










































































































































































































































































































UNIX software including system calls from C programs, file operations, 
process communication through pipes, and interpretation of terminal 
commands through the "shell" process. 

Processes controlled by the USP are called user processes. The USP 
partitions its address space into a user area and a supervisor area and 
appears as a single process to the DMERT kernel. Thus, the user and 
supervisor are physically combined into the same process, having the 
same PID, scheduling priority, PCB, etc. Each time a user process 
forks, another USP is formed. 

The role of the USP is to supply services to its user portion. It 
accomplishes this through supervisor OST calls and through commu­
nication with other DMERT processes. For example, file system 
capabilities are provided by the USP sending the appropriate messages 
to the DMERT file manager process. 

The availability of a simulated UNIX operating system in DMERT 
allows UNIX programs from other processors to execute on the 3B20D 
Processor. DMERT provides some capabilities to user processes not 
currently supported by the standard UNIX operating system. These 
include asynchronous I/O directly to or from the user's address space 
and memory management of user process segments. In addition, there 
are a number of file system capabilities, such as contiguous files, that 
are provided through the DMERT file management facilities discussed 
in Section VIII. User processes also have access to the DMERT IPCs 
such as messages and events. 

DMERT's memory management capabilities allow a user process to 
manipulate and share portions of its address space on a segment basis. 
In particular, a user process can create a new segment in its address 
space and can specify the virtual address of the segment. It can acquire 
an existing and named segment into its address space and also remove 
segments from its address space. Segments listed in a user process's 
PCB can be activated or deactivated through OSTs to the USP. OSTs 
permit it to share up to three segments with a process it creates via 
the DMERT process creation functions described earlier. 

VII. I/O FACILITIES 

The operating system supports communication with peripheral de­
vices through a set of drivers and device handlers. These drivers isolate 
most processes from the details of the peripheral system, and they 
ensure efficient use of the peripheral devices by scheduling access to 
them on an equitable basis. 

The architecture of the I/O software closely resembles the I/O 
hardware architecture.5 The I/O Processor (lOP) driver and the device 
handlers manage the lOPs, the Peripheral Controllers (PC), and the 
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Peripheral Controller Sub devices (PCSDs). The disk driver manages 
and controls the disk file controllers and the disks. 

7.1 Input/output processor driver 

The lOP driver is a kernel process that administers all lOP trans­
actions in the 3B20D DMERT system. The driver is responsible for 
normal I/O activities fault recognition and recovery, configuration 
management, and diagnostic access. 

The lOP, from a software standpoint, can be visualized as a three­
level structure (see Fig. 1). The "front-end" Peripheral Interface Con­
troller (PIC) controls up to sixteen peripheral controllers (PCs), and 
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each PC controls up to four sub devices (PCSDs). The subdevice 
provides the interface to the end device, such as magnetic tape unit, 
teletypewriter (TTY), data link, etc. Four PCs are combined to form 
a PC "community" with each PC community having a separate power 
supply. 

Each element in the lOP (PIC, PC, and PCSD) has a corresponding 
element in the driver called a handler and corresponding unit control 
and option blocks in the Equipment Configuration Data (ECD) data 
base.6 The handler for the PCSD is referred to as the device handler. 
A handler for a PC is called the generic PC handler or application PC 
handler. The handler for the PIC is called the generic PIC handler. 
The term generic implies that the handler is capable of performing all 
required handler functions for more than one PC type (that is, TTY, 
magnetic tape, data link, etc.). 

Handlers are collections of C-Ianguage functions that have well­
defined interfaces with the driver and are responsible for carrying out 
all maintenance (excluding diagnostics), recovery, and normal mode 
operations for their respective elements in the lOP. Handlers contain 
the necessary specialized logic to deal with a given unit type. 

The handlers' service routines, input routines, control routines, and 
associated libraries form a single lOP driver process (IODRV). 

10DRV can be subdivided into the following functional areas: 
(i) Common service routines: routines that are frequently called 

from numerous points within 10DRV and the handlers. 
(ii) Configuration control: routines that maintain proper configu­

ration of lOP units (inverted tree structure). 
(iii) Input routines: routines that process primary inputs from the 

DMERT operating system and pass them off to 10DRV configuration 
control or handlers. 

(iv) Application and generic handlers: the operational interface 
between the user and physical device (magnetic tape, terminals, etc.). 

(v) Maintenance handler: the diagnostic interface to the lOP 
units. 

(vi) Archive libraries: system routines used by 10DRV and other 
kernel-level processes. 

Normal mode activities are carried out through the input routines, 
common service routines, and the operational handlers. All commu­
nications within the driver are through function calls. 

I/O messages enter 10DRV as message events and pass through the 
message input routines. Similarly, operating system traps enter 
10DRV at the OST entry point and pass through the OST input 
routines. Typically, I/O messages and OSTs contain a Logical Device 
Identification Number (LDIN) that identifies a logical (or virtual) 
device with which a user wishes to do I/O. 10DRV maps the LDIN to 
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one or more physical devices. Once a physical device is identified, the 
IODRV can identify the corresponding handler via the ECD and pass 
control to it. 

Completion reports, or responses, are deposited in the IODRV 
response queue by the lOP. If responses have been added to the 
response queue within a certain batching interval, the lOP will inter­
rupt the 3B20D, causing IODRV to be entered. IODRV pops each 
queued response and, based on the PC and PCSD identifier in the 
response, maps to a physical unit, and passes control to the handler. 

Maintenance and recovery activities are coordinated through 
IODRV configuration control routines, which, in turn, call on the 
handlers at appropriate points in time to carry out specialized main­
tenance operations at the subdevice level. Diagnostics for the PIC and 
PC are handled exclusively by the maintenance handler. 

7.1. 1 Handler applications 

Peripheral devices supported by the lOP include TTY terminals, 
Maintenance TTY (MTTY) terminals, magnetic tape drives, data 
links, and the Scanner and Signal Distributor (SCSD). Interfaces to 
these devices are provided by IODRV and device handlers. IODRV is 
responsible for initializing units upon bootstrap and removing and 
restoring units upon manual requests or faults. Each handler-periph­
eral device combination determines the interface mechanism and the 
set of features to be supported. The following sections give a brief 
description of the facilities supported by each peripheral device type. 

7.1.2 Terminal devices 

The Craft Interface Handler (CIH) provides access to terminal 
devices. The CIH communicates with two types of controllers: Main­
tenance Terminal Controllers (MTTYCs) and Terminal Controllers 
(TTYCs). MTTYCs support four subdevices: a Maintenance Terminal 
(MTTY); a Receive-Only Printer (ROP); a Switching Control Center 
(SCC) interface; and an Emergency Action Interface (EAI).7 TTYCs 
support terminals (TTY). 

The MTTY, TTY, and ROP are known as terminal devices. The 
SCC and EAI devices are not terminal devices and are accessed via 
other handlers (see below). All standard terminal operations supported 
by the UNIX operating system are available to TTY devices, including 
read, write, open, and close requests, which are supported through a 
message interface. The ROP does not support reads. 

7. 1.3 Data links 

The Communication Protocol Handler (CPH) provides access to 
synchronous data links. The CPH is designed to communicate with 
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two types of peripheral controllers: (i) the MTTY controller, and (ii) 
the synchronous data-link controller. In the case of the MTTY, access 
is available only to the SCC peripheral controller subdevice, which 
supports synchronous data link communication between the 3B20D 
and an SCC office using the BX.25 protocol. 

The synchronous data link controller supports the BX.25 link layer 
(level 2) communication protocol and the Digital Data Communication 
Message Protocol (DDCMP) through the use of different versions of 
peripheral controller software. The CPH software supports two access 
methods: link-layer protocol access (level-two-onlyaccess) and BX.25 
packet-level (level 3) protocol access. The use of a link-layer protocol 
(BX.25 and DDCMP) assures the integrity of data transmissions on a 
physical link. The use of a packet-layer protocol (BX.25) allows the 
added capability of multiplexing multiple users on a physical link. Flow 
control procedures also are used on both protocol layers. 

In addition to the the two different access methods, the handler 
supports both a simplex and a duplex link configuration. In the duplex 
configuration, two physical links make up a logical communication 
path between the 3B20D and another system. The CPH automatically 
routes data through the currently active physical link. Link switching 
is done automatically when the active link fails. 

7. 1.4 Magnetic tape drives 

The magnetic tape peripheral controller handles up to four 9-track 
800 or 1600 bits per inch (bpi) tape drives. The magnetic tape handler 
provides the interface to this controller and supports open, read, write, 
seek, and close requests through a message interface. Seeks are not 
supported for write operations. 

7.1.5 Scanner and signal distributor 

Administration and control of the Scan and Signal Distributor 
(SCSD) points currently involves two DMERT kernel processes: the 
SCSD administrator and the SCSD handler. The latter is an integral 
part of the I/O driver process. The primary function of the SCSD 
software is to provide an interface enabling client processes to manip­
ulate distribution points and receive information about the state of the 
scan points (i.e., autonomous scan state transition and directed scan 
reports). The SCSD administrator allows a client process to identify 
SCSD points by logical or physical addresses; logical addressing allows 
applications to code software independently of physical cabling. 

The SCSD handler translates messages from the administrator into 
SCSD controller commands and receives responses from the controller 
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and forwards these responses to the administrator through a message 
interface. 

7.1.6 Direct user interface 

For some applications the current method of communication with 
the peripheral controller sub devices through 10DRV is not efficient 
enough to meet their needs. Therefore, the Direct User Interface 
(DUI) exists to expedite data transfers between an application process 
and a specialized 56-KB BX.25 data-link controller. 

The DUI handler is an integral part ofIODRV. In the normal mode 
of operation, the only functions of the DUI handler are to set up and 
clean up the DUI table, which is in a common area of memory and is 
used for passing commands and status information between the appli­
cation process and the peripheral controller. Using the DUI table, jobs 
are passed directly to the peripheral controller by the application 
process without any intervention from 10DRV. 

A secondary function of the handler is to administer the fault 
recovery strategy for the peripheral controller subdevice. If the sub­
device has to be removed or restarted, the handler will tear down the 
DUI table and send a message to the application process. 

7.2 Disk driver 

The disk driver is a kernel process that handles all normal disk I/O 
and all maintenance disk I/O. Only system initialization I/O bypasses 
the disk driver and transfers information directly from the system boot 
device to main memory. The disk subsystem consists of the disk driver, 
the Disk File Controller (DFC), and the Moving Head Disk (MHD) 
drives. The 3B20D supports a maximum of eight DFCs, each having 
up to eight MHDs. The DFC and MHDs are described in Ref. 8. 

MHDs may be used in a simplexed or duplexed configuration. In 
simplex mode the MHD stands alone. Should a file become damaged 
it will be irretrievably lost. In duplex mode two MHDs are maintained 
such that each is an exact copy of the other. Should one disk fail the 
other can be used in simplex mode. 

7.2.1 Operational characteristics 

The disk driver handles open, close, read, and write message re­
quests. Open and close messages are passed from the file manager (see 
Section VII) to the disk driver, while read and write requests may be 
sent directly from any process or routed through the file manager. 
Before the kernel attaches the read or write message to the disk 
driver's message queue, it verifies that the segment is locked in main 
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memory (see Section 3.1). It also verifies that the I/O transfer is within 
the bounds of the segment. 

When the disk driver processes the I/O message, it translates the 
LDIN contained in the message to one or more physical devices. The 
request is then placed in one of three circular job submit queues in 
main store associated with the DFC for each specified physical device. 

The three types of disk job queues are high-priority, base-priority, 
and special. Special commands sent by maintenance processes or 
originated in the disk driver are immediately executed by the DFC 
from the special job queue. High-priority jobs can be sent by any client 
process and will be processed by the DFC before base-priority jobs. 
All other jobs are placed in the base-priority queue. 

Whenever the DFC completes a job requested by the driver, it 
returns a response indicating the outcome of the job. All job responses 
are placed in a single main store response queue, regardless of the 
priority of the original job. The DFC generates an interrupt to the 
driver after each response is added to the queue. The driver only clears 
the interrupt after processing the last entry in the response queue. 

The disk driver handles job responses each time it is entered at its 
interrupt entry. The job response indicates the status and identity of 
the job being reported. If the job was successful, the driver sends a 
successful job completion acknowledgment to the client using the same 
message buffer that requested the I/O. In writing to duplexed disks, 
the driver guarantees that both disks were written successfully before 
acknowledging the job. In reading from duplexed disks, the driver 
reads from a single disk, alternating disks between requests. 

If a job failed, the driver determines whether the device should be 
removed from service or if it should retry the job. 

When the driver wishes to retry a failed job, it sets up a retry request 
in the main store retry queue. The format of an entry in the retry 
queue is the same as that of a job in any of the other queues. After 
writing the entry in the queue the driver wakes up the DFC with a 
programmed I/O command. The DFC then takes this job, even if the 
other submit queues contain work. When the driver handles the 
response from the retry request, it knows the queue is available for 
reuse. 

7.2.2 Reliability characteristics 

The disk driver also has a message interface for maintenance com­
mands. Once the device (MHD or DFC) is taken out of service by the 
disk driver, the device can be reserved for maintenance access and the 
disk driver provides the maintenance client processes unlimited access 
to the device. During maintenance, specific areas of a MHD can be 
read or written by bypassing many of the operational checks performed 
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on normal I/O requests. This allows the creation of a disk and the 
system update of a disk with a new software generic.6 

VIII. FILE SYSTEM 

All accesses to the file system are done through the file manager, a 
DMERT kernel process. In addition to maintaining file system security 
and integrity, the file manager translates read and write requests 
within the file system to physical I/O requests on the disk. 

The DMERT file system is similar to the file system provided by 
the UNIX operating system and features a hierarchical structure, byte­
oriented files, and uniform access to files, directories, and periphery. 
In addition to regular files, which are scattered throughout the disk 
and can grow dynamically, DMERT also provides contiguous and 
extent files, which are contiguous on disk but have limits on their 
growth. Contiguous and extent files are optimum for data base and 
object files, where large, fast I/O transfers are needed. For field update, 
DMERT provides a "windowless move" facility, which automatically 
moves an updated object file over the old one, thus eliminating any 
possibility that the file be used or the system initialized while the file 
is in an inconsistent state. 

To meet DMERT's reliability requirements, DMERT file systems 
are crash resistant. In particular, a crash does not jeopardize file 
system integrity, the file systems do not need manual repair, and they 
are available within seconds after a crash. 

The file manager uses two techniques to ensure crash resistance. 
First, it orders all writes to disk to maintain a consistent file system 
state. To create, link, or write a file, the ordering is: 

(i) Write the data blocks 
(ii) Write the indirect i-node blocks 

(iii) Write the i-node* 
(iv) Write the directory entry, if necessary. 

To unlink or truncate a file, the ordering is: 
(i) Write the cleared directory entry, if necessary. 

(ii) Write the cleared i-node. 
(iii) Free the blocks. 

Second, to ensure that no block is allocated to more than one file, the 
file manager rebuilds a file system's free-block list before it is used 
following a crash. Doing this for the 50-000 block, 2048-i-node root file 
system adds about 10 seconds to DMERT's boot procedure. 

These two techniques are sufficient to ensure crash resistance, and 
we have found no problems with these in the field. 

* An i-node describes a file and contains its block addresses. An indirect i-node block 
extends the i-node and contains more block addresses. 
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IX. SUMMARY 

This article has described the DMERT nucleus, which consists of 
the kernel, the special processes, the I/O drivers and file manager, the 
process manager, and the UNIX supervisor. The major services pro­
vided by this nucleus include a multitude of interprocess communica­
tion mechanisms, a sophisticated set of memory allocation features, 
both real-time and time-shared scheduling, dynamic process creation 
and termination, a simulated UNIX environment's communication 
with terminals, magnetic tape drives, data links and disks, and powerful 
real-time and time-shared file system capabilities. The operating sys­
tem has been continually evolving since DMERT was conceived, and 
is expected to continue to evolve over the next few years. This article 
has described the first official version of DMERT, which entered 
service in the Bell System during September 1981. 
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This article describes the field administration facilities of the 
Duplex Multiple Environment Real Time (DMERT) operating sys­
tem, as provided on the 3B20D Processor. These facilities are: Recent 
Change/Verify, the subsystem that allows manipulation of office­
dependent configuration information; Field Update, the software 
change mechanism; and System Update, the component used to 
install a new generic program in an office. The article also includes 
information on how these capabilities fit into the overall scheme of 
field support in an in-service office environment. 

I. INTRODUCTION 

An integral part of high-reliability applications of the Duplex Mul­
tiple Environment Real Time (DMERT) operating system is the 
administration of system hardware information and of software. This 
includes both the initial delivery of the system as well as subsequent 
upgrades. In DMERTI there are three commonly used capabilities to 
apply, track, and administer such changes. These are Recent Change/ 
Verify, Field Update, and System Update. They are listed in this order 
according to decreasing frequency of field use and increasing impact 
(typically) on the overall system. Each of these capabilities is designed 
to permit display of some aspect of the current status of the system, to 
change that status in a simplified and highly reliable way, and to either 
reverse such changes or make them permanently a part of the system. 
This article discusses each in turn, and provides examples of their use. 
Each capability may form the base for an application-dependent 
version of its function. These functions are discussed briefly in the rest 
of this introduction. 
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The 3B20D Recent Change/Verify (RC/V) system provides the 
ability to change and manipulate various aspects of office-dependent 
information. This capability is focused on the system hardware and 
software configuration and is based on the Low-Level Access (LLA) 
Data Base System, whose operation is normally hidden from field­
site administrators. RC/V is used manually or automatically to verify 
and change the hardware and software components known to the 
system, and the ways in which they are interconnected. 

Field Update is used to correct problems in the operation or func­
tionality of the system. Field Update is the official fix mechanism for 
DMERT. Rapidly installed emergency fixes, as well as more routine 
trouble corrections, may be installed into the software or other files in 
DMERT via Field Update. 

Finally, System Update, also known as Generic Update, changes a 
major portion of the entire DMERT or application generic program. 
In doing so, System Update may write oyer old generic information or 
provide a completely restructured generic program image. Typically, 
a new generic release will involve a new structure for RC/V information 
as well, so RC/V may be involved with such an update. The following 
sections provide more details on these fundamental administrative 
capabilities of DMERT. 

II. RECENT CHANGE/VERIFY-LOW-LEVEL ACCESS DATA BASE 
SYSTEMS 

The 3B20D /DMERT System has provided a data base management 
capability as part of the DMERT operating system. Built upon a Low 
Level Access (LLA) data base system are the Equipment Configuration 
Data Base (ECD), System Generation Data Base (SG), and the 3B 
Recent Change/Verify (RC/V) and Data Base Evolution Systems. 
This section describes these systems and their relationship to the field 
administration environment. 

2. 1 Low-Level Access Data Base System 

The Low-Level Access Data Base System organizes and manipulates 
data in a C-Ianguage environment. The name low level implies that 
the system places minimal restrictions on its users: decisions about 
data organization and retrieval are left to the application. LLA trades 
user convenience for greater flexibility in data base design and per­
formance tuning. 

LLA gives the user latitude in defining both data units and data 
models and provides a powerful set of primitives to access the data. 
System characteristics include: 

(i) Data definition via a hierarchy of abstract types 
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(ii) Specification of data mapping from the data base to the user's 
buffers 

(iii) Ability to select various access methods, i.e., logical organization 
of subsets of data 

(iv) Data access through a library of functions 
(v) Isolation of operating system dependencies in a small number 

of program modules. 
Figure 1 gives a simplified schematic of the operation of an LLA 

application. 

2. 1.1 Data definition 

The Data Definition Language (DDL) is used to define the "shapes" 
of records, the LLA data type for retrieval and storage. It also allows 
user-defined "views" of the data base via data mapping, and the 
specification of data models by associating records with access meth­
ods. The recognizer for the DDL, the Data Definition Language 
Processor (DDLP), has many C-compatible features, such as common 
syntax for preprocessor lines, comments, identifiers, constants, and 
type definitions. The DDLP generates C code to implement data 
mapping and C definitions, and a data dictionary to describe data 
types. 

2.1.2 Data manipulation 

The Data Manipulation Language (DML) is a library of functions 
that perform actions on instances of the data types defined by the 
DDL. The DML provides the following facilities: 

(i) Creation and deletion of instances of data types 

DATA 
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Fig. I-Low-level access application. 
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(ii) Retrieval and update of existing instances of data types 
(iii) Gathering of information about existing data instances. 
These categories exist for instances of data bases, sets, and records. 

Generally, the lifetime of an instance of a data type starts with creation, 
proceeds through several retrievals and updates, and ends with dele­
tion. 

LLA is not used directly by a field administrator. Instead, the 
creators of various LLA data bases, be they 3B20D/DMERT system 
programmers or 3B20D application designers, provide appropriate 
higher-level access to their particular LLA data base application. 

2.2 3B200 Data Base Recent Change and Data Base Evolution Systems 

2.2.1 3B200 data bases 

The 3B20D/DMERT operating system has two major LLA data­
bases. The Equipment Configuration Data Base (ECD) describes the 
processor and peripheral hardware configuration, while the System 
Generation (SG) Data Base describes the system parameters, boot 
processes, and disk image and ECD administration information. The 
concept of a data base was adopted to eliminate redundant device 
information, provide a unified approach to handling and accessing that 
information, and provide easy methods for generating and changing it. 

Records in the ECD data base represent the hardware devices in 
the 3B20D Processor system, such as the Control Unit (CU) and 
Input/Output Processor (lOP), and are logically linked in a manner 
analogous to the physical linkages (see Fig. 2). In addition, records are 
provided to organize physical devices as logical devices and to maintain 
error counts for each physical device. To provide rapid access, the 
ECD is always kept in main memory. 

The information in the ECD and SG data bases is used by several 
classes of users. The DMERT operating system, itself, forms one set 
of using processes and includes the device drivers, processor and 
peripheral diagnostics, and processor and peripheral fault-recovery 
programs. The second class of users of these data bases is the human 
user, whether that person be a Bell Laboratories' application designer 
adding new peripherals to the ECD or an operating company craft 
preparing to add more memory to an on-line 3B20D in the field. Two 
types of access have been provided for these two classes of users: The 
DMERT operating system processes access the ECD through a collec­
tion of LLA primitives that provide rapid access to those specific items 
required, for example, by the device drivers. Human users- utilize~the­
Recent Change/Verify system, which provides a forms-oriented input, 
via a cathode ray tube (CRT) terminal. The user may create, change, 
delete, or merely review the forms. Error and consistency checking is-­
provided at the time of initial entry and before storage into the data 
base. 
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Fig. 2-Prototype 3B20D configuration. 

2.2.2 38200 Recent Change/Verify 

The Recent Change/Verify system is built upon the LLA data base 
management system and utilizes the LLA primitives for accessing and 
managing its two DMERT data bases. There are three basic compo­
nents of 3B20D RC/V (see Fig. 3). The first is the front-end form 
processing system. This component is known as the On-line Data 
Integrity (ODIN*) subsystem. ODIN allows the various forms to be 
specified through a series of CRT screen mask definitions and for each 

* ODIN is a product of Western Electric Company. 
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Fig. 3-Components of Recent Change/Verify. 

of these definitions to contain certain syntactic information to be 
checked upon entry. For the ECDjSG data bases there are 36 different 
form types, each of which has an associated mask definition. Most 
forms are either ECD or SG forms, but there are a few that are 
directives for the RCjV or Evolution systems. For each form type 
some error checking is provided. The second fundamental component 
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of RC/V is the Form Translation and Mapping subsystem. This takes 
the output of ODIN and transforms it into LLA record definitions and 
access functions. Then the LLA functions are used to actually manip­
ulate the data in the ECD and SG data bases. The third component is 
the transaction block-integrity check subsystem. This provides a mech­
anism for checking consistency between forms. RC/V has implemented 
the concept of a "transaction." Two special forms delimit a transaction. 
Upon processing a transaction-end form, RC/V invokes the integrity 
checks as well as linking the new information into the data base. 

As we stated earlier, the ECD that describes the running 3B20D is 
always in main memory; however, there is also a copy on the disk. In 
order for a change to be made permanent it must be applied to the 
disk as well as the memory version. To maintain the integrity of the 
ECD, changes are soaked on the memory version (test state) before 
they are applied to the disk version (active). A special form has been 
provided to perform this final step of activating changes to the disk 
copy of the data base. Upon processing of this form, RC/V copies the 
main memory copy of the ECD to the disk. To facilitate error checking 
and correction, a journal file of all transactions is kept on-line and can 
be printed on the Receive-Only Printer (ROP) at the request of the 
office craft. Also, an error log file is maintained and a periodic audit of 
the ECD structures is performed. 

2.2.3 Data Base Evolution System 

Because the release of a new 3B20D /DMERT generic is anticipated 
to be associated with changes to the ECD or SG forms or the LLA 
primitives, a system for transforming these data bases has been pro­
vided. The Data Base Evolution system (DBEVOL) allows this trans­
formation to occur in a regular and uniform manner without special 
programs needing to be written. DBEVOL allows old data to be 
restructured, new data fields to be added to existing forms, and old 
data to be deleted or changed. DBEVOL also provides semantic hook 
functions that allow applications to tailor some specific information 
before completing the data base evolution. 

DBEVOL has two types of steps. The first set is characterized as 
pre-processing. Here a translation data base (also an LLA data base) 
is built on a host support processor. The inputs are the old and new 
form specifications (as used by RC/V) and a specification of the 
changes in Form Translation Language. These inputs are supplied 
with the new DMERT generic program. If semantic hook functions 
are required by the application they are also an input to the final 
translation data base. A translation data base matching the required 
changes in the standard DMERT ECD is also released with new 
DMERT generics. 
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Fig. 4-Evolution of 3B20DjDMERT Data Base Management System. 

The second set of actions are run-time steps that produce a new, 
evolved ECD/SG data base pair (see Fig. 4). The first step is a dump 
of the old ECD using the "old" existing generic RC/V. This is produced 
using one of the special forms provided by the RC IV system. Then 
this snapshot of the old data base is translated into a snapshot of the 
new data base. The "new" RC/V is then used to load the new data 
bases into the proper LLA format for the 3B20D. 

DBEVOL runs on both the support processor and the 3B20D giving 
the using applications considerable flexibility in choosing a strategy 
for performing data base evolution. The evolved data base is actually 
put in place on the running 3B20D during the generic update scenario 
described below. 

III. FIELD UPDATE 

Field Update, which is typically called "overwriting" in traditional 
Electronic Switching Systems (ESSs), is the problem correction mech­
anism for DMERT. While overwriting usually applies specifically to 
program bugs, Field Update may be used to correct any file on the 
3B20D disk. Such files may contain human-readable text or binary 
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tables, for example. (In DMERT, files are structured like a UNIX* 
operating system file system.2

) Field Update must perform this updat­
ing without disturbing call processing or other critical system functions. 
Since operating systems do not normally support this style of updating, 
some difficult technological problems had to be overcome in designing 
and implementing Field Update. Some of these problems and their 
solutions are described below, followed by a more general discussion 
of the overall structure and use of Field Update. 

3. 1 Problems and solutions 

Like most modern operating systems, DMERT supports the concept 
of a process, which is a collection of tightly coupled executable pro­
grams. Programs are in turn broken down into units that perform 
specific activities, called functions. Processes can communicate with 
each other, generally at "arms-length," and are normally protected 
from each other by DMERT software and the 3B20D hardware and 
microcode. Since Field Update runs as a cooperating set of processes 
within DMERT, some highly specialized operating system interfaces 
were required to break through this protection. Furthermore, the real­
time critical processes in DMERT or its applications must run contin­
uously [they are termed "non-killable" (NK)], so that they are always 
available to process events quickly. The running process images of 
such processes must be accessible and changeable in main memory, 
again via special operating system functions. 

Since a process is a collection of functions, the C-Ianguage3 function 
was chosen as the unit of update. The implementation of field update 
specified that there be a single reference point for each changed 
function, so as not to require changes everywhere such a function was 
involved. To solve this, the concept of a Transfer Vector (TV) used in 
ESSs was implemented within a process image. Figure 5 is an example 
of a simplified process image showing this. In Fig. 5, the TV area 
contains a list of the addresses of the process's functions. When a 
change is made to function f, the new version f' is written into a special 
"patch" area provided with the process, and the particular address in 
the TV area is switched to point to f' (see Fig. 6). This solution also 
allows the fix to be backed out by changing the address in the TV 
back to its original value. When the fix has been tested and is ready to 
apply permanently, the space occupied by f can be made available for 
future fixes (Fig. 7). While this concept is simple, introducing TV s to 
DMERT had operating system implications down to the microcode 
level. With TV s, the impact of introducing a new or changed function 

* Trademark of Bell Laboratories. 
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Fig. 5-Simplified DMERT process image. 
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Fig. 6-Function f replaced by function f'. 
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Fig. 7-Reclaiming the space occupied by function f. 

has been restricted to a small, well-defined area of the process, making 
this activity inherently more reliable. 

Traditional operating systems do not have the ability to change a 
critical function or process while the system is running. Since DMERT 
is derived from such an operating system, many challenges were 
encountered in providing the field update capability. Some specific 
areas included: 

(i) The ability to change a file both instantaneously and in a 
temporary way. This is used in updating both non-killable processes 
and more routine processes that can be terminated and restarted; 

(ii) Retention of sufficient symbolic information to properly update 
the 3B20D disk-resident versions of processes ("pfiles"); 

(iii) The ability to update C functions even though the old versions 
of the functions had been suspended while field update was running; 

(iv) The ability to change data contents or the structure of data 
used by a continually running process; 

(v) The ability to coordinate changes to functions within a process. 

3.2 The use of field update 

Field Update is an end-to-end concept within DMERT; that is, it is 
involved with the development, distribution, installation, and tracking 
of changes. When a process is first introduced into DMERT, or when 
its subsystem architecture changes, the process developer must com-
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municate its characteristics to personnel who administer the DMERT 
source programs. The developer also must create a script of commands 
to be executed at a field site, which will be used to install, back out of, 
or make permanent a fix to the process. Generally, this will be simple 
to do because there are categories of existing process scripts, and new 
processes will fit into an existing category (or a simple modification to 
one will suffice). Once these steps are taken, the developer can depend 
upon the DMERT administrative system4 and specific Field Update 
change development commands to remember these details. This ap­
proach standardizes the development of fixes so that each is handled 
the same way, as opposed to being a unique activity. The primary 
advantage comes when an emergency fix must be created quickly 
without the extra burden of collecting procedural information. 

When a developer has created a fix and tested it, the standard 
change development mechanisms produce a package called a Broad­
cast Warning Message (BWM), which is used to transmit and install 
the fix (see Fig. 8). System Test personnel use this package to test the 
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field updatability of the fix as well as its impact on the system in the 
same way it will be installed at a field site (see the article on "System 
Integration and Test" in this issue of the Journal). When testing is 
completed, the fix can be packaged together with other fixes via 
automated tools into an official BWM for delivery to application 
project personnel, who will intermix it with application-specific BWMs 
and send it on. During this packaging, the particular order of instal­
lation of specific fixes is indicated both within and across BWMs. 

A BWM consists of a set of files in a UNIX operating system 
directory, and can be transmitted via magnetic tape to a site. The Bell 
System is standardizing on the Software Change and Notification 
System (SCANS-II) as the official change distribution network, and 
the files in a DMERT BWM are also compatible with SCANS-II. 
DMERT also provides file reception software for use with SCANS-II. 
Typically, personnel at a Switching Control Center (SCC) will inter­
rogate SCANS-II, recognize that a change is pending for one of their 
associated field sites, and initiate transmission of the change to the 
field site. 

Once a change reaches a field site, it is stored in a staging area on 
disk until it is manually installed. The developer-produced script of 
commands is sent as part of the BWM (see Fig. 8), and is used by 
office personnel to install the change. With a short sequence of 
DMERT Field Update commands, the fixes can be: 

(i) Installed 
(ii) Tested 
(iii) Backed out or made permanently a part of the system. 

While a fix is being installed, an internal system error will result in 
automatically backing it out; once it is soaking in a temporary state, it 
may be backed out manually, or automatically if the system undergoes 
a major recovery action. 

Each field site maintains an on-line log of all Field Update activity 
since the last System Update (see Section IV). This may be used to 
verify the current state of the office as far as installed BWMs are 
concerned, and is used each time a new change is installed to guarantee 
proper sequencing of changes. Other Field Update-related utility pro­
grams in DMERT can be used to print out a C function-to-process 
address map, and to verify that the main memory (executing) copy of 
a process matches its image on the 3B20D disk (see Section 3.1). 

By the facilities mentioned above, Field Update allows fix creation 
in a style compatible with normal program development, prepackaging 
of developer-approved installation scripts, fix coordination both within 
and across BWMs, automated delivery and installation mechanisms, 
and detailed change tracking. These capabilities make Field Update a 
truly end-to-end DMERT change mechanism. 
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3.3 Field update example 

Let us presume for this example that a problem has been found in 
the DMERT disk driver program, whose pfile is called dkdrv.o in 
directory /bootfiles. The developer has constructed a fix and tested it, 
and further system impact testing has verified it. The fix is given a 
DMERT official BWM name of BWM82-0028 (the first two digits are 
the year, and the last four a sequence number), and is passed to 
personnel in an application of DMERT, who approve it and send it 
out as application BWM, BWM82-0037. Once the fix has arrived at a 
field site, it is installed via the commands shown in Fig. 9. The 
descriptions below explain the commands: 

(i) Request a printout of change information that field update has 
logged against process dkdrv.o. 

(ii) Prepare the site to receive the BWM. After SCANS-II receives 
a command to send the BWM (not shown), it is transmitted automat­
ically to the site with data error detection and positive reporting. 

(iii) Install the fix into the system. 
(iv) Test the fix (coupled, perhaps, with manual actions). 
(v) Make the change permanent and remove the BWM files from 

the system. In this particular case the DMERT boot image is rebuilt 
as part of making the fix permanent, because the changed process is 
one of the system boot processes. 

(vi) Once again display the change status of dkdrv.o. 
(vii) Print a map of C functions and their addresses for drdrv.o. 
(viii) Reclaim the space occupied by old versions of C functions in 

dkdrv.o. 
The installation command mentioned above causes an entire set of 

commands to be executed, those in the "install" section of the script 
originally provided by the developer. An example of that script is 
shown in Fig. 10, which shows the Messages (MSGS) file for BWM 82-
0037. 

(i) UPD:DISPLAY; FN "/bootfiles/dkdrv.o"! 

(ii) IN:REMOTE:START! 
VFY:BWM: 82-0037! 

(iii) UPD:BWMNO 82-0037! 
UPD:EXEC 82-0037: CMD APPLY! 

(iv) UPD:EXEC 82-0037; CMD SOAK! 

(v) UPD:EXEC 82-0037; CMD OFFICIAL! 
CLR:BWM:ALL! 

(vi) UPD:DISPLAY; FN "/bootfiles/dkdrv.o"! 

(vii) UPD:TRC; FN "/bootfiles/dkdrv.o" : ALL! 

(viii) UPD:AUD! 

Fig. 9-Commands to Receive and Incorporate BWM 82-0037. 
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APPLY. 
MRs: d8200002; DMERT BWM82-0028 

UPD:UPNM BWM82-0037;FN" Ibootfiles/dkdrv.o' ':UF" letc/bwm/82-0037/0ne.m"! 
SOAK. 

BKOUT. 

The fix(es) should soak for at least 1 days 00 hours 00 minutes. 
It will be apparent that the fix(es) have been applied: 
When no disk restore failures occur, 
commands to soak the fix appear here. 

If the fix results in the need to reboot the system, the fix will 
have been backed out automatically. If the fix does not result 
in a reboot but otherwise does not work correctly, it can be backed 
out by entering the command [s]: 

UPD:BKOUT;UPNM BWM82-0037! 
OFFICIAL. 

UPD:UPNM BWM82-0f)37;OFC! 
This will update the bootfile APPDMRT. 

Fig. lO-MSGS file for BWM 82-0037. 

IV. SYSTEM UPDATE 

DMERT System Update provides a safe, reliable mechanism for 
field personnel to introduce new versions of DMERT and application 
software into 3B20D/DMERT systems, while minimizing service dis­
ruption. System Update differs from Field Update in the magnitude of 
the program and data changes being installed. Normally, a system 
update will replace all the software in the system with the release of a 
new generic program, which is a complete reissue of DMERT and/or 
application software and/or data. For this reason, system updates 
always include a memory reinitialization with a full bootstrap (reini­
tialization of all processes and data from disk). Only the contents of 
protected application segments, special memory areas where applica­
tion systems may retain critical information, are retained across the 
boot. Since a system update includes a reinitialization, only the version 
of the software on the 3B20D disk is updated. The main memory 
images of system processes will then be re-read from the disk during 
the bootstrap. This section describes how this disk updating is done 
within DMERT, and gives an overview of the overall System Update 
process. 

4.1 System Update concepts 

The DMERT System Update Program (SUPR) provides a way to 
replace the entire contents of the 3B20D disk with a new version of 
those contents from a magnetic tape. SUPR deals with masses of data, 
and changes the disk contents section by section rather than file by 
file or logical data base updates. These sections are called partitions. 
To do this, SUPR takes advantage of the fact that the 3B20D disks 
are duplexed for reliability, writing the new system information onto 
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only one of a pair of disks. This is the off-line disk method of system 
updating. It derives its name from the fact that one of a pair of disks 
must first be removed from active service (taken off-line) before writing 
the new system onto it. With the off-line disk method the amount of 
redundant disk information is kept to a minimum during the update, 
and the disk structure may be completely changed. There is some 
increase in system vulnerability during the time that the disks are not 
running in duplex mode. 

Certain aspects of the system update procedure have caused unique 
requirements and changes within DMERT. The key to the off-line 
disk method is protecting both generic programs from being overwrit­
ten during the update procedure. Since these generics reside on duplex 
disk mates, an off-line disk must never be restored to service. (The 
restore process includes a copy from the on-line to off-line disk.) The 
attributes of the "off-line" device state in the ECD were expanded to 
provide this capability. After a bootstrap on a new generic disk image, 
the disk copy of the old generic must similarly be marked off-line, and 
hence protected from restorals. This was accomplished by having each 
generic's ECD record the disks containing the other generic as off-line. 

It was also necessary to be able to access partitions on an off-line 
disk, in order to read or write partitions on an off-line disk, to transfer 
files from the old generic to the new generic, and to perform recent 
changes on the new generic ECD (for example, in marking old generic 
disks as off-line). This was done by having the disk driver program 
access the Volume Table of Contents (VTOC)-the directory of the 
disk's contents-on the off-line disk during the update process. This is 
a special case, since the VTOC on an off-line disk may be different 
from that of its mate disk, or may not even be sane. When updating 
multiple disks, SUPR uses a special disk identifier added to the VTOC 
to ensure that the disk image being written corresponds to the infor­
mation on that disk. As another safeguard, System Update uses 
checksums (special numbers computed from the data in a file) on the 
generic tape to check the new generic data for damage before writing 
it to the disk. 

4.2 System update scenario 

SUPR provides a complete update scenario, including a means to 
reverse the update and re-establish the original system. Because of the 
major impact on the application during a system update, the complete 
update procedure is broken down into several distinct steps, and allows 
the craft to choose the best time to begin each successive step of the 
update. The update may be canceled at any step of the procedure. 
Application-dependent processing may be introduced at any step. 
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Under favorable conditions only the forward steps of SUPR would 
be used, resulting in a successful update. These steps are: 

(i) Enter new generic-Read all the new generic data onto the off­
line system disk. 

(ii) Proceed with new generic-Make final preparations prior to 
booting the system from the new generic. 

(iii) Boot from new generic-Manually boot the system using the 
new generic. 

(iv) Commit to new generic-Complete propagation of the new 
generic into the system after the soak period by removing all aspects 
of the old generic. 

If the new generic does not work as expected, the craft would not 
commit to it, but would start a backout procedure to return to the 
original system. 

SUPR also provides a convenient mechanism to allow application­
dependent processing at each step of the update procedure. This is 
accomplished by transferring control to an application process that 
can perform whatever actions are appropriate. The types of actions 
most likely to be done as part of the application processing would be 
to transfer data (files, data bases, office-dependent information) from 
the old generic to the new generic or to save call registers and billing 
information in protected application segments prior to suspending call 
processing and booting from the new generic. 

V. SUMMARY 

This article has dealt with the subsystems of DMERT that admin­
ister changes to system data. Recent ChangejVerify is used to change 
system configuration data and its underlying data base, Field Update 
allows "bug fixes" and logical file changes, and System Update will 
install an entirely new version of the operating system. These subsys­
tems were described and examples given of their use. In each case 
DMERT provides change application, testing, and rejection or accept­
ance capabilities in a context very similar to that of typical operating 
systems, but in a highly reliable way. 
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The term ({field utilities" describes a number of tools used by 
telephone company craft and support staff as well as Western Electric 
and Bell Laboratories field support personnel for trouble-clearing 
and routine maintenance activities on the 3B20DjDMERT system. 
This complementary set of tools provides debugging coverage for the 
system regardless of load or system functionality. In addition, it deals 
with the challenges and complexities posed by the concepts of parallel 
processing, virtual addressing, and swapping. This article describes 
the various field utilities and discusses their capabilities. 

I. INTRODUCTION 

The term "field utilities" includes a number of tools used by tele­
phone company, Western Electric, and Bell Laboratories support 
personnel to perform trouble-clearing and routine maintenance activ­
ities. Currently, software debugging and investigation tools include the 
Field Test Set (FTS), the Generic Access Package (GRASP), and 
IBROWSE, an interactive tool used to "browse" through the contents 
of main memory. In unusual cases, a Micro-Level Test Set (MLTS) 
may be used in a troubleshooting mode. The Program Documentation 
Standard (PDS) Field Maintenance Commands are a collection of 
tools used to perform more routine operational maintenance on the 
operating system. Each of these capabilities will be described in this 
article. 

II. TROUBLESHOOTING AIDS 

The nature of large, evolving software projects is such that, despite 
multiple levels of testing by developers, integration teams, system test 
groups, and field site acceptance teams, some software "bugs" escape 
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Table I-Comparison of 3820D/DMERT debugging tools 
Attribute/Tool FTS GRASP IBROWSE MLTS 

Interference None Small, self- Small, not Extreme 
regulated regulated 

Scope of capabil- Medium High Low Medium 
ities 

Debugging level Assembly Assembly Assembly, Microcode, as-
source sembly 

Limitations Limited on No special No break- Difficult with 
kernel processes points, no supervisor or 

or kernel trace user proc-
esses, no 
data break-
points 

Language C-like PDS,MML ADB-Like Terse 

Target users Bell Labs, Operating Bell Labs, Bell Labs, WE 
WE Co., Bell WE 

Labs, WE 

Target software None DMERT DMERT Microcode 
needed 

Support proces- UNIXOper- None None None 
sor software ating Sys-
needed tern (FTS) 

Hardware FTS, DUC, UC orDUC Terminal MLTS, termi-
needed terminal (optional) nal 

Theater of use Limping or Running, Running, Lab, dead field 
loaded field non over- nonover- site 
site loaded field loaded field 

site site, off-
line 

detection and are included in field releases of software. In the real­
time systems used in switching, the bug may be so subtle that it may 
surface only under equipment configurations, telephone user actions, 
and/ or traffic loads not easily reproduced in a system laboratory 
environment. System debugging tools must be available in a field site 
carrying live traffic to solve these problems when they arise. 

The 3B20D/Duplex Multiple Environment Real Time (DMERT) 
operating system employs advanced computer technologies that re­
quire equally sophisticated tools to isolate errors. Parallel, time-sliced 
execution of processes, virtual addressing, and swapping all contribute 
to the need for a variety and diversity of system debugging tools. Table 
I is a comparative summary of these various troubleshooting tools 
available to field sites. 

2.1 Field test set 

In rare cases, a system problem could occur that leaves the system 
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Fig. I-Field test set. 

functionally inoperative. In other cases, the traffic level may be so high 
that system overload mechanisms become active when unexpected 
results in the system indicate a software error. In either case, on-line 
utility systems, which assume basic functionality and nonoverload 
conditions, are not appropriate to isolate the problem. The Field Test 
Set (FTS) was designed specifically to meet this need in the field. It is 
strictly a monitoring device and therefore does not affect processor 
performance or rely on system operability. This non-interfering char­
acteristic is extremely important when maintenance personnel are 
trying to isolate problems at a field site carrying a heavy traffic load. 

The FTS is a small, portable unit (see Fig. 1) that is easily trans­
ported and connected to the 3B20D Processor through the Dual­
Access Utility Circuit (DUC). The DUC contains hardware matchers 
and a 2048 entry trace memory and provides access to the processor 
for the FTS and GRASP (see Section 2.2). The external FTS unit 
connects to the DUC through an eight-foot cable. The FTS intelligence 
is contained in this external unit that includes a microprocessor with 
memory management, one megabyte of random-access memory 
(RAM), and a cassette transport. User access is provided through a 
local or remote terminal with phone access provided by the FTS. 
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The UNIX* operating system was chosen as the FTS operating 
system. There are many advantages to using an operating system on 
the FTS and in particular the UNIX system. The FTS resident 
software was developed and tested as individual modules written in 
the high-level C language. This substantially reduced the software 
development time and effort. Also, the UNIX operating system com­
mands provide substantial portions of the functionality required for 
the FTS software. Although the UNIX system requires disk storage 
for its file system, a disk system was not considered rugged enough for 
portability. Therefore, a "virtual disk" is supported as part of system 
memory. The UNIX operating system is booted into the system from 
cassette tape by resident erasable programmable read-only memory 
(EPROM) software. The EPROM also contains the unit's self-diag­
nostic software. 

The FTS/DUC system supports a rich variety of trace and data­
matching options. The lowest level trace, a so-called transfer trace, 
records program addresses of all transfers executed by a program or a 
range within a program. An intermediate-level function trace records 
program function call/return sequences. At a higher level, a record 
may be kept each time a different process begins execution. Multiple 
trace mod~s can be active simultaneously. Information is recorded into 
the trace memory under control of a variety of sophisticated matcher 
circuits. Masking capability is provided so that a matcher can look for 
a particular value of a single bit or groups of bits as well as word 
values. Matchers are included for address, address range, data, access 
type (e.g., read, write, or read/write) and process ID matching. When 
a matcher or a combination of matchers is triggered, a signal is 
produced that causes a "snap" of information into the trace memory. 
The matchers and matcher combinations allow very selective trace 
memory recording. This reduces both the size of the trace memory 
required and the amount of post-processing necessary to interpret the 
trace data. 

The trace memory is operated in either a pre-trace or a post-trace 
mode. In the former case, the trace memory records information until 
it receives a stop trigger. The trace data represent program flow 
leading up to a particular event. In the post-trace mode, the trace 
memory starts recording upon receiving a trigger and stops when the 
trace memory is full. This provides a history of program flow after a 
particular event. 

The DMERT operating system software is predominately written 
in the high-level C language. C enables the programmer to work with 
function-level rather than machine-level operations. To support this, 

* Trademark of Bell Laboratories. 
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the FTS includes matching and tracing capabilities for software func­
tions and process IDs. Function tracing records the program address 
and the data parameters passed on the stack to a selectable function 
or range of functions. Process ID matching and tracing becomes 
necessary in a virtual memory machine since processes are dynamically 
relocatable in physical memory. Processes are assigned unique ID 
values when they are created. The active process ID value is presented 
to the FTS process ID matchers and trace memory. These matchers, 
combined with the virtual address matchers, permit matching and 
tracing on virtual rather than physical addresses. 

Since the FTS is an external system, it is the appropriate choice 
when problems must be investigated in code that has tight timing 
constraints or in a system that is heavily loaded. Its most attractive 
features are its excellent trace facility and the fact that the FTS 
operates in a mode that does not interfere with 3B20D operation. 
Although it was not designed to access machine registers or write 
memory, the FTS is a powerful tool in the hands of support personnel 
to isolate difficult system problems. 

2.2 Generic access package 

The concept of an on-line software debugging mechanism in real­
time machines is not new.1 Software problems may occur when the 
system is functional and processing traffic in a non-overload environ­
ment. Such problems can be solved in the 3B20D by use of the Generic 
Access Package (GRASP). 

GRASP is an on-site tool for software debugging. Since it supports 
an interface to the DUC, GRASP provides a set of trace and data­
access trap functions similar to those provided by the FTS. In addition, 
it provides the capability to place multiple breakpoints in code, to 
print the contents of memory and many machine registers, and (with 
some restrictions) to write memory and registers regardless of whether 
the DUC is available or operating correctly. GRASP has a self-regu­
lating mechanism designed to prevent itself from taking too much real 
time and thereby interfering with traffic processing or driving the 
system into overload. 

Since GRASP is "just another process" running on the machine, the 
design presents some unique challenges. GRASP needs to be able to 
identify the target process, assure that it is in main memory, and be 
able to gain access to its address space. 

A logical process is specified by a logical tag (called a "utility ID") 
that is compiled into the process. All incarnations of a logical process 
will have the same tag since they all originate from the same object 
file on the disk. The tag is stored in system tables when the process is 
brought up and is available throughout the life of the process. 
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Upon a request from GRASP, the operating system searches the 
tables, prepares a list of real process tags (called "process IDs") for 
processes whose utility IDs match GRASP's request, and sends the 
list to GRASP. Translation between the utility ID, which is known to 
the craftperson, and the process ID, which is known to the operating 
system, is thus accomplished. 

GRASP relies on cooperation with the target process to be informed 
when the target process is in main memory. All processes that GRASP 
may need to monitor must have two function calls compiled into the 
code, which form the run-time communication mechanism with 
GRASP. One is placed in the process's initial entry routine; the other 
is placed to execute "on demand" by GRASP. 

After a process has been selected, it is forced into main memory 
through cooperation with the process. GRASP sends an agreed-upon 
event to the process; its only response to that event is to call the 
associated library function. That function identifies the process and 
notifies GRASP that it is in main memory. 

Access to the target address space is then accomplished by using 
address translation hardware called Address Translation Buffers 
(A TBs). The Program Status Word (PSW) for each process is con­
structed to be able to handle two address spaces at one time. The 
identity of the address translation buffers being used by a particular 
process are included in that process's PSW. Instructions are provided 
in the instruction set to indicate which of the two address spaces to 
use. In addition, a special breakpoint instruction has been provided. 
When the breakpoint is executed by the target process, GRASP's PSW 
is modified so that GRASP is given access to the address space in 
which the breakpoint fired. This presupposes that GRASP and the 
target process are using different address translation buffers; that 
assumption is enforced by the operating system. 

GRASP is especially useful when multiple breakpoints are needed 
(GRASP can handle up to 20), when breakpoints must be planted in 
several processes simultaneously, where register information is needed, 
or when investigation must be done remotely from a central mainte­
nance facility. 

2.3 IBROWSE 

Neither the Field Test Set nor GRASP provides a mechanism to 
examine the kernel address space. IBROWSE, an interactive tool used 
only by Bell Laboratories and Western Electric support personnel, can 
be used to peruse the address space of any DMERT process in main 
memory; it fills the need to be able to view the operating system tables 
and message buffers in the kernel address space. IBROWSE also can 
be used on an off-line support processor to analyze tape dumps of main 
memory taken at field sites. 
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IBROWSE can display the contents of virtual or physical memory 
in a user-specified format. The user can direct that the raw machine 
data be represented as any combination of null-terminated strings, 
characters, or one-byte, two-byte (short), or four-byte (long) data types 
in octal, decimal, or hexadecimal format. This flexibility to specify the 
translation of raw data is immensely helpful when viewing DMERT 
data structures. IBROWSE supports the concepts of current address, 
next address, and current format, which are useful in displaying 
consecutive memory locations. It can view any process in memory, 
from kernel through kernel processes, supervisors, and user processes. 
It has the ability to search forward or backward for a specified data 
pattern, in either virtual or physical addressing modes. IBROWSE 
also supports a user-defined macro facility and I/O redirection. 

The main strengths of IBROWSE are its ability to view the address 
space of any process in main memory and its capability to analyze data 
from an off-line Control Unit (CU). Since use of IBROWSE requires 
relatively detailed knowledge of DMERT, its users are intended to be 
specialized Bell Laboratories or Western Electric support personnel; 
for that reason, no attempt has been made to make IBROWSE part of 
the official DMERT release. Each time the support teams need it, 
they load it into the target machine. 

2.4 Micro-level test set 

Should a problem result in a "dead" system or one that is continually 
attempting automatic recovery actions and is unable to start the 
operating system, the Micro-Level Test Set (MLTS) is used. The 
ML TS is a low-level test system aimed primarily at hardware register 
and microcode access. It consists of an interface circuit that plugs into 
the 3B20D like any other board and an external control circuit. Since 
the ML TS is equipped with an RS232 interface and a 212A data set, 
it may be configured with a terminal on-site or may be operated from 
a remote location. 

The ML TS is the only field utility tool that provides read/write 
access to all internal hardware and firmware registers and is the only 
one that facilitates access to the processor's microcode. The MLTS 
provides microcode breakpoints, can read and write microstore and 
main store locations, and can read and write machine registers that 
are not accessible to other troubleshooting tools. Although its primary 
use is in a laboratory environment, there are infrequent cases where 
such capabilities are required to solve problems during field tests. 

III. OPERATIONAL UTILITIES 

Since DMERT supports a hierarchical file system as well as the 
concept of processes, some types of problems must be dealt with and 
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resolved at the process or file-system level. For example, a process may 
be running when it should not be or the file system may contain some 
transient files that should have been cleared. The UNIX operating 
system itself provides many utilities for process control and file system 
maintenance; these same capabilities are needed in the Program Doc­
umentation Standard (PDS) syntax for Electronic Switching System 
(ESS) applications. 

PDS field maintenance commands can be described in three cate­
gories: 

(i) File system manipulation and maintenance 
(ii) Process control 

(iii) Magnetic tape operations that are support-processor compat­
ible. 

PDS commands are provided to allow the craft or support person to 
determine what files exist on the disk and what their access permissions 
are; the craft may alter the access permissions, add new files, or remove 
existing files. A basic text editor is provided to facilitate creation or 
modification of ASCII files. In addition, tools are provided to start a 
process, stop a process, and to determine what processes are known to 
the system. 

Although these utilities do not fall into the class of "debugging" 
tools, they nevertheless provide a window into the system at a high 
level that is very useful to solve certain types of system problems. 

IV. SUMMARY 

Because of its architecture and technology, the 3B20D/DMERT 
system presents a number of challenges to those who must isolate 
problems in a running system in the field. Problems may be caused by 
hardware failures, software deficiencies, microcode errors, or opera­
tional overloads and inconsistencies. A set of tools has been developed 
to isolate problems that may occur in the field. Together, these utilities 
provide a continuum of system trouble identification capabilities for 
the 3B20D/DMERT system in the field. 
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The 3B20D Processor is designed to be a high-availability system 
for utilization in electronic switching systems. This high availability 
translates into the development of numerous features and capabilities 
for the 3B20D that distinguish it from other processors. The reliability 
objectives for the processor are described and related to the subsys­
tems that have been developed to meet each objective. This article 
discusses processor and peripheral fault recovery, system integrity, 
and other software subsystems that provide the high availability and 
maintainability for the processor. 

I. INTRODUCTION 

The 3B20D Processor has extensive maintenance subsystems asso­
ciated with it and is designed to meet the high-availability standards 
of Bell System electronic switching systems. This implies that the 
processor must perform within an objective of not more than two 
minutes downtime per service year when used in an electronic switch­
ing application. The many subsystems that have been developed to 
provide the high-availability capability are described in this article. In 
particular, software and hardware fault recovery are discussed along 
with the microcode assists for the recovery. 

Much evolution has taken place in recovery architectures for elec­
tronic switching systems.1

,2 Earlier processor systems used extensive 
hardware-matching algorithms that resulted in intricate software re­
covery.3,4 More recent hardware technologies have enabled the cost­
effective design of processor systems with unique fault-detection ca­
pabilities.1

,5,6 These capabilities have led to much simpler recovery 
software. This article describes the detection mechanisms for the 
3B20D and the software maintenance architecture. 
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II. SYSTEM RELIABILITY REQUIREMENTS 

The reliability objective for the 3B20D Processor system, as with 
other similar systems, is to keep the overall system unavailability­
i.e., the time that the system cannot be utilized by operational (call 
processing) functions-below 2.0 minutes per year.7 In keeping with 
the ESS processor tradition, the total system downtime is allocated to 
four general categories: hardware, software, recovery, and procedural. 

The processor has 0.4 minute per year allocated to malfunctions in 
the system hardware. Like other highly reliable systems, the 3B20D is 
equipped with redundant hardware units. Thus, failures must occur in 
both redundant units before the system is unable to establish a working 
configuration. In the case of simultaneous failures in both units, until 
one is repaired and system integrity is reestablished, the system is 
considered unavailable. This portion of the overall system downtime 
is a function of the failure rates of the various components (FIT rate), 
the system architecture, and the mean time to repair (MTTR). The 
hardware reliability model for the 3B20D Processor within a given 
application is dependent on the hardware configuration used and the 
maintenance technique used (this determines the repair time). 

The processor has 0.3 minute per year allocated to malfunctions in 
the processor operational software. This is a classification of software 
faults that can render the system features inoperative. This allocation 
includes cases such as software faults that require a bootstrap to 
recover the system. As in the case of other high-availability systems, 
the 3B20D /DMERT system has a design objective of having no 
software failures the system cannot recover from. To help recover the 
system against software failures, DMERT has three levels of defenses 
that attempt to recover the system from such faults: hardware protec­
tion, system integrity monitor, and audits. The 3B20D Processor has 
several levels of hardware protection that detect the sanity of the 
system software. The system integrity monitor in the DMERT system 
has an elaborate scheme of software and hardware sanity timers as 
well as overload detectors that protect the system against software 
"resource hogs." DMERT audits include all of the explicit audits in 
the system as well as the defensive checks built into the common 
processor software. The intent of the audits is to help defend important 
processes against data mutilation. 

The processor has 0.7 minute per year allocated to limitations in 
fault-recovery programs. These failures are classified by the inability 
of fault-recovery software to achieve a working configuration of the 
system due to some hardware failure condition even if a working state 
of the hardware is possible. These cases are characterized by the 
necessity for manual intervention to reestablish system integrity or by 
an automatic initialization to regain system integrity. 
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The 3B20D has a comprehensive fault-recovery scheme that at­
tempts to recover the system from all foreseeable single hardware fault 
conditions. In several cases, recovery mechanisms are generated for 
multiple fault situations (e.g., memory failures) when that is considered 
to be a probable situation. 

Finally, the processor has 0.6 minute per year allocated to procedural 
errors. This category covers cases where a craft person uses an im­
proper maintenance procedure or follows a poorly designed procedure 
that results in a machine outage. The 3B20D is designed with a 
defensive craft interface using the PDS (Program Documentation 
Standards) and MML (Man Machine Language) languages.8 The craft 
interface also includes emergency action and display-page capabilities 
that attempt to simplify the complexities of maintaining the 3B20D. 

The system reliability requirements also include the various aspects 
of maintaining the 3B20D. These maintainability aspects include 
diagnostics, transient error analysis, emergency recovery procedures, 
routine maintenance procedures, growth and retrofit capabilities, sys­
tem and process update capabilities, and field utilities. Diagnostics are 
provided to detect and assist the repair of classical hardware failures 
in the system. The diagnostic requirements include sufficient run-time 
performance so that a rapid repair can be carried out. Diagnostics 
provide greater than 90 percent fault detection. 

The ability to repair circuitry exhibiting transient failures is provided 
through fault-recovery error reports. For example, data about transient 
memory faults is printed out to the craft and includes address and 
pack location where the error was detected. If that circuit pack 
continues to have a history of transient errors, the craft has sufficient 
information to effect a repair. Error analysis capabilities are provided 
on the 3B20D through the use of fault-recovery messages and error 
logs. 

Emergency recovery procedures are provided to reconfigure the 
system when automatic recovery does not succeed. These capabilities 
allow the craft to repair the 3B20D in case of catastrophic failures. 
These procedures include use of the emergency action page, processor 
recovery message analysis, and dead-start diagnostics. Routine main­
tenance procedures are provided to keep the 3B20D in peak operating 
condition. Growth and retrofit procedures allow hardware additions 
and removals without affecting the system service. Finally, various 
utilities are provided with the DMERT system to locate system 
problems in field installations. 

III. GENERAL RELIABILITY AND MAINTENANCE ARCHITECTURE 

In this section, we provide an overview of the 3B20D fault-recovery 
architecture that is described in further detail in later sections. Figure 
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1 illustrates the hardware architecture of the 3B20D. As is indicated 
in the figure, the processor system has very loose coupling between 
any of the mate subsystems. The memory to memory update coupling 
is provided to keep both active and standby memories identical. This 
allows the switching of processors without losing the integrity of the 
software running on the system. 

The other coupling between the processors is through the mainte­
nance channel. The maintenance channel provides two capabilities 
important to the integrity of the processor. First, it provides a control 
and communication bus for the purpose of diagnosing the off-line 
processor from the on-line processor. Second, it provides low-level 
maintenance control for fault-recovery programs so that a switch in 
processor activity can be carried out with no operational interference. 
In addition, other maintenance controls can be exerted over the 
channel to start an initialization sequence on the other processor or to 
stop execution on the other processor. One other coupling, the Dual 
Duplex Serial Bus Selector -(DDSBS), allows either processor to talk 
to any peripheral controller. Thus, no matching techniques are utilized 
between major subsystems or peripherals in the 3B20D for the pur­
poses of fault detection in the hardware. This means that unique fault­
detection techniques are essential in each subsystem of the 3B20D. 
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Fig. I-The 3B20D system architecture. 
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To provide these detection algorithms, extensive use of local match­
ing circuits, parity techniques on all buses, Hamming detection with 
single-bit error correction on the main store, cyclic redundancy codes 
on the disks, and numerous sanity timers throughout the control unit 
and peripherals are used as the primary fault-detection techniques. In 
addition, routine diagnostics are used to detect failures in the fault­
detection hardware itself. Other routine sanity checks are used to 
ensure that peripheral subsystems are healthy. Finally, system-integ­
rity checks catch certain subtle problems that are not caught by unique 
detectors. 

3. 1 Fault-recovery architecture 

When any of the unique detectors determine an error condition, an 
error interrupt (or error report in the case of certain peripherals) is 
registered in the processor. The most severe of these will result in 
automatic hardware sequences that switch the activity of the proces­
sors (hard switch). Less severe errors result in micro interrupts that 
enter microcode and software charged with recovery of the system. 

The microcode and recovery software provides a layered approach 
to the recovery architecture. Figure 2 illustrates this architecture with 
microcode providing low-level access to the hardware while the recov­
ery software provides the high-level control mechanisms and decision 
making. This technique has resulted in several hardware design mod­
ifications requiring minimal change to the recovery software. 

Figure 3 illustrates the principal architecture and features provided 
by the recovery software. The bootstrap and initialization routines 
provide a fundamental set of microcode and software algorithms to 
control the processor initialization and recovery. These actions are 
stimulated by a Maintenance Restart Function (MRF), which repre-
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Fig. 3-Maintenance architecture. 

sents the highest priority micro interrupt in the system. An MRF 
sequence can be stimulated from either hardware- or software-recovery 
sources. 

The fault-recovery and system-integrity packages control fault de­
tection and recovery for hardware and software, respectively. The 
Error Interrupt Handler (EIH) is the principal hardware fault-recovery 
controller. It receives all hardware interrupts and controls the recovery 
sequences that follow. The configuration-management program (CON­
FIG) determines if this particular error is exceeding predetermined 
frequency thresholds. If a threshold is exceeded, CONFIG requests a 
change in the configuration of the processor to a healthy state. Thus, 
CONFIG serves as an error-rate analysis package lO in the 3B20D 
maintenance architecture for both hardware and software errors. 

3.2 Software integrity architecture 

Software fault recovery is very similar in architecture to hardware 
fault recovery. Each major unit of software is expected to have asso­
ciated with it error-detection mechanisms (defensive checks and au­
dits), error thresholds (provided by the system-integrity monitor and 
CONFIG), and error-recovery mechanisms (failure returns, data cor­
recting, audits, and initialization techniques). In addition, both SIM 
(System Integrity Monitor) and EIH oversee the proper execution of 
the process. 81M ensures that a process does not put itself into an 
infinite execution loop or excessively consume some system resource 
(e.g., message buffers). EIH, through the use of hardware and micro­
code detectors, ensures that processes do not try to access memory 
outside of defined limits or execute instructions that are not permitted 
to the process. Each process has initialization and recovery controls 
(analogous to hardware) so that a recovery can be effected. Figure 4 
illustrates the software-recovery architecture. 
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If recovery actions result in the removal of hardware units from the 
system, diagnostics9 are dispatched automatically to analyze the spe­
cific problem. Audits represent the software counterpart for diagnostics 
with the exception that the routine interval is much shorter and 
correction is possible in the case of audits. 

IV. FAULT RECOVERY 

In this section, we describe the fault-recovery strategies associated 
with the 3B20D Processor. In particular, we describe the fault recovery 
and initialization strategy along with the microcode assists required to 
carry out these functions. We also describe the manual control capa­
bilities provided by the processor and software. These control mecha­
nisms are termed emergency mode. Finally, we describe some of the 
software audit and integrity techniques in the DMERT operating 
system. 

4. 1 Fault recovery and system initialization 

Fault-recovery strategies are based on the fault-tolerant architecture 
of 3B20D. Major hardware units are fully duplicated. This duplication 
provides a high probability that a combination of operational units can 
be retained in the face of faults. The mate processors are only loosely 
coupled; interprocessor connections are limited to the maintenance 
channel and memory-update circuitry. This architecture forms the 
foundation of the hardware-recovery strategy employed in the 3B20D, 
namely to isolate an entire faulty processor as opposed to attempting 
fault resolution at the subunit level. 

DMERT is a modular operating system that provides a wide range 
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of protection from various types of classical errors. Examples include 
write-protected memory areas, memory ranges that can be used only 
for text execution, and protected virtual address spaces. Thus much of 
the recovery from these types of errors is built into DMERT directly. 
Those overt recovery actions that are required are greatly simplified 
by the underlying architecture. Hard faults and other conditions 
requiring recovery actions are treated according to their severity. Fault 
categories that will be described individually are hard faults, thresh­
olded faults, configuration faults, sanity time-outs, and software-re­
quested recovery actions. 

The 3B20D has built in self-checking circuitry designed to detect 
hard faults as soon as they occur. This circuitry simplifies recovery 
since early fault detection limits the possible damage done by the 
fault. Faults in this category indicate that the processor is no longer 
capable of proper operation and results in an immediate stop of the 
currently running processor and a switch to the standby processor. 
Since the standby processor does not match the active processor 
instruction by instruction, an initialization sequence is required to 
start execution properly. 

Some types of faults and errors are not severe enough to justify an 
immediate stop and switch recovery action. Examples of errors of this 
kind are hardware faults detected in the standby processor memory 
and software errors such as write-protection violations. Another type 
of error in this category is hardware faults that are handled by self­
correcting circuitry. Although most faults are detected by self checking, 
some units, such as main memories, have fault rates that justify self­
correcting capabilities. Disks also are self correcting through the use 
of cyclic redundancy codes. All errors in this class are reported to the 
recovery system as error interrupts. 

Recovery software classifies the interrupt by type, gathers and saves 
all available information about the interrupt, and reports the error to 
the system configuration-management package. If a particular soft­
ware process is suspect as the cause of the interrupt, such as in a 
software-triggered event, the process that was running at the time of 
the interrupt is faulted and entered at its fault entry after a stable 
system configuration is guaranteed. The fault entry of a process 
contains recovery and initialization sequences that are special to the 
process involved. 

All error interrupts are reported to configuration management. 
Errors are logged against the failing unit and error rates are compared 
to allowed error thresholds. If the affected threshold is exceeded, 
further action is required and is based on several factors. If the faulty 
unit is essential to the system and a mate unit is available, the faulty 
unit will be removed from service and scheduled for diagnostic testing. 
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If there is no available mate unit, the faulty unit will be initialized and 
returned to service since in the case of essential units it is better to 
have a faulty unit than no unit. Nonessential units are removed and 
scheduled for diagnostic testing whenever their error thresholds are 
exceeded. 

Each processor has a sanity timer that will result in an initialization 
if it times out. The active processor maintains both its own and the 
standby sanity timer so that if the active processor is completely dead, 
an initialization of the standby processor will be triggered by a sanity 
timer time-out. 

The system provides an Operating System Trap (OST) for use by 
software to request an initialization. This capability is used by critical 
system processes when they encounter errors that preclude perform­
ance of a critical system function. Initializations occur when an error 
or fault has been detected that cannot be recovered from without a 
change in hardware and/or software status. A stop and switch to the 
other processor mayor may not be associated with any given initiali­
zation. All initializations include actions of varying severity depending 
on what is required to deal with various faults and errors. 

The first event in the initialization sequence is a hard-wired transfer 
to a fixed location in the CU microstore where microcode makes a 
decision as to whether to bring this processor on-line or to switch to 
the other processor. If the current initialization is of level two or 
higher, the appropriate processes and data bases are loaded from disk. 
All available data about the initialization trigger is saved and a decision 
is made to bring this processor on-line or stop for the off-line initiali­
zation. 

The DMERT kernel initialization or bootstrap routine is then called 
to restart system processes or to fault active processes as appropriate. 
The initialization is now complete and the system has returned to 
normal operation. If an initialization does not recover the system to an 
operational state, another and more severe initialization will be trig­
gered automatically. Whether to escalate or not is controlled by the 
initialization interval. Any initialization that occurs during a window 
of time following the previous initialization will escalate to the next 
higher level. The length of the initialization interval is a system 
generation parameter that is established by the application. In addition 
to the DMERT initialization levels, provision is made for an applica­
tion to specify between one and sixteen levels for each DMERT level. 
For example, if the application specifies two levels for DMERT level 
one, the normal execution of initialization levels would be (1,1), (1,2), 
(2,1), ... , where the first number indicates the DMERT level and the 
second number is the associated application level. 

Data about various recovery actions taken by the system are sup-
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plied to provide all possible information about what went wrong and 
to provide data that can be used by maintenance personnel to assist 
them in isolating difficult faults. Recovery data are provided in several 
forms. Each error interrupt is accompanied by a printout containing 
available information about the state of the processor when the inter­
rupt occurred. A more difficult problem is presented by initializations. 
Since they are more severe than interrupts and in fact represent a 
discontinuity in processing, gathering and preserving error data is 
more difficult. Initializations, as well as interrupts, can occur at a rate 
much too fast for data to be printed. The solution is to save all 
pertinent data in a protected area of memory for printing after the 
system has recovered. 

Various kinds of error data are not generally printed as a part of the 
standard system output but instead are saved in error files on the 
system disks. Examples of this kind of data are device-driver errors 
and failing-memory data. One of the more useful pieces of data output 
by the system are Processor Recovery Messages (PRM). These are 
low-level one-line messages that are printed in real time. The PRMs 
thus represent progress marks through the recovery sequences and are 
extremely useful in those cases where stability cannot be achieved or 
postmortem data cannot be gathered. 

4.2 Special microcode for recovery 

A large fraction of the total amount of CD microcode is provided to 
aid in recovery. The bulk of this recovery microcode is in PROM 
because most functions are required in spite of the power history of 
the CD or its boot devices. Functions that are required even if the CD 
is not ready to execute its instruction set include micro interrupt 
processing, maintenance channel assists so that one processor can 
access the other processor and microcode to initialize hardware sub­
systems. Additional recovery microcode that resides in writable mi­
crostore (WMS), extends the processor's instruction set to provide 
convenient diagnostic and recovery software access instructions. When 
diagnostic performance requirements do not justify a special instruc­
tion, a microstore scratch area is available that can be loaded with 
arbitrary microsequences that can then be executed for special tests or 
functions. Before software can run, the WMS must have been loaded 
from disk. This happens initially as part of the processing of the MRF 
micro interrupt. 

4.2.1 MRF and microboot 

When a maintenance restart interrupt occurs, a long sequence of 
microsteps begins to establish system sanity. Both processors may be 
in their MRF sequence at the same time and each one may try to 

358 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



become the active processor. The MRF code fIrst makes decisions on 
whether to do an off-line initialization or an on-line initialization. If a 
processor determines that it has just powered up, it clears main store 
and does an off-line initialization unless forced on-line. 

A number of tests are made on data in the system status register, 
SSR, to select one of four possible actions: microboot, tapeboot, 
processor initialization, or stop and switch. The simplest actions are to 
begin execution of a processor initialization program called PINIT or 
to stop and switch to the other processor. This is accomplished by 
sending a switch command over the maintenance channel to the other 
processor. 

Tapeboot is a complex sequence of microcode that is only done 
when requested manually via the craft interface. Its function is to 
create a new system disk from tape. Using the tape device and disk 
device selected by the craft interface it initializes those I/O units and 
initializes the WMS from tape. A boot program, called load disk from 
tape, is read from tape into main store, and memory-management 
tables are created to allow it to run the hardware complex without the 
operating system. This program then reads the tape to make a 
DMERT disk image. 

Microboot uses information on the DMERT disk to initialize the 
writable microstore and read in the fIrst software boot program called 
little boot. To do this, it must fIrst select the disk drive to use as a boot 
device. If the craft interface has forced either the primary or secondary 
boot device, it uses that device. Otherwise, microboot selects a disk 
drive based on the state of hardware control bits. Alternate boots will 
use alternate devices. Microcode is read from the disk and then copied 
to WMS. Finally, little boot is read from the boot partition and given 
control. 

4.2.2 Microaccess assists 

Although the MRF sequence is the most complex microcode recov­
ery assist, both diagnostics and recovery software have special micro­
code. There are six maintenance channel assists in PROM. They are: 

Write Main Store 
Read Main Store 
Write Writable Microstore 
Read Microstore 
Write Utility Circuit 
Read Utility Circuit 

In addition there is microcode in WMS to support a set of instruc­
tions provided for the diagnostic and recovery software. Diagnostics 
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have instructions to manipulate the maintenance channel and aid in 
I/O diagnoses. They also share instructions with recovery. These 
instructions include groups of instructions for: 

On-Line Main Store Controller 
Off-Line Main Store Controller 
Maintenance Store Operations 

Finally, both diagnostic and recovery software use privileged instruc­
tions (shared with the operating system) to read or write special 
registers. They also can activate unit initialization sequences that are 
used in the various parts of the MRF microcode. 

4.3 Emergency modes 

Emergency mode on the 3B20D refers to the facilities and proce­
dures provided to prevent the system from experiencing a total outage. 
For example, emergency facilities are applied when the system is 
unable to recover automatically. The most characteristic of these are: 
duplex failure of the control unit, duplex failure of the system disks, 
duplex failure of the essential I/O devices, failure of fault recovery to 
find a working configuration of hardware, software faults that will not 
allow the system to operate properly, errors that destroy the integrity 
of the disks, and software overwrites that introduce catastrophic errors 
into the software. 

Emergency mode capabilities are built into the system to address 
these mechanisms that can fail the 3B20D as a system. The emergency 
action interface (EAI) on the 3B20D provides for manual initialization 
capabilities that can recover the system from several of the conditions 
mentioned above. This interface allows the craft to select a processor 
and disk configuration in a case where certain configurations may be 
leading to the problem. The interface also allows the craft to recon­
figure the system to handle maintenance hardware failures. For ex­
ample, the craft can inhibit error sources and sanity timers through 
EAI commands, thus allowing recovery from certain maintenance 
failures even though both processors are affected. The EAI also 
provides capabilities for craft initializations to deal with loss of sub­
system capabilities. 

The 3B20D also provides the craft with other manual capabilities 
through the port switch select, the disk power inverter select, and the 
unit power switches. These can be used to reconfigure the system to 
handle certain problems in the system. In rolling bootstrap conditions, 
the 3B20D outputs diagnostic information through processor recovery 
messages. This information provides a gross diagnostic capability in 
the event of a complete system outage. 
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Tape load boot is an emergency procedure provided for the situation 
where a system has destroyed its only valid copies on disk of the 
generic software. Here the site would have a tape copy of the generic 
and data base, and read the tapes into the disk via the EAI tape load 
boot facility. 

The final backup repair procedure is the dead start diagnostics. 
Primarily used as an installation tool, the dead start diagnostics allow 
for the repair of a completely sick processor by using a remote host 
processor. 

The craft interface provides the mechanism through which the 
status of the system can be determined, the configuration of the 
system's hardware or software can be changed, and special emergency 
actions can be taken during catastrophic failures of system compo­
nent.8 The emergency action interface (Fig. 5) allows the craft in the 
field to access the system during times when a major portion of the 
system is nonfunctional to the point where the normal capabilities of 
the craft interface cannot be used. The limited capabilities of the 
emergency action interface include forcing failing hardware off-line or 
on-line, notification of the status of critical system resources, and 
forcing a reinitialization of the system. 

4.4 Software integrity 

Section III described the architecture of the software integrity 
system. In this section, we describe some of the specific audit and 
overload measures that have been included in the DMERT system. 

The DMERT audit package verifies the validity of critical data 
structures. Most audits exist throughout the system within the proc­
esses that control the data to be audited. In some cases, several audits 
are invoked consecutively to form a sequenced mode audit. Most 
requests for running audits come from an audit control structure, i.e., 
the audit manager. 

Audits in DMERT verify data, not functions. The basic types of 
auditable data are system resources and stable data. Though most of 
the auditable data in the operating system resides in the kernel, 
additional data resides in other critical processes, such as the file 
manager and device drivers. Smaller amounts of auditable data reside 
in supervisor processes, such as in the UNIX* operating system and 
the process manager. 

Some audits, scheduled on a regular basis, are known as routine 
audits; others, scheduled on request, are known as demand audits. A 
partial list of the DMERT audits follows: 

* Trademark of Bell Laboratories. 
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(i) Message buffers-This audit finds and frees lost message buffers, 
i.e., messages that have been on a process's queue for extended periods 
of time. 

(ii) Scheduler-This audit checks for linkage errors in the sched­
uler's ready and not-ready lists. 

(iii) Memory manager-This audit recovers lost swap space and 
corrects any overlap of swap space. 

(iv) File manager-This audit checks all internal file manager struc­
tures: task blocks, buffers, mount table, etc. The audit corrects the 
information and has the ability to back out an aborted task and free 
its resources. 

(v) File system-This audit is demanded by the file manager when­
ever a file system is mounted read/write. It checks and corrects the 
file system's super block free list, and free-block bit map. This audit 
verifies the integrity of the mounted file systems concurrent with their 
use. 

v. MAINTAINABILITY 

The maintainability of the 3B20D system is the second vital com­
ponent that guarantees the overall high reliability required of the 
system. There are conditions where automatic recovery is unable to 
restore the system to a fully functioning state. This is where maintain­
ability is critical to satisfying DMERT's high-reliability requirements. 
The basic premise of maintainability is to provide basic data-gathering 
and data-analysis mechanisms as well as the ability to act on the 
results of that analysis. These mechanisms must be able to collect and 
analyze diagnostic and debugging information from various hardware 
and software components within the system in order to isolate the 
error. These mechanisms must then allow the craft to control and 
modify the configuration of the system based on the diagnostic and 
debugging information collected. Furthermore, these mechanisms 
must yield their information as quickly as possible while disturbing 
the rest of the system as little as possible. 

Maintainability comprises such areas as diagnostics, transient-error 
analysis, routine maintenance procedures, field utilities, and plant 
measurements. Once the error has been isolated and analyzed, the 
problem must then be corrected as quickly and benignly as possible. 
This procedure is termed updatability, and it includes such aspects as 
growth and retrofit for hardware, emergency fixes, function update, 
and system update for software. Maintainability is quite naturally 
partitioned into diagnostics (hardware) and the various field utilities 
(software).ll However, central to the ability of the craft to maintain 
and control the 3B20D hardware and software is the ability to interface 
to the various maintenance facilities provided within the system. This 
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is one of the very important capabilities of the craft-interface system. 
The craft interface provides the craft and others with the means to 
request diagnostics, receive error-analysis reports, initiate emergency­
recovery procedures, gather plant-measurements data, and exercise 
routine maintenance programs. In addition, the craft-interface system 
allows configuration control by providing access to growth and retrofit 
procedures, system- and function-update capabilities, emergency-fix 
facilities, and the various field utilities. This section discusses the 
capabilities of the subsystems, which provide basic maintainability of 
the DMERT system. Diagnostics are discussed in Ref. 9. 

One component of the maintainability required of DMERT -based 
systems is the ability of these systems to accept hardware and software 
changes in a way that does not interfere with their primary tasks. In 
other words, a DMERT-based system must be able to accept changes 
without disturbing call processing, networking, or other critical func­
tions. DMERT supports this through several aspects of updatability. 
The first is growth; the ability to add or remove hardware and related 
software components to the running system. Growth extends from 
physically connecting new equipment-such as memory boards­
through informing the system of its existence, exercising it, logically 
connecting it into the system's configuration, and committing its use 
in the system. Other subsystems-such as a hardware and software 
fault recovery and diagnostics subsystem-then take over to ensure 
that the new system component continues to be sane and usable. 

The second aspect of updatability is retrofit: the ability to replace 
hardware components in the system with similar components of a 
different vintage or with different capabilities or interface character­
istics. Retrofit procedures may "de-grow" or remove old units and 
then grow or add new ones. They also may add the new units first and 
then perform a transition from the old units to the new. Thus, retrofit 
of units may involve extensive periods of time where old and new units 
coexist in the system. Retrofit may also involve substantial software 
changes to interact with new units and to recognize the existence of 
both old and new units. 

The third component of updatability, field update,12 deals exclusively 
with software and data file changes in DMERT. Such changes are 
done logically, on a file-by-file or functional level. Just as with growth 
and retrofit, field update can install or replace system programs or 
files, inform the system about them, logically connect them into the 
system, exercise them in that state, and then commit to or back out of 
them. Field update is intended primarily for installing fixes or small 
features that do not perturb the system's architecture. 

The fourth updatability component, system update, allows program 
and data changes of much greater magnitude, up to complete software 
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system replacement. A bootstrap is required to install the changes for 
any system update. By using disk redundancy or backup copies of 
sections of DMERT's disks, system update can prepare a new, partial, 
or total version of the system on disk and then switch to it (and back, 
if necessary). Where field update performs a logical change of files, 
system update does a physical change of a set of partitions (file systems 
and/ or file partitions). 

VI. SUMMARY 

This article has described the basic architecture of the fault-recovery 
and system-integrity subsystem for the 3B20D Processor. These sub­
systems are tied into the maintainability aspects of the processor. All 
of the features provided are responses to the reliability objective of no 
more than two minutes downtime in each year of service. The features 
and architecture continue in the tradition of former high-availability 
processors. 
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Comprehensive diagnostic tests and multifeatured control software 
designed for execution on several host processors help craft to quickly 
isolate faulty hardware anywhere in the 3B20D Processor. Besides 
meeting the requirements for Bell System switching systems, the 
3B20D diagnostics provide a high degree of modularity and porta­
bility using an operating-system-based structure. The diagnostics are 
used in a wide range of development, production, and maintenance 
activities throughout the project life cycle. Many features of the system 
architecture and hardware are provided to allow thorough diagnosis 
in a time-shared noninterfering manner. Additional features are 
provided in the diagnostic control structure to extend the DMERT 
diagnostic capabilities to application systems based on the 3B20D 
Processor. 

I. INTRODUCTION 

Many of the diagnostic principles and features embodied in the IA 
Processor1 have been incorporated in the maintenance design for the 
3B20D Processor. These design principles include: (i) use of a special­
purpose test-design language that facilitates test interpretation; (ii) 
use of a table-driven control program approach; (iii) use of a common 
test data base covering all hardware versions of the 3B20D Processor; 
(iv) partitioning of diagnostic tests into phases associated with specific 
hardware functions; (v) control features allowing selective test execu­
tion and variable degrees of detail in outputted results; and, (vi) 
optional automatic trouble location. In the 3B20D Processor design, 
however, a more general diagnostic design approach was followed. 
This approach resulted in a more portable diagnostic control structure; 
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it allowed diagnostic execution in several environments: factory testing 
using a support processor, installation testing using a remotely located 
processor, and in-service, on-line testing of a standby mate processor. 

II. OBJECTIVES 

As with earlier processor designs, the 3B20D Processor diagnostics 
must be effective and efficient in fault detection, provide consistent 
test results, protect the contents of memory, be noninterfering with 
normal system operation, allow automatic trouble location, and be 
easy to maintain and update. In addition to meeting these objectives, 
the 3B20D diagnostics were required to be: 

(i) Portable-The diagnostic software must execute in several en­
vironments. Throughout this paper the execution environment is re­
ferred to as the host processor (or computer). 

(ii) Flexible-The diagnostics would test multiple system configu­
rations containing various vintages of circuits. 

(iii) Modular-Standard control interfaces must accommodate dif­
fering test access facilities to the processor under test, input/output 
facilities, and DMERT application processes that are used to diagnose 
application-dependent hardware that interfaces to the 3B20D Proc­
essor. 

(iv) DMERT compatible-Diagnostics must be integral with, rather 
than separate from, the operating system.2

,3 

To meet these design objectives, the diagnostic control structure 
was designed as an integral part of the operating system and had to 
support the evolutionary stages of development. 

III. DIAGNOSTIC ENVIRONMENTS 

As shown in Fig. 1, the 3B20D Processor can be diagnosed from 
several execution environments. During the early phase of processor 
development, a local host computer was used to support hardware, 
software, and diagnostic design. This access arrangement continues to 
be used in factory testing. Later in the development, more efficient use 
was made of the host computer by providing access to a remote target 
3B20D Processor over a dial-up telephone line. Ultimately, in the 
standard duplex-system configuration, the active control unit is capa­
ble of diagnosing its own peripheral controllers and the standby control 
unit. Each of these access arrangements is discussed below. 

3. 1 Local host diagnostics 

Figure 1a shows three local-host access arrangements. In the first, 
diagnostic programs executing in a host computer send test inputs and 
receive test results over a standard communications port to a Micro­
level Test Set (MLTS). The MLTS connects directly to the 3B20D 
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Fig. I-The 3B20D Processor diagnostic environments. 

control unit backplane, and provides complete access and control of 
the processor's microprogram control circuitry. For the second access 
path, a circuit was designed to simulate the Central Control Input/ 
Output (CCIO) internal bus. The CCIO Bus Simulator (BS) is acces­
sible using a standard communication input port. A Dual Serial Chan­
nel (DSCH) connected to the CCIO/BS can then communicate directly 
with a Maintenance Channel (MCH), the circuit designed for control­
unit access. Like the ML TS the MCH can access the central control 
at a low level. However, only the MCH is used in the duplex configu-
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ration (see Section 3.3); it communicates with either another MCR or 
a DSCR. As shown, the CCIO/BS-DSCR access path can also be used 
to diagnose the Input/Output Processor Controller (lOP C) and the 
Disk File Controller (DFC). Notice that when the local host is a 3B20D 
Processor, the path is from the DSCR of the host 3B20D Processor to 
the MCR, IOPC, or DFC of the target machine. 

3.2 Remote host diagnostics 

The DSCR is designed to communicate over distances of approxi­
mately 100 feet. Remote-host (Fig. lb) access arrangements can be 
used for diagnosing over longer distances. Using data sets and a 
telephone line, tests stored and executed on a remote computer can be 
applied through the ML TS to the control unit. Peripheral controllers 
(IOPC and DFC) can also be diagnosed by downloading tests into the 
control unit and executing them. Although remote-host diagnostics are 
useful in cases where a local host is unavailable, execution performance 
is limited by the transmission facilities used. 

3.3 Duplex mode diagnostics 

The primary diagnostic execution environment is the 3B20D Duplex 
Processor (Fig. lc). The active (on-line) processor acts as a local host 
for diagnosing the standby (off-line) processor. An MCR-to-MCR link 
provides the access path for testing the control unit. In the duplex 
mode, the DFC and IOPC are diagnosed from the on-line control unit 
using the operational interface path, a DSCR attached to the Direct 
Memory Access Controller (DMAC). Tests of the links from the off­
line processor to the peripherals also can be run under the control of 
the active processor. As shown in Fig. lc, the duplex system configu­
ration also supports remote monitoring and control of diagnostics over 
a dedicated link to a Switching Control Center (SCC). 

3.4 Multiple-target processors 

Although the target processor is always a 3B20D Processor, it can 
be of many types, versions, and sizes. The diagnostic control program 
accounts for these differences by referencing the Equipment Configu­
ration Database (ECD). All information relevant to the particular 
diagnostic tests that should be applied to each hardware unit is 
contained in the ECD. This information includes the name of each 
hardware unit within a subsystem, subunits, and their logical intercon­
nections, equipage options, and auxiliary information, such as channel 
address and baud rate. Whenever a circuit design is originated or 
updated, diagnostic tests are designed and appropriate ECD changes 
are specified. 
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The diagnostic control structure is depicted in Fig. 2. At the kernel 
process level are the modules that provide access to the ECD or drive 
the communication links previously discussed. The UNIX* operating 
system supervisor resides at the supervisor level,3 and provides a 
protected environment and operating system services for the higher­
level processes. The modules operating under the UNIX operating 
system that pertain exclusively to diagnostics are: the Maintenance 
Input Request Administrator (MIRA), the Diagnostic Monitor (DIA­
MaN), the Diagnostic Control process (DIAGC), and the Trouble 
Locating Process (TLP). Output messsages from the diagnostic struc­
ture are sent to the system spooler for printing. The first three of these 
modules are discussed below; the TLP is described in Section VII. 

4.1 MIRA 

Scheduling and dispatching maintenance requests is the function of 
MIRA, the front-end process of the diagnostic structure. MIRA main-

* Trademark of Bell Laboratories. 
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tains a waiting queue and an active queue to administer each service 
request. Requests are serviced according to priority and resource 
availability; manual requests have higher priority than those initiated 
automatically. For each service request, MIRA spawns a DIAMON 
process and sends it a message. When the request is completed, 
DIAMON sends a message back to MIRA. Interfaces are provided in 
MIRA to administer routine exercise requests and inputs from the 
error-interrupt handler.4 

Nine general types of request are handled by MIRA; they are 
described in Table I. 

4.2 DIAMON 

Execution of each diagnostic is directed from start to finish by 
DIAMON. Specifically, DIAMON will: 

(i) Initiate and control the actual diagnostic processes specified in 
a message from MIRA. 

(ii) Communicate with the Equipment Configuration Database 
Manager (ECDMAN) and the appropriate device driver (the software 
control module for a particular hardware unit) to extract control data 
from the ECD and retrieve path names of related utility files. 

(iii) Build the diagnostic control block containing all the data 
required by a diagnostic. 

(iv) Spawn the appropriate diagnostic control process (DIAGC); 
separate processes are provided for the control unit and peripherals. 

(v) Communicate diagnostic output to MIRA and the output 
spooler. 

(vi) Spawn the remove and restore processes. 
(vii) Interface with the TLP. 

Table I-Description of diagnostic requests to MIRA 

Command 

Diagnose (DGN) 
Remove (RMV) 
Restore (RST) 

Restore Unconditional 
(RSTU) 

Exercise (EX) 

Terminate (STOP) 
Display (OP) 
Inhibit (INH) 

Allow (ALW) 

Description 

Diagnoses the unit specified in the request. 
Removes the specified unit from service. 
Diagnoses the unit and restores it to service if all tests pass 
(ATP). 
Restores the unit to service without running the diagnostic. 

Starts the diagnostic in the interactive mode. This com­
mand allows stepping to a particular test, pausing, or loop­
ing over a diagnostic "phase" (ie., group of functionally 
related tests) segment. 
Stops execution of a diagnostic. 
Displays status of queued requests in MIRA. 
Inhibits diagnostic requests from other processes that auto­
matically or routinely initiate diagnostics. 
Allows diagnostic sources, canceling any active INH re­
quest. 
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4.3 DIAGC 

DIAGC is a generic name that refers to a class of processes. The 
DIAGC is a unit or application-dependent module that controls exe­
cution of tests. Containing all unit-dependent task routines, DIAGC 
translates the interpretive diagnostics and provides the interface with 
DIAMON. A unit's diagnostic phase table (DPT) contains the name 
of a particular DIAGC process to be used in the diagnosis. DIAMON 
imposes no limit on the number of processes that can interface with it. 
The following functions are provided by DIAGC: 

(i) Opens the diagnostic driver 
(ii) Shares the buffer (DCB) provided by DIAMON 

(iii) Initializes the raw data buffer 
(iv) Executes the diagnostic 
(v) Computes the test results 

(vi) Provides interactive control if required 
(vii) Provides an interface to DIAMON for test results and abnor­

mal terminations (aborts). 

4.4 Portability 

All diagnostic control modules are written in the C language and 
execute in the UNIX operating system environment. This facilitates 
the porting of the control structure to other host processors that 
support C and UNIX operating system software. Variations of proc­
essor configuration and hardware vintage can be described in the ECD. 
DMERT application processes can provide additional DIAGCs and 
Data Tables to control diagnostic test execution for interfacing hard­
ware. Several driver processes can be supported to allow diagnostics 
to be executed over standard communication ports, dual-serial chan­
nels, or maintenance channels. 

v. MAINTENANCE FEATURES 

The combination of hardware-access circuits and modular-control 
programs, just discussed, provides the 3B20D Processor with consid­
erable maintenance flexibility. Tests are selected according to the 
vintage of circuit under diagnosis. Displayed in Fig. 3 is a typical 
diagnostic input message in the PDS (Program Documentation Stand­
ards)5 syntax, one of three command languages supported by DMERT. 
Requests can be made to diagnose an entire unit, a particular subunit, 
or all subunits in a specified community. Individual test phases or 
ranges of phases can be executed and the results printed with optional 
amounts of detail. Some diagnostic test phases-because of either 
their long execution time requirements or their dependency on other 
system hardware availability-are restricted to manual initiation. In-
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Fig. 3-Sample input message-diagnosis of main memory. 

teractive features such as stepping, pausing, and looping are provided 
for facilitating difficult repairs. Units can be restored to service auto­
matically if they pass all tests. Several host computer versions are 
supported along with application-dependent interfaces. 

Diagnostics can be initiated either manually or automatically. Man­
ual requests can be entered from either a local maintenance terminal 
or through a work-station terminal associated with a Switching Control 
Center System (SCCS) connected to the 3B20D Processor via a 
synchronous data link. Automatic requests originate from other soft­
ware modules such as the error-interrupt handler, the routine exercise 
scheduler, or an application-software module. 

VI. DIAGNOSTIC TEST DESIGN 

6.1 General 

The stringent availability requirements of Bell System applications 
using the 3B20D Processors had a significant impact on all aspects of 
system design. Diagnostic and maintenance engineers were actively 
involved in meeting these goals commencing with the initial architec­
tural planning and requirements generation. Many hardware features 
are provided to monitor system integrity, to detect errors, to recon­
figure the system, and to facilitate repair of the faulty equipment.4

•
6 

Although some of the features are for fault isolation during pack 
repairs, most are used at the system level to effect repair through pack 
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replacement. Diagnostics, the primary repair capability for the system, 
make extensive use of these hardware features for control and obser­
vation of the circuitry. 

6.1. 1 Circuit pack tests 

The initial factory testing of circuit packs uses test vectors, which 
can be applied at terminals of the pack connector in a commercially 
available computer-controlled test set. Most of the vectors are gener­
ated independently from system-level diagnostic tests. The packs are 
given additional tests in a 3B20D system test bed using diagnostics 
and some operational sequences. 

6.1.2 System-level tests 

All 3B20D Processor diagnostics run under the DMERT operating 
system as user-level processes. To communicate with the unit being 
tested, the user-level process passes the test scenarios to a kernel 
process that interfaces to the hardware. Each of these kernel process 
drivers runs at its standard system priority level to perform the tests. 
If some time-critical tests are necessary, the priority level can be 
elevated to avoid interruption by other system processes. 

Each of the diagnostic programs is structured to avoid any negative 
impact on the normal system functions. Special driver functions allow 
the drivers to handle error conditions generated by the diagnostic 
tests, thereby avoiding the normal error-handling routines. Since many 
fault conditions result in system errors, this capability is especially 
vital to allow thorough testing in the operating system environment. 

In the Control Unit (CU) diagnostic, additional safeguards are 
implemented to assure proper handling of the system recovery and 
integrity hardware. Even with faults in the off-line CU integrity 
circuits, the system will maintain normal functionality during CU 
diagnostics. 

The system diagnostics are organized on a unit basis, for example 
the Control Unit (CU), I/O processor (lOP) or Disk Controller (DFC). 
Each unit diagnostic is structured into test phases that pertain to a 
particular subunit. The phases are organized in a hierarchical fashion 
beginning with the more elemental operations and applying to the 
hard core of a subunit. Subsequent phases expand in complexity and 
in the totality of the circuitry exercised. 

The user-level diagnostic processes, namely the control program and 
the test data tables, contain all of the information necessary for control 
and sequencing of tests. The control program has the interpretative 
routines for decoding each data table test statement. The program also 
can use various system configuration parameters, test results, and data 
table decision functions to modify program flow or to terminate the 
diagnostic. 
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6.1.3 Maintenance channel access 

As shown in Fig. Ic, the primary interconnection between the 
Control Units is the maintenance channel (MCR). This circuit is an 
enhanced version of the dual-serial channel, with special capabilities 
aimed at maintenance access and control of the off-line CU. It provides 
the ability to run, stop, load, clear, and step the CU. The MCR allows 
the active CU to read some off-line CU registers directly and others 
indirectly using microcoded sequences. Diagnostic-test programs can 
be loaded through the MCR to the off-line microstore or mainstore. 
The MCR is controlled by a DMERT kernel process driver that carries 
out the diagnostic test sequences. 

6.2 Control unit diagnostics 

The Control Unit (CU) has seven types of subunits: Central Control 
(CC), Main Memory Store (MAS), Store Address Translation (SAT), 
Direct Memory Access (DMA), I/O Channels (DSCR), Cache (CSU), 
and Utility Circuit (UC). The latter three are optionally equipped; the 
UC is normally used for program testing and is not further discussed 
herein. Some 3B20D Processor applications have special circuits that 
are part of the CU; diagnostics for them are concatenated to the CU 
diagnostic. A pictorial view of the CU hierarchy is shown in Fig. 4, 
which depicts the multiple levels of units as defined in the ECD. 

6.2. 1 Central control tests 

The first CU subunit tested is the CC, which contains the core of 
the CU. The CC diagnostics in turn test the maintenance channel, 
microcontrol logic and memory, registers, data-manipulation logic, 
memory access, timers, interrupts, I/O interface, error-control hard-

, , , , 
r ---"----l 
I APPLICATION I 
I CIRCUIT I L _______ .J 

Fig. 4-Unit hierarchy of the control unit. 
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ware and integrity circuits. The testing uses a series ofMCH operations 
for the basic tests. For the more complex test routines, down-loaded 
microcoded test programs are executed by the CD under test. The CC 
is extensively exercised in tests of the remaining subunits. 

6.2.2 Memory tests 

Initial testing checks out the basic memory-controller operations 
and the control and data paths from CC to the MAS. Tests are carried 
out on the error-detection and correction circuits in preparation for 
using them in array testing. Testing of the memory arrays (up to 16M 
bytes can be equipped) is with down-loaded micro diagnostic routines. 
Since the test-pattern programs are executing autonomously in the 
CD under test, all of its real time is used for testing. Whenever a 
hardware error is generated, control of the CD passes to a diagnostic 
error handler. The combination of self error detection and the micro­
routines allows extensive pattern checking to be executed rapidly over 
the complete memory spectrum. 

6.2.3 Store address translation tests 

Functional tests are performed via MCH on all of the SAT control 
logic. The memory cells are then tested with various microcoded test 
patterns. The remainder of the tests, implemented as micro diagnostics, 
check out the multiplexor, compare logic, matchers, protection logic, 
and SAT to MAS interface. 

6.2.4 Cache tests 

The cache is comprised of a high-speed four-way-set associative 
memory and a 2K by 36-bit interrupt stack. The diagnostic performs 
extensive tests of the memory cells, matchers, and select logic. In 
addition to functional tests, a special diagnostic routine called the 
cache exerciser is used to stress, at high data rates, the cache interfaces 
to CC, MAS, and SAT. This kind of testing is effective at detecting 
marginal fault conditions. 

6.2.5 Direct memory access tests 

The DMA diagnostic checks out the CC-to-DMA communication 
and control paths, the internal DMA functionality and the DMA 
operations to MAS. Many of the tests are coded into ROM (Read Only 
Memory) contained in the DMA. The remainder consist of down­
loaded microcoded tests and off-line, main-memory, resident test pro­
grams. The final sequence of tests verifies the DMA cache 
"handshaking" operations. It is noteworthy that in the DMA diagnos­
tics, except for control and down loading through the MCH, all test 
sequences are executed completely by the CD under test. 
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6.2.6 Channel tests 

The channel diagnostic carries out the remainder of the testing of 
the CU's I/O capability. Basic tests are performed on the communi­
cation and handshaking of the CU to all in-service system peripherals. 
More exhaustive tests (demand diagnostics) can be specified by the 
maintenance personnel for troubleshooting more elusive problems. 
These diagnostic phases require that a peripheral unit be configured 
as a "helper unit" (specified in the diagnostic input message) to allow 
the CU to carry out peripheral operations at a high rate. 

6.3 Peripheral unit diagnostics 

The Disk File Controller (DFC) and Input Output Processor (lOP) 
are described in Refs. 7 and 8. The DFC can control up to eight Moving 
Head Disks (MHD) of various capacities, types and manufacturers. 
The Peripheral Controllers (PC), which are under control of the lOP, 
are special-purpose I/O units described in Ref. 8. The testing for the 
DFC and lOP, which share a common front end, is primarily carried 
out under control of the on -line CU. Since both of these are intelligent 
controllers, many of the specific tests can be executed autonomously. 
The peripheral diagnostics utilize the DMERT kernel process drivers 
to interface to the hardware. Throughout these diagnostics, extensive 
use is made of driver-maintenance orders and special handling of error 
conditions. 

6.3.1 lOP and DFC tests 

The peripheral diagnostics use common-control programs 10DIAG 
and DFDIAG that contain all the CU resident tests and control 
routines. Separate sets of data table and down-loaded microcode files 
are used for each unit diagnostic. The overall sequence of testing 
proceeds from CU / controller interface to complex internal controller 
operations. Most of the latter make use of the operational firmware in 
the controller to carry out the test sequences. The more complicated 
controller tests are part of the resident diagnostic firmware and are 
initiated by special-driver operations. At the successful conclusion of 
DFC or 10PC testing, the unit is restored to service to allow testing to 
proceed on MHD or PC circuits. 

6.3.2 Moving head disk tests 

Relatively limited maintenance capabilities are provided in the 
MHD itself. Most of the testing is carried out by the firmware routines 
in the DFC. To provide an overall check on MHD performance, one 
cylinder is devoted to diagnostic testing of each read/write head. The 
error-detection/ correction capabilities can also be checked using this 
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area. As each MHD is tested successfully it can be updated from its 
mate copy and restored to service. 

6.3.3 Peripheral-controller tests 

Each controller is microprocessor controlled and can carry out most 
of its diagnostics autonomously. Some of the tests are firmware resi­
dent in the PC's. The remainder of the diagnostic routines are down­
loaded into the PCs' RAM (Random Access Memory). Some types of 
PCs also can exercise the units they control, for example a tape 
transport, and report back the results for use by the maintenance 
personneL 

VII. TROUBLE LOCATING PROCESS 

If the diagnostic request specifies the TLP option, the TLP process 
is invoked at the completion of diagnostic testing. The process com­
pares characteristics of the failures with a resident data base of fault 
signatures. In each data table, the designers have partitioned the tests 
into groups. Any test failure in a group will set a flag bit, called a key, 
which is permanently assigned to the group. The TLP search, based 
on the phase and key information, results in a rank-ordered list of 
closest signatures and, ultimately, into an ordered list of suspected 
faulty equipment. This approach makes the data base and process less 
sensitive than earlier methods to circuit or test changes and to marginal 
failures. The data base (TLDB) is generated off-line from the results 
of physically inserting faults into units in a test laboratory. Test 
engineers also can modify the TLDB directly by inserting information 
into the test data tables. Fig. 5 depicts a typical diagnostic output 
message from a faulty memory unit. 

VIII. EVALUATION 

Although many diagnostic tests were generated with the aid of 
hardware logic simulators, many tests were developed manually. To 
assure that the diagnostics met the objective-at least 90 percent of 
the simulated faults detected-an extensive evaluation process was 
carried out. Using physical fault insertion at the DIP (Dual In-Line 
Package) terminals, many thousands of faults were inserted. This 
approach has provided timely and effective design feedback for diag­
nostic test and TLDB development. 

IX. CONCLUSION 

In addition to providing a variety of test-control options, the 3B20D 
diagnostics were designed for multiple execution environments. As a 
result, the diagnostics have been useful throughout the development 
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Fig. 5-Sample output message-diagnosis of memory with TLP option. 

cycle and have supported the design laboratory, factory testing, in­
stallation, normal system operation, application interfaces, and field 
support. These diagnostics are the major tool for validating the 3B20D 
Processor hardware and for isolating any faults. The provision of a 
high degree of hardware self-checking, standby and active redundancy, 
self-diagnosis, micro diagnostics, and remote testing capability all have 
contributed to making the 3B20D Processor a high-availability real­
time system. Coupled with the DMERT operating system, with its 
robust complement of features, the 3B20D Processor meets the needs 
of a wide variety of Bell System projects. 

x. ACKNOWLEDGMENTS 

The authors would like to acknowledge the many designers and 
testers at Bell Laboratories and Western Electric whose combined 
efforts resulted in the diagnostic package described herein. 

380 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



REFERENCES 

1. P. W. Bowman, M. R. Dubman, F. M. Goetz, R. F. Kranzman, E. H. Stredde, and R. 
J. Watters, "1A Processor: Maintenance Software," B.S.T.J., 56, No.2 (February 
1977), pp. 255-88. 

2. J. R. Kane, R. E. Anderson, and P. S. McCabe, "The 3B20D Processor & DMERT 
Operating System: Overview, Architecture, and Performance of DMERT," 
B.S.T.J., this issue. 

3. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, "The 3B20D Processor & 
DMERT Operating System: DMERT Operating System," B.S.T.J., this issue. 

4. R. C. Hansen, R. W. Peterson, and N. O. Whittington, "The 3B20D Processor & 
DMERT Operating System: Fault Detection and Recovery," B.S.T.J., this issue. 

5. M. E. Barton and D. A. Schmitt, "The 3B20D Processor & DMERT Operating 
System: Craft Interface," B.S.T.J., this issue. 

6. M. W. Rolund, J. T. Beckett, and D. A. Harms, "The 3B20D Processor & DMERT 
Operating System: Central Processing Unit," B.S.T.J., this issue. 

7. R. E. Haglund and L. D. Peterson, "The 3B20D Processor & DMERT Operating 
System: 3B20D File Memory Systems," B.S.T.J., this issue. 

8. A. H. Budlong and F. W. Wendland, "The 3B20D Processor & DMERT Operating 
System: Input/Output System," B.S.T.J., this issue. 

DIAGNOSTICS 381 





Copyright © 1983 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 62, No.1, January 1983 
Printed in U.S.A. 

The 3820D Processor & DMERT Operating System: 

38200 Craft Interface 

By M. E. BARTON and D. A. SCHMITT 

(Manuscript received March 10, 1982) 

The 3B20D craft interface package includes hardware, firmware, 
and software that enables telephone company craftspeople to obtain 
the status of and exert control over the system. Because this package 
consists of one or more standard keyboard-display terminals for 
human-machine interactions, it is flexible and can be adapted to a 
broad variety of applications. Furthermore, the use of standard 
terminals and data link protocols allows for inexpensive remote 
access with capabilities similar to local access capabilities. Finally, 
the use of video displays has made it possible to provide easy-to-use 
menus that guide the craftspeople through some of the complex 
control operations. This article describes the 3B20D craft interface 
capabilities and the internal architecture of the package. 

I. INTRODUCTION 

The "craft interface" is that part of the 3B20D Processor that 
enables people to obtain status information and exert control over the 
system. To those not involved in telephony, the word "craft" may 
seem odd. It has traditionally been used to refer to the people who 
work in and around telephone switching offices performing various 
maintenance functions on the equipment. In this article, the term is 
used somewhat liberally to mean any person who interacts with the 
3B20D to perform administrative and maintenance functions. 

The 3B20D's craft interface is a marked departure from previous 
systems developed at Bell Laboratories because it relies almost exclu­
sively on video displays and keyboard controls instead of the key-lamp 
panels and teletypewriters usually found in the Master Control Center 
(MCC) of electronic switching systems. Status information is presented 
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visually as graphical displays and text messages on various terminals 
and printers. There is also a capability to provide audible status by 
connecting the 3B20D to an audible alarm circuit. System control is 
exerted primarily via a keyboard attached to the video display termi­
nal, although the 3B20D also includes a separate power control panel 
for each major hardware unit. 

Another important enhancement lies in the ability to access and 
control all aspects of the system from remote locations such as Switch­
ing Control Centers (SCCs). In the past, remote access was obtained 
by "piggy-backing" data links onto the typewriter terminals in the 
telephone office and by connecting a telemetry unit to the key-lamp 
control panel. The 3B20D has introduced a more "intelligent" data 
link using the CCITT X.25 communication protocol. This link can 
carry considerably more information and is less vulnerable to noise 
and other data communication failures. Furthermore, the use of the 
internationalstandard message protocol (X.25) will standardize remote 
access to the 3B20D via packet switching networks. 

This article fIrst provides an overview of the 3B20D craft interface, 
primarily concentrating on how the system appears to the craftspeople. 
Then the internal architecture is described and the various 3B20D 
applications usages of the general facilities provided in the common 
system are explained. 

II. OVERVIEW 

This section describes the 3B20D craft interface as it appears to the 
people who use it to administer and maintain the system. 

2. 1 Hardware 

The most frequently used parts of the craft interface are shown 
mounted in two equipment frames in Fig. 1. The left frame contains a 
"read-only printer" or ROP* on which all important status messages 
are logged. The right frame contains a keyboard-display terminal that 
is commonly referred to as the "maintenance CRT," or MCRT. Tele­
phone switching applications of the 3B20D can choose either a frame­
mounted or desk-mounted arrangement for the ROP and MCRT. A 
desk mounted version is shown in Fig. 1. 

2.2 Text messages 

One way in which the 3B20D communicates with the craftspeople 
is via text messages. For example, when the message 

* From the viewpoint of a programmer, it is a "write-only printer," since the program­
mer can only send (i.e., write) messages to it. However, the craftsperson cannot type on 
this device, and so from that viewpoint it is a "read-only printer." 
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DGN:CU 0; UCL! 

is typed, the central processing unit 0 (CD 0) is diagnosed. The DCL 
keyword indicates that the diagnosis is "unconditional," which means 
that all tests will be run even if some of the early tests fail. When the 
diagnosis is complete, the CD diagnostic prints a text message such as: 

DGN CU 0 COMPLETED ATP 

This means that the diagnosis has been completed and all tests passed 
(ATP). For initial 3B20D applications, the text messages conform to 
the Bell System craft interface syntax, commonly known as the Pro­
gram Documentation Standard (PDS) Language. However, all new 
switching systems developments will be adopting a craft interface 
language sanctioned by the International Telegraph and Telephone 
Consultative Committee (CCITT) under the name MML. Since PDS 
and MML are similar, and since the 3B20D is expected to enjoy broad 
use in international applications, the operating system was designed 
so that each application can easily choose the appropriate syntax. 

Text messages are typed on the MCRT keyboard, and the response 
messages are displayed on the MCRT video display and/or printed on 
the ROP. The basic repertoire of messages available with the 3B20D 
covers a broad range of maintenance and administration activities. 
Each application can easily add its own messages to this repertoire. 

Fig. I-Craft interface printer and terminal. 
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2.3 Control and display functions 

As mentioned earlier, previous systems used key-lamp panels to 
display system status and to receive control signals from the crafts­
people. The 3B20D uses the MCRT video screen and keyboard, as 
shown in Fig. 2, in place of such a panel. The upper part of the screen 
always contains a summary of important system indicators, including 
CRITICAL, MAJOR, and MINOR severity alarms and "type" alarms, 
such as CD and BLDG/PWR, which is the indicator for building 
power. The middle part can display a variety of "pages" that show 
system status in a graphical form. Finally, the lower part of the screen 
is used for text input and output. 

The standard 3B20D software includes several display pages related 
to the common processor equipment, and each application can easily 
add its own pages. The "Common Processor Display Page" shown in 
Fig. 3 provides a diagram of the redundant components in the basic 
processor complex. At the left of the diagram is a "menu" listing the 
control operations that can be invoked when this page is displayed. To 
select a menu item, the craftsperson depresses the CMD/MSG key, 
which switches the craft interface from text message mode to command 

Fig. 2-Craft interface video screen and keyboard. 
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Fig. 3-Emergency action interface display page. 

mode. Then the craftsperson types the menu item number, replacing 
"x" with a 0 or 1 where necessary. Finally, depression of the RETURN 
key (or the! key) causes the command to be executed. 

The craft interface stays in the command mode until the CMD/MSG 
key is depressed again. This key is one of four "special function keys." 
The ALM RLS key is used to retire audible and visual alarms. The EAI 
DISP key places the craft interface in the emergency action mode, 
which is described below. When in EAI mode, the NORM DISP key 
returns the screen to its previous display. 

The Emergency Action Interface Page is different from other pages 
because it is directly controlled by a microprocessor in the MTTY 
controller (MTTYC) and, therefore, can be used even when the 3B20D 
software is not operating. As shown in Fig. 4, this page contains menu 
items that enable the craftsperson to re-initialize the system or to force 
the redundant units into a particular configuration. Typically, this 
page is used only when system sanity is suspect. 

2.4 Remote access 

All capabilities of the craft interface except the power control panels 
can be accessed from a remote maintenance center via a dedicated 
data link that is attached to the MTTYC. The standard arrangement 
includes a primary and a backup link, both of which use the CCITT 
X.25 communication protocol. The remote site is usually a Switching 
Control Center (SCC) that contains a collection of computers and 
terminals that interface with these X.25 links and provide the SCC 
craftspeople with sophisticated analysis and maintenance tools. 
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Fig. 4-Common processor display page. 

III. CRAFT INTERFACE ARCHITECTURE 

This section discusses the hardware and software architecture of the 
3B20D craft interface. Figure 5 shows the arrangement of hardware 
units pertinent to the craft interface, while Fig. 6 shows the software 
modules. The discussion of the hardware architecture that follows will 
cover the I/O Processor (lOP) driver and MTTYC handler software, 
as they are the fundamental parts of DMERT required to access the 
hardware. 

3. 1 Hardware architecture 

Referring to Fig. 5, one sees that each of the duplex processors is 
connected to both lOPs, and that each lOP supports up to sixteen 
peripheral controllers (PCs). Various PCs exist for terminals and 
printers, data links, tape units, etc. The lOP driver process, which is 
the part of DMERT responsible for communication with the lOPs, 
contains "handlers" that deal with the specialized functions of the 
PCs. The following handlers are pertinent to the craft interface: craft 
interface handler, X.25 handler, emergency action interface handler, 
general-purpose terminal handler, and alarm handler. 

3. 1. 1 Craft interface handler 

The MCRT, ROP, and X.25 links are attached to a PC known as 
the maintenance teletype controller, or MTTYC. The craft interface 

388 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



38200 MAINTENANCE CHANNEL 38200 
COMMON 

PROCESSOR 

F 
I I 

J 

I lOP I MTTYC I 
sccs~ ~L 

PORT 

I SWITCH 
MCRT 

J 
EAI - EMERGENCY ACTION INTERFACE 
lOP - INPUT/OUTPUT PROCESSOR 

MCRT - MAINTENANCE CRT 

COMMON 
PROCESSOR 

R 
I I 

I 
J 

~ MTTYC 1 lOP 

~I Lsccs 

I 
I 

ROP 

MTTYC - MAINTENANCE TERMINAL 
CONTROLLER 

ROP - RECEIVE-ONLY PRINTER 

J 

SCCS - SWITCHING CONTROL CENTER 
SYSTEM 

Fig. 5-Craft interface hardware overview. 

handler controls the transfer of data to and from the peripheral devices 
associated with the MTTYC. The MCRT and ROP are administered 
directly by the MTTYC, while the X.25 links require the additional 
services of the X.25 handler described later. For each device or data 
link attached to the MTTYC, the handler supports all standard access 
operations of the UNIX* operating system. In addition, this handler 
treats the single MCRT terminal as two "virtual terminals," with the 
upper part of the screen used for control/display functions and the 
lower part used for text messages as shown in Fig. 2. Each virtual 
terminal appears to the higher-level software as a separate device. 

3. 1.2 X.2S handler 

The X.25 handler provides communication with a remote mainte­
nance center via 1200 to 9600 bits per second synchronous data links 
using levels 2 and 3 of the CCITT X.25 protocol. Level 2, referred to 
as the link layer, provides link initialization, error control, and flow 
control on the physical data link and is implemented as firmware 
within the MTTYC. Level 3, referred to as the packet layer, multi­
plexes several independent data streams (logical channels) on the 
physical link and is implemented by the X.25 handler software. In 
effect, the X.25 handler makes the single MTTYC look like a multitude 
of independent communication channels. 

* Trademark of Bell Laboratories. 
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Fig. 6-Craft interface software architecture. 

3.1.3 Emergency action interface handler 

The Emergency Action Interface (EAI) is a processor circuit pack 
that provides basic status information and manual control even under 
extreme circumstances. That is, the EAI circuit gives craftspeople 
limited access to the 3B20D regardless of DMERT software sanity. 
This access is in the form of the EAI page display shown in Fig. 4, 
which is controlled totally by the firmware in the MTTYC. The 
MTTYC interacts with the EAI circuit via the connection shown in 
Fig. 5 to acquire the status information for display on the MCRT. 
Also, when the craftsperson selects a menu item from the EAI display, 
the MCRT delivers the corresponding commands to the EAI circuit. 

The emergency action interface handler only comes into play when 
DMERT is operating sanely. It has two major functions. First, it 
periodically "punches in" with the EAI circuit to indicate that the 
software is operating correctly. If the EAI (and, subsequently, the 
MTTYC) fails to receive this periodic signal, it will automatically 
initiate a system recovery operation to restore software sanity. Second, 
the EAI handler receives some non-emergency commands from the 
MTTYC via the EAI, including non-emergency initialization and 
reconfiguration signals. 

3. 1.4 General-purpose terminal handler 

The craft interface subsystem supports terminals other than the 
MCRT and ROP via the teletype controller, or TTYC. This controller 

390 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



offers all MCRT and ROP functions except access to the EAI circuit. 
Its handler is similar to the craft interface handler used with the 
MTTYC and, in particular, offers the dual virtual terminal mode of 
operation needed to intermix control! display functions and text func­
tions on a single terminal. This capability is typically used for dial-up 
monitoring of a system from a Western Electric or Bell Laboratories 
product support center. 

3.1.5 Alarm handler 

The scanner and signal distributor (SCSD) peripheral controller 
provides sense and control points that are tied into the system power 
controls and alarms. The SCSD handler detects sense point state 
changes and sends commands to change the states of control points. 
Higher-level software uses these capabilities to detect situations such 
as power removal, fuse operation, or thermal warnings and to respond 
by activating audible alarms or power shutdown circuits. The appli­
cation can also tie into the SCSD and configure the higher-level 
software to detect and react to such things as building intrusion alarms. 

3.2 Software architecture 

Figure 6 shows the modules that comprise the standard DMERT 
craft interface software subsystem. Already discussed were the device 
handlers that connect to the modules on the right of the figure. Each 
application usually adds its own modules that tie into the interfaces 
on the left. Also, many other parts of DMERT (e.g., the diagnostic 
subsystem) connect to the craft subsystem via these front-end inter­
faces. The modules in the middle of the figure are the "workhorses" of 
the craft subsystem and provide the internal interfaces used by 
DMERT programmers to interact with the craft personneL 

3.2.1 Text input processing (shell) 

The Shell is the module that interfaces between the handlers and 
the processes that respond to text input command's. The term "shell" 
is borrowed from the UNIX operating system, and DMERT's craft 
shell operates in a manner similar to the other shell. That is, the 
DMERT shell reads an input line, parses it into a command verb and 
a list of "tokens," searches for the command process in the appropriate 
disk directory, creates the command process, and passes the list of 
tokens to it. The command process has access to a "shell library" that 
includes functions to do further parsing of the tokens. 

The major difference between the DMERT shell and the other shell 
is that DMERT must parse commands that are typed in either the 
PDS or MML syntax, where as the UNIX operating system shell uses 
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a more general syntax for a broader variety of applications. * Another 
difference is that the PDS and MML languages include the notion of 
a "locking acknowledgment." That is, an input command process is 
required to give a two-character response (e.g., OK if the command is 
successful, PF if a printout follows) within a few seconds after the 
person types the message, and no other command can be typed until 
the acknowledgment appears. In the UNIX operating system, message 
acknowledgments are not required and command type-ahead is al­
lowed. Therefore, the DMERT shell library includes functions that 
pass the acknowledgment back to the handler in order to unlock the 
terminal. 

Referring again to Fig. 6, note that each text input channel has its 
own instance of the DMERT shell. This allows each channel to operate 
independently of the others, which means that several craftspeople 
can simultaneously interact with the system. 

3.2.2 Text output processing (spooler) 

The DMERT output spooler accepts text strings from higher-level 
processes and directs them to the appropriate output devices. [The 
term "spooler" is a computer science anachronism that comes from 
the days when information waiting to be printed was temporarily 
stored on reels (spools) of magnetic tape.] One might ask why the 
higher-level process doesn't write directly to the device (via the de­
vice's handler, of course). There are two reasons to avoid direct writing. 

First, the PDS and MML languages require that each message be 
enclosed in an "envelope" that clearly delineates the message. This 
envelope generally contains a time stamp, a message priority/alarm 
indicator, and an end-of-message delimiter. The time stamp can be as 
simple as the number of minutes past the current hour, or it can be 
the complete date and time. The priority/alarm indicator shows 
whether the message is a result of a manual or an automatic action 
and whether the action being reported requires immediate attention. 
Finally, the end-of-message delimiter provides for automatic logging 
and browsing of messages by a computer in the remote maintenance 
center. Centralizing the generation of the output message envelope in 
the spooler simplifies the work that higher-level processes must do to 
produce text output. Also, changes or additions to the envelope can be 
introduced easily by modifying only the spooler. 

The second reason for using the spooler approach is that many 
messages must be sent to several places. For example, the usual mode 

* For DMERT applications that require the more general UNIX shell on terminals 
other than the MCRT, it is possible to configure the system in such a way that the 
UNIX shell is automatically activated on some or all general-purpose terminals. In other 
words, both the DMERT and the UNIX operating system shells are compatible with 
the general-purpose terminal handler described earlier. 
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of operation when a remote maintenance center is attached via the 
X.25 links is to send every output message to both the MCRT, ROP, 
and the remote center. However, if the ROP runs out of paper or if 
there are no craft personnel near the 3B20D, messages can be routed 
only to the remote center. To handle these and the diverse message 
routing situations that can arise, the spooler maintains a "map" 
showing where messages are to be routed based on their priority/alarm 
indicator and on a message type code that is received from the process 
that generated the message. The map also can be configured to route 
some message types to disk files instead of or in addition to printing 
them. This feature is useful for keeping a log of messages that are 
sometimes needed for problem analysis but that would overload the 
ROP or X.25 links if sent routinely. Input commands are provided to 
print the contents of these logging files when needed. 

3.2.3 Control/display processing 

The Display Administration Process (DAP) administers the upper 
part of the MCRT (and, possibly, other video terminals) containing 
the displays that replace the traditional key/lamp panels for 3B20D 
applications. DAP's fundamental purpose is to display "pages" from 
its repertoire and to accept commands listed on "menus" associated 
with the pages. Figure 3 shows the Common Processor Display Page, 
which is one of the standard pages delivered with DMERT. Typically, 
the majority of display pages are defined by the specific application 
processes. 

For each page, there is a Page Description File (PDF) containing a 
pseudo-program that describes how the page should be "painted" on 
the video screen and what menu selections are allowed. PDFs are 
constructed like programs and compiled by a page description file 
generator (PDFGEN) program. 

3.2.3.1 Display functions. When DAP begins execution, no pages are 
active. Then, as the various parts of DMERT and the application are 
initialized, they send interprocess messages to DAP requesting that 
specific PDFs be loaded into main memory and activated as display 
pages. A maximum of 64 pages can be active at anyone time. Other 
interprocess messages tell DAP which of the active pages to display 
on each video terminal. 

Each page consists of up to 128 graphical constructs known as 
"indicators," a term reminiscent of the lighted indicators on a key / 
lamp panel. The process that initially informs DAP to activate a page 
becomes the owner of that page and it and other processes can 
subsequently inform DAP (via interprocess messages) to change the 
states of the indicators. For example, one popular type of indicator is 
the rectangle enclosing a few text items, such as the CU-O box in Fig. 
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3. The CPDP page owner can send messages to DAP causing the 
phrase UNAV to change to OOS when control unit 0 (CU-O) changes 
from the unavailable state to the out-of-service state. 

These state changes can be communicated in detail, for example, by 
sending a message to DAP specifying the characters OOS to replace 
UNAV. However, the usual method is to use state numbers instead of 
the actual characters. DAP has access to a table of 256 state entries 
specifying the standard text and video attributes associated with each 
of the 256 possible indicator states. The standard maintenance states, 
such as active, standby, and out-of-service, have predefined state 
numbers, and each application can define additional states for its own 
needs. The advantage of using state numbers is that the text and video 
attributes for each state can be centrally controlled. For example, one 
application could use the text ACT for the active state while another 
application used ACTIVE, and the only difference would be in the state 
table definition entries. 

Video attributes were mentioned above in addition to the text that 
can be associated with an indicator. For the usual black-and-white 
terminals, DAP recognizes the "blink" attribute and the "reverse" 
attribute. The conventional use for the reverse attribute is to show 
that an indicator is, in some sense, active. In other words, a reversed 
indicator is similar to a lit lamp on a key/lamp paneL The blink 
attribute is used to draw attention to a situation that requires imme­
diate action, just like a flashing lamp. In Fig. 3, the SYS NORM 
indicator is reversed to show that the system is operating normally. If 
a major alarm occurs, the MAJOR indicator will blink until the ALM 
RLS key is pressed. 

DAP also includes the capability to deal with color terminals, which 
have a much richer set of attributes. For example, the MAJOR indicator 
could be displayed as white characters against a red background, while 
the MINOR indicator would be white against yellow. It is possible to 
define indicator states in the most general way for color terminals and 
then have the Equipment Configuration Database contain MTTYC or 
TTYC options that "downgrade" the color states for black-and-white 
terminals. In the example mentioned above, both the red and yellow 
backgrounds would be mapped into the reverse attribute. 

3.2.3.2 Control functions. In addition to displaying pages on the 
MCRT screen, DAP also can receive menu commands typed on the 
MCRT keyboard. These commands usually are referred to as "pokes" 
since they are similar to the action of poking a key on a key /lamp 
paneL As mentioned earlier, depression of the CMD/MSG key switches 
the terminal from the message mode to the command mode and vice­
versa. When in the command mode, DAP displays a CMD: prompter 
towards the top of the screen, as shown in Fig. 3, and positions the 
cursor so that the typed characters appear in that line. 
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A command line consists of a number (usually 3 or 4 digits long) 
that optionally can be followed by some text characters. The craft 
interface handler, knowing that the terminal is in command mode, 
routes this input to DAP instead of to the SHELL. DAP examines the 
number to determine if it corresponds to a local or a global menu item. 
Local menu items are associated with the page(s) currently being 
displayed on the video screen. Global items are associated with any 
active page, even if the page is not currently displayed. In other words, 
a globally defined item will always be accepted and acted upon, even 
if its page is not being displayed. 

If DAP successfully locates the menu item corresponding to the 
number that was typed, it usually sends an interprocess message to 
the owner of the page defining that menu item. This message contains 
the item number and the additional text characters typed, if any, as 
well as the originating terminal identification. The owner then takes 
whatever action is appropriate. 

We used the word "usually" above because in some cases the 
response to a command is some simple action such as flipping to a new 
page on the display. In other cases, the PDF can specify a function to 
be executed by DAP upon receipt of the command, thereby bypassing 
the overhead of interprocess messages. One interesting aspect of this 
feature is the ability for DAP to translate a menu command into a text 
message to be passed to an instance of the SHELL, with the additional 
characters substituted in the message. This makes it possible for an 
application to design easy-to-use menus as an alternative to text 
message input, but to handle all terminal inputs internally as if they 
came through the SHELL. 

A final note on commands has to do with locking acknowledgments. 
As with the SHELL, DAP requires a positive response to each com­
mand before another command can be accepted. For a command 
passed to a page owner via an interprocess message, the owner must 
send an acknowledgment message back to DAP within a certain time 
period or be abandoned. For commands handled via the function call 
approach, the function returns an acknowledgment code to DAP. 

3.2.4 Forms processing 

As described above, DAP is typically used for control! display func­
tions related to maintenance activities such as configuration control. 
However, some applications require more general display functions 
than the indicator/menu approach appropriate for these maintenance 
scenarios. The craft subsystem provides facilities for entering textual 
information as part of displays. 

A DAP page can be defined to contain input areas other than the 
standard command input line. When such a page is displayed, depres­
sion of the CMD/MSG key places the cursor at the first input area 
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instead of at the command line. The craftsperson can enter text into 
this area and/or move the cursor, using the terminal cursor control 
keys, to the next input area on the page. When the RETURN key is hit, 
DAP passes the typed information to the page owner via an interpro­
cess message. 

3.2.5 Alarm processing 

The Alarm Control Process (ACP) is the part of the craft subsystem 
responsible for sounding audible alarms and displaying a summary of 
current system status at the top of the video screen. ACP is created 
during DMERT initialization and notifies DAP to activate the page 
known as the System Summary Area (SSA). It also attaches itself to 
the SCSD handler to gain access to the signal distributor points used 
to sound audible alarms. The plant measurements data base is auto­
matically updated for severity-type alarm counts. 

As the spooler and DAP receive messages from the higher-level 
processes, they check for situations requiring audible alarms and/or 
changes in the system status summary. For the spooler, alarm infor­
mation is contained in the message prefix received from the higher­
level process. For DAP, this information is derived from the indicator 
state data. Both cases result in messages being sent to ACP, which 
then operates the signal distributor points via the SCSD handler and/ 
or sends DAP messages to change the states of indicators on the SSA 
page. Application processes also send messages directly to ACP for 
alarms. 

Another message received by ACP from DAP is a notification that 
the ALM RLS key has been depressed. This causes ACP to reset the 
signal distributor point controlling the audible alarms. This key de­
pression is also reported from the MTTYPC directly to the SCSD 
audible alarm retire scan point. 

The Critical Indicator Area (CIA) process is closely related to ACP 
and DAP. Its function is to extract from the SSA page sixteen "critical 
indicators" of system status and periodically send them to the remote 
maintenance center via the X.25 link for alarming and display. The 
remote center can use this periodic "heartbeat" from the CIA process 
as one test that the system is operating sanely. 

3.2.6 Common processor display page 

Thus far we have described the general hardware and software 
modules that comprise the 3B20D's craft interface subsystem. 
DMERT also includes several processes that are, in effect, users of the 
craft subsystem. One of these is the process that owns the Common 
Processor Display (CPD) page that we have frequently used for 
examples (see Fig. 3). This Real-Time Status (RTS) process is created 
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as part of the DMERT initialization sequence and immediately sends 
messages to DAP to activate the CPD page. RTS also attaches itself 
to the Equipment Configuration Data Base (ECD), which it periodi­
cally examines to determine if any units shown on the CPD page have 
changed state. Spontaneous equipment configuration changes are re­
ported to RTS through a library interface (CONFIG) from the various 
device handlers. In either case, appropriate messages are sent to DAP. 

IV. SUMMARY 

The 3B20DjDMERT system has taken a significant departure from 
earlier switching processors in many areas, but perhaps none is so 
visible as the craft interface. The use of flexible video displays makes 
it possible to adapt the 3B20D to diverse applications quickly and 
economically. Also, the introduction of a reliable, secure, high-capacity 
data link for remote maintenance makes the 3B20DjDMERT system 
well suited for unattended operation, with resultant cost savings. 
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This article describes the general approach that was taken in 
integrating and system testing the 3B20D Processor system. Since 
both the system hardware and software were developed simultane­
ously, the goals of the system test and integration plan naturally 
shifted emphasis and expanded their scope from achieving hardware 
stability to establishing software functionality and finally to demon­
strating system stability. This article also overviews some of the 
project management techniques and procedures applied during the 
development of the 3B20D Processor. 

I. INTRODUCTION 

An important aspect of the development of any complex system 
such as the 3B20D Processor is the methodical integration and system 
testing during all phases of the development consistent with the 
experience gained from previous developments. 1

-
4 Since the hardware, 

software, and microcode were designed and developed simultaneously, 
the initial efforts focused primarily on the hardware and firmware 
using stand-alone exercise modules and system diagnostics run from a 
laboratory support processor. After the hardware reached sufficient 
stability, emphasis turned to functional testing of each major software 
subsystem and feature. Finally, as full functionality was achieved, the 
major thrust of testing focused on system integrity and reliability using 
the previously developed tests as a regression test package to assure 
no loss in functionality as problems were cleared. The development 
methodology is summarized in the relative timeline sequence chart 
shown in Fig. 1. 

Also discussed in this article are some of the project management 
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techniques and administration tools used to control the changes and 
new features introduced into the system. 

II. EARLY HARDWARE/SOFTWARE INTEGRATION AND TEST 
STRATEGY 

2. 1 Objectives 

The objective of the initial integration and test effort on the proto­
type hardware was to verify basic instruction execution and memory 
access, establish full diagnostic capability of the hardware,5 prove in 
peripheral access and functionality, and establish stable communica­
tion interfaces. In achieving these objectives, a stable software devel­
opment environment was achieved for the major portion of the soft­
ware development. 

2.2 Stand-alone exercise modules 

The diagnostics were developed to initially run from the laboratory 
support processor in conjunction with the hardware development. This 
simultaneous development of the diagnostics and the processor hard­
ware had the unique advantage of providing individual functional 
verification of each circuit pack or major unit before integration of the 
operational system was attempted, thereby saving much laboratory 
time ferreting out faulty hardware. The initial functional integration 
started with simplistic CPU test modules that afforded stand-alone 
verification of basic operation. Upon reaching acceptable functionality, 
stand-alone test modules were used to establish communication with 
the disk file controller and moving head disks. 

2.2. 1 Central processing unit integration 

Two test modules were used extensively to integrate the early 
Central Processing Unit (CPU) hardware, firmware, and subsequent 
changes. The first test module was designed to test basic main-memory 
access and instruction execution with output to serial channel on the 
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Central Control Input/Output (CCIO) bus.6 Loading this module from 
the laboratory support processor verified the communication link from 
the support processor to the 3B20D Processor. In addition, the exe­
cution of the module not only verified basic hardware functionality 
but also verified the data-link capability to a TTY via the serial 
channel. The second test module, in combination with a primitive 
version of the operating system, established two processes and cycli­
cally sent messages between them. This capability not only tested 
more of the hardware features of the CPU, but also provided a means 
to verify stable operation over long periods of time. This test module 
was then expanded to verify memory update on the off-line Control 
Unit (CU) and "soft switch" capability between the duplex units.7 

2.2.2 File system integration 

Once basic operation of the CPU was verified, attention was pointed 
toward the file-system operation requiring integration of the Direct 
Memory Access (DMA) unit, the Disk File Controller (DFC) unit, and 
the Moving Head Disk (MHD).8 Again a stand-alone test module, 
based on the disk driver software and the primitive operating system, 
was used for the integration of the hardware and firmware. Because of 
the large percentage of the hardware that had to be operational for 
successful execution of this test module, it became an invaluable tool 
not only for the integration of the preproduction hardware but also for 
Western Electric manufacturing, testing, and installation of early 
models of the 3B20D Processor in application'system laboratories. 

2.3 System software 

Once the hardware was integrated and verified to the limits of the 
stand-alone test modules, development of the operating system and 
system-initialization software proceeded rapidly, and the integration 
effort switched emphasis from strictly hardware to system software. 
The strategy was to incrementally integrate-from the primitive op­
erating system-each new capability of the operating system and 
system-initialization software with the hardware until a fully cycling 
stand-alone basic processor system was achieved. 

With the basic capability to initialize the system and cycle the 
operating system, integration proceeded to verify the 3B20D resident 
diagnostic control structure and diagnostics. 

By this time, additional integration tests were necessary to more 
fully expand coverage of the system. Thus, a test process was developed 
that created disk read and write jobs with a variable number of these 
child processes specifiable up to the number of allowable Dispatch 
Control Table (DCT) entries. Because of the large percentage of the 
processor used by this test process and because of the controllable 
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activity, it became an invaluable regression-test vehicle for subsequent 
integration activities as well as a system stress test. 

2.4 Results 

The primary result of this early effort was the establishment of a 
stable hardware and operating software base for the development of 
the features. 

III. INTEGRATION AND SYSTEM TEST 

The 3B20D system-level testing is actually divided into three distinct 
functional groups consisting of System Integration, System Test, and 
System Analysis. A brief historical review of the evolution of these 
groups is perhaps the best way to describe their respective functions. 
In early 1979 a decision was made to delegate the system testing of 
DMERT to Western Electric.9 A Western Electric department was 
formed with the goal of taking over full responsibility for DMERT 
system testing by January 1, 1980. This transition actually took place 
about six months ahead of schedule in July 1979 and the system 
remains a Western Electric responsibility. The goals of the system 
testing group at that time were to release laboratory quality prereleases 
to DMERT applications to allow parallel application software devel­
opment with the DMERT development. The system testing group 
also developed an extensive, documented set of tests that could be 
used not only to test the prereleases but would also serve as a base for 
testing all generic software releases in the years to follow. 

Another group, the System Integration group, was responsible for 
planning and coordinating the building (compiling) of each DMERT 
release, getting the release installed and cycling in the 3B20D devel­
opment labs, and assuring that basic functions worked. Once this was 
accomplished, responsibility for the detailed testing was turned over 
to the system testing group. Thus, the system testing group could 
concentrate more on actual testing and problem resolution and less on 
bringing up the internal loads. 

3. 1 Integration 

System integration controls the flow of software changes from the 
time a developer completes a change through the release of that 
change to a customer. The specific areas of responsibility include: 

(i) Load engineering and planning 
(ii) Benchmark tracking and analysis 

(iii) Integration testing 
(iv) Release-letter generation 
(v) Modification Request (MR) tracking and MR data base integ­

rity. 
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3. 1. 1 Load engineering and load planning 

For each DMERT release, an individual is assigned to be the load 
engineer. This individual serves as the focal point for all load-building 
activities. Specifically, the load engineer analyzes all changes planned 
for the release by the generic engineer, decides in what sequence 
changes should be taken, oversees the building of the load, and 
coordinates installation and integration testing of the load in the 
development labs. 

Members of the integration team report to the load engineer who 
assures that all activities needed to deliver the load on schedule are 
assigned and completed. The load engineer with assistance from the 
integration team resolves daily problems and, as necessary, reschedules 
activities and people. 

The load engineer in conjunction with the program administration 
staff coordinates the actual building of the load. The load engineer 
must thoroughly understand the mechanics of how the system is built, 
what software dependencies exist and how source code is controlled 
via the CMS/M2 system. lO 

3. 1.2 Benchmark tracking and analysis 

Each new generic feature or major software enhancement results in 
a set of benchmarks that identify the date at which major activities 
are scheduled for completion. Benchmarks serve a dual purpose: first, 
as a management tool for measuring how the project is doing relative 
to the plan; and second, as a planning aide for other people or groups 
identifying dependencies for other features, hardware availability, or 
lab installation. 

Several tools have been used for identifying, tracking and reporting 
on feature benchmarks within the DMERT development organization. 

3.1.3 Integration testing 

One of the major objectives of the integration team is to assure that 
the load given to the system testing group is of sufficient quality to 
allow detailed functional testing. To verify that the system is of such 
quality, basic functional tests are run to assure that the major subsys­
tems are operational. These include diagnostics, processor duplex 
operation, disk and I/O capabilities, and Recent Change and Verify. 

3. 1.4 Release-letter generation 

Typically the applications that use the 3B20D Processor want the 
new DMERT software releases as soon as possible after the completion 
of system testing. This has presented a unique challenge to DMERT 
development management: the need to get releases, complete with 
essential documentation, to a number of different customers within 
one day of the completion of system test. 
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One vehicle used to supply necessary timely documentation to the 
customers is the release letter. This letter has evolved into a rather 
detailed document covering: 

(i) Support processor installation procedures 
(ii) 3B20D installation procedures 

(iii) List of all fIle names 
(iv) List of all changed fIles 
(v) List of all required data base changes 

(vi) MR descriptions for all MRs resolved in the release 
(vii) MR exceptions list. 

Of particular importance is the MR exceptions list. The intent of 
this list is to communicate to the customers known problems that exist 
in the release and, when available, action to be taken if it is observed 
on their machines. This communication mechanism saves many hours 
that applications personnel would spend analyzing problems already 
identifIed by the DMERT organization. 

To assure timely distribution of this letter, all sections are put on a 
support computer and support programs are executed to assemble 
them into a document that is available on the day of the software 
release. 

3. 1.5 Detailed MR tracking and data base integrity 

The integration team also was chartered to establish the integrity of 
MR data base, to produce accurate and timely reports, and to respond 
promptly to high-priority problems. Weekly audits of the entire data 
base are performed to assure that MRs do not remain in a transient 
state for an unreasonable length of time. 

3.2 System test 

The primary objective of the 3B20D System Test group is to test 
the DMERT system on the 3B20D Processor in order to validate that 
all advertised features and capabilities perform according to their 
documented requirements. System tests are designed to test all the 
functional capabilities of the processor and its hardware both in no­
load and stress environments. 

In the two and one half years since its inception, the System Test 
group has developed a complete system testing package containing 
over 700 test cases. As new features are developed, test cases are 
developed and each feature is thoroughly tested. Test cases are docu­
mented and in many cases processes are written to automatically 
execute the tests. Once a feature is released for customer use, a subset 
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of the defined test cases is included as part of an on-going regression­
te&t package. 

A concept of certification testing was established to identify prob­
lems early in the development cycle. This allowed more problems to 
be debugged and fixed before release and resulted in a more stable 
system testing environment and higher ultimate product quality. 

Certification testing requires the developers to build in the official 
environment lO and to demonstrate the proper execution of their new 
code to a system tester before it can be delivered to the integration 
team. The system tester has an option to request particular tests to be 
run with the new code and thus certify that the software to be 
submitted has passed some basic tests and can be approved for further 
processing. Software not passing certification is rejected and the de­
velopers have to correct the deficiencies and schedule a follow-up 
certification test. 

3.3 System analysis effort 

The System Analysis Group (SAG) effort was planned as an exten­
sion to Integration and System Testing. As its objectives, SAG was to 
perform tests aimed at measuring the performance and reliability of 
the 3B20D as a system. A separate development laboratory was 
constructed with the primary intention of simulating and functioning 
as a field site. Since this was the only 3B20D laboratory planned to 
run for long periods of time without rebooting, many problems of a 
periodic or long-term nature were first observed there. 

SAG members approached the stability aspect of the job by first 
defining measurable metrics. Objectives were defined based on the 
measured system reliability. The SAG team then identified and inves­
tigated problems that impacted system reliability and reported the 
effects on system stability once the problems were resolved. 

Stability data was collected during weekend testing. The tests in­
volved running a controlled-load package containing system exercise 
processes for specified periods of time, usually several days. These 
tests were generally run unattended to evaluate hands-off machine 
performance. All messages to the Read Only Printer (ROP) were 
stored on disk, dumped at the end of the test and analyzed using a 
program developed for this purpose. 

Three sets of objectives were defined for data analysis: a long-term 
objective for system reliability; a cut objective that identified satisfac­
tory stability levels for first application at in-service offices; and the 
objective of establishing concern thresholds. Any data above the 
concern threshold was clearly unacceptable for even initial in-service 
machines. Data lying in the area between the cut objective and the 
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concern thresholds needed additional understanding in order to make 
a go/no-go decision on cutover. 

An example of one of the metrics used to track stability is shown in 
Fig. 2 for ten releases of DMERT prior to the first machine cutover in 
September 1981. 

IV. FACTORY SYSTEM TEST 

Factory System Tests (FST) and Quality Assurance (QA) tests are 
the final hardware tests run at the Western Electric Company manu­
facturing plants to assure that a quality hardware product is delivered 
to the customer. 

4. 1 Objectives 

The objectives of FST and QA are to test the hardware functionality 
and interconnections of fully assembled systems to assure that the 
processors as built meet design intent. These extensive tests assure 
the highest possible quality in the product when shipped to the 
customer. 

4.2 FST test strategy 

Instead of developing special test software for the FST, the actual 
DMERT operating system is enhanced with additional exercise proc­
esses to form the Factory/Installation Software Test (FIST) package. 
The testing is divided into two phases: the normal operation phase 
and the stressed operation phase. These tests apply to all hardware 
delivered by the factory including the system as ordered, the comple-
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ment of spare circuit packs, growth units and circuit packs, and 
repaired product. 

4.2. 1 Normal operational tests 

The normal operational tests are designed to verify the functionality, 
interconnections, and basic maintenance operations associated with 
each unit under normal operating conditions. Included in these tests 
are the activation of system initializations under all possible minimum 
configurations using the power switch and the craft interface terminal. 
The tests then assure functionality of all units under simulated main­
tenance conditions by removing and restoring each unit using both the 
power switch and the craft-interface terminal. During this test the 
system must remain operational. The next phase of testing requires 
the running and passing of all diagnostics for each unit within the 
system. Finally a series of special exercise processes are used to 
simulate actual operation of the disks, tape units, TTY and other data 
link controllers, and a CD soft-switch process for duplex capability 
verification. 

4.2.2 Stressed environmental operational tests 

The 3B20D Processor is designed to operate under a wide range of 
temperature and battery conditions. To assure that the system meets 
the design intent to operate under these conditions, two additional test 
environments are imposed on the machine before shipment. 

4.2.2.1 Low voltage. The power converters are stressed most under 
conditions of low-input voltage; thus, the system must pass all the 
tests prescribed above at an input voltage of -43.75 ± 0.05 volts. This 
voltage is 91 percent of the nominal -48 volts. 

4.2.2.2 High temperature. High-temperature operation of the 3B20D 
Processor is critical to avoid outages during commercial power or 
mechanical failures that result in the loss of building air-conditioning 
systems. The system tests prescribed above must pass in a system that 
has been operating at a stable elevated temperature of 49°C ± 1°C for 
a period of at least four hours. 

4.3 QA testing 

In addition to the factory system test on all systems, additional tests 
are rerun under the auspices of the Bell Laboratories quality assurance 
organization and the Western Electric quality review organization to 
assure that statistical quality control limits are not exceeded, thus 
maintaining a high level of quality for the customers. 
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4.4 Result 

A major milestone was achieved in March 1980, when the first field 
shipment to the Traffic Service Position System (TSPS) site in San 
Antonio, Texas, was not only delivered on schedule, but passed the 
complete battery of factory system tests. 

v. ADMINISTRATION 

In this section, a brief overview of some of the important aspects of 
project-management and project-control techniques are presented. 

5. 1 Change authorization 

From the beginning of the project, the hardware design was under 
very tight controls. All changes or feature additions had to be approved 
by a management-change committee with representation from Bell 
Laboratories and Western Electric. This committee provided both a 
forum to review designs and design changes and to discern the eco­
nomic impact of each change. This committee then established a joint 
subcommittee, called the Engineering Support Group, to schedule and 
track each change from design through manufacture and ultimately to 
the installation into the various system development laboratories. 

Software change control was less tightly controlled during the initial 
development and relied heavily on the software development super­
visors responsible for each subsystem. Once the software was delivered 
to the application more stringent controls were introduced. At that 
point, feature content, overall coordination, and generic scheduling are 
the responsibility of the Generic Engineer and the Project Manager. 

5.2 Application interfaces 

To assure that the 3B20D Processor system meets the needs of the 
variety of Bell System applications, a group was established to act as 
the single focal point for the applications for all feature requests and 
MRs. 

5.2. 1 Feature content 

To establish feature content of the system, the Application Interface 
group, in concert with the applications, developed a prioritized list of 
feature requests and enhancements for the Project Manager and the 
Generic Engineer to review. Thus, a final list of features and enhance­
ments was established taking into account customer needs, schedules, 
and resource limitations. 

5.2.2 Modification requests 

Initially the Application Interface group also acted as a clearing­
house to prioritize, from the users point of view, the problems that 
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they discovered as the generic matured. This list, in conjunction with 
internally generated MRs, formed the basis for the Generic Engineer 
to approve MRs to be fixed for inclusion in the generic. Once an MR 
was approved, the Load Engineer tracked its progress through devel­
opment, integration, system test, and release. 

Once the first generic was cut into service, a committee was estab­
lished with representation from applications, DMERT development, 
generic engineering, system test, load engineering, and field support. 
This committee's function was to tightly control and adjudicate all 
software changes so as to assure that field service was not adversely 
affected and that real service problems were quickly attended to and 
delivered on a timely basis. 

5.3 Project-tracking tools 

A finite-state MR control mechanism was put into place to track 
and record changes in the status of MRs during the development 
cycle. lO From this data base, various reports were automatically gen­
erated for use by all organizations associated with the project. This 
central source of project-status information was an essential ingredient 
to the determination of areas of concern so that action could be taken, 
as well as a repository of all schedule information relating to MRs. 
This capability formed the nucleus of the automated project-manage­
ment tools. 

VI. CONCLUSION 

The 3B20D Processor is operating effectively in the field since the 
first cutover in September 1981. The rapid field buildup during the 
first six months (24 machines cut into service) could not have been 
possible if all parts of the system were not of the highest quality and 
designed for high reliability. Much of the success of the project is 
attributed to the extensive testing both by the DMERT development 
organization, Western Electric organizations and application organi­
zations during each step of the system's introduction. 
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ACRONYMS AND ABBREVIATIONS 

ACHI 
ACP 
AJT 
ALU 
ALW 
API 
APS 
ATB 
ATP 
BGB 
BIC 
BLDGPWR 
BPI 
BS 
BWM 
CAD 
CC 
CCIO 
CCIS 
CCITT 

CH 
CHAN 
CIA 
CIH 
CMS 
CONFIG 
CPD 
CPH 
CPU 
CRT 
CSU 
CU 
DAP 
DATA TABLE 
DBEVOL 
DBS 
DCB 
DCT 
DDCMP 
DDL 

application channel interface 
alarm control process 
active job table 
arithmetic logic unit 
allow 
attached processor interface 
Attached Processor System 
address translation buffer 
all tests passed 
bidirectional gating bus 
bus interface controller 
building power 
bits per inch 
bus simulator 
broadcast warning message 
computer-aided design 
central control 
central control input/output 
common channel interoffice signaling 
International Telegraph and Telephone Consulta-

tive Committee 
channel 
channel 
critical indicator area 
craft interface handler 
Change Management System 
configuration management program 
common processor display 
communication protocol handler 
central processing unit 
cathode ray tube 
cache store unit 
control unit 
display administration process 
diagnostic data table files 
Data Base Evolution System 
duplex bus selector 
diagnostic control block 
dispatch control table 
digital data communication message protocol 
data definition language 
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DDLP 
DDSBS 
DEV 
DFC 
DFDIAG 
DFI 
DGN 
DIAGC 
DIAMON 
DIO 
DIP 
DMA 
DMAC 
DMERT 
DML 
DMU 
DPT 
DRAM 
DSCH 
DST 
DUC 
DUI 
EAI 
ECC 
ECD 
ECDMAN 
EIH 
EOS 
EPROM 
ER 
ESS 
EX 
FIFO 
FIST 
FPS 
FST 
FTAM 
FTS 
GRASP 
IB 
INH 
10DRV 
lOP 
10PC 

data definition language processor 
duplex dual-serial bus selector 
device 
disk file controller 
disk file diagnose 
disk file inverter 
diagnose 
diagnostic control 
diagnostic monitor 
DMA I/O bus 
dual in-line package 
direct memory access 
direct memory access controller 
Duplex Multiple Environment Real Time 
data manipulation language 
data manipulation unit 
diagnostic phase table 
dynamic random access memory 
dual serial channel 
destination 
dual-access utility circuit 
direct user interface 
emergency action interface 
error correction code 
equipment configuration data or data base 
equipment configuration database manager 
error interrupt handler 
extended operating system 
erasable programmable read -only memory 
error register 
Electronic Switching System 
exercise 
first in-first out 
factory/installation software test 
form processing system 
factory system tests 
forms translation and mapping 
field test set 
generic access package 
instruction buffer 
inhibit 
lOP driver process 
input/ output processor 
input/ output processor controller 

412 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



IPC 
IPS 
KPCB 
LC 
MSGS 
MSI 
MTC 
MTTR 
MTTY 
MTTYC 
MU 
MUX 
NCP 
NK 
NRZ 
ODIN 
OOS 
OP 
OST 
PA 
PC 
PCB 
PCSD 
peu 
PD 
PDF 
PDFGEN 
PDS 
PE 
PFC 
PIC 
PID 
PINIT 
PRM 
PROM 
PSBR 
PSDC 
PSI 
PSW 
QA 
RAM 
RC/V 
RFI 
RMU 

interprocess communication 
inches per second 
kernel process control block 
line controller 
messages 
medium-scale integration 
maintenance 
mean time to repair 
maintenance TTY 
maintenance terminal controller 
mask unit 
multiplexor 
network control point 
non -killable 
non-return to zero 
on-line data integrity 
out of service 
display 
operating system trap 
program address 
peripheral controller 
process control block 
peripheral controller subdevice 
power control unit 
peripheral device 
page description file 
PDF generator 
program documentation standard 
phase encoded 
peripheral frame control 
peripheral interface controller 
process identifier 
processor initialization program 
processor recovery message 
programmable read-only memory 
primary segment base register 
parallel serial data interface 
peripheral system interface 
program status word 
quality assurance 
random access memory 
recent change/verify 
radio frequency interference 
rotate mask unit 
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RMV 
ROP 
ROP 
RST 
RSTU 
RTS 
RU 
SAC 
SAG 
SAR 
SAT 
SBR 
SC/SD 
SC 
SCANS 
SCC 
SCCS 
SCCS 
SCH 
SCM 
SCR 
SCR 
SCSD 
SD 
SDC 
SDP 
SDR 
SDS 
SG 
SGO 
SGS 
SID 
SIM 
SIR 
SMD 
SP 
SRC 
SREG 
SSA 
SSBR 
SSI 
SSR 
STOP 
SUPR 

remove 
read-only printer 
receive-only printer 
restore 
restore unconditional 
real-time status 
rotate unit 
store address control! controller 
system analysis group 
store address register 
store address translator 
segment base register 
scanner/signal distributor 
software control 
Software Change and Notification System 
switching control center 
Source Code Control System 
Switching Control Center System 
serial channel 
store complete signal 
silicon controlled rectifier 
store control register 
scanner and signal distributor 
software development 
store data controller 
software demand paging 
store data register 
Software Development System 
system generation data base 
store go signal 
Software Generating System 
segment identifier 
system integrity monitor 
store instruction register 
storage module drive 
software production 
source 
special registers 
system summary area 
secondary segment base register 
small-scale integration 
system status register 
terminate 
system update program 
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SYSGEN 
TB/IS 
TLDB 
TLP 
TSPS 
TTL 
TTY 
TTYC 
TUS 
TV 
UC 
UID 
USP 
VLSI 
VOH 
VOL 
VTOC 
WCS 
WMS 
YACC 

system generator I generation 
transaction block and integrity subsystem 
trouble locating data base 
trouble locating process 
Traffic Service Position System 
transistor-transistor logic 
teletypewriter or terminal 
terminal controller 
Test Utility System 
transfer vector 
utility circuit 
utility identifier 
UNIX supervisor process 
very large-scale integration 
voltage output high 
voltage output low 
volume table of contents 
write able control store 
writeable microstore 
yet another compiler compiler 
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