
TH E SEPTEMBER 1981
VOL. 60, NO.7, PART 2 @

BELLSYSTEM
TECHNICAL JOURNAL

I ~ , .~

THE BELL SYSTEM TECHNICAL JOURNAL

ADVISORY BOARD

D. E. PROCKNOW, President,

I. M. ROSS, President,

w. M. ELLINGHAUS, President,

EDITORIAL COMMITTEE

Western Electric Company

Bell Telephone Laboratories, Incorporated

American Telephone and Telegraph Company

A. A. PENZIAS, Chairman

A. G. CHYNOWETH

R. P. CLAGETT

T. H. CROWLEY

I. DORROS

S. HORING

EDITORIAL STAFF

B. G. KING, Editor

R. A. KELLEY

L. SCHENKER

W. B. SMITH

G. SPIRO

J. W. TIMKO

PIERCE WHEELER, Associate Editor

HEDWIG A. DEUSCHLE, Assistant Editor

H. M. PURVIANCE, Art Editor

B. G. GRUBER, Circulation

THE BELL SYSTEM TECHNICAL JOURNAL is published monthly, except for the
May-June and July-August combined issues, by the American Telephone and

Telegraph Company, C. L. Brown, Chairman and Chief Executive Officer; W. M.

Ellinghaus, President; V. A. Dwyer, Vice President and Treasurer; F. A. Hutson, Jr.,

Secretary. Editorial inquiries should be addressed to the Editor, The Bell System
Technical Journal, Bell Laboratories, Room WB 1 L-331 , Crawfords Corner Road,

Holmdel, N.J. 07733. Checks for subscriptions should be made payable to The Bell

System Technical Journal and should be addressed to Bell Laboratories, Circulation

Group, Whippany Road, Whippany, N.J. 07981. Subscriptions $20.00 per year;

single copies $2.00 each. Foreign postage $1.00 per year; 15 cents per copy.

Printed in U.S.A. Second-class postage paid at New Providence, New Jersey 07974

and additional mailing offices.

© 1981 American Telephone and Telegraph Company. ISSN0005-8580

Single copies of material from this issue of The Bell System Technical Journal may

be reproduced for personal, noncommercial use. Permission to make multiple copies

must be obtained from the editor.

Comments on the technical content of any article or brief are welcome. These and

other editorial inquiries should be addressed to the Editor, The Bell System Technical

Journal, Bell Laboratories, Room WB 1 L-331 , Crawfords Corner Road, Holmdel,
N.J. 07733. Comments and inquiries, whether or not published, shall not be regarded

as confidential or otherwise restricted in use and will become the property of the

American Telephone and Telegraph Company. Comments selected for publication

may be edited for brevity, subject to author approval.

THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING

ASPECTS OF ELECTRICAL COMMUNICATION

Volume 60 September 1981 Number 7, Part 2

Copyright © 1981 American Telephone and Telegraph Company. Printed in U.S.A.

DIGITAL SIGNAL PROCESSOR

R. C. Chapman, Guest Editor

J. R. Boddie Overview: The Device, Support 1431
Facilities, and Applications

F. E. Barber, An Overview of the Silicon Very- 1441
T. J. Bartoli, Large-Scale-Integration
R. L. Freyman, Implementation
J. A. Grant,
J.Kane,and
R. N. Kershaw

J. R. Boddie, Architecture and Performance 1449
G. T. Daryanani,
I. I. Eldumiati,
R. N. Gadenz,
J. S. Thompson, and
S. M. Walters

I. I. Eldumiati and Logic and Fault Simulations 1463
R. N. Gadenz

J. Aagesen Software Simulator 1475

C. L. Semmelman Design of the Assembler 1483

E. J. Angelo, Jr. A Tutorial Introduction to Digital 1499
Filtering

J. R. Boddie, Adaptive Differential Pulse-Code- 1547
J. D. Johnston, Modulation Coding
C. A. McGonegal,
J. W. Upton,
D. A. Berkley,
R. E. Crochiere, and
J. L. Flanagan

C. A. McGonegal, Private Communications 1563
D. A. Berkley, and
N. S. Jayant

J. R. Boddie, Receiver for TOUCH-TON~ Service 1573
N. Sachs, and
J.Tow

R. B. Blake, Voice-Frequency Transmission for 1585
A.C.Bolling,and Special-Service Telephone Circuits
R. L. Farah

M. R. Buric, Speech Synthesis 1621
J. Kohut, and
J. P. Olive

R. E. Crochiere SUb-band Coding 1633

D. L. Favin T one Generation 1655

D. L. Favin, Power Measurements 1673
D. P. Yorkgitis, and
S. P. Cordray

R. N. Gadenz Tone Detection for CCITT No.5 1687
Transceiver

ACRONYMS AND ABBREVIATIONS 1699

CONTRIBUTORS TO THIS ISSUE 1703

Volume 60

THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING

ASPECTS OF ELECTRICAL COMMUNICATION

September 1981 Number 7, Part 2

Copyright© 1981 American Telephone and Telegraph Company. Printed in U.S.A.

Digital Signal Processor:

Overview: The Device, Support Facilities,
and Applications

By J. R. BODDIE

(Manuscript received February 6, 1981)

This paper introduces the DSP, a new integrated circuit for digital
signal processing. We describe the capabilities of the device and the
tools available for operating it. Potential applications are also dis­
cussed. The paper is an overview of those that follow in this issue of
the Bell System Technical Journal.

I. INTRODUCTION

The digital signal processor (DSP) is a new integrated circuit designed
by Bell Laboratories and made by Western Electric Company. The
device is one of the most complex high-performance circuits developed
to date and will have a variety of telecommunications applications.
This paper summarizes the capabilities of the DSP, describes user
development tools, and lists potential applications.

The Bell System is rapidly applying digital technology to transmis­
sion, switching, and station equipment. When signals are encoded
digitally, they are easily manipulated by computers and other systems
that incorporate advances in very-large-scale integrated circuit tech­
nology (VLSI). The VLSI advantages include small size, high reliability,
low cost, and low-power consumption. As this trend continues, it is
possible to perform previous functions, as well as new ones not possible

1431

Fig. l-Second-order fIlter section.

before, with digital techniques that were formerly performed with
analog circuits.

Signal processing is the generation, fIltering, detection, and modu­
lation of signals. Most algorithms for signal processing repeatedly use
multiplications and additions. A simple example is the second-order
section used for fIltering. (Refer to Ref. 1 for a more thorough intro­
duction to digital fIltering.) Figure 1 is a common schematic represen­
tation of the algorithm. The blocks represent delays or storage opera­
tions, the triangles are multiplications and the circles are additions.
The aO, aI, a2, bl, and b2 in the structure are coeffIcients that
determine the characteristics of the fIlter. The input, x, is a sequence
of numbers representing a continuous waveform. Typically, a new
input value is available every 125 JlS. The output, y, is another sequence
of numbers that must be computed using the algorithm at the same
rate. The value, zO, is an intermediate result, and zl and z2 are delayed
values of zOo In order to achieve the real-time processing performance
required by this example, fIve multiplications, four additions, and two
data movements must be done in 125 JlS.

The nsp was designed especially for this type of digital signal
processing function. Customized by a program in an on-chip, read-only
memory (ROM), the device can do over a million high-precision arith­
metic computations per second. The key to the performance of the
nsp is a parallel, pipelined architecture which provides maximum
throughput by keeping all sections of the processor effIciently busy at
all times.2 The simplifIed block diagram of the nsp in Fig. 2 shows the
organization of the processor as three independently controllable ele­
ments: a data arithmetic unit (AU) with multiplier, accumulator, and
rounder; an address arithmetic unit (AAU) for controlling memory
access; and an I/O unit to provide a serial data interface. A control

1432 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

unit (cu) synchronizes those elements and provides instruction decod­
ing. Temporary results are stored in a read/write data memory (RAM).

For program development and device testing, external memory can be
used to replace the on-chip ROM. The nsp can do all the operations
required to implement the second-order section of the example in 4
JlS, that is, it can do 31 second-order sections in 125 JlS. This speed is
sufficient to implement a complete receiver for TOUCH-TONE®
telephone service3 or a low-speed modem using a single nsp. The nsp
functions in a stand-alone fashion in many applications, but it can
easily be interfaced to microprocessors or additional nsps to achieve a
greater degree of signal processing capability.

II. DEVELOPMENT OF THE DSP

The nsp is realized in N-channel MOS technology, using depletion
loads. Packaged in a 40-pin nIP, it requires only a single 5-volt supply
and runs at a 5-MHz rate. The circuit consists of approximately 45,000
transistors within a 68.5-mm2 area.

ADDRESS BUS

~
ROM RAM AAU

ADDRESS
REGISTERS

PROGRAM DATA
MEMORY MEMORY

ADDRESS
MODIFICATION

- f-, 1-, t
EXTERNAL f--

I I
DATA BUS ----L---i----1---j r 1------

I
I

- DATA BUS I
I 1 t

I/O AU ~ CU CLOCK - -SERIAL I SELECT I CONTROL
OUTPUT --. AND

RESET
:4-

~
TIMING :----

~ ROUND J \MULTIPLIER/ t

r-- 1 SERIAL
INPUT \ ADDER / -

I/O CONTROL l
AND STATUS -

I I ACCUMULATOR

t ______________________

Fig. 2-Digital signal processor block diagram.

OVERVIEW 1433

CONCEPT

INTEGRATED
CIRCUIT

DESIGN
VERIFICATION

LOGIC SIMULATION

PERFORMANCE
VERIFICATION

i4----t TIMING SIMULATION

DEVICE TESTING
TEST VECTORS

Fig. 3-Device development steps.

This level of integration and the performance requirements pre­
sented new challenges for circuit designers in the implementation and
testing of the device. Figure 3 shows the major design steps from
concept to final product. In the first step, the signal processing require­
ments of several benchmark applications were combined with the
knowledge of what could be done within the limits of the technology.
The result was a definition of the architecture, instruction set, and
performance specifications.

The logic design work produced a gate-level description of the
processor. A logic-level simulator program was used to verify the
design. A TTL prototype of the device was also constructed which could
emulate the nsp running at full speed. This proved useful for additional
design verification and for the development of early nsp applications.

The circuit design and layout implemented the logic design with
transistors. A custom layout style was used for the data AU and
memories in which each device was created and connected to optimize
circuit density, speed, and power. The circuit design and layout of the
I/O, AAU, and cu was done using a technique of interconnecting
standard predefined logic cells. Custom cells were defined where high­
speed paths were required. A computer-aided design system was used
to automatically place and connect the cells according to the logic
description. This technique greatly reduced the design time of the
project. The performance of the design was verified by a circuit
simulator program. Computer aids were also used to check for viola-

1434 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

UNIX®
TIME-SHARING

OPERATING
SYSTEM

Fig. 4-Digital signal processor application development procedure.

tions of physical layout design rules and to determine the size and type
of transistors and parasitic capacitances. In addition, computer plots
of the circuit layout were visually inspected for design rule, functional
and interconnect errors. Refer to Ref. 4 for details of this design.

Finally, masks were made and devices were fabricated, packaged,
and tested. A sequence of inputs designed to test all nsp functions was
used to test the devices, as well as to locate as many faults in the chip
as possible.5

III. SUPPORT TOOLS FOR THE DSP

To facilitate the design of systems using the nsp, a comprehensive
set of hardware and software design aids were developed. These tools
can be illustrated with a typical application development process.

A nsp system development begins (as shown in Fig. 4) with the
writing of a nsp program. The program is entered into a computer by
a UNIX* time-sharing operating system text editor. Digital signal
processor programs are written in a unique assembly language which
uses standard mathematical notation instead of a more conventional
mnemonic format. This greatly improves the readability of programs
which are usually arithmetic-intensive because of the nature of signal
processing algorithms. An assembler program handles the peculiarities
of this pipelined processor in translating nsp programs into a machine­
executable code.6

* Registered trademark of Bell Laboratories.

OVERVIEW 1435

The second step in program development is the simulated execution
of the program by software simulation of the nsp. 7 The simulator
allows the monitoring of operations in the nsp and the analysis of
results at the programmer's computer terminal.

When the user is satisfied with the simulation results, the program
can then be run on a nsp in real time. A hardware development system
called nSPMATE (Fig. 5) does this while retaining most of the debugging
aids of the simulator. The nSPMATE is a microprocessor-based system
which can load nsp programs from the computer that hosts the
development software. A numeric editor in the system can be used to
enter or modify programs and data. The editor can also display a plot
of the data on the user terminal. During the execution of a nsp
pro gra:m , I/O events and program flow can be captured and displayed.
The nSPMATE can be interfaced to the user's system through a cable
and 40-pin plug which is compatible with the nsp. Thus, the operation
of the nsp can be monitored in the user's particular hardware environ­
ment. Auxiliary circuit boards for the nSPMATE provide analog-to­
digital and digital-to-analog conversion, ROM programming, and mul­
tiple nsp emulation capabilities.

As program modifications become infrequent, the nSPMATE can be
replaced in the user's prototype with a nsp EMULATOR (Fig. 6). This
development tool is a small printed wiring board with a nsp and
ultraviolet erasable, programmable ROMS for storing the user program.

Fig. 5-Hardware development system (DSPMATE).

1436 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Fig. 6-Digital signal processor EMULATOR prototyping board.

A set of connectors allows the user to monitor the DSP with other test
equipment.

Finally, the system developer can request fabrication of a DSP with
an on-chip ROM coded with the debugged program.

Extensive documentation on the device, as well as on these tools,
and a "hotline" for providing designers with quick answers to their
questions, complete the support package.

IV. APPLICATIONS FOR THE DSP

A wide variety of applications exist for the DSP. Table I shows how
the device fits into the spectrum of signal processing applications for
telecommunications and the number (or fraction) of DSPS required for
a particular application.

In this issue, we describe the following applications that represent a
small fraction for which the DSP is being considered:

OVERVIEW 1437

Table I-Application complexity of DSP

Application

Second-order section
ADPCM* coder
Dual-tone receiver
Modem, 1200-baud
Transmultiplexer

Complexity
(No. of DSPS)

0.03
0.25
0.90
1.50
6.00

* Adaptive differential pulse-code modulation.

Transmission system measurements

To make measurements on transmission systems, it is useful to be
able to generate complex signals comprised of sinusoidal components
of arbitrary frequency, phase, and amplitude.s At the other end of the
transmission system, loss and noise can be measured by using a high­
precision filtering and averaging technique.9

Signaling receivers

The detection of tones for signaling systems is an example, of
applications that must be implemented digitally, because the overall
system operates by signals that have been encoded into a digital
format.3.lo

Line treatment

An application which demonstrates the advantages of the high­
precision arithmetic capability of the nsp is the treatment of special
voice frequency metallic circuits.ll Here, the nsp provides variable line
equalization, gain, and balance functions.

Speech coding

Low bit-rate speech encoding has been made more viable with the
nsp. Not only are such systems more economical, but now numerous
techniques can be quickly developed and evaluated.12.13.14

Speech synthesis

Man-machine speech communications has long been a subject of
intense research activity-usually requiring large general-purpose
computers in a nonreal-time mode. The nsp makes real-time, high­
quality speech synthesis a practical possibility.15

v. CONCLUSION

The development of the nsp is a significant accomplishment in many
respects. Architecturally, it is a new type of parallel, pipelined proc­
essor which achieves a high degree of throughput for the particular

1438 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

job for which it was designed and, yet, it has the flexibility to do the
nonsignal processing tasks when necessary. The circuit is one of the
most complex and high-performance devices designed for manufacture.
New tools were designed to support the processor and the development
of signal processing systems. Many applications that were made with
analog elements are now economically feasible through digital tech­
niques, and new algorithms can be explored.

In the future, new nsp architectures will be developed to take
advantage of advances in VLSI technology. Thereby, system designers
will have the best signal processing components available for applying
forward-looking solutions to needs of the Bell System.

VI. ACKNOWLEDGMENT

Many talented people contributed to the development and support
of this complex device; however, D. C. Stanzione receives special
recognition for his innovation, organization, and direction of the nsp
project.

REFERENCES

1. E. J. Angelo, "Digital Signal Processor: A Tutorial Introduction to Digital Filtering,"
B.S.T.J., this issue.

2. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

3. J. R. Boddie, N. Sachs, and J. Tow, "Digital Signal Processor: Receiver for TOUCH­
TONE® Service," B.S.T.J., this issue.

4. F. E. Barber et al., "Digital Signal Processor: An Overview of the Silicon Very­
Large-Scale-Integration-Implementation," B.S.T.J., this issue.

5. I. I. Eldumiati and R. N. Gadenz, "Digital Signal Processor: Logic and Fault
Simulations," B.S.T.J., this issue.

6. C. L. Semmelman, "Digital Signal Processor: Design of an Assembler," B.S.T.J., this
issue.

7. J. Aagesen, "Digital Signal Processor: Software Simulator, B.S.T.J., this issue.
8. D. L. Favin, "Digital Signal Processor: Tone Generation," B.S.T.J., this issue.
9. S. P. Cordray, D. L. Favin, and D. P. Yorkgitis, "Digital Signal Processor: Power

Measurements," B.S.T.J., this issue.
10. R. N. Gadenz, "Digital Signal Processor: Tone Detection for CCITT No.5 Trans­

ceiver." B.S.T.J .• this issue.
11. A. C. Bolling and R. L. Farah, "Digital Signal Processor: Voice-Frequency Trans­

mission for Special-Service Telephone Circuits," B.S.T.J., this issue.
12. D. A. Berkley et al., "Digital Signal Processor: Adaptive Differential Pulse-Code­

Modulation Coding," B.S.T.J., this issue.
13. R. E. Crochiere, "Digital Signal Processor: Subband Coding," B.S.T.J., this issue.
14. D. A. Berkley, N. S. Jayant, and C. A. McGonegal, "Digital Signal Processor: Private

Communications," B.S.T.J., this issue.
15. M. R. Buric, J. Kohut, and J. P. Olive, "Digital Signal Processor: Speech Synthesis,"

B.S.T.J., this issue.

OVERVIEW 1439

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

An Overview of the Silicon
Very-large-Scale-I ntegration Implementation

By F. E. BARBER, T. J. BARTOLI, R. L. FREYMAN, J. A. GRANT,
J. KANE and R. N. KERSHAW

(Manuscript received July 14, 1980)

A programmable digital signal processor integrated circuit has
been designed as a general-purpose building block for a variety of
telecommunication applications. The device, known as digital signal
processor, is a single-chip integrated circuit fabricated in depletion­
load NMOS technology and packaged in a 40-pin DIP. This paper
describes the silicon very-large-scale-integration (VLSI) implementa­
tion of the digital signal processor with emphasis on the circuit
design phase. The specific areas discussed are choice of fabrication
technology, layout styles, circuit design procedures, and circuit con­
siderations.

I. INTRODUCTION

A single-chip integrated circuit has been developed as a stand-alone
part for digital signal processing. This device known as a digital signal
processor (nsp) functions as a special-purpose microcomputer whose
instruction set, arithmetic functions, and addressing capability are
optimized for real-time signal processing. The primary sections of the
nsp are a read only memory (ROM), a random access memory (RAM),

an address arithmetic unit (AAU), an arithmetic unit (AU), a system
controller, and appropriate input/output (I/O) circuitry.

The ROM is organized as 1024 words by 16-bits per-word memory for
storing the system programs and fixed data. The RAM is organized as
128 words by 20 bits per word and is used for storage of variable data
and temporary results. The AAU generates the addresses for the RAM

1441

DESIGN STAGE

FABRICATION STAGE

Fig. I-Integrated circuit implementation process.

and ROM, as well as the addresses for an external ROM. The AU performs
the necessary arithmetic operations for digital signal processing, e.g.,
16- by 20-bit multiplication and 40-bit accumulation. The I/O unit will
accept and generate a serial bit stream of either 1l-255 law or linear
PCM signal samples. The control unit decodes instructions and provides
overall system coordination.

Figure 1 shows the process of implementing the DSP as an integrated
circuit. This process is divided into a design stage and a fabrication
stage. The design stage consists of four design areas: system, logic,
circuit, and layout. In the case of the DSP, the system design is the
process of defining the system architecture and instruction set. l The
logic design assembles logic functions which meet the system's require­
ments. The circuit design implements the logic design with electrical
devices so that the system's requirements are achieved. The fabrication
of the integrated circuit starts with a circuit layout, which is the end
result of the circuit design. The circuit layout is used to produce masks
which are used in wafer fabrication to define the electrical devices.
The completed wafers are tested to determine good devices that are
then packaged. The completed integrated circuits are tested to verify
that the system requirements are met.

This paper describes the circuit design phase of the integrated circuit
implementation of the DSP.

1442 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

II. TECHNOLOGY

The fIrst consideration in circuit design is the choice of an integrated
circuit technology. The choice of technology will impact the following
areas: the system performance in terms of speed and power; the cost
of the device which is related to silicon area or circuit density; and the
type of logic functions which can be implemented by the specifIc
technology.

The N-channel MOSFET (metal-oxide semiconductor, fIeld effect
transistor) or NMOS technology can easily implement the following
logic functions: INVERT, NAND, NOR, XOR, XNOR, Flip-Flops,
Shift Registers; and complex logic OR-AND-INVERT, AND-OR-IN­
VERT. The MOS technology, by implementing these different forms of
logic, can provide high functional density as compared to a technology
which is restricted to fewer forms of logic gates.

The majority of nsp circuitry is a synchronous system wherein data
are transferred between registers at a 5-MHz rate. The critical path is
10 logic gates deep; therefore, the technology must be capable of gate
delays of 20 ns or less (worst case) at a power level compatible with
the nsp level of integration.

The depletion-load NMOS technology was selected for implementing
the nsp. This is an existing process presently used for manufacturing
static memory devices. The existence of a manufacturable process has
the advantage of decreasing the design time and decreasing the risk of
developing a device. This technology provides the performance, speed
and power, necessary for the nsp requirements, as well as allowing a
high-density layout for implementing the 7300 TTL-equivalent gates of
logic, 2.5 K bits of RAM and 16 K bits of ROM.

III. CIRCUIT LAYOUT

The fInal result of circuit design is a layout data base used to make
masks. These masks are used in wafer fabrication to produce an
integrated circuit. There are different layout approaches or styles to
create and connect devices. These different styles optimize either
circuit density or design time and time to produce fInal integrated
circuits. The fIrst style is known as custom layout, where each device
is created and connected with the minimum restrictions. The custom
layout style optimizes circuit density which results in the fastest speed
and lowest power. The second style is known as polycelliayout. This
layout style uses established cells at a logic function level which have
been designed, laid out, and electrically verifIed. A computer-aided
design (CAn) system known as LTX2 can automatically place and
connect these polycell functions according to a logic description known
as LSL.3 The polycelliayout style produces the shortest time interval

VLSIIMPLEMENTATION 1443

from the start of the circuit design stage to completion of an integrated
circuit meeting the system requirements.

The nsp memories, RAM and ROM, constitute a large number of
transistors in a regular pattern. For this reason, it is desirable to use a
custom layout style for memories to achieve the highest possible
transistor density and consume the least amount of silicon area.

The AU performs a 16- by 20-bit multiplication and a 40-bit accu­
mulation, along with other functions. These functions require logic
which is performed on many bits in parallel, resulting in bit-oriented
logic. These portions have the functional logic replicated up to 40
times depending upon word length required. Exemplary of the logic
performed in the AU is the 20-bit add function that must be completed
within one clock cycle. This path and other similar paths are up to 10
logic gates deep, resulting in the requirement that worst-case, critical­
path gate delays must be less than 20 ns to fit within the 200-ns cycle.
Consideration of the speed requirements in the AU and the regular
characteristics of much of the logic, lead to the choice of a custom
layout style in this section to optimize circuit density, speed, and
power.

The IOAC section, which consists of the I/O, AAU, and control
sections, has both random and bit-oriented logic. Custom layout was
selected for the bit-oriented logic to obtain the higher circuit density.
The IOAC random logic is 5 gates deep and results in the requirement
that a worst-case gate delay m~st be less than 40 ns. Polycell layout
could meet this speed requirement and was chosen for the random
logic sections to decrease the design time of the project. Polycells for
the depletion-load NMOS technology did not exist when the circuit
design stage of the nsp was started; therefore, poly cells were first
defined and created before the IOAC random logic sections could be
started.

Both custom and polycelliayout styles were used in the nsp layout.
Custom layout was used in the memory and bit-organized sections to
optimize circuit density, speed, and power. Polycelliayout was used in
the random logic section to minimize design time. The resulting layouts
have shown that the custom logic section achieved about twice the
functional density with a factor of 3 improvement in the speed achieved
for a given power level.

IV. CIRCUIT DESIGN PROCEDURES

Knowing the type of logic functions that could be implemented with
the NMOS technology, the logic designer completed the logic description
for the nsp. The circuit designer, having determined the layout style,
had to convert the logic gates to NMOS transistors. Figure 2 shows this
circuit design procedure. The proposed circuit is analyzed using a

1444 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

CIRCUIT
DESIGN I

1 ~ DESIGN
CHECKS

LAYOUT t

Fig. 2-Circuit design procedure.

circuit simulator such as SPICE.
4 After a successful simulation, the

circuit is converted to mask levels on an in-house minicomputer
graphics system. Physical layout design rules for lines and spaces are
used to create geometries necessary for creating a mask for wafer
fabrication. There are two computer aids for verifying the layout. The
fIrst aid checks for violation of the physical layout design rules. The
second aid determines the size and type of transistors and the parasitic
capacitance which is an important parameter for circuit performance.
This circuit characterization represents a more accurate circuit de­
scription than was initially simulated before layout, and these results
are used in the circuit simulator to determine fInal circuit performance.
In addition, computer plots of the circuit layout are visually checked
for design rule layout errors, functional errors, and interconnect errors.

V. CIRCUIT CONSIDERATION

The single most important factor which made the circuit design of
the nsp practical is that the nsp is a synchronous system, wherein data
flows between registers in a specifIed time interval. This allows for
circuit simulations of relatively small sections since the exact timing is
well known.

Signals, whether they are instructions or data, are passed between
the major sections (AU, RAM, ROM, AAU, I/O, CONTROL) via a 20-bit data
bus. The 5-MHz system clock has two phases known as a master and
slave phase of 100 ns each. The data bus is charged during the slave
phase and is discharged during the master phase by the sending port,
if the data bit is true.

Synchronization between the various sections is achieved by distrib­
uting a master clock and a synchronization signal and locally regen­
erating the required clocks. De-skewing networks were included in
each section to achieve precise clock synchronization even in the
presence of master clock delays due to resistance-capacitance loading
delay effects.

VLSIIMPLEMENTATION 1445

Power and ground bus distribution is important to maintain ade­
quate noise margin. Each major section of the nsp has its own power
and ground to minimize the accumulation of voltage drops and noise
interactions due to transients. The size of these lines was made large
enough to keep worst-case power and ground drops below 100 mv.

The input and output buffers were located at the edge of the chip
and separate power and ground lines were also provided for these
circuits. Both the peripheral placement of 110 buffers and provision
for their separate power and ground bussing minimize externally
induced noise effects on internal logic.

Internal testing probe pads were distributed along the data bus, the
address bus, and selected control and timing signal paths so that the
AU, RAM, ROM, and IOAC could be tested independent of each other for
diagnostic testing and logic verifications. These pads did not increase

Fig. 3-Digital signal processor integrated circuit.

1446 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

the final chip size and were invaluable in analyzing initial device testing
results.

VI. CONCLUSIONS

The VLSI silicon implementation of the nsp has been described. The
nsp integrated circuit meets the system's requirements-function,
speed, and power. Figure 3 shows the chip, which contains 7300 TTL­

equivalent logic gates, 16 K bits of ROM, and 2.5 K bits of RAM. The
implementation requires 45,000 transistors and occupies an area of 62
mm2 (8.1 by 8.6 mm).

VII. ACKNOWLEDGMENTS

We sincerely thank the many people at Bell Laboratories who
contributed to the development of the nsp. In particular, we are very
grateful to Bailey R. Jones for his efforts in wafer fabrication of the
nsp.

REFERENCES

1. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

2. G. Persky, D. N. Deutsch, and D. G. Schweikert, "LTX-A System for the Directed
Automatic Design of LSI Circuits," Proc. 13th Design Automation Conference,
San Francisco, California, June 28-30, 1976 pp. 399-407.

3. H. Y. Chang, G. W. Smith, Jr., and P. B. Walford, "Lamp: System Description."
B.S.T.J. 53, No.8 (October 1974) pp. 1431-49.

4. L. W. Na~el and D. O. Pederson, "Simulation Program with Integrated Circuit
EmphasIs." Proc. Sixteenth Midwest Symposium on Circuit Theory, Waterloo,
Canada, 1 (April 12-13, 1973), pp. VI. 1. 1.

VLSIIMPLEMENTATION 1447

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Architecture and Performance

By J. R. BODDIE, G. T. DARYANANI, I. I. ELDUMIATI, R. N.
GADENZ, J. S. THOMPSON, and S. M. WALTERS

(Manuscript received July 14, 1981)

This paper describes the DSP, a recently developed integrated
circuit implementing a programmable digital signal processor. The
single-chip device is fabricated in depletion-load NMOS and is pack­
aged in a 40-pin DIP. It has the speed, precision, and flexibility for a
variety of telecommunication applications. The processor can decode
an instruction, fetch data, perform a 16- by 20-bit multiplication and
a full 36-bit product accumulation in one machine cycle of 800 ns.
This permits the realization of signal processing functions of such
applications as dual-tone multifrequency receivers or low-speed data
modems with a single device. The arithmetic precision of the proces­
sor is also sufficient for many voice signal applications.

I. INTRODUCTION

Digital signal processing has become more and more important in
telecommunications. As new products and services are offered, the
amount of required signal processing continues to increase. In addition,
signals are becoming digital, especially in applications where the
superior stability and accuracy of these signals is either necessary or
more attractive. Digital signal processing is also prompted by the
introduction of digital switching offices and digital transmission sys­
tems. It is made possible by the continuous, rapid growth of the silicon
LSI and VLSI capabilities. The latter have made it inexpensive to build
complex processors-so inexpensive that it is cost-effective even to use
AID conversion and digital signal processing in some analog systems.
We indeed visualize the extension of the digital network all the way to
the subscriber phone!

1449

In this paper, we describe a single-chip, digital signal processor
recently developed for Bell System use. The device, known as Digital
Signal Processor (nsp) is a general-purpose building block which can
be programmed to perform a variety of digital signal processing func­
tions. Examples of these are filtering, equalization, modulation, tone
detection, speech coding, and Fast Fourier Transform. The nsp is
fabricated in depletion-load NMOS and packaged in a 40-pin nIP. It is
customized to perform specific signal processing functions by means of
an on-chip read only memory (ROM) containing the program and fixed
data. The device also contains a random access memory (RAM) for
writing and reading variable data, a Control Unit, an Arithmetic Unit
(AU), an Address Arithmetic Unit (AAU), and appropriate Input/Out­
put (I/O) circuitry. The nsp functions in a stand-alone manner, requir­
ing only an external 5-MHz resonator or clock, or it may be directly
interfaced with other processors to achieve a greater degree of signal
processing capability.

The nsp programmability makes the device useful for a variety of
telecommunication applications, and results in a shorter and less
expensive system development cycle. Key elements in digital signal
processing are adequate numerical precision and high-computation
rates. The nsp offers both. Its 16- by 20-bit multiplier and 40-bit adder,
running at 1.25 million operations per second, are unparalleled in other
LSI processors.

The general nsp architecture is described in Section II. Section III
centers on the nsp programming and includes a brief description of
the instruction set. An example of a simple program is also given to
illustrate the style of the input language. In Section IV, the nsp I/O
interface is described. Finally, an overview of the nsp performance in
typical filtering applications is given in Section V.

II. ARCHITECTURE

This section presents a description of the nsp architecture. As shown
in Fig. 1, the principal features are as follows:

(i) a I024-word by I6-bit ROM for instructions and fixed data;
(ii) a I28-word by 20-bit RAM for variable data;

(iii) an AAU which generates addresses for the ROM and RAM mem­
ories and performs post modification arithmetic on these addresses;

(iv) an AU which accepts a I6-bit and a 20-bit operand to form a
36-bit product, accumulates the product with a 40-bit accumulator,
and rounds the accumulator to a 20-bit word (with overflow protection)
for storage or output;

(v) an I/O section which serially receives and transmits either p,-
255 law or linear PCM signal samples; and

1450 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

1 I
+5V~

10 ADDRESS BUS

1 I
GND-r-;

2 I
CLOCK-r---, PC

1 I
CLKOUT~

1 I
RESET~

EXT 2 I
MEMORY --r---t

CONTROL I

-16BITS-~ t- - 20 BITS ---j ~
RY

~ RYA
ROM I RAM I I I

RD -1

16 x 1024 = 16.4 kbl 120x 128= 2.56 kb RDA 0

I
I

~ ADDRESS/ 16 I JJ
DATA (")

TRANSFER :::r:
=i I I 20
m
(")
-!
C
JJ

I/O m
CONTROL 8

~ SIGNALS
Z
0 DATA

IN
"0
m
JJ DATA
." OUT 0 3 JJ C BITS
~

3 ~ S BITS Z
(")
m

~

~
C1I
~ Fig. I-Digital signal processor architecture.

(vi) a Control Unit for instruction decoding and overall system
coordination.
The nsp is also able to access a I024-word by I6-bit external ROM, with
no reduction in processing speed. This feature is especially convenient
during program development and testing. It is also useful for small
volume applications in which the expense of programming the on-chip
ROM is not justifiable.

The analysis of many digital signal processing algorithms reveals
that they basically perform multiplications and additions. Therefore,
the AU was designed to implement these operations efficiently. In its
simplest form, the expression evaluated by the AU is

x.y+a~a

where,

x is the I6-bit coefficient in register x, and

y is the 20-bit data word in register Y.

Again, the word lengths for x and y were determined by examining the
requirements of a variety of telecommunication applications. A good
compromise was established between the hardware required to imple­
ment a given precision and the need for a general part, like the nsp, to
cover most applications.

The 36-bit product, p, is summed with the 36 least-significant bits of
the contents, a, of the 40-bit accumulator, A, and the result is written
into A. When the value in A is needed outside the AU (e.g., to write to
memory), the contents of A are truncated or rounded, overflow cor­
rected (if necessary), then stored in the 20-bit AU output register, w.
The contents of w can then be transferred to other parts of the nsp via
the 20-bit data bus, or can be used as data for another arithmetic
operation.

The AU is pipelined in three stages: (i) the formation of the product
x.y, (ii) the addition of the product to a, and (iii) the transfer of a to w.
Thus, while this transfer is in progress for anyone expression, the
addition of the product in p to the contents of A for the next expression
is also being performed, and the formation of the product x.y of the
following expression is taking place. This pipelined structure keeps all
parts of the AU busy at all times and allows the processor to maintain
a high throughput.

The full capability of the AU is described by the more general
operation

X· f{ ~} + fa (a) ---> a[---> w],

1452 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

where

x = 16-bit coefficient which is read into register x from the 16
most-significant bits of the 20-bit data bus. This coefficient is
normally fetched from ROM, but could also be fetched from
RAM or the input buffer.

y 20-bit data word which is fetched from RAM or the input
buffer, and is read into register Y from the data bus. The
contents of y can also be written to the data bus.

a = contents of the 40-bit accumulator A. The four extra bits are
provided for overflow protection.

w rounded or truncated 20-bit AU output word which is stored
in register w. The contents of w can be written to the data
bus for storage in RAM or for output through the output buffer,
or can be used instead of y in another arithmetic operation.
The least-significant bit of w corresponds to bit 14 of a. This
selection is consistent with the assumption that y and ware
integers and that x is usually restricted by -2 :s x < 2.
However, other choices are possible by shifting a before
reading it.

f linear or nonlinear function of either y or w, such as the actual
value, the absolute value, or the sign function (signum) of one
of these variables.

fa = arithmetic function of a (e.g., scaling of a by 2 or 8) or a logical
function of a and p (p AND a).

The 16-bit processor instructions are stored in the ROM. When
coefficients are fixed, they will also reside in ROM. Data for the
algorithm, whether it comes from the input or is generated by the
algorithm, may be stored in the 20-bit-wide RAM. In some applications
(e.g., adaptive filters as required in echo cancelers) the coefficients are
variable and are stored in the 16 most-significant bits of RAM locations.

Addresses for memory references are generated in the AAU. Four
memory addresses, required to access the instruction, the coefficient,
and the data (both read and write), are multiplexed onto the 10-bit
address bus in each processor cycle, and the corresponding information
is multiplexed onto the 20-bit data bus. The program in ROM is accessed
by the address stored in register pc, the program counter. Fixed
coefficients in ROM can also be addressed by pc. Alternatively, coeffi­
cients can also be addressed by the auxiliary register RX, which can
point to either ROM or RAM. Data, which is read from RAM, can be
addressed by RY or by an auxiliary register RY A, while data can be
written to RAM by using addresses in RD or RDA. The primary use of
the auxiliary registers RYA and RDA is to allow manipulation of tem­
porary results in a separate section of data memory.

ARCHITECTURE AND PERFORMANCE 1453

The AAU also provides a selection of possible increments for post­
modification of these addresses. Under the direction of a given instruc­
tion, the contents of the address registers are applied to the address
bus and then incremented in the AAU adder before being restored to
the register, ready for subsequent use. The program and coefficients
can be structured in ROM so that the contents of PC need only be
incremented by + 1. The contents of other address registers can be
incremented by the amounts 0, + 1, or -1, or by the contents of the 8-
bit registers I, J, or K, as specified by the instruction. The program
return register (PR) shown in Fig. 1, is used to provide a single level
subroutine capability. The LC register is a 6-bit loop counter used to
provide looping within an algorithm. All the registers mentioned above
can be set to arbitrary values. This can be done unconditionally or
subject to a particular condition being met.

Instructions from ROM are latched into the instruction register IR

and subsequently decoded in the Control Unit. In some auxiliary
instructions, e.g., a register set from ROM or a register load from RAM,

a 16-bit argument follows the instruction; this argument goes to register
xs or YS, respectively. The decoded signals are transferred from the
Control Unit to the AU, the AAU, the I/O, and to the various registers,
as needed. Arithmetic control information that is relatively invariant
within an algorithm (e.g., the type of rounding arithmetic used in
moving data from A to W, or the built-in scale factor used in some
multiplier operations) is stored in the AUC register. The 10C register
stores a similar type of information for the I/O (e.g., the I/O rate, or
the size and format of the input and output data words).

The data interaction between the nsp and the outside world is
carried out through the I/O structure. Inputs and outputs are processed
through the buffer registers IBUF and OBUF, respectively. The I/O

interface accommodates a serial transfer of 8-, 16-, or 20-bit words
under the control of either the nsp or a variety of external devices
(e.g., codecs, microprocessors). Different I/O rates and formats are
available to the programmer to facilitate this interfacing. Additional
details will be given in Section IV.

The setting (under program control) of register SYC allows the user
to suspend the nsp operation until a condition specified by one of the
fields of this register is met. This can be used to synchronize the
processor program with the data sample rate. The available conditions
are input buffer full, output buffer empty, or the status of one of the
two dedicated logical inputs cO and c1. A control input, CST, can be
used to latch internally the values of cO and c1. Similarly, the setting
of register STR allows the user to output directly one or two logical
signals (sO and sl) and/or a synchronization pulse (STB).

The serial I/O and its control require another ten pins; they are

1454 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

described in Section IV. Sixteen of the 40 pins (DBSO-DBSI5) are
dedicated to the external data bus, which is used to access external
ROM in place of the internal, mask-programmable ROM. The remaining
eight pins are used as follows:

(i) two for the +5 V power supply (vcc) and ground (vss);
(ii) three for the crystal connection (XTAL), the clock input (CLKIN),

and the clock output (CLKOUT);
(iii) one for resetting the DSP to a starting point (REST); and
(iv) two for external memory control (EXM and EXE).

The external ROM is accessed by setting EXM low; EXE combined with
CLKOUT allows the generation of signals needed to latch the address
coming out of the DSP through the DBS pins, latch the data fetched
from the external ROM, and enable these data onto the DBS pins.

III. PROGRAMMING

The DSP has two types of instructions: 'normal and auxiliary. The
normal instructions control processor computations in the AU to eval­
uate the general expression given in the last section. The three AU
operations of product formation, accumulation, and transfer to the AU
output register w (if required), are fully completed in one cycle of the
processor. The operations are performed in parallel, each one corre­
sponding to the partial evaluation of a different expression.

For a normal instruction, a typical symbolic assembler input line
consists of up to four expressions indicating

(i) the source and destination of the data to be transferred out of
the AU, with the destination address register increment,

(ii) the control of the AU output register contents,
(iii) the function to be performed by the accumulator, and
(iv) the product to be formed by the multiplier, including a specifi­

cation of the operand address registers and increments.
When true program constants are used for product operands they may
be indicated directly in the expression rather than indirectly through
an address register.

At the machine level, the I6-bit instruction has fields that control
the above-mentioned functions, including the information needed to
read the coefficient and data required in a later AU operation, and to
write the result of a previous AU operation. Constants to be loaded
into the x register are also 16 bits wide and are stored in ROM following
the corresponding instruction.

Auxiliary instructions are used to control noncomputational aspects
of the DSP, such as initialization of address registers and conditional
inhibition of certain processor functions. They can also specify an
additional set of computational operations for the AU, such as com-

ARCHITECTURE AND PERFORMANCE 1455

IBUF OBUF

Z12 Z22

Fig. 2-Fourth-order recursive fIlter.

pressed/linear conversions or large shifts of the accumulator contents,
which do not require the general argument flexibility available in
normal computations. The assembler input for these instructions in­
dicates in a simple format the special functions that they specify, as
can be seen, e.g., in the register set instruction of the example below.

At the machine level, a I6-bit auxiliary instruction is always followed
by a I6-bit argument which is interpreted either as an extension of the
instruction itself or as data associated with the instruction. Both
normal and auxiliary instructions have common fields that allow
writing of previous results or fetching of information required for later
operations.

Many features of the DSP are illustrated in a simple example of a
fourth-order recursive filter shown schematically in Fig. 2 and in the
assembler input code below. The filter has a /L-Iaw input from the input
buffer, two five-multiply second-order modules, and a linear output to
the output buffer. The program begins at line 1 with a series of
auxiliary instructions for initializing the DSP. The first seven instruc­
tions are unconditional register set operat,ions. The constants lac and
AUC, to be written into the corresponding registers, reflect the desired
options for I/O and AU operations. The increment registers I, J, and K

are set to 1, -1, and -3, respectively. Registers RY and RD are set to 0,
the address of the first RAM location. The constant SYC, to be written
into the respective register, reflects the desired condition for suspend­
ing the DSP operation.

Assembler input code for fourth-order recursive filter

1:
2:
3:
4:

ioc = lac;
auc = AUC;

i = 1;
j = -1;

1456 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

5: k= -3;
6: ry = 0;
7: rd = 0;
8: loop: syc = SYC;

9: a=p+a p = mtll (ibufy);
10: w=a a=p P = mt12 0;
11: obuf= w a=p+a p = b12**ry++i;
12: a=p+a p = b11 **ry++j;
13: a=p+a p = a12* *ry++i;
14: *rd++i = y w=a a=p p = all **ry++i;
15: *rd++i = w a=p+a p = a10*w;
16: a=p+a p = b22* *ry++i;
17: a=p+a p = b21 * *ry++j;
18: a=p+a p = a22* *ry++i;
19: pc = & loop;
20: *rd++i = y w=a a=p p = a21 **ry++k;
21: *rd++k = w a=p+a p = a20*w;

The instruction in line 8 is the fIrst instruction in the main operating
loop of the program. (This loop processes each sample through the
fIlter.) Its function is to suspend the processor until the selected
external synchronizing event occurs. This is the method used in this
example for synchronization with an external sample rate clock. Lines
9 and 10 are auxiliary instructions which perform the fL-Iaw to linear
conversion. This conversion is done on data which was fetched from
IBUF. The accumulation, transfer to w, and write to OBUF in lines 9,
10, and 11 refer to the operations that were begun at the end of the
loop. The practice of meshing the tail of the loop with its head is
essential for writing low overhead code for this pipelined machine.

The RAM memory organization for this program is shown below:

Location Variable

0 Z12
1 Zll
2 Z22
3 Z21

where the Zs are the state variables shown in Fig. 2. The values in
registers I and J are used to modify the addresses in registers RY and
RD so that these variable locations may be referenced. The K register
resets these addresses after they are used for the last time in the loop
with no additional overhead. The fIlter coeffIcients (b12, b11, ... , a21,
a20) are stored in-line with the code.

The instruction that sets the PC for the end-of-Ioop branch is at line
19 instead of at the actual end of the loop. This is because of the

ARCHITECTURE AND PERFORMANCE 1457

pipelined architecture. When the machine is executing the branch
instruction at line 19, it is already decoding the instruction at line 20
and is fetching the instruction at line 21. Therefore, the next instruction
to be fetched will be at line 8.

In this example, there are only two nsp cycles of overhead in the
loop (the setting of SYC and pc). The total loop has 14 cycles and could
accommodate a sample rate of up to 89 kHz.

IV. INPUT/OUTPUT INTERFACE

The nsp architecture is designed to facilitate system interface with
a minimum number of external components, if any. The I/O transfer
of information is performed serially. The nsp I/O structure provides
serial-to-parallel conversion of input data,· and parallel-to-serial con­
version of output data. Input and output operations are carried out in
independent sections, thus, permitting them to be asynchronous with
respect to each other, as well as with respect to the program execution.
Several signals control the I/O transmissions.

Five nsp pins are dedicated to the input serial transfer and its
control, and five pins are dedicated to the output. The beginning of a
serial transfer is indicated by a synchronization signal present at the
ISY (input synchronization) pin for an input, or at the OSY (output
synchronization) pin for an output. Input data bits are received at pin
nl and advanced into the IBUF register of the nsp by the clock signal
present at pin ICK (input clock). Output data bits are available at pin
no and are shifted out of the OBUF register of the nsp by the clock
signal present at pin OCK (output clock). The two enable linescTR (not
clear to read) and CTS (not clear to send) can be used to activate the
input and output sections, respectively. A high level on one of these
pins causes the nsp to be inactive on all the pins associated with that
particular section, and tristates the corresponding off-chip drivers.
This allows several nsps to be switched on and off a single external
I/O bus. The flags IBF (input buffer full) and OBE (output buffer empty)
indicate the status of the respective buffers. These flags can be used to
control external hardware and synchronize data transfers between the
nsp and its peripherals. They can also be internally tested by certain
nsp instructions.

The nsp I/O unit is programmable via the 10-bit 10C register. This
register configures the input and output sections of the nsp to either
generate or accept the clock and synchronization signals. If a section
of the nsp generates these signals, it is said to be in the ACTIVE mode;
otherwise, it is in the PASSIVE mode. The 10C also controls the length
of the serial data transfer to be either 8, 16, or 20 bits. In addition, the
10C controls the I/O clock rate for active mode. The rate can be either
%, ~, %2, or V64 of the nsp input clock. Finally, for both input and

1458 THE BELL SYSTEM TECHNICAL JOURNAL. SEPTEMBER 1981

O{C::::~':'.'.~
DATA =:::~""'---___ _

.. ~

.. ~ 3{C::::_~-----I
DATA _____ =:::~ __ _

Fig. 3-Input/output active formats.

output, the IOC determines the timing relationship between the syn­
chronization signal, the clock signal, and the first bit of data to be
transferred. This is done by selecting one of four formats. Figures 3
and 4 display the various nsp formats for the active and passive modes,
respectively. These formats allow the nsp to be readily interfaced to a
variety of circuits and systems. In the ACTIVE mode, the nsp gener­
ates a burst of clock pulses whose number is a function of the selected
format and the length of the serial transfer. In the PASSIVE mode,
the synchronization and clock signals are supplied by an external
source. The nsp accepts a continuous I/O clock. It should also be
emphasized that the input and output sections are independently
programmed except for the I/O transfer rate in the ACTIVE mode.

V. PERFORMANCE

The amount of signal processing that can be performed by the nsp
depends on the cycle time te, which is the time for basic machine
operations, such as a multiply, or the setting of a register. Specifically,

ARCHITECTURE AND PERFORMANCE 1459

{

SYNC=o] ~:::~
o CLOCK~·· •• ILJ1JI-..LI __ _

DATA =:::~"""---___ _

l{C:::::J~
DATA _____ -'=:::~ __ _

{

SYNC.-J ~:::~
2 CLOCK~·· •• JLJLJI ~

DATA=:::~ ____ _

{

SYNC.-J ~:::~
3CLOCK~ •• ~

DATA _____ -'=:::~'--__
Fig. 4-Input/output passive formats.

if the sampling frequency is ts (Hz), and the cycle time is tc (s), the
number of machine cycles available (AC) per sample period is

1 Its
AC =--.

tc
A basic machine operation requires four processor states. For a proc­
essor state period of 200 ns (5-MHz clock), the cycle time tc is 800 ns;
for an 8-kHz sampling rate, this provides 156 cycles per sample period.

The capacity for basic signal processing algorithm segments is now
simply determined. For example, a five coefficient second-order recur­
sive filter section (Fig. 2) requires five machine cycles and, thus, the
nsp, running at 5 MHz, can execute 31 sections at the 8-kHz sampling
rate. In practice, of course, one cannot implement as many sections
since there will be a variety of other tasks, such as initialization and
I/O, which will somewhat reduce the amount of filtering in an actual
application.

Next, consider the size of the ROM. In most applications, each

1460 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

machine cycle requires one word of ROM for the instruction and one
word of ROM for the coefficient. At the 8-kHz sampling rate, there are
156 available cycles; if all of these cycles are used in the algorithm, the
ROM would need 156 + 156 = 312 words. However, in some applications,
more than one coefficient can be associated with an instruction. An
example is when a section of the algorithm is looped over more than
once-each encounter of an instruction in the loop can be associated
with a different coefficient. A study of such applications, as well as
applications where two or more alternative programs must be resident
in the processor at once, led to the 1024-word size for the nsp ROM.

The RAM size depends on the number of data words that need to be
stored. For the recursive structures shown in Fig. 2, two items of data
must be stored for each second-order section (sos). Thus, if an 8-kHz
sample rate is assumed and the maximum number of 5-multiply sass
were programmed, then 31 X 2 = 62 words would be used. With 4-
multiply sass, 78 words would be required. The RAM size for nsp is 128
words which is quite sufficient for the recursive filter applications. In
the case of nonrecursive FIR filters, where one needs one storage
location for each multiplication, this RAM size will allow a 128-tap
filter. These results are summarized in Table I.

Table I-Performance features of DSP

16 by 20
800ns

16,384-bit
2,560-bit

31
39

128

Multiply-add (I6-bit coefficient 20-bit data)
Cycle time
ROM (1024 words by 16 bits/word)
RAM (128 words by 20 bits/word)
5-muItiply soss @ 8-kHz sample rate
4-muItiply soss @ 8-kHz sample rate
FIR taps @ 8-kHz sample rate

The level of performance is such that the signal processing required
for a dual-tone multifrequency receiver, or a low-speed FSK modem
can be implemented in a single nsp device.

Some further specifications of the nsp are given in Table II.
The circuit consists of approximately 45,000 transistors (with pro­

gram ROM) within a 68.5-mm2 chip area.

VI. CONCLUSION

The integrated circuit nsp described in this paper was designed not
only to serve as a programmable processing element for general-

Table II-Specifications for DSP

Power supply
Clock frequency
Max. I/O serial rate
Max. power dissipation
Package

+5V
5 MHz
4.5 Mb/s
1.25 W

40-pin DIP

ARCHITECTURE AND PERFORMANCE 1461

purpose use in telecommunications applications, but to further en­
hance its use in these applications by reducing development effort.
The nsp, therefore, has not only the processing capacity and precision
for a number of common, small applications for both voice and data
processing, but also may be easily interfaced to system data streams
and to other processors to realize complex algorithms.

The nsp is the fIrst element of a family of devices that is being
developed at Bell Laboratories for digital signal processing in telecom­
munication applications.

VII. ACKNOWLEDGMENTS

The authors wish to acknowledge the efforts of F. E. Barber, T. J.
Bartoli, D. B. Cuttriss, R. L. Freyman, J. A. Grant, B. R. Jones, J ..
Kane, R. A. Kershaw, C. R. Miller, H. E. Nigh, N. Sachs, W. A.
Stocker, E. F. Schweitzer, and W. Witscher, Jr. in the implementation
of this circuit and the guidance of H. C. Kirsh, R. A. Pedersen, and D.
C. Stanzione throughout the project.

1462 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Logic and Fault Simulations

By I. I. ELDUMIATI and R. N. GADENZ

(Manuscript received December 30, 1980)

This paper illustrates a methodology for the design verification
and testing of the Bell System digital signal processor. It is shown
that a behavioral approach, as opposed to a structural approach, is
advantageous for the generation of a first set of test vectors, since
this set (i) exercises all the functions, as they are specified by the
instruction set, and (ii) uncovers the bulk of the faults. The set can
then be improved using the structural approach. The participation of
the device designers in this process is essential. The relation between
fault coverage and yield is also discussed. Theoretical relations are
given which show how important it is to have a high-fault coverage
(say, >95 percent) for VLSI chips.

I. INTRODUCTION

In this paper, we describe the logic simulation and fault analysis of
a programmable VLSI digital signal processor (nsp) developed by Bell
Laboratories. l The design of such a complex integrated circuit requires
an extensive effort in the areas of design verification, testability, and
fault coverage. Such an effort has a considerable impact upon the
design cycle, yield, and reliability of the device.

In the following section we discuss design verification, which was
done in software through computer simulations. Section III presents
testing and the associated problem of generating test vectors. Com­
puter simulations of the faulted circuit allow us to determine the fault
coverage obtainable with a set of input vectors. The relation between
fault coverage and true yield is discussed in Section IV.

1463

II. DESIGN VERIFICATION

The design verification of a VLSI logic circuit could be done either in
software via a computer model or in hardware by building a bread­
board, or in both. The software approach is easier to set up and more
flexible to use and modify. On the other hand, once built, a breadboard
can be used not only for design verification but also for real-time
testing and the development of support hardware. Early users can also
benefit from it for their initial system design. However, a hardware
model is usually built with SSI and MSI components and requires,
therefore, an adaptation of the original circuit. The breadboard could
be constructed so that it reflects the state of the circuit on a clock
cycle basis, but it is very difficult to emulate dynamic structures and
bus pre charge circuits. As a result, design problems resulting from the
use of such configurations may be masked in a breadboard.

Computer models for VLSI design verification may be a functional
description in a high-level language, such as ADLIB,2 a gate level
description as in LAMP,3 or a transistor level representation as in MOTIS4

and SPICE.
5 Functional analysis provides a coarse simulation and its

use is limited to the initial stages of the device conception. On the
other hand, a transistor level description is quite complex and costly.
It is most useful for the analysis of critical timing paths. A gate-level
description can be utilized both for design verification and fault
analysis. A further advantage is that it can also be used directly for
automatic routing, as in LTX,6 during chip layout. Computer aided
automatic routing was used for the layout of several DSP sections that
have relaxed performance requirements.

In the design verification of the DSP, a functional description lan­
guage was used as a preliminary check for some particularly complex
sections. LAMP was used throughout the design phases of the device,
first to verify the logic design of the individual sections and then to
simulate the complete device. In its final form, the LAMP computer
model uses a gate level description for the random logic section, which
consists of approximately 14,000 transistors, and a functional descrip­
tion for the memories. MOTIS and SPICE were also extensively used to
analyze the behavior of the time-critical portions of the device.

Figure 1 illustrates the LAMP structure. The source file for the
computer model is written in a language known as LSL-LOCAL (a
combination of Logic Simulation Language and Logic Circuit Analyzer
Language). The same description can be used for MOTIS and LTX. The
use of a common source language for the logic and timing simulators,
as well as the automatic router, has an obvious advantage toward
generating an error free layout. The LSL-LOCAL provides a description
of the various circuit components and their interconnections, using
standard logic gates and, whenever possible, a library of NMOS subnet-

1464 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

I INPUT VA

I
I
I
I
I
I
I
I

LUES I

I
L
I -1- TVAL

SIM

- ---~--

CIRCUIT
DESCRIPTION
(LSL-LOCAL)

CIRCUIT
DESCRIPTION

(TRUTH TABLES)

TIME
SIM

FAULT
SIM

I
r­
L "!---- ---- -1---

NO-FAULT
NO-FAULT

FAULTED VARIABLE
UNIT DELAY DELAY CIRCUIT

OUTPUT OUTPUT UNIT DELAY
VALUES VALUES INFORMATION

Fig. I-Lamp structure.

I MOTIS I L

J I I
LTX

.......

- LAMP

ATG

TEST
VECTORS

works or polycells. LAMP transforms this description into an object file
which is a set of truth tables.

The LAMP true-value simulator uses the truth tables combined with
a set of input vectors to check the behavior of the circuit under normal
or unfaulted conditions. Each test vector specifies a set of values (lor
0) at the circuit inputs for each clock phase. Gate delays are uniform
(unitary) throughout the circuit. A zero gate delay can also be specified
to better simulate the structural behavior of complex cells. For each
vector, LAMP simulates the propagation of signals from inputs to
outputs taking time steps equivalent to the unitary gate delay. By
examining the values of the output signals, which are either 0, 1, or 3
("don't know"), it is possible to verify the gate level performance of
the circuit, as well as identify long circuit paths, races, and oscillations.
An oscillation is declared if an output does not settle within a prudent
number of time steps specified by the user.

The diagram in Fig. 2 outlines the steps followed in the design
verification procedure for the nsp. Once the results of the true value
simulation were satisfactory, timing simulations were carried out both
on MOTIS and SPICE. MOTIS was used to check the overall timing
performance of the random logic portion of the nsp (approximately
14,000 transistors). SPICE simulation was extensively used in areas

LOGIC AND FAULT SIMULATIONS 1465

where the device performance had critical timing requirements. These
include the processor clocking system, the bus interface and pre charge
circuitry, critical paths with long delays or excessive loading, and
places where races may occur. During the initial stages of layout, the
timing simulations utilized estimated values of the parasitics; actual
values were substituted at a later stage when needed.

III. TESTING AND FAULT ANALYSIS

The nsp architecture facilitates testability and program develop­
ment. The nsp is customized to perform signal processing functions by
means of an on-chip ROM which stores both program and fixed data.
However, the ability to access an external ROM is also provided. This
external memory interface feature allows emulating the nsp program
and provides a means for device testing. Address information and data
are multiplexed on the external bus pins, with hand shaking signals
indicating the presence of address or need for data. These signals can
also be used by an automatic tester to either force an input vector or
compare output data. In addition, to help in the debugging process,
the chip layout was partitioned and internal pads were provided, thus

CI RCUIT INPUTS

Fig. 2-Steps in the design verification.

1466 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

allowing the possibility of independently exercising and testing each of
the nsp sections.

The input vectors needed for design verification were selected so as
to exercise all nsp functions, which are specified by the instruction set.
These functions were combined with data streams of either alternating
zeros and ones and their complements, or specific data patterns for
functions that exhibit a known pattern sensitivity. The task of gener­
ating the vectors was further simplified by the use of the nsp Assem­
bler, which translates a functional input into machine code and deals
with some specific architectural features of the nsp, such as pipelining
and skewing of certain instruction fields. In addition, using this behav­
ioral or functional approach, the expected outputs were easily pre­
dicted. In summary, this approach to generate the vectors required for
design verification proved adequate.

The same set of vectors served as an initial input to LAMP for the
fault simulations, and was able to detect the bulk of the faults. As a
result, it became the main portion of the test vectors subsequently
used for testing the nsp devices. Recently, Szygenda suggested that it
seems reasonable to expect that this procedure will be successful.7 Our
experience confIrms that this is the case. Thus, we believe that the
behavioral approach to test vector generation is to be preferred to the
structural approach, at least as a first step. The latter approach aims
at sensitizing each node of the circuit and propagating the effects to
the outputs, using a set of vectors which may not represent necessarily
meaningful device functions. The process is both lengthy and costly.
Currently available programs for automatic test generation (such as
the ATG feature of LAMP or Teradyne's P400) are also based on the
structural approach; as a result, they are limited in capability and
expensive to use, especially for devices with such complexity as the
nsp.

The faults exercised in LAMP are gate inputs and outputs stuck at
either zero or one, with the excitation and observation points being at
the pins. For each input vector, LAMP considers one fault at a time and
compares the outputs of the faulted and unfaulted circuits. A fault is
detected if a change is observed at the output pins. Faults that have
equivalent effects on the output are collapsed in order to reduce
computational cost. Also, once a fault has been detected, it is possible
to remove it from the list of faults, so that the following vectors will
not have to consider it. The LAMP simulation provides a list of all-test­
passed (ATP) faults, as well as information on possible races and
oscillations caused by the faults. From these data, the fault coverage
and subsequent steps to improve it can be determined.

Figure 3 displays the fault coverage given by LAMP versus the
number of test vectors used to verify the nsp random logic. The fault

LOGIC AND FAULT SIMULATIONS 1467

100

83%

I- 80 ... ---
z
w __ ----------000
u
a:
w
a..

~ 60

w
t:l
<!
a:
w
> 40
0
U

I-
....J
::::>
<!
u.. 20

0
0 9

NUMBER OF VECTORS IN THOUSANDS

Fig. 3-Fault coverage for DSP random logic.

coverage achieved with -9000 vectors generated via the behavioral
approach was 83 percent. This is an excellent starting point in the
quest for a high fault coverage. Our goal was to obtain a fault coverage
in excess of 95 percent. Analysis of the undetected faults and the
structures used in the circuit implementation revealed that the actual
fault coverage is significantly higher than the value given by LAMP.

This is because faults not observable due to built-in circuit redundan­
cies can be disregarded along with the faults which are not detected in
the simulator but will be detected in the actual circuit. The nsp timing
utilizes a four-phase clock with non-overlapping master and slave
pulses in each phase. These pulses are used to achieve signal transfers
between registers. The master and slave pulses are generated locally
in each of the nsp sections, and are kept synchronous through a
universal synchronizing signaL This clocking scheme is tolerant to
certain classes of faults such as stuck slaves if the data is synchronous.
When reclocking is done at the boundaries of the nsp sections, some
faults may be disregarded if SPICE simulations indicate proper timing----­
at those boundaries. Other examples of faults that can be neglected
are the ones resulting in switched depletion loads being always on, if
the device meets the maximum power dissipation requirement, and
the undetected faults that are due to unassigned instruction fields.

To achieve high reliability, the test vectors should guarantee an
extensive fault coverage which should cover not only the device
functions, but also the structures used for the circuit implementation.
This is especially important because the nsp is programmable and the
test vectors are designed to be independent of the program in the on-

1468 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

chip ROM to avoid costly test program development. A more in-depth
look at the circuit was required to detect at least part of the remaining
faults and further improve the fault coverage beyond 95 percent.
Additional specific sequences of test vectors had to be generated by
means of a structural approach. These sequences were applied to
exercise the faults not previously detected and to propagate their
effects to the output pins.

The vectors used to test the nsp random logic exercise only a limited
number of RAM locations. Therefore, the RAM is further tested by
writing into it and reading from it standard checkerboard patterns.
When reading, the contents of the different memory locations are
accumulated into a checksum which is sent to the output and compared
with the expected value. The contents of the on-chip ROM is also
verified via a checksum test. The nsp external memory interface makes
it possible to treat the contents of the internal ROM as data which is
fetched sequentially to compute the checksum. The result is sent to
the output where it is compared with the precalculated value, deter­
mined from the user's program. This value is the only difference in the
complete testing patterns of different nsps. The additional vectors
required to test the RAM (-3600) and the ROM (-4300) bring the total
number of test vectors used for the nsp to slightly above
20K.

IV. FAULT COVERAGE AND YIELD

The fault coverage provides a measure of the fraction of the faults
detected by a given set of test vectors. A fault coverage less than 100
percent implies that some devices which passed the test may fail to
execute the user's program. This could be the result of using certain
program sequences or data patterns that exercise faulted nodes not
covered by the test vectors. The presence of such devices affects the
reliability and the eventual cost of the host system. Identifying faulty
devices during incoming inspection, if any, or during system subassem­
bly has some impact on the cost. Failure in the field results not only
in a reduced system reliability, but also in a higher replacement cost
and the possibility of loss of service. Therefore, it is very important to
identify faulty devices as much as possible during device testing. In
this section, the relationships among yield, fault coverage, and chip
area are discussed.

The reduction in a wafer yield y can be attributed to two sources.
The first one is the existence of area defects, i.e., defects that cause
whole portions of a wafer to provide no good devices. This area defect
condition is represented by the parameter Yo in the equation below.
The second source is the existence of fatal point defects which are
randomly distributed over the wafer area where good chips can be

LOGIC AND FAULT SIMULATIONS 1469

found. These assumptions result in the following expression for the
yield y of a wafer

where

yo = the area defect yield factor,

D = the point defect density, and

A = the chip active area.

(1)

In order to account for the spread of the random defect density D
among wafers, MurphyS suggested that the defect density is distributed
according to a probability density function. Assuming a gamma distri­
bution for the defect density D, the average yield Y, for a very large
number of wafers, is given by9-n

Yo
Y = (1 + ADoA)l/A , (2)

where

Yo = the average area defect yield factor,

Do = the average value of the defect density, and

A = the variance of the defect density.

It should be noted that the gamma distribution provides the best fit to
experimental yield data.9 In addition, depending on the value of A, it
encompasses several distributions which were proposed earlier. (See
Refs. 8 and 11 to 13.) Therefore, eq. 2 will be used to study the
relationship between fault coverage and yield.

A fault coverage less than 100 percent indicates a lack of observable
exercise for some of the logic gates making up the circuit. Assuming a
uniform distribution of logic gates over the chip active area, the
effective chip area Ap being probed can be expressed as a function of
the fault coverage as follows,

Ap=FA, (3)

where F is the fractional fault coverage for a given set of test vectors.
The ratio between the true yield Yt , obtainable with a 100 percent
fault coverage, and the yield at probe Yp is then given by

~t = (1 + AFDoA)l/A. (1 + ADoA)-l/\
p

(4)

This expression can be used to determine the fault coverage required
to achieve a desired value for Yt/Yp :

1470 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

F
= (Yr/Yp)'\ (1 + ADoA) - 1

ADoA . (5)

The dependence of the yield on the fault coverage for several values
of A and a Do· A of 3, is displayed in Table I.

The parameter A is a function of the fabrication facility and could
be determined from the yield data. For simplicity, assume that in the
limit A approaches zero. Then eq. 2 reduces to

(6)

and eq. 5 becomes

1 Yt
F= 1 +--In-.

DoA Yp
(7)

This expression is plotted in Fig. 4 for various values of Do·A. The
figure emphasizes the need for extensive fault coverage as the value of
Do· A is increased. For example, in order to achieve a value of 0.9 for
Yr/Yp and assuming a value of 3.0 for Do·A, the fault coverage should
be 96.5 percent.

V. CONCLUSIONS

A methodology for the design verification, fault analysis and testing
of a programmable VLSI device was presented. Logic design verification
was performed at the gate level through LAMP true-value simulations.
Sections of the device having critical timing requirements were verified
via MOTIS and SPICE.

A behavioral approach to test vector generation, in which all the
device functions were exercised with appropriate data, proved ade­
quate for the design verification. Through fault analysis, it was found
that these vectors also uncovered the bulk of the faults and, therefore,
could be used for testing the device. The structural approach, which is
both lengthy and costly, was used only to generate additional vectors
in order to further improve the fault coverage.

The need for an extensive fault coverage, and its impact on the
device cost and reliability, was emphasized. A relationship between

Table I-Yt/Yp VS. Ffor Do·A = 3
Yt/Yp

F[%] ;\=0 ;\=% ;\=1

80 0.549 0.729 0.850
85 0.638 0.791 0.887
90 0.741 0.857 0.925
95 0.861 0.927 0.963
98 0.942 0.970 0.985

LOGIC AND FAULT SIMULATIONS 1471

~
w
l!)
<x:
c: 30
w
> o
u
r
...J
=>
<x:
u.

20

10~ ______ ~ ______ ~~ ______ ~ ______ ~

0.6 0.7 0.8 0.9 1.0
(TRUE YIELD)/(YIELD AT PROBE)

Fig. 4-Fault coverage as a function of Yt/Yp and DoA.

fault coverage, yield and chip area was established. The analysis shows
that it is important to have a fault coverage in excess of 95 percent for
chips with large areas.

VI. ACKNOWLEDGMENTS

The authors wish to thank J. R. Boddie, N. J. Elias, H. Shichman,
D. C. Stanzione, and R. L. Wadsack for useful discussions and com­
ments.

REFERENCES

1. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

1472 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

2. D. D. Hill, "ADLIB: A Modular, Strongly-Typed Computer Design Language," Proc.
Fourth Int. Symp. Computer Hardware Description Languages, Palo Alto, Cali­
fornia, October 1979, pp. 75-81.

3. "LAMP: Logic Analyzer for Maintenance Planning," several papers in B.S.T.J., 53,
No.8 (October 1974), pp. 1431-555.

4. B. R. Chawla, H. K. Gummel, and P. Kozak, "MaTIs: An MaS Timing Simulator,"
Trans. on Circuits and Systems, CAS-22, No. 12 (December 1975) pp. 901-10.

5. L. W. Nagel and D. O. Pederson, "sPIcE-Simulation Program with Integrated
Circuit Emphasis," Memorandum No. ERL-M382, Electronics Research Labora­
tory, University of California, Berkeley, April 12, 1973.

6. G. Persky, D. N. Deutsch, and D. G. Schweikert, "LTX-A System for the Directed
Automatic Design of LSI Circuits," Proc. 13th Design Automation Conference,
San Francisco, California, June 28-30, 1976, pp. 399-407.

7. S. A. Szygenda, "Recent Results on Simulation and Testing for Large Scale Net­
works," Workshop on Large Scale Networks and Systems, IEEE 1980 Symp. on
Circuits and Systems, Houston, Texas, April 28-30, 1980, pp. 22-5.

8. B. T. Murphy, "Cost-Size Optima of Monolithic Integrated Circuits," Proc. IEEE,
52 (December 1964), pp. 1537-45.

9. C. H. Stapper, "Defect Density Distribution for LSI Yield Calculations," IEEE
Trans. on Electron Devices, ED-20, No.7 (July 1973), pp. 655-7.

10. C. H. Stapper, "On a Composite Model to the IC Yield Problem," IEEE J. of Solid
State Circuits, SC-lO, No.6 (December 1975), pp. 537-9.

11. J. Sredni, "Use of Power Transformations to Model the Yield of ICS as a Function
of Active Circuit Area," Proc. Int. Electron Device Meeting, Washington, D.C.,
December 1975, pp. 123-5.

12. A. G. F. Dingwall, "High Yield Processed Bipolar LSI Array," Int. Electron Devices
Meeting, Washington, D.C., October 1968.

13. J. E. Price, "A New Look at Yield of Integrated Circuits," Proc. IEEE, 58 (August
1970), pp. 1290-1.

LOGIC AND FAULT SIMULATIONS 1473

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Software Simulator

ByJ.AAGESEN

(Manuscript received June 23, 1980)

One of the development aids for the digital signal processor (nsp)
is a software simulator, dspsim, which runs interactively under the
UNIX* operating system. It is a program debugging tool which can
be used without access to the nsp hardware environment. It allows
the user to monitor run-time characteristics of nsp programs which
cannot be observed using the device itself. It is very flexible in
providing capabilities for single or multiple program stepping, setting
and modifying conditional breakpoints, examining register contents
and generating data plots on the terminal.

I. INTRODUCTION

A number of development tools have been designed for the single­
chip digital signal processor (nsp).l This article describes a software
simulator for the nsp, dspsim, which runs under the UNIX operating
system. The simulator provides an interactive program development
and debugging facility which operates exclusively in the UNIX envi­
ronment with no need for the nsp and associated hardware. It includes
general input/output handling and offers great flexibility in its ability
to access registers, set breakpoints, and take specified action when
prescribed conditions are met. Also, it has the capability of printing x­
y plots on the terminal. Execution can be interrupted at any time for
observation of register contents, change in breakpoint conditions, etc.,
after which execution can be resumed without loss of continuity.
Creation of programs is facilitated by the nsp assembler2 which gen­
erates a file that the simulator can load directly into its program

* Registered trademark of Bell Laboratories.

1475

memory. Diagnostic messages are printed in response to erroneous
operations and special nsp conditions.

This paper covers the architecture of the simulator, the handling of
nsp conditional auxiliary instructions, and a discussion of the simulator
commands. It concludes with a brief terminal session illustrating the
operation of the simulator.

II. ARCHITECTURE

2. 1 Overview

A block diagram of dspsim is shown in Fig. 1. The nsp box represents
the simulation of the basic nsp architecture as described in Ref. 1,
excluding the RAM and the ROM. The operation of the simulator is
controlled by the simulator executive system which interprets com­
mands and invokes required utility routines. A number of files are
associated with the simulator. The RAM file corresponds to the random­
access memory of the nsp. The program file (PGM) provides the read­
only memory function. The input stack (IS), performing the function
of a signal source, contains data that are to be read into the input

t t
RAM PROGRAM TRACE
FILE FILE FILE

(RAM) (PGM) (TRC)

1 1 t
INPUT OUTPUT

STACK - DSP - STACK
(IS) (as) ...

t
- UTILITY

DSP ROUTINES

SIMULATOR
EXECUTIVE

1
UNIX™ UNIX™

FILE ~ OPERATING - TERMINAL -SYSTEM SYSTEM

Fig. 1-Block diagram of nsp simulator.

1476 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

buffer, IBUF, of the nsp. The output stack (as) collects output data
from the nsp output buffer, OBUF. The trace file (TRC) keeps a record
of program branches. The simulator can access files in the UNIX file
system. This provides for off-line storage of nsp files so that nsp files
can be loaded from and written to UNIX files.

2.2 Data formats

Data to be entered into registers directly from the terminal or from
UNIX files may be hexadecimal, octal, binary, decimal integer, or
decimal fixed-point numbers. Also, data can be entered in J.l-255 com­
panding format (chord and mantissa) and as linear data with a special
prefix indicating conversion to J.l-255 upon loading. The latter is con­
venient when a linear input data file exists and the J.l-255 processing
performance of the nsp program is to be evaluated.

2.3 File formats

Files for the nsp are arrays in memory. They are classified into file
types in accordance with the word length of the data they accommo­
date. The file types, characterized by their data structure and simulator
application, are as follows:

• 10-bit address data (TRC file)
• 16-bit data (PGM file)
• 20-bit data (RAM file)
• mixed data word length (input and output stacks)

The nsp chip transfers data from and to the outside world via serial
channels. The I/O control register determines the number of bits to be
transferred in a particular operation. Data words are stored in the
most significant bits of the 20-bit IBUF. When a I6-bit word, for
example, is transmitted to IBUF, an inherent scaling by the factor 16
takes place. Since the simulator cannot tell from a data word, per se,
what its intended bit-length is, files of mixed data lengths have a
length identifier associated with each word, specifying 8, 16, or 20 bits.
When data are read from IS into IBUF, the simulator first checks for
agTeement between the word length identifier and the input number
field of the I/O control register; if no discrepancy is detected, the data
transfer takes place with the proper bit alignment, otherwise an error
message will be given. The data words in the nsp OBUF are right­
adjusted so no bit-shifting is required on transfer to as. The word
length information from the output number field of the I/O control
register is, however, carried over to the as. The identical formats of IS

and as allow output data to be used as input in a subsequent run of a
nsp program.

SOFTWARE SIMULATOR 1477

The UNIX fIles are in ASCII format. They contain a FILETYPE

declaration which must match the file type of the nsp file into which
it is loaded. Appropriate word length symbols are appended to data in
UNIX ~Iles containing mixed data word lengths.

A data line (where data is linear) may have the format

data[* scale factor] [+ offset].

This can be used in editing an existing fIle into a new one with scaled
and offset data values. The appropriate arithmetic is performed when
the fIle is loaded.

UNIX files may contain more input or output data than the corre­
sponding simulator IS or OS can accommodate. The input fIle will be
automatically loaded into the IS when the stack is exhausted; this will
continue until all UNIX fIle data have been used. Repeated "writes"
of the os to a UNIX file, within the execution of a nsp program, will
append data to that fIle until execution of the particular nsp program
is terminated.

III. CONDITIONAL OPERATIONS

The nsp has four control/status lines which correspond to the
following four bits of the synchronization control register:

IBF Input Buffer Full

OBE Output Buffer Empty

cO External Control Signal

cl External Control Signal

These control lines are hardware driven and, therefore, have no.
predictable logical state during the execution of a nsp program. If an
auxiliary instruction is conditional, control bits must be available at
the time the instruction is executed. The simulator handles the control
bit setting through its communications links with the external oper­
ating environment, namely the terminal or the UNIX file system, in
the following ways:

(i) Default. A request is printed on the terminal for the value of
the control bit IBF, OBE, cO, or cl. Execution resumes when the control
bit value is entered.

(ii) Optional .. The control bits can be read from a UNIX fIle speci­
fIed as an argument to the GO command. This is used when the
execution of the nsp program requires input of numerous control bits.

IV. COMMANDS

The command repertoire includes UNIX type commands for file
handling and editing. It also includes commands for re-initialization of

1478 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

the simulator, setting and reading nsp registers, and transfer of files
between the simulator and UNIX environments.

The WHEN operation is used to perform checks on breakpoint
variables during execution of the nsp program and invoke simulator
commands when breakpoint conditions are met. A breakpoint can be
set on any nsp register value, on accumulator overflow, and on the
number of nsp cycles executed; it can also be set to occur after a
specified number of input or output operations have taken place and
can be implemented for the nth time the program counter, or input or
output data, match their corresponding breakpoint parameters. This
permits the execution of complex test scenarios.

There are three simulator commands associated with the WHEN
operation. SC sets the breakpoint parameters and DC lists the table of
current parameter values. The WHEN command itself sets the test
conditions and simulator commands to be carried out during execution
of the program. It has the format:

WHEN[(expression) {commands}]

The expression has the structure

cond op cond op cond ...

where cond is any test variable name. This implies that the variable in
the logical expression becomes "true" when the breakpoint variable
matches the check value. The logical operator NOT, OR, or AND is
designated by op. As an example, the following simulator command
lines

sc pc = 10

sc a = 1234.5

when (pc I a) {dmp pc; dmp y}

will result in the printing of the nsp program counter value and Y­

register, Y, when the program counter, PC, equals 10 or the accumulator,
A, equals 1234.5.

The ED command invokes the UNIX text editor which operates on
ASCII files. Thus, the UNIX files can be edited directly, whereas the
simulator and nsp files are translated into ASCII files during the editing
process and back into numerical format on completion of the editing.
The translations are done automatically and are not visible to the user.
The editor is useful, for example, in creating or altering input data files
or filter coefficient files for the simulator's RAM.

The DMP command is used to print the contents of all or, through
appended arguments, selected nsp registers. The plot command, PLT,
produces x-y plots of data files. It facilitates automatic or specified

SOFTWARE SIMULATOR 1479

scaling and shifting of data origin. It can be used in comparing segments
of input data with the corresponding processed data.

The GO command initiates execution and, through a number of
arguments, controls various 110 and diagnostics options. While the GO
command provides for continuous execution of a nsp program, the
STEP command executes the number of nsp cycles specified in its
associated argument.

V. TERMINAL SESSION

The usage of the simulator is illustrated by an application of the nsp
as a tone generator. The terminal session is recorded in Fig. 2. The
simulator is invoked from the UNIX shell level by the DSPSIM
command. The simulator command level is indicated by a ":" prompt
character. First, the simulator's program memory is loaded, using the
LD command, with the hexadecimal object file tone440, which was
generated previously by the nsp assembler from a source program.
Next, a breakpoint is set on an accumulated number of outputs equal
to 70. The WHEN command is used to specify the actions to be taken
when the breakpoint is reached. The actions are:

1. Write the os into the UNIX file tone440.out.
2. Plot the data in tone440.out on the terminal.
3. Stop execution.

Finally, the execution is initialized with the GO command (the -m
flag suppresses certain diagnostic messages). Although this terminal

$ dspsim
VERSION 2.7 (Mar 1, 1980)
: Id pgm tone440
: sc nout=70
: when (nout){wr os tone440.out;plt tone440.out;stop}
: go-m

*10**3
140+
130+
120+
110+
100+
90+
80+
70+
60+
50+
40+ *
30+
20+ •
10+ •• • • •
0+--------.--------.---

-10+
-20+
-30+
-40+
-50+
-60+

-+---------+---------+---------+---------+---------+---------+---------+
o i 10 20 30 40 50 60 70

Fig. 2-Terminal session on DSP simulator.

1480 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

session is not an exhaustive demonstration of the simulator features,
it should give a general flavor of the simulator operation.

VI. ACKNOWLEDGMENT

Grateful thanks go to Stephen M. Walters, who did some preliminary
work in translating the nsp functions into simulator software; both he
and James R. Boddie offered helpful suggestions on the operation of
the simulator. Also, special thanks go to Robert L. Farah who, through
diligent use of the simulator, discovered a number of abnormalities
which were subsequently diagnosed and corrected.

REFERENCES

1. J. R.. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

2. C. L. Semmelman, "Digital Signal Processor: Design of the Assembler," B.S.T.J.,
this issue.

SOFTWARE SIMULATOR 1481

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Design of the Assembler

By C. l. SEMMELMAN

(Manuscript received June 13, 1980)

In addition to the features normally provided by assemblers, the
digital signal processor assembler handles the multistatement-per­
instruction format required by a pipelined machine and provides
several other capabilities required by the digital signal processor
architecture. In describing the manner in which this was accom­
plished, more attention is devoted to matters of interest to the user of
the assembler and less to its internal construction. The use of «lex"
to write the parser subroutine is described, and possible future en­
hancements are discussed. An example illustrates the digital signal
processor assembler's input language and its outputs.

I. INTRODUCTION

The assembler for the digital signal processor (nsp), as for any
processor, converts programs written in a symbolic language into the
corresponding machine language, and provides various convenience
features for use by the nsp programmer.

The architecture of the nsp is designed for a maximum speed of
operation in applications which differ markedly from those of ordinary
computers. As a result, the nsp assembler contains features which are
unique to this nsp application. At the assembly language level, this
results in a complex programming language, which the programmer
must understand thoroughly in order to produce correct and efficient
programs. The assembler, of course, must accept every legal instruction
in this input language and produce machine language corresponding
to every operation in the nsp repertoire. This language differs from
standard assembly languages in several major respects, as described
below.

1483

II. ARCHITECTURAL FEATURES OF THE DSP AND THEIR EFFECT ON
THE ASSEMBLER DESIGN

The nsp has a number of unusual architectural features which affect
the design of the assembler. Following an overview, these features are
described from a user's point of view and their effects on the assem­
bler's design and operation are discussed. Boddie et aU give a more
complete description of the machine architecture.

2. 1 Overview of DSP architecture

The nsp contains 1024 words of 16-bit ROM memory for program
storage and 128 words of 20-bit RAM memory for data. The processor
contains a 16- by 20-bit integer multiplier, whose output is fed into a
40-bit integer accumulator. From there, data may be sent to a 20-bit
w register, before being sent to storage or back to the multiplier for
further calculation. Input and output are handled through 8-bit buffers,
with automatic serial-parallel conversion and external synchronization.
The nsp has four kinds of special purpose registers, including five
registers for indirect addressing of data (direct addressing is not
allowed), four registers for increments and counting, hvo for setting
the nsp ground rules, and others for instruction counting, return
address storage, synchronization, and status output. A separate adder
is used to increment the addresses stored in the indirect addressing
registers.

The multiplier, accumulator, w register, and data storage functions
are separately programmed and controlled by different fields in the
machine language word. There are two different classes of instructions:
arithmetic and auxiliary, and they make different uses of some of the
bits of the machine language word. The nsp uses the value of one of
the instruction fields to distinguish between the two classes. Arith­
metical instructions occupy only one machine word and may specify
that the next machine word contains a numerical value for immediate
input to the multiplier. Auxiliary instructions occupy two machine
words, and bits in the second word further distinguish between arith­
metical-auxiliary and non-arithmetical-auxiliary subclasses.

2.2 Pipeline architecture

The term "pipeline" refers to the fact that the processor has several
hardware components which perform different operations simultane­
ously and pass data from one component to the next as through a pipe.
In the nsp, these components are a multiplier, an accumulator, the w
register and a memory. Data flow from the multiplier to the accumu­
lator, then to the w register and to storage. Each of the hardware

1484 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

components is under the command of a specific group of bits in the
instruction, which selects the exact operation to be performed out of
the group available to the particular component.

Figure 1 shows how the pipeline functions. The columns correspond
to the hardware components, and the rows to instructions which are
executed sequentially in time. Data move diagonally. Each component
can accept and process data in each instruction cycle, if commanded
to do so. Although it takes four cycles for data to progress through all
four components, the nsp accepts a new input argument and produces
a new output each instruction cycle. This increases the data processing
speed appreciably.

For each instruction, the assembler must accept up to four state­
ments, one for each hardware component, and combine the corre­
sponding bit patterns to form the complete instruction. The statements
are usually written in the left-to-right sequence shown in Fig. 1, as this
encourages the following interpretation:

(i) Store the present contents of the W (or.Y) register.
(ii) Reload the w register from the accumulator.

(iii) Reload the accumulator using the present contents of the
product register.

(iv) Calculate a new product from the x and y arguments specified.
An instruction containing four such statements might be

*rda = w w = a a = p + a p = *rx++j * ibufy.

til
UJ
..J
u
>-
U
UJ

~
:r:
u
<x:
~

STORE W-REGISTER ACCUMULATOR MULTIPLIER

3
13

2
12

OL-______ ~ ________ ~ ________ ~ ______ ~

1.-------- HARDWARE COMPONENTS ----------1 10

Fig. I-Pipelining of data.

DESIGN OF THE ASSEMBLER 1485

2.3 Advanced fetches of x and y fields

The x and y fields in a nsp instruction specify the two input
arguments to the multiplier. The sources for the x and y data must be
specified in the instruction that is fetched two cycles before the
instruction that operates on the data. The assembler accepts the x and
y source specifications on the same line as the operation (as shown in
the previous example) and then "skews" them to the x and y fields of
the instruction two instructions previous. The four-statement instruc­
tion shown above would appear in machine language as in Fig. 2.

2.4 Instruction fetched two cycles before execution

Each instruction is fetched from read only memory (ROM) two cycles
before it is executed. This allows time to decode the remaining instruc­
tion fields before execution begins. If this only resulted in a two-cycle
time delay between fetching an instruction and executing it, program­
mers would be able to ignore the delay completely. Unfortunately,
however, this delay in execution also applies to jump instructions. The
two instructions that follow a jump are already in the operating
hardware when the jump takes effect and their x and y fields will affect
im;trllctions that follow the jump. They may differ from the x and y
fields that would be fetched if the jump destination were reached by
normal program counter incrementing. Fields xl and yl and fields x3
and y3 in Fig. 3 both refer to the same operation instruction located at
the destination.

The current version of the assembler cannot determine if these two
sets of x and y fields should be alike or if they may be different. The
programmer must answer this question. The assembler tests and
reports a difference as a warning message.

Both the advanced fetching of the x and y fields described above
and this instruction fetching in advance of execution are forms of
pipelining, and they create problems quite unlike those encountered in
the writing of standard assemblers.

*rx + + j ibufy

n-
2 1 '---'1'--_---'-_'_'°-----''--'_00_-'--_-----' __ --'

n-, L..-..I-I 1 --l-----L--I~I ---'
w rda a=p+a w=a

Fig. 2-Fields x and y advanced by two instructions.

1486 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Xl Yl

x2 Y2

DEST:

DEST + 1

pc = &DEST;

x3 Y3

x4 Y4

Fig. 3-Multiple x and y fields apply to same instructions.

2.5 Other hardware features

The other hardware features mentioned above cause few problems
for the assembler and even eliminate some of the usual assembler
functions. Input and output are treated as if they were two storage
locations. The special purpose registers appear in the source program
only to be loaded with a constant. When they are used for other
purposes a key word, which also specifies the application, conceals
their identifiers. Even statements specifying arithmetical operations
do not have to be analyzed as the assembler recognizes the entire
statement and translates it into a single bit pattern. For example, the
entire statement

a=p+a

is identified as one key "word" and translated into the binary number
001. A multiplication statement, such as

p = *rx++j * ibufy,

contains two key words, *rx++j and ibufy, which become 110 and 100.
Multiplication is implied and there is no place for the product to go
except into the product register, so it need not be specified.

2.6 Summary

The unusual architecture of the nsp produces some strange results
both in the assembler operation and in the appearance of source
programs. The frequent use of key words and the prohibition of direct
addressing combine to make variable names almost disappear from
the source program. Their only use is to prime registers for indirect

DESIGN OF THE ASSEMBLER 1487

addressing. Pipelining also helps to conceal the programmer's intent.
As a result, source programs are more difficult to read and good
comments are more important than in most assembly language pro­
grams.

III. EXTERNAL FEATURES OF THE DSP ASSEMBLER

In the development of the assembler, a number of policy questions
were considered and settled before program writing was started. These
decisions are discussed below.

3. 1 Environment for development and customer use

Because of the widespread use of the UNIX* time-sharing operating
system2 at Bell Laboratories, no alternative was given serious consid­
eration. This choice makes it easy for programmers to prepare their
nsp source language programs using the UNIX text editor, store them
as files, and have the assembler pick them up for processing. Assembler
output files can be listed and retained for testing with the nsp simu­
lator,3 and can be converted to PROM or ROM mask formats.

3.2 Special DSP hardware features

The programmer is required to place the individual statements
which make up an instruction, so that the pipeline operations will be
performed on the correct data. The programmer must also place jump
statements properly, as the assembler does not advance them by two
instructions. This is considered proper as the programmer must un­
derstand the effects of the advanced x and y field fetches.

The assembler does advance the x and y fields for the programmer.
This results in a more readable source program and eliminates one
source of possible error in the assembler input. The assembler also
deduces, from the key words found, which of the various instruction
classes and sub-classes the programmer is using.

3.3 Input language characteristics

The input language syntax resembles that of the language C. This
choice was made because many nsp programmers were familiar with
that language.

To facilitate programming for people who do not need the full
mnemonic content of the C-like constructs, a set of three-character
alternates is available. Thus, a programmer has the choice of entering
either

or rxi

* Registered trademark of Bell Laboratories.

1488 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

to mean "the quantity pointed to by the contents of the RX register,
which is post-incremented by the contents of register 1."

The assembler also provides a limited macro facility. It permits a
single instruction macro to be defined and called within the source
language input file. Argument substitution is not implemented. For
more elaborate facilities, the programmer may use the C-Ianguage
preprocessor, which allows multi-instruction capability, nesting of
macros, and argument substitution.

3.4 Handling of errors

The assembler reports each error in a message which appears on the
user's terminaL Each error is classified as "fatal" or "for information,"
and, where possible, each message contains the number of the line in
the input file where the error was detected. Any fatal error will prevent
the writing of the PROM programming fIle, and no error or combination
of errors is capable of stopping the assembler before it reaches the end
of the source file.

IV. IMPLEMENTATION POLICIES AND DETAILS

The programming methods described here were selected because
they were convenient in developing the assembler and led to good
quality code.

4. 1 One-pass assembler

Because so few variable names are expected in the nsp programs, it
seemed reasonable to assemble as much of the program as possible on
the first pass over the source fIle. This decision forces the programmer
to define macros before calling them and to assign variables to RAM

storage before referring to them, which appear to be reasonable restric­
tions.

The assembler handles labels in the following manner. When a label
definition is encountered, the assembler puts the memory address and
the current ROM address in a label definition table. When a label
reference is encountered, the memory address and the ROM location of
the reference are added to a table of label references. At the end of the
source program file, the assembler moves the label definition ROM

locations into the corresponding label reference locations. Any unde­
fined references cause fatal errors.

4.2 Organization of the DSP assembler

A very brief description of the assembler is as follows: the main
program calls the parser, which is a subroutine written by "lex.,,4,5 It
returns a value identifying the token found. Control passes through
two levels of "switch" statements to a block of code where the bits

DESIGN OF THE ASSEMBLER 1489

corresponding to the token are moved into the machine word, and
some flags are set or some table entries made. These actions are
repeated until the end of file is encountered. Then label references are
resolved, output files written, and messages written for the user.

The following paragraphs elaborate on this brief description, but
still give only an overview of the methods used. Tables I through VIII
in the Appendix show the statements which may appear in each class
of instruction and the tokens which are permitted in each statement.
Reference to these tables may be helpful in reading the following
paragraphs.

4.2. 1 Token identifiers

The numerical values used to identify the tokens are octal numbers
whose "hundreds" digit identifies a family of tokens and whose "tens"
and "units" digits indicate the member of that family. In addition to
the families of tokens shown in Appendix A, there is a utility family,
whose members are semicolons, label definitions, macro starts, ends
and calls, numerical values, comments, RAM assignments, dimensions,
and subscripts. Some of these items are described more fully in the
next section.

4.2.2 Utility functions

Several members of the utility family are described below. Label
definitions have already been discussed, and comments, dimensions,
and subscripts do not need extensive coverage.

4.2.2.1 Semicolon. The semicolon is used to mark the end of each
nsp instruction. Its appearance initiates the clean-up after one instruc­
tion and the priming required for the next.

4.2.2.2 Macros: start, end, and call. A macro is defined as in the
following example:

{Macname rdx = y a = p p = axi * ryk},

where the braces signal the start and end of the definition. At the left
brace, the parser is called to read the macro's name, which is saved in
a table. The statements in the macro are assembled in a macro table
location, rather than in their final ROM position. The right brace causes
the assembly location to revert to the normal ROM position.

Mentioning the name of the macro causes the saved bits to be placed
in the proper position. The nsp programmer can add additional state­
ments to the macro before the semicolon completes action on that
instruction.

4.2.2.3 RAM variables. A RAM assignment statement appears as fol­
lows:

ram Z, ABC, T ABLE[lO];

The key word "RAM" causes control to go to a block of code where

1490 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

each token is read. The assembler adds each variable name, its dimen­
sion which defaults to 1, and the RAM location assigned to it, to a table
of RAM variables. At the semicolon, control returns to the normal loop.

4.2.2.4 Numbers. Numbers may be used for several different pur­
poses: as an immediate value to act as the x input to a multiplication,
to build a table in ROM memory, to load a register, as a dimension in
a RAM variable definition or as a subscript in a RAM variable reference.
Thus, the processing of a number depends on the context of its use.

4.2.3 Flags and error detection methods

Fifteen different flags are used in the assembler. Among their uses
are recording the presence of a member from each family of tokens,
the arithmetical or auxiliary class of an instruction, and whether the
instruction occupies two ROM words or one. The flags are used in tests
for correctness of the source code and in steering the assembler.

The tests for errors are quite thorough. They may include some
tests for errors which can never occur, as it was easier to include the
test than to prove the impossibility of the error. The parser rules
include one which detects any character which is not a letter, a number
or one of the specified group of punctuation symbols. When such a
character appears, a message to the user is sent and a fatal error
recorded.

4.2.4 The file 'dsp.listing'

This file is the output medium by which the assembler communi­
cates its results to the nsp programmer. A sample of the output is
shown in Fig. 6. The tables referring to macros and labels are prepared
initially as separate disk files and later concatenated with the file
containing the remainder. This file is prepared by rewinding and
rereading the input source program, matching each line to the assem­
bled code.

V. RESULTS

An assembler for nsp programs has been written and functions as
described in the preceding paragraphs. The assembler contains about

include "dspbq.h"
"Two Biquad Sections in Cascade"
"Dial Tone Rejection Filter"
ioc = 0502; /* 8 bits in, 16 out */
auc = 067;
i = 1;
j= -1;
k= -3;
loop: syc = 1;
bqic
bquad (1., -1.957,1., -1.112, .544)
bquad (1., -1.891,1.,-1. 7328,.94297)
bqnoc (loop)

Fig. 4-Input fIle for biquadratic fIlter using macro cells and C-preprocessor.

DESIGN OF THE ASSEMBLER 1491

Completed scan of source file. 0 fatal errors.
Files b.out and d.out were written to disk
dsp.listing was written to disk.
To save files, mv them to other names.

Fig. 5-Digital signal processor assembler messages to user in a successful assembly.

3500 lines of code and comments and has been in use for over a year
in a wide variety of applications. Its output has been used as input to
the simulator program,5 thus, assuring compatibility.

VI. FUTURE ENHANCEMENTS

Enhancements to the nsp assembler fall into near-future and more
remote-time categories.

D.S.P. ASSEMB LE R, [data of version]
Two Biquad Sections in Cascade
[data and time of assembly]

MACRO DEFINITIONS
MACRO NAME ADVCMD CMD DATA W/A SOURCE

octal octal octal

LABELS
ROM LOC. LABEL

dec.
10 loop

RAM VARIABLES

REF. AT LOC.
dec.

44

RAM LOC. DIMENSION NAME
dec. dec.

LOC. COMMAND DATA X Y LINE
dec. octal octal dec.

0 00 00 10 : 150502 (aux w 3AN
2 00 00 10 : 140067 (aux w 4 AN
4 00 00 10 : 100001 (aux w 5AN
6 00 00 10 : 117777 (aux w 6 AN
8 00 00 10 : 127775 (aux w 7 AN

10 00 00 10 : 160001 (aux w) 8AN
12 00 04 10 : 020000 (aux iny) 9AN
14 00 00 10 : 040000 (aux w) lOAN
16 00 21 01 : 000020 (immryi) 11 AA
18 00 22 01 : 000031 (imm ryj) 12AA

20 14 21 10 : 156457 (imm ryi) 14 N
22 00 21 10 : 043453 (immryi) 15 N
24 00 20 10 : 040000 (immw) 16N
26 01 21 01 : 101301 (immryi) 17 N
28 11 22 10 : 040000 (imm ryj) 18 N

30 00 21 10 : 141646 (imm ryi) 20 N
32 00 21 10 : 067346 (immryi) 21 N
34 00 20 10 : 040000 (immw) 22 N
36 01 00 01 103372 (aux w) 23 N
38 11 00 10 : 040000 (aux w) ·24 N

40 00 00 11 : 000001 (aux w 26AA
42 00 00 01 000100 (aux w 27 AA
44 00 00 10 : 000012 (aux w 28AN
46 00 00 00 : 000000 (aux w 29AN
48 000000: 000000 (aux w 29AN
50 00 00 00 : 000000 (aux w 30AN
52 00 00 00 : 000000 (aux w 30AN

SOURCE

"Two Biquad Sections in Cascade"
"Dial Tone Rejection Filter"

ioc = 0502;
auc = 067;
i = 1;
j =-1;
k = -3;
loop: syc = 1;

ry = 0;
rd = 0;

a=p
obuf = w a=p+a

P = -.544* ryi;
a=p+a
a=p+a

rdi = y w= a a=p
rdi =w a=p+a

a=p+a
p = -.94297* ryi;

a=p+a
a=p+a

rdi = y w= a a=p
rdi= w a=p+a

a=p+a

w= a;
pc = &Ioop;

p= mtll(iny);
p= mtI2();

p=--1.112*ryj;
p = 1. *ryi;
p = -1.957*ryi;
p = 1. ow;

p = --1.7328*ryj;
p = 1.*ryi;
p = -1.891*ryi;
p = 1.*w;

Fig. 6-Digital signal processor assembler "dsp.listing" fIle.

1492 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

base = 16
size = 8
*Two Biquad Sections in Cascade
0000: 00 08 dl 42
0002: 00 08 cO 37
0004: 00 08 80 01
0006: 00 08 9f ff
0008: 00 08 af fd
OOOa: 00 08 eO 01
OOOc: 01 08 20 00
OOOe: 00 08 40 00
0010: 04 41 00 10
0012: 04 81 00 19
0014: c4 48 dd 2f
0016: 04 48 47 2b
0018: 04 08 40 00
001a: 14 41 82 cl
DOle: 94 88 40 00
DOle: 04 48 c3 a6
0020: 04 48 6e e6
0022: 04 08 40 00
0024: 10 01 86 fa
0026: 90 08 40 00
0028: 00 09 00 01
002a: 00 01 00 40
002c: 00 08 00 Oa
002e: 00 00 00 00
0030: 00 00 00 00
0032: 00 00 00 00
0034: 00 00 00 00

Fig. 7-File "b.out" written by DSP assembler.

Among the early improvements are additional macro-libraries and
better syntax checking. The philosophy now in use is that of checking
for specific errors. Because programmers are so ingenious at devising
novel mistakes, it appears that the strategy should be reversed. It
would be better to accept only code which conforms exactly to estab­
lished forms, rejecting everything else.

More difficult, and correspondingly more valuable, are features that
would simplify preparation of nsp programs for the user. This imme­
diately suggests a compiler. However, the pipeline features of the nsp
hardware will require the solution of design problems more complex
than those for a standard compiler.

Register arithmetic is another area in which assistance to program­
mers would be valuable. Much of the speed advantage of the nsp
comes from the planned use of automatically incremented registers for
indirect addressing. Unplanned or random addressing of memory
would forfeit this advantage. A compiler, then, should optimize the
register use and incrementing. It might also have to change the
locations in which the data are stored.

VII. EXAMPLES OF DSP ASSEMBLER INPUT AND OUTPUT

The following example was taken from a biquadratic filter program
and shows the use of the macro library and preprocessor. The opera­
tions are primarily numerical calculations.

Figure 4 shows the input file required to program a two section filter.

DESIGN OF THE ASSEMBLER 1493

Two Biquad Sections in Cascade
filetype i
Ox0008
Oxd142
Ox0008
Oxc037
Ox0008
Ox8001
Ox0008
Ox9ff f
Ox0008
Oxaffd
Ox0008
OxeOOl
OxOl08
Ox2000
Ox0008
Ox4000
Ox0441
Ox0010
Ox0481
Ox0019
Oxc448
Oxdd2f
Ox0448
Ox472b
Ox0408
Ox4000
Ox1441
Ox82cl
Ox9488
Ox4000
Ox0448
Oxc3a6
Ox04tl8
Ox6ee6
Ox0408
Ox4000
Oxl00l
Ox86f a
Ox9008
Ox4000
Ox0009
OxOOOl
OxOOOl
Ox0040
Ox0008
OxOOOa
OxOOOO
OxOOOO
OxOOOO
OxOOOO
OxOOOO
OxOOOO
OxOOOO
OxOOOO

Fig. 8-File "d. out" written by DSP assembler.

The use of four macro calls reduces the amount of typing required of
the programmer, and the probable number of errors. Figure 5 shows
the messages the programmer receives on the terminal at the conclu­
sion of a successful assembly. Figure 6 is the file "dsp.listing."

The files "b. out" and "d. out" are shown in Figs. 7 and 8, respectively.
The file "d.out" is the input file to the simulator, DSPMATE, and the
ROM programming utilities. The file "b.out" is a more readable output
file, giving both ROM locations and machine language in hexadecimal
machine language.

1494 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

VIII. CONCLUSIONS

An assembler for the nsp differs from conventional assemblers in
many interesting respects. Many of the standard principles of assem­
bler design either do not apply or do not provide benefit. On the other
hand, many novel problems arose, for which standard techniques were
of little assistance.

The current version of the assembler is considered to be a useful,
reliable tool for programmers to use today. There are several areas in
which greater assistance for nsp programmers can be provided and
improvements in those areas are anticipated.

REFERENCES

1. J. R. Boddie et aI., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

2. T. H. Crowley, "UNIX Time-Sharing System: Preface," B.S.T.J., 57, No.6, Part 2
(July-August 1978), pp. 1897-2304.

3. J. Aagesen, "Digital Signal Processor: Software Simulator," B.S.T.J., this issue.
4. M. E. Lesk, "Lex-A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,

Bell Laboratories (October 1975).
5. S. C. Johnson and M. E. Lesk, "UNIX Time-Sharing System: Language Develop­

ment Tools," B.S.T.J., 57, No.6 (July-August 1978), pp. 2155-75.

Appendix

NOTHING
DEST= y
DEST = YSRC
DEST=w

Notes:

Table I-Normal instructions
NOTHING a = p p = XSRC*YSRC
w = a a = p + a p = XSRC*w

a = p - a p = XSRC*c
a = p + 2*a p = XSRC*abs (YSRC)
a = p + 8*a p = XSRC*abs (w)
a = p + a/2 p = XSRC*c*sgn (YSRC)
a = p + a/8 p = XSRC*c*sgn (w)
a=p&a

(1) If YSRC occurs in column 4, DEST = YSRC may not be used in column 1.
Instead, use DEST = y.

(2) If w is used in column 4, DEST = YSRC may not be used in column 1.
(3) If the second instruction following this one is a normal instruction in which

XSRC refers to RAM, NOTHING must be selected for column 1.

Table II-Auxiliary arithmetic instructions
NOTHING
DEST = y
DEST=YSRC
DEST=w

Note:
See Notes in Table I.

NOTHING NOTHING NOTHING
w = a a = p p = YSRC
w = ltml(w) a = p + a p = w
y;! = Itm2(w) a = p - a p = mtlI (YSRC)

a = p + 2*a p = mtl2 ()
a = p + 8*a
a = p + a/2
a = p + a/8
a=p&a
a = a« 14
a = a« 18

DESIGN OF THE ASSEMBLER 1495

Table Ill-Nonarithmetic auxiliary instructions
NOTHING NOTHING
DEST = y REG = VALUE
DEST = YSRC REG = &LABEL [N]
DEST = w REG = &RAMVAR [N]

REG = YSRC

Notes:

if (CONDITION) do set ()
if (CONDITION) do au ()
if (CONDITION) dowt ()
if (lc--! = 0) doset ()
return

(1) See Note 1 in Table 1.
(2) An instruction containing only a semicolon is a no op.
(3) VALUE represents a number -- integer, real, octal or

hex.
(4) &LABEL [N] represents the Nth word in ROM memory

after the address of the label. If N = 0, [N] may be
omitted.

(5) &RAMV AR [N] represents the address of the (N +
l)th location in an array called RAMV AR, stored in
RAM memory. If N = 0, [N] may be omitted.

ibf
obe
cO
c1

Table IV-Conditions
IBUF full
OBUF empty
CO = 1
Cl = 1

a==O
a<O
a>O
Ie! = 0

a equal to zero
a less than zero
a greater than zero
lc not equal to zero

Table V-Destinations
(DEST)

Form 1 Form 2

obuf out
*rda rdz
*rda++ rdp
*rda-- rdm
*rd++i rdi
*rd++j rdj
*rd++k rdk

Table VI-Y sources
(YSRC)

Form 1 Form 2

ibufy iny
*rya ryz
*rya++ ryp
*rya-- rym
*ry++i ryi
*ry++j ryj
*ry++k ryk

1496 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Table VII-X sources (XSRC)
Form 1 Form 2

x olx previous value of x
VALUE VALUE immediate data
*rx++i axi RAM address
*rx++j axj RAM address
*rx++k axk RAM address
*rx axz RAM address
*rx++ axp RAM address
*rx-- axm RAM address
ibufx inx
* (rom+rx++i) rxi ROM address
* (rom+rx++j) rxj ROM address
* (rom+rx++k) rxk ROM address
&LABEL[N] &LABEL[N]
&RAMVAR[N] &RAMVAR[N]

Note:
See Notes 3, 4, and 5 of Table III.

Table VIII-Registers (REG)
pc program counter
rx pointer for x data
ry pointer for y data
rya alternate pointer for y data
rd pointer for write destination
rda alternate pointer for write destination
i auto-increment for memory pointer
j auto-increment for memory pointer
k auto-increment for memory pointer
lc loop counter
auc AU control
ioc I/O control
syc synchronization
str status output

Note:
auc, ioc, syc, and str cannot be set by y sources.

DESIGN OF THE ASSEMBLER 1497

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

A Tutorial Introduction to Digital Filtering

By E. J. ANGELO, JR.

(Manuscript received July 11, 1980)

Very-large-scale integration (VLSI) of digital electronic circuits has
changed the hardware aspects of digital filters in a major way so
that the use of such filters as components in commercial systems has
become both economically feasible and technically desirable. Thus,
large numbers of system engineers and circuit designers are now
finding a need to learn about the properties of such filters, how they
are used, and how they are designed. This paper is a first step toward
meeting that need.

I. INTRODUCTION

The possibility of doing filtering and. other signal-processing opera­
tions by numerical means instead of by traditional analog means has
been known and studied for 20 years or longer. However, until recently
the hardware for the physical realization of digital filters has been
bulky, power-hungry, and expensive, and for this reason the digital
filter has not been suitable for use as a component in commercial
systems. Thus, interest in digital filters has been limited to a relatively
small number of specialists doing research in this and related fields,
where size, power consumption, and cost are not primary considera­
tions.

However, VLSI has changed this condition drastically. It has reduced
the size, power consumption, and cost of digital filters to the point
where their use as a system component is both economically feasible
and technically desirable. As a result, large numbers of system engi­
neers and circuit designers are finding a need to learn about digital
filters. Therefore, there is a place for tutorial material addressed
specifically to the needs of these people.

1499

This paper is an attempt to meet this need and addresses system
engineers and circuit designers having no previous experience with
digital filters or sampled-data systems. However, they are assumed to
have a good understanding of the Laplace transform and its use with
signals, differential equations, and electric circuits. We hope to provide
a good understanding of the fundamentals of digital filtering and a
strong foundation for further study of the subject. To reach these
objectives most effectively, an effort is made to avoid all unnecessary
abstractions. Generality is sacrificed for the sake of simplicity.

II. ELEMENTS OF DIGITAL FILTERING

This section gives an introduction to digital filtering in terms of the
elementary circuit shown in Fig. 1. This simple circuit can be used to
illustrate how filtering is done in the digital domain, in contrast with
the more usual case of filtering in the analog domain.

The circuit is described by the following single node equation for
the single unknown voltage V2:

V2 - VI C dV2 = 0
R + dt .

Rearranging the terms in this equation yields

dV2
V2 + RC- = VI

dt '

(1)

(2)

which is a first-order linear differential equation In the unknown
voltage V2.

In this example, VI and V2 are understood to be information bearing
signals. For example, VI may be the output voltage of a strain gauge,
the output of an accelerometer, or the output of a telephone transmit­
ter. The information-strain, acceleration, or speech-is represented
by the amplitude of VI. The voltage V2 represents the information after
it has been processed by the Re circuit (filter). The processed form of
the information, V2, may be more valuable than the original form, VI,

because, for example, high-frequency noise has been removed from the

v, (t)

~--..----o+

c

Fig. I-An elementary filter.

1
1
I
1

v2(t)
I
I
I

1500 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

v (t)

Fig. 2-Waveform of an analog signal and discrete samples of the signal.

signal. The amplitudes of the voltages VI and V2 are the physical
analogs of the original information-strain, acceleration, or speech­
and the physical system represented by Fig. 1 is said to be an analog
system.

Consider further the signal V2(t), for example. In the mathematical
representation of eq. (2), voltage V2 represents a continuum; that is, it
can represent the values of any and all real numbers, and there are no
real numbers that cannot be values of V2. Thus, V2 can change smoothly
from anyone value to another without any jumps or discontinuities.
Similarly, time t in eq. (2) represents a continuum, and it can change
smoothly from one value to another without any jumps or discontin­
uities. Moreover, when V2(t) represents a physical quantity, as it always
does in the systems under study here, it is defined (has a numerical
value) for every value of time t. These analog considerations are
mentioned here because, in contrast, matters are quite different in
digital filters and in digital systems.

Equation (2) can be solved easily by analytic means for the unknown
voltage V2 when the input voltage VI is a sinusoidal function of time, an
exponential function of time, or a step function of time. It can also be
solved analytically, but with more difficulty, when VI is a square wave
and also, with still more difficulty, when VI is a more general periodic
function of time.

When the input signal voltage in Fig. 1 is a more complicated
function of time than in the few examples cited above, it is usually not
practical, or even possible, to solve eq. (2) by analytic means. In such
cases, however, it is possible to obtain an approximate solution by
numerical methods. These numerical methods provide the basis for
digital filtering. The numerical methods appropriate to this study are
based on considering only discrete values of the signals, voltages VI

and V2 in Fig. 1, chosen at uniformly spaced instants of time. These
discrete values of the signals are called samples of the signals. Figure
2 shows the waveform of a continuous analog signal voltage, and
uniformly spaced samples of the signal are indicated on this diagram.

If waveforms for the analog signals VI and V2 in eq. (2) exist, then

DIGITAL FILTERING 1501

sequences of samples similar to the one in Fig. 2 also exist for Vl and
V2. Assuming the same sampling instants for the two signals, these
sequences can be represented symbolically, starting at some instant
designated t = 0, as

vl(nT): Vl(O), vl(T), vl(2T), •.. , vl(kT), ••• ,

v2(nT): V2(0), v2(T), v2(2T), ..• , v2(kT), •••. (3)

Now, if the time interval between samples is sufficiently small, the
derivative in eq. (2) can be approximated at time t = nT by

dV2 _ v2(nT) - V2[(n - 1) T]
di- T (4)

As T is made smaller, the approximation becomes better. Then, if Tis
made sufficiently smail, eq. (2) can be approximated for one instant of
time, t = nT, by substituting eq. (4) into eq. (2) to get

RC RC
v2(nT) + T v2(nT) - T v2[(n - l)T] = vl(nT). (5)

Equation (5) is a linear difference equation that approximates the
linear differential equation given by eq. (2) above for one instant of
time.

The difference eq. (5) offers a possibility that is not offered by the
differential eq. (2); it can be solved explicitly for the response v2(nT)
to obtain

1 RCfT
v2(nT) = 1 + RCfT vl(nT) + 1 + RCfT v2[(n - l)T] (6)

= aVl(nT) + bV2[(n - l)T]. (7)

This equation gives the present sample of the response voltage
v2(nT), a single sample value, in terms of the present sample of the
input voltage, vl(nT), and the immediately preceding sample of the
response voltage, v2[(n - l)T]. If vl(nT) is a known sample of the
input, and if V2[(n - 1) T] is known from a previous calculation of
v2(nT), then the present value of v2(nT) can be calculated by simple
arithmetic from eq. (7), assuming, of course, that the coefficients a and
b are known. This calculation can be repeated for successive values of
vl(nT) and v2[(n - l)T] to obtain the sequence of output samples for
v2(nT).

In the calculation -described above, the present response sample
v2(nT) depends on the present input sample vl(nT) and on the im­
mediately preceding response sample v2[(n - l)T]. Thus, eq. (7) is a
kind of recursion formula in which each calculation of v2(nT) provides
the value of V2[(n - 1) T] for the next calculation in the sequence. The
start-up behavior for this system raises an additional question, but one

1502 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

of no serious consequence. If the start-up instant is designated t = 0,
which for the discrete samples corresponds to n = 0, then V1(0) is
assumed to be known, and in addition, the value of V2 (- T) is needed
for the last term in eq. (7) when n = O. This last requirement is similar
to the requirement that the initial conditions be known when a
differential equation is to be solved. If the value of V2(-T) is known
from physical considerations, there is no problem. If V2(-T) is not
known, a reasonable value, such as zero, can be assumed, and the
sequence of calculations can begin. In this case, the first few samples
of v2(nT) that are calculated will depend on the assumed initial value
of V2[(n - 1) T]. However, the effect of the assumed initial condition
decays with time, and it soon disappears.

Example 1

The simple fIlter of Fig. 1 is represented approximately by the
difference eq. (7),

v2(nT) = aV1(nT) + bV2[(n - I)T].

Suppose that the input to the filter is

v1(nT) = 1, n = 0,

= 0, n =rf 0,

and suppose that

v2(-T) = 0,

then, the response v2(nT) can be calculated as follows:

V2(0) = a + 0 = a, for n = 0

v2(T) = 0 + ba = ab,

v2(2T) = 0 + b(ab) = ab2,

v2(3T) = 0 + b(ab 2
) = ab 3

,

for n = 1,

for n = 2,

for n = 3,

for n,

It follows from eqs. (6) and (7) that the coefficients a and bare
nonnegative and less than unity. Thus, the response v2(nT) decays
with time and tends to zero as n increases without limit. This problem
is treated again in Section 4.2 from a different point of view.

In the approximate representation of the circuit in Fig. 1 by the
difference eq. (7), the time continuum does not exist; it has been

DIGITAL FILTERING 1503

replaced by a sequence of discrete instants of time. The sequence of
samples v2(nT), for example, is a discrete-time signal, in contrast to
the corresponding V2(t), which is a continuous-time signal. The dis­
crete-time signal is defined (that is, it has a specific numerical value)
only at the discrete instants of time t = nT, whereas the continuous­
time signal is defined for every instant of time. The samples of the
discrete-time signal v2(nT), for example, have finite amplitudes and
zero time duration.

As shown above, the value of the present response sample v2(nT) in
the circuit shown in Fig. 1 can be calculated from eq. (7) by using
simple arithmetic. Only multiplication and addition (of signed num­
bers) are required, and it is particularly useful in this study to think of
this arithmetic as being performed on a pocket-sized electronic calcu­
lator. This is true because the calculator is a digital machine that has
much in common with the digital filter. All of the terms on the right­
hand side of eq. (7) are entered into the calculator in digital form
(decimal digits) through the keyboard, and the result of the calculation,
v2(nT), is presented in digital form (decimal digits again) on the output
display of the calculator.

Any given electronic calculator has a fixed number of digits in its
output display, and it follows from this fact that only a finite number
of discrete values can be displayed on the output. Thus, if the calculator
is used to evaluate v2(nT) from eq. (7), then V2 can no longer represent
a continuum of values; it can represent only a finite number of discrete
values givel .. by the digits displayed on the output of the calculator.
The information in this case is not represented by the amplitude of a
physical variable, but rather, it is represented by the digits displayed
by the calculator. Therefore, by definition, the information is not in
analog form, and because of its form, it is called digital information.
The set of digits representing the information is called a digital signal.
In the case of binary systems, the information is represented by the
binary-digit (bit) patterns associated with binary numbers.

Since the digital signal produced by the calculator and by the digital
filter can have only a finite number of "allowed" values, the signal is
quantized. One result of quantization is the introduction of random
errors called quantization noise. Another result is the existence of
nonlinear feedback loops in many digital filters with the likelihood of
self-sustaining oscillations called limit cycles. However, these are prob­
lems associated with the design and performance of the hardware used
to realize digital filters, and it is not appropriate to discuss them here.
Detailed treatments of these problems are given in Refs. 1 through 3.
The remainder of this paper assumes that the number of digits avail­
able for representing signals is unlimited.

In effect, sampling the analog signal shown in Fig. 2 changes the

1504 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

continuous-time representation of the signal to a discrete-time repre­
sentation. Converting the analog-sample amplitudes in Fig. 2 to equiv­
alent digital values changes the continuous-amplitude representation
to a discrete-amplitude representation.

To summarize developments up to this point, the circuit of Fig. 1 is
chosen as a simple fIlter to be studied for the purpose of getting an
introduction to the ideas of digital filtering. The circuit is analyzed by
standard techniques to obtain an analog representation in terms of the
differential equation (2). Then, we imagine that the signal voltages VI

and V2 are sampled to obtain the difference eq. (7) as an approximation
to the differential equation. Next, we envision an electronic calculator
for evaluating eq. (7) by numerical methods. Data is entered into the
calculator in digital form, and the result of one calculation is the value
of one sample of the filter response v2(nT) in digital form. This cycle
of calculation is repeated successively with successive samples of the
input voltage VI (nT) to obtain successive values of the output voltage
v2(nT).

Consider the case in which the input to the filter in Fig. 1 is a voice
signal. To represent this signal with good accuracy by a sequence of
samples, the signal must be sampled about 10,000 times per second.
(The sampling is examined in detail in Section 3.2.) This fact implies
that for each one-second interval of speech, about 10,000 samples of
the response v2(nT) must be calculated. Although the calculation of
each output sample is simple enough, calculating 10,000 of them with
a manually operated calculator takes quite a while.

The stage is now set for the introduction of the digital signal
processor as a means for implementing digital filters. The digital signal
processor is a digital device (binary digits) that has been especially
designed to perform the arithmetic required in the repetitive evalua­
tion of the difference equation described above. It does the arithmetic
automatically at very high speed under program control. When pro­
grammed to solve eq. (7) it can accept a new input signal sample in
digital form, calculate the corresponding response sample, and deliver
the response to the output all in less than 5 !lS. Thus, the signal
processor can receive a new input sample and calculate the correspond­
ing response in a tiny fraction of the interval between successive input
samples, an interval of 100 !lS at 10,000 samples per second. It follows
from these facts that the processor, with its blazing speed, can operate
in real time, solving eq. (7) almost instantly for the response to each
input sample and then waiting for the next input sample to come
along. Thus, by solving eq. (7) in real time, the processor produces in
sampled digital form the same response to the input signal VI as the
filter in Fig. 1, within the accuracy permitted by the approximations
involved in deriving eq. (7) and in sampling VI.

DIGITAL FILTERING 1505

The filter shown in Fig. 1 is an analog computer that solves the
differential eq. (2) in real time. Similarly, the digital signal processor
is a digital computer that solves the difference eq. (7) in real time. To
the extent that eq. (7) is a good approximation to eq. (2), the processor
is a good approximation to the filter in Fig. 1.

The ideas developed above make the concepts of digital filtering and
the use of the digital signal processor for its realization seem to be
quite simple. While the basic ideas are indeed perfectly straightfor­
ward, the implementation of high-performance filters by these means
in a realistic system environment presents a challenge.

First, the question of how well difference eq. (7) approximates
differential eq. (2) has been raised above. Insofar as the filtering
operation is concerned, this question requires a detailed answer and a
more complete mathematical formulation of the problem than we have
so far given. The remainder of the paper concerns this and related
problems.

Second, the simplicity of the digital filter as presented above is
genuine, but in a way it is deceptive. The starting point for the
presentation above is chosen to bypass all of the challenging prelimi­
nary work that is needed to put the real engineering problem into a
form that can be implemented by the digital signal processor.

The linear difference equation is the central element in the concept
of the digital filter. In the example represented in Fig. 1, the difference
equation is obtained by approximating the differential eq. (2), which,
in tum, is obtained directly from the circuit assumed in Fig. 1. How­
ever, the design of real filters rarely has this kind of starting point. For
reasons which stem partly from technological heritage and partly from
mathematical tractability, filter design usually starts with a specifica­
tion of the frequency characteristics that are desired of the filter: Pass­
band characteristics and frequencies, stop-band characteristics and
frequencies, delay characteristics, and the like. Then, in order to obtain
a realization in digital form of a filter having these specified character­
istics, it is necessary to determine, in some way, a linear difference
equation describing a filter having the specified characteristics. The
digital signal processor is then programmed to evaluate this difference
equation by arithmetic operations.

The most usual way of designing a digital filter is to start with
classical analog-filter theory. Given a realizable set of frequency char­
acteristics, classical theory can be used to derive the analog transfer
function for an analog filter having the specified characteristics. Cor­
responding to this transfer function there is always a differential
equation such as the one in eq. (2), for example. In principle, it would
be possible to proceed as in the example in Fig. 1 and use this
differential equation to derive an approximately equivalent difference
equation. However, an alternative procedure proves to be more fruitful.

1506 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Every differential equation relating an output signal and its deriva­
tives to an input signal and its derivatives gives rise, through the
Laplace transform, to an analog transfer function. Similarly, as is
shown in Section IV, every difference equation relating the present
and past values of an output signal to the present and past values of
an input signal gives rise, through the z transform, to a digital transfer
function. It is shown in the remainder of this paper that the digital
transfer function is related to the digital filter and its frequency
characteristics in much the same way as the analog transfer function
is related to the analog filter. The z transform is a special form of the
Laplace transform that is developed in some detail in Section 3.I.
Furthermore, we show in Section VI that an analog transfer function
can be transformed into a digital transfer function in such a way that
the frequency characteristics of the two functions are related in a
precisely known manner. Thus, in many cases classical techniques can
be used to derive a prototype analog transfer function that can be
transformed into a digital transfer function having the desired fre­
quency characteristics. The difference equation corresponding to this
digital transfer function can be derived easily, as shown in Section 4.4,
and it can then be implemented with hardware to obtain a physical
realization of the digital filter.

The method outlined above is the most common, but not the only,
method used for designing digital filters. The remainder of this paper
gives the details of the method. However, the treatment is necessarily
introductory, and makes no attempt to provide any expertise in the
field. (See Refs. 1 through 3 for a detailed treatment of the subject.)

III. THE z TRANSFORM FOR SAMPLED SIGNALS

Section II introduced digital filtering in terms of a simple example.
The example reveals some of the approximations involved in digital
filtering, and it points out the need for a more comprehensive mathe­
matical formulation of the problem. The z transform is the mathe­
matical tool that is extensively used for this purpose. The objective of
this section is to present the z transform and to develop its properties
to the extent required by this paper.

3. 1 Definition and elementary properties of the z transform

In general, digital filtering and digital signal processing concern
processing signals that are characterized by a sequence of values,
normally instantaneous samples of a continuous-time signal, that are
uniformly spaced in time. Such signals are discussed in Section II. For
the purpose of this study, we consider only signals that are zero for
time t less than some instant designated t = o. It is also assumed that
the signal to be sampled is continuous at every sampling instant,

DIGITAL FILTERING 1507

except possibly at t = 0, in which case the value of the signal at t = 0+
is taken by convention.

Figure 2 shows a continuous-time signal and a sequence of discrete
samples of that signal. The first step in the method used here for
developing the z transform is to note that signal samples of zero
duration cannot exist in any physical system. Any sampling operation
that is implemented in hardware is necessarily associated with a
holding operation that produces signal samples of nonzero duration.
The most widely used sample-and-hold circuit has the form shown in
Fig. 3a, and when its input voltage is the continuous-time signal voltage
shown in Fig. 2, the circuit produces a stair-step output-voltage
waveform shown as U2 in Fig. 3b. It is also important to note that
digital filters are often followed by a digital-to-analog converter to
provide an output signal in analog form. In many cases the converter
produces a stair-step output waveform like the one shown in Fig. 3b.
Thus, stair-step waveforms playa central role in the analysis of digital
filters and of sampled-data systems in general.

A great deal of valuable information about the sampling process and
the stair-step output waveform can be obtained from the Laplace
transform of the stair-step signal. This transform is

V2(s) = 100

u,(t)e-·'dt. (8)

>-----0()+

(a)

(b)

Fig. 3-Sample-and-hold circuit. (a) Circuit. (b) Waveforms.

1508 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

(The convention followed in this paper is to use lower-case letters to
represent instantaneous values of time varying quantities and to use
capital letters for transforms and other quantities that are not func­
tions of time.) At first glance, evaluating the integral in eq. (8) may
seem to present a serious problem because of the stair-step form of
V2(t). However, a little further thought shows how this problem can be
reduced to the very simple problem of calculating the transform of a
constant. It follows from the definition of the integral that the integral
in eq. (8) can be expressed as the sum of infinitely many integrals,
each spanning the time interval of one step in the waveform of V2(t).
Thus, eq. (8) can be expressed as

V,(s) = iT vl(O)e-"dt + fT vl(T)e-"dt + ...

f

<n+l)T
+ vl(nT)e-stdt + (9)

nT

This equation uses the fact that during each step in the waveform,
V2(t) is constant and equal to the value of Vl(t) at the beginning of the
step.

Equation (9) can be written more briefly as

00 f<n+l)T
V2(s) = n~o nT VI (nT)e-stdt. (10)

Evaluating this integral and inserting the limits yields

00 (e-SnT _ e-s<n+l)T)
V2(s) = L vl(nT) .

n=O S
(11)

Factoring e-nsT out of the parentheses in eq. (11) produces

00 (1 _ e-ST)
V2(s) = n~o vl(nT)e-

nsT
s . (12)

N ow the factor in the parentheses is independent of n; hence, it can be
factored out of the summation to produce

(13)

The summation in eq. (13) contains the values of all the samples of
the input signal Vl(t), and it also contains the instant of time t = nT at
which each sample occurs. Thus, it contains complete information
about the sequence of samples VI (n T). It is, therefore, common practice
to associate the summation with the process of sampling the input
signal. The factor multiplying the summation depends on the fact

DIGITAL FILTERING 1509

that the output signal V2(t) is a stair-step wave, but it is totally
independent of the input signal VI (t). This factor is the same in the
Laplace transform of every stair-step wave, and it is commonly asso­
ciated with the hold part of the sample-and-hold operation. Since this
factor is the same for every stair-step wave, it is of minor importance
in the design of digital filters, although its effect must always be
accounted for at some point in the design.

As a result of the relations described above, it proves to be very
useful to break eq. (13) into two parts,

00

V1(s) = L vI(nT)e-nsT (14)
n=O

and

(15)

so that (13) can be written as

V2(s) = Hh(s)V1(s). (16)

The circumflex ("') is used to distinguish the function in eq. (14)
pertaining to the sample values of VI(t) from the Laplace transform
VI(S) of the unsampled signal VI(t). The subscript h on the left side of
eq. (15) signifies that Hh is associated with the hold part of the sample­
and-hold operation.

The separation of eq. (13) into two parts given by eqs. (14) and (15)
is a purely algebraic operation; it is not based on any consideration of
any physical system. Therefore, readers should not feel frustrated if
their attempts to ascribe a physical significance to these separate
relations produce results that are less than completely satisfactory.
However, when eqs. (14) and (15) are multiplied together, as in eq.
(16), the result is always the Laplace transform of a stair-step wave in
which the heights of the successive steps are equal to the values of the
successive samples in eq. (14).

In eq. (14) the complex-frequency variable S appears only in the
combination e-nsT. Therefore, it proves to be quite convenient to define
a new symbol,

so that eq. (14) can be written more simply as

Vi(z) = L vI(nT)z-n
n=O

= VI(O) + vI(T)z-1 + vI(2T)z-2 + ...
+ vI(nT)z-n +

(17)

(18)

(19)

This is the z transform of the sequence of sample values vI(nT). The

1510 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

transform, as given by eq. (18), is an infinite series in the variable z.
Since eq. (18) is a power series, it can be shown by conventional
methods that if the sequence VI (n T) is bounded, then the series
converges for all values of z such that I z I > 1.

The relations developed above can be illustrated with the aid of Fig.
4. Figure 4a shows the beginning of a sequence of samples, {(nT). The
z transform of this sequence can be written by inspection with the aid
of Fig. 4a; it is

F*(z) = ~ {(nT)z-n. (20)
n=O

Furthermore, a stair-step wave, {a(t), can be constructed on the sam­
ples of Fig. 4a as shown in Fig. 4b. The height of each successive step
is equal to the value of each successive sample in Fig. 4a. Now the
Laplace transform of the stair-step wave can be written. Using eq. (17)
to replace z in eq. (20) yields

00

F(s) = ~ {(nT)e-nsT. (21)
n=O

Then, eqs. (15) and (16) lead to

Fa(s) = Hh(s)F(s)

1 - e-sT
00

= ~ {(nT)e-nsT.
s n=O

(22)

f (nT)

OL-__ ~ __ ~ __ ~ __ ~ __ '-__ ~ __ ,-__ ,-______ _

o T 2T

(a)

OL-__ ~ __ L-__ L-__ ~ __ ~ __ +-__ ~ __ ~ ______ _
o

(b)

Fig. 4-Sampled data. (a) Sequence of samples. (b) Stair-step waveform.

DIGITAL FILTERING 1511

This is the Laplace transform of the stair-step wave.

Example 2

Consider the short sequence of samples

f(nT): 2, 3, 1,0,0,0, "'.

The z transform of the sequence is, by inspection
2

F*(z) = L f(nT)z-n = 2 + 3z-1 + Z-2.
n=O

Using eq. (17) to replace z in eq. (23) yields

1'(8) = 2 + 3e-sT + e-2sT
•

(23)

(24)

The Laplace transform of the corresponding stair-step function is given
by eqs. (15) and (16) as

1 = _ (2 + 3e-sT + e-2sT _ 2e-sT _ 3e-2sT _ e-3sT)

8

2 1 2 1 = _ + _ e-sT __ e-2sT __ e-3sT• (25)
8 8 8 8

If u(t - nT) represents the unit step function delayed by nT units of
time, then the inverse Laplace transform of eq. (25) can be written
term-by-term as

(a{t) = 2u(t) + u(t - T) - 2u(t - 2T) - u(t - 3T). (26)

As a quick sketch of eq. (26) shows, it is the stair-step wave based on
the given arbitrary sequence of samples.

Example 3

Suppose that the input voltage to the sample-and-hold circuit in Fig.
3a is a unit-step function so that samples vl(nT) are unity for all
nonnegative n including n = O. The z transform for this sequence is,
from eq. (18):

Vi(z) = L z-n. (27)
n=O

This series can be summed to obtain

* 1 VI (z) = 1 -1 ' -z Izl> 1. (28)

The series in eq. (27) converges to this value for all values of z such
that Izl > 1.

1512 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

The important point in the above examples is that given an arbitrary
sequence of uniformly spaced sample values, the z transform of the
sequence can be written by inspection. Then, with no effort at all, the
Laplace transform of the associated stair-step wave can be written,
and from the Laplace transform the frequency spectrum of the wave
can be calculated. The frequency spectrum is, of course, a central idea
in the classical methods for the analysis and design of filters.

Similarly, given the z transform expressed as a power series in z-I,
the corresponding sequence of sample values can be written directly
by inspection of the coefficients in the power series. In this way, the
inverse of the z transform can be calculated. In the study that follows,
there will be numerous occasions to write z transforms and their
inverses by these simple procedures.

The z transform defined by eq. (18),

Vi(z) = L vl(nT)z-n, (29)
n=O

is obtained from the Laplace transform in eq. (14),
ClO

V1(s) = L vdnT)e-nsT, (30)
n=O

by defining the symbol

(31)

The relations between z and S and between Vi(z) and V1(s) are
important in the following study; therefore, we examine them here.
For every point in the s plane, eq. (31) specifies just one point in the
z plane. Conversely, however, every point in the z plane corresponds,
through eq. (31), to infinitely many points in the s plane. This matter
is examined in more detail later. The process by which a point in one
plane is transferred to the other plane is called "mapping," and the
law that governs the mapping process in the present case is eq. (31).
At corresponding points in the two planes, eq. (31) is satisfied, and
then eqs. (29) and (30) are equivalent with

Vi(z) = 111(s). (32)

The important relationship between the z and s planes can be
explored further by considering the special case in which the complex­
frequency variable s takes on purely imaginary values, s = jw, and sis,
thus, restricted to points in the s plane lying on the imaginary axis.
The corresponding values of z are given by eq. (31) as

(33)

Under this condition,

DIGITAL FILTERING 1513

(34)

and all values of z satisfying this relation correspond to points on the
unit circle in the z plane, a circle centered at the origin and having
unity radius. That is, every point on the jw axis in the s plane
corresponds to a point on the unit circle in the z plane, or, more simply,
the jw axis in the s plane maps onto the unit circle in the z plane.

It also follows from eq. (33) that

z=l when w = o. (35)

Furthermore, as w increases in the positive direction from zero, the
angle of z, which is just wT rad, increases positively, and as the point
s moves up the jw axis in the s plane, the point z moves continuously
in a counterclockwise direction around the unit circle in the z plane.
These relations are illustrated in Figs. 5a and h. (The three parts of
Fig. 5 represent the same z plane; three parts are used to avoid putting
too much information into one diagram.)

Then, from eq. (33), as w increases,

z =-1 when wT = 7T rad.

If the sampling frequency is defined as

1m

---;-----r----;---Re

(a)

\
\

s = jw

1m

1m

---~~----+-----r~---Re
/ ,

/ \
w=w~2 W=Q

(b)

RIGHT HALF OF
s PLANE

----r----;~---+--~Re

LEFT HALF OF ..-'/"
sPLANE

(c)

Fig. 5-Relations between the z plane and the s plane.

1514 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

(36)

then eq. (36) can be written as

z =-1 when

or when

Ws
w=-

2

(37)

(38)

(39)

This relation is shown in Fig. 5b. Thus, as w increases positively from
zero to (ws/2) rad/s, the point z moves counterclockwise around the
upper semicircle in Fig. 5a.

In a similar way, as w increases negatively from zero to (-ws/2) rad/
s, the point z moves clockwise around the lower semicircle in Fig. 5a.

To pursue this matter further, let s = jw move up thejw axis without
limit. It then follows from eq. (33) that the corresponding point in the
z plane moves around the unit circle shown in Fig. 5 repeatedly,
without limit. Thus, z passes through any given point on the unit circle
an unlimited number of times as jw increases without limit, and that
single point on the unit circle in the z plane corresponds to infinitely
many points uniformly spaced on the jw axis in the s plane.

To explore this matter further, note that

exp(jwT) = exp[j(wT + 27Tk)],

and using eq. (37),

exp(jwT) = exp[j(w + kws) T],

k=0,±1,±2, ... , (40)

k = 0, ± 1, ±2, (41)

But this is the definition of a periodic function of w with, in this case,
a period equal to W s , the sampling frequency in radians per second.
Moreover, with s = jw, eq. (30) becomes

00

V1(jw) = L vl(nT)e-jnwT
, (42)

n=O

and it follows from eq. (41) that V1(jw) is also periodic with a period
equal to Ws. Thus, the frequency spectrum of the sampled wave is a
periodic function of w, a consequence of the sampling operation. We
examine this further in the next section.

Returning to eq. (31) and substituting s = a + jw yields

(43)

and

(44)

DIGITAL FILTERING 1515

Since T is always positive, it follows that

I z I < 1 when (J < O. (45)

Thus, the entire left half of the 8 plane is mapped by eq. (43) into the
interior of the unit circle in the z plane as indicated in Fig. 5c. It is
easy to show in a similar manner that the right half of the 8 plane is
mapped into the exterior of the unit circle in the z plane. These
relations are of basic importance when considering the stability (free­
dom from growing transients) of digital filters.

3.2 Frequency spectra of sampled signals

In Section 3.1 a continuous-time signal voltage VI(t), having a
Laplace transform Vd8), is applied to the input of the sample-and­
hold circuit shown in Fig. 3a. The output of this circuit is the stair­
step signal voltage V2(t) shown in Fig. 3b. The Laplace transform of
V2(t) is found in Section 3.1 to be

where

and

1 -sT -e
Hh(8) = ,

8

V1(8) = L vI(nT)e-nsT
•

n=O

(46)

(47)

(48)

In Section 3.1, we show that with 8 = jw, Vdjw) is a periodic function
of w with a period equal to W s, the sampling frequency in radians per
second. However, the analysis given there provides no information
about V1(jw) beyond the fact that it is periodic. The objective here is
to extend that analysis.

Since V1(8) in eq. (48) depends on the sample values of VI(t), it
seems reasonable that V1(8) should be related in some way to Vd8),
the Laplace transform of VI (t). This, in fact, is the case. It can be
shown that

(49)

where, again, Ws is the sampling frequency. The case of greatest interest
is that in which 8 = jw, and

(50)

This result shows, again, that VI (jw) is a periodic function of w, and it

1516 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

shows further that the function consists of VI (jw), the transform
of vdt), repeated periodically along the jw axis with a spacing equal
to WS.

Equation (50) is a very important relation that has been proved in
the literature many times by various methods. (See Refs. 1 through 4.)
All of the methods have one thing in common-they are not simple.
Furthermore, the proof does not contribute any useful engineering
insights; all of the results of interest to system and circuit designers
are contained in the end result, eq. (50), and hence, the proof is not
included here.

Equation (48) corresponds to a z transform expressed in terms of
the sample values of VI (t). This expression is in a form especially
suitable for time-domain studies, such as those involving difference
equations and their numerical solution by digital filters. Equation (50)
corresponds to the same z transform, but it is expressed in terms of
VI(jw), the transform of vdt). This expression is in a form especially
suitable for frequency-domain studies, such as those involving the
frequency characteristics of sampled signals and digital filters.

With s = jw, eqs. (46), (47), and (50) can be used to express the
transform of the stair-step output voltage delivered by the sample­
and-hold circuit of Fig. 3a as

1 - e-JwT 00

V2 (jw) = jwT n~oo Vl[j(W - nws)]. (51)

This equation gives the transform of the output voltage V2 in terms of
the transform of the input voltage VI and a weighting factor associated
with the hold part of the sample-and-hold operation. Consider the
summation on the right-hand side of eq. (51). Figure 6 illustrates the
important relations expressed by this summation. Figure 6a shows a
possible frequency spectrum I VI (j w) I for the signal at the input of the
circuit in Fig. 3a. Figure 6b shows a possible spectrum of the summation
in eq. (51), generated by sampling the input signal. As specified by eq.
(51), this spectrum is exactly the spectrum of Fig. 6a repeated period­
ically on the w axis with the period Ws.

The fust thing to be noticed about the spectrum shown in Fig. 6b is
that, under the conditions pictured, this spectrum contains the undis­
torted spectrum of Fig. 6a, the spectrum of the original signal before
sampling. Thus, it contains in undistorted form all of the information
in the original signal. Clearly, this is true only if the maximum
frequency Wm in the original signal is less than ws /2, half the sampling
frequency. If Wm exceeds this limit, the periodically repeating spectra
will overlap, and the information contained in the original spectrum
shown in Fig. 6a will be irreversibly distorted. Distortion arising from
this source is called fold-over error or, more commonly, aliasing.

DIGITALFILTERING 1517

• w

(a)

(b)

Fig. 6-Frequency spectra. (a) Spectrum of the signal before sampling. (b) Spectrum
of the sum in eq. (51).

Armed with these results, it is appropriate to return now to eq. (51),
the complete transform of the stair-step output voltage of the sample­
and-hold circuit in Fig. 3. This equation is

1 - e-jwT
00

V2 (jw) = jwT n~oo V1[j(w - nws)] (52)

1 - e-jwT

= . T {V1(jw) + VI[j(w ± ws)] + ... }. (53)
JW

If the sample-and-hold circuit is designed so that there is no fold-over
error, or aliasing, then it follows from Fig. 6 and eq. (53) that an ideal
low-pass filter can be used to recover the spectrum of the input signal
VI(jw) from the spectrum of the stair-step output signal V2(jw). The
output from such a low-pass filter is, from eq. (53),

1 - e-jwT

V3(jw) = . T V1(jw). (54)
JW

Thus, V}(jw) is recovered from the output of the sample-and-hold
circuit, but it is weighted by another function of w representing the
filtering action of the sample-and-hold circuit. The low-pass filter used
to recover V}(jw) is called a reconstruction filter. It is understood that
VI (j w) is zero at all frequencies outside the passband of the reconstruc­
tion filter.

Equation (54) can be rearranged to give further insight in the
following manner. Factoring e-jwT

/
2 out of the numerator of the fraction

yields

1518 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

e}wT/2 _ e-}wT/2

V3(jW) = j2(wTI2) e-}wT/2 Vdjw)

_ sin(wT 12) -}wT/2 V (.)
- wTI2 e 1 JW .

Then the magnitude of V3(jw) is

I V3(jw) I = ISin~;~:2) II V1(jw) I.

With the sampling frequency is = liT as before,

wT w 7TW
-=-=-

2 2is Ws

and

(55)

(56)

(57)

(58)

The fIrst factor on the right in eq. (58) is the magnitude of the fIlter
function associated with the sample-and-hold circuit. It is the (sin x)1
x function that occurs frequently in the study of signals and the
response of linear systems to signals. A plot of this function is shown
in Fig. 7. As eq. (58) shows, the spectrum of the signal at the input to
the sample-and-hold circuit is multiplied by this weighting curve.
Figures 6 and 7 should be compared in the light of this fact. Note that
the (sin x) I x weighting function in this case has zeros at w equal to
±ws, ±2ws, •.. , ±kws,

In the design of precision digital filters the effects of the (sin x) I x
function in Fig. 7 must be accounted for at some point in the design.
In some cases, the reconstruction fIlter, discussed in connection with

sin (7TW/Ws)

7TW/Ws

Fig. 7-Plot of the factor in eq. (58).

W

DIGITAL FILTERING 1519

eq. (54), is designed to compensate for the (sin x)/x function over the
band of frequencies occupied by the signal.

The developments above provide a quantitative answer to the
important question of how frequently a signal must be sampled to
ensure that the train of samples constitutes an accurate representation
of the information contained in the signal. The results presented above
show that the original information can be recovered with good accu­
racy if there is no fold-over error, and they also show that irremovable
distortion is introduced when fold over occurs. Fold over-and distortion
are avoided if the maximum frequency fm contained in the original
signal is less than half the sampling frequency. Thus, for no distortion,
it is required that

(59)

This result was fIrst published by H. Nyquist, and the particular
sampling frequency is = liT = 2fm is called the Nyquist frequency or
the Nyquist rate.

From these results, it follows that the original signal must be band­
limited so that a sampling frequency greater than 2fm can be chosen.
Furthermore, after a sampling frequency fs has been chosen, it is still
usually necessary to pass the input signal through a band-limiting fIlter
to prevent high-frequency noise and spurious signals from being folded
back on top of the baseband signal. Such band-limiting filters are
usually called antialiasing fIlters.

It is shown above that when a signal is sampled, the information in
the original signal can be recovered from the sampled signal with the
aid of an ideal low-pass reconstruction filter, provided that the signal
is sampled at a frequency at least twice the highest frequency contained
in the original signal. In practice, however, ideal filters are not avail­
able, and practical filters require a band of frequencies in which to
make the transition from the passband to the stopband. Thus, in order
to avoid distortion of the information in practice, the signal must be
sampled at a frequency somewhat greater than twice the maximum
frequency in the original signal. Under this condition, the lobes\of the
periodic frequency spectrum shown in Fig. 6b are separated by an
interval on the frequency axis. This interval is called a guard band,
and it provides the band needed by the low-pass reconstruction filter
to make the transition from the passband to the stopband.

Voice signals in telephony are usually band-limited so that the
maximum frequency is in the range between 3 and 3.5 kHz, depending
on the type of service involved. The sampling frequency used with
such signals is usually 8 kHz, providing a guard band of from 1 to 2
kHz, depending on the maximum frequency in the signal.

1520 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

IV. TRANSFER FUNCTIONS IN THE z DOMAIN

The z transform is developed in Section 3.1 as a special form of the
Laplace transform with a new variable z = esT. The Laplace transform
leads to the highly useful concept of the transfer function in the
frequency domain for systems processing continuous-time signals.
These transfer functions often take the desirable form of rational
functions of the complex frequency s. In a similar way, the z transform
leads to an equally useful transfer function in the z domain for systems
processing discrete-time signals. These transfer functions often take
the desirable form of rational functions of the variable z = esT. The
objective of this section is to develop the z-domain transfer function
and to examine its use in the design of digital filters.

4. 1 The time-shift theorem

In the case of the Laplace transform, there are many theorems
stating the mathematical properties of the transform, and similarly,
there are many theorems stating basic properties of the z transform.
However, among all of these z-transform theorems, there is only one
that is important in this study of digital filters. This is the time-shift
theorem, and it is important in deriving the z-domain transfer function
from the linear difference equation (see Section II).

To develop this theorem, consider the function f(t) such that

f(t) = 0 for t < o. (60)

Consider also the same function delayed in time, f(t - kT), where k is
a positive integer and

f(t - kT) = 0 for t - kT < o. (61)

The z transform of the sequence of samples representing f(t) IS

obtained, using eq. (18), by changing t to nT and writing

F(z) = L f(nT)z-n (62)
n=O

= f(O) + f(T)z-l + ... + f(nT)z-n + (63)

Similarly, if the delayed signal is sampled at the same instants, the
transform of the delayed signal is obtained by replacing t with nT and
writing

(64)
n=O

= f(-kT) + f[(1 - k)T]z-l + ... + f(-T)z-(k-l)

+ f(O)Z-k + f(T)z-(k+l) + f(2T)z-(k+2) + (65)

DIGITAL FILTERING 1521

But according to eq. (61), all terms in eq. (65) for which n - k is less
than zero are themselves zero, and, thus, eq. (65) reduces to

Fd(z) = f(O)Z-k + f(T)z-(k+l) + f(2T)z-(k+2) + ...

= Z-k[f(O) + f(T)z-1 + f(2T)z-2 + ...]. (66)

Comparing eqs. (66) and (63) yields

Fd(z) = Z-k F(z). (67)

Thus, if the z transform of the sequence f(nT) is F(z), then for any
positive integer k, the z transform of the sequence, f[(n - k)T], is
Z-k F(z).

4.2 The transfer function

The s-domain transfer function evolves from the differential equa­
tion and the Laplace transform. In a similar manner, the z-domain
transfer function evolves from the difference equation and the z
transform. A simple example serves as a satisfactory introduction to
this topic, and such an example is provided by th~ circuit of Fig. 1, the
corresponding difference eq. (7), and the related discussion in Section
II.

The difference eq. (7) is

v2(nT) = aVI(nT) + bV2[(n - I)T]. (68)

This expression represents one sample value of the response v2(nT).
This present value of V2 depends on the present value of the input
signal vl(nT) and also on the previous sample value of V2. The totality
of sample values of the input VI and the response V2 for nonnegative
values of n is give'n in Section II as

vI(nT): VI(O), vI(T), vl(2T), ••• , vI(kT), ..• ,

v2(nT): V2(0), v2(T), v2(2T), .•• , v2(kT), • • . . (69)

The z transform of VI (nT) can be written, from eq. (18), as

V1(z) = L vl(nT)z-n, (70)
n=O

and the z transform of v2(nT) is

(71)
n=O

Similarly, eq. (68) can be transformed by multiplying by z-n and
summing over all nonnegative values of n; the result is

L v2(nT)z-n = a L vl(nT)z-n + b L v2[(n - I)T]z-n. (72)
n=O n=O n=O

1522 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Now, using eqs. (70) and (71) together with the time-shift theorem
(eqs. (64) and (67)), eq. (72) can be written simply as

V2 (z) = a V1(z) + bz- 1 V2(z). (73)

Equation (73) can now be solved to obtain the response V2(z) as an
explicit function of the input V1(z), and the result is

a
V2 (z) = b -1 V1(z).

1- z
(74)

The z-domain transfer function is then defined as

V2(z) a
H(z) = V

1
(z) = 1 _ bz 1 •

(75)

In this way, given a linear difference equation, the corresponding z­
domain transfer function can be determined. The result is a rational
function of the variable z, and the coefficients in the transfer function
are the coefficients in the difference equation. For digital filters the
coefficients are normally real numbers. Of much greater importance to
the design of digital filters, however, is the fact that this process works
equally well in the opposite direction. Given a z-domain transfer
function that is a rational function of z with real coefficients, a
corresponding linear difference equation can be determined. This
reverse operation is of basic importance because the digital filter
performs the filtering function by the numerical evaluation of the
difference equation, as discussed in some detail in Section II. The
required difference equation is almost always obtained from a z­
domain transfer function.

Of further importance in this connection is the fact that there are
many ways in which s-domain transfer functions for continuous-time
signals can be transformed into approximately equivalent z-domain
transfer functions for discrete-time signals. Thus, frequency-domain
specifications for a filter can be used with classical procedures to
obtain an s-domain transfer function, the s-domain transfer function
can then be transformed into a z-domain transfer function, and finally,
the difference equation required by the digital filter can be determined
from the z-domain transfer function. These matters are discussed in
more detail in Section VI.

The term z-domain transfer function is often replaced by the term
digital transfer function to emphasize the fact that H(z) is associated
with a digital filter. Similarly, to preserve the distinctions, the s­
domain transfer function is often called an analog transfer function.
These terms are used in the remainder of this paper.

Returning to eq. (74) and using the definition in eq. (75), the
transform of the response can be written as

DIGITAL FILTERING 1523

(76)

Some further insights can be gained by considering the special case in
which the input signal has a z transform VI (z) = 1. This transform
corresponds to a sample sequence vl(nT) that has a value of unity for
n = 0 and a value of zero for all other values of n. Such a signal is
sometimes called a unit-sample signal. With this input, eq. (76) be­
comes

a
V2(z) = H(z) = 1 _ bz- 1 , (77)

and it represents the unit-sample response of the difference equation
(68). (For future use, note the similarity between the unit-sample
response in this case and the unit-impulse response in the case of the
analog transfer function.) The inverse transform of eq. (77) gives the
time-domain response v2(nT) to the unit-sample input. The inversion
can be performed by expanding the right-hand side of eq. (77) in a
power series in Z-l and then reading off the coefficients of successive
powers of Z-I. One way to get such a power series in this case is to
perform algebraically the division indicated by eq. (77); when this is
done, the result is

V2(z) = H(z) = a + abz- 1 + ab2z-2 + (78)

The coefficients in the successive terms of this series are the uniformly
spaced samples of the unit-sample response v2(nT); they are

(79)

Note that exactly this result is obtained in Example 1 of Section II by
direct evaluation of difference eq. (7).

The sample values given in eq. (79) lie on a decaying exponential
curve having the equation

(80)

This assertion can be verified by substituting t = nT and comparing
the result with the general term in the sequence given by expression
(79). It follows from eqs. (6) and (7) that b is nonnegative and less than
unity. Thus, V2(t) in eq. (80) decreases by the factor b (less than unity)
in every interval of duration T, which is in agreement with eq. (79).

The sequence of sample values given in expression (79) constitutes
the inverse transform of the digital transfer function for the filter in
Fig. 1, and it is also the response of the filter to a unit-sample input. In
the study of the Laplace transform, the inverse transform of the analog
transfer function is identified with the response of the filter to a unit­
impulse input. The terminology developed for the analog transfer

1524 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

function is carried over to the digital transfer function, and the inverse
of the digital transfer function is also called the impulse response of
the filter, although in fact it is the unit-sample response. Thus expres­
sion (79) is called the impulse response of the digital transfer function
in eq. (77). Note that the inverse transform given by expression (79)
consists of a sequence of infinitely many samples. Many digital filters
have impulse responses of this form, and as a class they are called
infinite-impulse-response (IIR) filters.

The digital transfer functions that are useful in the design of digital
filters are usually rational functions of z that can be written in the
form

N(z)
H(z) = D(z) , (81)

where Nand D are polynomials in z. The impulse response (unit­
sample response) associated with these functions can be determined
by writing Nand D in ascending powers of Z-l and performing the
indicated division, as was done to obtain eq. (78). In general, the
impulse response is a sequence of infinitely many samples as in eq.
(78). However, there is a subset having the form

(82)

and members of this subset are sometimes used as the basis for digital
filters. In this case, the impulse response has a finite number of terms,
ao, aI, ••• aN, given by eq. (82), and no division is needed to determine
them. Filters of this class are called finite-impulse-response (FIR)

filters. These filters are the digital counterparts of the classical analog
transversal filters realized with the aid of electrical delay lines. See
Refs. 1 through 3 for further information on FIR filters.

4.3 Frequency characteristics of the digital transfer function

Section 4.2 shows how the digital transfer function can be developed
from a linear difference equation. The main result is given by eqs. (74)
and (75), and it has the form

(83)

where H(z) is the digital transfer function and Va and Vb are transforms
of the input and output signals, respectively. At this point, it is possible
to examine to some extent how the transfer function performs as a
filter and to gain some understanding of its frequency characteristics
and how they affect the transmission of signals.

This study is based on the results developed in Section III; therefore,
it is helpful to revert to the symbolism used in eqs. (14) through (19).
Thus, eq. (83) is rewritten as

DIGITAL FILTERING 1525

V6(z) = H(z) V~(z). (84)

The transform vt(z) represents a sequence of discrete-time sample
values Vb (nT). However, filter characteristics, as understood by engi­
neers, have meaning only in terms of continuous-time analog input
and output signals. Therefore, it is assumed here that the digital
transfer function (filter) is followed by a digital-to-analog converter
that generates a stair-step wave based on the sequence of sample
values Vb (nT), as illustrated in Fig. 4, to produce an output in analog
form.

The Laplace transform of this stair-step wave is given by eq. (16) as

(85)

The next step concerns certain definitions that are made in Section
3.1. The identities below are not functional relations-they are pure
definitions. The quantity vt(z) in eq. (84) is defined by eqs. (14), (17),
and (18) to be

ex>

L Vb (nT)e-nsT == Vb(s) == Vt(esT) == vt(z), (86)
n=O

and similarly, by definition,
ex>

L Va (nT)e-nsT == Va(s) == V~(esT) == V~(z). (87)
n=O

Now, substituting z = esT into eq. (84) and using eq. (86) leads to

Vt(esT) = H(esT) V~(esT) = Vb(s). (88)

Rearranging this equation and using (87) produces

Vb(s) = H(esT)V~(esT) = H(esT)Va(s). (89)

This result can now be substituted into eq. (85) to obtain

Vc(s) = Hh(s)H(esT) Va(s), (90)

for the transform of the stair-step output.
For s = jw, eq. (90) becomes

Vc(jw) = Hh(jw)H(ejwT) Va(jw) ,

and substituting eq. (50) for Va(jw) yields

(91)

Vc(jw) = ~ Hh(jw)H(e
jwT

) niex> Va[j(W - nws)]. (92)

This is the transform of the stair-step output of the digital filter
followed by a digital-to-analog converter.

To interpret eq. (92), it is best to start at the far right and work back

1526 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

to the left. The quantity Va (j w) is the transform of the analog signal
at the input to the filter before it is sampled. The offset nws and the
summation represent the periodic frequency spectrum generated by
sampling the input signal; an example of such a spectrum is shown in
Fig. 6. The factor H(e iwT

) multiplying the summation in eq. (92) is the
digital transfer function expressed as a function of s = j w. The
magnitude and phase characteristics of this factor modify the fre­
quency spectrum of the sampled input signal in the usual way, and by
this process the filter performs its function. The design of digital filters
is concerned mainly with this factor. The factor Hh(jW) is given by eq.
(15) with s = jw. This factor, together with the multiplier liT,
contributes the (sin x)lx weighting function shown in eq. (58) and Fig.
7.

In summary, the frequency characteristics of the digital filter fol­
lowed by a digital-to-analog converter are obtained [apart from the
(sin x)/x factor] from the digital transfer function H(z) with z = eiwT

•

This transfer function is, of course, closely related to the linear differ­
ence equation from which it is derived and which is implemented by
the digital filter.

4.4 Difference equations from the transfer function

Section 4.2 shows how the digital transfer function can be deter­
mined from a given difference equation. This section is concerned with
the inverse operation, determining the difference equation from a
given digital transfer function. The importance of this operation lies in
the fact that the digital filter operates, as described in Section II, by
calculating values given by a difference equation. However, filter
specifications are usually given in terms of frequency characteristics,
and such specifications lead to transfer functions. Thus, the required
difference equation is usually obtained from a digital transfer function.

The transfer functions that are appropriate for this study are rational
functions of z with real coefficients, expressed as

N(z)
H(z) = D(z) ,

where Nand D are polynomials in z. In the study of these functions,
we note that if the polynomials Nandi or D are of degree greater than
two, and especially if the roots of N or D are located close together in
the z plane, then practical realization of the corresponding digital filter
often proves to be unsatisfactory. The performance of the filter is so
sensitive to the values of the coefficients in Nand D that high-quality
performance cannot be obtained. Therefore, special procedures must
be followed to make possible the realization of precision digital filters
of high complexity. One special procedure that can be followed is to

DIGITAL FILTERING 1527

decompose the complex filter into a cascade of noninteracting biquad­
ratic (second-order) sections, plus possibly a single first-order section.
This procedure may not be the best way to solve the problem, but it
is simple, it always works, and, therefore, it is widely used. (It is noted
in passing that exactly the same problem arises in the design of active
RC analog filters, and it is often solved in the same way.) Thus, in the
remainder of this paper, the most complex transfer function to be
considered, a basic building block, is the biquadratic function of the
form

-I -2
H(z) = ao + alz + a2Z

1 + bIZ 1 + b2z-2 (93)

If the response of the sampled-signal system corresponding to eq.
(93) is designated r(nT) with the z transform R(z), and if the stimulus
(input) is designated s(nT) with the transform S(z), then eq. (93) can
be used to write

(94)

At this point, it is appropriate to note for future use that eq. (94) can
be written in the alternative form

1 + alz- I + a2z-2

R(z) = ao 1 bIb -2 S(z). (95) + IZ + 2Z

When several such sections are connected in cascade, it may be
possible to lump some or all of the scale factors ao into a single scale
factor for the entire filter. The result is a reduction in the number of
multiplications that the hardware must perform, a fact that is discussed
further in Section V. However, a potential problem exists in this
connection, because the signal level throughout the filter must be kept
in a suitable range. If the signal level is too large, some register in the
filter will overflow and cause distortion. If the signal level is too small,
the signal-to-noise ratio will suffer. Thus, it may be necessary to
distribute the scale factors throughout the filter.

Equation (94) can be rearranged algebraically to obtain

R(z) = aoS(z) + alz-IS(Z) + a2z-2S(Z)

- bIz-1R(z) - b2z-2R(z). (96)

From the definition of the z transform in eq. (18), it follows that

S(z) = L s(nT)z-n, (97)
n

where it is understood that the summation is over all nonnegative
values of n. Similarly, the time-shift theorem, eqs. (64) and (67), yields

1528 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

n

and

n

Using equivalences of this kind throughout eq. (96) yields

L r(nT)z-n = L aos(nT)z-n + L als[(n - l)T]z-n
n n n

+ L a2s[(n - 2)T]z-n - L b1r[(n - l)T]z-n
n n

n

(98)

(99)

(100)

The desired difference equation is the inverse of this transform equa­
tion. The inversion is performed by removing the summations and
cancelling the common factor z-n; the result is

r(nT) = aos(nT) + als[(n - l)T] + a2s[(n - 2)T]

- b1r[(n - l)T] - b2r[(n - 2)T]. (101)

The digital filter can be programmed to perform, in real time, the
multiplications and additions of signal samples and coefficients re­
quired to evaluate the right-hand side of eq. (101) for each successive
sample of the response r(nT). A simple example of this operation is
presented in Section II. According to eq. (92) and the related discus­
sion, the frequency characteristics of the resulting digital filter are
given by H(e iwT

), the transfer function of eq. (93) with z = eiwT
•

Each specific biquadratic filter section is characterized completely
for the filter hardware by the coefficients aj and bk of the difference
eq. (101). (The quantities rand s are time varying data values.) These
coefficients are typically part of the program for the filter, and they
are stored with the program in the read-only memory (ROM) of the
hardware. It is also significant to note that the coefficients in eq. (101)
are identical with the coefficients in the digital transfer function of eq.
(93). Thus, when the digital transfer function for the biquadratic
section has been determined, the design is complete, and the program­
ming of the signal processor can begin.

The present value of the response r(nT) in eq. (101) depends on
both the present and past values of the stimulus and also on past
values of the response. Or, stated another way, the response r(nT)
calculated at the present will be used in calculating future values of
the response. Thus, eq. (101) is a kind of recursion formula for
calculating successive values of the response. For that reason, filters of
this class are called recursive filters. Note that the transfer function

DIGITAL FILTERING 1529

for the FIR filter, given by eq. (82), has all its b coefficients equal to
zero. Thus, the response of the FIR filter does not depend on past
values of the response, and hence, there is no recursion. Filters of this
class are called nonrecursive filters.

V. NUMERICAL SOLUTION OF DIFFERENCE EQUATIONS

Any biquadratic digital filter is described by a linear difference
equation of the form given by eq. (101). The aj and bk on the right­
hand side of this equation are coefficients of the difference equation
(filter), and they are usually stored in the ROM of the signal processor.
The quantities rand s are either past data values stored in the random­
access memory (RAM) of the processor or present data values available
at the terminals of the processor. The filter operates by performing
the multiplications and additions required to evaluate the right-hand
side of eq. (101) and, thereby, determining each successive value of the
response r(nT). The result is sent to the output and also stored in RAM

as a new past value of data. When each new value of input sample
s(nT) comes in, often at the 8-kHz rate discussed in Section 3.2, the
processor performs the arithmetic mentioned above and produces a
new value of response r(nT) in a few microseconds. The processor
then either waits for a new input sample, or, more commonly, it is
assigned other tasks to perform until a new sample arrives.

A flow diagram for the calculations described above is shown in Fig.
8. Note that, although the symbols look like hardware blocks, this is
not a hardware block diagram; it is much more closely related to the
flow chart used to diagram computer programs. The nodes in this
diagram labeled s[(n - I)T], r[(n - I)T], etc., represent RAM storage
of past data values, and the blocks labeled D represent time delays of

r (nT) = aOS (nT) + als [(n-l) T] + a2s [(n-2) T]

-blr [(n-1) T] - b 2r[(n-2)T)

r(nT)

Fig. 8-Flow diagram of the calculations for a biquadratic fllter. The symbol D
represents a time delay of T units, one sampling interval.

1530 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

T units, one sampling period. The triangles labeled aj and bk represent
multiplications of the indicated data values by the filter coefficients.

The computational procedure pictured in Fig. B requires four RAM

locations for the storage of past data values. This memory requirement
can be cut in half by rearranging the computational procedure. One
way to develop the modified procedure is to return to the transform
relation in eq. (94),

-I -2

R(z) = ao + alz + a2Z S(z).
1 + bIZ 1 + b2z-2 (102)

This equation can be separated into two parts by defining a new,
intermediate, variable given by

1
Sm (z) = b -I b -2 S(z), (103)

1 + IZ + 2Z

The quantity Sm (z) represents a modified form of the input stimulus.
Now substituting eq. (103) into eq. (102) yields

R(z) = (ao + alz- I + a2z-2)Sm(Z) , (105)

= aoSm(z) + alz-ISm(z) + a2z-2Sm(Z). (106)

Repeating the procedure followed in eqs. (96) through (101), eqs. (104)
and (106) yields the following two simultaneous difference equations
for the biquadratic filter section:

Sm(nT) = s(nT) - blsm[(n - l)T] - b2sm[(n - 2)T], (107)

and

r(nT) = aosm(nT) + alsm[(n - l)T] + a2sm[(n - 2)T]. (lOB)

For each successive sample of input stimulus s(nT), these two equa­
tions yield the corresponding sample of response r(nT). Equations
(107) and (lOB) together produce the same result as eq. (101). In this
case, however, only two quantities, Sm [(n - 1) T] and Sm [(n - 2) T],
need to be stored in RAM.

A flow diagram for the solution of eqs. (107) and (lOB) is shown in
Fig. 9. As in the case of Fig. B, this is not a hardware block diagram;
instead, it is a flow diagram intended to help the reader visualize the
computational steps involved in the solution of eqs. (107) and (lOB).
The symbols used in Fig. 9 are the same as those used in Fig. B.

The five triangular blocks in Fig. 9 represent five multiplications
used to evaluate one sample of the response r(nT). In this connection,
it is appropriate to return briefly to eq. (95) and note that, if the scale
factor is to be accounted for at a later point, the coefficient ao in eq.

DIGITAL FILTERING 1531

Sm(nT) = s(nTl-- b, sm[(n-1)T] -b2sm [(n-2) T]

r(nT) = aOsm(nT) + a,sm [(n-1) T] + a2sm [(n-2) T]

Fig. 9-Flow diagram of the alternative calculations for a biquadratic filter. The
symbol D represents a time delay of T units, one sampling interval.

(95) has been normalized to unity. But Fig. 9 shows that if ao is unity,
then no multiplication by ao is needed; a direct transmission of Sm (n T)
to the output is sufficient. In this case, the system becomes what is
sometimes called a 4-multiply biquadratic section. The 4-multiply
section uses less ROM and is somewhat faster than the 5-multiply
section.

When power is first applied to the digital filter, the RAM

contains random values for the past data values Sm[(n - l)T] and
Sm[(n - 2)T], and the first few samples of the response r(nT) that
are calculated d€pend on these random initial conditions. However,
the effects of the random initial conditions decay with time, and
they soon disappear.

VI. CONSTRUCTING THE DIGITAL TRANSFER FUNCTION H(z)

In the preceding sections we showed how the digital filter operates
by the numerical evaluation of the appropriate linear difference equa­
tion and how the appropriate difference equation can be obtained from
the appropriate digital transfer function, a function related to the
difference equation by the z transform. The problem that remains, and
which the following paragraphs address, is finding the appropriate
digital transfer function. No attempt is made to give a complete
treatment of this challenging and multifaceted problem. Instead, at­
tention is focused on a single technique that is possibly the most widely
used solution. (See Refs. 1 through 3 for further discussions on this
technique and others.)

6. 1 General considerations

The design of filters, both analog and digital, usually begins with a

1532 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

set of specifications in the frequency domain. These specifications are
usually concerned with the passband of the filter, the stopband, atten­
uation peaks, delay characteristics, and similar frequency-domain con­
siderations. Given this information, there are extensive theoretical
tools and computer aids that can be used to obtain a continuous-time
analog filter meeting the specifications, provided of course that the
specifications are physically realizable. In most cases, the design of
discrete-time digital filters takes full advantage of these design aids by
first producing a suitable prototype analog filter. Then the s-domain
transfer function for the analog filter is transformed into a z-domain
transfer function for a digital filter that provides the desired frequency
characteristics.

The end result required is a linear difference equation with real
coefficients. This result is to be obtained from a digital transfer
function by the procedure presented in Section 4.4, eqs. (96) through
(101). To obtain the desired result by this method, the transfer function
must be a rational function of z, and it must have real coefficients.

The transformation of the prototype analog transfer function into a
suitable digital transfer function can be accomplished with the aid of
a relation, called a transformation, having the general form

s = F(z). (109)

When F (z) is properly chosen, substituting it for s in the prototype
analog transfer function produces the desired digital transfer function.
The problem now is to find a suitable transformation F (z).

But first some related matters need consideration. One of these is
the fact that two transformations are now involved in the design of a
digital filter. The first is eq. (109), used to obtain a digital transfer
function H(z). Then, as shown in connection with eqs. (90) and (92),
the frequency characteristics of the digital filter are determined by
substituting the transformation

(110)

for z in H(z). Both of these transformations are satisfied independ­
ently, and both of them involve the complex-frequency variables s,
although each in a different context. In order to avoid confusing these
independent uses of s, it is helpful to rewrite eqs. (109) and (110) as

Sa = F(z) (111)

and

(112)

where the subscripts a and d designate analog and digital, respectively.
This notation leads to further symbolism as follows:

DIGITAL FILTERING 1533

Ha(Sa) represents the prototype analog transfer function.
H (z) represents the transformed function, a digital transfer func­

tion.
Hd (Sd) represents the transformed function with z replaced by

exp(sdT). This function gives the frequency characteristics
of the digital filter.

An important feature of transformations, such as eqs. (111) and
(112), can be illustrated in the following way. Consider first a specific
value of the analog frequency

Sa = Sal. (113)

For this value of Sa, the analog transfer function has a specific value,
a complex number,

Ha(Sal) = X + jY.

The corresponding value of z is obtained by solving eq. (111),

Sal = F(ZI).

(114)

(115)

The digital transfer function H(z) is obtained from Ha (Sal) by replacing
Sal with the equal number F(ZI). Thus,

(116)

Hence, values of Sa and z that satisfy eq. (111) produce values of Ha(sa)
and H (z) that are equal.

In exactly the same way, values of z and Sd that satisfy eq. (112)
produce values of H(z) and Hd(Sd) that are equal, and hence,

Hd(Sdl) = H(ZI) = X + jY, (117)

where X and Y have the same values as in eqs. (114) and (116).
In summary,

(118)

provided that Sal, Zl, and Sdl are related by the transformations of eqs.
(111) and (112). Thus, if Ha(sa) is known for various values of Sa, the
the values of H(z) and Hd(Sd) are known for the corresponding values
of z and Sd. This fact is important because it relates the frequency
characteristics of the digital filter, Hd(Sd), to those of the prototype
analog filter, Ha(sa).

These relations also hold when the transfer functions are infinite;
thus, if Ha(sa) has a pole at Sal, then H(z) and Hd(Sd) have poles at
the corresponding points Zl and Sdl.

6.2 The bilinear transformation

With the preliminaries taken care of, it is now appropriate to return

1534 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

to the main problems of identifying a suitable transformation F (z) for
use in eq. (111). It seems that the most efficient way of presenting this
subject is simply to state at the outset a transformation that does the
job well in many cases. The properties of this transformation can then
be developed, and the significance of these properties can be examined
to gain useful insight into the nature of the problem. In this way, a
general understanding of the problem can be gained.

A transformation that does the job well, that is simple, and that is
possibly the transformation most widely used in the design of digital
filters is one that causes eq. (111) to take the form

2 z- 1 2 1 - Z-l

Sa = T z + 1 = T 1 + Z-l , (119)

where T is the sampling interval. Since this transformation is the ratio
of two linear polynomials in z, it is called a bilinear transformation.
The multiplier 2/T is simply a scale factor, and it proves to be a
particularly convenient one. This choice is not a requirement, however,
and various writers on this subject use various scale factors. N everthe­
less, the final result always comes out the same, for in every case a
frequency-scale adjustment, described in Section 6.3, is required, and
this adjustment compensates exactly for the various values used for
the scale factor in eq. (119).

The use of this transformation always yields a digital filter with an
IIR (see Section 4.2). For those cases in which a FIR filter is desired, a
different procedure must be used. (See Refs. 1 through 3 for further
information on FIR filter design.)

The bilinear transformation has been studied in detail by mathe­
maticians (see Ref. 5), and it has been used to advantage in various
applications in physics and engineering. For example, it is the basis for
the Smith chart, a valuable tool in the study of transmission lines.
Each value of z produces only one value of Sa; therefore, the transfor­
mation is single valued. The inverse of the transformation,

1 + saT/2
z=----

1 - saT/2 '
(120)

is also bilinear, and hence, it is also single valued. This is the most
general transformation that is single valued in both directions. Note
that the transformation of eq. (112) is multivalued in the inverse
direction, as is shown in Section 3.1.

The circle is a characteristic figure for the bilinear transformation.
If straight lines are treated as circles of infinite radius, then, under this
transformation, all circles in one plane transform into circles in the
other plane. For example, the rectangular grid lines for the real and
imaginary parts of Sa transform into sets of orthogonal circles in the z

DIGITAL FILTERING 1535

plane with every circle passing through the point z = -1. As shown in
Section 6.3, one of these grid lines, the j Wa axis, transforms onto the
unit circle in the z plane. This fact is of considerable importance
because the other transformation used in this work, eq. (112), trans­
forms the j Wd axis of the Sd plane onto the unit circle in the z plane.
Thus, the unit circle in the z plane serves as a bridge between the j Wa
axis and thejwd axis, and hence it is important in relating the frequency
characteristics of the prototype analog filter to those of the digital
filter.

The significant properties of the bilinear transformation, developed
in Section 6.3, are listed here for immediate use. They are as follows:

(i) Rational functions of Sa with real coefficients are transformed
into rational functions of z with real coefficients. This property ensures
that the H(z) obtained will produce a usable difference equation.

(ii) The left half of the Sa plane is mapped into the interior of the
unit circle in the z plane. This property ensures that every stable
prototype analog filter will lead to a stable digital filter.

(iii) The jWa axis of the Sa plane is mapped onto the unit circle in
the z plane. This property ensures that the frequency characteristics
of the analog filter, Ha (j Wa), are preserved in the digital filter, Hd (j Wd),
although in general there will be some warping of the frequency scale.
See eq. (118).

The two transformations involved in the design of digital filters are
repeated here for convenience. They are

2 1 - Z-l

Sa = T 1 + Z-l , (121)

and

(122)

Consider the stability of the digital filter. It follows from eq. (90) and
the related discussion that if the digital filter is to be stable, the poles
of the digital transfer function, H[exp(sdT)] = Hd(Sd), must lie inside
the left half of the Sd plane. Furthermore, as Section 3.1 shows, the
transformation given by eq. (122) maps the entire left half of the Sd
plane into the interior of the unit circle in the z plane, and it maps the
right half of the Sd plane into the exterior of the unit circle. Thus, for
a stable digital filter the poles of the corresponding H(z) must lie
inside the unit circle. But, as stated in item (ii) above, the bilinear
transformation in eq. (121) maps the entire left half of the Sa plane
into the interior of the unit circle. Therefore, with this transformation
every pole in the left half of the Sa plane maps through the unit circle
into the left half of the Sd plane, and every stable prototype analog
filter leads to a stable digital filter. This is a very desirable feature.

1536 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

The bilinear transformation maps the poles and zeros anywhere in
the left half of the Sa plane, suitable for stable analog filters, into the
interior of the unit circle in the z plane, suitable for stable digital
filters. The outward manifestation of this change is in the marked
difference in the coefficients of the transfer functions Ha(sa) and H(z).

The view can be taken that the transformation transforms a set of
filter coefficients useful for analog realization into another set useful
for digital realization. In general, a set of filt~r coefficients suitable for
analog realization is not suitable for digital realization.

As shown in Section 3.1, the transformation given by eq. (122) maps
the j Wd axis of the Sd plane onto the unit circle in the z plane; every
point on the j Wd axis maps into a point on the unit circle. However,
because of the nature of the exponential function in the transformation
eq. (122), every point on the unit circle in the z plane maps into
infinitely many points on the j Wd axis. This matter is discussed in
Sections 3.1 and 3.2, where we show that the entire unit circle maps
onto the interval -ws/2 to ws/2 on the j Wd axis, where Ws is the sampling
frequency in radians per second. The mapping then repeats itself
periodically on the j Wd axis as z moves endlessly around the unit circle.
(See Fig. 10.) As the mapping repeats itself periodically on the jWd

axis, so Hd(Sd) also repeats itself periodically on the axis.
As stated in item (iii) the bilinear transformation in eq. (121) maps

every point on the j Wa axis of the Sa plane onto the unit circle in the z

plane. Thus, points on the j Wa axis map through the unit circle to
points on the j Wd axis in the Sd plane. Under these conditions, the
values of the prototype analog transfer function Ha on the j Wa axis are
repeated as values of the digital transfer function Hd on the jWd axis,
as indicated by eq. (118), although in general the values are not
distributed in the same way along the two j waxes. That is, the
frequency characteristics of the digital filter are similar to those of the
prototype analog filter, but the frequency scale is warped.

1m

--------~----------ad

z PLANE Sd PLANE

Fig. lO-Relations between the z plane and the Sd plane.

DIGITAL FILTERING 1537

The effectiveness of the bilinear transformation in this application
can be highlighted by considering briefly two other transformations
that are superficially attractive but that totally fail to produce useful
digital filters. The first of these is

Z

Sa =T'

where T is the sampling interval. The factor liT is included as a scale
factor and to make the equation dimensionally balanced. This trans­
formation seems attractive because it is so simple. It has the property
given in item (i) but it does not have the properties of items (ii) and
(iii). Thus, for a given T there are stable analog filters that transform
into unstable digital filters. Furthermore, if a stable digital filter is
obtained with this transformation, the frequency characteristics of the
analog filter are not preserved in the digital filter, and with this
transformation it is not possible to obtain a useful digital filter using
conventional techniques.

The second transformation to be considered is

z = exp(saT)
or

1
Sa = TIn z. (123)

Section 3.1 shows that this transformation has the properties listed in
items (ii) and (iii) above. Moreover, the transformation in eq. (123) is
the exact inverse of the one given by eq. (122), and applying these two
transformations in succession produces Hd(Sd) = Ha(sa), a digital filter
identical with the analog prototype. However, transformation eq. (123)
does not have the property listed in item (i) above, and hence it cannot
be used to obtain a difference equation by the method given in Section
4.4. Without a difference equation, the techniques presented here
cannot be used to produce a digital filter. It may be of some interest,
but of no real significance, to note that the logarithm in eq. (123) can
be represented by an infinite series of the form

In z = 2 [:: ~ + H:: ~)' + 00 oJ.
Approximating the logarithm by the fIrst term in this series and
substituting it into eq. (123) yields

2z-1
Sa = T z + l'

which is exactly the bilinear transformation of eq. (121).

6.3 Details of the bilinear transformation

The properties of the bilinear transformation presented without

1538 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

proof in Section 6.2 are examined in some detail in this section. The
discussion is aided by the diagrams shown in Fig. 11. The transfor­
mation is given by eq. (119), and its inverse, given by eq. (120), is

1 + SaT/2
Z = 1 _ SaT/2 . (124)

Thus, when Sa = j Wa,

(125)

where

cJ> = arctan (waT/2). (126)

Thus, when Sa = jwa, 1 z 1 = 1, and hence, the jWa axis in Fig. lla is
mapped by the bilinear transformation onto the unit circle in the z
plane as shown in Fig. lIb. Thus, we verify the assertion made to this
effect in Section 6.2.

More generally, with Sa = (Ja + jwa, eq. (124) gives z as

1 + (JaT/2 + jwaT/2 N
z = 1 _ (JaT/2 _ jwaT/2 = D . (127)

Thus,

(128)

with
(129)

and
(130)

Now, since T is always positive, it follows from eqs. (128), (129), and
(130) that

Izl < 1 for all (Ja < 0, (131)

and that

Izl> 1 for all (Ja > O. (132)

Thus, the bilinear transformation maps the entire left half of the Sa
plane into the interior of the unit circle in the z plane, and it maps the
entire right half of the Sa plane into the exterior of the unit circle.
Thus, we verify another assertion made in Section 6.2.

After the bilinear transformation has been applied to the prototype
analog transfer function Ha(sa), the transformation given by eq. (122)
is used to obtain the digital transfer function Hd (Sd). The results of
this transformation are illustrated in Figs. lIb and llc, and they are

DIGITAL FILTERING 1539

Sa PLANE z PLANE

jWa 1m

(Wd= wsI2 Wd= O}
~Wa=~ /Wa=O

______ ~-----a.a --~~----~--~~~Re

- ,. .
2 l-z-1

sa = T 1 + z-l

(a) (b)

Fig. ll-Transformations and mapping.

Sd PLANE

jWd

(c)

discussed in some detail in Section 6.2 in connection with Fig. 10.
Returning to the transformations given by eq. (124),

1 + SaT/2
Z = 1 _ SaT/2 ' (133)

and eq. (122),

(134)

the following additional information can be deduced. From eq. (133),
when

Sa = 0, Z = 1, (135)
and when

Sa = 00, Z =-l. (136)

Similarly, from eq. (134), when

Sd = 0, Z = 1, (137)

and when

Sd = jWs/2, z = -1, (138)

where eq. (138) is worked out in detail in Section 3.1 and Ws is the
sampling frequency in radians per second. These relations are shown
in Fig. 11.

As Sa = jWa increases from zero to infinity in Fig. 11a, z moves
counterclockwise around the upper half of the unit circle in Fig. lIb
from z = 1 to z = -1. For this movement of z, Sd = j Wd increases from
zero to jWs/2 in Fig. 11c. Thus, as indicated in Fig. 11c, the entire

1540 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

frequency characteristic of the prototype analog filter for all positive
values of Wa is compressed into a segment of the j Wd axis between zero
and ws/2. As indicated by eq. (118), the values of Hd(jWd) in this band
vary through exactly the same sequence as the values of Ha(jwa) in
the range of Wa between zero and infinity, but the frequency scale is
compressed and distorted. Moreover, the entire frequency character­
istic of Ha(jwa) for all frequencies is repeated periodically along the
jWd axis, with a warped frequency scale, as indicated in Fig. 11c.

The discussion above shows that when the bilinear transformation
is used in the design of a digital filter, there is a close relationship
between the frequency characteristics of the prototype analog filter
Ha(jwa) and those of the resulting digital filter Hd(jWd). In fact, they
are the same except for a warping of the frequency scale. The relation­
ship between the frequency scales can be derived readily from eqs.
(125), (126), and (134). Any given value of z lying on the unit circle
maps into a point on the jWa axis given by eq. (125) as

z = exp(j2</». (139)

That same value of z maps into infinitely many points on the j Wd axis
given by eq. (134) as

z = exp(jwdT ± 2n'7T) , n = 0,1,2, (140)

Taking the principal value of eq. (140), n = 0, and equating it to eq.
(139) yields

exp(jwdT) = exp(j2</»,
or

wdT = 2</>. (141)

Substituting eq. (126) into eq. (141) yields

wdT = 2 arctan (wa TI2) , (142)

and
2

Wa = T tan (wdTI2) . (143)

Using the relation T = Ills, where isis the sampling frequency, eq.
(143) can be rewritten as

Wa = 21s tan (wdI21s).

Then,

(144)

(145)

DIGITAL FILTERING 1541

Note that if is » fd, then
fa:::::: fd.

Equation (143), (144), or (145) is used in the design of digital filters
when the bilinear transformation is employed. The system designer
specifies the desired frequency characteristics in terms of cutoff fre­
quencies, frequencies of attenuation peaks, and the like. These fre­
quencies are critical values of fd for the digital filter. The critical
frequencies are substituted into one of the equations listed above to
obtain pre distorted critical values of fa for the prototype analog filter.
The analog filter is then designed with these values of fa, and, because
of the pre distortion, the digital fIlter obtained by the bilinear transfor­
mation has the desired critical frequencies. Note that every critical
frequency contained in the original specifications must be predistorted
by one of the equations specified above.

It must also be noted, however, that the bilinear transformation
maps the entire frequency characteristic of the prototype analog filter
into the range of Wd lying between zero and ws/2. Thus, the designer
can control the characteristics of the digital fIlter only in this range of
Wd, and hence, all of the critical frequencies specified for Wd must be
less than ws/2. In this connection, however, it is appropriate to remem­
ber that the signal being filtered must be band-limited to this same
range of frequencies to avoid distortion as a result of aliasing.

It is clear from eq. (144) that the amount by which the frequency
scale is warped depends on the sampling frequency fs. For a fixed filter
design, any change in is will cause a shift in the critical frequencies of
the digital filter, and if the change is substantial, the result may be an
unsatisfactory performance by the fIlter.

The technique outlined here for the use of the bilinear transforma­
tion in the design of digital filters is one possible method that can be
used. In addition, several other successful procedures have been de­
veloped in detail, and they are described in the literature. l

,3 However,
the introductory presentation given here is concerned only with the
basic ideas of digital fIltering, and hence it makes no attempt to give
a complete coverage of all the techniques for designing such filters.

Section 6.2 illustrates that if the digital transfer function H(z) is to
be a stable function, then its poles must lie inside the unit circle in the
z plane. As we show below, this places a limit on the range of values
that the coefficients in H(z) may be permitted to have, and this fact,
in turn, may influence the design of the hardware and the supporting
software used in realizing digital filters.

As related in Section 4.4, it is a common practice to realize digital
fIlters as a cascade of biquadratic sections used as basic building
blocks. The digital transfer function for this building block can be put
in the form

1542 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

-1 -2
H(z) = ao + alZ + a2Z

1 + b1z- 1 + b2z- 2
(146)

aoz
2 + alZ + a2

Z2 + bIZ + b 2 •
(147)

Note that since the coefficients in H (z) must be real numbers, the
poles and zeros of H(z) must either be real or they must occur in
complex conjugate pairs. Furthermore, if the two zeros of the denom­
inator are designated Zl and Z2, then the denominator can be written
as

D(z) = (z - Zl)(Z - Z2) (148)

(149)

Comparing this result with the denominator of eq. (147) leads to the
following relations:

and (150)

Since for stable digital filters Zl and Z2 must lie inside the unit circle in
the Z plane, the following inequalities must be satisfied:

-1 < b2 < 1 and -2 < b1 < 2. (151)

However, it is appropriate to note the fact that even though the
inequalities in eq. (151) are satisfied by the coefficients of H(z), this
does not guarantee that the filter is stable. The quadratic formula can
be used, with a little additional effort, to show that the necessary and
sufficient conditions for stability are

-1 < b2 < 1 and

See Ref. 6 for further details on this subject.
For most digital filters, the zeros of the numerator in eq. (147) are

on the unit circle or inside it. In such cases, after the numerator is
normalized to make ao = 1, the same inequalities apply to the coeffi­
cients al and a2. An exception to this rule occurs in the case of delay
equalizers (all-pass networks), where the zeros of the num~rator must
lie outside the unit circle (in the right half of the Sd plane). But even
in this case, it is possible to introduce a scale factor to make the
numerator coefficients satisfy inequalities like those in eq. (151).

The significance of these facts arises from the additional fact,
developed in Section 4.4, that the coefficients in H(z) are also the
coefficients in the difference equation that the digital filter must
evaluate in order to perform its function. Thus, it follows that the filter
hardware and software can be, and sometimes are, designed to work
with coefficients limited to the range between 2 and -2.

DIGITAL FILTERING 1543

Example 4.

This example is a simple illustration of the use of the bilinear
transformation to obtain a linear difference equation from a given
analog transfer function. It is based on the Re filter of Fig. 1, and the
results are compared with those obtained in Section II by a different
method of analysis. The analog transfer function for this circuit is

1
Ha(sa) = 1 + RCs

a
(152)

Substituting the bilinear transformation of eq. (121) into eq. (152)
yields

H(z) = (1 + 2~C ~ : :=:)-1
For simplicity, a new symbol is defined as

RC
d=T=RCfs,

so that eq. (153) becomes

(
1 -1)-1

H(z) = 1 + 2d 1 : :-1

(153)

(154)

When this equation is rearranged into the standard form, the result is
1 1 + Z-1

H(z) = 1 + 2d 1 _ 2d (155)
1 + ___ -1

1 + 2d
z

This function has a zero at z = -1, whereas Ha(sa) in eq. (152) has
no finite zeros. In eq. (155) the zero of Ha(sa) at infinity has been
transformed into a zero of H(z) at z = -1, as implied in Fig. lIb by the
fact that the point at infinity in the Sa plane maps into the point z =
-l.

Applying the bilinear transformation to a full biquadratic transfer
function involves some tedious algebra, and the tedium is compounded
if the required filter consists of several biquadratic sections connected
in cascade. Fortunately, computer programs exist that accept the
coefficients of the analog transfer function as inputs and deliver the
coefficients produced by the bilinear transformation as outputs. (See
Ref. 7.)

If the transforms of the input and output voltages in the filter of Fig.
1 are designated, respectively, as V1(z) and V2(z), then

(156)

where H(z) is given by eq. (155). To obtain the corresponding differ-

1544 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

ence equation, eq. (155) is substituted into eq. (156), and the result is
rearranged to obtain

1 1 . -1 1 - 2d -1
V2(z) = --d V1(z) + --d Z V1(z) - --d Z V2(z). (157)

1+2 1+2 1+2

The procedure developed in Section 4.4, eqs. (96) through (101), now
yields the desired difference equation,

1 1
v2(nT) = 1 + 2d vl(nT) + 1 + 2d vl[(n - I)T]

1- 2d
- 1 + 2d v2[(n - I)T]. (158)

For comparison, the difference equation obtained by a simpler
method in Section II and given by eq. (6) is

1 d
v2(nT) = 1 + d v1(nT) + 1 + d v2[(n - I)T]. (159)

Equations (158) and (159) do not look very much alike. In fact, they
do not give similar results except for high sampling frequencies fs such
that d = Refs» 1 and v1[(n - I)T] ::::: v1(nT). This matter is discussed
in the following paragraph.

Curiously enough, the bilinear transformation produces a digital
filter having frequency characteristics much closer to those of the
prototype analog filter in Fig. 1 than does the seemingly more direct
approach used in Section II and represented by eq. (159). The reason
for this result can be explained in the following way. The derivation of
the difference equation in Section II is equivalent to using the trans­
formation

in the analog transfer function (eq. 152). Now for the key point: This
transformation does not map the jWa axis onto the unit circle in the Z

plane. Thus, the j Wa axis does not map through the z plane onto the
j Wd axis in the Sd plane, and as a result, the frequency characteristics
of the prototype analog filter are not preserved by the transformation.
Thus, with this transformation, the digital filter behaves like the
analog filter only for high-sampling rates and low-signal frequencies.
(See pages 212 through 214 of Ref. 3.)

VII. SUMMARY

In its most usual form the digital filter is a digital machine that

DIGITAL FILTERING 1545

performs the filtering process by the numerical evaluation of a linear
difference equation in real time under program control.

The z transform, an outgrowth of a special type of Laplace transform,
proves to be an especially effective mathematical tool for the analysis
and design of digital filters. In fact, the z transform plays a role in the
study of linear difference equations that is in many respects compa­
rable to that of the Laplace transform in the study of linear differential
equations. In particular, the z transform can be applied to a linear
difference equation to obtain an algebraic transfer function. This z­
domain transfer function is related to digital filters in the same way
that the well-known s-domain transfer function is related to conven­
tional analog filters.

In most cases the design of a digital filter involves determining a
digital (z-domain) transfer function having the desired frequency char­
acteristics. This digital transfer function can often be obtained in a
straightforward manner from an appropriate analog (s-domain) trans­
fer function. A mathematical relation known as the bilinear transfor­
mation proves in many cases to be an especially effective tool for
converting an analog transfer function into a useful digital transfer
function that can be realized as a digital filter in a straightforward
manner.

VIII. ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance ofD. L. Favin, P.
E. Fleischer, R. N. Gadenz, J. F. Kaiser, and D. C. Stanzione. However,
the tutorial aspects of the work necessarily involve many subjective
judgments on matters concerning which there are reasonable differ­
ences of opinion. As a result, the acknowledgment does not imply
coIllplete endorsement of the work by any of the persons named.

REFERENCES

l. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs,
N. J.: Prentice-Hall, Inc., 1975.

2. A. Peled and B. Liu, Digital Signal Processing, New York: John Wiley and Sons,
1976.

3. L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal Processing,
Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1975.

4. A. Papoulis, Signal Analysis, New York: McGraw-Hill Book Co., 1977.
5. E. G. Phillips, Functions of a Complex Variable, New York: Interscience Publishers,

Inc., 1949.
6. P. E. Fleischer and K. R. Laker, "A Family of Active Switched Capacitor Biquad

Building Blocks", B.S.T.J., 58, No. 10 (December 1979), pp. 2235-69.
7. Digital Signal Processing Committee, ed., Programs for Digital Signal Processing,

New York: IEEE Press, 1979.

1546 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Adaptive Differential Pulse-Code-Modulation
Coding

By J. R. BODDIE, J. D. JOHNSTON, C. A. McGONEGAL, J. W.
UPTON, D. A. BERKLEY, R. E. CROCHIERE, and J. L. FLANAGAN

(Manuscript received June 26, 1980)

An adaptive differential pulse-code-modulation technique for en­
coding and decoding has been implemented using the Bell Labora­
tories digital signal processor integrated circuit. The encoder / de­
coder operates in real time and can accommodate 3- or 4-bit (8 kHz)
encoding. In this paper, we discuss details of the implementation, the
basic algorithm, and the features utilized in the digital signal proc­
essor.

I. INTRODUCTION

Adaptive differential pulse-code-modulation (ADPCM) encoding has
been shown to be a simple and effective method for digitally encoding
speech at bit rates in the range of approximately 24 to 48 kb/s.1

-
6 At a

rate of 24 kb/s, ADPCM can provide a good quality reproduction of
speech that is acceptable for applications such as computer-controlled
digital voice response systems.4 At a rate of 32 kb/s, it can provide
essentially a telephone bandwidth "transparent quality" (a quality
that is indistinguishable from the original uncoded source) for a single
tandem encoding. Adaptive differential pulse-code modulation has
been studied for use in some types of transmission systems,6 and for
message storage and retrieval systems in which a reduction by a factor
of two in bit rate over that of conventional 64 kb/s fL-Iaw companded
PCM is desired.4

Various forms of hardware have been suggested for the implemen­
tation of ADPCM coders. Some designs are based primarily on analog
hardware1

,3 where parameters are pair-wise tuned between transmit-

1547

ters and receivers. This results in problems with repeatability and
stability in the analog designs. Bates5 and Adelman, Ching, and Gotz6

subsequently presented two different methods of designing all-digital
ADPCM coders. The Bates approach uses a TTL logic design with a ROM­
based look-up table for the adaptive step-size and an up/down counting
scheme with digital adders and subtracters to avoid the use of a digital
multiplier. The hardware requires a twelve-bit linear PCM input and
has a total "package count" of approximately 80 standard TTL logic
packages. It was constructed on two wire-wrapped Augat cards (one
encoder and one decoder per board). The hardware by Adelman et al.,
was a ROM-based design that accepted a standard 64-kb/s fl-Iaw com­
panded PCM signal.

Recently, an LSI digital signal processor (DSP) has been developed
by Bell Laboratories.7 The DSP is a programmable processor capable
of performing the entire ADPCM algorithm for multiple channels in a
single LSI device. The ability of the processor to convert between
conventional fl-255 companded PCM and two's complement binary code
formats allows the ADPCM algorithm to use either format. The config­
uration of the ADPCM algorithm that is implemented on the DSP is
described in Section II. Section III discusses details of how the algo­
rithm is configured to use DSP features. Sections IV and V describe the
hardware configuration and measured performance, respectively.

II. THE ADPCM ALGORITHM

2. 1 Overall configuration

Figure 1 illustrates the basic configuration of the DSP implementa­
tion of ADPCM. The input analog signal s(t) is sampled and A/D

converted to an 8-bit fl-Iaw companded PCM format to produce the
sampled data signal s (n), where n is the discrete time index. These
operations are done externally to the DSP. Then s(n) is converted in
the DSP from Wlaw format to a 20-bit linear PCM format for internal
processing.

The ADPCM encoding is performed entirely within the transmitter
DSP. The output is a 3- or 4-bit codeword, I(n), which can be obtained
through the normal output channel of the DSP. In the receiver, a

INPUT
SPEECH

TRANSMITTER

J1.-LAW
CODED
SPEECH
(64 kb/s)

DIGITAL
CHANNEL

I(n)

ADPCM
CODED
SPEECH
(32 kb/s

OR 24 kb/s)

RECEIVER

J1.-LAW
CODED
SPEECH
(64 kb/s)

OUTPUT
SPEECH

Fig. I-Overall configuration of the ADPCM encoder/decoder using the DSP.

1548 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

second DSP is used to decode I(n) back to an 8-bit IL-Iaw format. This
signal is then converted to an analog signal with an external D/ A

converter. The clock and framing signals are carried between trans­
mitter and receiver on separate lines. The transmission protocol for a
given application depends on the data channel in which the system is
implemented.

2.2 Block diagram of A DPCM

Figure 2 shows the block diagram of the ADPCM algorithm that was
implemented on the DSP. The transmitter is shown in Fig. 2a and the
receiver is shown in Fig. 2b. We assume that s(n) in Fig. 2 is in a 20-bit
linear PCM format, because of a direct 20-bit input to the DSP or
because of an 8-bit IL-Iaw to 20-bit linear PCM conversion that has been
performed within the DSP.

The ADPCM algorithm can be partitioned into three basic parts (see
Fig. 2): the adaptive PCM quantizer, the differential predictor loop, and
the adaptive gain (step-size) control for the quantizer. We discuss
these operations in the above order since this is the order in which
they are computed.

2.3 Adaptive quantizer

A predicted value,p(n), is first subtracted from the input signal s(n)
to form the difference signal

e(n) = s(n) - p(n). (1)

The value of p(n) is obtained from the predictor and is based on
computations performed at the previous sample time, n - 1.

The difference signal e (n) is then quantized by the adaptive quan­
tizer to produce the ADPCM codeword I (n). This adaptive quantization
is achieved by first scaling e(n) to the range of a 3- or 4-bit fixed step­
size quantizer (see Fig. 2a). The scaled signal is denoted as

es(n) = V(n). e(n), (2)

where V (n) is an adaptive scale factor that is also determined from
data available at the previous sample time n - 1. The combination of
scaling by V (n) followed by the fixed step-size quantizer is equivalent
to a quantizer with an adaptively varying step-size (which is inversely
proportional to V (n)).

Figure 3 shows the characteristics for a 3-bit (8 level) fixed step-size
quantizer. The input signal es(n) (consisting of an integer plus a
fractional part) is converted to one of eight quantization levels in the
range -7/2 to + 7/2 corresponding respectively to integer codewords,
I(n), in the range -4 to +3. The output quantized signal is denoted as
es(n) and is related to the code word I(n) by the relation

ADPCM CODING 1549

...I.

0'1
0'1
o

-i
:r:
m
OJ
m
r
r
C/)

-<
C/)
-i
m
s:
-i
m
()
:r:
z
(5
»
r
C'....
o
c
:n
z »
.!
C/)
m
-0
-i
m
s:
OJ
m
:n
co
ex>

INPUT
SPEECH

sIn) +~

pIn)

'(nl~(nl
3-0R 4-BIT

V(n) 0.5
INVERTED
STEP-SIZE STEP-SIZE

TABLE TABLE

~ V[63] ~ !1 [63]

V[2]

V[l]

TABLE

OFFSETS

TABLE ADDRESS

TAKE INTEGER
OF dIn) (-32 OR 31)
AND ADD OFFSET

PREDICTOR LOOP

p(n+ 1)

!1 [2]

!1 [1]

P(0.85)

~(n)

Fig. 2a-Block diagram of the ADPCM encoding algorithm.

I(n)

dIn)

OUTPUT
BITS

STEP-SIZE
ADAPTATION

LOOP

INPUT
BITS

STEP-SIZE
ADAPTATION

LOOP

dIn)

TABLE
ADDRESS

~[641

~[631

~[21

~[11

TAKE INTEGER
OF dIn) (-32 TO 31)
AND ADD OFFSET

~(n)

TABLE
OFFSET

PREDICTOR
LOOP

Fig. 2b-Block diagram of the ADPCM decoding algorithm.

es(n) = I(n) + 0.5.

OUTPUT
SPEECH

~(n)

(3)

A similar quantizer characteristic is used for the 4-bit (16 level) design.
The unsealed, decoded difference signal can be obtained from es(n)

by rescaling it by A(n), where A(n) is inversely related to V(n) and is
directly proportional to the "step-size" of the equivalent adaptive
quantizer. Thus,

(4)

Fig. 3-Quantizer characteristic for the 3-bit PCM quantizer.

ADPCM CODING 1551

is the adaptively quantized representation of the difference signal e (n).
This completes the adaptive quantization part of the algorithm.

2.4 First-order predictor

The sum of p (n) and e (n) also forms the adaptively quantized
representation of the input signal (see Fig. 2a)

§(n) = p(n) + e(n). (5)

However, the predictor value p (n + 1) and the quantizer scale factors
V(n + 1) and .1(n + 1) need to be updated for the next sample time
n+1.

The new predictor value is computed as f3 times s(n); i.e.,

p(n + 1) = f3.§(n), (6)

where f3 is the predictor "leak" factor.2 A value of f3 = 0.85 is often
used for speech encoding. The value of p (n + 1) is then stored for use
at the next sample time n + 1.

2.5 Adaptive step-size control

The computation of the new value of A(n + 1) and V (n + 1) for the
next time sample n + 1 is more involved. The algorithm used here is
based on the robust step-size adaptation approach. The details and
advantages of this form of the algorithm are discussed in considerable
detail in Refs. 8 to 10. The method is as follows. The step-size referred
to above is the effective spacing in the quantizer levels observed in the
unscaled quantized signal e (n). Since this spacing is proportional to
A(n), we will refer to A(n) in the following discussion as the step-size.

In the robust adaptation algorithm, the new step-size A(n + 1) is
chosen as

A(n + 1) = (A(n))y .M(I(n)). (7)

That is, it is the old step-size .1(n) raised to the power y (0 < Y :s 1,
typically y = 0.98) and scaled by a factor M (.) which is a function of
the code word I (n). If the code word is one of the upper magnitude
levels of the quantizer [e.g., I(n) = -4, -3, 2, or 3 in Fig. 3], a value of
M (.) greater than one is used to increase the step-size of the quantizer
for the next sample time. If the codeword is one of the lower magnitude
levels [e.g., I(n) = -2, -1, 0, 1 in Fig. 3], a value of M(.) less than one
is used to reduce the quantizer step-size for the next sample time. In
this way, the algorithm continually attempts to adapt the step-size
such that the dynamic range of the adaptive quantizer is matched to
the range of the signal e(n).

A more direct approach for implementing this algorithm is obtained
by expressing eq. (7) in logarithmic form. Let

1552 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

d(n) = 10g(Ll(n)), (8)

and

m(I(n)) = 10g(M(I(n))) , (9)

where the base of the logarithm is determined by the choice of
parameters in the coder, as discussed later. Then, eq. (7) becomes

d(n + 1) = y.d(n) + m(I(n)) , (10)

and it has the form of a fIrst-order difference equation. This is the
equation that is implemented by the upper right-hand part of the
block diagram in Fig. 2a.

The driving function m (l (n)) is a function of the code word I (n),
and it is determined in the adaptation logic algorithm which performs
the function

m(I(n)) = { 8 if II(n) + 0.51 ~ 2.5,
-3 if I I(n) + 0.51 < 2.5

for the 3-bit quantizer and

m(I(n)) = { 8 if I I(n) + 0.51 ~ 4.5,
-3 if II(n) + 0.51 < 4.5

for the 4-bit quantizer.

(IIa)

(lIb)

The output of the step-size adaptation loop is the signal d(n), which
eq. (8) shows as the logarithm of the desired step-size.

Thus, to obtain Ll(n) (and V(n)), we need to implement the relations

Ll(n) = exp(d (n)) (I2a)

and
1

V (n) = Ll(n) = exp(-d (n)), (I2b)

where, again, the base of the logarithms and exponentials in eqs. (8) to
(12) are determined by the choice of parameters of the coder, as
discussed later.

The exponentials in eqs. (I2a) and (I2b) are computed by using
look-up tables that are stored in the program ROM as indicated in Fig.
2a. The integer value of d (n) is taken and constrained to the range
-32 :::; [d (n)] < 32 for a lookup table size of 64. Table offset values are
then added to this value to produce the appropriate ROM address
locations. The tables are set up so that a value of d (n) = 0 points to
the center of both tables (V[32] and Ll[32]). Note that the bracketed
values V [.] and Ll [.] in the tables of Fig. 2a refer to the contents of
table locations addressed by [.] and not to sample times (which are
referred to by the parenthesis notation V (n) and Ll (n)).

The above algorithm uses 64 different step-size values of Ll (n) and

ADPCM CODING 1553

V (n). The table values are chosen to span the desired dynamic range
of the input signal. If signals of larger or smaller amplitude than this
are encountered, the step-size saturates at the upper or lower table
values, respectively.

The table address locations are stored for use at the next sample
time n + 1 to access values ~(n + 1) and V(n + 1) as they are needed.
This completes the operation of the ADPCM encoder.

2.6 Parameter selection for the step-size tables

The parameters of the step-size table were chosen such that the
ratio of the maximum to minimum step-sizes in the table is 256, i.e.,

~[64]/~[1] = 256 = 28

and

V[1]/V[64] = 256.

This gives a step-size adaptation range of 48 dB (8 bits) that is
appropriate for speech coding. Since there are 64 logarithmically
spaced step-size values in each table, this corresponds to a 0.75-dB
resolution, i.e., step-sizes increase by a ratio of 1.0902 in the table,

~[i] = ~[1]. (1.0902) i-I,

V[i] = V[l]. (1.0902)-i+1.

The maximum step-size is chosen so that the maximum range of
e(n) (approximately 17 bits) scales to the maximum quantizer range
(3 or 4 bits). This prevents overloading on the high end of the dynamic
range. Thus, for a 4-bit quantizer

~(n) I max = ~[64] = 217
-

4 = 213

and

~(n) I min = ~[1] = 25
•

For a 3-bit quantizer, values of ~[.] should be increased by two and
values of V[.] should be decreased by two for best dynamic range
performance.

The manner in which these table values are scaled and stored in the
DSP will be explained more fully in Section 3.4.

2.7 Decoder for ADPCM

Figure 2b shows a similar block diagram for the ADPCM decoder. The
input code word I (n) is converted to the decoded difference signal e (n)
by adding 0.5 (see Fig. 3) and scaling the result by ~(n). The decoded
output signal §(n) is then obtained by accumulating values e(n) in the
predictor loop in the same manner as in the encoder. The new step-

1554 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

size is then computed in an exactly duplicate manner to that in the
encoder. Thus, the ADPCM decoder duplicates a subset of the encoder
block diagram.

III. PROGRAMMING TECHNIQUES UTILIZED IN THE DSP FOR THE
ADPCM ALGORITHM

The ADPCM algorithm, as it is configured above, is designed so that
it can be conveniently implemented on the DSP. We have already
alluded to ways in which the DSP is used in implementing the algorithm.
In this section, we point out some additional aspects of the program
and discuss how some of the unique features of the DSP are used.
Discussions in this section use the 4-bit algorithm as an example.

3. 1 Memory utilization

The encoder program and the step-size tables for ~[.] and V[.] are
stored in ROM occupying approximately 170 words of . memory. Five
RAM locations are used for storing the following values: 2(I(n) + 0.5),
2 s(n), p(n), d(n) and the integer version of d(n). Access to the step­
size tables is made by setting the RX register in the DSP to the center
address of the desired table. The table address for the appropriate
step-size is then obtained by setting the K register to the integer value
[d(n)] (limited to the range -32 to 31) and then incrementing RX by
the value K using the rxk command. The RX register then contains the
ROM address for the appropriate step-size V[.]. The DSP instructions
that implement this technique are as follows:

rya = 5;
rx= &TABLE;
k = rym;;;
a = p p = rxk * c;

"RAM pointer to int [d(n)]"
"set rx pointer to V[32]"
"set k to int [d (n)]"
"pointer to appropriate V[.]"

Note that this technique only works for table sizes up to 256, since the
K register is limited to 8 bits.

3.2 Quantization

The computation of the quantizer input, es (n), is accomplished in a
straightforward manner on the nsp by using a subtraction and a
multiplication. The conversion from es(n) to a 4-bit integer I(n)
(according to the quantizer characteristic in Fig. 3) is done by truncat­
ing the fractional part of es (n).

Assuming e (n) has been computed and stored in the w register and
RX is pointing to the appropriate step size, the following DSP instruc­
tions compute l' (n).

ADPCM CODING 1555

a=p
a = p + a/2
a = p & a;

p = 1*c;
p = rxj*w;
p = -1*c;

"compute es(n) = V (n). e(n)"
"compute es(n) + 0.5"
"truncate to form l' (n)"

The truncation is achieved by using the accumulator control statement
a = p & a, which performs a bit-by-bit AND operation between the p

and A registers in the nsp. l' (n) is stored in the A register and the
(binary) number 1111 ... 111.000 ... is stored in the p register by the
instruction p = -1 *c (c = 214

). The operation zeros out the fractional
part of (es(n) + 0.5) and leaves the integer part untouched. The
resulting integer l' (n) is then constrained to the range -8 ::::; l' (n) ::::; 7
(for 4-bit quantization) to form the desired codeword I(n). This is done
using the conditional AU operation as shown in the following instruc­
tions.

a=p+a
if (a < 0) doau 0;

a=p+a
a=p+a

if (a > 0) doau ();
a=p+a
a=p+a

p = 8*c;
p = O*c;
a = p;
p = -15*c;
p = O*c;
a=p;
p = 7*c;

"if (1'(n) < -8) 1'(n) = - 8"

"if (1' (n) > 7) l' (n) = 7"

"4-bit I(n)"

This yields the 4-bit value I(n) in the accumulator.

3.3 Internal scaling of data

At the output of the quantizer a value of 0.5 is added to I(n) (see
Fig. 2) to produce es(n), which is then multipled by ~(n). To accom­
plish this, es (n) must be transferred from the A register to the w
register and the input of the multiplier. Since this transfer from the A

to W registers truncates the fractional part of the value in the A

register, it is fIrst scaled by a factor of 2 to avoid the truncation of the
fractional part. This scale factor of two is carried through the compu­
tation of s(n) in the block diagram of Fig. 2.

3.4 Scaling of step-size table values

The values stored in the step-size tables in ROM are more conven­
iently handled if they are scaled to be less than 2 in magnitude. The
internal nsp arithmetic is such that 16-bit values from ROM are assumed
to have 14 fractional bits. This is appropriate for the inverse step-size
table V[.] in which numbers (e(n» in a 17-bit range are scaled down
to a 4-bit range (es(n». This table takes on values:

1556 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

V[I]
V[2]

V[63]
V[64]

0.031250
0.028617

0.000133
0.000122

which can be directly stored in the ROM.

In the step-size table d[.], the inverse of these numbers must be
stored. To accomplish this, the inverses are first scaled by a factor of
2-14 and, thus, they take on the fractional range (denoted by primes):

d'[l]
d'[2]

d'[63]
d'[64]

0.001953
0.002133

0.457650
0.499754

When these table values are used in the multiplication, the resulting
product d'(n)es(n) is scaled back up by a factor 214 using the 14-bit
shift option a = a « 14.

The inverse relationship between the table values requires that

V[i].d,[i].2 14 = 1,

i = 1, 2, ... , 64. (14)

Since V[i] and d'[i] must be quantized to 16-bit numbers (14-bit
fractions), for storage in the ROM, the condition in eq. (14) cannot be
met exactly. To obtain the greatest accuracy in representing these
numbers, the smaller of the two values V[i] or d'[i] for each value of
i is quantized first. The reciprocal of this number is then computed
(with floating point accuracy) and scaled by 2-14. This value is then
quantized to the 16-bit range of the ROM to produce the inverse table
value. Thus, the accuracy of the condition in eq. (14) is maintained as
closely as possible.

3.5 Control of the address range for the tables

Another unique part of the program involves the control of the range
of the table address pointer d (n) to the range -32 to 31 (excluding the
table offset). This is accomplished with the aid of the overflow protec­
tion feature of the nsp when data is transferred from the A register to
the w register. The operations in the step-size control loop are scaled
so that d(n) is computed in the upper range of the A register. When
this number is transferred to the w register, it is automatically limited
to the proper range by the overflow protection option in the nsp.
Scaling this number back down to a 6-bit integer range gives the

ADPCM CODING 1557

desired range of -32 to 31 for the table location (excluding the table
offset).

Specifically, this is accomplished as follows. First the driving func­
tion

(I()) = { 8.2
8

if 12(I(n) + 0.5) I ;::: 9,
m n -3.28 if 12(I(n) + 0.5) 1< 9

is computed and stored in the A register. The value m(I(n)) is then
multiplied by 8 twice and added to y.d(n) to form d(n + 1) scaled by
214. The value d (n + 1) is limited when it is transferred to the w
register, and the table look-up offset, int (d(n)), is obtained by multi­
plying the w register by 210. This result is directly loaded into the K

register as discussed in Section 3.1. Assuming the A register contains
the absolute value of 2 (I(n) + 0.5) - 9, and the RY register points to
d (n), the following nsp instructions compute d (n + 1) and the table
offset value, integer d (n).

p = 04000*c;
if (a < 0) doau (); "if (a ~ 0) m = 8*28

"

a = p p = 0176400*c; "else m = -3*28
"

w=a;

a=p
a = p + 8*a
a = p + 8*a

rdp = w a = p
a=p;

w=a;
rdp = w;

IV. HARDWARE CONFIGURATION

p = O*c;
p = .98*rym;
p = O*c;

"compute y*d(n)"
"compute d(n + 1)*214

"

"overflow protection"
"save d(n + 1)"

"save int(d(n))"

The hardware used to implement the algorithm described in this
paper consists of two 16.5- by 11.5-cm wire wrap cards, one for the
transmitter and one for the receiver. Both cards are of identical
construction with jumper plugs used to determine whether the card
will act as a transmitter or a receiver in the configuration shown in
Fig. 1. .

Figure 4 shows a more detailed block diagram of the cards. Each
card contains a nsp, along with a 2048-word by 16-bit PROM holding
the program and step-size tables. (For permanent applications the ROM

would be integral to the nsp). In addition, there are analog filters, JL­
law encoder and decoder chips, clock generators, and synchronization
logic.

The AnpCM transmitter card accepts an analog input which is applied
to a buffer amplifier and then to a low-pass filter and a JL-Iaw encoder.
The sampling rate of this encoder is determined by the repetition
period of the sync signal produced by the sync generator. The serial
output of the encoder is shifted out by the clock signal. These three

1558 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

:l>
o
"U
()

~
()
o
o
Z
Ci)

"""" C1I
C1I
<0

PROGRAM PROM
(16 x 2048)

EXTERNAllNPUTCABlE EXE DBSO_15
(16)

EXTERNAL OUTPUT CABLE

:::: : CLKOUT

ClOCK~:~--------------------------~
JUMPER

PLUG PLUG
I ,

I I JI
-- DATA

JUMPE~ : ~~:~K
DI DO

I - • I A

ISY OSY

ANALOG
INPUT

SYNCI IClK
i SAMPLING CLOCK

AND
SYNC GENERATOR

ICK

DSP
OCK

ClKIN
REST

Fig. 4-Hardware configuration for DSP.

SYNC ClK

ANALOG
OUTPUT -

BUFFER
AMPLIFIER

signals (data, sync, and clock) are connected through a jumper plug to
the data in (DI), input sync (ISY), and input clock (ICK) pins of the DSP.
Operating from the encoding program stored in the PROM, the DSP
converts the incoming data into ADPCM code words which become
available at the data output pin (DO). The shifting of this word out of
the DSP is controlled by output sync (OSY) and output clock (OCK)
lines. These three signals are connected through another jumper plug
to the external output cable which sends them to the receiver card.
The Jl-Iaw decoder on the transmitter card is not used.

The ADPCM receiver card receives the data, sync, and the clock
signals from the transmitter card over the external input cable, which
is connected through the first jumper plug directly into the DSP. The
JL-Iaw encoder and sync generator on this card are bypassed. The DSP
takes the incoming ADPCM code words and converts them to Jl-Iaw
PCM, according to the instructions of the decoding algorithm in its
PROM. The Jl-Iaw data words are shifted out of the DSP on the DO line
and are connected through the other jumper plug to the input of the
Jl-Iaw decoder chip. The analog output of the decoder is bandpass
filtered and then sent through a buffer amplifier to produce the
reconstructed analog output signal.

The cards used here are not limited to only one application of the
DSP. By setting the jumper plugs so that audio input and output are
both on the same card, different types of filtering algorithms can be
tested. Conversely, both the input and output of a card can be con­
nected over the external cables. In this manner, several DSPS can be
connected together serially for more complex signal processing.

V. PERFORMANCE

Figure 5 shows the signal-to-noise ratio measured for the 4-bit
ADPcM/Jl-Iaw coder (Fig. 1) as a function of frequency for input signal

40~---.
Ul
...J
W
aJ

U
w
o 30
~
o
i=
<{
c:
w
Ul
(5 20
z
I

o
f­
I

...J
<{

-40 dBV

a 10~ ____ ~ ____ ~ ________ ~ ____ ~ ______ ~ ______ ~

iii 50 100 200 500 5000

FREQUENCY IN HERTZ

Fig. 5-Signal-to-noise ratio performance of the 4-bit (32 kb/s) ADPcM/p-Iaw coding
configuration of Fig. 1.

1560 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

levels of 0, -20, and -40 dB of full scale. It corresponds closely to that
of the coders in Ref. 3. The dynamic range is limited to about 48 dB
because of the range of the step-size tables and the JL-Iaw encoders.
This dynamic range performance can be modified (within the limita­
tions of the JL-Iaw encoders) by changing the step-size tables. At low
input levels the significant noise is that of the JL-Iaw encoders.

The subjective quality of the 4-bit ADPCM is very similar to 200- to
3200-Hz (telephone band) filtered speech without encoding. This sug­
gests that a single ADPCM link can provide essentially a "transparent"
quality for telephone bandwidth speech.

VI. CONCLUSIONS

In this paper, we have discussed the implementation of the ADPCM

algorithm on the DSP. The encoder program uses 26 percent of the 8-
kHz real-time capability of the DSP running with a 5-MHz clock. It
uses 4 percent of the RAM and 17 percent of the ROM. The decoder
program uses 22 percent of the real-time capabilities, 4 percent of the
RAM and 10 percent of the ROM. This suggests that 4 encoders, 4
decoders, or 2 encoder-decoders could be implemented on a single DSP.

The program uses a number of unique features of the DSP to achieve
an efficient implementation of the algorithm, and it demonstrates the
flexibility of the DSP in doing small-to-medium scale algorithms of this
type.

REFERENCES

1. P. Cummiskey, N. S. Jayant, and J. L. Flanagan, "Adaptive Quantization in Differ­
ential PCM Coding of Speech," B.S.T.J., 52, No.7 (September 1973), pp. 1105-18.

2. N. S. Jayant, "Digital Coding of Speech Waveforms: PCM, DPCM, and DM
Quantizers," Proc. IEEE, 62 (May 1974), pp. 611-32.

3. J. D. Johnston and D. J. Goodman, "Multipurpose Hardware for Digital Coding of
Audio Signals," IEEE Trans. Commun., COM-26, No. 11 (November 1978), pp.
1785-8.

4. L. H. Rosenthal et aI., "A Multiline Computer Voice Response System Utilizing
ADPCM Coded Speech," IEEE Trans. Acoust., Speech, Sig. Proc., ASSP·22, No.5
(October 1974), pp. 339-52.

5. S. Bates, "A Hardware Realization of a PCM-ADPCM Code Converter," S. M. Disser­
tation, Dept. of Electrical Engineering, Massachusetts Institute of Technology,
1976.

6. H. W. Adelmann, Y. C. Ching, and B. Gotz, "An ADPCM Approach to Reduce the Bit
Rate of Jl-Law Encoded Speech," B.S.T.J., 58, No.7 (September 1979), pp.
1659-71.

7. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

8. D. J. Goodman and R. M. Wilkinson, "A Robust Adaptive Quantizer," IEEE Trans.
Commun., COM·23 (November 1975), pp. 1362-5.

9. D. Mitra, "An Almost Linear Relationship Between the Step-Size Behavior and the
Input Signal Intensity in Robust Adaptive Quantization," IEEE Trans. Commun.,
COM·27 (March 1979), pp. 623-9.

10. J. D. Johnston and R. E. Crochiere, "An All Digital "Commentary Grade" Subband
Coder," J. Audio Eng. Soc., 27, No. 11 (November 1979), pp. 855-65.

ADPCM CODING 1561

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Private Communications

By C. A. McGONEGAL, D. A. BERKLEY, and N. S. JAYANT

(Manuscript received August 2, 1980)

Where normal safeguards for message privacy are not adequate,
some form of encryption is required. Voice messages, encoded using
an adaptive differential pulse-code-modulation encoder such as that
described in a companion paper, may be encrypted for privacy (pro­
tection against casual eavesdropping) through similar digital signal
processor programs with little additional computation. Two methods
of implementation are described: The use of U-permutations for
temporal scrambling of the transmitted bit stream and the use of bit­
masking by stored random numbers. The relative merits of each
system are discussed, illustrating both the flexibility and limitations
of the digital signal processor for such applications.

I. INTRODUCTION

Situations occur in everyday telephone communication systems
where the normal safeguards for message privacy may not be adequate.
This could happen, for example, in a radiotelephone system where
message contents could be easily intercepted by unauthorized listeners.

In this paper, we discuss two simple methods for ensuring short­
term privacy for such telephone systems. These methods are based on
the Adaptive Differential Pulse Code Modulation (ADPCM) codec de­
scribed in a companion paper.l Both methods modify the ADPCM

transmitted code word in such a way as to randomize the bit pattern.
Decoding the resulting randomized code words requires advance
knowledge of the randomization key.

The techniques discussed here are non-time-varying and have lim­
ited numbers of encryption keys. Thus, the message is only protected
from casual listeners. Listeners who possess the necessary equipment
can determine the required decoding key. However, the system is

1563

designed so that decoding cannot be accomplished in the duration of
an average conversation.

Both these methods have been implemented using the Bell Labo­
ratories Digital Signal Processing integrated circuit (DSp)2 with only a
slight increase in processing load relative to that required by non­
encrypted ADPCM encoding and decoding. The resulting system should
be able to support two or three simultaneous coders or decoders per
integrated circuit.

Issues of key distribution and cryptanalysis are outside the scope of
this paper.3 Our purpose, rather, is to demonstrate what can be realized
in terms of adapting an existing ADPCM DSP program for a potential
privacy application. With ROM and RAM capabilities greater than what
are available in the present DSP, levels of privacy can be straightfor­
wardly enhanced-for example, by layering several permutation and
masking operations, as in the Digital Encryption Standard.3

In the following section, we discuss privacy algorithms. Then, we
consider the implementation of each using the DSP. Finally, we discuss
the relative merits of each system. This discussion illustrates both the
flexibility and limitations of the DSP for such an application.

II. PRIVACY CODING FOR ADPCM TRANSMISSION

There are three major requirements for a simple digital privacy
system:

(i) It must be possible to generate a "large" number of encryption
keys (bit rearrangement or masking patterns) automatically and easily.

(ii) The encrypted speech must be unintelligible if decoded by
other than the proper key.

(iii) The system must be sufficiently tractable so as to be imple­
mented without significant incremental cost.

The two encryption methods we will consider are as follows:
(i) V -permutations4 where the bits in a given block of ADPCM code

words are permuted from their normal order, producing a temporal
scrambling of the bit stream.

(ii) Addition of stored pseudo-random numbers to the ADPCM code
words to form randomly "masked" encrypted code words.
Other methods, such as use of linear congruential random number
generation5

,6 to form masks, are possible, but methods (i) and (ii)
above are both practical and illustrate the principles of encryption for
privacy.

2. 1 U-permutations

The class of uniform (or V-permutations on N bits is defined by4

S = k1r(mod N); r,s = 1,2, ... ,N, (1)

1564 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

where r is the initial bit position and s is the scrambled bit position in
the block of N bits. The encryption key is ki and must be prime to N.
Unscrambling of the N-bit block is accomplished by another U-per­
mutation

r = k2s(mod N), (2)

with kIk2(mod N) = 1. Figure 1a illustrates a permutation of bits
within a block of N bits, while Fig. 1b shows an example of uniform
permutation for N = 16, ki = 3 and k2 = 11.

lt has been found that to satisfy the requirement for unintelligibility
requires at least N = 16 for 24-kb/s ADPCM (8-kHz sampling, 3 bits per
sample).4 We have implemented an N = 16 system using 32-kb/s
ADPCM (8-kHz sampling and 4 bits/sample to provide telephone quality
speech). The scrambled speech is of very low intelligibility with casual
listening. However, individual words from a limited vocabulary, such
as spoken numbers, may be distinguishable, especially with experi­
enced listening. An implementation with higher N faces some difficul­
ties because of address space limitations. With the current DSP version
N > 32 is impossible, as will be discussed later.

The number of keys in U-permutation is given by N·G(N), where
G(N) is the number of numbers that are prime to N.4 There are 112
keys available for N = 16. For N = 32 this increases to 480 keys. The
adequacy of a given number of keys depends on the application.

2.2 Random number masking

The random mask method we have considered is basically very
simple. In essence, a different random number is added to each ADPCM

code word before transmission and that same number is subtracted by

(a)

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s 3 6 9 12 15 2 5 B 11 14 1 4 7 10 13 16

N~ 16 kl ~ 3 k2 ~ 11

(b)

Fig. I-Example of (a) general bit permutation in a N-bit block and (b) uniform
permutation with N = 16, hI = 3, and h2 = 11.

PRIVATE COMMUNICATIONS 1565

the receiver. A finite table of random numbers is used and synchroni­
zation is required between transmitter and receiver.

The encryption key for any given transmission is the starting point
in the random number table relative to the block synchronization.
Additional keys may be produced by generating the random number
mask using multiple table pointers and adding together the random
numbers to form the code word mask. Using two pointers, the masking
of ADPCM code word C with an L-number random table (4 bits per
entry so L = N/4) can be written as

(3)

where R(I) denotes the I-th word of the random table, E is the
encrypted code word, 0 1,2 are the table offsets relative to the beginning
of the table and I = 0 at beginning of a transmission block (synchro­
nization time). Decryption is accomplished by subtracting the same
set of random numbers from E. The key words are 0 1,2, leading to a
maximum of L2 possible keys of which L(L - 1)/2 are unique. Even
for L = 16 the encrypted speech is essentially unintelligible and for
larger L, the presence of speech is very hard to detect. (The output
sounds like continuous white noise at all times.) The table size is
limited by DSP ROM size of 1024 words, but L = 512 words is certainly
practical. Two table pointers then give about 130,000 keys.

III. IMPLEMENTATION USING THE DSP

The basis for both DSP privacy implementations is the ADPCM codec
discussed in the companion paper.l In both encryption systems the
coder or decoder is recast slightly in "subroutine" form which allows
more convenient handling of the block synchronization structure. Also,
to avoid the problem of two's-complement sign extension, the ADPCM

code word is converted to unsigned form; that is, the 4-bit code word,
represented as -7 to 8 in the original coder, is offset by 7 and coded as
o to 15.

3. 1 U-permutations

The U-permutation for N = 16 is implemented by splitting blocks of
four code words (4 bits each) into blocks of 16 one-bit words, rearrang­
ing the one-bit words according to the proper permutation and reas­
sembling the permuted block of four words for transmission. One block
of four words is being permuted, while a second block is being sent
allowing a very simple program organization.

The required modulo N arithmetic is accomplished without any
computation being required by overflowing the address register being
used as the storage pointer. Thus, for N = 16, the disassembled one­
bit words are stored at every fourth RAM location. The proper permu-

1566 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

tation increment is stored in the upper 8 bits of the increment register
and the address sequence generated by overflow.

Assuming that the RY A register is pointed to the unsigned form of
the ADPCM code word, the following DSP instructions disassemble the
code word and store the resulting one-bit words in RAM. The code
word is disassembled by loading the bit to be saved in bit 14 of the P

register and zeroing all other P register bits. The C register is set to 214.
(N otation for the DSP assembly language is given in a companion
paper.2)

i = 030; "permutation in-
crement"

rd = 0; "RAM storage ad-
dress"

a=p p = 2048*ryz; "get bit 1 of code
word"

a=p p = l*c; "set up to zero
other bits"

a= p&a p = 4096*ryz; "zero other bits;
get bit 2"

w=a a=p p = l*c; "set up to zero
other bits"

rdi = w a=p&a p = 8192*ryz; "save bit 1;
get bit 3"

w=a a=p p = l*c; "set up to zero
other bits"

rdi = w a= p&a p = 16384*ryz; "save bit 2;
get bit 4"

w=a a=p p = l*c; "set up to zero
other bits"

rdi = w a = p&a; "save bit 3; zero
other bits"

w=a;
rdi = w; "save bit 4"

The single bits are reassembled into a code word by shifting and
adding the bits using the following instructions:

k = 010;
ry = 160;;;
a=p
a=p
a = p + 2*a
a = p + 2*a
a = p + 2*a;

p = l.*ryk;
p = l.*ryk;
p = l.*ryk;
p = l.*ryk;

"permutation increment"
"RAM storage address"
"get bit 4"
"get bit 3"
"shift and add; get bit 2"
"shift and add; get bit I"
"code word reassembled"

PRIVATE COMMUNICATIONS 1567

In this scheme, the RAM values are refreshed at a 500-/!s period (for
an 8-kHz sampling rate) which is the maximum specified refresh time
for the dynamic RAM.2 To extend the method to N = 32, it is necessary
to use spare program cycles (of which a sufficient number appears to
be available) to supplement the "natural" RAM refresh cycles.

Permutation blocks larger than N = 32 bits are not possible using
this approach since 2N words of RAM are required. Thus, N = 64 would
fill the 128-word RAM on the DSP allowing no scratch storage as
required by the basic ADPCM coder.

The decoder implementation is very similar and has identicallimi­
tations. A single DSP /!-law to /!-law codec, using N = 16, was imple­
mented successfully and the resulting speech was quite well scrambled
although, as mentioned before, some numbers could be distinguished
with practice.

The limited number of keys in an N = 16 V-permutation system
could present a problem in some applications. To increase the number
of keys, the easiest route appears to be random number masking,
which is discussed next.

3.2 Random number masking

Random 4-bit numbers are stored, 4 bits per word, in a ROM table.
The table size is limited only by available ROM. We arbitrarily used a
256-word table for our implementation, but considerably more space
is available and can be used if more keys are desired.

In single-pointer masking a pointer into the table is arbitrarily
chosen. The DSP automatic (6-bit) loop counter is set to 63 and for
each ADPCM code word generated, a random number is fetched, added
to the code word, and the pointer incremented. When the loop count
is satisfied the pointer is restored to its original value.

If multiple pointers are used, offset values are initialized and each
random number is fetched and added to the code word. To avoid
additional programs steps for detection of the table end, the pointers
are limited to occur no later than 64 locations from the end of the
table. The two-pointer version has the following requirement

S + 8 + 64 < N, (4)

where S is the starting pointer, 8 is the offset from S, and N is the
mask table size.

All additions are made without attention to overflow out of the 4-bit
code word and the least~significant four bits are transmitted. The
received word then has identical masks subtracted, without regard to
unsigned underflow, and the four least-significant bits are taken as the '
input to the ADPCM coder. In two's-complement arithmetic the final
result is correct, without regard to overflow or underflow, if that result

1568 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

is in the required range. (The decrypted code word must satisfy this
condition since the original unsigned word was in the 4-bit range.) An
example of masking by this process is shown in Fig. 2.

Assuming the RX register contains the mask pointer, the K register
contains the offset value and the RYA register contains a pointer to the
unsigned form of the ADPCM code word, the following DSP instructions
encrypt the code word:

a=p
a=p
,a = p + a

a=p+a
a = p&a;

p = rxk*c;
p = rxk*c;
p = l.*w;
p = 017*c;

"get mask word I"
"get mask word 2"
"add masks; get code word"
"subtract mask from code word"
"decrypted 4-bit code word"

The code word is decrypted by the following instructions. The RX and
K registers contain the table pointer and offset value, respectively. The
w register contains the encrypted code word.

a=p
a=p
a=p+a
a=p-a
a = p&a;

p = rxk*c;
p = rxk*c;
p = l.*rym;
p = 017*c;

"get mask word 1"
"get mask word 2"
"add masks; get code word"
"add code word"
"encrypted 4-bit code word"

The two-pointer encrypted codec was implemented on a single DSP

with ,a-law input and output. Table sizes as small as 16 words, with a
single pointer, yield unintelligible scrambled speech.

To examine the synchronization properties of the system, the same

1001 --
0011 --
· · ·

256 WORDS

· · ·

ENCRYPTION

ADPCM CODE WORD 1011

INITIAL POINTER
(KEY 1)

+ 1001

OFFSET POINTER + 0011
(KEY 2)
MASKED WORD __ 1 0111

'-f--/
TRANSMIT

DECRYPTION

0111

0011

1001

(1) ~

RECONSTRUCTED CODE WORD

Fig. 2-Example of bit-masking with two-pointer random number encryption and
decryption.

PRIVATE COMMUNICATIONS 1569

codec was also implemented in a two-nsp version. A simplified block
diagram is shown for this system in Fig. 3. Digital signal processor· 1
provides the encryption and transmits the encrypted bits; nsp 2
performs the decryption. In the absence of appropriate synchronization
mentioned below, the output of the receiver digital-to-analog converter
is scrambled. This is the same configuration used for the two-nsp
codec, l except that provision is made for block synchronization. The
status and control bits, CO and SO, provide a "sync" bit for this purpose
and, assuming synchronization is recovered externally from the trans­
mission format, are connected separately in parallel with the main
serial data-bit stream. Synchronization formatting and recovery is
probably also possible within the nsp, but it is beyond the scope of
this paper.

Programming the synchronization is very simple. Each time the
table pointer is reinitialized the transmitter sends the control signal
(SO) using the 8TR register, and the receiver waits for the control signal
(CO) using the SYC register. Digital signal processor instructions for
the transmitter and receiver are given below.

transmitter
init:

loop:
receiver

init:

a-BIT
P.-LAW

loop:

AID

I
I
I

lc = 63;
str = 1;
auc = Ox06;
str = 0;

lc = 63;
auc = Ox06;
syc = 4

DSP
1

SYNC BIT

32 kb/s ADPCM

+TIMING

"set up loop counter"
"send control signal"
"set c = 21\ overflow"
"turn off control signal"

"set up loop counter"
"set c = 21\ overflow"
"wait for control signal"

DSP
2

a-BIT
P.-LAW

I I

L-------------f----------~---~

a-kHz CLOCK
A/D-D/A

Fig. 3-Simplified block diagram of tWO-DSP ADPCM codec with block synchronization.

1570 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Table I-Memory utilization

Coder Type

ADPCM encoder
V-permutation encoder N = 16
Random mask encoder L = 256
ADPCM decoder
V-permutation decoder N = 16
Random mask decoder L = 256

Memory
Instructions
per Sample ROM

46 228
57 308
68 552
38 156
42 214
55 452

RAM

5
37
6
5

37
6

As expected, synchronization time is imperceptible and the system
sounds exactly the same as does the single DSP codec.

IV. DISCUSSION

Both encrypted codecs provide adequate scrambling in terms of
reduced intelligibility, although random number masking is capable of
entirely destroying the impression of speech.

Program efficiency, in terms of instructions executed per 125-p.s
sample, is also similar as shown in Table 1. Utilization of the DSP,

relative to its maximum execution rate of 156 instructions per 125-s
sample, ranges from 24 percent for the ADPCM decoder to 44 percent
for the random mask encoder.

Table I also shows memory utilization for the different implemen­
tations. (These should be compared to 128 words of available RAM and
1024 words of available ROM.) The ADPCM codec is in subroutine form
and savings of about eight instructions can be made by removing this
structure at the expense of a considerably more opaque program.

The number of keys required for this type of privacy system has not
been studied and other issues, such as transmission of keys, are outside
the area of this paper. Clearly, in this implementation random number
masking provides for more keys than U -permutations. Also, if greater
levels of secrecy are required on a particular transmission link, one
can envision a special transmitter/receiver pair with a unique PROM or
ROM random number table used externally, thereby achieving a 24k key
system. (This is because there are 2M binary sequences of length M.)
For any single transmission, i.e. a single set of pointer positions, k =
64. However, if one considers other pointer positions this number is
greater and is, in general, a function of the random number table
length L.

Although the programming was not discussed, the setting of the
particular key to be used in a given transmission would require, for
example, reading an external switch register during program initiali­
zation. Thus, one would need some simple external circuitry to divert
the codec input stream at initialization (reset) time and appropriate

PRIVATE COMMUNICATIONS 1571

DSP programming to handle the input format and store the result in
RAM.

V. CONCLUSION

Two privacy encryption systems, based on ADPCM coding of speech,
have been discussed. Using the DSP we have implemented both with
modest increases in processor load. The U -permutation method makes
heavy use of RAM and has limited numbers of encryption keys. Random
number masking makes heavy use of ROM and can provide large
numbers of keys. Both systems reduce speech intelligibility and could
form the basis of an effective privacy system.

VI. ACKNOWLEDGMENTS

The authors would like to acknowledge the support of their associ­
ates in the Bell Laboratories Acoustic Research Department, especially
that of J. Johnston, in the development of the modulo arithmetic
concepts; J. Upton in modification of the DSP hardware for block
synchronization; and J. L. Flanagan for his support, encouragement,
and discussion of the use of specially prepared ROM for secrecy.

REFERENCES

1. J. R. Boddie et al., "Digital Signal Processor: Adaptive Differential Pulse-Code­
Modulation Coding," B.S.T.J., this issue.

2. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

3. W. Diffie and M. E. Hellman, "Privacy and Authentication: An Introduction to
Cryptography," Proc. IEEE, 67, No.1 (March 1979), pp. 397-427.

4. S. C. Kak and N. S. Jayant, "On Speech Encryption Using Waveform Scrambling,"
B.S.T.J.,56, No.5 (May-June 1977), pp. 781-808.

5. D. E. Knuth, The Art of Computer Programming, Vol. 2, Massachusetts: Addison­
Wesley, 1969, pp. 9-25.

6. M. Buric, J. Kohut, and J. Olive, "Digital Signal Processor: Speech Synthesis,"
B.S.T.J., this issue.

1572 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Receiver for TOUCH-TONE ® Service

By J. R. BODDIE, N. SACHS, and J. TOW

(Manuscript received July 2, 1980)

This paper describes the design of a single-package, all-digital
receiver for TOUCH-TONE® service implemented by using a digital
signal processor integrated circuit. The receiver is particularly suited
for systems that operate on signals that have been encoded into a
digital pulse-code-modulation format. The program contained in the
digital signal processor was designed to emulate the signal process­
ing functions of a central office grade receiver. Measurements of
performance confirm the equivalency.

I. INTRODUCTION

This paper describes the design of a single-package, all-digital re­
ceiver for TOUCH-TONE® service implemented by using a digital
signal processor (nsp) integrated circuit.1 The receiver is particularly
suited for systems that operate on signals that have been encoded into
a digital pulse-code-modulation (PCM) format.

TOUCH-TONE service is a voice frequency signaling system in
which anyone of 16 digits may be transmitted by simultaneously
sending two tones. The frequency of one of the tones may be either
697, 770, 852, or 941 Hz (called the low group) and the frequency of the
other tone may be either 1209, 1336, 1477, or 1633 Hz (called the high
group). The receiver must tolerate frequency shifts in the transmitter,
operate over a wide dynamic range in the presence of noise, and be
insensitive to speech (digit simulation). 2

The program contained in the nsp was designed to emulate the
signal processing functions of a central office grade receiver. Measure­
ments of performance confirm the equivalency.

1573

II. DESCRIPTION OF THE RECEIVER

2. 1 Receiver architecture

The model for the DSP receiver architecture was the analog type-H
service receiver. The type-H receiver is used in many central offices
today and has a relatively high sensitivity and noise immunity, as well
as good digit simulation performance.

A block diagram of the DSP receiver is shown in Fig. 1. At the input
is a filter which reduces interference from power line and precise dial
tone components. This filter provides loss at 60, 180, 350, and 440 Hz,
and it establishes a passband between 650 and 3000 Hz. It is a fourth­
order high-pass filter instead of a sixth-order bandpass filter as in the
analog receiver, because the digital receiver does not have to remove
cable test tones above 10 kHz. The PCM data have been converted from
analog signals that are band-limited to less than 4 kHz.

The output of the input filter is then split by two sixth-order band
elimination filters. The low-group band elimination filter (LGBEF)

provides loss only in the frequency band from 600 to 1050 Hz. The
high-group band elimination filter (HGBEF) provides loss in the high­
group frequency passband and gain in the band above 1900 Hz. The
use of BEFS is important for good digit simulation performance as
discussed later.

Each BEF output is followed by a limiter which serves two functions.
First, for signal levels above a minimum value, the limiter gives an
output that is independent of the input signal amplitude. The second
function of the limiter is to provide digit simulation protection, as
discussed later. Each limiter output drives a set of second-order
channel filters. The filters are tuned to the signaling frequencies and
have a pole-Q of 16.

The channel filters drive detector circuits which sense a signal level
that is greater than a fixed threshold. The threshold is set to 2 dB
below the peak signal level that would be present if a sine wave of the
nominal frequency and amplitude were input to the limiter. If the
signal to the detector drops below the threshold, the detector continues
to indicate detection for a fixed hold time.

The outputs of the detectors are packed into an 8-bit word and are
applied to the routine which implements the digit validation logic.
This logic checks for a valid detector output and applies a timing
criterion. If the detectors show the presence of a tone pair for a
continuous validation interval, the logic indicates a valid digit with the
digit present (DP) flag and outputs a code word for the digit. The logic
then requires the pair to be continuously absent for the validation
interval before indicating no digit. An early detect (ED) flag is also
provided to indicate that a tone pair is in the process of being validated.

1574 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

JJ
m
()
m
<:
m
JJ
"'TJ
o
JJ
-i o
C
()
J:
~ o z
m

@

(J)
m
JJ
< o
m
...I.

(J1,
(J1

Fig. I-Receiver architecture .

OUTPUTS:

~~ DIGIT CODE

DIGIT PRESENT

EARLY DETECT

The digit simulation performance of the receiver relies on limiter
guard action. If a signal with two or more frequency components is
present at the input of a limiter, the magnitude of each individual
signal component at the output of the limiter is reduced to less than it
would be if only that component were present at the input. When valid
tones are transmitted, each group limiter receives only one signaling
component and the magnitude of that component at the limiter output
is above a threshold, as measured by the channel filter and detector.
When speech is input to the receiver, the group limiters get many
frequency components-some of which might be in the range of valid
signaling tones. In this case, the limiter guard action reduces the
magnitude of any signaling component at the output of the limiter to
a value less than the detector threshold. The use of BEFS increases the
number of frequency components from speech that would reach the
inputs to the limiters.

2.2 Digital Signal processor program

Figure 2 shows the organization of the nsp program. After initiali­
zation, the nsp executes the main receiver routine which consists of a
loop that is traversed once every 250 p,s (or two 8-kHz sample periods).
The main routine calls a filter subroutine twice per loop so that the
digital filtering operations are performed once every 125 p,s. The

---,
I
I
I
I
I

125 JLs
I
I
I

~-t
I
I
I
I
I

125 JLs
I
I
I
I

-----1
Fig. 2-Program organization.

1576 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

operations done in the main routine include packing the eight detector
outputs into a single word and performing the timing validation logic.
The program was organized in this way because all of the fIltering and
digit validation cannot be done in a single 125 JLS interval. However,
the digit validation logic does not have to be done at an 8-kHz rate
and can be split over two or more intervals.

The initialization routine sets the AU control register, AUC, for
rounding and overflow protection. The I/O control register, IOC, is set
for format 0, 8-bit, passive input and 2.5-Mb/s active output. The RAM

is cleared and some register pointers are set.
The fIrst operation of the main routine is to call the filter subroutine.

The filter subroutine waits for an input and then converts it from JL-
255 to linear. The input and BEFS are shown in a block diagram in Fig.
3. All of the second-order structures use only four multiplies. The
signal levels are adjusted at the inputs to the BEFS.

The group limiters are realized by the following code:

p = lim**rya; "rya points to YH"

a=p;

a = a« 14;

w=a;

The initial multiplication of a fraction (lim) and the output of the
BEFS (YH shown here) limits the dynamic range of the receiver. The
result in the accumulator is shifted up and transferred to the w register.
Signals in the range of 0 to -29 dBm will cause the w register to
saturate because of overflow. This limiter action using the overflow
protect function is very similar to the behavior of the analog receiver.

The outputs of the limiters are applied to the eight channel fIlters.
These filters are realized as shown in Fig. 4a, which illustrates the 770-
Hz BPF.

The detector algorithm for each channel output is shown in Fig. 4b.
This is the equivalent of the comparator circuit in the analog receiver.
The output is compared with a threshold value (th) for every sample.
If the sample is greater than the threshold, the detector output is set
to a positive number (CNT) and decremented, otherwise, the detector
output is just decremented. The value of CNT is such that when the
signal falls below the threshold, the detector output will be a positive
number for the detector hold time. The 1633-, 1477-, and 1336-Hz
detectors compare the rectifIed channel filter output with the threshold
to improve the detectability of these frequencies. It is possible to
sample a sine wave at these frequencies whose amplitude is above the
threshold in such a way that none of the positive samples for one cycle

RECEIVER FOR TOUCH-TONE® SERVICE 1577

...4

U1
......
ex>

-i
I
m
OJ
m r­r-
en
-< en
-i m
~
-i m
C")
I
Z
o »
r­
c...
o
C
:D
Z »
r
en
m
-C
-i
m
~
OJ
m
:D

co
ex>

INPUT FILTER

HIGH-GROUP BAND ELIMINATION FILTER

Fig. 3-Input and band splitting fIlters.

SL

FROM
LIMITER

Yl> th

(a)

YES

(b)

Yl

TO
DETECTOR

Fig.4-Channel fIlter and detector for 770-Hz tone. (a) BPF (770 Hz). (b) Detector
(770 Hz).

are above the threshold. The rectification operation guarantees that
at least one sample per cycle will be above threshold if the amplitude
of the sine wave is 1 dB above the threshold. The filter subroutine
then returns to the main routine.

In the main routine, the outputs of the low-group detectors are
packed into a single word using the "sgn" function which tests the sign
of the detector outputs. The word is tested to see if there is a tone
detected in the low group. The high-group detector outputs are packed
and tested in a similar fashion. The low- and high-group outputs are
then combined to form an address that can be used to access the
desired output code for the detected tone pair from a table in ROM.

rAfter calling the filter subroutine again, the main routine does the
timing validation function and provides ED and DP flags on the s bits
of the DSP. The latest detected tone pair (NEW) is compared with the
tone pair that is under validation (OLD). The result of the validity
test can be followed with the flowchart in Fig. 5. If there is no detected
tone pair or the detection does not match the previous detected pair,

RECEIVER FOR TOUCH-TONE® SERVICE 1579

YES

cu>o CU< 0

Fig. 5-Timing validation logic.

a variable, CU, is tested to see if no digit has been validated. If there
is no digit present (positive CU value), the OLD is updated with the
NEW. A variable, CD, is decremented and tested to see if a tone pair
has been continuously absent for the validation interval. If so, CD will
be negative and the s bits are cleared to indicate "no digit" and the
variable CU is initialized (CIN). If a valid tone pair is detected, the
variable CU is decremented and tested to see if the pair has been
present for the validation interval. If not, the s bits are set to indicate
ED. If CU is negative, indicating a continuous detection for the vali­
dation interval, the s bits are set for DP and the CD variable is
initialized (CIN). Finally, if CU is exactly zero, the code for the digit
pair is written in the output buffer. The program then branches to the
beginning of the loop.

As written, the program uses nearly 100 percent of the time available
for processing. However, it could be reorganized such that the main
routine calls the filter subroutine three or four times per loop in order
to do more low-speed operations if necessary. Only 42 percent of the
ROM is used for the receiver program. The rest of the ROM space could

1580 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

be used for other programs that are accessed by a conditional branch
taken after reset and based on the state of the nsp c bits.

2.3 Hardware and interface considerations

Because the complete receiver is in a single 40-pin package, the
hardware requirements are extremely simple. Also, the flexibility of
the nsp I/O unit allows a variety of possible interface configurations to
be realized. Figure 6 shows an arrangement that is compatible with
the programmed I/O control described in the previous section. It is
also the circuit that was used to test the performance of the receiver.

A number of connections are independent of the choice of I/O

configuration. The nsp must be powered by a +5 volt source, the
internal ROM enabled, a 5-MHz clock applied, and reset controlled.
The internal ROM is enabled by connecting EXM to +5 volts. A 5-MHz
clock may either be applied to the CLKIN pin (as shown) or the on-chip

't-sb

°H
13

b o 74LS164

°G 12
b,

GND
b 2

- 14
Vee O£ b 3 PARALLEL

DIGIT

°D b4 OUTPUT
9

CLR °c bs

Os 4 b 6 2
+5 B

3 °A b 7

A
CK

8

11
SERIAL PCM INPUT---~ 01 DO

2
SERIAL DIGIT OUTPUT

B
INPUT SYNC ---~ ISY OSY

6
OUTPUT SYNC

9
INPUT CLOCK ---~ lCK OCK

4
OUTPUT CLOCK

CTR
- 5
CTS

XTAL -
35

RESET CONTROL ----...;:~ REST

33
5MHz----...;:~ CLKIN SO

39
EARLY DETECT

30
+5-~~ EXM Sl

40
DIGIT PRESENT

+5 12 Vee

13 Vss
DSP

OTHER PINS ARE NOT CONNECTED

Fig. 6-Receiver hardware.

RECEIVER FOR TOUCH-TONE® SERVICE 1581

oscillator may be used with the addition of an external crystal. The
reset line should be held low (TTL levels) for at least 600 ns after power
up and then held high while the receiver is operating.

The input is set up in the program for passive, 8-bit operation. That
is, the nsp-receives clock pulses and synchronization information from
the system providing the PCM data. The input is continuously enabled
by the grounding of the CTR pin.

The output is programmed for active, 8-bit transmissions at a rate
of 2.5 Mb/s. All of the output signals are generated by the nsp and can
be used to drive a TTL shift register to provide parallel digit output.
The output is also continuously enabled by the grounding of the CTS

pin.
The En and np flags are provided by the nsp sO and sl pins,

respectively.
All of the other nsp pins are not used and may be left open.

III. RECEIVER PERFORMANCE

The performance measurements for the receiver were made by
interfacing a J.L-255 law encoder (analog-to-digital converter) with D­
type channel bank filter to the nsp. The receiver could then be checked
using analog receiver test facilities. A type-H receiver was tested in
parallel.

The signal amplitude sensitivity of the receiver was measured with
worst-case parameters. That is, the frequencies of the tones were set
to their maximum allowable deviation from nominal, the levels of the
two-tone groups were made different, maximum expected dial tone
was added, and the duration and interdigit intervals were at their
minimum values. The receiver was also tested for detection errors with
tones in the presence of gaussian and impulse noise. Finally, digit
simulation was tested by applying speech and music to the receiver.

In all tests the nsp receiver performed as well as the type-H receiver.

IV. CONCLUSION

This paper has described a central office quality receiver for
TOUCH-TONE® service which accepts signals encoded in a digital
PCM format. The entire receiver is implemented using the nsp, a single
40-pin dual inline package that is powered by a +5 volt supply. It can
easily be customized for different input and output formats, and there
is enough spare ROM capacity to implement other functions when the
device is not being used as a receiver.

V. ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of J. S.
Thompson, who did the preliminary filter designs, and G. T. Kraemer,

1582 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

who provided valuable information about signaling receivers. The
circuits used to test the receiver were constructed by C. T. Kirk.

REFERENCES

1. J. Boddie et al., "Digital Signal Processor: Architecture and Performance," B.S.T.J.,
this issue.

2. R. N. Battista, C. G. Morrison, and D. H. Nash, "Signaling System and Receiver for
TOUCH-TONE Calling," IEEE Trans. Commun. Electron., 82 (March 1963), pp.
9-17.

RECEIVER FOR TOUCH-TONE@ SERVICE 1583

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Voice-Frequency Transmission Treatment for
Special-Service Telephone Circuits

By R. B. BLAKE, A. C. BOLLING, and R. L. FARAH

(Manuscript received July 30, 1980)

This article describes the application of the digital signal processor
as a voiceband signal processing element. The application chosen is
one of the most stringent voice-frequency signal processing applica­
tions in the telephone network-providing transmission treatment
(e.g., gain, equalization, and echo control) for special service circuits.
A detailed description of a prototype transmission treatment unit,
which uses the DSP, is provided along with descriptions of the digital
filter structures and filter synthesis techniques. Measured results for
representative extreme cable facility cases are presented, showing
that digital signal processing utilizing the DSP meets the telephone
network transmission requirements for special 'service circuits.

I. INTRODUCTION

The fIrst, and still most heavily used, transmission medium in the
telecommunications network is copper wire. Twisted pair metallic
cables of various gauges, lengths, and sizes make up the bulk of the
loop plant and local exchange trunk plant. The application of electronic
amplifiers or repeaters to provide gain to compensate for the atten­
uation of signals on metallic cables was the first large-scale use of
electronics in the telecommunications network. Repeaters are still
used extensively. By necessity, the systems of the past that provided
voice-frequency (VF) transmission treatment on a per-channel basis
were analog systems. The large-scale use of sophisticated digital signal
processing for these transmission treatment functions was precluded
by cost, power consumption, and size of implementation. However, in
recent years the capabilities of digital hardware have improved sig-

1585

nificantly, primarily as a result of the rapid development of integrated
circuit technology.

The digital signal processor (nsp), 1 a VLSI device with a large number
of logic circuits, is an example of the sophistication that is now possible
with digital hardware. The inherent capabilities of the nsp have made
it possible to consider the use of digital filters to replace some of the
traditional analog network functions in VF transmission systems. This
paper reports on the results of an experimental study in which the nsp

is used for this purpose. Among the most desirable features of the nsp,

and especially important for this study, is the ease with which it can
be programmed under computer control to provide transmission treat­
ment functions.

The principal transmission signal processing functions are performed
in VF repeaters for metallic transmission systems and in carrier ter­
minal units (CTUS) for transmission systems that contain a metallic-to­
carrier interface. These systems provide signal processing for a variety
of services. Typically, the most demanding signal processing require­
ments derive from special services applications.2 Special service circuits
are engineered using all types of transmission media. Special services
are a large and rapidly growing part of the telecommunications net­
work.

Performance objectives for a special service circuit are normally
specified in terms of I-kHz loss, attenuation distortion, echo distortion,
and various other transmission parameters. If signal processing must
be included in a circuit so that transmission objectives for the circuit
can be achieved, the circuit is called a treated circuit. The prototype
transmission treatment unit, described in this article, which uses the
nsp to provide adjustable transmission treatment functions, is referred
to as a digital treatment transmission unit (nTTu). The description of
the nTTU and its capabilities begins in Section III. First, in Section II,
an outline of treated circuits is presented since the performance goals
for the nTTU were based on the performance objectives for these
circuits.

II. INTRODUCTION TO VOICE-FREQUENCY CIRCUITS

Table I lists some of the applications for metallic treatment systems.
Figure 1 illustrates some of the possible circuit arrangements with
transmission treatment. Each of the arrangements is assumed to be
providing a special service circuit-in this case a foreign exchange
trunk. Figure Ia shows a terminal repeater, with a switching system
on one side and a 2-wire cable connected to a PBX on the other. Figure
Ib is smilar, but with the repeater placed at an intermediate location
in the circuit. Figure Ic shows the use of two repeaters in a long circuit.

Finally, Fig. Id shows a circuit that contains both a carrier link and

1586 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Table I-Inserted Connection Loss (ICL)

objectives for typical 2-wire switched
special services

Switched Special Services

PBX-CO trunk
Foreign exchange trunk
WATS trunk (to class 5 co)
WATS trunk (to class 4 co)
Foreign exchange line
WATS line (to class 5 co)
WATS line (to class 4 co)

ICL (dB)

3.5
3.5
3.5
4.5
3.5
3.5
4.5

a 2-wire cable facility. This latter configuration, with a carrier link in
tandem with a 2-wire metallic extension, is quite common. Carrier
systems are designed to be essentially transparent for transmission
purposes. Note that if the carrier link is removed in Fig. ld and the
CTUS retained, the resulting circuit arrangement is similar to that
shown in Fig. la.

The CTUS that provide the 4- to 2-wire interfaces must provide

PBX

s~~ ______ (a_;_A_B_LE ________ ~r--~

~ ~ CABLE ~ CABLE

(b) PBX

CABLE ~~ ~ CABLE

(e)

(d)

<> 2-WIRE VF REPEATER

B CARRIER TERMINAL UNIT

Fig. I-Some example topologies for a foreign exchange trunk.

VOICE-FREQUENCY TRANSMISSION 1587

transmission treatment for the adjacent metallic cable. Carrier termi­
nal units with analog treatment are currently available for both digital
and analog carrier sytstems. A digital carrier system is an obvious
candidate for digital transmission treatment since digital encoding and
decoding of signals is already required. Digital switching systems,
which have transmission characteristics similar to digital carriers, are
also strong candidates for digital treatment of special service circuits.
This article concentrates on the digital-to-analog 4- to 2-wire interface.

2. 1 Transmission treatment objectives

The success of the telecommunications network in providing satis­
factory service places requirements or objectives on some of the basic
electrical characteristics of the equipment used. The services listed in
Table I must be engineered to have carefully controlled transmission
properties. The main theme of this study is the use of the DSP to
control the loss, attenuation distortion, and echo distortion of treated
circuits. This is accomplished by implementing digital filters with the
DSP, as is described in detail in the following sections. Although not
considered here, the DSP could also be programmed to control delay
distortion of a treated circuit.

Of the services listed in Table I, the trunks have the most stringent
performance objectives. A typical short haul treated special service
trunk must be engineered to have a I-kHz loss of 3.5 dB to an accuracy
of approximately 0.5 dB. Furthermore, the loss of the circuit at 400
and 2800 Hz, relative to the I-kHz loss, should be within the following
limits: at 400 Hz, -1.0 dB to 3.0 dB; at 2800 Hz, -1.0 dB to 4.5 dB.
Additionally, the circuit loss should be relatively smooth between
these two frequencies. The circuit should also be designed so that its
loss response rolls off at the VF band edges to enhance stability margin
and echo performance. For the configuration shown in Fig. la, crosstalk
considerations restrict the gain of the repeater to a maximum of 6 dB
at 1 kHz, and the loss of the cable to a maximum of 9 dB at 1 kHz.

Since a 2-wire treatment unit is inherently a feedback device, some
means must be provided to "balance" the unit, that is, significantly
reduce the feedback, to ensure adequate stability margin and satisfac­
tory echo performance for a treated circuit. In the DTTU, a digital
canceler network provides this balance function. Since gain added to
a circuit amplifies an echo along with the desired signal, treated circuits
must be better balanced than untreated circuits. Poor balance results
in listener distortion on short circuits and talker echo on long circuits.
At a 4- to 2-wire interface, the equipment should produce at least 15
to 18 dB of loss between the 4-wire ports (e.g., ports 3 and 2 in Fig. 2),
including the effects of gain, over most of the voiceband. The loss at
the VF band edges may be somewhat less, although adequate stability
margin must be maintained.

1588 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

4-WIRE
TO

2-WIRE
TREATMENT

UNIT

2-WIRE CABLE
TERMINATING

EQUIPMENT

Fig. 2-Balance objectives are achieved if there is at least 15- to I8-dB loss between
ports 3 and 2 of the 4- to 2-wire transmission treatment unit.

III. DIGITAL TREATMENT TRANSMISSION UNIT

A block diagram of the DTTU is shown in Fig. 3. The digital ports of
the DTTU could interface with a digital carrier or a digital switch, while
the 2-wire analog port could interface with loop plant cable or trunk
cable. The DTTU consists of a DSP, a line interface unit (LIU), and the
appropriate logic devices to interface the DSP to the LIU. All adjustable
gain, equalization, and echo cancellation are provided by digital filters
implemented with the DSP. The remaining DTTU functions, such as
encoding and decoding of signals, are provided in the LIU.

3. 1 Line interface unit transmission functions

The experimental version of the LIU contains a commercially avail­
able I6-bit, full-linear digital-to-analog converter. Unpublished studies

f.----------- LINE INTERFACE UNIT (LlU) -----------.j

RECEIVE DIRECTION
OF TRANSMISSION -

f-----~ RECONSTRUCTION
FILTER

ANTIALIASING
FILTER

TRANSMIT DIRECTION
OF TRANSMISSION -

2-WIRE
LINE
PORT

Fig. 3-Block diagram of the digital treatment transmission unit (DTTU).

VOICE-FREQUENCY TRANSMISSION 1589

by J. H. W. Unger have shown that the standard Jl-255 encoding does
not provide sufficient dynamic range for digital signal processing in
some special service applications. The I6-bit linear encoding was
chosen to avoid this problem. The converter is followed by a recon­
struction filter that removes energy above 4 kHz. The reconstruction
filter drives a fixed-gain analog amplifier that, in turn, drives the 2-
wire cable through a 900-ohm transformer-coupled output. Addition­
ally, the amplifier drives an analog compromise canceler, a device
discussed in more detail in the next paragraph. Input signals from the
cable are coupled through the transformer to a differential amplifier.
The differential amplifier drives an antialiasing filter that removes
energy above 4 kHz and also removes 60-Hz induction. The output of
the antialiasing filter is sampled at 8 kHz and then converted to digital
form by a I6-bit, full-linear analog-to-digital converter.

The primary purpose of the compromise canceler is to provide some
loss (approximately 6 dB or greater) between points "a" and "b" of
the LIU for the universe of cables with which the DTTU is expected to
interface. Its transfer function is fixed, with one pole and no zeros. As
compared to the DTTU performance in the absence of the compromise
canceler, the benefits obtained are twofold:

(i) A large signal at point "a" is less likely to overload the analog­
to-digital converter.

(ii) The performance of the digital echo canceler in the DSP is
enhanced.

3.2 Digital signal processor transmission functions

As mentioned above, all adjustable gain, equalization, and echo
cancellation for the DTTU are provided by digital filters in the DSP.

These fIlters are:
(i) an equalizer for the transmit direction of transmission,

(ii) an equalizer for the receive direction of transmission, and
(iii) a canceler.
The equalizers provide adjustable gain as well as adjustable equali­

zation. The transfer functions of these three fIlters are dentoed by E t,
E r , and C, respectively. These filters will be represented in many of
the remaining figures in this article by the symbols shown in Fig. 4.

IV. SELECTION OF FILTER FORMS FOR THE EQUALIZERS AND
CANCELER

The DTTU must have the capability to provide transmission treat­
ment for a large variety of cable facilities. Laboratory and computer
simulations of a representative sample of treated transmission facilities
have shown that the DTTU has the required capability if the canceler
is a 32-tap transversal fIlter and each equalizer is a fourth-order

1590 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

DSP

LlU -

Fig. 4-Symbolic representation of DTTU digital fIlters.

recursive filter composed of two cascaded biquads. In Z-transform
notation, the filter functions are:

31

C = L CnZ-
n

,
n=O

1 -1-2
E = G II amOt + amltZ + a m 2tZ

t t m=O 1 - bmltz- 1 - bm2tz-2 ,

1 -1-2
E = G II amOr + a m 1rZ + a m 2r Z

r r m=O 1 - bm1rz- 1 - bm2rz-2

and (1)

(2)

Symbolic diagrams of these filters are shown in Figs. 5 and 6. (In the
figures, x, y, VI, and V2 represent signal values, and are used for the
discussion in Section V.) The equalizer pre-multipliers, Gt and Gr,
allow flexibility in parceling out gain between the filter sections and in

OUTPUT

Fig. 5-Block diagram of a 32-tap transversal fIlter.

VOICE-FREQUENCY TRANSMISSION 1591

Fig. 6-Block diagram of two cascaded biquads.

controlling coefficient magnitude, which is constrained by the nsp
coefficient storage format to be less than 2.0. The coefficients in the
three equations above are different for each different cable facility.

A recursive structure, rather than a transversal structure, is used for
the equalizers for one primary reason: in addition to providing gain
and equalization in the frequency band 400 and 2800 Hz, for 2-wire
transmission, it is also necessary that the equalizers provide significant
attenuation at the VF band edges to enhance the stability margin
performance of the nTTU. This characteristic is more readily obtained
with a low-order recursive structure, for the transmission system under
consideration, than it is with a reasonable size transversal filter.

A cascaded biquad structure, rather than a direct-form fourth-order
structure, is used for the equalizers because the transfer function of
the cascaded structure is less sensitive to coefficient quantization. In
Refs. 3, 4, and 5 it is shown that if the unquantized pole locations or
zero locations lie close to each other, coefficient quantization can cause
a large shift in the pole or zero locations. If this shift occurs, the filter
response will differ from the desired response. In the direct-form
realization, the shift as a function of coefficient quantization is de­
pendent on all the pole or zero locations. However, in the cascade
form, the pole or zero shift in one section is independent of the pole or
zero locations in the other sections.

v . FILTER IMPLEMENTATION WITH THE DSP

In this section, the implementation of the equalizers and canceler
with the nsp is discussed. For a description of the nsp architecture see
Ref. 1. There are four topics of interest with regard to the nsp program.
These are:

1592 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

(i) location of coefficients and delays in the RAM,

(ii) filter implementation,
(iii) coefficient loading, and
(iv) program storage and execution time.

5. 1 Digital signal processor RAM memory map

Since the filter coefficients are different for each different cable
facility, they must be stored in the DSP RAM. Also, the delayed signal
values must be stored in RAM. Coefficients and delayed signal values
are stored as shown in Fig. 7 so as to minimize the number of register
sets required to access them.

5.2 Filter implementation

5.2. 1 Equalizers

In the DSP program used for the DTTU, the three filtering operations
are performed in the following order:

(i) E r ,

(ii) C,
(iii) E t •

The canceler is discussed below. In this section Er and Et are discussed.
Since the program steps used to implement Er and Et are identical, a
general description of the filtering steps in two cascaded biquads is
presented.

Figure 6 shows a block diagram of two cascaded biquads. The input
signal is labeled x and the output signal is labeled y. Internal signal
values are labeled Vo and VI, with vo(n - 1), vo(n - 2), vI(n - 1), and
VI (n - 2) being delayed signals obtained from preceding filter opera­
tions. The general sequence of operations used to filter x and obtain y
requires nine additions and eleven multiplications for each value of x
input to the filter.

First, vo(n) is obtained by forming the sum

b02 * vo(n - 2) + bOI * vo(n - 1) + G * x(n)

in the accumulator, rounding the result, and storing it in a temporary
register. The rounded result is vo(n). The products are performed in
the product register before entering the accumulator. Then, vI(n) is
obtained in an identical manner from the sum

£lo2 * vo(n - 2) + £lol * vo(n - 1) + aoo * vo(n)

+ bl2 * vI(n - 2) + bll * vI(n - 1).

Finally, y(n) is obtained from the rounded value of the sum

a12 * VI (n - 2) + all * vI(n - 1) + alO * vI(n).

VOICE-FREQUENCY TRANSMISSION 1593

ADDRESS CONTENTS

o

10

11

12

43

44

54

55

56

57

58

59

89

90

91

92

93

}

COEFFICIENTS AND PREMULTIPLIER FOR RECEIVE PATH EQUALIZER, Er .

STORAGE ORDER: b02r ' b 01r ' Gr , a02r' aOl r , aOOr '
b 12r , b llr , a12r, all r , a lOr .

)- PREMULTIPLIER FOR CANCELER'*:

}

COEFFICIENTS FOR CANCELER,C.

STORAGE ORDER: C3l , C30, C29'·.·, C2' Cl , CO·

}

COEFFICIENTS AND PREMULTIPLIER FOR TRANSMIT PATH EQUALIZER, Et .

STORAGE ORDER: Gt , b02t, bOlt, a02t, aOlt, aOOt,

b l2t , b ll t, al2t, all t, alOt·

}

DELAY OPERATIONS FOR FIRST BIQUAD OF Er .
STORAGE ORDER: z-2, z-l.

}
DELAY OPERATORS FOR SECOND BIQUAD OF Er .
STORAGE ORDER: z-2, z-l.

}

DELAY OPERATORS FOR CANCELER, C.
STORAGE ORDER: z-3l, z-JO, z-29, .. . , z-3, z-2, z-l.

}
DELAY OPERATORS FOR FIRST BIQUAD OF Et .

STORAGE ORDER: z-2, z-l.

}
DELAY OPERATORS FOR SECOND BIQUAD OF Et .
STORAGE ORDER: z-2,z-1.

*SERVES SAME PURPOSE FOR CANCELER THAT Gr AND Gt SERVE
FOR EQUALIZERS

Fig. 7-Locations of the coefficients and delays in DSP RAM.

Before the next value of x enters the filter, vo(n - 2) is updated by
setting it equal to vo(n - 1); vo(n - 1) is updated with vo(n); vl(n - 2)
with vl(n - 1); and vl(n - 1) with vdn).

The output of the receive path equalizer is transmitted to the digital­
to-analog converter and to the canceler input.

5.2.2 Canceler

Figure 5 shows a block diagram of a 32-tap transversal filter. The
basic operation in a transversal filter is the multiplication of a tap
coefficient by a delay output, followed by an addition in an accumu­
lator. This operation can be accomplished with a sequence of instruc-

1594 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

tions a = p + a p = axi * ryi;, where a and p are zero at the beginning
of the sequence and RX and RY (coefficient and data address registers)
are set to point to C31 and x(n - 31), respectively. Because the nsp
architecture does not permit a write to RAM two instructions before
reading a coefficient from RAM, the delay shifts must be done separately
from the filtering.

Once the output of the canceler is computed, it is subtracted from
the analog-to-digital output in IBUF. The contents of the accumulator
are then transferred to the w register, ready for use by the transmit
path equalizer.

5.3 Coefficient loading

A two-step procedure is used to load the nsp RAM. In the fIrst step,
cO is set and the address of a RAM location is transferred to the nsp. In
the second step, c1 is set and the coefficient is transferred and stored
in the RAM location that has the address transferred in step one. Each
step takes one frame. The selection of the appropriate step is deter­
mined by testing the cO and c1 control bits.

The procedure is repeated for all 54 coefficients. The coefficients are
transmitted in order from address 0 to address 53. Because the nsp
RAM is dynamic, and only one memory location is referenced every
other frame, it must be refreshed every frame. This is accomplished by
sequentially reading all locations.

5.4 Program storage requirements and execution times

The program to implement the filter functions and the coefficient
loading routine requires 314 words of memory, with 21 memory loca­
tions used for the receive path equalizer, 108 for the canceler, 36 for
the transmit path equalizer, 85 for the coefficient loading and refresh,
and 64 for miscellaneous operations (pc sets, no-ops, etc.). In the
experimental version of the nTTU, code was written to be clear rather
than efficient in memory requirement. There are some techniques that
in a final product could reduce the amount of memory required. For
example, in doing the canceler tap update, the instruction rdi = ryp;
was used. This requires two words of storage per "auxiliary" instruc­
tion. By using rdi = ryp a = p p = olx * c; the amount of storage for
the update sequence is cut in half, since this is a "normal" instruction.
The a = p p = olx * c; is just a "fill" and accomplishes no useful
operation.

The filtering portion of the program requires 106.40 p,s, with 12.8 JlS
for the receive path equalizer, 56 JlS for the canceler, 12.8 JlS for the
transmit path equalizer, and 24.8 JlS for miscellaneous operations. This
leaves 18.6 Jls for other use. One application might be a self-diagnostic
for the chip (e.g., check RAM or the AU).

VOICE-FREQUENCY TRANSMISSION 1595

VI. LOSS DEFINITIONS

A special service circuit must provide a high-quality channel for VF

signal transmission. Loss measurements are normally used to assess
the performance characteristics of such facilities since many of the
performance requirements (or objectives) for the facilities are specified
in terms of loss, e.g., return loss (or balance and echo performance), 1-
kHz loss, and attenuation distortion. For an all-analog system, well­
known definitions and measurement procedures exist for each of these
loss types. A service provisioned with the DTTU is not an all-analog
system, but is, instead, a mixed analog-digital system. Since measured
results of the characteristics of this system are important for all of the
remaining material in this article, some of the conventions and defi­
nitions used for loss measurements in a mixed analog-digital system
are presented in this section to aid the reader in interpreting the
measured results.

Two additional, and related, subjects are also discussed in this
section. These are: Measurements required to determine filter coeffi­
cients and DTTU loss scaling. Loss scaling (signal level control) is
necessary for the DTTU since a digital processing system has a limited
dynamic range (determined by the I6-bit accuracy of the analog-to­
digital and digital-to-analog converters, in this case).

A simplified topology of a typical 2-wire treated facility, with treat­
ment provided by the DTTU, is shown in Fig. 8. The DTTU ports are
labeled 1 (2-wire port), 2 (transmit port), and 3 (receive port), with 2
and 3 being digital ports and 1 an analog port. Depending on the
service being provided, the terminating equipment at the far end of
the cable (port 4) could be a central office switch or various types of
customer premises equipment (telset, PBX, etc.).

6. 1 Loss in a mixed analog-digital system

The results of three loss measurements, denoted by L t , Lr, and Lc ,

are necessary for characterizing the transmission performance of the

LlU 2-WIRE CABLE
TERMINATING

EQUIPMENT

Fig. 8-Simplified topology of a typical 2-wire treated facility.

1596 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

0)

CD
r--------,

L1U 2-WIRE CABLE

o R

•

o dBm
SOURCE

Fig. 9-Transmission path and facility configuration used for measurement of Lt.

facility shown in Fig. 8. The transmission paths associated with L t , L r ,

and Lc are shown in Figs. 9, 10, and 11, where, as the figures show,

L t = loss from far end of cable to transmit port of the
DTTU (analog-digital loss},

Lr = loss from receive port of the DTTU to far end of
cable (digital-analog loss), and

Lc = loss from receive port of the DTTU to the transmit port
of the DTTU (digital-digital loss}.

To define L t , let a O-dBm analog sine-wave generator of internal
resistance R be attached to the far end of the cable. Internal resistance
R is either 900 or 600 ohms, depending on the impedance characteristic
of the terminating equipment. At port 2, a sampled representation of
this sine-wave will appear, with amplitude and phase characteristics
determined by the transfer function of the cable-DTTU system. The
information required for determining L t is the peak of the sine-wave
signal at port 2. It is unlikely that the peak of this signal can or will be

Vo -
0)

POWER
METER

Fig. 10-Transmission path and facility configuration used for measurement of L r•

VOICE-FREQUENCY TRANSMISSION 1597

DSP

J LlU 2-WIRE CABLE ZT

Fig. 11-Transmission path and facility configuration used for measurement of Le.

encoded; therefore, the samples, which are considered to have integer
representations, must be analytically processed to determine the peak.

If the real number representation of the signal peak at port 2, as
analytically determined, is called V, then Lt is defined as

L t = 20 log(V{s/ V) - 20 log(V{s/ Vo) = 20 log(Vol V),

where Vo is the level representative of 0 dBm at port 2 and Vis is the
full-scale level (32767.0 for a 16-bit system); Vo is less than Vis, and for
the system under consideration is defined by the relationship

20 log(V{s/Vo) = 3 dB.

This definition applies to both the transmit and receive ports and is
consistent with the convention used in digital carrier systems where
the code is J.L-255.

To define Ln let a digital sine-wave of peak level Vo be input at port
3. Then, an analog sine-wave will appear at the end of the cable. Its
power in dBm, measured across resistance R, is Lr •

Finally, to define L c, let a digital sine-wave of peak level V3 be input
at port 3. Then, a digital sine-wave of the same frequency will appear
at port 2. If the peak level of this signal is V2, then

Lc = 20 log(V3 / V2).

When a measurement of Lc is made to assess the echo and stability
performance of the transmission facility, the cable will normally be
terminated in a standard termination that is representative of the
impedance of the terminating equipment at the far end of the cable.

6.2 Measurements required to determine filter coefficients

To set the equalizer and canceler filters for treatment of a metallic
cable pair, the transmission characteristics (loss and input impedance
vs. frequency) of the facility must be known. These may be determined
either from a mathematical model of the cable or from measurements
of its characteristics. A typical mode of operation for a facility to be

1598 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

provisioned with a DTTU would be one in which the characteristics of
the cable are measured. Since the LIU is interposed between the DSP
and the cable facility, its transmission characteristics must be included
in the measurements.

In the laboratory arrangement used for this study (and in an envi­
sioned practical application), it is most convenient to make these
measurements, which are identical to the measurements discussed in
Section VI, utilizing digital access points in the DSP. Since measure­
ment access is through the DSP, the equalizers are set to unity and the
canceler is set to zero. For this condition, the three loss measurement
results are denoted by LtO, L rO, and LcQ.

6.3 Digital treatment transmission loss scaling

A transmission treatment unit is required to operate as a low-noise,
linear amplifier for a wide range of signals expected to be flowing in
the telephone network. Therefore, signal levels in the unit must be
controlled so that a large signal is not over-amplified and hence
distorted and a small signal is not overly attenuated toward the noise
floor of the unit before being amplified, thereby degrading its sin. In
the DSP, one of the most critical interfaces where signal levels must be
controlled is the DSP-LIU interface. A large signal incident on the
receive port should not be over-amplified by Er and therefore overflow
and be distorted at the DSP-LIU interface. Additionally, a small signal
incident on the 2-wire line port should not be overly attenuated in the
LIU before being encoded and subsequently amplified by E t •

To control the signal levels at the DSP-LIU interface, the DTTU is
loss-scaled, i.e., signal loss through the unit is adjusted to achieve the
desired level control. Fixed-loss (or gain) amplifiers in the LIU are used
for this purpose.

The magnitude of the loss scaling used for the experimental version
of the DTTU can be exhibited by demonstrating the effect it has on loss
measurements performed on a cable-DTTu system when the equalizers
are set to unity. In the frequency range 200 to 3400 Hz, where the
anti aliasing and reconstruction filters introduce negligible frequency
shaping,

LrO = cable loss - 7 dB

and

LtO = cable loss + 3 dB.

Between 3400 and 4000 Hz, IrO and LtO remain approximately 10 dB
apart; however, filter attenuation contributes significantly to their
specific values.

VOICE-FREQUENCY TRANSMISSION 1599

VII. EQUALIZER AND CANCELER COEFFICIENTS

This section discusses the procedures for determining equalizer and
canceler coefficients from the measured facility transmission charac­
teristics. These procedures are based on minimum-least-square curve
fit techniques.

7. 1 Overview of the curve fit procedures

The canceler and equalizer coefficients are determined by separate,
frequency-domain, minimization algorithms. The goal, in each case, is
to minimize a penalty function. These penalty functions are:

Pc = L 1 C(F) - Tc(F) 1
2

, (3)
(F}c

P t = L (IEt(F) 1 - 1 Tt(F) 1)2, (4)
(F}e

Pr = L (IEr(F) 1 - 1 Tr(F) 1)2, (5)
{F}e

where the target functions Tc, Tt, and Tr are dependent on the
transmission characteristics of the cable-D'ITU system. Functions T t

and Tr are also dependent on the attenuation distortion objectives and
I-kHz loss objective for the facility that is to receive treatment. {F}c
denotes a set of frequencies for which Pc is to be minimized, and {F}e
denotes a set of frequencies for which P t and Pr are to be minimized.
Extensive study of the results achieved from minimization of the
penalty functions listed above, for various frequency sets and for
various cables, has shown that satisfactory curve fits can be obtained
if

{F}c = 100 to 3900 Hz in 100-Hz increments

and

{F}e = 100 to 3700 Hz in 300-Hz increments.

In eqs. 3, 4, and 5, the canceler and equalizer functions are expressed
in the frequency domain, i.e., the transform variable z has been
restricted to the unit circle and is equal to

exp(j27TF / Fs),

where Fs is the sampling frequency (8 kHz).
As is shown below, minimization of Pc results in a linear solution for

the coefficients of C, while equalizer coefficients must be determined
with a gradient search technique. Additionally, it is shown that only P t

or Pr need be minimized since, for a 2-wire facility, E t and Er differ
only by a constant gain factor which is a result of the loss scaling used
for the DTTU.

1600 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

7.2 Canceler target function

In both magnitude and phase, Te is equal to the transfer function
from the receive port to the transmit port of the cable-DTTu system
when the equalizers are set to unity and the canceler is set to zero.
U sing the notation introduced in Section VI, the magnitude of Te is

I Tel = 10-LcO/2o
•

Figure 12 shows plots of Te, in dB's, for two example cable cases and
in Figs. 13a and 13b the corresponding phase plots are shown.

7.3 Equalizer target functions

Functions T t and Tr are determined from the following information
for the facility that is to receiver treatment:

(i) I-kHz loss objective,
(ii) attenuation distortion (AD objectives for the frequency set

{F}e,

2-WIRE CABLE 2.16,uF

FREQUENCY IN KILOHERTZ

o 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Or-----r-----r-----r-----r-----r_----r_~--r_--_.

-5

~ -10

(!)

o
...J

o
N -15

-20

-25

CABLE 1 = 18 kft OF 26-GAUGE NON LOADED CABLE
CABLE 2 = 36 kft OF 24H88 LOADED CABLE

-30L-__ ~

Fig. 12-Tc versus frequency for two cable cases.

VOICE-FREQUENCY TRANSMISSION 1601

180

150

120

90

60

30
Vl
LU
LU
c: 0
<.!l
LU
0

-30

-60

-90

-120

-150

-180

180

150

120

90

60

30
(j)
UJ
LU
c: 0
<.!l
LU
0

-30

-60

-90

-120

-150

-180
0 0.5 1.0 1.5 2.0 2.5 3.0

FREQUENCY IN KILOHERTZ

Fig. l3a-Phase plot of Tc for cable 1.

Fig. l3b-Phase plot of Tc for cable 2.

3.5 4.0

(iii) LtO and LrO (see Section VI) for the frequencies from 400 to 2800
Hz in 300-Hz increments.
However, knowing Tt is equivalent to knowing Tr since

(i) for all frequencies in the voiceband, for a treated 2-wire facility,

1602 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

the transmit direction loss of the facility should equal the receive
direction loss (measured on an end-to-end basis),

(ii) LtO and LrO have the same shapes above 200 and below 4000 Hz,
but differ in absolute magnitude by a value that is independent of
frequency or cable type (see Section VI).
Therefore, T t and Tr have the same shapes but differ by a constant.
The same conclusion can therefore be drawn about E t and E r •

Since Er can be determined from knowledge of E t and vice versa,
the notation distinction between E t and Er is dropped for much of the
remaining discussion. The following simplified notation will be used:

(i) E = equalizer function,
(ii) L = loss data used in determining equalizer coefficients (i.e., LtO

or LrO),
(iii) T = equalizer target function, and
(iv) P = equalizer penalty function.

Therefore,

P = L (lE(F) I - I T(F) 1)2,
{F}e

where
1 -1-2

E = G IT amo + am1~1 + a m2:
2

m=O 1 - bm1 z - bm2 z
And finally, T will most often be expressed in dB's with the notation

D = 2010g1TI.

N ow the discussion returns to the main topic, the determination of T
(i.e., D). First, the facility objectives are considered.

For 2-wire VF treated services, the loss objective is specified at 1
kHz and the AD objectives are specified at 400 and 2800 Hz. The AD

objectives offer a "window" of allowed values. Since the procedure for
determining equalizer coefficients is a curve fit, specific AD objectives
must be chosen. The choices are:

1 - dB roll-off at 400 Hz

2 - dB roll-off at 2800 Hz.

Additionally, to ensure that the equalizers are well-behaved between
400 and 2800 Hz, it is necessary to specify AD objectives at other
frequencies between these endpoint frequencies. The result is an AD

objectives "curve" specified at 300 Hz increments between 400 and
2800 Hz. The AD objective at 1 kHz is 0 dB. The AD objective curve
used for this study, filled-in between the 300-Hz increments, is shown
in Fig. 14. For the remainder of the discussion, the curve depicted in
Fig. 14 is called Da.

VOICE-FREQUENCY TRANSMISSION 1603

OL-______ ~ ____ ~~ __ ~ __ _L ______ ~ ______ ~ ______ ~

o 0.5 1.0 1.5 2.0 2.5 3.0

FREQUENCY IN KI LOHERTZ

Fig. 14-Attenuation distortion objective curve Oa.

The next quantity needed for determining D is L, which is to be
obtained by measurement. It is required that L be known for the set
of frequencies from 400 to 2800 Hz in 300-Hz increments. Figure 15
shows plots of L, normalized to 0 dB at 1 kHz, for two different cable
facilities.

8r--.

6

4

O~--------~~~========~~----------~

-2

CABLE 1 = 18 kft OF 26-GAUGE NON LOADED CABLE
CABLE 2 = 36 kft OF 24H88 LOADED CABLE

-4L-____ L-____ L-__ ~~ ____ ~ __ ~~ __ ~ ____ ~

o 0.4 0.8 1.2 1.6 2.0 2.4 2.8

FREQUENCY IN KILOHERTZ

Fig. 15-L versus frequency for two example cables.

1604 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

The quantities discussed up to this point are sufficient for determin­
ing D in the frequency band from 400 to 2800 Hz. In this frequency
band,

D = L - Oa - K 1,

where Kl is the I-kHz loss objective for the treated circuit under
consideration.

Outside the frequency band from 400 to 2800 Hz, a shape for D is
chosen that forces the equalizers to roll off at the VF band edges.
Figure 16 shows D curves, normalized to 0 dB at 1 kHz, for two
different cable facilities.

7.4 Algorithm for minimizing Pc

The goal of the minimization algorithm for Pc is to obtain a set of

6~------------------------------------~

o
41- o o

o
o

o

2f- o

o o CABLE 1

o~-----~~-v~~------------------------~ x x

-21-

-4f-

-61-

x x x x x x

x 0
X CABLE 2

o

CABLE 1 = 1B kft OF 26-GAUGE NON LOADED CABLE
CABLE 2 = 36 kft OF 24H88 LOADED CABLE

-8~ ______ ~1 ______ ~1 ______ ~1 ______ 1~ ____ ~
o 2 3 4 5

FREQUENCY IN KILOHERTZ

Fig. lG-D = 20 Logi TI versus frequency for two example cables.

VOICE-FREQUENCY TRANSMISSION 1605

canceler coefficients that will result in maximum loss from port 3 to
port 2 of the DTTU. The transfer function from port 3 to port 2 is

~: = E2(Tc - C).

Therefore, the function that must be minimized, in a least squares
sense, is

Pc = L IEI21Tc - C12.
{F}c

It is desirable that C not depend on the transfer functions of the
equalizers; therefore, all equalizers are set to unity. The resulting
function that must be minimized is

Pc = LITe - C12.

To minimize Pc, set

aPe = °
aCm '

{F}c

m = 0, 1, 2, ... , 31.

The result is a matrix equation

Be = D,

where the elements of B are

bmn = L COs[27TF(m - n)/Fs],
(F}c

e is the vector of tap weights, and D is a vector with elements

dm = L Re[Tc(F)exp(j27TFm/ Fs)].
(F}c

The solution for e is

C = B-1D.

7.5 Algorithm for minimizing P

For vF-treated services, phase equalization is usually not required;
therefore, it is necessary only to obtain a best fit for the magnitude of
E. In a least squares sense, the function that must be minimized is

13

P = L (IE(Fi) I - I T(Fi) 1)2,
i=1

where Fi = (300i - 200) Hz. The simple method used for minimizing
Pc does not yield a linear system of equations when applied to P.
Instead, minimization of P requires a nonlinear optimization proce­
dure. The procedure chosen was developed by Steiglitz.6 Steiglitz's

1606 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

procedure uses the Fletcher-Powe1l7 optimization technique and a
novel approach for choosing initial conditions.

To apply this procedure, the equalizer transfer function is first
rewritten in the form

E(FAX) = A 1 + xoz-
1
+ XIZ-

2
1 + X4Z-

1 + X5Z-
2

= AH(F X) (6)
" 1 - X2Z- 1 - X3Z- 2 1 - X6Z- 1 - X7Z-2 "

where

(The prime denotes transpose.) P can now be written in the form
13

P = L (lAH(Fi, X) I-I T(Fd 1)2.
i=1

Since I A I appears in a linear fashion, it is easy to show that the
optimum value of I A I is

13

L IH(Fi , X) II T(Fd I
I A I = -i=-1-13,,-------

L IH(Fi, X) I
i=1

The sign of A is irrelevant and is therefore chosen to be positive. Since
A can be precisely determined from knowledge of X and the I-kHz
gain of the equalizer, the nonlinear optimization algorithm is used only
to determine X.

For most nonlinear optimization techniques, the primary difficulty
is in choosing an initial set of coefficients that guarantees convergence
in a reasonable number of iterations. The following method for choos­
ing initial coefficients has worked quite well for minimization of P.

The fIrst step is to find an optimum solution for the simpler equalizer
function

where

y = (Yo, Yl, Y2, Y3Y.

The initial values of the coefficients, yI, are chosen to be

yI = (0.0, 0.0, 0.0, 0.0)'.

The final values of the coefficients, obtained by minimizing
13

P1(Al, Y) = L (I A 1H 1(Fi, Y) I - I T(Fd 1)2
i=1

with the same algorithm that will be used to minimize P, are denoted
by

VOICE-FREQUENCY TRANSMISSION 1607

y* = (y~, yi yt y~)'.

Following the minimization of PI, P is minimized, with the initial
coefficients being

Xl = (y~, yi, yt yt 0.0, 0.0, 0.0, 0.0)'.

The final value of X is denoted X * .
Figure 17 shows a flow chart of the optimization algorithm used to

Y
PD1FF < 0.0001 >---------f

P = PENALTY
FUNCTION
FOR PRESENT
INTERATION

Po = PENALTY
FUNCTION
FOR PREVIOUS
INTERATION

PMIN = MINIMUM
PENALTY
FUNCTION
FOR ALMOST
PERFECT
SOLUTION

Fig. 17-Flowchart of algorithm used to minimize PI and P.

1608 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

minimize PI and P. NCOEFS denotes the number of coefficients that
are being determined for anyone pass through the algorithm, with
NCOEFS = 4 for minimization of PI and NCOEFS = 8 for minimization
of P. In the algorithm, the common notation for both penalty functions
is P. The reader should note the calls to functions FP and PZ in the
algorithm.

Function FP contains the Fletcher-Powell procedure. The FP re­
turns the current value of P and the corresponding array of coefficients.
Within FP there are a maximum of 25 updates to the coefficients. The
array g is used to store the array Y when NCOEFS = 4.

The purpose of function PZ is to invert all poles and zeros that are
outside the unit circle to the inside of the unit circle and to move all
poles and zeros that are on the unit circle to a small distance inside. If
any poles or zeros are outside the unit circle, the actions taken in PZ
changes the phase of E, but not the magnitude, which is the important
quantity in this case.

The primary justification for the algorithm just described is that it
has never failed to yield a suitable minimum for P, for realistic target
functions. The algorithm takes 10 to 30 seconds of CPU time, depending
on the cable facility, on a DEC PDP 11/70, and is written in the C
language.s

The output of the algorithm, X*, does not contain enough informa­
tion for a direct determination of the optimum set of equalizer coeffi­
cients. The information contained in the vector X* is sufficient only
for a determination of the poles and zeros of E. Additionally, the
algorithm has not necessarily yielded an ordering of the poles and
zeros that is best suited for achieving the noise and distortion objec­
tives for the facility. These issues are now considered. The outcome is
equalizer transfer functions in their final form, i.e., the form expected
by the nsp program.

7.6 Procedure for putting the equalizer functions in their final form

When the I-kHz gain of the equalizers is determined, E t and Er can
be expressed in the form

Et = AtH(X*),

Er = ArH(X*),

(7)

(8)
where H was defined in eq. 6. The object of the discussion in this
section is to outline a procedure for putting eqs. 7 and 8 in the form of
eqs. 1 and 2. For the types of signals expected to be flowing through
the equalizers, the goals of this procedure are as follows:

(i) There should be minimum degradation of the s/n of the signals.
(ii) There should be a minimum amount of signal clipping at the

critical internal nodes (to be defined below) of the equalizers.

VOICE-FREQUENCY TRANSMISSION 1609

These two goals can operate at odds with each other since the
second goal can often be achieved at the expense of the first. In
arriving at the filter forms given in eqs. 1 and 2, the magnitude of each
coefficient must be constrained to be less than 2.0.

The procedure discussed below does not necessarily have general
applicability; instead, it is intended for the specific application de­
scribed in this article. The justification for the procedure is that it
yields the intended goals, as has been born out by experience.

The first stage in the procedure is to select an ordering of the poles
and zeros of the equalizer. It should be noted that eqs. 7 and 8 can be
expressed in the form

4

II (1 - znz- 1
) II Ni

n=l i=O
E t = A t --:"'"4----- = A t - 1--·

II (1 - Pnz- 1
) II Di

n=l i=O

II Ni
i=O

Er = A r-
1
--,

II Di
i=O

where No, NI, Do, Dl are second order functions of z. If all the Zn'S are
real, there are six ways of forming N i , while if at least two of the Zn'S

are complex, there are only two ways of forming N i • Obviously, the
same statements apply to Di as to the Pn'S.

To select the ordering of the poles and zeros of E t and E r, consider­
ation must be given to the transfer functions from the input of the
filter to the critical internal nodes9 of the filter. For two cascaded
biquads, there are two critical internal nodes, located at the output of
the accumulator and preceding a multiplier (see Fig. 18). At the critical
internal nodes, overflow must be prevented for large signals input to
the filter, and over-attenuation must be prevented for small signals
input to the filter. The reader should note that these goals are identical
to those for DTTU loss scaling described in Section VI. The transfer
functions to the critical internal nodes of two cascaded biquads are
related to the N's and D's as follows:

Tl is proportional to 1/ D 1,

T2 is proportional to NIl (D1D2).

For the system under consideration, these transfer functions are picked
according to the following criterion. Each critical node transfer func­
tion is chosen such that, in the frequency range 200 to 3400 Hz, the
difference between the largest value of the magnitude of the transfer
function (in dB's) and the smallest value of the transfer function is as

1610 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Tl AND T2 ARE
TRANSFER FUNCTIONS
TO THE CRITICAL NODES

Fig. 18-Critical internal nodes of two cascaded biquads.

small as possible for the choices that are available for the ordering of
poles and zeros (i.e., the response is as flat as possible under the
constraints imposed).

For either Tl or T2 there may be six choices or two choices,
depending on the number of complex poles and zeros. The rationale
for the criterion given above is that it minimizes the possibility that
gain-scaling of the filter sections will result in overflow or a degradation
in sin at any of the frequencies in the voiceband.

When the ordering of poles and zeros has been completed, the next
step is to parcel out the gain factors At and A r. The notation used for
the equalizer functions is

where

E = G GotNo GltN1 = G IT amOt + amltz -
1 + a m2tz-

2

t t Do Dl t m=O 1 - bmltz-1 - b m2tz-2 ,

E = G GorNo G1rN1 = G IT amOr + amlrZ-
1 + a m2rZ-

2

r r Do Dl r m=O 1 - bm1rz-1 - b m2rz-2 '

GtGOtGlt = At,

GrGOrGlr = A r.

For the two directions of transmission, different criteria are used to
gain-scale the filter sections.

VOICE-FREQUENCY TRANSMISSION 1611

The signals incident on E t are small, having been attenuated by the
cable. Therefore, to ensure that sin for these signals is not degraded
further, G t and GOt are chosen at their maximum allowed values,
determined by the coefficient magnitude constaint. Then, having
picked G t and GOt, Glt is

Al
Glt = G G .

t Ot

The signals incident on Er are large compared to those incident on E t ;

therefore, to ensure a minimum amount of clipping at the critical
internal nodes of the filter, Gr and GOr are chosen to be as small as
possible and G1r is chosen at its maximum allowed value. G1r is chosen
first. Then Gr and GOr are chosen as follows:

(9)

unless, of course, the resulting GOr is too large (which is very unlikely)
to allow GorNo to satisfy the coefficient magnitude constraint. If GOr is
too large, as defined by eq. 9, it is chosen at its maximum value, with
Gr chosen as

At this point enough information is available for determination of the
final values of the equalizer coefficients as well as the pre-multipliers
Gt and Gr. The next important topic is the transmission performance
of facilities for which treatment is provided by the DTTU.

VIII. TRANSMISSION TREATMENT CAPABILITIES OF THE DTTU

In this section the capabilities of the DTTU in providing transmission
treatment for metallic facilities is presented. Four cable cases are used
in the examples. These cables were chosen because they have charac­
teristics, either in loss or impedance, that are representative of "worst
case" cables allowed in treated services. The first two cable cases were
used for the. example measurement results for the discussion in Section
VII. For all cases, the cables were simulated in the laboratory with
artificial cable kits.

8. 1 Equalization

Figs. 19 through 22 show the results of loss measurements performed
on a cable-DTTu system for each of the four cables. Each figure
contains two plots, labeled "a" and "b". These plots are of

(i) unequalized receive direction loss (a) and

1612 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

< o
o
m
I

" JJ
m
o
c
m
Z
()

-<
-i
JJ »
Z
C/)

~
0;
C/)

6 z
.....
0)
w

Vo --uc---r1
Er

26 NON LOADED,
lB-kft CABLE

14 I

12

en
...J
UJ
CD

8
0

(0.90 dB)
4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FREQUENCY IN KILOHERTZ

Fig. 19-Loss measurements from receive port to end of cable 1. Plot
(a) represents unequalized receive direction loss, and Plot (b) represents
equalized receive direction loss.

Vo

Er r+ll LlU
24H88 LOADED,
36-kft CABLE

14

12

10

en 8
...J
UJ
CD

8
o 6

4

0 1 ! ,

a 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FREQUENCY IN KILOHERTZ

Fig. 20-Loss measurements from receive port to end of cable 2. Plot
(a) represents unequalized receive direction loss, and Plot (b) represents
equalized receive direction loss.

...a.
en
...a.
~

--!
I
m
ro
m
r
r
Cf)

-<
Cf)
--!
m
~
--! m
()
I
Z
(5
»
r
c-
O
C
JJ
Z »
.!
Cf)
m
1J
--!
m
~
OJ
m
JJ

CD
ex>
.......

Va

26 NON LOADED,
16.5-kft CABLE

600Q

14, i i

en
...J
W
III

12

10

~ 6
Cl

4

o
FREOUENCY IN KILOHERTZ

4.0

Fig. 21-Loss measurements from receive port to end of cable 3. Plot
(a) represents unequalized receive direction loss, and Plot (b) represents
equalized receive direction loss.

Va

~
W
III

~
Cl

24H88 LOADED,
24-kft CABLE

24 NON LOADED,
6-kft CABLE

600Q

14~,--~------,

12

10

4

1.5 2.0 3.0 3.5 4.0
FREQUENCY IN KILOHERTZ

Fig. 22-Loss measurements from receive port to end of cable 4. Plot
(a) represents unequalized receive direction loss, and Plot (b) represents
equalized receive direction loss.

(ii) equalized receive direction loss (b).
For each cable, the equalized loss for the transmit direction is identical
to the equalized loss for the receive direction, except below 200 Hz
where the transmit direction loss is greater because of the low-fre­
quency roll-off of the anti-aliasing fIlter. The unequalized transmit
direction loss is approximately 10 dB greater than curve "a" for
frequencies above 200 Hz.

For each curve labeled "b", the roll-off at 400 and 2800 Hz is
displayed. As is evident, the roll-off results are close to the I-dB
objective at 400 Hz and the 2-dB objective at 2800 Hz (see Section
VII). The I-kHz loss objective for each facility is 3.5 dB. In the
laboratory, the high-quality equalized performance shown for the four
example cables has been consistently achieved for a large selection of
other cables.

8.2 Echo cancelation and balance

Figures 23 through 26 each show the results of three separate
measurements of loss from port 3 to port 2 of the DTTU, with each of
the example cables in turn attached to the 2-wire port of the unit. For
all measurements, the cable termination is 600 ohms in series with 2.16
uF, one of the standard terminations used for VF transmission systems.
For the measurement results labeled "a", the equalizers were set to
unity and the canceler was set to zero, leaving only the effect of the
fIxed compromise canceler. For the measurement results labeled "b",
the equalizers were also set to unity, but the canceler was set to the
result obtained through the minimization algorithm discussed in Sec­
tion VII. For the measurement results labeled "c", equalizers and
canceler were set to the results obtained through the minimization
algorithms.

In Figs. 23 through 26, note that, on the whole, the effectiveness of
the canceler increases with frequency (see curves "b"). This type of
response counteracts the gain of the equalizers which also increases
with frequency for the nonloaded cables. The low-frequency effective­
ness of the canceler could be improved by increasing the number of
taps. However, increasing the number of taps is not necessary since
the roll-off in the equalizers at these low frequencies yields the desired
improvement in echo performance. The curves labeled "e" illustrate
the echo perfor~ance of the facility when full treatment is applied.
Obviously, the 15- to 18-dB echo objective (see Section II) is easily
met for all facilities. The excellent performance shown for the example
cables has been achieved for a large number of cables studied in the
laboratory.

VOICE-FREQUENCY TRANSMISSION 1615

60.---~

U)
....J
w

50

40

~ 30
u
w
Cl

20

10

1.0

26 NON LOADED,
18-kft CABLE

2.0 2.5

FREQUENCY IN KILOHERTZ

2.16fLF

3.0 3.5 4.0

Fig. 23-Loss measurements from receive port to transmit port (cable 1). Plot (a)
represents equalizers set to unity, canceler to zero. Plot (b) represents equalizers set to
unity, canceler set to result obtained with minimization algorithm. Plot (c) represents
equalizers and canceler set to results obtained with minimization algorithms.

60

50

40

U)
....J
w
aJ 30
U
w
Cl

20

10

24H88 LOADED,
36-kft CAB LE

2.0

FREQUENCY IN KILOHERTZ

2.16fLF

Fig. 24-Loss measurements from receive port to transmit port (cable 2). Plot (a)
represents equalizers set to unity, canceler to zero. Plot (b) represents equalizers set to
unity, canceler set to result obtained with minimization algorithm. Plot (c) represents
equalizers and canceler set to results obtained with minimization algorithms.

1616 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

26 NON LOADED,
16.5-kft CABLE

600£1

2.16 J1.F

60~---.

50

4.0

FREQUENCY IN KILOHERTZ

Fig. 25-Loss measurements from receive port to transmit port (cable 3). Plot (a)
represents equalizers set to unity, canceler to zero. Plot (b) represents equalizers set to
unity, canceler set to result obtained with minimization algorithm. Plot (c) represents
equalizers and canceler set to results obtained with minimization algorithms.

IX. CONCLUSIONS

It is clear "from the studies reported in this article that the nsp is
capable of providing gain, equalization, and echo canceling for VF

special services. Techniques have been developed for digital filter
synthesis and implementation and for incorporating the nsp into a
practical system. Applications to specific systems depend only on the
issues of cost and power consumption relative to other techniques.

X. ACKNOWLEDGMENTS

The authors wish to thank the following people for the valuable
contributions they made to this project: D. C. Watkins, R. J. Sanfer­
rare, R. J. Gallant, R. L. Overstreet, J. Aagesen, M. R. Aaron, J. R.
Boddie, and S. M. Walters. Special thanks go to D. C. Watkins and R.

VOICE-FREQUENCY TRANSMISSION 1617

24HBB LOADED,
24-kft CABLE

24 NON LOADED,
6--kft CABLE

60r--.

50

40

30

20

10

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FREQUENCY IN KILOHERTZ

Fig. 26-Loss measurements from receive port to transmit port (cable 4). Plot (a)
represents equalizers set to unity, canceler to zero. Plot (b) represents equalizers set to
unity, canceler set to result obtained with minimization algorithm. Plot (c) represents
equalizers and canceler set to results obtained with minimization algorithms.

J. Sanferrare for their continuing technical and administrative contri­
butions and to R. J. Gallant, who wrote the measurement programs.

REFERENCES

1. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

2. Telecommunications Transmission Engineering, Winston-Salem, North Carolina:
Western Electric Company, Inc., Technical Publications.

3. J. F. Kaiser, "Digital Filters," System Analysis by Digital Computers, F. F. Kuo and
J. F. Kaiser, New York: John Wiley, 1966, Chapter 7.

4. J. F. Kaiser, "Some Practical Considerations in the Realization of Linear Digital
Filters," Proc. 3rd Allerton Conf. Circuit System Theory, October 20-22, 1965, pp.
621-33.

5. A. V. Appenheim and R. W. Shafer, Digital Signal Processing, Englewood Cliffs,
New Jersey: Prentice-Hall, 1975.

6. K. Steiglitz, "Computer Aided Design of Recursive Digital Filters," IEEE Trans.
Audio Electroacoustics, AU-18 (June 1970), pp. 123-9. I

7. R. Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for
Minimization," Computer J., 6, No.2 (1963), pp. 163-8.

1618 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

8. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, New Jersey: Prentice-Hall, 1978.

9. L. B. Jackson, "On the Interaction of Roundoff Noise and Dynamic Range in Digital
Filters," B.S.T.J. 49, No.2 (February 1970), pp. 159-84.

VOICE-FREQUENCY TRANSMISSION 1619

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Speech Synthesis

By M. R. BURIC, J. KOHUT, and J. P. OLIVE

(Manuscript received June 10, 1980)

This paper describes a device that is capable of synthesizing speech
in real time and is based on the digital signal processor chip. The
device performs a function of a twelfth-order linear prediction coding
synthesizer, and as such represents a linear dynamic system approx­
imation of the vocal tract. In this model, short time segments of the
speech waveform are derived as output of a system driven by a
pseudo-periodic impulse sequence for voiced sounds, or by white noise
for unvoiced sounds. The time-varying nature of the system is derived
from the input information presented to the device for every new pitch
period. Interfacing of the device to standard microprocessors is easy,
so that the synthesizer can conveniently be integrated into larger
systems.

I. INTRODUCTION

Speech synthesis is one of several promising areas of application for
the digital signal processor (DSP) chip described in this issue of the
Bell System Technical Journal. Its computational power, low cost,
and easy interfacing are the properties that allow a design of a stand­
alone speech synthesizer with very few components outside the DSP

chip. Such a synthesizer can be used in a variety of devices intended
for providing new services in a business environment, as well as in
future residential services.

One of the most successful ways to synthesize speech is based on a
linear predictive coding (LPC) model of a vocal tract. See Refs. 1, 2,
and 3. In this model, the vocal tract is approximated by a linear
dynamic system driven by impulse sequences for voiced sounds, or by
white noise for unvoiced sounds (Fig. 1a). The difference equation for
such a representation is

1621

IMPULSE TRAIN

WHITE NOISE

IMPULSE
TRAIN

~

~
WHITE
NOISE

!

1
EXCITATION

(a)

(b)

G
Tlz) = ----'N:=--

1- Lair;
;=1

SPEECH SOUNDS

Fig. la-Polynomial form of transfer function.

Fig. lb-Lattice form of transfer function.

i=N

s(n) = L ai s(n - i) + Gu(n).
i=l

(1)

In this discrete description of a linear system, s(n) is the signal at time
instant n, {ai; i = 1, 2, "', N} is the set of linear prediction
coefficients, u (n) is the system input, and G is the gain coefficient.

A pitch synchronous synthesizer is one in which a new set of
coefficients {ai, G} is presented to it for each new pitch period (10
milliseconds average for male voices). The coefficients are held con­
stant for the duration of the pitch interval. This assumes that the
system properties are relatively slow-varying with respect to this time
scale. The variation is provided by an outside source of information,
and it can be obtained at the source either by analyzing real speech in
an LPC analyzer, or by complete synthesis based on phonological rules.
In the first case, the synthesizer functions as a receiver in a vocoding
system, while in the second case, it is a final stage in a speech synthesis
system. In addition to the LPC coefficients {ai} and gain coefficient G,
the only other variable needed for speech synthesis is the pitch period
of the impulse excitation in the case of voiced sounds, or a duration of
noise excitation in the case of unvoiced sounds.

The input-output transfer function of a linear system can be pre­
served under a set of equivalence transformations performed on the
{ai} parameters, which yield various representations of the same
system. See Refs. 2 and 3. This fact is used to advantage by selecting
a representation that is least sensitive to parameter perturbations and
errors in finite length arithmetic. In addition, it should provide an easy

1622 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

test of the stability of the system. One such representation is the lattice
form of a linear system, described by the following set of difference
equations (Fig. Ib),

im-l (n) = im (n) - k m bm- 1 (n - 1)

bm (n) = k m im-dn) + bm-dn - 1)

m = N, N - 1, ... ,1, (2)

where {t and bd are forward and backward signals at an i-th lattice
stage, and {k i } are relfection coefficients. The output of the system is
{ io (n) }, and the input is {iN (n) }. Even though this form requires
more multiplications per sample output, it has a very important
property that all the reflection coefficients belong to the interval
(-1, 1) in a stable system.

A d~vice that performs the function of a pitch synchronous synthe­
sizer of the twelfth order in the lattice form has been designed and
built around the digital signal processor chip. The device synthesizes
speech in real time with an output sampling rate of 10 kHz. It is
intended to be used in conjunction with some external device capable
of providing the necessary system description for every new pitch
period. This information is transmitted to the synthesizer in the form
of a fifteen-word message, shown in Fig. 2, consisting of a header word
used for synchronization and error recovery, a number representing
the pitch period of excitation, an excitation amplitude, and finally the
system parameters. The parameters are given as 15-bit reflection
coefficients, or as 8-bit log-area parameters.

The basic synthesizer may be interfaced to the outside world in a
number of ways, and this will be discussed.

II. DESCRIPTION OF THE SYNTHESIZER

The synthesizer block diagram is shown in Fig. 3. The main com­
ponents are a digital signal processor chip, an interface for the input

HEADER: 01000008

PITCH PERIOD

AMPLITUDE

PARAMETER 1

· · ·
PARAMETER 12

(0 FOR NOISE EXCITATION, DURATION 10 ms)

(0 TO 255)

(-1 TO +1, NORMALIZED)

(-1 TO +1, NORMALIZED)

Fig. 2-Message format.

SPEECH SYNTHESIS 1623

10

SERIAL
INPUT

\
.-------, I

DATAo

INPUT
INTERFACE

I

INPUT
BUFFER FULL '\

DATA \
REQUEST

DATA
READY

INPUT
CONTROL

CLEAR TO/
RECEIVE

DSP

DATA AND
ADDRESS

SERIAL
OUTPUT

/ I .--------,

I
OUTPUT

INTERFACE

16

16 64- X
16-bit
FIFO

16 D-TO-A
CONVERTER

AUDIO

OUTPUT
/BUFFER EMPTY

~1--__ O_U_TP_U_T __ 10 kHz

I
I

" .. CLEAR TO
SEND

TRANSFER
DATA

Fig. 3-Synthesizer block diagram.

data, and an output interface which includes a first-in-first-out buffer
memory (FIFO). The output of the 64-word FIFO is converted to an
analog signal through a digital-to-analog (D-to-A) converter.

The processor derives the synthesis program from a read-only mem­
ory (ROM), which is presently external to the processor, but could be
contained in the processor's internal memory. The computation within
the nsp is done in an arithmetic unit that operates on a 20-bit and a
I6-bit operand. Notably, it includes an efficient multiplier and a 40-bit
accumulator. These provide a dynamic range which is sufficient for
the synthesis application. The parallel and pipelined architecture of
the processor maintains a high computational throughput rate.

The processor utilizes a multiplexed address and data bus for ac­
cessing instructions/data stored in external memory. To transfer in­
structions or data from the memory, the processor places an address
on the bus during the first half of the bus cycle. An address register is
used in the synthesizer to latch the address, which specifies the
appropriate memory location. The data from the memory is latched
into an external data register, and transferred into the processor during
the second half of the bus cycle.

The input interface of the synthesizer consists of a parallel-in serial­
out shift register and associated control logic. Data requests from the

1624 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

processor are passed to the outside source of information, and when a
word is received, it is transferred to the processor bit-serially.

The output interface contains a serial-to-parallel converter, fIrst-in­
fIrst-out memory buffer, and associated control logic. The output of
the nsp is a bit-serial stream, which is shifted into the serial-in parallel­
out shift register. The sample is then transferred from the shift register
to the FIFO, where it joins the queue of previously computed samples.
A sample is taken out of the FIFO queue every 100 microseconds under
control of a 10-kHz clock, and applied to the digital-to-analog con­
verter.

The role of the FIFO memory is to even out the differences in the
three mutually asynchronous processes that are taking place during
synthesis. The fIrst process is the input of synthesis information into
the nsp, the second is the computation of the speech samples, and the
third is the output of the samples to the D-to-A converter. The input
process is largely dependent on the host computer and its transmission
capabilities. The use of the output FIFO relaxes the transmission
requirements. Without the FIFO, the data would be required in a burst
mode for each pitch period. Each burst would consist of 15 words
transmitted within one sample period of 100 /ls. However, since the
FIFO queue contains the accumulated output samples for up to 64
sample periods, the input data rate is effectively decreased to 15 words
every 6.4 milliseconds. The computational process within the nsp is
asynchronous with respect to the output sampling rate of one sample/
100 microseconds. The FIFO allows the nsp to compute new samples at
full speed by providing the capability of saving the samples until they
are needed. This queuing mechanism requires that the average com­
putation time is less than the interval between output requests. The
device meets this requirement, and in fact, the nsp performs the
computations faster than required most of the time. This implies that
there are times when the FIFO becomes full, at which point the
computation will be suspended until output permission is granted to
the nsp. This happens when a word is taken out of the FIFO.

III. THE SYNTHESIS PROGRAM

From the above description of the synthesizer, it is clear that it can
be used for a number of different synthesis schemes, with a variety of
speech representation algorithms (LPC, formant, etc.).

The data rate required by the synthesizer is a very important
parameter for a practical implementation of a voice response device.
The data rate is a function of a speech production model used by the
synthesizer, and of a coding scheme used to represent model param­
eters in a segment of speech. A discussion of quantization schemes of
LPC parameters and their effects to the quality of synthesized speech

SPEECH SYNTHESIS 1625

is given in Ref. 2. Even though a significant decrease in the input data
rate is possible with these approaches, we will describe an implemen­
tation that does not employ parameter quantization or interpolation.
Such a scheme is useful when the device is used in a synthesis by rule
system. Other applications may require some form of input data
compression. The same physical device may be used in such cases, the
only difference would be in the nsp program.

So far, we implemented two versions of the synthesis program for
the synthesizer. Both of them employ the lattice form of a linear
system. They differ only in the input data representation, one of them
requires 15-bit reflection coefficients, and the other accepts 8-bit log­
area parameters. Clearly, the data rate in the second program is much
lower than in the first, with only a slight decrease in speech quality. In
this program the input data is converted into reflection coefficients by
a table look-up procedure. The relationship between the reflection
coefficients and log-area parameters is given by

(3)

where {Ad is a set of log-area parameters. This relationship is imple­
mented in such a way that for each Ai - A i+ 1 there is a value of k i in
a look-up table. Since the log-area parameters are specified by 8-bit
numbers, the table contains 256 entries. Once the conversion is made,
both programs function in the same way.

There are three major tasks that the program performs repetitively
during the synthesis. The fIrst task is obtaining the data for the
synthesis of every new pitch period. The input is handled jointly by
the program and the input interface. When the program requests data
input, the interface obtains it from the host computer, and transfers it
into the nsp. The protocol used by the interface is described in the
next section. This procedure is repeated for each data request by the
nsp, until all parameters describing the next pitch period have been
transferred from the host computer.

Because of possible data transfer errors, a mechanism is provided
for error recovery. Each pitch period requires a header word and 14
parameters. The program will proceed with the synthesis only if the
header is received. This procedure is a sufficient guard against missed
or inserted data words. In the worst case, one pitch frame will be
incorrectly synthesized. Without the procedure, any inserted or deleted
data word would create a permanent synchronization offset with
serious perceptual consequences.

The second task of the synthesis program is to compute the speech
samples by utilizing the input information and eq. (2). The program
makes a decision to synthesize voiced or unvoiced sounds on the basis

1626 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

of the pitch value. If the pitch period is encoded as a zero, the program
simulates a transfer function driven by white noise for 100 samples (10
ms). The noise is computed in the program as a pseudo-random
sequence of the length 8192. Otherwise, the input to the transfer
function is a single pulse at the beginning of the pitch period, and the
number of produced samples is equal to the specified pitch value. The
amplitude information is used for scaling the noise value in case of
unvoiced sounds, or for scaling the impulse amplitude for voiced
sounds.

As soon as a sample is computed,it is output to the FIFO memory,
and the program continues with the computation of the next sample.
This final task of the program is conditioned upon the state of the
FIFO buffer, if the buffer is full the processor waits until a word is
removed.

IV. INTERFACE DETAILS

The control signals, which facilitate data transfers between the
synthesizer and a host processor, consist of a data request signal
generated by the device, and a data ready line activated by the host.
These two control signals are sufficient to define a complete commu­
nication protocol with the synthesizer, so that the device can easily be
integrated into a larger system.

The sequence of events that occurs during the synthesis procedure
is shown in Fig. 4. When the nsp requests new data, the interface logic
raises the data request signal. The host processor monitors this request,
and places a new word on the data lines. When the data is stable, the
host processor generates an edge-justified data ready signal. The word
is latched in the input shift register 100 ns later. Once the input word
is latched, a signal clear to receive is sent to the nsp. The nsp then
generates the shift-clock pulses necessary to transfer the word into its
input buffer. When the shifting is completed (at 400-ns/bit rate), the
data request signal goes low, until the nsp makes another request for
a new word.

The output of the nsp is enabled by means of a clear-to-send signal

DATA REQUEST ~

I
DATA READY n I

-----I

l- tQ--j

tQ: LATENT TIME EQUALS 6 MICROSECONDS

Fig. 4-Input protocol.

SPEECH SYNTHESIS 1627

(CTS). This signal is granted to the nsp by the FIFO memory. The only
times when this signal is not granted are when the FIFO queue is full,
and for a short period after the word is placed in the queue. The latter
is on the order of 4 microseconds, and is a result of internal data
propagation in the FIFO. The output protocol is shown in Fig. 5. If the
CTS is granted, the transfer of the data from the nsp to the FIFO

memory is done in two phases. In the fIrst phase, the nsp outputs a
bit-serial data stream into the output shift register, and in the second
phase, the information is transferred from the shift register into the
FIFO. This transfer is done upon receipt of a positive transition of the
signal Output Buffer Empty, generated by the nsp at the end of output
shifting. If the FIFO memory becomes full, the CTS is not granted until
a sample has been taken from the head of the queue and placed into
the D-to-A converter.

There are two other variations of the basic synthesizer circuit that
have been tested also. The fIrst one is a slightly enhanced version of
the synthesizer which includes an additional fIrst-in-fIrst-out memory
buffer at the input of the system, shown in Fig. 6. The motivation for
this input queuing mechanism is again based on the fact that the input
process, which feeds the synthesizer with the system coefficients, is
asynchronous with respect to the pitch frames. This confIguration is
especially useful when the host processor has to compute the reflection
coefficients needed for synthesis in real-time, while the synthesizer is
processing previously obtained parameters. Typically, the time to
compute the 'coefficients has some variance, and this variance is
compensated for by the "elasticity" of the input buffer.

The second variation of the basic circuit contains no FIFO buffers. It
demonstrates a minimal synthesizer configuration, containing only 15
integrated circuits in addition to the nsp chip. It performs well when
the host processor is capable of providing the input data at the required
rate.

The synthesizer can easily be connected to standard microcompu-

OUTPUT BUFFER
EMPTY

ts: SHIFT TIME EQUALS 6 MICROSECONDS

Tt : POINT OF TRANSFER

FIFO FULL

tp: PROPAGATION THROUGH FIFO. EQUALS 4 MICROSECONDS

Fig. 5-0utput protocol.

1628 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

REQUEST

READY

DATA

INPUT
FIFO

OUTPUT
FIFO

Fig. 6-Synthesizer with input FIFO memory.

10 kHz

ters. Several types of connections have been tried successfully. One of
them is shown in Fig. 7, where the synthesizer is contained on a single
board interfaced directly to a standard microprocessor bus. The input
interface appears as a single memory location in the address space of
the processor, and the data is transferred to it by a single "move"
instruction. The input FIFO buffer mayor may not be implemented. If
it is, then the synthesizer interrupts the processor only when the buffer
is empty. Without the buffer, the processor is interrupted for each data
transfer.

Another type of interface, shown in Fig. 8, contains a synthesizer
and direct-memory-access (DMA) circuitry. The iput and output buffers
are not needed in this configuration, since the synthesizer obtains the
data by accessing the processor memory. The processor sets up a DMA

transfer by providing an address and a data count to the synthesizer
board. It is interrupted only when the specified number of words have
been processed by the synthesizer.

The third way of connecting the synthesizer to a microprocessor is
by means of a standard parallel interface board, a standard accessory.
In this case the synthesizer is not a part of the microcomputer system,
rather it is an outside device.

All of these examples show that the synthesizer may easily be
included as a part of intelligent terminals that are usually built around

INTERRUPT ADDRESS
LINE BUS

DATA
BUS

I
M ICROCOMPUTE R

BUS

Fig. 7-Interface to microcomputer bus.

OUTPUT
INTERFACE

AND D-TO-A
CONVERTER

SPEECH SYNTHESIS 1629

MICROCOMPUTER BUS

r---- -----,
I
I
I
I
I
I
I
I
I
I
I
I
I L____ _ ___ _

Fig. 8-Interface to microcomputer bus by DMA.

standard microprocessors. A combination of data and voice services
can be provided with such configurations. Applications that require
low data rate to the synthesizer would use a scheme with quantized
LPC parameters, or a synthesis program that provides for interpolation
of log-area parameters of longer time intervals.

V. SOFTWARE DRIVERS FOR THE SYNTHESIZER

In order to demonstrate the flexibility of the synthesizer, two types
of host computers were used for implementation of the synthesizer
drivers.

One is a stand-alone microcomputer, based on an LSI-II micropro­
cessor. This configuration includes an enhanced mini- UNIX * operat­
ing system, and is intended for real-time speech processing experi­
ments. A parallel interface port is used for driving the synthesizer. The
hand-shaking signals required by the parallel port are in agreement
with the ones provided by the synthesizer. The data request line
interrupts the microprocessor, which then transmits a word to the
synthesizer. At the same time a data ready pulse is issued, which is
used by the synthesizer to latch the data.

A program that drives the synthesizer with the data from a file
containing the speech parameters is used as:

say filename [loop] [frame]

The program reads the file filename into a buffer, and transfers it to
the synthesizer on the basis of the protocol described earlier. The
optional arguments loop and frame are used for testing purposes. If

* Registered trademark of Bell Laboratories.

1630 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

a loop is present, the driver will synthesize the whole file, go to a mode
of repeated transfers of a single pitch frame, whose sequential number
is given in the argument frame, whose default value is the first pitch
period. Once in this mode, the program allows for stepping through
successive pitch frames, which is useful for studies of synthesized
waveforms, and effects of finite length arithmetic to the stability of
the lattice synthesizer. Also, an option is provided for changing the
system coefficients during the repetitive pitch frame synthesis.

Another host computer used for driving the synthesizer is an SEL32-
75 system. In this configuration, a DMA interface is utilized for transfer
of pitch synchronous information to the synthesizer. The hand-shaking
protocol between the DMA unit and the synthesizer input logic takes
place without an involvement of the computer cpu.

VI. CONCLUSION

A real-time speech synthesizer, and several variations of it, have
been designed based on the digital signal processor chip. The DSP has
proven to be an important vehicle for digital signal processing appli­
cations, and speech processing in particular. A variety of sentences
have been synthesized with the device. Informal listening shows no
perceptual difference between the speech obtained by the synthesizer
and by the general purpose computer using the same algorithm and
floating point arithmetic. It has been demonstrated that the synthe­
sizer cal), be easily integrated into microprocessor based systems for a
number of voice response applications.

REFERENCES

1. B. s. Atal and S. L. Hanauer, "Speech Analysis and Synthesis by Prediction of the
Speech Wave," J. Acoust. Soc. Amer., 50 (1971), pp 637-55.

2. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1978.

3. J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer­
Verlag, 1976.

SPEECH SYNTHESIS 1631

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Sub-Band Coding

By R. E. CROCHIERE

(Manuscript received July 8, 1980)

This paper explores the use of the Bell Laboratories digital signal
processing integrated circuit for digitally encoding speech or audio
signals based on the sub-band coding technique. Sub-band coding
represents a next level in algorithmic complexity over that of adaptive
differential pulse-code modulation, discussed in a companion paper,
and it has a corresponding advantage in performance. We discuss
the details of a real-time, two-band sub-band coding implementation
on the digital signal processor. We then comment on how this
approach can be extended to more than two band designs for greater
bit rate compression capability. In connection with this, we also
consider some general issues involved in implementing multirate
signal processing algorithms of this type on the digital signal proc­
essor.

I. INTRODUCTION

Digital encoding of speech and audio has been a topic of long­
standing interest for purposes of digital communications and digital
storagel

-
3

• The efficiency of such encoding techniques depends strongly
on the degree to which the bit rate can be reduced (compressed)
without impairing the quality of the decoded signal. Typically, signals
such as speech and audio have a high degree of redundancy that can
be used to reduce this bit rate. Also, properties of human perception
can be used to reduce the bit rate without impairing the quality of the
decoded signal.

To take advantage of these properties, a considerable amount of
signal processing is necessary. Thus, in the past many of these tech­
niques have only been implemented by non-real-time computer simu­
lations or with the aid of highly specialized digital hardware. This

1633

picture is now rapidly changing, as is exemplified by the recent Bell
Laboratories digital signal processing integrated circuit (DSp).4,5 With
this device it is possible to conveniently implement, in real time, signal
processing algorithms of low to medium complexity. Thus, a single DSP
integrated circuit can be used to implement many of the simpler
encoding algorithms and multiple DSPS can be used for some of the
more complex algorithms.

In a companion paper,6 it is shown that the ADPCM (adaptive
differential PCM) encoding algorithm, which offers a bit rate reduction
factor of approximately two over conventional logarithmic companded
PCM encoding (for speech), can be efficiently implemented on the DSP,
and that it uses only about one-quarter of the processing capability of
the device. In this paper, we report on continuing efforts towards a
next level of complexity of encoding techniques on the nsp. In partic­
ular, we discuss the technique of sub-band coding (SBC).3,7,8 Our efforts
focus primarily on a two-band sub-band coder design which demon­
strates the capability of the DSP for this class of algorithms. By
extension of these same techniques, it is expected that more complex
SBC designs on the DSP (e.g., four or more bands) with greater bit-rate
compression capability will also be possible and efforts are continuing
in this direction.

II. THE SUB-BAND CODER ALGORITHM

Figure 1 reviews the basic conceptual configuration for a two-band
SBC design. The input signals s(n) is assumed to be in digital (linear
PCM) form and it may be (optionally) filtered with a bandpass prefilter
for reasons to be discussed later. The output signal x(n) is then divided
into two equally spaced frequency bands by low-pass and high-pass
fliters, hz(n) and hu(n), respectively. Each sub-band signal is reduced
in sampling rate by a factor of two, i.e. if Fs is the sampling rate of the
input signal, Fs/2 is the sampling rate of the sub-band signals. The
sub-band signals are then encoded with ADPCM encoders and the
output bits are multiplexed for storage or transmission.

In the receiver, the sub-band signals are decoded and interpolated
back to their original sampling rates with the aid of similar low-pass
and high-pass fliters. The sum of the two interpolated sub-band signals,
x(n), is the reconstructed version of the input signal, x(n), (see Fig. 1).

This process of dividing the signal into sub-bands permits each band
to be encoded with a different number of bits per sample and with a
independent adaptive step-size in order to obtain a better perceived
quality. For telephone band speech (200 to 3200 Hz) sampled at 8 kHz,
the two-band technique provides about a 3- or 4-kb/s advantage over
ADPCM in the bit-rate range of 24 kb/s.9 In another study,3,l0 it has
been shown that the two-band SBC design is useful for encoding of

1634 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

(j)
c
OJ
1

OJ
::t>
Z
o
()

o
o
Z
G)

...
en
(,.)
01

x(n)

(OPTIONAL)

Fs = SAMPLE RATE

TRANSMITTER

hu(n)

w
Cl
:::>
t­
:::i
a...
:::2;
<

Fs/2

LOWER
BAND

(a)

I
I

I I
I CHANNEL I
I I
i I
I I

UPPER
BAND

01 ~((U\

o Fs/4

FREQUENCY

(b)

RECEIVER

Fs/2

Fs/2

Fig. l-(a) General block diagram of a two-band sub-band coder. (b) A spectral description of the sub-bands.

Fs

wider bandwidth (7 kHz) signals at bit rates which are commensurate
with digital transmission rates commonly used for telephony (56 or 64
kb/s). The "commentary quality" obtained from this design is suitable
for applications such as broadcast services for news, correspondence,
sports, and AM radio music transmission.

Greater bit-rate compression, (or higher quality performance for the
same bit rate) over that of a two-band scheme is possible with more
bands.7

,8 This can be accomplished, for example, by further subdividing
each of the two sub-band signals into two more sub-bands at one­
quarter of the original sampling rate to produce a four-band SBC design
t(with equally spaced frequency bands). Alternatively, designs with
octavely spaced bands are possible by successively subdividing the
lower bands in a "tree structure.,,11 Such designs are a logical extension
of the two-band approach, and they can have a performance advantage
of up to about 8 kbls over ADPCM (in the range of 16 to 24 kb/s) for
speech.7- 9,11

In the following sections, we discuss in detail an implementation of
the two-band SBC design on the DSP. In Section III, we first review
some of the theoretical aspects of the design, particularly the structure
of the quadrature mirror approach to the filter bank. Then, in Section
IV, we consider some of the programming aspects of the design on the
DSP and show how features of the DSP are used in the implementation.

III. DESIGN CONSIDERATIONS

3. 1 The quadrature mirror filter bank

An important and critical aspect of the SBC design is that of the filter
bank and its interaction with the sampling rate reduction (decimation)
and the subsequent sampling rate increase (interpolation) of the sub­
band signals. The approach used in this design is that of the quadrature
mirror filter bank (QMFB). 12 In this section, we will summarize the
basic concepts of the QMFB and consider a practical filter design. Later,
in Section 4.4, we will discuss the implementation of the QMFB on the
DSP.

The reduction of the sub-band sampling rates is necessary in order
to maintain a minimal overall bit-rate in encoding these signals. This
sampling rate reduction introduces aliasing terms in each of the sub­
band signals. For example, in the lower band the signal energy in the
frequency range above Fs/4 is folded down into the range 0 to Fs/4
and appears as aliasing in this signal, as illustrated by the shaded
region in Fig. lb. Similarly, for the upper band any signal energy in
the frequency range below Fsl4 is folded upward into its Nyquist band
Fs/4 to Fs/2. This mutual aliasing ot signal energy between the upper
and lower sub-bands is sometimes called interband "leakage." The
amount ofleakage that occurs between sub-bands is directly dependent

1636 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

on the degree to which the filters hi (n) and hu (n) approximate ideal
low-pass and high-pass filters, respectively.

In the reconstruction process the sub-band sampling rates are in­
creased by filling in zero valued samples between each pair of sub­
band samples. This introduces a periodic repetition of the signal
spectra in the sub-band. For example, in the lower band the signal
energy from ° to Fs/4 is symmetrically folded around the frequency
Fs/4 into the range of the upper band. This unwanted signal energy,
referred to as an "image" is filtered out by the low-pass filter hl(n) in
the receiver. This filtering operation effectively interpolates the zero
valued samples that have been inserted between the sub-band signals
to values that appropriately represent the desired waveform.13 Simi­
larly, in the upper sub-band signal an image is reflected to the lower
sub-band and filtered out by the filter -hu(n).

The degree to which the above images are removed by the filters
hl(n) and -hu(n) is determined by the degree to which they approxi­
mate ideal low-pass and high-pass filters. Because of the quadrature
relationship of the sub-band signals in the QMFB the remaining com­
ponents of the images can be exactly canceled by the aliasing terms
introduced in the analysis (in the absence of coding errors). In practice,
this cancellation is obtained down to the level of the quantization noise
of the coders.

To obtain this cancellation property in the QMFB, the filters hi (n)
and hu (n) must be symmetrical finite impulse response (FIR) designs14
with even numbers of taps, i.e.,

for n < 0,
and n 2: N

(1)

where N, even, is the number of taps. The symmetry property implies
that

n=O, 1,2,··.,

n=O, 1,2, ... ,

N
--1
2 '

and (2a)

(2b)

The QMFB further requires that the filter in Fig. 1a satisfy the condi­
tion. 12

n = 0, 1, ... N - 1, (3)

which is the mirror image relationship of the filters.
With the above constraints, the aliasing cancellation property of the

QMFB can be easily verified.12 A derivation is given in the Appendix.
As seen from this derivation, the filters hi (n) and hu (n) must also
ideally satisfy the condition

SUB-BAND CODING 1637

(4)

where Hz(eiw) and Hu(eiw) are the Fourier transforms of hz(n) and
hu(n), respectively.

The above filter requirement of eq. (4) cannot be met exactly except
when N = 2 and when N approaches infinity. However, it can be very
closely approximated for modest values of N. Filter designs which
satisfy eq. (2a) and approximate the condition of eq. (4) and the
lowpass characteristic can be obtained with the aid of an optimization
program. Reference 15 describes a procedure based on the Hooke and
J eeves optimization algorithm and presents a set of filter designs for
values of N = 8, 12, 16, 24, 32, 48, and 64. Also, useful but less optimal
designs can be obtained from conventional Hanning window designs.3

Figure 2 shows the frequency response characteristics for an N =
32-tap filter design that was used in the nsp implementation and Table
I gives the filter coefficients. Fig. 2a shows the magnitude of Hz(e jW

)

and Hu(eiw) expressed in dB as a function of wand Fig. 2b shows the
magnitude of the expression

10

0

-10

-20

en
-l
w
ID -30
U
W
0

~
-40 w

0
::::>
Z
t!)
c{ 0.15
:!;

0.10

0.05

0

-0.05
0

(a)

",------------
I

I
I
I
I
I
I
I
I

" ,
1\1

" /' I II
f', I \ I ':

7T/2

(FsI4)

FREQUENCY

(b)

Fig. 2-Frequency response for a 32-tap quadrature mirror filter design. (a) Magni­
tude responses of the individual filters. (b) Magnitude response of the composite system.

1638 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Table I-Coefficients for 32-tap FIR quadrature mirror filter
h[(O) = 0.002245139 = h[(31) h[(8) = -0.007961731 = h[(23)

h[(1) = -0.003971152 = h[(30) h[(9) = -0.034964400 = h[(22)

h[(2) = -0.001969672 = h[(29) h[(10) = 0.019472180 = h[(21)

h[(3) = 0.008181941 = h[(28) h[(11) = 0.054812130 = h[(20)

h[(4) = 0.000842683 = h[(27) h[(12) = -0.044524230 = h[(19)

h[(5) = -0.014228990 = h[(26) h[(13) = -0.099338590 = h[(18)

h[(6) = 0.002069470 = h[(25) h[(14) = 0.132972500 = h[(17)

h[(7) = 0.022704150 = h[(24) h[(15) = 0.463674100 = h[(16)

1 Hz(eiw) 12 + 1 Hu(eiw) 12

expressed in dB as a function of w. As can be seen from Fig. 2b, the
requirement of eq. (4) is satisfied to within ± 0.025 dB which is more
than satisfactory for good SBC performance. The above filter design is
based on the "32 D" design. 15

This concludes our discussion of the QMFB conditions and the filter
design. In Section 4.4 we discuss how the mirror image relationship of
eq. (3) is used to advantage in the DSP implementation.

3.2 The ADPCM coders

The adaptive differential PCM (ADPCM) coders in the two-band SBC

are based on the algorithm by Cummiskey, Jayant, and FianaganI6

and they use the robust form of the step-size adaptation by Goodman
and Wilkinson.17

A detailed description of this algorithm is given in a companion
paper.6 Therefore, in this section we will only briefly outline the form
of the algorithm to identify rei event parameters and refer the reader
to Ref. 6 for specifics.

Figure 3a shows a simplified block diagram of the ADPCM algorithm.
The input (decimated) sub-band signal is denoted as y(n). A predicted
estimate of this signal, p(n), is subtracted from y(n) to produce the
difference signal

e(n) = y(n) - p(n). (5)

This difference signal is then quantized with an adaptive step-size
quantizer to produce the code word I(n) and the decoded difference
signal e(n).

The step-size of the quantizer f:,. (n) is adaptively varied according to
the relation

Ll(n) = (f:,.(n - l))Y.M(I(n - 1)), (6)

SUB-BAND CODING 1639

CODE WORD I(n)

yIn)

~(n)

pIn)

fJ

(a)

I(n) yIn)

fJ

(b)

Fig. 3-General block diagram of the ADPCM coders. (a) Encoder. (b) Decoder.

where L\(n - 1) is the step-size and I(n - 1) is the code word at the
previous sample time n - 1. The parameter y is a number in the range.

0:sy:s1, (7)

and, typically, has a value of y = 0.98. It is used to introduce a limited
memory to the step-size adaptation algorithm to mitigate the effects
of channel errors. 17 The scale factor M(I(n)) is a number that depends
on the code word I(n). If an outermost positive or negative quantizer
level is used at time n - 1 a value of M(.) greater than one (typically
M (.) = 2) is used to increase the step-size for the sample time n. If a
lower quantizer magnitude level is used at time n - 1, a value of
M(.) less than one (typically M(.) = 0.77) is used to reduce the step­
size at time n. In this' way, the step-size is dynamically varied in an
attempt to match the center of the quantizer characteristic to that of
the rms level of the difference signal e (n). The values of M (.) can be
tailored to modify the adaptation characteristics of the quantizer.
Typically, a faster attack (step-size increase) and a slower decay (step­
size decrease) is preferredlO

,16 for best subjective performance.
The sum of the decoded difference signal e(n) and the predictor

signal p (n) gives the decoded version of the input signal, denoted as
y(n), i.e.

y(n) = e(n) + p(n). (8)

1640 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

This is used in the ADPCM receiver, (see Fig. 3b) to produce the decoded
output signal. It is also used in the ADPCM transmitter (see Fig. 3a) to
generate the predictor signal according to the relation

p(n) = f3·Y(n - 1). (9)

The parameter f3 determines the fraction of the signal y(n - 1) that is
used to predict the next incoming sample y(n). Ideally it should be
equal to the sample-to-sample correlation that exists in the signal
y(n).16

For speech, sampled at 8 kHz, it has been suggested that values of
/3i = 0.7 (lower band) and f3u = -0.45 (upper band) are appropriate.9

The negative correlation in the upper sub-band is because the fre­
quency scale of the spectrum is inverted in the decimation process of
the QMFB. For audio signals, sampled at 14 kHz, values of f3i = 0.16 and
/3u = -0.82 have been suggested3 (note that f3i and f3u are referred to as
al and a2 in Ref. 3).

The number of bits per sample used to encode each sub-band is
dependent on the overall bit rate of the coder. For speech, sampled at
8 kHz, a choice of 4 bits/sample for the low band and 2 bits/sample for
the upper band leads to a 24-kb/s design. For audio, sampled at 14
kHz, a choice of 4 bits/sample was used in each sub-band for the 56-
kb/s commentary grade coder.3

3.3 Pre filtering

It is sometimes desirable in SBC coding to band-limit the input signal
prior to encoding. For example, in speech a substantial amount of
signal energy may be present in the frequency range from 0 to 200 Hz.
This energy contributes to an increased step-size and, therefore, more
quantization noise in the lower sub-band. If telephone band speech
(200 to 3200 Hz) is of interest, then band-limiting the input signal to
this range before encoding removes the signal energy below 200 Hz
and above 3200 Hz. This permits the use of a lower step-size in the
bottom band and, therefore, produces less quantization noise. For
audio, a similar advantage is gained from prefiltering by removing low
frequency hum and turntable rumble components in the signal prior
to encoding.

Figure 4 shows an example of a cascade filter structure for a sixth­
order infinite impulse response (IIR) fIlterl4 that was used in the DSP

implementation for this purpose. The coefficients for a 200- to 3200-
Hz bandpass elliptic filter design (assuming an 8-kHz sampling rate)
are given in Table II and the frequency response for this design is
shown in Fig. 5.

In the design of IIR filters, some caution must be observed in
minimizing the effects of roundoff noise, limit cycles, and dynamic

SUB-BAND CODING 1641

Al0 A20 A30

Z-1 Z-l Z-l

811 All 821 A21 831 A31

Z-l Z-1 Z-1

812 A12 822 A22 832 A32

Fig. 4-Block diagram of the cascade structure for the IIR prefilter.

range constraints within the filter. This can be accomplished by
observing several rules of thumb for pairing and ordering the arrange­
ment of poles and zeroes within the cascade fliter structure and also
by appropriately scaling the signal from section to section within the
fliter structure to control the internal dynamic range. Further infor­
mation on this subject can be found in Refs. 14 and 18. In general,
these procedures are more critical for high-order high Q filters and
less critical for low-order low Q designs.

IV. IMPLEMENTING THE SBe ALGORITHM ON THE DSP

4.1 Some general programming considerations

As seen from the above discussion there are a number of different
aspects to consider in the implementation of an algorithm such as SBC

on the nsp. In this section, we discuss some of these issues and point
out some general programming techniques that were used. Principles
such as modularization, stream processing, block processing, and dou­
ble buffering will be introduced. In Sections 4.2 to 4.5 we discuss more
specifically how these principles are used in the SBC software. We will
assume in the following disc~ssion that the reader is generally familiar
with the nsp software.

The software development for the SBC and similar signal processing
algorithms is greatly simplified by recognizing the fact that there are
several well-defined operations that are being performed in the algo­
rithm, such as filtering, coding, and sampling rate conversion. By
identifying these operations and modularizing the software around
them, the problem can be subdivided into a series of smaller problems.

Table II-Coefficients for sixth-order IIR bandpass elliptic filter
(200- to 32oo-Hz BW, 80D0-Hz sampling rate)

A10
All
A12
Bll
B12
A20
A21
A22

1.0 B21
-1.99730706 B22

1.0 A30
0.470839023 A31
0.2281607545 A32
0.459738676 B31
0.0 B32

-0.459738676

-1.44837372
-0.746318392

1.0
1.95459080
1.0
1.9053369

-0.92630251

1642 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

VI
.J
W
In

U
W

(a)

Or-j----------------------------~~----~

-20

c -40
z
w
C
:::l
!::
z
~ -60~ ________ ~ ______ ~~ ______ ~ ______ ~~
::!;

1,--------------------------------------,
(b)

Or-~--~~----~~------------~------~

-1

-2~~ ______ ~ ________ ~ ______ ~~~ ____ ~
o 2 3 4

FREQUENCY IN KILOHERTZ

Fig. 5-Frequency response of the 200- to 3200-Hz (8000-Hz sampling rate) lJandpass
elliptic fIlter. (a) Overall response. (b) Expanded view of the passband ripples.

This modularization process consists of assigning and labeling separate
parts of the nsp RAM memory for each block in the algorithm. For
example, in the IIR fIlter the six internal (state) variables necessary for
the fIlter, denoted as BPI[O], BPI[l], ... , BPI[5], can be assigned to
RAM locations using the RAM-variable defInition statement

ram BPI[6].

At the beginning of each module, the address pointers of the nsp can
then be initialized for that module. For example, the statement

rya = &BPI[O];

sets the nsp address pointer RYA to the first state variable in the filter.
The automatic increment or decrement feature of the address pointers
in the nsp can then be used to step RYA through the state variables
within the module. Although it may cost a few extra lines of code, this
simple, perhaps obvious, principle goes a long way toward simplifying
the programming and debugging process in the nsp by unlinking the
address connections between modules and generally producing more
readable code.

SUB-BAND CODING 1643

Signal processing operations, such as filtering and coding, generally
require a Single input sample and produce a single output sample for
each sample time. They also perform essentially the same signal
processing operations for each sample time. Such operations will be
referred to as stream processing operations and they can be conven­
iently defined and implemented in the modular fashion discussed
above.

When more than one sampling rate is involved in an algorithm, the
operations to be performed within a module, or the entire module
itself, may be different from sample to sample. For example, if there is
a 2-to-1 difference in sampling rate within the algorithm it may be
necessary to perform one set of operations at the odd sample times
(cycle zero) and a different set of operations (cycle one) at the even
sample times in certain parts of the algorithm. For this, it is necessary
to introduce the concepts of block processing in which different pro­
gram modules are used for different cycles. Furthermore, interfacing
stream processing modules with block processing modules may require
double buffering operations and care must be used to distribute the
amount of processing performed in each cycle to avoid I/O synchroni­
zation problems. These concepts will become more clear when we
discuss the implementation of the QMFB and sampling rate conversion
in Sections 4.4 and 4.5.

We first consider the implementation of the IIR prefilter and the
ADPCM coder module. Then, we show how these modules fit within the
general multirate processing framework of the SBC coder.

4.2 IIR prefilter

The IIR filter can be implemented in a straightforward stream
processing manner on the DSP. Beause the DSP is especially suited for
linear filtering algorithms of this type, the filter structure of Fig. 4 can
be very efficiently realized with approximately one DSP instruction for
each combination of a shift, multiply, and add in the structure.

Assuming that the internal state variables are stored in RAM loca­
tions BPI[O], BPI[I], ... , BPI[5], and the input signal s(n) is in the P
register, the following DSP instructions compute x(n) according to Fig.
4 (see Table II for the filter coefficients).

*rda++ = y
*rda++ = w

rya = &BPI[O];
rda = &BPI[O];;

w=a

a=p
a=p+a
a=p+a
a=p
a=p+a
a=p+a

p = BI2**rya++;
p = BII **rya--;
p = AI2**rya++;
p = All **rya++;
p = AIO*w;
p = B22**rya++;

1644 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

*rda++ = y
*rda++ = w

*rda++ = y
*rda++ = w

w=a

w=a

a=p+a
a=p+a
a=p
a=p+a
a=p+a
a=p+a
a=p+a
a=p
a=p+a
a = p + a;

p = B21 **rya--;
p = A22**rya++;
p = A21 **rya++;
p = A20*w;
p = B32**rya++;
p = B31 * *rya--;
p = A32**rya++;
p = A31 **rya++;
p = A30*w;

The output signal s(n) appears in the A register. The fIlter coeffIcients
are stored in the beginning of the program using # defIne statements
and are inserted into the code by the assembler.

4.3 ADPCM encoder and decoders

The ADPCM encoders and decoders are also stream processing algo­
rithms in the sense that they receive a single input sample and produce
a single output sample for each sample time. However, as seen in Fig.
1, the sampling rate at which they operate in the SBC algorithm is one
half of the input sampling rate. As will be discussed in the next section,
this can be accomplished by a two-cycle computational structure in
which the encoder and decoder for the lower sub-band are computed
in one cycle time (cycle 0) and the encoder and decoder for the upper
sub-band are computed in the second cycle time (cycle 1). Since each
cycle time is associated with one-half of the input sampling rate, the
ADPCM coders operate in a stream processing manner within this
framework.

See Ref. 6 for a detailed discussion of the ADPCM algorithm and its
implementation on the DSP, since essentially the same design and code
have been used for the SBC algorithm.

4.4 Quadrature mirror filter bank and the multirate computational
structure

Perhaps the most subtle aspect of the SBC algorithm is that it is a
multirate system;13 i.e., it has more than one sampling rate. This
imposes a block processing framework on the computational structure
of the system. In the next two sections, we will discuss these issues in
more detail and present a computational structure for the two-band
SBC. First, we will discuss the polyphase structure for the QMFB which
takes advantage of its mirror image and multirate properties and
results in a more effIcient realization than the one implied by Fig. 1.

From the mirror image property of the QMFB described by eq. (3),
note that the coeffIcients used for the upper and lower sub-band fIlters
are identical, except for the signs of the odd-numbered coeffIcients.

SUB-BAND CODING 1645

This property can be used to save a factor of two in computation by
sharing the computation between the filters in the manner described
in Fig. 6.12 The partial sums of products are accumulated separately
for the even- and odd-filter coefficient values. The sum of these two
partial sums then gives the lower sub-band signal, and their difference
produces the upper sub-band signal. Since the sampling rates are one­
half of the input sampling rate, an additional factor of two is gained by
computing the sums of products indicated in Fig. 6 once for every
other input sample. Thus, each sample is shifted two delays in the shift
register of Fig. 6 before being used.

Because of this sample rate reduction, the filter structure of Fig. 6
can be divided into two parts as shown in Fig. 7. This structure is a
two-band version of a more general class of multirate structures
sometimes referred to as polyphase structures.13

,19 As Fig. 7 shows, the
input signal is separated into two sets by a commutator. Assuming
that the commutator is in the upper position at time n = -1, the upper
branch receives odd values of x(n), i.e. x(-1), x(l), x(3), x(5) .•• ,
and the lower branch receives even values of x(n), i.e. x(O), x(2),
x(4), .••. Both branches now operate at one-half of the original
sampling rate. Odd values of x(n) are filtered at odd sample times in
the upper branch with an N /2 tap filter of odd valued filter coefficients.
Similarly, even valued samples of x(n) are filtered in the lower branch
with an N /2 tap filter of even filter coefficients.

At the end of the even sample times, the sums and differences of the
two filter outputs are taken to produce the (decimated) lower and
upper sub-band signals respectively. This sum and difference amounts
to a two-point DFT (a discrete Fourier transform butterfly) in the two­
band polyphase framework. The purpose of the double buffer will be
discussed in more detail in connection with the timing and control
structure in the next section.

By careful analysis of the receiver structure of Fig. 1 a similar
efficient polyphase structure can be generated for the QMFB synthesis.
Alternatively, it can be generated by applying concepts of multirate

+

hQ (3)

x(n)

z-l Z-l z-l

hQ(2) hQ(30)

+

Fig. 6-Quadrature mirror filter bank structure that shares computation between
upper and lower filters.

1646 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

(CYCLE 0)

+

+
(CYCLE 1)

hQ(30)

DOUBLE BUFFER
ON CYCLE 0

~ (CYCLE 0)

UPPER BAND
(2-4 kHz)

Fig. 7-Sub-band coding transmitter structure using a polyphase QMFB.

network transposition20 to the structure of Fig. 7. The resulting struc­
ture, with either approach is shown in Fig. 8. The sum and difference
(an inverse DFT) of the ADPCM decoder output signals are first com­
puted to produce inputs for the odd and even FIR filters, respectively.
At odd sample times (cycle 0) the even FIR filter coefficients (upper
branch) are used to compute odd sample values of the output x(n), i.e.

DOUBLE BUFFER
ON CYCLE 0

(CYCLE 0) ~
(CYCLE 0) ...

2 z-l z-l z-l

hQ (0) hQ(2) hQ(4) ... hQ(30)

+

+

hQ (1) hQ(3) hQ (5) ... hQ (31)

2 z-l z-l z-l

(CYCLE 1)

UPPER BAND
(2-4 kHz)

Fig. 8-Sub-band coding receiver structure using a polyphase QMFB for synthesis.

SUB-BAND CODING 1647

£(-1), £(1), £(3), At even sample times (cycle 1), the odd FIR

filter coefficients (lower branch) are used to compute even samples of
the output £(n), i.e. £(0), £(2), £(4),

As in the analysis structure of Fig. 7, note that one-half of the filter
computation is performed at even sample times and the other half is
performed at the odd sample times. Thus, the computational load is
evenly distributed between even and odd time cycles. This will be
discussed in more detail in the next section on the control structure.

The nsp can be very efficiently used to perform the above operations.
For example, the FIR filters can be implemented with essentially one
line of code per tap in the filter, plus a few setup instructions. Assuming
that the state variables of the 16-tap odd coefficient filter in the upper
branch of Fig. 7 are stored in RAM locations XO[O], XO[l], ... ,
XO[15], and the filter input is stored in the A register, the following
nsp instructions compute the filter output.

*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda-- = y
*rda = w

rya = &X0[15];
rda = &XO[15];;
w=a a=p

a=p
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a=p+a
a = p + a;

p = H31 * *rya--;
p = H29* *rya--;
p = H27* *rya--;
p = H25**rya--;
p = H23* *rya--;
p = H21 **rya--;
p = H19* *rya--;
p = H17* *rya--;
p = H15**rya--;
p = H13* *rya--;
p = H11 **rya--;
p = H9**rya--;
p = H7**rya--;
p = H5**rya--;
p = H3**rya--;
p = H1*w;

The coefficients HI, H3, ... ,H31 correspond to the fIlter coefficients
hz(l), hz(3), .•. hz(31), respectively in Table I. They are stored at the
beginning of the program using # define statements and inserted into
the code using the assembler. Note that the fIlter state variables are
addressed in reverse order, i.e. XO[15], XO[14], •.• , XO[2], XO[l],
XO[O] and that the fIlter input is held in the w register until coefficient
HI is reached, and then it is stored in location XO[O]. The output of
the fIlter appears in the A register.

1648 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

4.5 Control and data flow structure

So far we have discussed block diagrams and programs for individual
modules within the SBC code. In this section, we consider the overall
control structure and flow of data within the program. Because the
SBC algorithm is a multirate system with a sampling rate ratio of two,
it requires a two-cycle control structure (for a sampling rate ratio of 4,
a four-cycle control structure would be needed, ect). Cycle zero is
associated with odd sample times n = 1, 1, 3, 5, ... , and cycle 1 is
associated with even sample times n = 0, 2, 4, As seen in Figs. 7
and 8, most of the operations in the upper branches of these structures
are computed in cycle 0 and most of the operations in the lower
branches are computed in cycle 1. Thus, the ADPCM coder and decoder
for the lower sub-band are computed in cycle 0 and the ADPCM coder
and decoder for the upper sub-band are computed in cycle 1. In this
way, the computational load is shared equally between both cycles.
Note that the bandpass prefilter must be computed in both cycles
since it is implemented at the high (input) sampling rate.

Double buffering is required in the multirate structure when data
computed in one cycle is required in another cycle. For example, in
Fig. 7 the outputs of the even and odd fllters are computed and stored
in the left buffer for cycles 0 and 1, while the DFT uses available data
from the right buffer which was computed in the previous 0 and 1
cycles. At the beginning of cycle 0 (or the end of the last cycle) the
data is transferred from the left buffer to the right buffer. This transfer
can be accomplished with essentially no extra overhead by using the
features of the DSP.

For example the DFT sum in the upper branch of Fig. 7 is computed
in cycle 0 (the difference is computed in cycle 1). This is accomplished
by reading data from the left buffer (RAM memory XB[O] and XB[I])
and simultaneously transfering it to the right buffer (RAM memory
XBB[O] and XBB[I]), while the DFT sum is being performed. The
following DSP instructions perform this operation:

*rda++ = y
*rda = y

rya = &XB[O];
rya = &XBB[O];;

a=p
a = p + a;

p = *rya++;
p = *rya;

The DFT sum appears in the A register. In cycle 1, the DFT difference
output is computed from data in the left buffer (read in reverse order
to accommodate the difference operation in the DSP).

Table III summarizes the sequence of operations that are performed
in cycle 0 and cycle 1 of the two-band SBC software. Both the SBC

transmitter and receiver are implemented in the same nsp for the sake

SUB-BAND CODING 1649

Table III-Control structure for two-band sse
I. Cycle 0 A. Transmitter

1. Double buffer
2. DFT sum
3. ADPCM encoder (lower band)
4. Output (or store) code word
5. Input one sample of x(n)
6. BP prefllter
7. FIR filter (upper branch)

B. Receiver
1. Double buffer
2. 10FT sum
3. FIR fllter (upper branch)
4. Output one sample of x(n)
5. Input code word
6. ADPCM decode (lower band)

II. Cycle 1 A. Transmitter
1. DFT difference
2. ADPCM encoder (upper band)
3. Output (or store) code word
4. Input one sample of x(n)
5. BP prefllter
6. FIR fllter (lower branch)

B. Receiver
1. 10FT difference
2. FIR fllter (lower branch)
3. Output one sample of x(n)
4. Input code word
5. ADPCM decode (upper band)

Return to I. Cycle O.

of demonstration and the code words are simply stored in memory and
read back in the receiver. One input sample of the signal x(n) is used
in each cycle and one output sample of x(n) is generated in each cycle.
Although the code for the transmitter and receiver are interlaced in
this control structure it can be easily separated, because of the modular
design, so that the transmitter and receiver can be realized in separate
DSPS.

V. DISCUSSION

We have discussed an implementation of a two-band sub-band coder
using the DSP. Both the transmitter and receiver have been imple­
mented on the same DSP including a sixth-order bandpass prefIlter.
The algorithm was implemented according to the signal processing
structures in Figs. 4, 7, 8, and the ADPCM encoder and decoder struc­
tures discussed in Ref. 6. Table III outlines the overall control structure
for the algorithm.

The program uses approximately 98 percent of the 8-kHz real-time
capability of the DSP running with a 5-MHz clock. It uses approxi­
mately 78 percent of the RAM and 73 percent of the ROM. If the
transmitter and receiver are separated to two DSPS (in a practical
situation) approximately one-half of the above processing capability
and memory will be required for each DSP.

1650 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Based on the above figures the two-band commentary grade coder
for audio ecoding at a 14-kHz sample rate3 is possible using a single
nsp for the transmitter and another nsp for the receiver.

Also these figures suggest that a four-band sub-band coder design
which further subdivides each of the above two sub-bands into two
more sub-bands by similar quadrature mirror filter techniques is
realizable using one nsp for the transmitter and a second nsp for the
receiver. Such designs offer greater bit-rate compression capability for
speech than the two-band SHe algorithm discussed here.7

-
9

,1l Efforts
are continuing in this direction

VI. ACKNOWLEDGMENTS

The author wishes to thank C. A. McGonegal, J. D. Johnston, R. V.
Cox, and J. W. Upton for their comments and discussion in the course
of this work.

APPENDIX

Aliasing Cancellation Property of the Quadrature Mirror Filter Bank 1 2

Let Xz(e jW) and Xu(e jW) be the Fourier transforms of the lower and
upper sub-band signals, respectively before decimation and X(e jW) be
the transform of x(n). Then

Xz(e jW) = X(e jW) Hz (e jW) ,

Xu(e jW) = X(e jW) Hu(e jW) ,

and (10)

(11)

where Hz(e jW) and Hu(e jW) are the Fourier transforms of hz(n) and
hu(n), respectively. After decimation the lower and upper sub-band
signals will be defined as Yz(e jW) and Yu(e jW), respectively and can be
expressed as13

Yz(e jW) = % [Xz(e jw/2) + X z(e
j (W+21T)/2)] ,

Yu(e jW) = % [Xu(e jw/2) + X u(e j (W+21T)/2)].

and (12)

(13)

Letting Uz(e jW) and Uu(e jW) be the interpolated lower and upper sub­
band signals, respectively in the receiver, and ignoring effects of
quantization because of the coders we get

Uz(e jW) = 2 Yz(ej2W)Hz(ejW) ,

Uu(e jW) = -2 Y u (e
j2W)Hu (e jW) .

and (14)

(15)

Finally the output signal X(e jW), the transform of x(n) in Fig. la, can
be expressed as

SUB-BAND CODING 1651

Combining eqs. (10) to (16) gives the input to output relation

)((eiw) =)((eiW)[llr(eiW) - ll~(eiw)]

+)((ei (w+1T»)[llz(e iW)ll/(ei (w+rr») -llu(eiW)llu(ei(w+rr»)]. (17)

The first term in this expression expresses the desired signal compo­
nent of)((e iw) and the second term expresses the undesired aliasing
component. The cancellation of this aliasing component can be ob­
served by transforming eq. (3) to get

(18)

and applying this condition to eq. (17). It can be easily verified that
the second term cancels leaving

)((eiw) =)((eiw) [llr(e iw) -llr(ei (w+1T»)]. (19)

From the symmetry property in eq. (2), it can be shown that the
frequency response of ll/(eiw) can be expressed in the form

ll/(eiw) = Ill/(eiW) 1 eiw (N-I)/2. (20)

Recalling that N is even and applying this condition to eq. (19), leads
to the expression

)((eiw) =)((eiw) [Illz(e iw) 12 + Ill/(ei (w+1T») 12] eiw(N-I). (21)

In the above expression, the term eiw(N-I) implies that there is an
N - 1 sample delay between x(n) and x(n). Furthermore, it can be
seen from eq. (21) that if x(n) is to be a (delayed) replica of x(n) then
ll/ (eiw) must satisfy the requirement that

Ill/(eiw) 12 + Ill/(ei (w+1T») 12 = 1, (22)

or equivalently

(23)

REFERENCES

1. J. L. Flanagan et al., "Speech Coding," IEEE Trans. Commun., COM-27, No.4
(April 1979), pp. 710-37.

2. J. M. Tribolet and R. E. Crochiere, "Frequency Domain Coding of Speech," IEEE
Trans. ASSP, ASSP-27, No.5 (October 1979), pp. 512-30.

3. J. D. Johnston and R. E. Crochiere, "An All Digital Commentary Grade Sub-band
Coder," J. of the Audio Eng. Society, 27, No. 11 (November 1979), pp. 855-65.

4. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

5. J. S. Thompson and J. R. Boddie, "An LSI Digital Signal Processor," Proc. 1980
IEEE Int. Conf. ASSP (April 1980), pp. 383-5.

6. J. R. Boddie et al., "Digital Signal Pressure: ADPCM Coding," B.S.T.J., this issue.
7. R. E. Crochiere, S. A. Webber, and J. L. Flanagan, "Digital Coding of Speech in

Sub-Bands," B.S.T.J., 55, No.7 (October 1976), pp. 1069-85.
8. R. E. Crochiere, "On the Design of Sub-Band Coders for Low-Bit-Rate Speech

Communications," B.S.T.J., 56, No.5 (May-June 1977), pp. 747-70.

1652 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

9. R. V. Cox, "A Comparison of Three Coders to be Implemented on the Digital Signal
Processor," B.S.T.J., this issue, Part 2.

10. J. D. Johnston and D. J. Goodman, "Digital Transmission of Commentary-Grade
(7 kHz) Audio at 56 or 64 kb/s," Proc. IEEE Int. Conf. ASSP. Proc. (1979), pp.
442-4.

11. A. J. Barabell and R. E. Crochiere, "Sub-band Coder Design Incorporating Quad­
rature Filters and Pitch Prediction," in Proc. IEEE Int. Conf. ASSP (1979), pp.
530-3.

12. D. Esteban and C. Galand, "Application of Quadrature Mirror Filters to Split Band
Voice Coding Schemes," Proc. IEEE Int. Conf. ASSP (1977), pp. 191-5.

13. R. E. Crochiere and L. R. Rabiner, "Interpolation and Decimation of Digital
Signals-A Tutorial Review," Proc. IEEE, 69, No.3 (March 1981), pp. 300-31.

14. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
New York: Prentice Hall Inc., 1975.

15. J. D. Johnston, "A Filter Family Designed for use in Quadrature Mirror Filter
Banks," Proc. IEEE Int. Conf. ASSP (April 1980), pp. 291-4.

16. P. Cummiskey, N. S. Jayant, and J. L. Flanagan, "Adaptive Quantization in Differ­
ential PCM Coding of Speech," B.S.T.J., 52, No.7 (September 1973), pp. 1105-18.

17. D. J. Goodman and R. M. Wilkinson, "A Robust Adaptive Quantizer," IEEE Trans.
Commun., COM-23 (November 1975),.pp. 1362-5.

18. L. B. Jackson, "Roundoff-Noise Analysis for Fixed-Point Digital Filters Realized in
Cascade or Parallel Form," IEEE Trans. Audio Electroacoust., AU-JB (June
1970), pp. 107-22.

19. M. G. Bellanger, G. Bonnerot, and M. Coudreuse, "Digital Filtering by Polyphase
Network: Application to Sample Rate Alteration of Filter Banks," IEEE Trans.
ASSP, ASSP-24, No.2 (April 1976), pp. 109-14.

20. T. A. C. M. Claasen and W. F. G. Mecklenbrauker, "On the Transposition of Linear
Time-Varying Discrete-Time Networks and its Application to Multirate Digital
Systems," Philips J. Res. 23 (1978), pp. 78-102.

SUB-BAND CODING 1653

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Tone Generation

By D. L. FAVIN

(Manuscript received September 10, 1 980)

Two programs have been written for the recently developed single­
chip digital signal processor (nsp) integrated circuit that enable it to
function as a tone generator in testing transmission systems. One
program is based on the table look-up method and the other on the
Maclaurin expansion method. A nsp tone generator based on the
look-up method can generate up to 12 components and is suitable for
all transmission testing applications. A generator based on the Ma­
claurin expansion method is limited to less than four components
and is particularly applicable in two-tone testing.

I. INTRODUCTION

A tone generator is required for a number of transmission system
tests. The tones required include TOUCH-TONE® signaling, multi­
frequency (MF) signaling, a milliwatt source, centralized automatic
reporting on trunks (cARaT) responses and CARaT test tones. In addi­
tion, a tone consisting of 21 components each having a settable phase
and level is required for a fast Fourier transform (FFT)-based system.
In all cases, the tone is to be transmitted on a 4-kHz digital channel,
with a sample every 125 fls (Nyquist sampling rate of 8 kHz). Programs
have been written for the nsp that enable it to function as a tone
generator. The following two methods are used: (i) table look-up, and
(ii) Maclaurin expansion.

The table look-up method consists of storing in read only memory
(ROM) the trigometric values of sin(n(J), where 0 ~ n ~ N, and N is
determined by both frequency granularity requirements and harmonic
distortion considerations. At each sampling instant, the value of the

1655

sample is taken from the appropriate location of the ROM table and
scaled for its desired level. If more than one tone is desired, each
component is independently determined and then all component val­
ues added together to form the sample value.

The Maclaurin expansion,

x 2 X4 x 6

cos(x) = 1 - - + - - - + ...
2! 4! 6! '

can be used to determine successive sample values by direct calcula­
tion. The number of terms to be considered is a function of desired
harmonic purity and the time allowed for the computation.

II. TABLE LOOK-UP METHOD

A program has been written for the nsp that uses the table look-up
method to implement a tone generator. It produces up to six inde­
pendently specified components in the 0- to 4-kHz range with an 8-bit,
Jl-255 encoded output. A diagnostic is included that checks most of the
nsp features used by this routine. The program accepts successive 16-
bit serial input instructions that:

(i) Specify tone generation or a diagnostic.
(ii) Specify the number of components, from 1 to 6, that comprise

the tone. When the number of components specified is 0, quiet tone is
generated. When 7 components are specified, milliwatt tone is gener­
ated.

(iii) Specify the frequency of a component, from 0 to 4 kHz, in 1/8-
Hz steps.

(iv) Specify the phase of a component from 0 to 3600 in 1/8 0 steps.
(v) Specify the level of a component as a fraction of full output,

from 0 to 1 in steps as fine as 2-15
•

(vi) Steps 3, 4, and 5 are repeated for each component comprising
the tone.

Tone generation starts with a reset, except when phase continuity
is required. The output may be changed to a new frequency without
loss of samples or phase continuity when the information about the
new frequency is presented to the input buffer.

The diagnostic ends with the SO-bit set to 1, if all tests pass.

2. 1 Algorithm

A full 27T sine table, with 512 16-bit entries is used. A 7T/2 sine table
could be used but would require keeping track of quadrants and signs,
which takes time and reduces the number of tones that could be
generated.

The table entries are so arranged that the entry for 00 is at an
address called &T ABLE. Two hundred fifty-five successive locations

1656 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

above this contain the positive half of the sine wave trignometric
entries. Two hundred and fifty-six entries below this address contain
the negative going entries. Two additional entries, corresponding to
the first nonzero positive entry, at location (&TABLE - 257) and 0 at
(&T ABLE + 256) are also included. Hence, the ROM table is as shown
in Fig. l.

Table accesses above and below the normal range may occur because
of the effect of rounding. Electing truncation in the nsp in the initial­
ization of this process would avoid the need for adding these memory
locations, but their presence assures continuity of sample values.

The frequency of a component is determined by the number of table
entries ~cp stepped per sample, if the samples being generated at a
particular frequency are

y(nT) = A sin(27T{nT),

where i is the desired frequency, T is the sampling interval, and n
takes on integer values, then the phase increment between successive
values is

i 27TfT = 27T-
is'

where is = ~ = 8000 Hz is the sampling frequency.

&TABLE - 257 VAL

&TABLE - 256 0000

&TABLE 0000

& TABLE + 1 VAL

POSITIVE

&TABLE + 255 VAL

&TABLE + 256 0000

Fig. I-Read only memory table.

TONE GENERATION 1657

Since a full 2'7T sine wave table is present in ROM and is represented
by 512 entries, the phase difference between successive entries is
2'7T/512. The number of entries, 6.cj>, to be stepped per sample is,
therefore,

6. = 2'7Tf/BOOO = 0064f
cj> 2'7T/512 . .

To minimize processing time, modulo 512 arithmetic is used so that
no sign or table limit checking is required. Incrementing around
the table is automatic. To accomplish this, the table is entered at
&TABLE + N.p, where N.p is modulo 512 and is stored in register y as
shown in Fig. 2. As desired, N.p is never larger than 255 and its sign
alternates. Assuming an initial phase of 0, N.p starts at zero and is then
incremented by 6.cj>. Thus, for p passes

p-l

N.p = L Z6.cj>.
1=0

Given f, 6.cj> is obtained in modulo 512 by transferring as shown in Fig.
3.

To generate a frequency close to the desired value, it is important to
have as much precision as possible in 6.cj>. In this case, after w register
truncation, it is 11 bits. The precision also has a marked influence on
harmonic distortion. * The harmonic distortion products are shown to
be 50 dB below the fundamental for this arrangement.

2.2 Phase continuity

To change the frequency, 6.cj> must be changed, but phase continuity
can be preserved. In one sample interval, the new frequency is fetched
and the new 6.cj>, subsequently calculated, is placed into the appropriate
random access memory (RAM) location. The calculations then proceed
from the previously accumulated phase.

2.3 Flow chart

A flow chart of the nsp program is given in Fig. 4. In essence, the
overall flow breaks down into the following areas shown in the chart:

(la) Input a data control word, the frequencies, phases and levels, or
(lb) Input a diagnostic control word and run. The output is a pass

or fail indication.
Because of the dynamic nature of the nsp RAM, it is necessary during
the input data routine, to refresh the RAM locations.

Once the input data process is completed, one of three paths is
possible:

(2a) Calculate sample values for 1 ~ n :s 6 tones.

* W. N. Fabricius, unpublished work.

1658 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

I 11
,.}

" SIGN
\

"ASSUMED BINARY POINT

Fig. 2-Modulo 512 stored in Y register.

(2b) Calculate samples for quiet tone, n = O.
(2c) Calculate samples for a 0 dBm, milliwatt, n = 7.
(3a) Continue calculating with phase continuity.
(3b) Continue with old input data.

2.4 Experimental results

The spectrum of the nsp output signal after decoding is given in
Figs. 5, 6, and 7. Calculations, based on the work of Fabricius, indicate
that the harmonic production is mainly because of the J.L-255 format.

Some synthesized waveforms are represented by the waveforms in
Figs. 8 and 9.

The measured phase jitter is 0.65° at 1000 Hz and 0.75° at 1004 Hz.
The AM jitter experienced is less than 0.1 dB.

The linearity of the output signal fell well within the J.L-255 format
requirements. (For this experiment, a linear output was delivered by
the program.)

2.5 Extensions

The program, without J.L-255 encoding, has generated 13 components
within a 125-J.Ls sampling interval. A total of 21 components could be
generated by synchronizing two nsps, one producing 10 and the other

;1'- DON'T CARE

IBUFI r 1'1----12-----.--1 -3------.,1=->---L..4<J~ f

':::'>-ASSUMED BINARY POINT
;-

y-REG 1'-1 1 ____ 1_2-.-__ ----L-1 __ 7_------11
+

6

ACCUMULATOR

W-REG

y-REG III
jf

SIGN BIT

9

MULTIPLY BY 1.024

t
9

8

11 14 l , !'J. ¢J = 1.024f '2-4 = 0.064f

, '> ASSUMED BINARY
/' POINT

11

I 11 !1 ¢J

~
'ASSUMED BINARY POINT

Fig. 3-Register manipulation for modulo 512.

TONE GENERATION 1659

~

0)
0)
o

~
I
m
OJ
m
r
r
en
-< en
~ m
~
~
m
()
I
Z
o » r
C-
O
C
JJ
Z »
r
en
m
"'U
~
m
s::
OJ
m
JJ

co
ex>

--l o z
m
G)
m
z
m
JJ »
--l
(5
Z

...a.
en
en
...a.

y~~
IS

IBUF FULL
]

,.If

~-~
REFRESH

AND
IS OBUF
EMPTY

?

Fig. 4-Flow diagram for DSP tone-generator program.

_".If
~--/
~ REFRESH2

YES
AND

IS IBUF FULL
?

NO

//~
I

11. The first nsp would serially transmit its 20-bit sample value, after
generation, to the second nsp. This would take 8 Jls at a 2.5-Mb/s rate,
and could be accomplished during the time the second nsp was
computing its 11th component. The second nsp would then take this
value in its input buffer and add it to its sample value, convert the
result to Jl-255, and transmit it.

III. MACLAURIN EXPANSION

A program has been written for the nsp that can evaluate a truncated
Maclaurin expansion in less than 30 Jls. Frequency resolution is not
limited by quantizing as in the table look-up method, but by the
accumulator and the product registers in the nsp.

3. 1 Algorithm

Each component is generated by a truncated Maclaurin series ex­
pansion. The choice of the number of terms included in the approxi-

981 HERTZ AT -20 dBm -51 dBm 981-HERTZ TONE

-If- -I I-
1 KILOHERTZ 1 KILOHERTZ

981 HERTZ AT -61 d8mO

-If-
1 KILOHERTZ

Fig. 5-Tone spectrum-low level (981 Hertz).

1662 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

1962 HERTZ AT 0 dBm 1962 HERTZ AT -60 dBm

--11- -l I-
1 KILOHERTZ 1 KILOHERTZ

1962 HERTZ AT -68.9 d8m

---l f-
1 KILOHERTZ

Fig. 6-Tone spectrum at 1962 Hertz.

mation and the point about which the series is expanded all affect the
harmonic distortion.

Consider the following Maclaurin series expansions around zero,

03 05 07

sin(O) = 0 - - + - - - + ...
3! 5! 7!

02 04 06

cos(O) = 1 - 2! - 4! - 6! +

The accuracy of the approximation, of course, becomes better when
more and more terms of the expansion are used. The harmonic
distortion because of series truncation of the cosine series is examined
in the Appendix. Let P(O) represent the portion of the series that is
retained, and R(O) represent the remaining terms so that

cos 0 = P(O) + R(O),

where both of these functions are considered defined only in the
interval

-7T /2 :5 0 :5 7T /2.

TONE GENERATION 1663

981 HERTZ AT 0 dBm

~f-
1 KILOHERTZ

Fig. 7-Tone spectrum-high level (981 Hertz).

They are replicated, with sign reversals, in successive intervals of 7T
forming a wave periodic in the interval 27T. An upper bound on the
harmonic distortion, because of truncation after the nth term of a
Maclaurin expansion, is

D·· I [(2n)!]
IstortIon:s = 20 og (7T/2)2n •

loa-HERTZ SQUARE WAVE (6-TONE COMPONENTS) 981-HERTZ WAVEFORM (0 dBm)

3-TONE WAVEFORM

Fig. 8-Time domain waveforms.

1664 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

QUIET TONE 100-HERTZ SQUARE WAVE 6-COMPONENT TONE~

--l I--
1 KILOHERTZ

3 TON E (800, 1 KHz, 1200)

--l I-
5OD-HERTZ

Fig. 9-Spectrum of time waveforms.

Table I lists this upper bound for values of n. This is a mathematical
upper bound and ignores the effects of quantizing distortion.

The harmonics generated due to the fl-255 format generally are in
the -42 dB range. The total signal to distortion is in the 36-dB range.
Thus, n = 4 should be used for the Maclaurin expansion since it
produces distortion components less than those generated by the fl-
255 format.

By a similar analysis, it can be shown that the sine series should
also be terminated after four terms so that the harmonic distortion
upper bound is -78.9 dB. The Maclaurin cosine series is chosen instead

Table I-Harmonic
distortion

n Upper Bound

3 -33.61 dB
4 -60.73 dB
5 -91.97 dB

TONE GENERATION 1665

of the sine series, since its highest term contains (f' instead of 07 and,
thus, less programming is required.

The program starts at -7T/2 and increments in steps of cj> = 27T(f,
where f is the desired frequency and T is the interval between samples.
The computed function should remain positive until after n samples,
when the accrued phase On is such that On = -7T /2 + ncj> and exceeds
7T/2. At this time, 7T is subtracted from the accrued phase yielding a
new value On such that -7T /2 < On < 0 and the process starts again. The
computed value is now made negative. The negative sign prefixes each
sample until, again, the accrued phase exceeds +7T /2. Once again, 7T is
subtracted from the accrued phase. The sign of each computed point
becomes positive, and the algorithm cycle is complete.

An expansion around 7T / 4 would result in less error in the resulting
approximation at the end points, but it would require more program­
ming to fix the sign. The errors for an expansion around zero are less
than those attributable to the Jl-255 operation and, thus, it is not
important to reduce them.

3.2 Flow diagram

A simplified diagram, Fig. 10, covers the generation of one compo­
nent. Note that the loop counter (LC) serves as a flip-flop for deter­
mining the sign of the result. Suppose LC = 0 and 7T /2 has been
exceeded. The right-hand branch decision (LC:;afO) point in Fig. 8 causes
LC to be decremented to -1. During the next pass when the left-hand
decision (LC:;afO) is reached, the sign of the result is changed. This is
maintained until the accumulated phase would again exceed +7T/2,
when traversing the right-hand decision point forces LC = o. Now, the
computed result is positive and the process repeats.

3.3 Experimental results

Figure 11 shows the spectrum of the nsp output after decoding. The
harmonics are approximately 42 dB below the fundamental as pre­
dicted for a Jl-255 decoder. Note, however, the differences in the
spectrums for frequencies of 500 and 502 Hz. Since 500 Hz is a rational
submultiple of 8 kHz, all samples per sine wave cycle are repeated in
subsequent cycles. There is essentially no quantizing noise, i.e., the
sample values are completely periodic. The pronounced spectral lines
demonstrate this purity. For the 502-Hz case, there is no periodicity in
the samples for successive cycles and, h~nce, quantizing noise exists.
The peak value of the spectral harmonics are reduced and the noise
floor is raised.

IV. CONCLUSIONS

A nsp tone generator using the table look-up method is able to
generate up to 12 components (or 21 components for 2-coupled gen-

1666 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Fig. lO-Maclaurin expansion flow diagram.

erators) assuming a 4-kHz, p.-255 channel with an output sample every
125 }ls. Harmonic distortion is substantially below that inherent in the
channel. Such a versatile generator is suitable for all transmission
system testing applications.

Given a suitable decoder, a nsp tone generator can also be used to
create any analog wave representable by 13 spectral lines restricted to
the 4-kHz band. A sine wave component can be generated every 17.75
J-is and a 26-kHz sine wave can be generated. By suitable program
changes, it seems possible to produce a 50-kHz sine wave.

A nsp tone generator using the Maclaurin expansion method is
limited to less than four components. It requires less ROM than the
table look-up method and, hence, is applicable where such a program

TONE GENERATION 1667

500 HERTZ 0 dBm 502 HERTZ 0 dBm

Fig. ll-Maclaurin spectrums.

would be co-resident with other measurement routines in a single nsp.
Where 2-tone testing is required, e.g., envelope delay distortion, slope­
sag intermodulation distortion, etc., such a generator is especially
applicable.

V.ACKNOWLEDGMENTS

Grateful thanks to E. J. Angelo and J. R. Boddie for their general
assistance; to D. P. Yorkgitis for providing the diagnostic and refresh
routines for the table look-up method; to Basil Papatrefon for testing
the programs and deriving all experimental results; and to Jack Salz
for offering his suggestions concerning the mathematics bounding the
harmonic distortion for the Maclaurin expansion approach.

APPENDIX

This analysis is directed to specifying an upper bound on the
harmonic content of a truncated Maclaurin expansion.

Given the Maclaurin expansion
02 04 06 08 02(n-l)

cos 0 = 1 - 2! + 4! - 6! + 8! - + [2(n _ I)]! (1)

consider it as being made up of a finite polynomial P(O) consisting of
the fIrst n terms of the above expansion and the remaining portion of
the series R(O), i.e.,

cos 0 = P(O) + R(O).

Consider now that a periodic function be generated such that

for

and
PN(O) = 0 elsewhere. (2)

1668 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Similarly,

1T 1T
RN(O) = R(O) for - 2 =::; 0 < 2'

and

RN(O) = 0 elsewhere. (2a)

By a replicating procedure, then

n=-oo n=-oo

The portion of eq. 3,

n=-oo

is the approximation used for sample generation in the Maclaurin
series program given in this paper.

Because of the definitions in eqs. (2) and (2a), each sum specified in
eq. 3 is periodic with period 21T and, hence, can be expanded into a
Fourier series. Let Pk and rk be the Fourier series coefficients defined
by

L (-I)npN(o - n1T) = L PkeikB, (4)
n=-oo k=-oo

00

L (-I)nRN(O-n1T)= L rke ikB (5)
n=-oo k=-oo

and

cos 0 = L PkeikB + L rke ikB, (6)
k=-oo k=-oo

where

(7)

and

(8)

Interchanging the order of integration and summation in eq. 7, then

Ph =.2.. ~ (-l)n JTT PN(O - n1T)e-ikBdO. (9)
21T n=-oo

-TT

TONE GENERATION 1669

Changing the variable of integration y = () - n7T modifies this equation
to be

1 00 J-1T(n-l)
Pk = - ~ (_l)n+kn PN(y)e-ikYdy,

27T n=-oo -1T(n+l)
(10)

and further simplifies to

1 00 J-1T(n-l)
Pk = - ~ (_I)n(1+k) PN(y)e-ikYdy.

27T n=-oo -1T(n+l)
(11)

Because of the definition of PN(y), the integral only exists for n = 1,
-1,0;

Combining these terms results in

1 J1T
1

2 Pk = - [1 + (_I)(1+k)] PN(y)e-ikYdy.
27T -1T~

(13)

When k is even, Pk = 0, therefore, only odd harmonics exist in the
periodic function given by eq. 4. Since PN «()) is an even function, it
follows that

2 11T/2
Pk = - PN «()) cos k()d()

7T 0
k odd. (14)

By a completely similar development for rk, and substituting into
eq.6,

cos () = 2 [k~l Pk cos k() + k~l rk cos k()] . (15)

kodd kod<l

From this equation, it is apparent that

Pk = -rk and k =F 1 (16)

since only the fundamental exists on the left-hand side of the equation.
Given the properties of R(O) such that each term is positive and

smaller than the preceding term, then one can state that the magnitude
of the fust term of R«()) is greater than \ R (0) \. Hence, if P(O) contains

1670 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

n terms then
(}2n
-, ::: 1 R«(}) I·
2n.

(17)

The stipulation that the terms are successively smaller implies for the
m th and m th + 1 term that

1 ::5 [(}2(m-l)/(2(m _ 1))!]/[(}2m/(2m!)] = 2m(2; - 1)

Since this must hold for all -77/2 ::5 () ::5 77/2, then

2m(2m - 1) '" m 2

and, hence, for this inequality to hold

m > 1 applies.

Equation 17, therefore, applies for maximum (), after the second term,
and certainly then

[(77/2)2n/(2n)!]::: IR«(}) 1 for n::: 2. (18)

Parsevals theorem states that

Since R«(}), and hence, RN «(}), are bounded, as has been stated in eq.
(18), then certainly

[(77/2)2n/(2n)!]2::: L d = L pt (20)
k=3 k=3
kodd kodd

Therefore, the fIrst term of R«(}), evaluated at 77/2, represents an upper
bound on any harmonic component of the replicated PN «(}) i.e., the
truncated Maclaurin expansion. The harmonics of

(Replicated (21)

TONE GENERATION 1671

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U. s. A.

Digital Signal Processor:

Power Measurements

By S. CORDRAY, D. L. FAVIN, and D. P. YORKGITIS

(Manuscript received January 7, 1981)

Power measurement is fundamental to transmission quality testing.
This measurement need is extended to signals represented by digital
bit streams. Accurate and precise measurements over a 60-dB range
have been made using the digital signal processor. One algorithm
that has been used measures the power of fixed-length sample se­
quences. A second algorithm yields periodically updated power mea­
surements of infinitely long sample sequences, but with slightly in­
creased measurement ripple and frequency restriction. Theoretical
expectations for measurement variation in the fixed-length measure­
ments of noise power are also discussed.

J. INTRODUCTION

The measurement of power is fundamental to transmission quality
testing. Power measurements of single tones, such as the milliwatt
standard, are used to adjust transmission levels. Multiple-tone power
measurements are used in nonlinear distortion testing. Examples of
power measurements of band-limited noise are return-loss and C­
message weighted noise measurements.

This paper gives an overview, discusses the theoretical accuracy and
precision of digital noise power measurements, and presents some
results using the digital signal processor (nsp) A3990 for making power
measurements.

II. OVERVIEW

The measurement of power will be presented following the block
diagram of Fig. 1. Since the incoming signal is generally encoded for
bit compression, the signal samples first must be decoded to linear

1673

BLOCK AVERAGING
POWER MEASUREMENT:

SUM OF SQUARED VALUES

NUMBER OF SAMPLES

,
/ " POWER ENCODED

DIGITAL
SIGNAL

.-----,./ ,...--___ --, MEASU RE-

ALTERNATE
PATHS , ,­, ,-
\. /!

EXPONENTIALLY MAPPED PAST
POWER MEASUREMENT:

LOW-PASS FI L TER OF
SQUARED VALUES

Fig. I-Time domain technique of power measurement.

MENT

samples, as indicated in the first block of the figure. For Jl-255 encoding
and decoding, the nsp has a dedicated instruction set and associated
circuitry.

The decoded digital signal is scaled and passed through a digital
filter. This paper discusses measurements with flat weighting, with C­
message weighting, and through a C-notched filter.

Note that Fig. 1 depicts essentially a time-domain approach, which
should be contrasted with the frequency-domain approach depicted in
Fig. 2. These two approaches are tied together by Parseval's Theorem:

Signal Power = lim ;J:T y2(t) dt = Joc S(w) dw = R(O), (1)
:Y-+ 00::; 0 0

where

f7 = averaging interval,
y(t) = analog signal,

S(w) = the power-density spectrum, and
R (0) = autocorrelation function at zero lag, i.e., the dc component

of y2(t).

The first integral in eq. (1) is implemented as in Fig. 1; the second, as
in Fig. 2. Implementation of the latter is not discussed in this paper.

To compute the first integral, the sample values must be squared, as
indicated in Fig. 1. Two different methods of determining the power
from the squared signal were used.

The first method is the straightforward approach. If the incoming

ENCODED
DIGITAL
SIGNAL

POWER
MEASUREMENT

Fig. 2-Frequency domain technique of power measurement.

1674 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

signal is considered stationary, the power can be approximated from
the first integral of eq. (1) as follows:

1 L:7 1 N-l 1 N-l

R(O) ~ 07- y2(t) dt ~ NT .L yrT = N .L yr,
~ 0 l=O l=O

where
N = the number of samples,
Yi = ith signal sample, and
T = interval between the samples (T = 125 JlS in most voice

telephone applications).
This approach is termed block averaging (BA) in this paper.

(2)

To use BA, N must be chosen large enough so that the measurement
variation is within the required tolerance. In the next section, the
probability of measuring noise power within certain confidence levels
for different values of N is derived.

The second method for extracting the dc component employs a
convolution of the squared sample values with the infinite impulse
response of a first-order, low-pass filter. This algorithm, described in
Appendix B, has been termed exponentially mapped past (EMP).

The EMP is not as applicable as BA because of the extra frequency
components generated by squaring a signal. Because of the sampled
nature of the signals, some components can be aliased into the pass­
band of the EMP low-pass filter and, thus, yield measurement ripples.
For example, the EMP parameters discussed in this paper yield a ripple
of ±OA dB for a I5-Hz tone and a ripple of less than ±O.I dB for an 80-
Hz tone.

Once the dc component has been extracted, it can be converted to
a dB measurement before it is reported. A method for calculating the
required logarithms with the DSP is described in Appendix C.

Currently, the BA program reports a dB computation once per block,
i.e., once every N samples, where N = 4096. However, when EMP is
used, linear-to-dB conversions can be made more frequently. After a
conversion is made in the current EMP program, the next conversion
can be made after another three samples have been read from the
input buffer. The rate with which conversions can be made and
reported during EMP power measurements depends on several vari­
ables, as explained in Appendix D.

For display or printout routines, a binary number representing a dB
level can be converted to binary-coded decimal (BCD). A BCD routine
was used to yield the BA signal-to-quantizing noise ratio measurements
described below. This routine is not discussed in this paper.

III. THEORETICAL PRECISION OF NOISE POWER MEASUREMENTS

In this section the noise power measurement precision that IS

theoretically possible by digital power measurements is presented. l

POWER MEASUREMENTS 1675

Consider the finite set of noise samples no, nI, ... nN-l. The ac power
of these N samples is expressed as

1 N-l

Pn(N) = N i~O (ni - ii)2, (3)

where
1 N-l

ii = N L nj
j=O

is the dc component of the noise.
How large should N be in order that the estimated power Pn(N) be

within plus or minus some 8n (in dB) of the actual power? That is, for
a given N, what is the probability P { } that

I
Pn(N). Pn(M) I

10 log -P - 11m 10 log -P- < 8n ,
ref M-+oo ref

(4)

where Pref is any reference power? The following analysis assumes that
the noise is Gaussian, but results are in most cases applicable to other
types of noise (e.g., quantizing or coding noise).

Assume the noise sample ni to be an independent, zero-mean,
Gaussian random variable with finite variance (J2. Then Pn(N) is an

estimate of (J2, with expected value = N -; 1 (J2 (see Ref. 2). To the

accuracy required for the BA program, Pn(N) is effectively an unbiased
estimate for N> 100. For a given 8n , eq. (4) becomes

I
Pn(N) (J21

10 log -P - 10 log -P < 8n
ref ref

(5)

or

(6)

Now if the probability density function fn(a) of PdN) can be found,
then the probability P{ } of satisfying the inequality (5) is

{

2 } J021Q8nlIO Pn(N) (J
P 11010gp--1010gpl<8n = fn(a)da.

ref ref o21Q-8
n
/IO

(7)

In Appendix A the density function is derived along with the proba­
bility. The result is

1
/2 -t2/2

P{I.Km -..;Val < 8n } ~ e ~ dt,
II ",21'

(8)

where

1676 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

and

Pn(N)
%m = 10 log --,

Pref

0-
2

.Ha = 10 log -,
Pref

N>30,

For a graphical representation of eq. (8), see Fig. 3. For example, with
500 samples the probability that the noise power measurement preci­
sion is within ±0.2 dB is 53 percent. To meet standard specifications
for noise and signal power measurements,3 N was chosen to be 4096,
yielding a precision of ±0.5 dB.

IV. TEST RESULTS

The ability to measure power precisely with both the BA and EMP

schemes can be seen by comparing BA and EMP measurements with
the actual signal-to-quantizing noise ratios (SNRS) of ideally-encoded
sine waves at levels ranging from 3 to -64 dBm. Such encoded sine
waves have inherent quantizing noise frequency components across
the voiceband range of frequencies. To make SNR measurements, the
C-notched and C-message filters are generally used.

1.0 r------------==""'""'-------==---------,

oc 0.9
w
::oc
Ow
c..:: O.B wo (/)c..
Ow ;6 0.7
wZ
OC...J
:J « 0.6
~~ wu
:::E « 0.5
Ww
II
1-1-

~ ~ 0.4

i=~
~~ 0.3
:::1-

~ 3: 0.2
co(/)
0-
oc
c.. 0.1

N = NUMBER OF SAMPLES PER BLOCK

0.1 0.2 0.3 0.4 0.5

8n, IN DECIBELS

Fig. 3-Theoretical noise power measurement precision.

POWER MEASUREMENTS 1677

The C-notched filter is actually two cascaded filters, each imple­
mented with three cascaded, second-order sections. The first filter, the
C-message filter, has approximately unity gain from 1000 to 2500 Hz,
and its attenuation increases gradually on either side of the passband
to 54.7 dB at 60 Hz and to 13.7 dB at 3900 Hz. The second filter, the
notch filter, is designed for attenuation of more than 50 dB from 989
to 1020 Hz. The frequency response of the digital C-notched filter was
measured by both the EMP measurement routine and by an analog
power meter. The results, limited by quantizing noise, appear in Fig.
4.

To determine the SNR of an encoded signal between 1004 and 1020
Hz, the C-message weighted measurement must be subtracted from
the C-notched measurement. By means of a real-time developmental
tool, the DSPMATE, SNR measurements were made with the BA and EMP

programs using ideal, encoded sine waves at 1015.625 Hz. The BA and
EMP measurements yielded a range of ±0.5 dB, which was within the
theoretical noise power measurement precision. In Fig. 5, the BA

derived SNRS are plotted against the actual SNRS.

In order to retain significant bits at low power levels, the programs
were modified when the test signal powers were below -27 dBm. After
p.-to-linear conversion, sample values from signals above -27 dBm in
power were divided by 4, while sample values from signals below -27
dBm in power were multiplied by 8. The nsp can be programmed to
choose the appropriate scaling.

Because of quantizing noise, the maximum SNR is approximately 40
dB. Thus, the maximum SNR in Fig. 5 is comparable to the quantizing
noise floor of Fig. 4.

Ul
....I
w
al

C3
W
0

~
z
<i:
<.:)

10r--,

0

-10

-20

-30

-40 0

50 60

-- MEASUREMENT WITH ANALOG POWER METER

o MEASUREMENT WITH EMP POWER MEASUREMENT PROGRAM

0

80 100 200 600
FREQUENCY IN HERTZ

5000

Fig. 4-Frequency response of a digital C-notched fIlter. (Measured signals are p.-255
coded.)

1678 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

45~--'-----~

Vl
...J
W
CD

U 40
w
a
~
o
~ 35
a:
w
Vl

o
~ 30
z
N
j::
z
;3 25
o o
~
...J

~ 20
(!)
(i)
w
(!)
«
~ 15
w

~
U

NN ACTUAL SNR

o SNR MEASURED BY BA POWER MEASUREMENT SCHEME

10L-____ ~ ____ ~ ____ ~~ ____ ~ ____ ~ ____ ~ ______ ~ ____ ~

-70 -60 -50 -40 -30 -20 0 10
SINE WAVE LEVEL IN REFERENCED TO FULL-LOAD SINE WAVE

Fig. 5-Measured versus actual SNRS for p.-255 encoding. (Zero dB full-load sine wave
= 3.17 dBm.)

V. CONCLUSION

Two reliable methods for measuring power with the nsp have been
presented: the BA approach, and the EMP approach. Both of the
approaches, when examined mathematically, have no significant bias
in their expected values. The accuracy, therefore, is as good as the
digital samples representing the signals being measured.

The precision of signal power, noise power, and SNR measurements
were investigated. Digital signal processing measurements of these
parameters showed that:

(i) In general, signal power measurements were precise to within
0.1 dB.

(ii) With appropriate scaling, SNR measurements were precise to
within 0.5 dB over a 60-dB range.

(iii) Block-averaging noise power measurements all fell within the­
oreticallimits.

In the EMP program, frequencies in the range 80 to 3920 Hz yielded
measurement ripples less than ±0.1 dB, and frequencies in the range
30 to 3970 Hz yielded ripples less than ±0.2 dB. These measurements
were made with an EMP convolution having a 3-dB cutoff at 2.489 Hz.
However, these ripples were about twice as large as the measurement
ripples from the BA program.

POWER MEASUREMENTS 1679

Two advantages of EMP over BA are compactness of code and ability
to update a measurement 1365 times as often. Frequent updating may
aid in identifying particular types of problems and, hence, aid in
problem sectionalization.

APPENDIX A

Derivation of Noise Power Measurement Precision

In the following analysis, the probability density function of Pn(N)
is presented and used to find, in computable form, the probability that
the ac noise power Pn(N) is within some 8n (in dB) of the noise
variance a2

•

Recall the definition of ac noise power:

- 1 N-l

Pn(N) = N i~O (ni - ii)2.

As a result of assumptions that ni is a zero-mean, Gaussian random
variable with finite variance a2

, the probability density function of
P n(N) (see Ref. 4) is

a (N-3)/2e -aN/202

fn(a) = IN '
2(N-l)/2(a/ N)N-1r[(N - 1)/2]

(9)

which is a chi-square density. Hence, the probability P{ } that Pn(N)
is within 8n of the actual noise power is

(10)

U sing the substitution t = aN / a2 yields

{I Pn(N) a21}
P 10 log P

ref
- 10 log Pref < 8n

For N > 30, this probability can be expressed in terms of the normal
probability integral:5

{ 1
P (N) 21} J12

-t
2/2

P 10 log-j;- - 10 log; < 8n ~ e ~ dt,
ref ref 11 ,,27T

(12)

where

1680 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

and

l1 = ~2(10)-8n/lON - ~2N - 3.

Eq. (8) and Fig. 3 in the text follow.

APPENDIX B

Derivation of EMP

The result of passing an analog signal y2(t) through an analog filter
with impulse response g(t) is P(t), where

P(t) = L~ y'(u)g(t - u) duo (13)

Let Tbe the sampling period of the digital signal y 2(nT), or y2(n) for
short. The result of passing y2(n) through a digital filter with impulse
response h(n), is P(n), where

P(n) = L y2(k)h(n - k).
k=-oo

An analog, first-order, low-pass filter uses

g(t) = {A e-
t
/

T

,

0,
t::: °
t< 0,

(14)

(15)

where T is the time constant of the filter. Such a filter has a 3-dB cutoff
at (2'7TT)-1 Hz.

If the impulse invariance h(n) = g(nT) is used to form an equivalent
digital filter, the corresponding impulse response is

h(n) = ' {
A e-nT/T n ::: °
0, n< 0, (16)

where T is the sampling period. Because of sampling, aliasing is
introduced, but the effects of the aliased components are negligible if
the cutoff frequency is low.

For ease in notation, let m = TIT. From eqs. (14) and (16),

P(n) = L y2(k)h(n - k),
k=-oo

or
n

P(n) = L y2(k)A e-m(n-k). (17)
k=-oo

From this, a simple recursive relationship for P(n) can be developed:

POWER MEASUREMENTS 1681

n+l
P(n + 1) = L y2(k)A e-m(n+l-k)

k=-oo

n+l
= e-m L y2(k)A e-m(n-k)

k--oo

(18)

or

P(n + 1) = e-m P(n) + Ay2(n + 1). (19)

In eq. (19), A should be chosen to ensure unity gain at dc. To determine
A, let

Then,

n~O

n<O
and P(-I) = o.

P(n + 1) = e-mP(n) + AL,

which implies that P(n) is a geometric series:
n

P(n) = AL L e-mk
k=O

1 - e-m(n+l)

= AL 1- e-m ,

which approaches L for n approaching infinity if A = 1 - e-m
•

(20)

(21)

(22)

The EMP power measurement P(n) can, thus, be obtained by the
recursion formula

(23)

where m = TIT.
If the range of the signal power to be measured is large and no

automatic gain control is to be used, then some double-precision
arithmetic has to be done to save the least-significant bits resulting
from sums and products. In particular, the result of squaring the input
samples nearly doubles the number of significant bits in the accumu­
lator. Therefore, all bits resulting from squaring should be saved. In
addition, EMP, which follows the squaring, should be implemented with
double precision.

This implementation is facilitated by representing e-m
, which is

nearly unity for a low cutoff frequency, by 1 - 2-R
, where R is an

integer. The time constant T is

T = -TIln(1 - 2-R
). (24)

For R = 9, T = 63.9 ms; and the 3-dB cutoff is 2.489 Hz, which yields

1682 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

power measurements with ripples of less than ±0.1 dB at frequencies
between 80 and 3920 Hz.

To implement EMP in double precision, the stored value P(n - 1)
must occupy two storage locations. Conveniently, one location could
contain its integral part, while the other, its fractional part.

APPENDIX C

Using the DSP to Compute the Natural Logarithm of a Number

Using the nsp, the logarithm of up to a 40-bit number P can be
computed to an accuracy of 0.001. Suppose that

In P = In[A(2(~)]

= InA + gIn 2, (25)

where A is a real number and g is an integer. Then, In P can be
computed from

(i) a series expansion on A plus
(ii) a table of multiples of gIn 2.

If 0 < A :5 2, the following expansion can be used:

In A = (A _ 1) _ (A - 1)2 + (A - 1)3 _ (A - 1)4 + ... (26)
234

As indicated in Fig. 6, if 0.68 :5 A :5 1.36, then In A can be computed
to an accuracy of ±0.001 with only four terms. Since the upper bound
on A is twice its lower bound, g can be determined by repeated scalings
of P by 2.

APPENDIX D

Rate of Linear-to-dB Conversions in the EMP Program

In the current EMP program, a linear-to-dB conversion of the power
measurement is made after every third sample. Although every sample
is used to update the linear power measurement, there is insufficient
time to make a conversion to dB after every update.

The number of samples, S, that must be used to update the linear
power measurement S times and to make one linear-to-dB conversion
can be determined from the following relation:

S(R + U) + C < ST, (27)

where

R = the time to check whether the input buffer is full and, if so,
to read it,

U = the time to update the linear power measurement using the
new sample,

POWER MEASUREMENTS 1683

C = the time to make a linear-to-dB conversion of the power
measurement, and

T = the sampling interval.

Then S can be any integer greater than CIT - R - U. In Fig. 7, the
case for S = 3 is depicted. In this figure, L is the time necessary to load
the input buffer.

As shown in Fig. 7, the second sample in each group of three must
be read before the third sample begins to be loaded. Expressed sym­
bolically, this means

0.08....-----------------------r""'1

0.06

0.04

Z
0
t=~
<l;u.
~o 0.02
x~
O::I:
a: I-Q..a:
~~
~O
a:...J

0 w...J
1-;'<1;
a: a:
::J::J
01-
u.<I;
<l;z
ZW _::I:

-0.02 a: I-
00
a: I-
a:
W

-0.04

-0.06

-0.08 "-__ -'-___ "--__ -'--__ --'-_____ -'
o 0.68 1.36

ARGUMENT, M

Fig.6-Performance of a four-term polynomial approximation to the naturalloga­
rithm.

1684 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

--------------- 3T- --------------

LOAD
INPUT)--______ -.1

READ
INPUT

UPDATE
POWER

MEASURE­
MENT

CONVERT
TO

DECI BE LS)--------1

-----T-----1
L

Fig.7-Timing diagram showing the rate of linear-to-dB conversions in the EMP
program.

R + U + C + R < T + T - L,

or

c < 2T -. L - 2R - U. (28)

If eq. (28) were not satisfied by C, then the second sample in each
group of three would have to be stored during the linear-to-dB con­
version and then the sample value returned after the conversion was
complete.

In the current EMP program, the upper bound on C was sufficiently
high that, with S = 3, each linear-to-dB conversion could be followed
by a conversion to BCD.

V. ACKNOWLEDGMENT

R. W. Kolor's detailed critique of this paper is appreciated.

REFERENCES

1. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, New York: Prentice­
Hall, Inc., 1975, Ch. 11.

2. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, New York: Prentice­
Hall, Inc., 1975, p. 537.

3. Bell System Technical Reference, "Transmission Parameters Affecting Voiceband
Data Transmission Measuring Techniques," AT&T Co., PUB 41009.

4. A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill Book Co., 1965, p. 250.

5. J. R. Blum and J. I. Rosenblatt, Probability and Statistics, Philadelphia: W. B.
Saunders Co., 1972, p. 252.

POWER MEASUREMENTS 1685

Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 60, No.7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Tone Detection for CCITT No.5 Transceiver

By R. N. GADENZ

(Manuscript received July 17, 1980)

This paper describes the application of a recently developed large­
scale-integration digital signal processor, the nsp, to tone detection
in a proposed digital CCITT No. 5 signaling unit. The design of the
digital filters required in the receiver is discussed and an algorithm
presented for tone detection. Two channels per DSP can be accom­
modated by using a sampling frequency of 8 kHz and a DSP clock of
5 MHz.

I. INTRODUCTION

The application of a recently developed LSI digital signal processor,
the nsp/ to tone detection in a proposed digital CCITT No.5 signaling
unit is described. This unit is to be part of an echo canceler terminal
for No.4 ESS international switching centers. At present, an analog
configuration, which includes an analog transceiver, terminates trunks
with CCITT No.5 signaling.

Line signaling information in the CCITT No.5 signaling system is
transmitted via 2400- and 2600-Hz tones used either separately or in
combination. The block diagram of Fig. 1 shows the section of the
proposed digital receiver to be implemented using the nsp. The band­
pass filters (BPFS) detect energy at one of the two signaling frequencies.
The band elimination filter (BEF) serves both as a guard filter, to
detect energy other than at the signaling frequencies, and as an
attenuator of any signaling energy present in the input signaL The
detector compares the outputs of the three filters and determines if
either, or both, of the tones are present. This information is then used
by the time validation circuit that follows. The circuit, called control
and output logic in Fig. 1, determines if the tone(s) is(are) present for

1687

RECOGNITION TIME
SIGNAL M3

r - ---L I CONTROL AND I

INPUT

L -"~PU':-L-"-(~lr- EO

1------+---0{) r - --I
I AB I OUTPUT

ENCODER L ____ ..J

'~--------~I--------~/
DSP IMPLEMENTED

Fig. I-Receiver.

the prescribed time, as determined by the M3 signal, and also controls
the switch that selects either the input or the BEF output as the signal
to be sent to the AB encoder and the output. The nsp implements the
filtering and detection functions, excluding time validation.

II. FILTER DESIGN

2. 1 Bandpass filters

The design of the digital BPFS was based on the performance of the
corresponding filters presently used in the analog CCITT No.5 signaling
transceiver. For each filter, the transfer function in the z-domain, T(z),
was obtained from the transfer function in the s-domain, T(s), via the
bilinear transformation. A sampling frequency of 8 kHz was assumed.
The transformation was accomplished using one of the interactive
computer programs available, e.g., FILSYN.2

Optimization in the z-domain can then be used to correct for the
warping effect of the bilinear transformation. A program exists for this
purpose,3 and it usually requires very few iterations to achieve excellent
matching between the actual and the desired responses. Figure 2
illustrates the loss response, after optimization, for the 2400-Hz BPF,

and Fig. 3, for the 2600-Hz BPF. Figures 2 and 3 also show the
specifications, as derived from the analog filters mentioned above. The
response of each digital filter is slightly better than that of the
corresponding analog design.

Before implementing each transfer function, another step is re­
quired-the pairing of the poles and the zeros, and the ordering and
scaling of the sections to be connected in cascade. This is done to avoid
overflow and to reduce the quantization noise (error) due to rounding

1688 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

or truncation at the output of the DSP arithmetic unit (AU). In-house
programs developed by K. Mina are available to assist in these oper­
ations.

The rounding (or truncation) of the transfer function coefficients
also introduces a deviation in the frequency response which could be
corrected by optimization. However, this was not necessary here,

Cf)
...J
W
CD

U
w
o
~

~ o
...J

30r---,
(a)

FREQUENCY IN HERTZ

3r---,
(b)

en 2
...J
W
CD

U
w
o
~
en en
o
...J 1

SPEC.

OL-__________ L-~=_ _______________ ~ __________ ~~=_~ __________ ~

2360 2380 2400 2420 2440

FREQUENCY IN HERTZ

Fig.2-Bandpass filter-2400 Hz. (a) Loss response. (b) Passband response-ex­
panded scale.

TONE DETECTOR 1689

30.---~

U) 20
...J
W
ED

U
W
o
~
U)
U)

o
...J

(a)

O~ ________ ~ ____ ~ __ ~ __ _=~ __ ~ __________ ~ ________ ~

2500 2550 2600 2650 2700 2750

FREQUENCY IN HERTZ

3.---~

U) 2
...J
W
ED

U
W
o
~
U)
U)

g 1

2580 2600

FREQUENCY IN HERTZ

2620 2640

Fig. 3-Bandpass fllter-2600 Hz. (a) Loss response. (b) Passband response-ex­
panded scale.

because the DSP allows 16-bit coefficients and, thus, the distortion
introduced in the loss response is negligible.

2.2 Band elimination filter

The analog signaling transceiver uses a two-section guard fIlter to
detect energy other than at the signaling frequencies, and a separate

1690 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

three section BEF to remove tones, if present, from the input signal. In
the digital signaling transceiver, only one BEF is to be used to perform
both functions, as indicated in Fig. 1. Thus, the design of the digital
BEF was not based on either of the two analog BEFS. Rather, a new
analog BEF was designed to give the proper loss with only two second­
order sections. For the same passband ripple, as in the 3-section BEF

mentioned above, the passbands are now slightly reduced, but this is
acceptable. The saving of one second-order section is crucial for the
implementation of more than one channel per nsp, as discussed later.

The transfer function of this new analog BEF was then transformed
into the z-domain and processed in a similar fashion as described
before for the BPFS. Note that, in this case, instead of correcting the
warping effect by optimization, a prewarped analog design could be
used. The two approaches were in fact compared with very similar
results. The optimization program in Ref. 3 is very efficient and, thus,
attractive. The loss response for the digital BEF is shown in Fig. 4.

III. DETECTOR DESIGN

To perform the detection function, the outputs of the three filters
are first rectified and then smoothed with a low-pass fIlter (LPF) (see
Fig. 5). The signals PI, P2, and G then go to a threshold detector
where the presence or absence of signaling tones is established.

One fIrst-order section is used for each LPF. The corresponding loss
and step responses are illustrated in Figs. 6 and 7, respectively.

The presence of tones is determined by the following criteria:
(i) II = 2400 Hz is present if

(ii) h = 2600 Hz is present if

PI
and -> tG

G

P2
and 0> tG,

where the limits tl, th, and tG are determined from the CCITT recom­
mendations for the receiver performance. The upper limit th should be
5 dB below the maximum amplitude of the tone (3 dBmO), and the
lower limit tl should be 19 dB below the maximum amplitude. Then,
considering that PI, P2, and G are approximately the average values of
the respective signals, and that for a tone, the average value is 2/ 'IT

times the amplitude, we get:

th = 0.3579976064·A

tl = 0.0714299132·A,

TONE DETECTOR 1691

100.------------------------------.--.-----------------,
(a)

80

III 60J
W
aJ

U
w
a
~
III

40 III
0
....J

20

0
0 1000 4000

FREQUENCY IN HERTZ

100

(b)

80

III
....J
W
aJ

U
w

60 a
z
III
III
0
....J

40

20L-______ -L ______ ~ ________ ~ ______ ~ ________ ~ ______ ~

2350 2400 2450 2500 2550 2600 2650

FREQUENCY IN HERTZ

Fig. 4-Band elimination filter. (a) Loss response. (b) Stopband response-expanded
scale.

where A is the maximum amplitude of either tone. The value of T G

is 5.

IV. THE DSP ALGORITHM

The filtering and rectification functions are easily implemented

1692 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

FROM
BPF

2400 Hz

FROM
BPF

2600 Hz

" DETECTION
'2

DETECTION
SIGNAL SIGNAL

Fig. 5-Details of detector function.

FROM
BEF

using the DSp.l The order in which these operations are executed, as
well as the way in which the threshold detector is implemented, are
described below.

The sO and sl pins of the nsp are used to output the information on
the presence of tones, thus reserving the normal (serial) DSP output for

30~--,

20

en
...J
UJ

~
U
UJ
0

~
en en
0
...J

10

1000 2000

FREQUENCY IN HERTZ

Fig. 6-Low-pass fIlter-loss response.

TONE DETECTOR 1693

w
U)

0.8

5 0.6
c..
U)
w
a::
c..
w
I-
U) 0.4

0.2

10 20 30 40

TIME IN MILLISECONDS

Fig. 7-Low-pass fIlter-step response.

the output signal of the BEF. The setting of s pins is determined as
follows: If any condition required for tone il or i2 to be present is
violated, a negative number is produced whose sign causes the corre­
sponding pin (sO or sl, respectively) to be set to zero. A logical one on
either pin indicates that the corresponding tone is present, i.e., has
been detected.

An alternative approach could be based on the following: If any
condition required for tones it or i2 to be present is violated, a negative
number is stored in memory; otherwise, a positive number is stored.
The signs of these stored numbers could then be used to construct a
2-bit output word in which each bit indicates whether the correspond­
ing tone is present or not. (Actually an 8-bit word would have to be
output, but the remaining 6-bits would be irrelevant.) This approach
would use the normal nsp output for both the tone information and
the output of the BEF, which was not desirable in this application.
However, a few instructions would be saved, thus, freeing up some
processing time.

In more detail, the algorithm used here is as follows (see Fig. 8):
(a) Set the AU and I/O control registers, clear the RAM, and initialize

the memory pointers.
(b) Read a fL-Iaw PCM sample from the input buffer, convert it to

linear format, and save the result s in RAM location 127.
(c) Process the linear sample s through the BEF and save the result

r in the output register of the nsp AU.

1694 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

~
o
z
m
o
m
~
m
()
~ o
JJ

~

0)
CD
(J1

(a) INITIALIZE

(b) INPUT fL-SAMPLE, DO fL-LiNEAR,
AND STORE RESULT s
IN RAM LOC. 127

(e) PROCESSsTHROUGH BEF
AND STORE RESULT r

(d) DO LlNEAR-fL ON r,
AND OUTPUT

(e) RECTIFY r AND PROCESS THROUGH
LPF, WRITE G TO RAM LOC. 126

(f) PROCESS s THROUGH 2400-Hz BPF
RECTIFY RESULT AND PROCESS
THROUGH LPF TO GET P1
WRITE 0 TO RAM LOC. 125

(h) PROCESS s THROUGH 2600-Hz BPF
RECTIFY RESULT AND PROCESS
THROUGH LPF TO GET P2
WRITE 0 TO RAM LOC. 124

Fig. 8-Flow chart for the DSP algorithm.

(d) Convert the output r of the BEF to ,u-Iaw format and output it.
(e) Rectify the output r of the BEF and process it through the LPF.

Save the result G in RAM location 126.
(f) Process the linear sample s through the 2400-Hz BPF, rectify the

result and process it through the LPF. The output is Pl. Write
zero to RAM location 125.

(g) Compare PI with tGO G. If PI > tGO G, write PI into RAM location
125. Otherwise, a zero remains in that RAM location, which was
written during the execution of step (f).

(h) Process the linear sample s through the 2600-Hz BPF, rectify the
result and process it through the LPF. The output is P2• Write
zero to RAM location 124.

(i) Compare P2 with tG 0 G. If P2 > tG 0 G, write P2 into RAM location
124. Otherwise, a zero remains in that RAM location, which was
written during the execution of (h).

(j) Read RAM location 125. If the write operation in (g) did not occur
because PI :S tG 0 G, zero is obtained; otherwise, PI is read.
Subtract tz to get a.

(k) If the result a in (j) is negative, no fl tone is present and sO will
be set to zero in (v) at the end of the program; continue with (p).

(I) If the result a in (j) is zero, PI = tz; for reasons of compactness in
the nsp code, th - tz is added and subtracted; the result is still
zero and its sign is also zero, as for a positive number; this causes
sO to be set to one in (v) at the end of the program, indicating
that the fl tone is present; continue with (p).

(m) If the result a in (j) is positive, subtract it from th - tz to get {3.
(n) If the result f3 obtained in (m) is negative, PI > th and no fl tone

is present; sO will be set to zero in (v) at the end of the program;
continue with (p).

(0) If the result {3 obtained in (m) is non-negative, PI :S th and the fl
tone is present; sO will be set to one in (v) at the end of the
program; continue with (p).

(p) Read RAM location 124. If the write operation in (i) did not occur
because P2 :S tG 0 G, zero is obtained; otherwise, P2 is read.
Subtract tz to get y.

(q) If the result yin (p) is negative, no f2 tone is present and sl will
set to zero in (v); continue with step (v).

(r) If the result yin (p) is zero, P2 = tz; for reasons of compactness in
the nsp code, th - tz is added and subtracted; the result is still
zero and its sign is also zero, as for a positive number; this causes
sl to be set to one in (v), indicating that the f2 tone is present;
continue with (v).

(s) If the result yin (p) is positive, subtract it from tlz - tz to obtain
8.

1696 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

(t) If the result 8 obtained in (s) is negative, P2 > th and no h tone is
present; sl will be set to zero in (v); continue with step (v).

(u) If the result 8 obtained in (s) is non-negative, P2 :$ th and the h
tone is present; sl will be set to one in (v).

(v) Set the sO and sl pins to the proper values.
(w) Reset the memory pointers.
(x) Suspend the nsp operation and wait for the input buffer to be

filled with another sample. Execution resumes when the IBF flag
goes high.

(y) Loop back to step (b).
The RAM is organized as follows:

Location Contents
0 YI
1 Xl State variables for BEF
2 Y2
3 X2

4 X State variable for LPF following the BEF

5 YI
6 Xl State variables for 2400-Hz BPF
7 Y2
8 X2

9 X State variable for LPF following the 2400-Hz BPF

10 YI
11 Xl State variables for 2600-Hz BPF
12 Y2
13 X2

14 X State variable for LPF following the 2600-Hz BPF

124 P2
125 PI See Fig. 5
126 G
127 s Input sample in linear format.

Note that, for one channel, only the fust 15 and the last four RAM

locations are used.
This algorithm can be easily translated into the corresponding nsp

code, which is then assembled4 and stored in the nsp ROM. The filter
coefficients are also stored in ROM, in line with the code. In the
program, the quantities -(%)ta, -tzIA, and (th - tz)IA are used instead
of the quantities ta, tz, and th, because they are more convenient.

The loop in the program has 77 instructions, independent of the
path followed. Then, the code for two channels will have a loop of 154
instructions. With a 5-MHz clock, the instruction cycle is 800 ns. This
implies that for a sampling frequency of 8 kHz, 156 instructions can be

TONE DETECTOR 1697

accommodated in a period (125 /ls) between samples. Therefore, with
the algorithm given here, two channels can be implemented per nsp,
and 12 nsps are needed per digroup of 24 channels.

The program has been tested both in software (using the nsp
simulator5

) and in hardware (using the nsp device with external ROM6
),

and was found to perform as expected.

V. CONCLUSION

Use of the nsp in implementing filtering and tone detection functions
in the receiver of a proposed digital CCITT No.5 signaling unit has been
shown. Characteristics of the required digital filters have been de­
scribed, along with a procedure for designing the filters. A way to
realize the detector has been illustrated and the criteria used to
determine the presence of tones have been presented. Finally, an
algorithm has been given which, for a sampling frequency of 8 kHz
and a nsp clock of 5 MHz, allows the implementation of two channels
per nsp.

VI. ACKNOWLEDGMENTS

The author is grateful to D. M. Brady, A. M. Gupta, K. Mina, D. C.
Stanzione, H. C. Kirsch, and J. R. Boddie for their support and
suggestions.

REFERENCES

1. J. R. Boddie et al., "Digital Signal Processor: Architecture and Performance,"
B.S.T.J., this issue.

2. G. Szentirmai, "FILSYN-A General Purpose Filter Synthesis Program," Proc. of
the IEEE, 65, No. 10 (October 1977), pp. 1443-58.

3. M. T. Dolan and J. F. Kaiser, "An Optimization Program for the Design of Digital
Filter Transfer Functions," in Programs for Digital Signal Processing, IEEE
Press Book, 1979.

4. C. L. Semmelman, "Digital Signal Processor: Design of the Assembler," B.S.T.J.,
this issue.

5. J. Aagesen, "Digital Signal Processor: "Software Simulator," B.S.T.J., this issue.
6. J. R. Boddie, "Digital Signal Processor: Overview: The Device, Support Facilities,

and Applications," B.S.T.J., this issue.

1698 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

ACRONYMS AND ABBREVIATIONS

AAU
AB
AID
ADPCM
ASCII

ATG
ATP
AU
AUC
BA
BCD
BEF
BP
BPF
CAD
CAROT
CCITT

CLKIN
CLKOUT
CPU
CST
CTR
CTS
CTU
CU
D/A
DBS
DFT
DIP
DI
DMA
DO
DSP
DSPMATE
dspsim
DTTU
ESS
EXM
EXE

address arithmetic unit
address bus
analog-to-digital conversion
adaptive differential pulse-code modulation
American Standard code for information inter-

change
automatic test generation
all tests passed
arithmetic unit
arithmetic unit control register
block averaging
binary coded decimal
band elimination filter
bandpass
bandpass filter
computer-aided design
centralized automatic reporting on trunks
International Telegraph and Telephone Consulta-

tive Committee (Comite Consultatif International
Telegraphique et Telephonique)

clock input (also pin)
clock output (also pin)
central processing unit
control input (also pin)
clear to read (pin)
clear to send (pin)
carrier terminal units
control unit
digital-to-analog conversion
multiplexed address and data bus (pins)
discrete Fourier transform
dual in-line package
data input (pin)
direct memory access
data output (pin)
digital signal processor
hardware development system for DSP
digital signal processor simulator
digital treatment transmission unit
electronic switching system
external memory control (pin)
external memory control (pin)

1699

FFT
FIFO
FIR
FSK
HGBEF
IBF
IBUF
ICK
IDFT
IIR
I/O
10AC
10C
IR
IS
ISY
LAMP
LC
LGBEF
LIU
LPC
LPF
LSI
LSL{LOCAL)
LTX
MF
MOSFET
MOS
MSI
NMOS
OBE
OBUF
OCK
OS
OSY
PBX
PC
PCM
PR
PROM
QMFB
RAM
RD

fast Fourier transform
first-in-first-out
finite impulse response
frequency shift keying
high-group band elimination filter
input buffer full (pin)
input buffer register
input clock (pin)
inverse discrete Fourier transform
infinite impulse response
input/ output
I/O, AAU, and control sections of DSP
register for DSP
instruction register
input stack
input synchronization (pin)
logic analyzer for maintenance planning
loop counter
low-group band elimination filter
line interface unit
linear predictive coding
low-pass filter
large-scale integration
logic simulation language
computer-aided design system
multifrequency
metal-oxide-semiconductor field effect transistor
metal-oxide semiconductor
medium-scale integration
N -channel metal-oxide semiconductor
output buffer empty (pin)
output buffer register
output clock (pin)
output stack
output synchronization (pin)
private branch exchange
program counter
pulse-code modulation
program return
programmable read-only memory
quadrature mirror filter bank
random access memory
digital signal processor destination address register

1700 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

RDA

REST
ROM
RX
RY
RYA

SBC
SNR
SOS
SPICE
SSI
STB
STR
SYC
TTL
VCC
VF
VLSI
VSS
XTAL

digital signal processor auxiliary destination address
register

digital signal processor reset pin
read only memory
digital signal processor X source address register
digital signal processor Y source address register
digital signal processor auxiliary Y source address

register
sub-band coding
signal-to-noise ratio
second-order section
simulation program with integrated circuit emphasis
small-scale integration
synchronization pulse (pin)
digital signal processor status register
digital signal processor synchronization register
transistor-transistor logic
power supply (pin)
voice frequency
very large-scale integration
ground (pin)
crystal connection (pin)

ACRONYMS AND ABBREVIATIONS 1701

CONTRIBUTORS TO THIS ISSUE

John Aagesen, Civilingeni0r (Electrical Engineering), 1956, Tech­
nical University of Denmark; M.A.Sc. (Electrical Engineering), 1959,
University of Toronto; Bell Laboratories, 1959-. Mr. Aagesen was
involved in early work on media characterization for a millimeter
waveguide communications project. Later he worked in the area of
computerized data acquisition and analysis. Other activities include
characterization and fault location techniques for coaxial cable. Most
recently he has been engaged in software development for microcom­
puter-controlled facility terminal systems.

E. James Angelo, Jr., B.S.E.E., 1939, North Carolina State Uni­
versity; S.M., 1948, Sc.D., 1952, Massachusetts Institute of Technology;
Polytechnic Institute of Brooklyn, 1953-1968; Bell Laboratories,
1968-. Throughout his career, Mr. Angelo has been concerned pri­
marily with the analysis and design of electronic circuits. In recent
years, he has been engaged in the preparation of tutorial documenta­
tion for integrated electronic circuits of various kinds, both analog and
digital, and their applications. Member, Tau Beta Pi, Eta Kappa Nu,
Sigma Xi; Senior Member, IEEE.

Frank E. Barber, B.S., 1974, M.S. (Electrical Engineering), 1976,
Lehigh University; Bell Laboratories 1976-. At Bell Laboratories Mr.
Barbar has designed metal-oxide semiconductor static and dynamic
memories. He has also designed memory sections for microprocessor
integrated circuits, and is currently designing an MOS static, dual-port
RAM. Member, Tau Beta Pi, Eta Kappa Nu.

Thomas J. Bartoli, B.S. (Electrical Engineering), 1974, Lafayette
College; Bell Laboratories, 1966-. Since joining Bell Laboratories, Mr.
Bartoli has been involved in the design of digital bipolar integrated
circuits. For the past four years, he has been involved in the design of
digital metal-oxide semiconductor very-Iarge-scale-integration circuits
for digital signal processing applications.

David A. Berkley, B.E.E., 1961, and Ph.D. (Applied Physics), 1966,
Cornell University; Bell Laboratories, 1968-. Since 1975, Mr. Berkley
has been supervisor of Electroacoustics and Acoustic Signal Processing
in the Acoustics Research Department. His research has included
work on nonlinear speech processing, hearing, echo suppression, and
hands-free telephone conferencing.

1703

Roy B. Blake, Jr., B.S.E.E., 1960, North Carolina State University,
M.S.E.E., 1963, Duke University; Bell Laboratories, 1960-. In his
early work Mr. Blake was engaged in the design of various high­
performance digital magnetic recording devices. He then spent several
years engaged in maintenance and diagnostic software design for large
computer systems. He is currently supervisor of a group responsible
for the analysis and design of both voice and data transmission systems
over metallic cables. Member, Eta Kappa Nu, Tau Beta Pi.

James R. Boddie, B.S.E.E., 1971, Auburn University; S.M. and
E.E., 1973, Massachusetts Institute of Technology; Ph.D. (Electrical
Engineering), 1976, Auburn University; Bell Laboratories, 1976-. Mr.
Boddie joineq Bell Laboratories as a Post-Doctoral Fellow in the
Acoustics Research Department where he implemented a dereverber­
ation algorithm on an array processor. In 1977, he became a member
of the technical staff in the Signal Processing and Integrated Circuit
Design Department. He was an architect and circuit designer for the
digital signal processor integrated circuit. In February, 1980, he became
supervisor of the Digital Signal Processing Group.

Anthony C. Bolling, A.B. (Physics and Mathematics), 1965, Pfeif­
fer College; Ph.D. (Physics), 1970, Virginia Polytechnic Institute; Bell
Laboratories, 1970-. Mr. Bolling is a member of the Facility Terminal
Exploratory Development Department. His early work concerned
analytical studies of voice-frequency transmission systems. Since 1978,
his interest has been in the exploratory development of new types of
voice-frequency transmission systems.

Milorad R. Buric, Dipl. Eng., 1971, University of Belgrade, Yugo­
slavia; M.S.E.E., 1975, Ph.D., 1978, University of Minnesota; Bell
Laboratories, 1978-. Mr. Buric has done research in nonlinear system
theory, digital signal processing, and computer architectures for real­
time speech processing. His current interests include algorithms for
very-Iarge-scale-integration structures in speech processing and pat­
tern recognition.

Steven P. Cordray, B.S. (Engineering Physics), 1977, University
of Oklahoma; M.S. (Electrical Engineering), 1979, California Institute
of Technology; Bell LahoratorieR, 1978-1981. Mr. Cordray has com­
pleted work on a microprocessor-controlled test set. The test set is
designed to access digital pulse-code modulated signals on digital
transmission facilities. He is now employed by Schlumberger. Member,
Tau Beta Pi.

1704 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Ronald E. Crochiere, B.S. (Electrical Engineering), 1967, Milwau­
kee School of Engineering; M.S., 1968, and Ph.D. (Electrical Engi­
neering), 1974, Massachusetts Institute of Technology; Bell Labora­
tories, 1974.- Mr. Crochiere was employed by Raytheon Company
from 1968 to 1970. In 1970, he returned to the Massachusetts Institute
of Technology to continue graduate studies for the doctorate and, at
the same time, he became a member of the Research Laboratory of
Electronics. At Bell Laboratories, he joined the Acoustics Research
Department where he has been involved in research in decimation and
interpolation, sub-band and transform coding of speech, and the mea­
surement of digital speech quality. In 1976, he received the IEEE
Acoustics, Speech, and Signal Processing (ASSP) Award for his paper
on decimation and interpolation of digital signals. Mr. Crochiere is
Secretary-Treasurer of ASSP's Advisory Committee and a member of
its Technical Committee on Digital Signal Processing. He served for
two years as technical editor on digital signal processing for ASSP
Transactions.

Gobind T. Daryanani, B.S.E.E., 1963, Calcutta University;
M.S.E.E., 1965, Virginia Polytechnic Institute; Ph.D.E.E., 1968, Mich­
igan State University; Bell Laboratories, 1969-. Mr. Daryanani has
worked on active filters, digital signal processors, and lightwave com­
munications systems. He is currently supervisor of the Lightwave
Circuits Group and is responsible for the development of regenerators
and optical test sets.

Ismail I. Eldumiati, B.S.E.E., 1962, Alexandria University, Egypt;
M.S.E.E., 1966; M.S., 1968, Ph.D. (Physics), 1970, University of Mich­
igan; Bell Laboratories, 1972-. Initially, Mr. Eldumiati worked on the
fault-locating system of the T4M high-speed digital transmission sys­
tem. From 1974 to 1976, he worked on high-speed bipolar integrated
circuits. Between 1977 and 1978, he was an architect and circuit
designer for the BELLMAC-4TM microcomputer. In July, 1978, he
joined the Digital Signal Processing Group, where he worked on the
design of the digital signal processor family. He is currently supervisor
of the Digital MOS Circuits Group.

Robert L. Farah, B.S.E.E., M.S.E.E., 1977, Polytechnic Institute
of New York; Bell Laboratories, 1977-. Mr. Farah initially worked on
the design of digital filters for use as equalizers and echo cancelers for
metallic special service circuits. Subsequently, he developed laboratory
test systems for the study of digital and sampled data filters. Presently,
he is engaged in low-bit-rate voice studies. Member, Tau Beta Pi, Eta
Kappa Nu.

CONTRIBUTORS TO THIS ISSUE 1705

David L. Favin, S.M.E.E., 1952, Massachusetts Institute of Tech­
nology; B.S.E.E., 1950, University of Pennsylvania; Bell Telephone
Laboratories 1952-. Mr. Favin has designed transmission measuring
equipment including microwave sweepers; envelope-delay distortion
measuring sets; impulse noise measuring sets; and microprocessor
controlled, FFT-based measuring systems. He holds 22 patents. Mem­
ber, Eta Kappa Nu, Sigma Psi, Tau Beta Pi.

James L. Flanagan, B.S. (Electrical Engineering), 1948, Missis­
sippi State University; M.S., 1950, Sc.D., 1955, Massachusetts Institute
of Technology; Bell Laboratories, 1957-. Mr. Flanagan is Head,
Acoustics Research Department. He has project responsibilities for
digital voice encoding, speech recognition and synthesis, electroacous­
tic systems, and transducers. Member, National' Academy of Engi­
neering.

Ronald L. Freyman, A.E.T. (Associate Electrical Technology),
1962, Pennsylvania State University; Astro-Electronics Division of
RCA Corporation, 1962-1968; Bell Laboratories, 1968-. Mr. Freyman
worked in metal-oxide semiconductor design and customer service
organizations before he was assigned to the digital signal processor
project.

Renato N. Gadenz, Ingeniero Civil Electricista, 1960, Universidad
de Chile; M.S.E.E., 1962, University of Pittsburgh; Ph.D. (Electrical
Engineering), 1972, University of California at Los Angeles. Mr.
Gadenz has done research and teaching on network theory, automatic
control as applied to electric machines, and computer-aided design.
After joining Bell Laboratories in 1973, he was engaged in sensitivity
analysis and design of active filters, and the development of software
for testing microprocessor systems. More recently, he became inter­
ested in digital signal processing and was a member of the team that
conceived, designed, and tested the digital signal processor. Mr. Gadenz
is presently a member of technical staff in the Signal Processing and
Integrated Circuit Design Department. Member, IEEE, IEEE CAS
Society.

Jack A. Grant, Certificate (Electronics Industrial Technology),
1968, Ward Technical Institute; A.A.S. (Electronics Engineering Tech­
nology), 1974, County College of Morris, B.S. (Electronics Engineering
Technology), 1977, Trenton State College; Bell Laboratories, 1968-.
Mr. Grant initially worked in the military systems area until 1969. He
then served four years in the U.S.A.F., Minuteman I.C.B.M. electronic

1706 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

maintenance. Returning to Bell Laboratories in 1972, he became
involved in digital integrated circuits including evaluation, design,
testing, test system design, and logic and timing simulation. Member,
IEEE.

Nuggehally S. Jayant, B.Sc. (Physics and Mathematics), 1962,
Mysore University; B.E., 1965, and Ph.D. (Electrical Communication
Engineering), 1970, Indian Institute of Science, Bangalore; Research
Associate at Stanford University, 1967-1968; Bell Laboratories, 1968-.
Mr. Jayant was a visiting scientist at the Indian Institute of Science in
1972 and 1975. He has worked in the field of digital coding and
transmission of waveforms, with special reference to robust speech
communications. He is also editor of the IEEE Reprint Book, Wave­
form Quantization and Coding.

James D. Johnston, B.S. (Electrical Engineering), 1975, and M.S.
(Electrical Engineering), 1976, Carnegie-Mellon University; Bell Lab­
oratories, 1976-. Mr. Johnston is a member of the Acoustics Research
Department. His research interests include wide and narrow band­
width waveform coding techniques, fast small-scale digital processors,
analog-to-digital and digital-to-analog techniques,. the behavior of
adaptation mechanisms in adaptive pulse-code modulation and adap­
tive differential pulse-code modulation, and analog circuit design. He
has published in IEEE Trans. Commun., in the J. of Audio Eng. Soc.,
in conference records of the Int. Conf. on Commun., and Int. Conf. on
Acoustics, Speech, and Signal Processing, and in lEE Electron. Lett.
Member, Audio Eng. Soc.

Jack Kane, B.S. (Engineering), 1968, University of California, Los
Angeles; M.S. (Electrical Engineering), 1969, Stanford University; Bell
Laboratories, 1968-. From 1969 to 1971 Mr. Kane worked with the
U.S. Public Health Service, National Institute of Health, Bethesda,
MD. In 1971 he returned to Bell Laboratories, where he was involved
in bipolar medium-scale integration and large-scale integration design
until 1976. From 1976 to 1978, Mr. Kane was involved in catalog metal­
oxide semiconductor (Mas) memory design. Since 1978, he has been
involved in custom MaS LSI design. Presently, Mr. Kane is supervisor
of an LSI design group. Member, Tau Beta Pi, IEEE.

Robert N. Kershaw, A.T. (Electronic Technology), 1963, Temple
University; B.S. (Electrical Engineering), 1969, Lafayette College; M.S.
(Electrical Engineering), 1972, Lehigh University; Bell Laboratories,
1963-. In his early work, Mr. Kershaw was involved with developing

CONTRIBUTORS TO THIS ISSUE 1707

magnetic materials and magnetic memory devices. From 1969-1970,
Mr. Kershaw was with Leeds and Northrup where he designed instru­
mentation systems. He returned to Bell Laboratories in 1970 and
designed digital bipolar custom integrated circuits, as well as digital
MOS integrated circuits for the digital signal processor. He is currently
a supervisor in the Silicon Integrated Circuit Design Department.
Member, Eta Kappa Nu, Tau Beta Pi, Phi Beta Kappa.

Joseph Kohut, A.A.Sc, 1962, Capitol Institute of Technology; Fair­
leigh-Dickinson University 1965-1967; Bell Laboratories, 1952-. At
Bell Laboratories, Mr. Kohut has worked on underwater systems and
in television systems. He is presently working in acoustics research in
the design of hardware for synthesizing speech and music.

Carol A. McGonegal, B.A. (Mathematics), 1974, Fairleigh Dick­
inson University; M.S. (Computer Science), 1977, Stevens Institute of
Technology; Bell Laboratories, 1967-. Ms. McGonegal is a member
of the Acoustics Research Department where she has worked on
problems in digital filter design, digital speech processing, computer
voice response, and speaker verification.

Joseph P. Olive, B.S. and M.S. (Physics), 1964, University of
Chicago; Ph.D. (Physics), 1969, University of Chicago; M.A. (Music
Composition), 1969, University of Chicago; Bell Laboratories, 1969-.
J. P. Olive's work at Bell Laboratories has centered on various prob­
lems of speech synthesis.

Nadia Sachs, B.S. (Electrical Engineering), 1978, Polytechnic In­
stitute of New York; M.S.E. (Electrical Engineering), 1979, Princeton
University; Bell Laboratories, 1978-. Mrs. Sachs has worked on
various applications of digital signal processing.

Charles L. Semmelman, B.E.E., B.Sc. (Physics), 1939, Ohio State
University; Bell Telephone Laboratories, 1940-1942 and 1946-. Signal
Corps Engineering Laboratories, 1942-1946. Mr. Semmelman has been
engaged in the design of filters and equalizers, and supervised a group
which developed computer programs for the analysis, synthesis, and
optimization of transmission networks and systems. He is currently
engaged in high-level simulation and compiler development. Associate,
Sigma Xi; Member, Tau Beta Pi, Eta Kappa Nu, Pi Mu Epsilon, Sigma
Pi Sigma.

1708 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

John S. Thompson, B.S.E.E., 1962, B.S.E.P. 1963, Lehigh Univer­
sity; M.S.E.E., 1965, Ph.D., 1967, University of Rochester; Bell Labo­
ratories, 1967-. Mr. Thompson has been involved in research on
algorithms and architectures for digital signal processing and on prob­
lems in digital switching and signal encoding. He is currently engaged
in studies of digital techniques in small business communication sys­
tems. Member, Eta Kappa Nu, Tau Beta Pi, Phi Beta Kappa, Sigma
Xi, IEEE.

James Tow, B.S., 1960, M.S. (Electrical Engineering), 1962, and
Ph.D. (Electrical Engineering) 1966, University of California, Berkeley;
Bell Laboratories, 1966-. Mr. Tow has been concerned with computer­
aided network analysis and design and with the implementation of
practical active filters for telecommunication systems. He is currently
engaged in the application of digital signal processing techniques to
signaling systems. Member, IEEE, Eta Kappa Nu, Phi Beta Kappa.

John W. Upton, B.S. (Electrical Engineering), 1971, Carnegie­
Mellon University; Western Electric, 1971-1972; Bell Laboratories,
1972-. At Western Electric, Mr. Upton worked on the development
of the processor unit of the CLC-I computer used by the Safeguard
System. Since joining the Acoustics Research Department at Bell
Laboratories he has designed computer interfaces and support equip­
ment. His present work involves the design of microprocessor-based
hardware for digital signal processing. Member, IEEE.

Stephen M. Walters, B.E.E., 1974, Auburn University; M.S., 1976,
Ph.D. (Electrical Engineering), 1977, Virginia Polytechnic Institute
and State University; Bell Laboratories, 1977-. At Bell Laboratories,
Mr. Walters has been engaged in design and development of the digital
signal processor (nsp) and its supporting development system,
nSPMATE. He is presently supervisor of the Peripheral Control Group,
concerned with digital terminals for the No.4 ESS. Member, IEEE,
Phi Kappa Phi, Eta Kappa N u, Sigma Xi.

David P. Yorkgitis, B.S. (Mathematics), 1977, Carnegie-Mellon
University; M.S. (Electrical-Biomedical Engineering), 1979, Carnegie­
Mellon University; Bell Laboratories, 1979-. Mr. Yorkgitis has worked
on digital signal processor programs to perform signal processing
functions in transmission systems.

CONTRIBUTORS TO THIS ISSUE 1709

THE BELL SYSTEM TECHNICAL JOURNAL is abstracted or indexed by Abstract

Journal in Earthquake Engineering, Applied Mechanics Review, Applied Science &

Technology Index, Chemical Abstracts, Computer Abstracts, Current Contents/

Engineering, Technology & Applied Sciences, Current Index to Statistics, Current

Papers in Electrical & Electronic Engineering, Current Papers on Computers &

Control, Electronics & Communications Abstracts Journal, The Engineering Index,

International Aerospace Abstracts, Journal of Current Laser Abstracts, Language

and Language Behavior Abstracts, Mathematical Reviews, Science Abstracts (Series

A, Physics Abstracts; Series B, Electrical and Electronic Abstracts; and Series C,
Computer & Control Abstracts), Science Citation Index, Sociological Abstracts,

Social Welfare, Social Planning and Social Development, and Solid State Abstracts

Journal. Reproductions of the Journal by years are available in microform from

University Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106.

@ Bell System

