
at each internal node, where the left and right weights count the
number of items in the left and right subtrees, respectively. Bent
developed a biased version of weight-balanced trees.6 However, his
data structure suffers from a complicated seven-case join algorithm
that needs up to three recursive calls and also uses rebalancing
rotations more complicated than standard single and double rotations.
In this section we introduce a form of biased weight-balanced trees
much simpler than Bent's. Our simplification comes from two new
ideas: we discretize the weights and allow arbitrarily bad imbalance in
some situations where balancing is possible. We call our trees pseudo­
weight-balanced.

We consider binary trees, in which each internal node x has exactly
two children, a left child l (x) and a right child r (x). As in Section II
we define the weight w(x) of a node x by w(x) = Wi if x is an external
node containing item i, w(x) = w(l(x)) + w(r(x)) if x is an internal
node. We define the rank s(x) of a node x differently:
s(x) = Llg w(x)J. We call a binary search tree pseudo-weight-balanced
(pwb) if it has two properties:

1. If three nodes in a row, say x, p(x), and p(P(x)), have the same
rank, then x is external and either x is a left child and p(x) a right
child or vice-versa (see Fig. 5a).

2. If x and l(x) (symmetrically x and r(x)) are internal nodes of the
same rank, then w(r(l(x))) + w(r(x)) (symmetrically w(l(r(x))) +
w(l(x))) is at least 2s

(x) (see Figure 5b). (This property allows us to
do single rotations when necessary to maintain property 1.)

The following result bounds the access time in pwb trees.
Theorem 9: A pwb tree has ideal access time for all items. Specifically,
if x is an external node containing item i in a tree of total weight W,
then the depth of x is at most 2 19(W/Wi) + 3.
Proof: Let r be the root of the tree and d the depth of x. According to
property'l, after the first step up from x, every two steps taken along
the path from x to r must cause a rank increase. Thus L(d - 1)/2J ::5
s(r) - s(x) = Llg WJ. - Llg w(x)J, which implies d::5 2L(d - 1)/2J + 1
::5 2(lg W -lg w(x) + 1) + 1 ::5 2 19 (W/w(x)) + 3. D

3154 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

OR

(a)

OR

w(u) + w(v) ~ 2r

(b)

Fig.5-Legal configurations in a pseudo-weight-balanced tree. (a) Three nodes of
the same rank in a row. (b) Two internal nodes of the same rank in a row.

We join two pwb trees using the following algorithm:
Algorithm 4:join (x,y). Join two pwb trees with roots x andY, assuming
that all items in tree x precede all items in tree y.

Case O-x = null or y = null. Return y if x = null or x if y = null.
Case 1-lg(w(x) + w(y)) 2: 1 + max{s(x), s(y)} or the heavier of x

and y is an external node. Return a new root with left child x and
right child y.

Case 2-s(x) > s(y) and 19(w(x) + w(y)) < 1 + s(x) and x is not
external. If r(x) is external, or internal of rank at most s(x) - 1,
replace r (x) by join (r (x), y). Otherwise, perform a single left rotation
at x and replace the right child r(u) of the new root u by join (r(u),
y) (see Fig. 6).

Case 3-s(x) < s(y) and 19(w(x) + w(y)) < 1 + s(y). Symmetric
to Case 2.
Remark: Although the join algorithm is stated recursively, it is easy to
implement it in an iterative, purely top-down fashion, since the rank
of a node depends only on the total weight of its descendants and not
on their arrangement.
Theorem 10: Algorithm 4 produces a pwb tree of rank max{s(x), s(y)}
or 1 + max{s(x), s(y)}.

Proof: By induction on the depth of the recursion. The definition of
rank implies that the rank of the new tree is max{s(x), s(y)} or 1 +

BIASED SEARCH TREES 3155

(a)

(b)

Fig. 6-Case 2 of the join algorithm for pwb trees. (a) Node u = r(x) external or s(u)
< s(x): no rotation. (b) Node u internal and s(u) = s(x): rotation.

maxls(x), s(y)}. In the latter case, the join must have executed Case
1 and both children of the new root must have rank smaller than the
root's rank. Case 1 obviously constructs a tree with properties 1 and
2. In Case 2, property 2 guarantees that the single rotation, if it occurs,
creates a pwb tree. If the tree produced by the recursive join has rank
less than s(x), the overall joined tree clearly has properties 1 and 2.
This is also true if the tree produced by the recursive join has rank
s(x), by the observation above. D

In analyzing the running time of Algorithm 4, we use the following
credit invariant: Any node x contains maxlO, s(P(x)) - s(x) - I}
credits.
Theorem 11: Algorithm 4 runs in O(ls(x) - s(y)1) = O(lg (w(x) +
w (y» /min I w (x), w (y)}) amortized time. Specifically, if we assume
without loss of generality that s(x) ~ s(y), performing the join while
maintaining the credit invariant takes at most s(x) - s(y) + 1 credits.

Proof: We consider the same cases as in the algorithm.
Case I-We need one credit to build the new tree and either s{x) -

s(y) or s(x) - s(y) - 1 to establish the invariant on y, for a total of
at most s(x) - s(y) + 1.

Case 2-Suppose the single rotation does not take place. We have
on hand s(x) - s(y) + 1 tokens for performing the join plus s(x) -
s(r(x» - 1 from r(x), for a total of 2s(x) - s(y) - s(r(x». We need
one token for performing the outermost call of join plus max {s (r (x»,
s(y)} - minls(r(x», s(y)} + 1 for the recursive call plus s(x) -
maxls(r(x», s(y)} - 1 to establish the invariant on the root of the

3156 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

tree returned by the recursive call, for a total of s (x) - min I s (r (x)),
s(y)} + 1 :::; 2s(x) - s(y) - s(r(x)), since s(x) > max(s(r(x)), s(y)}.
Exactly the same argument applies if the rotation does take place,
since the rotation preserves the credit invariant. 0

The algorithm for splitting a pwb tree is almost identical to but
simpler than the algorithm for splitting a biased a, b tree.
Algorithm 5: split (x, r). Split a pwb tree with root r at a node x.

Initialize the current node cur, the previous node prev, and the left
and right nodes left and right to be p(x), x, l(x), and r(x), respectively.
Repeat the following step until cur = null:

Split step-If prev = l(cur), replace right by join (right, r(cur));
otherwise, replace left by join (l(cur), left). Rembve prev as a child of
cur and destroy it if it is not x. Replace prev and cur by cur and p (cur),
respectively.

This algorithm is the same as that described by Bent, Sleator, and
Tarjan8 for splitting biased binary trees, and indeed will work for any
class of binary search trees for which a join algorithm is known.
Theorem 12: The amortized time of split (x, r) is

More precisely, performing the split while maintaining the credit
invariant takes O(s(r) - s(x)) credits, where x is the node containing
item i.
Proof: The definition of ranks implies that s (prev) ~ max I s (left),
s(right)} before each split step. An easy induction shows that if we
allocate O(s(cur) - s(prev) + 1) credits to each split step, we can
carry out the step while maintaining the credit invariant on the trees
left and right and in addition maintaining 2s (prev) - s (left) - s (right)
credits on hand. Summing over all split steps and using property 2
gives the theorem. 0

Using the appropriate combinations of join and split, we obtain the
same amortized time bounds as in Section II (with binary logarithms)
for insertion, deletion, and weight change in pwb trees. Pseudo-weight­
balanced trees are a very simple version of locally biased trees, com­
petitive with the biased binary trees presented in Ref. 8. We have been
unable to devise a globally biased version of pwb trees and leave this
as an open problem.

REFERENCES

1. G. M. Adelson-Vel'skii and Y. M. Landis, "An algorithm for the organization of
information," Soviet Math. Dokl., 3, No.5 (September 1962), pp. 1259-62.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Reading, MA: Addison-Wesley, 1974.

BIASED SEARCH TREES 3157

3. R. Bayer and E. M. McCreight, "Organization and maintenance of large ordered
indexes," Acta Info., 1, No.3 (1972), pp. 173-89.

4. J. Nievergelt and E. M. Reingold, "Binary search trees of bounded balance," SIAM
J. Comput., 2 (1973), pp. 33-43.

5. N. Abramson, Information Theory and Coding, New York: McGraw-Hill, 1963.
6. S. W. Bent, "Dynamic weighted data structures," Ph.D. thesis, Computer Science

Department, Stanford University, Stanford, CA, 1982.
7. S. W. Bent, D. D. Sleator, and R. E. Tarjan,. "Biased 2-3 trees," Proc. Twenty-First

Annual IEEE Symp. on Foundations of Computer Science, October 13-15, 1980,
pp.248-54.

8. S. W. Bent, D. D. Sleator, and R. E. Tarjan, "Biased search trees," unpublished
work.

9. S. Huddleston and K. Mehlhorn, "Robust balancing in B-trees," Lecture Notes in
Computer Science, 104 (1981), Berlin: Springer-Verlag, pp. 234-44.

10. S. Huddleston and K. Mehlhorn, "A new data Structure for representing sorted
lists," Acta Info., 17, No.2 (1982), pp. 157-84.

11. D. Maier and S. C. Salveter, "Hysterical B-trees," Info. Proc. Letters, 12, No.4
(August 1981), pp. 199-205.

AUTHORS

Joan Feigenbaum, B.A. (Mathematics), 1981, Harvard University. Ms.
Feigenbaum is a graduate student in the Computer Science Department of
Stanford University and holds a grant from the Bell Laboratories Graduate
Research Program for Women. She spent the summers of 1980, 1981, and
1982 at Bell Laboratories. During the summer of 1982, she was a member of
the Mathematical Foundations of Computing Department. Her current re­
search is in the areas of data structures and cryptography. Member, Phi Beta
Kappa.

Robert E. Tarjan, B.S. (Mathematics), 1969, California Institute of Tech­
nology; M.S., 1971, and Ph.D., 1972 (Computer Science), Stanford University;
Cornell University, 1972-1973; University of California, Berkeley, 1973-1975;
Stanford University, 1975-1980; Bell Laboratories, 1980-. Mr. Tarjan is a
member of the Mathematical Foundations of Computing Department, where
he has been studying the design and analysis of efficient data structures and
combinatorial algorithms. Member, ACM, SIAM, AAAS, Tau Beta Pi, and
Sigma Xi.

3158 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

An Algebraic Theory of Relational Databases

By T. T. LEE*
(Manuscript received December 10, 1982)

In this paper we present a theory of relational database systems based on
the partition lattice, which represents a new mathematical approach to the
structure of relational database systems. A partition lattice can be defined for
any given relation. This partition lattice is shown to be a meet-morphic image
of the Boolean algebra of subsets of the attribute set. The partial ordering in
the lattice is proved to be equivalent to the concept of functional dependency,
and thus Armstrong's axioms for functional dependencies are proved. We
solve the problem of finding the list of all keys by seeking the prime implicants
of the Boolean function associated with the principal ideals generated by the
attributes. We demonstrate the properties of the Boyce-Codd Normal Form
(BCNF), and give a modified algorithm for synthesizing an information­
lossless BCNF based on the principal filter. The necessary and sufficient
conditions for multivalued dependency (MVD) are given in terms of a lattice
equation, and the inference rules of MVD are proved. The necessary and
sufficient conditions for join dependency (JD) are given; consequently, we can
prove the known result that acyclic join dependency (AJD) is equivalent to a
set of MVDs. The concept of data independence is introduced, and is extended
to conditional independence and mutual independence. We established this
algebraic theory of relational databases in the same spirit that the theory of
probability was constructed. We present a comparison that demonstrates the
similarities.

I. INTRODUCTION

The existing theory of relational databases is based on Codd's
relational model of data.1

,2 This relational database theory can be
considered to be the study of data dependencies (or independencies).

* Bell Laboratories.
©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro­
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa­
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3159

The theory was initiated by Codd with the introduction of the concept
of functional dependency; Codd observed that this concept can be used
to design better, normalized, database schemes. The advantage of
normalized database schemes is that they remove the possibility of
updating anomalies caused by undesirable data dependencies.2

-
5

In the existing theory of logical database design, functional depend­
encies are input constraints that must always hold in the relation.6 In
the present paper, however, we take a different approach. We assume
that for a particular database designer, there exists a (finite) universal
relation R[Q] for a given set of attributes Q, such that any relation T
on Q is a subset of R[Q]. Furthermore, each subset X of Q corresponds
to an equivalence relation (partition) on the set of tuples of R[Q].
That is, if two tuples in R[Q] have the same X value, then they are in
the same equivalence class. With this approach, the concept of func­
tional dependency becomes equivalent to the refinement partial or­
dering of the partition lattice. The partitions on the (finite) set of
tuples of the universal relation R[Q] can then be considered as the
fundamental constraints, from which the functional dependencies
(partial ordering) can be derived. Consequently, with our approach,
the functional dependencies are inherent properties of the universal
relation R[Q]. The input constraints of course must be consistent with
the inherent properties within the database.

Another kind of data dependency, proposed by Fagin 7 and Zaniolo,8

is the multivalued dependency, which includes functional dependency
as a special case. Multivalued dependency is the necessary and suffi­
cient condition for the lossless-join decomposition of a relation into
two subrelations, such that the original relation can be regenerated by
the (natural) join operation.7

-
11 Using the partition lattice we propose,

we can formulate multivalued dependency as a lattice equation (see
Section VI). We show that the axioms for functional dependencies12

and the inference rules of multivalued dependencies13 can all be proved
as theorems within the framework of partition lattice theory. We show
how the concept of join dependencylO,1l,14 is connected to multivalued
dependency. We give the necessary and sufficient condition for join
dependency and, consequently, we can prove the known result that
the acyclic join dependency is equivalent to a set of MVDs.15

,16 We
also introduce the concept of data independence, and the extension to
conditional independence and mutual independence of sets of attri­
butes.

The problem of listing all the keys of a relation is solved by using
the concept of principal ideals in lattice theory. One form of a relation
having desirable properties is the Boyce-Codd Normal Form (BCNF);
we show that the concept of the principal filter (dual ideal) can be
used to produce information-Iossless Boyce-Codd Normal Forms.

3160 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Both the theoretical foundation and the practical application of the
existing theory of relational databases appear to be fragmented. This
paper shows that all the diverse kinds of data dependencies can be
formulated within the lattice theory, which has the important advan­
tage of unifying the theory of relational databases into a coordinated
whole. Because of this, it would appear that future work in relational
databases should be conducted using lattice theory as the basic frame­
work.

The establishment of this algebraic theory of relational databases is
done in the same spirit as the construction of the theory of probability,
although probability theory is of course unrelated to database theory.
We are convinced that the lattice theory could playa role in the theory
of relational databases similar to the role that measure theory plays
in the theory of probability.17

The basic notion of relational databases is defined in Section II,
and the partition lattice of the relation is introduced in Section III.
The problem of listing all keys is solved in Section IV, where the
Boolean functions associated with the principal ideals are defined.
The properties of the Boyce-Codd Normal Form are studied in Section
V, where we present a modified algorithm for synthesizing informa­
tion-Iossless BCNFs based on the principal filters. Section VI is
devoted to the proof of equivalence between multivalued dependency
and a lattice equation. Section VII discusses join dependency and
acyclic join dependency. Finally, in Section VIII we outline a possible
direction for future research, as well as a comparison that shows the
similarities between probability theory and the algebraic theory of
relational databases. In Appendix A we list the laws of lattice theory
for reference. The proofs of the axioms for functional and multivalued
dependencies are listed in Appendix B.

Unless otherwise stated, we refer to the universal relation as simply
"the relation" in the remainder of this paper.

II. RELATIONS

An attribute is a symbol taken from a finite set 0 = {AI, A2 , ,

An}. For each attribute A there is a set of possible values called its
domain, denoted DOM(A). We will use capital letters from the begin­
ning of the alphabet (A, B, ...) for single attributes, and capital letters
from the end of the alphabet (X, Y, ...) for sets of attributes. For a
set of attributes X ~ 0, an X-value x is an assignment of values to the
attributes of X = {Ail' A22 , ••• , aik } from their respective domains.
The notation XY will be used to represent the union of two arbitrary
sets of attributes X, Y ~ o.

A relation R on the set of attributes 0 = {AI, ... ,An} is a subset of
the Cartesian product DOM(A 1) X ... X DOM(An). The elements

RELATIONAL DATABASES 3161

(rows) of R are called tuples. A relation R on {AI, ... , An} will be
denoted by R[AI ... An]. Similarly, if R is defined on the union of sets
(Xl, X 2, ... , Xm), then the notation R[XI ... Xm] will be used. A
relation can be visualized as a table whose columns are labeled with
attributes and whose rows depict tuples. The ordering of the rows and
columns is immaterial. The cardinal of R is the total number of tuples
in R and is denoted by 1 R I.

Let t be a tuple in R[f2]. For X ~ f2, t[X] denotes the tuple that
contains the components of t corresponding to the attributes of X.
The projection of R on X, denoted by R[X], is defined as follows:

R[X] = {t[X] 1 t E R}.

Similarly, the conditional projection of R on X by a Y-value y, where
Y ~ f2, is defined as follows:

Ry[X] = {t[X] 1 t E Rand t[Y] = y}.

Let R[XZ] and S[XZ] be relations where X, Y, and Z, are disjoint
sets of attributes. The join (natural join) of Rand S, denoted by
R 1 xiS, is the relation T[XYZ] whose attributes are XYZ, and is
defined as follows:

T[XYZ] = R[XZ] 1 X 1 S[YZ]

= {(x, y, z) 1 (x, z) E Rand (y, z) E S}.

The join can also be defined as the union of a collection of Cartesian
products:

T[XYZ] = R[XZ] 1 X 1 S[YZ]

= {Rz[X] X Sz[Y] X (z) 1 (z) E R[Z] n S[Z]}.

Let R be a relation on the set of attributes f2. We may have two sets
of attributes X, Y, ~ f2, such that for any two tuples th t2 E R, tl[X]
= t2[X], implies tl[Y] = t2[Y]. We say then that X functionally deter­
mines Yin R, and denote this fact by X ~ Y. A functional dependency
(FD) X ~ Y is trivial, meaning it holds in all relations, if Y ~ X. Note
that FDs enjoy the projectivity and inverse projectivity properties.3

,4

For sets X, Y ~ f2' ~ f2, the FD: X ~ Y is valid in R[f2] iff it is valid
in R[f2'].

We say that a set of relations {R[f2 l], ... ,R[f2n]} has the information­
lossless join property if f2 = f2l . .. f2n and

R[f2] = R[f2l11 xl· .. 1 X 1 R[f2n].

If the set {R[f2 l], ... , R[f2n]} does not have this property, we say that
it has a lossy join. 14 An important property of functional dependencylo
is that if FD: X ~ Y is valid in R[f2] then

3162 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

R[Q] = R[(Q - Y)X] / x / R[XY].

This property will be discussed in more detail in Section VI.

III. THE RELATION LATTICE

If 8 is a nonempty set, then a subset p of 8 X 8 is called a binary
relation on 8. The product of two binary relations p, p' ~ 8 X 8 is
defined as:

p 0 p' = {(a, b} E 8 X S/3c E 8 such that (a, c) E p, (c, b) E p'}.

We say that a relation p on 8 is reflexive if (a, a) E p for every a in 8;
that p is symmetric if p-l = p, i.e., if

(Va, b E 8), (a, b) E p implies (b, a) E p;

and that p is transitive if pop ~ p, i.e., if

(Va, b, c E 8), (a, b) E p and (b, c) E p imply (a, c) E p.

A binary relation is called an equivalence relation if it is reflexive,
symmetric, and transitive.

A family 7f = {Bd i E I} of subsets, called blocks of 8, is said to form
a partition of 8 if the following conditions hold:

1. Each Bi is nonempty
2. For all i =1= j in I, Bi n B j = 0
3. U{Bd i E I} = 8.

The two apparently different notions of "equivalence relation" and
"partition" are interchangeable: Let p be an equivalence relation on a
set 8. Then the family ap = {b / (a, b) E p} of subsets of 8 is a partition
of 8. Conversely, if 7f = {Bd i E I} is a partition of 8, then the relation
{(a, b) / (3 i E I), (a, b) E Bd is an equivalence relation on 8.

If p is an equivalence relation (partition) on 8, we shall sometimes
write apb as an alternative to (a, b) E p. The sets ap that form the
associated partition of the equivalence relation are called p-classes.
The set of p-classes is called the quotient set of 8 by p and is denoted
by 81p.

A binary relation ~ on the set 8 is a partial ordering of 8 if and only
if ~ is reflexive; antisymmetric, i.e., if

(Va, b E 8), a ~ band b ~ a imply a = b;

and transitive. A set 8 with a partial ordering ~ is called a partially
ordered set (poset) and it is denoted by the pair (8, ~).

Let (8, ~) be a poset and let T be a subset of 8. Then, a E 8 is the
greatest lower bound (g.l.b.) of Tiff

1. (Vt E T), a ~ t.

RELATIONAL DATABASES 3163

2. ('v't E T), a' ~ t implies a' ~ a.
Similarly, a E 8 is the least upper bound (l.u.b.) of Tiff

1. ('v't E T), t ~ a.
2. ('v't E T), t ~ a' implies a ~ a'.
A lattice is a poset in which any two elements a and b have a g.l.b.,

called a meet and denoted by a· b, and a l.u.b., called ajoin and denoted
by a + b. We sometimes write the meet a· b as ab if no confusion is
created. The properties of the meet and join operations of a lattice18

are listed in Appendix A.
Let the set of all partitions 7ri on 8 be denoted by II (8), and define

the partial ordering on II (8) as follows:

If ('v' a, b E 8),

The poset (II (8), ~) is seen to be a lattice (II (8), ., +) with a
universal lower bound 0 = {Bil i E I} such that every block Bi is a
singleton, and an universal upper bound 1 = {8}. To specify a partic­
ular partition, we list the elements, and distinguish blocks with bars
and semicolons. For example, if 8 = {I, 2, 3, 4, 5} and partition 7r on
8 has blocks {I, 3, 4}, {2, 5}, then we write 7r = {I, 3,4; 2, 5}. The meet
and join of any two partitions 7rI, 7r2 E II (8) can be determined as
follows:

1. ('v' a, b E 8), a7rl ·7r2b iff a7r1b and a7r2b.
2. ('v'a, b E 8), a7r1 + 7r2b iff 3n E N and co, ... , Cn E 8 such that

a = co, b = Cn and Ci7r1Ci+1 or Ci7r2Ci+1 for each i, 0 ~ i ~ n - 1.
A complemented distributive lattice is called a Boolean algebra (see

Appendix A). The set of all subsets of 8, called the power set of 8, and
denoted by 2 8

, with the partial ordering ('v'81, 8 2 E 2 8
), 8 1 ~ 8 2 iff 8 1

~ 8 2, is a Boolean algebra (28
, ., +, -) with the universal bounds 0 =

8 and 1 = 0. The dual of a poset is the poset with the converse partial
ordering on the same elements. The Boolean algebra defined above is
the dual of the conventional Boolean algebra of the power set. The
operations of meet and join are defined by

1. Meet (g.l.b.) 8 1 .82 = Sl U 8 2,

2. Join (l.u.b.) 8 1 + S2 = 8 1 n 8 2,

and the complement of 8 1 E 2 8 is Sl = 8 - 8 1•

Let tf;: L ~ M be a function from a lattice L into a lattice M. We
say tf; is a meet-morphism if

('v' a, bEL),

and tf; is a join-morphism if

('v'a, bEL), tf;(a + b) = tf;(a) + tf;(b).

Meet-morphisms andjoin-morphisms are both isotone (order-preserv­
ing); i.e.,

3164 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

(Va, bEL), a ~ b implies tf;(a) ~ tf;(b),

and any order-preserving one-to-one mapping with an inverse is an
isomorphism. 18

Let R be a relation on the set of attributes Q. The set of all subsets
of Q, denoted 2 11

, with the partial ordering defined by set-containment,
is a Boolean algebra (2 11

, ., +, -)/8 where the meet, join, and comple­
ment operations are defined as above. For every X E 2 11

, there is an
equivalence relation (partition) on the set of tuples in R[Q] defined as
follows:
Definition 1: Let R be a relation on the set of attributes Q. Each subset
of Q is associated with a partition of the set of tuples of R. We define
the function (): 211 ~ n (R[Q]) , which we call the partition function
(associated with R[Q]), by

():X ~ ()(X) = {(th t2) E R[Q] X R[Q] I tl[X] = t2[X]}. II

In general, the image set Im(() of () is not a sub lattice of n (R[Q]).
Since 7ft, 7f2 E Im(() implies 7f1· 7f2 E Im((), Im(() is a complete lattice
in its own right,20 and it will be called the relation lattice of R[Q], and
denoted by L(R[Q]). Note that there are no duplicated tuples in R[Q],
so that ()(Q) = O. Since the tuples cannot be "differentiated" by the
empty set of attributes, we define ()(0) = 1. The universal bounds of
L(R[Q]) are the same as those in n [R)Q]). We immediately recognize
the concept of functional dependency to be equivalent to the refine­
ment partial ordering of the partitions.
Lemma 1: Let R[Q] be a relation on the set of attributes Q, and let (): 2°
~ n (R[Q]) be the partition function associated with R[Q], defined above.
Then

X ~ Y iff ()(X) ~ ()(Y). II

An immediate consequence of the above lemma is that the projection
R[X] of R[Q] on X is simply the quotient of R[Q] by ()(X), i.e., R[X] =
R[Q]/()(X). Thus each tuple in R[X] corresponds to a ()(x)-class in
R[Q]/()(X) and it takes the X-value only. Note that ()(X) = ()(Y) does
not imply R[X] = R[Y] because the attributes X and Y may have
different sets of values.
Theorem 1: Let R be a relation on the set of attributes Q, and let L(R[Q])
be the relation lattice of R. Then the partition function ():2 11 ~ L(R[Q])
is a meet-morphism.

Proof: We want to show that

()(XY) = ()(X)()(Y), VX,"Y E 211.

Suppose tl()(XY)t'2. Then, tl[XY] = t2[XY], which implies

tl[Xj = t2[X] and tl[Y] = t2[Y].

RELATIONAL DATABASES 3165

Hence,

t10(X)t2 and t10(Y)t2•

By the definition of the meet operation, we have

so that
O(XY) ~ O(X)O(Y).

Suppose hO(X)O(Y)t2• Then,

t10(X)t2 and t10(Y)t2,

so that

and thus

Consequently,

so that

O(X)O(Y) ~ O(XY).

Hence
O(XY) = O(X)O(Y). •

Note that the partition function 0 is order-preserving, but it is in
general not a join-morphism.* However, if O(X + Y) = O(X) + O(Y)
holds in L[R], the pair (X, Y) has a special property in the relation.
This is discussed further in Section VI.

It is clear now that Armstrong's axioms for functional dependencies
become theorems within the framework of lattice theory. The proofs
of the axioms for functional dependencies are given in Appendix B.

Let R be a relation on the set of attributes Q, and let 0: 2f! ~ L[R(Q)]
be the partition function associated with R[Q]. Then the relation
o 0 0-1 on 2f! defined by

o 0 0-1 = {(X, Y) E 2f! X 2f!1 O(X) = O(Y)}

is obviously an equivalence relation. Sets in the quotient set 2f! /0 0 0-1

will be called 0 classes.

* The join of 1rl and 1r2 in L(R[Q]) may be different from their join in II (R[Q]). We
will use the notation 1rl $ 1r2 to denote the join of 1rl and 1r2 in II (R[Q]), while 1rl + '!2
will denote lligjoin of 1rl and 1r2 in L(R[Q]); e.g., in Example 1 below, O(E) $ 0(8) = \1,
2,3,4,5,6; 7, 8}, and O(E) + 0(8) = \1,2, 3,4,5,6, 7, 8\.

3166 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Table I-Relation R[ECSY]
Employee Child Salary Year

1 Hilbert Hubert $35K 1975
2 Hilbert Hubert $40K 1976
3 Gauss Gwendolyn $40K 1975
4 Gauss Gwendolyn $50K 1976
5 Gauss Greta $40K 1975
6 Gauss Greta $50K 1976
7 Pythagoras Peter $15K 1975
8 Pythagoras Peter $20K 1976

Example 1: Consider the relation R in Table I (see Ref. 7). Let Q =
{E, C, S, Y} be the set of attributes, where E = employee, C = child,
S = salary, Y = year. Then

and

2!l = {0, E, C, S, Y, EC, ES, EY, CS, CY, SY, ECS,
ECY, ESY, CYS, CESY},

0(0 = {I, 2, 3,4, 5, 6, 7, 8} = 1,

O(E) = {I, 2; 3, 4, 5, 6; 7, 8} = 7rI,

O(C) = O(EC) = {I, 2; 3, 4; 5, 6; 7, 8} = 7r2,

O(S) = (1"; ~; 4,6; 7; 8} = 7r3,

O(Y) = {I, 3, 5, 7; 2,4, 6, 8} = 7r4,

O(ES) = O(EY) = O(SY) = O(ESY)

= fi; 2; 3, 5; 4, 6; 7; 8} = 7r5,

O(CS) = O(CY) = O(ECY) = O(ECS) = 8(CSY) = O(ECSY)

= {I; 2; 3; 4; 5; 6; 7; 8} = o.
The Hasse diagraml8

,21 of the relation lattice is illustrated in Fig. 1. 0

IV. LIST OF KEYS

Let R be a relation on the set of attributes Q. We say that X ~ Q is
a superkey of R if X ~ A, 'VA E Q. If X is a superkey and no proper
subset of X is a superkey, X is said to be a key of R.I

,2,5

Lemma 2: X ~ Q is a superkey of Riff O(X) = o.
Proof: (Necessity) Let Q = {AI, ... ,An}, and X ~ Ai, 'VAi E Q. Then,

By the definition of the meet operation, we have

RELATIONAL DATABASES 3167

Fig. I-Relation lattice L(R[Q]).

It follows from Theorem 1 that

8(X) ~ 8(AIA2 ... An) = 8(Q) = O.

Hence,

8(X) = O.

(Sufficiency) Suppose 8(X) = O. Then

8(X) ~ 8(Ai), VAi E Q.

Hence,

An ideal is a subset J of a lattice L with the propertiesl8

1. a E J, x E L, and x ~ a, imply x E J,
2. a, b E J implies a + b E J.

For every a E L, the subset of all elements "less than or equal to" a is
evidently an ideal; it is called the principal ideal of L generated by a,
and is denoted by (a], i.e.,

(a] = {x ELI x ~ a}.
Definition 2: Let R be a relation on the set of attributes Q = {AI,
... , An}. For each Ai E Q, J i = (8(Ai)] is the principal ideal of the
relation lattice L(R[Q]) generated by 8(Ai). A Boolean function

fi(AI, ... , An) = L X
8(X)EJi

defined on 21l is the Boolean sum of all X E 21l such that 8(X) ~ 8(Ai).
We will call fi the principal ideal function (generated by Ai). •

This function plays a role similar to the Boolean function used in
Ref. 16.

3168 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Theorem 2: Let R be a relation on n = {AI, ... , An}. X ~ n is a
superkey of R iff X is a product term in the expansion of the Boolean
function

n

F(Ar, ... , An) = IT fi(Ar, ... , An),
i=l

where fi is the principal ideal function generated by Ai.
Proof: The Boolean function F(Ar, ... ,An) has the expansion

n

F(Ar, ... , An) = IT fi = L Xl· .. X n.
i=l ()(Xi)EJi

We want to show that every term K = Xl ... Xn is a superkey. Since
O(Xi) E J i = (O(AJ], it follows that

O(Xi) ~ O(AJ, 1 ::::; i::::; n.

From L6 in Appendix A, we have

O(XI)O(X2) ••• O(Xn) ~ O(AI)(}(A2) ••• O(An).

It follows from Theorem 1 that

O(XIX 2 ••• Xn) ~ O(AI ... An) = O(n) = 0,

and thus
O(XIX 2 ••• Xn) = o.

Hence, K = X I X2 ... Xn is a superkey of R.
Conversely, suppose X is a superkey of R. Then

Thus,

1 ::::; i::::; n.

By the definition of the principal ideal J i , we must have

1 ::::; i::::; n.

It follows that X = X ... X (n times) is a product term in the
expansion of F(Ar, ... ,An). I!I

It is natural to call F(Ar, ... , An) the key Boolean function of the
relation R[AI ... An]. Since any key X is a superkey of R, X must be
a product term of the key Boolean function F(Ar, ... , An). Since no
proper subset of X is a superkey, then by the definition of the prime
implicant of a Boolean function,22 we have
Corollary 1: Let R be a relation on the set of attributes n = {Ar, ... ,
An}. X ~ n is a hey of R iff X is a prime implicant of the key Boolean
function F(At, ... ,An). •

RELATIONAL DATABASES 3169

An attribute A E Q is prime in R[Q] if A is in any key of R; otherwise
A is nonprime. A ~ Q is a nonprime attribute if and only if the key
Boolean function is independent of A.
Theorem 3: Let R be a relation on Q. A E Q is a nonprime attribute ill
there exists X ~ Q such that

1. A 1= X, X ~ A,
2. AZ ~ X implies Z ~ X.

Pro 01: (Necessity) Let A E n be a nonprime attribute, and let X be
any key of R. Then

A 1= X, and X ~ A.

Suppose AZ ~ X. Then O(AZ) ~ O(X) = O. It follows that O(AZ) = 0
and thus AZ is a superkey; it contains a key K ~ AZ and A 1= K. We
have K ~ Z, so that

O(Z) ~ O(K) = 0 = O(X).

Hence,

Z~X.

(Sufficiency) Let Q = {AI, ... , An}, n;?: 2. Assume there is an X =
A 2, ••• ,Am' such that (1) X ~ AI, and (2) AIZ ~ X, implies Z ~ X.
We want to show that Al must be a nonprime attribute. The key
Boolean function F(A h ... , An) of R[Q] can be written in the form

n

F(A h ... , An) = n Ii = Id2 ... Imlm+1 ... In
i=I

= (ldXlm+1) ... (Idxln),

where Ix = 12 ... 1m. For any product term Y in Ix we have

O(Y) ~ O(X) ~ O(AI).

Therefore, Y must be a term in 11' It follows that 11 has the form

11 = Ix + g

for some Boolean function g. Since O(AIZ) ~ O(X) implies O(Z) ~ O(X),
Ix can be written in the form

Ix = Alh + h + P = h + P

for some Boolean functions hand p which are independent of AI. Also,
every h, j = m + 1, .. " n, ~an be written in the form

h = lIe + Ixe + q

for some Boolean functions e and q, which are independent of AI. It
follows that

3170 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Idxli = Idx(IIe + lxe + q)

= Ix(IIe + Idxe + IIq)

= Ix(IIe + iIq)

= Idx(e + q) = (Ix + g) Ix(e + q)

= I x(e + q) = (h + p)(e + q).

Since h, p, e, and q are all independent of AI, we know that Idxli is
independent of Al for allj = m + 1, ... , n. Clearly, no prime implicant
of F(AI, ... , An) contains AI, and therefore Al is a nonprime attri­
bute. D
Example 2: Consider the relation R in Example 1. To obtain the prime
implicants of the key Boolean function F, we can first simplify each
principal ideal function. The principal ideal functions of the relation
R[ECSY] are

IE = E + C + SY,

Ie = C,

Is = S + EY + CY,

Iy = Y + ES + CE,

and the key Boolean function is

F(E, C, S, Y) = (E + C + SY)·C·(S + EY + CY)

·(Y + ES + CE)

= cs + CY.

The sets CS and CY are the keys, and E IS the only nonprime
attribute. 0

v. BOYCE-CODD NORMAL FORM

Normalization is a logical database design process that can be viewed
as the decomposition of a relation into a set of subrelations, such that
the original relation can be regenerated by the joins of the subrelations.
The purpose of decomposition is to separate the independent compo­
nents into distinct relations, to avoid updating anomalies.2 It is claimed
in Ref. 4 that the Boyce-Codd Normal Form is one that is free of
insertion and deletion anomalies. This section is devoted to the BCNF
and its relation lattice. A modified algorithm for synthesizing an
information-lossless BCNF6 is included, based on the concept of the
principal filter of the relation lattice.

Recall that a functional dependency X ~ Y is trivial if Y ~ X. A

RELATIONAL DATABASES 3171

relation R[Q] is said to be in Boyce-Codd Normal Form if, for all
nontrivial FDs X ~ Y, X is a superkey.2.4
Definition 3: Relation R[Q] is in BCNF if X ~ Y implies either

1. X is a superkey, i.e., 8(X) = 0,
or

2. Y~ X. Ii

If a relation is in BCNF, we will show that its relation lattice has
some special properties. To analyze these properties we need the
concept of the principal filter.I8

An ideal of the dual of the lattice L is called a filter of L. A subset
M of L is a filter of L if

1. a E M, x E L, and x ~ a, imply x E M,
2. a, b, EM implies a·b E M.

For every a E L, the subset of all elements "greater than or equal to"
a is a filter; it is called the principal filter of L generated by a, and is
denoted by [a), i.e.,

[a)={xELlx~a}.

If a and b are elements of a lattice L, where a < b, and there is no c
E L such that a < c < b, then we say that a is covered by b (or b covers
a).18 An element that covers the universal lower bound 0 of L is
referred to as an atom of L.I8
Definition 4: Let R be a relation on the set of attributes Q, and let 7r
be an atom of the relation lattice L(R[Q]). Let Q1r = {A I A E Q, 8(A) ~
7r} ~ Q. Then the projection R[Q1r] of Rand Q1r is called an atomic
projection, and [7r) is called an atomic filter. •

It is easy to verify that the relation lattice of the atomic projection
R[Q1r] is isomorphic to the principal filter [7r) of L(R[Q]) generated by
7r.

Definition 5: Let R be a relation on the set of attributes Q, and let 7r
E L(R[Q]) be an atom. The principal filter [7r) of L(R[Q]) is called
normal iff whenever X ~ Y is valid in the atomic projection R[Q1r]
then Y ~ X; otherwise, it is called abnormal. •
Lemma 3: A relation R[Q] is in BCNF iff every atomic filter of L(R[Q])
is normal.
Proof: (Necessity) Trivial.

(Sufficiency) Suppose X ~ Y and X is not a superkey, i.e., 8(X) 1=
o. Then there must exist an atom 7r, such that

o < 7r ~ 8(X) ~ 8(Y).

It follows that X, Y ~ Q1r and that X ~ Y is valid in the atomic
projection R[Q1r], which is assumed normal. Therefore Y ~ X. •

3172 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

The join operation in the Boolean algebra (2n, ., +, -) is not always
preserved by the () mapping. But for a relation R[Q] in BCNF, if X, Y
~ Q and neither X nor Y is a superkey of R[Q], then the join X + Y
is preserved by (). We have
Corollary 2: If R[Q] is in BCNF, X, Y ~ Q, ()(X) =1= 0, and ()(Y) =1= 0,
then

()(X + Y) = ()(X) + ()(Y).

Proof: Since X + Y ~ X and X + Y ~ Y, we have

()(X) ~ ()(X + Y) and ()(Y) ~ ()(X + Y).

By definition of the join operation, we have

()(X) + ()(Y) ~ ()(X + Y).

Suppose there is a Z ~ Q such that

()(X) ~ ()(Z) and ()(Y) ~ ()(Z).

Given ()(X) =1= ° and ()(Y) =1= 0, we have

Z ~ X and Z ~ Y.

Thus,

Z~X+ Y,

so that

()(X + Y) ~ ()(Z).

By the definition of least upper bound, we have

()(X + Y) = ()(X) + ()(Y). 0

The most important characteristic of the BCNF is given in the
following theorem.

Theorem 4: The relation R[Q] is in BCNF iff every atomic filter [7r) of
L(R[Q]) is isomorphic to the Boolean algebra (2n .. , ., +, -).
Proof: (Necessity) Since [7r) is a meet-morphic image of () restricted to
2n .. , it is sufficient to show that () is a one-to-one mapping on 2n ... Let
X, Y E 2 n .. , and ()(X) = ()(Y). It follows that

()(X) = O(Y - X)()(Y + X) ~ ()(Y - X),

which implies

X~Y-X.

Since ° < 7r ~ O(X) and [7r) is normal, we have

Y-X~X.

RELATIONAL DATABASES 3173

Hence,

Y~X.

Similarly,

X~Y.

Therefore, X = Y, and () is a one-to-one mapping on 2 Q
...

(Sufficiency) Suppose X ~ Y is valid in R[Q 1r]. Then ()(X) ~ ()(Y).
Since the inverse of an isomorphism is also order-preserving, it follows
that X ~ Y. Therefore, [7r) is normal and R[Q] is in BCNF. •

The above theorem implies that if [7r) is normal, the only key of
R[Q 1r] is ()-1(7r) = Q1r'

It is known that any relation has a lossless-join decomposition into
Boyce-Codd Normal Form, and an algorithm for determining the
decomposition is given in Ref. 6. We will show how the concept of the
principal filter can be used to modify this algorithm. In the algorithm
for synthesizing the Third Normal Form,5 a concept similar to the
principal filter is used implicitly by Bernstein when he partitions the
functional dependencies (Step 2). Before describing the improved
algorithm, we need the following:
Lemma 4: Let R be a relation on Q. Let 7r E L(R[Q]) be an atom of the
relation lattice, and let K be a key of the atomic projection R[Q1r]. Then,

R[Q] = R[(Q - Q1r)K] I X IR[Q1r].

Proof: K ~ Q1r and K ~ Q1r' 1.1
The algorithm for determining the lossless-join decomposition into

BCNF is simply to construct a sequence of decompositions Di = (RI,
... , Rm) of R, each with lossless jqin: Initially, let Do consist of R
alone. If T[Q] is a relation in Di, and T[Q] is not in BCNF, let 7r be an
atom of L(T[Q]) for which the principal filter [7r) is abnormal. Let K

Table II-Relation R[MSPCNY]
Model Serial

Number Number Price Color Name Year

1 1234 342 13.25 blue pot 1974
2 1234 347 13.25 red pot 1974
3 1234 410 14.23 red pot 1975
4 1465 347 9.45 black pan 1974
5 1465 390 9.82 black pan 1976
6 1465 392 9.82 red pan 1976
7 1465 401 9.82 red pan 1976
8 1465 409 9.82 blue pan 1976
9 1623 311 22.34 blue kettle 1973

10 1623 390 30.21 blue kettle 1976
11 1623 410 28.55 black kettle 1975
12 1623 423 28.55 black kettle 1975
13 1623 428 28.55 blue kettle 1975
14 1654 435 28.55 red kettle 1975

3174 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

be a key of the atomic projection T[Q1r]. Now replace T[Q] in Di by
T[Q - Q1r)K] and T[Q1r] to obtain D i+1. Continue the process until all
the relations in the decomposition Dk are in BCNF.
Example 3: Let us consider the relation R[MSPCNy] from Ref. 23,
where M = model number, S = serial number, P = price, C = color, N
= name, and Y = year. The tuples of the relation R[MSPCNy] are
shown in Table II.
The Hasse diagram of the relation lattice L(R[QD is illustrated in Fig.
2, where

7rl = 11, 8, 9, 10, 13; 2, 3, 6, 7, 14; 4, 5, 11, 121,

7r2 = 11, 2, 3; 4, 5, 6, 7, 8; 9, 10, 11, 12, 13, 141,

7r3 = 11, 2, 4; 3, 11, 12, 13, 14; 5, 6, 7, 8, 10; 91,

7r4 = 11, 2, 3; 4, 5, 6, 7, 8; 9, 10, 11, 12, 13; 141,

7r5 = 11, 2; 3; 4; 5, 6, 7, 8; 9; 10; 11, 12, 13, 141,

7rs = (1; 2, 3; 4, 5; 6,7; 8; 9, 10, 13; ll,T2; 141,

7r7 = 11, 2; 3; 4; 5, 6, 7, 8; 9; 10; 11, 12, 13; 141,

7rs = (1; 2, 4; 3, 11; 5, 10; 6; 7; 8; 9; 12; 13; 141,

7r9 = (i; 2; 3; 4; 5; 6, 7; 8; 9; 10; 11, 12; 13; 141,

Fig. 2-Relation lattice L(R[MSPCNY]).

RELATIONAL DATABASES 3175

and O(C) = 7r1, O(N) = 7r2, O(Y) = 7rg, O(M) = 7r4, O(P) = 7r5, O(S) = 7rs.
For X ~ Q, O(X) can be obtained easily by carrying out the meet
operations on the attributes in X.

The principal ideal functions of R[MSPCNY] are

fdM, S, P, C, N, Y) = C + MS + NS + PS,

fN(M, S, P, C, N, Y) = N + M + P + CY + CS,

fp(M, S, P, C, N, y) = P + MY + CS + MS + NS,

fM(M, S, P, C, N, y) = M + CN + CP + CY + NS + PS + CS,

fy(M, S, P, C, N, y) = Y + P + S,

fs(M, S, P, C, N, Y) = S,

and the key Boolean function is

F(M, S, P, C, N, Y) = (C + MS + NS + PS).(N + M + P + CY

+ CS)

. (P + MY + CS + MS + NS)

. (M + CN + CD + CY + NS + PS + CS)

.(Y+P+S)·S

= CS + MS + NS + PS.

The keys of R[MSPCNY] are {CS, MS, NS, PSJ, and Y is the only
nonprime attribute.

Initially, let Do = {R(MSPCNY)}. Since both atomic filters [7rs) and
[7rg) are abnormal, we arbitrarily choose 7rg, and let ~ = Q1r9 = MPCNY.
The relation lattice of R[~] is isomorphic to [7rg). The principal ideal
functions of R[~] are

gdM, P, C, N, Y) = fdM, 0, P, C, N, Y) = C,

gN(M, P, C, N, Y) = fN(M, 0, P, C, N, Y) = N + M + P + CY,

gp(M, P, C, N, Y) = fp(M, 0, P, C, N, Y) = P + MY,

gM(M, P, C, N, y) = fM(M, 0, P, C, N, Y) = M + CN + CP + CY,

gy(M, P, C, N, Y) = fy(M, 0, P, C, N, Y) = Y + P,

and the key Boole.an function is

G(M, P, C, N, Y) = C.(N + M + P + CY).(P + My)

.(M + CN + CP + CY).(Y + P)

= CP + CMY.

3176 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

We choose the key CP and replace R[MSPCNY] in Do by R[(Q - ~)K]

= R[SPC] and R[~] = R[MPCNY] to obtain Dl = {R[SPC],
R[MPCNY]}. The relation R[SPC] and its lattice are shown in Table
III and Fig. 3, respectively.

The relation R[SPC] is in BCNF, but the relation R[MPCNy] is
not. The relation lattice of R[MPCNY] is isomorphic to the filter [71"9).
We will not duplicate the figure. Both "atoms" 71"6 and 71"7 of [71"9) are
abnormal. We choose the filter [71"7). The principal ideal functions of
R[~1I"7] = R[MPNY] are

hM(M, P, N, y) = gM(M, P, 0, N, Y) = M,

hN(M, P, N, Y) = gN(M, P, 0, N, Y) = N + M + P,

hp(M, P, N, Y) = gp(M, P, 0, N, Y) = P + NY,

hy(M, P, N, Y) = gy(M, P, 0, N, Y) = Y + P,

and the key Boolean function of R[MPNY] is given by

H(M, P, N, Y) = M·(N + M + P).(P + MY).(Y + P)

=MP+MY.

We choose the key K' = MP and replace R[MPCNY] in Dl by R[(~
- ~1I"7)K'] = R[MPC] and R[MPNY] to obtain D2 = {R[SPC], R[MPC],
R[MPNY]}. The relation R[MPC] and its relation lattice are illus­
trated in Table IV and Fig. 4, respectively.

Now we have to decompose the relation R[MPNY] in D2• The
relation lattice of R[MPNY] is isomorphic to [71"7) of L(R[MSPCNYD.
We choose the abnormal filter that is isomorphic to [71"5). Since ~11"5 =
PNYand the only key is P, we can replace R[MPNY] in D2 by R[MP]
and R[PNY] to obtain D3 = {R[SPC], R[MPC], R[MP], R[PNY]}. All
the relations in D3 are in BCNF. The relations R[MP], R[PNY] and

Table III-Relation R[SPC]

Serial
Number Price Color

1 342 13.25 blue
2 347 13.25 red
3 410 14.23 red
4 347 9.45 black
5 390 9.82 black
6 392 9.82 red
7 401 9.82 red
8 409 9.82 blue
9 311 22.34 blue

10 390 30.21 blue
11 410 28.55 black
12 423 28.55 black
1:3 428 28.55 blue
14 435 28.55 red

RELATIONAL DATABASES 3177

Fig. 3-Relation lattice L(R[SPC]).

Table IV-Relation R[MPC]
Model

Number Price Color

1 1234 13.25 blue
2 1234 13.25 red
3 1234 14.23 red
4 1465 9.45 black
5 1465 9.82 black

(6, 7) 1465 9.82 red
8 1465 9.82 blue
9 1623 22.34 blue

10 1623 30.21 blue
(11, 12) 1623 28.55 black

13 1623 28.55 blue
14 1654 28.55 red

Fig. 4-Relation lattice L(R[MPC]).

3178 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

their respective lattices are shown in Tables V and VI, and Figs. 5 and
6. 0

VI. MULTIVALUED DEPENDENCIES

Multivalued dependency (MVD) proposed by Fagin 7 and Zaniolo8 is
the necessary and sufficient condition for a (binary) lossless-join
decomposition. A similar concept, called hierarchical dependency, was
defined by Delobe1.24 A bit later, the concept of multivalued depend­
ency was generalized to join dependency by Rissanen.10

,1l A set of
"axioms" or inference rules for multivalued dependencies was given
by Beeri, Fagin, and Howard.25 We know from our previous discussion
that functional dependency is equivalent to partial ordering in the
partition lattice. In this section we show that multivalued dependency

Table V-Relation R[MP]

(1, 2)
3
4

(5, 6, 7, 8)
9

10
(11, 12, 13)

14

Model
Number Price

1234
1234
1465
1465
1623
1623
1623
1654

13.25
14.23
9.45
9.82

22.34
30.21
28.55
28.55

Table VI-Relation R[PNY]

Price Name

(1,2) 13.25 pot
3 14.23 pot
4 9.45 pan

(5,6,7,8) 9.82 pan
9 22.34 kettle

10 30.21 kettle
(11, 12, 13, 14) 28.55 kettle

Fig. 5-Relation lattice L(R[MP]).

Year

1974
1975
1974
1976
1973
1976
1975

RELATIONAL DATABASES 3179

Fig. 6-Relation lattice L(R[PNY]).

is equivalent to a lattice equation. First, however, we state the defini­
tion of MVD and show that MVD guarantees information-lossless join
decomposition.

Definition 5: Let R be a relation on the set of attributes n = XYZ,
where X, Y, and Z are disjoint subsets of n. We say there is a
multivalued dependency X ~ Y if

V(x) E R[X], (z) E R[Z]. 171

Lemma 5: Let R be a relation on n = XYZ, where X, Y, and Z are
disjoint subsets. Then,

R[XYZ] = R[XY] I X I R[XZ]

iff

V(x) E R[X].

Proof: (Necessity) R[XYZ] = R[YX] I X I R[XZ] implies

Rx[YZ] = RAY] x Rx[Z], V(x) E R[X].

Hence,

(Sufficiency) It is easy to verify that

V(x) E R[X].

The given cardinal identity assures that

V(x) E R[X] .•

Theorem 5: Let R be a relation on the set of attributes n = XYZ, where
X, Y, and Z are disjoint subsets. * Then,

R[XYZ] = R[XY] I x I R[XZ] iff X ~ Y.

* For convenience, we assume X, Y, and Z to be disjoint. It will later become clear
that this assumption is not necessary.

3180 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Proof: (Necessity) From Lemma 5, it is sufficient to show that

'v'(x) E R(X)

iff

'v'(x) E R(X), (Z) E R(Z).

Since

R[XYZ] = R[XY] I X I R[XZ]

implies

Rxz[Y] X (x, z) = Rx[Y] X (x, z), 'v'(x) E R[X],

Hence,

Rxz[Y] = Rx[Y].

(Sufficiency) For every (x) E R[X], we have

(z) E R[Z].

(x) X Rx[ZY] = {(x, Zi) X RxzJY] I (x, Zi) E R[XZ]}

= {(x, Zi) X Rx[Y] I (x, Zi) E R[XZ]}

= (x) X Rx[Z] X Rx[Y].

Since I x I = 1, it follows that

'v'(x) E R[X]. •

We need the commutative property of the product of two equivalence
relations (partitions) to establish the lattice equation of multivalued
dependency. The product of two equivalence relations may not be an
equivalence relation; if it is an equivalence relation then the product
must be commutative and vice versa.
Definition 6: Two binary relations p and p' and S are permutable
(commute) if and only if pop' = p' 0 p. This means that if a p x p' b
for some xES, then a p' y p b for some yES, and conversely.1s iii

Lemma 6: Let p and p' be equivalence relations (partitions) on S. Then
the following are equivalent:

1. pop' = pOp

2. pop' = p ED p'
3. pop' is an equivalence relation
4. pop' is symmetric.

Proof: The proof of Lemma 6 is given in Ref. 21. II
Lemma 7: Let R be a relation on the set of attributes n and let X, Y, Z
~ n. Then,

()(X) = O(XY) + O(XZ) = ()(XY) 0 ()(XZ) = ()(XZ) 0 ()(XY)

RELATIONAL DATABASES 3181

iff

O(X) ~ O(XY) 0 O(XZ).

Proof: (Necessity) Trivial.
(Sufficiency) Suppose t10(XY) 0 O(XZ)t2• Then there exists t3 E R[Q]

such that

which implies

Therefore,

Hence,

O(XY) 0 O(XZ) ~ O(X).

It follows that

O(X) = O(XY) 0 O(XZ).

From Lemma 6, we have

O(X) = O(XY) E9 O(XZ) = O(XY) 0 O(XZ) = O(XZ) 0 O(XY).

Since

O(XY) ~ O(XY) + O(XZ) and O(XZ) ~ O(XY) + O(XZ),

by the definition of the join operation E9 in II (R[Q]), we must have

O(X) = O(XY) E9 O(XZ) ~ O(XY) + O(XZ).

But,

O(XY) + O(XZ) ~ O(X) + O(X) = O(X),

so it follows that

O(X) = O(XY) + O(XZ) = O(XY) 0 O(XZ) = O(XZ) 0 O(XY). Ii

The following theorem shows that the multivalued dependency can
be formulated as a lattice equation.
Theorem 6: Let R be a relation on the set of attributes Q = XYZ, where
X, Y, and Z are disjoint subsets. Then, R[XYZ] = R[XY] I X I R[XZ]
iff

O(X) = O(XY) + O(XZ) = O(XY) 0 O(XZ) = O(XZ) oO(XY).

Proof: (Necessity) Since R[XYZ] = R[XY] I X I R[XZ] implies

Rx[YZ] = RAY] X RAZ], V'(x) E R[X],

3182 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

there is a one-to-one and onto mapping ¢x: Rx[YZ] ~ Rx[Y] X RAZ],
which takes every tuple (y, z) E RAYZ] into ¢A(y, z» = ((y), (z» E
Rx[Y] X RAZ]' V(x) E R[X]. Suppose tl, t2 E R[XYZ] and t10[X]t2' and
assume tl = (x, Yl, Zl) and t2 = (x, Y2, Z2). As

we have

Since ¢x is an onto mapping, there must exist two tuples t3 = (x, yl,
Z2), and t4 = (x, Y2, Zl) E R[XYZ]. Hence,

t10(XY)t30(XZ)t2,

which means

It follows that

O(X) ~ O(XY) 0 (XZ).

From Lemma 7, we have

O(X) = O(XY) + O(XZ) = O(XY) 0 O(XZ) = O(XZ) 0 O(XY).

(Sufficiency) We know R[XYZ] ~ R[XY] I X I R[XZ]. Suppose t =
(x, y, z) E R [XY] I X I R[XZ]. Then there exist tl = (x, y, z'), t2 = (x,
y', z) E R[XYZ]. Thus,

which implies

t10(XY) 0 O(XZ)t2.

There must exist t3 E R[XYZ] such that

t10(XY)t30(XZ)t2.

Therefore,

t3 = (x, y, z) = t E R[XYZ],

and thus

R[XY] I X I R[XZ] ~ R[XYZ].

Hence,

R[XYZ] = R[XY] I X I R[XZ]. 0

It should be noted that in the above proof we use the fact that 0 =
XYZ and 0(0) = O(XYZ) ::;= 0, i.e., there are no duplicated tuples in

RELATIONAL DATABASES 3183

R[Q]. The inference rules of MVD are given and proved in Appendix
B.
Example 4: Consider the relation R[ECSY] of Example 1. We have
the MVD: E ~ SY, where O(E) = 7rl = {I, 2; 3,4,5,6; 7, 8}, O(EC)
= 7r2 = {I, 2; 3, 4; 5, 6; 7, 8}, O(ESY) = 7r5 = f1; 2; 3, 5; 4, 6; 7; 8}. It is
easy to verify that

It is known that if R is a relation on Q = XYZ, and X ~ Y then
X ~ Z. The symmetricity of the MVD can easily be seen in the
lattice equation of Lemma 7.

If XYZ C Q and O(X) = O(XY) + O(XZ) = O(XY) 0 O(XZ) = O(XZ)
o O(XY) holds, then X ~ Y I Z is called an embedded multivalued
dependency (EMVD)7; this is simply a multivalued dependency in the
projection R[XYZ] of R[Q].

Theorem 6 clearly indicates that the MVD is actually a condition
pertaining to data independency rather than data dependency. For this
reason, we introduce the notion of decomposition of two sets of
attributes in a relation as follows.
Definition 7: Let R be a relation on the set of attributes Q. The two
sets of attributes QIl Q2 ~ Q are decomposable in R if

O(Q1 + Q2) = O(Ql) + O(Q2) = O(Ql) 0 O(Q2) = O(Q2) 0 O(Ql)' IJ

It is easy to see that Q1 and Q2 are decomposable in Q iff Q1 + Q2 ---,)

---,) Q1 - Q2 1 Q2 - Q1 is an EMVD in R. Furthermore, if Q1Q2 = Q then
Q1 + Q2 ~ Q1 - Q2 (or Q1 + Q2 ~ Q2 - Ql) is an MVD in R. In the
latter case, (QI, Q2) is called a decomposition pair by Armstrong and
Delobe1.26

We feel that decomposition is a basic concept in the study of the
structure of databases. It can be naturally generalized to the concepts
of projective decomposition and mutual decomposition. Projective
composition concerns the data independence of two sets of attributes
on the projection of a relation. Mutual decomposition extends the
concept of decomposition to more than two sets of attributes.

Let p be a partition on the set S, the function p* = S ---,) Sf p maps
a E S into (a)p* = ap is called the canonical function of p. For S = {a,
b, ... , e}, we will use the notation

p* = (a b ... e)
apbp ..• ep

to illustrate the canonical function p*. The equivalence relation

ker p* = p* 0 p*-l = {(a, b) E S X S I p*(a) = p*(b)}.

is called the kernel of p*. Notice that ker p* = p.

3184 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Let p and u be partitions on S = p ~ u; then there is a unique
functionffrom Sip onto S/u such that (ap)f= au. The kernal off,

ker f= f 0 f- l = {(ap, bp) E Sip X S/pla u b},

is an equivalence on Sip. It is usual to write ker f as u/p, the"quotient
of u and p. Note that ap(u/ p)bp if and only if a u b and the mapping g:
(S/p)/(u/p) ~ S/u defined by ((ap)u/p)g = au is one-to-one and onto.
Thus the function f defined above is in fact the canonical function of
u / p, i.e., f = (u / p)*. It is easy to see the diagram in Fig. 7 commutes,
that is p* 0 (u/ p)* = u*.
Example 5: Let p,-u be partitions on the set S = {I, 2, 3, 4, 5, 6, 7, 8},
such that p = {I, 2; 3, 4; 5, 6; 7, 8} and u = {I, 2, 3, 4; 5, 6, 7, 8} with
p ~ u. Then Sip = {I, II, III, IV}, where I = 1,2, II = 3,4, III = 5, 6,
IV= 7,8, and S/u = {a, m, where a = 1, 2, 3, 4, {j = 5,6,7,8. The
canonical functions of p and u are

and

It follows that

and

* _ (1 2 3 4 5 6 7 8)
p - I I II II III III IV IV

u* = (1 2 3 4 5 6 7 8)
aaaa{j{j{j{j'

u/ p = {I, II; III, IV}

Lemma 8: Let p, UI, U2 be partitions on S such that p ~ UI, P ~ U2, and
UI O U2 = U2 0 UI. Then

a*

Sip

Fig. 7-Cullonical function of quotient partition.

RELATIONAL DATABASES 3185

Proof: It is clear that 0"1 0 0"2 is a partition on Sand p ~ 0"1 0 0"2 = 0"2 0

0"1. It follows from the definition of quotient partition that the lemma
is true. II

Lemma 9: Let p, 0"1, 0"2 be partitions on S, such that p ~ 0"1, P ~ 0"2.
Then

iff

Proof: (Necessity)

(O"d p) 0 (0"2/ p) = (0"1 0 0"2)/ P = (0"2 0 0"1)/ P = (0"2/ p) 0 (O"d p).

(Sufficiency) Suppose aO"l 0 0"2b. Then there is acE S such that
aO"lc0"2b. It follows that

ap (O"d P)Cp (0"2/ p)bpo

There must be a dES such that

ap (0"2/ p)dp (O"d p)bp •

Thus

and

Hence

Similarly, we have 0"2 0 0"1 ~ 0"1 0 0"2. Then 0"1 0 0"2 = 0"2 0 0"1. rn
Definition 8: Let R be a relation on the set of attributes Q. For Q1, Q2
~ Q, the projective partition defined by

O(Qd Q2) = 0(Q1 + Q2)/0(Q2)

is a partition on the set of tuples of R[Q]/0(Q2) = R[Q2]. The canonical
function of 0(Q11 Q2) is denoted by 0*(Q1I Q2) = (0(Q1 + Q2)/0(Q2))*;
which satisfies 0*(Q2) 0 0*(Q11 Q2) = 0*(Q1 + Q2). m

Certain· properties of the projective partition are demonstrated in
the following theorems and their proof directly follows from the
definition of projective partition.

Theorem 7: Let R be a relation on the set of attributes Q and Q1, ••• ,

Qn ~ Q. Then

0* (.~, Ok) = 0*(0,) 0 0*(02 10,) 0 ••• 0 O*(Onl D: Ok)' l1li

3186 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Theorem 8: Let R be a relation on the set of attributes !2 and X, !2b
... , !2n ~ !2, such that

Then

n

U !2k = !2.
k=l

1. O(X) = TIk=l ker(O*(!2k) 0 O*(XI !2k»
2. O(!2ml X) = ker(O*(!2m) 0 O*(XI !2m»/TIk=l ker(O*(!2k) 0

O*(XI !2k». Cl

Definition 9: Let R be a relation on the set of attributes !2 and !2b !22,
~ ~ !2. We say !2l and !22 are projectively decomposable on ~ if

O(!2l + !221~) = O(!2ll~) + O(!221~)

= O(!2ll~) 0 O(!221~)

= O(!221~) 0 O(!2d ~). 0

The EMVD is a special case of projective decomposition, which can
be seen from the following theorem.

Theorem 9: Let R be a relation on !2, and let !2b !22, ~ ~ !2. Then !2l
and !22 are projectively decomposable on ~ iff

O(!2l + !22 + ~) = O(!2l + ~) + O(!22 + ~)

= O(!2l + ~) 0 O(!22 + ~) = O(!22 + ~) 0 O(!2 l + ~).

Proof: The proof follows from Lemma 8 and 9. 0

Example 6: Consider the relation R on !2 = ABCDE in Table VII.
The Hasse diagram of the relation lattice L(R[!2]) is shown in Fig. 8,
where

7rl = {I, 2, 3, 5, 6, 7; 4} = O(A),

7r2 = {I, 3, 4; 2, 5, 6, 7} = O(B),

7r3 = {I, 6, 7; 2, 3, 4, 5} = O(C),

7r4 = {I, 3; 2, 5, 6, 7; 4} = O(AB),

7r5 = {I, 6, 7; 2, 3, 5; 4} = O(AC),

7r6 = (1; 2, 5; 3, 4; 6, 7} = O(BC),

7r7 = {I, 6, 7; 2, 5; 3; 4} = O(D),

7r8 = tI, 3; 2, 6; 4; 5, 7} = O(E),

7r!J = (1"; 2, 5; 3; 4; 6, 7} = O(ABC) = o (ABD).

Let!2l = ABD, U:! = ACE, ~ = ABC. We find that

RELATIONAL DATABASES 3187

Table VII-Relation lattice L(R[Q])

A B C D E

1 al b1 Cl d1 el
2 al b2 C2 d2 e2
3 al b1 C2 d3 el
4 a2 b1 C2 d4 e3
5 al b2 C2 d2 e4

6 al b2 Cl d1 e2

7 al b2 Cl d1 e4

Fig. 8-Relation lattice L(R[Q]).

O(Q1 + Q21~) = O(A IABC) = O(A)/O(ABC) = tI, II, III, V; IV},

O(Qll~) = O(ABD IABC) = O(AB)/O(ABC) = tI, III; II, V; IV},

O(Q21~) = O(ACEIABC) = O(AC)/O(ABC) = tI, V; II, III; IV},

and

O(ABC) = tI, II, III, IV, V},

where I = 1, II = 2, 5, III = 3, IV = 4, V = 6, 7.
It is easy to see that ABD and ACE are projectively decomposable

on ABC, i.e.,

O(A I ABC) = O(ABD I ABC) + O(ACE I ABC)

= O(ABD I ABC) 0 O(ACE I ABC)

= O(ACE I ABC) 0 O(ABD I ABC).

3188 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

But the MVD: A ~ BD (or A ~ CE) does not hold in R[Q].
Nevertheless, the EMVD: A ~ B I C does hold in R[Q]. 0

So far we have discussed the properties of decomposition of two sets
of attributes. The concept of decomposition certainly can be extended
to any n > 2 sets of attributes. We define the notion of mutual
decomposition as follows:
Definition 10: Let R be a relation on the set of attributes Q. The
sets of attributes QI, Q2, ... , Qn ~ Q are mutually decomposable, if for
any I ~ N = {I, ... , n} and J ~ N - I, the two sets of attributes
Q 1 = UiEI Qi and QJ = UjEJ Qj are decomposable. 0
Theorem 10: Let R be a relation on the set of attributes Q and Q1

Qn = Q. Suppose QI, ..• , Qn are mutually decomposable. Then

R[Q] = R[Q1 ••• Qn] = R[Qd I X I ... I X I R[Qn].

Proof- It follows from the definition of mutual decomposition that

m=2, ... n.

Therefore the assertion is true by induction. 0
The above theorem states that mutual decomposition implies an

information-Iossless join. The converse is not true in general. The
necessary and sufficient condition of an information-Iossless join is
called join dependency, which will be discussed in the next section.

VII. JOIN DEPENDENCIES

Join dependency (JD)1O,1l,14 is a generalization of MVD. It refers to
a collection {QI, ... , Qn} of subsets of Q such that

Q = Q1 ••• Qn

and

Join dependency can be considered as a "set of coordinates" of the
relation. The connection between join dependencies and multivalued
dependencies is given by the following lemma:
Lemma 10: Let R[Q] = R[Q1] I X I ... I X I R[Qn], let No be a subset of
{I, ... , n}, and let Nl = {I, ... , n} - No. Then (QNo' QN) lS a
decomposition pair, where

Proof: Since

and QN1 = U Qi.
iENl

RELATIONAL DATABASES 3189

and

it follows that

R[QNo] I X I R[QNl] ~ (!XI R[Qd) I X I (.IXI R[Qi]).
IENo IENl

Since the natural join operation is commutative and associative,6 we
have

R[QNO] I X I R[QNJ ~ R[Qd I X I ... I X I R[Qn] = R(Q).

But we know

Hence,

R[Q] = R[QNo] I X I R[QNJ •

Let x be an X-value, and assume Y ~ X. We shall denote the
Y-value in x as x[Y]. Let t E R[Q] be a tuple and let Q = Q1 ••• Qn.
The notation t ~ (WI, ... , wn) will be used to indicate that t[Qd = Wi,
'Vi E N, where N = {I, ... , n} denotes the index set.

Before we state the necessary and sufficient conditions for join
dependency, we first introduce the concepts of a set of consistent values
and an indexed family of tuples.
Definition 11: Let R be a relation on the set of attributes Q, and let
{Xi liE N} be a collection of subsets of Q. The set of values. {Xi I Xi is
an Xi-value, i E N} is called a set of consistent values of {Xi liE N} if
the values of Xi n Xj in Xi and Xj agree, i.e., if

Xi[Xi n Xj] = Xj[Xi n Xj], 'Vi, j E N.

The set of tuples ltd i E N} of R[Q] is called an indexed family of
tuples with respect to {Xi liE N} if {Xi I ti[Xd = Xi, i E N} is a set of
consistent values. II
Theorem 11: Let R be a relation on the set of attributes Q, and let Q =
Q 1 ••• Qn. Then

R[Q] = R[Ql] I X I ... I X I R[Qn]

iff for every indexed family of tuples {ti liE N} with respect to {Xi liE
N} there is a tuple t E R[Q] such that t[Qi] = ti[Qd, 'Vi E N, where Xi =
Qi n Qi' and Qi = UNiQj.
Proof: (Necessity) Let ltd i E N} be an indexed family of tuples of
R[Q] with respect to {Xii i EN}. Thus, {xd ti[Xi] = Xi, i E N} is a set
of consistent values. Suppose ti[Qd = Wi, i E N. We want to show that

3190 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

there exists a tuple t £ (WI, ... , wn) E R[Q]. We will prove this by
mathematical induction. We know that Sl = (WI) E R[Qd and (W2) E
R[Q2]. Thus,

wdXl] = Xl and W2[X2] = X2.

Since {Xi liE N} is consistent, it follows that

Wl[Xl n Xd = Xl[Xl n X 2] = X2[XI n X 2] = W2[XI n Xd.

It is known that

Xi n Xj = (Qi n fiJ n (Qj n fij) = Qi n Qj, i =1= j.

Therefore,

Wl[Ql n Q2] = W2[QI n Q2].

By the definition of natural join, we know that there exists a tuple
S2 £ (WI, W2) E R[Ql] I X I R[02].

Suppose there is a tuple Sn-l £ (WI, ..• , Wn-l) E R[Ql] I X I
I X I R[Qn-d. Then

Sn-l[Xi n Xn] = Wi[Xi n Xn] = Xi[Xi n Xn]

i = 1, ... , n - 1.

Hence,

Sn-l[Qn n fin] = Sn-l[Qn n (Ql U ... U Qn-l)]

= Sn-l[(Ql n Qn) U ... U (Qn-l nOn)]

= Sn-l[(Xl n Xn) U ... U (Xn- l n Xn)]

= wn[(Xl n Xn) U ... U (Xn- l n Xn)]

= wn[On n fin].

It follows that there exists a tuple t such that

t = Sn £ (WI, ... , wn) E R[Qd I X I ... I X I R[Qn] = R[Q].

(Sufficiency) We know that

R[Q] ~ R[Ql] I X I ... I X I R[Qn].

For any t £ (WI, •.. , wn) E R[Qd I X I ... I X I R[Qn], there exists an
indexed family of tuples {ti I ti[Qd = Wi, i E N} of R[Q] with respect to
{Xi liE N} that has a set of consistent values {Xi I wi[Xd = Xi, i EN}.
It follows that t £ (WI, ... , wn) E R[Q]. Hence,

R[Q] = R[Od I X I ... I X I R[Qn]. [J

The necessary and sufficient conditions for JD given in the above

RELATIONAL DATABASES 3191

theorem are similar to the notion of template dependency introduced
by Sadri and Ullman.27 The following condition can be considered as
an extension of the binary natural join operation.
Corollary 3: Let R be a relation on the set of attributes Q, and Q = Q1

... Qn. Then,

iff

RX1 ,·· .,xJQ] = RX1 [Ql] I X I ... I X I RxJXn]

for every set of consistent values {Xi liE N} of {Xi liE N}, where Xi =
Qi U ai, Vi E N, and RX1 , •• • ,xJQ] = {t It E R[Q], t[Xd = Xi, Vi EN}.
Proof: The proof follows from Theorem 11. •

Clearly, for any t E R[Q] = R[Q1 ••• Qn], the set of values {Xi I t[Xi]
= Xi, Xi = Qi n ai, i E N} is always consistent. The converse is not
necessarily true. Suppose for any set of consistent values {Xi I Xi is an
Xi-value, i E N} there is a tuple t E R[Q] such that t[Xd = Xi, Vi E N;
in this case we say {Qd i E N} is complete.
Corollary 4: Let R be a relation on the set of attributes Q, and Q = Q1

... Qn. Then {Qi liE N} is complete iff

R[XI ... Xn] = R[X1] I X I ... I X I R[Xn],

where Xi = Qi n ai, i E N.
Proof: The proof follows directly from Theorem 11. •

The necessary and sufficient conditions for JD may be stated in a
different form, as follows:
Theorem 12: Let R be a relation on the set of attributes Q, and Q = Q1

... Qn. Then

iff

1. {Qi, oJ is a decomposition pair, i E N,
2. {Qi liE N} is complete, i.e.,

R[XI ... Xn] = R[Xd I X I ... I X I R[Xn], Xi = Qi n ai, i E N.

Proof: (Necessity) Condition 1 follows from Lemma 10. Condition 2 is
a consequence of Theorem 11.

(Sufficiency) We know that

R[Q] k R[Q1] I X I ... I X I R[Qn].

Suppose t £. (WI, ... , wn) E R[Q1] I X I ... I X I R[Qn]. Then there is
an indexed family of tuples {ti I ti[Qd = Wi, i E N} of R[Q] with respect

3192 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

to {Xi liE N} and the set of consistent values {Xi I wi[Xd =
Xi, Xi = ni n ni, i EN}. We will prove by mathematical induction that
t ~ (WI, ... , wn) E R[n].

Since {nd i E N} is complete, there exists a tuple S ~ (Yh ... , Yn)
E R[n] such that

'Vi E N.

We know that

tl[nl n nd = tl[Xl] = Wl[Xl] = Xl = s[Xl] = S[nl n nIl,

which means

tlO(nl n nl)s.

Since (nb nl) is a decomposition pair, there exists a tuple Sl E R[n]
such that

Hence,

Sl ~ (WI, Y2, ... ,Yn) E R[n].

Suppose there is a tuple Sn-l ~ (WI, ... , Wn-I, Yn) E R[n]. It follows
that

tn[nn n nn] = tn[Xn] = wn[Xn] = Xn = Sn-l[Xn] = Sn-l[nn n nn].

Thus there is a tuple Sn E R[n] such that

tnO(nn)snO(nn)Sn-l.

Hence

t = Sn ~ (WI, ... , wn) E R[n]. 0

It is known that a special class of JD, called acyclic join dependency,
has many desirable properties; this class makes operations like updates
and joins especially easy.15, 28 A collection of subsets {nd i E N} of the
set of attributes n is called acyclic if all the attributes can be deleted
by repeatedly applying the following two operations:15

,28

1. Delete from some n i an attribute A that appears in no other nj
2. Delete one n i if there is an nj, i =1= j, such that n i ~ nj.
A reduction {Yj I j E J ~ N, and 'Vi E N - J3j E J such that Yi ~

Yj } is obtained by removing from {Yi liE N} each Yi that is contained
in another Yj •

Definition 12: Let S = I ni liE N} be a collection of subsets of n. The
core of S, denoted hy S, is defined as follows:

1. S = 0, for I S I = N = 1
2. S is the reduction of {ni n ni liE N}, for I S I = N> 1. C!l

RELATIONAL DATABASES 3193

There are many different but equivalent conditions that characterize
a collection of subsets as acyclic.15 We will use the following one:
Lemma 11: A collection S = {Q i 1 i EN} of subsets of Q is acyclic iff its
core S is acyclic.
Proof: S can be obtained from S by performing the operations 1 and
2 defined above. It follows that if S is acyclic then S is acyclic and
vice versa. •
Corollary 5: Let S = {Qi 1 i E N} be an acyclic collection of subsets of Q.

Then 1 S 1 > 1 S I·
Proof: For 1 S 1 = 1, 1 S 1 = 101 = O. For 1 S 1 ~ 2, we know that
1 S 1 ~ 1 S I. Suppose 1 S 1 = 1 S I. Then any attribute A in S must be
contained in at least two distinct subsets of S. Let A E Qi n Qi. Then
A E Qi and A E Qi. There is a j =t= i such that A E Qj. Since Qi ~ Qj =
Uk#jQk it follows that

A E Qj n Qj E S.

Since 1 S 1 = 1 S 1 ~ 2, S is not empty. Now, neither operation 1 nor
2 can be applied to reduce S. From Lemma 11 we know this contradicts
the assumption that S is acyclic. Thus, 1 S 1 > 1 S I. •

A JD R[Q] = R[Qd 1 xl .. · 1 X 1 R[Qn], Q = QI ... Qm is an acyclic
join dependency if {Q i 1 i E N} is acyclic. A recursive condition for
acyclic join dependency is as follows:
Corollary 6: Let R be a relation on the set of attributes Q = QI ... Qn.
Then

is an acyclic join dependency iff
1. (Qi, Qi) is a decomposition pair of R[Q], i = 1, ... , n,
2. R[XI ... Xm] = R[XI] 1 xl· .. 1 X 1 R[Xm] is an acyclic join de­

pendency over the set Xl ... Xm ~ Q, where {Xi 1 i = 1, ... , m} is the
core of {Q i 1 i EN}.
Proof: The join dependency of a collection of sets and the join de­
pendency of its. reduction are equivalent.25 The proof easily follows
from Theorem 12 and Lemma 11. •

The above corollary simply states that acyclic join dependency is
equivalent to a set of MVDs and EMVDs, i.e., a set of simultaneous
lattice equations that can be derived recursively. It has been shown by
hypergraph theory that an acyclic join dependency is equivalent to a
set of MVDs.15

,16 That is, the converse of Lemma 10 is true for acyclic
join dependency; we will prove that the converse of Lemma 10 is a
consequence of Corollary 6.
Theorem 10: Let R be a relation on the set of attributes Q = Q I ... Qn

such that {Qd i E N} is acyclic. Suppose for any No ~ N = {I, ... , n},
Nl = N - No, and

3194 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Then

R[rl] = R[rld / x / ... / x /R[rln]

is an acyclic join dependency.
Proof: This theorem will be proved by mathematical induction on n.
For the smallest nontrivial case n = 3, let the core set {Xd i = 1, ... ,
m} of {rld i = 1, 2, 3} be the reduction of {Yi = rl i n Qd i = 1, 2, 3}.
First we want to show that

R[XI ... Xm] = R[Xd / X / ... / X /R[Xm].

We know m < 3 from Corollary 5. There is nothing to be proved if
m < 2. For m = 2, without loss of generality, let Xl = YI, X 2 = Y2,

and Y3 k Y2 = X 2• Then

Xl n X 2 = YI n Y2 = YI n Y2 Y3 = (YI n Y2) U (YI n Y3)

= (rl l n rl2) U (rl l n rl3) = rll n rl2rl3.

Since (rl l, rl2rl3) is a decomposition pair,

O(XI n X 2) = O(rll n rl2rl3) k O(rl l) 0 O(rl2rl3).

Also we have

and

Thus

and

It follows that

Hence

O(rld ~ O(XI),

O(rl2rl3) ~ O(X2) ,

R[XIX 2] = R[Xd / X / R[X2].

It follows from Corollary 6 that

R[n] = R[rld / X / R[rl2] I X / R[rl3].

Suppose the theorem is true for all k < n. Let the core set {Xi / i = 1,

RELATIONAL DATABASES 3195

... , m} of {~ll i E N} be the reduction of {Yi = Qi n nd i EN}. We
know m < n and for any Mo ~ M = {I, ... , m} and Ml = M - Mo
there is an No ~ Nand Nl = N - No such that

and

Then,

XMo n X M1 = Y No n Y Nl =. ~ (Yi n Yj)
IENo,JEN1

Since (QNo' QN) is a decomposition pair, we have

O(XMo n X M) = O(QNo n QN) ~ O(QNo) 0 O(QN).

Also, we know

and

Thus

and

O(QN) ~ o (XMo),

O(QN) ~ O(XM),

It follows that

Hence

R[XI ... Xm] = R[XMo] I x I R[XM1]

for any Mo ~ M, Ml = M - Mo.
Since the theorem is true for m < n, we have

R[XI ... Xm] = R[X1] I X I ... I X I R[Xm].

It follows from Corollary 6 that

R[Q1 ••• Qn] = R[Ql ll x I ... I X I R[Q,J •

3196 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Further discussion of the properties of acyclic join dependencies can
be found in Refs. 15 and 16. A linear-time algorithm for testing
acyclicity is given in Ref. 28.

VIII. CONCLUSIONS

We have shown that lattice theory is a powerful tool in the analysis
of the structure of relational database systems. Using this tool, we
have established a unified theory of relations. As we have seen, almost
every concept in the existing relational database theory has a counter­
part in the lattice theory. This suggests that further study of relations
should be carried out within the framework of lattice theory. The
independency theory of lattices, which is a generalization of the
familiar notion of independency in the geometries,18,21 is especially
important and relevant to the structure of relational database systems
if its relation lattice is modular. This approach may lead to a geometric
interpretation of data dependencies and independencies, which would
make the theory more intuitive and also more useful for practical
application.

The establishment of this algebraic theory of relational databases is
done in the same spirit as the construction of probability theory. A
probability space is a triple (n, ~, P), where n is the sample space, ~
is a IT-algebra of the subsets of n, and P is a real-valued function,
called a probability measure, defined on the IT-algebra ~.17,29 The notion

Table VIII-Comparison of probability theory and
the theory of relational databases

Probability Theory

Sample space Q

~, the a-Algebra of subsets of
Q

Probability measure
P: ~-R[O, 1]

a-additivity:
I X k I is an denumerable union

of disjoint events

P (U Xk) = ~ P(Xk)
k=l k-l

P(n) = 1
P(0) = 0

o ~ P(X) ~ 1, V X E ~
If X~ Y,
P(X) ~ P(Y)

If Q1 and H2 arc independent,
P{Ql n ~h) = P(H.)P(Q2)

Theory of Relational
Databases

Set of attributes Q

21l, the Boolean algebra of sub-
sets of Q

Partition function
0: 21l _ ll[R(Q)]

Meet-morphism:
IXkl is a finite collection of

sets of attributes

o (91 Xk) = O(Xl) ••• O(Xn)

O(Q) = 0
0(0) = 1

o ~ O(X) ~ 1, V X E 21l

If X~ Y,
O(X) ~ O(Y)

If Ql and Q2 are decomposable,
O{Ql n Q2) = O(Ql) + 0{Q2)
= O(Ql) 0 0(Q2) = 0{Q2) 0 O{Ql)

RELATIONAL DATABASES 3197

of a cr-algebra of sets also has an abstract generalizaton, namely it is
a particular case of a Boolean cr-algebra.30 A comparison of the alge­
braic theory of relational databases and probability theory is shown
in Table VIII.

We feel that this theory of relational databases can be used to
analyze the nonquantitative aspects of data dependencies (or indepen­
dencies), whereas probability theory is the basis of quantitative data
analysis, namely statistics. This comparison is not meant to imply
that there is a one-to-one correspondence between the theory of
relational databases and the theory of probability. Nevertheless, we
are convinced that the lattice theory could playa role in the theory of
relational databases similar to the role measure theory plays in the
theory of probability.17

The computational algorithms for meet and join operations of
partitions are given in Ref. 31, which provides the basic tools for
future development of algorithms for relations.

IX. ACKNOWLEDGMENT

I am grateful to Dr. M. Eisenberg for his careful review of the
manuscript and his helpful comments and suggestions.

REFERENCES

1. E. F. Codd, "A relational model of data for large shared data banks," Comm. ACM,
3, No.6 (June 1970), pp. 377-87.

2. E. F. Codd, "Further normalization of the database relational model," in Database
Systems, R. Rustin, ed., Englewood Cliffs, NJ: Prentice Hall, 1972, pp. 33-64.

3. C. Beeri, P. A. Bernstein, and N. Goodman, "A sophisticated introduction to
database normalization theory," Proc. Int. Conf. on Very Large Databases, West
Berlin, Germany (September 1978), pp. 113-24.

4. P. A. Bernstein and N. Goodman, What does Boyce-Codd normal form do? Proc.
6th Int. Conf. on Very Large Databases, Montreal, Canada (1980), pp. 245-59.

5. P. A. Bernstein, "Synthesizing third normal form relations from functional depend­
encies," ACM Trans. Database Syst., 1, No.4 (December 1976), pp. 277-98.

6. J. D. Ullman, Principles of Database Systems, Rockville, MD: Computer Science
Press, Inc., 1980.

7. R. Fagin, "Multivalued dependencies and a new normal form for relational data­
bases," ACM Trans. Database Syst., 2, No.3 (September 1977), pp. 262-78.

8. C. Zaniolo, "Analysis and design ofrelational schemata for database systems," Ph.D.
Diss., Tech. Rep. UCLA-ENG-7661, U. of California, Los Angeles, CA, July,
1976.

9. A. K. Anora, and C. R. Carlson, "The information preserving properties of relational
database transformations," Proc. 4th Int. Conf. on Very Large Databases, West
Berlin, Germany (September 1978), pp. 352-9.

10. J. Rissanen, "Independent components of relations," ACM Trans. Database Syst.,
2, No.4 (December 1977), pp. 317-25.

11. J. Rissanen, "Theory of relations for databases-a tutorial survey, Proc. 7th Symp
Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 64, J. Winkowski, ed., Berlin, Heidelberg: Springer-Verlag, 1978, pp. 537-
51.

12. W. W. Armstrong, "Dependency structure of database relationships," Proc. IFIP,
74, Amsterdam: North-Holland Publ. Co. (1979), pp. 580-3.

13. C. Beeri, R. Fagin, and J. H. Howard, "A complete axiomization for functional and
multivalued dependencies in database relations," Proc. ACM SIGMOD. Int. Conf.
on Management of Data, Toronto, Canada (1977), pp. 47-61.

3198 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

14. A. V. Aho, C. Beeri, and J. D. Ullman, "The theory of joins in relational databases,"
ACM Trans. Database Syst., 4, No.3 (September 1979). pp. 297-314.

15. C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. D. Ullman, and M. Yannakakis,
"Properties of acyclic database schemes, Proc. Thirteenth Annual ACM Symp.
on Theory of Computing (Milwaukee 1981), pp. 355-62.

16. R. Fagin, A. O. Mendelzon, and J. D. Ullman, "A simplified universal relation
assumption and its properties," ACM Trans. Database Syst., 7, No.3 (September
1982), pp. 343-360.

17. M. Loeve, Probability Theory, 3rd ed., Princeton, NJ: Van Nostrand, 1963.
18. G. Birkhoff, Lattice Theory, 3rd ed., Providence, RI: American Mathematical Society

Colloquium Publ. XXV, 1967.
19. C. Delobel and R. G. Casey, "Decomposition of a database and the theory of Boolean

switching functions," IBM J. Res. and Develop., 17, No.5 (September 1973), pp.
374-86.

20. P. M. Cohen, Algebra, Vol. 2, London: John Wiley, 1977.
21. A. Rosenfeld, An Introduction to Algebraic Structures, San Francisco, CA: Holden­

Day, 1968.
22. H. C. Torng, Switching Circuits Theory and Logic Design, Reading, MA: Addison­

Wesley Publ. Co., 1972.
23. T. W. Lin, F. W. Tompa, and T. Kameda, "An improved third normal form for

relational databases," ACM Trans. Database Syst., 6, No.2 (June 1981), pp. 329-
46.

24. C. Delobel, "Normalization and hierarchical dependencies in the relational data
model," ACM Trans. Database Syst., 3, No.3 (September 1978), pp. 201-222.

25. C. Berri, A. O. Mendelzon, Y. Sagiv, and J. D. Ullman, "Equivalence of relational
database schemes, Proc. Eleventh Annual ACM Symposium on the Theory of
Computing (1979), pp. 319-29.

26. W. W. Armstrong, and C. Delobel, "Decompositions and functional dependencies
in relations," ACM Trans. Database Syst., 5, No.4 (December 1980), pp. 404-30.

27. F. Sadri and J. D. Ullman, "Template dependency: a large class of dependencies is
relational databases and its complete axiomation," J. ACM, 29, No.2 (April
1982), pp. 363-72.

28. R. E. Tarjan and M. Yannakakis, unpublished work.
29. A. N. Kolmogorov, Foundation of Probability, New York: Chelsea, 1950.
30. P. R. Halmos, Lectures on Boolean Algebra, New York: Springer-Verlag, 1974.
31. T. T. Lee, "Order-preserving representations of the partitions on the finite set," J.

Combinatorial Theory, Series A.31, No.2 (September 1981), pp. 136-45.

APPENDIX A

Properties of Meet and Join Operations

In any lattice (L, " +), the operations of meet and join satisfy the
following laws:
Ll-a·a = a, a + a = a; (Idempotent)
L2-a·b = b·a, a + b = b + a; (Commutative)
L3-a.(b.c) = (a·b)·c,

a + (b + c) = (a + b) + c; (Associative)
L4-a.(a + b) = a + (a·b) = a; (Absorption)
L5-a ~ b iff a·b = a,

a ~ b iff a + b = b; (Consistency)
L6-b ~ c implies a·b ~ a·c

b ~ c implies a + b ~ a + c; (Isotone)
L7-a· (b + c) ~ (a·b) + (a.c)

a + (b·c) ~ (a + b)· (a + c); (Distributive Inequalities)
L8-a ~ c implies a + (b·c) ~ (a + b) ·c. (Modular Inequality)

A lattice is called distributive if equality holds in L 7 and is called

RELATIONAL DATABASES 3199

modular if equality holds in L8. A Boolean algebra is a lattice (L, "
+, -) with the following additional properties:30

L9-a.(b + c) = (a·b) + (a.c),
a + (b.c) = (a + b). (a + c); (Distributive Identities)

LIO-a ~ c implies a + (b·c) = (a + b) ·c; (Modular Identity)
LII-L contains universal bounds 0, 1, which satisfy

O·a=O,O+a=a,
1· a = a, 1 + a = 1;

L12-Va E L, 3a E L such that
a· a = 0, a + a = 1, a = a,

(a.b) = a + 0, (a + b) = a·o.

APPENDIX B

The Proofs of Axioms for Functional and Multivalued Dependencies

The first three of the following are Armstrong's axioms for func­
tional dependencies:12

Bl. (Reflexivity for functional dependencies)
If Y ~ X ~ Q, then X ~ Y.

Proof: O(X) = O(Y(X - Y)) = O(Y)O(X - Y) ~ O(Y). •
B2. (Augmentation for functional dependencies)

If X ~ Y and Z ~ Q, then XZ ~ YZ.
Proof: 8(XZ) = O(X)O(Z) ~ O(Y)O(Z) = O(YZ). •
B3. (Transitivity for functional dependencies)

If X ~ Yand Y ~ Z, then X ~ Z.
Proof: O(X) ~ O(Y) and O(Y) ~ O(Z) imply O(X) ~ O(Z). •

The next three axioms apply to multivalued dependencies:13

B4. (Complementation for multivalued dependencies)
IfX~ YthenX~ Q - X - Y.

Proof: O(X) = O(XY) + O(XZ) = O(XY) 0 O(XZ) = O(XZ) 0 O(XY),
where Z = Q - X - Y. •
B5. (Augmentation for multivalued dependencies)

If X ~ Y, and V ~ W, then WX ~ VY.

Proof: ,Without loss of generality, * we can let Q = ABCDEFGHIJKL,
X = ABCDEF, Y = BCGHFI, W = CDEFHIJK, V = EFIJ (see Fig.
9). Then Q - X - Y = JKL and Q - WX - VY = L.

We want to show that

8(ABCDEF) ~ O(ABCDEFGHI) 0 O(ABCDEFJKL)

* This proof is carried out in terms of equivalence relations (partitions). It is irrelevant
here whether an equivalence relation is the image of a single attribute or the image of a
set of attributes.

3200 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

A L

D K

E J

F I

C Il

B G

Fig. 9-Set of attributes Q for B5.

implies

O(ABCDEFHIJK) ~ ()(ABCDEFGHIJK) 0 O(ABCDEFHIJKL).

Suppose

t10(ABCDEFHIJK)t2•

Then

There exists t3 , such that

t1()(ABCDEFGHI)t30(ABCDEFJKL)t2•

From (1) and (2), we have

It follows from (2) that

t10(JKG)t3'

Combining (2) and (3), we have

tlO (ABCDEFGHIJK) t3.

Relation (2) also implies that

From (1), we know

and therefore

t30(HI)t2•

It follows from (~) and (5) that

(1)

(2)

(3)

(4)

(5)

taO(ABCDEFHIJKL)t2• (6)

RELATIONAL DATABASES 3201

Combining (4) and (6), we have

t10(ABCDEFGHIJK) t30(ABCDEFHIJKL) t2•

It follows that

O(ABCDEFHIJK) k O(ABCDEFGHIJK) 0 O(ABCDEFHIJKL). 0

B6. (Transitivity for multivalued dependencies)

IfX~ Yand Y~Z,thenX~Z- Y.

Proof: Again, without loss of generality, we can let Q = ABCDEFGH,
X = AFGH, Y = BCFG, Z = CDGH (see Fig. 10). Then Z - Y = DH,
Q - XY = DE, Q - YZ = AE, Q - X(Z - Y) = BCE.
We want to show that

O(AFGH) k O(ADEFGH) 0 O(ABCFGH)
and

O(BCFG) k O(ABCEFG) 0 O(BCDFGH)

imply

O(AFGH) k O(ADFGH) 0 O(ABCEFGH).

Suppose t10(AFGH)t2• Then there exists t3 such that

t10(ADEFGH)t30(ABCFGH)t2•

Since t20(BCFG)t3, there exists t4 such that

t20(ABCEFG) t40(BCDFGH) t3.

It follows that

t10(AFG) t30(AFG)t20(AFG) t4.

From (7) and (8), we have

t10(DH)tlJ(DH)t4.

A E

H D

G C

F B

Fig. IO-Set of attributes n for B6.

3202 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

(7)

(8)

(9)

(10)

Combining (9) and (10) yields

t 1()(ADFGH)t4•

From (7) and (8), we have

It follows from (8) that

t4()(ABCEFGH)t2•

Relations (11) and (12) yield

t1()(ADFGH)t4()(ABCEFGH)t2•

Hence

()(AFGH) ~ ()(ADFGH) 0 ()(ABCEFGH). D

(11)

(12)

The last two axioms relate functional and multivalued dependencies.

B7. IfX~ YthenX~ Y.
Proof: Let Z = Q - XY. We want to show that

()(X) ~ ()(Y) implies ()(X) ~ 8(XY) 0 (XZ).

Suppose t 1()(X)t2• Since 8(X) ~ ()(Y) implies ()(XY) = ()(X), then
t1()(XY)t2• It follows that

Hence

()(X) ~ ()(XY) 0 ()(XZ). fa

B8. If X ~ Y, Z ~ Y, and for some W disjoint from Y, we have
W ~Z, then X ~z.
Proof: Again, without loss of generality, we can let Q = ABCDEFGH,

E C

- -
F A

G B

'---- '----

H D

Fig. ll-Set of attributes n for B8.

RELATIONAL DATABASES 3203

x = ACEF, Y = EFGH, Z = FG, and W = AB (see Fig. 11). Then n -
XY=BD.
We want to show that

()(ACEF) ~ ()(ACEFGH) 0 ()(ABCDEF)

and

()(AB) ~ ()(FG)

imply

()(ACEF) ~ ()(FG).

Suppose t 1()(ACEF)T2• Then there exists t3 such that

t1()(ACEFGH)t3()(ABCDEF)t2•

Since

we have

and thus

Hence

()(ACEF) ~ ()(FG). •

AUTHOR

Tony T. Lee, B.S. (Electrical Engineering), 1971, National Cheng Kung
University; M.S. (Mathematics), 1973, Cleveland State University, M.S., 1976,
Ph.D. (Electrical Engineering), 1977, Polytechnic Institute of New York; Bell
Laboratories, 1977-. At Bell Laboratories, Mr. Lee has worked on Common
Control Interoffice Signaling network planning, teletraffic usage forecasting,
5ESS'fM message switch performance analysis, and queueing modeling of
computer and communication systems. He is currently working in the Tele­
traffic Theory and Application Department at Bell Laboratories. Member,
Sigma Xi.

3204 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

Generation of Syntax-Directed Editors With
Text-Oriented Features

By B. A. BOTT05* and C. M. R. KI NT ALA t

(Manuscript received March 16, 1983)

Often, syntax-directed editors rely solely on menu selection for program
construction. We describe here the generation of hybrid editors that give a
programmer the option of either (I) using menu selection and tree navigation
as in a syntax-directed editor, or (2) entering text for parsing and navigating
through the text as in a conventional editor at any stage during the expansion
of a program. A prototype system, HEG (Hybrid Editor Generator), has been
built to automatically generate such a hybrid editor from a high-level specifi­
cation of a grammar for an application language. Each such generated hybrid
editor is called an AGE (Automatically Generated Editor). We describe the
HEG meta-language and briefly summarize the editing process in AGEs. We
also describe possible extensions to the meta-language to describe program
semantics, and the generation of the procedures to check those semantics
during program construction.

I. INTRODUCTION

In the past, there has been a dichotomy between the way a devel­
opment tool such as a text editor would manipulate the text of a
computer program and the way another development tool such as a
parser would manipulate the same text. The advent of syntax-directed
editing has removed this difference by introducing the use of editors
that store and manipulate programs entirely as (partially) instantiated
syntax trees.1

-
8 The question, though, of whether a program should be

manipulated only in terms of its syntax tree, or also in terms of its

* Carnegie-Mellon University. tBell Laboratories.
©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro­
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa­
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3205

textual representation, is yet to be resolved.B
,9 Some editing systems

purport to allow the programmer both points of view, but provide only
one, predetermined, choice for the manipulation of each construct in
the language.7 We introduce here the concept of a hybrid editor, which
integrates the tree-navigation and menu-selection capabilities of a
syntax-directed editor with the text-navigation and the string-entry
capabilities of a conventional editor. Either of these views of a program
can be taken at any stage during the expansion of the program in a
hybrid editor.

One of the features of the hybrid editors discussed herein is the fact
that a complete editing system is automatically generated from a high­
level description of a language. The concrete and abstract syntaxes of
the language are both described by one context-free grammar; and
both the syntax-directed editor, and the incremental parser for use
with the editor, are generated from this grammar.

In this paper, we outline the overall design of a hybrid editor
generator and describe briefly the interface presented to a programmer
by the hybrid editor. We define the meta-language in which the
application language is specified for the generator, and describe the
operations performed on the language specification in the process of
generating the editor. Based on this design, a prototype hybrid editor
generator, called HEG, has been built and is being tested. We describe
possible extensions to the meta -language to describe program seman­
tics, and the generation of the procedures to check those semantics
during program construction.

II. BACKGROUND

Although syntax-directed editing can be very helpful to a program­
mer who is unfamiliar with the language he is using, one who knows
the syntax of the language may easily become frustrated with the
plethora of menu choices that must be made to "write" a program
substructure as simple as an assignment statement. For this reason,
allowing the programmer the option of giving the editor a string to
parse and insert into the partially expanded program is a desirable
feature to have in such a menu-driven editor. We define a hybrid
editor to be a syntax-directed editor with the ability to parse and to
integrate into the program tree a string given at any time during the
expansion of a program.

There have been attempts to generate syntax-directed editors au­
tomatically for several programming languages from specifications of
the syntactic (given by a context-free grammar)5 and the semantic
(given using attributes for the symbols in the grammar) aspects of a
language.1o There is also a system in use that requires only the addition
of a context-free grammar for any new language for which it is to

3206 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

operate.4 (In this latter system, detailed knowledge of the structure of
the grammar seems to be required in order to use the editor with any
grace.) Usually, however, such editors are built individually for each
programming language. This is because (1) high-level programming
languages have many context-sensitive semantic constraints that can­
not be expressed by a context-free grammar, (2) programmers using
high-level languages usually need more local context-sensitive aid than
syntactic help, and (3) the external interface that such an editor is
expected to provide depends heavily upon the language it supports.

Little attention, however, has been paid to syntax-directed editors
for special-purpose languages such as the input specification languages
for Yet Another Compiler-Compiler (Y ACC)l1 and database interface
languages such as HISEL.12 Yet it is for these seldom used, but
numerous, languages that a hybrid editor would be most useful. Users
of such application programs often write their input in a file using a
regular text editor and manually check conformity with the syntactic
constraints imposed by the particular application program. Some of
these application programs have parsers in their front ends to check
the syntactic correctness of their input. (Sometimes these parsers are
automatically generated from utilities such as Y ACC.ll) Others just
assume that their input is syntactically correct and abort when it is
not. If, in place of the parser, a hybrid editor is available within the
application program, the user can be guided by the program's editor
during input construction.

A tool to automatically generate such editors for application lan­
guages can be quite useful for several reasons: (1) A special-purpose
application language, unlike a programming language, is likely to
change more rapidly with an evolving application program. (2) Many
application programs are not frequently used and hence their idiosyn­
cratic syntactic constraints are likely to be forgotten. (3) The amount
of syntactic help from a hybrid editor can be determined by the
programmer. (4) The derivation tree built by the hybrid editor may be
used by the application program to process its input in a more
structured manner than is often possible when only a textual view of
the input is available to the program. It is for these types of languages
that REG-generated hybrid editors, called AGEs (Automatically Gen­
erated Editors), are most valuable.

III. THE EDITING PROCESS

In a REG-generated hybrid editor for a given language, a program
is internally represented by a derivation tree of the program in that
language, along with a symbol table containing the programmer­
defined character strings. (See Appendix A for an example of a short
session with an AGE.) When the programmer wishes to expand a

SYNTAX-DIRECTED EDITORS 3207

particular nonterminal in the tree by syntax-directed menu selection,
and if there are two or more production rules for that nonterminal,
then the AGE creates a one-item-at-a-time wraparound menu, on the
bottom line of the screen, displaying the menu strings associated with
those production rules. After a production rule is chosen for expansion,
the internal node for the nonterminal is grown in such a way that the
frontier of the subtree rooted at that internal node corresponds to the
right-hand side of the production rule selected. If, however, the pro­
grammer wishes to forego menu selection, he/she may expand a
nonterminal by entering a string that is derivable from the nonter­
minal. The editor will parse the string, build a subtree representing
the string, and graft the subtree into the program tree at the node
corresponding to the nonterminal. The string given by the programmer
may be any combination of terminal strings and nonterminal names.

Even though the internal representation of a program is a tree, both
tree and text interfaces are provided to the programmer for navigation
through the program. At any moment, a tree cursor navigating around
the internal nodes of the tree is available. The programmer sees the
cursor spanning the entire frontier of the subtree rooted at the tree­
cursor node. He can move the tree cursor along the internal nodes of
the tree (using the commands up [A], down [V], left-sibling under the
same parent [<], right-sibling under the same parent [>], next internal
node of the same type under the same parent [N], etc). Or, he can
navigate textually (using the commands n for next word, b for back
word, C R for next line, - for previous line) through the program. The
commands 'e' and 'u' provide syntax-driven expansion and unexpan­
sion facilities. Commands 'p' and 'r'· allow parser-driven nonterminal
expansion and file-reading facilities.

When the programmer quits editing, both the text and the tree
versions of the program are saved. The tree is saved by storing the
leftmost derivation sequence of the production rules in the derivation
tree and the symbol table. This sequence is used to reconstruct the
tree for a later editing session on that program. The test is saved for
possible use by other tools.

IV. ARCHITECTURE OF HEG

HEG produces a generalized table-driven syntax-directed editor,
linked with a parser, for a given application language. The application
language is specified by an AGE grammar in the meta-language
described in the next section. A parser generator front end, named
'GENPAR', generates a YACC file and a LEX file13 from this speci­
fication of a language. The parser generated from these two files is
capable of parsing strings, which may contain nonterminal names,

3208 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

starting from any nonterminal of the grammar. The grammar tables
used by the editor, the parser, and the generic editing routines are
then linked together to generate an AGE for the given language.

Figure 1 shows the interactions between the different components
of an AGE.

V. THE META-LANGUAGE

The "meta-language" for HEG is the grammar specification lan­
guage in which the production rules of any context-free grammar are
specified, along with the pretty-printing information required by the
display utilities of the editor (e.g., indentation and color codes, if
available) and the strings for the menu lists. As an example of the use
of the language,

query : (QUERY)
I "select" list "where" conds

is a normal production rule. Here, (QUERY) is a "user-friendly" name
for the nonterminal symbol 'query'. The sequence of strings following
the character 'I' specifies a production for the nonterminal 'query'.
Strings within double quotes in the production specification are ter­
minal characters and others are nonterminals. The terminal character
strings may also contain the following special characters denoting
pretty-printing information: '\n' for a new-line, ,-, for a blank char­
acter, '\t' for tabbing one position to the right and increasing the tab
count by one for the starting positions of the subsequent lines, and
'\ T' for decreasing the tab count by one for the current and the
subsequent lines.

PROGRAMMER
INTERACTION

APPLICATION GRAMMAR 9

TREE UTILITIES

PROGRAM.TREE

PROGRAM.g

Fig. 1-Interactions between the components of an AGE.

SYNTAX-DIRECTED EDITORS 3209

Another example is

list : ITEM_LIST
I+item ","

This is an\iterative production rule. It specifies that the nonterminal,
'list', can b~ expanded into one or more occurrences of the nonterminal,
'item', separated by the terminal character string','. A '*', in place of
the '+' abov~, would denote zero or more occurrences of the nonter-
minal. \

There may be more than one production rule for a nonterminal; if
so, all of the rules for the nonterminal must be specified in one rule
set, each preceded by a ' I'. For example, the following two sets of rules
show several possible expansions for the corresponding nonterminals:

clause

op

: CLAUSE
I field_name "-,, op "-,, constant
I constant "-,, op "-,, field_name
I field_name "-,, op "-,, field_name

: OPERATOR
I "="
I "!="
1">="
1"<="
I ">"
I "<"

For each production rule, the grammar specification must include
an associated "expansion character". This expansion character must
be unique within the set of rules for that nonterminal. If there are two
or more rules for the expansion of a nonterminal and if an instance of
that nonterminal in the program is to be expanded, the programmer
must indicate his choice by typing the expansion character associated
with the desired rule. However, if the programmer wishes to examine
all the choices for that nonterminal, the AGE creates a one-item-at­
a-time wraparound menu on the bottom line of the screen, from which
the programmer may choose a production. Therefore, the implementor
(the person defining the grammar) must provide a "menu-item-string",
which is displayed in the menu for each production rule. These menu
items should be suggestive of the associated production rule for better
communication with the programmer. When a particular rule is chosen
for the expansion, the right-hand side of that rule replaces the left­
hand side nonterminal node in the program's syntax tree.

3210 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

To illustrate the provision of menu information in a grammar for
HEG as above and to clarify the grammar specifications further, a
complete set of rules for a database query language HISEL12 is given
below. Sentences (queries) in this language have the form:

select x1.fldl,x2.fld2, ... where (CLAUSES) or (CLAUSES) ...

where 'x' is a cursor name, 'fld' is a field name, and (CLAUSES) is a
conjunctive sequence of field conditions. The single characters follow­
ing the menu items in the rules are the expansion characters. For the
rule sets having just one production rule, meaningless menu-item
strings (e.g., 'xxx') and expansion characters (e.g., 'x') are used for
uniformity in the meta-syntax. Observe that there is no white space
in the menu-item strings.

query : (QUERY)
I xxx x "select" list "\nwhere-" conds

list : (ITEM_LIST)
I xxx x + item ","

item : ITEM

conds

disjunct

clause

op

I xxx x cursor "." field_name

: (CONDITIONS)
I xxx x *disjunct "\n---or-"

: (CLAUSES)
I xxx x +clause "-,-"

: CLAUSE
I field_op_const 1 field_name "-,, op "-,, constant
I const_op_field 2 constant "-,, op "-,, field_name
I field_op_field 3 field_name "-,, op "-,, field_name

: OPERATOR
I equal = "="
I not_equal! "!="
I greater_equal 1 ">="
I less_equal 2 "<="
I greater> ">"
I less < "<"

The left-hand side nonterminal of the first rule in the grammar
specification (i.e., 'query', above) is the starting nonterminal. If no

SYNTAX-DIRECTED EDITORS 3211

production rule is available for a nonterminal (e.g., 'field_name'), and
that nonterminal appears during the derivation of a program, then it
is assumed to expand into a character string to be provided by the
programmer at the time of expansion. Such nonterminals are said to
derive "identifiers". A regular expression specification for any such
nonterminal can be used to restrict the format of the identifier strings
that a programmer may supply at the time of expansion. HEG provides
a default specification for all nonterminals deriving identifiers and
having no regular expression specification.

As another example, the following is a grammar in the meta­
language (meta-grammar) for the meta-language described in this
section. In fact, one can invoke an AGE for this meta-language to
enter a grammar specification for any user-defined language.

gram

cfrules

ruleset

: (AN_AGE_GRAMMAR)
1 xxx x cfrules "\n % % \n" rerules

: (CONTEXT_FREE_RULES)
1 xxx x +ruleset "\n"

: (A_RULE_SET)
1 xxx x nonterm-name "\t:-" user_name "\n" rules

"\n;\n\T"

rules : (RHS_OF _A_RULE_SET)
1 xxx x +rule "\n"

rule : (A_RULE)

tklist

token

rerules

1 normal-rule n "1-" menu_string "-,, exp_char "-,,
tklist

1 nonempty-rec-rule + "I-xxx-x-+" nonterm_name
"-\'''' separator "\""
1 empty-rec-rule * "I-xxx-x-*" nonterm_name "-\''''

separator "\""

: (A_SEQ_OF _TOKENS)
1 xxx x +token "-,,

: TOKEN
1 nonterminal-token n nonterm_name
1 terminal-token t "\"" terminal_str "\""

: (REGULAR_EXP _RULES)
1 xxx x *rerule "\n"

3212 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

rerule

%%
exp_char

: (REG_EXP _RULE)
I xxx x nonterm-name "--\ -##!" reg_expr

-##![a-zA-ZO-9+* A <>&]

VI. THE PARSER GENERATOR FOR HEG

The tools Y ACC and LEX are used to produce a parser and a
scanner for an AGE system. The parser generator front end, GEN­
PAR, takes, as input, the AGE grammar specification for the desired
language and produces YACC and LEX specification files. (Note that
the use of YACC implies that the input grammar must be LALR(l)
in order to generate a parser for an AGE system.)

The generated parser can be invoked to parse an input string
representing the expansion of any nonterminal node in the program
derivation tree. The string to be parsed can be any combination of
terminal strings and nonterminal names that is derivable from the
nonterminal at the "current" position of the editing cursor.

6. 1 The parsing of an input string

When the programmer provides a string to be parsed, rather than
making a menu selection, the AGE system opens a temporary file,
writes the prefix $$NONTERMINAL_NAME$$ to the file (where
NONTERMINAL_NAME represents the nonterminal from which the
programmer's input string is to be derived), and appends the input
string. The parser is called to process the entire string contained in
the file. The prefix is considered to be an integral part of the input
string. If the portion of the string entered by the programmer cannot
be derived from the nonterminal indicated by the prefix, the input will
be considered syntactically incorrect. If a syntax error is found, the
temporary file is saved in case the programmer should wish to edit the
string and resubmit it to the parser.

The parser will parse its input in a "backtracking bottom-up"
fashion, constructing a syntax tree to represent the derivation of the
input string. After the tree is constructed, a preorder traversal of the
tree is performed, producing a list of production numbers representing
the leftmost derivation of the input string. This list is then passed
back to the controlling program in AGE.

In an AGE, the YACC-generated parser is run subordinate to a
"parser monitor" to provide a certain amount of parser backtracking,
made necessary by the conflict resolution scheme of the LEX-gener­
ated scanner. For such a scanner, the lexical tokens desired are
specified by regular expressions. When two or more of the given regular
expressions match equal-length segments of the input (starting at the

SYNTAX-DIRECTED EDITORS 3213

"current input position" of the scanner), and these are the longest
matches possible, the scanner will select the regular expression that
had been listed first (textually) in the input specification file as the
"correct" match, and return the corresponding token number. If the
parser is expecting one of the other possible matches at the current
input position, the parser will find a "syntax error" where no error
may, in fact, exist.

The parsers produced by the Y ACC program are standard shift/
reduce ("bottom-up") parsers. The required backtracking is accom­
plished through the interaction of code at two levels of the parsing
scheme. At the lowest level, the handling of multiple matches in the
scanner is slightly modified by forcing the scanner to "reject" an
"identifier" match, after linking the token number associated with the
match into a "token map." In this manner, all possible matches for an
"identifier" are linked into the token map for the parse. At the highest
level, the parser monitor runs the shift/reduce parser, handing the
parser token numbers from either the scanner or the token map,
depending upon the current state of the parse. Then, if the Y ACC­
generated portion of the parser discovers a syntax error in the input,
the monitor can rotate the last set of entries in the token map to
(temporarily) "forget" the "preferred" token number for the last
"choice position" in the input stream, allowing the use of another
possible token number for that position.* In this manner, no syntact­
ically correct input will be declared to contain a syntax error, and an
incorrect input will only be rejected after trying the allowable combi­
nations of token numbers for the "identifier" positions.

6.2 What the parser generator does

Several transformations must be applied to the AGE grammar to
produce a grammar specification that is acceptable to Y ACC, and that
will specify a parser offering the features and enforcing the constraints
desired. All the transformations are performed and the YACC gram­
mar specification is produced in a single pass over the input grammar.

6.2.1 Starting the derivations from arbitrary nonterminals

For every nonterminal in the AGE grammar, two additional produc­
tions are generated. One such set of productions makes it possible to

* Due to the relative simplicity of most application languages (in terms of permissible
"identifier" combinations and possible token map complexity), the erroneous "identifier"
token number will usually be in the last set of entries in the token map. So, in most
cases, only the last one or two "identifiers" need to be retried (if the input really is
syntactically correct). In all cases, the LALR(l) property of the grammar should aid in
the isolation of groups of points in the "identifier" cross-product space that could not
possibly be characteristic of a correct parse. The points in these groups, then, need not
be considered individually during parsing.

3214 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

start a derivation from any nonterminal in the original grammar, even
though Y ACC will allow the specification of only one start symbol for
a grammar. Each such added production is of the form:

ppstart : AGE_ TERM_20 clause

where "ppstart" is a newly defined start symbol for the grammar,
"clause" is a nonterminal in the original grammar, and
"AGE_ TERM_20" is the token returned by the scanner when it reads
the prefix (e.g., "$$clause$$") encoding the nonterminal from which
the remainder of the input is to be derived. This type of production
also allows the enforcement of the rule that the input string must be
derivable from the nonterminal at the "current" node in the program
tree.

6.2.2 Use of nonterminal names

The second set of productions generated for each nonterminal allows
the acceptance of a "user-name" for a nonterminal, in place of a string
that could be derived from that nonterminal, wherever the nonterminal
may appear in an input sentence. Each of these productions is of the
form:

clause: AGE_ TERM_22

where "AGE_ TERM_22" is the token returned by the scanner when it
reads the user-name for the nonterminal on the left-hand side of the
production (e.g., "clause").

6.2.3 Iteration in the grammars

The iterative specifications in the AGE grammar must be trans­
formed into explicit left recursions, with the separators appropriately
treated. Since the most general form of iteration in AGE grammars is
that of a list item repeated zero or more times, with a nonwhite-space
separator, that case is considered here. The AGE grammar specifica­
tion for such a list might be:

clauses: *clause ","

where "clause" is the nonterminal to be repeated in the list structure
and "," is the terminal separator to appear between list elements.

The Y ACC specification corresponding to the above production
would be:

clauses: Xclause_2_0X

where Xclause_2_0X is a new nonterminal encoding the nonterminal
to be repeated as the list elements (e.g. "clause"), the number of the
terminal string to be used as the list element separator (e.g., "2"), and

SYNTAX-DIRECTED EDITORS 3215

the minimum number of times the nonterminal must appear in the
list (e.g., "0"). Such encoding permits the use of the list item nonter­
minaI, "clause," as the repeated element in other lists with different
separators and/or different minimal numbers of occurrences.

To derive the required number of occurrences of "clause," sets of
productions of the following form must be added to the YACC gram­
mar:

Xclause_2_0X : e
I Xclause_2_1X

where "e" represents the empty string. The second new nonterminal,
Xclause_2_1X, denotes one or more occurrences of "clause" separated
by occurrences of terminal number 2. For this second new nonterminal,
sets of productions of the following form are added to the YACC
grammar:

Xclause_2_1X : clause
I Xclause_2_1X AGE_ TERM_2 clause

where "AGE_ TERM_2" denotes the required separator ("terminal
number 2") between elements of the list.

Note that other iterative specifications are specializations of the
above case. If the list must be nonempty, only the second new nonter­
minaI, with its associated productions, is generated. If the list element
separator is not significant (i.e., if it is any form of white space), then
no terminal is encoded in the new nonterminal(s) or included in any
of the new productions.

6.2.4 Treatment of identifiers

In an AGE input grammar, there are no explicit productions for the
derivation of character strings representing identifiers. Any nonter­
minal that does not appear on the left-hand side of any production, in
an AGE grammar specification, may produce an identifier. Since there
are no such implied rules in a Y ACC grammar specification, GENP AR
must add explicit productions to the grammar to allow the reduction
of terminal identifier strings to appropriate nonterminals. These pro­
ductions are of the form:

cursr: AGE_IDENTIFIER_5

where an identifier number (e.g., "5") is specified only if the default
lexical specification is overridden for the nonterminal on the left-hand
side of the production (see below).

To handle the lexical specification for each terminal identifier, the
grammar designer has two choices. The designer may use GENP AR's
default specification, which allows identifiers to be any combination

3216 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

of letters, digits, and the characters "-", "_", and ".", which begins
with a letter, and is not a reserved terminal string in the language. He
may, instead, associate an arbitrary LEX specification with any non­
terminal that may derive an identifier. The given specification would
then be used to override the default identifier specification for that
particular nonterminal.

6.2.5 Treatment of white space

In the generation process, all types of white space in the AGE
grammar specifications of terminal strings are treated identically, and
are considered insignificant to the specification of the generated
grammar. For example, if a "PROGRAM" is specified as a "list of
statements separated by new-lines", the YACC-generated parser will
accept any "list of statements separated by any white space (e.g.,
blanks, tabs, or new-lines)" as a "PROGRAM".

6.3 Generation of YACC actions

If the input string to the parser is valid, AGE requires the output of
the parser to be a list of rule numbers, symbol table indices, and list
item occurrence counts representing the leftmost derivation of the
input string. Since the YACC-generated parser is a shift/reduce parser,
the order in which that parser uses the grammar productions will not
represent a leftmost derivation of the input. To produce the proper
input for the AGE monitor, the parser builds a tree to represent the
derivation of its input string as it parses the input string, and, as part
of the last production applied (reduction to the start symbol), performs
the preorder traversal of the tree, generating the required list of
numbers.

The building of this tree is the main activity of the "actions"
generated for each production in the Y ACC specification. To generate
code to appropriately link nonterminal sub-trees, the positions of all
the nonterminals in a given production rule must be saved as the
production is processed by the generator. This is accomplished by
counting the tokens on the right-hand side of the given production
rule and stacking the position numbers that correspond to nontermin­
also Actions are then generated that call precoded subroutines that
link the tree nodes together. These subroutines, and their associated
data and type declarations, are constant across all grammars, and are
included in the appropriate sections of each generated Y ACC grammar.

6.4 The size of the processed grammar

The growth of the grammar in the generation process is actually
not as large as may be imagined. If n = the total number of nonter­
minals and r = the number of iterative nonterminals in the original

SYNTAX-DIRECTED EDITORS 3217

AGE grammar, at most 3n + 3r< 6n productions, 2n -1 nonterminals,
and betweeen 2n + 1 and 3n - r terminals are added to the grammar
before Y ACC generates the parser.

VII. ATTRIBUTES AND SEMANTIC PROCESSING

One possible extension to this work would involve the addition of
attributes to the grammars described above. These attributes could
allow a certain amount of semantic checking of user programs, in
addition to allowing interpretation and/or code generation (for simple
application languages) during program construction. The basic prin­
ciples behind attribute grammars are described elsewhere;14 we shall
only discuss the required extensions to our meta -language and the
generation of evaluation functions for the attributes.

7.1 Extensions to the meta-language

The meta -language described in Section V can be enhanced to
include attributes and their evaluation routines in each production.
An example of the use of the enhanced meta-language is shown below.

clause : CLAUSE
inherited: int temp _loc;;
synthesized: int next_temp;

I field_op_const 1 field_name "-,, op "-,, constant
{
$O.next_temp = $O.temp_Ioc;
}

I const_op_field 2 constant "-,, op "-,, field_name
{
$O.next_temp = $O.temp_Ioc;
}

I field_op_field 3 field_name "-,, op "-,, field_name
{
$O.next_temp = $O.temp_Ioc + 2;
}

In general, the attributes and their evaluation rules are specified in a
pseudo-C language notation. We provide data typing facilities for the
attribute variables. * The inherited attributes of a nonterminal and
their data types are listed after the key word "inherited", which appears
after the user-name of that nonterminal. The synthesized attributes

* As with the attributed grammars for programming languages, our experience in
using attributed grammars for application languages suggests that facilities that include
standard libraries of functions, user-defined types, and global attributes are needed.

3218 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

of that nonterminal are then listed in a similar fashion. The attribute
evaluation rules are listed after each production specification, within
braces. "$O.attribute_name" in these rules refers to the correspond­
ingly named attribute of the nonterminal in the left-hand side of the
production. "$i.attribute_name" refers to the correspondingly named
attribute of the ith nonterminal in the right-hand side of the produc­
tion.

For each inherited attribute of each nonterminal appearing in the
right-hand side of a production rule, there must be an evaluation rule
(a function call or an arithmetic expression) assigning a value to that
attribute associated with that production rule. Similarly, for each
synthesized attribute of the left-hand side nonterminal of a production
rule, there must be a rule (a function call or an arithmetic expression)
assigning a value to that attribute. These rules may take as arguments
the inherited attributes of the left-side nonterminal and/or synthesized
attributes of the nonterminals in the right-hand side. These rules must
not, however, violate the properties defining L-attributedness14 of the
grammar in order for the proposed evaluation scheme to work.

For iterative production rules, the semantic specifications appear
as:

disjunct : (CLAUSES)
inherited:;
synthesized:;
Ixxx x +clause "-,-"
{
int current_temp;
init: {

current_temp = 0;
I
repeat: {

I
I

$l.temp_Ioc = current_temp;
current_temp = $l.next_temp;

The routine following the key word "init:" is executed when this
production rule is initially chosen. Then, for each instance of the
nonterminal "clause" under the parent "disjunct", the specification
following the key word "repeat:" is used. The "$1" in the latter
specification refers to the instance of the nonterminal "clause" whose
attributes are being evaluated. These evaluation specifications must
follow the same guidelines as those of the regular productions. Non­
terminals deriving "identifiers" (i.e., those having no production rules)

SYNTAX-DIRECTED EDITORS 3219

are assumed to have only one synthesized attribute, "value", whose
value is the string entered by the programmer at the time of expansion.

7.2 Generation of the attribute evaluators

In any specification of an application language as above, each
implementor-defined attribute evaluation function is associated with
a specific production. For each distinct attribute in the grammar, the
calls to these functions are collected into one generated evaluation
function, which determines the appropriate implementor-defined func­
tion to call, based on the rule that produced the associated nonter­
minal. To make the required environment information accessible
during the attribute evaluation, a pointer to the tree node at which
the generated function is to be evaluated is passed as a parameter to
the generated function. The evaluation functions for inherited attri­
butes must be passed a pointer to the parent node of the nonterminal
node with which the attribute is associated (i.e., inherited attributes
are evaluated when the associated nonterminal appears on the right­
hand side of a production). Synthesized attribute evaluation functions
must be passed a pointer to the nonterminal node with which the
attribute is associated (i.e., synthesized attributes are evaluated when
the associated nonterminal is expanded).

Each generated evaluation function for an inherited attribute con­
tains a section of code for each production in which the associated
nonterminal can appear on the right-hand side. Similarly, each gen­
erated evaluation function for a synthesized attribute contains a
section of code for each production in which the associated nonter­
minal appears on the left-hand side. Within each of these sections of
code is the code for the appropriate implementor-defined function,
along with the function calls required to evaluate the actual parameters
of the implementor's function. The attributes are evaluated only as
required, and the evaluation nesting is managed automatically by the
C (target programming language) procedure calling mechanism.

VIII. REMARKS

The editor generator REG, as described here (excluding the seman­
tic analysis), currently exists and has been used for a variety of
application languages. The novel aspects of this system include: (1) the
ability to give a programmer the option to use menu selection or to
enter strings containing terminal characters and nonterminal names
at any stage during the expansion of a program in the user-language,
and (2) the ability to generate a hybrid editor from a high-level
specification of a user grammar. This system was an experiment to
investigate only these aspects of editing. Various other related issues
such as building a robust syntax-sensitive editor for higher-level

3220 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

languages (e.g., C language), experimenting with different ways of
exhibiting the menus, and human-factors issues are being addressed
separately.5

REFERENCES

1. V. Donzeau-Gouge et aI., "A Structure-Oriented Program Editor: a First Step
Towards Computer-Assisted Progamming," Proc. of Int. Computing Symp., An­
tibes. June 1975.

2. P. H. Feiler and R. Medina-Mora, "An Incremental Programming Environment,"
Carnegie-Mellon University, Computer Science Department Report, December
1980.

3. C. N. Fischer, G. Johnson, and J. Mauney, "An Introduction to Release 1 of Editor
Allan Poe," University of Wisconsin, Technical Report 453, 1981.

4. C. W. Fraser, "Syntax-Directed Editing of General Data Structures," Proc. ACM
SIGPLAN-SIGOA Symp. Text Manipulation, Portland, Oregon, June 1981, pp.
17-21.

5. E. R. Gansner et aI., "SYNED-A Language Based Editor for an Interactive
Programming Environment," Spring COMPCON 83 San Francisco, California,
February 1983, pp. 406-10.

6. M. R. Horton, "Design of a Multi-Language Editor with Static Error Detection
Capabilities," Ph.D. Dissertation, Computer Science, University of California,
Berkeley, July 1981, p. 158.

7. T. Teitelbaum et aI., "The Why and Wherefore of the Cornell Program Synthesizer,"
Proc. ACM SIGPLAN-SIGOA Symp. on Text Manipulation, Portland, Oregon,
June 1981, pp. 8-16.

8. S. R. Wood, "Z-The 95% Program Editor," Proc. ACM SIGPLAN-SIGOA Symp.
on Text Manipulation, Portland, Oregon, June 1981, pp. 1-7.

9. R. C. Waters, "Program Editors Should Not Abandon Text Oriented Commands,"
ACM SIGPLAN Notices, 17, No.7 (July 1982), pp. 39-46.

10. T. Reps, "Optimal-time Incremental Semantic Analysis for Syntax-directed Edi­
tors," Proc. 9th Annual Symp. on Principles of Programming Languages, Albu­
querque, New Mexico, January 1982, pp. 169-76.

11. Stephen C. Johnson, "Yacc: Yet Another Compiler-Compiler," Computer Science
Technical Report #32, Bell Laboratories, Murray Hill, 1976.

12. E. R. Gansner et aI., "Semantics and Correctness of a Query Language Translation,"
Ninth Symp. Principles of Programming Languages, Albuquerque, New Mexico,
January 1982, pp. 289-98.

13. M. E. Lesk, "Lex-A Lexical Analyzer Generator," Computer Science Technical
Report #39, Bell Laboratories, Murray Hill, 1975.

14. P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, "Attributed Translations," J.
Computer and System Sciences, 9 (December 1974), pp. 279-307.

APPENDIX A

An Editing Session With "Hisel. age'

$hisel.age
program? test
Initializing the tree/text for test ..

Terminal Screen
1) (QUERY)

Program Tree

internal
(nonterminal)
node

leaf
(terminal)
node

SYNTAX-DIRECTED EDITORS 3221

:r <- user command - invisible
file name? temp

Assume that there is a file named 'temp' in the working directory
and that it has the string "select (ITEM_ LIST) where
(CLAUSES)". AGE will read it, recognize the two nonterminal names,
parse the string, create the subtree, and graft it to the root as shown
below.

2) select (ITEM_ LIST)

where (CLAUSES)

(Leaves are not shown)

:a

This will add one more instance of CLAUSES. The screen after this
command will be:

3) select (ITEM_ LIST)

where (CLAUSES)

:e
:e

or (CLAUSES)

AGE will install a CLAUSE in place of (CLAUSES) after the first e
command. Since there is a choice for the expansion corresponding to
the next e command, the following menu items will appear one after

3222 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

another if the user asks for a menu:

expansion character (type? for menu): ? <- user types this
field_op-const 1 y(es), n(ext), q(uit)? n <- user types this
const-op-field 2 y(es), n(ext), q(uit)? y

The screen after this will be:

4) select (ITEM_LIST)
where (CLAUSES)

or constant OPERATOR field_name

:w
This command will write the above text into test.hisel file and the
tree representation in test.lmd file.

:q
AGE will then print:
BYE! test hasn't been fully expanded; call me back later.

APPENDIX B

AGE Command Summary

Text-navigation commands:

cr - a carriage return: go to the next line
- - the character minus: go back one line
space-bar or n : go to the next word
b : go back one word

Tree-navigation commands:

: go to the parent of the current nonterminal
V : go to the first son of the current nonterminal
> : go to the right neighboring nonterminal under the same parent
< : go to the left neighboring nonterminal under the same parent
N : go the next unexpanded nonterminal
B : go backwards for the next unexpanded nonterminal

SYNTAX-DIRECTED EDITORS 3223

Nonterminal expansion commands:

p : parse text for the current nonterminal
r : read text from a file and parse it for the current nonterminal
e : expand the current nonterminal by menu selection
a : append an instance of a 'listy' (i.e., iterative) nonterminal
i : insert an instance of a 'listy' nonterminal
d : delete the current instance of the 'listy' nonterminal

Other commands:

U : unexpand nonterminal
w : write program
q : quit editing with AGE

AUTHORS

Beth A. Bottos, B.S.E.E., 1979, Purdue University; M.S. (Electrical Engi­
neering), 1980, Stanford University; M.S. (Computer Science), 1983, Carnegie­
Mellon University. From 1976 to 1979, Ms. Bottos was a participant in the
Bell Laboratories Engineering Scholarship Program (BLESP). During that
time, her work included telephone ringer characterization and modification
and hardware design for a home appliance control system. From 1979 to 1981,
she was involved in the development of the 1A VSS (Voice Storage System)
and LADT (Local Area Data Transport) systems. Since 1981, Ms. Bottos has
been a student in Computer Science at Carnegie-Mellon University. During
that time, she has also worked for Bell Laboratories in the Advanced Software
Department and in the Advanced Software Technology Laboratory.

Chandra M. R. Kintala, B.Sc. (Honors), 1970, Regional Engineering Col­
lege, Rourkela, India; M.Tech. (Electrical Engineering), 1973, Indian Institute
of Technology, Kanpur, India; Ph.D. (Computer Science), 1977, Pennsylvania
State University; Assistant Professor, Computer Science Department, Uni­
versity of Southern California, 1977-1980; Bell Laboratories, 1980-. Mr.
Kintala is a member of the Advanced Software Department. He has worked
on the complexity of nondeterminism in various classes of Automata and
Turing machines. His current interests include programming environments,
compiler techniques for database query language translators and software
graphics. Member, ACM, IEEE Computer Society, Sigma Xi, Phi Kappa Phi,
and Who's Who in the East.

3224 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

Performance Analysis of a Preemptive Priority
Queue with Applications to Packet

Communication Systems

By M. G. HLUCHYJ,* C. D. TSAO,* and R. R. BOORSTYNt

(Manuscript received May 6, 1983)

In this paper we analyze the performance of a preemptive priority queue.
We give the model description in the context of a packet communication
system where message sources, having different priorities, share a common
communication channel. Each source generates, as an independent Poisson
process, messages consisting of an arbitrarily distributed, random number of
fixed-length packets. The channel server can only begin service at integer
multiples of the packet transmission time (Le., a time-slotted channel is
assumed), and the server will preempt an ongoing message transmission at
the next packet boundary whenever there is a message arrival from a higher­
priority source. The average in-queue waiting time for each packet in any
given source message and the average message delay are derived along with
the corresponding moment-generating functions. Also, comparisons are made
with the first-come first-served queueing discipline.

I. INTRODUCTION

We analyze the performance of a preemptive priority queueing
system. To make clear at the outset the importance of the particular
queueing system studied, we describe the system model in a packet
communication context. Specifically, as Fig. 1 illustrates, a number of
data sources share a single communication channel. Each source
generates, according to a Poisson process, messages consisting of a

* AT&T Information Systems. tPolytechnic Institute of New York.
iDCopyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro­
duction is done without. alteration and that the Journal reference and copyright notice
are included on the first. page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa­
tion-service systems wit hout further permission. Permission to reproduce or republish
any other portion of t his paper must be obtained from the Editor.

3225

,-----,
I QUEUE I

I SOURCE 1 \1----+1-- I
I I

CHANNEL I SOURCE 2\1------+-1 -- 1 SYNCHRONOUS

I
.,............;.----04 SERVER 1-----

(TRANSMITTER)

I
I

I SOURCE N 1-\----1-1-- I
L _____ ~

Fig. I-Queueing model for a packet communication system.

random number of fixed-length data packets. The packets comprising
a message arrive _ in bulk to be transmitted on the communication
channel. For clarity, we view each source as having its own separate
buffer to queue packets. Here, packets generated by the source wait
for access to the channel.

Packet transmissions on the channel are synchronized. More pre­
cisely, time is divided into a sequence of fixed-length intervals or time
slots. Each time slot is just large enough to allow the transmission of
one packet, and packet transmissions must occur within time-slot
boundaries. Hence, a packet arriving at the queue, at the very least,
must wait until the start of the next time slot before its transmission
can begin.

Packets from any given source are served (i.e., transmitted) on a
first-come first-serve basis. The sources, however, are assigned fixed
priorities: the first source has the highest priority, the last has the
lowest. At the start of each time slot, the first packet queued from the
highest-priority source is served. That is, a packet at the head of the
source k buffer is transmitted if and only if the buffers associated with
sources 1 to k - 1 are empty. Hence, an ongoing packet transmission
cannot be preempted; however, an ongoing message transmission will
be preempted (at the next slot boundary) whenever there is a message
arrival from a higher-priority source.

Such a priority queueing discipline arises naturally in many packet
communication systems. The channel might be a link in a data
communication network, or may simply be a shared data bus. The use
of priority may be required to give more urgent messages lower delay.
For example, one might choose to give network control messages
higher priority than interactive data messages, which in turn are given
higher priority than long file transfers. In some situations, the priority
structure is inherent in the mechanism for sharing the channel among
the independent messages sources. This is the case with Datakit, l

3226 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

where the module (i.e., the interface between the source and the
channel) with the highest address always wins the channel contention.
It is also true of some slotted ring systems, where the physical order
of sources along the ring imposes a priority ordering for access to the
channel.2

The first results on queues with preemptive priority appear to be
due to White and Christie.3 Shortly thereafter, others studied the
problem using different assumptions about the service time distribu­
tion. A comprehensive treatment of some of the early work is given in
Jaiswal,4 and a more up-to-date, but less comprehensive, discussion
may be found in Kleinrock.5 The models examined, however, all
assume an "asynchronous" server where service starting times and
preemption times are not constrained to certain periodically recurring
points. The use of a synchronous service facility in queueing models
arises in the context of computer and data communication systems
where there is a natural elementary unit of time such as the machine
cycle of a processor, or the bit, byte, or packet transmission time on a
channel. Many such models are reviewed, and references given, in
Kobayashi and Konheim.6 As we indicated, the model we have selected
for study has applications to slotted ring systems, and it is here that
one finds analysis of other models similar to ours. The model that
seems to come closest is by Konheim and Meister,2 where the main
differences have to do with the arrival process. Konheim and Meister
assume discrete arrivals (between slots) of packets, whereas we assume
continuous arrivals of messages with each message containing an
arbitrarily distributed number of packets. In this way, we are better
able to examine message delays in the system.

In this paper we analyze the performance of the above preemptive
priority queueing system. We begin in Section II by summarizing the
queueing model and introducing performance measures that are of
interest. In Section III we derive the average in-queue waiting time
for each packet in any given source message. From this result we easily
obtain the average delay in transporting a message. The corresponding
moment-generating functions are derived in the appendix. Finally, in
Section IV, we compare performance with the First-Come First-Served
(FCFS) queueing discipline.

II. QUEUEING MODEL

In this section we briefly summarize the important points of the
queueing model, and indicate the steady-state statistics that are of
interest. Notation established here is used in the performance analysis
that follows.

The queueing system under study has the following properties:
1. N sources of' messages.

PREEMPTIVE PRIORITY QUEUE 3227

2. Priorities are assigned to sources in decreasing order (i.e., source
k has higher priority than source k + 1, k = 1, 2, ... , N - 1).

3. Source k generates messages as an independent Poisson process
with rate Ak messages per time slot. Each such message has its length
(in packets) selected independently from the distribution Pm/·) with
first and second moments, mk and m~, respectively.

4. During busy periods, one packet is transmitted in each time slot
and is always selected at the beginning of the time slot from the head
of the highest-priority, nonempty source buffer.

5. Each source buffer is assumed infinite, and packets enter and are
removed from the buffer on a first-in first-out basis.

We define Wkj as the steady-state in-queue waiting time for the jth
packet in a message from source k, k = 1, 2, ... , N. In addition, we
define

where Pk is interpreted as the fraction of time the server is busy with
source k packets. We also find it convenient to define

k

Uk = L Pi·
i=1

Other notation is introduced as needed in the analysis.

III. PERFORMANCE ANALYSIS

We begin this section by deriving Wkj, the average in-queue waiting
time for the jth packet in a message from source k. Using this result
we then obtain the average delay .in transporting a message from
source k. Included in the discussion are specific numerical examples
to illustrate the derived results.

3.1 Average waiting time analysis

In Fig. 2, observe that we may express the waiting time for the jth
packet in a source k message as

j-l

Wkj = Wk1 + L Wk/,
/=1

where the incremental waiting time Wk/ is defined by

(1)

For a given message length, mk, the random variables /Whb Wk2" ",

Wk,mk-d are independent and identically distributed. We observe that
at the beginning of a slot during which a packet from source k is in
service, there are no packets from sources 1 to h - 1 in the system.

3228 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

MESSAGE
TRANSMISSION

COMPLETED

I I I I I I fujWt'1 '~f'm I I ~k'I' J
t~~~~~~~~~~---~-~-~~ -Wkm - ---- - - - --- -----J

MESSAGE
ARRIVAL

FROM
SOURCE k

Fig. 2-Waiting times for packet transmissions.

Any messages that arrive from sources 1 to k - 1 while this source k
packet is in service spawn a busy period of service, starting in the next
slot, for sources 1 to k - 1. All such busy periods are independent and
identically distributed, and hence so are the random variables {Wkb

Wk2, ... , Wk,mk-d.

Note that the incremental waiting time wk/,consists of one slot time
to transmit the ,tth packet in the source k message plus the time to
serve all messages from sources 1 to k - 1 that arrive in the interval
Wk/,. Hence, the average incremental waiting time Wk/' satisfies

from which we obtain

1
Wk!'= .

1 - (Jk-l

It then follows from (1) that the average in-queue waiting time for the
jth packet in a source k message is given by

- - j-1
Wkj = Wk1 + 1 .

- (Jk-l
(2)

Hence we are left with having to determine Wkb the average waiting
time for the first packet in the message.

By applying standard queueing arguments, we have
1 k 00 _ k-l_

Will = 2 + i~l j~l Pij Wij + i~l Pi Wk1 ,
(3)

where

PREEMPTIVE PRIORITY QUEUE 3229

The first term on the right-hand side of (3) is simply the average time
between the arrival of a message and the start of the next slot. The
second term is, by Little's result, the average number of packets of
equal or higher priority awaiting transmission at the moment the
message arrives. Finally, the last term corresponds to the average
number of packets of higher priority that arrive while the first packet
in the source k message waits on queue.

Now substituting (2) into (3) yields _ 1 k 00 (_ j _ 1) k-l _

Wk1 = -2 + .L .L Pij Wi1 + 1 _. +.L Pi Wk1 •
1=1 J=1 0"1-1 1=1

(5)

Note from the definition of Pij in (4) that

L Pij = Ai L Pr[mi 2: j] = Ai L L Pr[mi = /]
~1 ~1 ~1/~

00 /

= Ai L L Pr[mi =,t] = Ai L ,tPr[mi = /]
/=1 j=1 /=1

(6)

Similarly, we have that

~ (.) Ai (-2 -)
j':l J - 1 Pij = 2" mi - mi • (7)

Hence, using (6) and (7), we may rewrite (5) as
1 k-l _ k _

- + L Pi Wil + L Ai(mr - mJ/2(1 - O"i-l)

W - 2 i=1 i=1
kl -

(1 - O"k)

Solving recursively, we obtain
k

1 + L Ai(mr - mi)
W

k1
= __ i=_I ____ _

2(1 - O"k)(l - O"k-l) •
(8)

Finally, substituting (8) into (2) yields

k

1 + L Ai(mr - mi) .

W
i=1 J - 1

kj = +.
2(1 - O"k)(l - O"k-l) 1 - O"k-l

(9)

This concludes the derivation of the average in-queue waiting time
Wkj• The derivation of the moment-generating function for Wkj (from
which Wkj can be obtained directly) is given in the appendix.

To illustrate the performance, we begin by considering a homoge-

3230 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

neous system where Ak = A, mk = m, and m~ = m2 for k = 1,2,
N. For this case, (8) becomes

k -
1 + N P (m 2/m - 1)

Wk1
= -----:-(-k~)----'--(-(k--I~))'
2I-

N
P 1- N P

where P is the total system utilization (or load) defined by
N

P = L Pi
i=l

=NAm (for a homogeneous system).

(10)

If we take N = 10 and assume a constant message length of 10 packets
(i.e., m = 10, m 2 = 100), Fig. 3 is a plot of Wk1 vs. P for k varying from

en
f-
a
...J
!!?

I~
w
~

f=
<.9
z
f=
:;;:
=::
f-
w
~
u
<x:
CL

~
en
II:

u.
w
<.9
<x:
II:
w
>
<x:

70.--------------------------.~--~~

60

50

40

30

20

10

N= 10

m= 10

m 2 = 100

1 LOWER L~~~~~~~~ii~~~~~~~~~3~/,2 o --BOUND
o 0.2 0.4 0.6 0.8 1.0

TOTAL LOAD,p

Fig. 3-Average first packet waiting time Wk1 vs. total load p.

PREEMPTIVE PRIORITY QUEUE 3231

1 to 10. Also shown in Fig. 3 is the average waiting time for the first­
come first-served (FCFS) queueing discipline, which is derived in
Section IV. Note from (10) that if we allow N ~ 00, then

- 1
Wll ~2

W 1 + p(fn2 /m - 1)
Nl ~ 2 (1 _ p) 2 •

These two expressions represent, respectively, lower and upper bounds
on the average first packet waiting time for all sources and arbitrary
N. These bounds are plotted as dashed lines in Fig. 3. Finally, if we
assume the same values for N, m, and m 2 as in Fig. 3, Fig. 4 is a plot
of the average incremental waiting time Wkl' vs. p for k varying from 1
to 10. Also shown in Fig. 4 is the upper bound 1/(1 - p) on Wkl', valid
for all parameter values.

3.2 A verage message delay analysis

We now consider the average message delay. Defining Dk(m) as the
average delay (in slots) from the arrival to the queue of an m-packet

6r-----------------------------.-~._.

Vi 5
I-o
...J
~

I;
w 4
2
i=
(!)
z
i=

~ 3
...J
<l:
I­
Z
w
2
w
a:
u z

o~ ____ ~ ______ ~ ______ ~ ____ ~------~
o 0.2 1.0

TOTAL LOAD, p

Fig. 4-Average incremental waiting time Wkl vs. total load p.

3232 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

message from source k until the end of its transmission, we have

Dk(m) = Wkm + 1.

Letting Dk denote the average delay over all messages from source k,
it follows, since Wkm is linear in m, that

Dk = L Dk(m)Pmk(m)
m

= Wk,mk + 1. (11)

If we assume the same homogeneous system as represented in Figs. 3
and 4, Fig. 5 is a plot of Dk vs. p for k varying from 1 to 10. Also shown
in Fig. 5 is an upper bound on Dk , obtained from the upper bounds on
Wk1 and Wk/,. Specifically, we have

en
I-
a
-I

~

lef
>-
<t
-I
UJ
0
UJ
(!)

<t
Ul
Ul
UJ
:2:
UJ
(!)

<t
cr:
UJ
>
<t

D 1 + p[fn2/m - 1] m - 1
k $. 2(1 _ p)2 + (1 _ p) + 1,

70r-------------------------~--_.--~_.

60

50

40

30

20

10

o~ ____ ~ ______ ~ ______ ~ ______ ~ ____ ~
o 0.2 0.4 0.6

TOTAL LOAD,p

0.8 1.0

Fig. Ii-Average message delay Dk vs. total load p.

PREEMPTIVE PRIORITY QUEUE 3233

which depends on m and m 2, but is valid for all sources and arbitrary
N.

To complete this section, we consider a nonhomogeneous system
consisting of 10 host computers and 300 terminals. The terminals and
hosts correspond to the message sources and may be viewed as sharing
a common time-slotted bus. There is a priority ordering of the termi­
nals and hosts, with terminals having priority over hosts (i.e., the
terminals correspond to sources 1 to 300 and the hosts correspond to
sources 301 to 310). Each host is assumed to generate two types of
traffic: host-to-host file transfers consisting of fixed-length 32-packet
messages, and host-to-terminal messages with an average message
length of 2 packets and a standard deviation of 1. Each terminal, on
the other hand, only generates messages that are one packet in length
and destined to a host. The message generation rates for each of the
two types of host traffic are the same for all hosts. Similarly, all
terminals generate messages at the same rate. The specific generation
rate of each traffic type is such that the total load on the channel is
divided as follows: 30 percent host-to-host, 60 percent host-to-termi­
nal, and 10 percent terminal-to-host. The average delay performance
for this system is plotted in Fig. 6. Observe that the results obtained
allow us to distinguish between different types of traffic generated by
the same source. In particular, in Fig. 6, the average message delay
performance for the host-to-host and host-to-terminal traffic are
shown separately.

From the moment-generating function for Dk derived in the appen­
dix, one can obtain the second moment of the message delay. This, in
turn, may be used to compute the message delay standard deviation.
For hosts 1 and 10 (i.e., the two extremes), shown in Fig. 7 for the
host-to-host messages and in Fig. 8 for the host-to-terminal messages,
we see the mean delay and mean delay plus one, two, and three
standard deviations (denoted by 1u, 2u, and 3u). The second-moment­
of-message delay depends on the first three moments of message
length, and in Fig. 8 we set m 3 = 15.

IV. COMPARISONS WITH FCFS

In this section we compare the average delay performance of the
priority queueing discipline studied in the previous section with that
of the First-Come First-Served (FCFS) discipline. With the FCFS
discipline, messages are served in the order in which they are gener­
ated, independent of the source from which they originate. In this
way, the FCFS discipline allocates the communication channel more
fairly than does the priority discipline. For simplicity, we assume in
the analysis a homogeneous system where X" = X, mk = m, and m~ =
m 2 for k = 1,2, ... ,N.

3234 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

(j)
I-a
...J

~

>-
<l:
...J
UJ
0

UJ
(!)

<l:
Vl
Vl
UJ
::2:
UJ
(!)

<l:
a:
UJ
>
<l:

140r--------------------------.--~--~~

120

100

80

60

40

20

300 TERMINALS
10 HOSTS

HOST TO HOST
iii = 32

/2

o 6~~~~~!!!!~~~~~~~~~~'~- TERMINALS 1-300
- 0 0.2 0.4 0.6 0.8 1.0 m=m2 = 1

TOTAL LOAD,p

Fig. 6-Average message delay vs. total load p.

The performance analysis of the FCFS queueing discipline is a
special case of the results obtained for the priority discipline. Specifi­
cally, we combine the N independent Poisson streams into a single
Poisson stream (using the well-known result that the sum of inde­
pendent Poisson processes is a Poisson process) with rate N"A. From
(10) we have that the average in-queue waiting time for a message
generated by this combined (single) source is given by

-- p(rnzjm) 1
WFCFS = 2(1 _ p) + 2' (12)

where again p = N"Am is the total system utilization. The average
message delay for the FCFS system is given by

DFCFS = WFCFS + m

p(m 2 jm) 1 _
= () + -2 + m. (13) 21-p

PREEMPTIVE PRIORITY QUEUE 3235

(j)
I-
0
..J
!!!
>-
<!
..J
W
Cl

w
t!)

<!
Vl
Vl
w
:2:
I-
Vl
0
I

0
I-
~
Vl
0
I

140r-------------~--~--~--~--------~

120

100

80

60

40

20

300 TERMINALS
10 HOSTS

HOST 10

MESSAGE LENGTH =
32 PACKETS (CONSTANT)

HOST 1

OL-____ ~ ______ -L ______ ~ ______ ~ ____ ~

3a

2a

la

MEAN

o 0.2 0.4 0.6 0.8 1.0

TOTAL LOAD.p

Fig. 7-Host-to-host message delay vs. total load p.

WFCFS is plotted in Fig. 3 and DFCFS is plotted in Fig. 5 for the assumed
system parameter values.

It is worth noting that the waiting time and delay results given by
(12) and (13), respectively, differ from those corresponding to the
standard M/G/I queueing system by the additional term 1/2. This
added term results from the synchronous nature of the server and
represents the average time an arriving message must wait before the
start of the next time slot.
. We continue the priority and FCFS comparison by focusing' on the
unfairness issue. Specifically, we consider the ratio of the average
message delay for source N to that of source 1, DNID1• Since all sources
encounter the same average delay in the FCFS discipline, DNIDI = 1.
With the priority discipline, source N has the lowest priority and
source 1 the highest; hence DNIDI > 1 for p > O. In particular, we have
from (9) and (11) that

3236 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

k
1 + :LV p[(l + e~)Tn - 1] Tn - 1

Dk = 2 (1 _ ~ p) (1 _ (k ~ 1) p) + (1 _ (k ~ 1) p) + 1, (14)

where e~ is the squared coefficient of variation for the message-length
distribution defined by .

variance(m)
e2

m =----
(m)2

Hence, for large N we have from (14) that

m[l p 2] ~ 2" m + N (1 + em) + 2

and

D = 1 + p[(l + e~)Tn - 1] + . Tn - 1 + 1

N ((N - 1)) ((N - 1)) 2(1 - p) 1 - N p 1 - N p

m [(1 + c;')p + (2 - !) (1 - p) + ! (1 - p)2]

~--------------------~-------------
2(1 - p)2

It follows then that

1 + e~p + 2 (1 - p)2
3(1 - p)2

2 + (e~ - l)p

2(1 - p)2

for m = 1

for m» 1.

Observe that for large N and fixed p, the increase in DN/Dl is
approximately linear with the squared coefficient of variation e~. In
Fig. 9, the ratio DN/Dl is plotted against total utilization p for the
FCFS and priority disciplines with e~ = 0 and 1.

To complete this section, we compare the average delay performance
of the FCFS discipline with the overall average delay of the priority
discipline. That is, we compare DFCFS as given by (13) to the quantity

PREEMPTIVE PRIORITY QUEUE 3237

Vi
I-
0
-I
~

>-«
-I
w
0
w
(!J

«
(j)
(j)
w
~

I-
(j)

0
I

6
f;"
I-
(j)

0
I

140r----------------------.-.r-,,--.-----~

120

100

80

60

40

20

300 TERMINALS
10 HOSTS

HOST TO TERMINAL

in = 2

m 2 = 5

;;3 = 15

HOST 10

HOST 1

O~ ____ ~ ______ ~ ______ ~ ______ -L ______ ~

3a
2u

la
MEAN

o 0.2 0.4 0.6 0.8 1.0

TOTAL LOAD,p

Fig. 8-Host-to-terminal message delay vs. total load p.

Using the expression for Dk given in (14), we obtain after some
manipulation

- (1 + c~rm 1 _ 2 _

D = 2(1 _ p) + 2N [2m - 1 - (1 + cm)m]'Y + 1,

where

N [(k _ 1)]-1
l' = L 1 - N p .

k=1

From this, one may show that

O
2 m - 1

DFCFS :5 D for :5 c m :5 ----=----
m

3238 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

and

14~--------------------------,----------

12

10

4

I
I
I
I ,
I ,

N»l I ,
I
I
I
I
I
I
I

c 2 = 1 I
m_ I

/
/

/'
"."./ .,.,""

~-"'.".,."., --

/

m = 1-_ I
iii »1 __ -,

/

/
I

/
I

/

~
I

/
/

FCFS

OL-____ ~ ______ ~ ______ ~ ______ ~ ____ ~
o 0.2 0.4 0.6 0.8

TOTAL LOAD, P

Fig. 9-Ratio DN/Dl vs. total load p.

DFCFS 2: D for
m -1

c ~ 2: ----=- .
m

1.0

Hence, for sufficiently large message-length coefficient of variation
c~, the overall average delay for the priority discipline is less than the
average delay for the first-come first-served discipline. Of course, as
we saw earlier, as c~ increases so does the relative unfairness of the
priority discipline over the FCFS discipline.

V. CONCLUSIONS

We analyzed the performance of a preemptive priority queue, which
has direct applications to packet communication systems. The main
distinguishing feature of the system studied compared to the standard
M/G/1 preemptive resume priority queue5 is that the server can only

PREEMPTIVE PRIORITY QUEUE 3239

begin serving a "customer" (and preemptions take place) at integer
multiples of time corresponding to packet slot boundaries in· the
communication context. Mean value formulas for in-queueing waiting
time and average message delay were derived and comparisons made
to the FCFS queueing discipline. A derivation of the waiting time and
delay moment-generating functions is given in the appendix.

REFERENCES

1. A. G. Fraser, "Datakit-A Modular Network for Synchronous and Asynchronous
Traffic," Proc. ICC (June 1979), pp. 20.1.1-.3.

2. A. G. Konheim and B. Meister, "Service in a Loop System," JACM, 19, No.1
(January 1972), pp. 92-108.

3. H. White and L. S. Christie, "Queuing with Preemptive Priorities or with Break­
down," Oper. Res., 6, No.1 (January-February 1958), pp. 79.:..95.

4. N. K. Jaiswal, Priority Queues, New York, NY: Academic Press, 1968.
5. L. Kleinrock, Queueing Systems, Vol. II: Computer Applications, New York, NY:

John Wiley and Sons, 1976.
6. H. Kobayashi and A. G. Konheim, "Queueing Models for Computer Communica­

tions System Analysis," IEEE Trans. Commun., COM-25, No.1 (January 1977),
pp.2-29.

APPENDIX

Derivation of the Waiting Time and Message Delay Moment-Generating
Functions

As we introduced in Section II, Wkj is the steady-state in-queue
waiting time for the j th packet in a message from source k, k = 1,
2, ... ,N. Its Moment-Generating Function (MGF), defined as

GWk/v) = E[e VWkj]

is derived in this appendix. From this result, the message delay MGF
is easily obtained. The approach taken parallels in many respects the
analysis given in Section III.

We begin the derivation by examining the duration of a busy period
for sources 1 to k - 1, denoted by Yk • Such a busy period starting in a
slot is initialized by one or more message arrivals from sources 1 to
k - 1 in the previous slot (which contains no packet from sources 1 to
k - 1). Let Ak denote the total number of packets that arrive from
sources 1 to k - 1 in this previous slot. For the ith packet in this set,
we define the "sub-busy" period Xk(i) to consist of the duration of the
"virtual" busy period (i.e., as if i = Ak = 1) initiated by the messages
(if any) that arrive from sources 1 to k - 1 while this -ith packet is in
service. In other words, we conceptually reorder the priorities so that
each of the Ak packets, a~d the sub-busy period it spawns, is served in
turn. This does not change Yk and is a standard approach to busy­
period analysis.

Due to the memoryless property of the arrival process, the sub-busy
period random variables Xk(i), i = 1,2, ... , A h , are independent and

3240 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

identically distributed (iid). In addition, note that Yk has the same
distribution as the generic random variable X k , and satisifies the
relation

Ak
Yk = Ak + L Xk(i). (15)

i=l

The Probability-Generating Function (PGF) for the discrete random
variable X k is defined as

cI>xk(Z) = E[zXk] = L ziPr[Xk = i].
i=O

Using (15) and the result that X k is distributed as Yk , we obtain

cI>xk(z) = E[z Yk]

[
Ak+ ~Xk(i)]

= E Z '~l

= E[(zcI>xk(Z»Ak]

= cI>Ak(ZcI>Xk(Z» ,

where cI>Ak(Z) is the PGF for the random variable A k •

(16)

Now, Ak is equal to the total number of packets arriving from
sources 1 to k - 1 in one time slot. Recall that each source i generates
messages as an independent Poisson process with rate Ai; and each
such message has its length selected independently from the distri­
bution Pmi(·), whose PGF we denote by cI>mi(Z). It follows then that

k-1 {oo "}{ -Ao }

cI>Ak(Z) = n L ~ . [cI>mi(Z)Y
£=1 r=O r.
k-1

II Aj[4>mj(z)-ll
= e .

i=l

Hence, substituting (17) into (16), we obtain
k-1

rJ. () = II Ail4>mj(z4>Xk(z))-ll
'J!'Xk Z e .

i=l

(17)

(18)

As we shall see, cI>xk(z), the PGF for the duration of a busy period for
sources 1 to k - 1, plays an important role in the derivation of
GWk/v), the waiting time MGF.

Returning to eq. (1) in Section III, we note that Wkj is the sum of
Wk1 and the j - 1 iid random variables Wkb Wk2, ••• , Wkj-1. Observe,
however, that Will', I' = 1,2, ... ,j - 1, is distributed as X k + 1. That
is, Wk/ is composed of the service time for the I'th packet plus the busy

PREEMPTIVE PRIORITY QUEUE 3241

period for sources 1 to k - 1 initiated during this service time. In
addition, it follows that the waiting time for the first packet in a
source k message, Wkl, is statistically independent of Wu, /' = 1, 2,
... ,j - 1. Hence we may write

(19)

This leaves us with having to determine the MGF for Wk1.
Let us for the moment consider the time-dependent behavior for

the number of packets queued from sources 1 to k. For time slot n, we
let Qk(n) denote the number of such packets queued just after the
beginning of the slot and, to be consistent with our previous notation,
we let A k+1(n) denote the number of packets that arrive from sources
1 to k during the nth slot. It follows that

Qk(n + 1) = [Qk(n) + Ak+1(n) - I]+, (20)

where

if €;::: 0
if € < o.

From (20) we obtain the relation

E[zQk(n+1)] = E[z[Qk(n)+Ak+l(n)-W],

which may be rewritten as

<I>Qk(n+l)(Z) = E[z[Qk(n)+Ak+l-W]

= Pr[Qk(n) + Ak+1 = 0] + Pr[Qk(n) + Ak+1 > 0]

.z-lE[zQk(n)+Ak+l1 Qk(n) + Ak+1 > 0]

= Pr[Qk(n) = O]Pr[Ak+1 = 0]

+ Z-l L ziPr[Qk(n) + Ak+1 = i]
i=l

= Pr[Qk(n) = O]Pr[Ak+1 = 0]

+ z-1{E[zQk(n)+Ak+1] - Pr[Qk(n) = O]Pr[Ak+1 = OJ}

= Pr[Qk(n) = 0]Pr[Ak+1 = 0](1 - Z-l)

(21)

(22)

where we have used the fact that Qk(n) and Ak+1 are statistically
independent. Taking the limit as n ~ 00 on both sides of (22) (the
limits exist for (Jk < 1) yields

<PQk(Z) = Pr[Qk = O]Pr[Ak+1 = 0](1 - Z-l) + z-l<I>Qk(z)<I>Ak+l(z), (23)

3242 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

where Qk represents the steady-state number of packets queued from
sources 1 to k at the beginning of a slot. Rearranging the terms in
(23), we obtain

()
_ Pr[Qk = 0]Pr[A k+1 = O](z - 1)

<l>Qk z - () •
z - <l>Ak+1 Z

Taking the limit as z --,) 1 on both sides of (24) yields

Pr[Qk = O)Pr[Ak+l = 0) = 1 - :z <PAh+'(Z) I ,~1
= 1 - (Jk.

Hence, using this result and (17), (24) may be rewritten as

()
_ (1 - (Jk)(Z - 1)

<l>Qk Z - k •
Z - II eA;I<I>m/z) - I]

i=1

(24)

(25)

Now consider the end of the time slot during which a source k
message is generated. The number of packets of higher or equal priority
that are queued and must be transmitted before the first packet in
this source k message is given by

Qk + Ak + Bk,

where Qk is the number of queued packets from sources 1 to k just
after the beginning of the slot, Ak is the number of packets from
sources 1 to k - 1 that arrive during the slot, and the new random
variable, B k , represents the number of packets from source k that
arrive during the slot prior to the generation of the source k message
in question. The ith packet in this set of (Qk + Ak + Bk) packets
initiates a sub-busy period of duration Xk(i). Hence we may write

(Qk+Ak+Bk)
Wk1 = U + L [1 + Xk(i)], (26)

i=O

where U is a random variable, uniformly distributed over one slot
time, that represents the time from when the source k message is
generated until the start of the next slot.

From (26) we may write

E[eVWkll U = U, Qk = qk, Ak = ak, Bk = bk] = eVU[ev<I>xk(eV)](qk+ak+bk).

Removing the conditioning on the independent random varaibles Qk
and Ak yields

E[aWkll U = U, Bk = bk]

= aU[a <l>xk(a)]bk<l>Qk(a<l>xk(a)) <I> Ak(a<l>xk(a)), (27)

PREEMPTIVE PRIORITY QUEUE 3243

where, for simplicity, we have substituted a for eV
• Now, using the

same approach as we did with A k , we obtain

E[ZBk I U = u] = eAk(l-u)(<I>mk(z)-11.

Thus, removing the conditioning on Bk in (27) yields

E[a Wk1 I U = u] = aUeAk(l-u)(<I>mk(a<I>Xk(a»-11. <PQk(a<Pxk(a))<PAk(a<Pxk(a))

= [eV-Ak[<I>mk(a<I>Xk(a»-11]u<PQk(a<Pxk(a))<p Ak+1 (a<Pxk(a)).

Now, removing the conditioning on U, we obtain

GWk1(V) =. Gulv - Ak[<Pmk(a<Pxk(a)) - I]} <PQk(a<Pxk(a)) <PAk+1 (a <Pxk(a)) ,

where

II 1
Gu(v) = evudu = - [eV - 1].

o v
(28)

Finally using (19), we obtain

Gwkiv) = Gulv - Ak[<Pmk(a<PXk(a)) - I]}
. 1

. <PQk(a<Pxk(a)) <PAk+1 (a<Pxk(a)) . [a<Pxk(a))1- ,

where a = eV, Gu(v) is given by (28), <PQk(Z) is given by (25), <PAk+1(Z) is
given by (17), and <Pxk(z) is given by (18).

The delay in transmitting a source k message of length m, Dk(m), is
given by

Dk(m) = Wkm + l.
Hence, the MGF for Dk(m) is given by

GDk(m)(V) = eVGwkJv).

It follows that the MGF for Dk , the delay in transmitting a randomly
selected source k message, is given by

GDk (v) = GWkl (v) <Pmk (ev<p xk(e
V)) / <Pxk(e

V).

AUTHORS

Robert R. Boorstyn, B.E.E., 1958, City College of New York; M.S. (Electrical
Engineering), and Ph.D. (Electrical Engineering), 1963 and 1966, respectively,
Polytechnic Institute of Brooklyn; Sperry Gyroscope Company, 1958-1961;
Polytechnic Institute of New York, 1961-; on leave at Bell Laboratories,
1977-1978; consultant at Bell Laboratories, 1981-1982. Mr. Boorstyn is en­
gaged in research on computer communication networks, specializing in packet
radio networks, routing, network design, and analysis. He is currently a
Professor of Electrical Engineering and Computer Science at Polytechnic
Institute of New York. He has been Editor for Computer Communications of
the IEEE Transactions on Communications, Chairman of the Computer Com-

3244 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

munications Committee of the IEEE Communications Society, and Secretary
of the IEEE Information Theory Group. He is an Associate Editor of Networks
Journal.

Michael G. Hluchyj, B.S. (Electrical Engineering), 1976, University of
Massachusetts at Amherst; S.M., E.E., and Ph.D. (Electrical Engineering),
Massachusetts Institute of Technology, 1978, 1978, and 1981, respectively;
Bell Laboratories, 1981-1982; AT&T Information Systems, 1983-. Mr. Hlu­
chyj's work at Bell Laboratories and AT&T Information Systems has centered
around the architectural design and performance analysis of local area data
communication networks.

Chan David Tsao, B.S. (Control Engineering), 1973, National Chiao Tung
University (Taiwan); M.S. (Systems Engineering), 1978, Florida Institute of
Technology; M.S. and Ph.D. (Electrical Engineering), Polytechnic Institute
of New York, 1979 and 1982, respectively; Bell Laboratories, 1981-1982;
AT&T Information Systems, 1983-. At Bell Laboratories, Mr. Tsao worked
on performance evaluation and system design for local area networks. His
current research interest is architectures and applications for local area
networks.

PREEMPTIVE PRIORITY QUEUE 3245

THE BELL SYSTEM TECHNICAL JOURNAL is abstracted or indexed by Abstract

Journal in Earthquake Engineering, Applied Mechanics Review, Applied Science &

Technology Index, Chemical Ai>.~lr,l(:ts, Computer Abstracts, Current Contents/

Engineering, Technology S Applied Sciences, Current Index to Statistics, Current Papers

in Electrical & Eleclronic lngin('('ring, Current Papers on Computers & Control,

Electronics & Communic,lliom /\i>~lr,lCls Journal, The Engineering Index, International

Aerospace Abstracts, lourn.!1 of Current Laser Abstracts, Language and Language

Behavior Abstracts, Mdlil('mdlicdl I~('views, Science Abstracts (Series A, Physics

Abstracts; Series B, [/('elric.11 .lIlC/ Ilectronic Abstracts; and Series C, Computer &
Control Abstracts), Science CiI.!lion Ind(,x, Sociological Abstracts, Social Welfare, Social

Planning and Social Oeve/opl1l('nl, ,H1d Solid State Abstracts Journal. Reproductions
of the Journal by years ,H(' ,lV,lil,IIlI(· in microform from University Microfilms, 300

N. Zeeb Road, Ann Arhor, Mil hig.1I1 ·W 106.

@ Bell System

