

UNIX software including system calls from C programs, file operations,
process communication through pipes, and interpretation of terminal
commands through the "shell" process.

Processes controlled by the USP are called user processes. The USP
partitions its address space into a user area and a supervisor area and
appears as a single process to the DMERT kernel. Thus, the user and
supervisor are physically combined into the same process, having the
same PID, scheduling priority, PCB, etc. Each time a user process
forks, another USP is formed.

The role of the USP is to supply services to its user portion. It
accomplishes this through supervisor OST calls and through commu­
nication with other DMERT processes. For example, file system
capabilities are provided by the USP sending the appropriate messages
to the DMERT file manager process.

The availability of a simulated UNIX operating system in DMERT
allows UNIX programs from other processors to execute on the 3B20D
Processor. DMERT provides some capabilities to user processes not
currently supported by the standard UNIX operating system. These
include asynchronous I/O directly to or from the user's address space
and memory management of user process segments. In addition, there
are a number of file system capabilities, such as contiguous files, that
are provided through the DMERT file management facilities discussed
in Section VIII. User processes also have access to the DMERT IPCs
such as messages and events.

DMERT's memory management capabilities allow a user process to
manipulate and share portions of its address space on a segment basis.
In particular, a user process can create a new segment in its address
space and can specify the virtual address of the segment. It can acquire
an existing and named segment into its address space and also remove
segments from its address space. Segments listed in a user process's
PCB can be activated or deactivated through OSTs to the USP. OSTs
permit it to share up to three segments with a process it creates via
the DMERT process creation functions described earlier.

VII. I/O FACILITIES

The operating system supports communication with peripheral de­
vices through a set of drivers and device handlers. These drivers isolate
most processes from the details of the peripheral system, and they
ensure efficient use of the peripheral devices by scheduling access to
them on an equitable basis.

The architecture of the I/O software closely resembles the I/O
hardware architecture.5 The I/O Processor (lOP) driver and the device
handlers manage the lOPs, the Peripheral Controllers (PC), and the

314 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Peripheral Controller Sub devices (PCSDs). The disk driver manages
and controls the disk file controllers and the disks.

7.1 Input/output processor driver

The lOP driver is a kernel process that administers all lOP trans­
actions in the 3B20D DMERT system. The driver is responsible for
normal I/O activities fault recognition and recovery, configuration
management, and diagnostic access.

The lOP, from a software standpoint, can be visualized as a three­
level structure (see Fig. 1). The "front-end" Peripheral Interface Con­
troller (PIC) controls up to sixteen peripheral controllers (PCs), and

CC 0

PC 30

M N """"" 0

o 0 0 0
(f) U1 U1 U1

~ ~ ~ ~

PD PD PD PD

PC 33

000 0
(f) U1 U1 U1

~ ~ ~ ~

PC 20

M N ~ 0

0 0 0 0
U1 U1 (f) (f)

~ u u u
Cl. Cl. Cl.

PD PD PD PO

PC 23

000 0
U1 U1 U1 (f)

~ ~ ~ ~

M

0
(f)

~

0
U1

~

PC 10

N '<- 0

0 0 0
U1 U1 U1
U U ~ Cl. Cl.

PC 13

0

0 0 0
(f) U1 (f)

U ~ ~ Cl.

CCl

----I
lOP UNIT I

I
I
I
I

___ J
PC 00

M N ..- 0

o 0 0 0
U1 (f) (f) U1

~ ~ ~ ~

PC 03

M 0
0 0 0 0
(f) (f) (f) U1
u ~ u ~ Cl. Cl.

PD PD PD PD

LC 3
PD PD PD PD

LC 2

PD PD PD PD PD PD PD PO

BIC - BUS INTERFACE CONTROLLER
CC - CENTRAL CONTROL

DDSBS - DUPLEX DUAL SERIAL BUS SELECTOR
DMA - DI RECT MEMORY ACCESS

DMAC - DIRECT MEMORY ACCESS CONTROLLER
DSCH - DUAL SERIAL CHANNEL
IOMI - INPUT/OUTPUT MICROPROCESSOR INTERFACE

LC - LINE COMMUNITY

LC 1 LC 0

MCS - MICROCONTROL STORE
PC - PERIPHERAL CONTROLLER

PCSD - PERIPHERAL CONTROLLER
SUBDEVICES

PO - PERIPHERAL DEVICES
PIC - PERIPHERAL INTERFACE

CONTROLLER

Fig. I-Input/output processor.

DMERT 315

each PC controls up to four sub devices (PCSDs). The subdevice
provides the interface to the end device, such as magnetic tape unit,
teletypewriter (TTY), data link, etc. Four PCs are combined to form
a PC "community" with each PC community having a separate power
supply.

Each element in the lOP (PIC, PC, and PCSD) has a corresponding
element in the driver called a handler and corresponding unit control
and option blocks in the Equipment Configuration Data (ECD) data
base.6 The handler for the PCSD is referred to as the device handler.
A handler for a PC is called the generic PC handler or application PC
handler. The handler for the PIC is called the generic PIC handler.
The term generic implies that the handler is capable of performing all
required handler functions for more than one PC type (that is, TTY,
magnetic tape, data link, etc.).

Handlers are collections of C-Ianguage functions that have well­
defined interfaces with the driver and are responsible for carrying out
all maintenance (excluding diagnostics), recovery, and normal mode
operations for their respective elements in the lOP. Handlers contain
the necessary specialized logic to deal with a given unit type.

The handlers' service routines, input routines, control routines, and
associated libraries form a single lOP driver process (IODRV).

10DRV can be subdivided into the following functional areas:
(i) Common service routines: routines that are frequently called

from numerous points within 10DRV and the handlers.
(ii) Configuration control: routines that maintain proper configu­

ration of lOP units (inverted tree structure).
(iii) Input routines: routines that process primary inputs from the

DMERT operating system and pass them off to 10DRV configuration
control or handlers.

(iv) Application and generic handlers: the operational interface
between the user and physical device (magnetic tape, terminals, etc.).

(v) Maintenance handler: the diagnostic interface to the lOP
units.

(vi) Archive libraries: system routines used by 10DRV and other
kernel-level processes.

Normal mode activities are carried out through the input routines,
common service routines, and the operational handlers. All commu­
nications within the driver are through function calls.

I/O messages enter 10DRV as message events and pass through the
message input routines. Similarly, operating system traps enter
10DRV at the OST entry point and pass through the OST input
routines. Typically, I/O messages and OSTs contain a Logical Device
Identification Number (LDIN) that identifies a logical (or virtual)
device with which a user wishes to do I/O. 10DRV maps the LDIN to

316 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

one or more physical devices. Once a physical device is identified, the
IODRV can identify the corresponding handler via the ECD and pass
control to it.

Completion reports, or responses, are deposited in the IODRV
response queue by the lOP. If responses have been added to the
response queue within a certain batching interval, the lOP will inter­
rupt the 3B20D, causing IODRV to be entered. IODRV pops each
queued response and, based on the PC and PCSD identifier in the
response, maps to a physical unit, and passes control to the handler.

Maintenance and recovery activities are coordinated through
IODRV configuration control routines, which, in turn, call on the
handlers at appropriate points in time to carry out specialized main­
tenance operations at the subdevice level. Diagnostics for the PIC and
PC are handled exclusively by the maintenance handler.

7.1. 1 Handler applications

Peripheral devices supported by the lOP include TTY terminals,
Maintenance TTY (MTTY) terminals, magnetic tape drives, data
links, and the Scanner and Signal Distributor (SCSD). Interfaces to
these devices are provided by IODRV and device handlers. IODRV is
responsible for initializing units upon bootstrap and removing and
restoring units upon manual requests or faults. Each handler-periph­
eral device combination determines the interface mechanism and the
set of features to be supported. The following sections give a brief
description of the facilities supported by each peripheral device type.

7.1.2 Terminal devices

The Craft Interface Handler (CIH) provides access to terminal
devices. The CIH communicates with two types of controllers: Main­
tenance Terminal Controllers (MTTYCs) and Terminal Controllers
(TTYCs). MTTYCs support four subdevices: a Maintenance Terminal
(MTTY); a Receive-Only Printer (ROP); a Switching Control Center
(SCC) interface; and an Emergency Action Interface (EAI).7 TTYCs
support terminals (TTY).

The MTTY, TTY, and ROP are known as terminal devices. The
SCC and EAI devices are not terminal devices and are accessed via
other handlers (see below). All standard terminal operations supported
by the UNIX operating system are available to TTY devices, including
read, write, open, and close requests, which are supported through a
message interface. The ROP does not support reads.

7. 1.3 Data links

The Communication Protocol Handler (CPH) provides access to
synchronous data links. The CPH is designed to communicate with

DMERT 317

two types of peripheral controllers: (i) the MTTY controller, and (ii)
the synchronous data-link controller. In the case of the MTTY, access
is available only to the SCC peripheral controller subdevice, which
supports synchronous data link communication between the 3B20D
and an SCC office using the BX.25 protocol.

The synchronous data link controller supports the BX.25 link layer
(level 2) communication protocol and the Digital Data Communication
Message Protocol (DDCMP) through the use of different versions of
peripheral controller software. The CPH software supports two access
methods: link-layer protocol access (level-two-onlyaccess) and BX.25
packet-level (level 3) protocol access. The use of a link-layer protocol
(BX.25 and DDCMP) assures the integrity of data transmissions on a
physical link. The use of a packet-layer protocol (BX.25) allows the
added capability of multiplexing multiple users on a physical link. Flow
control procedures also are used on both protocol layers.

In addition to the the two different access methods, the handler
supports both a simplex and a duplex link configuration. In the duplex
configuration, two physical links make up a logical communication
path between the 3B20D and another system. The CPH automatically
routes data through the currently active physical link. Link switching
is done automatically when the active link fails.

7. 1.4 Magnetic tape drives

The magnetic tape peripheral controller handles up to four 9-track
800 or 1600 bits per inch (bpi) tape drives. The magnetic tape handler
provides the interface to this controller and supports open, read, write,
seek, and close requests through a message interface. Seeks are not
supported for write operations.

7.1.5 Scanner and signal distributor

Administration and control of the Scan and Signal Distributor
(SCSD) points currently involves two DMERT kernel processes: the
SCSD administrator and the SCSD handler. The latter is an integral
part of the I/O driver process. The primary function of the SCSD
software is to provide an interface enabling client processes to manip­
ulate distribution points and receive information about the state of the
scan points (i.e., autonomous scan state transition and directed scan
reports). The SCSD administrator allows a client process to identify
SCSD points by logical or physical addresses; logical addressing allows
applications to code software independently of physical cabling.

The SCSD handler translates messages from the administrator into
SCSD controller commands and receives responses from the controller

318 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

and forwards these responses to the administrator through a message
interface.

7.1.6 Direct user interface

For some applications the current method of communication with
the peripheral controller sub devices through 10DRV is not efficient
enough to meet their needs. Therefore, the Direct User Interface
(DUI) exists to expedite data transfers between an application process
and a specialized 56-KB BX.25 data-link controller.

The DUI handler is an integral part ofIODRV. In the normal mode
of operation, the only functions of the DUI handler are to set up and
clean up the DUI table, which is in a common area of memory and is
used for passing commands and status information between the appli­
cation process and the peripheral controller. Using the DUI table, jobs
are passed directly to the peripheral controller by the application
process without any intervention from 10DRV.

A secondary function of the handler is to administer the fault
recovery strategy for the peripheral controller subdevice. If the sub­
device has to be removed or restarted, the handler will tear down the
DUI table and send a message to the application process.

7.2 Disk driver

The disk driver is a kernel process that handles all normal disk I/O
and all maintenance disk I/O. Only system initialization I/O bypasses
the disk driver and transfers information directly from the system boot
device to main memory. The disk subsystem consists of the disk driver,
the Disk File Controller (DFC), and the Moving Head Disk (MHD)
drives. The 3B20D supports a maximum of eight DFCs, each having
up to eight MHDs. The DFC and MHDs are described in Ref. 8.

MHDs may be used in a simplexed or duplexed configuration. In
simplex mode the MHD stands alone. Should a file become damaged
it will be irretrievably lost. In duplex mode two MHDs are maintained
such that each is an exact copy of the other. Should one disk fail the
other can be used in simplex mode.

7.2.1 Operational characteristics

The disk driver handles open, close, read, and write message re­
quests. Open and close messages are passed from the file manager (see
Section VII) to the disk driver, while read and write requests may be
sent directly from any process or routed through the file manager.
Before the kernel attaches the read or write message to the disk
driver's message queue, it verifies that the segment is locked in main

DMERT 319

memory (see Section 3.1). It also verifies that the I/O transfer is within
the bounds of the segment.

When the disk driver processes the I/O message, it translates the
LDIN contained in the message to one or more physical devices. The
request is then placed in one of three circular job submit queues in
main store associated with the DFC for each specified physical device.

The three types of disk job queues are high-priority, base-priority,
and special. Special commands sent by maintenance processes or
originated in the disk driver are immediately executed by the DFC
from the special job queue. High-priority jobs can be sent by any client
process and will be processed by the DFC before base-priority jobs.
All other jobs are placed in the base-priority queue.

Whenever the DFC completes a job requested by the driver, it
returns a response indicating the outcome of the job. All job responses
are placed in a single main store response queue, regardless of the
priority of the original job. The DFC generates an interrupt to the
driver after each response is added to the queue. The driver only clears
the interrupt after processing the last entry in the response queue.

The disk driver handles job responses each time it is entered at its
interrupt entry. The job response indicates the status and identity of
the job being reported. If the job was successful, the driver sends a
successful job completion acknowledgment to the client using the same
message buffer that requested the I/O. In writing to duplexed disks,
the driver guarantees that both disks were written successfully before
acknowledging the job. In reading from duplexed disks, the driver
reads from a single disk, alternating disks between requests.

If a job failed, the driver determines whether the device should be
removed from service or if it should retry the job.

When the driver wishes to retry a failed job, it sets up a retry request
in the main store retry queue. The format of an entry in the retry
queue is the same as that of a job in any of the other queues. After
writing the entry in the queue the driver wakes up the DFC with a
programmed I/O command. The DFC then takes this job, even if the
other submit queues contain work. When the driver handles the
response from the retry request, it knows the queue is available for
reuse.

7.2.2 Reliability characteristics

The disk driver also has a message interface for maintenance com­
mands. Once the device (MHD or DFC) is taken out of service by the
disk driver, the device can be reserved for maintenance access and the
disk driver provides the maintenance client processes unlimited access
to the device. During maintenance, specific areas of a MHD can be
read or written by bypassing many of the operational checks performed

320 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

on normal I/O requests. This allows the creation of a disk and the
system update of a disk with a new software generic.6

VIII. FILE SYSTEM

All accesses to the file system are done through the file manager, a
DMERT kernel process. In addition to maintaining file system security
and integrity, the file manager translates read and write requests
within the file system to physical I/O requests on the disk.

The DMERT file system is similar to the file system provided by
the UNIX operating system and features a hierarchical structure, byte­
oriented files, and uniform access to files, directories, and periphery.
In addition to regular files, which are scattered throughout the disk
and can grow dynamically, DMERT also provides contiguous and
extent files, which are contiguous on disk but have limits on their
growth. Contiguous and extent files are optimum for data base and
object files, where large, fast I/O transfers are needed. For field update,
DMERT provides a "windowless move" facility, which automatically
moves an updated object file over the old one, thus eliminating any
possibility that the file be used or the system initialized while the file
is in an inconsistent state.

To meet DMERT's reliability requirements, DMERT file systems
are crash resistant. In particular, a crash does not jeopardize file
system integrity, the file systems do not need manual repair, and they
are available within seconds after a crash.

The file manager uses two techniques to ensure crash resistance.
First, it orders all writes to disk to maintain a consistent file system
state. To create, link, or write a file, the ordering is:

(i) Write the data blocks
(ii) Write the indirect i-node blocks

(iii) Write the i-node*
(iv) Write the directory entry, if necessary.

To unlink or truncate a file, the ordering is:
(i) Write the cleared directory entry, if necessary.

(ii) Write the cleared i-node.
(iii) Free the blocks.

Second, to ensure that no block is allocated to more than one file, the
file manager rebuilds a file system's free-block list before it is used
following a crash. Doing this for the 50-000 block, 2048-i-node root file
system adds about 10 seconds to DMERT's boot procedure.

These two techniques are sufficient to ensure crash resistance, and
we have found no problems with these in the field.

* An i-node describes a file and contains its block addresses. An indirect i-node block
extends the i-node and contains more block addresses.

DMERT 321

IX. SUMMARY

This article has described the DMERT nucleus, which consists of
the kernel, the special processes, the I/O drivers and file manager, the
process manager, and the UNIX supervisor. The major services pro­
vided by this nucleus include a multitude of interprocess communica­
tion mechanisms, a sophisticated set of memory allocation features,
both real-time and time-shared scheduling, dynamic process creation
and termination, a simulated UNIX environment's communication
with terminals, magnetic tape drives, data links and disks, and powerful
real-time and time-shared file system capabilities. The operating sys­
tem has been continually evolving since DMERT was conceived, and
is expected to continue to evolve over the next few years. This article
has described the first official version of DMERT, which entered
service in the Bell System during September 1981.

X. ACKNOWLEDGMENTS

We thank C. J. Antonelli, J. Q. Arnold, T. P. Bishop, R. W. Fish, N.
A. Martellotto, R. R. Snead, P. J. Stankus, R. M. Venzon, and R. E.
Yuknavech for their contributions to this document. Special thanks go
to J. J. Wallace for his contributions to the file manager section.

REFERENCES

1. J. R. Kane, R. E. Anderson, and P. S. McCabe, "The 3B20D Processor & DMERT
Operating System: Overview, Architecture, and Performance of DMERT,"
B.8.T.J., this issue.

2. D. Ritchie and K. Thompson, "The UNIX Time-Sharing System," B.S.T.J., 57, No.
6, Part 2 (July-August 1978), pp. 1905-29.

3. 1. K. Hetherington and P. Kusulas, "The 3B20D Processor & DMERT Operating
System: 3B20D Memory Systems," B.S.T.J., this issue.

4. B. R. Rowland and R. J. Welsch, "The 3B20D Processor & DMERT Operating
System: Software Development System," B.S.T.J., this issue.

5. A. H. Budlong and F. W. Wendland, "The 3B20D Processor & DMERT Operating
System: 3B20D Input/Output System," B.S.T.J., this issue.

6. R. H. Yacobellis, J. H. Miller, B. G. Niedfeldt, and S. S. Weber, "The 3B20D
Processor & DMERT Operating System: Field Administration Subsystems,"
B.S.T.J., this issue.

7. M. E. Barton and D. A. Schmitt, "The 3B20D Processor & DMERT Operating
System: Craft Interface," B.S.T.J., this issue.

8. R. E. Haglund and L. D. Peterson, "The 3B20D Processor & DMERT Operating
System: 3B20D File Memory Systems," B.S.T.J., this issue.

322 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.1, January 1983
Printed in U.S.A.

The 38200 Processor & OMERT Operating System:

Field Administration Subsystems

By R. H. YACOBELLlS, J. H. MILLER, B. G. NIEDFELDT, and
S. S. WEBER

(Manuscript received March 10, 1982)

This article describes the field administration facilities of the
Duplex Multiple Environment Real Time (DMERT) operating sys­
tem, as provided on the 3B20D Processor. These facilities are: Recent
Change/Verify, the subsystem that allows manipulation of office­
dependent configuration information; Field Update, the software
change mechanism; and System Update, the component used to
install a new generic program in an office. The article also includes
information on how these capabilities fit into the overall scheme of
field support in an in-service office environment.

I. INTRODUCTION

An integral part of high-reliability applications of the Duplex Mul­
tiple Environment Real Time (DMERT) operating system is the
administration of system hardware information and of software. This
includes both the initial delivery of the system as well as subsequent
upgrades. In DMERTI there are three commonly used capabilities to
apply, track, and administer such changes. These are Recent Change/
Verify, Field Update, and System Update. They are listed in this order
according to decreasing frequency of field use and increasing impact
(typically) on the overall system. Each of these capabilities is designed
to permit display of some aspect of the current status of the system, to
change that status in a simplified and highly reliable way, and to either
reverse such changes or make them permanently a part of the system.
This article discusses each in turn, and provides examples of their use.
Each capability may form the base for an application-dependent
version of its function. These functions are discussed briefly in the rest
of this introduction.

323

The 3B20D Recent Change/Verify (RC/V) system provides the
ability to change and manipulate various aspects of office-dependent
information. This capability is focused on the system hardware and
software configuration and is based on the Low-Level Access (LLA)
Data Base System, whose operation is normally hidden from field­
site administrators. RC/V is used manually or automatically to verify
and change the hardware and software components known to the
system, and the ways in which they are interconnected.

Field Update is used to correct problems in the operation or func­
tionality of the system. Field Update is the official fix mechanism for
DMERT. Rapidly installed emergency fixes, as well as more routine
trouble corrections, may be installed into the software or other files in
DMERT via Field Update.

Finally, System Update, also known as Generic Update, changes a
major portion of the entire DMERT or application generic program.
In doing so, System Update may write oyer old generic information or
provide a completely restructured generic program image. Typically,
a new generic release will involve a new structure for RC/V information
as well, so RC/V may be involved with such an update. The following
sections provide more details on these fundamental administrative
capabilities of DMERT.

II. RECENT CHANGE/VERIFY-LOW-LEVEL ACCESS DATA BASE
SYSTEMS

The 3B20D /DMERT System has provided a data base management
capability as part of the DMERT operating system. Built upon a Low
Level Access (LLA) data base system are the Equipment Configuration
Data Base (ECD), System Generation Data Base (SG), and the 3B
Recent Change/Verify (RC/V) and Data Base Evolution Systems.
This section describes these systems and their relationship to the field
administration environment.

2. 1 Low-Level Access Data Base System

The Low-Level Access Data Base System organizes and manipulates
data in a C-Ianguage environment. The name low level implies that
the system places minimal restrictions on its users: decisions about
data organization and retrieval are left to the application. LLA trades
user convenience for greater flexibility in data base design and per­
formance tuning.

LLA gives the user latitude in defining both data units and data
models and provides a powerful set of primitives to access the data.
System characteristics include:

(i) Data definition via a hierarchy of abstract types

324 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

(ii) Specification of data mapping from the data base to the user's
buffers

(iii) Ability to select various access methods, i.e., logical organization
of subsets of data

(iv) Data access through a library of functions
(v) Isolation of operating system dependencies in a small number

of program modules.
Figure 1 gives a simplified schematic of the operation of an LLA

application.

2. 1.1 Data definition

The Data Definition Language (DDL) is used to define the "shapes"
of records, the LLA data type for retrieval and storage. It also allows
user-defined "views" of the data base via data mapping, and the
specification of data models by associating records with access meth­
ods. The recognizer for the DDL, the Data Definition Language
Processor (DDLP), has many C-compatible features, such as common
syntax for preprocessor lines, comments, identifiers, constants, and
type definitions. The DDLP generates C code to implement data
mapping and C definitions, and a data dictionary to describe data
types.

2.1.2 Data manipulation

The Data Manipulation Language (DML) is a library of functions
that perform actions on instances of the data types defined by the
DDL. The DML provides the following facilities:

(i) Creation and deletion of instances of data types

DATA
DICTIONARY

DATA BASE

RECORD AND
SET CREATION

RETRIEVAL

DDL - DATA DEFINITION LANGUAGE
DML - DATA MANIPULATION LANGUAGE

MAPPING
CODE

USER PROGRAM

DML LIBRARY

Fig. I-Low-level access application.

USER
C SOURCE

FIELD SUBSYSTEMS 325

(ii) Retrieval and update of existing instances of data types
(iii) Gathering of information about existing data instances.
These categories exist for instances of data bases, sets, and records.

Generally, the lifetime of an instance of a data type starts with creation,
proceeds through several retrievals and updates, and ends with dele­
tion.

LLA is not used directly by a field administrator. Instead, the
creators of various LLA data bases, be they 3B20D/DMERT system
programmers or 3B20D application designers, provide appropriate
higher-level access to their particular LLA data base application.

2.2 3B200 Data Base Recent Change and Data Base Evolution Systems

2.2.1 3B200 data bases

The 3B20D/DMERT operating system has two major LLA data­
bases. The Equipment Configuration Data Base (ECD) describes the
processor and peripheral hardware configuration, while the System
Generation (SG) Data Base describes the system parameters, boot
processes, and disk image and ECD administration information. The
concept of a data base was adopted to eliminate redundant device
information, provide a unified approach to handling and accessing that
information, and provide easy methods for generating and changing it.

Records in the ECD data base represent the hardware devices in
the 3B20D Processor system, such as the Control Unit (CU) and
Input/Output Processor (lOP), and are logically linked in a manner
analogous to the physical linkages (see Fig. 2). In addition, records are
provided to organize physical devices as logical devices and to maintain
error counts for each physical device. To provide rapid access, the
ECD is always kept in main memory.

The information in the ECD and SG data bases is used by several
classes of users. The DMERT operating system, itself, forms one set
of using processes and includes the device drivers, processor and
peripheral diagnostics, and processor and peripheral fault-recovery
programs. The second class of users of these data bases is the human
user, whether that person be a Bell Laboratories' application designer
adding new peripherals to the ECD or an operating company craft
preparing to add more memory to an on-line 3B20D in the field. Two
types of access have been provided for these two classes of users: The
DMERT operating system processes access the ECD through a collec­
tion of LLA primitives that provide rapid access to those specific items
required, for example, by the device drivers. Human users- utilize~the­
Recent Change/Verify system, which provides a forms-oriented input,
via a cathode ray tube (CRT) terminal. The user may create, change,
delete, or merely review the forms. Error and consistency checking is-­
provided at the time of initial entry and before storage into the data
base.

326 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

CCIO BUS

:c
u
(/)

o

1
I POSSIBLE
: ADDITIONAL

I I DMA's
L_J

rtl
I I POSSIBLE
: : ADDITIONAL DFC's
I I AND lOP's
L_J

INTERNAL
rL~
I ~ I
I u I

-------, >- f------
I ~ I
L J

DEVICE = "SLOT"
DEV = 2

rr,--j,
I I I I
: f.-~ I
I I I I
L_J L_J

POSSIBLE
ADDITIONAL

CHAN = 11

INTERNAL CONTROLLER
DEVICE PORT

DEV = 2
CHAN = 11

TTYC's AND TTY's

CCIO - CENTRAL CONTROL I/O BUS
CH - CHANNEL

CSU - CACHE STORE UNIT
CU - CONTROL UNIT

DEV - DEVICE
DFC - DISK FILE CONTROLLER

DMA - DI RECT MEMORY ACCESS
DSCH - DUAL SERIAL CHANNEL

EAI - EMERGENCY ACTION INTERFACE

lOP - INPUT/OUTPUT PROCESSOR
MTTY - MAINTENANCE TERMINAL

MTTYC - MAINTENANCE TERMINAL CONTROLLER
ROP - RECEIVE ONLY PRINTER
SCC - SWITCHING CONTROL CENTER
SCH - SERIAL CHANNEL
TTY - TERMINAL

TTYC - TERMINAL CONTROLLER
UC - UTILITY CIRCUIT

Fig. 2-Prototype 3B20D configuration.

2.2.2 38200 Recent Change/Verify

The Recent Change/Verify system is built upon the LLA data base
management system and utilizes the LLA primitives for accessing and
managing its two DMERT data bases. There are three basic compo­
nents of 3B20D RC/V (see Fig. 3). The first is the front-end form
processing system. This component is known as the On-line Data
Integrity (ODIN*) subsystem. ODIN allows the various forms to be
specified through a series of CRT screen mask definitions and for each

* ODIN is a product of Western Electric Company.

FIELD SUBSYSTEMS 327

RC/V-3B
r----------i

I I
I I FORM PROCESSING

r<'=IIii;:=:':'~--+-~ SUBSYSTEM

I ______ J ---,
.----------&-----, I

ECD - EQUIPMENT CONFIGURATION DATA
FTAM - FORMS TRANSLATION

LLA - LOW-LEVEL ACCESS
ODIN - ON-LINE DATA INTEGRITY

I
I FORM TRANSLATION

SUBSYSTEM

I
I
I

_J

TRANSACTION
BLOCK­

INTEGRITY
SUBSYSTEM

RC/V - RECENT CHANGE/VERIFY
SDP - SOFTWARE DEMAND PAGING

SG - SYSTEM GENERATION DATA BASE

Fig. 3-Components of Recent Change/Verify.

of these definitions to contain certain syntactic information to be
checked upon entry. For the ECDjSG data bases there are 36 different
form types, each of which has an associated mask definition. Most
forms are either ECD or SG forms, but there are a few that are
directives for the RCjV or Evolution systems. For each form type
some error checking is provided. The second fundamental component

328 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

of RC/V is the Form Translation and Mapping subsystem. This takes
the output of ODIN and transforms it into LLA record definitions and
access functions. Then the LLA functions are used to actually manip­
ulate the data in the ECD and SG data bases. The third component is
the transaction block-integrity check subsystem. This provides a mech­
anism for checking consistency between forms. RC/V has implemented
the concept of a "transaction." Two special forms delimit a transaction.
Upon processing a transaction-end form, RC/V invokes the integrity
checks as well as linking the new information into the data base.

As we stated earlier, the ECD that describes the running 3B20D is
always in main memory; however, there is also a copy on the disk. In
order for a change to be made permanent it must be applied to the
disk as well as the memory version. To maintain the integrity of the
ECD, changes are soaked on the memory version (test state) before
they are applied to the disk version (active). A special form has been
provided to perform this final step of activating changes to the disk
copy of the data base. Upon processing of this form, RC/V copies the
main memory copy of the ECD to the disk. To facilitate error checking
and correction, a journal file of all transactions is kept on-line and can
be printed on the Receive-Only Printer (ROP) at the request of the
office craft. Also, an error log file is maintained and a periodic audit of
the ECD structures is performed.

2.2.3 Data Base Evolution System

Because the release of a new 3B20D /DMERT generic is anticipated
to be associated with changes to the ECD or SG forms or the LLA
primitives, a system for transforming these data bases has been pro­
vided. The Data Base Evolution system (DBEVOL) allows this trans­
formation to occur in a regular and uniform manner without special
programs needing to be written. DBEVOL allows old data to be
restructured, new data fields to be added to existing forms, and old
data to be deleted or changed. DBEVOL also provides semantic hook
functions that allow applications to tailor some specific information
before completing the data base evolution.

DBEVOL has two types of steps. The first set is characterized as
pre-processing. Here a translation data base (also an LLA data base)
is built on a host support processor. The inputs are the old and new
form specifications (as used by RC/V) and a specification of the
changes in Form Translation Language. These inputs are supplied
with the new DMERT generic program. If semantic hook functions
are required by the application they are also an input to the final
translation data base. A translation data base matching the required
changes in the standard DMERT ECD is also released with new
DMERT generics.

FIELD SUBSYSTEMS 329

DB - DATA BASE
ECD - EQUIPMENT CONFIGURATION

DATA
EVOL - EVOLUTION

FPS - FORM PROCESSING SYSTEM
FTAM - FORMS TRANSLATION AND

MAPPING
IS -.INTEGRITY SUBSYSTEM

LLA - LOW-LEVEL ACCESS
SOP - SOFTWARE DEMAND PAGING

SG - SYSTEM GENERATION
TB - TRANSACTION BLOCK

Fig. 4-Evolution of 3B20DjDMERT Data Base Management System.

The second set of actions are run-time steps that produce a new,
evolved ECD/SG data base pair (see Fig. 4). The first step is a dump
of the old ECD using the "old" existing generic RC/V. This is produced
using one of the special forms provided by the RC IV system. Then
this snapshot of the old data base is translated into a snapshot of the
new data base. The "new" RC/V is then used to load the new data
bases into the proper LLA format for the 3B20D.

DBEVOL runs on both the support processor and the 3B20D giving
the using applications considerable flexibility in choosing a strategy
for performing data base evolution. The evolved data base is actually
put in place on the running 3B20D during the generic update scenario
described below.

III. FIELD UPDATE

Field Update, which is typically called "overwriting" in traditional
Electronic Switching Systems (ESSs), is the problem correction mech­
anism for DMERT. While overwriting usually applies specifically to
program bugs, Field Update may be used to correct any file on the
3B20D disk. Such files may contain human-readable text or binary

330 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

tables, for example. (In DMERT, files are structured like a UNIX*
operating system file system.2

) Field Update must perform this updat­
ing without disturbing call processing or other critical system functions.
Since operating systems do not normally support this style of updating,
some difficult technological problems had to be overcome in designing
and implementing Field Update. Some of these problems and their
solutions are described below, followed by a more general discussion
of the overall structure and use of Field Update.

3. 1 Problems and solutions

Like most modern operating systems, DMERT supports the concept
of a process, which is a collection of tightly coupled executable pro­
grams. Programs are in turn broken down into units that perform
specific activities, called functions. Processes can communicate with
each other, generally at "arms-length," and are normally protected
from each other by DMERT software and the 3B20D hardware and
microcode. Since Field Update runs as a cooperating set of processes
within DMERT, some highly specialized operating system interfaces
were required to break through this protection. Furthermore, the real­
time critical processes in DMERT or its applications must run contin­
uously [they are termed "non-killable" (NK)], so that they are always
available to process events quickly. The running process images of
such processes must be accessible and changeable in main memory,
again via special operating system functions.

Since a process is a collection of functions, the C-Ianguage3 function
was chosen as the unit of update. The implementation of field update
specified that there be a single reference point for each changed
function, so as not to require changes everywhere such a function was
involved. To solve this, the concept of a Transfer Vector (TV) used in
ESSs was implemented within a process image. Figure 5 is an example
of a simplified process image showing this. In Fig. 5, the TV area
contains a list of the addresses of the process's functions. When a
change is made to function f, the new version f' is written into a special
"patch" area provided with the process, and the particular address in
the TV area is switched to point to f' (see Fig. 6). This solution also
allows the fix to be backed out by changing the address in the TV
back to its original value. When the fix has been tested and is ready to
apply permanently, the space occupied by f can be made available for
future fixes (Fig. 7). While this concept is simple, introducing TV s to
DMERT had operating system implications down to the microcode
level. With TV s, the impact of introducing a new or changed function

* Trademark of Bell Laboratories.

FIELD SUBSYSTEMS 331

ADDRESS(f)

f

ADDRESS(g) f---

ADDRESS(h) f--

~ g

· · ·
'----- h

TRANSFER VECTOR

C FUNCTIONS

Fig. 5-Simplified DMERT process image.

ADDRESS(f')

f

f' ADDRESS(g) -

ADDRESS(h) -
PATCH AREA L,.. g

· · ·
~ h

TRANSFER VECTOR

· · ·

C FUNCTIONS

Fig. 6-Function f replaced by function f'.

332 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

ADDRESS(f')
AVAILABLE

SPACE
f' ADDRESS(g) ~

ADDRESS(h) I"-

PATCH AREA
L..,. 9

· · ·
~ h

TRANSFER VECTOR

· · ·

C FUNCTIONS

Fig. 7-Reclaiming the space occupied by function f.

has been restricted to a small, well-defined area of the process, making
this activity inherently more reliable.

Traditional operating systems do not have the ability to change a
critical function or process while the system is running. Since DMERT
is derived from such an operating system, many challenges were
encountered in providing the field update capability. Some specific
areas included:

(i) The ability to change a file both instantaneously and in a
temporary way. This is used in updating both non-killable processes
and more routine processes that can be terminated and restarted;

(ii) Retention of sufficient symbolic information to properly update
the 3B20D disk-resident versions of processes ("pfiles");

(iii) The ability to update C functions even though the old versions
of the functions had been suspended while field update was running;

(iv) The ability to change data contents or the structure of data
used by a continually running process;

(v) The ability to coordinate changes to functions within a process.

3.2 The use of field update

Field Update is an end-to-end concept within DMERT; that is, it is
involved with the development, distribution, installation, and tracking
of changes. When a process is first introduced into DMERT, or when
its subsystem architecture changes, the process developer must com-

FIELD SUBSYSTEMS 333

municate its characteristics to personnel who administer the DMERT
source programs. The developer also must create a script of commands
to be executed at a field site, which will be used to install, back out of,
or make permanent a fix to the process. Generally, this will be simple
to do because there are categories of existing process scripts, and new
processes will fit into an existing category (or a simple modification to
one will suffice). Once these steps are taken, the developer can depend
upon the DMERT administrative system4 and specific Field Update
change development commands to remember these details. This ap­
proach standardizes the development of fixes so that each is handled
the same way, as opposed to being a unique activity. The primary
advantage comes when an emergency fix must be created quickly
without the extra burden of collecting procedural information.

When a developer has created a fix and tested it, the standard
change development mechanisms produce a package called a Broad­
cast Warning Message (BWM), which is used to transmit and install
the fix (see Fig. 8). System Test personnel use this package to test the

HDR
FILE

INFORMATION ABOUT
FILES IN THE BWM,

INCLUDING FILE
CHECK SUMS

SCANS
FILE

INFORMATION
ABOUT THE CHANGE

MSGS
FILE

SCRIPT OF
FIE LD-EXE CUT AB LE

INSTALLATION
COMMANDS

I

. .
I

. .
UPDATE

FILES
(UFs)

;--

(-

ACTUAL
CHANGE

INFORMATION

BWM - BROADCAST WARNING MESSAGE
HDR - HEADER

MSGS - MESSAGES
SCANS - SOFTWARE CHANGE AND

NOTIFICATION SYSTEM

'~--------------------------TI--------------------------~/
FILES DESTINED FOR THE 3B20D DISK

Fig. 8-Structure of a broadcast warning message.

334 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

field updatability of the fix as well as its impact on the system in the
same way it will be installed at a field site (see the article on "System
Integration and Test" in this issue of the Journal). When testing is
completed, the fix can be packaged together with other fixes via
automated tools into an official BWM for delivery to application
project personnel, who will intermix it with application-specific BWMs
and send it on. During this packaging, the particular order of instal­
lation of specific fixes is indicated both within and across BWMs.

A BWM consists of a set of files in a UNIX operating system
directory, and can be transmitted via magnetic tape to a site. The Bell
System is standardizing on the Software Change and Notification
System (SCANS-II) as the official change distribution network, and
the files in a DMERT BWM are also compatible with SCANS-II.
DMERT also provides file reception software for use with SCANS-II.
Typically, personnel at a Switching Control Center (SCC) will inter­
rogate SCANS-II, recognize that a change is pending for one of their
associated field sites, and initiate transmission of the change to the
field site.

Once a change reaches a field site, it is stored in a staging area on
disk until it is manually installed. The developer-produced script of
commands is sent as part of the BWM (see Fig. 8), and is used by
office personnel to install the change. With a short sequence of
DMERT Field Update commands, the fixes can be:

(i) Installed
(ii) Tested
(iii) Backed out or made permanently a part of the system.

While a fix is being installed, an internal system error will result in
automatically backing it out; once it is soaking in a temporary state, it
may be backed out manually, or automatically if the system undergoes
a major recovery action.

Each field site maintains an on-line log of all Field Update activity
since the last System Update (see Section IV). This may be used to
verify the current state of the office as far as installed BWMs are
concerned, and is used each time a new change is installed to guarantee
proper sequencing of changes. Other Field Update-related utility pro­
grams in DMERT can be used to print out a C function-to-process
address map, and to verify that the main memory (executing) copy of
a process matches its image on the 3B20D disk (see Section 3.1).

By the facilities mentioned above, Field Update allows fix creation
in a style compatible with normal program development, prepackaging
of developer-approved installation scripts, fix coordination both within
and across BWMs, automated delivery and installation mechanisms,
and detailed change tracking. These capabilities make Field Update a
truly end-to-end DMERT change mechanism.

FIELD SUBSYSTEMS 335

3.3 Field update example

Let us presume for this example that a problem has been found in
the DMERT disk driver program, whose pfile is called dkdrv.o in
directory /bootfiles. The developer has constructed a fix and tested it,
and further system impact testing has verified it. The fix is given a
DMERT official BWM name of BWM82-0028 (the first two digits are
the year, and the last four a sequence number), and is passed to
personnel in an application of DMERT, who approve it and send it
out as application BWM, BWM82-0037. Once the fix has arrived at a
field site, it is installed via the commands shown in Fig. 9. The
descriptions below explain the commands:

(i) Request a printout of change information that field update has
logged against process dkdrv.o.

(ii) Prepare the site to receive the BWM. After SCANS-II receives
a command to send the BWM (not shown), it is transmitted automat­
ically to the site with data error detection and positive reporting.

(iii) Install the fix into the system.
(iv) Test the fix (coupled, perhaps, with manual actions).
(v) Make the change permanent and remove the BWM files from

the system. In this particular case the DMERT boot image is rebuilt
as part of making the fix permanent, because the changed process is
one of the system boot processes.

(vi) Once again display the change status of dkdrv.o.
(vii) Print a map of C functions and their addresses for drdrv.o.
(viii) Reclaim the space occupied by old versions of C functions in

dkdrv.o.
The installation command mentioned above causes an entire set of

commands to be executed, those in the "install" section of the script
originally provided by the developer. An example of that script is
shown in Fig. 10, which shows the Messages (MSGS) file for BWM 82-
0037.

(i) UPD:DISPLAY; FN "/bootfiles/dkdrv.o"!

(ii) IN:REMOTE:START!
VFY:BWM: 82-0037!

(iii) UPD:BWMNO 82-0037!
UPD:EXEC 82-0037: CMD APPLY!

(iv) UPD:EXEC 82-0037; CMD SOAK!

(v) UPD:EXEC 82-0037; CMD OFFICIAL!
CLR:BWM:ALL!

(vi) UPD:DISPLAY; FN "/bootfiles/dkdrv.o"!

(vii) UPD:TRC; FN "/bootfiles/dkdrv.o" : ALL!

(viii) UPD:AUD!

Fig. 9-Commands to Receive and Incorporate BWM 82-0037.

336 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

APPLY.
MRs: d8200002; DMERT BWM82-0028

UPD:UPNM BWM82-0037;FN" Ibootfiles/dkdrv.o' ':UF" letc/bwm/82-0037/0ne.m"!
SOAK.

BKOUT.

The fix(es) should soak for at least 1 days 00 hours 00 minutes.
It will be apparent that the fix(es) have been applied:
When no disk restore failures occur,
commands to soak the fix appear here.

If the fix results in the need to reboot the system, the fix will
have been backed out automatically. If the fix does not result
in a reboot but otherwise does not work correctly, it can be backed
out by entering the command [s]:

UPD:BKOUT;UPNM BWM82-0037!
OFFICIAL.

UPD:UPNM BWM82-0f)37;OFC!
This will update the bootfile APPDMRT.

Fig. lO-MSGS file for BWM 82-0037.

IV. SYSTEM UPDATE

DMERT System Update provides a safe, reliable mechanism for
field personnel to introduce new versions of DMERT and application
software into 3B20D/DMERT systems, while minimizing service dis­
ruption. System Update differs from Field Update in the magnitude of
the program and data changes being installed. Normally, a system
update will replace all the software in the system with the release of a
new generic program, which is a complete reissue of DMERT and/or
application software and/or data. For this reason, system updates
always include a memory reinitialization with a full bootstrap (reini­
tialization of all processes and data from disk). Only the contents of
protected application segments, special memory areas where applica­
tion systems may retain critical information, are retained across the
boot. Since a system update includes a reinitialization, only the version
of the software on the 3B20D disk is updated. The main memory
images of system processes will then be re-read from the disk during
the bootstrap. This section describes how this disk updating is done
within DMERT, and gives an overview of the overall System Update
process.

4.1 System Update concepts

The DMERT System Update Program (SUPR) provides a way to
replace the entire contents of the 3B20D disk with a new version of
those contents from a magnetic tape. SUPR deals with masses of data,
and changes the disk contents section by section rather than file by
file or logical data base updates. These sections are called partitions.
To do this, SUPR takes advantage of the fact that the 3B20D disks
are duplexed for reliability, writing the new system information onto

FIELD SUBSYSTEMS 337

only one of a pair of disks. This is the off-line disk method of system
updating. It derives its name from the fact that one of a pair of disks
must first be removed from active service (taken off-line) before writing
the new system onto it. With the off-line disk method the amount of
redundant disk information is kept to a minimum during the update,
and the disk structure may be completely changed. There is some
increase in system vulnerability during the time that the disks are not
running in duplex mode.

Certain aspects of the system update procedure have caused unique
requirements and changes within DMERT. The key to the off-line
disk method is protecting both generic programs from being overwrit­
ten during the update procedure. Since these generics reside on duplex
disk mates, an off-line disk must never be restored to service. (The
restore process includes a copy from the on-line to off-line disk.) The
attributes of the "off-line" device state in the ECD were expanded to
provide this capability. After a bootstrap on a new generic disk image,
the disk copy of the old generic must similarly be marked off-line, and
hence protected from restorals. This was accomplished by having each
generic's ECD record the disks containing the other generic as off-line.

It was also necessary to be able to access partitions on an off-line
disk, in order to read or write partitions on an off-line disk, to transfer
files from the old generic to the new generic, and to perform recent
changes on the new generic ECD (for example, in marking old generic
disks as off-line). This was done by having the disk driver program
access the Volume Table of Contents (VTOC)-the directory of the
disk's contents-on the off-line disk during the update process. This is
a special case, since the VTOC on an off-line disk may be different
from that of its mate disk, or may not even be sane. When updating
multiple disks, SUPR uses a special disk identifier added to the VTOC
to ensure that the disk image being written corresponds to the infor­
mation on that disk. As another safeguard, System Update uses
checksums (special numbers computed from the data in a file) on the
generic tape to check the new generic data for damage before writing
it to the disk.

4.2 System update scenario

SUPR provides a complete update scenario, including a means to
reverse the update and re-establish the original system. Because of the
major impact on the application during a system update, the complete
update procedure is broken down into several distinct steps, and allows
the craft to choose the best time to begin each successive step of the
update. The update may be canceled at any step of the procedure.
Application-dependent processing may be introduced at any step.

338 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Under favorable conditions only the forward steps of SUPR would
be used, resulting in a successful update. These steps are:

(i) Enter new generic-Read all the new generic data onto the off­
line system disk.

(ii) Proceed with new generic-Make final preparations prior to
booting the system from the new generic.

(iii) Boot from new generic-Manually boot the system using the
new generic.

(iv) Commit to new generic-Complete propagation of the new
generic into the system after the soak period by removing all aspects
of the old generic.

If the new generic does not work as expected, the craft would not
commit to it, but would start a backout procedure to return to the
original system.

SUPR also provides a convenient mechanism to allow application­
dependent processing at each step of the update procedure. This is
accomplished by transferring control to an application process that
can perform whatever actions are appropriate. The types of actions
most likely to be done as part of the application processing would be
to transfer data (files, data bases, office-dependent information) from
the old generic to the new generic or to save call registers and billing
information in protected application segments prior to suspending call
processing and booting from the new generic.

V. SUMMARY

This article has dealt with the subsystems of DMERT that admin­
ister changes to system data. Recent ChangejVerify is used to change
system configuration data and its underlying data base, Field Update
allows "bug fixes" and logical file changes, and System Update will
install an entirely new version of the operating system. These subsys­
tems were described and examples given of their use. In each case
DMERT provides change application, testing, and rejection or accept­
ance capabilities in a context very similar to that of typical operating
systems, but in a highly reliable way.

REFERENCES

1. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, "The 3B20D Processor &
DMERT Operating System: DMERT Operating System," B.S.T.J., this issue.

2. D. M. Richie and K. Thompson, "The UNIX Time-Sharing System," B.S.T.J., 57,
No.6, Part 2 (July-August 1978), pp. 1905-29.

3. B. W. Kerninghan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N. J. : Prentice-Hall, 1978.

4. B. R. Rowland and R. J. Welsch, "The 3B20D Processor & DMERT Operating
System: Software Development System," B.S.T.J., this issue.

FIELD SUBSYSTEMS 339

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.1, January 1983
Printed in U.S.A.

The 3820D Processor & DMERT Operating System:

3820 Field Utilities

By G. P. ELDREDGE and J. G. CHEVALIER

(Manuscript received March 10, 1982)

The term ({field utilities" describes a number of tools used by
telephone company craft and support staff as well as Western Electric
and Bell Laboratories field support personnel for trouble-clearing
and routine maintenance activities on the 3B20DjDMERT system.
This complementary set of tools provides debugging coverage for the
system regardless of load or system functionality. In addition, it deals
with the challenges and complexities posed by the concepts of parallel
processing, virtual addressing, and swapping. This article describes
the various field utilities and discusses their capabilities.

I. INTRODUCTION

The term "field utilities" includes a number of tools used by tele­
phone company, Western Electric, and Bell Laboratories support
personnel to perform trouble-clearing and routine maintenance activ­
ities. Currently, software debugging and investigation tools include the
Field Test Set (FTS), the Generic Access Package (GRASP), and
IBROWSE, an interactive tool used to "browse" through the contents
of main memory. In unusual cases, a Micro-Level Test Set (MLTS)
may be used in a troubleshooting mode. The Program Documentation
Standard (PDS) Field Maintenance Commands are a collection of
tools used to perform more routine operational maintenance on the
operating system. Each of these capabilities will be described in this
article.

II. TROUBLESHOOTING AIDS

The nature of large, evolving software projects is such that, despite
multiple levels of testing by developers, integration teams, system test
groups, and field site acceptance teams, some software "bugs" escape

341

Table I-Comparison of 3820D/DMERT debugging tools
Attribute/Tool FTS GRASP IBROWSE MLTS

Interference None Small, self- Small, not Extreme
regulated regulated

Scope of capabil- Medium High Low Medium
ities

Debugging level Assembly Assembly Assembly, Microcode, as-
source sembly

Limitations Limited on No special No break- Difficult with
kernel processes points, no supervisor or

or kernel trace user proc-
esses, no
data break-
points

Language C-like PDS,MML ADB-Like Terse

Target users Bell Labs, Operating Bell Labs, Bell Labs, WE
WE Co., Bell WE

Labs, WE

Target software None DMERT DMERT Microcode
needed

Support proces- UNIXOper- None None None
sor software ating Sys-
needed tern (FTS)

Hardware FTS, DUC, UC orDUC Terminal MLTS, termi-
needed terminal (optional) nal

Theater of use Limping or Running, Running, Lab, dead field
loaded field non over- nonover- site
site loaded field loaded field

site site, off-
line

detection and are included in field releases of software. In the real­
time systems used in switching, the bug may be so subtle that it may
surface only under equipment configurations, telephone user actions,
and/ or traffic loads not easily reproduced in a system laboratory
environment. System debugging tools must be available in a field site
carrying live traffic to solve these problems when they arise.

The 3B20D/Duplex Multiple Environment Real Time (DMERT)
operating system employs advanced computer technologies that re­
quire equally sophisticated tools to isolate errors. Parallel, time-sliced
execution of processes, virtual addressing, and swapping all contribute
to the need for a variety and diversity of system debugging tools. Table
I is a comparative summary of these various troubleshooting tools
available to field sites.

2.1 Field test set

In rare cases, a system problem could occur that leaves the system

342 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Fig. I-Field test set.

functionally inoperative. In other cases, the traffic level may be so high
that system overload mechanisms become active when unexpected
results in the system indicate a software error. In either case, on-line
utility systems, which assume basic functionality and nonoverload
conditions, are not appropriate to isolate the problem. The Field Test
Set (FTS) was designed specifically to meet this need in the field. It is
strictly a monitoring device and therefore does not affect processor
performance or rely on system operability. This non-interfering char­
acteristic is extremely important when maintenance personnel are
trying to isolate problems at a field site carrying a heavy traffic load.

The FTS is a small, portable unit (see Fig. 1) that is easily trans­
ported and connected to the 3B20D Processor through the Dual­
Access Utility Circuit (DUC). The DUC contains hardware matchers
and a 2048 entry trace memory and provides access to the processor
for the FTS and GRASP (see Section 2.2). The external FTS unit
connects to the DUC through an eight-foot cable. The FTS intelligence
is contained in this external unit that includes a microprocessor with
memory management, one megabyte of random-access memory
(RAM), and a cassette transport. User access is provided through a
local or remote terminal with phone access provided by the FTS.

FIELD UTILITIES 343

The UNIX* operating system was chosen as the FTS operating
system. There are many advantages to using an operating system on
the FTS and in particular the UNIX system. The FTS resident
software was developed and tested as individual modules written in
the high-level C language. This substantially reduced the software
development time and effort. Also, the UNIX operating system com­
mands provide substantial portions of the functionality required for
the FTS software. Although the UNIX system requires disk storage
for its file system, a disk system was not considered rugged enough for
portability. Therefore, a "virtual disk" is supported as part of system
memory. The UNIX operating system is booted into the system from
cassette tape by resident erasable programmable read-only memory
(EPROM) software. The EPROM also contains the unit's self-diag­
nostic software.

The FTS/DUC system supports a rich variety of trace and data­
matching options. The lowest level trace, a so-called transfer trace,
records program addresses of all transfers executed by a program or a
range within a program. An intermediate-level function trace records
program function call/return sequences. At a higher level, a record
may be kept each time a different process begins execution. Multiple
trace mod~s can be active simultaneously. Information is recorded into
the trace memory under control of a variety of sophisticated matcher
circuits. Masking capability is provided so that a matcher can look for
a particular value of a single bit or groups of bits as well as word
values. Matchers are included for address, address range, data, access
type (e.g., read, write, or read/write) and process ID matching. When
a matcher or a combination of matchers is triggered, a signal is
produced that causes a "snap" of information into the trace memory.
The matchers and matcher combinations allow very selective trace
memory recording. This reduces both the size of the trace memory
required and the amount of post-processing necessary to interpret the
trace data.

The trace memory is operated in either a pre-trace or a post-trace
mode. In the former case, the trace memory records information until
it receives a stop trigger. The trace data represent program flow
leading up to a particular event. In the post-trace mode, the trace
memory starts recording upon receiving a trigger and stops when the
trace memory is full. This provides a history of program flow after a
particular event.

The DMERT operating system software is predominately written
in the high-level C language. C enables the programmer to work with
function-level rather than machine-level operations. To support this,

* Trademark of Bell Laboratories.

344 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

the FTS includes matching and tracing capabilities for software func­
tions and process IDs. Function tracing records the program address
and the data parameters passed on the stack to a selectable function
or range of functions. Process ID matching and tracing becomes
necessary in a virtual memory machine since processes are dynamically
relocatable in physical memory. Processes are assigned unique ID
values when they are created. The active process ID value is presented
to the FTS process ID matchers and trace memory. These matchers,
combined with the virtual address matchers, permit matching and
tracing on virtual rather than physical addresses.

Since the FTS is an external system, it is the appropriate choice
when problems must be investigated in code that has tight timing
constraints or in a system that is heavily loaded. Its most attractive
features are its excellent trace facility and the fact that the FTS
operates in a mode that does not interfere with 3B20D operation.
Although it was not designed to access machine registers or write
memory, the FTS is a powerful tool in the hands of support personnel
to isolate difficult system problems.

2.2 Generic access package

The concept of an on-line software debugging mechanism in real­
time machines is not new.1 Software problems may occur when the
system is functional and processing traffic in a non-overload environ­
ment. Such problems can be solved in the 3B20D by use of the Generic
Access Package (GRASP).

GRASP is an on-site tool for software debugging. Since it supports
an interface to the DUC, GRASP provides a set of trace and data­
access trap functions similar to those provided by the FTS. In addition,
it provides the capability to place multiple breakpoints in code, to
print the contents of memory and many machine registers, and (with
some restrictions) to write memory and registers regardless of whether
the DUC is available or operating correctly. GRASP has a self-regu­
lating mechanism designed to prevent itself from taking too much real
time and thereby interfering with traffic processing or driving the
system into overload.

Since GRASP is "just another process" running on the machine, the
design presents some unique challenges. GRASP needs to be able to
identify the target process, assure that it is in main memory, and be
able to gain access to its address space.

A logical process is specified by a logical tag (called a "utility ID")
that is compiled into the process. All incarnations of a logical process
will have the same tag since they all originate from the same object
file on the disk. The tag is stored in system tables when the process is
brought up and is available throughout the life of the process.

FIELD UTILITIES 345

Upon a request from GRASP, the operating system searches the
tables, prepares a list of real process tags (called "process IDs") for
processes whose utility IDs match GRASP's request, and sends the
list to GRASP. Translation between the utility ID, which is known to
the craftperson, and the process ID, which is known to the operating
system, is thus accomplished.

GRASP relies on cooperation with the target process to be informed
when the target process is in main memory. All processes that GRASP
may need to monitor must have two function calls compiled into the
code, which form the run-time communication mechanism with
GRASP. One is placed in the process's initial entry routine; the other
is placed to execute "on demand" by GRASP.

After a process has been selected, it is forced into main memory
through cooperation with the process. GRASP sends an agreed-upon
event to the process; its only response to that event is to call the
associated library function. That function identifies the process and
notifies GRASP that it is in main memory.

Access to the target address space is then accomplished by using
address translation hardware called Address Translation Buffers
(A TBs). The Program Status Word (PSW) for each process is con­
structed to be able to handle two address spaces at one time. The
identity of the address translation buffers being used by a particular
process are included in that process's PSW. Instructions are provided
in the instruction set to indicate which of the two address spaces to
use. In addition, a special breakpoint instruction has been provided.
When the breakpoint is executed by the target process, GRASP's PSW
is modified so that GRASP is given access to the address space in
which the breakpoint fired. This presupposes that GRASP and the
target process are using different address translation buffers; that
assumption is enforced by the operating system.

GRASP is especially useful when multiple breakpoints are needed
(GRASP can handle up to 20), when breakpoints must be planted in
several processes simultaneously, where register information is needed,
or when investigation must be done remotely from a central mainte­
nance facility.

2.3 IBROWSE

Neither the Field Test Set nor GRASP provides a mechanism to
examine the kernel address space. IBROWSE, an interactive tool used
only by Bell Laboratories and Western Electric support personnel, can
be used to peruse the address space of any DMERT process in main
memory; it fills the need to be able to view the operating system tables
and message buffers in the kernel address space. IBROWSE also can
be used on an off-line support processor to analyze tape dumps of main
memory taken at field sites.

346 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

IBROWSE can display the contents of virtual or physical memory
in a user-specified format. The user can direct that the raw machine
data be represented as any combination of null-terminated strings,
characters, or one-byte, two-byte (short), or four-byte (long) data types
in octal, decimal, or hexadecimal format. This flexibility to specify the
translation of raw data is immensely helpful when viewing DMERT
data structures. IBROWSE supports the concepts of current address,
next address, and current format, which are useful in displaying
consecutive memory locations. It can view any process in memory,
from kernel through kernel processes, supervisors, and user processes.
It has the ability to search forward or backward for a specified data
pattern, in either virtual or physical addressing modes. IBROWSE
also supports a user-defined macro facility and I/O redirection.

The main strengths of IBROWSE are its ability to view the address
space of any process in main memory and its capability to analyze data
from an off-line Control Unit (CU). Since use of IBROWSE requires
relatively detailed knowledge of DMERT, its users are intended to be
specialized Bell Laboratories or Western Electric support personnel;
for that reason, no attempt has been made to make IBROWSE part of
the official DMERT release. Each time the support teams need it,
they load it into the target machine.

2.4 Micro-level test set

Should a problem result in a "dead" system or one that is continually
attempting automatic recovery actions and is unable to start the
operating system, the Micro-Level Test Set (MLTS) is used. The
ML TS is a low-level test system aimed primarily at hardware register
and microcode access. It consists of an interface circuit that plugs into
the 3B20D like any other board and an external control circuit. Since
the ML TS is equipped with an RS232 interface and a 212A data set,
it may be configured with a terminal on-site or may be operated from
a remote location.

The ML TS is the only field utility tool that provides read/write
access to all internal hardware and firmware registers and is the only
one that facilitates access to the processor's microcode. The MLTS
provides microcode breakpoints, can read and write microstore and
main store locations, and can read and write machine registers that
are not accessible to other troubleshooting tools. Although its primary
use is in a laboratory environment, there are infrequent cases where
such capabilities are required to solve problems during field tests.

III. OPERATIONAL UTILITIES

Since DMERT supports a hierarchical file system as well as the
concept of processes, some types of problems must be dealt with and

FIELD UTILITIES 347

resolved at the process or file-system level. For example, a process may
be running when it should not be or the file system may contain some
transient files that should have been cleared. The UNIX operating
system itself provides many utilities for process control and file system
maintenance; these same capabilities are needed in the Program Doc­
umentation Standard (PDS) syntax for Electronic Switching System
(ESS) applications.

PDS field maintenance commands can be described in three cate­
gories:

(i) File system manipulation and maintenance
(ii) Process control

(iii) Magnetic tape operations that are support-processor compat­
ible.

PDS commands are provided to allow the craft or support person to
determine what files exist on the disk and what their access permissions
are; the craft may alter the access permissions, add new files, or remove
existing files. A basic text editor is provided to facilitate creation or
modification of ASCII files. In addition, tools are provided to start a
process, stop a process, and to determine what processes are known to
the system.

Although these utilities do not fall into the class of "debugging"
tools, they nevertheless provide a window into the system at a high
level that is very useful to solve certain types of system problems.

IV. SUMMARY

Because of its architecture and technology, the 3B20D/DMERT
system presents a number of challenges to those who must isolate
problems in a running system in the field. Problems may be caused by
hardware failures, software deficiencies, microcode errors, or opera­
tional overloads and inconsistencies. A set of tools has been developed
to isolate problems that may occur in the field. Together, these utilities
provide a continuum of system trouble identification capabilities for
the 3B20D/DMERT system in the field.

V. ACKNOWLEDGMENTS

The authors acknowledge the contributions of Messrs. R. H. Holt,
J. P. Kehn, G. A. Moore, J. D. Peterson, and D. J. Thompson, and Ms.
C. A. Toman for their inputs, critiques, and reviews.

REFERENCES

1. G. F. Clement, P. S. Fuss, R. J. Griffith, R. C. Lee, and R. D. Royer, "lA Processor:
Control, Administrative, and Utility Software," B.S.T.J., 56, No.2 (February
1977), pp. 237-54.

348 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.1, January 1983
Printed in U.S.A.

The 3B20D Processor & DMERT Operating Systems:

Fault Detection and Recovery

By R. C. HANSEN, R. W. PETERSON, and N. O. WHITTINGTON

(Manuscript received March 18, 1982)

The 3B20D Processor is designed to be a high-availability system
for utilization in electronic switching systems. This high availability
translates into the development of numerous features and capabilities
for the 3B20D that distinguish it from other processors. The reliability
objectives for the processor are described and related to the subsys­
tems that have been developed to meet each objective. This article
discusses processor and peripheral fault recovery, system integrity,
and other software subsystems that provide the high availability and
maintainability for the processor.

I. INTRODUCTION

The 3B20D Processor has extensive maintenance subsystems asso­
ciated with it and is designed to meet the high-availability standards
of Bell System electronic switching systems. This implies that the
processor must perform within an objective of not more than two
minutes downtime per service year when used in an electronic switch­
ing application. The many subsystems that have been developed to
provide the high-availability capability are described in this article. In
particular, software and hardware fault recovery are discussed along
with the microcode assists for the recovery.

Much evolution has taken place in recovery architectures for elec­
tronic switching systems.1

,2 Earlier processor systems used extensive
hardware-matching algorithms that resulted in intricate software re­
covery.3,4 More recent hardware technologies have enabled the cost­
effective design of processor systems with unique fault-detection ca­
pabilities.1

,5,6 These capabilities have led to much simpler recovery
software. This article describes the detection mechanisms for the
3B20D and the software maintenance architecture.

349

II. SYSTEM RELIABILITY REQUIREMENTS

The reliability objective for the 3B20D Processor system, as with
other similar systems, is to keep the overall system unavailability­
i.e., the time that the system cannot be utilized by operational (call
processing) functions-below 2.0 minutes per year.7 In keeping with
the ESS processor tradition, the total system downtime is allocated to
four general categories: hardware, software, recovery, and procedural.

The processor has 0.4 minute per year allocated to malfunctions in
the system hardware. Like other highly reliable systems, the 3B20D is
equipped with redundant hardware units. Thus, failures must occur in
both redundant units before the system is unable to establish a working
configuration. In the case of simultaneous failures in both units, until
one is repaired and system integrity is reestablished, the system is
considered unavailable. This portion of the overall system downtime
is a function of the failure rates of the various components (FIT rate),
the system architecture, and the mean time to repair (MTTR). The
hardware reliability model for the 3B20D Processor within a given
application is dependent on the hardware configuration used and the
maintenance technique used (this determines the repair time).

The processor has 0.3 minute per year allocated to malfunctions in
the processor operational software. This is a classification of software
faults that can render the system features inoperative. This allocation
includes cases such as software faults that require a bootstrap to
recover the system. As in the case of other high-availability systems,
the 3B20D /DMERT system has a design objective of having no
software failures the system cannot recover from. To help recover the
system against software failures, DMERT has three levels of defenses
that attempt to recover the system from such faults: hardware protec­
tion, system integrity monitor, and audits. The 3B20D Processor has
several levels of hardware protection that detect the sanity of the
system software. The system integrity monitor in the DMERT system
has an elaborate scheme of software and hardware sanity timers as
well as overload detectors that protect the system against software
"resource hogs." DMERT audits include all of the explicit audits in
the system as well as the defensive checks built into the common
processor software. The intent of the audits is to help defend important
processes against data mutilation.

The processor has 0.7 minute per year allocated to limitations in
fault-recovery programs. These failures are classified by the inability
of fault-recovery software to achieve a working configuration of the
system due to some hardware failure condition even if a working state
of the hardware is possible. These cases are characterized by the
necessity for manual intervention to reestablish system integrity or by
an automatic initialization to regain system integrity.

350 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

The 3B20D has a comprehensive fault-recovery scheme that at­
tempts to recover the system from all foreseeable single hardware fault
conditions. In several cases, recovery mechanisms are generated for
multiple fault situations (e.g., memory failures) when that is considered
to be a probable situation.

Finally, the processor has 0.6 minute per year allocated to procedural
errors. This category covers cases where a craft person uses an im­
proper maintenance procedure or follows a poorly designed procedure
that results in a machine outage. The 3B20D is designed with a
defensive craft interface using the PDS (Program Documentation
Standards) and MML (Man Machine Language) languages.8 The craft
interface also includes emergency action and display-page capabilities
that attempt to simplify the complexities of maintaining the 3B20D.

The system reliability requirements also include the various aspects
of maintaining the 3B20D. These maintainability aspects include
diagnostics, transient error analysis, emergency recovery procedures,
routine maintenance procedures, growth and retrofit capabilities, sys­
tem and process update capabilities, and field utilities. Diagnostics are
provided to detect and assist the repair of classical hardware failures
in the system. The diagnostic requirements include sufficient run-time
performance so that a rapid repair can be carried out. Diagnostics
provide greater than 90 percent fault detection.

The ability to repair circuitry exhibiting transient failures is provided
through fault-recovery error reports. For example, data about transient
memory faults is printed out to the craft and includes address and
pack location where the error was detected. If that circuit pack
continues to have a history of transient errors, the craft has sufficient
information to effect a repair. Error analysis capabilities are provided
on the 3B20D through the use of fault-recovery messages and error
logs.

Emergency recovery procedures are provided to reconfigure the
system when automatic recovery does not succeed. These capabilities
allow the craft to repair the 3B20D in case of catastrophic failures.
These procedures include use of the emergency action page, processor
recovery message analysis, and dead-start diagnostics. Routine main­
tenance procedures are provided to keep the 3B20D in peak operating
condition. Growth and retrofit procedures allow hardware additions
and removals without affecting the system service. Finally, various
utilities are provided with the DMERT system to locate system
problems in field installations.

III. GENERAL RELIABILITY AND MAINTENANCE ARCHITECTURE

In this section, we provide an overview of the 3B20D fault-recovery
architecture that is described in further detail in later sections. Figure

FAULT DETECTION AND RECOVERY 351

1 illustrates the hardware architecture of the 3B20D. As is indicated
in the figure, the processor system has very loose coupling between
any of the mate subsystems. The memory to memory update coupling
is provided to keep both active and standby memories identical. This
allows the switching of processors without losing the integrity of the
software running on the system.

The other coupling between the processors is through the mainte­
nance channel. The maintenance channel provides two capabilities
important to the integrity of the processor. First, it provides a control
and communication bus for the purpose of diagnosing the off-line
processor from the on-line processor. Second, it provides low-level
maintenance control for fault-recovery programs so that a switch in
processor activity can be carried out with no operational interference.
In addition, other maintenance controls can be exerted over the
channel to start an initialization sequence on the other processor or to
stop execution on the other processor. One other coupling, the Dual
Duplex Serial Bus Selector -(DDSBS), allows either processor to talk
to any peripheral controller. Thus, no matching techniques are utilized
between major subsystems or peripherals in the 3B20D for the pur­
poses of fault detection in the hardware. This means that unique fault­
detection techniques are essential in each subsystem of the 3B20D.

MEMORY
o

EMERGENCY
ACTION --­

INTERFACE

MEMORY UPDATE

MAINTENANCE
CHANNEL

MAINTENANCE
TERMINAL 0

OTHER 1/0
DEVICES

Fig. I-The 3B20D system architecture.

MEMORY
1

EMERGENCY
-- ACTION

INTERFACE

MAINTENANCE
TERMINAL 1

OTHER I/O
DEVICES

352 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

To provide these detection algorithms, extensive use of local match­
ing circuits, parity techniques on all buses, Hamming detection with
single-bit error correction on the main store, cyclic redundancy codes
on the disks, and numerous sanity timers throughout the control unit
and peripherals are used as the primary fault-detection techniques. In
addition, routine diagnostics are used to detect failures in the fault­
detection hardware itself. Other routine sanity checks are used to
ensure that peripheral subsystems are healthy. Finally, system-integ­
rity checks catch certain subtle problems that are not caught by unique
detectors.

3. 1 Fault-recovery architecture

When any of the unique detectors determine an error condition, an
error interrupt (or error report in the case of certain peripherals) is
registered in the processor. The most severe of these will result in
automatic hardware sequences that switch the activity of the proces­
sors (hard switch). Less severe errors result in micro interrupts that
enter microcode and software charged with recovery of the system.

The microcode and recovery software provides a layered approach
to the recovery architecture. Figure 2 illustrates this architecture with
microcode providing low-level access to the hardware while the recov­
ery software provides the high-level control mechanisms and decision
making. This technique has resulted in several hardware design mod­
ifications requiring minimal change to the recovery software.

Figure 3 illustrates the principal architecture and features provided
by the recovery software. The bootstrap and initialization routines
provide a fundamental set of microcode and software algorithms to
control the processor initialization and recovery. These actions are
stimulated by a Maintenance Restart Function (MRF), which repre-

MICROBOOT

CONFIGURATION
CONTROL

MICRO­
ACCESS

FUNCTIONS

MICRO­
SEQUENCER

CONTROL

HIGH-LEVEL
CONTROL

LOW-LEVEL
HARDWARE

ACCESS

Fig. 2-Maintenance software structure.

SOFTWARE
MICROCODE

FAULT DETECTION AND RECOVERY 353

FAULT RECOVERY

Error Interrupt Handler
Configuration Control

Soft Switch
Restore/Remove

BOOTSTRAP AND INITIALIZATION

Microboot
Little Boot
PINIT
Big Boot

SYSTEM INTEGRITY MONITOR

CONFIGURATION MANAGEMENT

Audits
Sanity Timers
Overloads

Fig. 3-Maintenance architecture.

sents the highest priority micro interrupt in the system. An MRF
sequence can be stimulated from either hardware- or software-recovery
sources.

The fault-recovery and system-integrity packages control fault de­
tection and recovery for hardware and software, respectively. The
Error Interrupt Handler (EIH) is the principal hardware fault-recovery
controller. It receives all hardware interrupts and controls the recovery
sequences that follow. The configuration-management program (CON­
FIG) determines if this particular error is exceeding predetermined
frequency thresholds. If a threshold is exceeded, CONFIG requests a
change in the configuration of the processor to a healthy state. Thus,
CONFIG serves as an error-rate analysis package lO in the 3B20D
maintenance architecture for both hardware and software errors.

3.2 Software integrity architecture

Software fault recovery is very similar in architecture to hardware
fault recovery. Each major unit of software is expected to have asso­
ciated with it error-detection mechanisms (defensive checks and au­
dits), error thresholds (provided by the system-integrity monitor and
CONFIG), and error-recovery mechanisms (failure returns, data cor­
recting, audits, and initialization techniques). In addition, both SIM
(System Integrity Monitor) and EIH oversee the proper execution of
the process. 81M ensures that a process does not put itself into an
infinite execution loop or excessively consume some system resource
(e.g., message buffers). EIH, through the use of hardware and micro­
code detectors, ensures that processes do not try to access memory
outside of defined limits or execute instructions that are not permitted
to the process. Each process has initialization and recovery controls
(analogous to hardware) so that a recovery can be effected. Figure 4
illustrates the software-recovery architecture.

354 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

ENTRY

AUDITS
DETECTION/

CORRECTION

DEFENSIVE
CHECKS

PROCESS N

SPECIAL
RETURN
CODES

EXIT

SYSTEM­
INTEGRITY
MONITOR

(BASIC SANITY)

INITIALIZATION
AND

RECOVERY

Fig. 4-Software fault-recovery architecture.

ERROR
INTERRUPT
HANDLER

HARDWARE
MONITORS

If recovery actions result in the removal of hardware units from the
system, diagnostics9 are dispatched automatically to analyze the spe­
cific problem. Audits represent the software counterpart for diagnostics
with the exception that the routine interval is much shorter and
correction is possible in the case of audits.

IV. FAULT RECOVERY

In this section, we describe the fault-recovery strategies associated
with the 3B20D Processor. In particular, we describe the fault recovery
and initialization strategy along with the microcode assists required to
carry out these functions. We also describe the manual control capa­
bilities provided by the processor and software. These control mecha­
nisms are termed emergency mode. Finally, we describe some of the
software audit and integrity techniques in the DMERT operating
system.

4. 1 Fault recovery and system initialization

Fault-recovery strategies are based on the fault-tolerant architecture
of 3B20D. Major hardware units are fully duplicated. This duplication
provides a high probability that a combination of operational units can
be retained in the face of faults. The mate processors are only loosely
coupled; interprocessor connections are limited to the maintenance
channel and memory-update circuitry. This architecture forms the
foundation of the hardware-recovery strategy employed in the 3B20D,
namely to isolate an entire faulty processor as opposed to attempting
fault resolution at the subunit level.

DMERT is a modular operating system that provides a wide range

FAULT DETECTION AND RECOVERY 355

of protection from various types of classical errors. Examples include
write-protected memory areas, memory ranges that can be used only
for text execution, and protected virtual address spaces. Thus much of
the recovery from these types of errors is built into DMERT directly.
Those overt recovery actions that are required are greatly simplified
by the underlying architecture. Hard faults and other conditions
requiring recovery actions are treated according to their severity. Fault
categories that will be described individually are hard faults, thresh­
olded faults, configuration faults, sanity time-outs, and software-re­
quested recovery actions.

The 3B20D has built in self-checking circuitry designed to detect
hard faults as soon as they occur. This circuitry simplifies recovery
since early fault detection limits the possible damage done by the
fault. Faults in this category indicate that the processor is no longer
capable of proper operation and results in an immediate stop of the
currently running processor and a switch to the standby processor.
Since the standby processor does not match the active processor
instruction by instruction, an initialization sequence is required to
start execution properly.

Some types of faults and errors are not severe enough to justify an
immediate stop and switch recovery action. Examples of errors of this
kind are hardware faults detected in the standby processor memory
and software errors such as write-protection violations. Another type
of error in this category is hardware faults that are handled by self­
correcting circuitry. Although most faults are detected by self checking,
some units, such as main memories, have fault rates that justify self­
correcting capabilities. Disks also are self correcting through the use
of cyclic redundancy codes. All errors in this class are reported to the
recovery system as error interrupts.

Recovery software classifies the interrupt by type, gathers and saves
all available information about the interrupt, and reports the error to
the system configuration-management package. If a particular soft­
ware process is suspect as the cause of the interrupt, such as in a
software-triggered event, the process that was running at the time of
the interrupt is faulted and entered at its fault entry after a stable
system configuration is guaranteed. The fault entry of a process
contains recovery and initialization sequences that are special to the
process involved.

All error interrupts are reported to configuration management.
Errors are logged against the failing unit and error rates are compared
to allowed error thresholds. If the affected threshold is exceeded,
further action is required and is based on several factors. If the faulty
unit is essential to the system and a mate unit is available, the faulty
unit will be removed from service and scheduled for diagnostic testing.

356 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

If there is no available mate unit, the faulty unit will be initialized and
returned to service since in the case of essential units it is better to
have a faulty unit than no unit. Nonessential units are removed and
scheduled for diagnostic testing whenever their error thresholds are
exceeded.

Each processor has a sanity timer that will result in an initialization
if it times out. The active processor maintains both its own and the
standby sanity timer so that if the active processor is completely dead,
an initialization of the standby processor will be triggered by a sanity
timer time-out.

The system provides an Operating System Trap (OST) for use by
software to request an initialization. This capability is used by critical
system processes when they encounter errors that preclude perform­
ance of a critical system function. Initializations occur when an error
or fault has been detected that cannot be recovered from without a
change in hardware and/or software status. A stop and switch to the
other processor mayor may not be associated with any given initiali­
zation. All initializations include actions of varying severity depending
on what is required to deal with various faults and errors.

The first event in the initialization sequence is a hard-wired transfer
to a fixed location in the CU microstore where microcode makes a
decision as to whether to bring this processor on-line or to switch to
the other processor. If the current initialization is of level two or
higher, the appropriate processes and data bases are loaded from disk.
All available data about the initialization trigger is saved and a decision
is made to bring this processor on-line or stop for the off-line initiali­
zation.

The DMERT kernel initialization or bootstrap routine is then called
to restart system processes or to fault active processes as appropriate.
The initialization is now complete and the system has returned to
normal operation. If an initialization does not recover the system to an
operational state, another and more severe initialization will be trig­
gered automatically. Whether to escalate or not is controlled by the
initialization interval. Any initialization that occurs during a window
of time following the previous initialization will escalate to the next
higher level. The length of the initialization interval is a system
generation parameter that is established by the application. In addition
to the DMERT initialization levels, provision is made for an applica­
tion to specify between one and sixteen levels for each DMERT level.
For example, if the application specifies two levels for DMERT level
one, the normal execution of initialization levels would be (1,1), (1,2),
(2,1), ... , where the first number indicates the DMERT level and the
second number is the associated application level.

Data about various recovery actions taken by the system are sup-

FAULT DETECTION AND RECOVERY 357

plied to provide all possible information about what went wrong and
to provide data that can be used by maintenance personnel to assist
them in isolating difficult faults. Recovery data are provided in several
forms. Each error interrupt is accompanied by a printout containing
available information about the state of the processor when the inter­
rupt occurred. A more difficult problem is presented by initializations.
Since they are more severe than interrupts and in fact represent a
discontinuity in processing, gathering and preserving error data is
more difficult. Initializations, as well as interrupts, can occur at a rate
much too fast for data to be printed. The solution is to save all
pertinent data in a protected area of memory for printing after the
system has recovered.

Various kinds of error data are not generally printed as a part of the
standard system output but instead are saved in error files on the
system disks. Examples of this kind of data are device-driver errors
and failing-memory data. One of the more useful pieces of data output
by the system are Processor Recovery Messages (PRM). These are
low-level one-line messages that are printed in real time. The PRMs
thus represent progress marks through the recovery sequences and are
extremely useful in those cases where stability cannot be achieved or
postmortem data cannot be gathered.

4.2 Special microcode for recovery

A large fraction of the total amount of CD microcode is provided to
aid in recovery. The bulk of this recovery microcode is in PROM
because most functions are required in spite of the power history of
the CD or its boot devices. Functions that are required even if the CD
is not ready to execute its instruction set include micro interrupt
processing, maintenance channel assists so that one processor can
access the other processor and microcode to initialize hardware sub­
systems. Additional recovery microcode that resides in writable mi­
crostore (WMS), extends the processor's instruction set to provide
convenient diagnostic and recovery software access instructions. When
diagnostic performance requirements do not justify a special instruc­
tion, a microstore scratch area is available that can be loaded with
arbitrary microsequences that can then be executed for special tests or
functions. Before software can run, the WMS must have been loaded
from disk. This happens initially as part of the processing of the MRF
micro interrupt.

4.2.1 MRF and microboot

When a maintenance restart interrupt occurs, a long sequence of
microsteps begins to establish system sanity. Both processors may be
in their MRF sequence at the same time and each one may try to

358 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

become the active processor. The MRF code fIrst makes decisions on
whether to do an off-line initialization or an on-line initialization. If a
processor determines that it has just powered up, it clears main store
and does an off-line initialization unless forced on-line.

A number of tests are made on data in the system status register,
SSR, to select one of four possible actions: microboot, tapeboot,
processor initialization, or stop and switch. The simplest actions are to
begin execution of a processor initialization program called PINIT or
to stop and switch to the other processor. This is accomplished by
sending a switch command over the maintenance channel to the other
processor.

Tapeboot is a complex sequence of microcode that is only done
when requested manually via the craft interface. Its function is to
create a new system disk from tape. Using the tape device and disk
device selected by the craft interface it initializes those I/O units and
initializes the WMS from tape. A boot program, called load disk from
tape, is read from tape into main store, and memory-management
tables are created to allow it to run the hardware complex without the
operating system. This program then reads the tape to make a
DMERT disk image.

Microboot uses information on the DMERT disk to initialize the
writable microstore and read in the fIrst software boot program called
little boot. To do this, it must fIrst select the disk drive to use as a boot
device. If the craft interface has forced either the primary or secondary
boot device, it uses that device. Otherwise, microboot selects a disk
drive based on the state of hardware control bits. Alternate boots will
use alternate devices. Microcode is read from the disk and then copied
to WMS. Finally, little boot is read from the boot partition and given
control.

4.2.2 Microaccess assists

Although the MRF sequence is the most complex microcode recov­
ery assist, both diagnostics and recovery software have special micro­
code. There are six maintenance channel assists in PROM. They are:

Write Main Store
Read Main Store
Write Writable Microstore
Read Microstore
Write Utility Circuit
Read Utility Circuit

In addition there is microcode in WMS to support a set of instruc­
tions provided for the diagnostic and recovery software. Diagnostics

FAULT DETECTION AND RECOVERY 359

have instructions to manipulate the maintenance channel and aid in
I/O diagnoses. They also share instructions with recovery. These
instructions include groups of instructions for:

On-Line Main Store Controller
Off-Line Main Store Controller
Maintenance Store Operations

Finally, both diagnostic and recovery software use privileged instruc­
tions (shared with the operating system) to read or write special
registers. They also can activate unit initialization sequences that are
used in the various parts of the MRF microcode.

4.3 Emergency modes

Emergency mode on the 3B20D refers to the facilities and proce­
dures provided to prevent the system from experiencing a total outage.
For example, emergency facilities are applied when the system is
unable to recover automatically. The most characteristic of these are:
duplex failure of the control unit, duplex failure of the system disks,
duplex failure of the essential I/O devices, failure of fault recovery to
find a working configuration of hardware, software faults that will not
allow the system to operate properly, errors that destroy the integrity
of the disks, and software overwrites that introduce catastrophic errors
into the software.

Emergency mode capabilities are built into the system to address
these mechanisms that can fail the 3B20D as a system. The emergency
action interface (EAI) on the 3B20D provides for manual initialization
capabilities that can recover the system from several of the conditions
mentioned above. This interface allows the craft to select a processor
and disk configuration in a case where certain configurations may be
leading to the problem. The interface also allows the craft to recon­
figure the system to handle maintenance hardware failures. For ex­
ample, the craft can inhibit error sources and sanity timers through
EAI commands, thus allowing recovery from certain maintenance
failures even though both processors are affected. The EAI also
provides capabilities for craft initializations to deal with loss of sub­
system capabilities.

The 3B20D also provides the craft with other manual capabilities
through the port switch select, the disk power inverter select, and the
unit power switches. These can be used to reconfigure the system to
handle certain problems in the system. In rolling bootstrap conditions,
the 3B20D outputs diagnostic information through processor recovery
messages. This information provides a gross diagnostic capability in
the event of a complete system outage.

360 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Tape load boot is an emergency procedure provided for the situation
where a system has destroyed its only valid copies on disk of the
generic software. Here the site would have a tape copy of the generic
and data base, and read the tapes into the disk via the EAI tape load
boot facility.

The final backup repair procedure is the dead start diagnostics.
Primarily used as an installation tool, the dead start diagnostics allow
for the repair of a completely sick processor by using a remote host
processor.

The craft interface provides the mechanism through which the
status of the system can be determined, the configuration of the
system's hardware or software can be changed, and special emergency
actions can be taken during catastrophic failures of system compo­
nent.8 The emergency action interface (Fig. 5) allows the craft in the
field to access the system during times when a major portion of the
system is nonfunctional to the point where the normal capabilities of
the craft interface cannot be used. The limited capabilities of the
emergency action interface include forcing failing hardware off-line or
on-line, notification of the status of critical system resources, and
forcing a reinitialization of the system.

4.4 Software integrity

Section III described the architecture of the software integrity
system. In this section, we describe some of the specific audit and
overload measures that have been included in the DMERT system.

The DMERT audit package verifies the validity of critical data
structures. Most audits exist throughout the system within the proc­
esses that control the data to be audited. In some cases, several audits
are invoked consecutively to form a sequenced mode audit. Most
requests for running audits come from an audit control structure, i.e.,
the audit manager.

Audits in DMERT verify data, not functions. The basic types of
auditable data are system resources and stable data. Though most of
the auditable data in the operating system resides in the kernel,
additional data resides in other critical processes, such as the file
manager and device drivers. Smaller amounts of auditable data reside
in supervisor processes, such as in the UNIX* operating system and
the process manager.

Some audits, scheduled on a regular basis, are known as routine
audits; others, scheduled on request, are known as demand audits. A
partial list of the DMERT audits follows:

* Trademark of Bell Laboratories.

FAULT DETECTION AND RECOVERY 361

CA)
Ol
J\)

-I
I
m
OJ
m
r
r
en
-< en
-I
m
~
-I
m
()
I
Z
()
» r
c....
o
C
:0
Z »
~
c.... » z
c »
:0
-<
CD
())
w

LAB 2 3B/DMERT

SYS EMER CRITICAL
TRAFFIC SYS INH

CMD: 52!-OK

2.0.5.5

MAJOR
CU

MINOR
CU PERPH

MTTY_8

BLDG/PWR
LINK

(0) 01/28/8218:30:31
• ,e, E.s

BLD INH CKT LIM "n1\TlU!I'I'

__ EMERGENCY ACTION PAGE __

EAI-O_ ~ PRM-O E700 0100 0101 00C7 79 D6 OC

10 FONL-O
11 FONL-1
12 FONL-ACT
13 CLR-FONL

14 CLR-EAI
15 CFT-INIT

EAI-1_ ~ PRM-1 EA21 DDOO 8300 OBDO 79 DA 04

SET CLR CU-O CU-1
20 21 PRI-DISK_
22 23 SEC-DISK ~ [[Ii
24 25 IN H -TIM E R_ IImI [Iill)
26 27 PRM-TRAP _

28 PRM-DUMP

SET CLR
30 Ell BACKUP-ROOT_
ffi33 MIN-CONFIG_~
341INH-HDW-CHK-
36 INH-SFT -CHK
38 'INH-ERR-INT_
40, INH-CACHE_
42, APPL-PARAM_

Fig. 5-Emergency action interface page.

50 APPL
51 INIT
52 BOOT
53 BOOT + ECD
54 BOOT + MEM
55 LDTAPE-O
56 LDTAPE-1

(i) Message buffers-This audit finds and frees lost message buffers,
i.e., messages that have been on a process's queue for extended periods
of time.

(ii) Scheduler-This audit checks for linkage errors in the sched­
uler's ready and not-ready lists.

(iii) Memory manager-This audit recovers lost swap space and
corrects any overlap of swap space.

(iv) File manager-This audit checks all internal file manager struc­
tures: task blocks, buffers, mount table, etc. The audit corrects the
information and has the ability to back out an aborted task and free
its resources.

(v) File system-This audit is demanded by the file manager when­
ever a file system is mounted read/write. It checks and corrects the
file system's super block free list, and free-block bit map. This audit
verifies the integrity of the mounted file systems concurrent with their
use.

v. MAINTAINABILITY

The maintainability of the 3B20D system is the second vital com­
ponent that guarantees the overall high reliability required of the
system. There are conditions where automatic recovery is unable to
restore the system to a fully functioning state. This is where maintain­
ability is critical to satisfying DMERT's high-reliability requirements.
The basic premise of maintainability is to provide basic data-gathering
and data-analysis mechanisms as well as the ability to act on the
results of that analysis. These mechanisms must be able to collect and
analyze diagnostic and debugging information from various hardware
and software components within the system in order to isolate the
error. These mechanisms must then allow the craft to control and
modify the configuration of the system based on the diagnostic and
debugging information collected. Furthermore, these mechanisms
must yield their information as quickly as possible while disturbing
the rest of the system as little as possible.

Maintainability comprises such areas as diagnostics, transient-error
analysis, routine maintenance procedures, field utilities, and plant
measurements. Once the error has been isolated and analyzed, the
problem must then be corrected as quickly and benignly as possible.
This procedure is termed updatability, and it includes such aspects as
growth and retrofit for hardware, emergency fixes, function update,
and system update for software. Maintainability is quite naturally
partitioned into diagnostics (hardware) and the various field utilities
(software).ll However, central to the ability of the craft to maintain
and control the 3B20D hardware and software is the ability to interface
to the various maintenance facilities provided within the system. This

FAULT DETECTION AND RECOVERY 363

is one of the very important capabilities of the craft-interface system.
The craft interface provides the craft and others with the means to
request diagnostics, receive error-analysis reports, initiate emergency­
recovery procedures, gather plant-measurements data, and exercise
routine maintenance programs. In addition, the craft-interface system
allows configuration control by providing access to growth and retrofit
procedures, system- and function-update capabilities, emergency-fix
facilities, and the various field utilities. This section discusses the
capabilities of the subsystems, which provide basic maintainability of
the DMERT system. Diagnostics are discussed in Ref. 9.

One component of the maintainability required of DMERT -based
systems is the ability of these systems to accept hardware and software
changes in a way that does not interfere with their primary tasks. In
other words, a DMERT-based system must be able to accept changes
without disturbing call processing, networking, or other critical func­
tions. DMERT supports this through several aspects of updatability.
The first is growth; the ability to add or remove hardware and related
software components to the running system. Growth extends from
physically connecting new equipment-such as memory boards­
through informing the system of its existence, exercising it, logically
connecting it into the system's configuration, and committing its use
in the system. Other subsystems-such as a hardware and software
fault recovery and diagnostics subsystem-then take over to ensure
that the new system component continues to be sane and usable.

The second aspect of updatability is retrofit: the ability to replace
hardware components in the system with similar components of a
different vintage or with different capabilities or interface character­
istics. Retrofit procedures may "de-grow" or remove old units and
then grow or add new ones. They also may add the new units first and
then perform a transition from the old units to the new. Thus, retrofit
of units may involve extensive periods of time where old and new units
coexist in the system. Retrofit may also involve substantial software
changes to interact with new units and to recognize the existence of
both old and new units.

The third component of updatability, field update,12 deals exclusively
with software and data file changes in DMERT. Such changes are
done logically, on a file-by-file or functional level. Just as with growth
and retrofit, field update can install or replace system programs or
files, inform the system about them, logically connect them into the
system, exercise them in that state, and then commit to or back out of
them. Field update is intended primarily for installing fixes or small
features that do not perturb the system's architecture.

The fourth updatability component, system update, allows program
and data changes of much greater magnitude, up to complete software

364 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

system replacement. A bootstrap is required to install the changes for
any system update. By using disk redundancy or backup copies of
sections of DMERT's disks, system update can prepare a new, partial,
or total version of the system on disk and then switch to it (and back,
if necessary). Where field update performs a logical change of files,
system update does a physical change of a set of partitions (file systems
and/ or file partitions).

VI. SUMMARY

This article has described the basic architecture of the fault-recovery
and system-integrity subsystem for the 3B20D Processor. These sub­
systems are tied into the maintainability aspects of the processor. All
of the features provided are responses to the reliability objective of no
more than two minutes downtime in each year of service. The features
and architecture continue in the tradition of former high-availability
processors.

VII. ACKNOWLEDGMENTS

The authors thank D. G. Gilbert, G. T. Surratt, B. G. Niedfeldt, and
D. J. Fitch for their assistance with various sections of this article.

REFERENCES

1. R. C. Hansen, "System Reliability Strategies," Proc. Nat. Elec. Conf., 35 (1981), pp.
40-51.

2. P. D. Carestia and F. S. Hudson, "No.4 ESS: Evolution of the Software Structure,"
B.S.T.J., 6, No.6 (July 1981), pp. 1167-1201.

3. R. W. Downing, J. S. Nowak, and L. S. Tuomenoksa, "No.1 ESS Maintenance
Plan," B.S.T.J., 43, No.5 (September 1964), pp. 1961-2019.

4. P. W. Bowman et al., "IA Processor: Maintenance Software," B.S.T.J., 56, No.2
(February 1977), pp. 255-87.

5. T. F. Storey, "Design of a Microprogram Control for a Processor in an Electronic
Switching System," B.S.T.J., 55, No.2, (February 1976), pp. 183-232.

6. M. W. Rolund, J. T. Beckett, and D. A. Harms, "The 3B20D Processor & DMERT
Operating System: 3B20D Central Processing Unit," B.S.T.J., this issue.

7. Jonas Butvila, "Reliability and Its Impact on System Design," Proc. Nat. Elec.
Conf.,35 (1981), pp. 43-7.

8. M. E. Barton and D. A. Schmitt, "The 3B20D Processor & DMERT Operating
System: Craft Interface," B.S.T.J., this issue.

9. J. L. Quinn and F. M. Goetz, "The 3B20D Processor & DMERT Operating System:
Diagnostic Tests and Control Software," B.S.T.J., this issue.

10. M. M. Meyers, W. A. Routt, and K. W. Yoder, "No.4 ESS Maintenance Software,"
B.S.T.J., 56, No.7 (September 1977), pp. 1139-67.

11. G. P. Eldredge, and J. G. Chevalier, "The 3B20D Processor & DMERT Operating
System: Field Utilities," B.S.T.J., this issue.

12. R. H. Yacobellis, J. H. Miller, and B. G. Niedfeldt, "The 3B20D Processor &
DMERT Operating System: Field Administration Subsystems," B.S.T.J., this
issue.

FAULT DETECTION AND RECOVERY 365

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.1, January 1983
Printed in U.S.A.

The 3820D Processor & DMERT Operating System:

Diagnostic Tests and Control Software

By J. L. QUINN, R. L. ENGRAM, and F. M. GOETZ

(Manuscript received March 10, 1982

Comprehensive diagnostic tests and multifeatured control software
designed for execution on several host processors help craft to quickly
isolate faulty hardware anywhere in the 3B20D Processor. Besides
meeting the requirements for Bell System switching systems, the
3B20D diagnostics provide a high degree of modularity and porta­
bility using an operating-system-based structure. The diagnostics are
used in a wide range of development, production, and maintenance
activities throughout the project life cycle. Many features of the system
architecture and hardware are provided to allow thorough diagnosis
in a time-shared noninterfering manner. Additional features are
provided in the diagnostic control structure to extend the DMERT
diagnostic capabilities to application systems based on the 3B20D
Processor.

I. INTRODUCTION

Many of the diagnostic principles and features embodied in the IA
Processor1 have been incorporated in the maintenance design for the
3B20D Processor. These design principles include: (i) use of a special­
purpose test-design language that facilitates test interpretation; (ii)
use of a table-driven control program approach; (iii) use of a common
test data base covering all hardware versions of the 3B20D Processor;
(iv) partitioning of diagnostic tests into phases associated with specific
hardware functions; (v) control features allowing selective test execu­
tion and variable degrees of detail in outputted results; and, (vi)
optional automatic trouble location. In the 3B20D Processor design,
however, a more general diagnostic design approach was followed.
This approach resulted in a more portable diagnostic control structure;

367

it allowed diagnostic execution in several environments: factory testing
using a support processor, installation testing using a remotely located
processor, and in-service, on-line testing of a standby mate processor.

II. OBJECTIVES

As with earlier processor designs, the 3B20D Processor diagnostics
must be effective and efficient in fault detection, provide consistent
test results, protect the contents of memory, be noninterfering with
normal system operation, allow automatic trouble location, and be
easy to maintain and update. In addition to meeting these objectives,
the 3B20D diagnostics were required to be:

(i) Portable-The diagnostic software must execute in several en­
vironments. Throughout this paper the execution environment is re­
ferred to as the host processor (or computer).

(ii) Flexible-The diagnostics would test multiple system configu­
rations containing various vintages of circuits.

(iii) Modular-Standard control interfaces must accommodate dif­
fering test access facilities to the processor under test, input/output
facilities, and DMERT application processes that are used to diagnose
application-dependent hardware that interfaces to the 3B20D Proc­
essor.

(iv) DMERT compatible-Diagnostics must be integral with, rather
than separate from, the operating system.2

,3

To meet these design objectives, the diagnostic control structure
was designed as an integral part of the operating system and had to
support the evolutionary stages of development.

III. DIAGNOSTIC ENVIRONMENTS

As shown in Fig. 1, the 3B20D Processor can be diagnosed from
several execution environments. During the early phase of processor
development, a local host computer was used to support hardware,
software, and diagnostic design. This access arrangement continues to
be used in factory testing. Later in the development, more efficient use
was made of the host computer by providing access to a remote target
3B20D Processor over a dial-up telephone line. Ultimately, in the
standard duplex-system configuration, the active control unit is capa­
ble of diagnosing its own peripheral controllers and the standby control
unit. Each of these access arrangements is discussed below.

3. 1 Local host diagnostics

Figure 1a shows three local-host access arrangements. In the first,
diagnostic programs executing in a host computer send test inputs and
receive test results over a standard communications port to a Micro­
level Test Set (MLTS). The MLTS connects directly to the 3B20D

368 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

HOST
COMPUTER

r--­
I DSCH

BX. 25
LINK

3B20D
PROCESSOR

CU

DMAC/DSCH

I/O
DEVICES

~----)..------" MLTS I--___ ~

(a)
LOCAL HOST

(b)
REMOTE HOST

(c)
DUPLEX MODE

MTCE
TERMINAL

3B20D
PROCESSOR

~

3B20D
PROCESSOR

CU

DMAC/DSCH

I/O
DEVICES

Fig. I-The 3B20D Processor diagnostic environments.

control unit backplane, and provides complete access and control of
the processor's microprogram control circuitry. For the second access
path, a circuit was designed to simulate the Central Control Input/
Output (CCIO) internal bus. The CCIO Bus Simulator (BS) is acces­
sible using a standard communication input port. A Dual Serial Chan­
nel (DSCH) connected to the CCIO/BS can then communicate directly
with a Maintenance Channel (MCH), the circuit designed for control­
unit access. Like the ML TS the MCH can access the central control
at a low level. However, only the MCH is used in the duplex configu-

DIAGNOSTICS 369

ration (see Section 3.3); it communicates with either another MCR or
a DSCR. As shown, the CCIO/BS-DSCR access path can also be used
to diagnose the Input/Output Processor Controller (lOP C) and the
Disk File Controller (DFC). Notice that when the local host is a 3B20D
Processor, the path is from the DSCR of the host 3B20D Processor to
the MCR, IOPC, or DFC of the target machine.

3.2 Remote host diagnostics

The DSCR is designed to communicate over distances of approxi­
mately 100 feet. Remote-host (Fig. lb) access arrangements can be
used for diagnosing over longer distances. Using data sets and a
telephone line, tests stored and executed on a remote computer can be
applied through the ML TS to the control unit. Peripheral controllers
(IOPC and DFC) can also be diagnosed by downloading tests into the
control unit and executing them. Although remote-host diagnostics are
useful in cases where a local host is unavailable, execution performance
is limited by the transmission facilities used.

3.3 Duplex mode diagnostics

The primary diagnostic execution environment is the 3B20D Duplex
Processor (Fig. lc). The active (on-line) processor acts as a local host
for diagnosing the standby (off-line) processor. An MCR-to-MCR link
provides the access path for testing the control unit. In the duplex
mode, the DFC and IOPC are diagnosed from the on-line control unit
using the operational interface path, a DSCR attached to the Direct
Memory Access Controller (DMAC). Tests of the links from the off­
line processor to the peripherals also can be run under the control of
the active processor. As shown in Fig. lc, the duplex system configu­
ration also supports remote monitoring and control of diagnostics over
a dedicated link to a Switching Control Center (SCC).

3.4 Multiple-target processors

Although the target processor is always a 3B20D Processor, it can
be of many types, versions, and sizes. The diagnostic control program
accounts for these differences by referencing the Equipment Configu­
ration Database (ECD). All information relevant to the particular
diagnostic tests that should be applied to each hardware unit is
contained in the ECD. This information includes the name of each
hardware unit within a subsystem, subunits, and their logical intercon­
nections, equipage options, and auxiliary information, such as channel
address and baud rate. Whenever a circuit design is originated or
updated, diagnostic tests are designed and appropriate ECD changes
are specified.

370 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983·

~---8

AUTO REQUEST
(SOFTWARE)

s--
MANUAL
REQUEST

(MTCE TERMINAL)

DCB - DIAGNOSTIC CONTROL BLOCK
DlAGC - DIAGNOSTIC CONTROL PROCESS

DIAMON - DIAGNOSTIC MONITOR

I
I

ECDMAN - EQUIPMENT CONFIGURATION DATA MANAGER
MIRA - MAINTENANCE INPUT REQUEST ADMINISTRATOR

TLP - TROUBLE LOCATION PROCESS
TLDB - TROUBLE LOCATION DATA BASE

DATA TABLE - DIAGNOSTIC DATA TABLE FILES

Fig. 2-Diagnostic control structure.

IV. DIAGNOSTIC CONTROL STRUCTURE

KERNEL PROCESS

UNIX™ SUPERVISOR

UNIX™ USER

--8
TO
MAINTENANCE
TERMINAL

The diagnostic control structure is depicted in Fig. 2. At the kernel
process level are the modules that provide access to the ECD or drive
the communication links previously discussed. The UNIX* operating
system supervisor resides at the supervisor level,3 and provides a
protected environment and operating system services for the higher­
level processes. The modules operating under the UNIX operating
system that pertain exclusively to diagnostics are: the Maintenance
Input Request Administrator (MIRA), the Diagnostic Monitor (DIA­
MaN), the Diagnostic Control process (DIAGC), and the Trouble
Locating Process (TLP). Output messsages from the diagnostic struc­
ture are sent to the system spooler for printing. The first three of these
modules are discussed below; the TLP is described in Section VII.

4.1 MIRA

Scheduling and dispatching maintenance requests is the function of
MIRA, the front-end process of the diagnostic structure. MIRA main-

* Trademark of Bell Laboratories.

DIAGNOSTICS 371

tains a waiting queue and an active queue to administer each service
request. Requests are serviced according to priority and resource
availability; manual requests have higher priority than those initiated
automatically. For each service request, MIRA spawns a DIAMON
process and sends it a message. When the request is completed,
DIAMON sends a message back to MIRA. Interfaces are provided in
MIRA to administer routine exercise requests and inputs from the
error-interrupt handler.4

Nine general types of request are handled by MIRA; they are
described in Table I.

4.2 DIAMON

Execution of each diagnostic is directed from start to finish by
DIAMON. Specifically, DIAMON will:

(i) Initiate and control the actual diagnostic processes specified in
a message from MIRA.

(ii) Communicate with the Equipment Configuration Database
Manager (ECDMAN) and the appropriate device driver (the software
control module for a particular hardware unit) to extract control data
from the ECD and retrieve path names of related utility files.

(iii) Build the diagnostic control block containing all the data
required by a diagnostic.

(iv) Spawn the appropriate diagnostic control process (DIAGC);
separate processes are provided for the control unit and peripherals.

(v) Communicate diagnostic output to MIRA and the output
spooler.

(vi) Spawn the remove and restore processes.
(vii) Interface with the TLP.

Table I-Description of diagnostic requests to MIRA

Command

Diagnose (DGN)
Remove (RMV)
Restore (RST)

Restore Unconditional
(RSTU)

Exercise (EX)

Terminate (STOP)
Display (OP)
Inhibit (INH)

Allow (ALW)

Description

Diagnoses the unit specified in the request.
Removes the specified unit from service.
Diagnoses the unit and restores it to service if all tests pass
(ATP).
Restores the unit to service without running the diagnostic.

Starts the diagnostic in the interactive mode. This com­
mand allows stepping to a particular test, pausing, or loop­
ing over a diagnostic "phase" (ie., group of functionally
related tests) segment.
Stops execution of a diagnostic.
Displays status of queued requests in MIRA.
Inhibits diagnostic requests from other processes that auto­
matically or routinely initiate diagnostics.
Allows diagnostic sources, canceling any active INH re­
quest.

372 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

4.3 DIAGC

DIAGC is a generic name that refers to a class of processes. The
DIAGC is a unit or application-dependent module that controls exe­
cution of tests. Containing all unit-dependent task routines, DIAGC
translates the interpretive diagnostics and provides the interface with
DIAMON. A unit's diagnostic phase table (DPT) contains the name
of a particular DIAGC process to be used in the diagnosis. DIAMON
imposes no limit on the number of processes that can interface with it.
The following functions are provided by DIAGC:

(i) Opens the diagnostic driver
(ii) Shares the buffer (DCB) provided by DIAMON

(iii) Initializes the raw data buffer
(iv) Executes the diagnostic
(v) Computes the test results

(vi) Provides interactive control if required
(vii) Provides an interface to DIAMON for test results and abnor­

mal terminations (aborts).

4.4 Portability

All diagnostic control modules are written in the C language and
execute in the UNIX operating system environment. This facilitates
the porting of the control structure to other host processors that
support C and UNIX operating system software. Variations of proc­
essor configuration and hardware vintage can be described in the ECD.
DMERT application processes can provide additional DIAGCs and
Data Tables to control diagnostic test execution for interfacing hard­
ware. Several driver processes can be supported to allow diagnostics
to be executed over standard communication ports, dual-serial chan­
nels, or maintenance channels.

v. MAINTENANCE FEATURES

The combination of hardware-access circuits and modular-control
programs, just discussed, provides the 3B20D Processor with consid­
erable maintenance flexibility. Tests are selected according to the
vintage of circuit under diagnosis. Displayed in Fig. 3 is a typical
diagnostic input message in the PDS (Program Documentation Stand­
ards)5 syntax, one of three command languages supported by DMERT.
Requests can be made to diagnose an entire unit, a particular subunit,
or all subunits in a specified community. Individual test phases or
ranges of phases can be executed and the results printed with optional
amounts of detail. Some diagnostic test phases-because of either
their long execution time requirements or their dependency on other
system hardware availability-are restricted to manual initiation. In-

DIAGNOSTICS 373

1 I RAWl t,
SC b t;tRPi c l,

DGN:CU a,MA

dl I TLPll \
uCLll t:tPH l, •

CU a

MASC b

RPi c

UCL

pH d

iLP

t 1

Member

unit Number
.. repeated.

d· gnostic IS .
ot times la

Number Default is first
f every phase.

Print t~e res~~t:~ch failing phase. .
five failures . . I diagnosIs).

. 'uncondltlona
I terminations \

BypasS norma t be ex.ecuted.
e of phases °

specifies phase or rang Her
. rocedure a

Ex.ecute .the troU
diagnosIs.

ble location p

. formation.
optional In

Fig. 3-Sample input message-diagnosis of main memory.

teractive features such as stepping, pausing, and looping are provided
for facilitating difficult repairs. Units can be restored to service auto­
matically if they pass all tests. Several host computer versions are
supported along with application-dependent interfaces.

Diagnostics can be initiated either manually or automatically. Man­
ual requests can be entered from either a local maintenance terminal
or through a work-station terminal associated with a Switching Control
Center System (SCCS) connected to the 3B20D Processor via a
synchronous data link. Automatic requests originate from other soft­
ware modules such as the error-interrupt handler, the routine exercise
scheduler, or an application-software module.

VI. DIAGNOSTIC TEST DESIGN

6.1 General

The stringent availability requirements of Bell System applications
using the 3B20D Processors had a significant impact on all aspects of
system design. Diagnostic and maintenance engineers were actively
involved in meeting these goals commencing with the initial architec­
tural planning and requirements generation. Many hardware features
are provided to monitor system integrity, to detect errors, to recon­
figure the system, and to facilitate repair of the faulty equipment.4

•
6

Although some of the features are for fault isolation during pack
repairs, most are used at the system level to effect repair through pack

374 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

replacement. Diagnostics, the primary repair capability for the system,
make extensive use of these hardware features for control and obser­
vation of the circuitry.

6.1. 1 Circuit pack tests

The initial factory testing of circuit packs uses test vectors, which
can be applied at terminals of the pack connector in a commercially
available computer-controlled test set. Most of the vectors are gener­
ated independently from system-level diagnostic tests. The packs are
given additional tests in a 3B20D system test bed using diagnostics
and some operational sequences.

6.1.2 System-level tests

All 3B20D Processor diagnostics run under the DMERT operating
system as user-level processes. To communicate with the unit being
tested, the user-level process passes the test scenarios to a kernel
process that interfaces to the hardware. Each of these kernel process
drivers runs at its standard system priority level to perform the tests.
If some time-critical tests are necessary, the priority level can be
elevated to avoid interruption by other system processes.

Each of the diagnostic programs is structured to avoid any negative
impact on the normal system functions. Special driver functions allow
the drivers to handle error conditions generated by the diagnostic
tests, thereby avoiding the normal error-handling routines. Since many
fault conditions result in system errors, this capability is especially
vital to allow thorough testing in the operating system environment.

In the Control Unit (CU) diagnostic, additional safeguards are
implemented to assure proper handling of the system recovery and
integrity hardware. Even with faults in the off-line CU integrity
circuits, the system will maintain normal functionality during CU
diagnostics.

The system diagnostics are organized on a unit basis, for example
the Control Unit (CU), I/O processor (lOP) or Disk Controller (DFC).
Each unit diagnostic is structured into test phases that pertain to a
particular subunit. The phases are organized in a hierarchical fashion
beginning with the more elemental operations and applying to the
hard core of a subunit. Subsequent phases expand in complexity and
in the totality of the circuitry exercised.

The user-level diagnostic processes, namely the control program and
the test data tables, contain all of the information necessary for control
and sequencing of tests. The control program has the interpretative
routines for decoding each data table test statement. The program also
can use various system configuration parameters, test results, and data
table decision functions to modify program flow or to terminate the
diagnostic.

DIAGNOSTICS 375

6.1.3 Maintenance channel access

As shown in Fig. Ic, the primary interconnection between the
Control Units is the maintenance channel (MCR). This circuit is an
enhanced version of the dual-serial channel, with special capabilities
aimed at maintenance access and control of the off-line CU. It provides
the ability to run, stop, load, clear, and step the CU. The MCR allows
the active CU to read some off-line CU registers directly and others
indirectly using microcoded sequences. Diagnostic-test programs can
be loaded through the MCR to the off-line microstore or mainstore.
The MCR is controlled by a DMERT kernel process driver that carries
out the diagnostic test sequences.

6.2 Control unit diagnostics

The Control Unit (CU) has seven types of subunits: Central Control
(CC), Main Memory Store (MAS), Store Address Translation (SAT),
Direct Memory Access (DMA), I/O Channels (DSCR), Cache (CSU),
and Utility Circuit (UC). The latter three are optionally equipped; the
UC is normally used for program testing and is not further discussed
herein. Some 3B20D Processor applications have special circuits that
are part of the CU; diagnostics for them are concatenated to the CU
diagnostic. A pictorial view of the CU hierarchy is shown in Fig. 4,
which depicts the multiple levels of units as defined in the ECD.

6.2. 1 Central control tests

The first CU subunit tested is the CC, which contains the core of
the CU. The CC diagnostics in turn test the maintenance channel,
microcontrol logic and memory, registers, data-manipulation logic,
memory access, timers, interrupts, I/O interface, error-control hard-

, , , ,
r ---"----l
I APPLICATION I
I CIRCUIT I L _______ .J

Fig. 4-Unit hierarchy of the control unit.

376 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

ware and integrity circuits. The testing uses a series ofMCH operations
for the basic tests. For the more complex test routines, down-loaded
microcoded test programs are executed by the CD under test. The CC
is extensively exercised in tests of the remaining subunits.

6.2.2 Memory tests

Initial testing checks out the basic memory-controller operations
and the control and data paths from CC to the MAS. Tests are carried
out on the error-detection and correction circuits in preparation for
using them in array testing. Testing of the memory arrays (up to 16M
bytes can be equipped) is with down-loaded micro diagnostic routines.
Since the test-pattern programs are executing autonomously in the
CD under test, all of its real time is used for testing. Whenever a
hardware error is generated, control of the CD passes to a diagnostic
error handler. The combination of self error detection and the micro­
routines allows extensive pattern checking to be executed rapidly over
the complete memory spectrum.

6.2.3 Store address translation tests

Functional tests are performed via MCH on all of the SAT control
logic. The memory cells are then tested with various microcoded test
patterns. The remainder of the tests, implemented as micro diagnostics,
check out the multiplexor, compare logic, matchers, protection logic,
and SAT to MAS interface.

6.2.4 Cache tests

The cache is comprised of a high-speed four-way-set associative
memory and a 2K by 36-bit interrupt stack. The diagnostic performs
extensive tests of the memory cells, matchers, and select logic. In
addition to functional tests, a special diagnostic routine called the
cache exerciser is used to stress, at high data rates, the cache interfaces
to CC, MAS, and SAT. This kind of testing is effective at detecting
marginal fault conditions.

6.2.5 Direct memory access tests

The DMA diagnostic checks out the CC-to-DMA communication
and control paths, the internal DMA functionality and the DMA
operations to MAS. Many of the tests are coded into ROM (Read Only
Memory) contained in the DMA. The remainder consist of down­
loaded microcoded tests and off-line, main-memory, resident test pro­
grams. The final sequence of tests verifies the DMA cache
"handshaking" operations. It is noteworthy that in the DMA diagnos­
tics, except for control and down loading through the MCH, all test
sequences are executed completely by the CD under test.

DIAGNOSTICS 377

6.2.6 Channel tests

The channel diagnostic carries out the remainder of the testing of
the CU's I/O capability. Basic tests are performed on the communi­
cation and handshaking of the CU to all in-service system peripherals.
More exhaustive tests (demand diagnostics) can be specified by the
maintenance personnel for troubleshooting more elusive problems.
These diagnostic phases require that a peripheral unit be configured
as a "helper unit" (specified in the diagnostic input message) to allow
the CU to carry out peripheral operations at a high rate.

6.3 Peripheral unit diagnostics

The Disk File Controller (DFC) and Input Output Processor (lOP)
are described in Refs. 7 and 8. The DFC can control up to eight Moving
Head Disks (MHD) of various capacities, types and manufacturers.
The Peripheral Controllers (PC), which are under control of the lOP,
are special-purpose I/O units described in Ref. 8. The testing for the
DFC and lOP, which share a common front end, is primarily carried
out under control of the on -line CU. Since both of these are intelligent
controllers, many of the specific tests can be executed autonomously.
The peripheral diagnostics utilize the DMERT kernel process drivers
to interface to the hardware. Throughout these diagnostics, extensive
use is made of driver-maintenance orders and special handling of error
conditions.

6.3.1 lOP and DFC tests

The peripheral diagnostics use common-control programs 10DIAG
and DFDIAG that contain all the CU resident tests and control
routines. Separate sets of data table and down-loaded microcode files
are used for each unit diagnostic. The overall sequence of testing
proceeds from CU / controller interface to complex internal controller
operations. Most of the latter make use of the operational firmware in
the controller to carry out the test sequences. The more complicated
controller tests are part of the resident diagnostic firmware and are
initiated by special-driver operations. At the successful conclusion of
DFC or 10PC testing, the unit is restored to service to allow testing to
proceed on MHD or PC circuits.

6.3.2 Moving head disk tests

Relatively limited maintenance capabilities are provided in the
MHD itself. Most of the testing is carried out by the firmware routines
in the DFC. To provide an overall check on MHD performance, one
cylinder is devoted to diagnostic testing of each read/write head. The
error-detection/ correction capabilities can also be checked using this

378 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

area. As each MHD is tested successfully it can be updated from its
mate copy and restored to service.

6.3.3 Peripheral-controller tests

Each controller is microprocessor controlled and can carry out most
of its diagnostics autonomously. Some of the tests are firmware resi­
dent in the PC's. The remainder of the diagnostic routines are down­
loaded into the PCs' RAM (Random Access Memory). Some types of
PCs also can exercise the units they control, for example a tape
transport, and report back the results for use by the maintenance
personneL

VII. TROUBLE LOCATING PROCESS

If the diagnostic request specifies the TLP option, the TLP process
is invoked at the completion of diagnostic testing. The process com­
pares characteristics of the failures with a resident data base of fault
signatures. In each data table, the designers have partitioned the tests
into groups. Any test failure in a group will set a flag bit, called a key,
which is permanently assigned to the group. The TLP search, based
on the phase and key information, results in a rank-ordered list of
closest signatures and, ultimately, into an ordered list of suspected
faulty equipment. This approach makes the data base and process less
sensitive than earlier methods to circuit or test changes and to marginal
failures. The data base (TLDB) is generated off-line from the results
of physically inserting faults into units in a test laboratory. Test
engineers also can modify the TLDB directly by inserting information
into the test data tables. Fig. 5 depicts a typical diagnostic output
message from a faulty memory unit.

VIII. EVALUATION

Although many diagnostic tests were generated with the aid of
hardware logic simulators, many tests were developed manually. To
assure that the diagnostics met the objective-at least 90 percent of
the simulated faults detected-an extensive evaluation process was
carried out. Using physical fault insertion at the DIP (Dual In-Line
Package) terminals, many thousands of faults were inserted. This
approach has provided timely and effective design feedback for diag­
nostic test and TLDB development.

IX. CONCLUSION

In addition to providing a variety of test-control options, the 3B20D
diagnostics were designed for multiple execution environments. As a
result, the diagnostics have been useful throughout the development

DIAGNOSTICS 379

SC'1 pH 7 S1F
DGN: CU 0, MA MISMA1CH

lESl 000400'10 0000000000000)
34 0 S1F ('1 000

SC '1 COMPLE1E S1 AR1ED
OGN : CU 0, MA SUMMARV OA 1 A MOS~OOOOO FFK == '14

o MASC '1 K2==OX
PFILE : CU _ oX 00004000

ANALV: lL '1 PH==7 K'1-
cU 0 MASC SG IP

lLP : COMPLE1ED MASC'1 lLPSRCH M
lLPFILE lLPFILE : CU 0
ANAL V: lLP FILE # '1436

F AUL lV EOUIPMENl

MASC'1 SUSPEC1ED Wl N01E
lLP FILE: cU 0 UNll

ANALV : SVM SO

CODE
EOL FS

UN34 54-084

IN'14 54-056
IN'1'1 44-0'16

9
6
2

'1
2
'1

4C098
4C098
4C099

. it board. ·t board in frame.

'10
8
4

2

LEGEND

CODE -
EOL
FS

lype ot clrc~ocation of circ~I information.
Equip~ent hematic dr.a~Ing
FunctIonal S~er on specIfIed FS. y be faulty.
symbol nym in number.. ardware that ma

SVM
SO
UNll
Wl
N01E -

schematIc ora~ategd interfacIng h most H\<.ely.
Code for assO~I. ht· '10 indicates
proportional .e\grepair procedure.
Reters to specla

Fig. 5-Sample output message-diagnosis of memory with TLP option.

cycle and have supported the design laboratory, factory testing, in­
stallation, normal system operation, application interfaces, and field
support. These diagnostics are the major tool for validating the 3B20D
Processor hardware and for isolating any faults. The provision of a
high degree of hardware self-checking, standby and active redundancy,
self-diagnosis, micro diagnostics, and remote testing capability all have
contributed to making the 3B20D Processor a high-availability real­
time system. Coupled with the DMERT operating system, with its
robust complement of features, the 3B20D Processor meets the needs
of a wide variety of Bell System projects.

x. ACKNOWLEDGMENTS

The authors would like to acknowledge the many designers and
testers at Bell Laboratories and Western Electric whose combined
efforts resulted in the diagnostic package described herein.

380 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

REFERENCES

1. P. W. Bowman, M. R. Dubman, F. M. Goetz, R. F. Kranzman, E. H. Stredde, and R.
J. Watters, "1A Processor: Maintenance Software," B.S.T.J., 56, No.2 (February
1977), pp. 255-88.

2. J. R. Kane, R. E. Anderson, and P. S. McCabe, "The 3B20D Processor & DMERT
Operating System: Overview, Architecture, and Performance of DMERT,"
B.S.T.J., this issue.

3. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, "The 3B20D Processor &
DMERT Operating System: DMERT Operating System," B.S.T.J., this issue.

4. R. C. Hansen, R. W. Peterson, and N. O. Whittington, "The 3B20D Processor &
DMERT Operating System: Fault Detection and Recovery," B.S.T.J., this issue.

5. M. E. Barton and D. A. Schmitt, "The 3B20D Processor & DMERT Operating
System: Craft Interface," B.S.T.J., this issue.

6. M. W. Rolund, J. T. Beckett, and D. A. Harms, "The 3B20D Processor & DMERT
Operating System: Central Processing Unit," B.S.T.J., this issue.

7. R. E. Haglund and L. D. Peterson, "The 3B20D Processor & DMERT Operating
System: 3B20D File Memory Systems," B.S.T.J., this issue.

8. A. H. Budlong and F. W. Wendland, "The 3B20D Processor & DMERT Operating
System: Input/Output System," B.S.T.J., this issue.

DIAGNOSTICS 381

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.1, January 1983
Printed in U.S.A.

The 3820D Processor & DMERT Operating System:

38200 Craft Interface

By M. E. BARTON and D. A. SCHMITT

(Manuscript received March 10, 1982)

The 3B20D craft interface package includes hardware, firmware,
and software that enables telephone company craftspeople to obtain
the status of and exert control over the system. Because this package
consists of one or more standard keyboard-display terminals for
human-machine interactions, it is flexible and can be adapted to a
broad variety of applications. Furthermore, the use of standard
terminals and data link protocols allows for inexpensive remote
access with capabilities similar to local access capabilities. Finally,
the use of video displays has made it possible to provide easy-to-use
menus that guide the craftspeople through some of the complex
control operations. This article describes the 3B20D craft interface
capabilities and the internal architecture of the package.

I. INTRODUCTION

The "craft interface" is that part of the 3B20D Processor that
enables people to obtain status information and exert control over the
system. To those not involved in telephony, the word "craft" may
seem odd. It has traditionally been used to refer to the people who
work in and around telephone switching offices performing various
maintenance functions on the equipment. In this article, the term is
used somewhat liberally to mean any person who interacts with the
3B20D to perform administrative and maintenance functions.

The 3B20D's craft interface is a marked departure from previous
systems developed at Bell Laboratories because it relies almost exclu­
sively on video displays and keyboard controls instead of the key-lamp
panels and teletypewriters usually found in the Master Control Center
(MCC) of electronic switching systems. Status information is presented

383

visually as graphical displays and text messages on various terminals
and printers. There is also a capability to provide audible status by
connecting the 3B20D to an audible alarm circuit. System control is
exerted primarily via a keyboard attached to the video display termi­
nal, although the 3B20D also includes a separate power control panel
for each major hardware unit.

Another important enhancement lies in the ability to access and
control all aspects of the system from remote locations such as Switch­
ing Control Centers (SCCs). In the past, remote access was obtained
by "piggy-backing" data links onto the typewriter terminals in the
telephone office and by connecting a telemetry unit to the key-lamp
control panel. The 3B20D has introduced a more "intelligent" data
link using the CCITT X.25 communication protocol. This link can
carry considerably more information and is less vulnerable to noise
and other data communication failures. Furthermore, the use of the
internationalstandard message protocol (X.25) will standardize remote
access to the 3B20D via packet switching networks.

This article fIrst provides an overview of the 3B20D craft interface,
primarily concentrating on how the system appears to the craftspeople.
Then the internal architecture is described and the various 3B20D
applications usages of the general facilities provided in the common
system are explained.

II. OVERVIEW

This section describes the 3B20D craft interface as it appears to the
people who use it to administer and maintain the system.

2. 1 Hardware

The most frequently used parts of the craft interface are shown
mounted in two equipment frames in Fig. 1. The left frame contains a
"read-only printer" or ROP* on which all important status messages
are logged. The right frame contains a keyboard-display terminal that
is commonly referred to as the "maintenance CRT," or MCRT. Tele­
phone switching applications of the 3B20D can choose either a frame­
mounted or desk-mounted arrangement for the ROP and MCRT. A
desk mounted version is shown in Fig. 1.

2.2 Text messages

One way in which the 3B20D communicates with the craftspeople
is via text messages. For example, when the message

* From the viewpoint of a programmer, it is a "write-only printer," since the program­
mer can only send (i.e., write) messages to it. However, the craftsperson cannot type on
this device, and so from that viewpoint it is a "read-only printer."

384 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

DGN:CU 0; UCL!

is typed, the central processing unit 0 (CD 0) is diagnosed. The DCL
keyword indicates that the diagnosis is "unconditional," which means
that all tests will be run even if some of the early tests fail. When the
diagnosis is complete, the CD diagnostic prints a text message such as:

DGN CU 0 COMPLETED ATP

This means that the diagnosis has been completed and all tests passed
(ATP). For initial 3B20D applications, the text messages conform to
the Bell System craft interface syntax, commonly known as the Pro­
gram Documentation Standard (PDS) Language. However, all new
switching systems developments will be adopting a craft interface
language sanctioned by the International Telegraph and Telephone
Consultative Committee (CCITT) under the name MML. Since PDS
and MML are similar, and since the 3B20D is expected to enjoy broad
use in international applications, the operating system was designed
so that each application can easily choose the appropriate syntax.

Text messages are typed on the MCRT keyboard, and the response
messages are displayed on the MCRT video display and/or printed on
the ROP. The basic repertoire of messages available with the 3B20D
covers a broad range of maintenance and administration activities.
Each application can easily add its own messages to this repertoire.

Fig. I-Craft interface printer and terminal.

CRAFT INTERFACE 385

2.3 Control and display functions

As mentioned earlier, previous systems used key-lamp panels to
display system status and to receive control signals from the crafts­
people. The 3B20D uses the MCRT video screen and keyboard, as
shown in Fig. 2, in place of such a panel. The upper part of the screen
always contains a summary of important system indicators, including
CRITICAL, MAJOR, and MINOR severity alarms and "type" alarms,
such as CD and BLDG/PWR, which is the indicator for building
power. The middle part can display a variety of "pages" that show
system status in a graphical form. Finally, the lower part of the screen
is used for text input and output.

The standard 3B20D software includes several display pages related
to the common processor equipment, and each application can easily
add its own pages. The "Common Processor Display Page" shown in
Fig. 3 provides a diagram of the redundant components in the basic
processor complex. At the left of the diagram is a "menu" listing the
control operations that can be invoked when this page is displayed. To
select a menu item, the craftsperson depresses the CMD/MSG key,
which switches the craft interface from text message mode to command

Fig. 2-Craft interface video screen and keyboard.

386 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1 983

LAB A 3B2OCR 2.0.0.1 <»} OS/26/82 15:50:10
SYS EttER CRITiCAl I1AJOR "INOR BlDCIPUR BlD INtI CKT lm ,Mt(l]$I
TRAFFIC SYS INtI CU CU PERPH LINK

00:

10 FnNl-o
11 FONl-l
12 FnNl-ACT
13 ClR-FlIIl

14 ClR-£AI
15 CfT-OOT

"TTL7

~jfi
SET a.R cu-o aJ-1
20 21 PRI-DISL
22 23 SEC-DISLMII
24 25 DII-TIJtER..IBm
26 2J PRK-TRAP_

28 PRIHtItP

_ EIERCENCY ACTION PACE _

PRtH EB22 0000 0000 0042 73 EO 00
PRtt-1 EM1 0000 0000 0042 73 EA 04

50 APPl
51 OOT
52 BOOT
53 BOOT+ECI
54 BOOT +ItEII
55 LDTAPE-Q
56 LDTAPE-l

Fig. 3-Emergency action interface display page.

mode. Then the craftsperson types the menu item number, replacing
"x" with a 0 or 1 where necessary. Finally, depression of the RETURN
key (or the! key) causes the command to be executed.

The craft interface stays in the command mode until the CMD/MSG
key is depressed again. This key is one of four "special function keys."
The ALM RLS key is used to retire audible and visual alarms. The EAI
DISP key places the craft interface in the emergency action mode,
which is described below. When in EAI mode, the NORM DISP key
returns the screen to its previous display.

The Emergency Action Interface Page is different from other pages
because it is directly controlled by a microprocessor in the MTTY
controller (MTTYC) and, therefore, can be used even when the 3B20D
software is not operating. As shown in Fig. 4, this page contains menu
items that enable the craftsperson to re-initialize the system or to force
the redundant units into a particular configuration. Typically, this
page is used only when system sanity is suspect.

2.4 Remote access

All capabilities of the craft interface except the power control panels
can be accessed from a remote maintenance center via a dedicated
data link that is attached to the MTTYC. The standard arrangement
includes a primary and a backup link, both of which use the CCITT
X.25 communication protocol. The remote site is usually a Switching
Control Center (SCC) that contains a collection of computers and
terminals that interface with these X.25 links and provide the SCC
craftspeople with sophisticated analysis and maintenance tools.

CRAFT INTERFACE 387

lAB A lB20CR 2.0.8.1
SYS EIER CRITICAl tlAJOR
TRAFFIC SYS INH CU

am:

1m
CUI
DFCx
IIIIx
IlFx
tmYCx
tlCRTl
RDPx
SCCx
EAII

51
CU
PmrrSV

RDP
tICRT

((ICU
R5IRnlg
lOx lOx 50x
31x 21x Six
32x 22x 52x
33x23x53I
341 241 54][
35x 25x n/a
36x 26x n/a
"Ill 2.h n/a
381 28x n/a

00-0
ACT

" 47 RST JIll 0 COItPlETEI

<0 OS/2iI82 15:49:00
"INOR BlKIPWR BlD INH en lIlt H

CU PERPfI LINK
-102 - COIIfON PROCESSOR DISPLAY -

CtJ-l
ACT
FRCD

CSlJ-l
ACT

Fig. 4-Common processor display page.

III. CRAFT INTERFACE ARCHITECTURE

This section discusses the hardware and software architecture of the
3B20D craft interface. Figure 5 shows the arrangement of hardware
units pertinent to the craft interface, while Fig. 6 shows the software
modules. The discussion of the hardware architecture that follows will
cover the I/O Processor (lOP) driver and MTTYC handler software,
as they are the fundamental parts of DMERT required to access the
hardware.

3. 1 Hardware architecture

Referring to Fig. 5, one sees that each of the duplex processors is
connected to both lOPs, and that each lOP supports up to sixteen
peripheral controllers (PCs). Various PCs exist for terminals and
printers, data links, tape units, etc. The lOP driver process, which is
the part of DMERT responsible for communication with the lOPs,
contains "handlers" that deal with the specialized functions of the
PCs. The following handlers are pertinent to the craft interface: craft
interface handler, X.25 handler, emergency action interface handler,
general-purpose terminal handler, and alarm handler.

3. 1. 1 Craft interface handler

The MCRT, ROP, and X.25 links are attached to a PC known as
the maintenance teletype controller, or MTTYC. The craft interface

388 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

38200 MAINTENANCE CHANNEL 38200
COMMON

PROCESSOR

F
I I

J

I lOP I MTTYC I
sccs~ ~L

PORT

I SWITCH
MCRT

J
EAI - EMERGENCY ACTION INTERFACE
lOP - INPUT/OUTPUT PROCESSOR

MCRT - MAINTENANCE CRT

COMMON
PROCESSOR

R
I I

I
J

~ MTTYC 1 lOP

~I Lsccs

I
I

ROP

MTTYC - MAINTENANCE TERMINAL
CONTROLLER

ROP - RECEIVE-ONLY PRINTER

J

SCCS - SWITCHING CONTROL CENTER
SYSTEM

Fig. 5-Craft interface hardware overview.

handler controls the transfer of data to and from the peripheral devices
associated with the MTTYC. The MCRT and ROP are administered
directly by the MTTYC, while the X.25 links require the additional
services of the X.25 handler described later. For each device or data
link attached to the MTTYC, the handler supports all standard access
operations of the UNIX* operating system. In addition, this handler
treats the single MCRT terminal as two "virtual terminals," with the
upper part of the screen used for control/display functions and the
lower part used for text messages as shown in Fig. 2. Each virtual
terminal appears to the higher-level software as a separate device.

3. 1.2 X.2S handler

The X.25 handler provides communication with a remote mainte­
nance center via 1200 to 9600 bits per second synchronous data links
using levels 2 and 3 of the CCITT X.25 protocol. Level 2, referred to
as the link layer, provides link initialization, error control, and flow
control on the physical data link and is implemented as firmware
within the MTTYC. Level 3, referred to as the packet layer, multi­
plexes several independent data streams (logical channels) on the
physical link and is implemented by the X.25 handler software. In
effect, the X.25 handler makes the single MTTYC look like a multitude
of independent communication channels.

* Trademark of Bell Laboratories.

CRAFT INTERFACE 389

FROM
DAP/SPOOLER

TO/FROM
PAGE OWNER

PROCESSES

COMMAND
PROCESSES

COMMAND
AND OTHER

PROCESSES

COMMAND
PROCESSOR

VIRTUAL
CHANNEL 3

VIRTUAL CHANNEL 4

VI RTUAL CHANNEL 2

VIRTUAL
CHANNEL 2

X.25
HANDLER

SCSD
HANDLER

MTTYC
HANDLER

ACP - ALARM CONTROL PROCESS MTTYC - MAINTENANCE TERMINAL CONTROLLER
CIA - CRITICAL INDICATOR AREA SCSD - SCANNER AND SIGNAL DISTRIBUTOR
DAP - DISPLAY ADMINISTRATION PROCESS

Fig. 6-Craft interface software architecture.

3.1.3 Emergency action interface handler

The Emergency Action Interface (EAI) is a processor circuit pack
that provides basic status information and manual control even under
extreme circumstances. That is, the EAI circuit gives craftspeople
limited access to the 3B20D regardless of DMERT software sanity.
This access is in the form of the EAI page display shown in Fig. 4,
which is controlled totally by the firmware in the MTTYC. The
MTTYC interacts with the EAI circuit via the connection shown in
Fig. 5 to acquire the status information for display on the MCRT.
Also, when the craftsperson selects a menu item from the EAI display,
the MCRT delivers the corresponding commands to the EAI circuit.

The emergency action interface handler only comes into play when
DMERT is operating sanely. It has two major functions. First, it
periodically "punches in" with the EAI circuit to indicate that the
software is operating correctly. If the EAI (and, subsequently, the
MTTYC) fails to receive this periodic signal, it will automatically
initiate a system recovery operation to restore software sanity. Second,
the EAI handler receives some non-emergency commands from the
MTTYC via the EAI, including non-emergency initialization and
reconfiguration signals.

3. 1.4 General-purpose terminal handler

The craft interface subsystem supports terminals other than the
MCRT and ROP via the teletype controller, or TTYC. This controller

390 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

offers all MCRT and ROP functions except access to the EAI circuit.
Its handler is similar to the craft interface handler used with the
MTTYC and, in particular, offers the dual virtual terminal mode of
operation needed to intermix control! display functions and text func­
tions on a single terminal. This capability is typically used for dial-up
monitoring of a system from a Western Electric or Bell Laboratories
product support center.

3.1.5 Alarm handler

The scanner and signal distributor (SCSD) peripheral controller
provides sense and control points that are tied into the system power
controls and alarms. The SCSD handler detects sense point state
changes and sends commands to change the states of control points.
Higher-level software uses these capabilities to detect situations such
as power removal, fuse operation, or thermal warnings and to respond
by activating audible alarms or power shutdown circuits. The appli­
cation can also tie into the SCSD and configure the higher-level
software to detect and react to such things as building intrusion alarms.

3.2 Software architecture

Figure 6 shows the modules that comprise the standard DMERT
craft interface software subsystem. Already discussed were the device
handlers that connect to the modules on the right of the figure. Each
application usually adds its own modules that tie into the interfaces
on the left. Also, many other parts of DMERT (e.g., the diagnostic
subsystem) connect to the craft subsystem via these front-end inter­
faces. The modules in the middle of the figure are the "workhorses" of
the craft subsystem and provide the internal interfaces used by
DMERT programmers to interact with the craft personneL

3.2.1 Text input processing (shell)

The Shell is the module that interfaces between the handlers and
the processes that respond to text input command's. The term "shell"
is borrowed from the UNIX operating system, and DMERT's craft
shell operates in a manner similar to the other shell. That is, the
DMERT shell reads an input line, parses it into a command verb and
a list of "tokens," searches for the command process in the appropriate
disk directory, creates the command process, and passes the list of
tokens to it. The command process has access to a "shell library" that
includes functions to do further parsing of the tokens.

The major difference between the DMERT shell and the other shell
is that DMERT must parse commands that are typed in either the
PDS or MML syntax, where as the UNIX operating system shell uses

CRAFT INTERFACE 391

a more general syntax for a broader variety of applications. * Another
difference is that the PDS and MML languages include the notion of
a "locking acknowledgment." That is, an input command process is
required to give a two-character response (e.g., OK if the command is
successful, PF if a printout follows) within a few seconds after the
person types the message, and no other command can be typed until
the acknowledgment appears. In the UNIX operating system, message
acknowledgments are not required and command type-ahead is al­
lowed. Therefore, the DMERT shell library includes functions that
pass the acknowledgment back to the handler in order to unlock the
terminal.

Referring again to Fig. 6, note that each text input channel has its
own instance of the DMERT shell. This allows each channel to operate
independently of the others, which means that several craftspeople
can simultaneously interact with the system.

3.2.2 Text output processing (spooler)

The DMERT output spooler accepts text strings from higher-level
processes and directs them to the appropriate output devices. [The
term "spooler" is a computer science anachronism that comes from
the days when information waiting to be printed was temporarily
stored on reels (spools) of magnetic tape.] One might ask why the
higher-level process doesn't write directly to the device (via the de­
vice's handler, of course). There are two reasons to avoid direct writing.

First, the PDS and MML languages require that each message be
enclosed in an "envelope" that clearly delineates the message. This
envelope generally contains a time stamp, a message priority/alarm
indicator, and an end-of-message delimiter. The time stamp can be as
simple as the number of minutes past the current hour, or it can be
the complete date and time. The priority/alarm indicator shows
whether the message is a result of a manual or an automatic action
and whether the action being reported requires immediate attention.
Finally, the end-of-message delimiter provides for automatic logging
and browsing of messages by a computer in the remote maintenance
center. Centralizing the generation of the output message envelope in
the spooler simplifies the work that higher-level processes must do to
produce text output. Also, changes or additions to the envelope can be
introduced easily by modifying only the spooler.

The second reason for using the spooler approach is that many
messages must be sent to several places. For example, the usual mode

* For DMERT applications that require the more general UNIX shell on terminals
other than the MCRT, it is possible to configure the system in such a way that the
UNIX shell is automatically activated on some or all general-purpose terminals. In other
words, both the DMERT and the UNIX operating system shells are compatible with
the general-purpose terminal handler described earlier.

392 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

of operation when a remote maintenance center is attached via the
X.25 links is to send every output message to both the MCRT, ROP,
and the remote center. However, if the ROP runs out of paper or if
there are no craft personnel near the 3B20D, messages can be routed
only to the remote center. To handle these and the diverse message
routing situations that can arise, the spooler maintains a "map"
showing where messages are to be routed based on their priority/alarm
indicator and on a message type code that is received from the process
that generated the message. The map also can be configured to route
some message types to disk files instead of or in addition to printing
them. This feature is useful for keeping a log of messages that are
sometimes needed for problem analysis but that would overload the
ROP or X.25 links if sent routinely. Input commands are provided to
print the contents of these logging files when needed.

3.2.3 Control/display processing

The Display Administration Process (DAP) administers the upper
part of the MCRT (and, possibly, other video terminals) containing
the displays that replace the traditional key/lamp panels for 3B20D
applications. DAP's fundamental purpose is to display "pages" from
its repertoire and to accept commands listed on "menus" associated
with the pages. Figure 3 shows the Common Processor Display Page,
which is one of the standard pages delivered with DMERT. Typically,
the majority of display pages are defined by the specific application
processes.

For each page, there is a Page Description File (PDF) containing a
pseudo-program that describes how the page should be "painted" on
the video screen and what menu selections are allowed. PDFs are
constructed like programs and compiled by a page description file
generator (PDFGEN) program.

3.2.3.1 Display functions. When DAP begins execution, no pages are
active. Then, as the various parts of DMERT and the application are
initialized, they send interprocess messages to DAP requesting that
specific PDFs be loaded into main memory and activated as display
pages. A maximum of 64 pages can be active at anyone time. Other
interprocess messages tell DAP which of the active pages to display
on each video terminal.

Each page consists of up to 128 graphical constructs known as
"indicators," a term reminiscent of the lighted indicators on a key /
lamp panel. The process that initially informs DAP to activate a page
becomes the owner of that page and it and other processes can
subsequently inform DAP (via interprocess messages) to change the
states of the indicators. For example, one popular type of indicator is
the rectangle enclosing a few text items, such as the CU-O box in Fig.

CRAFT INTERFACE 393

3. The CPDP page owner can send messages to DAP causing the
phrase UNAV to change to OOS when control unit 0 (CU-O) changes
from the unavailable state to the out-of-service state.

These state changes can be communicated in detail, for example, by
sending a message to DAP specifying the characters OOS to replace
UNAV. However, the usual method is to use state numbers instead of
the actual characters. DAP has access to a table of 256 state entries
specifying the standard text and video attributes associated with each
of the 256 possible indicator states. The standard maintenance states,
such as active, standby, and out-of-service, have predefined state
numbers, and each application can define additional states for its own
needs. The advantage of using state numbers is that the text and video
attributes for each state can be centrally controlled. For example, one
application could use the text ACT for the active state while another
application used ACTIVE, and the only difference would be in the state
table definition entries.

Video attributes were mentioned above in addition to the text that
can be associated with an indicator. For the usual black-and-white
terminals, DAP recognizes the "blink" attribute and the "reverse"
attribute. The conventional use for the reverse attribute is to show
that an indicator is, in some sense, active. In other words, a reversed
indicator is similar to a lit lamp on a key/lamp paneL The blink
attribute is used to draw attention to a situation that requires imme­
diate action, just like a flashing lamp. In Fig. 3, the SYS NORM
indicator is reversed to show that the system is operating normally. If
a major alarm occurs, the MAJOR indicator will blink until the ALM
RLS key is pressed.

DAP also includes the capability to deal with color terminals, which
have a much richer set of attributes. For example, the MAJOR indicator
could be displayed as white characters against a red background, while
the MINOR indicator would be white against yellow. It is possible to
define indicator states in the most general way for color terminals and
then have the Equipment Configuration Database contain MTTYC or
TTYC options that "downgrade" the color states for black-and-white
terminals. In the example mentioned above, both the red and yellow
backgrounds would be mapped into the reverse attribute.

3.2.3.2 Control functions. In addition to displaying pages on the
MCRT screen, DAP also can receive menu commands typed on the
MCRT keyboard. These commands usually are referred to as "pokes"
since they are similar to the action of poking a key on a key /lamp
paneL As mentioned earlier, depression of the CMD/MSG key switches
the terminal from the message mode to the command mode and vice­
versa. When in the command mode, DAP displays a CMD: prompter
towards the top of the screen, as shown in Fig. 3, and positions the
cursor so that the typed characters appear in that line.

394 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

A command line consists of a number (usually 3 or 4 digits long)
that optionally can be followed by some text characters. The craft
interface handler, knowing that the terminal is in command mode,
routes this input to DAP instead of to the SHELL. DAP examines the
number to determine if it corresponds to a local or a global menu item.
Local menu items are associated with the page(s) currently being
displayed on the video screen. Global items are associated with any
active page, even if the page is not currently displayed. In other words,
a globally defined item will always be accepted and acted upon, even
if its page is not being displayed.

If DAP successfully locates the menu item corresponding to the
number that was typed, it usually sends an interprocess message to
the owner of the page defining that menu item. This message contains
the item number and the additional text characters typed, if any, as
well as the originating terminal identification. The owner then takes
whatever action is appropriate.

We used the word "usually" above because in some cases the
response to a command is some simple action such as flipping to a new
page on the display. In other cases, the PDF can specify a function to
be executed by DAP upon receipt of the command, thereby bypassing
the overhead of interprocess messages. One interesting aspect of this
feature is the ability for DAP to translate a menu command into a text
message to be passed to an instance of the SHELL, with the additional
characters substituted in the message. This makes it possible for an
application to design easy-to-use menus as an alternative to text
message input, but to handle all terminal inputs internally as if they
came through the SHELL.

A final note on commands has to do with locking acknowledgments.
As with the SHELL, DAP requires a positive response to each com­
mand before another command can be accepted. For a command
passed to a page owner via an interprocess message, the owner must
send an acknowledgment message back to DAP within a certain time
period or be abandoned. For commands handled via the function call
approach, the function returns an acknowledgment code to DAP.

3.2.4 Forms processing

As described above, DAP is typically used for control! display func­
tions related to maintenance activities such as configuration control.
However, some applications require more general display functions
than the indicator/menu approach appropriate for these maintenance
scenarios. The craft subsystem provides facilities for entering textual
information as part of displays.

A DAP page can be defined to contain input areas other than the
standard command input line. When such a page is displayed, depres­
sion of the CMD/MSG key places the cursor at the first input area

CRAFT INTERFACE 395

instead of at the command line. The craftsperson can enter text into
this area and/or move the cursor, using the terminal cursor control
keys, to the next input area on the page. When the RETURN key is hit,
DAP passes the typed information to the page owner via an interpro­
cess message.

3.2.5 Alarm processing

The Alarm Control Process (ACP) is the part of the craft subsystem
responsible for sounding audible alarms and displaying a summary of
current system status at the top of the video screen. ACP is created
during DMERT initialization and notifies DAP to activate the page
known as the System Summary Area (SSA). It also attaches itself to
the SCSD handler to gain access to the signal distributor points used
to sound audible alarms. The plant measurements data base is auto­
matically updated for severity-type alarm counts.

As the spooler and DAP receive messages from the higher-level
processes, they check for situations requiring audible alarms and/or
changes in the system status summary. For the spooler, alarm infor­
mation is contained in the message prefix received from the higher­
level process. For DAP, this information is derived from the indicator
state data. Both cases result in messages being sent to ACP, which
then operates the signal distributor points via the SCSD handler and/
or sends DAP messages to change the states of indicators on the SSA
page. Application processes also send messages directly to ACP for
alarms.

Another message received by ACP from DAP is a notification that
the ALM RLS key has been depressed. This causes ACP to reset the
signal distributor point controlling the audible alarms. This key de­
pression is also reported from the MTTYPC directly to the SCSD
audible alarm retire scan point.

The Critical Indicator Area (CIA) process is closely related to ACP
and DAP. Its function is to extract from the SSA page sixteen "critical
indicators" of system status and periodically send them to the remote
maintenance center via the X.25 link for alarming and display. The
remote center can use this periodic "heartbeat" from the CIA process
as one test that the system is operating sanely.

3.2.6 Common processor display page

Thus far we have described the general hardware and software
modules that comprise the 3B20D's craft interface subsystem.
DMERT also includes several processes that are, in effect, users of the
craft subsystem. One of these is the process that owns the Common
Processor Display (CPD) page that we have frequently used for
examples (see Fig. 3). This Real-Time Status (RTS) process is created

396 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

as part of the DMERT initialization sequence and immediately sends
messages to DAP to activate the CPD page. RTS also attaches itself
to the Equipment Configuration Data Base (ECD), which it periodi­
cally examines to determine if any units shown on the CPD page have
changed state. Spontaneous equipment configuration changes are re­
ported to RTS through a library interface (CONFIG) from the various
device handlers. In either case, appropriate messages are sent to DAP.

IV. SUMMARY

The 3B20DjDMERT system has taken a significant departure from
earlier switching processors in many areas, but perhaps none is so
visible as the craft interface. The use of flexible video displays makes
it possible to adapt the 3B20D to diverse applications quickly and
economically. Also, the introduction of a reliable, secure, high-capacity
data link for remote maintenance makes the 3B20DjDMERT system
well suited for unattended operation, with resultant cost savings.

CRAFT INTERFACE 397

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.1, January 1983
Printed in U.S.A.

The 3820D Processor & DMERT Operating Systems:

Integration and System Test

By W. F. KLiNKSIEK and H. L. MITCHELL

(Manuscript received March 18, 1982)

This article describes the general approach that was taken in
integrating and system testing the 3B20D Processor system. Since
both the system hardware and software were developed simultane­
ously, the goals of the system test and integration plan naturally
shifted emphasis and expanded their scope from achieving hardware
stability to establishing software functionality and finally to demon­
strating system stability. This article also overviews some of the
project management techniques and procedures applied during the
development of the 3B20D Processor.

I. INTRODUCTION

An important aspect of the development of any complex system
such as the 3B20D Processor is the methodical integration and system
testing during all phases of the development consistent with the
experience gained from previous developments. 1

-
4 Since the hardware,

software, and microcode were designed and developed simultaneously,
the initial efforts focused primarily on the hardware and firmware
using stand-alone exercise modules and system diagnostics run from a
laboratory support processor. After the hardware reached sufficient
stability, emphasis turned to functional testing of each major software
subsystem and feature. Finally, as full functionality was achieved, the
major thrust of testing focused on system integrity and reliability using
the previously developed tests as a regression test package to assure
no loss in functionality as problems were cleared. The development
methodology is summarized in the relative timeline sequence chart
shown in Fig. 1.

Also discussed in this article are some of the project management

399

SYSTEM
REQUIREMENTS

INTEGRATION FACTORY
DEVELOPMENT I HARDWARE I TEST I SYSTEM TEST

• I II I I I I

I I I
I I I I SYSTEM

I I I I CHAN GEl I I ..-A_N_AL...,Y_SI S--1II-R_E_LE_A.SE

f-_A~T~I~_-i---i-----l--- r--_J I

I I I I
t I I I I I I

DEVELOPMENT I CERTIFICATION I INTEGRATION I SYSTEM TEST
SOFTWARE

Fig. I-Generalized development model.

techniques and administration tools used to control the changes and
new features introduced into the system.

II. EARLY HARDWARE/SOFTWARE INTEGRATION AND TEST
STRATEGY

2. 1 Objectives

The objective of the initial integration and test effort on the proto­
type hardware was to verify basic instruction execution and memory
access, establish full diagnostic capability of the hardware,5 prove in
peripheral access and functionality, and establish stable communica­
tion interfaces. In achieving these objectives, a stable software devel­
opment environment was achieved for the major portion of the soft­
ware development.

2.2 Stand-alone exercise modules

The diagnostics were developed to initially run from the laboratory
support processor in conjunction with the hardware development. This
simultaneous development of the diagnostics and the processor hard­
ware had the unique advantage of providing individual functional
verification of each circuit pack or major unit before integration of the
operational system was attempted, thereby saving much laboratory
time ferreting out faulty hardware. The initial functional integration
started with simplistic CPU test modules that afforded stand-alone
verification of basic operation. Upon reaching acceptable functionality,
stand-alone test modules were used to establish communication with
the disk file controller and moving head disks.

2.2. 1 Central processing unit integration

Two test modules were used extensively to integrate the early
Central Processing Unit (CPU) hardware, firmware, and subsequent
changes. The first test module was designed to test basic main-memory
access and instruction execution with output to serial channel on the

400 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Central Control Input/Output (CCIO) bus.6 Loading this module from
the laboratory support processor verified the communication link from
the support processor to the 3B20D Processor. In addition, the exe­
cution of the module not only verified basic hardware functionality
but also verified the data-link capability to a TTY via the serial
channel. The second test module, in combination with a primitive
version of the operating system, established two processes and cycli­
cally sent messages between them. This capability not only tested
more of the hardware features of the CPU, but also provided a means
to verify stable operation over long periods of time. This test module
was then expanded to verify memory update on the off-line Control
Unit (CU) and "soft switch" capability between the duplex units.7

2.2.2 File system integration

Once basic operation of the CPU was verified, attention was pointed
toward the file-system operation requiring integration of the Direct
Memory Access (DMA) unit, the Disk File Controller (DFC) unit, and
the Moving Head Disk (MHD).8 Again a stand-alone test module,
based on the disk driver software and the primitive operating system,
was used for the integration of the hardware and firmware. Because of
the large percentage of the hardware that had to be operational for
successful execution of this test module, it became an invaluable tool
not only for the integration of the preproduction hardware but also for
Western Electric manufacturing, testing, and installation of early
models of the 3B20D Processor in application'system laboratories.

2.3 System software

Once the hardware was integrated and verified to the limits of the
stand-alone test modules, development of the operating system and
system-initialization software proceeded rapidly, and the integration
effort switched emphasis from strictly hardware to system software.
The strategy was to incrementally integrate-from the primitive op­
erating system-each new capability of the operating system and
system-initialization software with the hardware until a fully cycling
stand-alone basic processor system was achieved.

With the basic capability to initialize the system and cycle the
operating system, integration proceeded to verify the 3B20D resident
diagnostic control structure and diagnostics.

By this time, additional integration tests were necessary to more
fully expand coverage of the system. Thus, a test process was developed
that created disk read and write jobs with a variable number of these
child processes specifiable up to the number of allowable Dispatch
Control Table (DCT) entries. Because of the large percentage of the
processor used by this test process and because of the controllable

SYSTEM TEST 401

activity, it became an invaluable regression-test vehicle for subsequent
integration activities as well as a system stress test.

2.4 Results

The primary result of this early effort was the establishment of a
stable hardware and operating software base for the development of
the features.

III. INTEGRATION AND SYSTEM TEST

The 3B20D system-level testing is actually divided into three distinct
functional groups consisting of System Integration, System Test, and
System Analysis. A brief historical review of the evolution of these
groups is perhaps the best way to describe their respective functions.
In early 1979 a decision was made to delegate the system testing of
DMERT to Western Electric.9 A Western Electric department was
formed with the goal of taking over full responsibility for DMERT
system testing by January 1, 1980. This transition actually took place
about six months ahead of schedule in July 1979 and the system
remains a Western Electric responsibility. The goals of the system
testing group at that time were to release laboratory quality prereleases
to DMERT applications to allow parallel application software devel­
opment with the DMERT development. The system testing group
also developed an extensive, documented set of tests that could be
used not only to test the prereleases but would also serve as a base for
testing all generic software releases in the years to follow.

Another group, the System Integration group, was responsible for
planning and coordinating the building (compiling) of each DMERT
release, getting the release installed and cycling in the 3B20D devel­
opment labs, and assuring that basic functions worked. Once this was
accomplished, responsibility for the detailed testing was turned over
to the system testing group. Thus, the system testing group could
concentrate more on actual testing and problem resolution and less on
bringing up the internal loads.

3. 1 Integration

System integration controls the flow of software changes from the
time a developer completes a change through the release of that
change to a customer. The specific areas of responsibility include:

(i) Load engineering and planning
(ii) Benchmark tracking and analysis

(iii) Integration testing
(iv) Release-letter generation
(v) Modification Request (MR) tracking and MR data base integ­

rity.

402 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

3. 1. 1 Load engineering and load planning

For each DMERT release, an individual is assigned to be the load
engineer. This individual serves as the focal point for all load-building
activities. Specifically, the load engineer analyzes all changes planned
for the release by the generic engineer, decides in what sequence
changes should be taken, oversees the building of the load, and
coordinates installation and integration testing of the load in the
development labs.

Members of the integration team report to the load engineer who
assures that all activities needed to deliver the load on schedule are
assigned and completed. The load engineer with assistance from the
integration team resolves daily problems and, as necessary, reschedules
activities and people.

The load engineer in conjunction with the program administration
staff coordinates the actual building of the load. The load engineer
must thoroughly understand the mechanics of how the system is built,
what software dependencies exist and how source code is controlled
via the CMS/M2 system. lO

3. 1.2 Benchmark tracking and analysis

Each new generic feature or major software enhancement results in
a set of benchmarks that identify the date at which major activities
are scheduled for completion. Benchmarks serve a dual purpose: first,
as a management tool for measuring how the project is doing relative
to the plan; and second, as a planning aide for other people or groups
identifying dependencies for other features, hardware availability, or
lab installation.

Several tools have been used for identifying, tracking and reporting
on feature benchmarks within the DMERT development organization.

3.1.3 Integration testing

One of the major objectives of the integration team is to assure that
the load given to the system testing group is of sufficient quality to
allow detailed functional testing. To verify that the system is of such
quality, basic functional tests are run to assure that the major subsys­
tems are operational. These include diagnostics, processor duplex
operation, disk and I/O capabilities, and Recent Change and Verify.

3. 1.4 Release-letter generation

Typically the applications that use the 3B20D Processor want the
new DMERT software releases as soon as possible after the completion
of system testing. This has presented a unique challenge to DMERT
development management: the need to get releases, complete with
essential documentation, to a number of different customers within
one day of the completion of system test.

SYSTEM TEST 403

One vehicle used to supply necessary timely documentation to the
customers is the release letter. This letter has evolved into a rather
detailed document covering:

(i) Support processor installation procedures
(ii) 3B20D installation procedures

(iii) List of all fIle names
(iv) List of all changed fIles
(v) List of all required data base changes

(vi) MR descriptions for all MRs resolved in the release
(vii) MR exceptions list.

Of particular importance is the MR exceptions list. The intent of
this list is to communicate to the customers known problems that exist
in the release and, when available, action to be taken if it is observed
on their machines. This communication mechanism saves many hours
that applications personnel would spend analyzing problems already
identifIed by the DMERT organization.

To assure timely distribution of this letter, all sections are put on a
support computer and support programs are executed to assemble
them into a document that is available on the day of the software
release.

3. 1.5 Detailed MR tracking and data base integrity

The integration team also was chartered to establish the integrity of
MR data base, to produce accurate and timely reports, and to respond
promptly to high-priority problems. Weekly audits of the entire data
base are performed to assure that MRs do not remain in a transient
state for an unreasonable length of time.

3.2 System test

The primary objective of the 3B20D System Test group is to test
the DMERT system on the 3B20D Processor in order to validate that
all advertised features and capabilities perform according to their
documented requirements. System tests are designed to test all the
functional capabilities of the processor and its hardware both in no­
load and stress environments.

In the two and one half years since its inception, the System Test
group has developed a complete system testing package containing
over 700 test cases. As new features are developed, test cases are
developed and each feature is thoroughly tested. Test cases are docu­
mented and in many cases processes are written to automatically
execute the tests. Once a feature is released for customer use, a subset

404 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

of the defined test cases is included as part of an on-going regression­
te&t package.

A concept of certification testing was established to identify prob­
lems early in the development cycle. This allowed more problems to
be debugged and fixed before release and resulted in a more stable
system testing environment and higher ultimate product quality.

Certification testing requires the developers to build in the official
environment lO and to demonstrate the proper execution of their new
code to a system tester before it can be delivered to the integration
team. The system tester has an option to request particular tests to be
run with the new code and thus certify that the software to be
submitted has passed some basic tests and can be approved for further
processing. Software not passing certification is rejected and the de­
velopers have to correct the deficiencies and schedule a follow-up
certification test.

3.3 System analysis effort

The System Analysis Group (SAG) effort was planned as an exten­
sion to Integration and System Testing. As its objectives, SAG was to
perform tests aimed at measuring the performance and reliability of
the 3B20D as a system. A separate development laboratory was
constructed with the primary intention of simulating and functioning
as a field site. Since this was the only 3B20D laboratory planned to
run for long periods of time without rebooting, many problems of a
periodic or long-term nature were first observed there.

SAG members approached the stability aspect of the job by first
defining measurable metrics. Objectives were defined based on the
measured system reliability. The SAG team then identified and inves­
tigated problems that impacted system reliability and reported the
effects on system stability once the problems were resolved.

Stability data was collected during weekend testing. The tests in­
volved running a controlled-load package containing system exercise
processes for specified periods of time, usually several days. These
tests were generally run unattended to evaluate hands-off machine
performance. All messages to the Read Only Printer (ROP) were
stored on disk, dumped at the end of the test and analyzed using a
program developed for this purpose.

Three sets of objectives were defined for data analysis: a long-term
objective for system reliability; a cut objective that identified satisfac­
tory stability levels for first application at in-service offices; and the
objective of establishing concern thresholds. Any data above the
concern threshold was clearly unacceptable for even initial in-service
machines. Data lying in the area between the cut objective and the

SYSTEM TEST 405

concern thresholds needed additional understanding in order to make
a go/no-go decision on cutover.

An example of one of the metrics used to track stability is shown in
Fig. 2 for ten releases of DMERT prior to the first machine cutover in
September 1981.

IV. FACTORY SYSTEM TEST

Factory System Tests (FST) and Quality Assurance (QA) tests are
the final hardware tests run at the Western Electric Company manu­
facturing plants to assure that a quality hardware product is delivered
to the customer.

4. 1 Objectives

The objectives of FST and QA are to test the hardware functionality
and interconnections of fully assembled systems to assure that the
processors as built meet design intent. These extensive tests assure
the highest possible quality in the product when shipped to the
customer.

4.2 FST test strategy

Instead of developing special test software for the FST, the actual
DMERT operating system is enhanced with additional exercise proc­
esses to form the Factory/Installation Software Test (FIST) package.
The testing is divided into two phases: the normal operation phase
and the stressed operation phase. These tests apply to all hardware
delivered by the factory including the system as ordered, the comple-

>­«
o
a:
w
c..

100~---------------------------------------,

~ 10
c..
::J
a:
a:
w
I­
Z

CUT
OBJECTIVE

1~~~~~~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~~~~

o 2 3 4 6

DMERT VERSION

Fig. 2-Interrupt incidence history.

8 10 11

406 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

ment of spare circuit packs, growth units and circuit packs, and
repaired product.

4.2. 1 Normal operational tests

The normal operational tests are designed to verify the functionality,
interconnections, and basic maintenance operations associated with
each unit under normal operating conditions. Included in these tests
are the activation of system initializations under all possible minimum
configurations using the power switch and the craft interface terminal.
The tests then assure functionality of all units under simulated main­
tenance conditions by removing and restoring each unit using both the
power switch and the craft-interface terminal. During this test the
system must remain operational. The next phase of testing requires
the running and passing of all diagnostics for each unit within the
system. Finally a series of special exercise processes are used to
simulate actual operation of the disks, tape units, TTY and other data
link controllers, and a CD soft-switch process for duplex capability
verification.

4.2.2 Stressed environmental operational tests

The 3B20D Processor is designed to operate under a wide range of
temperature and battery conditions. To assure that the system meets
the design intent to operate under these conditions, two additional test
environments are imposed on the machine before shipment.

4.2.2.1 Low voltage. The power converters are stressed most under
conditions of low-input voltage; thus, the system must pass all the
tests prescribed above at an input voltage of -43.75 ± 0.05 volts. This
voltage is 91 percent of the nominal -48 volts.

4.2.2.2 High temperature. High-temperature operation of the 3B20D
Processor is critical to avoid outages during commercial power or
mechanical failures that result in the loss of building air-conditioning
systems. The system tests prescribed above must pass in a system that
has been operating at a stable elevated temperature of 49°C ± 1°C for
a period of at least four hours.

4.3 QA testing

In addition to the factory system test on all systems, additional tests
are rerun under the auspices of the Bell Laboratories quality assurance
organization and the Western Electric quality review organization to
assure that statistical quality control limits are not exceeded, thus
maintaining a high level of quality for the customers.

SYSTEM TEST 407

4.4 Result

A major milestone was achieved in March 1980, when the first field
shipment to the Traffic Service Position System (TSPS) site in San
Antonio, Texas, was not only delivered on schedule, but passed the
complete battery of factory system tests.

v. ADMINISTRATION

In this section, a brief overview of some of the important aspects of
project-management and project-control techniques are presented.

5. 1 Change authorization

From the beginning of the project, the hardware design was under
very tight controls. All changes or feature additions had to be approved
by a management-change committee with representation from Bell
Laboratories and Western Electric. This committee provided both a
forum to review designs and design changes and to discern the eco­
nomic impact of each change. This committee then established a joint
subcommittee, called the Engineering Support Group, to schedule and
track each change from design through manufacture and ultimately to
the installation into the various system development laboratories.

Software change control was less tightly controlled during the initial
development and relied heavily on the software development super­
visors responsible for each subsystem. Once the software was delivered
to the application more stringent controls were introduced. At that
point, feature content, overall coordination, and generic scheduling are
the responsibility of the Generic Engineer and the Project Manager.

5.2 Application interfaces

To assure that the 3B20D Processor system meets the needs of the
variety of Bell System applications, a group was established to act as
the single focal point for the applications for all feature requests and
MRs.

5.2. 1 Feature content

To establish feature content of the system, the Application Interface
group, in concert with the applications, developed a prioritized list of
feature requests and enhancements for the Project Manager and the
Generic Engineer to review. Thus, a final list of features and enhance­
ments was established taking into account customer needs, schedules,
and resource limitations.

5.2.2 Modification requests

Initially the Application Interface group also acted as a clearing­
house to prioritize, from the users point of view, the problems that

408 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

they discovered as the generic matured. This list, in conjunction with
internally generated MRs, formed the basis for the Generic Engineer
to approve MRs to be fixed for inclusion in the generic. Once an MR
was approved, the Load Engineer tracked its progress through devel­
opment, integration, system test, and release.

Once the first generic was cut into service, a committee was estab­
lished with representation from applications, DMERT development,
generic engineering, system test, load engineering, and field support.
This committee's function was to tightly control and adjudicate all
software changes so as to assure that field service was not adversely
affected and that real service problems were quickly attended to and
delivered on a timely basis.

5.3 Project-tracking tools

A finite-state MR control mechanism was put into place to track
and record changes in the status of MRs during the development
cycle. lO From this data base, various reports were automatically gen­
erated for use by all organizations associated with the project. This
central source of project-status information was an essential ingredient
to the determination of areas of concern so that action could be taken,
as well as a repository of all schedule information relating to MRs.
This capability formed the nucleus of the automated project-manage­
ment tools.

VI. CONCLUSION

The 3B20D Processor is operating effectively in the field since the
first cutover in September 1981. The rapid field buildup during the
first six months (24 machines cut into service) could not have been
possible if all parts of the system were not of the highest quality and
designed for high reliability. Much of the success of the project is
attributed to the extensive testing both by the DMERT development
organization, Western Electric organizations and application organi­
zations during each step of the system's introduction.

VII. ACKNOWLEDGMENTS

The authors are reporting on the work of many processor system
and application personnel in Bell Laboratories and Western Electric.
We wish to acknowledge all of their efforts and their dedication, which
made the project so successful. In particular, the authors acknowledge
the following individuals for assisting in the preparation of this text:
R. J. Colby, J. M. Field, K. A. Giesting, D. I. Sandel, P. J. Stankus, R.
R. Stozek, and D. S. Trushin.

SYSTEM TEST 409

REFERENCES

1. H. A. Hilsinger, K. D. Mozingo, C. F. Starnes, and G. A. Van Dine, "lA Processor:
Testing and Integration," B.S.T.J., 56 (February 1977), p. 289.

2. C. Haugk, S. H. Tsiang, and L. Zimmerman, "System Testing of the No.1 Electronic
Switching System," B.S.T.J., 43 (September 1964), p. 2575.

3. D. R. Barney, P. K. Giloth, and H. G. Kienzle, "No.1 ESS ADF: System Testing
and Early Field Experience," B.S.T.J., 49 (December 1970), p. 2975.

4. B. P. Donohue, III and J. F. McDonald, "SAFEGUARD Data-Processing System:
Processor-System Testing and the System Exerciser," B.S.T.J. (1975), SAFE­
GUARD Supplement, p. Sl11.

5. J. L. Quinn, R. L. Engram and F. M. Goetz, "The 3B20D Processor & DMERT
Operating System: Diagnostic Tests and Control Software," B.S.T.J., this issue.

6. M. W. Rolund, J. T. Beckett, and D. A. Harms, "The 3B20D Processor & DMERT
Operating System: 3B20D Central Processing Unit," B.S.T.J., this issue.

7. R. C. Hansen, R. W. Peterson, and N. O. Whittington, "The 3B20D Processor &
DMERT Operating System: Fault Detection and Recovery," B.S.T.J., this issue.

8. R. E. Haglund and L. D. Peterson, "The 3B20D Processor & DMERT Operating
System: 3B20D File Memory Systems," B.S.T.J., this issue.

9. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, "The 3B20D Processor &
DMERT Operating System: DMERT Operating System," B.S.T.J., issue.

10. B. R. Rowland and R. J. Welsch, "The 3B20D Processor & DMERT Operating
. System: Software Development System," B.S.T.J., this issue.

410 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

ACRONYMS AND ABBREVIATIONS

ACHI
ACP
AJT
ALU
ALW
API
APS
ATB
ATP
BGB
BIC
BLDGPWR
BPI
BS
BWM
CAD
CC
CCIO
CCIS
CCITT

CH
CHAN
CIA
CIH
CMS
CONFIG
CPD
CPH
CPU
CRT
CSU
CU
DAP
DATA TABLE
DBEVOL
DBS
DCB
DCT
DDCMP
DDL

application channel interface
alarm control process
active job table
arithmetic logic unit
allow
attached processor interface
Attached Processor System
address translation buffer
all tests passed
bidirectional gating bus
bus interface controller
building power
bits per inch
bus simulator
broadcast warning message
computer-aided design
central control
central control input/output
common channel interoffice signaling
International Telegraph and Telephone Consulta-

tive Committee
channel
channel
critical indicator area
craft interface handler
Change Management System
configuration management program
common processor display
communication protocol handler
central processing unit
cathode ray tube
cache store unit
control unit
display administration process
diagnostic data table files
Data Base Evolution System
duplex bus selector
diagnostic control block
dispatch control table
digital data communication message protocol
data definition language

411

DDLP
DDSBS
DEV
DFC
DFDIAG
DFI
DGN
DIAGC
DIAMON
DIO
DIP
DMA
DMAC
DMERT
DML
DMU
DPT
DRAM
DSCH
DST
DUC
DUI
EAI
ECC
ECD
ECDMAN
EIH
EOS
EPROM
ER
ESS
EX
FIFO
FIST
FPS
FST
FTAM
FTS
GRASP
IB
INH
10DRV
lOP
10PC

data definition language processor
duplex dual-serial bus selector
device
disk file controller
disk file diagnose
disk file inverter
diagnose
diagnostic control
diagnostic monitor
DMA I/O bus
dual in-line package
direct memory access
direct memory access controller
Duplex Multiple Environment Real Time
data manipulation language
data manipulation unit
diagnostic phase table
dynamic random access memory
dual serial channel
destination
dual-access utility circuit
direct user interface
emergency action interface
error correction code
equipment configuration data or data base
equipment configuration database manager
error interrupt handler
extended operating system
erasable programmable read -only memory
error register
Electronic Switching System
exercise
first in-first out
factory/installation software test
form processing system
factory system tests
forms translation and mapping
field test set
generic access package
instruction buffer
inhibit
lOP driver process
input/ output processor
input/ output processor controller

412 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

IPC
IPS
KPCB
LC
MSGS
MSI
MTC
MTTR
MTTY
MTTYC
MU
MUX
NCP
NK
NRZ
ODIN
OOS
OP
OST
PA
PC
PCB
PCSD
peu
PD
PDF
PDFGEN
PDS
PE
PFC
PIC
PID
PINIT
PRM
PROM
PSBR
PSDC
PSI
PSW
QA
RAM
RC/V
RFI
RMU

interprocess communication
inches per second
kernel process control block
line controller
messages
medium-scale integration
maintenance
mean time to repair
maintenance TTY
maintenance terminal controller
mask unit
multiplexor
network control point
non -killable
non-return to zero
on-line data integrity
out of service
display
operating system trap
program address
peripheral controller
process control block
peripheral controller subdevice
power control unit
peripheral device
page description file
PDF generator
program documentation standard
phase encoded
peripheral frame control
peripheral interface controller
process identifier
processor initialization program
processor recovery message
programmable read-only memory
primary segment base register
parallel serial data interface
peripheral system interface
program status word
quality assurance
random access memory
recent change/verify
radio frequency interference
rotate mask unit

ACRONYMS AND ABBREVIATIONS 413

RMV
ROP
ROP
RST
RSTU
RTS
RU
SAC
SAG
SAR
SAT
SBR
SC/SD
SC
SCANS
SCC
SCCS
SCCS
SCH
SCM
SCR
SCR
SCSD
SD
SDC
SDP
SDR
SDS
SG
SGO
SGS
SID
SIM
SIR
SMD
SP
SRC
SREG
SSA
SSBR
SSI
SSR
STOP
SUPR

remove
read-only printer
receive-only printer
restore
restore unconditional
real-time status
rotate unit
store address control! controller
system analysis group
store address register
store address translator
segment base register
scanner/signal distributor
software control
Software Change and Notification System
switching control center
Source Code Control System
Switching Control Center System
serial channel
store complete signal
silicon controlled rectifier
store control register
scanner and signal distributor
software development
store data controller
software demand paging
store data register
Software Development System
system generation data base
store go signal
Software Generating System
segment identifier
system integrity monitor
store instruction register
storage module drive
software production
source
special registers
system summary area
secondary segment base register
small-scale integration
system status register
terminate
system update program

414 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

SYSGEN
TB/IS
TLDB
TLP
TSPS
TTL
TTY
TTYC
TUS
TV
UC
UID
USP
VLSI
VOH
VOL
VTOC
WCS
WMS
YACC

system generator I generation
transaction block and integrity subsystem
trouble locating data base
trouble locating process
Traffic Service Position System
transistor-transistor logic
teletypewriter or terminal
terminal controller
Test Utility System
transfer vector
utility circuit
utility identifier
UNIX supervisor process
very large-scale integration
voltage output high
voltage output low
volume table of contents
write able control store
writeable microstore
yet another compiler compiler

ACRONYMS AND ABBREVIATIONS 415

CONTRIBUTORS TO THIS ISSUE

Roy E. Anderson, B.S.E.E., 1970, University of Illinois; M.S.E.E.,
1972, University of Maryland; Bell Laboratories, 1970-. Mr. Anderson
initially worked in the field of computer-controlled electrical measure­
ment equipment for transmission facilities. His interest in computers
led him into the area of designing real-time operating systems. Today,
he is involved with developing a distributed digital electronic switch.

Marshall E. Barton, B.A., 1962, M.S. (Mathematics), 1964, Miami
University; Bell Laboratories, 1964-. Mr. Barton initially was respon­
sible for the development of support software for No. 2 ESS and No.
3 ESS. Since 1979 he has been associated with 3B20D DMERT, most
recently as Supervisor of the Craft Interface Design Group.

J. T. Beckett, B.S. (Engineering), 1961, Harvey Mudd College;
M.S.E.E., 1964, Ph.D. (Electrical Engineering), 1967, Case Western
Reserve University; Bell Laboratories, 1967-. Part time lecturer,
Electrical Engineering, Illinois Inst. of Tech., 1968-1975. Responsible
for microcode on 3A processor and for the development of the 3B20D
microcode and microcode tools. He also has been responsible for the
development of software debugging tools. He is currently Supervisor
of the No. 5 ESS Project Management Tool Development Group.
Member, ACM, IEEE.

Harry. L. Bosco, B.S.E.E., 1972, Monmouth College, M.S.E.E.,
1974, Polytechnic Institute of Brooklyn; Bell Laboratories, 1965-. Mr.
Bosco has worked in data communications and hardware design for
No.4 ESS. He was promoted to Supervisor of the Network Design
Group for No. 5 ESS in 1977 and to Head of the No. 5 ESS _Line
Interface and Peripheral Circuits Department in 1980. In 1981, he
became Head of the No. 5 ESS Product Management Department,
responsible for the generic planning, system architecture, and manage­
ment of the No.5 ESS product line. Member, Sigma Pi Sigma, Eta
Kappa Nu.

John M. Brown, B.S.M.E., 1967, M.S. (M.E. & I.E.), 1969, Univer­
sity of Michigan; Bell Laboratories, 1969-. Mr. Brown started his
career with Bell Laboratories by working on the development of 1A
Technology apparatus. He has worked on the development of 1A
Processor semiconductor stores and supervised the physical design of
the 3B20D Processor. In 1980, he was appointed Head of a department
responsible for the circuit design of the 3B20D Processor Control
Frame and for physical design of the 3B Processor family.

417

A. H. Budlong, B.E.E., M.S. (Physics), Marquette University, 1950;
Member of the teaching staff of the Department of Physics, Marquette
University, 1948-1952; Bell Laboratories, 1953-. Since joining Bell
Laboratories, Mr. Budlong has been engaged in exploratory develop­
ment of electronic switching circuits and has conducted a group in
charge of switching training at Bell Laboratories. He was involved in
the development of the No. 1 electronic switching system in the areas
of trunk and service circuits, and automatic message recording equip­
ment, and in the design of high-speed communication buses and power
facilities for the 1A Processor. He has been in charge of a group
developing magnetic tape file systems, printers, and miscellaneous
peripheral circuits for the 3B20D Processors. Mr. Budlong is the
coauthor of a book entitled Electronic Switching Theory and Circuits.
He is the Dean of the Undergraduate School and also a Professor of
Electronic Engineering at the Midwest College of Engineering. Mem­
ber, Sigma Pi Sigma and Pi Mu Epsilon.

J. H. Campbell, B.S. (Mathematics), 1964, Pittsburg State Univer­
sity; M.S., 1969, Ph.D, 1974 (Computer Science), Iowa State Univer­
sity; Bell Laboratories, 1974-. Since joining Bell Laboratories, Mr.
Campbell has worked on the Extended Operating System (EOS)
project and on the 3B20D /DMERT project doing operating systems
development. Currently, he supervises a group engaged in the devel­
opment and support of I/O drivers for real-time applications. Member,
ACM, Sigma Xi.

J. G. Chevalier, B.E.E., 1951, Ohio State University; Bell Labora­
tories, 1956-. Mr. Chevalier has worked on a printed wiring board
processes, applications for both military and telephone projects, con­
nector design, studies of contact finishes, and the physical design and
packaging of electronic equipment for switching systems. He presently
supervises a group responsible for the development of packaging
technologies for future versions of the 3B20D Processor.

Noel X. DeLessio, B.S.E.E., 1960, M.S.E.E., 1961, Ph.D. (Electrical
Engineering), 1966, Polytechnic Institute of Brooklyn; Bell Laborato­
ries, 1966-. Mr. DeLessio worked on SAFEGUARD system design
and supervised guidance design for the SPRINT missile system. Sub­
sequently, he supervised the Exploratory Development Group of the
Operator System Laboratory and is currently Head of that Labora­
tory's Processor Applications Department.

418 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

M. R. Dubman, A.B., 1957, Princeton University; M.S., 1959, Mas­
sachusetts Institute of Technology; Ph.D., 1970, University of Califor­
nia-Los Angeles; Bell Laboratories, 1970-. From 1959 to 1970, Mr.
Dubman was engaged in the development of statistical analysis tech­
niques used in testing of Saturn/Apollo rocket engines for Rockwell
International. At Bell Laboratories he has been involved in the devel­
opment of software for the 1A and 3B20D Processors. Presently, he is
Supervisor of a group responsible for the 3B20D system laboratories.

Gary P. Eldredge, B.S.E.E., 1971, M.S.E.E., 1971, Brigham Young
University; Bell Laboratories, 1972-. Mr. Eldredge has designed a
number of programs for the 1A Processor to assist debugging and
updating software in operational field sites. Since 1977, he has been
involved in the development, administration, and system testing of
DMERT software. He recently was responsible for a group that designs
utilities that are used in field sites to test, monitor, and maintain
various parts of the software. He currently is Supervisor of the 3B20D
fault recovery group. Member, Tau Beta Pi, Phi Kappa Phi, Sigma Xi.

Robert L. Engram, B.S.E.E., 1969, Howard University; M.S.E.E.,
1973, Stanford University; Motorola, Portable Products Division,
1969-72; Bell Laboratories, 1972-. Prior to joining Bell Laboratories
Mr. Engram was involved in design and development of analog and
digital circuits for paging and terminal equipment. He received a
patent for his work inhibiting shock falsing in a two-tone sequential
decoder. Upon joining Bell Laboratories, Mr. Engram was initially
involved in exploratory development of digital circuits and systems
including AP3 and VSS. In 1977, he became Supervisor of Test
Facilities for TSPS and later supervised a group performing Software
Integration and Testing. He joined the 3B20D /DMERT Project in
1980 as Head of the Processor System Integrity Department and
presently heads the Operating System Development Department.
Member, IEEE, Tau Beta Pi, National Technical Association.

Rudolph J. Frank, B.S.E.E., 1966, Seattle University, M.S.E.E.,
1968, Ph.D. (Electrical Engineering), 1971, Oregon State University;
M.S. (Business Management), 1981, Stanford University; Pacific
Northwest Bell, 1964-1966; Bell Laboratories, 1971-. At Pacific
Northwest Bell, Mr. Frank was an electronics data processing super­
visor in the comptroller's division. At Bell Laboratories he has worked
on new feature planning and exploratory development in the Traffic
Service Position System laboratory. In 1975, he was designated Bell

CONTRIBUTORS TO THIS ISSUE 419

Laboratories Visiting Professor of Electrical Engineering at Southern
University (Baton Rouge, La). Mr. Frank became Supervisor of the
No.4 ESS Network Management Control Group in 1976 and has
managed several large software development projects. In 1980 he was
awarded a Sloan fellowship in the School of Business at Stanford
University. Mr. Frank is now Head of the Toll Digital Maintenance
Planning and Development Department at Bell Laboratories, Member,
IEEE, Eta Kappu Nu.

Alan W. Fulton, B.S.E.E., 1966, University of Arizona; M.S.E.E.,
1967, Ph.D. (Electrical Engineering), 1971, Stanford University; Bell
Laboratories, 1966-. Mr. Fulton has been involved in the design of
processors for electronic switching systems. He currently is Head of
the Processor Technology Department. This department is responsible
for developing and integrating the silicon, packaging, and computer
aided design tools required for processors. Member, Tau Beta Pi,
Sigma Xi.

Lee E. Gallaher, B.S.E.E., 1951, M.S.E.E., 1956, Case Western
Reserve University; Instructor in Electrical Engineering at Case West­
ern Reserve University, 1952-1955; Bell Laboratories, 1955-. Mr.
Gallaher has worked on memory systems for ESS including the Flying
Spot Store, the Twister Memory and integrated circuit memories. He
was promoted to Department Head in 1965 and was responsible for
the design of the switch units for the No. 101 ESS and circuit designs
for the No. 2 ESS and the No. 3 ESS. More recently he has been
responsible for the architecture and development of the 3B20D proc­
essor. Member, IEEE, Tau Beta Pi, Sigma Xi, Eta Kappa Nu.

Frank M. Goetz, B.E.E., 1953, Manhattan College; M.S. (Mathe­
matics), 1960, New York University; Bell Laboratories, 1953-. Mr.
Goetz has worked on logic design, software development, and system
design for electromechanical and electronic switching systems. He
received five patents in the areas of electronic counters, error-correc­
tion circuitry, signal detection, and processor system design. Since
1962, he has been a Supervisor responsible for various aspects of
electronic switching system and processor maintenance. At present, he
is responsible for maintenance design of the 3B20S Processor. Member,
IEEE, Eta Kappa Nu.

Maureen Grzelakowski, B.S., 1976, M.s., 1978 (Computer Sci­
ence), Northwestern University; Bell Laboratories, 1977-. Ms. Grze­
lakowski was initially responsible for designing software development

420 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

environments for ESS projects. In 1980 she participated in the devel­
opment of the DMERT nucleus. Since then she has supervised the
Operating System Architecture and Planning, and Generic 2 Engi­
neering Groups.

Ronald E. Haglund, B.S.E.E., 1960, M.S.E.E., 1963, and Ph.D.
(Electrical Engineering), 1969, Iowa State University; Bell Laborato­
ries, 1970-. Mr. Haglund initially worked on file store design for the
No. 1A Processor. In 1979 Mr. Haglund became Supervisor of the
3B20D File Store Group with responsibility for the file stores for the
3B20D and other processors. He currently is Supervisor of the Periph­
eral Technology Group with responsibility for all3B peripheral devices.

Robert C. Hansen, B.S.E.E., 1966, and M.S.E.E., 1969, Michigan
State University; Ph.D. (Control Science), 1973, University of Minne­
sota; Bell Laboratories, 1973-. Mr. Hansen has worked on mainte­
nance software for No.4 ESS and the 3B20D. He is presently Super­
visor of the Requirements and Architecture Group, concerned with
feature evolution of the 3B20D. Member, IEEE, Tau Beta Pi.

D. A. Harms, B.S.E.E., 1963, M.S.E.E., 1965, University of Minne­
sota; Bell Laboratories, 1965-. Mr. Harms has been involved with the
design of processors since 1967. Since 1970, he has supervised groups
responsible for the design of memory subsystems, microstores, and
peripherals for the No.2 ESS, No. 2A ESS, No.3 ESS, 3A Processor,
and the 3B20D Processor. He is currently Supervisor of the Common
Processor Circuits group responsible for the design of a diagnostic
processor for 3B20S and for circuits incorporating the Bellmac™-32A
microprocessor in single board computers. Member, Eta Kappa Nu,
Phi Theta Kappa.

Irvine K. Hetherington, B.S.E.E., 1966, Lehigh University;
M.S.E.E., 1967, Stanford University; Bell Laboratories, 1972-. Mr.
Hetherington initially was associated with exploratory development of
integrated circuit analog switching networks for telecommunications
applications. From 1972 to 1976, he was involved with the design of
the micro control store and main memory system of the 3A Processor.
Since 1977, Mr. Hetherington has had several design and supervisory
responsibilities associated with the CPU and memory systems of the
3B20D Processor. He currently supervises the 3B20D Processor Data
Communications Peripherals Group. Member, Tau Beta Pi, Eta Kappa
Nu.

CONTRIBUTORS TO THIS ISSUE 421

J. Richard Kane, B.S.E.E., 1968, University of Pittsburgh;
M.S.E.E., 1970, Northwestern University; Ph.D. (Computer Science),
1973, Northwestern University; Bell Laboratories, 1968-. Mr. Kane
initially worked in the areas of fault detection and system recovery for
No.4 ESS and later on testing tools. He system tested the first No.4
ESS. Mr. Kane then supervised groups responsible for the develop­
ment of the DMERT operating system, testing tools for the 3B20D
Processor and developing local area networks. He currently supervises
a group planning the design and development of new processors.

W. F. Klinksiek, B.S.M.E., 1966, M.S.M.E., 1967, and Ph.D. (Me­
chanical Engineering), 1971, Virginia Polytechnic Institute and State
University; Bell Laboratories, 1971-. Mr. Klinksiek has worked on
the physical design and packaging of the 1A Processor and the 3B20D
Processor specializing in thermal and power engineering. He has su­
pervised the development of packaging technology and computer
automated design systems and managed software administration for
the 3B20D. Recently, he was a Supervisor responsible for generic
engineering, application interface, and application engineering for the
3B20D Processor System. Currently, he is Head of Processor Systems
Customer Support Department. Member, Phi Kappa Phi, Tau Beta
Pi, ASME.

s. H. Kulpa, B.S.M.E. 1972, Michigan Technological University;
M.S.M.E., Stanford University; Bell Laboratories, 1973-. Mr. Kulpa
has been involved with the design and development of the packaging
technology for the 3B20D Processor. He currently is Supervisor of a
physical design group.

Peter Kusulas, B.S.E.E., 1963, M.S.E.E., 1965, Rutgers University;
Bell Laboratories 1963-. Mr. Kusulas has worked on the development
of magnetic and semiconductor memory systems for the 101 ESS, No.
2 ESS, and the 3A and 3B20D Processors. Since 1980 he has supervised
several groups engaged in the development of the Belimac™ micropro­
cessor module and systems based upon it.

N. A. Martellotto, B.E.E., and B.S., Applied Mathematics, 1957,
Georgia Institute of Technology; M.E.E., 1959, New York University;
M.B.A., 1970, University of Chicago; Bell Laboratories, 1957-. Start­
ing with the Bell System Data Processor project in 1957, where he did
logic design and programming, Mr. Martelloto has been involved with
computers and software development throughout his Bell Laboratories

422 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

career. Early projects include EPBX and No.1 ESS. Mr. Martellotto
holds a patent related to the basic notion of ESS generic programs. In
1966 he became Department Head of the Indian Hill Computation
Center (IHCC). In 1976, he resumed design and development of ESS
software development support programs and other related work. In
late 1979, Mr. Martelloto became DMERT project manager and for
the next two years was involved with all aspects of the project, from
operating system development to field support. He is now Head of the
Software Development Systems Department. Member, IEEE, Tau
Beta Pi, Eta Kappa Nu.

Peter S. McCabe, B.S. (Engineering), 1956, Trinity College;
B.S.E.E., 1957, Rensselaer Polytechnic Institute; Bell Laboratories,
1957-. Mr. McCabe has worked on memories for Nike-Zeus, digital
circuits for the 101 EPBX, software design for the UNICOM, A UTO­
VON, four-wire No. 1 ESS, and No.4 ESS projects. Mr. McCabe
supervised support software system development and program admin­
istration development and operation for No.4 ESS. Since 1980 Mr.
McCabe has supervised the performance measurements group for the
DMERT project. Member, Tau Beta Pi, Eta Kappa Nu, Sigma Pi
Sigma; associate member, Sigma Xi.

JoAnne H. Miller, B.S. (Mathematics), 1967, University of Michi­
gan; M.S. (Computer Science), 1976, University of Colorado; GTE­
Sylvania, 1968-1970; University of Colorado-Institute of Behavioral
Science, 1971-1976; Bell Laboratories, 1976-. Prior to joining Bell
Laboratories Ms. Miller was involved in system analysis and real-time
programming for missile control and interactive computer graphic
applications. Upon joining Bell Laboratories Ms. Miller was initially
involved in No. 1 ESS software restructure design. Since early 1979
she has supervised groups responsible for the system testing and
delivery of microprocessor software development systems, and design
and development of several components of 3B20D/DMERT System,
including the Recent Change/Verify System and equipment configu­
ration data base. Currently, she supervises a group responsible for the
field deployment and support of the 3B20D/DMERT system. Member,
IEEE,ACM.

H. L. Mitchell, B.S.E.E., 1970, Rensselaer Polytechnic Institute;
M.B.A., 1981, Illinois Benedictine College; Western Electric, 1970-.
Mr. Mitchell's original assignment was to work with Bell Laboratories
on system testing of the Safeguard MSR system. He has worked on

CONTRIBUTORS TO THIS ISSUE 423

No.4 ESS software development and testing and on 3B20D IDMERT
system testing, system integration, and 3B20D Field Support. He is
currently Department Chief, Call Processing and Residential Feature
Development-lilA ESS.

Robert W. Mitze, B.S. (Mathematics), 1969, California Institute of
Technology; M.S. (Mathematics), M.S. (Computer Science), 1976,
University of Wisconsin; Bell Laboratories, 1976-. Mr. Mitze has
worked in the development of software engineering environments for
the C language, project management of the DMERT operating system
development, and distributed architecture specification for special­
purpose applications. Since March 1981, he has been Head of the
Advanced Operating System Development Department.

B. G. Niedfeldt, B.S.E.E., 1959, University of Maryland; M.S.E.E.,
1961, New York University; Bell Laboratories, 1959-1962; Bellcomm,
Inc., 1962-1970; Bell Laboratories, 1970-. Mr. Niedfeldt was engaged
in exploratory development of high-speed data terminals. While at
Bellcomm, he participated in the evaluation of the guidance and
navigation aspects of the Apollo lunar landing missions. He then joined
the Safeguard project, working in the multiprocessor operating system
area. In 1974, he joined the No.4 ESS team and, among other things,
was responsible for the first generic (4EO) system test and release. In
1977, he joined the 3B20DIDMERT software development team, and
is presently Supervisor of the Operating System, Software Integrity
and Data Base Systems Group. Member, Tau Beta Pi, Eta Kappa Nu,
Phi Kappa Phi, and Omicion Deta Kappa.

Leland D. Peterson, B.S.M.E., 1971, Illinois Institute of Technol­
ogy; M.S.M.E., 1974, Northwestern University; Bell Laboratories,
1966-. Mr. Peterson has been involved with physical design of the 1A
Processor, Voice Storage System (VSS), 1A Attached Processor Sys­
tem, and the 3B20D family of processors. He has participated in
exploratory physical design and in the development of new hardware
packaging technology. Currently he is Supervisor of the Large Proc­
essor Physical Design Group.

Ralph W. Peterson, B.S. (Physics), 1961, Wayne State University;
M.S.E.E., 1963, New York University; Bell Laboratories, 1961-. Mr.
Peterson has worked on software development on several electronic
switching systems, including extensive work on software development
tools. He presently is Supervisor of the Processor Microcode Group,

424 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

responsible for the development of microcode for 3B Processors. Mem­
ber, ACM, Eta Kappa Nu, Tau Beta Pi.

John L. Quinn, B.8.E., 1959, Stevens Institute of Technology;
M.S.E.E., 1961, New York University; Bell Laboratories, 1959-. Mr.
Quinn worked on the design and system testing of the No. 1 ESS. He
has been Supervisor of groups concerned with ESS system testing and
development of maintenance software. For the 1A Processor project
he was responsible for the processor diagnostics and for CPU logic/
fault simulation. During the development of the 3B20D Processor he
was responsible for the Processor Control Unit diagnostics and for the
diagnostic control programs. Member, IEEE, Eta Kappa Nu.

Michael W. Rolund, B.S.E.E., 1961, Cooper Union; M.S.E.E., 1963,
New York University; Bell Laboratories, 1961-. Mr. Rolund has been
involved with the development of memory systems and processors
including No.1 ESS, the 1A Processor, and the 3B processor family.
He currently is Head of the Processor Design Department responsible
for the 3B20D and its evolution. Member, IEEE, Tau Beta Pi.

Bruce R. Rowland, B.S., 1973, Michigan State University; M.S.,
1975, and Ph.D. (Computer Science), 1977, University of
Wisconsin-Madison; Bell Laboratories, 1977-. Mr. Rowland began
work in the area of languages and compilers, where he helped to extend
the C programming language and coordinated the development of
compilation tools for four processors, including the 3B20D Processor.
He currently is supervising a group planning the development of 3B
Processor networking and doing exploratory work in computer system
design.

Jack M. Scanlon, B.S. (Applied Science), 1964, University of To­
ronto; M.S.E.E., 1965, Cornell University; Bell Laboratories 1965-.
Mr. Scanlon joined Bell Laboratories in 1965, and initially worked on
fault-diagnosis, resolution, and recovery techniques for the Bell Sys­
tem's No.1 ESS. He also worked on a missile flight simulator for the
Safeguard project. In 1968, he became Supervisor of the No.1 ESS
Call Program Group, responsible for the development of new
customer call-features. In 1971, he joined the initial development team
for No.4 ESS with responsibility for system design and call-handling
software. In 1974, he was promoted to Head of the No.4 ESS System
Design and Operations Department, where he was responsible for
design of new capabilities for No.4 ESS in domestic and international

CONTRIBUTORS TO THIS ISSUE 425

applications, and for exploratory work on new software techniques. In
1977, he became Director of a Laboratory where he was responsible
for the exploration of a secure voice/data communications system for
the government. In June 1979, he was appointed Executive Director,
Processor and Common Software Systems Division. In November 1982
he was appointed to the newly created position of Vice President,
Processors, Western Electric. This work involves development of proc­
essors, microprocessors, UNIX* operating systems, and programming
languages and tools for Bell System applications. Mr. Scanlon has
been granted four patents in processor design and electronic switching
system design. He has published numerous articles on processor design
for real-time, time-shared systems, electronic switching systems design,
and software development techniques. Member, Computer Science
Board of the National Academy of Sciences, IEEE.

D. A. Schmitt, B.S.E.E., 1965, St. Louis University; M.S. (Mathe­
matics), 1968, Stevens Institute of Technology; Southwestern Bell,
1962-1965; Bell Laboratories, 1965-1969 and 1973-. At Bell Labora­
tories, Mr. Schmitt has been involved in the TSPS, No.3 ESS, and
VSS projects. He currently is in charge of the DMERT Operating
System Architecture Department. Member, Eta Kappa Nu, Pi Mu
Epsilon, Alpha Sigma Nu.

W. C. Schwartz, B.S.E.E., 1966, Purdue University; M.S.E.E., 1967,
University of Michigan; Bell Laboratories, 1966-. Mr. Schwartz has
worked on No.4 ESS call-processing and fault-recovery software
subsystems, software testing methodologies, and logic analysis and
simulation systems. More recently, he was the generic engineer and
application interface for DMERT. He currently is Supervisor of the
Operating System Group in the Processor and Operating Systems
Development Laboratory. Member, IEEE, Tau Beta Pi, Sigma Xi.

Wing N. Toy, B.S.E.E., 1950, and M.S.E.E., 1952, University of
Illinois, and Ph.D. (Electrical Engineering), 1969, University of Penn­
sylvania; Bell Laboratories, 1952-. Mr. Toy has been involved in the
design of highly reliable processors for the Bell System electronic
switching systems and other telephone-related applications for the
past 25 years. He was on the Faculty of the Computer Science Division
of Electrical Engineering at the University of California, Berkeley, as
a Visiting MacKay Lecturer during the 1973-1974 academic year. Mr.

* Trademark of Bell Laboratories.

426 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Toy holds 19 U.S. patents and is co-author of two books, Mini/
Microcomputer Hardware Design and Microprogrammed Control
and Reliable Design of Small Computers. He is currently Supervisor
of the Voice/Data Technology Group. Fellow, IEEE.

Susan S. Weber, B.S. (Mathematics and Computer Science), 1977,
Iowa State University; M.S. (Computer Science), 1978, Purdue Uni­
versity; Bell Laboratories, 1977-. Ms. Weber initially designed soft­
ware development systems with her primary emphasis on source
administration and object generation. Since becoming involved with
DMERT, she has worked on both system update and field update and
has participated in generic engineering and application interface issues.
Currently, she is the Supervisor of the Field Update Group in the
Operating System Development Department.

R. J. Welsch, B.S. (Mathematics), 1967, Marquette University;
M.S. (Computer Science), 1972, Northwestern University; Bell Labo­
ratories, 1967-1968; U.S. Army, 1968-1970; Bell Laboratories, 1970-.
At Bell Laboratories, Mr. Welsch has had experience with No.1 ESS/
ADF, No.4 ESS, and systems engineering for electromechanical
switching systems. From 1974 to 1978, he was a member of the Program
Administration and Support Program Group of the Operator Systems
Laboratory (TSPS). From 1978 to 1980, Mr. Welsch was involved with
developing software development systems utilizing PDP II/70's run­
ning the UNIX operating system as front-end processors to larger IBM
main frames. Since 1980, he has been involved with 3B20D/DMERT
software development and administration. Mr. Welsch is currently
Supervisor of the DMERT Administrative Software Systems Group.

F. W. Wendland, B.S.E.E., 1965, M.S.E.E., 1966, Cornell Univer­
sity; Bell Laboratories, 1966-. Mr. Wendland has been involved in
the development of electromagnetic compatibility facilities and stand­
ards for ESS systems, automatic test facilities for ESS processor
subsystems, lA and 3B20D Processors, and I/O system architecture
and design. He currently supervises a group working on the architec­
ture and design of networking hardware for the 3B processor line.
Member, IEEE.

Neil O. Whittington, B.S. (Physics), 1965, M.S. (Physics), 1970,
Illinois State University; Bell Laboratories, 1970-. Mr. Whittington
has worked on the development of software for the lA Processor and
the 3B20D Processor. He is presently Head of the Application Support
Department, concerned with DMERT generic planning and applica­
tion interfaces with the 3B20D. Member, IEEE.

CONTRIBUTORS TO THIS ISSUE 427

Robert M. Wolfe, B.S.E.E., 1952, University of Louisville;
M.S.E.E., 1957, Columbia University; Bell Laboratories, 1952-. From
1952 to 1962, Mr. Wolfe worked on applied research on ferromagnetic
and ferroelectric devices and on data collection and data transmission
systems. In 1962, he joined the Switching System Development area,
where he headed the development of the Automatic Intercept System,
the AMA Recording System, the Service Evaluation System, and the
Network Control Point System. He is currently Head, Network Control
Point Department. Member, ACM, IEEE.

Robert H. Yacobellis, B.S. (Mathematics), 1967, Carnegie-Mellon
University; M.S., 1969, Ph.D., 1973 (Information Sciences), University
of Chicago; Bell Laboratories, 1967-. Mr. Yacobellis worked initially
on No.1 ESS 4-wire AUTOVON (Government Switching). From 1969
through 1977 he was in No.4 ESS working on overload control and
later on program administration. In 1978 he became Supervisor of a
group providing common loaders and simulators to ESS projects, and
in 1980 became responsible for the 3B20D Field Update Group. He
currently is in charge of documentation and software quality for the
3B20D. Member, Tau Beta Pi, ACM.

428 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

THE BEll SYSTEM TECHNICAL JOURNAL is abstracted or indexed by Abstract
Journal in Earthquake Engineering, Applied Mechanics Review, Applied Science &

Technology Index, Chemical Abstracts, Computer Abstracts, Current Contents/

Engineering, Technology & Applied Sciences, Current Index to Statistics, Current
Papers in Electrical & Electronic Engineering, Current Papers on Computer .. &

Control, Electronics & Communications Abstracts Journal, The Engineering Index,
International Aerospace Abstracts, Journal of Current Laser Abstracts, Language and
Language Behavior Abstracts, Mathematical Reviews, Science Abstracts (Series A,
Physics Abstracts; Series B, Electrical and Electronic Abstracts; and Series C,

Computer & Control Abstracts), Science Citation Index, Sociological Abstracts,
Social Welfare, Social Planning and Social Development, and Solid State Abstracts
Journal. Reproductions of the Journal by years are available in microform from

University Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106.

CONTENTS (continued)

Field Administration Subsystems 323
R. H. Yacobellis, J. H. Miller, B. G. Niedfeldt, and S. S. Weber

3820 Field Utilities 341
G. P. Eldredge and J. G. Chevalier

Fault Detection and Recovery
R. C. Hansen, R. W. Peterson, and N. O. Whittington

Diagnostic Tests and Control Software
J. L. Quinn, R. L. Engram, and F. M. Goetz

38200 Craft Interface
M. E. Barton and D. A. Schmitt

Integration and System Test
W. F. Klinksiek and H. L. Mitchell

ABBREVIATIONS AND ACRONYMS

CONTRIBUTORS TO THIS ISSUE

@ Bell System

349

367

383

399

411

417

