












































































































































































































































































































































































































































































































































































































































tween an input switch and an output switch.) Such a network will be
called a zone-balanced network if it is regular and there exists two graphs
G1 and G5 so that G (u,v) is isomorphic to Gy if u and v are in the same
zone and G (u,v) is isomorphic to G, if not. G, and G5 will be referred to
as the intrazone and the interzone channel graphs, respectively. A
zone-balanced network is said to be symmetrical if it is symmetrical with
respect to the center stage or the two stages in the middle.

A balanced incomplete block design (abbreviated as BIBD) with pa-
rameters (v,b,r,k,\) is a family of blocks, with each block being a k-subset
of the set {1,2,. . . ,u}, satisfying the following properties:

(i) Every element in the set {1,2,. .. ,v} appears in exactly r blocks.
(11) Every pair of elements in the set {1,2,. . . ,u} appears together in
exactly A blocks.

BIBDs have long been a favorite subject for mathematicians and
statisticians. The reader is referred to Ref. 1 for the existence and con-
struction for many BIBDs. The use of BIBDs for constructing zone-bal-
anced networks was first studied in Ref. 2. Some further constructions
were given in Ref. 3. In this paper, we give some methods for such con-
structions. The zone-balanced networks constructed previously, as well
as in this paper, are all symmetrical.

Il. SOME PRELIMINARY RESULTS

A zone-balanced network is called canonical if each zone consists of
a single input switch and a single output switch. Therefore, a CZBN
(canonical zone-balanced network) can be viewed as a prototype for a
full-fledged network with the same interzone and intrazone channel
graphs. The mechanism for expanding a CZBN into a full-fledged network
is the operation of “parallel expansion,” which was first introduced by
Takagi* and by Timperi and Grillo.® For an s-stage network N, a (k,j)
left (right) parallel expansion means taking & copies of N and identifying
their subgraphs from stage j to stage s (from stage 1 to stage j). Figure
1 gives some examples of parallel expansion. It is clear that parallel ex-
pansion preserves the isomorphisms of the interzone and intrazone
channel graphs.

Next we introduce a method which we will use later to describe the
connection between switches in two adjacent stages. T'o use this method,
every switch in the two adjacent stages should be labeled by a subset of
a given set. Then two switches in the adjacent stages should be connected
if the label of one is contained in the label of the other. This type of
connection will be called a labeled-subset connection.
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G, A (2, 2) LEFT PARALLEL OF G,
Gj3 Gy
A (2, 3) LEFT-PARALLEL OF G, A (2, 2) RIGHT-PARALLEL OF G

=

Fig. 1—Examples of parallel expansion.

lli. A RECURSIVE CONSTRUCTION FOR CZBN

A 2-stage CZBN with v zones is necessarily a v Xv complete bipartite
graph; hence, its construction is trivial. We now give a construction for
a 3-stage CZBN (noting that a 3-stage channel graph is uniquely deter-
mined by its number of paths).

Theorem 1: Suppose that a (v,b,r,k,\)-BIBD exists. Then we can con-
struct a 3-stage CZBN with v zones which has r paths in its intrazone
channel graph and X paths in its interzone channel graph.

Proof: Take b switches of V5 and label each of them by a distinct block
of the given BIBD. Take v switches of V1(V3) and label each of them by
a distinct element of Z = {1,2,... ,v}. Apply a labeled-subset connection
between Vs, and V1(V3). It is easy to verify that the resulting network
is the one specified in Theorem 1.

Example 1: Let the given BIBD have parameters (7,7,3,3,1) and have
blocks (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), and (7,1,3). Figure
2 gives a 3-stage CZBN with 7 zones.

We now give a recursive construction for a symmetrical s-stage CZBN
fors = 4.

Theorem 2: Suppose that an s-stage CZBN with k zones exists which
has G1 and G as its intrazone and interzone channel graphs. Fur-
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Fig. 2—A 3-stage CZBN.

thermore, suppose that a (v,b,r,k,\) BIBD exists. Then there exists an
(s + 2)-stage CZBN with v zones which has the channel graphs as shown
in Fig. 3.

Proof: Let N be the given s-stage CZBN and assume that every input
(output) switch of N is labeled by the zone it belongs to. Take b copies
of N and let N; denote the ith copy. Replace the k& zones in N; by the &
elements in the ith block of the given BIBD. Take v switches of V1(V3)
and label each switch by a distinct element of the set Z = {1,2,.. . ,0}.
Apply a labeled-subset connection between V(V3) and the input (out-
put) switches of the b copies of N. It is easy to verify that the resulting
network is indeed the one specified in Theorem 2.

Corollary: Suppose that a (v,b,r,k,\) BIBD exists. Then we can construct
a 4-stage CZBN with v zones such that its intrazone channel graph
consists of r disjoint paths and its interzone channel graph consists of
\ disjoint paths.

INTRAZONE INTERZONE

Fig. 3—Channel graphs for Theorem 2.
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Example 2: Using the same BIBD as in Example 1, we obtain the 4-stage
CZBN as shown in Fig. 4.

IV. A CONSTRUCTION FOR CZBNS USING A BALANCED PARTITION
OF BLOCKS

Consider a (v,b,r,k,\) design;, and let F; denote the subfamily of blocks
containing element i. A partition of F; is said to be balanced with pa-
rameters (p,d) if the following conditions are satisfied:

(t) F;isdivided into p disjoint parts such that each part consists of
r/p blocks.

(it) Exactly d + 1 distinct elements appear in each part.

INTRAZONE INTERZONE

Fig. 4—A 4-stage CZBN.
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(tit) For any element i’ > i contained in part j, the number of blocks
in part j containing i’ is a constant. (From (i) and (iz), this constant must
also be independent of j.)

We say F; has a 2-step balanced partition with parameters
(p1,d1,p2,d9) if F; has a balanced partition Pj,. . . ,Pp,, with parameters
(p1,d1) and each P; has a balanced partition with parameters (ps,ds).
Similarly, we can define a ¢ -step balanced partition of F; with parameters
(pbdl)pZ’d2r .. )pt)dt)'

Note that any t-step nested partition of a set N induces a partial or-
dering which can be represented by a (¢ + 2)-level rooted tree. Suppose
that N has n elements. Then the first level of the tree corresponds to the
crudest partition, namely, a single node representing the set N itself, and
the (¢ + 2)-level of the tree corresponds to the finest partition, namely,
n nodes each representing a single element of N. The ¢t intermediate
levels of the tree correspond to the ¢ partitions sequentially. By taking
two copies of this tree and identifying their nodes at the (¢ + 2)-level,
we obtain a (2t + 3)-stage symmetrical network. This mapping from a
nested partition to a multistage network is critically used in the following
theorem.

Theorem 3: Consider a (v,b,r,k,\) BIBD and let F; be the subfamily of
blocks containing the element i. Suppose that for each F;,i = 1,2,. . . ,v,
there exists a t-step balanced partition with the parameters
(p1,d1,p2ds,. . . ,D:,d:). Then there exists a (2t + 3)-stage ((2t + 4)-
stage) CzZBN which has channel graphs as shown in Fig. 5: (g =
r/If..p;). (To obtain the channel graphs for the (2t + 4)-stage CZBN,
replace each vertex in the center stage by the graph 0-0.)

INTRAZONE INTERZONE

Fig. 5—Channel graphs for Theorem 3.
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Proof (only for the case that n is odd): For each F;,i = 1,. .. ,v, construct
a (2t + 3)-stage symmetrical network by using the given ¢-step balanced
partition. The union of these v networks (they overlap at the center stage,
since the F;’s overlap) yields a CZBN with channel graphs as specified
in Fig. 5 with ¢ = 1. Taking ¢ copies of these networks and identifying
their first stages and last stages, we obtain the desired CzZBN. That the
constructed network is “balanced” is a consequence of the partition being
balanced.

Corollary: Suppose a (v,b,r,k,1) BIBD exists and I1{_,p; divides r. Then
a CZBN with channel graphs as specified in Fig. 5 exists.

Proof: With A = 1, any partition which satisfies condition (i) of a bal-
anced partition is a balanced partition. The same is true for a ¢-step
partition. Therefore, when Ij.,p, divides r, then a ¢-step balanced
partition with parameters (p,. . . ,py) always exists (the parameters d;s
are determined by p;s).

Note that by applying Theorem 2 several times to the network con-
structed in Theorem 3, we can obtain CZBNs with various types of
channel graphs. In particular, we obtain the following:

Theorem 4: Suppose that a sequence of BIBDs with parameters
(v;,bj,rj,kj,N), ] = 1,2,. . . ,m exists. Furthermore, suppose k; = vj41 for
j=12...,m—1,\,=1,and Il1}-,p; divides r,,. Then there exists a (2t
+ 2m + I)-stage ((2t + 2m + 2)-stage) CZBN which has channel graphs
as shown in Fig. 6: (q = r,/Mipy).

Proof: Use the (Um,bm,"m,Em,Am) BIBD to construct a (2t + 3)-stage
CZBN from Theorem 3. Then apply Theorem 2 m — 1 times.

Note that, if we take ¢ copies of each k& out of v combination, we obtain
a (v,b,r,k,\) BIBD with b = ¢(%), r = ¢(3Z1) and X\ = ¢(3=3). By setting k
= v, it is clear that a (v,r,r,u,r) BIBD always exists. The zone-balanced
networks constructed in Ref. 3 are thus seen to be special cases of the
networks specified in Theorem 4 by setting \j =r; forj =1,2,...,m —
1. (The conditions that A = 1 and II}.,p; divides r,, are not explicitly
stated in Ref. 3, but a check with the author of Ref. 3 has verified their
necessity.)

V. A GENERALIZATION

We can generalize the definition of zone-balanced network to partially
zone-balanced network in which every pair of zones is classified into one
of the k associate classes. The channel graphs of all intrazone pairs of
the ith associate are isomorphic to a graph G; regardless of which pair
is chosen. The number of the ith associates of a given zone should be
independent of which zone is chosen. Just as balanced incomplete block
designs are a natural tool for the construction of zone-balanced networks,
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INTRAZONE

Fig. 6—Channel graphs for Theorem 4.

we can use partially balanced incomplete block designs to construct
partially zone-balanced networks, and results similar to those given in
this paper can be obtained. However, the partially balanced incomplete
block design is really too strong for our construction, since we do not
require that for every pair of zones X and Y of the ith associate, the
number of zones which are the jth associate of X and the kth associate
of Y should be independent of X and Y. This suggests that some design
weaker than the partially balanced incomplete block design should be
studied for this purpose.

After the completion of this paper, we learned that the author of
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Ref. 3 had just revised her paper into a more complete and general ac-
count.® However, the main difference between our construction and her
construction remain as follows: () Her construction uses only one BIBD,
while ours uses many BIBDs sequentially. (it) The method of using bal-
anced partition of blocks is unique in our construction.
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The Reliability of 302A Numerics
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To assess the long-term reliability of Western Electric 7-segment
302A numerics, accelerated forward bias-aging (10 mA, 60° and 125°C)
and thermal cycling (—40° to 125°C) experiments have been performed.
In treating the bias-aging data, we strictly differentiate between LED
chip and digit failure and show that the times to chip failure—defined
here as the times required to reach a normalized efficiency of r = n/n¢
= 0.5—are lognormally distributed. The analysis of the data was fa-
cilitated by a novel computer-graphics routine which provides for each
digit on test a bar-by-bar description of the time-evolution of r. The
median life and standard deviation at 125°C and 10 mA for chips are
2400 hours and ~0.4, respectively. Furthermore, we find that the failure
distribution for digits can be obtained from the chip distribution by a
simple probabilistic consideration. The good accord demonstrated
between the experimental data and the theoretical curve derived from
the diffusion theory of red GaP LED degradation indicates that the
predominant mode of degradation in bias-aging of 302A devices is that
of the LED.

The thermal cycling response of 302A numerics encapsulated in
Hysol 1700 epoxy is excellent. Similar to bias-aging, the chip failure
distribution is lognormal, and chip and digit failures are interrelated
by the probabilistic law. For a temperature excursion between —40°
and 125°C, the median number of cycles to failure is 23,350 for chips
and 300 for digits. The cause of fatlure is identified by electrical testing
as open wire bonds.

Finally, the acquired data permit the estimation of the mean times
to failure (MTTF) and failure rates beyond infant mortality of 302A
numerics in a specific application such as Transaction telephone
sets under realistic operating conditions. The overall reliability of these
devices is excellent, characterized by an MTTF of 108 hours and a
maximum failure rate of less than 1 FIT for bias-aging over a 20-year
seruvice life. Failures due to broken wires are estimated to yield an MTTF
of 10° hours and a failure rate of <4 FITs at 20 years of service.
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I. INTRODUCTION

The 302A and 302C red numeric displays designed* by Bell Labora-
tories and manufactured by Western Electric—Reading consist of 8 red
GaP chips arranged as 7 segments into a single digit and a right-hand
decimal point. Each chip is mounted in a separate reflector and con-
nected with either a common cathode (302A) or common anode (302C).
In both cases, the device is encapsulated in Hysol 1700 epoxy.*

In general, the effects of long-term thermomechanical, environmental,
and electrical operating conditions on device performance are deter-
mined concurrently with device development. The major objective of
this work was to obtain reliability information on 302A numeric display
devices by means of forward bias-aging and thermal cycling at acceler-
ated rates, which enables us to predict their long-term behavior, beyond
infant mortality, when used in typical Bell System applications.

First, we provide an outline of the experimental procedures employed
in the acquisition of failure data by high temperature forward bias-aging
and wide temperature-range thermal cycling. Then, the handling,
treatment, and graphic display of the copious amount of information
generated by the bias-aging experiments are discussed. Second, the time
evolution of the relative luminescent efficiency (r = ¢/n0) of 302A nu-
merics during bias-aging is compared to the predictions of the diffusion
theory of red GaP degradation.! Moreover, the failure distribution is
established for the entire sample of chips. Next, we determine the failure
distribution for thermal cycling and attempt to locate the thermome-
chanical weak points of a bonded chip. Finally, we discuss the evaluation
of the mean time to failure (MTTF) by a variety of criteria (i.e., alternative
definitions of chip and digit failure). It is shown on the basis of proba-
bilistic arguments that the failure distribution for digits can be calculated
from the chip distribution. Likewise, in the case of thermal cycling, chip
and digit distributions are convertible. The parametric values under
normal operating conditions can be extrapolated from accelerated failure
data by means of semi-empirical correlations. When they are combined
with a device utilization model for a specific application, the MTTFs and
failure rates induced by the forward bias and temperature cycling can
be readily estimated.

Il. EXPERIMENTAL
2.1 Bias-aging

Seventeen 302A numeric devices were selected for long-term elevated
temperature forward bias-aging. Prior to aging (at ¢t = 0), the light output
of every segment was measured at 25°C by a standard technique.?

* The device was designed by C. R. Paola.
t A product of the Hysol Division, Dexter Corporation.
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Briefly, the output was determined segment by segment over a wide
range of pulsed test current inputs between 1 and 100 mA (including 2,
5,10, 20, and 50 mA). At each pulsed current, the duty cycle was adjusted
to assure a constant 1 mA dc average current to minimize junction
heating. The segment electroluminescence was detected by a PIN 10
diode and its output after amplification was handled by an appropriate
software program on an HP 9830A minicomputer to yield a table of in-
formation stored on a computer file for all devices under testing.* The
table contains the light output of each segment of a given device mea-
sured over the entire range of measuring currents employed. The lowest
and average initial light outputs were 0.021 and 0.035 millicandella/mA,
respectively.

Following initial testing, the 17 devices were split into two groups (9
and 8 units in each group). One of the groups was aged at 60°, the other
one at 125°C, in ovens continuously purged with filtered No. The devices
were placed in trays, each holding three devices, connected to power
supplies providing 10 mA dc forward bias. Periodically, all the devices
were removed from the ovens to determine the effect of bias-aging on
light output. Before performing the measurements by the above-de-
scribed procedure, the devices were allowed to cool for two hours to
25°C.

2.2 Thermal cycling

Ten 302A numerics were subjected to continuous temperature cycling
without bias in a controlled-environment chamber. Each cycle consisted
of cooling the devices in the chamber from room temperature (~25°C)
to a cold dwelling point at —40°C, then reversing to a warm dwelling
point at 125°C, and finally returning to ~25°C. At each temperature
extreme, the dwelling time was about 20 minutes. The cooling and
heating rates never exceeded 5°C/min.

The devices were mounted in ceramic sockets attached to a combi-
nation aluminum and phenolic test fixture through which electrical
connections could be made for periodic checks. As a result of progressive
thermal cycling, dark segments could be visually observed at the stan-
dard forward current of 10 mA dec. All the defective chips were faulty at
both temperature extremes as well as at room temperature. For the
duration of the first 100 cycles, checks were made at about every 5 cycles;
thereafter, the test interval was increased to approximately 25 cycles.

* The automated test facility was developed by J. W. Mann.
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lil. DATA HANDLING PROCEDURE

Whenever the degraded light output is measured, each device in the
sample is characterized by 8 segments X 8 electrical values (including
the decimal point and the device voltage at 10 mA). For a total sample
of 17 devices, as many as 1088 numbers are acquired per test at all current
levels. Obviously, computer storage, retrieval, and treatment of the data
together with a suitable graphic display are required for detailed analysis.
Therefore, a time-sharing program has been developed which plots the
relative electroluminescent efficiency in a unique manner. First, the
program LED/EFFCAL reads the permanently stored file of raw data
generated by each light output measurement of any ¢. A short terminal
dialog permits the user to name the type of device involved because, in
addition to the 3024, the program is also applicable to other classes of
numerics as well as to a group of 10 discrete LED chips. Moreover, one
can specify the aging temperature and room temperature test current
and one of the two plotting scales. Then, a file is written which includes
the device identification number, aging temperature, total accumulated
aging time, test current, and the number of devices in test under listed
conditions. Moreover, an array is created from the raw data which, for
every digit of each device,* contains, segment by segment, the relative
efficiency as a function of the elapsed aging time.

As shown in Fig. 1, in accord with the accepted convention, the seg-
ments are designated by the alphabetic codes A, B ... G. For the A
segment of the ith device, the relative efficiency at ¢ is given by

1
i, = 148 (1)
74(0)

where the conversion factor relating light output to electroluminescent
efficiency 7 was cancelled. The array includes r for each time the light
output has been measured. In addition, it may be interesting to know
the relative degradation of any segment in comparison with the mean
value. For this reason, we devised the following statistical indicators:

(i) Device or digit mean, F;

7 .
&
Fi= — 2
. (2
(it) Grand mean, 7
n 7 . n
L En En
F=z—1A—-1 _i=1 ’ 3)
n n

where n is the number of devices tested under identical conditions.

* Although in the case of a 302A numeric each device corresponds to a digit, allowance
is made in the program for numerics which consist of as many as 4 digits per device.
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Fig. 1—Top view of a 302A device showing letter designation of segments.

(itt) Standard deviation—upper and lower confidence limits of the
grand mean at ~68-percent confidence level, 7, and 7,

<i > —?)2>1/2

F,=F4——tast (4a)
n
and
n A _ 1/2
(Z = ¢i-m2)
Fo=F———" : (4b)
n

At the beginning of the file written for a given set of test conditions (i.e.,
aging temperature and current) 7, r, and ', are listed in a time sequence.
At the end of the file, we find 7; as a function of time for each digit.

A batch program named LED/EFFPLT accepts these arrays to produce
hard-copy plots of r versus time either using the rapid output STARE 3
system or the FR80 microfilm plotter, especially suitable for white prints
or viewgraphs. The two options for scales are log;¢r versus square-root
of time and r versus loggtime. In Fig. 2, a computer-generated graphic

RELIABILITY OF 302A NUMERICS 2987



EFFICIENCY RATIO

———————— DIGIT AVERACE
B GRAND MEAN
......... « « .. DEVIATION

| | 1 1 |
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SOME POINTS HAVE BEEN OFFSET FOR CLARITY

Fig. 2—Computer-generated plot of logio normalized efficiency (r = n/no) versus time 1/2
[hours!/2] for a 302A device aged at 125 °C and 10 mA. The dashed, dash-dot, and dot-dot
lines are the digit mean [eq. (2)], grand mean [eq. (3)], and standard deviation of grand
mean [eq. (4)], respectively.

output is presented for a 302A device aged at 125°C and 10 mA dc and
measured at 10 mA in the log;or versus V't projection. Note that, for each
segment of the digit, the symbol is its alphabetic designation in the order
shown in Fig. 1. When overlap of the letters interferes with clarity, a
slight horizontal displacement of the symbol along the time axis has been
introduced into the plotting routine. In addition to the discrete r values
of the individual bars, we also display the device mean, grand mean, and
its lower and upper confidence limits by continuous dashed, dash-dot,
and dot-dot lines, respectively. In Fig. 3, the data for the same device
are presented using the r versus log ¢ scale option. It can be readily seen
that, at the chosen testing intervals, the former scale provides an evenly
spread distribution of points at long aging times, while the latter (r vs.
log t) achieves well-separated spacings at short times. Up to 3200 hours,
the normalized efficiency of the 302A is apparently independent of time
when bias-aged at 60°C. This is shown in Fig. 4 on alog;¢r versus V¢ plot.
Although the r scale is magnified here compared to Fig. 2, it does not
appear to illustrate more than measurement fluctuations. Of course, this
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Fig. 3—Computer-generated plot of normalized efficiency (r = n/no) versus log;o time
for a 302A device aged at 125°C and 10 mA. The dashed, dash-dot, and dot-dot lines are
the digit mean }eq. (2)], grand mean [eq. (3)], and standard deviation of grand mean [eq.
(4)], respectively.

is consistent with the activation energy of red GaP LED degradation
(0.7eV)5 which leads to very little change in r at 60°C in the first.few
thousand hours.

These detailed computer-generated figures are very handy in a rapid
assessment of numeric degradation and also as an intermediate step for
further analysis. In particular, one can immediately see to what extent
an individual chip departs from the digit and grand means. In addition,
as shown in the next section, the MTTF of the failure distribution can
be readily evaluated from the plots under a variety of failure defini-
tions.

RELIABILITY OF 302A NUMERICS 2989



EFFICIENCY RATIO

09
EGEND
08 — F /_(:_/ B
M E /_D / c
-------- DIGIT AVERAGE
h— GRAND MEAN
............. DEVIATION
0.7 ! . 1 |
0 10 20 30 40 50 60

VTIME

SOME POINTS HAVE BEEN OFFSET FOR CLARITY

Fig. 4—Computer-generated plot of log;o normalized efficiency (r = n/no) versus time /2
[hours]/2 for a 302A device aged at 60°C and 10 mA. The dashed, dash-dot, and dot-dot
lines are the digit mean [eq. (2)], grand mean [eq. (3)], and standard deviation of grand
mean [eq. (4)], respectively.

IV. RESULTS AND DISCUSSION
4.1 Bias aging

To compare the bias-aging results on 302A numerics with existing
information involving discrete red GaP LED chips, we have replotted
from Fig. 3 the grand mean of the normalized efficiency and its standard
deviation as a function of logigt in Fig. 5. Superimposed on the same
figure is the calculated course of degradation at 125°C ambient tem-
perature and 10 mA stress current (132°C junction temperature). The
theoretical curve is based on the diffusion theory of red GaP LED deg-
radation.!

Recently, the time evolution of nonradiative centers, thought to be
responsible for the long-term degradation of red GaP LEDs, has been
modeled. It has been postulated that degradation is due to the diffusion
and accumulation of an undesirable impurity or point defect through
the depletion layer as the p-n junction potential, which retards defect
motion, is reduced by the forward voltage. An explicit analytical ex-
pression between r and t was derived which provided a good fit to the
degradation data for discrete diodes obtained at various junction tem-
peratures and stress currents. The equation for r is of the form!

1
V1 +rg+ velt/o)’

r(t) = (5a)
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Fig. 5—Normalized efficiency versus log;o time for 302A numerics aged at 125°C and
10 mA. The full line is calculated from the diffusion theory of red LED degradation [eq.
(5)]. The data points are the grand mean and its standard deviation for all segments of
the sample (see Fig. 3).

where ¢ is an infinite series, v is a constant which is proportional (among
other quantities) to the initial undesirable impurity concentration and
electron lifetime of a diode lot, and r reflects the rapid drop in 7 at rel-
atively short aging times. The quantity 6 is related to the diffusivity (D),
activation energy (AH,), and stress current (Igress) according to

% = aIstresse_AHa/k T, (5b)
where «a is a known constant of proportionality.

To calculate the degradation curve in Fig. 5 from egs. (5), we made use
of the parameters listed in Ref. 1. However, on account of the lot-de-
pendent properties of v, a small upward adjustment in its value was re-
quired to achieve optimum description of the data. Without this change,
the computed r values would be approximately 10 percent above the
plotted ones at times in excess of 1000 hours.

The good agreement seen between the experimental normalized ef-
ficiencies for 302A numerics and the theoretical curve indicates that
these red devices do not exhibit failure modes in addition to LED deg-
radation. This finding is corroborated by the 125°C storage aging of
numerics which has not discolored the Hysol 1700 encapsulant. Thus,
it appears that the optical coupling efficiency of 302A numerics is in-
variant during bias aging.

Since the normalized efficiency of individual segments visibly deviates
from the grand mean (Fig. 2), the failure of 302A numerics must be
distributed by some statistical law. Detailed digit-by-digit failure plots
similar to Fig. 2 permit the determination of the failure distribution as
a consequence of bias aging. The following possible failure criteria are
worthy of exposition in some detail:
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(i) Chip failure: Whenever any one of the 7n chips in the samples
reaches riy = 0.5, that time is denoted as the time to chip failure
(TTCF).

(i7) Digit failure: The time for the first chip in each device to attain
ri, = 0.5 is designated as the time to digit failure (TTDF).

(#7i) Digit mean failure: The time for any digit mean 7; [eq. (2)] to
equal 0.5 is named the time to digit mean failure (TTDMF);

(iv) Grand mean failure: When the grand mean normalized efficiency
[eq. (3)] F = 0.5, we speak of time to grand mean failure (TTGMF).
Each one of these quantities possesses a mean except TTGMF.

The total number of chips in our sample of 8 aged at 125°Cis8 X 7 =
56. In Fig. 6, we present on lognormal graph paper the time to chip failure
as a function of cumulative failure percent.34 The TTCF values were
taken from computer-generated plots for each 302A digit, identical in
form with Fig. 2, and then rank-ordered to provide the cumulative fail-
ure. It should be noted that TTCFs above ~3400 hours were obtained by
linear extrapolation on the V¢ plots.5 Hence, the longer the time to chip
failure is, the less accurate the TTCF value becomes. Fortunately, this
is probably not important except in the case of the last two points.

The linearity of the TTCF plot in Fig. 6 indicates that the failure dis-
tribution for 302A numeric chips is lognormal, as is the case for 1A
opto-isolators,® which utilize GaP LEDs and also for numerous semi-
conductor devices.” Least-square analysis provides the following log-
normal parameters for the chip failure distribution.*

e =Int,, =7.783
o, = 0.37,
where the median life, £,,4, is 2400 hours. It can be seen that the distri-
bution is very tight, as ¢, is quite small.

6000

o
o 4000 [~ O CHIP
4 A DIGIT MEAN
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Fig. 6—Time to failure versus cumulative failure percent for 302A numerics aged at
125°C and 10 mA. The symbols O, O, and A correspond to failure criteria (¢), (if), and (ii1),

respectively (see text). The solid line is a least-square line for chip failure, while the dashed
line is calculated from eq. (9) for digit failures.
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The time to digit mean failure as a function of cumulative failure
percent is also shown in Fig. 6. Each one of the computer-generated plots
for each device, similar to Fig. 2, yields one value of TTDMF. Because each
time value is the result of averaging seven normalized efficiencies, the
standard variation is smaller than for TTCF. However, the median life
tme = 2200 hours, which is almost the same as for chip failure.

Perhaps the most important distribution for numerics is the time to
digit failure, since it is reasonable to assume that if any one chip in a 7-bar
numeric loses half its efficiency, the displayed numerals may not be
correctly discriminated by eye. The TTDF distribution is also shown in
Fig. 6. Its construction from the computer-generated digit-by-digit
graphic outputs is self-evident. We can see that in comparison with a t,,,,
of 2400 hours for chips, the median life for digits, s, is reduced to 1600
hours with an accompanying decrease in ¢. In Table I, we summarize the
median lives obtained by a variety of methods. It can be seen that all the
values but the median of TTDF are closely spaced.

However, the chip and digit failure distributions are related by the
laws of probability. The reliability function for chip failure R, is the
complement of the plotted cumulative failure @,, hence at any time ¢

Ro(t) = 1= Qa(t). 6)

R, expresses the probability that the chip will survive to ¢. If the chip

failures in the device are independent, then the reliability of the digit,

R, assuming device failure if any one of the segments fails (r4 < 0.5),
is given by®

Ry(t) = RZ(t)- (7)

Obviously, the TTDF definition is consistent with eq. (7). The cumulative
failure function for device failure, @y, is of the form

Qp(t) =1 —Ry(t) =1 — RI(). (6))
Finally, a combination of egs. (6) and (8) yields
Qp(t) =1—(1—Q.(t))". 9

The cumulative device failure function @, for 302A numerics can be

Table | — Median lives for a 302A red numeric
at 125°C and 10 mA
Method tm (hours)
Chip failure 2400
Digit mean failure 2200
Digit failure 1600
Grand mean failure* 2300
Diffusion theory (r = 0.5)* 2200

* Not a median but a single value.
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readily obtained from the full line (lognormal distribution) in Fig. 6 and
eq. (9). The dashed line in Fig. 6 is the calculated ;. Considering the
small sample size in terms of digits, the calculated line is a surprisingly
good representation of the cumulative failure data for digits. The median
life appropriate for €} is 1500 hours, which should be compared with the
empirical result of 1600 hours. Therefore, it matters very little how the
median lives are computed (chip versus device), as long as the results
are correctly interpreted. Furthermore, although the median lives ob-
tained by various criteria nearly coalesce, this may not be true of the
MTTFs and failure rates as those quantities also involve the standard
deviations which, according to the slopes over the data in Fig. 6, are quite
variable.

4.2 Thermal cycling

In thermal cycling, chip failure is sudden and manifests itself as a dark
segment on testing. In analogy with the definition invoked in the section
on bias-aging, digit failure occurs at the number of thermal cycles at
which the very first segment fails to light up. In Fig. 7, we present a
lognormal projection of the number of cycles to failure versus cumulative
failure percent, both in terms of chip as well as device failure, for 302A
red numerics encapsulated in Hysol 1700 epoxy.

Again, as in the case of bias-aging, the failure distribution follows the
lognormal pattern, as it plots as a straight line on the lognormal graph-
paper. Least-square analysis yields the following parameters for chip
failure:

MHte = In tmte = 10 and Otc = 3.27,

where ¢ = 23,350 is the median number of cycles to failure (MCTF).
The large standard deviation corresponds to a widely spread failure
distribution. This is also clear from the steepness of the data and the
least-square (solid) line in Fig. 7.

The probabilistic equation derived in the previous section on bias-
aging to calculate the digit failure distribution from information on chips
is also valid for thermal cycling. Applying eq. (9) to the lognormal line
for chips, we can calculate the number of thermal cycles to failure as a

function of cumulative failure function for digits. The dashed line in Fig.
7 represents the digit cumulative failure function. The digit MCTF is 300.
It is apparent that there is excellent agreement between the theoretical
line and the data points for digit failure.

The effect of increasing the number of digits in the same package is
also shown in Fig. 7. The dash-dot line is the cumulative failure function
for a hypothetical 302A-like device consisting of four digits (28 bars).
It is obvious that, with increasing complexity, there is a drastic drop in
the MCTF with a somewhat compensating drop in standard deviation.
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Fig. 7—Number of thermal cycles to failure versus cumulative failure percent for 302A
numerics, encapsulated in Hysol 1700 epoxy, thermally cycled between —40° and 125°C.
The solid line is a least-square line for chip failure, while the dashed line is calculated from
eq. (9) for digit failure.

T'o locate the source of thermal cycle failure, a number of devices with
numerous chip failures were lapped and polished until the gold leads to
the diodes were exposed. A detailed view of the lapped area of a 302A
numeric is illustrated in Fig. 8. The polishing of the lens continued to
the point at which the anode connecting Au wire was broken between
the lead frame and the die-bonding pad. Due to the ambiguity of viewing
the location of failure, simple electrical checks were performed. Using
cathode pins as the common terminal, a fine needle point probe with +2V
bias was successively applied to the ends of the severed Au wire and to
the bonding pads by piercing the plastic. As a result of such tests, we
determined that, after thermal cycling, open circuits develop which are
evenly distributed between breaks in the neck of the ball bond and the
heel of the wedge bond.
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Fig. 8—Cutaway view of a 302A numeric showing the exposed bonds.

4.3 Reliability calculations—device utilization model

It should be very strongly emphasized that the adequacy of a given
median life and ¢ combination based on exhaustive tests can only be
judged if the device designer possesses information from systems engi-
neering on its anticipated application. Hence, a device utilization model
for the 302A numeric is essential.

One use of the 302A display is in Transaction telephone sets.
If we envision very frequent operation, such as in airline terminals, fresh
information may appear on the displays as often as every minute for a
30-s duration. The devices operate at 10 mA dc, which leads to a 7°C
junction heating. Thus, if the ambient temperature is 27°C, the devices
are exposed to 34°C. During the off-state, the time (30 s) is too short to
reach thermal equilibrium with the ambient. Therefore, we assume a
temperature fluctuation or cycling excursion of no more than AT =
2°C.

The model in combination with the reliability data derived herein
permit the estimation of the failure rates and MTTFs during device op-
eration under forward bias, and also on account of temperature varia-
tions. We shall give the reliability-associated properties for both LED
chips and digits at 20 years of service.

(1) Bias Aging: The accepted activation energy for red LED degradation
is 0.7 eV.5 With this value, the Arrhenius-law multiplier between the
aging temperature (132°C) and use temperature (34°C) becomes 604.
Applying the multiplier to the chip and digit median lives, ¢,,, = 2400
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and t,,;, = 1600 hours, respectively, we obtain at the use tempera-
ture*

tma(34°C) = 1.45 X 108 hours, t,,, = 9.66 X 10° hours.

The standard deviations are usually taken as temperature-independent
constants, and their values are

o, = 0.37 and o = 0.27.

It should be noted that the device failure distribution (Qp) is not strictly
lognormal and o}, results from the linearization of the dashed line in Fig.
6.

The above parameters yield the following MTTFs? and maximum
failure rates for a 20-year? service life beyond infant mortality:34

MTTF, = 1.57 X 106 hours and MTTF; = 1.01 X 106 hours
and
A¢ K 1 FIT and A\ < 1 FIT.

These failure rates for bias aging are outstandingly low. This is a con-
sequence of the fact that both the chip and device distributions, as shown
in Fig. 6, are very tight, corresponding to a small ¢. If it is assumed that
the investigated lot was atypical and occasionally ¢, and ¢, may become
as large as 1 and 0.9, respectively, then we obtain for the As

Az = 90 FITs and A, = 150 FITs,

indicating, as expected, that the failure rate for chips is less than for
digits.

(it) Thermal Cycling: To relate the median number of cycles to failure,
MCTF, obtained by long-term wide AT excursion experiments to the
small AT excursions encountered in use, an acceleration factor is re-
quired. We have estimated this factor on the basis of previous work on
gold beam fatigue. Dais and Howland® have shown, for rubber encap-
sulated devices tested in the plastic deformation domain, that the
magnitude of the temperature excursion between AT = 400° and 45°C
is a monotonically decreasing function of the median number of cycles
to failure. We can characterize the dependence of AT on cycles by a
power law with an exponent increasing from ~—0.5 (Coffin’s Law!9) to
a limiting value of ~—0.1. In addition, theoretical analysis of typical
device structures indicates that the magnitude of the maximum elastic
AT span for rubber encapsulant is about twice that for epoxy.!! Thus,

* The subscriptsa and b denote chip and device reliability properties, in accordance with
the definitions in Section 4.1.

t MTTF = t,e"%2

! The effective service life is only 10 years due to the duty factor of 0.5.
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it seems reasonable to take AT = 20°C as the transition temperature
between elastic and plastic deformation for the epoxy encapsulant.
Consequently, by extrapolating the results of Dais and Howland? be-
tween AT = 165° and 20°C, we obtain ~3 X 107 as the approximate ac-
celeration factor appropriate for 302A numerics. Since a temperature
cycling range of only 2°C is anticipated in use, the deformation always
remains elastic. Hence, the acceleration factor and failure rates given
here should be considered as lower and upper bounds, respectively.

A combination of the acceleration factor and the experimental values
MCTFexpq (23350) and MCTFepp (300 cycles) for chip (a) and digit (b)
failure, respectively, yields

MCTFyuseq = T X 1011 cycles and MCTF 40 = 9 X 10° cycles
and Otcqa = 3.27 and Oteb = 2,

where oy} is from the hypothetical linearization of the dashed line in
Fig. 7. Since in operation there are 60 cycles/hour, the median lives be-
come

tmteca = 1.2 X 1010 hours and ¢ peep = 1.6 X 108 hours.

The above parameters yield the following MTTFs and failure rates,
Ate, at 20 years of service life:34

MTTF;cq = 2.5 X 1012 hours and MTTF,¢ = 1.1 X 10° hours
Aeca = 2 FITS and \;ep = 4 FITs.

In conclusion, we find that the 302A red numeric performs very reli-
ably in specific applications such as the Transaction telephone.
We have shown that the long-term failure rates associated with LED
degradation and junction heating induced thermal cycling are very low,
namely, no more than 4 FITs over 20 years of continuous service.

V. ACKNOWLEDGMENTS

We are grateful to G. A. Dodson for a critical review of the manuscript.
We appreciate the useful practical advice provided by C. R. Paola, B.
Johnson, and J. W. Mann.

REFERENCES

A.S. Jordan and J. M. Ralston, J. Appl. Phys., 47 (1976), p. 4518.

. J. M. Ralston, Rev. Scientific Instruments, 43 (1972), p. 876.

J. Aitchison and J. A. C. Brown, “The Lognormal Distribution,” Cambridge: Cam-
bridge University Press, 1957.

. A. S. Jordan, Microelectronics and Reliability, 18, No. 3 (1978), in press.

. J. M. Ralston, unpublished work.

. R. H. Saul, E. H. Nicollian, and D. A. Harrison, unpublished work.

SUTs WO

2988 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



7. D. S. Peck and C. H. Zierdt, Jr., Proc. IEEE, 62 (1974), p. 185.
8. “Reliability Engineering,” ARINC Research Corporation, W. H. VonAlven, editor,
Englewood Cliffs, N.J.: Prentice-Hall, 1965.
9. J. L. Dais and F. L. Howland, unpublished work.
10. S. 1Sé(;l\élanson, “Thermal Stress and Low Cycle Fatigue,” New York: McGraw-Hill,
11. J. L. Dais, unpublished work.

RELIABILITY OF 302A NUMERICS 2999






Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 8, October 1978
Printed in U.S.A.

Intelligible Crosstalk Performance
of Voice-Frequency Customer Loops

By K. I. PARK
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A methodology for evaluating the intelligible crosstalk performance
of voice-frequency customer loops is developed in this paper. Using this
methodology, intelligible crosstalk probabilities are calculated for a
representative sample of loops in the plant. The effect of gain on loop
crosstalk performance is then evaluated for a particular example of
gain application where length-dependent gain ranging approximately
from —1 to 9 dB is added. Two possible locations of gain application
are evaluated: the central office and the telephone set. Presently, no
crosstalk performance objectives exist for loops. For planning purposes,
however, an intelligible crosstalk probability of 0.1 percent has been
used in the past as a limit for satisfactory performance. In comparison
with this limit, the crosstalk performance of the present loop plant
(loops without gain) is satisfactory. For the particular example of gain
application considered in this paper, gain applied at the central office
has only a small effect on loop crosstalk performance. However, gain
applied at the telephone set degrades loop crosstalk performance sig-
nificantly, increasing the crosstalk probability above the 0.1 percent
level on about 15 percent of the sample loops evaluated.

I. INTRODUCTION

A telephone user occasionally receives an extraneous speech signal
as a result of interference between communications circuits, which is
referred to as crosstalk. Crosstalk not only produces annoyance to the
affected customer but also constitutes loss of another customer’s privacy
when it is intelligible, and is an important concern in transmission sys-
tems design and planning. For example, if, with the advancement of loop
electronics, gain devices are applied on loops to enhance the speech signal
level, the maximum allowable amount of gain and the location of its
application may be restricted by the resulting crosstalk performance
degradation. In this paper, a methodology is developed for evaluating
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the intelligible crosstalk performance of voice-frequency customer loops
that can be used in loop transmission systems design and planning. In
particular, the methodology can be used in (i) establishing loop crosstalk
performance objectives, (i) allocating the objectives to components of
the loop plant, such as cable facilities, central office switches, and cus-
tomer-premises wiring, and (iit) evaluating effects of new technology
and new loop design rules on crosstalk performance.

Intelligible crosstalk performance is measured by the crosstalk
probability, which is defined as the probability that a customer will hear
one or more intelligible crosstalk words during a call. The crosstalk
probability on customer loops depends on the probability distributions
of such random variables as call holding time, quiet interval between
calls, disturbing talker volume, crosstalk path loss, circuit noise, and
disturbed-listener hearing acuity. These underlying probability distri-
butions in turn depend on telephone connection configurations and
crosstalk coupling loss characteristics of the multipair cables used for
loops.

The loop crosstalk evaluation methodology developed in this paper
can be divided into three basic parts as shown by the block diagram of
Fig. 1: a cable crosstalk coupling model, a telephone connection model,
and a crosstalk probability model. The cable crosstalk coupling model
provides equations for calculating near-end and far-end crosstalk cou-
pling losses between customer loop wire-pairs in multipair cables. The
model contains adjustable parameters, which are estimated by fitting
the model to measured crosstalk coupling loss data. The telephone
connection model describes typical intraoffice (loop-to-loop) telephone

CROSSTALK COUPLING LOOP SURVEY DATA AND
LOSS DATA RESISTANCE-DESIGN RULES
CABLE
CROSSTALK TELEPHONE
CONNECTION
COUPLING MODEL
MODEL

TALKER VOLUME AND

CIRCUIT NOISE DATA INTELLIGIBLE

—_— CROSSTALK
INTELLIGIBILITY PROI\%S'IEILITY
THRESHOLD SUBJECTIVE

TEST DATA 17

PROBABILITY OF HEARING
INTELLIGIBLE CROSSTALK
ON LOOPS

Fig. 1-—Modeling of loop crosstalk.

}e—— TRAFFIC DATA
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connections as the disturbed connections and identifies potential
crosstalk exposures to other intraoffice or toll connections. For the
purposes of this study, loop characteristics, such as length, loading, and
loss, are described, based on either theoretical loop design rules! or the
information obtained from the loops sampled in the 1964 Loop Survey.2
The crosstalk probability model, the last of the three parts shown in Fig.
1, combines the information provided by the preceding two models with
data on traffic activity on loops, talker volume, circuit noise, and listener
hearing acuity, and determines, by a Monte Carlo simulation, the
crosstalk probabilities for loops.

The methodology developed in this paper provides the following
features:

() By virtue of the analytical cable crosstalk coupling model in-
troduced here, the loop crosstalk performance can be evaluated as a
function of loop length, rather than only for the fixed length for which
measurements are available.

(z1) The distribution of crosstalk probability is obtained for all the
loops sharing a cable of arbitrary length, or for loops of different lengths
sampled from the loop plant.

(tii) The telephone connection model developed here is general
enough to include a number of different crosstalk exposures, such as
near-end and far-end crosstalk occurring in the disturbed customer’s
loop and near-end and far-end crosstalk occurring in the loop of the
customer at the other end of the disturbed connection.

(fv) The effect of gain on crosstalk is evaluated for gain applied at
the telephone set as well as for gain applied at the central office.

(v) For disturbing talkers’ speech volumes, the latest speech volume
data obtained in 19763 is used.

A number of studies on the subject of crosstalk in general were made
previously at Bell Laboratories, including those by T. C. Spang, B. E.
Davis, M. G. Mugglin, D. H. Morgen,* and P. M. Lapsa.® Lapsa, in par-
ticular, considered a loop crosstalk problem similar to one specific case
of the present study—the case of the effect of gain applied at the central
office. Focusing primarily on long rural loops with gain applied at the
central office and considering near-end crosstalk (NEXT) at the central
office as the major crosstalk exposure, he assumed an “electrically long”
loop—sufficiently long to render the NEXT coupling loss independent
of length—and used measured NEXT coupling loss data. For disturbing
talkers’ speech volumes, Lapsa used McAdoo’s speech volume data ob-
tained in 1960.6 He concluded that gain of 6 dB or less applied at the
central office would be acceptable. In comparison with this, the results
of the present paper on the effect of the central office gain are more
optimistic because of, among other things, the use of more recent cou-
pling loss and speech volume data in the present study, as discussed in
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Section 3.1. In the case of the effect of gain applied at the telephone set,
no similar study was made previously that can be compared with the
present study.

Section II describes the three basic models constituting the method-
ology shown in Fig. 1 and determines the probability distributions of the
underlying random variables. Section III evaluates the loop crosstalk
probability in detail. Section IV is the summary of the loop crosstalk
probability evaluation results.

. METHODOLOGY
2.1 Twisted multipair cable crosstalk coupling model

Crosstalk performance of a customer loop depends on, among other
things, the electromagnetic coupling characteristics between the loop
and the other loops sharing the same twisted multipair cable. An ana-
lytical model was developed to provide equations for the near-end and
far-end crosstalk coupling losses between wire-pairs in a cable as a
function of frequency, cable length, and terminating impedances. Such
a model is necessary because coupling loss measurements are available
only for certain frequencies, cable lengths, and terminating conditions.
. A detailed derivation of the model is described in an unpublished work
by the author.” In this section, this cable crosstalk coupling model is
described in general terms.

A twisted multipair cable consists of a number of twisted wire-pairs
stranded together. Each wire-pair is used as a loop, which is permanently
assigned to a customer as the transmission path between his telephone
set and the serving central office. Although the wire-pairs in a cable are
isolated from one another, a certain amount of electromagnetic coupling
between simultaneously active pairs is unavoidable.

As illustrated in Fig. 2, crosstalk is referred to as near-end crosstalk
(NEXT) when the signal source on the disturbing pair and the point of
crosstalk reception on the disturbed pair are at the same end of the cable,
and far-end crosstalk (FEXT) when they are at the opposite ends of the
cable. The difference in decibels between the disturbing power and the
received crosstalk power is referred to as coupling loss. Referring to Fig.
2, NEXT and FEXT coupling losses from pair j into pair i, denoted by
NEXT;; and FEXT;;, are defined by the following equations:

NEXT;; = Vj(disturbing,near-end) — Vi(disturbed,near-end) (1)
FEXTij = V'(disturbing,far-end) - Vi(disturbed far-end)» (2)

where Vj (disturbing,near-end) and Vj(dlsturbmg,far end) are the dlSturblng Slgnal
powers at the source and the far end on the disturbing pair, pair j, ex-
pressed in decibels relative to a reference power; and V;gisturbed near-end)
and V(gisturbed far-end) are the crosstalk signal powers at the near end and
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Fig. 2—Definition of NEXT and FEXT: NEXT or FEXT coupling loss from pair j into
pair is the decibel difference between the disturbing volume V; and the crosstalk volume
Vi measured at the points shown by X. (a) Near-end crosstalk (NEXT). (b) Far-end
crosstalk (FEXT).

the far end on the disturbed pair, pair i, expressed in decibels relative
to a reference power.

Crosstalk performance of a multipair cable can be characterized by
determining NEXT and FEXT coupling losses defined by eqs. (1) and (2)
for all possible combinations among its wire-pairs. In this paper, the
coupling losses are determined analytically by the cable crosstalk cou-
pling model mentioned earlier.” The model provides equations for NEXT
and FEXT coupling losses as a function of frequency, cable length, and
the terminating impedances of the disturbing and disturbed pairs. It
contains certain adjustable parameters which are dependent on the
proximity between pairs in a cable and which can be determined by
fitting the model to measured crosstalk coupling loss data. ‘

The model was fitted to recent crosstalk data measured at Bell Lab-
oratories, Atlanta, on a typical cable used in the loop plant. The data
consisted of the NEXT and FEXT coupling losses of 300 pair-to-pair
combinations (all possible combinations) in a 25-pair, 26-gauge, non-
loaded polyethylene insulated cable (PIC), measured at eight different
frequencies (2, 3, 5, 10, 28, 56, 76, and 150 kHz). The length of the mea-
sured cable was 3 kft, and all pairs were terminated in pure resistive, 600
ohms at both ends. For each of the 300 pair-to-pair combinations, the
model parameters were determined by the least-squares method. Two
examples of the results of fitting the model to the data are shown in Fig.
3, where the abscissa is frequency and the ordinate NEXT coupling loss
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Fig. 3—Two examples of the results of fitting the analytical cable crosstalk coupling

model to NEXT coupling loss data measured on a 3-kft, 25-pair, 26-gauge, nonloaded PIC
cable with pure resistive 600-Q terminations.

in decibels. The As and Os show the measurements* and the solid
curves, the theoretical coupling losses fitted by the model. The rms errors
between the measurements and the fitted values for these two particular
pair combinations are 0.8 and 1.2 dB, respectively.

Figure 4 presents the cumulative distribution functions (CDFs) of the
voice frequency (1 kHz) NEXT and FEXT coupling losses of all the 300
pair-to-pair combinations of the 25-pair cable, calculated by the model
for an arbitrarily chosen reference cable length of 1 kft. The far-end and
near-end terminating impedances were fixed at (300-j300) ohms and
(600 + j200) ohms, respectively, the average terminating impedances
of the loops at the central office and at the telephone set, estimated from
the 1964 Loop Survey.?

Coupling losses vary with cable length. Figures 5 and 6 show length
translation factors normalized to 1 kft, as calculated by the model for
the voice-frequency NEXT and FEXT coupling losses. Figure 5 shows that,
beyond a certain length, in this case about 30 kft, the translation factor
for NEXT no longer changes with length. A cable longer than this is re-
ferred to as electrically long. From Fig. 5, the NEXT loss at such an
electrically long length is about 7 dB smaller than the NEXT loss at 1 kft.
Figure 6 shows that FEXT loss keeps decreasing with cable length without
saturation.

* As and Os in Fig. 3 identify the pair combinations with the 1-percent worst and the
median NEXT coupling loss among the 300 measurements at 2 kHz, respectively.
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Fig. 4—The cumulative distribution functions (CDFs) of the voice-frequency (1 kHz)
NEXT and FEXT coupling losses calculated by the theoretical model with cable length fixed
at 1 kft for the 25-pair, 26-gauge, nonloaded PIC cable. The coupling losses at other cable
lengths are obtained by using the length translation factors calculated by the model, shown
in Figs. 5 and 6.

The NEXT and FEXT coupling losses at lengths other than 1 kft can
be obtained by subtracting the corresponding length translation factors
determined from Figs. 5 and 6 from the 1-kft coupling losses shown in
Fig. 4. For example, the 1-percent worst NEXT coupling loss at 1 kft is,
from Fig. 4, about 91 dB and the 1-percent worst NEXT coupling loss at
an electrically long length, say 50 kft, is obtained to be 84 dB by sub-
tracting the length translation factor of about 7 dB, determined from
Fig. 5, from the 1-kft loss, 91 dB.

The data used to determine the model parameters were measured on
an unspliced, laboratory cable. In the plant, several reels of cable may
be spliced to form a single long cable. PIC cables are straight spliced; that
is, pair identifications on the first reel are maintained over the subse-
quent reels. This type of splicing has theoretically no effect on the model
prediction. For randomly spliced cables, such as pulp cables, the splicing
may have some effect because pair locations change over the subsequent
reels. At present, there are no appropriate field measurements that can
be used to examine the effect of random splicing on crosstalk. However,
other things being equal, random splicing should render the crosstalk
prediction by the model somewhat conservative (pessimistic) because,
with such splicing, the worst crosstalk pair combination of the first reel
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Fig. 5—Length translation factor normalized to 1 kft, calculated by the theoretical model
for the voice-frequency NEXT.

would not necessarily be the worst combination in the subsequent
reels.

The coupling losses discussed above represent the coupling losses of
nonloaded cables, which make up the majority* of the loops in the plant.
At the present time, there is no theoretical means of predicting the effect
of loading on crosstalk coupling losses. Based on Bell Laboratories
coupling loss data measured on loaded cables, it is assumed that, other
conditions being equal, loaded cables, which make up a relatively small
fraction of the loop plant, have approximately 3 dB smaller NEXT losses
than nonloaded cables at 1 kHz. For FEXT, the same FEXT coupling
losses are used for both nonloaded and loaded cables.

2.2 Telephone connection model

A model of telephone connections is described in this section to
identify potential crosstalk exposures and determine the distributions
of received crosstalk volume and other random variables affecting
crosstalk performance. On connections involving trunks as well as loops,
the crosstalk on trunks is dominant. To evaluate the loop crosstalk taken
alone, intraoffice connections, consisting of two loops connected at the
central office, are considered the disturbed connections. Intraoffice

* The 1964 Loop Survey (Ref. 2) shows that 84 percent of the loops sampled in the survey
are nonloaded loops.
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Fig. 6—Length translation factor normalized to 1 kft, calculated by the theoretical model
for the voice-frequency FEXT.

connections have relatively low circuit noise, providing low masking on
crosstalk intelligibility, and thus are in general most susceptible to in-
telligible crosstalk. As the disturbing connections, both toll and in-
traoffice connections are considered.

As shown in Fig. 7, a consumer at one end of an intraoffice connection
is subject to the following four potential crosstalk exposures: NEXT and
FEXT occurring in his own loop, and NEXT and FEXT occurring in the
loop of the customer at the other end of the disturbed connection.
Comparing Fig. 2 with Fig. 7, the cable end where the coupling losses are
defined corresponds to the telephone set line-terminals for the first two
crosstalk exposures and the central office loop terminations for the latter
two exposures. For convenience, therefore, the first two exposures will
be referred to in this paper as “line terminal NEXT” (LTNEXT) and “line
terminal FEXT” (LTFEXT) and the latter two as “central office NEXT”
(CONEXT) and “central office FEXT” (COFEXT). Of these four crosstalk
exposures, LTNEXT is, in general, most important because, with this
exposure, the disturbing talker’s volume is attenuated only by the cou-
pling loss between the two loops involved, and there are no additional
losses in the crosstalk path. In the other three exposures (LTFEXT, CO-
NEXT, and COFEXT), the disturbing talker’s volume is attenuated by
loop losses in addition to coupling losses, and thus the crosstalk from
such an exposure is less likely to be intelligible than LTNEXT. On the
other hand, if gain is applied on loops in the future, the relative impor-
tance of the four crosstalk exposures may change depending on the lo-
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cation of the gain application. The effect of gain on crosstalk will be
discussed in Section 2.4.

The crosstalk level in VU (volume units) received at the line-terminals
of a disturbed customer’s telephone set is the speech level (in VU) at the
disturbing talker’s telephone set minus the loss (in decibels) of the
crosstalk path from the disturbing talker to the disturbed listener. The
loss of the crosstalk path includes the loss from the disturbing talker to
the point of crosstalk coupling, the coupling loss and the loss from the
point of crosstalk coupling to the disturbed customer’s telephone set.
The crosstalk level on pair i received from pair j for the four crosstalk
exposures, denoted by VirnexT;, ViTFEXT))> VCconEXT; and VcorexT;,
are given by the following equations:

V LwexT; = Vi, — LTNEXT;; (3)
Vurrext; = Veo; — Le — LTFEXT;; (4)
VeonexT; = Vco; — CONEXT;j — Lo (5)

Veorext; = Vir; — L1 — COFEXT;; — Lo, (6)

where Vir; and Vo, denote the disturbing talker volume at the line
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terminals and the central office, LTNEXT;;, LTFEXT;;, CONEXT;; and
COFEXT;j denote NEXT and FEXT coupling losses at the line terminals
and the central office [as defined by egs. (1) and (2)], and L; and L»
denote the losses of the loops in the two cables involved in the loop-
to-loop disturbed connection. Since talker volume may be assumed to
have a same distribution on all pairs in a given cable, the subscript j may
be dropped from the disturbing talker volume in the above equations.

The electrical talker volume as measured at the serving central office
was determined by a recent survey undertaken by Bell Laboratories to
be nearly normally distributed with a mean of —22.2 VU (volume unit)
and a standard deviation of 4.6 dB for intraoffice calls and a mean of
—21.6 VU and a standard deviation of 4.5 dB for toll calls.3 These latest
speech volume data are used in this paper. These data show that there
is very little difference in talker volume statistics between intraoffice
and toll calls in contrast to the 1960 McAdoo speech volume data,® which
showed a mean of —24.8 VU with a standard deviation of 7.3 dB for in-
traoffice calls and a mean of —16.8 VU with a standard deviation of 6.4
dB for toll calls. The standard deviation of the new speech data is con-
siderably smaller than that of the McAdoo data.

The crosstalk volume equations for LTNEXT and COFEXT, eqs. (3)
and (6), involve the electrical volume at the telephone set line terminals
of the disturbing talker, V1. Presently, talker volume statistics at the
telephone set line terminals are not available. To obtain the line-terminal
talker volume statistics, as a function of loop length, from the central
office statistics, the following expressions apply:

mVLT(x) = 1cho + mEz} - Eq(x) N
svir = (sVeo — sE)V2, (8)

where my;(x) and sy, denote the mean and standard deviation of the
talker electrical volume at the telephone set line-terminals, my ., and
Sy o the mean and standard deviation of the talker volume measured
at the central office, E1(x) the acoustic-to-electric transducer power
loss,* as a function of loop length x, between the input acoustic pressure
applied at the telephone set transmitter and the output voltage produced
at the telephone set line terminals, and mg, and sg, the mean and
standard deviation of the acoustic-to-electric transducer power loss
between the acoustic pressure at the telephone set transmitter and the
output voltage at the loop termination at the central office.

In (7), the term in the braces translates the mean electrical talker
volume at the central office, my g, into the mean acoustic pressure at
the transmitter by adding the mean acoustic-to-electric power loss, mg.,,

* These transducer power losses are similar to, but different from, the EARS (Electro-
Acoustic Rating System) losses discussed in Section 2.4.1: these power losses are fre-
quency-weighted in a different manner than the EARS losses.
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averaged over a representative population of loops of various lengths.
This translation assumes that the talker acoustic pressure at the trans-
mitter is not correlated with loop length. The subtraction of E1(x), the
acoustic-to-electric power loss at a given loop length x, from the term
in the braces translates the mean acoustic pressure into the mean elec-
trical speech volume at the line terminals for that specific loop length
x. Figure 8 shows the mean electrical speech volume at the telephone
set line terminals as a function of loop length, obtained by eq. (7) from
the mean central office talker volume of —22.2 VU of intraoffice calls
presented in Ref. 3. From (8), the standard deviation of the line-terminal
talker volume is determined to be 3.9 dB. )

Circuit noise received at the end of the intraoffice (loop-to-loop)
connection is the power sum of three independent noises: (¢) the far-end
talker’s carbon transmitter noise (IN1), attenuated by the losses of the
two loops of the connection, (it) the noise of the far-end talker’s loop
including the noise contributed by the central office (IV»), attenuated
by the loss of the near-end loop, the disturbed listener’s loop, and (iii)
the noise of the near-end loop (IV3):

N=(N;—L;{—Ly) ® (Ny— Ly) ® N3, (9)

where L1 and L, denote the losses of the two loops in the connection and

MEAN SPEECH LEVEL IN VU AT THE TELEPHONE SET
LINE-TERMINALS
| !
N -
S ©
f

30 1 L1 1 { ] 1 ] ]
0 5 10 15 20 25 30 35 40 45 50

LOOP LENGTH IN KFT

Fig. 8—Mean electrical talker volume at the telephone set line terminals as a function
of loop length, obtained from eq. (7) with the central office mean talker volume, ~22.2 VU,
of intraoffice calls.
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@ represents the power sum operator.* The far-end talker’s carbon
transmitter noise is assumed to have a constant value of 10.2 dBrnC.t
The 1964 Loop Survey? shows that loop noise has little correlation with
loop length. Based on the 1964 Loop Survey data, loop noise is assumed
to be normally distributed with a mean of —1.1 dBrmC without the
central office noise and a mean of 5.6 dBrnC with the central office noise.
The standard deviation of loop noise is assumed to be 12.5 dB, both with
and without the central office noise. By a Monte Carlo evaluation of eq.
(9) with the above component noise statistics, the mean and the standard
deviations of the total received noise of the intraoffice connection were
determined as a function of the disturbed listener’s loop length. For
example, for a loop-to-loop connection, with the length of both loops
fixed at 7 kft, the mean and standard deviation of the received noise are
determined to be 10.5 dBrnC and 8.5 dB, respectively.

2.3 Crosstalk probability model

The discussions hitherto have been concerned with the determination
of crosstalk coupling losses, received crosstalk levels for potential
crosstalk exposures, and received circuit noise. Whether or not a cus-
tomer will actually receive intelligible crosstalk, however, is a random
event. A mathematical model is developed in this section to evaluate the
probability of hearing intelligible crosstalk on loops.

For a customer to receive intelligible crosstalk, the following two
conditions must be met simultaneously. First, a potential disturbing
circuit must become active during the period when the customer under
consideration is engaged in a telephone conversation. Given that the first
condition has been met, exposing the customer to crosstalk, the second
condition is that the received crosstalk level must exceed the disturbed
customer’s intelligibility threshold in the presence of circuit noise. The
probability that a customer on loop pair ; will receive intelligible crosstalk
from another loop pair, pair j, in the same cable, denoted by P;;, is ex-
pressed by the following equation:

P;; = Pr{pair j active/pair i active} X Pr{V;; > T(N)}, (10)
where V;; denotes the crosstalk volume on pair i received from pair j
and T(N) denotes intelligibility threshold in the presence of circuit
noise N.

The probability of activity coincidence between loops, the first
probability in the right-hand side of (10), depends on the distributions
of call holding time and quiet interval between calls on loops. This
probability was determined in Ref. 5 for average busy-hour loop traffic
to be

Pr{pair j active/pair i active} = 0.17. (11)

* A @ B =10 logyo(104/10 4 10B/10),
t L. M. Padula, Bell Laboratories, private communication.
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The probability of crosstalk intelligibility, the second probability in
the right-hand side of (10), depends on the distributions of crosstalk
volume, circuit noise, and listener intelligibility threshold. The received
crosstalk volume and circuit noise are determined by (3) through (6) and
(9), with the distributions discussed in Section 2.2. Listener intelligibility
threshold, which is determined by subjective tests, is defined quanti-
tatively as the speech level at which a subject is just able to understand
one or more words of the crosstalk content presented to him in the
presence of masking noise.8

Intelligibility threshold increases as a function of noise. When noise
is relatively high, the increase in intelligibility threshold with noise is
linear, that is, decibel for decibel. At low noise levels, the relationship
between intelligibility threshold and noise is nonlinear: in this region
of noise, as noise is decreased toward an infinitely small value, intellig-
ibility threshold approaches a constant rather than continuously de-
creasing, indicating a human ear’s absolute threshold independent of
noise. This functional relationship between intelligibility threshold and
noise can be expressed by the following equation in terms of a random
variable independent of noise, T, and a term varying nonlinearly with
noise:

T(N)=Ty+ (N ® 12.3) vu, (12)

where @ represents the power sum operator defined previously. The
above equation is a mathematical expression of the intelligibility
threshold data presented by T. K. Sen.8 Sen’s data show that T, is nor-
mally distributed with a mean of —95 VU and a standard deviation of
2.5 dB for a crosstalk coupling mechanism with a flat frequency spec-
trum. Sen also observed that the mean of Ty should be lowered by 2 dB
to —97 vU for a crosstalk coupling mechanism with coupling losses that
roll off with frequency by 6 dB per octave. Since, as can be seen in
Fig. 3, crosstalk coupling losses over the voice band have a 6-dB per oc-
tave roll-off, T is assumed to have a mean of —97 VU and a standard
deviation of 2.5 dB.

Substituting (12) into (10), we have the following expression for the
probability of crosstalk intelligibility:

Pr{Vij > T(N)} = Pr{V;; — To — (N & 12.3) > 0}. (13)

Because of the power sum, (N & 12.3), analytical evaluation of the above
equation is not possible even for normally distributed random variables.
A simple but crude way of treating the term (N & 12.3) would be to ap-
proximate it with a normal variate. However, such an approximation will
result in pessimistic results because the normality assumption allows
an infinitely low value for the term when, in fact, the random term (N
® 12.3) can never be smaller than 12.3. In this paper, therefore, the above
probability is evaluated by a Monte Carlo method.
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To apply a Monte Carlo method, the above equation is manipulated
in the following manner. For a fixed value of noise, say N = ny, and as-
suming normal distributions for other random variables, it can be shown
that the crosstalk intelligibility probability is given in terms of the
standardized normal cumulative distribution function & as follows:

PI‘{V,'J‘ > T(N)/N = nk]
=Pr{Vi; — To — (nr & 12.3) > 0}

= fmy, —mp,— (n;, ® 12.3)}
VU TO
where
1
®(a) = o _aw e~*%/2 dx,

The Monte Carlo evaluation procedure of (13) then consists of generating
a sequence of random numbers according to the distribution of noise N
and evaluating the following average:*

{mvij - mp, = (nk & 12.3)}
(s%/ij + 3%0)1/2

where M is the number of random samples drawn for noise N, my,; and
sy, are the mean and standard deviation of the received crosstalk volume
determined for a given crosstalk path using (3) through (6), and mp, and
st, are the mean and standard deviation of the random variable Ty of
(12).

Using the last equation and the activity coincidence probability of (11)
in (10), the probability that a customer on pair i will receive intelligible
crosstalk from pair j, P;j, is given by

Pij = 0.17 X eq. (15). (16)

Finally, the crosstalk probability that the customer on pair i will receive
intelligible crosstalk from any of the remaining N-1 pairs in the N-pair
cable, denoted by P;, is given by, assuming small P;;:

1 k=M
Pr{Vij > T(N)} = ﬂ kgl (i ] [ ], (15)

o
P='Y Pyi=12....N,j=i. (17)
j=1

2.4 Effect of gain

The received crosstalk volume and circuit noise equations, (3) through
(6) and (9), assume no gain devices on loops, as is the case in the current
loop plant. With the advancement of loop electronics, the present loop

* Lapsa (Ref. 5) evaluated a similar probability by numerical evaluation of convolution
integrals.
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design rules may change in the future and require application of gain
on loops. The effect of gain on crosstalk performance is discussed in this
section for a particular example of gain application where the required
gain is determined as a function of loop length to meet a certain constant
loop loss.

2.4.1 Loudness loss of telephone connections

Voice communications over a telephone connection are accomplished
by conversion of a talker’s acoustic pressure at the transmitter into an
electrical signal, transmission of the electrical signal over a transmission
medium to the receiving telephone set at the far end and reconversion
of the received electrical signal into an acoustic pressure at the listener’s
receiver. The loudness of the speech perceived by the listener depends
on the magnitude of the talker’s acoustic pressure and the loss and fre-
quency characteristics of the transmitter, the receiver and the trans-
mission medium. The loudness loss between the input and output
acoustic pressure of a connection is quantified by means of the
Electro-Acoustic Rating System (EARS), and is referred to as the EARS
loss of the connection. For a complete and extensive discussion on the
subject of EARS, the reader may refer to Ref. 9.

For interoffice or toll connections, the transmission path consists of
one or more trunks in tandem between the two end offices, which are in
general derived on carrier facilities, plus a loop at each end. The EARS
loss of such a connection is given by the sum of the transmit loop rating
(TLR) of the talker’s loop (transmit loop) and the receive loop rating
(RLR) of the listener’s loop (receive loop), plus the electrical loss of the
intervening trunks. For intraoffice connections, the transmission path
consists of two loops connected together at the central office. The EARS
loss of such a loop-to-loop connection is approximately the sum of the
TLR and the RLR of the two loops.

The TLR is defined in terms of an acoustic pressure spectrum specified
by the EARS methods at the transmitter of a telephone set and the re-
sulting EARS frequency-weighted, electrical voltage (EARS voltage)
produced at the transmit loop termination at its central office. The RLR
is defined in terms of an EARS voltage applied at the central office ter-
mination of a receive loop and the resulting acoustic pressure produced
at the telephone set receiver at the other end of the receive loop. The TLR
and RLR have a unit analogous to decibels and are loss-like quantities
in the sense that an algebraically larger TLR and RLR respectively cor-
respond to a lower output EARS voltage at the central office and a lower
output acoustic pressure at the receive telephone set.
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Under the present loop design rules, both TLR and RLR vary with loop
length, and consequently the EARS loss over the local portion* of a
connection varies with the lengths of the two loops. A recent studyi®
examined the possibility of providing a constant EARS loss for the local
portions of all connections, regardless of loop length. Such a loss plan
would permit EARS loss equalization of intraoffice (loop-to-loop) con-
nections for all loop lengths, but would require changing loop design rules
to allow for incorporation of gain. Since application of gain would raise
the crosstalk level, the maximum amount of allowable gain may be
limited by the consequent crosstalk performance degradation.

The amount of gain required for loop EARS loss equalization depends
primarily on three factors: (i) the constant EARS loss objective for local
portions, (ii) allocation of the EARS loss objective to the TLR and RLR,
and (Zii) the present values of TLR and RLR, which are determined
largely by the length of the loop. In this paper, the required gain is de-
termined as a function of loop length to meet a constant TLR of —21 dB
and RLR of 27 dB, regardless of loop length, which amount to a constant
EARS loss of 6 dB for intraoffice (loop-to-loop) connections for all loop
lengths. This constant EARS loss of 6 dB, allocated as —21 dB to TLR and
27 dB to RLR, was examined as a possible alternative in the recent study
mentioned previouslyl? to evaluate long-term loss plans for the loop
plant.

Presently, loops are designed according to the resistance-design rules!
that control the electrical losses of loops by limiting loop resistance and
requiring load coils when the length exceeds 18 kft. The resistance-design
rules are applied with respect to the longest loop among the loops sharing
a same cable, and thus the rest of the loops in the same cable would ex-
hibit less loss. The longest loop, or the maximum-loss loop, in a cable
assumed to conform to the resistance-design rules will be referred to as
a theoretical resistance-design loop.

The TLR and RLR are shown in Figs. 9 and 10 as a function of loop
length for a theoretical resistance-design loop.t The constant TLR and
RLR are indicated by dashed horizontal lines. The amount of gain re-
quired to meet the constant TLR or RLR is then given by the difference
between the horizontal line and the length-dependent curve. The re-
quired gain is shown in Fig. 11 as a function of loop length. The required
transmit and receive loop gains range approximately from —3 to 9 dB
and from —1 to 4 dB, respectively. At short loop lengths, the required
gain is negative, indicating that a loss, rather than a gain, is required for
the loop loss equalization.

* In this study, the local portion of a connection refers to that part of the connection
which comprises the loop plus the telephone set at each end of the connection.

¥ The TLR and RLR shown in these figures were calculated with a computer program
developed by F. B. Stallman, Bell Laboratories.
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Fig. 9—Transmit loop rating (TLR) of the theoretical resistance-design loop and a
constant loudness loss design loop.

2.4.2 Effect of gain on crosstalk volume and noise

For a given amount of gain, the effect on crosstalk performance de-
pends on the location of its application. In this paper, we consider two
possible locations: the telephone set and the central office.

Referring to Fig. 12, which is the same as Fig. 7 except for the gain, the
crosstalk volume equations, (3) through (6), are modified for gain applied
at the telephone set as shown below:

VLTNEXTij =Vir+ GT2 — LTNEXT;; + GRZ (18)
VLTFEXTij =Veco—Lg— LTFEXT;; + GR2 19)
VCONEXTij = Vco — L2 — CONEXT;j + GR?_ (20)

Veorext,; = Vit + Gr, — Ly — COFEXT;; — Lo + Gg,.  (21)
The received noise equation, (9), is modified as follows:
N=(N{+Gr,~Ly—Ly+ Gg,)
® (Ny— Lo+ GR2) ® (N3 + GRz)- (22)
Referring to Fig. 13, gain applied at the central office will not affect
LTNEXT but will affect LTFEXT, CONEXT, and COFEXT. Since the latter
three types of crosstalk exposures are in general less significant than the

first, the effect of the gain is less pronounced when applied at the central
office than at the telephone set. However, depending on loop length, the
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Fig. 10—Receive loop rating (RLR) of the theoretical resistance-design loop and a con-
stant loudness loss design loop.

amount of required gain might be sufficiently large to make these
crosstalk exposures significant. The following equations give crosstalk
volumes and circuit noise when gain is applied at the central office:

VLTNEXT; = same as eq. (3) (23)

Virrext; = Veo + Gr, — L — LTFEXT;; (24)
VconexT; = Vco + Gr, — CONEXT;; + G, + Gp,— Ly (25)
VcorexT;; = Vur — L1 — COFEXT;; + Gp, + Gr, — Lo (26)

N=(Ny—Li+Gr, + Ggr,— Ly)
@& (Ny+ GT1 + G32 —Lg) ® N3. (27)

lll. RESULTS

The loop crosstalk probabilities were determined first for theoretical
resistance-design loops and then for the 1100 loops sampled in the 1964
Loop Survey.2 In each case, the crosstalk probabilities were determined
both without gain and with gain. In the case of loops with gain, two
possible locations of gain application were evaluated: the telephone set
and the central office. Sections 3.1 and 3.2 present the crosstalk proba-
bilities determined for the theoretical resistance-design loops and the
actual loops, respectively.
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3.1 Theoretical resistance-design loop

As discussed in Section 2.3, the crosstalk probability for a loop is ob-
tained by summing the crosstalk probabilities between that loop and
the rest of the loops in the same cable, considering the four potential
crosstalk exposures shown in Fig. 7: LTNEXT, LTFEXT, CONEXT, and
COFEXT. The crosstalk probability for loop pair i, P;, for example, is
obtained first by determining the probability P;; for all j, j 5 i, by eq.
(16) in connection with eq. (3) through (6) for the four crosstalk expo-
sures and then summing P;; over j, as expressed by eq. (17). The crosstalk
probability P; so determined for loop pair i will be referred to as the total
crosstalk probability of the pair, and represents the probability of re-
ceiving intelligible crosstalk on that loop from any of the remaining loops
in the cable through any of the four possible crosstalk exposures.

Table I presents the total crosstalk probabilities calculated for each
of the 25 loops of the 25-pair cable used in the cable crosstalk coupling
model, with intraoffice type disturbing and disturbed connections. The
crosstalk probability with the toll type disturbing connection was almost
the same as that with the intraoffice type disturbing connection because,
as discussed in Section 2.2, there was very little difference between the
intraoffice and toll talker volume statistics.3 All probabilities discussed
hereafter are the probabilities with the intraoffice type disturbing con-
nection.

For the particular results shown in Table I, the two loops of the dis-
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Fig. 12—Application of gain at the telephone set. (a) NEXT. (b) FEXT.

turbed connections were both assumed to be 7 kft, which was estimated
to be a typical length of the Bell System loops, based on the 1964 Loop
Survey.2 The loop length dependence of the crosstalk probability is
discussed later. As can be seen in this table, there is a wide difference
in crosstalk probability between pairs in a cable: the highest crosstalk
probability is 3.19 X 10~ percent (pair 18), the median probability, 1.45
X 1075 percent (pair 14), and the smallest probability, 1.15 X 10~6 per-
cent (pair 25).

The crosstalk probability of the worst loop, pair 18, was evaluated as
a function of the disturbed customer’s loop length as presented in Fig.
14. Unlike the disturbed customer’s loop, which is permanently assigned
to the customer, the other loop of the disturbed connection occurs ran-
domly, depending on the called party. The length of this latter loop was
fixed at 7 kft, the representative length mentioned previously. The
dashed curves show the crosstalk probabilities for the four exposures,
LTNEXT, LTFEXT, CONEXT, and COFEXT, and the solid curve shows
the total crosstalk probability, the sum of the four probabilities. As can
be seen, the probability of LTNEXT is dominant at all loop lengths except
at lengths less than about 2 kft at which the probability of COFEXT is
dominant.
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Since LTNEXT is the dominant crosstalk, the pattern of variation with
loop length of the total crosstalk probability in Fig. 14 is determined by
the pattern of the LTNEXT probability variation. The behavior of the
LTNEXT probability with loop length can be explained by considering
the corresponding crosstalk volume equation (3). As can be seen from
Figs. 5 and 8, both NEXT coupling loss and line-terminal electrical speech
level decrease with increasing loop length. At short loop lengths, since
NEXT coupling loss decreases with loop length much faster than dis-
turbing speech volume, the received crosstalk volume of LTNEXT, and
consequently the LTNEXT probability, increases with loop length. As
loop length is increased further, however, NEXT coupling loss approaches
a saturation, that is, the length translation factor given in Fig. 5 does not
change, whereas disturbing speech volume still decreases steadily with
loop length. Therefore, the received crosstalk volume for LTNEXT, and
consequently the LTNEXT probability, decreases as loop length is in-
creased beyond a certain point; in this case, about 9 kft.

According to the resistance-design rules,! a cable is loaded when its
length exceeds 18 kft. As discussed in Section 2.1, a loaded cable is as-
sumed to have a NEXT coupling loss 3 dB less than a nonloaded cable.
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Table | — The total crosstalk probabilities of the 25 loops of the
25-pair, 26-gauge, nonloaded PIC cable, obtained by treating each
loop as a 7 kft, theoretical resistance-design loop engaged in an
intraoffice (loop-to-loop) connection

Rank Pair No. Crosstalk Probability (%)
1 18 3.19 X 104
2 8 2.82 X 104
3 10 2.21 X 10~4
4 4 1.93 X 104
5 7 1.43 X 10~4
6 19 1.23 X 10—4
7 5 1.22 X 10—4
8 20 1.20 X 104
9 24 6.29 X 105

10 22 4.54 X 10-5
11 11 4.02 X 10~5
12 2 3.69 X 102
13 14 1.45 X 10-5
14 15 1.29 X 10—%
15 13 1.02 X 10—%
16 12 1.00 X 10—3
17 9 4.41 X 10-6
18 23 3.64 X 10—6
19 6 3.06 X 10-6
20 17 2.60 X 10~6
21 16 2.45 X 10—6
22 1 2.01 X 10-6
23 21 1.96 X 10—€
24 3 1.33 X 10—6
25 25 1.15 X 10—¢

The sudden increase in the LTNEXT probability at 18 kft is due to the
3-dB drop in NEXT coupling loss with loading. At loop lengths greater
than 18 kft, both disturbing talker’s electrical signal level and NEXT
coupling loss are fairly constant with loop length, and the LTNEXT
probability does not change much with loop length.

The effect of gain on the crosstalk probability of the theoretical re-
sistance-design loop is shown in Fig. 15. The solid curve is the total
crosstalk probability without gain, the same curve as that shown in Fig.
14, and the two dashed curves are the total crosstalk probability with
gain at the telephone set and at the central office, respectively. Without
gain, the total crosstalk probability of the theoretical resistance-design
loop does not exceed 0.002 percent at all loop lengths. Gain applied at
the central office shows very little effect on the crosstalk probability. This
is because gain applied at the central office does not affect LTNEXT, the
dominant crosstalk, as shown by eq. (23). However, with gain applied
at the telephone set line terminals, the total crosstalk probability of the
theoretical resistance-design loop can increase up to as much as 0.5
percent, depending on loop length.

Currently, no crosstalk objectives exist for loops. However, for plan-
ning purposes, a crosstalk probability of 0.1 percent has generally been
used in the past as a limit for satisfactory loop crosstalk performance.
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Fig. 14—Crosstalk probabilities of the theoretical resistance-design loop, without gain,
evaluated for the worst pair (pair 18) of the 25-pair, 26-gauge PIC cable.

In comparison with this limit, the crosstalk performance of the present
resistance-design loops is, from Fig. 15, more than satisfactory.

For the particular example of gain application considered in this paper,
gain applied at the telephone set can cause a significant degradation in
loop crosstalk performance, depending on loop length. To relate the
increase in crosstalk probability to the amount of gain applied, one may
compare Figs. 11 and 15. Figure 15 shows that, with gain applied at the
telephone set, the crosstalk probability exceeds the 0.1-percent level,
the limit mentioned previously, at about 12 kft of loop length. From Fig.
11, one may find that the required gain assumed at this length is 6 dB
for the transmit loop and 2 dB for the receive loop, which amounts to a
total gain of 8 dB on a crosstalk path. The maximum allowable telephone
set gains at other loop lengths and for other values of permitted crosstalk
probability can be determined similarly.

With gain applied at the central office, the crosstalk performance of
the theoretical resistance-design loop still remains well below the level
of 0.1-percent crosstalk probability, for the entire range of gain consid-
ered, where the maximum transmit and receive loop gains were about
9 and 4 dB. In a similar evaluation made previously, Lapsa® concluded
that 9 dB of gain applied at the central office would be excessive. Because
of the differences in the methodology as well as in the coupling loss and
speech volume data used in the evaluation, a direct comparison between
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Fig. 15—The effect of gain on the crosstalk probability of the theoretical resistance-
design loop, evaluated for the worst pair (pair 18) of the 25-pair, 26-gauge PIC cable.

the previous results and the present results is not possible. Nevertheless,
the present results on the effect of the central office gain are, in general,
somewhat optimistic in comparison with the previous results because
of, among other things, the use of more recent coupling loss and speech
volume data in the present study.*

3.2 The 1964 survey loops

The 1964 Loop Survey results? provide such information as length and
loading conditions on 1100 loops sampled in the plant. Using this in-
formation, the crosstalk probabilities were calculated for the 1100 sample
loops, first without gain and then with gain assumed either at the tele-
phone set or at the central office. Each loop was treated as though it was
the worst pair in a cable, such as pair 18 of Table I. This worst-case
evaluation was made because, due to the permanent assignment, of a loop
to a customer, poor crosstalk performance would focus on a single cus-
tomer rather than being distributed among many customers.

The total crosstalk probabilities calculated for the 1100 sample loops
are shown in Fig. 16 as a scatter plot, where the abscissa is the length and

* The more recent coupling loss data used in the present study show better crosstalk
performance than the coupling loss data used in the previous study. As discussed in Section
2.2, the speech volume data used in the present study show a much smaller standard de-
viation than the McAdoo data used in the previous study, the smaller speech volume
variability yielding a smaller crosstalk probability.
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Fig. 16—Scatter plot of the total crosstalk probabilities of the 1964 survey loops, without
gain, obtained by assuming that each loop was the worst pair in a cable.

the ordinate the crosstalk probability. For comparison, the total crosstalk
probability of the theoretical resistance-design loop is superimposed as
a solid curve, which is the same curve as that shown in Fig. 14. The cu-
mulative distribution functions (CDFs) of the crosstalk probabilities of
the 1100 sample loops without gain are presented in Fig. 17, where the
solid curve shows the CDF of the total crosstalk probability and the
dashed curves show the CDFs of the LTNEXT, LTFEXT, CONEXT, and
COFEXT probability.

The effect of gain on the crosstalk performance of the sample loops
was evaluated with the required gain determined by the difference be-
tween the constant TLR of —21 dB and RLR of 27 dB mentioned previ-
ously and the actual TLR and RLR, which were calculated from the in-
formation provided by the 1964 Loop Survey. The results are compared
with the crosstalk probability determined for the present plant (loops
without gain) in Fig. 18. The solid curve is the CDF of the crosstalk
probability of the sample loops without gain (the same curve as that
shown in Fig. 17) and the two dashed curves show the CDFs of the
crosstalk probabilities with gain applied at the telephone set and at the
central office, respectively.

Without gain, the total crosstalk probability is less than 0.01 percent
for all the sample loops; the median is 3 X 10~4 percent. This indicates
that the crosstalk performance of the present loop plant is more than
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satisfactory in comparison with the 0.1 percent crosstalk probability
limit. Gain applied at the central office shows only a small effect on the
distribution of the loop crosstalk probabilities in the plant. However,
gain applied at the telephone set changes the distribution of the loop
crosstalk probabilities significantly, increasing the crosstalk probability
above the 0.1-percent level on about 15 percent of the sample loops
evaluated.

IV. SUMMARY OF THE RESULTS

The intelligible crosstalk probability is defined as the probability that
a customer will hear one or more intelligible crosstalk words during a call.
The intelligible crosstalk probability for a loop is obtained by summing
the probabilities of intelligible crosstalk between that loop and the rest
of the loops in the same cable, considering the four potential crosstalk
exposures shown in Fig. 7. Using the methodology developed in Section
II, the crosstalk probabilities have been calculated first for theoretical
maximum-loss resistance-design loops! as a function of loop length and
then for the 1100 loops of various lengths sampled from the loop plant
in the 1964 Loop Survey.2

The crosstalk probabilities were obtained first for loops as they exist
in the present plant, that is, loops without gain. The effect of gain devices
on the loop crosstalk probabilities was then evaluated for a particular
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Fig. 18—The effect of gain on the distribution of the total crosstalk probabilities of the
1964 survey loops, obtained by assuming that each loop was the worst pair in a cable.

example of gain application. In this example, the assumed gain was de-
termined as a function of loop length to meet a constant TLR (Transmit
Loop Rating) of —21 dB and RLR (Receive Loop Rating) of 27 dB, re-
gardless of loop length, which would equalize the EARS (Electro-Acoustic
Rating System)* loss of intraoffice (loop-to-loop) connections at a
constant value of 6 dB. For this particular example, gain required for
aloop in its transmit direction and receive direction ranged roughly from
—3to 9dB and from —1 to 4 dB, respectively. Two possible locations of
gain application were evaluated: the central office and the telephone
set.

Table I shows rank-ordered crosstalk probabilities of the 25 theoretical
resistance-design loops without gain in a 25-pair cable, determined with
loop length fixed at 7 kft, a representative length of Bell System loops.
Figure 15 presents the crosstalk probability of the worst of the 25 loops
(pair 18 in Table I) as a function of loop length for the three different
cases: loops without gain (the present plant), loops with gain at the
central office, and loops with gain at the telephone set. Figure 18 presents
the cumulative distribution functions (CDFs) of the crosstalk probabil-
ities of the 1100 sample loops obtained by treating each sample loop as
the worst loop in a cable (such as pair 18 of Table I).

Presently, no crosstalk objectives exist for loops. For planning pur-

* See Section 2.4.1 of this paper and Ref. 9 for the discussion of EARS, TLR, and RLR.
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poses, however, a crosstalk probability of 0.1 percent has generally been
used as a limit for satisfactory loop crosstalk performance. In comparison
with this limit, the crosstalk performance of the present loop plant (loops
without gain) is more than satisfactory, as can be seen in Fig. 18. With
gain at the central office, the crosstalk probability still remains well below
the 0.1-percent level for all the sample loops, and thus gain applied at
the central office does not appear to have any significant effect on loop
crosstalk performance for the entire range of gain considered. However,
with gain applied at the telephone set, the crosstalk probability exceeds
the 0.1-percent level on about 15 percent of the loops evaluated. These
results indicate that, for the particular example of gain application
considered in this paper, gain applied at the telephone set may cause a
significant crosstalk performance degradation.
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On the Stability of Interconnscied Systems™®

By I. W. SANDBERG
(Manuscript received March 3, 1978)

Theorems are presented concerning conditions for the input-output
stability of interconnected dynamical systems. Results in the area of
input-output stability are often partitioned into two categories:
small-gain type-results and passivity-type results. The main theorem
given here does not fall into either of these categories, but is most closely
related to the passivity-type results. The theorem involves a new class
of interconnection operators that is a substantial generalization of the
familiar set of nonnegative operators defined on a space of vector-
valued functions.

I. INTRODUCTION

In this paper, theorems are presented concerning the input-output
stability of interconnected systems. Results in the area of input-output
stability are often partitioned into two categories: small-gain type results
and passivity-type results. The main theorem given here does not fall
into either of these categories, but is most closely related to the passiv-
ity-type results. The theorem involves a new class of interconnection
operators that is a substantial generalization of the familiar set of non-
negative operators defined on a space of vector-valued functions.

The mathematical model considered throughout the paper is described
in Section II, and results of a general nature concerning the model are
given in Section III. The case in which the interconnection operator has
a certain matrix representation is treated in considerable detail in Sec-
tion IV. In Section 4.5, a specific example is given of a stable intercon-
nected system for which the interconnection matrix does not meet the
nonnegative-definiteness requirement of the criterion given in Ref. 7,
which contains the most pertinent earlier stability result.

* This paper was presented at the 1978 IEEE Symposium on Circuits and Systems (New
York, May 17-19, 1978).

T For background material in book form concerning intput-output stability, see, for ex-
ample, Refs. 1-4. Interconnected systems (which are systems whose natural or artificial
decomposition into subsystems plays a prominent role in their mathematical analysis)
have been considered by many researchers. See, for example, Refs. 3, 5, 6, and 7. Although
some interesting and significant results have been obtained concerning the stability of
interconnected systems, the theory is very much in its initial stages of development.
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The main purpose of the paper is to introduce a new concept that is
believed to be useful. No attempt is made to present the sharpest possible
stability results that the concept can be used to obtain.

Il. THE MODEL
2.1 Preliminaries

Let K denote a real linear space that contains a normed linear inner-
product space L with inner product (-,-) and norm | - | related by | f| =
(f,H)12 for f & L. (Of particular interest to us is the case in which L is the
set Lo of all real Lebesgue square-integrable functions defined on the
half line [0,) with the usual inner product, and K is the “extended” set
E of real functions defined on [0,) such that each function is square
integrable on [0,7] for any nonnegative number 7.)

For each 7 = 0, let P, denote a linear mapping of K mto L (eg.,ifK
= E,, let P, be defined by (P,f)(¢) = f(t) for t € [0,7] and f(t) =0 fort
> 7, where f is an arbitrary element of E5).

Let K, L, and P, be such that (i) g € L if and only if g € K and sup,
|P-g| <, (ii) |g| =sup, |P.g| forg € L, and (iii) (P.f,g) = (P.f,P.8)
and |P,f| < |f| forfand g in L and 7 2 0.

We let L™ and K*, in which n is any positive integer, denote the n-fold
Cartesian product of L and K, respectively. The norm of an element h
= (hy,hg, ... ,hy,) of L™ is denoted by |h| and is defined by |k| =
|hi| 212,

It is assumed that L contains n elements ey,eq, . . . ,e, such that |e;|
=1 for each i and (e;,e;) = 0 fori = j.*

We say that an operator T that maps K into itself (i.e., an operator
T in K) is causal if and only if P, T = P, TP, on K forall r > 0.

2.2 The basic equations

Throughout the paper, attention is focused on.an interconnected
system governed by

n
X+ Y A,-ijxj'= v, 1=12,...,n, 1)
j=1

in which (A.1): x; and y; belong to K for all i, and A;; and B; are causal
operators in K for alli and j.

In (1), each B; is associated (sometimes somewhat indirectly) with a
subsystem, and the A;; ordinarily take into account the way in which the
subsystems interact. Typically, it is not difficult to show the existence
of a solution x1, xs, . . . ,x, of (1) for any given yy, ¥, .. . ,¥, under some
weak additional hypotheses. (Successive-approximation type arguments
of the kind commonly used in connection with nonlinear Volterra inte-
gral equations often suffice.)

* This assumption is used only in Section IV.
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We assume that (A.2): each B; is nonnegative in L, in the sense that
each B; maps L into L and there exists a nonnegative constant « such
that

(Bjw,w) = a|w|? (2)

forw &€ L and all j. It is assumed also that (A.3): each A;; maps L into
itself, and there is a positive constant v such that

|4ijw| = y|w| @)

forw & L and all i and j.*
It is often convenient to write (1) in the form

x+ABx =y, (4)

in which x = (x1,x9,...,%,), ¥ = (¥1,¥2, . . . ,¥n), and A and B are the
mappings of K" into K™ defined by (Af); = Z;A;jf; and (Bf); = Bf; for
all f € K™ and each i.

2.3 Definition of stability

We say that (4) is L-stable if and only if y € L™ implies thatx & L™
with |x| < p(]y|) for some nonnegative continuous function p that de-
pends only on A and B and is defined on the nonnegative reals such that
p(0) = 0.

lll. Sg AND THE MAIN THEOREM

In the following definition and hypothesis, 8 is a nonnegative num-
ber.
Definition of Sg: Sg is the set of operators H in L™ with the following
property: For each v € L™ such that |v| # 0, there is an index k such
that |v| # 0 and (v, (Hv)r) = B|ue|2

The definition of Sy is related to one of the equivalent definitions of
a “P-matrix.” 9
H.1:If 8 = 0, there is a positive constant 6 such that

|Bjw| < §|w] (5)

forw € L and all j.

Our main result is the following.
Theorem 1: Let H.1 (and A.1 through A.3) hold. Then (4) is L-stable
if A & Sgwitha+ 3> 0.

* In order to focus attention only on essentials, we are proceeding with some assumptions
that are stronger than necessary. It will become clear that (2) and (3) (and also (5) of Section
I11) could have been replaced with somewhat weaker inequalities (similar, for example,
to some of those used in Section 5.3 of Ref. 8). Similarly, if for example there are positive
constants «; such that (Bjw,w) = aj|w|2forw € L and all j, and if A in (4) is represented
by an nXn matrix in the sense of Section IV with [ + a diag («;)] invertible, then it is clear
that x satisfies an equation similar to (4) in which each B;x; is replaced with (Bjx; — a;x;)
and A and y are modified accordingly. Consideration of such a modified equation often
enables a useful trade-off to be made between requirements on A and the degree of posi-
tiveness of the B;.
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Proof of Theorem 1: Let H.1 and A.1 through A.3 be satisfied, let y &
Lm, let x & K" be a solution of (4), and assume that A & S with
a+p>0.

Suppose first that 8 = 0, in which case o > 0. Let 7 = 0 be arbitrary.
Using (1) and the casuality of the A;;, we have

Pux;+ P, 3 AjjP.Bjx; = Py, (6)
J
and

(P,B;x;,Px;) + (PTBixi,PT 2 Aijprjxj) = (P.Bix;,Pryi) ()
J

for i = 1,2,...,n. Since A & Sﬁ’ and (PTBixi,PTEjA,’jPTBjxj) =
(P.B;x;,2;A;jP,Bjx;) for each i, there is an index k such that
(P,kak,PTEjAijTBJ-x,-) = 0 and hence such that

(P;Byxp,P.xi) < (P,Brxp,P;y). (8

By the Schwarz inequality and the fact that (P,Bpxp,P,yr) =
(P.BrP.xp,Py1) = (BiPxp,P:yr), (P;Brxr,Pryr) < |BrP x| « |Pryel|.
Therefore, using (P,Byxp,P,x;) = (BrPx,P,xy) as well as (2), (5) and
(8), we have

01|Pka|255|Prxk|‘|Pryh| (9)
and consequently, with ¢ = §a1,
|P‘rxk| = CIPTykl'

The argument given above shows that | P,xx| < ¢|y| for some k (which
might depend on x and 7). Let J denote any nonempty proper subset
of {1,2, . .. ,n} with the following property. For j € J, there is a constant
c; that depends only on ¢, 4, and v such that |P,x;| < ¢j|y|. Using
(1),

x+ Y A,-ijxj =y;— ¥ A;iBjx;, 1 & (10)
JEJ JEJ

The left side of (10) is basically the same in form as the left side of (1).
With r the number of elements contained in ¢/, let the elements of
({1,2,...,n}=J)bejij2 - - Jin-r) ordered sothat j; <js <+ <jm-r)
With respect to that ordering, let the mapping of K~ into itself as-
sociated with (10) that corresponds to A be denoted by A;. Since A.3
holds, each A;; maps the zero element of L into itself, and it is a simple
matter to verify that A; belongs to, so to speak, Sz with n replaced with
(n —r). Thus, by the argument given above, we find that there is an index
| & J such that

|P.,JC1| <c . (11)

P, (yz - Aszjxf)
=
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Using |P,x;| < cj|y| for j € J, as well as (11) and the causality of the
A;; and the Bj, we have

|Px)| <ec (|y| +

Z PTAUB]'JC}'
jed

<c (Iyl + X IPTAszTBjPrxA)
ied
<c(lyl+v8 X |Pox))
Jed

<c (1 +v5 Y Cj> [y].
jEJ
Let wy,wo, . . . ,w, be defined by w; = ¢ and
(=1 .
wi=c <1+75 5 wj>, i=23,...n.
j=1

We have shown that given x, 7, and i, |P,x;| < d;|y| for some d; €
{wy,ws, . . . ,w,}. Since w,, = max;w;, we have

i |P.x;|2 < nw,2|y|2 forall7=0,

i=1
which shows that x € L™ and that |x| is suitably bounded in terms of
|y|. This completes the proof for the case in which 8 = 0.
The proof for the 8 > 0-case is similar. Using primarily (7) and the
hypothesis that A € Sg, we find that

B|P.Bypxi|? < |P,Brxp| « | Pyl
for some k. Therefore,
|P.Brxr| < B871|y] (12)

for some k. By proceeding essentially as indicated above, we can show
that

|P,Bix;| < Q,|y| foralliandr =0, (13)
in which Q,, is the number defined by 2; = 8! and
-1
Q,":,B_l <1+'y Z Qj>
i=1

fori =23,...,n.
From (6) and (13),

|Prx;| < |Poyi| + ¥ |A;P-Bjxi|
J
< |yl + = v lyl
j
< (1+nyQ)y|
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for each i and all 7 = 0. Since this shows that x € L and that |x] is
bounded as required, our proof is complete.

3.1 Comments

To see that U >0 S, contains the familiar set of nonnegative operators
defined on a space of vector-valued functions, let H be any mapping of
Ln into itself such that

S (i, (Hw),) = o|w|?, w € Ln, (13)
i=1

in which ¢ is a nonnegative constant. From (13) it is clear that for each
w € L with |w| # 0 there is an index k such that |wg| # 0 and
(wp,(Hw),) = Blw|2in which 8 = en—L. Since |w|2 = |w}, |2, we observe
that H E Sﬁ.

Theorem 1 is of course a result concerning the L-boundedness of so-

lutions of (4).* By modifying the hypotheses and proof of Theorem 1
in a direct manner, an analogous result can be obtained concerning the
L-continuity of solutions (i.e., concerning the L-boundedness of the
difference (x, — x3) of a solution x, of (4) that corresponds to y = y, and
a solution x, that corresponds to y = y, with (y, — y) € L). With regard
to the necessary modifications of the hypotheses concerning A, the fol-
lowing definition, in which 8 > 0, plays a central role.
Definition of Tg: Ty is the set of operators H in L™ with the following
property: For each u and v in L™ such that |u — v| 5 0, there is an index
k such that |up — vg| = 0 and (up — v, (Hu), — (Hv)g) = Blug —
Up | 2.

In order to be more explicit, let (A.1’) denote the assumption that x,
+ ABx, = y, and x; + ABx}, =y, in which each A;; and B; are causal
operators in K and x4, xp, ¥4, and y, belong to K. Let A.2” be the hy-
pothesis obtained from A.2 by replacing “(Bjw,w) = a|lw|2forw € L
and all j”” with “(Bju — Bjv,u —v) = a|u —v|2foru and v in L and all
J,  and let A.3’ and H.1’ be the hypotheses obtained in a similar manner
from A.3 and H.1, respectively.

Our L-continuity result (whose proof is omitted) is the following.
Theorem 2: Let H.1’ and A.1’ through A.3' be satisfied, let (y, — yp) €
L, and let A € Tgwith a« + 8> 0. Then (x, — x) € L, and thereis a
nonnegative continuous function p defined on [0,) that depends only
on A and B such that p(0) = 0 and |x, — x| < p(Jya — ¥b])-

* Results along the lines of Theorem 1 for cases in which B is more general than assumed
here but both A and B are nonnegative operators are glven in Ref. 8, where the stability
of interconnected systems in the sense of Section 2.2 is not exphcltly discussed. A non-
negative-operator approach to the stability of interconnected systems, as well as its relation
to other approaches, is discussed in Ref. 7.
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3.2 A Corollary to Theorem 1

We shall refer to the following two hypotheses.
H.2: Each B; is a continuous mapping in L that maps the zero element
into itself, and there are positive constants ¢; and ¢4 such that for
alli

(Biju,u) = ¢1|B;u|? (14)
|Biu — Biv| < colu —v] (15)

foruandvin L.
H.3:K=E,L =Ly and foreach 7 = 0 P, isthe operator associated with
E5 in the example given in Section 2.1.

There are many cases in which (14) holds* for all u for some c¢; > 0,
but there is no positive a such that (2) is satisfied for all w.t On the other
hand, it is clear that there is a positive ¢; with the property that (14) is
met when (2) holds with « > 0 for all w and there is a positive constant
6 such that |Bw| < §|w| for all w.

Corollary 1: Let H.2 and H.3 (as well as A.1 and A.3) be satisfied. If A
€ Sy, then (4) is L-stable.

Proof: Assume that the hypotheses of the corollary are satisfied and let
I and I,,, respectively, denote the identity operators in K and K». With
regard to the following lemma, two elements u and v of E; are taken to
be the same if and only if |P, (v — v)| = 0 for all + = 0.

Lemma 1: Let H.3 hold, let F be a continuous mapping of Lo into itself
such that for some positive constant ¢ < I we have

|Fu — Fv| <clu—v| foruandvinL,, (16)

and let F also be a causal mapping of Esinto Eo. Then (I — F)~! exists
and is causal on both Ly and E..

Proof of Lemma 1: Let the hypotheses of the lemma be met. In view of
(16) and the continuity of F, the equation x — Fx = h with h & L, has
in L a unique solution x which is given by x = lim,,_. . x ™ in which x ()
=h+ Fxn»~lforn = 1and x© = h. Thus, (I — F)~! exists on Lo, and
since h + F(-) is causalon Lo sois (I — F)~1,

Nowlet h € E,, and for each 7 = 0 let z, be the unique element of Lo
that satisfies z, — Fz, = P,h. Since (I — F)~1is causal on Lo, it is clear
that Pz, = P,z for 79 = 71. Let x be the element of E5 defined by the
condition that P,x = Pz, forall r = 0. Forany r 2 0,P,x — P,Fx =Pz,
—P,FP,x=P.,z,—P,FP,z,= P.,z, — P, Fz,= P_h. Therefore x satisfies
x — Fx = h. Suppose that x; and x5 in Egsatisfyh = x; — Fx{ = x9— Fxo

* This type of inequality is among those used in Ref. 8.

t We mention two simple examples: Let L = Ls and let B; be defined by the condition
that for each t > 0, (Biw)(t) = w(t) for |w(t)| < 1 and (B;w)(t) = sgn(w(t)) for |w(t)| >
1. Then (14) with ¢; = 1 holds for all u & Lo, but there is no « > 0 for which (2) is satisfied
for all w & L. It is not difficult to show that a similar conclusion is reached when B; is the
convolution operator in Ly with impulse response e ~¢.
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with |P,(x; — x2)| # 0 for some 7 = 0. Since F is causal, we have P h,
= P hoin which h; = P,x, — FP.x; and hy = P,x9 — FP_x,. This con-
tradicts the fact that (I — F)~1 is causal on Lg. Thus, x is the unique
solution in E of x — Fx = h, which means that (I — F)~1 exists on E,
because h is arbitrary. In view of the fact that the solution x of x — Fx
= h satisfies P,x = P,z, where z, — Fz, = P,h for every 7 = 0, it is evi-
dent that the operator (I — F)~! on E, is causal. This proves the
lemma.

Let ¢ be a positive constant such that ¢ < min (c¢y,c271). By Lemma
1, (I, — cB)~1exists on K" and B(I,, — ¢B)~lis causal on K" and maps
L™ into itself. In particular, the equation x + ABx = y can be written
as

h+ (A+cl,)BU, —cB)"lh=y

in which h = x — ¢Bx. From A & Sy, it follows at once that ( A + cI,,)
& S..

Also, from h = x — ¢Bx and the fact that B is causal on K" and satisfies
|Bu| < ¢olu| foru € L", with ccg <1, we have |P.x| < (1 — cco) 7| P,h|
for 7= 0.

Therefore, by Theorem 1, to complete the proof it suffices to observe
that for any w & L7,

(B, — ¢B)"lw,w) = (Bu,u — cBu)
= (Bu,u) — c¢|Bu|?
>0

in which of course u = (I, — ¢cB)~lw.

IV. RESULTS CONCERNING THE MATRIX CASE

Of importance in the theory of interconnected systems is the special
case in which A is represented by a real nXn matrix a with elements a;j,
in the sense that for each i,

n
(Aw); = X a;jw;, w & Ln,
j=1

Throughout this section, “A € M” means that A has such a represen-
tation with representation matrix a, and, assuming that A & M, Uy(U)
denotes the set of representation matrices such that A € Sp (4 € S;
with 8 > 0). In addition, Py(P) denotes the set of real square matrices
with nonnegative (positive) principal minors.

Proposition 1: If (A.1 through A.3 are satisfied and) A €& M with a &
Py, then (4) is not L-stable for some B.

Proof: Let the hypotheses be met, and let 1,, denote the identity matrix
of order n. From a & Py, it follows that there is a diagonal matrix d =
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diag (dy,ds, .. .,d,) with d; > 0 for all i such that (d + a) and hence
(1, + ad~1) are singular.*

For each i, let B; be defined by the condition that Bjw = d; ~w for w
€ K. Let v be any real nonzero n-vector that is annihilated by (1, +
ad~1), and let e be any element of K different from the zero element §
of L. With x = ve, we have x + ABx = 0. This shows that (4) is not L-
stable for the particular B constructed.

In order to proceed to the first theorem in this section, it is necessary
to introduce the following definitions. For each w € L*, a,, denotes the
matrix obtained from a by replacing a;; with a;; (w;,w;) for all ¢ and j. For
any w € L™ with |w| 5 0, I'(a,) denotes the matrix obtained from a,,
by deleting both the ith row and ith column for all i & {i: |w;| = 0}.
Theorem 3: Let A € M. We have a & U(a € Uy) if and only if T'(ay,)
€ P(a, € Py) for eachw € L* with |w| # 0.

Proof of Theorem 3: We shall use two lemmas. With regard to the first
of the lemmas, M,, denotes the normed linear space of real nXn matrices,
with the usual Euclidean norm, and C denotes {u & M,,: thereisaw &
L» with |w| = 1 such that u;; = (w;,w;) for all i and j}.

Lemma 2: Cis compact.

Proof of Lemma 2: The set C is obviously bounded. To show that C is
closed, let u® (@), . . be a sequence of elements of C that converges to
some element 4 of M,,.

Given a real n-vector v, for each w & L™ and its corresponding element
u of C, we have vtruv = (Z;v;w;, Z;v;w;) = 0.1 Thus, each 1Y) is nonne-
gative definite, and therefore it follows that i is nonnegative definite.
In view of the fact that Tr(u ")) = 1 for all j, it also follows that Tr(iZ) =
1.

Since @ is nonnegative definite and has unit trace, there is an or-
thogonal matrix T and a diagonal matrix D = diag (dy,do, . . . ,d,) with
d; = 0 and Z;d; = 1 such that

u=TDTtr = ; 4T, (T,

in which T is the Ith column of T'. Referring to the pairwise mutually
orthogonal elements eq,e,, . . . ,e, mentioned in Section 2.1, let z in L»
be defined by

z= Z d,- 1/2Tie,~.
2
Using the orthonormality of the e;, and the fact that for each [ the sum
of the squares of the components of 7} is unity, it is not difficult to verify
that |z| = 1, and that (z;,z;) is equal to the i,jth element of & for all i and

* A proof is given in Ref. 10. Another proof can be obtained from the fact that, since a &
Py, thgre is (see Ref. 9) a real nonzero n-vector ¢ such that ¢;{(ag); <0 for every i such that
q; = 0.

T The superscript “tr”” denotes transpose.

STABILITY OF INTERCONNECTED SYSTEMS 3039



J. This shows that C is closed, and completes the proof of the
lemma.*

The following lemma is proved in Ref. 9.

Lemma 3: A real square matrix m belongs to P(Py) if and only if vy (mv)y,
> 0 (vg # 0andvg(mv), = 0) for some k for each real nonzero vector
v of dimension equal to the order of m.

In order to prove the theorem, suppose initially that I'(a,,) € P for
every w € L with |w| # 0. By Lemma 3, for eachw & L™ with |w| =
1 we have (I'(a,,)v); > 0 for some index k&, when all of the components
of the vector v of compatible dimension are unity. Thus, max; Zj-;
a;;(w;,w;), which we view as a function of the matrix u whose elements
are the (w;,w;), is positive for each w in L™ with unit norm. Since max;
2% a;(w;,w;) is obviously a continuous function of u, and, by Lemma
2, C is compact, there is a ¢ > 0 such that

n
min max Y a;j(w;,w;) = 0. (17)
ueC @ j=1

Therefore, for each w & L™ with |w| = 1 there is an index k such that

n
Zl agj(wp,wj) = ow|? = ofwg|?
j=
from which we see that for each w € L” with |w| # 0, there is a k such
that |wg| = 0 and

n
Y apj(wp,wj) = o|we] 2
Jj=1

Thus,a & U.

To show that a & Uy when a,, € Py (and hence I'(a,,) € Py) for each
w € L™ with Jw| > 0, we observe that then, by Lemma 3, for eachw €
L with |w| > 0 we have (I'(a,,)v),, = 0 for some k when the components
of v are all unity. Therefore, for each w € L™ with |w| 5= 0, thereisa k
such that |wg| = 0 and

n
2 aj(wg,wj) 2 0,
j=1
which means that a € U,,.

Suppose now that for some w € L™ with |w| > 0 we have T'(a,,) &
P(ay € Py). Then, by Lemma 3, there is a nonzero vector v such that
v (T(aw)v)r < 0 (v (T'(ay)v)r < 0) for every k such that v, 5 0. Thus,
by multiplying each w; for which |w;| > 0 by the appropriate component
of v, it is a simple matter to construct a 2 & L™ for which |z| # 0 and
3ja;j(2;,2;) < 0 for alli(Z;a;j(z;,2;) < 0 for alli such that |z;| > 0). This
completes the proof of the theorem.

Corollary 2: If n 2 3, U(Uy) is a proper subset of the matrices of order
nin P(Pg).

* Of some peripheral interest is the fact that it is not necessary to assume that L is
complete.
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Proof: To see that U(U) is a subset of P(Py), let a & U(U,), let e be any
element of L such that |e] = 1, and let w be the element of L" defined
by w; = e for all ;. Thus a,, = a, and, by Theorem 3, a & P(Py).

In order to show that for n = 3 there is a matrix of order n in P(Py) that
1s not contained in U(U,), observe that it is sufficient to consider the
n = 3 case, and let a(*) and a® be defined by

(1.1 1 -10
a®=11 11 1 |,
L 1 1 1.1
1 1 -10
a® =11 1 1]
11 1

We have at) € P and a©® & Py. Let w & L3 be given by

1 0
w=]1l)e + 1|es
10

in which e; and e are orthogonal elements of L with unit norm. Itis a
simple matter to verify that

1.1 1 -10
aP=11 22 11 |,
11 1111

1 1 -10

a® =11 2 11

1 11 101

and that we have det[z{”] < 0 and det[a(’] < 0. By Theorem 3, this shows
that a(H(a @) & U(Uy), which completes the proof.
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Corollary 3: If n = 2, U(Uy) = P(Py) restricted to 2X2 matrices.
This follows directly from Theorem 3.*

4.1 Definitions

Let N denote the set of real symmetric nonnegative definite matrices
m of order n with m;; > 0 for some i. For each m & N, let a,, denote the
nXn matrix whose i,jth element is a;;m;; for all i and j,* and let A(a,,)
denote the matrix obtained from a,, by deleting row i and column i for
eachi & {j: mj; = 0}.

Corollary 4: We have a &€ U(U)) if and only if A(a,,) € P(a,, € Py) for
eachm & N.

Proof: The proof of Lemma 2t shows that a real matrix m of order n
belongs to N if and only if there is a w in L™ such that |w| > 0 and m;;
= (w;,w;) for all i and j. Thus, Corollary 4 follows from Theorem 3.

4.2 Introduction to Corollary 5

In order to present our next corollary, we need the following additional
definitions: Let S(m) denote the set of all matrices obtainable from a
given real nXn matrix m by replacing each off-diagonal element m;; of
m with r;jm;j, where the r;; are real numbers that satisfy r;; = rj; and |ry;|
< 1.Let R denote {m & P: S(m) C P}, and, similarly, let Ry = {m & Py:
S(m) C Py}

When n = 2 and P and Py are restricted to 2X2 matrices, we have R
= P and R = Py. On the other hand, if we let a(*¥)(\) and a@()), re-
spectively, denote the matrices obtained from a(*) and a® of the proof
of Corollary 2 by multiplying the (1,3) and (3,1) elements by a scalar
variable \, then a(¥)(1) € P and a@(1) & Py, but a*)(0) & P, and,
similarly, a(®(0) & Py. This shows that R(R,) is a proper subset of the
nXn matrices in P(Pg) when n > 3.} Two familiar classes of matrices
contained, for example, in R are the set of row-sum dominant matrices
and the set of column-sum dominant matrices.

Corollary 5: We have a & U(Uy) if either

(1) a € R(Ry).

(ii) There are diagonal matrices dy and ds of order n with positive di-
agonal elements such that dady is positive definite (nonnegative
definite)."

Proof: Suppose first that a & R(R). Let w be any element of L" such
that |w| 5= 0, let ¢ = diag(cy,co, . . . ,¢,) in which for all i, ¢; = 0 if |w;]|

* The proof of Corollary 2 shows that U C P and Uy C Poforn = 2.

T In other words, let a,, denote the “Schur product” of a and m.

! Lemma 2 is used in the proof of Theorem 3.

§ It will become clear that this proposition also follows from Corollary 2 and Corol-

lary 5.
’?’As usual, we say that a real square matrix m is positive definite (nonnegative definite)

if and only if the symmetric part of m is the matrix of a positive definite (nonnegative
definite) quadratic form.

3042 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



= 0 and ¢; = |w;| ~Vif |w;| > 0, and let T'(ca,¢c) denote the matrix ob-
tained from (ca,c) by deleting the rows and columns corresponding to
the indices i for which ¢; = 0. In view of the fact that | (w;,w;)| < |w;|-|wj|
for each ¢ and j, we see that I'(ca,,c) € P(Py) and hence* that I'(a,,) &
P(Py). By Theorem 3, a & U(Uy).

At this point, we need the following lemma.
Lemma 4%: If p = {p;j} and q = {q;;} are real square matrices of the same
order, with p positive definite and q symmetric, nonnegative definite,
and such that g;; > 0 for all i, then r = {p;;q;;} is positive definite.
Proof of Lemma 4: Let p and q be as indicated, and let & denote the order
of p. The proof of Lemma 2 shows that L, contains & functions
fufo, . .. .fr such that

g = j; " F(0)f;(6)dt  forall and j.

With v any real nonzero k-vector and with A the smallest eigenvalue of
the symmetric part of p, we have

v = vy fo " ROf0)dt
= omzpijvifi(t)vjfj(t)dt
1)

> ﬂ AR
>0,

which shows that r is positive definite.

To complete the proof of the corollary, suppose that dad, is positive
definite, with d; and d» as described, and let m & N. By Lemma 4,
Aldian,ds} (ie., Alay,} with a replaced with d;ads) is positive definite and
hence it belongs to P. Therefore, Afa,} € P, and, by Corollary 4,
a & U

The proof for the case in which d;ads is nonnegative definite is es-
sentially the same, and is omitted.

4.3 Comments Regarding Corollary 5

In light of the fact that Ry = Pgrestricted to 2X2 matrices whenn =
2, the following special result is a direct consequence of Corollaries 5 and
1, and the content of the proof of Proposition 1.
Proposition 2: Let n=2and A € M. Let H.2 and H.3 (as well as A.1 and

* Here and in another part of the proof, we use the easily proved result that a real square
matrix m belongs to P(Py) if and only if dymds € P(P,) for every pair of compatible di-
agonal matrices d; and dy with positive diagonal elements.

R TfA proof that the conclusion of Lemma 4 holds when q is positive definite is given in
ef. 11.
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A.3) be satisfied. Then (4) is L-stable for every B if and only if a €
P,.

An example of a matrix a that is nonnegative definite and such that
a & Ry is given by

1 1 1
a=]|1 912 91/2 ,
1 912 912

since

11 0
det{1 212 212|<0,
0 21/2 21/2

Similarly, a very simple example of an a € R such that d;ads is non-
negative definite for no suitable d; and ds is

[ o]
a= .
0 0

Of some interest is the fact that a € U if a is an M-matrix (i.e., ifa
has positive principal minors and nonpositive off-diagonal elements);
in that case there is a diagonal matrix d with positive diagonal elements
such that ad is strongly row-sum dominant* and therefore ad and con-
sequently a belong to R.

Theorem 4: Let A € M. If a;; = 0 for alli,thena & Uyif and only if a
€ R,
Proof: The “if part” is a special case of Corollary 5.

Suppose that a & Uy with a;; = 0 for all ;, and suppose also that a &
R in which case there is an element b of S(a) such that b & Py. Let b
be given by b;; = 0 for all i, and b;; = r;ja;; with ry; = rj; for i # j. Choose
n real numbers ry1,r9, . . . ,7nn S0 that the nXn matrix m given by m;;
= r;j for all i and j is nonnegative definite. Observe that m & N. Since
@, = b, by Corollary 4, we have a contradiction to the supposition that
a & U,. Therefore, a € Rg when a € Uy and a;; = 0 for all i, which
completes the proof of the theorem.

4.4 Comment regarding Theorem 4

We can have a & Pgwith a; = 0 for all i, and a & Ry For example,
let

0 -1 1
a=]1 0
0 1 0

* See the theorem given on page 387 of Ref. 12.
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Fig. 1—Flow graph of an interconnected system.

Then a € Py, and

0 ~-rpp 113
det 12 0 0 = Troglr'12l'13 <0
0 Tog 0
fOI‘, say,reg3 =rig= —rizg= 1.

4.5 A Specific example of an L-stable interconnected system

Assume that H.2 and H.3 (as well as A.1 and A.3) are satisfied.
For the system described in flow-graph form in Fig. 1, we have

Y1=Xx1
Y2 =x2 — Bix; + B3x3z — Byxy
y3 = x3— 2Boxgs + 2B4x4
Y4 = x4+ Boxo — Baxs.
Here A € M, with

0 1 -1 0

To see that a & R, consider the matrix

0 0 0 0
—ra; 0 rog —ra4

0 —2r5 0  2rs|

0 o4 —rs34 0
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We observe that its determinant vanishes and every 1X1 and 2X2
principal minor is nonnegative for all real values of the r;;. It is a simple
matter to verify that its principal minor of order three obtained by de-
leting the first row and first column vanishes for all values of the r;;, and
it is clear that every other principal minor of order three also vanishes
for all values of the r;;.

Since a € R, by Corollary 1 and either Corollary 5 or Theorem 4, the
system described in Fig. 1 is L-stable.

Another way to prove that the system in Fig. 1 is L-stable is as follows.
Since H.2 holds, | Bju| < ca|u| for u € L. It therefore suffices to show
the L-stability of the system obtained from the flow graph in Fig. 1 by
deleting By, x1, and y;. That can be done with the aid of Corollary 5 by
verifying that the interconnection matrix a of the modified system has
the property that there is a 3%X3 diagonal matrix d with positive diagonal
elements such that da is nonnegative definite.
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A Note Concerning Optical-Waveguide
Modulation Transfer Functions

By. I. W. SANDBERG
(Manuscript received March 9, 1978)

A necessary and sufficient condition is given for the modulation-
transfer-function of certain multimode optical fiber guides to be zero
free in the closed right-half of the complex plane, and to be structurally
stable with respect to that property. The condition is of interest, for
example, in connection with the possibility of determining the phase
of a modulation-transfer-function from its amplitude.

I. INTRODUCTION AND PRELIMINARIES

Reference 1 considers the range of validity of a Hilbert-transform
approach in which the measured magnitude of the modulation-trans-
fer-function of an optical fiber guide is used to compute the guide’s im-
pulse response.* It is argued there that a key “minimum-phase as-
sumption” can fail to be satisfied in important cases, and a few closely
related experimental and analytical results are presented.

The purpose of this note is to report on a result along the same lines
as a proposition given in Ref. 1 to the effect that, for a fiber guide that
can propagate a finite number of discrete modes without mode mixing,
the modulation-transfer-function (more precisely, the Laplace transform
version of the modulation-transfer-function) is zero-free in the closed
right half of the complex plane, and that property is structurally stable
in a certain sense, if and only if a certain condition is met. The theorem
described in Section I is concerned with a more realistic and far more
interesting case in which mode mixing is not ruled out. In particular, the
result provides further detailed support for the conclusion reached in

* By “the guide’s impulse response” is meant the output power of the guide excited by
a unit impulse of optical power. The modulation-transfer-function G (w) is the envelope
response of the fiber guide to an incoherent optical signal sinusoidally modulated at angular
frequency w. To the extent that certain approximations hold, (Ref. 2), the impulse response
is the Fourier transform of the modulation-transfer-function. The reason for considering
the Hilbert transform approach is that it is often desirable to determine the impulse re-
sponse of fiber guides by methods other than direct time-domain measurement, and, while
|G(w)| can be measured easily, it is at the present time difficult to accurately measure the
phase of G(w). (See Refs. 3 and 4.)
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Ref. 1. (i.e., that “nonminimum-phase behavior” is likely to arise, and
can arise, in important actual cases). As in Ref. 1, it is the introduction
and use of the concept of structural stability of a mathematical property
which, for the case considered, enables a result to be obtained that is
complete and easy to interpret.*

We consider, as in Ref. 1, a class of optical fiber guides for which ap-
propriate approximations can be made so that the modulation-trans-
fer-function G (w) of a guide can be written in the form

G(w) = J'T e~iorda (7), 1)

in which T denotes a closed, finite, real interval whose end points depend
on the refractive indices of the core and cladding, and a(r) is a real-valued
nondecreasing function.t It is assumed throughout that a(7) satisfies
the normalization condition

fT da(r) = 1.

As mentioned previously, in Ref. 1 attention is focused on the class of
fiber guides that can propagate n discrete modes without mode mixing.}
In that case, G (w) can be written as

il dje_i“”'f, 2
j=

in which each d; is a positive number that represents the initial excitation
of the jthmode,and 71y < 1, <. .. < 7,.

In this note we suppose that the right side of (1) can be expressed
as

k
3" djeioni + f e—ioth(r)dr, (3)
j=1 T

in which: kr is a positive integer (the motivation for using the subscript
F will become clear shortly),d; > 0for1 < j <kp, 71 <79 <... < 7pp,
and b(7) is a bounded piecewise-continuous® nonnegative function which
takes into account mode mixing. It is also assumed that 7; has the fol-
lowing property: b(7) = 0 for 7 ¢ T with 7 < 71 (which, of course, allows
the possibility, but does not require, that 71 is equal to the lower endpoint

* The general problem of determining when the Hilbert-transform approach (i.e., when
the so-called Kramers-Kronig transformation) is valid is of interest in many fields (see,
for example, Ref. 5).

T Thus, roughly speaking, da(7) in (1) can be replaced with f(7)dr in which the function
f(r) is nonnegative and may contain impulses corresponding to discrete modes. See Refs.
2 and 3 for the relevant background material. We are assuming that material dispersion
can be neglected.

1 Typically, n > 100.

8 The piecewise-continuity assumption appears to be adequate for applications. For
basically a somewhat more general version of the theorem stated in Section II, see Section
2.2.
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of T'). Since (3) is a specialization of the right side of (1), we also have
7; ¢ T for each j, as well as

kP
S d;+ f b(r)dr = 1.
j=1 T

In physical terms, b is the relative-power density function associated
with the nondiscrete modes, and the idealized impulse response of the
guide is the inverse Fourier transform of (3). The observable impulse
response of the guide (i.e., the impulse response of the guide-detector
combination) is a somewhat smoothed version of the idealized response,
with the smoothing provided by the detector (see Ref. 3).

The important assumption that d; > 0 and that b(r) = 0 for 7 ¢ T with
7 < 71 means that a discrete mode corresponding to the smallest modal
delay is propagated. This assumption appears to be reasonable for at
least some interesting classes of guides. For example, if a guide with a
step-index profile is short enough to neglect mode conversion phe-
nomena, then it is not unreasonable to assume that G () has the form
given in (2) with 7, the modal delay corresponding to the fundamental
mode. In a real fiber, geometrical perturbations couple energy among
the modes so that the distribution of modal delays changes continuously
from a discrete set to a continuum as the fiber length L increases. Ex-
perimental evidence indicates that the assumption is reasonable at least
if the guide is not too long.* (For a particular fiber, there is a charac-
teristic coupling length L. such that for L > L., it is difficult in the time
domain to isolate discrete modes with appreciable energy.)

Il. THE RESULT
In this section, z denotes a complex variable and F(z) is defined by

k
F(z)=j§,1 dye =27 + J'T e=27b(r)dr 4)

for each z. (Of course, if G(w) denotes (3), then G(w) = F(iw), and F(2)
is simply the Laplace transform of the generalized function whose
Fourier transform is G(w).)

In order to state our result, consider an arbitrary function H(z) of the
same type as F(z). More explicitly, let H(z) be given for all z by

kH )
H(z)=j=z1 5re=2ti + fT e—278(7)dr, (5)

in which kg is a positive integer (not necessarily equal to kr), and the
8j, the t;, and B(r) satisfy the restrictions imposed on the corresponding
terms in (4). Let S denote the set of all such functions H(z).

* The writer is indebted to his colleague I. P. Kaminow for a helpful discussion con-
cerning the significance of the assumption described above.
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For the purpose of defining a “distance” between F' and an arbitrary
element H of S, let JF, Jy, and J, respectively, denote the sets of num-
bers {1,2,. .. ,kr}, {1,2,... ,ky}, and {1,2,. .. ,min(kg,ky)}, and, with y a
real variable, let ¢(y) denote any continuous nondecreasing function of
y such that g(0) = 0.

Let the “distance” p(F,H) between F and any H in S be defined
by*

p(F,H)=.Z |dj—5j|+ > dj+ > 5]‘
jed J e (Jr—dJ) j e (JH—=J)

+q (max |-r,~—t,-|) + max
jed uveT

L "[b(r) = g@dr|. ®)

Each term on the right side of (6) has a direct interpretation. In par-
ticular,

dj+ > 0j,
J e (Jr—dJ) J e (JH—J)

in which at most one sum is nonzero, reflects the extent to which terms
in one of the two finite sums in (4) and (5) do not have counterparts in
the other. Also,

fu " [b(r) - B()]dr

is an integral of the difference of two power-density functions, and,
roughly speaking, if

‘max
uveT

ﬁ " [b(r) - B(n)]dr

is sufficiently small, then, for practical purposes, the functions b and 8
are indistinguishable in the sense that the observable impulse response
of the guide is essentially unchanged if b is replaced with 3. (The portion
of the idealized impulse response that does not contain impulses is g
defined by g(¢) = b(t) fort ¢ T and g(¢) =0 for ¢t ¢ T. If, for example, the
smoothing introduced by the detector is modeled by a filter with impulse
response r given by r(t) = p~lfor t £ [0, p] and r(t) = 0 otherwise, in
which p is a small positive constant, then the observable version of g(t)
isp~t fi_,g(r)d for each ¢. Similarly, if instead r(t) = 0 for t <0, r(0)
is finite, and the derivative of r is absolutely integrable on [0,«), then
an integration by parts shows that the observable version of g is essen-
tially unchanged when b is replaced with a sufficiently nearby 3 in the
sense indicated above.)

Our result, the theorem given below, provides an answer to the fol-
lowing question: When is it true that F(z) = 0 for Re(z) = 0 and that

* We adopt the convention that a sum over the empty set is zero.
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property of F is structurally stable in the sense that there is a positive
constant ¢ (which can be thought of as a “tolerance”) such that H(z) =
0 for Re(z) = 0 for every H in S such that p(F,H) < .

Theorem: We have F(z) # 0 for Re(z) = 0 with that property of F
structurally stable, if and only if

di> ¥ dj+ J‘ b(r)dr.
jedr T

J#=1

Note that the theorem* does not rule out the possibility that the
condition given in the theorem is violated and F(z) is zero-free in the
closed right-half plane. (In fact, an example given in Ref. 1 shows that
the possibility can occur. Essentially the same example can be used to
show also that if the condition is violated, then it need not be the case
that all functions in S “sufficiently close” to but different from F have
a zero in Re(z) = 0.) On the other hand, at present it appears that there
are complex, and for practical purposes impossible-to-specify, additional
relationships among the 7;, the d;, and b that, in particular take into
account geometrical perturbations along the length of a real guide. The
theorem shows that, when additional information is unavailable, it is
not possible to prove that F(z) is zero-free in the closed right-half plane
whenever

A< 5 dj+fb(r)d‘r
jedr T

J=1

(which, in view of the normalization condition concerning a, is equivalent
to the statement that the discrete mode with the smallest delay has
relative power less than %5) and, in the sense indicated above, the 7;, the
dj, and b are known only to within some tolerance, no matter how small
the tolerance is.

A proof of the theorem is given in the next section.

* As indicated earlier, one application of the theorem is that it provides further detailed
support for the material reported on in Ref. 1. For the benefit of the reader who has not
read Ref. 1, we mention that a much simplified version of essentially the proof given in
Section 2.1 can be used to show that if kg > 2,if b(7) and 8(7) in (4) and (5), respectively,
are each replaced by the zero function, if S is further restricted so that ky = kg and §; =
djforj=12,...,kpforall H ¢S, and if p(F,H) is instead g(max; . JAT]’ - t;]) [i.e., just
tﬂe fourth term in the sum on the right side of (6)], then: F(z) s 0for Re(z) = 0 and there
is an € > 0 such that H(z) # 0 for Re(z) = 0 for every H in the corresponding S with p(F,H)
<¢ifand onlyif dy > Zfi} d;. This result is basically a slight generalization of the com-
parable proposition in Ref. 1.
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2.1 Proof of the theorem

For the reader’s convenience, we first repeat some of the material
described above. We have T = [T,T] in which T; and T are real
numbers such that T'; < T5, and S denotes the set of all functions of the
complex variable z of the form (5) where kg is a positive integer, §; >
Oforl <j<ky T)=<t;1<ta<...<try =Ty B(7)is anonnegative
bounded piecewise-continuous* function defined on T such that 8(7)
=0for re T with 7 < 71, and

kH
j;l o; + j;ﬂ(f)d'r = 1.

The “distance” p(F,H) between any H ¢ S and the particular element
F of S given by (4), is defined by (6).
Proof of the “If” Part: Suppose that

di> 3 d;+ fTb(T)dT.

jedr
=l
With
re=di— 3 dj—fb(f)dr,
jedr T
j=1

let e satisfy 0 < € < (1/4)r. For each H ¢ S with p(F,H) < ¢, we see that
|d1 - 51| < €,

Z |dj—5jIS€,. > djSG,‘ > 0j < ¢
Jed Jje (Jr=d) Jj e (JH—=J)
J=1

as well as

<

U'Tb(f)df—fTﬂ(T)dT

6> % 5,-+fT6(T)dT.

JjedH
J=1

and therefore

Thus, for Re(z) = 0 and H ¢ S with p(F,H) < ¢, we have

le*ttH(z)| = |61 + X dje—2@—t) + f e—2(r—t3(7)dr
jedn T
j#1
* It will become evident that the theorem holds also if “piecewise continuous” is replaced

with either “Riemann integrable” or ‘“Lebesgue integrable.” In this connection, see Sec-
tion 2.2.
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=01 —

Y semzti-to 4 j‘ e=z(—tB(r)dr
T

JedH
j=1

25— ¥ §— fT B(r)dr. (7

Jjedu
i1
Since the right side of (7) is positive, it is clear that H(z) = 0, which

completes the proof of the “if” part.
Proof of the “Only If” Part: Suppose now that

di< ¥ dj+ j;b(r)dr,

jedF
J=1

and let ¢ > 0 be given.

Let k¢ = max(kpg,2), let = min ((1/6) ¢, (1/2) d1), and let 6; = d{ —
n.Ifkp>1,letdg=do+nand é; =djforje {j:j e Jp;j #1,2}, and if kp
=1, let 62 = n and 7¢ = T's. Then the function G defined (for all z) by

Kg
G@) =Y se~mi+ f e==b(r)d7
j=1 T

belongs to S, and we have (if we set H = G):

1
Y ldi=68l+ X di+ ¥ §i<ce (8)
jed je@r=D " jeWo—d) 3
and the strict inequality
< Y 8+ f b(r)dr. 9)
JjeFg T

j=1
Let 6, denote min{(7j41 — 7j): 1 <j,j + 1 < kg},andlet A=sup; , 7
b(r). With B ={r ¢ T:b(7) > 0}, let s; and s denote inf B and sup B, re-
spectively, when B has nonzero measure, and T'; and T, respectively,
otherwise.

Choose any 6. > 0 such that g(6.) < (¥s) ¢, and let 6 be any positive
number such that

111 1
5 < min (5 o bn s € 188) 7, (2 sl)>. (10)

Let w = 7671, and let K; denote the set of numbers of the form 7 + k4,
with k an odd positive integer. Clearly, exp[—iw(t — 71)] = —1for t ¢ K.
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Choose t; = 71, and (using kg = 2 and 2 6 < (1) 6,) foreachj = 2,3,. . . kg
choose a tj in K5 M [1,T9] such that | 7; — t;| < 26. Since 26 < (%) 6, and
26 < 6., we have t; <ty <...<tp;and g(max; . g|7j — tj]|) < (Ys)e.

We see that the “distance” between F and the element E of S given
by

k
Ez)= ¥ sje~2ti+ fe‘"b(r)dT
j=1 T

is at most (%) e. It therefore suffices to show that there is an H in S de-
fined by

k
H(z) = 3 bje=2ti + f e=27B(r)dr
j=1 T
with

max

max | [b(7) - pedr

such that H(z) = 0 for some z with Re(z) > 0.

Let L = K5 M (s1,82). Since 6 < Y4 (s9 — s1),T L contains at least two
points. Let the points in L be p1,ps,. . . ,pn, ordered so that p; < ps <
... < pn. Let o be a positive number such that ¢ < §, p; — s1 > 0, and s
— pn > 0. With I(i,v) denoting [ % b(r)d7 for u,v ¢ [s1,52], let 3,(r) be
defined for 7 ¢ T by 8,(7) = f(t — p1)I(sy,p1+ 8) + f(t — p2)l(p2 — 6, p2
+68)+...+f(t = p)(pn — 8,52), in which f(¢) = (2¢) 1 for |¢| < g and
f(t) = 0 otherwise. Since

1
< —e¢
3

fT Bo(r)dr = I(sy,py + 8) + I(py — 6,p2 + ) + ... .

+Ipa= 9 = | b(ndr, (11
we see that the function H, defined by
k
H,(2)= Y sje~ti+ . Botn)e=7dr
=1 T

belongs to S.
Using I(s1,p1 + 8) < 30A,1 I(p; — 8,pj + 6) < 26Aforj=2,...,(n—
1)y I(pn - 6:32) = 35A’

fT tlb(f)d‘r= fT tl B,(r)dr

fort =sy,p1+ 8,pa+6,...,pn—1+ 8,59, and the fact that b(7) and §,(7)
are nonnegative, we have

t
| btndr = | pu(rrds
T T
T See (10).

! Notice that p; — s; < 26.

=< 30A
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for all t ¢ T. It follows at once that for u,v ¢ T,

\ f " [b(r) = B,(1]dr| <65
<le.T
3

Therefore p(F,H,;) < ¢, uniformly for ¢ as described.
Let P(z) be defined for all z by

kG
P(z) = Zp dje~2ti + e~2P1(sy,p1 + 6)
= ‘

+e~2P2](py— 6,pa + 6) + ...+ e~ 2Pn[(p, — 6,59).

Let a be areal variable. Since ¢; ¢ K; for j = 2,3,... kg, and p; ¢ K; for
7 =12, ..,n,and (9) and (11) hold, P(a + iw) exp[(« + iw)t]! is real
and negative when « = 0. On the other hand, P(a + iw) exp[(a + iw)tq]
is positive for all sufficiently large «. Thus, P(z,) = 0 for some z; with
Re(z1) > 0.

The function P(z) is analytic in z throughout the complex plane. Since
it is not identically zero and is analytic at 2z = z, its zero at z = z; is iso-
lated. Therefore, there exists a constant r > 0 such that r < Re(z1)
and, with T' = {z:|z — 21| = r}, P(z) # 0 for z ¢ I. It follows that min
{|P(2)|:z € '} is positive.

Using the fact that

t+o
(20)71 f e~27d7 = e 2tw(oz),
t

in which w(sz) = (202)"1(e?° — e—29), we have

H,(z) = P(z) + [W(oz2) — 1]y(2), (12)

where
y(z) = e=2P1[(s1,p1 + 6) + e~2P2] (py — §,p2 + &)

+...+ e ?Pr](p, — §,59).

The function |y(z) |is bounded on T, and max {|w(cz) — 1|:2 ¢ T} (and
hence max {|[w(oz) — 1]y(2)]:z ¢ T}) can be made arbitrarily small by
choosing ¢ to be sufficiently small. By Rouché’s theorém, for sufficiently
small ¢, H,(z) has a zero inside T' (and hence in Re(z) > 0). This com-
pletes the proof.

+ See (10).
¥ Recall that w = 7671
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2.2 Comment

It is apparent that we have proved a somewhat stronger result than
the theorem stated. Suppose that the definition of S is changed to the
extent that 3(7) need not be piecewise continuous, but merely Lebesgue
integrable. Then it it is clear that the “if” part of the theorem remains
true. More importantly, the proof shows that if

i< ¥ d,-+fb(r)d-r,
j T

e dJF
j=1

then, for any ¢ > 0, there is an H in S of the form (5) with the following
properties: p(F,H) < ¢, H(z) has a zero in the open right-half of the
complex plane, t1 = 71,k = kp,0; = d; forj = 1,2,. .. ,kF, B(7) is piecewise
constant, and the smallest closed real interval containing the support
of b(7) (which might possibly be the “empty interval”) also contains the
support of (7).
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Some Extensions of the Ordering Techniques for
Compression of Two-Level Facsimile Pictures

By F. W. MOUNTS, A. N. NETRAVALI, and K. A. WALSH
(Manuscript received September 2, 1977)

We present extensions of our earlier published ordering techniques
for efficient coding of two-level (black and white) facsimile pictures.
Ordering techniques use the two-dimensional correlation present in
spatially close picture elements to change the relative order of trans-
mission of elements in a scan line so as to increase the average length
of the runs of consecutive black or white elements in the ordered line,
making the data more amenable to one-dimensional run-length coding.
The extensions that we consider allow us to use different run-length
codes to match the statistics of different parts of the ordered data, and
to drop certain runs from transmission. Computer simulations using
the eight standard CCITT pictures, which have a resolution of ap-
proximately 200 dots/inch, indicate that these extensions can result
in transmission bit rates which are about 11 to 21 percent lower than
the ordering schemes described in our earlier work. The entropies vary
between 0.021 and 0.125 bits/pel for the eight pictures.

I. INTRODUCTION

Coding of two-tone (black and white) facsimile pictures has gained
considerable importance in the past few years, as is evidenced by a large
number of papers as well as by a variety of facsimile communication
systems. More and more sophisticated coding algorithms are being used
which depend upon the two-dimensional spatial correlation present in
picture data. This trend is understandable when one realizes that the
cost of digital circuits and memories is decreasing faster than the cost
of transmission.

This paper presents some extensions of our ordering schemes!:2 for
efficient coding of facsimile pictures. In the basic ordering scheme we
make a prediction of the present element using the surrounding previ-
ously transmitted picture elements and classify it as “good” or “bad,”
depending upon the probability of the prediction being in error, condi-
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tioned on the specific values of the surrounding elements. We then
change the relative order of the prediction errors corresponding to pic-
ture elements along a scan line using the “goodness” of the prediction
in such a way as to increase the average run-length of the black and/or
white elements and then transmit the run-lengths.

This paper has several objectives. First, we give the entropy results
using our earlier ordering schemes on the CCITT (International Tele-
graph and Telephone Consultative Committee) images. This will allow
a comparison with the many coding algorithms proposed by other
workers since the CCITT images are widely available. This was not pos-
sible from the results presented in our earlier paper where we had used
locally generated picture material. The second objective is to present
certain extensions of the ordering schemes and give results of computer
simulations. The following extensions are presented: (i) Since good and
bad regions of the ordered prediction errors have different statistics, two
sets of run-length codes can be used. It is not necessary to specify the
location of the boundary between the good and bad regions to the re-
ceiver. (ii) Runs across the good-bad region boundary can be bridged
wherever advantageous, even if the color of the element changes across
the boundary. (iit) A specified run in each line of data can be omitted
from transmission since the number of elements in a line is fixed. The
length of the omitted run can be derived at the receiver if a line sync code
is transmitted at the end of each line.

Computer simulations indicate that entropies ranging between 0.021
and 0.125 bits/pel for the eight CCITT pictures are possible using these
extensions. This represents a 11- to 21-percent decrease over the ordering
techniques of our earlier paper.!

Il. CODING ALGORITHMS

In this section, we describe our coding algorithms in detail and present
results of the computer simulations. The pictures used for simulations
are the eight CCITT pictures which have a resolution of approximately
200 dots/inch. Each picture consists of 2128 lines with 1728 picture el-
ements (pels) in each line. Copies of these pictures are shown in Figs. 1a
through 1h. As a measure of performance, we used the sample first-order
entropy of run-length statistics. We computed the average black and
white run-lengths and the entropy of black and white runs using, for
example, the formula

n; n;
Ey=—% % 10g, 2 1)
w= T2y oy

where E,, is the entropy of the white run-lengths, n; is the number of
white runs of length i, and N is the total number of white runs. Using
these and eq. (2), we computed the entropy, E, in bits/pel by:
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Fig. 1—The eight (a to h) CCITT pictures used for computer simulation. Each picture
consists of 2128 lines with 1728 pictures elements in each line and has an approximate
resolution of 200 dots/inch. (Figs. 1e through 1h on next page)

E=Ew-Nw+Eb-N1J
rwN w + rbN b

where E,, is the entropy of the black run statistics, r,, ry are the average
white and black run-lengths, respectively, N,,, N, are the number of
white and black runs, respectively, and E is the entropy in bits/pel. The
above numbers are computed for the entire picture (1728 X 2128 pels)
using, on the sides and top of the picture, a border of white elements
surrounding the actual picture.

(2)
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Fig. 1 (Continued from previous page).

2.1 Prediction algorithm

The first step in the ordering algorithm consists of making a prediction
of the present picture element using the already transmitted surrounding
picture elements. We define a state S; using the four surrounding picture
elements {X;};=1, .. 4 as shown in Fig. 2. There are 16 states. The pre-
dictor is developed in a standard way3-5 as the one which minimizes the
probability of making an error, given that a particular state has occurred.
Thus the predictor C(S;), for a given state S;, is given by:
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Fig. 2—Configuration for state definition.

C(S;) = “black,” if P(Xo = “black” |S = S;) > 0.5

= “white,” otherwise,

where P(-|-) is the conditional probability measured for the picture. For
convenience, we represent the color of the picture elements by “1” and
“0,” “1” for black and “0” for white. The predictor varies from picture
to picture; however, the variation is not great, as shown in our earlier
paper.! The predictor for a typical picture [CCITT picture 2 (Fig. 1b)]
is shown in Table 1.

2.2 Ordering algorithms with one set of run-length codes

In this section, we give the simulation results using our earlier ordering
algorithms. First, in Table 11, for the purposes of comparison, we give the
entropies of the run-length statistics from the raw picture data as well
as from the prediction error data. As expected, the entropies of the
run-lengths of the prediction errors show about 0.7 to 24 percent decrease
over the entropies of the run-lengths of raw data. The decrease is smaller
for the busier pictures such as the CCITT pictures 4 and 7.

Next, we simulated the ordering algorithm of Ref. 1. As explained
there, this algorithm can be illustrated by considering a memory con-
taining 1728 cells (equal to the number of elements per line). Let the cells

Table |—State-dependent prediction for CCITT picture 2 (Fig. 1b)

State S; P(Xo/S) Predicted

X1 Xa X3 X4 Xo =0 Xo=1 Value X,
So 0 0 0 0 1.000 0.000 0
Si 1 0 0 0 0.300 0.700 1
So 0 1 0 0 0.777 0.223 0
Sa 1 1 0 0 0.006 0.994 1
Ss 0 0 1 0 0.822 0.178 0
Ss 1 0 1 0 0.055 0.945 1
Se 0 1 1 0 0.323 0.677 1
Sz 1 1 1 0 0.001 0.999 1
Sg 0 0 0 1 1.000 0.000 0
So 1 0 0 1 0.690 0.310 0
S1o 0 1 0 1 0.971 0.029 0
St 1 1 0 1 0.154 0.846 1
Si2 0 0 1 1 0.996 0.004 0
Si3 1 0 1 1 0.200 0.800 1
Si4 0 1 1 1 0.708 0.292 0
Sis 1 1 1 1 0.012 0.988 1
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Table il—Entropy comparisons for different coding algorithms. The entropy numbers do not include certain housekeeping bits (e.g., line
sync, color of the beginning run in a line)

Entropy (bits/pel)
Coding Algorithm CCITT Image Number
No. 1 2 3 4 5 6 7 8
1 One-dimensional run-length coding 0.0505 0.0447 0.0914 0.1652 0.0988 0.0679 0.1791 0.0870
2 Run-length coding of prediction errors 0.0466 0.0373 0.0693 0.1640 0.0795 0.0482 0.1678 0.0678
3 Run-length coding of ordered prediction errors; 0.0390 0.0267 0.0571 0.1396 0.0652 0.0366 0.1400 0.0463
one set of codes, goodness threshold = 0.1.
Run-length coding of ordered prediction errors; 0.0398 0.0305 0.0592 0.1424 0.0673 0.0392 0.1442 0.0569
all “white” state = good state
4 Run-length coding of ordered prediction errors; 0.0356 0.0247 0.0547 0.1287 0.0613 0.0351 0.1284 0.0430
two sets of codes, goodness threshold = 0.1,
good—bad boundary run broken
5 Run-length coding of ordered prediction errors; 0.0351 0.0233 0.0527 0.1282 0.0596 0.0335 0.1274 0.0419
two sets of codes, goodness threshold = 0.1,
good—bad boundary bridged
6 Run-length coding of ordered prediction errors; 0.0338 0.0201 0.0501 0.1320 0.0579 0.0298 0.1326 0.0390
one set of codes, goodness threshold = 0.1,
first run dropped
7 Run-length coding of ordered prediction errors; 0.0324 0.0210 0.0506 0.1239 0.0569 0.0312 0.1250 0.0398

two sets of codes, goodness threshold = 0.1,
good—bad boundary bridged;
last decodable run dropped




of this memory be numbered from 1 to 1728. We classify the states used
for predictors into two categories, good or bad. Good states are those for
which the probability of the prediction being in error, conditioned on
that state, is less than a given threshold (defined as the goodness
threshold). All the other states are bad. In the process of ordering, if the
first element of the present line has a state which is classified as good,
we put the prediction error corresponding to it in memory cell 1; if, on
the other hand, the state is classified as bad, we put the prediction error
in memory cell 1728. We continue in this manner: the prediction error
for the ith element of the present line is put in the unfilled memory cell
of the smallest or the largest index, depending on whether the state
corresponding to the ith element is good or bad. When the memory is
filled, its cells are read in numerical order and the contents are run-length
encoded. It is easy to see that the present line can be uniquely recons-
tructed from the knowledge of the run-lengths of the ordered line, since
the ordering information is known to the receiver. The efficiency of such
ordering depends upon the threshold used for classifying the states into
good or bad. Table II shows two examples, one in which the goodness
threshold was 0.1 and the other in which only one state (corresponding
to all four surrounding elements being zero) is classified as good. A
goodness threshold of 0.1 appears to be acceptable among the many
thresholds that we used in our simulations. Comparing entropies cor-
responding to the ordered and unordered prediction errors, we see that
ordering reduces the entropy by about 15 to 32 percent, depending on
the picture used. Also, ordering of the prediction errors brings entropies
down by 15 to 47 percent of the run-length coding of raw data. It should
be noted that in each of the above cases the predictor was optimized for
the particular picture.

2.3 Ordering algorithms with two sets of codes

Statistics of the run-lengths in the good and bad regions of the ordered
prediction errors are quite different. As an example, for CCITT picture
2 (Fig. 1b), 98.5 percent of the pels fall in the good region of which 99.9
percent are correctly predictable, whereas the bad region contains only
1.5 percent of the total elements of which 73 percent are correctly pre-
dictable. Thus, the average run-lengths in the good region are much
larger than in the bad region. Such a variation in the statistics can be
exploited by using two different sets of run-length codes for the good and
bad regions, respectively. The algorithm* would then operate as follows:
First, we put the ordered prediction errors in the memory as before; then,
the contents of the memory are run-length coded with one set of codes
in the good region and a different set of codes in the bad region.

* This algorithm is related to the one proposed by Preug (Ref. 5). It is discussed here
mainly for completeness and was motivated by the communication we received from him
(Ref. 6).
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Switching from one set of codes to the other is done at the boundary of
the good-bad region even though the ordered line may not have a new
run at the boundary. This process will break the run at the boundary
between the good and bad region of the ordered line, whereas the or-
dering technique discussed in Section 2.2 continues the run (whenever
possible) across the boundary of the good-bad region. This procedure
is continued until all the runs from the memory are exhausted.

At the receiver, the coded run-lengths for a complete line are held in
a memory. Good or bad runs are decoded from the memory as
needed.

The results of computer simulations for the ordering scheme with two
sets of codes are shown in Table II. These results use a goodness threshold
of 0.1. Comparing the entropies from algorithms with one and two sets
of codes, it is seen that with two sets of codes about 4 to 8 percent im-
provement is possible. This is the opposite conclusion* from that given
in our earlier paper, which used a different source material.! For the
pictures used in Ref. 1, we had found that ordering schemes with two sets
of codes resulted in 10 to 18 percent higher entropies than the entropies
obtainable with one set of codes. This may have been a result of the small
size of the pictures used for the simulation (an array of 256X 256 picture
elements).

2.4 Ordering algorithms with two sets of codes and bridging of good-bad
boundary

Use of two sets of run-length codes described in the previous subsec-
tion resulted in the breaking of a run at the boundary of the good-bad
region since part of the run may be in the good region and the other part
may be in the bad region. To avoid breaking the run, which extends
across the boundary, we code the boundary run using the run-length code
of the good region or the bad region as follows: If the boundary run is first
required as a bad run in the process of decoding the run-lengths at the
receiver, it is coded as a bad-run; otherwise, it is coded as a good run. The
method in which the receiver decodes the bridged run is similar to the
one given in the next subsection. Results of such a scheme are shown in
Table II. Bridging of the runacross the boundary results in an improve-
ment of about 0.39 to 6 percent over nonbridging. As would be expected,
the percent improvement is smaller for busier pictures.

2.5 Ordering algorithms with dropped runs

In most facsimile communication systems a code for the line sync is
sent at the end of each line of coded data. Since the number of elements
in a line is fixed, this is redundant. A run can be dropped from each line

h* We thank D. Preug for showing us data from his simulations which first demonstrated
this fact.
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as long as the receiver knows the position of the dropped run. In the or-
dered line a large benefit can be derived by dropping the first good run,
since it is generally the longest. This also avoids transmission of run-
length codes for lines with no prediction errors. Table II shows results
of the simulation of a scheme in which the first good run from the ordered
prediction errors is dropped from transmission, and the rest of the runs
are transmitted by using one set of run-length codes. Dropping the run
reduces the entropy to between 0.020 and 0.133 bits/pel which is a 5 to
25 percent reduction compared to the case where all the runs are
sent.

It is also possible to drop a run from transmission when two sets of
codes are used for the run-lengths in the good or bad regions. In this case,
the first run cannot be dropped since the receiver switches between the
two sets of codes depending on the past decoded data. However, the last
run that the receiver needs to decode may be dropped. We have simu-
lated a scheme in which the good-bad region boundary is bridged and
the last decodable run is dropped. To explain the scheme, consider a line
made up of run-lengths of ordered prediction errors as shown in Fig. 3.
We use two sets of codes and start transmitting codewords corresponding
to run-lengths Gy, Go, ---, B, By of the ordered line, appropriately
switching the code in the good and bad regions. The receiver decodes
these run-lengths as needed. To bridge the boundary run and drop the
last decodable run, we use the following rules:

(i) If there are no runs in the good region, drop the last run in the
bad region, i.e., B,,.
(1) If there are no runs in the bad region, drop the last run in the good
region, i.e., G,.
(zi1) If the last two runs required by the receiver in the decoding
process are GG, and B, (in either order), drop the runs G,, and
B,,. This is done independently of the color of prediction errors
in G, and B,,.
(iv) If the last two runs required by the receiver are from the bad
region and at least one good region run has occurred, then if
(a) color of B, is a “1,” bridge G,, and B,,, code it using the good
region code, and drop B,,—1.
(b) color of B,,, is a “0,” drop B,,.
(v) If the last two runs required by the receiver are from the good
region and at least one bad region run has occurred, then if
(a) color of G, is a “1,” bridge G, and B,,, code it using a bad
region code, and drop G, —1.
(b) color of G, is a “0,” drop G,,.

Rules (iv) and (v) allow us to drop a run of Os rather than a run of 1s,
since runs of Os usually have longer lengths than runs of 1s. Also, it is
possible to bridge the runs at the boundary independent of the color
change across the boundary of the good and bad region. Thus, the above
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Fig. 3—Ordered run-lengths.

strategy allows dropping a run from transmission, bridging runs across
the boundary (whenever it is advantageous, even if colors change), and
the use of two separate sets of codes for the good and bad regions.

At the receiver, the coded run-lengths are held in memory and decoded
as needed. A running total of the number of elements from decoded
run-lengths is kept. If all the run-lengths have been decoded from the
receiver memory and an additional run is required, this running total
is subtracted from the total number of elements in a line, and the result
is taken as the length of the next run. If the result is zero, then the next
run is taken to be of opposite color, as usual, and decoding proceeds until
the end of the line. The simulations using the above scheme decreased
the entropy to between 0.021 and 0.125 bits/pel as shown in Table I1. For
busy images this scheme does better than the scheme which uses only
one set of codes and drops the first run. However, for quieter pictures
the performance is reversed.

Ill. DISCUSSION AND SUMMARY

We have described in this paper schemes for efficient coding of two-
level (black and white) facsimile pictures. These were extensions of our
earlier schemes which ordered the prediction errors before run-length
coding. The most sophisticated extension presented here results in an
entropy of between 0.021 and 0.125 bits/pel. Our computer simulations
indicate that use of two sets of codes for good and bad regions of the
ordered pictures results in about 4 to 8 percent decrease in entropy
compared to using only one set of codes; whereas using two sets of codes,
bridging the good-bad boundary run, and dropping the last decodable
run decreases the entropy by 11 to 21 percent.

It should be mentioned that this is not a definitive coding system
study. We have not considered many important factors crucial to the
success of any coding system such as the run-length codes and their
picture dependence and the effect of transmission errors.
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Free Electron Laser
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An introductory guide to the basic mechanisms of the free electron
laser is presented. The laser gain originates from the stimulated Raman
or Compton backscattering of a pump electromagnetic field by a rela-
tivistic electron beam. The condition of optimization of the gain, the
maximum operation frequency, and the optimum output power are
obtained in terms of the beam parameters and the magnitude of the
pump magnetic field.

I. INTRODUCTION

Recent observations of amplification of submillimeter! and infrared?
electromagnetic waves using a relativistic electron beam (REB) have
created interest in applying the mechanism to produce a high-power,
tunable laser in the infrared to visible range as well as in speculating the
possibility of constructing an X-ray laser.

This paper introduces the basic mechanism of the amplification
processes and discusses the limitations in the power and frequency re-
ferring to the presently available REBs. A nonspecialist should be able
to follow the contents without referring to special references.

Section II introduces Lorentz transformation of various variables
between the beam and the laboratory frames, which are used in suc-
ceeding sections.

One of the important discussions presented here is the distinction
between the stimulated Compton and stimulated Raman scattering.
When the scattering occurs by an excitation of a single particle state,
uncorrelated free-streaming motion of electrons, it is called the stimu-
lated Compton scattering; if it occurs by an excitation of plasmon, the
collective plasma oscillation of the electrons, it is called the stimulated
Raman scattering. In most cases, the stimulated Compton scattering has
a gain which is too small to be useful for practical purposes. Hence, the
limitation in the output frequency is decided by whether or not the rel-
ativistic electron beam can be operated in the stimulated Raman regime.
The beam current density and the energy spread is the decisive factor
for this, as shown in Section III.
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The gain calculations based on classic mechanics are presented for
both processes in Sections IV and V. The classic calculation is justified
when the scattered photon density is large so that the photons can be
regarded as consisting of a continuous fluid. This occurs when the
number of photons in a box of its wavelength (\) cubed is much larger
than unity; that is, when A3P/(hwc) > 1, where P is the electromagnetic
power and c is the speed of light.

Some design examples using presently available REBs are shown in
Section IV. MKS units are used throughout this paper. Definitions of
the notations and subscripts used are listed below.

: coordinate taken in the direction of the beam velocity.
: coordinates perpendicular to the beam velocity
: electron rest mass
: momentum
: power
: beam velocity
: group velocity
: electric field intensity
: magnetic flux density
: speed of light, 3 X 108 m/s
v: (1 = v§/c?)~12 [eq. (5)]
Hy: beam energy
vo: Ho/me? [eq. (21)]
wp: plasma angular frequency, frame invariant
ko: 21/Ag (g is the periodicity of the helical winding of the pump
magnetic field, Fig. 1)
wo. k()c
€o: space dielectric constant, 8.854 X 10712 F/m
vr: thermal speed in the beam frame [eq (17) and (35)]
Av/v: relative energy spread of the beam in the laboratory frame
I': temporal gain
w;: incident electromagnetic wave angular frequency, which
corresponds to the pump frequency in the beam frame
k;: incident wavenumber, beam frame
ws: scattered electromagnetic wave angular frequency, beam
frame
ks: scattered wavenumber, beam frame
w): longitudinal electrostatic wave angular frequency, beam
frame
ky: longitudinal wavenumber, beam frame
B | : transverse pump magnetic field, laboratory frame
kp: Debye wavenumber w, /v in the beam frame
wer: angular frequency of transition from stimulated Raman to

=
o WS £ v Ie o

3070 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



stimulated Compton scattering in the laboratory frame [eq.
(87)]
Jo: beam current density
v;: amplitude of oscillating velocity of electrons due to the
incident (pump) wave [eq. (24)]
Subscript L: quantities in the laboratory frame
Subscript B: quantities in the beam frame
Subscript I: longitudinal wave, beam frame
Subscript s: scattered wave, beam frame
Subscript : incident wave, beam frame
Subscript L : component perpendicular to z.

Il. LORENTZ TRANSFORMATIONS

To understand the dynamics of the REB, we must first refresh our
memory of the Lorentz transformations which are relevant to our
problem. If we take z axis in the direction of the beam velocity as in
Fig.1andusesubscripts Land B torepresent thelaboratory andthe beam
frame, the Lorentz transformations of the coordinate z and time ¢ for
a REB with the velocity vg are given by (for example, see Ref. 3):

zp = v(zL — votL) (1)
or
zr, = v(zp + votB), (2)
and
v
tp=1v (tL - C—SZL>, (3)

ELECTROSTATIC WAVE, w,, k-
z /’
/ 2m/k,

Fig. 1—Schematic diagram of a free electron laser which utilizes the helical magnetic
pump field. The helical current produces a periodic magnetic field which induces longi-
tudinal electrostatic oscillations in the beam. A nonlinear interaction between the induced
longitudinal oscillation and the periodic pump field produces an electromagnetic wave
which propagates in the direction of the beam. This process can be viewed, in the beam
frame, as a stimulated backscattering of the pump field by the electrons in the beam. Since
the scattered wave propagates at the same speed as the beam itself, the beam length, Ly,
can be a size of several wavelengths in the beam frame. However, the length of the helical
field, Ly, should be such that enough e-folding gain.can be obtained. The minimum
e- folding distanceis obtained in eq.(91). Lj, should therefore be much larger than L, inthis
equation. Typically, L,, is on the order of 1 m.
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or

v
tL =7y <tB +_(2)ZB>, (4)
¢
where
v2\ —1/2
y= (1 - _°> (5)
C2

and c is the speed of light. Similarly, the electric field intensity E and
the magnetic flux density B are transformed to

Ep, =Ej., (6)
Ep, = vy(EL, + vo X Bp), (7
and
Bg, = Br., (8)
1
Bp, =7 <BLJ_*C_2V0XEL>, 9)

where subscript | shows the component perpendicular to the beam
velocity. Equation (7) indicates that a transverse magnetic field which
is static but spacially periodic in the z direction with the periodicity 27/kg
creates an oscillating electric field in the beam frame with the frequency
given by vkovo. Transformations of velocities are obtained by taking the
derivatives of (2) and (4),

_ vt
1+ vovg,/c?

The beam has transverse velocity modulation due to the vo X By | Lo-
rentz force. The Lorentz transformation becomes

ULz (10)

(1 + vovp,/c?)

1
~ —Uyg,. (11)
Y

UL

The Lorentz transformations for frequency and the wave number are
obtained by considering the phase factor kyz;, + wptz of a wave in the
laboratory frame, exp i(kz + wt); we take a wave propagating against the
beam direction to consider the back scattering.

krzr + opty = v (hL + ngL> zp + (o + krvo)tg;  (12)
c

hence

kp =1~ (kL + 'cv—ng), (13)
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wp = y(wr, + kLvo). (14)

One important aspect of this result is that the frequency seen by the
beam is vy times the laboratory frequency wy, plus v times the Doppler
shifted laboratory frequency krvg. An electromagnetic pump wave
propagating against the beam direction (whose dispersion relation is
given by w = k¢) has a frequency given by v(w + kvg) = 2vw when ob-
served in the beam frame. Similarly, the frequency w; of the back-scat-
tered light which faces little frequency shift from the incident light in
the beam frame becomes 2yw; when observed in the laboratory frame.
Hence, the frequency of the back-scattered light in the laboratory frame
is given approximately by 4v2 times the incident (pump) frequency in
the laboratory frame.

The pump frequency can be dc when a periodic magnetic field is used.
In this case, the frequency of the scattered wave is given by 2v2kqv,,
where k& is the wave number of the periodicity Ao, kg = 27/Ag, of the
magnetic field (see Fig. 1).

In addition to these quantities, we need the transformation of the
plasma frequency, wp, the beam thermal speed v, the beam oscillating
velocity in the transverse direction due to the pump field v |, and the
growth rate I'.

Since the Lorentz contraction increases the density by v and the mass
also by a factor v, the plasma frequency, w, (= e2n/egm)'/? (where e,is
the electron change, n the beam density, and ¢ the space dielectric
constant), is frame invariant.

The thermal speed in the beam framé vy can be expressed in terms
of the energy spread of the beam in the laboratory frame as follows. From
the definition of ¥ in (5),

v =c? (1 - %) (5"
Y

Hence the velocity spread 6vg in the laboratory frame is expressed in
terms of the spread in v,

A
dvg =c¢ —g (15)
Y
Now if we use the Lorentz transformation of v,, (10),
Avg,
0vy = oL, =
° B2 7 21 + vovp./e?)
1
~ — Avp, = % (16)
Y Y

because vg, = 0. Hence from (16) the thermal speed in the beam frame
is obtained:

A
vT=c—7. am
Y
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Next, we obtain the oscillating transverse velocity in the beam frame.
We consider the example of periodic magnetic pump. In this case, the
beam kinetic energy H does not change due to the presence of the pump.
If we introduce vyo to represent the total kinetic energy of the beam,

HO = c(pl% + m202)1/2
= me2y,, (18)

where py, is the momentum in the laboratory frame (Hj is not frame
invariant, but we delete subscript L for this quantity). The velocity
components in the transverse and z directions are obtained in terms of
pL as

oH 1
Ly = S = PL.1 (19)
opLL  myo
1
U =0Vp = PLz- (20)
mvo

If we substitute (19) and (20) into (17), we can obtain the relation be-
tween yg and vy as defined in (5),

U2
1§ = v? <1 + 5 2%) (21)

This expression shows that v can be significantly different from v even
if v} | /c2? « 1. With these preparations, we can now obtain vp | in terms
of the pump magnetic field. The equation of motion of an electron in the
presence of a transverse helical pump magnetic field B, (B cos ko2,
B | sin kgz, 0) is given by
dpr, | dvp,

=m = —e(vogXB,), 22
di Yo, (vo 1) (22)
since vg is constant. If we assume vg > vy, |, 2 = vot, (22) can be imme-
diately integrated to give

B

v = < eBy cos (kouot), =B sin (kouot), 0). (23)
myoko myoko

As will be seen, we need only the magnitude of the oscillating velocity

in the beam frame, |vp; |, which may be obtained from (23) and (11),

veB,
mko

This gives the relation between the oscillation amplitude of the electrons
in the beam frame and the pump magnetic field in the laboratory
frame.

We now consider the transformation of the growth rate T'. If a wave
with slowly varying amplitude Ag(zp,tg) grows in time and space at a

(= vi). (24)

lvpL| =
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temporal growth rate I'g in the beam frame, Ap satisfies the following
equation
0ApR 0Ap
ot azB
where vp, is the group velocity in the beam frame. If we use (2) and (4),
0/dtp and 0/0zp can be expressed in terms of derivatives in the labo-
ratory frame.

= T'gAp, (25)

0 o UBsUo\ O o
— 4 g +_g_> — 1~ + — 26
otp UBg 0zp v < c? ot (vo ng) Qzy, (26)

If we substitute (26) into (25), we see
0Ap Vo + Upg 0Apg _ T's
otr, 1+ vpgvolc? 0z,  y(1 + vpguo/c?)

The amplitude in the laboratory frame is linearly proportional to Ag.
Hence (27) gives the Lorentz transformation of the group velocity as well
as the growth rate, i.e.,

Ap. 27)

__Uotupg 1
Vg = ~ —(vg + vpgg), 28
Le 1+ LJBgUo/C‘2 2 (v Bg) (28)
r
T, B ~ LB (29)

T y(1+ ool 2v

lll. STIMULATED COMPTON OR STIMULATED RAMAN SCATTERING?

We consider here the basic processes of the stimulated scattering in
the beam frame. If we designate the frequency and wave number of the
incident (pump) wave by w; and k; and those of the scattered (amplified)
wave by w, and k;, the frequency and wave number of the longitudinal
oscillation excited in the beam (which is a stationary electron plasma
in the beam frame) are given by

W] = W T W, (30)

k =k, — k. (31)
We note here that the incident and scattered waves are electromagnetic
waves, hence w;/k; = ws/k; ~ ¢, while the longitudinal wave in the elec-
tron plasma has a phase velocity, w/ki, much smaller than the speed of
light.

To consider the backscattering, which is needed to utilize the fre-
quency up conversion as discussed in Section II, as well as to maximize

the gain, we must take ky-k; = —| ks | | k;|. The incident wave propagates
against the beam direction, hence k; = —|k;|2. Thus |ki| = |ks| +
[k} ‘

Now the longitudinal mode in the electron beam has the plasma dis-
persion relation given by
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1— 9?1 @ Of o/ OV
ki J-ov = (0 +10)/k)
where fo(v) is the velocity distribution function of the beam electrons

in the beam frame and is assumed to be nonrelativistic. If we solve (32)
for w, we have

dv =0, (32)

w >~ wp if ky < kp, (33)
w =~ k[l —10(1)] if By > kp, (34)

v = [ j‘_: UQ]‘OdU:Il/2 (35)

is the thermal speed of the electrons and kp = wp/vr is the Debye wave
number, both in the beam frame. Equations (33) and (34) indicate that
if the wave number is larger than the Debye wave number, the collective
property of the plasms oscillation is lost. The large imaginary part in (34)
is the consequence of the Landau damping.

Now the dispersion relation of the electromagnetic wave is given by

w2 = %2 + w2 (36)

If we use the dispersion relations for w; and ws [which satisfies (36)] and
w) [which satisfies (32)], the resonant conditions, Egs. (31) and (32), can
be plotted in (w,k) diagram. For the case of backscattering, the plots are
shown in Fig. 2 (for the case of k] < kp) and Fig. 3 (for the case of k; >
kp). In these figures, the arrows show the direction in which the state
with energy hw; and momentum Ak; decays into two other states with
energy hws, and Aw) and momentum hkg and hk;. The decay process
shown in Fig. 2 describes the stimulated Raman scattering and that in
Fig. 3 the stimulated Compton scattering.

Both figures show backscattering because k; and ks have opposite
signs. We see from these figures that if ws > wp, |ki| =~ 2|k |. Hence for
a given quality of a beam if w, (= ksc) is increased, k) which may be ini-
tially smaller than kp becomes larger than kp at some value of ws. Hence,
there exists a critical frequency of the scattered wave (which corresponds
to the lasing frequency in the beam frame) above (below) which scat-
tering process becomes Compton (Raman). If we write this critical an-
gular frequency in the laboratory frame as w,,, that is, the actual lasing
frequency, w., can be expressed in terms of the beam quality. Using

where

Wor = 2y ws
ws = chg
ky=2ks = kp,
we have, with eq. (17),
Wer = 'VkDC
= ywp (Y/Ay). (37)
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(w;, k) \

(w,, k)

{w, k) \ 7 |}

Fig. 2—Dispersion diagram of the electromagnetic wave and plasma wave in the beam
frame. This diagram shows the stimulated Raman scattering process. The arrow indicates
the direction of decay of the incident wave with frequency and wave number given by w;,
k; into a longitudinal oscillation with frequency wp and wavenumber k) and a backscattered
electromagnetic wave with frequency ws and wavenumber k;.

Thus the critical frequency depends on the relative spread of the beam
energy observed in the laboratory frame, Avy/y, as well as the beam
density and «. Since the plasma frequency is frame-invariant, it may be
expressed in terms of the current density Jg of the beam. Equation (37)
then becomes

wer = 8.14 X 108 v (y/Av)J o172 (37)
Since MKS units are used, J; is in the unit of A/m2. This expression is
an important criterion in designing the laser, because at w > w,, it should
operate in the stimulated Compton regime and the growth rate becomes
pessimistically small. For a practical purpose,»w = w., is the high-
frequency limitation of a free electron laser.

IV. THE STIMULATED RAMAN SCATTERING

In this section, we derive the growth rate in the stimulated Raman
regime. A number of authors have derived the growth rate using different
methods. The classic mechanical calculation is much simpler than the
quantum mechanical one and is well justified for a stimulated process
because a large number of photons are produced at a very early stage of
the process. Tytovich’s book? and a review paper by Kaw et al.% are some
of the appropriate references on this subject.
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Fig. 3—The dispersion diagram that shows the stimulated Compton scattering process.
When the wave number of the induced longitudinal oscillation k; is larger than the Debye
wave number kp, the induced longitudinal oscillation in the beam electrons becomes un-
correlated. In this case, the scattering occurs by the sum of Compton scattering by indi-
vidual electrons. Since the induced wave number %) is proportional to the lasing frequency,
when the lasing frequency is increased, the scattering process changes from the stimulated
Raman to the stimulated Compton.

Attempts have been made to obtain the gain in the laboratory frame
using a rather complicated nonlinear relativistic dynamics.87 As has been
shown, the gain and all the other parameters can be Lorentz-transformed
into the laboratory frame, it is much simpler to do the nonrelativistic
calculation in the beam frame. Thus we do the analysis in the beam
frame. Referring to Fig. 2, we consider a large amplitude incident wave
propagating in the negative z-direction with transverse electric field
given by

ReE; exp i(k;z + w;t), (38)
where k; and w; are positive. E; is related to the pump field in the labo-
ratory frame through the Lorentz transformation shown in eq. (7). In
particular, if the static periodic magnetic field is used, E; is given by

|E;| = vvoBL =~ vcBp, (39)
where By, is the amplitude of the rippled or helical magnetic field in the
direction perpendicular to the beam.

To simplify the analysis, we assume the variation of E; and all the
other field quantities in the transverse direction is negligible. This
assumption may be justified if the beam diameter is much larger than
all the wavelengths involved.

To obtain the growth rate, we consider a test electromagnetic wave
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(the scattered wave) which propagates in the direction of the beam and
which is excited by a nonlinear current density produced by the product
of the incident field and the induced longitudinal density perturbation
in the beam.
From the Maxwell equation, the electric field of the scattered wave
E; satisfies the wave equation
1 J2E, od
V2E, — — = ,
*Tezoarz 0o
where the current density consists of the linear (self-consistent) portion,
JL and the nonlinear portion J¥*, which is produced by the incident
field,

(40)

Js = JL+ JNE, (41)
where
JL = —engv, (42)
and
JINL = —enyv;. (43)

v, is the electron velocity modulation due to the scattered field

dv e
— = ——E,, 44
dt m (44)
while v; is the modulation due to the pump field. In the case of a helical

field pump, v; is given by eq. (24),

_’YE?B_L

, (45)
Yomko

i

and n, is the density modulation due to the induced longitudinal oscil-
lation in the beam, which satisfies the continuity equation,

Pe)
_a% + V- (ngvy) =0, (46)
with
dvy e
Mi__°g, 47
it o Bl 47

E; is the electric field of the longitudinal oscillation.

If we Fourier-transform (43), JN contains two frequency components,
one the Stokes mode, w; — w and the other the anti-Stokes mode, w; +
w, where w is the frequency of the induced longitudinal oscillation. To
obtain the growth rate due to the stimulated Raman scattering, we need
to retain only the Stokes mode. (We discuss the effect of anti-Stokes
mode later.) If we Fourier-transform eqs. (40) to (44), retaining only the
Stokes mode, we have
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k2 - clz[(wi —w)?— wg]} E; = —i(w; — w)uoenivi, (48)

where * shows the complex conjugate.
If we express n in terms of Eq, using Eqs. (46) and (47),

ki -E
= ng -, (49)
m iw
eq. (48) becomes
Ds(ks,w; — 0)E; = wy (ki - E))v;, (50)
where
Dy(k,w) = k22 + 0l — w2, (51)

and w) ~ wp, is used in evaluating the right-hand side of (50). D, = 0 gives
the linear dispersion relation of the scattered electromagnetic wave.
Equation (50) shows that the dispersion relation is modified by the in-
cident electromagnetic wave and the induced longitudinal wave.

To close the equations, we now must express E) in terms of E; and v;.
The set of equations that describe the longitudinal mode are Poisson’s
equation,

V. El =-—, (52)

€0

and the continuity equation (46), both of which are linear, and the
equation of motion,

dVi_ _€ (g 4v;x B, +v, X B)). 47)
dt m

The continuity equation is linear because the electromagnetic wave is
incompressible, n; = n; = 0. This means that the current density for the
longitudinal mode is given by —engv). Hence, the only nonlinearity comes
from the Lorentz force, v X B, in eq. (47"). Note that we dropped the
corresponding nonlinear term in the calculation of JN* because it is
smaller than the term retained by the factor of v;/c. Also note that we
used the linear relation, eq. (47), to express n) to evaluate the coupling
term nv; of (50) because it was a higher order correction there. If we use
the Maxwell equation,

oB =k XE, (53)
the nonlinear terms in (47’) become

(v; X B; + v; X B;)
X E. . ki XE;
=<ViXkL—s+stl*:El>
wg w;

oL (v ED - k)

S

=~ L (v EDk, (54)

S
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where we used k- v; = 0. Hence the total longitudinal velocity modula-
tion is given by

1 i+ E;
V1=._£<El—VL skl)' (55)
lom wg
If we use this expression in (46) and (52), we have
i-E;
Dy(kiy)k; - By = =k} 22, (56)
Ws
where
@2
Dy(kw) =1—=2, (57)
w

and Dj = 0 gives the linear dispersion relation for the longitudinal mode.
Noting that E; is parallel to v; in eq. (50), egs. (50) and (56) present the
set of coupled equations between the scattered wave and the induced
longitudinal wave,

D,E; = wy(k; - El*)vi, (50)
i-E; wp
Diky- By = —kp =222 (56)
Wy W

through the velocity modulation by the incident wave v;. The dispersion
relation of the coupled system is given by eliminating k-E; and E; from
these equations,

2
D; (k0 = @)Dr(kne) + 2 kfv? = 0. (58)
w

If k1v; is much smaller than w;, eq. (58) may be solved for a small fre-
quency deviation Aw from the frequency given by the linear dispersion
relation by expanding D and Dy, as

D,
Dg(ks,w; — w) = Dg(ks,ws) + ab Aw =0+ 2w;Aw, (59)
w
5, Ws
while
D
Do) = Dillaon) + 52" | 8 = 280/ (60)
w
k1w

Substituting (569) and (60) into (58), we have

] 1/2
Aw = 5 k| (92) . (61)
2 w

S

FREE ELECTRON LASER 3081



The imaginary part in Aw gives the Raman growth rate in the beam frame
I'f, hence

1 1/2
T8 == |k - (—2“’ ) . (62)
2 Ws

In the case of the periodic magnetic pump, v; is related to B | through
eq. (45). The growth rate in this case is then given by

2B 1/2
r g —yeo, <_"_°£’_) . (63)
Yom Ws
The gain in the laboratory frame is simply given by I'g/2+v as shown in

eq. (29).
We note here that the ratio y2/y, can be expressed in term of v through
(21),

v? Yo

Yo 1+§ui/c? ©9
This expression indicates that a level exists in the velocity modulation
UL 1 ,or the pump strength B , that produces a maximum growth rate.
This is because an excessively large modulation deflects the beam too
much in the transverse direction, which results in reducing the value of
7. There are different ways by which the growth rate can be optimized
depending on the choice of fixed quantities. In any case, the maximum
growth is achieved by selecting

viy v§le2~1,
or in terms of the modulation magnetic field,

=L =t (65)

When the pump intensity is large such that the growth rate I'g be-
comes larger than the plasma frequency, that is, if

[Riw;i| > (wpws)t’2, (66)
the longitudinal mode loses its linear property. In this regime, the growth

rate should be obtained from (58) without expanding D;(k},w) around
k1,wp.8 The growth rate is then modified to

T = [—P——"’zk’z U ]1/3. (67)
2w;
This regime is often called the oscillating two-stream instability
(oTs1).?
If the pump amplitude is further increased, we should include the
effect of the anti-Stokes mode which is simultaneously coupled in. The
dispersion relation including the anti-Stokes mode becomes

kiviwp 1 1
+ =
Dy(kyw)w? [DS(kS,wi —w) DskRf,w + w)] 0, (68)

1+
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where k] is the wave number of the scattered anti-Stokes mode. The
growth rate in this regime is shown to be proportional to v?, and it cor-
responds to the modulation instability (for example, see Ref. 10) of the
pump wave.

V. STIMULATED COMPTON SCATTERING

Here we obtain the gain in the stimulated Compton regime. As was
discussed in Section III, if the wave number of the longitudinal oscillation
induced in the beam electrons is larger than the Debye wave number,
kp(= wp/vT), the collective nature of the longitudinal mode is lost. The
scattering then occurs by the individual electrons.

Because distribution of velocities exists in the beam electrons, to ob-
tain the total scattering gain we must average over the velocity distri-
bution. If we look at Fig. 3, we see that the resonant condition of the
stimulated Compton scattering in the beam frame is given by

W — W = lk]lUT, (69)
[Ril + |ks| = [kl (70)

As we have seen in the case of the stimulated Raman scattering, we
must obtain JM to calculate the effect of the pump on the scattered
mode in (40). In the present case, the Fourier amplitude of J' is again
given by

JIt = —enju; (71)
however, the calculation of n is more complicated because of the aver-
aging over the velocity distribution.

To obtain n;, we use the Vlasov equation, which includes the nonlinear
force term produced by the v X B force as seen previously.

o, oh, ol _

ot "2z  m du,
where f) and f( are the perturbed (which represents the induced density
modulation) and unperturbed velocity distribution function of electrons
in the beam frame, v, is the z component of velocity, and F'* is the
nonlinear force acting upon electrons at the frequency w = wj,

FM = —e(v; X Bs + vs X B;). (73)

In (72), the linear force produced by the self-field, eE1/m, is ignored
because the induced longitudinal field is nonresonant; that is, Dy(k},w;)
# 0, due to the heavy Landau damping, and hence its amplitude is small.
If we Fourier-transform egs. (72) and (73) and take only the Stokes term,
we have

0, (72)

_ afO/aUz _6_ Zz_l

ik, — @) mows

The induced charge density n) is then obtained by integrating this ex-
pression over v,

v;-E;. (74)
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*
_ k12 €QV; Es

enj=1—— Xl (75)
Ws
where ¥ is the susceptibility of an electron gas,
gz a/:O/avz

X1=- (76)

kEJ v— (w+i0)/k), Uz
The dispersion relation for the scattered wave is now obtained by sub-
stituting (75) for the expression for the nonlinear current density, (71),
and using it in the wave equation for the scattered electric field, (48).

[(w; — w)2 — cuf‘, — CQkE]ES

= |vi| 2x{ k{E;. (77)
If we solve for w ~ w; — w, + Aw, we have

Aw = =2 R2|v;] 2. (78)
2w,
The temporal growth rate is obtained from the imaginary part of x;.
From Eq. (76), we see

ofo

2
Im X1= —ilgﬂ' fé(v - w/|k1|) v,

If we take the Maxwellian velocity distribution for fo in the beam
frame,

dv,. (79)

1 vos
- e~V /ZUT’ 80
fo= aror (80
2 2

Im x1 = —22\/ — o 0.76 =2 79
1= V2 ) 79

The Compton growth rate I'§ is now obtained from (78) and (79"),

. wp Jvil?
g~ 04—"——. (81)
ws VT

If we compare the Compton growth rate ' with the Raman growth rate,
(62), we see a qualitative difference. The Compton growth rate is pro-
portional to the pump amplitude squared, while the Raman growth rate
is proportional to the pump amplitude itself.

If the pump amplitude is increased such that v; > vr, it has been
shown by Hasegawa et al.11 that the pump field effectively increases the
velocity spread by v; X B; force and thus decreased the gain. The proof
was made for an electromagnetic wave pump, but it is believed that even
when the helical magnetic pump is used, the similar effect appears when
the beam enters into the magnetic field and suddenly see the magnetic
field pressure, B3/2uo. The Compton gain for such a case becomes!!

T4 ~ 0.3 wp Vi <i) 2 (82)
wg C \UT
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One important remark should be made here. We obtained Raman and
Compton gains by taking the asymptotic limits of k; < kp and k; >> kp,
respectively, to have simple analytic expressions. However, this does not
mean that the gain at the transition regime cannot be obtained, nor that
an abrupt transition exists between the two regimes. In fact, the unified
dispersion relation which covers the entire regime can be obtained by
using the Vlasov equation and by simply including the self-consistent
electric field E; in (72). If we further allow a situation that the scattered
wave may not propagate in the beam direction, the unified dispersion
relation which is expressed in the form of eq. (68) becomes

2. % |2 + .12
_ Rixi (Ry,w) [ |ks X Vzl + 2|k X vll ] =0. (83)
1+ x{ (kyw) LEZ Ds(ks,w; — @) kF*Dy(k},w; + o)

The gain for the entire regime is obtained by numerically solving this
equation for w.

VL. LIMITING GAIN AND OUTPUT POWER

In the previous two sections, temporal growth rates for stimulated
Raman and stimulated Raman scatterings were obtained. We summarize
the result in the following, by using k) =~ 2|k;| ~ 2w,/c, and ws ~ w;.
Raman gain (beam frame)

. 1/2
Lo i, el (22), (84)
c w;
. . 1/2
T = (2 l”—’2l—w§,w,-) w, pluly () (85)
c 4 w;
Compton gain (beam frame)
2 .
=042 |”‘| L TS (86)
UT w; vr
3/2 .
T4 =0.3 |J< ) oS, (87)
C w; \Ur v

The gain in all cases depends on the pump intensity v;. If one uses the
helical magnetic pump, as we have shown in Section VI, an optimum
value exists in the pump magnetic field B |, which is given by eq. (64).
The corresponding velocity v; becomes |v;|/c =~ 1/+/2. If we use this
value, the Raman (0TSI) and Compton gains become

T8y =~ (w%wi)l/i", applicable for w; < éz_y wp, (88)

2

Y\ w . 0%
IS max_o2< ) ®2  applicable for w; » ——w,. (89
B Ay o applicable for w; e wp (89)

Here w; = 2Ay/vy wp corresponds to the critical frequency, eq. (37) be-
tween the two regimes, that is the incident frequency for k) = kp.
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We see that the growth rate increases gradually as w; is increased and
then decreases in proportion to wjl. If we take an example of a best
quality beam with Ay ~ 1073 v, I'§ . at the critical frequency is given
approximately by

Y

1/2
T'§ max = 0.4 wp (A—7> ~ 12 wp.

On the other hand, at the same frequency,

1/3
rg max ~ Wp (ﬁ) >~ 7.8 wp.

This indicates that, at the critical frequency, the Raman and Compton
gains are approximately the same. If we now express the plasma fre-
quency in terms of the beam current density /o, wp = 8.14 X 106 V/J ,
hence the maximum growth rate in the beam frame is approximately
given by I'g max ~ 10 wp ~ 108 V/J . As an example, if we take a nominal
parameter of “microtron” 12 beam with a current of 1 A with the cross
section of 1 mm?, J = 108 A/m2. Thus, I'g max =~ 1011 sec™1. We also note
that the gain in the laboratory frame Ty, is given by I'g/2y. For a nominal
value of v = 103, the laboratory frame gain is 5 X 108 sec™1. Hence the
e-folding distance L = ¢/T';, =~ 1 m. The e-folding distance at a lower
frequency becomes shorter in proportion to w; /3, while at a higher fre-
quency becomes longer in proportion to w;.

These arguments may be summarized as follows. If we define the
critical frequency given by (37) as the limiting frequency that the free
electron laser can operate, the minimum e-folding distance in the labo-
ratory frame L,, and w., can be expressed in terms of g, v and v/A~.

The maximum lasing frequency, f,:

for =2 =13% 106y <l> [Jo(A/m2)]1/2 Hz. (90)
2w Ay
The minimum e-folding distance, L,,:
1/3
Ly =——=93y (91) [Jo(A/m?)]V2 m. (91)
L max Y
Condition to achieve L,,:
eB Wer
_—= k —
m o 22
or
B, (W/m?2) =1.8X 10711 fL; (92)

Y
Note that the beam pulse length (Fig. 1) is not a crucial parameter so long
as it is longer than, say, 10 ki ! because it runs at the same speed as the
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scattered light. If we take again the previous examples of microtron,12
Jo =108 A/m2, v = 102, and v/Ay = 103, we have

fer = 1.3 X 1014 Hz
L, =093 m
B, =23X 107! W/m?2

2
Ao = 2x/kg = e _ 4.6 X102 m.
cr

Let us now discuss the maximum output power of the laser. Because
L, is on the order of 1 m, it takes a relatively long system to achieve the
saturation in gain. But let us assume that the system is infinitely long
and ask ourselves what causes the saturation of the gain.

As we have found, when the energy spread of the beam becomes large
so that k) < kp, the gain drops in proportion to »;*. When the scattered
power is increased, it produces a larger v X B(= v; X By) force which
traps the beam electrons and increases its energy spread. The trapping
potential ¢; due to the Lorentz force v; X B, in the beam frame is ob-
tained from

a¢t|
— | = |kho| =~ |v;B;
|52 = gl = fouBz)
or
1
¢ =1 lvilBs|. (93)
1

The effective thermal speed vresr produced by the trapping potential
¢¢ is

2@¢t> 1/2

UTeff = < i~ (94)

We can consider that the saturation occurs when &y =~ wp/vest because
if vTer is made larger than this critical value, the gain changes from
Raman to Compton. Hence, the maximum amplitude of the magnetic
field of the scattered wave is given by

w w
ki = = ¥ : 95
L= Cegu/m) 2~ Zelon||Bu| )2 (95)
or by solving B; using |v;| =~ ¢, we have
B, = mwp _mwp (96)

eck; e w
If we operate at the maximum gain, &; = we/2v = wp(y/Av)/2. Hence,
we must use as the maximum scattered field i
m A
B, =2"w, =7, ©7)
e v
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and the corresponding electric field is
E; = ¢B,. (98)

If we Lorentz-transform these fields to the laboratory frame according
to egs. (5) and (7), we have

Brs = 2vB;s
and
Eps = 2vE;. (99)
Hence, the maximum output power P, is given by
Pm = ELsBrs/po

2 2
= 16‘72 <ﬂ> w% (ﬁ) £
e Y Mo

A 2
=16 () Phean, (100)
Y
where Ppeam is the beam kinetic power density,
PReam = mc3yn. (101)

Equation (100) shows that the conversion efficiency is roughly given by
16(Av/v)2. This may be misleading, because it shows that the poorer
quality beam gives better efficiency. This comes from the dependency
of B, on wj! so that the lower the frequency the longer the saturation
field. When a poor quality beam is used, the efficiency may become
better but with a sacrifice of lowering the laser frequency.

If we use the same example of parameters, ¥ = 102, Ay/y = 103 and
1 A beam, the maximum output power of the laser becomes 800 W.

VIl. CONCLUSION

Use of stimulated backscattering of a pump field by a relativistic
electron beam for a tunable laser was discussed. The temporal gain and
the e-folding distance in the laboratory frame are obtained for both
stimulated Raman and stimulated Compton scattering regimes. It is
shown that in the stimulated Compton regime, the gain drops in pro-
portion to the lasing frequency hence is not a practical regime to deploy.
If we consider that the transition frequency from the Raman to the
Compton regime is the maximum lasing frequency, the lasing frequency
can be obtained as a function of the beam energy v, the relative energy
spread of the beam Avy/v, and the current density J4 as shown in (90).
The e-folding distance corresponding to this frequency is shown in eq.
(91). For a nominal value of the available relativistic electron beam, these
quantities become approximately 1014 Hz and 1 m. The maximum power
output corresponding to this operation condition is also obtained and
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shown to be given by (100). Again for the nominal value of the beam
parameter, the output laser power becomes about one kilowatt. These
results indicate that the use of a relativistic beam with y of 100 and Avy/y
of 1073 can produce a tunable laser with an optimum operating frequency
approaching to the visible. However, extending this process into X-ray
regime seems extremely difficult.
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